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1. Introduction 

1.1. Harmful Algal Blooms 

Coastal systems around the world have suffered a variety of environmental problems, 

including loss of seagrass habitats, coral reef degradation or destruction, loss of quality of 

coastal waters for recreational use, deaths of marine mammals, red tides, fish kills, and 

outbreaks of shellfish poisonings. Some of the problems cited above can be attributable to 

what is called harmful algae blooms (HABs). 

The term ‘Harmful Algal Blooms’ (HABs) covers a heterogeneous set of events that share 

two characteristics: they are caused by microalgae and they have a negative impact on human 

activities. Despite these common features, HABs are very diverse in terms of causative 

organisms, dynamics of blooms and type of impact.  

A phytoplankton bloom, also known as a ‘red tide’ due to the water discoloration, is a sudden 

increase in the population of a microalgae that has encountered suitable conditions for growth, 

and that, together with their adaptive strategies (i.e. migration, active swimming) and the 

appropriate physical conditions, can reach concentrations of 104–105 cell L-1 during certain 

period of time (commonly 1–3 weeks). A proliferation like this can be characterised by the 

occasional dominance of a particular species (monospecific bloom) or group of species. 

Harmful species belong to six algal groups (diatoms, dinoflagellates, haptophytes, 

raphidophytes, cyanophytes, and pelagophytes, Fig. 1.1) and these differ greatly in terms of 

morphological, physiological and ecological characteristics (Zingone and Enevoldsen, 2000; 

Garcés et al., 2002). 

The list of microalgal species that are potentially involved in HABs comprises about 80 toxic 

species and about 200 noxious species out of an approximate total of 4000 marine planktonic 

microalgae described thus far (Sournia, 1995). Of these, only around 80 (mainly 

dinoflagellates) have the potential to produce toxins (Zingone and Enevoldsen, 2000; Smayda 

and Reynolds, 2003). This list has increased remarkably in recent years because of new cases 

of harmful events, the development of scientific research in the field, and enhanced human 

interactions with the coastal zone; however, several thousand phytoplankton species are still 

undescribed (Andersen, 1992). 

Flagellate species account for 90% and, among flagellates, dinoflagellates stand out as a 

particularly noxious group. They represent the 75% (45-60 taxa) of all harmful algal bloom 

(HAB) species.  
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Harmful algal taxa may be nonmotile or motile; pica-, nano-, or larger sized; 

photoautotrophic, mixotrophic, or obligate heterotrophs; siliceous or nonsiliceous species, 

etc., and have diverse modes of inimical action. 

 

Fig. 1.1- Some species of microalgae that form red tide or toxic outbreaks (from Fukuyo). 

 

 

Toxicity and other negative effects caused by harmful algae are therefore not limited to a 

single algal class or to a few genera, but are distributed among several taxonomic groups. 

Similarly, the high taxonomical diversity of harmful algae results in a variety of toxins and 

relative mechanisms of action at different levels of the trophic chain. As shown in Fig. 1.2, 

they have some of the most complex structures known in nature, ranging from low to high 

molecular masses and from very polar to highly lipophilic; they possess multi-functional 

characters and high degrees of chirality, and cause many different types of toxic effects. 

Ecological requirements and bloom dynamics also vary considerably from one species to 

another; moreover the taxonomic diversity of HAB species complicates monitoring 

operations, which require a high degree of specialized expertise. Another implication of the 

taxonomic diversity of HAB species is that the production of toxic substances or other 
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offensive or disturbing features has been selected as an advantageous character more than 

once in the evolution of these microorganisms.  

1.2. The diversity of negative effects 

Five major human toxic syndromes caused mainly by the consumption of bivalve molluscs 

contaminated by algal toxins are reported: 

1. Paralytic shellfish poisoning (PSP): PSP toxins are collectively called saxitoxins 

(STXs) and at least 21 analogues of these cyclic guanidines are known in shellfish, with 

saxitoxin (Fig. 1.2a) being the most common toxin. STXs exert their effect by a direct 

binding on the voltage-dependent sodium channel blocking the influx of sodium and the 

generation of action potentials in nerve and muscle cells, leading to paralysis 

(Narahashi, 1988). Dinoflagellates that produce STXs belong to three genera 

(Alexandrium, Gymnodinium and Pyrodinium). 

2. Diarrhoetic shellfish poisoning (DSP): DSP toxins were originally divided into three 

different structural classes: (a) okadaic acid (OA) (Fig. 1.2b) and its analogues, 

dinophysistoxins (DTXs), (b) pectenotoxins (PTXs) and (c) yessotoxins 

(YTXs)(Yasumoto et al., 1985). However, YTXs have now been excluded from the DSP 

classification because they are not orally toxic and do not induce diarrhoea (Ogino et al., 

1997; Aune et al., 2002). The mechanism of action of the OA group toxins is via 

inhibition of serine-threonine protein phosphatise 2A (PP2A) (Bialojan and Takai, 

1988), which plays important roles in many regulatory processes in cells. OA probably 

causes diarrhoea by stimulating phosphorylation of proteins that control sodium 

secretion in intestinal cells (Cohen et al., 1990). DSP toxins are produced by the 

dinoflagellates Dinophysis spp. and Prorocentrum spp. and their toxin profiles can vary 

within a single species (Murakami et al., 1982; Yasumoto et al., 1980; Fernández Puente 

et al., 2004). 

3. Neurotoxic shellfish poisoning (NSP): NSP is a illness caused by the consumption of 

bivalve molluscs contaminated with neurotoxins that are produced by the marine 

dinoflagellate Karenia brevis (formerly known as Gymnodinium breve and Ptychodiscus 

brevis) (Baden, 1983; Steidingen and Baden, 1984). Brevetoxin (Fig. 1.2c) and its 

analogues can also affect finfish, aquatic mammals and birds and this topic has been 

recently reviewed (Furey et al., 2007; Watkins et al., 2008). The symptoms of NSP 

include gastroenteritis and neurological problems (Baden, 1983). The mode of action of 

brevetoxins is by receptor binding to the sodium channels which control the generation 



 8 

of action potentials in nerve, muscle and cardiac tissue, enhancing sodium entry into the 

cell. This leads to the incessant activation of the cell which causes paralysis and fatigue 

of these excitatory cells (Dechraoui et al., 1999). 

4. Amnesic shellfish poisoning (ASP): Domoic acid (DA) was identified as the causative 

toxin (Fig. 1.2d) (Wright et al., 1989) and marine diatoms of the Pseudonitzschia spp. 

were identified as the source of this toxin (Bates et al., 1989). In addition to 

gastrointestinal disturbance, unusual neurological symptoms, especially memory 

impairment, were observed. 

5. Azaspiracid shellfish poisoning (AZP): AZP is the most recently discovered toxic 

syndrome from shellfish consumption and several analogues belonging to this new class 

of toxins were identified in contaminated mussels (Satake et al., 1998; Ofuji et al., 1999, 

2001). More than 20 analogues of azaspiracid AZA1 (Fig. 1.2e) have been identified in 

shellfish (Ofuji et al., 1999, 2001; James et al., 2003; Rehmann et al., 2008), which 

complicates the regulatory control of these toxins as most have not yet been 

toxicologically evaluated. Cytotoxicity studies using neuroblastoma cells showed that 

AZA1 disrupts cytoskeletal structure, inducing a time- and dose-dependent decrease in 

F-actin pools. A link between F-actin changes and diarrhoeic activity has been suggested 

and this may explain the severe gastrointestinal disturbance in AZP outbreaks. 

Azaspiracids have been identified in two dinoflagellates, Protoperidinium crassipes 

(James et al., 2003) and a new species, Azadinium spinosum (Tillmann et al., 2009). 

 

Fig. 1.2 - Structures of the most abundant toxin responsible for each of the five shellfish toxic 

syndromes; (a) saxitoxin (PSP), (b) okadaic acid (DSP), (c) brevetoxin (NSP), (d) domoic acid (ASP), 

(e) azaspiracid (AZP) (from James et al., 2010). 
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In terms of harmful effects, we can consider two types of causative organism: the toxin 

producers and the high-biomass producers. Some HAB species are related to both 

characteristics.  

High biomass blooms may cause significant ecological problems and harmful effects in the 

biota of the region (anoxia, community and food-web changes) as well as great economic 

problems connected to the deterioration of the coastal recreational waters (e.g. discoloration, 

odour). In some cases, the algal bloom is beneficial for aquaculture and wild fisheries 

operations; however, algal blooms can have a negative effect, causing severe economic losses 

to aquaculture, fisheries and tourism operations and having major environmental and human 

health impacts. 

Toxin events can result from very low concentrations of the causative organism. Moreover, in 

the case of toxic events co-occurring with high-biomass, levels of toxicity which are 

considered dangerous have often risen before the bloom is conspicuous due to discoloration or 

cell counts. 

Both high biomass and toxic events can also be associated with the mortality of fish, and 

different causes are associated with these mortalities (low oxygen levels, direct toxicity, 

haemolysis, and mechanical damages). In many cases, fish mortality events are related to the 

fact that fish cannot escape from the cages. 

 

Four categories of deleterious effects related to marine microalgae have been identified: 

1. Risks for human health: some algal toxins, different in structure and toxicity (Fig. 1.2), 

reach humans through specific vector organisms that accumulate these noxious 

substances in their gastrointestinal tract or body tissues (Fig. 1.3). The most toxic algal 

species are recorded among dinoflagellates, but a number of diatoms and cyanobacteria 

also produce neurotoxic substances that can endanger human health. Four main harmful 

effects on humans are associated with the toxic producers: (i) consumption of toxic 

shellfish that have accumulated phytoplankton toxins filtered from the water, (ii) 

consumption of tropical fish that accumulated phytoplankton toxins (ciguatera), (iii) 

respiratory problems due to inhalation of aerosols from sea water that contains toxic 

species, and (iv) skin irritations due to allergy-like reactions. Toxins can accumulate in 

many species of bivalve molluscs as well as in some gastropods, crabs and fish; the 

characteristics of toxification and de-toxification vary remarkably from one vector to 

another (Shumway et al., 1995). Currently, approximately 2000 cases of intoxication 

(with a 15% mortality rate) in humans due to consumption of toxic shellfish or fish are 
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registered annually (Hallegraeff et al., 1995, 2003). However, this is probably an 

underestimation because many cases, particularly those involving gastrointestinal 

symptoms, are incorrectly diagnosed. Although many affected areas are nowadays well 

controlled thanks to monitoring, the occurrence of toxic events in new areas and the lack 

of control in others pose a serious risk to human health and life. 

 

Fig. 1.3 - The toxin cycle: diagram illustrating the interrelationships between harmful algae and 

shellfish, finfish, birds and mammals (from James et al., 2010). 

Toxic phytoplankton & bacteria Finfish

Marine mammals

Bivalves

Human

Crustaceans

Toxic phytoplankton & bacteria Finfish

Marine mammals

Bivalves

Human

Crustaceans  

 

2. Impact on living marine resources: besides the cases cited above, in which harmful 

algae may indirectly impinge upon the exploitation of marine resources, several kinds of 

harmful algae may directly affect wild and cultivated fish or marine invertebrates that 

are valuable seafood. Most mass mortalities of cultivated fish around the world are 

generally caused by such ichthyotoxic species as the raphidophytes Heterosigma 

akashiwo and Chattonella marina, a number of dinoflagellates and some 

prymnesiophytes. Harmful algae usually affect fish and other invertebrates by producing 

toxins, but mucilage-producing or spine-bearing algae may cause mechanical clogging 

or lesions of the gills. A reduction in oxygen and hydrogen sulphide production can also 

cause mass mortalities of huge proportions of commercially valuable species. Oxygen 

depletion can be due to high respiration by algae (at night or in low light during the day) 

but more often is caused by bacterial respiration during decay of the bloom. Essentially 

non-toxic bloom formers can sometimes evoke major ecosystem impacts, and unsightly 

dead fish, slime and foam deter tourism and recreational activities. Whales and 

porpoises can also become victims when they receive toxins through the food chain via 
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contaminated zooplankton or fish (Geraci et al., 1989). Poisoning of manatees by 

dinoflagellate brevetoxins contained in salps attached to seagrass and of pelicans and 

sealions by diatom domoic acid contained in anchovies has also been reported. Some 

algal species can seriously damage fish gills, either mechanically or through production 

of haemolytic substances, whereas other kill fish algae through the production of 

extracellular neurotoxins. Whereas wild fish stocks have the freedom to swim away 

from problem areas, caged fish appear to be extremely vulnerable to such noxious algal 

blooms. 

3. Impact on tourism and on the recreational use of coastal areas: a requisite for the 

exploitation of tourism and of the recreational resources in coastal areas is a high quality 

of the environment, i.e. unaltered seawater colour, transparency, smell. Algal blooms 

may cause intense discolorations of seawater from golden brown to emerald green, from 

reddish to whitish, which earned them the name of ‘red tides’.  

4. Damage to the marine ecosystem: a number of HABs affect organisms that may have 

no commercial value but nonetheless are functional components of the marine 

ecosystem. The co-occurrence of several conditions is required to generate these 

situations, i.e. non-limiting light and nutrient supplies and local physiographic and 

oceanographic conditions that entrap the bloom, thereby amplifying the effects of 

biomass degradation. Anoxia is not the only mechanism whereby HABs exert a 

deleterious effect on different components of the coastal ecosystem. They also reduced 

grazing by microzooplankton and decimated eelgrass beds through severe light 

attenuation (Cosper et al., 1989). In other cases, specific toxins seem to affect a single 

population of marine mammals, fish, birds, or other organisms. 

 

1.3. Bloom dynamics 

The dynamics of harmful algal blooms cannot be elucidated by research on one or a few 

organisms; it is in fact difficult to define one kind of coastal area which is more prone to 

HABs, even when a single species is considered. Indeed, HABs may occur in a variety of 

areas and hydrographic conditions, including upwelling regions, pristine coastal waters with 

moderate nutrient levels, and coastal areas affected by shelf-scale circulation. 

The concept of high abundance is implicit in the term ‘bloom’ defined also as a ‘significant 

population increase’ (Smayda, 1997), which leads to a peak. The magnitude of this peak is 
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specific for each species and may vary considerably in space and time, being dependent on 

environmental conditions. In this sense, a bloom does not imply a high biomass. 

Because of the difficulty in detecting low concentrations of planktonic algae, it is not always 

possible to pre-alert to the harmful events, especially in the case of these extremely noxious 

species. 

On the diametrically opposed end of a scale of danger are species that are noxious only when 

they reach very high concentrations. 

The diversity of bloom dynamics is another aspect to be taken into account. Different 

interacting physical, chemical and biological factors can trigger a bloom of a species but in 

different habitats (Zingone and Enevoldsen, 2000). Each species has different adaptive 

strategies and responds in different ways to the variability of the environment and its changes 

(Fig. 1.4). It could be argued that any phytoplankton species can exert a negative impact when 

it persistently dominates phytoplankton populations. Moreover, the expansion of the 

geographical distribution of a species could be due to an anthropogenic introduction, a natural 

phenomenon (i.e. currents), or it could be that the species was already in the area but at 

undetectable concentrations (the case of the NSP producer Karenia brevis in New Zealand 

waters (Hallegraeff et al., 1995)) or 

present in the distant pass (Dale et al., 

1993). Genetic analysis is therefore 

essential to confirm the invasion of alien 

microalgae in different coastal areas 

affected by ballast water or the transfer 

of shellfish stocks, i.e. Alexandrium 

species expansion in Tasmanian Waters 

(Scholin, 1996). 

 

 

Fig. 1.4 – Factors affecting harmful algae gains and losses. On the upper half the gains include their 

intrinsic ability to utilize inorganic and organic compounds (mixotrophy), nutrients from 

anthropogenic origin, and under adverse conditions release allelochemical compounds that kill other 

algae (allelopathy) or their grazers. On the lower half the losses the harmful algae might suffer: in this 

case no blooms will be formed or damage to the environment will occur (from Granéli and Turner, 

2006). 
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1.3.1. Human impact 

There are still doubts on the extent to which human impact may contribute to HABs; 

however, factors related to human activities (Fig. 1.5) can be summarised:  

(i) the increase in geographical ranges of harmful species distribution due to human 

induced transport of resting cysts results from movement of shellfish stocks or 

ballast waters and floating plastic; 

(ii)  stimulation due to the over-enrichment of coastal waters (eutrophication);  

(iii)  human-induced climatic change has also been noted;  

(iv) the increase of confined bodies water in coastal areas due to the exploitation of the 

coastline (coastal development) has been suggested in the Mediterranean Sea 

(Garcés et al., 2002; Vila et al., 2001); 

(v) the decreasing biomass of filter feeding organisms, due to overfishing, or changing 

environmental conditions. 

 

Fig. 1.5 - Scheme of anthropogenic factors related with recreational activities promoting HAB 

increase (from Action plans and measures for an integrated control of Mediterranean recreational 

waters in relationship with harmful algae blooms. http://www.icm.csic.es/bio/projects/wscalvia). 

 

 

 

Anthropogenic changes in the ratio of nutrient availability could be one of the key factors in 

some areas. Coastal zones around the world are in fact subjected to increasingly nutrient 
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inputs as related to human activities including direct discharges and via rivers, ground water 

and atmospheric deposition. Anthropogenic sources of nutrients include fertilisers, 

combustion of fossil fuels, discharge of human waste, and the consequences of animal 

production and contribute to non-point sources of nutrient loading (Nixon, 1995; National 

Research Council, 2000). There are well-established positive relationships among nutrient 

loads in marine systems, and phytoplankton primary production, and fisheries yield (Rabalais 

and Nixon, 2002). This over-enrichment leads to diverse impacts including increase turbidity 

with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of 

ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of 

harvestable fisheries and HABs (National Research Council, 2000; Rabalais and Nixon, 

2002). 

It is considered in a global context that point sources such as urban waste water and industrial 

discharges are less important nutrient contributors than non point-sources, which are very 

difficult to evaluate.  

 

1.3.2. Environmental factors 

The taxonomic diversity of HAB species suggests that each species is adapted to some set of 

preferred environmental conditions or, in ecological terms, to a defined niche.  

Conceivably, once the ecological requirements for each species are known, it would be easy 

to predict its occurrence (Richardson, 1997). 

As a result, the capability of a species to cope with 

environmental conditions apparently not matching its 

optimal ranges is notably expanded and its occurrence is 

more difficult to predict (Fig. 1.6). Bloom dynamics are 

controlled internally through behavioural adaptation. 

Adaptive strategies such as mobility behaviour (phototaxis, 

vertical migration, swimming patterns, and aggregation) 

and life cycle strategies (which include temporary phases 

and resting cysts) interact with the surrounding 

environment in development and maintenance of blooms.  

 

Fig. 1.6 – Generic vertical profiles of irradiance, nutrients concentration, temperature and chlorophyll 

through the water column. 
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Vertical migration is a mechanism to seek nutrients, but is also a determining factor in the 

spatial distribution of the population (Prego, 1992; Liu et al., 2002) as well as an adaptation to 

minimize population loss. 

A large part of HABs species research has been dedicated to toxin production and factors that 

control it. The issue gets more complicated since environmental conditions (light, 

temperature, salinity and nutrients) can increase or diminish the capability of some species to 

produce toxins (Cembella, 1998). It has also been said that the same species can be toxic in 

one area causing very harmful effects, not toxic in other areas, or lose their capability of 

producing toxins in culture. This statement must be treated with caution; in fact, it may be due 

to confusion in the identification of the species. 

Links between HABs and nutrient loading are complex and imply an understanding of the 

physiological requirements and the mechanisms of nutrient acquisition by each species. 

Nutrient assimilation depends on a variety of factors such as the nutritional preferences, 

uptake capabilities or nutritional status. 

Flagellates, including dinoflagellates, have considerable nutritional strategies such as: (i) low 

nutrient affinity (Smayda, 1997), (ii) preference for reduced N forms (i.e. ammonium and 

urea) (DeYoe and Suttle, 1994), and (iii) mixotrophy (the ability to acquire N and C via 

particle ingestion or by the uptake of dissolved organic compounds) (Carlsson et al., 1998; 

Lomas and Glibert, 1999a,b; Berg et al., 2002, 2003). 

Diatoms have an advantage, with respect to flagellates, at low nutrient conditions. A key 

element in the context of HABs is silica (Smayda, 1997), an element required by diatoms in 

their walls, as their growth ceases when Si becomes depleted. The ratios N:Si and P:Si have 

increased substantially in coastal areas affected by human stresses (Justic et al., 1995; Olivos, 

2000) and this would favour non-diatom species including several harmful/toxic species 

(Smayda, 1989). 

All these cases indicate that complex mechanisms regulate the interactions among different 

components of the trophic web and that a lowering in diversity of algal population in time and 

space may pose a serious risk to coastal ecosystems. 

 

1.3.3. Life cicles 

Numerous phytoplankton species have complex life cycles, i.e. alternation of stages that differ 

in terms of physiology, motility, resistance to adverse conditions and life styles. Non motile, 

benthic resting stages are widely distributed among HAB dinoflagellates and raphidophytes, 
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and may play a significant role in bloom initiation by inoculating seed populations when 

conditions are favourable (Fig. 1.7).  

 

Fig. 1.7 - A conceptual diagram representing processes of red-tide outbreaks (from Okaichi, 2003). 

 

 

At the end of a bloom, cyst formation may represent a mechanism whereby organisms are 

rapidly removed from the water column so as to prepare the `seed bank' to inoculate the next 

bloom (Wyatt and Jenkinson, 1997). Within this already complex framework, it appears that 

encystment rates, dormancy length, and cyst germination triggers can be species-specific and 

at times strain-specific (Fig. 1.8). The transitions between different life stages of a species are 

presumably controlled by the interplay of endogenous factors with the physical and chemical 

environment, but the role and relative importance of these factors for different species are 

poorly known (Anderson, 1998). 

 

1.3.4. Role of bacteria 

Bacterial–algal interactions play a role in dynamics of HABs. This is an ongoing area of 

research, and efforts are addressed to isolating and identifying the bacteria associated with the 

species during bloom conditions (Alavi et al., 2001; Hold et al., 2001; Tobe et al., 2001; 

Vasquez et al., 2001; Biegala et al., 2002; Uribe and Espejo, 2003). 

One of the hypotheses explaining the increase in toxic events is that toxic production can 

provide advantages over other organisms of the community. “Are toxin-producing strains 

more successful than non-toxic ones?’’ Toxins production has been associated with 
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allelochemical and allelopathic activities, which inhibit the growth of co-occurring 

phytoplankton species (Arzul et al., 1999), and act as a deterrent to grazers (Turner and 

Tester, 1997). Toxin production could thus be a developed adaptation to offset the negative 

effects of interspecific competition in nutrient limitation conditions, by increasing grazing 

pressure on non-toxic competitors (Guisande et al., 2002). 

 

Fig. 1.8 - Life cycle of a harmful algae, e.g. Alexandrium sp. (Illustration by Don Anderson, Woods 

Hole Oceanographic Institution). 

 

 

1.4. HABs and eutrophication 

The increase of HAB records in coastal waters around the world has often been associated 

with nutrients derived from anthropogenic activities (Hallegraeff, 1993; Smayda, 1989). 

Eutrophication is one of several mechanisms by which harmful algae appear to be increasing 

in extent and duration in many locations. Although important, it is not the only explanation 

for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of 

some harmful species, but for others it has not been an apparent contributing factor.  

The term ‘eutrophication’ was formerly used mostly in reference to the natural aging of lakes 

wherein a large, deep, nutrient-poor lake eventually becomes more nutrient-rich, more 
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productive with plant and animal life, and slowly fills in to become a pond, then a marsh 

(Wetzel, 1983). More recently, the term has been used to refer to cultural or accelerated 

eutrophication of lakes, rivers, estuaries, and marine waters, wherein the natural 

eutrophication process is advanced by hundreds or thousands of years by human activities that 

add nutrients (Burkholder, 2000). Nixon (1995) defined eutrophication as ‘the process of 

increased organic enrichment of an ecosystem, generally through increased nutrient inputs’. 

Two nutrients in human-derived sources, phosphorus (P) and nitrogen (N), are of most 

concern in eutrophication. In freshwaters, P is the least abundant among the nutrients needed 

in large quantity (macronutrients) by photosynthetic organisms, so it is the primary nutrient 

that limits their growth (Schindler, 1977). P can also limit or co-limit algal growth in 

estuarine and marine environments that are sustaining high N inputs (Rudek et al., 1991; 

Fisher et al., 1992). In many temperate and polar coastal marine waters, N is the most 

important nutrient that limits primary production of photosynthetic organisms (Dugdale and 

Goering, 1967; Glibert, 1988). N is often the nutrient that first limits primary production at 

the estuarine interface between marine and freshwater habitats. In lower estuaries both N and 

P can colimit phytoplankton production (Rudek et al., 1991; Fisher et al., 1992). Other 

nutrients such as silicon (Si) and iron (Fe) also can significantly influence the outcome of 

species dominance and the structure and abundance of phytoplankton communities under 

cultural eutrophication (Heckey and Kilham, 1988; Wilhelm, 1995). 

In the laboratory it is easy to demonstrate that algal growth increases with increasing nutrient 

availability; however, there is scarce evidence for a direct relationship between the spread of 

harmful events and eutrophication in the sea. High biomass blooms obviously require high 

nutrient levels, but a high nutrient supply may not necessarily favour harmful species. Also, 

specialized behaviours, like facultative or obligate mixotrophy (Stoecker, 1999; Granéli and 

Carlsson, 1998) or the capability of vertically migrating to nutrient-replete water column 

layers (Hasle, 1950; Villarino et al., 1995), represent very successful adaptations to cope with 

the vertical segregation of light and nutrients in stratified waters. Moreover, at the ecosystem 

level, complex trophic relationships, including microbial interactions and excretion from 

grazers, may enhance nutrient availability and growth rates under apparently oligotrophic 

conditions (Goldman et al., 1979). Linkages between HABs and eutrophication have been 

noted within the past two decades (e.g., Officer and Ryther, 1980; Lam and Ho, 1989; 

Smayda, 1989, 1990; Riegman, 1995; Richardson and Jorgensen, 1996; Richardson, 1997). 

Coastal waters are receiving massive and increasing quantities of industrial, agricultural, and 

sewage effluents through a variety of pathways (Vitousek et al., 1997). In many urbanized 
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coastal regions, these anthropogenic inputs have altered the size and composition of the 

nutrient pool which may, in turn, create a more favourable nutrient environment for certain 

HAB species. 

The impact of high nutrient supplies and of massive inputs of inorganic and organic 

compounds in coastal systems undoubtedly merits detailed investigation. In fact, besides the 

cases of high biomass blooms leading to hypoxic or anoxic events, other negative effects of 

eutrophication might be worth assessing, e.g. the loss of phytoplankton diversity and shifts in 

the specific composition of microalgal communities. These changes could influence the fate 

of primary production and modify the shape of the trophic web in coastal areas, with grave 

consequences for fisheries and for the exploitation of natural resources.  

Despite our increased understanding of the pathways by which nutrients are delivered to 

ecosystems and the pathways by which they are assimilated differentially by different groups 

of species, the relationships between nutrient delivery and the development of blooms and 

their potential toxicity or harmfulness remain poorly understood. Many factors such as algal 

species presence/abundance, degree of flushing or water exchange, weather conditions, and 

presence and abundance of grazers contribute to the success of a given species at a given 

point in time. Similar nutrient loads do not have the same impact in different environments or 

in the same environment at different points in time.  

Many sources of nutrients can stimulate harmful algal blooms, including sewage and animal 

wastes, atmospheric deposition, and groundwater inflow, as well as agricultural and other 

fertilizer runoff; yet another source is the growing aquaculture industry in many coastal areas. 

Nonpoint sources of nutrients (from agricultural activities, fossil-fuel combustion, and animal 

feeding operations) are often of greater concern than point sources because they are larger and 

more difficult to control basis (National Research Council, 2000). 

HAB species, like all plant-like organisms require certain major and minor nutrients for their 

nutrition, and these can be supplied either naturally from freshwater and marine 

biogeochemical processes or through human activities such as pollution. These nutrient 

sources include dissolved inorganic and organic compounds of various types, as well as 

particulate nutrients in the form of other organisms or detritus. Nutrients can stimulate or 

enhance the impact of toxic or harmful species in several ways. At the simplest level, harmful 

phytoplankton may increase in abundance due to nutrient enrichment, but remain in the same 

relative fraction of the total phytoplankton biomass. Even though non-HAB species are 

stimulated proportionately, a modest increase in the abundance of a HAB species can cause it 

to become noticeable because of its toxic or harmful effects. Specific algal species or species 
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groups have numerous physiological adaptations that permit them to exploit nutrients 

differentially (Smayda, 1990, 1997; Anderson et al., 2002; Smayda and Reynolds, 2003). A 

more frequent response to nutrient enrichment occurs when a species or group of species 

begins to dominate under the altered nutrient regime. 

Some generalities are beginning to emerge with respect to the preference of many bloom-

forming species for specific forms of nutrients, as well as the tendency for some blooms to 

occur when the ratios of nutrient availability or supply are altered. The concept is based 

largely on the nutrient ratio hypothesis (Tilman, 1977; Smayda, 1990, 1997) which argues 

that environmental selection of phytoplankton species is associated with the relative 

availability of specific nutrients in coastal waters, and that human activities have altered these 

nutrient supply ratios in ways that change the natural phytoplankton community composition 

and possibly favour harmful or potentially toxic forms. Perhaps the clearest demonstration of 

the effect of altered nutrient supply ratios involves the stimulation of non-diatom species 

following changes in the availability of N or P relative to silicate. Diatoms, the vast majority 

of which are harmless, require silica in their cell walls, whereas most other phytoplankton do 

not. Since silica is not abundant in sewage effluent but N and P are, the N:Si or P:Si ratios in 

some lakes, rivers, estuaries, and coastal waters have increased over the last several decades 

(Schelske et al., 1986; Smayda, 1989, 1990; Rabalais et al., 1996). In theory, diatom growth 

will cease when silica supplies are depleted, but other phytoplankton classes can continue to 

proliferate using the excess N and P. 

An understanding of physiological responses is further complicated by the fact that the rate of 

nutrient supply will not necessarily correlate with the rate of nutrient assimilation by the 

algae, as the latter is controlled by nutritional preferences, uptake capabilities, and 

physiological or nutritional status. The response by either the total phytoplankton community 

or individual species within the community also depends on many factors, including 

interactions with grazers and physical forcing such as turbulence. Grazers may inhibit the 

development of phytoplankton biomass through their feeding, while at the same time, enhance 

the regeneration of nutrients through their release and excretion. This in turn will alter the 

balance of reduced versus oxidized forms of N (Glibert, 1998). 

In addition, the assimilation of nutrients by phytoplankton depends on environmental factors 

such as light, temperature, and water column stability with different environmental effects 

having differential impacts on different nutrient substrates. The uptake of ammonium and urea 

are usually thought to be less light dependent than the uptake of nitrate (MacIsaac and 

Dugdale, 1972; Fisher et al., 1982), and the temperature dependence of ammonium uptake 
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may also differ from that of nitrate (Lomas and Glibert, 1999a). In recent years, the 

physiological strategies by which different groups of species acquire their nutrients have 

become better understood. Rapidly growing marine diatoms have been highly correlated with 

large and/or frequent additions of nitrate, in part because they have physiological adaptations 

which allow them to exploit nitrate-rich conditions (Takahashi et al., 1982; Goldman, 1993; 

Lomas and Glibert, 1999a, b, 2000). Microflagellates, including dinoflagellates, are most 

frequently associated with low nitrate concentrations, higher ammonium, urea, or dissolved 

organic nitrogen (DON) supply, and consistent physiological preference for reduced N forms 

(e.g. Berg et al., 1997; Carlsson et al., 1998; Lomas and Glibert, 1999b). Harmful estuarine 

dinoflagellates tend to occur in waters that have seasonally high phosphate and nitrate, as well 

as high DOC and other organic nutrient forms (Burkholder and Glasgow, 1997; Burkholder et 

al., 1997, 2001a,b; Magnien et al., 2000; Glasgow et al., 2001; Glibert et al., 2001). 

Moreover, there is evidence that nutrients can play a major role in the regulation of toxicity in 

some HAB species, and this can have significant implications to toxin monitoring programs 

and public health decisions. In some cases, toxicity can increase or decrease dramatically 

depending on the limiting nutrient. Saxitoxin production by Alexandrium tamarense can be 5-

10-fold higher in P-limited versus N-limited cells (Boyer et al., 1987; Anderson et al., 1990). 

Likewise, domoic acid production by Pseudo-nitzschia multiseries is inversely correlated with 

the ambient Si concentration in batch culture (Pan et al., 1996a). In that study, cells began 

accumulating this toxin only when the division rate declined as a result of partial or total 

depletion of silica; when cultures were N-limited no toxin was produced, and toxin production 

was greatly enhanced under P-deficient conditions in continuous cultures (Pan et al., 1996b). 

For other HAB species a similar picture emerges: toxin production varies significantly with 

different degrees and types of nutrient limitation. 

It is important to recognize that the impacts of nutrient loading depend on many factors, from 

the species composition and nutritional state of the organisms at the time of the loading, to the 

physical features of the environment at that point in time, as well as the existence of grazers. 

Similar nutrient loads will not necessarily have the same effect on a different environment, or 

on the same environment at a different point in time. Although there have been many 

successes in relating nutrient quantity and composition to outbreaks of HABs, in general the 

relationships between nutrient delivery and the development of blooms of many HAB species, 

and between nutrient enrichment and the potential toxicity of blooms or outbreaks of those 

species, remain poorly understood. 
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1.5. Growth dynamics 

Phytoplankton growth is classically measured as a whole community response, with 

chlorophyll used as an index of abundance against which rate processes are normalized. 

In reality, community growth is only one of three different, concurrent growth modes which 

characterize phytoplankton population dynamics: cellular growth, population growth, and 

community growth.  

Cellular growth is the active, basic growth unit. It is the outcome of coupled physiological 

processes under genetic and multifactorial control, particularly irradiance and nutrient levels. 

Population growth is the environmentally modified outcome of cellular growth, the 

recruitment term; it is also the bloom unit. Population growth is dependent upon the cellular 

growth rates, but the factors regulating cellular and population growth rates are not identical. 

Grazing and advection, for example, influence population growth rate, but are irrelevant to 

cellular growth rates. Population growth rates of a given taxon are always lower than its 

cellular growth rates. Population expansions, in fact, result from divisions of individual, free-

living cells. Red tide species are commonly assumed to be relatively slow growing, with 

blooms resulting from low grazing pressure and (or) physical accumulation. The early 

experimental literature generally suggests that daily growth rates of dinoflagellates are k = 0.3 

day-1, or a generation time of 3 days. Reviews of some of the phytoplankton growth literature 

(Banse, 1982; Furnas, 1990; Tang, 1995) confirm that diatom growth rates are generally much 

higher than those obtained for dinoflagellates based on equivalent body mass. 

Community dynamics are a consequence of cellular and population growth, not the 

determinant of the latter. The community is an assemblage of multiple, concurrent species’ 

blooms equal to the total number of taxa present, each in different bloom cycle stages, and 

each regulated by different combinations of growth factors. 

1.6. Affinity coefficient K s and nutrient acquisition 

Red tide blooms occur at both extremes of the nutrient gradient: in oligotrophic and nutrient-

enhanced habitats. 

Nutrient availability influences nutrient uptake rates, and sets the biomass carrying capacity 

and, therefore, cellular, population, and community growth rates. Growth-strategy species 

presumably have elevated maximal uptake rates (Vmax), an adaptation to ensure high velocity 

uptake of ambient nutrients and pulsed accretions from grazer excretions, transient physical 

advections, or other opportunistic encounters. Storage-strategy species build up intracellular 



 23 

storage pools for future growth. In growth-strategy species, such a capability would be 

advantageous in nutrient-depleted habitats. 

Of the three strategies, affinity adaptation has received the most attention. Since affinity-

adapted species have low Ks constants, their selection is hypothesized to be favoured in 

seasons and regions of chronically low nutrient supply rates, where they are expected to 

outcompete higher Ks species. 

Margalef (1978) concluded that diatoms collectively have high Ks coefficients and 

dinoflagellates lower ones. He reasoned that turbulence, elevated nutrients, and high Ks 

species should co-occur, because turbulence augments nutrient levels leading to prominent 

spring and upwelling blooms of diatoms. 

The Ks data and their phylogenetic patterns suggest a paradox: collectively, HAB species lack 

the expected high affinity for nutrient uptake thought to be essential for their frequent bloom 

occurrences in nutrient-depleted waters. 

Flagellates generally have evolved four major adaptations to offset the ecological 

disadvantages of a high Ks: 

1. Nutrient-retrieval migrations  

Eppley and Harrison (1975) sketched the basic mechanism of a vertical nutrient-

retrieval strategy: diel migration of nutrient-depleted dinoflagellates into NO3-rich 

subsurface layers would access nutrients needed to outcompete diatoms and favour red 

tide blooms. Nutrient-retrieval migrations into cooler, deeper layers would both increase 

affinity, i.e. lower Ks and increase Vmax:Ks (magnitude depends on the degree of 

vertical thermal change), and facilitate uptake by the cells now exposed to elevated NO3 

concentrations. 

2. Mixotrophic nutrition  

Utilization of dissolved organic and particulate nutrients would help offset the 

ecological disadvantages of a high Ks in an oligotrophic niche. About half of all 

dinoflagellate taxa are obligate heterotrophs; some have evolved elaborate 

phagotrophic-feeding mechanisms activated by chemodetection of prey. Almost all 

HAB taxa are obligate phototrophs; however, their use of supplemental nutritional 

modes is thus of great interest. Phototrophic flagellates collectively exhibit two primary 

nutrient supplement strategies: uptake of dissolved organic substances (= osmotrophy) 

and ingestion of particulate matter (= mixo-phagotrophy). 
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3. Allelochemically enhanced interspecific competition 

Allelochemical will refer to chemically regulated interspecific competition, and 

allelopathic to antipredation regulation. Phycotoxins (i.e. saxitoxin, brevetoxin, domoic 

acid, okadaic acid) are distinguished from allelopathic and allelochemical secondary 

metabolites because of probable differences in their biosynthesis, chemical nature, and 

specific effects. Phycotoxins and secondary metabolites produced by the same species of 

certain dinoflagellates and raphidophytes have similar antimicrobial activity (e.g. Nagai 

et al., 1990). A major difference between phycotoxins and allelo-metabolites is that 

phycotoxins can be vectored through the food web, accompanied by broad-based 

trophodynamic effects, whereas allelochemicals are usually directly targeted (Smayda, 

1992). 

4. Allelopathic antipredation defence mechanisms 

Blooms of Chattonella antiqua, C. marina, C. subsalsa, and H. akashiwo have 

chronically devastated fish farms in the Seto Inland Sea (Okaichi, 1989). Allelopathic 

induction of fish avoidance responses is also known. There is considerable evidence, 

therefore, that HAB flagellates have a diverse allelopathy against a broad spectrum of 

microbial, zooplanktonic, nektonic, and benthic taxa and of potential significance in 

natural population dynamics. Poulet et al. (1994) have generalized from experimental 

evidence that diatoms have evolved an allelopathic, antipredation strategy to reduce 

copepod population levels by inhibiting their reproductive success. 

1.7. Phycotoxin biosynthesis 

From a molecular physiological and chemical ecological perspective, toxin classification 

based upon structural homology presumably reflects shared elements of biosynthetic 

pathways (Wright and Cembella, 1998). Most if not all polyether phycotoxins are produced 

via polyketide pathways (Shimizu, 1996), in which acetate units are added sequentially from 

acetyl-CoA within a pathway regulated by polyketide synthases (PKS). The classical 

approach is to provide an isotopic enrichment of low-molecular-weight putative precursors 

(e.g. 13C-acetate) and then follow the incorporation pattern into the target phycotoxin by 

Nuclear Magnetic Resonance (NMR) spectroscopy. This approach has provide structural 

elucidation and plausible biosynthetic schemes for key phycotoxins, including saxitoxin and 

analogues from Alexandrium tamarense (Shimizu, 2000), brevetoxins from Karenia brevis 

(Shimizu, 1996), sulphated dinophysistoxins from Prorocentrum maculosum (Macpherson et 

al., 2003) and domoic acid from Pseudo-nitzschia pungens. Since many phycotoxins are 
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derived via polyketide metabolism regulated by PKS, this enzyme complex merits particular 

attention in gene expression studies. Putative PKS genes have been reported from the 

diniflagellates Gymnodinium catenatum, Amphidinium operculum, Prorocentrum lima, 

Karenia brevis (Snyder et al., 2005) and Alexandrium ostenfeldii (Cembella et al., 2004). 

However, no definitive attribution can be made regarding their role in biosynthesis of 

polyketide toxins. 

1.8. HABs and climatic fluctuations 

It is not possible to demonstrate a worldwide increase in HABs because we are unable to 

detect long-term trends of algal blooms due to the lack of time series at the correct scale 

(Wyatt, 1995). However, at a local scale there are numerous examples of HABs in areas 

where they were previously unknown. It is not clear as to how much of the increase reflects 

heightened scientific awareness and scrutiny of coastal waters and seafood quality versus an 

actual increase in the number, severity, or frequency of outbreaks (Anderson, 1989). Many 

new bloom species are believed to reflect the discovery of hidden flora populations (Smayda, 

1989) which had existed in those waters for many years, but which had not been detected or 

recognized as harmful until the advent of more sensitive toxin detection methods or an 

increase in the number and training of observers (e.g., Anderson et al., 1994). 

The passive introduction of species from other sites by means of natural (currents, storms) or 

man-mediated events (e.g. ballast waters, keels, mussel strains transport) has been implicated 

in variations in the geographic range of a species, which has also been supported by the 

absence of cyst records prior to certain dates (McMinn et al., 1997). Sediment investigations 

on resting cysts provide further information on planktonic organisms with benthic stages, and 

may lead to the detection of rare species that eluded planktonic sampling (Montresor et al., 

1998). Similar investigations on fossilized resting cysts provide data on the distribution of a 

species over a wider time scale, which covers different hydrographic situations alternating 

over the geological periods in given areas. 

Climatic variations can also affect the spatial distribution of a species. Temperature variations 

not only directly affect the geographic range and the magnitude of certain blooms, but can 

also induce changes in circulation patterns, prolong stratification periods and cause variations 

in the physical structure of the water column that can favour particular species, including 

dinoflagellates and their potentially harmful representatives (Yin et al., 1999; Fraga and 

Sanchez, 1985; Tester et al., 1993). 
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The issue of a global increase in harmful algal blooms has been a recurrent topic in recent 

years. Four explanations for this apparent increase in algal blooms have been proposed:  

(i) increased scientific awareness of toxic species;  

(ii)  increased utilization of coastal waters for aquaculture;  

(iii)  stimulation of plankton blooms by cultural euthrophication and/or unusual 

climatological conditions;   

(iv) transportation of dinoflagellate resting cysts either in ships’ ballast water or associated 

with translocation of shellfish stocks from one area to another. 

1.9. Coastal waters for aquaculture 

As a consequence of the increased overfishing problems in coastal waters, more and more 

countries are looking towards aquaculture as an alternative. Aquaculture operations act as 

sensitive ‘bioassay systems’ for harmful algal species and can bring to light the presence in 

water bodies of organisms not previously know to exist there. There is no doubt that the 

growing interest in utilizing coastal waters for aquaculture is leading to greater awareness of 

toxic algal species. 

A more widespread problem for fish farmers is the production by various algal groups of fatty 

acids or galactolipids which damage the epithelial tissues of the gills. Fish death may be 

caused by capillary haemorrhage, dysfunction of gas exchange at the gills, suffocation from 

an overproduction of mucus, or even from secondary infection of the damaged tissue (Yang 

and Albright, 1992). 

In experimental assay systems these substances destroy red blood cells and therefore have 

been provisionally termed ‘haemolysins’ (Yasumoto et al., 1990). Algal species as diverse as 

the raphidophytes Heterosigma akashiwo, Chattonella antique and C. marina, the 

prymesiophytes Chrysochromulina polylepis and Prymnesium parvum, and the dinoflagellate 

Karenia mikimotoi have been implicated.  

In countries that pride themselves on their disease- and pollution-free status for aquaculture, 

every effort should be made to quarantine sensitive aquaculture areas against the unintentional 

introduction of non-indigenous harmful algal species. Furthermore, no aquaculture industry 

can avoid having to monitor for an increasing number of harmful algal species in the water 

column and for an increasing number of algal toxins in seafood products.   
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1.10. Algal cysts in ballast water  

The geographic range of microalgal species can expand depending on natural factors (climate 

change, catastrophic storm events, ocean currents, transport of spores via wind or bird feet) or 

human-mediated vectors. Cargo-vessel ballast water was first suggested as a vector in the 

dispersal of non-indigenous marine plankton some ninety year ago. However, in the 1980s the 

problem of ballast-water transport of plankton species gained considerable interest when 

evidence was brought forward that non-indigenous toxic dinoflagellate species had been 

introduced into sensitive aquaculture areas of Australian waters, with disastrous consequences 

for commercial shellfish farm operations (Hallegraeff and Bolch, 1992). One single ballast 

tank was thus estimated to contain more than 300 million toxic dinoflagellate cysts which 

could be germinated into confirmed toxic cultures. Impacts on shellfish and finfish 

aquaculture operations may result in cases of toxin-producing microalgae. 

Another vector for the dispersal of algae (especially their resting cysts) is with the 

translocation of shellfish stocks from one area to another. Viable transport of dinoflagellate 

cells and cysts of Pfiesteria piscicida, P. shumwaye, Karenia brevis, K. mikimotoi, 

Alexandrium monilatum, A. tamarense and Prorocentrum minimum, after passage through the 

digestive tract of shellfish, have also been demonstrated (Scarratt et al., 1993).  

The most effective measure to prevent the spreading of dinoflagellate cysts via ship’s ballast 

water would be to avoid ballasting during toxic dinoflagellate blooms in ports. Other options 

using heat, electrical shock or chemical treatment (chlorine, hydrogen peroxide) of ballast 

water, either in hold or in onshore facilities, have also been explored. Minimizing the risk of 

ballast water introductions by microalgae and their cysts represents a very significant 

scientific and technological challenge, which cannot yet be adequately achieved with best 

currently available technologies and will be high on the research and development in the 

future. 

1.11. Management perspectives 

Harmful algal blooms are apparently an antithesis to the concept of ‘health of the ocean’. 

However, we have argued that in most cases HABs do not damage marine ecosystems, nor 

impair their sustained biological functioning. Though extremely dangerous for human health 

and deleterious for the commercial exploitation of coastal areas, these blooms are natural 

phenomena with barely evident negative effects on coastal oceans. On the other hand, the 

health of the oceans and the sustainable development of coastal marine ecosystems can be 
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endangered by human activities that reduce habitat and species diversity. Correct management 

is required to mitigate the threat posed by HABs to the economic development of coastal 

areas and to human health, and ad hoc procedures designed to prevent harmful events or to 

accelerate their termination are the ultimate goal for HAB management. 

Harbours may have low flushing rates and are also situated in populated areas, which, in 

general, mean high nutrient contents. They are also subjected to a high traffic of commercial 

vessels that are known to be important vectors in the translocation of resting cyst of harmful 

phytoplanktonic species, and thus act as reservoirs for resting cysts (Garcés et al., 2004). 

Since the monitoring of toxin producing species has mainly been associated with shellfish 

farming, and moreover, the risk of toxin contamination could become even greater in areas 

not subject to legislation of local/regional aquaculture activities, to reduce impacts in human 

health and economic activities, the following elements should be taken into consideration:  

(i) reliable monitoring networks and databases that allow for the analyses of the 

expansion of these organisms,  

(ii)  established channels of exchange of information among scientific and 

environmental managers,  

(iii)  outreach and education programs and easy access for users to monitoring networks 

results (e.g. Institution’s WEB sites),  

(iv) implication of the medical sector (the consequences in public health are 

underestimated, necessity of epidemiological studies). 

 

At present, capillary monitoring seems to be the only tool we have to protect ourselves and 

food resources of marine origin from the deleterious effect of HABs. The key to predict HAB 

phenomena is to identify and quantify adaptations of HAB species that lead to their selection, 

in particular hydrodynamic and ecological conditions. Thus, the central research problem and 

a challenge for biological oceanographers is to understand the critical features and 

mechanisms underlying the population dynamics of HAB species. 

Another gap in our knowledge of phytoplankton, including potentially harmful species, are 

the long-term trends of occurrence and abundance of these organisms, which are related with 

climatic factors and with their influence on coastal hydrography. 

This would provide the data needed to detect trends and patterns of occurrence and 

distinguish the effects of natural variability from those of anthropogenic modifications of the 

environment. 
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Finally, newly discovered toxins should be characterised, and detection and analytical 

methods devised in order to clarify the different types of toxins.  

1.12. Mediterranean HABs 

Dense blooms of phytoplankton are a widespread phenomenon of the global coastal ocean. 

In contrast to large-scale blooms that are dominated by mesoscale circulation, Mediterranean 

HABs are a more localized phenomenon commonly related to areas of constrained dynamism, 

such as bays, lagoons, ports, beaches and estuaries (Garcés et al., 1998, Vila et al., 2001, 

Lopez-Flores et al., 2006). In these areas, enhanced growth of phytoplankton not only leads to 

a perceivable water discoloration along the shoreline but also to a deterioration in water 

quality. Other unprecedented ecological effects in the Mediterranean, such as fish kills 

(Garcés et al., 2006) and risks to human health (Penna et al., 2006), have been attributed to 

toxic algal proliferations in recent years. 

Despite the fact that in some cases the proliferation of algae may have a natural origin, it is 

considered that coastal blooms are an emerging problem that could be related to nutrient 

enrichment of coastal waters (Duarte et al., 2000). Intensive urbanization and recreational use 

of coastal watersheds has resulted in a remarkable increase in sources of nutrients along the 

Mediterranean coasts. This cultural eutrophication generates a contrast between coastal waters 

and the open ocean where, owing to summer stratification and nutrient depletion, oligotrophic 

conditions prevail in the upper layer. Nutrient-rich coastal environments of the Mediterranean 

Sea and, in particular, semi-enclosed areas with low turbulence levels constitute a new and 

unique environment for which several phytoplankton species with harmful effects may 

become dominant. 

Even though most of the factors involved in the Mediterranean nearshore algal outbreaks are 

known, the mechanisms that underpin their occurrence are not yet well established. Terrestrial 

nutrient loads, toxin production, species diversity, grazing pressure, life cycles and strategies, 

physical transport, mixing and other factors have all been used to explain the onset and 

evolution of phytoplankton blooms. It is therefore challenging to understand how all of these 

different factors combine to stimulate and govern outbreaks. 

Various external and/or internal factors have been proposed in attempts to explain changes in 

growth rates of phytoplankton populations: 

1. Intraspecific genetic variability changes over time within the same population are 

possible (Orsini et al., 2002). This suggests that only a fraction of the resident 
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population is responsible for the bloom; furthermore, differences among growth rates of 

the different strains are possible.  

2. Excretion of chemical signals produced by the organisms could be responsible for the 

different physiology. 

3. More attention has been devoted to the effect of environmental factors (such as 

irradiance, nutrients, turbulence, vitamins and, particularly, temperature) on growth 

(Guillard, 1973 and references therein). Temperature is known to alter the 

enzymatically regulated processes of most organisms, and hence should not be 

disregarded as a triggering factor of the previously mentioned mechanisms. Indeed, 

seasonal temperature variations are known to play a major role in the regulation of 

growth rates of coastal communities in the Mediterranean Sea. 

 

It is generally recognized that there have been more coastal algal blooms, often of greater 

geographic extent and/or longer duration, with more toxic species observed, more fisheries 

affected, and higher associated costs from HABs in the past decade than in previous decades 

(Anderson, 1989; Smayda, 1990; Hallegraeff, 1993; Glibert et al., 2001; Anderson et al., 

2002). 

However, results from laboratory studies are not sufficient to predict the succession of 

phytoplankton species and blooms of specific harmful organisms in the sea. Indeed, the net 

growth performance of a species is affected by complex interactions with other organisms, 

which are scarcely reproducible in laboratory experiments. These include negative 

interactions, such as grazing, competition, and viral infections, and a positive feedback from 

predator's excretion, bacterial nutrient regeneration and viral lysis. 
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2. Aim of the thesis 
The main objective of the present thesis was the study of some harmful algae species which 

are present in Italian waters and cause blooms, leading to consequences for human health, 

coastal ecosystem, fishery and tourism. In particular, the attention was put on a raphidophyte 

(Fibrocapsa japonica) and a benthic dinoflagellate (Ostreopsis cf. ovata), which was studied 

in laboratory surveys using batch cultures.  

The first part of this thesis (chapter 3) was focused on the Adriatic F. japonica, through the 

evaluation of its toxicity for different organisms, from bacteria to crustaceans and fish, as its 

toxic effects for animals, including species important for fishery, and humans were still 

unknown. The aim was also to understand the toxic mechanism, basing on the different 

hypothesis postulated in previous works and performed with strains from different regions 

worldwide.  

Moreover, a chemical characterization and quantification of the fatty acids content, involved 

in the toxic mechanism of this species, was performed. Finally, as brevetoxins were 

considered as one of the main factors responsible for the toxicity of the raphidophytes, 

sensitive liquid chromatography-mass spectrometry (LC-MS) methods for the analysis of 

brevetoxins in algal extracts were developed and used to investigate the brevetoxins 

production in some Adriatic raphidophytes, including F. japonica. 

A second part of this thesis (chapter 4) regarded the dinoflagellate O. cf. ovata, with the aim 

to evaluate its growth and toxicity variations in response to environmental variables. In 

particular, several strains isolated in recent years in Italian coastal areas were grown at 

different environmental conditions to investigate the optimal growth and to understand how 

the growth parameters could affect the presence, proliferation and toxicity of O. cf. ovata in 

these areas. This species, in fact, showed a relevant variability in the proliferation along the 

Mediaterranean coasts, reporting different environmental parameters and toxic effects during 

its blooms. Effect of growth temperature were evaluated using different isolates, namely a 

Tyrrhenian (from Latina) and two Adriatic (from Ancona and Bari) strains; while a detailed 

study on the effects of salinity and nutrients concentration was performed using the Adriatic 

strain. Toxicity was investigated either through bioassays, such as Artemia sp., sea bass 

ichtyotoxicity and haemolysis assay, and through LC-MS analysis to quantify the toxin 

content.  

Both the toxins produced by O. cf. ovata and brevetoxins, which are supposed to be produced 

by F. japonica, are polyketides. Little is known about the toxin biosynthetic pathways in the 
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dinoflagellates; however, recent data from the dinoflagellate Karenia brevis indicated 

polyketide synthases (PKSs) as enzymes probably involved in the brevetoxin biosynthesis. 

These enzymes are multi-domain complexes that structurally and functionally resemble the 

fatty acid synthases (FASs). To date, approximately 25 species of dinoflagellates have been 

found to produce polyketides, but no information exists on PKS proteins of other toxic 

dinoflagellates. Thus, the third part of this thesis (chapter 5) was focused on the study of the 

expression and localization of PKSs in F. japonica and O. cf. ovata, using antibodies 

developed against K. brevis PKS proteins with the aim to understand the involvement of PKS 

proteins in the toxin production.  
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3. The Raphidophyte Fibrocapsa japonica 
The Raphidophyceae Fibrocapsa japonica Toriumi and Takano is one of the most recurrent 

harmful algal bloom (HAB) species along the coast of the Adriatic Sea. F. japonica blooms 

have been related to massive fish mortality in the Seto Inland Sea (Japan) (Iwasaki, 1971; 

Okaichi, 1972, 1989; Toriumi and Takano, 1973); since 1990 this microalga has frequently 

been observed also in European coastal waters (Vrieling et al., 1995) where its involvement in 

toxic events has been sometime reported (European Commission, 2003), although without the 

support of direct evidence. A number of laboratory studies were thus made to evaluate 

possible toxic effects of European strains. At first, Khan et al. (1996) analyzed the toxin 

composition of a F. japonica strain isolated from the Dutch part of the North Sea in 1993 and 

five neurotoxic components, corresponding to brevetoxins, were identified. Other studies 

conducted on a German strain reported toxic effects on Artemia salina nauplii, inhibition of V. 

fischeri bioluminescence and haemolysis of human red blood cells; the presence of 

brevetoxins was excluded while the three haemolytic compounds in the methanol extract were 

identified as polyunsaturated fatty acids (PUFAs) (Fu, 2003; Fu et al., 2004a). Another 

toxicological study on F. japonica found that a German strain produced one or more bioactive 

compounds, having a light-dependent inhibitory effect on Vibrio fischeri’s luminescence (van 

Rijssel et al., 2008). These authors supposed that haemolytic compounds and PUFAs, which 

are also excreted into the medium, or their combination, could inhibit bioluminescence. 

Studies on toxicity where performed also on strains from different geographical areas, 

sometimes with high variability (Guidi-Rontani et al., 2010). Although in Japan this species is 

regarded as toxic, in the near Korea, in New Zealand and in the North Sea no F. japonica 

blooms have been associated with fish mortality (Cho et al., 1999a,b), an aspect that contrasts 

with the results of experimental studies performed on isolates from New Zealand, South 

Carolina and Germany, which evidenced mortality effects on fish (Khan et al., 1996; Bridgers 

et al., 2004). Different effects of the New Zealand and Japanese isolates on Artemia salina 

were described by Rhodes et al. (1993), the first being non-toxic and the second one causing 

acute distress to Artemia. Cho et al. (1999b) tested the same F. japonica strains for 

neurotoxicity, by mouse bioassay and neuroblastoma assay and both were non-toxic to mice. 

A recent comparative study on the haemolytic activity of cell extracts of USA, Japan, 

Australia, New Zealand, the Netherlands and Germany strains was conducted by de Boer et 

al. (2009). They found that between 7% and 89% of the haemolytic activity was attributed to 
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the PUFAs and that other light-dependent haemolytic compounds were mainly involved in the 

activity of those strains with the highest haemolysis values.  

Despite the attention to their toxicity, the toxic mechanism of the raphidophytes is still 

unclear. PUFAs were mostly claimed as the cause of haemolytic effects and fish mortality 

together with reactive oxygen species (ROS) production (Mostaert et al., 1998; Marshall et 

al., 2002; Fu et al., 2004a,b). Marshall et al. (2003) investigated the ichthyotoxicity of 

Chattonella marina and postulated that free fatty acids in combination with high levels of 

ROS damaged gill membranes, resulting in fish mortality. Fish exposed to Chattonella sp. 

reported a decrease in oxygen partial pressure of arterial blood, as earliest physiological 

disturbance, while ROS produced by this flagellate may induce excessive secretion of mucus 

on gill surface; thus the toxic effect of Chattonella sp. on fish may be due to a decrease of O2 

transfer, resulting in asphyxia (Oda et al., 1997). In addition, the lipooxygenase-promoted 

oxidative cleavage of PUFAs can generate highly reactive aldehydes. One of these secondary 

oxidation products is malondialdehyde (MDA), which has been inferred to have mutagenic 

and cytotoxic effects. Therefore, MDA is considered a good tracer of the involvement of free 

radical damage in pathologies associated with oxidative stress (Seljeskos et al., 2006).  

Since the toxicity of F. japonica is still under debate and its effects highly dependent on the 

strains, the aim of this study was 1) to define the potential toxicity of Adriatic strains which 

were never investigated before and 2) to understand the involvement of fatty acid and ROS in 

toxicity. The first purpose was achieved by analyzing the presence of toxic compounds 

previously found in different strains (brevetoxins, PUFAs, ROS); the second one by 

performing toxicological assays with various F. japonica cellular, subcellular and 

extracellular fractions and through fish assays and subsequent water and fish gill analyses.  

3.1. Resting cysts  

 The production of resting cysts has been particularly studied for dinoflagellates under many 

aspects, such as encystment (Anderson, 1980; Blanco, 1995; Kremp and Heiskanen, 1999; 

Garcés et al., 2004), dormancy (Anderson and Keafer, 1987; Montresor and Marino, 1996; 

Figueroa et al., 2008) and germination (Binder and Anderson, 1987; Figueroa et al., 2006; 

Blanco et al., 2009), which have already been clarified. Cyst strategy allows the survival of 

species through adverse conditions and it contributes to increase their spatial distribution 

(Anderson and Wall, 1978; Steidinger and Haddad, 1981; Hallegraeff, 1993), as they can 

reside in the sediment for a long time and germinate when the environmental conditions 

become favourable. Consequently, resting cysts play an important role in the life cycle of 
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many microalgae. The capability of producing resting cysts is also known for several 

Raphidophyceae, such as Chattonella spp., Heterosigma akashiwo, F. japonica and 

Gonyostomum semen. In Chattonella, it is known that encystment may be affected by 

different factors, such as nutrient depletion, adherence to solid surfaces and low light 

irradiance (Imai, 1989, 1990; Nakamura and Umemori, 1991; Edvardsen and Imai, 2006). In 

Chattonella antiqua and C. marina small pre-encystment cells are produced after meiosis in 

nutrient-depleted conditions, and then they can change into resting cysts under low light 

conditions (Imai et al., 1998). Smayda (1998) described two distinct benthic overwintering 

stages in H. akashiwo: non-motile vegetative cells encapsulated by mucilage and smaller 

resting cysts. In the freshwater species G. semen, Figueroa and Rengefors (2006) recently 

described the entire life cycle, which includes the formation of both asexual and sexual cyst 

stages. On the contrary, knowledge of the life cycle of F. japonica is limited. The first report 

about F. japonica cysts is relative to sediments collected in the Inland Sea of Japan 

(Yoshimatsu, 1987). The cysts of F. japonica were described as spherical, 15-20 mm 

diameter, brown coloured, smooth and without any particular paratabulation or 

ornamentation, and lacking a red pigmented body and black spots; these cysts were frequently 

observed adhering to diatom frustules (Yoshimatsu, 1987). Subsequently Matsuoka and 

Fukuyo (2003) confirmed this description, reporting a similarity with cysts of Chattonella 

spp. In experimental conditions, cysts of F. japonica were observed only once by de Boer et 

al. (2004), who reported that they were embedded in a brown biofilm; each cyst seemed to 

have a membrane-like surface over a smooth scale-like inner layer. Moreover, empty cysts 

resembled the statospores of chrysophyte microalgae. These are the only existing descriptions 

of F. japonica cysts and there are only a few published images to support studies on their 

identification. In addition, while it is well-known that the cysts of F. japonica have dormancy 

periods of 2–3 months in sediments, their role in bloom dynamics is unclear, because of the 

scarcity of eco-physiological studies on this species (Edvardsen and Imai, 2006). 

Cucchiari et al. (2010) reported for the first time F. japonica cysts abundances in natural 

sediments in the Mediterranean Sea. PCR-based assay confirmed the presence of F. japonica 

cysts in the sediment samples which were analyzed under the microscope and helped in the 

species-specific identification. The study demonstrated the presence of these cysts in several 

stations of the Marche region, both in areas where blooms occurred and where vegetative cells 

were never observed in the water column. Different morphotypes (Fig. 3.1) were observed for 

F. japonica cysts: a first morphotype was characterized by a rounded shape, brown-black 

colour and was covered by a brown biofilm; while the second was from spherical to slightly 
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pear-shaped, smooth on the surface and showed inner spots of a pale colour, similar to 

descriptions reported in literature (Yoshimatsu, 1987; Matsuoka and Fukuyo, 2003; de Boer et 

al., 2004). 

 

Fig. 3.1 - Different morphotypes of Fibrocapsa japonica cysts. Preliminary cysts formed in shadow 

and optimal temperature (a) and with dark and low temperature treatment (b); (c) preliminary cyst 

after disruption; (d) cyst type-1: round-shaped, brown-black coloured and covered by a mucilaginous 

mat; (e) cyst type-2: smooth on the surface and with inner grains of a pale colour; (f) cysts resembling 

chrysophyte statospores; (g) cyst type-1 after crumbling; (h) cyst type-2 after crumbling: a rigid 

covering appears; (i) cysts of Fibrocapsa japonica observed in natural sediments (from Cucchiari et 

al., 2010). 

 

3.2. Experimental section 

3.2.1. Chemicals and reagents 

Tetrahydrofuran (THF) was purchased from Fluka; acetonitrile; 5,8,11,14-eicosatetraenoic 

(arachidonic) acid; 5,8,11,14,17-eicosapentaenoic acid (EPA); nonadecanoic acid; 9-
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hexadecenoic (palmitoleic) acid; 9,12-octadecadienoic (linoleic) acid;  9,12,15-

octadecatrienoic (linolenic) acid; brevetoxin 2,  ammonium iron (II) sulphate hexahydrate; 

2,6-Di-tert-butyl-4-methylphenol; N,O-Bis(trimethylsilyl)trifluoroacetamide with 

trimethylchlorosilane (BSTFA-TMCS 99:1); chloroform; CDCl3; Na2EDTA; pyridine; D-

sorbitol; 1,1,3,3-tetraethoxypropane 97%; 2-thiobarbituric acid (TBA) and xylenol orange 

were purchased from Sigma-Aldrich; Na2HPO4.2H2O; ethanol 99.8%; methanol 99.9%;  

sulphuric acid 96% and trichloroacetic acid (TCA) were purchased from Carlo Erba. All 

chemicals were used without further purification. 

 

3.2.2. Algal cultures 

Fibrocapsa japonica cells were isolated by the capillary pipette method (Hoshaw and 

Rosowski, 1973) from blooms which occurred in 2004 and 2006 in Emilia-Romagna and 

Marche region (Italy) having cell concentrations in the order of 107. After initial growth in 

microPlates, cells were kept in sterile Erlenmeyer flasks sealed with cotton at 20°C, during a 

16:8 h light–dark period at about 100-110 µmol photons m-2 s-1 from cool white lamps 

(McLachlan, 1973).  

F. japonica strains were cultured in f/2-Si medium (Guillard, 1975) made with natural 

seawater, adjusted at a salinity of 35 through the addition of distilled water, and kept under 

the temperature and the light conditions described above. Several of the reported analyses and 

assays were conducted using different Adriatic strains isolated in 2004 and 2006 near 

Riccione (Emilia Romagna, Italy) and in Palombina (Marche, Italy) and since no significant 

differences were evidenced, the results reported in this paper refer to the strain FJAP0603 

isolated in 2006 from Palombina. The growth of this strain had been previously characterized 

(Cucchiari et al., 2008); the cultures used in the present work showed a slightly lower growth 

rate of 0.68 and mean cell biovolumes of 3470 ± 1200 µm3 measured in the stationary phase. 

Few experiments were conducted with cell in the exponential phase but most cultures were 

collected during the stationary growth phase (day 12-18); differences in cell numbers used for 

the different tests are due to the fact that cultures were sometimes concentrated in order to 

reach higher cell amounts. Cell counts were made in settling chambers following Utermohl’s 

method (Hasle, 1978). 

A number of different microalgae were used in the different experiments for comparisons or 

as controls. These were: Alexandrium lusitanicum E. Balech, Gonyaulax fragilis (Schütt) 

Kofoid, Karenia brevis (C.C. Davis) G. Hansen & Ø. Moestrup, Phaeodactylum tricornutum 
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Bohlin, Protoceratium reticulatum (Claparède & Lachmann) Butschli, Scrippsiella sp., 

Skeletonema marinoi Sarno & Zingone; their origin, strain number and culture conditions are 

reported in Table 3.1.  

 

Table 3.1 - Species, strains, isolation details and culture conditions of microalgal species used for the 

experiments. 

Species Strain Isolation details 
Temperature 

(°C) 

Salinity 

(psu) 
medium 

Fibrocapsa 

japonica 
FJAP0603 

Palombina (AN), 

Italy 
20 35 f/2-Si 

Alexandrium 

lusitanicum 
ALA9501 Trieste, Italy 20 25 f/2-Si 

Gonyaulax fragilis GFA0201 
Cesenatico (FC), 

Italy 
20 30 GP 

Karenia brevis CCMP2281 
Gulf of Mexico, 

Florida, USA 
20 35 f/2-Si 

Phaeodactylum 

tricornutum 
PTN0301 

North Sea, 

Holland 
20 35 f/2 

Protoceratium 

reticulatum 
PRA0414 

Cesenatico (FC), 

Italy 
20 35 f/2-Si 

Scrippsiella sp. SCA9701 
Lido di Dante 

(RA), Italy 
20 30 f/2-Si 

Skeletonema 

marinoi 
CCMP2497 

North Adriatic 

Sea, Italy 
20 35 f/2 

 

 

3.2.3. Sample extraction and fractionation  

Stationary phase F. japonica and K. brevis cultures (1.5-5 mL) were filtered under vacuum 

using two different overlapping filters (GF/C Whatman, 1.2 µm and Millipore, 0.45 µm), that 

were extracted in a Soxhlet apparatus with methanol-chloroform (50:50). The solution was 

concentrated to dryness in a rotavapor at 40°C. The extract was left to cool at room 

temperature and weighed, then it was dissolved in methanol (5 mL) and stored at -20°C. An 

aliquot of F. japonica extract (3 mL) was dried, resuspended in 50% methanol and passed 
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through a C18 cartridge (Waters SEP-PAK Vac. 20 cc, 5 g). Fifty-four different fractions 

were collected by elution with a gradient of aqueous methanol, from 0% to 100% in steps of 

10%, 5 mL each. The eluates were separately evaporated to dryness under vacuum at 40°C, 

resuspended in 500 µL methanol and stored at -20°C. 

After Gas Chromatography-Mass Spectrometry (GC-MS) analyses, fractions with similar 

composition were combined into five final fractions (A, B, C, D, E). Each fraction was dried 

in a rotavapor at 40°C and weighed (Table 3.2). 

 

Table 3.2 – Combined fractions of F. japonica extract obtained after C18 SPE fractionation.  

Fractions Eluent (H2O/CH3OH) Weight (mg) 

A 20/80 1.8 

B 20/80-10/90 6.8 

C 10/90 5.6 

D 10/90-0/100 6.8 

E 0/100 2.8 

 

 

3.2.4. Extracellular fatty acids extraction 

F. japonica (1540 mL) and P. tricornutum (1500 mL) stationary phase cultures were filtered 

by gravity through a GF/F Whatman filter (0.7 µm) to remove algal cells from the medium, 

that was subsequently stored at -20°C. Frozen medium was lyophilized and treated according 

to Bligh and Dyer (1959) with a mixture of 100 mL methanol, 50 mL chloroform, and 40 mL 

water, sonicated for 10 min and shaken overnight for maximum extraction of fatty acids. The 

mixture was vacuum-filtered using a Buchner funnel through Whatman (hardened 50) filter 

paper. After filtration the supernatant was centrifuged at 10000 x g at 8°C, added with 50 mL 

chloroform and 50 mL water; after separation, the methanol-water layer was extracted again 

with 50 mL chloroform, and the extracts were combined. The solid residue was added again 

with water and chloroform as described above. Finally, the combined chloroform layers were 

dried, re-dissolved in methanol (1.5 mL) and stored at -20°C.  
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3.2.5.  Gas Chromatography-Mass Spectrometry (GC-MS) analysis 

One or two hundred microlitres of each F. japonica fraction, of algal extract and of the 

extracted medium were dried in a rotavapor at 40°C  and then added with 100-150 µL Tri-Sil 

reagent (BSTFA-TMCS 99:1) at 70°C for 30 min to convert alcohols and carboxylic acids 

into the corresponding trimethylsilyl (TMS)-ethers and esters, respectively. 

GC-MS analysis was performed on a GC Agilent Technologies 6850 Network GC System 

equipped with a capillary column SUPELCO SPB-5 (poly[5%diphenyl/5%dimethyl]siloxane) 

(30 m × 0.25 mm × 0.25 µm film thickness), coupled to an Agilent Technologies 5975 inert 

Mass Selective Detector operating in electron impact ionization (70 eV). 

The oven temperature program was: 50°C for 5 min, heating to 310°C at a rate of 10°C min−1, 

and hold at 310°C for 15 min; injector temperature was 250°C and the transfer line 280°C. 

High purity helium was used as a carrier gas at a flow rate of 1 mL min−1. A split 1:10 

injection mode was applied. Identification of compounds was done by comparison of their 

retention times and of mass spectra with authentic standards (Sigma-Aldrich) when possible, 

or by comparison of their mass spectra with Nist libraries. 

Calibration curves were produced from standard solutions (four different concentrations from 

7 to 26 µg L−1) for the following acids: palmitoleic acid (R2 = 0.9768), linoleic acid (R2 = 

0.9907), linolenic acid (R2 = 0.9955) and eicosapentaenoic acid (R2 = 0.9946). Nonadecanoic 

acid was used as the internal standard. Response factors (RF) obtained from the calibration 

curves were used for the quantification of fatty acids in the algal extracts and extracellular 

media: for 16:1n-7, 16:1 isomer and 16:2 was used the RF of palmitoleic acid (16:1n-7); for 

18:1n-9, 18:1n-7 and 18:2n-6 the RF of linoleic acid (18:2n-6); for 18:3n-6, 18:3n-3 and 

18:4n-3 the RF of α-linolenic acid (18:3n-3); for 20:4n-6 and 20:5n-3 the RF of 

eicosapentaenoic acid (20:5n-3). RF of 1 was applied for saturated fatty acids. 

 

3.2.6.  Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis 

LC-MS analyses of algal extracts and of F. japonica fractions were performed by using an 

Agilent Technologies HP1100 coupled to an Agilent Technologies MSD1100 single-

quadrupole mass spectrometer equipped with an API-ES chamber. LC separations were 

performed on a ZORBAX-Eclipse XDB-C8 Agilent Technologies column with column 

temperature of 40°C. The mobile phase consisted of water (A) and acetonitrile (B) in binary 

system, with 0.1% acetic acid as an additive. The column gradient was 35% B for 2 min, a 

linear gradient to 80% B at 30 min, 95% B at 35 min, hold at 95% for 15 min, return gradient 
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to 35% B at 60 min, and hold for 10 min before the next injection. Sample injection volume 

was 5 µL. 

The mass spectrometer with an API-ES interface was operated in positive or negative mode. 

Tune settings were: drying gas temperature 350°C; drying gas flow 11.5 mL min-1; capillary 

voltage 4500V in positive mode and 3500V in negative mode. Mass spectra of the analytes 

were acquired in full scan mode in the range m/z 50-2600. 

For brevetoxin analyses F. japonica extracts were compared with those of K. brevis, a species 

known to produce brevetoxins. The extracts were prepared either as described above or 

according to the method described by Abraham et al. (2006). 

 

3.2.7.  NMR spectroscopy analysis 

One or two hundred microlitres of F. japonica extract or fraction were dried in a rotavapor at 

40°C, dissolved in CDCl3 (0.7 mL) and transferred into an NMR tube. 1H NMR spectra were 

recorded at 600 MHz with a Varian INOVA 600 spectrometer and compared with a PbTx-2 

standard. 

 

3.2.8. Artemia sp. assay 

The Artemia sp. assay was performed using the IRSA-CNR (2003) procedure consisting in 

both a short- and a long-term test. 

Short-term test. It was performed by incubating 10 nauplii in 1 mL sample (put into 24-wells 

plate) for 24 h and applied to five different kinds of samples: (I) “live cells”, (II) “lysed cells”, 

(III) “extracellular medium” all tested at several concentrations in triplicate, (IV) “combined 

algal fractions (A-E)” and (V) “fatty acid standards (18:3n-3, 20:4n-6, 20:5n-3)”. For “live 

cells” samples, culture aliquots of F. japonica and of different microalgae (A. lusitanicum, P. 

reticulatum, G. fragilis,) used for comparisons, were added to the wells before nauplii 

addition. P. tricornutum was used as control. Some assays were conducted with concentrated 

cultures obtained by filtering 1.5 L of F. japonica stationary phase culture by gravity through 

a GF/C Whatman filter (1.2 µm), in order to reach a high cell density. “Lysed cell” samples 

were obtained by sonicating the algal cultures for 3 min and “extracellular medium” samples 

by filtering culture aliquots by gravity through a GF/F Whatman filter (0.7 µm) to remove 

algal cells. “Algal fraction” samples were obtained by dissolving each dried sample (0.4-1.6 

mg) in 2 mL (for duplicate) of seawater at salinity 35 and by sonicating for 3 min. Seawater or 

f/2 medium at the same salinity were used as controls.  
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Long-term test. It was performed with three different kinds of samples: “live cells” consisted 

of F. japonica culture, “lysed cells” and “extracellular medium” from F. japonica and P. 

tricornutum cultures were obtained as already described for the short-term test. The assay was 

carried out inside beakers by incubating 10 nauplii in 35 mL of each sample added with 5 mL 

P. tricornutum culture to feed the nauplii. Five different concentrations, obtained through 

dilution with seawater, and a blank (seawater) were used in triplicate in each experiment. 

Effects on the organisms were checked every 24 h up to 96 h.  

 

3.2.9. Vibrio fischeri bioassay 

Toxicity to the marine bacterium Vibrio fischeri was measured as inhibition of 

bioluminescence using Microtox® equipment and consumables, in accordance with the 90% 

basic test for pure compounds protocol (Azur Environmental, 1998). The different algal 

cultures (1.5-3 L) were collected in the stationary phase and filtered under vacuum using two 

different overlapping filters (GF/C Whatman, 1.2 µm and Millipore, 0.45 µm), that were 

extracted in a Soxhlet apparatus with Methanol-Chloroform (50:50). The solution was 

concentrated to dryness in a rotavapor system at 40°C. The extract was left to cool at room 

temperature and weighed. F. japonica extracts were obtained from 3 L cultures collected at 

cell concentration of about 50 x 103 cell mL-1. Each sample for the bioassay was prepared 

adding 5 ml of diluent solution (to perform 5 trials of 1 ml each) to a fraction of 5.8-7 mg of 

dried algal extract or by adding 3 mL of diluent solution (for 2-3 trials) to an aliquot (0.5-3.2 

mg) of the dried algal fraction, obtained as explained above, and sonicating for 20 min. The 

endpoint used to establish the concentration-response relationship was the bioluminescence of 

the bacteria, measured at each concentration as the ratio between the light emission after 15 

min of exposure and the emission at time 0, expressed as a percentage of the same ratio in the 

control:  

cc II

II

015

015100
 

where: I0: light emission at time 0; I15: emission after 15 min, Ic: emission of the control 

treatment. 

 

3.2.10.  Erythrocyte lysis assay (ELA)  

ELA was carried out in conformity with Eschbach et al. (2001). Aliquots from stationary 

phase cultures of P. tricornutum (5 mL) and F. japonica (15 mL) were centrifuged at 3000 x g 
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for 15 min at 4°C so that growth medium was discarded; algal pellets were resuspended in 

ELA buffer (5 mL), obtained according to the method, and sonicated for 1 min on ice. Blood 

samples were obtained from adult carps (Cyprinus carpio) kept at the Faculty of Veterinary; 

the fish were previously anesthetized with Fenox ethanol (0.02%) then 1 mL blood was drawn 

from the caudal fin, added with 1 drop eparin and kept refrigerated. To obtain the erythrocytes 

it was centrifuged at 2000 x g for 15 min at 4°C; the pellet was washed twice with ELA buffer 

and resuspended in the same to a final concentration of 107 cells mL-1. The absorption of ELA 

buffer (blank), of the algal extracts (background value) and of the completely lysed 

erythrocytes (maximum absorbance value) was measured at 540 nm. The test was conducted 

by incubating 1 mL of erythrocytes with 1 mL of algal extract at 15°C for 20 hours, in the 

dark. After incubation, samples were centrifuged at 2000 x g for 5 min, to pellet the intact 

erythrocytes, and their absorbance measured at 540 nm. Two replicates of 6 different sample 

concentrations (dilutions 1:2), were used in each experiment. Several experiments were 

conducted and reported similar results.  A  solution of saponin standard (2 mg mL-1 in assay 

ELA buffer) was used as reference compound, in a concentration series of 1-20 µg mL-1. 

 

3.2.11.  Fish bioassay  

Sea basses (Dicentrarchus labrax) and sea breams (Sparus aurata) used for the assays were 

obtained from the hatchery at Valle Ca’ Zuliani (Pila di Porto Tolle, Rovigo, Italy). Sea 

breams were used only in preliminary experiments lasting 7 days to confirm the low toxicity 

of F. japonica in at least two different species. After the transfer, the juvenile fish (1.0 ± 0.2 

g) were kept in a 60-70 L aquarium, aerated by a small dispenser (Hailea) and acclimated at 

room temperature and salinity 35 for two-three weeks. For the experiments, smaller aerated 

tanks filled with 1.5 L solution were used and kept at 20°C, in a chamber with a 16:8 h light–

dark period. Duplicate tanks contained the same volumes (1.5 L) of either seawater, f/2 

medium or algal cultures (in addition to F. japonica, P. tricornutum and S. marinoi were used 

as controls, and the toxic K. brevis for comparison). H2O2 was added in seawater at two final 

concentrations (44 and 88 µM) which were daily monitored and adjusted when necessary. 

Four juvenile fish were put into each tank and observed for up to 16 days; starting at day 5 

they were fed on fish fodder once a day. Fish were considered dead when gill opercular 

movements ceased. The assays were repeated three times. 
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3.2.12. H2O2 analysis 

Hydrogen peroxide produced by F. japonica cells in culture and during the fish assay was 

measured by the method described by Bellincampi et al. (2000). H2O2 concentration in the 

filtered culture medium was measured by the FOX1 method, based on the peroxide-mediated 

oxidation of Fe2+, followed by the reaction of Fe3+ with xylenol orange. This method is 

extremely sensitive and used to measure low levels of water-soluble hydroperoxide present in 

the aqueous phase. To determine the H2O2 concentration, 500 µL of the incubation medium 

were added to 500 µL of assay reagent. Absorbance of the Fe3+-xylenol orange complex was 

detected after 45 min at 560 nm. Standard curves of H2O2 were obtained for each independent 

experiment by adding variable amounts of H2O2 to 500 µL of basal medium mixed to 500 µL 

of assay reagent. Data were normalized and expressed as fmol H2O2 per cell.  

 

3.2.13. HPLC determination of malondialdehyde (MDA) 

Solutions: 500 mg L−1 2,6-Di-tert-butyl-4-methylphenol (BHT) in methanol; 20 mM 

tetraethoxypropane (TTEP) in ethanol; 28 mM 2-thiobarbituric acid (TBA), in distilled water; 

6% TCA solution with 1.34 mM EDTA, in distilled water; Na2HPO4 buffer, 5 mM with 0.7% 

THF, pH 7.0 in distilled water.  

Free MDA reacts with TBA to form the pink condensation product MDA-TBA that can be 

measured spectrophotometrically (λmax = 532 nm). The analysis was adapted for HPLC to 

separate MDA from TBA byproducts (Draper et al., 1993; Espinosa-Mansilla et al., 1993) as 

described by Rijstenbil and Gerringa (2002), so that chromatograms show a single well 

defined peak of the MDA-TBA adduct, with no interference. A calibration curve was made 

with TTEP diluted in TCA solution, at concentrations of 0, 2.5, 5, 10, 15 µM; MDA-TBA is 

stoichiometrically formed from TTEP in an acidic environment. The standard curve generated 

with TTEP standard from 0 to 15 µM resulted linear, with a correlation coefficient R2 = 

0.9755.  

Sea bass gills were extracted from the frozen fish, which had been immediately weighed and 

put at -80°C after death. Fish gills used as controls were obtained from live fish, which had 

been exposed to P. tricornutum or seawater, sacrificed for the experiment and kept at -80°C 

until analysis. Gill homogenates were prepared by mixing 100-350 mg of fish gills with 1 mL 

cold TCA solution and 40 µL BHT solution to prevent autoxidation and sonicating on ice for 

3 min. After sonication the homogenate was kept in a heating cabinet at 100°C for 30 min and 

then centrifuged at 14000 x g in a refrigerated centrifuge for 20 min at 4°C. Sample 
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supernatant (~0.9 mL), a volume of standard, or pure TCA solution (blank) was transferred in 

a 2-mL Eppendorf with a small hole in the lid, and a same volume of 28 mM TBA solution 

was added; the mixture was vigorously agitated on a vortex, and placed at 100°C for 30 min. 

After cooling, samples were immediately used for analysis. 

HPLC analysis was performed using an HPLC system (Perkin Elmer) consisting of a 250 

binary LC pump equipped with a C18-column (Luna, 5 µm, 250 x 4,6 mm) and series 200 

Diode Array Detector; 20 µl of each blank, standard or sample were injected. The MDA–TBA 

complex was eluted with an isocratic mixture of 85% 5 mM sodium phosphate buffer (pH 7) 

containing 0.7% THF, and 15% acetonitrile at a flow rate of 1 mL min-1. MDA concentrations 

are expressed in µmol MDA kg-1. 

 

3.2.14.  Data analysis 

The 50% effect concentration (EC50) of each sample for the V. fischeri assay was estimated by 

fitting the experimental concentration-response curves to a logistic model:  
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where: y = endpoint value; x = substance concentration; a = expected endpoint value in 

absence of toxic effect; b = slope parameter. The parameters of the equation, including the 

EC50, were estimated using the non-linear regression procedures implemented in Statistica 

(Statsoft, Tulsa, OK, USA). An independent estimate of EC50 was obtained for each of the 

experiments. 

Values for H2O2 and MDA levels were compared using an ANOVA. The assumption of 

homogeneity of variances was tested by Cochran’s C test. When required, data were 

transformed to attain homogeneity of variances. Whenever a significant difference for the 

main effect was observed (P<0.05), a Newman-Keuls test was also performed. 

 

3.3. Toxicity evaluation of Fibrocapsa japonica from the Northern 

Adriatic Sea 

3.3.1. Artemia sp. assay 

Short-term test. Since in preliminary tests with live cells no toxic effects were recorded at any 

F. japonica concentration reached in culture, either in the exponential or in the stationary 
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phase, cultures were successively concentrated in order to reach a higher cell number (max 

concentration: 321.71 x 103 cells mL-1). After 24 h in F. japonica concentrated culture the 

nauplii appeared inactive but still alive, while those incubated with P. tricornutum displayed a 

normal motility. The Artemia sp. assay is generally based on the evaluation of a mortality 

effect on nauplii; however in our tests the organisms rather than dying showed abnormal 

movements, including swimming slowly, rotating fast around one fixed point or 

immobilization (organisms still alive but unable to swim). The inactivation percentage was 

directly related to the algal cell density. The EC50 value obtained considering the 

immobilization percentage was 241.91 ± 49.21 x 103 cells mL-1. The inactivation effect 

produced by F. japonica was compared with the effect exerted by different microalgae; thus, 

the harmful species A. lusitanicum (max concentration: 32.92 x 103 cells mL-1), P. reticulatum 

(max concentration: 11.61 x 103 cells mL-1) which produce saxitoxins and yessotoxins, 

respectively, and G. fragilis (max concentration: 5.36 x 103 cells mL-1), which releases large 

amounts of polysaccharides, were used for comparison. Contrarily to F. japonica all these 

species caused nauplii mortality after 24 h. The EC50 values obtained were 15.10 ± 8.81, 5.93 

± 0.97, and 0.81 ± 0.28 x 103 cells mL-1, respectively.  

The Artemia sp. assay was also performed with: F. japonica lysed cells, extracellular medium, 

the five combined fractions (A-E) from the extract fractionation and three fatty acid standards 

at different concentrations. The first two kinds of samples did not affect nauplii viability, 

while the mortality results obtained with the latter two are shown in Table 3.4. As reported, 

the fractions B and C were the most toxic; both these fractions contained PUFAs and, in 

particular, fraction C presented high levels of 20:5n-3 (EPA), 20:4n-6 (AA), 18:4n-3 (OTA), 

and 18:3n-3 (Table 3.3). When three of these PUFAs were tested separately as purified 

standards, the relationship between mortality effect and concentration was different for the 

various compounds; in particular, EPA (20:5n-3) appeared as the most toxic, causing 80% 

nauplii mortality at 50 µg mL-1.  

Long-term test. Contrarily to what observed in the short-term test, a lethal effect of F. 

japonica live cells on Artemia sp. was observed in the long-term assay, even after 24 h 

exposition. In this assay, the same number of Artemia nauplii were incubated in a high 

volume (35 mL) of culture (max concentration: 80 x 103 cells mL-1) thus being exposed to a 

lower cell concentration per mL but to a higher total cell number than in the short-term assay. 

The EC50 values (Fig. 3.2A) showed an increase in mortality with time, reaching a value of 

26.42 ± 1.24 x 103 cells mL-1 after 96 h, when no survivors were present in the two highest 

concentrations tested (Fig. 3.2B). 
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Table 3.3 - Composition (%) of F. japonica fractions obtained after C18 SPE fractionation.  

 % Composition of F. japonica fraction   

  A B C D E 

12:0   1.7 0.2     

14:0   2.3 33.3 DNQ DNQ 

16:0   DNQ 0.6 75.9 DNQ 

16:1     2.7     

16:2     0.5     

18:0   2.3 0.5 2.9 DNQ 

18:1       21.2   

18:2n-6     2.4     

18:3n-6 (γ)     2.6     

18:3n-3 (α)     5.0     

18:4n-3   7.9 8.5     

20:4n-6     6.4     

20:5n-3     36.8     

β sitosterol         99.9 

arabinofuranose 99.9 18.7       

D-ribofuranose DNQ 2.4       

D-eritrotetra furanose   55.4       

D-fructose   3.9       

inositol   5.4 0.2     

glicerol     0.4     

        DNQ = Detected Not Quantified 

 

The diatom P. tricornutum, used in the assay as a control, did not show toxic effects on 

Artemia sp. even at a high cell density (3.92 x 106 cells mL-1) and the same result was reported 

when testing the filtered algal media of the two microalgae used or the f/2 medium alone. 

Sonicated P. tricornutum and F. japonica cultures were also tested in order to evaluate the 

effects of dead and lysed cells. On testing 35 mL of lysed F. japonica cells at the same 

maximum concentration used before, nauplii mortality occurred more quickly than with live 

cells, while P. tricornutum did not exert any lethal effect (data not shown). A summary of the 

results obtained in the various toxicological assays is reported in Table 3.5. 
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Table 3.4 - The effect on Artemia nauplii of the different algal fractions and fatty acid standards after 

24 h (short-term test). 

  conc (µg/mL) % mortality 

A 300 35 

B 800 100 

C 500 100 

D 400 0 

F. japonica fractions 

E 400 0 

control seawater  - 0 

18:3n-3 100 10 

18:3n-3 500 90 

20:4n-6 10 10 

20:4n-6 143 50 

20:5n-3 50 80 

PUFAs 

20:5n-3 500 90 

 

Fig. 3.2 – A) The 50% effect on Artemia nauplii (EC50) due to Fibrocapsa japonica live cells during 

a long-term test (24-96 h). Each value is expressed as mean ± SE. EC50 values considered mortality 

effects on organisms. B) Relationship between the concentration of F. japonica and the effect on 

Artemia nauplii, after a 96 h exposure (long-term test).  
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Table 3.5 – Summary of the toxicological assays with F. japonica performed in this study, reporting 

sample characteristics, the effect obtained and relative EC50 values. Y or N: presence or absence of a 

toxic effect.  

EC50 (cell mL-1) 
Test Sample Growth phase Toxic effect 

FJAP0603 

medium exponential / stationary N  

live cells exponential N  

live cells stationary (concentrated) Y 241 910 

Artemia sp. 

(short-term) 

lysed cells exponential / stationary N  

     

medium stationary N  

live cells stationary Y 26 420 
Artemia sp. 

(long-term) 
lysed cells stationary Y nd 

     

Vibrio 

fischeri extract stationary Y 1 030 

     

ELA lysed cells stationary  Y 5 190 

     

Sea bass live cells stationary Y  nd 

    nd = not determined 

 

3.3.2. Bacteria bioluminescence 

The marine bacterium V. fischeri exposed to F. japonica extract (max concentration: 1.04 mg 

mL-1) showed inhibition of the natural luminescence (Fig. 3.3), which is indicative of an 

impaired metabolism. Extracts of different algae (max concentrations: Scrippsiella sp. 1.26 

mg mL-1, P. tricornutum 1.26 mg mL-1, P. reticulatum 1.04 mg mL-1) were tested in order to 

have a quantitative measurement of the effects exerted on bacteria by various microalgal 

extracts (Fig. 3.3). EC50 values obtained showed a strong bioluminescence inhibition testing 

F. japonica extract, while the other microalgae decreased bacteria metabolic activity only at 

higher extract concentrations. These results are reported in Table 3.6, where the EC50 values 

are expressed either as µg extract or as corresponding cell concentration. The result didn’t 
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change even considering the great difference in cell sizes and calculating the EC50 on a 

biovolume basis (data not shown).  

 

Fig. 3.3 - Relationship between the concentration of different algal extracts and the bioluminescence 

of Vibrio fischeri, after a 15 min exposure. 
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Table 3.6 - The 50% effect concentrations (EC50) of different algal samples expressed either as 

extract or cell concentrations for Vibrio fischeri in a 15 min inhibition of bioluminescence test. The 

reported values are means ± SE of two to five independent trials. Values refer to mL extract. 

 EC50 

 extract (µµµµg mL-1) concentration (103 cell mL-1) 

F. japonica 9.5 ± 6.2 1.03 ± 0.67 

Scrippsiella sp. 164.0 ± 52.9 42.88 ± 13.83 

P. tricornutum 264.1 ± 43.9 1520.87 ± 228.63 

P. reticulatum 293.4 ± 44.1 51.20 ± 8.51 

 

Fig. 3.4 - The 50% effect concentrations (EC50) of different algal fractions for Vibrio fischeri in a 15 

min inhibition of bioluminescence test. The reported values are means ± SE of two trials.  
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3.3.3. Haemolysis of Cyprinus carpio erythrocytes 

The ruptured cell suspension of F. japonica (max concentration: 75 x 103 cells mL-1 ELA 

buffer) produced haemolytic activity for C. carpio erythrocytes. The percentage of haemolysis 

increased with cell density (Fig. 3.5), giving an EC50 value of 5.19 ± 0.59 x 103 cells mL-1. P. 

tricornutum cells showed no haemolytic activity even at a high cell density (max 

concentration: 2.50 x 105 cells mL-1 ELA buffer), reaching a maximum haemolysis percentage 

of 13.5%. Results were not different even considering the biovolumes of the two microalgae. 

Saponin standard was used to conduct the assay with a chemically defined haemolytic agent 

and the obtained EC50 value was 1.42 ± 0.03 µg mL-1. 
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Fig. 3.5 - Haemolytic activity of the ruptured cell suspensions of Fibrocapsa japonica and 

Phaeodactylum tricornutum.  
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3.3.4. Effect of Dicentrarchus labrax exposition to Fibrocapsa japonica 

Fish mortality  

In the first week of exposure, no sea bass or sea bream mortalities occurred in the tanks where 

fish were exposed to F. japonica culture. In successive experiments sea bass was exposed to 

about 50 x 103 cells mL-1 for a longer period during which algal cell number did not change, 

as evidenced through daily counting (data not shown). After 8-9 days fish started to show 

abnormal behaviour and inability to maintain a correct position in the water column, then at 

day 10 began to die, and by the 11th day all the sea basses were dead. Dead fish were 

immediately put at -80°C. In the tanks with control algae (max concentrations: P. tricornutum 

3.51 x 106 cells mL-1, S. marinoi 1.70 x 106 cells mL-1) and in those with 44 and 88 µM H2O2 

they were all alive and maintained a normal behaviour till the end of the experiment (Fig. 

3.6). An observation made under the light microscope of the gills of fish exposed to F. 

japonica culture revealed that gill tissue was damaged and covered with mucus substances, 

which might had interfered with O2 transfer (Fig. 3.7). Fish were also exposed to K. brevis 

(max concentration: 1.17 x 103 cells mL-1), in order to evaluate the sea bass resistance to a 

microalga which produces brevetoxins. After 5 h from the beginning of the exposure, fish in 

the tanks with K. brevis culture began to die and 21 h later they were all dead.  
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Fig. 3.6 - Toxicity of different microalgae and H2O2 for the fish (Dicentrarchus labrax). Results refer 

to a single experiment and the cell concentrations used are indicated. Time is expressed as hours (h) 

and days (d). 

 

Fig. 3.7 – Gills of the controls (A) and of fish exposed to F. japonica culture (B) observed under the 

light microscope. Fish tested with the Raphidophyceae revealed that gill tissue was damaged and 

covered with mucus substances. 

 

 

ROS analysis 

 ROS analysis revealed an increase in H2O2 produced by F. japonica in the tanks where the 

fish assays were conducted, while no effects were observed in tanks containing P. tricornutum 

(Fig. 3.8). The initial H2O2 concentration measured in F. japonica medium was 1.15 µM, 

which corresponded to 22.60 fmol cell-1 (day 1) and reached a value of 18.39 µM, 

corresponding to 361.75 fmol cell-1, at day 9 (data not shown), when the maximum H2O2 

concentration was measured (Fig. 3.8). Nine days represented the period after which the fish 

began to die and, on this day, values measured in the tanks were about 16-fold and 1.4-fold 

A B 
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higher than on day 1 in the tanks with F. japonica and P. tricornutum, respectively. ANOVA 

analysis showed that the differences observed for the two microalgae were significant 

(P<0.001). The H2O2 concentration in P. tricornutum medium was rather constant during the 

assays, with values of 5.64-7.93 µM at day 1 and 9, respectively, which corresponded to 4.27 

and 6.01 fmol cell-1. 

 

Fig. 3.8 - Concentration of H2O2 during the sea bass test in the tanks where fish were exposed to 

Fibrocapsa japonica (Fj) and in the control tank with Phaeodactylum tricornutum (Pt). Each value is 

expressed as log10 of the concentration detected.  
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Fish gills analysis 

Quantification of MDA, which is a marker for oxidative damage, was performed in the fish 

gills. The MDA values ranged from 55.97 to 82.43 µmol MDA kg-1, while in the controls the 

mean value reported was 5.10 µmol MDA kg-1. Results of statistical analysis indicated that 

the MDA content in the gills of the exposed fish was significantly different (ANOVA, 

P<0.05) from that of the controls.  

 

3.4. Chemical characterization 

3.4.1. Brevetoxin analyses 

The search for brevetoxins was carried out by both NMR and LC-MS analyses. 1H-NMR (600 

MHz, CDCl3) spectrum of the PbTx-2 standard showed some characteristic peaks, in 

particular δ 9.52 (s, 1 H, CHO), 5.78-5.75 (m, 2 H, CH=CH), 5.73 (s, 1 H, =CH), 4.26 (d, 1 

H, OCHC=), 2.66 (bs, 1 H, OH). These peaks were not evidenced in any of the spectra 

realized with F. japonica extracts and fractions. 
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Table 3.7 – Fatty acid composition (expressed per cell) by GC-MS analysis of F. japonica and P. 

tricornutum extract and extracellular medium.  

 Cellular fatty acids  Extracellular fatty acids 

Fatty acid F. japonica P. tricornutum F. japonica P. tricornutum 

 (pg/cell) (fg/cell) 

12:0 nd nd 3.70 0.04 

14:0 22.50 0.090 7.70 0.09 

16:0 16.64 0.118 35.55 0.36 

16:1n-7 1.00 0.252 nd nd 

16:1isomer  1.35 0.019 nd nd 

16:2 nd 0.046 nd nd 

18:0 0.93 0.005 13.57 0.15 

18:1n-9 2.98 0.005 1.66 0.05 

18:1n-7 3.36 nd nd nd 

18:2n-6 1.10 0.005 nd nd 

18:3n-6 (γ) 0.89 nd nd nd 

18:3n-3 (α) 1.80 nd nd nd 

18:4n-3 7.94 nd nd nd 

20:4n-6 2.51 nd nd nd 

20:5n-3 13.33 0.259 nd nd 

22:6n-3 nd nd nd nd 

 

Tot PUFAs 
27.57 0.309 nd nd 

Tot 76.34 0.799 62.19 0.68 

Chemical names and notations: dodecanoic acid (12:0, lauric acid); tetradecanoic acid (14:0, 

myristic acid); hexadecanoic acid (16:0, palmitic acid); 9-hexadecenoic acid (16:1n-7, 

palmitoleic acid); hexadecenoic acid (16:1); 9,12-hexadecadienoic acid (16:2n-4); 

octadecanoic acid (18:0, stearic acid); 9-octadecenoic acid (18:1n-9, oleic acid); 11-

octadecenoic acid (18:1n-7, vaccenic acid); 9,12-octadecadienoic acid (18:2n-6, linoleic acid, 

LA); 6,9,12-octadecatrienoic acid (18:3n-6, γ-linolenic acid, GLA); 9,12,15-octadecatrienoic 

acid (18:3n-3, α-linolenic acid, ALA); 6,9,12,15-octadecatetraenoic acid (18:4n-3, stearidonic 

acid, OTA); 5,8,11,14-eicosatetraenoic acid (20:4n-6, arachidonic acid, AA); 5,8,11,14,17-

eicosapentaenoic acid (20:5n-3, EPA); 4,7,10,13,16,19-docosahexaenoic acid (22:6n-3, 

DHA). 

nd =  not detected 
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The LC-MS ion chromatogram of K. brevis extracts revealed the presence of a peak (RT 

24.029) with a product ion spectrum of m/z 895.8 (MH+) corresponding to PbTx-2, that is the 

most widespread algal brevetoxin. At the same retention time no peak was found in the ion 

chromatogram of F.  japonica extracts and fractions. In any case, no peak characterized by the 

presence of ion m/z 895.8 could be detected. 

 

3.4.2. Analysis of fatty acid composition of Fibrocapsa japonica and Phaeodactylum 

tricornutum cell extract and extracellular culture medium 

The cellular fatty acid profile of both F. japonica and P. tricornutum, determined by GC-MS 

analysis, is presented in Table 3.7. In F. japonica, four major components were found, the 

level of each being 10.40–29.48% of the total fatty acids. These four components were the 

saturated fatty acids 14:0, 16:0 and the polyunsaturated acids 18:4n-3 and 20:5n-3. The minor 

components represented 1.16–4.40% of the total fatty acids and consisted mainly in 

unsaturated fatty acids.  

P. tricornutum is a diatom known for its high content in PUFAs, in particular 20:5n-3; it was 

never found to affect other organisms and is widely used as food in aquaculture. Therefore, in 

this study it was used as control, and analyzed to compare its fatty acid profile with that of F. 

japonica. The fatty acid profile of P. tricornutum revealed the expected high amount of 

20:5n-3 (32.41%), while the presence of PUFAs with 18 carbon atoms was low or below the 

detection limit. Data are expressed as pg/cell thus emphasizing the largely different fatty acid 

content of the two algae; by taking into account the 50-fold smaller biovolume of P. 

tricornutum, the 20:5n-3 content per biovolume unit of the two algae is quite similar while the 

total PUFAs amount is two-fold higher in F. japonica.    

The two species were compared also in their extracellular fatty acid profile which is presented 

in Table 3.7. Only five fatty acids were found in the medium of F. japonica; they were the 

saturated acids 12:0, 14:0, 16:0, 18:0, and the mono-unsaturated 18:1n-9, the latter 

representing 2.67% of the total fatty acids. Almost the same profile was obtained for the P. 

tricornutum extracellular medium. None of the PUFAs detected within the cells was found in 

either of the extracellular media. 

 

3.4.3. Analysis of Fibrocapsa japonica fractions  

The fifty-four TMS-fractions obtained by chromatographic separation of the algal extract 

were combined, as described in the experimental section, in five final fractions (A-E) which 
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were used for subsequent toxicity assays. The composition of each fraction is reported in 

Table 3.3. Two samples contained mostly PUFAs, in particular, fraction B had about 8% of 

18:4n-3, while fraction C contained 18.5% of PUFAs with 18 carbon atoms, 6.4% of 20:4n-6 

(AA) and a high amount (36.8%) of 20:5n-3 (EPA). In the other fractions (A, D, E) sugars, 

saturated fatty acids or β-sitosterol were present.  

3.5. Development of LC-MS methods for Brevetoxins (BTXs)   

Microalgae belonging to the Raphidophyceae, Fibrocapsa japonica, Heterosigma akashiwo 

and Chattonella spp., have been documented as ichthyotoxic and causing massive fish 

mortality events mostly in the Seto Inland Sea of Japan (Iwasaki, 1971; Okaichi, 1972; 1989; 

Toriumi and Takano, 1973). Since the production of brevetoxins is one of the major factors 

which had been proposed for the ichthyotoxicity of these raphidophytes (Khan et al., 1996), 

together with reactive oxygen species (ROS) (Oda et al., 1997, Marshall et al., 2003), 

haemolytic compounds such as PUFAs (Fu et al., 2004a), and mucocyst ejection (de Boer et 

al., 2004), in this thesis the presence in algal extracts of these raphidophytes of some of the 

known brevetoxins was investigated. To achive this aim, rapid and sensitive methods to 

analyze brevetoxins in algal extracts were developed. This work was performed in the 

laboratory of the Dr. Michael Quilliam at the National Research Council, Institute for Marine 

Biosciences (NRC-CNRC), in Halifax (Canada).     

 

3.5.1. Bioassay and chemical analytical methods for the toxin determination  

Methods for the determination of toxins may be divided into assay and chemical analytical 

methods. In assay methods, the measured signal is either a specific response to a single toxin 

structure or an integration of responses to several structures in a group. In order to use the 

assay result for evaluating seafood safety, it is most useful if the response correlates with 

overall toxicity. On the other hand, in a chemical analytical method, signals corresponding to 

individual toxin structures are measured. Most analytical methods are based on 

chromatography which allows the separation and detection of several toxins in one analysis. 

Calculation of individual toxin concentrations requires accurate standards to calibrate the 

responses, and evaluation of seafood safety further requires specific toxicity data. 

The most common assay to check for the presence of toxins is the mouse bioassay (MBA). 

For over 50 years, this assay has been used successfully in inspection programs to monitor for 

PSP toxins, which are easily extracted into an acidic aqueous solution suitable for direct 
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injection (Stephenson et al., 1955; AOAC International, 2000). One of the problems with the 

method is that the inherent variability can exceed ±20%, compared to most chemical 

techniques that have uncertainties less than 10%. Major disadvantages of using the MBA for 

the detection of toxins are the lack of specificity (no differentiation between the various 

components of a group), subjectivity of death time and maintenance of laboratory animals. 

Additionally, the MBA is time consuming, does not provide appropriate detection limits for 

some toxins (e.g., yessotoxins, okadaic acid and DTX esters, azaspiracids) and may give 

‘false positive’ results because of interferences by other compounds (Combes, 2003). 

Notably, hydrophilic toxins belonging to the amnesic and paralytic shellfish poisoning 

groups, free fatty acids (Lawrence et al., 1994) and bioactive spiroimines (e.g., spirolides and 

gymnodimines; Gill et al., 2003) have been shown to be toxic to mice. Within the EU, it is a 

requirement to take all steps to refine, reduce and replace (3R’s), the use of animals used in 

bioassays and scientific experiments under Directive 86/609/EEC. To this aim, the European 

Centre for the Validation of Alternative Methods (ECVAM) met to consider the 3R’s 

approach to shellfish toxin testing. The results of the deliberations of the working group are 

available (Hess et al., 2006); it was suggested that immediate possibilities for implementation 

of the 3R’s include the use of liquid chromatography–mass spectrometry (LC–MS) methods 

for the detection of toxins. 

Finally, since several countries have banned animal bioassays due to protests by animal rights 

groups, there is considerable pressure to develop alternative methods. 

A number of alternative assay methods have been developed (Van Dolah et al., 2001). These 

include in vitro cell toxicity assays, receptor protein assays, and immunological assays. 

Despite their potential for speed, high sensitivity and low cost, there are some limitations 

associated with such methods. Since receptor assays are usually based on radioactive tracers, 

they are restricted to specially equipped laboratories. Immunoassays generally cannot be used 

for the precise quantitative analysis of samples containing families of toxins that have variable 

levels of individual toxin. Antibodies for such assays are initially developed for single toxins 

but can have varying degrees of cross-reactivity towards toxins of similar structure. Although 

assays are excellent for screening out negative samples, it is generally recognised that positive 

results should still be confirmed by chemical methods.  

Chemical methods of analysis have the potential for sensitive, precise and fully automated 

quantization of known toxins, as well as confirmation of identity. Methods based on 

chromatographic and spectroscopic techniques are particularly well suited for the 

identification of new toxins. It should be noted that there are many challenges to overcome 
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before it is possible to fully implement any chemical method into comprehensive monitoring 

programs and research studies.  

All members of a toxin class must be well characterised in terms of structure, and although 

considerable information on the structures of toxins that can contaminate shellfish has been 

accumulated, the situation becomes more complicated with the frequent discovery of new 

toxin analogues and even new toxin classes. In addition, toxins produced by a particular 

microalgal species may be transformed in shellfish to metabolites, some toxic and others non-

toxic. This is certainly a complicating factor in the development of methods and indicates a 

need to continue research on the identification of new toxins. Accurate and readily available 

calibration standards are required for each of the various toxins. This has always been a major 

stumbling block in shellfish toxin research and monitoring, and much more effort has to be 

put into the development of reference materials and standards. The specific toxicity of 

individual toxins must be determined to allow calculations of overall toxic potential of 

samples. Risk assessment studies also need to be conducted to establish allowable levels of 

toxins in seafood. Finally, robust methods must be developed and validated for various 

shellfish tissues. They must provide adequate detection limits (µg kg-1 levels) and accurate 

quantitation of all individual toxin analogues within a toxin class.  

Many specific analytical methods have already been developed for individual toxins or toxin 

groups. Although there are some difficulties with the technique (i.e. most of the toxins do not 

possess a chromophore for sensitive UV absorbance or fluorescence detection) liquid 

chromatography has proven to be the most valuable instrumental analytical tool for toxins 

because it is well suited to the analysis of polar, non-volatile compounds. It provides excellent 

quantitative precision and is easily automated. 

 

3.5.2. Liquid chromatography–mass spectrometry 

Since the 1970s the mass spectrometer not only provided molecular mass and structural 

information, but could also act as a very sensitive and selective detector for quantitative 

analysis of complex mixtures. Through the 1980s, many efforts were made to achieve the 

same success obtained with the combination of gas chromatography and mass spectrometry 

(GC–MS) also with the combination of LC and MS. Early LC–MS interfaces such as 

thermospray ionisation and continuous-flow fast atom bombardment were only partially 

successful. The former was only applicable to thermally stable molecules with medium 

polarity, while the latter was very difficult to implement on a routine basis.  
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In 1984, a breakthrough came with the development of electrospray ionisation (ESI) 

(Yamashita and Fenn, 1984), which is well suited to compounds of widely ranging polarities 

and is easily implemented. Immediate success was achieved with the application of LC–ESI-

MS to marine toxins using the first commercial mass spectrometer from SCIEX in 1989 

(Quilliam et al., 1989). Due to its high sensitivity, specificity and selectivity, LC–MS quickly 

became the preferred method for the confirmatory analysis of all known toxins (Quilliam, 

1998; Quilliam et al., 2001). Recently, effort has been directed towards finding mobile phases 

and columns that would be suitable for the simultaneous separation and detection of a wide 

range of toxins, in both plankton and shellfish samples (Quilliam et al., 2001). One of the 

most important factors for achieving success in electrospray LC–MS is the choice of mobile 

phase. Parameters that affect sensitivity include pH, ionic strength, type of buffer, and 

percentage of the organic solvent. A volatile buffer with a low ionic strength (ideally <10 

mM) is desirable to prevent a build-up of salts on the sampling orifice of the MS. In addition, 

a higher percentage of organic solvent tends to give higher sensitivity with most compounds. 

Suitable mobile phases include aqueous methanol or acetonitrile doped with formic acid, 

acetic acid, trifluoroacetic acid (TFA), the ammonium salts of these acids, or ammonium 

hydroxide. TFA has been very popular because it is easy to use and produces a low pH that 

facilitates protonation of most toxins. The latter can be important for the chromatography of 

acidic and basic toxins on silica-based supports, as interactions with free silanol sites are 

minimized. However, it has been observed that TFA forms strong ion pairs with amines and 

this leads to suppression of ionization and reduced sensitivity. Also, TFA cannot be used if 

negative ion work is planned on the same day, as it gives a very strong signal due to the 

CF3COO- anion which persists in the source for a long time. 

 

3.5.3. Brevetoxins 

Brevetoxins (BTXs) are cyclic trans-fused polyether toxins produced by the red tide 

dinoflagellate Karenia brevis (Van Dolah, 2000; Pierce et al., 2005). These toxins are broadly 

defined as belonging to a lipid soluble group of cyclic polyether compounds with a molecular 

weight around 900 amu (Fig. 3.9). Many analogs of brevetoxin have been identified in 

cultures of K. brevis, seawater blooms as well as metabolites in shellfish and other marine life 

(e.g. Abraham et al., 2006). Most of these analogs were reputed to be biosynthetic products of 

either BTX1 or BTX2 as precursors (Baden et al., 2005). Typically in marine waters the 

dominant brevetoxin is BTX2 with lesser amounts of BTX1 and BTX3, whereas in marine 
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aerosols BTX3 dominates (Pierce et al., 2005). Recent work by Tester et al. (2008) has shown 

though as a K. brevis bloom ages there is a relative increase in the BTX3 compared to the 

BTX2 homologues. 

These compounds are responsible for massive fish kills, shellfish contamination (NSP), and 

respiratory, eye and skin irritations in humans and mammals exposed to contaminated 

seawater and aerosols in Florida and the Gulf of Mexico. Available methods for their 

detection include bioassays, immunoassays, thin layer chromatography and LC. Since 

brevetoxins have weak chromophores, LC with UV detection (at 215 nm) provides low 

sensitivity and poor selectivity. 

Hua et al. (1996) reported that electrospray LC-MS is a suitable technique for analysis of 

these toxins. Under the conditions used (aqueous methanol mobile phase), the positive ion 

spectra were dominated by sodiated molecules ([M+Na]+), as well as dimers ([2M+Na]+) and 

trimers ([3M+2Na]2+), which is a reflection of the ionophoric nature of these molecules. 

Quilliam et al. (unpublished) have investigated the ion spray LC-MS of the brevetoxins, using 

an acidified (0.1% TFA) aqueous methanol mobile phase to promote protonation. 

It has been already established on-line liquid chromatography (LC)/electrospray ionization 

(ESI)-mass spectrometry as a powerful analytical tool to provide relatively rapid quantitative 

and structural information concerning brevetoxins, with high sensitivity and low sample 

quantity requirements. The strength of the polyether backbone, however, has two major 

implications for ESI-MS/MS analyses. First, the polyether structure has a very high affinity 

for sodium cations that result in the initial generation of abundant (M+Na)+  ions; second, 

when attempting to produce collision-induced dissociations, at least two bonds of the 

polycyclic backbone must be broken in order to obtain backbone fragmentations. Thus, it is 

difficult to obtain useful product ions in detectable abundances from brevetoxin (M+Na)+ 

precursor ions during tandem mass spectrometry experiments. 

The work presented in this thesis was focused on the development of rapid LC-MS/MS 

methods to analyse brevetoxins in algal extracts. In particular, the different aims were: I) to 

develop a rapid isocratic method to analysed BTX1, BTX2, and BTX3 in algal samples (e.i 

Karenia brevis extracts); II) to develop a gradient method to quantify BTX1, BTX2, BTX3, 

BTX-B2, deoxyBTX-B2, and BTX-B5, which was then apply to algal samples obtained from 

cultures of Karenia brevis and raphidiphytes (Fibrocapsa japonica, Chattonella subsalsa and 

Heterosigma akashiwo) from the Adriatic Sea; III) to develop a method to analyse hand-

picked K. brevis cells by micro-column liquid chromatography-tandem mass spectrometry. 
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3.5.4. Experimental section 

Chemicals 

Analytical grade acetonitrile (ACN), methanol (MeOH), and formic acid (FA) were purchased 

from Caledon (Georgetown, Canada). The brevetoxins (BTXs) certified reference material, 

such as CSRM-BTX1 (3.0 µg mL−1), CSRM-BTX2 (6.6 µg mL−1), CSRM-BTX3 (3.6 µg 

mL−1), CSRM-BTX-B2 (5. µg mL−1), CSRM-S-deoxyBTX-B2 (5.0 µg mL−1), CSRM-BTX-

B5 (4.3 µg mL−1), was provided by the National Research Council, Institute for Marine 

Biosciences (NRC-CNRC, Halifax, Canada). Water was distilled and further purified using a 

Milli-Q purification system (Millipore, Billerica, MA, USA) and seawater at salinity 35 was 

filtered using 0.22 µm cartridge filters (Harmsco, North Palm Beach, FL, USA). 

 

Fig. 3.9 – Structures of the brevetoxins used for this study 
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Algal cultures 

A strain of Karenia brevis (CCMP2281) from the Gulf of Mexico (USA) isolated in 1999 was 

used in this study. For the experiment, 1000 mL Erlenmeyer flasks containing 550 mL of 

sterilized f/2-Si medium (Guillard, 1975) at salinity of 35, were prepared in duplicate. 
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The culture flasks were illuminated at 105-110 µmol photons m-2 s-1 from daylight type cool 

white lamps (16:8 h light-dark period), with temperature controlled at 20°C. Every 2-3 days 

10 mL culture were collected from each flask, centrifuged at 4000 x g for 5 min and the algal 

pellet so obtained was kept at -80°C. Cell counts were made in settling chambers following 

Utermohl’s method (Hasle, 1978). 

Raphidophyceae Fibrocapsa japonica, Chattonella subsalsa and Heterosigma akashiwo cells 

were isolated by the capillary pipette method (Hoshaw and Rosowski, 1973) from blooms 

which occurred in 2006 in the Adriatic Sea (Marche, Italy). After initial growth in 

microplates, cells were kept in sterile Erlenmeyer flasks sealed with cotton at 20°C, during a 

16:8 h light–dark period at about 100–110 µmol photons m-2 s-1 from cool white lamps 

(McLachlan, 1973). 

These strains were cultured in f/2-Si medium (Guillard, 1975) made with natural seawater, 

adjusted to a salinity of 35 through the addition of distilled water, and kept under the 

temperature and the light conditions described above.  

For the experiment, 4 Erlenmeyer flasks containing 1500 mL culture were used for each 

species and collected at the end of the stationary phase (total volume: 6000 mL for each 

species) centrifuging at 5000 x g for 10 min. Algal pellets were kept at -80°C.  

 

BTXs extraction  

Algal pellets of K. brevis, F. japonica, C. subsalsa and H. akashiwo were extracted using a 

methanol solution. Algal pellets were added to 1 mL (for K. brevis) or 2 mL (for 

Raphidophyceae) 100% MeOH and sonicated for 2 min in pulse mode, while cooling in an ice 

bath. Then the mixture was added to a same volume (1 or 2 mL) 60% MeOH, centrifuged at 

5000 x g for 15 min, and the supernatant was decanted. The extract was adjusted to a final 

volume of 1.5 or 3 mL for K. brevis or the Raphidophyceae, respectively.  

 

LC–MS analysis 

The LC–MS analysis was carried out using an Agilent 1100 series LC system coupled to an 

API-4000 triple quadrupole (Applied Biosystems, Foster City, CA, USA) mass spectrometer, 

equipped with a Turbo V electrospray ion source (MDS Analytical Technologies, Concord, 

Canada). Nitrogen nebulizer gas was set at 50 (GS1, GS2) and heated at 275 °C. A higher 

temperature can give somewhat increased sensitivity, but was not used to avoid magnification 

of matrix effects (unpublished data). BTXs were detected using selected reaction monitoring 

(SRM) with the ion source in positive mode. 



 64 

BTXs quantitation and limit of detection (LOD) measurements were achieved with BTXs 

calibration solutions (10-2500 ng mL−1) prepared in 80% MeOH. LOD was measured 

statistically by the formula: LOD= [(3 SD)/b]; where “SD” is the standard deviation of 

repeated runs of the minimum measurable BTX concentration in a standard solution (n = 5) 

and “b” is the slope of the calibration curve. The best transition (bold, in Table 1) was used 

for LOD determination.  

 

3.5.5. Optimization of instrumental parameters 

In preliminary experiments, instrumental parameters and chromatographic conditions were 

optimized. These parameters included source temperature (60-550°C), declustering potential 

(DP = 20-90 V), collision energy (CE = 15-60 eV), mobile phase composition (acidic and 

neutral), flow rate, and column temperature. Different columns (50 mm X 2 mm i.d.) were 

used in the development of the LC-MS methods for BTXs: 

− Synergi Fusion RP, 2 µm;  

− Thermo Hypersil-BDS-C8, 3 µm;  

− Phenomenex LUNA-C18, 3 µm.  

In preliminary experiments the mass spectrometer with ESI interface was operated either in 

positive and negative mode and reported as best transitions those shown in Table 3.8 for each 

compound. ESI+ was subsequently selected as it resulted the best mode to analyze all the 

BTXs. The monitored selected reaction monitoring (SRM) transitions as well as the 

optimazed declustering potential (DP) and collision energy (CE) are reported in Table 1: m/z 

884.6→221.1, m/z 884.6→403.4 and m/z 884.6→850.5 for BTX1; m/z 912.6→877.5, m/z 

912.6→473.6 and m/z 912.6→319.3 for BTX2; m/z 897.6→725.5, m/z 897.6→303.4 and m/z 

897.6→249.3 for BTX3; m/z 1034.7→929.6, m/z 1034.7→403.4 and m/z 1034.7→249.3 for 

BTX-B2; m/z 1018.7→929.7, m/z 1018.7→473.5 and m/z 1018.7→403.4 for deoxyBTX-B2; 

and m/z 928.6→299.1, m/z 928.6→473.5 and m/z 928.6→403.4 for BTX-B5.  

An abundant [M+NH4]
+ ion dominated the spectrum of BTX1 and BTX2, while [M+H] + 

resulted the predominant ion in the spectra of all the other BTXs. Fragment ions were 

characteristic of these compounds and in accordance with the fragmentation reported for these 

reference standards.  

The retention that compounds experience on reversed phase HPLC columns is governed by 

their lipophilic properties and by the presence of polar or ionic groups, which can interact 

with the stationary phase. Moreover, the pH of the mobile phase is an important parameter 
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which can significantly influence the amount of interaction between the toxins and the 

stationary phase.  

 

Table 3.8 – MS/MS conditions used for the multiple reaction monitoring (MRM) acquisition to 

detect brevetoxins (BTXs). Bold refer to the best transition, which was used for LOD determination. 

Analyte ESI mode  Transition CE (eV) DP (V) 

    [M+NH4]+       
BTX1 ESI+ 884.6 884.6/221.1 35 60 

   884.6/403.7 35 60 
   884.6/850.5 30 60 
      
  [M+NH4]+    

BTX2 ESI+ 912.7 912.6/877.5 35 50 
   912.6/473.6 45 50 
   912.6/319.3 45 50 
      
  [M+H]+    

BTX3 ESI+ 897.6 897.6/725.5 40 90 
   897.6/303.4 35 90 
   897.6/249.3 40 90 
      
  [M+H]+    

BTX-B2 ESI+ 1034.7 1034.7/929.6 55 90 
   1034.7/403.4 55 90 
   1034.7/249.3 70 90 
      
  [M-H]-    
 ESI- 1032.7 1032.7/897.5 65 90 
   1032.7/721.5 70 80 
   1032.7/525.4 70 90 
      
  [M+H]+    

deoxyBTX-B2 ESI+ 1018.7 1018.7/929.7 50 90 
   1018.7/473.5 60 90 
   1018.7/403.4 60 90 
      

  [M-H]-    
 ESI- 1016.7 1016.7/929.4 60 70 
   1016.7/739.5 65 80 
   1032.7/525.4 75 90 
      

  [M+H]+    
BTX-B5 ESI+ 911.7 928.6/299.1 50 40 

   928.6/473.5 50 40 
   928.6/403.4 50 40 
      
  [M-H]-    
 ESI- 910.6 910.5/739.5* 60 90 

   910.6/461.4 70 70 
   910.5/525.4 65 90 
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Therefore, in initial experiments, the three columns were compared using all the six reference 

BTX standards (BTX1, BTX2, BTX3, BTX-B2, deoxyBTX-B2, and BTX-B5) under acidic 

and neutral mobile phase conditions, in particular these were: 

−  Acetonitrile (ACN) with 2 mM ammonium formate (HCOONH4) and 50 mM formic acid 

(HCOOH); 

−  Methanol (MeOH) with 5 mM ammonium formate (HCOONH4) and 2.5% isopropanol 

(IPA); 

−  Acetonitrile (ACN) with 5 mM ammonium formate (HCOONH4).  

 

Fig. 3.10 – Separation of brevetoxins (BTXs) standards using the Synergi Fusion RP, the Hypersil C8 

and the Luna C18 columns under acidic LC conditions; and the Luna C18 column under neutral 

conditions.
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As for the mobile phase, ACN/H+ resulted in a better separation of the different brevetoxins 

(Fig. 3.10), which eluted already in the first part of the chromatogram. Under acidic 

conditions a slightly improved peak shape was obtained for all the BTXs, especially with the 

LUNA-C18 as column, and this is in accordance with the methods described far often for the 
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separation of BTXs (Roth et al., 2007; Twiner et al., 2007), where a mobile phase containing 

acetic acid is used.  

The survey of different stationary phase columns (50 mm X 2 mm i.d.) revealed that those 

packed with 3 µm Hypersil-BDS-C8 and LUNA-C18 are capable of a better resolution in 

term of separation and peak shape. Although a better sensitivity was obtained with the 

Hypersil-BDS-C8 column, LUNA-C18 was selected due to the best peak shape, in particular 

peaks appeared narrower and more symmetric.  

Using Sinergi Fusion RP column, overlapping of toxins occurred. For all the tested toxins the 

peak width was better on the LUNA-C18 column with the acidic mobile phase; thus, it can be 

concluded that both this column and the acidic mobile phase contributed to a better peak 

shape. 

LC-ESI-MS-MS analyses conditions applied in the development of the different LC-MS 

methods for BTXs were therefore based on the results of these preliminary experiments.  

 

3.5.6. Isocratic rapid method for BTX1, BTX2, BTX3 

LC-MS conditions: BTXs were separated by an Agilent 1100 LC series using the 3 µm 

Phenomenex LUNA-C18 column (50 X 2 mm i.d.). The mobile phase was based on aqueous 

acetonitrile (ACN) with 2 mM ammonium formate and 50 mM formic acid (acidic mobile 

phase). Additionally, the column was tested for a neutral mobile phase system which 

consisted in 5 mM ammonium formate. After preliminary experiments in which different 

percentage of ACN were used, the selected method resulted in a 75:25 acetonitrile:water 

mobile phase for 4 min. Source and column temperatures were 350 and 25°C, respectively. 

The flow rate was set at 0.3 mL min-1, and 3 µl of sample were injected. BTXs were detected 

using an API-4000 triple quadrupole (Applied Biosystems, Foster City, CA, USA) mass 

spectrometer equipped with a Turbo V electrospray ion source (MDS Analytical 

Technologies, Concord, Canada) in selected reaction monitoring (SRM), with the ion source 

in positive mode. Structural identification, detection and quantification were carried using the 

SRM transitions and conditions previously described (Table 3.8). An external calibration 

curve was obtained using 6 concentrations (10-2500 ng mL−1) of the BTXs standard solution 

(BTX1, BTX2 and BTX3). Each sample was analyzed in triplicate and the concentrations 

were reported as mean values. 
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Results: The isocratic method resulted a rapid and sensitive method to detect and quantify 

BTX1, BTX2, BTX3 in algal extracts. Since these brevetoxins in the preliminary experiments 

reported good peak shape and separation using either the neutral and acidic mobile phases, the 

two different conditions were compared, using the LUNA-C18 as column (Fig. 3.11). 

ACN/H+ resulted in a better sensitivity for all the different brevetoxins, which reported higher 

peak intensities and better linearity in the calibration curves. Using the acidic mobile phase R2 

were in fact 1, 0.9941 and 0.9998 for BTX1, BTX2 and BTX3, respectively; while values in 

the range 0.9834-0.9917 were found with the neutral mobile phase. The LOD of BTXs with 

the acidic method was 15, 43 and 27 pg on-column for BTX1, BTX2 and BTX3, respectively. 

  

Fig. 3.11 – Separation of brevetoxins (BTX1, BTX2 and BTX3) standards using the Luna C18 

column under acidic and neutral LC conditions. 
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This method was subsequently applied to analyze algal extracts of K. brevis (Fig. 3.12). The 

experiment was performed growing two different cultures for 14 days; every 2-3 days pellet 

were collected and extracted and BTX1, BTX2, BTX3 produced during the growth were 

analyzed. It has to be noted that the high toxin concentration per cell at the beginning of the 

experiment is probably due to the fact that for the inoculum a culture with cells in the 

stationary phase was used, therefore cellular toxin content was high. The BTXs pattern was 

similar for the two replicates, being the BTX2 the major toxin, followed by BTX1, as 

previously reported for K. brevis (Pierce et al., 2005). However, as K. brevis culture aged 

there was a relative increase in the BTX3 compared to the BTX2, probably due to degradation 

of BTX2, which formed BTX3. This last finding had been already observed during K. brevis 

blooms (Tester et al., 2008). 
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Fig. 3.12 – Brevetoxins concentration (pg cell-1) in Karenia brevis cultures during the growth. Two 

different replicate cultures were used for the experiment. 
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3.5.7. Gradient method for BTX1, BTX2, BTX3, BTX-B2, deoxyBTX-B2 and BTX-B5 

LC-MS conditions: BTXs were separated by an Agilent 1100 LC series using the 3 µm 

Phenomenex LUNA-C18 column (50 X 2 mm i.d.). The mobile phase was based on aqueous 

acetonitrile (ACN) with 2 mM ammonium formate and 50 mM formic acid. A gradient 

elution was used: 35-100% ACN over 10 min, and hold for 2 min. Source and column 

temperatures were 275 and 40°C, respectively. The flow rate was set at 0.3 mL min-1, and 3 µl 

of sample were injected. BTXs were detected using an API-4000 triple quadrupole (Applied 

Biosystems, Foster City, CA, USA) mass spectrometer equipped with a Turbo V electrospray 

ion source (MDS Analytical Technologies, Concord, Canada) in selected reaction monitoring 

(SRM) with the ion source in positive mode. Structural identification, detection and 

quantification were carried using the SRM transitions and conditions previously described 

(Table 3.8). An external calibration curve was obtained using 6 concentrations (10-2500 ng 

mL−1) of the BTXs standard solution (BTX1, BTX2, BTX3, BTX-B2, deoxyBTX-B2 and 

BTX-B5). Each sample was analyzed in triplicate and the concentrations were reported as 

mean values. 

 

Results: The gradient method developed using an acidic mobile phase and LUNA-C18 

column provided a good baseline separation of the six brevetoxins (Fig. 3.13). It resulted 

sensitive and in a good linearity of all the BTXs standards, with R2 values 0.9940-0.9996. 
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LOD of BTX1, BTX3 and BTX-B2 was in the range 31-44 pg on-column; it slightly 

increased for BTX2 (67 pg on-column) and reached a maximum value of 115 and 126 pg on-

column for BTX-B5 and deoxyBTX-B2, respectively.  

Algal extracts of the Raphydophyceae F. japonica, H. akashivo and C. subsalsa were 

analyzed using this method, to check for the presence of some of the most common 

brevetoxins found in algal samples and their metabolites. None of these toxins was found in 

the analyzed algal extracts, leading to the conclusion that these species don’t produce any of 

these known brevetoxins, especially in considered that the method resulted sensitive and that 

the algal extracts had been obtained from large cultures (6000 mL). 

 

Fig. 3.13 - Separation of brevetoxins (BTXs) standards using the Luna C18 column under acidic LC 

conditions.  

 

 

 

3.5.8. Analysis of hand-picked K. brevis cells by micro-column liquid chromatography-

tandem mass spectrometry 

The method involves micro-pipette sampling of cells, transfer to the cup of a micro filter, 

removal of seawater, extraction of cells with methanol, and direct LC-MS/MS analysis. A 

column switching system is used that allows a large volume injection and cleanup. Toxins are 
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trapped on an LUNA-C18 cartridge and are then back-flushed onto a microbore LC column 

coupled with the MS (Fig. 3.14). 

 

Sample Extraction: Millex-GV4 filters (0.22 µm) (Millipore) were soaked in methanol 

(MeOH) overnight, followed by a final flush with 500 µL MeOH and then air drying. Before 

use, each filter was filled with 100 µL MeOH for 5 min, followed by centrifugation at 2000 x 

g for 5 min, and then a rinse with 50 µL of filtered (0.22 µm) seawater, followed by 

centrifugation at 2000 x g for 5 min, was performed. 

As shown in Fig. 3.14A, cells were selected and pooled by micropipette isolation and 

transferred to the cleaned Millex-GV4 filters. Excess seawater from the cell(s) was removed 

by centrifuging for 2 min at 2000 x g; the filtrate was then discarded. 

To each filter 50 µL of 100% MeOH were added; after standing for 5 min, filters were 

centrifuged at 4000 x g for 5 min to collect the extracts in a 300 µL micro-insert for LC 

autosampler vials. Then, 25 µL of 40% MeOH were added to each filter; after standing for 5 

min, centrifugation at 4000 x g for 5 min was performed and the total extract was collected in 

the 300 µL micro-insert. The used filters were discarded and the inserts containing the 

extracts were transferred to LC vials, tightly capped, and stored  at -20°C until LC-MS 

analysis. 

LC-MS conditions: BTXs were separated by an Agilent 1100 binary LC, using a LUNA-C18 

cartridge (20 x 2 mm i.d.) and a Hypersil-BDS-C8 column (150 x 1 mm i.d.) connected to a 

switching valve as shown in Fig. 3.14B. Mobile phases consisted in water (A) and  95% 

acetonitrile (B), both with 50mM formic acid and 2mM ammonium formate. Equilibration 

was obtained using a 75 µl/min flow for 15 min at 10% B in position 2. 50 µL of each sample 

were injected and the flow continued at 10% B in position 1 (flow through LUNA-C18 

cartridge only) for 2 min at 0.2 mL/min. A gradient elution was used: the valve was switched 

to position 2 (both columns, back-flushing from the LUNA-C18 cartridge onto the Hypersil 

column) at 75 µl/min, then the gradient increased from 10 to 30% B over 0.5 min and then 

from 30% B to 100% B over 10 min, hold at 100% for 18 min. BTXs were detected using an 

API-4000 triple quadrupole (Applied Biosystems, Foster City, CA, USA) mass spectrometer 

equipped with a Turbo V electrospray ion source (MDS Analytical Technologies, Concord, 

Canada) in selected reaction monitoring (SRM) with the ion source in positive mode. 

Structural identification, detection and quantification were carried using the SRM transitions 

and conditions previously described (Table 3.8). 
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BTXs quantitation and LOD measurements were achieved with BTXs calibration solutions 

(10-2500 ng mL−1) prepared in 80% MeOH. Each sample was analyzed in triplicate and the 

concentrations were reported as mean values. 

 

Fig. 3.14 – A) Micro-filtration system used to extract picked cell samples, and B) Column switching 

system used for analysis.  
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Results: The method proposed is based upon a micro sampling and extraction procedure 

coupled with micro-column liquid chromatography-tandem mass spectrometry and 

demonstrated the analysis of single or multiple hand-picked plankton cells. In fact, the toxin 

concentration and profile present in plankton can vary considerably between different 

geographical areas and even within one region and between seasons due to the presence of 
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different species and strains; moreover, variations in toxin concentration could also be due to 

differences in the cell biovolume or within a population toxin content variability.  

 

Fig. 3.15 - Analysis of 1, 5, 10, 25 and 50 individually picked cells of Karenia brevis sampled from a 

culture. In each case, only 2/3 of the extract was injected (50 µL from 75 µL). It is interesting to note 

that the BTX1 and BTX2 concentration increased proportionally from 1 cell to 50 cells samples. 
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Traditional methods of analysis require substantial sample sizes (e.g., millions of cells), 

making it difficult to attribute the presence of toxins or variations in toxin profiles to 

individual species.  

This method resulted in a good linearity of the BTX1, BTX2 and BTX3 standard solutions, 

which reported R2 in the range 0.9950-0.9977 and LOD values of 15, 45 and 25 pg on-

column, respectively.  

It was subsequently used to analyzed the brevetoxin content in K. brevis samples obtained 

hand-picking 1 to 50 cells. As shown in Fig. 3.15, this system was able to detect BTXs in 

extracts obtained from 1-5 cells of K. brevis and resulted in a good correlation of the toxin 

content with the number of extracted cells (Fig. 3.16). Although toxin content variability was 

quite high for single cell samples, probably due also to the natural variability of the cells in 

the toxin production, it decreased considerably already for 5 cells samples.  
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Fig. 3.16 – Analysis of a series of extracts prepared from cells hand-picked from a Karenia brevis 

culture (CCMP2281). In each case, only 2/3 of the extract was injected (50 µL from 75 µL). 
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3.5.9. Conclusion – LC-MS methods for BTXs 

Development in the use of LC-MS has progressed rapidly, since it has been considered a good 

alternative to the MBA, offering greater selectivity, sensitivity, reliability and rapidity (Hess 

et al., 2003; Ciminiello et al., 2002). In recent years much effort has been put in the 

development of LC-MS/MS methods that are dedicated to either detect the specific classes of 

marine lipophilic toxins or detect as much as possible different marine lipophilic toxins in a 

multi-toxin method. In the literature, several methods for the separation of okadaic acid, its 

derivatives dinophysistoxins, yessotoxins, domoic acid, spirolides, pectenotoxins and 

azaspiracids have been described (Quilliam, 2003). BTXs are lipophilic toxins produced by 

the dinoflagellate K. brevis and are rapidly metabolized to cysteine conjugates when 

accumulated in shellfish (Roth et al., 2007). Due to the presence of the ionic amino acid 

group, brevetoxins elute in the same region of the chromatogram as okadaic acid  and 

yessotoxins and are best analyzed in ESI+; therefore, it is not possible to analyze them 

simultaneously with the other marine lipophilic toxins without polarity switching (Gerssen et 

al., 2009). 

The LC-MS methods for BTXs described here allows the determination of brevetoxins in 

algal extracts or hand-picked plankton cells from cultures or from the field. The use of an 

acidic mobile phase and LUNA-C18 column substantially improved the separation of these 

compounds and gave good linearity of the standard solutions and good LOD values. These 
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LC-MS/MS methods resulted rapid, specific and sensitive, being able to separate and detect 

the major BTXs and metabolites found in environmental samples. An accurate determination 

of the toxin profile and individual toxin concentrations within a single cell was also possible, 

and result in a good correlation between the number of extracted cells and BTXs total content. 

3.6. Conclusion – F. japonica 

The appearance of F. japonica in north European waters during the 1990s caused concern 

because of the reported ichthyotoxicity of various species belonging to the Raphidophyceae 

class (Iwasaki, 1971; Okaichi, 1972; 1989; Toriumi and Takano, 1973). In this thesis the 

toxicity of Adriatic strains was evaluated by considering all the compounds previously 

postulated as involved in the toxic mechanism, such as brevetoxins, fatty acids and ROS to 

understand their role in toxicity. Several hypotheses have in fact been proposed for the toxic 

mechanism of the raphidophytes, especially for the species Chattonella antiqua and 

Chattonella marina, which have been studied more extensively. Recently a number of studies 

were also performed on F. japonica strains from the USA, Japan, Australia, New Zealand, the 

Netherlands, Germany, and France in order to characterize their growth and toxicity features 

(Khan et al., 1996; Fu et al., 2003; de Boer et al., 2004; van Rijssel et al., 2008; Guidi-Rontani 

et al., 2010); nevertheless the toxic mechanism of this raphidophyte is still unclear. 

The chemical analyses of cultured Adriatic strains excluded the presence of known 

brevetoxins, in accordance with the results obtained in the ichthyotoxic assays with D. labrax, 

which highlighted the difference between the delayed effects of F. japonica and the rapid 

ichthyotoxic effects of K. brevis, a brevetoxin-producing microalga.  

The cellular fatty acid profile evidenced a high amount of PUFAs, including the three 

haemolytic ones 18:4n-3 (OTA), 20:4n-6 (AA), and 20:5n-3 (EPA), found in a German strain 

and called fibrocapsins Fj1, Fj2, and Fj3 (Fu et al., 2004a). These compounds were confirmed 

to be haemolytic (de Boer et al., 2009) and to be toxic for crustaceans and bacteria (Fu et al., 

2003; Jüttner, 2001).  

Fatty acid composition and quantification of our strain showed values in accordance with 

those reported for Japanese and New Zealand strains (Marshall et al., 2002; Mostaert et al., 

1998; Cho et al., 1999b), except for a lower amount of arachidonic acid (20:4n-6). So far, all 

the results obtained in several strains reveal a high variability in the composition of F. 

japonica depending on the isolate (summarized in Table 3.9). In fact, the total amount of 

PUFAs has been reported in one case to vary between 14 and 49 pg cell-1 (Marshall et al., 
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2002), in another between 150 and 350 pg cell-1, and reaching the highest value of 450 pg cell-

1 in a German strain (de Boer et al., 2009).  

 

Table 3.9 - Summary of the fatty acid composition (%) of several F. japonica isolates.  

 % of total fatty acids 

 
present 

study 
Marshall et al. 2002 Cho et al. 1999 Mostaert et al., 1998 

Fatty acid FJAP0603 FJJp FJNZ NZFj JFj N136 N560 

12:0        

14:0 29.48 18.5 20.1   27.1 24.9 

16:0 21.79 7.6 10.7 30.4 30.7 11.0 10.5 

16:1n-7 1.31 2.6 1.7 4.7 5.8 2.4 4.9 

16:1isomer (n-13) 1.77 1.2 1.0   1.8 2.1 

16:1isomer      0.9 0.8 

16:2        

16:4n-3    0.4 0.1   

18:0 1.22 1.6 0.7 4.3 6.1   

18:1n-9 3.91 7.4 6.3 16.3 24.0 5.9 6.9 

18:1n-7 4.40 0.5 5.7     

18:2n-6 1.44 2.9 3.1 1.3 1.7 4.6 5.9 

18:3n-6 (γ) 1.16 1.3 0.8   3.2 2.5 

18:3n-3 (α) 2.36   1.6 1.5 3.3 5.9 

18:4n-3 10.40 26.6 12.0 7.7 6.5 15.2 12.4 

18:5n-3  0.0 0.0 0.5 0.2   

20:2n-6    0.2 0.2   

20:4n-6 3.29 4.4 7.2   6.9 6.8 

20:4n-3  0.7 1.1 7.4 5.4   

20:5n-3 17.47 17.4 24.5 20.9 12.3 16.5 15.0 

22:4n-6  0.3 1.7     

22:5n-6  0.6 0.1     

22:5n-3  0.0 0.0     

22:6n-3  0.4 0.2 1.4 1.9 1.0 1.0 

Tot PUFAs 36.12 54.5 50.7     

Tot PUFAs (pg/cell) 27.57       

Tot (pg/cell) 76.34 25 97     
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The fatty acids quantification through GC-MS analysis led us to calculate the PUFA 

concentrations in live F. japonica cells to which Artemia nauplii were exposed during the 

reported toxicological assays and to establish that they rarely reached toxic levels. The 

maximum F. japonica cell densities tested during the short-term assays contained a PUFA 

amount of 8.8 µg mL-1, a level proved to be non-toxic by present tests with various fatty acid 

standards (Table 3.4). Regarding the diatom P. tricornutum, which was never reported as 

toxic, even at a cell concentration of 106 cells mL-1, none of the cell densities tested with 

Artemia nauplii resulted in an amount of PUFAs sufficient to cause mortality, as the highest 

cellular concentration used in the experiments corresponded  to 1.2 µg mL-1. Death occurred 

only when Artemia were exposed to high F. japonica cell concentrations (long-term assay), 

probably because the nauplii could accumulate fatty acids, thus becoming lethal when a high 

amount of cells per single organism was tested. Nevertheless, Cho et al. (1999b) reported the 

absence of a correlation between the amount of PUFAs and the mortality of Artemia. 

The solid phase extraction (SPE) of the Adriatic F. japonica extract resulted in a high 

concentration of PUFAs in two main fractions, B and C, which caused 100% mortality of 

Artemia nauplii. These fractions had PUFA amounts of about 63 µg mL-1 (B) and 311 µg  

mL-1 (C), levels comparable with those of the fatty acid standards which were used for the 

Artemia test, and which were also found to cause nauplii mortality. The toxicity of these 

fractions was also confirmed by the inhibition of V. fischeri bioluminescence. None of the 

PUFAs was instead detected in F. japonica extracellular medium, thus justifying the lack of 

effects for Artemia (Table 3.5).  

The various toxicological assays showed rather different results according to the organism 

complexity. The effect of cell extracts on V. fischeri bioluminescence was high compared 

with that exerted by other microalgae. These included a strain of P. reticulatum which 

produces yessotoxins (YTX), compounds which evidently do not interfere with the 

bioluminescence emission of V. fischeri. An effect of F. japonica on V. fischeri 

bioluminescence was also found in a German strain (van Rijssel et al., 2008), even if less 

strong than that observed in this study. In that case, the effect was caused by live cells at 

concentrations far lower than those present in our extracts and it was thought to be caused by 

substances which were extracellularly released.  

The assay with C. carpio erythrocytes showed that F. japonica had haemolytic effects, as 

increasing cell concentrations caused the lysis of up to 100% erythrocytes. The reported EC50 
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values were in accordance with the range found by de Boer et al. (2009) and were relatively 

low. This result could be indicative of a marked ichthyotoxic potency, an aspect not supported 

by the fish assays which evidenced a rather delayed effect of the Adriatic F. japonica with 

mortality occurring only after 9-10 days of exposure.  

The significant increase of H2O2 obtained in the tanks where sea basses were exposed to F. 

japonica was also relevant. This indicates that the presence of fish stimulates H2O2 production 

by algal cells and supports the hypothesis of H2O2 involvement in F. japonica toxicity. Kim et 

al. (1999) reported lipid peroxidation of gill tissue in Cochlodinium polykrikoides-exposed 

flatfish and suggested that ROS were one of the factors inducing fish mortality, through 

reduction of the capability for oxygen transfer in gills. They proposed that when C. 

polykrikoides passed through the fish gill lamella, gill cells were attacked by the ROS 

generated by algal cells, resulting in an oxidative damage. In the present work, the 

concentration of H2O2 measured in the F. japonica tanks were not considerably higher than in 

those with the non-toxic diatom P. tricornutum and since the compound alone was not toxic 

for the fish, even when added at high concentrations, this result confirms that other factors are 

likely to be involved in the toxic mechanism, as already suggested for Chattonella marina 

(Marshall et al., 2003; Woo et al., 2006).  

The presence of cellular PUFAs in high amounts could substantiate the hypothesis of a 

combined effect of these compounds and ROS. Thus, to evaluate the possible involvement of 

oxidative stress in mortality of sea basses, MDA levels on the gills of the exposed fish were 

determined. MDA is the major aldehyde formed upon breakdown of lipid hydroperoxides and 

is still the most commonly applied assay for oxidative stress (Seljeskos et al., 2006); in fact, 

ROS can react with the double bonds of PUFAs to yield lipid hydroperoxides and one of the 

major secondary oxidation products is MDA. The average MDA concentrations measured in 

the gills of fish exposed to F. japonica were 13-14-fold higher than those of the controls, in 

contrast to the results obtained by Woo et al. (2006) in goldlined seabream exposed to 

Chattonella marina for a period up to 6 h. We had also observed that fish exposed to F. 

japonica for 5 days without reporting mortality, then being kept in seawater for 2-4 weeks and 

exposed for the second time to F. japonica, died within a shorter time period (6-8 days) (data 

not shown). This fact leads us to postulate the involvement in fish mortality of a permanent 

and accumulating damage, such as the one caused by organ impairment, but to exclude an 

acute effect such as the one resulting, for example, from red blood haemolysis. 

In conclusion, F. japonica contains a high amount of PUFAs per single cell; it was already 

known that these cells produce ROS, and this study confirms that the presence of predators 
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stimulates H2O2 production. As we have shown that PUFAs are not released into the 

extracellular medium by live cells, we can assume that F. japonica cells, which easily cling to 

fish gills due to their high polysaccharide production, can release in loco both ROS and, as a 

result of the easy cell breakage, PUFAs. Then they could react in the gills by producing lipid 

hydroperoxides as testified by the MDA increase; the resulting oxidative damage, possibly 

associated with haemolytic effects, increases with the number of cells that passes through the 

gills and accumulates with time, eventually causing fish death.  

Although the exact molecular sequence of events leading to crustacean and fish death is not 

definitively proved, this study on F. japonica shows that the Adriatic strains can be harmful to 

crustaceans as well as to higher level organisms. It was also ascertained that a high cell 

density and a long exposition time are necessary to cause severe damage on the fish gills or 

death for crustaceans, thus justifying the absence of fish kill events during the frequent and 

dense bloom episodes along the Italian coasts. 
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4. The dinoflagellate Ostreopsis cf. ovata 
Since the end of the1990s massive blooms of Ostreopsis cf. ovata (Fukuyo, 1981) have been 

reported in a number of coastal areas of temperate regions with increasing frequency, 

intensity and distribution. The occurrence of benthic biocenosis suffering and occasional 

human distress have been described since the earliest bloom events (Bianco et al., 2007; 

Simoni et al., 2004). Mortality of benthic organisms and human health problems broke out in 

summer 2005 with an extensive phenomenon along the Ligurian coast, where hundreds of 

people exposed to marine aerosol during recreational activities required medical cares due to 

symptoms which mainly affected the respiratory apparatus. This event occurred concurrently 

to a massive O. cf. ovata bloom (Mangialajo et al., 2008) and the symptoms in humans 

disappeared when the bloom intensity decreased (Durando et al., 2007). Ostreopsis species 

were found to produce palytoxin-like compounds, particularly O. siamensis and O. 

mascarenensis reported the ostreocin-D (Usami et al., 1995; Ukena et al., 2001) and 

mascarenotoxins (Lenoir et al., 2004), respectively.  

The toxins produced by O. cf. ovata have been initially identified as a putative palytoxin 

(pPLTX) in small amount and ovatoxin-a (OVTX-a) as the major toxin (Ciminiello et al., 

2008; Guerrini et al., 2010); recently the presence of putative PLTX and OVTX-a was 

confirmed and the occurrence in the algal extract of four new palytoxin-like compounds, 

OVTX-b, -c, -d, and -e, was highlighted (Ciminiello et al., 2010). After the 2005 event, 

studies on Ostreopsis spp. have greatly increased and a more careful monitoring of benthic 

biocenosis have been conducted, evidencing widespread Ostreopsis spp. proliferations in the 

Mediterranean areas, including several Italian regions (Mangialajo et al., 2008; Monti et al., 

2007; Totti et al., 2010). It is difficult to establish if O. cf. ovata is really a species of recent 

introduction in the Mediterranean area; however, the massive cell proliferations represent a 

new phenomenon since the brownish mucilaginous film covering all benthic substrates and 

the associated presence of high cell numbers in the overlying water column, both typical of O. 

cf. ovata blooms (Aligizaki and Nikolaidis, 2006), have been reported to occur only recently 

in Mediterranean basin.  

 

Table 4.1 - Summary of data on the presence of Ostreopsis species from several tropical and 

temperate areas and the concurrently measured environmental conditions. Data not clearly mentioned 

in the text, when possible, have been extrapolated from tables or figures, and refer to temperature and 

salinity values of Ostreopsis spp. proliferation and to the nutrients range measured in the studied sites. 
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Cells are in fact easily resuspended in the water column, causing a decrease of their 

abundances in the benthic environment (Totti et al., 2010; Vila et al., 2001), and the important 

role of hydrodynamism in the bloom development and decline has been hence highlighted 

(Aligizaki and Nikolaidis, 2006; Mangialajo et al., 2008). Moreover, higher concentrations of 

Ostreopsis spp. are usually recorded during warmer periods, characterized by high 

temperature and salinity and low hydrodinamism; therefore the environmental conditions 

appear to be one of the main determining factors in the proliferation of these species. Table 

4.1 summarizes the environmental parameters (e.g. temperature, salinity and nutrients) 

recorded in situ during Ostreopsis spp. field studies. 

Blooms of toxic dinoflagellates usually occur with a seasonal trend; the cell toxin content, 

consisting in a balance between synthesis and excretion, can be highly influenced by variables 

such as population growth phase, environment physical and chemical parameters, interaction 

with bacteria and mechanical stress. Until now a few studies have been performed on the 

effects of environmental conditions on the growth and toxin production of O. cf. ovata as well 

as of other epiphytic dinoflagellates including the genera Gambierdiscus, Prorocentrum, 

Coolia, and Amphidinium (Chinain et al., 2010; Morton et al., 1992; Vanucci et al., 2010), 

which usually constitute an assemblage with Ostreopsis spp. 

4.1. Toxin production during growth 

The evaluation of O. cf. ovata growth profile was conducted using cultures of two Italian 

isolates collected along Adriatic and Tyrrhenian coasts of Italy (Guerrini et al., 2010, Fig. 

4.1). The two strains reported similar growth patterns, in fact both cultures stayed in the 

exponential phase for about 10 days and then entered the stationary phase, which lasted up to 

28-30 days. Growth rates were initially measured as 0.37 and 0.32 day-1 for the Adriatic and 

the Tyrrhenian strain, respectively (Guerrini et al., 2010); however, subsequent measurements 

made at different conditions reported higher values up to 0.49 day-1 for the Adriatic strain 

(section 4.2 this thesis). Cell numbers of cultures grown at the optimum conditions could 

reach values around 13,000-16,000 cells per ml in the stationary phase. Similarly, growth 

rates of O. heptagona and O. siamensis from tropical areas were in the range of 0.25-0.50 div 

day-1 (Morton et al., 1992), corresponding to 0.17-0.35  day-1 and being therefore slightly 

lower than those obtained for O. cf. ovata. The measured growth rates for Ostreopsis spp. 

were thus higher than those reported for cultured Prorocentrum lima, which were around 0.22 

day-1 (Vanucci et al., 2010 and references therein), although cell yields for this species were 

higher, up to 33,000 per ml. 
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Both O. ovata and P. lima share the fact that toxin production increases during the 

progression of growth, in contrast to what observed for some toxic planktonic species, such as 

Pyrodinium bahamense and Alexandrium spp., where the highest toxin level was found during 

the exponential phase (Gedaria et al., 2007; Navarro et al., 2006). The quantification of the 

toxin released in the medium by O. ovata evidenced that this amount was rather low during 

the exponential growth phase and increased during the stationary phase, leading to an 

extracellular toxin content per litre which is three- to nine-fold higher than that measured 

during the exponential phase (Guerrini et al., 2010). This amount was presumably due to 

toxin accumulation during the growth, as well as to an increasing number of broken cells; 

therefore as a natural bloom aged, the toxin content in the water could be enhanced, posing an 

increasing threat to public health and toxic effects towards marine organisms or people 

inhaling the aerosol. 

The toxin profiles appeared alike in the different Italian strains analysed so far, although toxin 

levels displayed a certain variability (Ciminiello et al., 2008; Guerrini et al., 2010), in 

accordance with the results found also in others dinoflagellates (e.g. Errera et al., 2010; 

Guerrini et al., 2007; Lim and Ogata, 2005). 

 

Fig. 4.1 - Light micrographs of Ostreopsis ovata cells from a culture sample of I) Adriatic strain and 

II) Tyrrhenian strain in (a) dorsal or (b) anteroposterior view (from Guerrini et al., 2010). 

 

 

 

II a II b 

I a I b 
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4.2. Effect of environmental parameters 

4.2.1. Influence of temperature and salinity on the Adriatic Ostreopsis cf. ovata growth 

and evaluation of toxin content through HR LC-MS and biological assays 

Massive blooms of the benthic dinoflagellates Ostreopsis spp. are reported worldwide in 

many tropical and temperate regions (Faust et al., 1996; Vila et al., 2001; Aligizaki and 

Nikolaidis, 2006; Chang et al., 2000; Rhodes et al., 2000; Ciminiello et al., 2008). In the 

Mediterranean Sea, blooms of O. cf. ovata and O. siamensis have been reported since the late 

‘70s (Taylor, 1979; Abboud-Abi Saab, 1989) but, in the last decade, they have become 

increasingly frequent and resulted in relevant benthic biocenosis sufferings and human health 

problems.  

Ostreopsis species, typically, proliferate in shallow and sheltered waters, with low 

hydrodynamism; they form a rusty-brown coloured mucilaginous film, which covers reefs, 

rocks (Bottalico et al., 2002), and soft sediments (Vila et al., 2001) as well as seaweeds (Vila 

et al., 2001; Bottalico et al., 2002; Aligizaki and Nikolaidis, 2006; Totti et al., 2010), marine 

angiosperms, and invertebrates (Bianco et al., 2007; Totti et al., 2007). The whole of the 

above evidence suggests that the presence of Ostreopsis spp. in coastal waters may pose a real 

threat to coastal food web and fishery (Aligizaki et al., 2008). However, the effects on marine 

organisms and ecosystem dynamics remain still unknown, although mortality of several 

marine organisms, in particular sea urchins, which lost their spines during blooms of O. cf. 

ovata or O. siamensis, was reported (Granéli et al., 2008; Sansoni et al., 2003; Shears and 

Ross, 2009).  

Ostreopsis species were supposed to produce palytoxin (or its analogues) (Fig. 4.2) 

(Taniyama et al., 2003), one of the most potent marine toxin so far known, which acts on the 

Na+/K+ pump converting it into an ionic channel and causing the subsequent depletion of the 

K+ ions (Habermann, 1989). This hypothesis was later supported by identification of putative 

palytoxin as the causative toxin of human poisonings occurred during O. siamensis blooms 

(Onuma et al., 1999) and, most importantly, by identification of some palytoxin-like 

compounds from various Ostreopsis spp. Particularly, ostreocin-D was isolated from O. 

siamensis and structurally elucidated by NMR (Usami et al., 1995; Ukena et al., 2001) while 

mascarenotoxins were identified, basing only on MS evidence, as palytoxin-like compounds 

from O. mascarenensis  (Lenoir et al., 2004). Putative palytoxin and ovatoxin-a were detected 

in field and cultured samples of O. cf. ovata, collected along the Ligurian coasts (Italy) 

(Ciminiello et al., 2006, 2008) as well as in O. cf. ovata cultures from the Adriatic and 
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Tyrrhenian Sea (Guerrini et al., 2010) by liquid chromatography-mass spectrometry (LC-MS). 

Recently, several new ovatoxins, namely ovatoxin-b, -c, -d, and -e, were also detected in an 

Adriatic O. cf. ovata culture through an in-depth high resolution (HR) LC-MS investigation 

(Ciminiello et al., 2010).  

 

Fig. 4.2 - Structure of palytoxin. Molecular formulae (M) of ovatoxins, elemental composition of 

their relevant A and B moieties and most abundant peaks of [M+2H-H2O]2+ and [M+2H+K]3+ ion 

clusters for each compound. 

O

OH

O

O

OH

O

OH

HO

OH

OH
Me

O

HO

O

HO
Me

O

OH

O
O

OHHO

O

O

HN

O

N
H

H2N

OH

HO

OH

OH

OH

OH

OH

OH

OH

OH

OH
OHOH

HO

OH

OH

Me

Me OH

OHHO

OHOH

OH Me OH

OH

OH

OH

Me

Me

OH

HO

OH

OH

OH
8

9

A moiety

B moiety

 

Toxin Rt (min) M A moiety B moiety 
[M+2H-

H2O]2+ 
[M+2H+K] 3+ 

Palytoxin 10.78 C129H223N3O54 C16H28N2O6 C113H195NO48 1331.7436 906.8167 

Ovatoxin-a 11.45 C129H223N3O52 C16H28N2O6 C113H195NO46 1315.7498 896.1572 

Ovatoxin-b 11.28 C131H227N3O53 C18H32N2O7 C113H195NO46 1337.7623 910.8318 

Ovatoxin-c 10.90 C131H227N3O54 C18H32N2O7 C113H195NO47 1345.7584 916.1628 

Ovatoxin-d 11.07 C129H223N3O53 C16H28N2O6 C113H195NO47 1323.7456 901.4884 

Ovatoxin-e 11.07 C129H223N3O53 C16H28N2O7 C113H195NO46 1323.7456 901.4884 

 

Currently, O. cf. ovata blooms occur each year from June to late October at several sites of 

the Italian coastlines, characterized by different environmental conditions, such as seawater 

temperature in the range 18-30°C and salinity in the range 30-39 (Pistocchi et al., 2011). 
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However, O. cf. ovata has never been detected in the Northwestern Adriatic sea, at sites 

located close to the Po river delta, where peculiar salinity conditions occur, thus suggesting 

that some environmental conditions play a key role in influencing O. cf. ovata growth and/or 

its geographical dispersal.  

Several authors indicated seawater temperature as an important factor affecting cell 

proliferation (Tognetto et al., 1995; Sansoni et al., 2003; Simoni et al., 2004; Aligizaki and 

Nikolaidis, 2006; Mangialajo et al., 2008). In most studies (as reviewed by Pistocchi et al., 

2011), high temperature values (24-29°C) were associated with the increase of Ostreopsis cell 

number in seawater; however, in Adriatic (Totti et al., 2010) and  Catalan Seas (Vila et al., 

2001) such positive correlation was not observed. Recently, the influence of temperature on 

O. cf. ovata growth and toxicity has been also reported by Granéli et al. (2011) using a 

Tyrrhenian isolate from the Ligurian coast: the highest toxicity was found in cultures grown at 

20°C, whereas the highest algal biomass was recorded at 30°C.  

In the present study, we report on in-depth investigation of the effect of some environmental 

parameters on the growth and toxicity of O. cf. ovata. An Adriatic O. cf. ovata isolate, whose 

growth and toxin profile had been previously characterized at 20°C and salinity 36 during the 

exponential and stationary phases (Guerrini et al., 2010), was employed. Cultures were grown 

at different temperature (20, 25 and 30°C) and salinity values (26, 32, 36 and 40); HR LC-MS 

analyses were carried out to determine their toxin profile, including the recently found 

ovatoxins (Ciminiello et al., 2010), and to evaluate the total toxin amount released in the 

extra-cellular medium during the stationary growth phase. 

A further object of the present study was to compare the total toxin content of algal extracts 

measured by HR LC-MS with the results obtained through the haemolysis assay (Riobó et al., 

2008), with the aim of gaining information on the accuracy of the haemolytic test, a rapid and 

very sensitive biological assay widely employed for palytoxins detection (Riobó et al., 2011). 

Finally, the toxicity of O. cf. ovata cultures on crustaceans and fish was also investigated 

using Artemia sp. assay and the ichthyotoxicity test with juvenile sea basses (Dicentrarchus 

labrax) (IRSA-CNR, 2003) to evaluate the potential O. cf. ovata impact on the ecosystem. 

 

Experimental section 

Cultures of Ostreopsis cf. ovata 

O. cf. ovata was isolated by the capillary pipette method  (Hoshaw and Rosowski, 1973) from 

water samples collected along the Adriatic coasts of Italy (Marche region, Numana sampling 

site, strain OOAN0601) in October 2006, in proximity of the seaweeds Cystoseira sp. and 
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Alcidium corallinum. After an initial growth in microplates, cells were cultured at 20°C under 

a 16:8 h L:D cycle from cool white lamp in natural seawater, at salinity 36, adding 

macronutrients at a five-fold diluted f/2 concentration (Guillard, 1975) and selenium. In order 

to evaluate the effect of environmental parameters on growth and toxicity of O. cf. ovata, 

temperature and salinity experiments were carried out. In the salinity experiment, cultures (at 

20°C) were established at salinity 26, 32, 36 and 40 in a thermostatic room, maintaining light 

irradiance at 100-110 µmol m−2 s−1. Salinity levels 26, 32 and 36 were obtained by diluting 

seawater (salinity 38) with deionized water, while salinity 40 was obtained by evaporation of 

the seawater. In the temperature experiment, cultures (salinity 36) were established at 20, 25 

and 30°C in water baths kept in the same thermostatic room, thus light irradiance slightly 

decreased to 90 µmol m−2 s−1. Phaeodactylum tricornutum (strain PTN0301 from the North 

Sea, Holland) was cultured using f/2 medium under the same conditions and used in the 

experiments either for comparisons or control.  

Both temperature and salinity experiments were carried out by using, for each condition, 2 

series of batch cultures that were used for evaluation one of growth profile and the other of 

toxin content. 

 

Fig. 4.3 – Ostreopsis cf. ovata cultures. In focus are shown cells aggregates which characterize the 

growth of this species. 
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Evaluation of growth profile 

Since evaluation of growth profile of O. cf. ovata in batch cultures was complicated by the 

presence of mucous aggregates (Fig. 4.3), the sampling method developed by Guerrini et al. 

(2010) was used for counting. For each temperature/salinity level, 15 Erlenmeyer flasks 

containing 200 ml of culture were grown in parallel (Fig. 4.3); every other day, two out of the 

initial flasks were treated with HCl to a final concentration of 4 mM. Acid addition dissolved 

mucous aggregates and homogenous sampling could be performed. After counting, the two 

acidified flasks were discarded.  

Cell counts were made following Utermöhl method (Hasle, 1978) and specific growth rate (µ, 

day-1) was calculated using the following equation: 

01

01

tt

lnNlnN

−
−=µ

 

where N0 and N1 are cell density values at time t0 and t1. 

 

Calculation of cell volume was made with the assumption of ellipsoid shape using the 

following equation (Sun and Liu, 2003):  

V = (π/6)*a*b*c 

where a = dorsoventral diameter (length), b = width, c = mean anteriorposterior diameter 

(height).  

 
Evaluation of toxin content 

For each temperature and salinity level, a set of four culturing flasks was set up. Due to the 

available equipment, salinity experiment was carried out in a thermostatic room by using 

1,500 mL flasks, while temperature experiment was carried out by locating 800 mL flasks in 

water baths. Cell counting was carried out on one out of the four flasks as described above. 

Five replicate countings were performed in one of the four flasks of each treatment and used 

to determine the cell density and to express toxin content on a per cell basis. Culture 

collection was carried out during the late stationary growth phase by gravity filtration through 

GF/F Whatman (0.7 µm) filters at day 21st and 25th for the salinity and temperature 

experiment, respectively. Cell pellets and growth media for each temperature/salinity level 

were provided for chemical analysis. 
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Chemical analysis 

Chemicals 

All organic solvents were of distilled-in-glass grade (Carlo Erba,  Milan, Italy). Water was 

distilled and passed through a MilliQ water purification system (Millipore Ltd., Bedford, MA, 

USA). Acetic acid (Laboratory grade) was purchased from Carlo Erba. Analytical standard of 

palytoxin was purchased from Wako Chemicals GmbH (Neuss, Germany).  

 

Extraction 

Cell pellets and growth media for each temperature/salinity level were separately extracted. 

Each pellet sample was added of 9 mL of a methanol/water (1:1, v/v) solution and sonicated 

for 30 min in pulse mode, while cooling in ice bath. The mixture was centrifuged at 3000 x g 

for 30 min, the supernatant was decanted and the pellet was washed twice with 9 mL of 

methanol/water (1:1, v/v). The extracts were combined and the volume was adjusted to 30 mL 

with extracting solvent. The obtained mixture was analyzed directly by HR LC-MS (5µl 

injected). Each growth medium was extracted five times with an equal volume of butanol. 

The butanol layer was evaporated to dryness, dissolved in 5 mL of methanol/water (1:1, v/v) 

and analyzed directly by HR LC-MS (5 µl injected). Recovery percentage of the above 

extraction procedures were estimated to be 98% and 75% for the pellet and growth medium 

extracts, respectively (Ciminiello et al., 2006). 

 

High Resolution liquid chromatography-mass spectrometry (HR LC-MS)  

High resolution (HR) LC-MS experiments were carried out on an Agilent 1100 LC binary 

system (Palo Alto, CA, USA) coupled to a hybrid linear ion trap LTQ Orbitrap XLTM Fourier 

Transform MS (FTMS) equipped with an ESI ION MAXTM source (Thermo-Fisher, San Josè, 

CA, USA). Chromatographic separation was accomplished by using a 3 µm gemini C18 (150 

× 2.00 mm) column (Phenomenex, Torrance, CA, USA) maintained at room temperature and 

eluted at 0.2 mL min-1 with water (eluent A) and 95% acetonitrile/water (eluent B), both 

containing 30 mM acetic acid. A slow gradient elution was used: 20-50% B over 20 min, 50-

80% B over 10 min, 80-100% B in 1 min, and hold 5 min. This gradient system allowed a 

sufficient chromatographic separation of most palytoxin-like compounds (Fig. 4.2).  

HR full MS experiments (positive ions) were acquired in the range m/z 800-1400 at a 

resolving power of 15,000. The following source settings were used in all HR LC-MS 

experiments: a spray voltage of 4 kV, a capillary temperature of 290°C, a capillary voltage of 
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22 V, a sheath gas and an auxiliary gas flow of 35 and 1 (arbitrary units). The tube lens 

voltage was set at 110 V. 

Due to commercial availability of the only palytoxin standard, quantitative determination of 

putative palytoxin, ovatoxin-a,-b,-c,-d, and -e in the extracts was carried out by using a 

calibration curve (triplicate injection) of palytoxin standards at four levels of concentration 

(25, 12.5, 6.25, and 3.13 ng mL-1) and assuming that their molar responses were similar to 

that of palytoxin. Extracted ion chromatograms (XIC) for palytoxin and each ovatoxins were 

obtained by selecting the most abundant ion peaks of both [M+2H-H2O]2+ and [M+2H+K]3+ 

ion clusters (Fig. 4.2). A mass tolerance of 5 ppm was used. 

 
Toxicity assays 

Artemia sp. assay 

The assay was carried out according to the short-term test of the IRSA-CNR (2003) method, 

consisting in a 24 h exposure of Artemia sp. to the potentially toxic sample. 10 nauplii were 

incubated in 1 mL of sample in a glass tube for 24 h. Initially, aliquots of a culture grown at 

20°C and salinity 36, containing five increasing concentrations of live cells, lysed cells, algal 

extracts and growth media, were tested in triplicate. Live cell aliquots were sampled during 

the stationary phase of the culture. Lysed cell aliquots were obtained by sonicating 10 mL of 

the culture for 3 min. Algal extracts were obtained as reported above and diluted (1:100 to 

1:10,000) with seawater. A palytoxin stock solution (12.5 µg mL-1) in methanol/water (1:1, 

v/v) was diluted with seawater and tested in the concentration range 500-10,000 pg mL-1. 

Growth medium aliquots were obtained by filtering 50 mL of the culture through GF/F 

Whatman (0.7 µm) filters. 

Toxicity of O. cf. ovata cultures grown at different temperature/salinity conditions was 

evaluated by Artemia sp assay, using only live cells. Five different concentration levels of 

each sample, obtained through dilution with seawater, were tested in triplicate. Toxic effects 

on Artemia sp. of sample exposure were evaluated after 24 h and dead organisms were 

counted. Seawater samples, methanol/water (1:1, v/v) solution (diluted 1:100, v/v with sea-

water) and f/2 medium at the investigated salinity levels (diluted 1:5 with seawater) were used 

as control. EC50 values were calculated as reported below 

 

Haemolytic  assay 

Haemolytic assay was carried out following the procedure proposed by Bignami (1993)  and 

modified by Riobó et al. (2008). The test is based on photometrical determination of 
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haemoglobin released from sheep erythrocytes following exposure to haemolytic compounds. 

Sheep blood was kindly provided by the Department of Veterinary Public Health and Animal 

Pathology (University of Bologna). Erythrocytes were separated from plasma by 

centrifugation (400 x g at 10°C for 10 minutes) and washed twice with a solution containing 

phosphate buffered saline (PBS) 0.01 M,  pH 7.4, bovine serum albumin (BSA), calcium 

chloride (CaCl2 2H2O) 1 mM and boric acid (H3BO3) 1 mM. Finally, the erythrocytes solution 

was diluted with PBS at a final concentration of 1.7 x 108 red cells mL-1. 

According to the reported method (Riobó et al., 2008), two blood solutions, one added of 

ouabain (2.5 µM) and one ouabain-free, were prepared to a final concentration of 1.7 x 107 

erythrocytes. 1 mL of each blood solution was mixed with 1 mL of the sample diluted in PBS 

(either pellet extract or palytoxin standard previously dissolved in methanol/water (1:1, v/v)) 

and incubated at 25°C for 20 h. After the incubation, samples were centrifuged at 400 x g for 

10 min and the supernatant absorptions were measured at 405 nm. Two replicates of algal 

extract at different concentration levels, control solutions for blanks (PBS buffer and 

methanol/water (1:1, v/v) in PBS) and total haemolysis sample were prepared in each 

experiment. Palytoxin standard at seven concentration levels (4-196 pg mL-1) was used for 

generating calibration curve. The haemolytic effects of the algal extracts were expressed 

either on cell basis (cell mL-1) and on toxin content basis (pg mL-1). EC50 values obtained 

testing the palytoxin standard and the algal extracts were calculated as reported below. Stock 

solutions of the algal extracts and palytoxin standard used in the haemolytic assay were 

quantified by HR LC-MS. 

 

Fish bioassay 

Sea bass (Dicentrarchus labrax) employed in the assay were collected from the hatchery 

Valle Ca’ Zuliani (Pila di Porto Tolle, Rovigo, Italy). After the transfer, they were kept in a 

60-70 L aquarium, aerated by a small dispenser (Hailea) and kept at room temperature and 

salinity 36 for one month. For the experiments, 2 L aerated tanks containing algal culture 

were used. Three juveniles (5.0 ± 1.0 g) were put into each tank, kept at 20 °C, during a 16:8 

h light–dark period and observed for 4 days. Two replicates of O. cf. ovata culture grown for 

4-6 days at 20°C and salinity 36 were tested at three concentration levels. An equal volume of 

Phaeodactylum tricornutum culture was used as control. Fish were considered dead when gill 

opercular movements ceased. 
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Data analysis 

The 50% effect concentration (EC50) of each sample for the Artemia sp. and haemolytic 

assays was estimated by fitting the experimental concentration-response curves to a logistic 

model:  

b

EC

x

a
y





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+
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50
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where: y = endpoint value; x = substance concentration; a = expected endpoint value in 

absence of toxic effect; b = slope parameter. The parameters of the equation, including the 

EC50, were estimated using the non-linear regression procedures implemented in Statistica 

(Statsoft, Tulsa, OK, USA). An independent estimate of EC50 was obtained for each of the 

experiments. 

Differences in cell biovolume, EC50 value, and toxins concentration among the samples were 

tested by using the multivariate analysis-of-variance (ANOVA) test, using Statistica (StatSoft, 

Tulsa, OK, USA) software. Whenever a significant difference for the main effect was 

observed (P<0.05), a Newman-Keuls test was also performed. 

 

Results 

Batch cultures of an Adriatic strain of O. cf. ovata, collected along the Marche coasts of Italy 

(Numana sampling site) in October 2006, were established in order to evaluate the effect of 

salinity and temperature on algal growth and toxin profile. Particularly, in the temperature 

experiment, cultures were set at 20, 25 and 30°C by maintaining salinity at 36 and light 

irradiance at 90 µmol m−2 s−1, while in the salinity experiment cultures were established at 

salinity 26, 32, 36 and 40, by maintaining temperature at 20°C and light irradiance at 100-

110 µmol m−2 s−1.  

 
Growth pattern and cell volume 

The growth profile of O. cf. ovata cultures exposed to different salinity and temperature 

values was analyzed by measuring the cell density every 2-3 days from the beginning of the 

exponential phase to the end of the stationary phase (Fig. 4.4A and 4.4B). Under the different 

growth conditions, O. cf. ovata growth rates in the range 0.34-0.49 day-1 were observed.  

As for the temperature experiment, despite during the first 5 days cells grew better at 25°C, at 

the end of the exponential phase the maximum growth rate of 0.49 day-1 was recorded at 

20°C, followed by 0.43 and 0.34 day-1 at 25 and 30°C, respectively. As for the salinity 
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experiment (carried out at 20°C) growth rate was not  significantly affected by the salt 

concentration (0.43-0.47 day-1) (ANOVA, P>0.05).  

 

Fig. 4.4 - Growth pattern of O. cf. ovata cultures exposed to different salinity (A) and temperature 

(B) conditions. 
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In the stationary phase, the maximum density was 13,000-16,000 cell mL-1 at 20°C and 

intermediate salinities (32 and 36), while the cell yield dropped to 7,500 cell mL-1 both at 

salinity 26 (temperature 20°C; Fig. 4.4A)  and temperature 30°C (salinity 36; Fig. 4.4B).  

In the course of the experiments, we noticed that the culture volume played a key role on the 

final cell yield: decreasing cell densities were obtained as culture volumes increased from 200 

mL to 800 mL up to 1500 mL.  

Another aspect we considered in the salinity and temperature experiments was the cell 

biometric measurement. It is to be noted that O. cf. ovata cells appeared highly different both 

in size and in shape, within each cell culture; therefore, a statistically significant cell number 

(n ≥ 50) was used for estimating the mean biovolumes which are reported in Fig. 4.5. In both 
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salinity and temperature experiments, a significant difference was observed between cell 

volumes measured in the exponential and stationary phases (ANOVA, P<0.001).  

 
Fig. 4.5 - Cell volumes of O. cf. ovata cells exposed to different salinity (A) and temperature (B) 

conditions. 
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In the salinity experiment, the highest difference among biovolumes was observed in the 

exponential phase where a mean value of 22,000 µm3 was reached at the lowest salinity (26) 

and resulted significantly higher (Post-hoc SNK test, P<0.001) than those observed at 36 and 

40 (14,000 and 13,000 µm3, respectively). An intermediate biovolume mean value was 

observed at salinity 32 (17,000 µm3). In the stationary phase, cells were more homogenous in 
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size, with cell volumes in the range 28,000-30,000 µm3; however, the value reported at 

salinity 32 (22,400 µm3) resulted significantly lower than those observed at the other salinity 

levels (Post-hoc SNK test, P<0.001).  

In the temperature experiment, in both growth phases cell volumes decreased as temperature 

increased, with a maximum biovolume of 22,000 µm3 being reached at 20°C (stationary 

phase), which was significantly higher than biovolumes measured at 25 and 30°C (Post-hoc 

SNK test, P<0.001).     

 

Determination of toxin content by HR LC-MS 

Cell pellets and growth media of O. cf. ovata cultures grown at the different temperature and 

salinity values were collected during the late stationary growth phase. Samples were 

separately extracted as reported in the experimental and the crude extracts were used to 

evaluate the toxin profile. HR LC-MS experiments were acquired in full MS mode by using 

an LC method which allowed chromatographic separation of the major components of the 

toxin profile. The spectra were acquired in the mass range m/z 800-1400 where each 

palytoxin-like compound (Fig. 4.2) produces bi-charged ions due to [M+H+K]2+, 

[M+H+Na]2+, and [M+2H]2+, tri-charged ions due to [M+2H+K]3+ and [M+2H+Na]3+, and a 

number of ions due to multiple water losses from the [M+2H]2+ and [M+3H]3+ ions.   

The presence of putative palytoxin and of all the ovatoxins (ovatoxin-a, -b, -c, -d, and -e) 

recently identified in O. cf. ovata (Ciminiello et al., 2008, 2010) was highlighted in all the 

analyzed samples. With the purpose of gaining information on the relative abundance of 

individual compounds, extracted ion chromatograms (XIC) were obtained by summing the 

most abundant peaks of both [M+2H-H2O]2+ and [M+2H+K]3+ ion clusters for each 

compound (Fig. 4.2). Due to lack of standards for ovatoxins, quantitative analyses were 

carried out basing on the tentative assumption that they present the same molar response as 

palytoxin. These appeared reasonable since ovatoxins present elemental formulae similar to 

that of palytoxin. 

Concentrations of putative palytoxin and ovatoxins in all the analyzed extracts were 

extrapolated from a calibration curve of palytoxin standard injected under the same conditions 

and the obtained results were corrected basing on recovery percentages of the extraction 

procedures, namely 98% and 75% (Ciminiello et al., 2006) for pellet and growth medium 

extracts, respectively.  
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Significant differences were observed in the total toxin content of different algal extracts 

(ANOVA, P<0.001), whereas relative abundance of individual toxins were quite similar: 

ovatoxin-a was by far the major component of the toxin profile (47-56% of the total toxin 

content; Post-hoc SNK test, P<0.001), followed by ovatoxin-b (24-27%), ovatoxin-d and -e 

(15-18%), ovatoxin-c (4-8%) and putative palytoxin (0.5-3%) on the basis of their decreasing 

relative abundance.  

Total toxin content of pellet and medium extracts expressed as µg L-1 culture in both salinity 

and temperature experiments are reported in Table 4.2. Toxin contents were significantly 

higher in the cell pellet then in the corresponding culture medium (Post-hoc SNK test, 

P<0.001), resulting in relatively low release percentages (13-16%) in most of the growth 

conditions applied; however, the release increased up to 23 and 27% under the most 

unfavourable growth conditions, namely salinity 26 (temperature 20°C) and temperature 30°C 

(salinity 36), respectively.  

 
Table 4.2 – Total toxin content (putative palytoxin, ovatoxin-a, -b, -c, -d, and -e) of O. cf. ovata 

culture pellet and medium extracts, measured by HR LC-MS in both salinity and temperature 

experiment. Data are expressed as µg per Liter of culture (µg L-1). Cell density (cell L-1) and 

extracellular release(%) are also reported. 

  Total toxin content (ug L -1)  

 cell L -1 pellet medium total extracellular 
release (%) 

Salinity      
26  3,450,333 57 17 74 23 
32  4,646,333 95 14 109 13 
36  4,281,333 76 12 88 14 
40  5,619,000 68 11 80 14 

Temperature       
20°C 9,869,587  155 25 180 14 
25°C 5,581,677  129 25 154 16 
30°C 4,493,377  81 30 111 27 

 

Total and individual toxin contents on a per cell basis (pg cell-1), are reported in Fig. 4.6A and 

4.6B for salinity and temperature experiments, respectively. Small differences in total toxin 

content were observed between the experiments, that should have provided similar results, 

namely the cultures grown at temperature 20°C and salinity 36. Such differences could be 

likely due to the slightly different growth conditions, among which the difference in light 

intensity and in culture volume could have played a major role. 
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Fig. 4.6 – Total and individual toxin contents of putative palytoxin, ovatoxin-a, -b, -c, -d, and -e of O. 

cf. ovata cultures grown under different salinity (A) and temperature (B) conditions. HR LC-MS 

measurements (pg cell-1) were carried out for both pellet and medium extracts at the end of stationary 

growth phase. 
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In the salinity experiment, total toxin content reached the highest value in the culture grown at 

32 (20 pg cell-1) and the lowest at 40 (12 pg cell-1). 

As for the temperature experiment, O. cf. ovata grown at 25°C was found to have a total toxin 

content of 23 pg cell-1, while cultures grown at 20 and 30°C produced 16 and 18 pg cell-1, 
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respectively. This last finding apparently is not in agreement with the maximum concentration 

(µg L-1) observed at 20°C (salinity 36), which was indeed affected by the high cell yield of 

the culture (Table 4.2). Particularly, culture grown at 20°C showed a cell density almost two-

fold higher than the others. 

 

Haemolytic assay 

Palytoxin converts Na+/K+ pump into a non-selective cation channel, causing cell lysis; 

ouabain and other cardiac glycosides are used as indicators for the site of action since these 

compounds are specific ligands for the Na+/K+-ATPase.  

 

Fig. 4.7 - Haemolytic activity of O. cf. ovata extracts grown at different salinity (A) and temperature 

(B) conditions on sheep erythrocytes in absence (solid lines) and in presence (dashed lines) of ouabain 

(OUA). Data are expressed as haemolysis percentage (%) versus cell number mL-1 assay (cell mL-1). 
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The haemolytic assay proposed by Riobó et al. (2008) is a rapid and sensitive method to 

determine palytoxin content and it was applied to culture extracts of O. cf. ovata grown under 

different salinity and temperature conditions.  

All the O. cf. ovata culture extracts investigated in the present study were tested by 

haemolytic assay and the results, expressed as haemolysis percentage versus cell number 
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present in 1 mL of assay solution (cell mL-1), are reported in Fig. 4.7. All showed a strong 

delayed haemolysis of sheep erythrocytes, which was specifically inhibited by ouabain, even 

at concentrations corresponding to very low cell densities; however, a percentage of not-

specific haemolysis was left over even in the presence of ouabain as shown in Fig. 4.7 (dotted 

lines). 

The haemolytic activity of cultures grown at different salinity levels (Fig. 4.7A) followed a 

pattern similar to that measured by HR LC-MS; particularly the highest haemolysis (83%) 

was observed for the culture grown at salinity 32 (total toxin content = 20 pg cell-1) followed 

by cultures grown at salinity 26 (haemolysis 79%, total toxin content = 16 pg cell-1), 36 

(haemolysis 76%, total toxin content = 18 pg cell-1), and 40 (haemolysis 74%, total toxin 

content = 12 pg cell-1). 

In the temperature experiment (Fig. 4.7B) cells grown at 20°C reported the lowest haemolytic 

activity (haemolysis 76%, total toxin content = 16 pg cell-1) in agreement with HR LC-MS 

results, while an 82% haemolytic effect was observed for both cultures grown at 25 and 30°C, 

despite the slightly different toxin content of 23 and 18 pg cell-1, respectively. All the above 

data were consistent with HR LC-MS results expressed as pg cell-1. 

A comparison of the results of the haemolytic assay with the quantitative results achieved by 

HR LC-MS could provide useful information about the haemolytic activity of ovatoxins in 

comparison with that of palytoxin. To this aim, the haemolytic activity of the algal extracts 

from salinity and temperature experiments was also expressed as haemolysis percentage 

versus concentration of pg total toxin contained in 1 mL assay solution (pg mL-1) as measured 

by HR LC-MS. These data are compared in Fig. 4.8 with those obtained for the haemolytic 

activity of palytoxin standard tested at seven different concentrations. This clearly suggests 

that the haemolytic activity of the overall ovatoxins is quite similar to that of palytoxin 

standard. 

Values obtained for the palytoxin standard were interpolated using a non-linear estimation 

curve, described by the reported equation (f1, Fig. 4.8). The resulting EC50 values for 

palytoxin standard and algal extracts were not significantly different (ANOVA, P>0.05), 

being 22 ± 2 and 25 ± 8 pg mL-1, respectively. 
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Fig. 4.8 - Haemolytic activity of O. cf. ovata extracts and palytoxin standard on sheep erythrocytes in 

absence and in presence of ouabain (OUA). Data are expressed as haemolysis percentage (%) versus 

concentration of palytoxin equivalent per mL of assay (pg mL-1). Equation f1: non-linear estimation 

curve obtained for the palytoxin standard.  
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 Function (f1) 

PLTX standard y = (85.5819)-(85.5819)/(1+(x/(21.473))^(log(9)/(log((254.169)/(21.473))))) 

 
 
 
Artemia sp. assay 

Artemia sp. assays were carried out using both live and lysed cells of O. cf. ovata cultures as 

well as the algal extract and the growth medium of a culture grown at 20°C and salinity 36. 

O. cf. ovata live cells induced rapid and high mortality of Artemia sp. nauplii, even at low cell 

concentrations. From the EC50 values of all the samples calculated at 24 h (Table 4.3), cell 

toxicity appeared relevant and significantly different (ANOVA, P<0.001): the growth medium 

resulted significantly less toxic than the live cells (Post-hoc SNK test, P<0.001), with an EC50 

value of 720 cell mL-1 versus 8 cell mL-1, respectively. This result confirmed the presence of 

small amounts of toxins released in the growth medium. The lysed cells induced a similar 

mortality as the algal extract, as evidenced by the comparable EC50 values (Post-hoc SNK 

test, P>0.05).  

EC50 values of all the tested O. cf. ovata samples were expressed also as pg of toxins per mL 

assay (pg mL-1) (Table 4.3), basing on the total toxin contents measured by HR LC-MS. A 

palytoxin standard at five levels of concentrations (500-10,000 pg mL-1) was also tested; it 
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presented an EC50 value of 4606 pg mL-1, which was significantly higher (Post-hoc SNK test, 

P<0.001) than that of the algal extract (1146 pg mL-1). 

 

Table 4.3 – The 50% mortality on Artemia nauplii (EC50) is expressed both as cells of O. cf. ovata 

per mL (cell mL-1) and total toxin content per mL (pg mL-1) and it is reported for O. cf. ovata live and 

lysed cells, extract, and growth medium. EC50 measured for palytoxin standard is reported as pg mL-1. 

Each value is the mean of three replicates  ±  standard error. 

 EC50 (cell mL -1) EC50  (pg mL -1) 
O. cf. ovata live cells  8 ± 5 115 ± 72 
O. cf. ovata lysed cells  96 ± 6 1376 ± 86 
O. cf.  ovata extract  80 ± 7 1146 ± 272 
O. cf. ovata medium  720 ± 54 1822 ± 137 
palytoxin standard  4606 ± 781 

 
 
 
Administration of O. cf. ovata live cells, grown at different salinity and temperature 

conditions, to Artemia sp. resulted in no significant differences among the measured EC50 

values (ANOVA, P>0.05) (Table 4.4); however, the lowest EC50 values were measured for 

live cells grown at 25°C (EC50 = 6 cell mL-1), and for those grown at salinity 32 (EC50 = 9 cell 

mL-1) in the temperature and salinity experiment, respectively. This appears in good 

agreement with total toxin contents (pg cell-1) measured by HR LC-MS (Fig. 4.8). 

 

 

Table 4.4 - The 50% mortality on Artemia nauplii (EC50) of O. cf. ovata live cells grown at different 

salinity and temperature conditions, expressed as cell mL-1. Each value is the mean of three replicates 

±  standard error. 

 EC50 (cell mL -1) 
Salinity  

26 17 ± 3 
32 9 ± 2 
36 24 ± 8 
40 17 ± 4 

Temperature  
20°C  11 ± 3 
25°C  6 ± 2 
30°C  14 ± 1 

 
 



 103 

Fish bioassay 

Fig. 4.9 shows the results of the ichthyotoxic assay performed with different concentrations of 

O. cf. ovata live cells. Sea bass mortality occurred after 1 day of exposure, only at the highest 

O. cf. ovata cell density (2367 cells mL-1). After 45 h from the beginning of the assay, even 

fish exposed to lower algal concentrations (1138 and 425 cells mL-1) began to die and they 

were all dead after 72 h. Fish exposed to the diatom Phaeodactylum tricornutum (789,100 

cells mL-1) used as control survived and behaved normally till the end of the experiment (96 

h).  

 

Fig. 4.9 - Toxicity of different concentrations of O. cf. ovata cells on fish (Dicentrarchus labrax). 

Phaeodactylum tricornutum was used as control and was tested at the reported cell density. Time is 

expressed as hours (h). 
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Discussion  

Several field surveys indicated that environmental conditions play a major role in determining 

Ostreopsis species proliferation (Pistocchi et al., 2011). Since very few laboratory studies on 

the effects of environmental parameters on growth and toxicity of Ostreopsis isolates were 

reported (Granéli et al., 2011; Ashton et al., 2003; Morton et al., 1992), a detailed study was 

carried out on an Adriatic strain of O. cf. ovata grown at different temperature and salinity 

conditions.  

 
Growth and cell size pattern 

The Adriatic O. cf. ovata strain showed to be tolerant to salinity variation in the range 26-40. 

Very similar growth rates and yields were observed within the tested salinity range, with the 

lowest growth yield being recorded at salinity 26. This is in good agreement with field 

measurements performed during Mediterranean O. cf. ovata blooms (Totti et al., 2010; Monti 

et al., 2007) as well as with results of a survey of epiphytic dinoflagellates along the Hawaiian 
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coast, (Parsons and Preskitt, 2007) in which O. cf. ovata was the only dinoflagellate to be 

negatively correlated with salinity.  

In the temperature experiment, the analyzed Adriatic O. cf. ovata strain reached the highest 

growth yield at 20°C, whereas the lowest yield was recorded at 30°C. Our results are in good 

agreement with field surveys in the Adriatic Sea, where O. cf. ovata proliferation occurs from 

the end of August to October, when water temperature is about 20-22°C (Totti et al., 2010; 

Monti et al., 2007). On the contrary, Granéli et al. (2011) indicated, for a Tyrrhenian O. cf. 

ovata strain, that high water temperatures (26-30°C) increased both growth rate and yield; this 

is consistent with the field surveys reporting O. cf. ovata blooms in the Tyrrhenian Sea in the 

middle of the summer. Our results and those observed by Granéli et al. (2010) agree in 

highlighting that Adriatic and Tyrrhenian strains are differently affected by environmental 

temperature. 

As for the morphometric characters, in both salinity and temperature experiments, a certain 

cell size variability was observed; however, the cell volumes reported under the different 

growth conditions didn’t show a specific pattern, particularly in the stationary growth phase. 

A marked variability in the biovolumes of O. cf. ovata cells from the same culture had been 

already observed (Guerrini et al., 2010), and it is in agreement with field observations 

(Aligizaki and Nikolaidis, 2006; Bianco et al., 2007). 

 
Toxin profile 

Putative palytoxin and all the ovatoxins so far known (Ciminiello et al., 2010) were detected 

in O. cf. ovata extracts. In the cultures grown under different conditions relative abundance of 

individual toxins was similar, with ovatoxin-a and putative palytoxin being the major and the 

minor component of the toxin profile, respectively.  

The highest total toxin content on a per cell basis (pg cell-1) was recorded in cultures grown at 

25°C, while the highest total toxin concentration on a per liter basis was recorded at 20°C, 

namely under conditions that induced the highest growth yield. A reverse correlation between 

growth and toxin production has been reported also by Granéli et al. (2011), as found also for 

other dinoflagellates (Etheridge and Roesler, 2005; Errera et al., 2010). As for the salinity 

experiment the highest total toxin content (pg cell-1) was measured at salinity 32, while it 

decreased at lower and higher salinity values, as previously observed for the dinoflagellate 

Protoceratium reticulatum (Guerrini et al., 2007). However, no clear correlation between 

growth and toxin content was observed in the salinity experiment. 
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The extracellular release increased as the temperature increased, with the maximum 27% 

value being observed at 30°C, the most unfavourable growth condition in the temperature 

experiment. This suggests that high temperatures favour cell lysis, leading to toxins being 

released in the growth medium. Similarly, in the salinity experiment, the highest release was 

also measured at the most unfavourable growth condition (26); comparable results were 

obtained for P. reticulatum (Guerrini et al., 2007) and this could represent a response of the 

cells to the osmotic stress. 

 
Haemolysis results in comparison with HR LC-MS data 

The haemolytic assay was reported as a rapid, easy and sensitive method to determine 

palytoxin by Riobó et al. (2008). In our study, it was successfully applied to the analyses of 

O. cf. ovata extracts in order to gain information about the haemolytic activity of ovatoxins. 

The haemolytic assay resulted highly reproducible even among separate set of experiments 

and using different blood samples. 

The haemolytic activity was tested by using O. cf. ovata extracts obtained from cultures set up 

at different growth conditions. The obtained data showed a good correlation between 

haemolysis percentage and the total toxin content measured through HR LC-MS. This is the 

first time that a cross check between biological assay and chemical analysis was applied to 

palytoxin-like compounds. Useful information was obtained from haemolytic tests after 

pretreatment with ouabain. They showed that ovatoxins behave similarly to palytoxin, 

suggesting a common mechanism of action, which involves a binding to the Na+/ K+ pump. 

The haemolytic activity of all the O. cf. ovata extracts was found to be very similar to that of 

palytoxin, as confirmed also by the similar EC50 values. These data suggested that ovatoxins, 

which represent the major components of the O. cf. ovata extracts (99.5-97%), have a similar 

haemolytic effect as palytoxin standard. It has to be noted that, in our analyses, the total 

activity of ovatoxins was measured and it has still to be ascertained whether individual 

components of the ovatoxin profile present different haemolytic activity. This will be possible 

when each ovatoxin will be isolated as a pure compound and used to evaluate its haemolytic 

activity. 

In conclusion, the haemolytic assay appears a good method for preliminary quantification of 

the whole of palytoxin-like compounds in algal extracts: equation (f1, Fig. 4.8) obtained from 

the haemolysis curve, indicating the total haemolysis, can be a powerful tool to evaluate total 

toxin concentration of algal extracts, especially in laboratories where LC-MS is not available. 
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However, some drawbacks of this assay are represented by the interference of other possibly 

co-occurring haemolytic compounds and its inability to define toxin profile. 

 
Toxicity for crustacean and fish 

The toxicological assays revealed a marked toxicity of compounds produced by O. cf. ovata 

on Artemia nauplii and juvenile sea basses. 

In the Artemia sp. assay performed with O. cf. ovata live cells the death of nauplii was 

observed even at very low cell densities and the relevant EC50 value was significantly lower 

than those obtained for O. cf. ovata lysed cells, algal extract, and growth medium (Table 4.3). 

The difference in EC50 values of O. cf. ovata live cells versus both O. cf. ovata lysed cells and 

algal extract can be related to a different toxin uptake by the Artemia sp. nauplii: live cells 

were actually ingested by nauplii whereas either lysed cells or algal extract were assumed 

through filtration. Thus, this latter mechanism of toxin uptake seems to be less powerful than 

ingestion. This suggests that herbivorous fish, that feeds on seaweeds where the benthic 

dinoflagellates proliferates, is the most exposed to O. cf. ovata toxicity. 

The high EC50 value of the O. cf. ovata growth medium also deserves consideration. It can be 

related to the low toxin extracellular release emerging by HR LC-MS data (Table 4.2). 

Despite apparently low toxicity of O. cf. ovata growth medium on Artemia nauplii, a long 

lasting bloom could be anyway hazardous to marine crustaceans, particularly considering that 

cell lyses and toxin extracellular release increase at the end of the stationary phase reached at 

the end of the bloom. 

Unlike the haemolytic assay, the Artemia sp. assay was not able to detect the different toxin 

contents of O. cf. ovata cultures grown at different salinity and temperature conditions. This 

could be due to the extreme sensitivity of Artemia sp. nauplii to O. cf. ovata live cells (EC50 

values ranging from 6 to 24 cell mL-1), which has not been observed for any other harmful 

algae so far (Pezzolesi et al., 2010). Thus, Artemia sp. assay is not able to catch relatively 

small differences among different samples and, therefore, it cannot be used for quantitative 

purposes. 

In the ichthyotoxic assay, sea basses exposed to O. cf. ovata live cells died within a few days 

despite they are known not to feed on microalgal cells. This mortality could be attributed to an 

haemolytic effect of palytoxin-like compounds on the gills, where Na+/K+ ATPase activity is 

high in the juvenile stage of sea basses (Varsamos et al., 2004). However, we cannot exclude 

an effect due to accidental ingestion of algal cells, which were contained in the surrounding 

water at high density. 
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4.2.2. Effect of temperature on the toxicity and growth of different O. cf. ovata strains  

Experimental section 

Cultures of Ostreopsis cf. ovata 

O. cf. ovata cells were isolated by the capillary pipette method (Hoshaw and Rosowski, 1973) 

from water samples collected along the Adriatic (Bari, Puglia; strain OOAB0801) and 

Tyrrhenian (Latina, Lazio; strain OOTL0707) coasts of Italy in 2008 and 2007, respectively. 

Cultures were established at salinity 36 adding macronutrients at a five-fold diluted f/2 

(Guillard, 1975) concentrations. In order to evaluate the effect of temperature on growth and 

toxicity of diffferent O. cf. ovata strains, cultures were prepared at 20, 25 and 30°C in water 

baths, under a 16:8 h L:D cycle from cool white lamp, maintaining light irradiance at 

90 µmol m−2 s−1(see section 4.2.1).  

As previoulsy described (section 4.2.1), to evaluate the growth profile, 15 Erlenmeyer flasks 

containing 200 ml of culture were grown in parallel for each condition; every other day, two 

out of the initial flasks were treated with HCl to a final concentration of 4 mM and discarded 

after the counting. Cell counts were made following Utermöhl method (Hasle, 1978), while 

calculation of cell volume was made with the assumption of ellipsoid shape using the 

following equation (Sun and Liu, 2003).  

For each temperature condition, a set of four 800 mL culturing flasks was set up for the 

evaluation of toxin content. Cell counting was carried out on one out of the four flasks as 

described above. Culture collections were carried out during either the exponential and 

stationary growth phases by gravity filtration through GF/F Whatman (0.7 µm) filters at day 

9th and 22th, respectively. Cell pellets for each condition were provided for chemical analysis. 

 
Chemical analysis 

HR LC-MS analyses of palytoxin-like compunds were performed as reported in section 4.2.1. 

 

Results 

Batch cultures of an Adriatic and Tyrrhenian strain of O. cf. ovata were established in order to 

evaluate the effect of temperature on algal growth and toxin profile. Particularly, cultures 

were set at 20, 25 and 30°C by maintaining salinity at 36 and light irradiance at 

90 µmol m−2 s−1, as previously performed using another Adriatic strain from Ancona. This 

study allows to compare the effect of temperature on different O. cf. ovata strains to evaluate 

how this environmental parameter affects the cell proliferation in these areas.  
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Growth pattern  

The growth profile of O. cf. ovata cultures exposed to different temperature values was 

analyzed by measuring the cell density every 2-3 days from the beginning of the exponential 

phase to the end of the stationary phase (Fig. 4.10A and 4.10B). Under the different growth 

conditions, O. cf. ovata growth rates in the range 0.30-0.45 day-1 were observed.  

 

Fig. 4.10 - Growth pattern of O. cf. ovata cultures exposed to different growth temperatures. (A) 

Adriatic strain (OOAB0801) and (B) Tyrrhenian strain (OOTL0707). 
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Temperature affected cell growth of both strains; however differences between the two 

isolates were obsereved. Final cell yield of the Adriatic strain was only slightly affected by 

the various temperature, and reached values of about 4000-5000 cell mL-1; while relevant 

differences were reported for the Tyrrhenian strain. In fact, a maximum cell density of about 

4500 cell mL-1 was reported at 20°C, whereas lower values were reached at the highest 

temperatures (2600 and 3200 cell mL-1 at 25 and 30°C, respectively). 

Both strains reported a better growth rate at 25°C (ANOVA, P<0.05), being 0.41 and 0.45 

day-1 for the Adriatic and Tyrrhenian strain, respectively; while the lowest growth rates were 

observed at the highest tested temperature (30°C), namely 0.30 and 0.32 day-1, respectively. 
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Temperature of 20°C showed intermediate growth rates for both isolates, resulting in 0.32 and 

0.39 day-1 for the Adriatic and Tyrrhenian strain, respectively. 

 

Determination of toxin content by HR LC-MS 

Cell pellets of O. cf. ovata cultures grown at the different temperature values were collected 

during the exponential and stationary growth phases. HR LC-MS experiments were acquired 

in full MS mode by using an LC method which allowed chromatographic separation of the 

major components of the toxin profile (Fig. 4.11). The spectra were acquired in the mass 

range m/z 800-1400 where each palytoxin-like compound produces bi-charged ions due to 

[M+H+K] 2+, [M+H+Na]2+, and [M+2H]2+, tri-charged ions due to [M+2H+K]3+ and 

[M+2H+Na]3+, and a number of ions due to multiple water losses from the [M+2H]2+ and 

[M+3H]3+ ions, as reported in the experimental.   

The presence of putative palytoxin and of all the ovatoxins (ovatoxin-a, -b, -c, -d, and -e) 

recently identified in O. cf. ovata (Ciminiello et al., 2008, 2010) and found in the Adriatic 

strain from Ancona (section 4.2.1) was highlighted in all the analyzed samples (Fig. 4.12 and 

4.13).  

 

Fig. 4.11 - Total ion chromatogram (TIC) of the O. ovata culture extract containing putative PLTX, 

OVTX-a, -b, -c, -d, and-e. LC-MS analysis was carried out in full MS positive ion mode in the mass 

range 800-1400 amu, by using the chromatographic conditions reported in the experimental (from 

Ciminiello et al., 2010). 
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Significant differences were observed in the total toxin content of different algal extracts 

(ANOVA, P<0.001), whereas relative abundance of individual toxins were quite similar: 

ovatoxin-a was by far the major component of the toxin profile (55-57% of the total toxin 

content; Post-hoc SNK test, P<0.001), followed by ovatoxin-b (25-28%), ovatoxin-d and -e 

(11-13%), ovatoxin-c (4-6%) and putative palytoxin (0.5-0.7%) on the basis of their 

decreasing relative abundance.  

 

Fig. 4.12 - Total and individual toxin contents of putative palytoxin, ovatoxin-a, -b, -c, -d, and -e of 

the Adriatric O. cf. ovata strain grown under different temperatures, in the exponential (A) and 

stationary (B) phase. HR LC-MS measurements (pg cell-1) were carried out for cell pellet extracts. 
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Total toxin content of pellet extracts expressed as µg L-1 culture in both strains are reported in 

Table 4.5. Toxin contents were significantly different in the stationary than in the 

corresponding exponential phase (Post-hoc SNK test, P<0.001), being about 2 to 4-fold 

higher at the end of the growth. Total content expressed as µg L-1 culture  was higher in the 
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Adriatic strain than in the Tyrrhenian one and the highest value was detected at 20°C either 

for both isolates and growth phases (270 and 242 µg L-1 culture for the Adriatic and 

Tyrrhenian strain, respectively). At the other two temperatures (25 and 30°C) not significant 

differences were reported in the expoenetial phases, whereas values significantly changed in 

the stationary phase (ANOVA, P<0.05): 25 and 30°C resulted in a higher toxin content for the 

Adriatic (251 µg L-1 culture) and Tyrrhenian (156 µg L-1 culture) strain, respectively.  

 

Fig. 4.13 - Total and individual toxin contents of putative palytoxin, ovatoxin-a, -b, -c, -d, and -e of 

the Tyrrhehnian O. cf. ovata strain grown under different temperatures, in the exponential (A) and 

stationary (B) phase. HR LC-MS measurements (pg cell-1) were carried out for cell pellet extracts. 
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Total and individual toxin contents on a per cell basis (pg cell-1), are reported in Fig. 4.12 and 

4.13 for the Adriatic and Tyrrhenian strain, respectively. Differences in total toxin content 

were observed between the strains: the strain from Bari was more toxic at all the different 

growth temperatures besides at 20°C in the stationary phase, where a maximum value of 130 
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pg cell-1 was reported for the strain from Latina (Fig. 4.13). Toxin expressed on a cell basis 

resulted in a different toxicity pattern, in fact in the Adriatic strain the highest toxin content 

was observed at 25°C in the stationary phase (99 pg cell-1), followed by 20°C (91 pg cell-1) 

and 30°C (63 pg cell-1), while in the Tyrrhenian strain the maximum toxin amount found at 

20°C (130 pg cell-1) was followed by 25°C (79 pg cell-1) and 30°C (74 pg cell-1).  

 

Table 4.5 – Total toxin content (pPLTX and OVTX-a,b,c,d,e) in the cell pellets of the two Ostreopsis 

cf. ovata strains (OOAB0801 and OOTL0707) grown at the different temperatures, measured in both 

exponential and stationary phases. Data are expressed as µg L-1 culture. 

 
Adriatic strain (Bari) 

conc  (µ (µ (µ (µg/L) 
Tyrrhenian strain (Latina) 

conc  (µ (µ (µ (µg/L) 

 exp. phase stat. phase exp. phase stat. phase 
20°C 97.4 270.3 63.0 242.2 
25°C 68.0 250.7 58.9 131.8 
30°C 71.9 214.3 59.9 155.9 

 

Conclusion 

Ostreopsis cf. ovata proliferation in the Italian coasts is characterized by differences in the 

environmental paraters, especially in temperature values (Pistocchi et al., 2011). To evaluate 

the effect of temperature on the growth and toxicity of this dinoflagellate, various strains 

isolated in recent years in the Italian costal waters, have been cultured and compared.  

 
Growth pattern 

Temperature resulted to affect O. cf. ovata growth, as the analyzed Adriatic and Tyrrhenian 

strains reported the highest growth rates at 25°C, whereas the lowest rates was recorded at 

30°C. These results differed slighltly from those obtained using another Adriatic isolate from 

Ancona (see section 4.2.1), which showed a better growth rate at 20°C. However, our results 

are in good agreement with field surveys in the Adriatic and Tyrrhenian Seas, where O. cf. 

ovata proliferation occurs in different period of the year: in July and August blooms are 

present in the Tyrrenian Sea (Tognetto et al., 1995; Simoni et al., 2004) and southern Adriatic 

Sea (Ungaro et al. 2005), when water temperature is around 24-28°C; while blooms are 

usually detected in the northern Adriatic Sea near Ancona from the end of August to October, 

with water temperature about 20-22°C (Totti et al., 2010; Monti et al., 2007). Despite Granéli 

et al. (2011) indicated, for a Tyrrhenian O. cf. ovata strain, that high water temperatures (26-



 113 

30°C) increased both growth rate and yield, our survey showed that the growth yield of a 

different Tyrrhenian strain (from Latina) was higher at 20°C.  

However, these results agree in highlighting one more time that Adriatic and Tyrrhenian 

strains are differently affected by environmental temperature. 

 
Toxin profile 

Putative palytoxin and all the ovatoxins so far known (Ciminiello et al., 2010) were detected 

in all O. cf. ovata extracts. In the cultures grown under different conditions relative abundance 

of individual toxins was similar, with ovatoxin-a and putative palytoxin being the major and 

the minor component of the toxin profile, respectively.  

The total toxin content of the strains from Bari and Latina on a per cell basis (pg cell-1) was 

significantly higher (ANOVA, P<0.01) than that detected for the Adriatic strain from Ancona, 

which reported values in the range 12-23 pg cell-1. These strains have a toxin content about 5 

to 6-fold higher and even when toxin were expressed on a culture volume basis toxicity 

resulted significantly higher (ANOVA, P<0.01). A reverse correlation between growth and 

toxin production, as reported also by Granéli et al. (2011), was found also for these strains: 

the highest total toxin content (µg L-1) was measured at temperature 20°C in both strains, 

while growth rates were higher at 25°C. However, the correlation between growth and toxin 

content is still not clear, depsite it had been already reported for other dinoflagellates 

(Etheridge and Roesler, 2005; Errera et al., 2010; Guerrini et al., 2007).  

These highlighted differences in the toxin production may have important implication in O. 

cf. ovata proliferation, as blooms in these coastal areas (southern Adriatic and Tyrrhenian 

Sea) may cause more relevant toxic effects on the ecosystem and human health problems. 

 
4.2.3. Changes of O. cf. ovata palytoxin-like compounds under N- and P- limitation 

It is well recognized that environmental factors such as temperature, salinity, light, and 

nutrient unbalanced conditions affect both growth and toxicity of many planktonic toxic 

dinoflagellates (Morton et al., 1992; Granéli and Flynn, 2006); while the role of the different 

environmental conditions favouring the onset of benthic harmful dinoflagellates has been less 

investigated (Morton et al., 1992; Van Dolah, 2000; Chateau-Degat et al., 2005; Yasumoto et 

al., 1977).  

Up to now, worldwide surveys including Mediterranean area, suggest that temperature, 

hydrodynamism, wave action, and substrate typology display major roles for Ostreopsis spp. 

growth (Totti et al., 2010; Pistocchi et al., 2011) as for other epibenthic dinoflagellates typical 



 114 

of ciguatera areas (Morton et al., 1992; Van Dolah, 2000; Chateau-Degat et al., 2005; 

Yasumoto et al., 1977), while links with salinity and nutrient availability are less clear.  

N:P supply is a topic of particular concern for the development of nuisance algal blooms with 

or without enhancement through eutrophication (Flynn, 2002). In field situations, changes in 

the nutrient N:P supply ratio are to be expected both for cells exposed to tidal or river flows 

(Flynn, 2002). Indeed changes in nutritional status due to eutrophication of the coastal waters 

(Nixon, 1995), together with increasing surface water temperature and water column stability, 

favour the occurrence and proliferation of a selected group of phytoplankton (Balode et al. 

1998; Anderson et al., 2002; Parsons et al., 2007; Hallegraeff, 1993; Heisler et., 2008; Collos 

et al., 2004). Decreases in N/P ratios due to phosphorus loading have been related to harmful 

algal bloom events (Hodgkiss and Ho, 1997), including  many planktonic toxic dinoflagellates  

of the genus Alexandrium (Bechemin et al., 1999). 

Most studies agree that nitrogen or phosphorus limitation reduces growth of toxic 

dinoflagellates (Gallardo Rodríguez et al., 2007; Shi et al., 2005; Siu et al., 1997; Wang and 

Hsieh, 2002). Nevertheless, changes of the nutrient pool affect not only the growth of the 

organisms but also their biochemical composition. In laboratory controlled setting, cellular 

toxin of some paralytic shellfish toxins (PSTs) producing species are induced under P-limited 

or high N/P ratio conditions (Boyer et al., 1987; Anderson et al., 1990; Bechemin et al., 

1999), while other studies showed that an increase of cellular toxin is due to simultaneous N 

and P limitations (Flynn et al., 1994; John and Flynn, 2000). The difference might be due to 

ecotypic variation in ecophysiological adaptation in the environment from where they 

originated. Anyhow, P-stress has been often associated with the development of major 

toxicity in flagellates (Granéli et al., 1998; John and Flynn, 2000) planktonic dinoflagellate 

(Frangopulos et al., 2004; Guerrini et al., 2007), but also in benthic dinoflagellates such as 

Prorocentrum lima. For some harmful species like P. lima (Tomas and Baden, 1993), 

Prymnesium parvum (Johansson and Granéli, 1999) and Chrysochromulina polylepis (Dahl et 

al., 2005; Johansson and Granéli, 1999) phosphorus limitation increases toxicity through 

stimulation of toxin production. 

With regard to Ostreopsis cf. ovata and more generally to Ostreopsidaceae the role of 

nutrients and/or nutrient unbalanced conditions on Ostreopsis spp. growth and toxicity is 

almost unknown. Very limited information on relationships between field nutrient 

concentrations and Ostreopsis abundances deal with some environmental surveys carried out 

for assessing and monitoring the presence and abundance of the epibenthic dinoflagellates 

which typically co-occur in ciguatera endemic regions. In some of these studies, although 



 115 

some evidence appears on the linkage between nutrient concentrations and benthic 

dinoflagellates abundances, the results based on correlation analyses are controversial (Vila et 

al., 2001; Delgado et al., 2006; Parsons and Preskitt, 2007; Okolodkov et al., 2007; Shears 

and Ross 2009; Armi et al., 2010).  

So far, information on laboratory experiments assessing effects of nutrient unbalanced 

conditions on O. cf. ovata growth and toxin production are almost lacking (Granéli et al., 

2008).  

The aim of this work was to investigate how nutrient limited conditions affect O. cf. ovata 

cell growth and toxin content. To do this, a O. cf. ovata strain isolated from the Adriatic Sea 

(OOAN0601) was grown under 1/50-nitrogen limited and 1/50-phosphorus limited conditions 

with respect to control nutrient conditions (five-fold diluted f/2 medium plus selenium; N/P 

ratio: 16). 

 

Experimental section 

Cultures of Ostreopsis cf. ovata 

O. cf. ovata was isolated by the capillary pipette method  (Hoshaw and Rosowski, 1973) from 

water samples collected along the Adriatic coasts of Italy (Marche region, Numana sampling 

site, strain OOAN0601) in October 2006 (see section 4.2.1). Cultures were established at 

salinity 36 and 20°C, in a thermostatic room under a 16:8 h L:D cycle from cool white lamp, 

maintaining light irradiance at 100-110 µmol m−2 s−1. In order to evaluate the effect of 

nutrient concentrations on growth and toxicity of O. cf. ovata, cultures were prepared adding 

macronutrients at a five-fold diluted (for control), and twenty five-fold diluted f/2 (Guillard, 

1975) concentrations for N- and P- depletion conditions.  

As previoulsy descrive (section 4.2.1), to evaluate the growth profile, 15 Erlenmeyer flasks 

containing 200 ml of culture were grown in parallel for each condition; every other day, two 

out of the initial flasks were treated with HCl to a final concentration of 4 mM and discarded 

after the counting. Cell counts were made following Utermöhl method (Hasle, 1978), while 

calculation of cell volume was made with the assumption of ellipsoid shape using the 

following equation (Sun and Liu, 2003).  

For each nutrient condition, a set of four 800 mL culturing flasks was set up for the evaluation 

of toxin content. Cell counting was carried out on one out of the four flasks as described 

above. Culture collections were carried out during either the exponential and stationary 

growth phases by gravity filtration through GF/F Whatman (0.7 µm) filters at day 9th and 22th, 
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respectively. Cell pellets and growth media for each condition were provided for chemical 

analysis. 

 
Chemical analysis 

HR LC-MS analyses of palytoxin-like compunds were performed as reported in section 4.2.1. 

 

Nutrient analysis 

Nitrate and phosphate analyses were performed on filtered culture medium aliquots (Millipore 

cellulose filters, pore size 0.45 mm) and analysed spectrophotometrically according to 

Strickland and Parsons (1972). 

 

Results 

Nutrient concentrations 

Figures 4.14 shows nutrient concentration changes during O. cf. ovata cell growth under 

control, N-nitrogen and P-phosphorous limited conditions (N:P ratio: 17, 5, 105, 

respectively). Under control conditions (actual initial concentrations: N = 108 and P = 6.35 

µM, respectively; N:P ratio = 17), both N-nitrogen and P-phosphorous were rapidly taken up 

leading to a N:P ratio of about 30 from day 6 to day 9, when N and P concentrations (20.18 

and 0.65 µM, respectively) were about 5-fold and 10-fold lower than initial concentrations. 

During stationary phase nutrient concentrations decreased further (i.e. N = 2.14 and P = 0.48 

µM, respectively, 13th day), especially N concentration, and the N:P ratio dropped to values 

<5. Finally, in late stationary phase (i.e. 22nd day) N:P ratio was <2 (N = 0.73 and P = 0.40 

µM).   

Under N-limited conditions (initial concentrations: N = 29.29, P = 5.29 µM, respectively;  

N:P ratio= 5.54) N concentration decreased rapidly within the first 6 days (N = 2.68 µM; 10-

fold lower than N initial concentration) and by the end of the exponential phase (6-9th day) N 

and P concentrations were <1  and  >4.5 µM, respectively with a N:P ratio <1 (N:P ratio = 

0.17); thus, most of the phosphate was available in late stationary phase (22nd day), whereas N 

was mostly depleted (0.2 and 3.7  µM, for N and P, respectively).  

Under P-limited conditions (initial concentrations: N = 120 and P = 1.14 µM; N:P ratio = 

105),  from late exponential phase to late stationary phase (i.e. from 9th from 22nd day) both N 

and P concentrations changed slightly (N = 20, P = 0.69 µM at  9th day,  and N = 14, P = 0.45 

µM at 22nd  day) resulting in a almost constant  N:P ratio of about 30 (29 and 32, 9th and 22nd 

day, respectively).   
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Fig. 4.14 - Nitrogen (NO3
-) and phosphorus (PO4

3-) concentrations measured in O. cf. ovata cultures 

grown under different nutrient conditions. Bars indicate standard deviations. 
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Cell growth and cell size  

Growth curves of Ostreopsis cf. ovata under control N- and P-limited conditions are shown in 

Figure 4.15. Initial cell densities were on average, 300-330 cells mL-1 and the exponential 

growth phase lasted till 6-9th day. 

 

Fig. 4.15 - Growth pattern of O. cf. ovata cultures exposed to different nutrient concentrations.  
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During the early exponential phase (i.e. from 1st to 6th day) the mean growth rate (µ) was 

significantly lower under nutrient limited conditions comparing to control (µ= 0.40 ± 0.013, 

0.29 ± 0.034, and 0.24 ± 0.055, day-1, for control, N- and P-treatment, respectively; ANOVA, 
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both P<0.001), whereas, no significant difference was found between N- and P-limited 

treatments (P>0.05).  

 

Fig. 4.16 - Cell volumes of O. cf. ovata cells exposed to different nutrient conditions. 
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As a result, by the end of the exponential phase (6-9th day) under both nutrient limited 

conditions cell densities were significantly lower  than in the control conditions (1.9- and 1.5-

fold lower for N- and P-treatments, respectively; ANOVA, both P≤0.05). Finally, in the 

stationary phase (22nd), cell yields under N-limited and P-limited treatments attained to a 2.2-

fold and 1.8-fold lower values with respect to control yield (mean cell yield: 4.57 x 103, 2.31 

x 103,  and 2.95 x 103 cells mL-1, for control,  N-, and P- limited conditions, respectively; 

ANOVA, P<0.001). N-limited cell yield was also significantly lower than P-limited yield 

(ANOVA, P<0.01).  

Under all tested conditions and over the growth cycle O. cf. ovata cell cultures were 

composed by two cell size classes, a small one (i.e. class 1; cell volume range: 5728-10,008 

µm3, control in the exponential phase and P-limited treatment in the stationary phase, 

respectively) and a large one (i.e. class 2; cell volume range: 20,280-30,232 µm3, N-limited 

treatment in the exponential phase and P-limited treatment in the stationary phase, 

respectively). As a general trend, under all conditions, both cell size classes showed an 

increasing volume from exponential to stationary phase (Fig. 4.16) which was significant 

under N-limited treatment for both classes, and under control conditions for class 1 (ANOVA, 

all P<0.01) but not for P-limited treatment. The highest cell volumes were found under P-

limited conditions over the growth cycle with significant higher values for class 1 when 

compared to control (ANOVA, P<0.01 and P<0.05, exponential and stationary phase, 
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respectively), and for both classes when compared to N-limited conditions (ANOVA, P<0.05, 

class 1 in both phases; ANOVA, P<0.01, class 2 in the exponential phase).  

The relative contribution of the two size classes to the total cell abundance and cell volume 

showed different temporal trend under the different nutrient conditions (data not shown). 

More in deep, under control conditions cells were mostly of class 2 and their relative 

contribution to the total cell abundance increased slightly and not significantly from the 

exponential to the stationary phase (67 and 70%, respectively). A similar high contribution of 

class 2 cells to cell abundance was found under P-limited condition, although this contribution 

decreased slightly from the exponential to the stationary phase (73 and 66% of total cells, in 

exponential and stationary phase, respectively). Differently, under N-limited conditions class 

2 cells represented 52 and 54% of the total cell numbers in the exponential and in the 

stationary phase, respectively. So that, the recorded changes in cell size composition and cell 

class volume returned into: 1) a significant lower mean cell volume under N-limitation over 

the growth cycle when compared to both control (29 and 18% lower in the exponential and 

stationary phase, respectively) and P-limited conditions (40 and 20% lower in the exponential 

and stationary phase, respectively; ANOVA, all P<0.001); 2) a significant higher cell volume 

under P-limitation in the exponential phase when compared to control conditions (19%; 

ANOVA, P<0.001) (2% in stationary phase); 3) a significant increase of the mean cell volume 

from exponential to stationary phase under control and N-limited conditions (ANOVA, 

P<0.001), but not under P-limitation (ANOVA, P>0.05).  

 

Toxin concentrations  

As general, under all tested conditions (either control, N- or P- deficiency) O. cf. ovata 

showed the same qualitative toxin profile producing putative palytoxin (pPLTX), ovatoxin-a 

(OVTX-a), and the recently identified palytoxin-like compounds OVTX-b, OVTX-c, OVTX-

d, and OVTX-e (Fig. 4.17). The relative contribution of each toxin  to the total toxin content 

varied slightly throughout the experiments with OVTX-a and OVTX-b as major contributors 

(accounting for 52-53% and 23-26%, respectively), followed by OVTX-d plus OVTX-e (13-

15%), and OVTX-c (6.6-7.4%); whereas pPLTX contribution was less than 2%. Moreover, 

under all tested conditions, toxin concentrations (either expressed on per cell or on cell 

volume basis) showed an increasing trend from the exponential to the stationary growth 

phase. Nevertheless, toxins content of cells grown at different nutrient conditions changed 

differently over cell growth cycle. 
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Fig. 4.17 – Total and individual toxin contents of putative palytoxin, ovatoxin-a, -b, -c, -d, and -e of 

the Adriatric O. cf. ovata strain grown under different nutrient conditions, in the exponential (1) and 

stationary (2) phase. HR LC-MS measurements were carried out for cell pellet extracts and espressed 

as content per cell (pg cell-1) (A), per biovolume, (fg µm3) (B) and per culture volume (µg L-1) (C). 
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More in details, under control conditions, all toxins on a cell basis, showed significantly 

higher concentrations (close to 2-fold) in the stationary growth phase compared to the 

exponential phase (ANOVA, all P<0.01; Fig. 4.17A).  

Control toxin concentrations expressed on cell volume basis ranged from 0.012 to 0.564 fg 

µm-3 (pPLTX in the exponential and OVTX-a in the stationary phase, respectively; Fig. 

4.17B), showing the same significant increasing trend (up to 1.6-fold).  

 

N-limited condition: comparison between growth phases. Under N-limited condition, 

concentration of all toxins on a cell basis also increased (about 1.35-fold for all toxins except 

for pPLTX with a 2.1-fold) over the growth cycle (Fig. 4.17A); however, it resulted not 

significantly (ANOVA, all P>0.05). The relative increase of each toxin concentration was 

reduced when expressed on cell volume basis (from 0.97-fold to 1.13, OVTX-d plus OVTX-e 

and pPLTX, respectively; ANOVA, all P>0.05, Fig. 4.17B) due to significant higher cell 

volume in the stationary phase with respect to the exponential phase. 

 

N-limited condition: comparison between control and N-treatment. Under N-limitation all 

toxins showed lower concentrations (on a cell basis) with respect to control conditions over 

the growth cycle (Fig. 4.17A). Nevertheless, in the exponential phase, toxin concentrations 

were significantly lower only for pPLTX and OVTX-c compared to control (ANOVA, 

P<0.05, and P<0.01, respectively). These significant differences still persist when values were 

referred to cell volume (ANOVA, P<0.01 for both pPLTX and OVTX-c) regardless the 

significant smaller cell volume found under N-limitation than in control conditions all over 

the growth cycle (29% and 18% smaller than control, exponential and stationary phase, 

respectively). Whereas, over stationary phase, all toxins concentration on cell basis, were 

significantly lower with respect to control conditions (ANOVA, P<0.01 for OVTX-a,  

OVTX-b, and total toxins; and P<0.001 for pPLTX,  OVTX-c, and OVTX-d plus OVTX-e) 

with a decrease exceeding 50% for all toxins (range: 51-57% lower than control, OVTX-a  

and OVTX-c, respectively). In details, the highest reduction  was observed for OVTX-c 

concentration (57% lower than control conditions) followed by pPLTX (55%), whereas 

OVTX-a,  OVTX-b showed almost the same decrease  with respect to control (i.e. 51 and 

53%, respectively). When comparison was performed on cell volume basis all toxin 

concentrations showed similar pattern and were still significant lower than under control 

conditions (ANOVA, all P<0.01), although the relative decrease was reduced (range: 40 to 

47% lower than control, OVTX-b and OVTX-c, respectively).  
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P-limited condition: comparison between growth phases. Under P-limitation all toxin 

concentrations on a cell basis (Fig. 4.17A) increased over the growth cycle, with significant 

higher values in the stationary phase for pPLTX, OVTX-a, OVTX-b, and OVTX-c, compared 

to exponential phase (ANOVA, P<0.05). Toxin concentration on a cell volume basis (Fig. 

4.17B) showed the same results and statistical pattern (exponential phase range: 0.007–0.234 

fg µm-3, pPLTX and OVTX-a, respectively;  stationary phase range: 0.010–0.330 fg µm-3, 

pPLTX and OVTX-a, respectively; ANOVA, P<0.01 for  pPLTX and OVTX-c; P<0.05 for 

OVTX-b), however accompanied with a reduced increasing range (i.e. from 1.25-fold to 1.53-

fold, for OVTX-d plus OVTX-e and OVTX-b, respectively).  

 

P-limited condition: comparison between control and P-treatment. Under P-limitation, in the 

exponential phase, all toxins showed lower concentrations than those found under control 

conditions, nevertheless differences were not significant (ANOVA, P>0.05). When data were 

expressed on cell volume basis (Fig. 4.17B), pPLTX, OVTX-c, OVTX-d plus OVTX-e 

showed significant lower values than in the control (ANOVA, P<0.05), very likely due to a 

significant higher cell volume (20% higher). In the stationary phase, toxin values on cell basis 

were significant lower when compared to control conditions; the highest decrease was 

observed for pPLTX (49% lower than control; ANOVA, P<0.001) followed by OVTX-d plus 

OVTX-e, (46 % lower than control; ANOVA, P<0.01), OVTX-c (44% lower than control, 

ANOVA, P<0.001), OVTX-a (39%, ANOVA, P>0.05)  OVTX-b (36%, ANOVA, P<0.05), 

total toxin (P<0.05).  When toxin concentrations were expressed on a cell volume basis, all 

toxins presented the same significant decreasing trend found (range: 38-49%, OVTX and 

pPLTX, respectively) with respect to control (ANOVA, all P<0.01). 

 

Comparison between N-limited and P-limited conditions. When comparing toxin 

concentrations (on per cell basis) in both exponential and stationary growth phases (Fig. 

4.17A), N- and P-deficient conditions no significant differences were found for all toxins, 

except for OVTX-c at stationary phase (ANOVA, P<0.001); in fact OVTX-c concentrations 

showed significant lower values (22% less) under N-treatment when compared with P-

treatment (0.76 and 0.98 pg cell-1, respectively). In the exponential phase when comparing 

toxin concentration expressed on a cell volume basis (Fig. 4.17B), pPLTX, OVTX-c, OVTX-

d plus OVTX-e were significant lower under P-limitation than under N-limitation (ANOVA, 

P<0.05 and P<0.01 for pPLTX, OVTXd,e, and OVTX-c, respectively). By contrast, in the 
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stationary phase toxin concentration did not show any difference between N- and P-treatment 

(ANOVA, all P>0.05). 

 

Conclusion 

The results reported in this study show that nutrient unbalanced conditions affects O. cf. ovata 

cell growth rate, biovolume, yield, and toxin amounts. While a cell growth limitation was 

expected, a toxin content decrease was more surprisingly.   

Cell growth and nutrients 

Results reported in this study show that both N- and P- applied limited conditions affected O. 

ovata cell growth already in the early exponential phase due to a significant reduction of the 

mean growth rate (mean value 0.26 day-1) compared to that one found under balanced nutrient 

conditions (0.40 day-1) that was within the range of values reported for Mediterranean O. cf. 

ovata strains (section 4.2.1 this thesis; Guerrini et al., 2010; Granéli et al., 2010) and other 

worldwide distributed O. spp. strains (Pearce et al., 2001). 

Therefore, both nutrient limited conditions caused significant lower final cell yields with 

respect to control conditions with more severe effects under N-limitation.  

O. cf. ovata growth pattern was clearly dependent on nutrient dynamics; under control 

conditions (N:P ratio = 16) phosphorous uptake rates (data not shown) were high during the 

exponential phase while nitrogen maintained relative high uptake rates also during the early 

stationary phase. Accordingly, under N-limitation (N:P = 5), nitrogen was exhausted by the 

end of the exponential phase reaching a N:P ratio <1. On the other hand,  under P-limitation 

(N:P = 100) most phosphorous was uptake during the first few days of growth (day 2), 

reporting in the exponential phase (day 6) a N:P ratio of  about 400; thereafter, phosphorous 

concentration slightly changed, leading to a nearly steady N:P ratio of about 30.   

Interestingly, O. cf. ovata growth was affected more severely by nitrogen than phosphorous 

limitation and this in accordance with recent results reported by Vidyarathna and Granéli 

(2010). Whereas, this result may be apparently in contrast with findings for some toxic 

planktonic dinoflagellates including diarrheic shellfish poisoning (DSP) species (e.g. 

Protoceratium reticulatum; Guerrini et al., 2007; Gallardo Rodríguez et al., 2009), and 

paralytic shellfish poisoning (PSP) (e.g. Alexandrium minutum, Lim et al., 2005) (Granéli and 

Flynn, 2006 and references therein), but also for some benthic dinoflagellates such as P. lima 

(Varkitzi et al., 2010; Vanucci et al., 2010), as P was found to affect mainly their growth.  

It has to be noted that N and P concentrations per se are also important factors to be 

considered when dealing with the effect of nutrient on dinoflagellate cell growth. Indeed, the 



 124 

initial nutrient amounts interfere with the dynamics of nutrient cell uptake, storing and 

nutrient intracellular ratio, and ultimately on timing of nutrient limitation status. For instance, 

the complex mechanisms underlying P uptake, its transport and assimilation interactions 

within the cell depend on species cell eco-physiology and on internal nutrient ratio which is 

the effective ratio (Flynn, 2002). As such, John and Flynn (2000) showed that in the absence 

of phosphate, growth and carbon fixation of Alexandrium species continue for several 

generations, and phosphate may only be limited under N:P ratios  which are significantly 

higher than Redfield ratio.  

In our P-limited conditions, at the end of the exponential phase, residual P concentrations 

were still available (about 0.4 µM) accompanied by appreciable N concentrations; 

nevertheless, as mentioned above, cells experienced strong P-limitation during early 

exponential phase preventing cell algal division. 

Nutrient limited conditions also affected O. cf. ovata cell size; particularly, P stress resulted in 

an increase of cell biovolume. The percentage of large cells recorded at the stationary phase 

under P-depleted condition was similar to that one found under control condition at the end of 

the exponential phase when cell experienced a similar N/P ratio (31). This behaviour was also 

observed in other species of both planktonic (e.g. Latasa and Berdalet 1994; John and Flynn 

2000; Lim et al. 2005)  and benthic dinoflagellates (Vanucci et al., 2010; Varkitzi et al., 

2010). John and Flynn (2000) suggesting that the increase in cell biovolume is due to the 

arrest of cells in the G1 phase (Vaulot et al. 1996) without undergoing cell division, while 

other non-P compounds continued to be synthesized.  

 

Toxins 

Under all tested conditions O. cf. ovata Adriatic strain showed the same qualitative toxin 

profile producing pPLTX, OVTX-a, OVTX-b, OVTX-c, OVTX-d, and OVTX-e, with 

OVTX-a being the major contributor to the total toxin content (>50%). Moreover, under all 

tested conditions, toxin concentrations increased from exponential to stationary growth phase; 

however, this increase was significantly reduced under both N- and P-nutrient limited 

conditions. The major effect was found under nitrogen limitation with a decrease of final total 

toxin content of 51% and 39.6% for N-and P-limitation, respectively, when compared to 

control conditions. Increasing toxin production during the growth was consistent with 

previous results on different O. cf. ovata strains (Guerrini et al., 2010) and other toxic benthic 

dinoflagellates such as P. lima (Vanucci et al., 2010; Varkitzi et al., 2010; McLachlan et al., 
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1994; Sohet et al., 1995). Whereas, the decreasing toxin trend induced by unbalance nutrients  

appears quite different from the results found for P. lima and many other toxic dinoflagellates.  

In this study, N-deficiency affected toxin production with major effects under stationary 

growth phase, although pPLTX and OVTX-c amounts were significantly affected also during 

exponential phase. Moreover, comparison with control conditions also indicates that under N-

limitation the lower toxin amounts is due to a factual decrease in toxin production as under N-

limitation cell volume was significantly smaller than under control conditions all over the 

growth cycle.  

Conversely to the observations under N-limitation, P-limited conditions did not affect cell 

toxin production during the exponential phase at the end of which N:P ratio was about 30. 

The lower toxic concentrations found for some toxins when expressed on cell volume basis 

are very likely ascribable to the significant higher cell volume found under P-limitation when 

compared to control (20% higher than control) due to inhibition of cell division.  This 

indicates that during exponential phase P-limitation affects cell yield whereas cell 

biochemical pathways involved in qualitative and quantitative production of toxin did not 

appear to be significantly affected. 

As O. cf. ovata toxins are N containing compounds, our results agree with the results reported 

for species producing N-rich toxins; in fact N-rich PSP-toxins are synthesized during N-

upshock and P-stress (which gives relatively high N-status) and not during N-downshock 

(Flynn et al., 1994; Granéli et al., 1998; Granéli and Flynn 2006 and references therein). In 

the tentative to minimize batch experimental artefacts as possible. N and P concentrations 

reported during Ostreopsis spp. surveys worldwide may be taken into consideration and 

reported a high N-limitation (nitrate range: 0.2–12.5 µM; phosphate range: 0.005–4.28 µM; 

Pistocchi et al., 2011). In this study we used low concentrations for both nutrients and a 

Redfield ratio for control. In our conditions, neither N-upshock and P-stress which gives 

relatively high N-status were experienced  by O. cf. ovata.  

 

4.3. Toxin characterization of Italian O. cf. ovata strains 

Since O. cf. ovata cells present different growth and toxicity characteristics in the different 

coastal areas, several strains isolated from field water samples collected along the Italian 

coasts in recent years were analyzed for their toxin content and their toxin production was 

compared.  
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An important issue in the ovatoxins field is represented by lacking of certified reference 

standards of palytoxin and its analogues; they are difficult to be obtained in acceptable 

amounts until a large scale culturing of Ostreopsis spp. as well as efficient isolation 

procedures of the produced toxins will be developed. Currently, quantitation is carried out 

basing on the tentative assumption that palytoxin-like compounds show the same molar 

response as palytoxin itself, but even limited structural features in large molecules as 

palytoxins could significantly impact their ionization efficiency (Ciminiello et al., 2011).  

Therefore, this work was also done with the aim to select one strain, with the highest toxin 

production efficency, to be used for large scale culturing in order to isolate ovatoxins and 

characterize their structures. 

 
Experimental section 

Cultures of Ostreopsis cf. ovata 

O. cf. ovata strains isolated by the capillary pipette method  (Hoshaw and Rosowski, 1973) 

from water samples collected along the Adriatic and Tyrrhenian coasts of Italy in 2006, 2007 

and 2008 were cultured. Adriatic strains were: OOAN0601 (from Numana, Marche region, 

isolated in 2006); OOAN0709 (from Numana, Marche region, isolated in 2007); OOAN0816 

(from Numana, Marche region, isolated in 2008); and OOAB0801 (from Bari, Puglia region, 

isolated in 2008); the Tyrrenian strain was OOTL0707 (from Latina, Lazio region, isolated in 

2007). Cultures were established at salinity of 36 and temperature of 20°C, in a thermostatic 

room under a 16:8 h L:D cycle from cool white lamp, maintaining light irradiance at 100-

110 µmol m−2 s−1. In order to evaluate the toxin content of O. cf. ovata strains, cultures were 

prepared adding macronutrients at a five-fold diluted f/2 (Guillard, 1975) concentrations with 

selenium.  

For each isolate, two 400 mL culturing flasks were set up for the evaluation of toxin content, 

and culture collections were carried out during the late stationary growth phases (day 25) by 

gravity filtration through GF/F Whatman (0.7 µm) filters. Cell pellets for each condition were 

provided for chemical analysis. 

 
Chemical analysis 

HR LC-MS analyses of palytoxin-like compunds were performed as reported in section 4.2.1. 
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Results and discussion 

Cell pellets of several O. cf. ovata cutures grown at the same conditions (temperature 20°C 

and salinity 36) were collected during the late stationary growth phase. Samples were 

separately extracted as reported in the experimental and the crude extracts were used to 

evaluate the toxin profile. HR LC-MS experiments were acquired in full MS mode by using 

an LC method which allowed chromatographic separation of the major components of the 

toxin profile (see sections 4.2, this thesis). Due to lack of standards for ovatoxins, quantitative 

analyses were carried out basing on the tentative assumption that they present the same molar 

response as palytoxin. 

The presence of putative palytoxin and of all the ovatoxins (ovatoxin-a, -b, -c, -d, and -e) 

recently identified in O. cf. ovata (Ciminiello et al., 2008, 2010) was highlighted in four of 

the five analyzed samples. The absence of ovatoxin-b and -c in one (OOAN0816) of the O. cf. 

ovata strains was remarked for the first time and was confirmed also by subsequently analyses 

of algal extracts of the same strain grown at different conditions (data not shown). 

 
Fig. 4.18 – Individual toxin contents of putative palytoxin, ovatoxin-a, -b, -c, -d, and -e of several 

Adriatic and Tyrrhenian O. cf. ovata strains in the exponential stationary phase. HR LC-MS 

measurements were carried out for cell pellet extracts and espressed as toxin content per colture 

volume (µg L-1). 
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Significant differences were observed in the total toxin content of the different algal extracts 

(ANOVA, P<0.001), whereas relative abundance of individual toxins were quite similar in all 

the strains besides the Adriatic O. cf. ovata starin isolated in 2008 (OOAB0816), which 
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reported the anomaly in the toxin profile: ovatoxin-a was by far the major component of the 

toxin profile (52-54% of the total toxin content; Post-hoc SNK test, P<0.001), followed by 

ovatoxin-b (25-26%), ovatoxin-d and -e (13-15%), ovatoxin-c (5-6%) and putative palytoxin 

(1-2%) on the basis of their decreasing relative abundance. These amounts were in accordance 

with previous data, as reported in section 4.2. The strain OOAN0816 resulted in a higher 

amount of ovatoxin-a (about 76%) than the others strains, and the other detected toxins were 

ovatoxin-d and -e (22%), and putative palytoxin (2%). 

Total toxin content expressed as µg L-1 culture are reported in Fig. 4.18. The highest toxin 

content was reported in the cell pellet of the Tyrrhenian strain OOTL0707 (314 µg L-1), 

followed by the Adriatic OOAN0816 (307 µg L-1) and OOAB0801 (273 µg L-1); while 

significantly (Post-hoc SNK test, P<0.001) lower amount were found in the two Adriatic 

strains OOAN0709 and OOAN0601, being 201 and 129 µg L-1, respectively.   

These results confirmed once again the existing differences among O. cf. ovata strains, in 

term of toxin production (Guerrini et al., 2010; section 4.2.2) and reported for the first time 

the absence in the toxin profile of two out of the six known palytoxin-like compounds in one 

strain of this dinoflagellate. 
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5. Polyketide synthase (PKS) enzymes 
The majority of dinoflagellate toxins that adversely affect human health are polyether 

compounds (Fig. 5.1), synthesized by complex enzymes known as polyketide synthase (PKS) 

enzymes. Polyketides are often highly oxygenated compounds and include macrolides, 

polyethers, polyols and aromatics. The construction of dinoflagellate polyketides, is achieved 

by the polyketide pathway and probably involves a polyketide synthase (PKS) with some 

additional functional segments (Shimizu, 2003).  

Similar to many other dinoflagellates, O. cf. ovata is a prolific producer of secondary 

metabolites; in particular, Ostreopsis spp. were proposed to be the biogenetic origin of 

palytoxin (Taniyama et al., 2003). Palytoxin is a large, very complex molecule with a long 

polyhydroxylated and partially unsaturated aliphatic backbone, containing 64 chiral centers 

(Kan et al., 2001). Palytoxin has both lipophilic and hydrophilic regions and is referred to as a 

super-carbon-chain compound, since it has the longest chain of continuous carbon atoms in 

any known natural product (Wang, 2008). Besides putative palytoxin, new compounds, 

namely ovatoxins, have been recently isolated from different clones of O. cf. ovata organism 

through an in-depth high resolution (HR) Liquid Cromatography-Mass Spectrometry (LC-

MS) investigation (Ciminiello et al., 2010). Their structures are still unknown however, they 

present elemental formulae similar to that of palytoxin.  

Along the Mediterranean coasts, Ostreopsis spp. are generally present in association with 

other dinoflagellate species, namely Coolia monotis and Prorocentrum spp. C. monotis is 

quite common in temperate and tropical waters (Steideinger and Tangen, 1997) where it has 

been frequently detected at low concentrations during warmer periods. C. monotis has been 

reported to produce a toxin, named cooliatoxin, that is believed to be structurally related to 

yessotoxin based upon the molecular weight, which corresponds to a monosulfated 

yessotoxin, and the sympoms induced in mice however, its structure is still uncharacterized 

(Holmes et al., 1995).  

Polyketides are synthesized through the sequential addition of carbon building blocks 

mediated by a set of coordinated catalytic sites that make up polyketide synthase enzymes 

(PKSs) (Staunton et al., 2001). 

Polyketide biosynthesis is analogous to fatty acid biosynthesis and involves similar catalytic 

sites; the condensation reaction between carboxylic acid building blocks is performed by a •-

ketoacyl synthase (KS), and the •-keto group may be reduced by successive ketoreduction by 
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a ketoreductase (KR), dehydration by a dehydratase (DH), and enoyl reduction by an enoyl 

reductase (ER) following each chain elongation step. 

 

Fig. 5.1 - Chemical structure for some dinoflagellate toxins: (a) yessotoxin (related to Coolia monotis 

toxin), (b) brevetoxin (produced by Karenia brevis), (c) palytoxin (produced by Ostreopsis spp.) 

 

The growing carbon chain resides on a phosphopantetheine “arm” on the acyl carrier protein 

(ACP) that “swings” the growing chain in proximity to catalytic sites, while the acyl 

transferase (AT) brings additional “extender” units to be added to the growing chain. 

Polyketides are released from the PKS complex by a thioesterase (TE), and post-PKS 

modifications create the final polyketide structure.  

PKS enzymes have classically been categorized as type I-III. Type I PKSs are large 

multifunctional proteins with multiple active sites on a single polypepetide. Iterative Type I 

PKSs are found in fungi and are analogous to vertebrate fatty acid synthase (FAS). These 

complexes are multidomain proteins used repeatedly for each chain elongation. Modular, or 

processive, Type I PKSs are also multifunctional proteins, but each protein has multiple 

active site domains organized into modules. Each module catalyzes one chain extension 

reaction and programmed reduction based on which active site domains are present in the 

module. Type II PKSs build aromatic polyketides found in bacteria, and unlike Type I PKSs, 

type II PKSs are organized as complexes of smaller mono-functional proteins where each 

catalytic domain is located on a separate peptide, a structure similar to bacterial FAS. Also 

unique to the type II PKSs is the CLF (chain length factor) domain, or KS•, that is part of the 

minimal PKS required for type II polyketide biosynthesis (Rawlings, 1997). Type III PKS are 

typically associated with chalcone synthases (CHS) and the stilbene synthases (STS) found 

exclusively in higher plants, but Type III PKS has also recently been identified in several 

bacteria (Gross et al., 2006). Type III PKSs are smaller PKSs (40-47kD) and are involved in 

flavonoid biosynthesis in plants and melanin in bacteria (Funa et al., 1999; Gross et al., 2006; 

Hopwood, 1997; Khosla et al., 1999).  

 

a) b c) 
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Fig. 5.2 - A) Type I PKS: a large multifunctional enzyme with several functional or “module” 

domains within a single protein. B) PKS transcript structure in K. brevis with a single domain on a 

trans-spliced, polyadenylated message (modified from Monroe and Van Dolah, 2008). 

 

 

Little information exists regarding protist PKSs, especially in dinoflagellates. The first protist 

PKS gene was identified in the apicomplexan Cryptosporidium parvum, which is the closest 

relative of dinoflagellates to have a fully sequenced genome (Zhu et al., 2000, 2002). The C. 

parvum PKS gene is an intronless 40 kb open reading frame that encodes for a single 13,000 

amino acid polypeptide. The polypeptide contains 29 domains including an N-terminal 

loading unit, 7 modules for chain extension and modifications, and a terminator unit (Zhu et 

al., 2002). Protist PKS have also been recently identified in the genomes of three 

chlorophytes, Ostreococcus taurii, O. lucimarinus, and Chlamydomonas reinhardtii, and the 

haptophyte, Emiliania huxleyi (John et al., 2007). Within the compact genome of two 

Ostreococcus sp., three large PKS genes were identified that comprise 1.5% of the total 

genome. One long open reading frame with type I PKS domains is present in the E. huxleyi 

genome (John et al., 2007).  

The previous identification of protist PKS relied on full genome sequencing, but due to the 

large genomes of dinoflagellates (e.g. 1x1011 bp in K. brevis, Van Dolah et al., 2007), the 

production of genome sequences is currently intractable. Despite these impediments, a PKS 

gene has been identified in Amphidinium, a dinoflagellate that produces the polyketide 

amphidinolide (Kubota et al., 2006). Within the 36,000 base pair clone, six open reading 

frames were identified that had sequence similarity to several PKS domains (KS, AT, DH, 

KR, ACP, and TE) spanning 5625 base pairs. As for K. brevis PKSs, degenerate PCR primers 

have been used to identify type I PKS KS domains in 7 dinoflagellate species, including 2 

encoded by K. brevis (Snyder et al., 2003, 2005). More recently, transcripts with sequence 

similarity to type I PKS were identified in K. brevis through screening of cDNA libraries to K. 

brevis (Monroe and Van Dolah, 2008). Although the full-length PKS transcripts are 

phylogenetically most similar to type I PKSs from other protists, bacteria, and fungi, they 

 KS AT DH ER KR ACP KS AT ER KR AC

 1st Module 2nd Module  

 KS SL  KR SL 

A) 
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contain only single catalytic domains, a structure more similar to type II PKSs. Thus, K. 

brevis appears to possess type I PKSs that are unique from other known PKSs. In silico 

translation of K. brevis PKS full-length transcripts previously described predicts PKS proteins 

to be between 50 and 100kDa. Monroe et al. (2010) developed peptide polyclonal antibodies 

from in silico translated KS and KR transcripts to confirm their predicted protein sizes, study 

their expression, and determine their cellular localization. Several putative PKS genes 

encoding ketosynthase (KS), ketoreductase (KR), and both acyl carrier protein (ACP) and KS 

domains were identified from K. brevis (Monroe and Van Dolah, 2008), with domains 

residing on separate polypeptides, more similar to Type II PKS (Fig. 5.2B) while sequence 

similarity was closest to type I (Fig. 5.2A). Their altered expression in a non-toxic isolate of 

K. brevis suggested their involvement in brevetoxin biosynthesis (Monroe et al., 2010); 

however, evidence for their function in toxin biosynthesis was limited to correlation. Since 

PKS and FAS share a long evolutionary history, it can be difficult to distinguish between 

PKSs and FASs solely on sequence information. The only evidence to suggest these PKSs are 

involved in brevetoxin biosynthesis was their presence in K. brevis and their absence from 

dinoflagellate species that do not produce brevetoxins, as determined by gene specific PCR. 

Four PKS transcripts were determined to be K. brevis-specific, KB1008, KB2006, KB5299, 

and KB5361, while the remaining four transcripts were identified in other dinoflagellate 

species. From this data it was hypothesized that the four PKSs found in other dinoflagellates 

might be involved in processes conserved among dinoflagellate species, like fatty acid 

synthesis, while the four K. brevis-specific sequences could be involved in brevetoxin 

biosynthesis. 

Since no information exists on PKS proteins of other toxic dinoflagellates, in the current work 

antibodies developed against K. brevis PKS proteins were used to probe for the expression 

and intracellular localization of PKS domains in the two PKS producing dinoflagellates 

(Ostreopsis ovata, Coolia monotis), and a raphidophyte (Fibrocapsa japonica) which causes 

blooms in the Adriatic Sea and is known to produce high concentrations of free fatty acids 

(FFA) (Pezzolesi et al., 2010). For the PKS localization within the cells, chloroplasts were 

isolated from the algal cells, based on the results previously ottained in K. brevis. This work 

was completed at NOAA (Charleston, SC, USA) in the laboratory of the Dr. Frances Van 

Dolah, with the aim to investigate the role of the identified PKSs in toxin biosynthesis. 
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5.1. Experimental section  

5.1.1. Algal cultures  

O. cf. ovata (strains OOAB0801 and OOTL0707) were isolated by the capillary pipette 

method (Hoshaw and Rosowski, 1973) from water samples collected along Adriatic (Bari, 

Puglia) and Tyrrhenian (Latina, Lazio) coasts of Italy in 2008 and 2007, respectively. C. 

monotis (strain CMAB0801) was isolated along the Adriatic (Bari, Puglia) in 2008, while F. 

japonica (strain FJAP0603) was isolated in 2006 in Adriatic Sea near Palombina (Marche, 

Italy). After an initial growth in microplates, cells were cultured at 20°C under a 16:8 h L:D 

cycle from cool white lamp in natural seawater at salinity 36, adding macronutrients at a five-

fold diluted f/2-Si for O. cf. ovata and C. monotis and at a f/2-Si medium (Guillard, 1975) for 

F. japonica. Cultures were made with natural seawater, adjusted to a salinity of 36 through 

the addition of distilled water, and kept under the temperature and the light conditions 

described above. 

The experiment was carried out by growing 9000 mL of culture for each strain, from which 

triplicate 2000 mL aliquots were used for ‘chloroplast’ isolation and triplicate 1000 mL 

aliquots were used for ‘whole cell’ extracts. Cultures were established at salinity of 36 and 

temperature of 25°C in a thermostatic room, maintaining light irradiance at 100-

110 µmol m−2 s−1. At the end of the exponential phase (day 8) cultures were centrifuged at 

2400 x g (3600 rpm) for 20 min and supernatant was discarded. Whole cell samples were put 

at -80°C, while chloroplast samples were used immediately for the subcellular fractionation. 

 

5.1.2. Subcellular fractionation  

Chloroplasts were isolated by a modification of the method of Laatsch et al (2004). O. cf. 

ovata, C. monotis and F. japonica cells were harvested by centrifugation at 2400 x g (3600 

rpm) for 20 min. Cell pellets were resuspended in chloroplast isolation buffer (CIB) 

consisting of 50 mM Tris, pH 7.5, 1 mM MgCl2, 10 mM EDTA, 0.25% PVP, and 0.4 M 

mannitol and homogenized in a Dounce homogenizer on ice until chloroplasts free of nuclei 

(Fig. 5.3) were apparent by epifluorescent microscopic inspection of a Dapi stained sample. 

The homogenate was then layered onto a gradient of 4 mL 2.2 M sucrose and 12 mL 1.6 M 

sucrose, then centrifuged at 14,000 x g (28,000 rpm) for 30 min at 4°C in an ultracentrifuge 

equipped with a swinging bucket rotor. The plastid band was removed, washed with 24 mL 

isolation buffer, and then harvested by centrifugation at 12,000 x g for 10 min at 4°C. The 

chloroplast pellet was then stored at -80°C until use. 
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Fig. 5.3 – Red fluorescence of chloroplasts in Fibrocapsa japonica (A), Ostreopsis ovata (B), and 

Coolia monotis (C) cells.  

 

 

5.1.3. Antibody Development  

Custom peptide polyclonal antibodies were made against in silico translation of K. brevis KS 

domain (KB2006; GenBank Accession No. EF410007), ACP/KS domain (KB1008; GenBank 

Accession No. EF410006) and KR domain (KB5299; Genbank Accession No. EF410009) full 

length transcripts by ProSci Incorporated (Poway, CA), as described in Monroe and Van 

Dolah (2008). 

 

5.1.4. Protein isolation and western blotting  

Total protein was isolated from O. cf. ovata, C. monotis and F. jpaonica cultures using 

TriReagent (Molecular Research Center, Cincinnati, PH) according to manufacturer's 

instructions with some modifications. In brief, whole cell or chloroplast pellets were 

resuspended in 1mL or 0.5 mL of TriReagent, respectively, and sonicated on ice with short 

pulses of 15-20 sec for a total of 2 min. Phases were separated using 0.2 mL (or 0.1 mL) 

chloroform. RNA was removed from the aqueous phase and precipitated with isopropanol for 

further purification. DNA was precipitated from the organic phase using 0.3 mL (or 0.15 mL) 

ethanol and then proteins were precipitated from the supernatant using 3 mL (or 1.5 mL) 

isopropanol, washed in 95% ethanol, and the protein pellets resuspended in protein sample 

buffer containing 30 mM Tris, 2 M thiourea, 7 M urea, and 4% (w/v) CHAPS.  

Protein concentration was determined using a BioRad (Hercules, CA) Bradford protein assay, 

and 10 µg of protein were run on a NuPAGE Novex 4-12% Bis-Tris gel from Invitrogen. 

Proteins were transferred to polyvinyl difluoride (PVDF) membranes (0.45 µm), and blots 

were stained with Ponceau stain (Sigma, St. Louis, MO) to examine total protein transferred 

to the blot. Membranes were blocked with 5% nonfat milk in Tris-buffered Saline (TBS) for 1 

B C A 



 135 

hour, and blots were then incubated with appropriate primary antibody dilutions (KB2006: 

1:5000, KB5299: 1:500, KB1008: 1:1000) in 5% nonfat milk in TBS overnight at 4°C. 

Antibody specificity was determined by incubating the antibody with 100-fold excess (by 

weight) of the peptide used to generate the antibody for 1 hr prior to membrane 

immunoblotting at the same dilutions indicated above. After 3 washes for 10 min each were 

done in TBS with 0.1% Tween 20 (TBST), membranes were incubated with an ECL HRP-

linked anti-rabbit (1:2000) (GE Healthcare, Buckinghamshire, UK), washed twice with TBST 

(10 min each) and once with TBS (5 min) and finally developed using Pierce West Pico 

chemiluminescent substrate (Rockford, IL). Images were taken using a SynGene G:box 

imaging system and SynGene GeneSnap software, and densitometry was calculated using the 

SynGene GeneTools software (Frederick, MD). 

 

5.1.5. Evaluation of toxin and chlorophyll content 

For toxin and chlorophyll-a quantification in O. cf. ovata ‘whole cell’ and ‘chloroplast’ 

samples, 6000 mL culture was grown. At the end of the exponential phase, 500 mL and 50 

mL of culture, each in duplicate, were centrifuged at 4000 rpm for 15 min to use for ‘whole 

cell’ toxin and chlorophyll extraction, respectively. Algal pellets were stored at -80°C until 

use. ‘Chloroplast’ samples were obtained by centrifuging 2450 mL culture in duplicate at 

4000 rpm for 15 min, and algal pellet obtained were used for the subcellular fractionation, as 

described above (see section 5.1.2). 

Cell counts were made following Utermöhl method (Hasle, 1978).  

 

Chemicals 

All organic solvents were of distilled-in-glass grade (Carlo Erba,  Milan, Italy). Water was 

distilled and passed through a MilliQ water purification system (Millipore Ltd., Bedford, MA, 

USA). Acetic acid (Laboratory grade) was purchased from Carlo Erba. Analytical standard of 

palytoxin was purchased from Wako Chemicals GmbH (Neuss, Germany).  

 

Extraction 

Whole cell and chloroplast pellets were separately extracted, adding 9 or 1 mL of a 

methanol/water (1:1, v/v) solution, respectively, and sonicating for 30 min in pulse mode, 

while cooling in an ice bath. The mixture was centrifuged at 3000 x g for 30 min, the 

supernatant was decanted and the pellet was washed twice with 9 or 1 mL of methanol/water 
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(1:1, v/v). The extracts were combined and the volume was adjusted to 30 or 3 mL with the 

methanol/water (1:1, v/v) solution for whole cell and chloroplast samples, respectively. The 

obtained mixture was analyzed directly by HR LC-MS (5 µL injected). Recovery percentage 

of the above extraction procedures was estimated to be 98% (Ciminiello et al., 2006). 

 

High Resolution Liquid chromatography-mass spectrometry (HR LC-MS)  

High resolution (HR)LC-MS experiments were carried out on an Agilent 1100 LC binary 

system (Palo Alto, CA, USA) coupled to a hybrid linear ion trap LTQ Orbitrap XLTM Fourier 

Transform MS (FTMS) equipped with an ESI ION MAXTM source (Thermo-Fisher, San Josè, 

CA, USA). Chromatographic separation was accomplished by using a 3 µm gemini C18 (150 

× 2.00 mm) column (Phenomenex, Torrance, CA, USA) maintained at room temperature and 

eluted at 0.2 mL/min with water (eluent A) and 95% acetonitrile/water (eluent B), both 

containing 30 mM acetic acid. A slow gradient elution was used: 20-50% B over 20 min, 50-

80% B over 10 min, 80-100% B in 1 min, and hold 5 min. This gradient system allowed a 

sufficient chromatographic separation of most palytoxin-like compounds.  

HR full MS experiments (positive ions) were acquired in the range m/z 800-1400 at a 

resolving power of 15,000. The following source settings were used in all HR LC-MS 

experiments: a spray voltage of 4 kV, a capillary temperature of 290°C, a capillary voltage of 

22 V, a sheath gas and an auxiliary gas flow of 35 and 1 (arbitrary units). The tube lens 

voltage was set at 110 V. 

Due to commercial availability of the only palytoxin standard, quantitative determination of 

putative palytoxin, ovatoxin-a,-b,-c,-d, and -e in the extracts was carried out by using a 

calibration curve (triplicate injection) of palytoxin standards at four levels of concentration 

(25, 12.5, 6.25, and 3.13 ng mL-1) and assuming that their molar responses were similar to 

that of palytoxin. Extracted ion chromatograms (XIC) for palytoxin and each ovatoxins were 

obtained by selecting the most abundant ion peaks of both [M+2H-H2O]2+ and [M+2H+K]3+ 

ion clusters. A mass tolerance of 5 ppm was used. 

 

5.1.6. Chlorophyll analysis  

Chlorophyll a measurements have historically provided a useful estimate of algal biomass. 

Chlorophyll analyses were performed by collecting cells (50 mL of algal culture and 1/10 of 

chloroplast sample obtained from the subcellular fractionation) with centrifugation. 

Supernatant was removed and pellets put at -80°C. For the extraction, 90% acetone was used 
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and samples were analyzed spectrophotometrically according to Strickland and Parsons 

(1972). 

5.2. Results 

5.2.1. PKS espression in whole cell and chloroplast samples 

Fig. 5.4 - Western blot analysis of Ketosynthase domain (KS) KB2006 expression in whole cell (WC) 

and chloroplast (CHLP). Ten micrograms of protein from whole cells and isolated chloroplasts in 

triplicates were separated on a 4%–12% gel (A). Average densitive values are shown (B). Results refer 

to the strain OOAB0801 of O. cf. ovata. 
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Western blot analysis with anti-KB2006 (KS) identified a band at about 100 kDa in both 

strains of the dinoflagellates O. cf. ovata  and in C. monotis, in accordance with the band 

found in K. brevis and in good agreement with the predicted 101 kDa in silico translation data 
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(Fig. 5.4A). No bands were identified in F. japonica samples. KS protein was expressed 

equivalently in whole cell and chloroplast extracts in the two benthic dinoflagellates (Fig. 

5.4B) as confirmed by the densitometry.  

 

Fig. 5.5 - Western blot analysis of Ketoreductase domain (KR) KB5299 expression in whole cell 

(WC) and chloroplast (CHLP). Ten micrograms of protein from whole cells and isolated chloroplasts 

in triplicates were separated on a 4%–12% gel (A). Average densitive values are shown (B). Results 

refer to the strain OOAB0801 of O. cf. ovata.  
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The second antibody anti-KB5299 (KR) identified a protein about 90 kDa, larger than the 

predicted 56 kDa and even different from the about 40 kDa protein found in K. brevis. 

Proteins cross-reactive with the anti-KR antibody, but larger than in K. brevis, were expressed 

in whole cell but not in the chloroplast extracts in the dinoflagellates.  

 

Fig. 5.6 - Western blot analysis of acyl carrier protein (ACP)/KS  domain protein KB1008 expression 

in whole cell (WC) and chloroplast (CHLP). Ten micrograms of protein from whole cells and isolated 

chloroplasts in triplicates were separated on a 4%–12% gel.  
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However, a band of approximately 75 kDa was present in chloroplast of C. monotis. It has to 

be noted that no bands were found in the strain OOTL0707 of O. cf. ovata, resulting in a 

difference between the expression of PKS proteins in the two isolates of this dinoflagellate, 

which were used in the study. A protein of similar size was expressed equivalently in whole 

cell and chloroplast extracts in the raphidophyte (Fig. 5.5A), reporting strong bands.  
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Densitometry showed no significant difference between these bands (Fig. 5.5B). 

The third antibody anti-KB1008 (ACP/KS) identified a protein about 95 kDa, which was 

expressed equivalently in whole cell and chloroplast extracts in the raphidophyte (Fig. 5.6), 

but not in the other two dinoflagellates. 

 

Fig. 5.7 – Polyketide synthase (PKS) proteins in the dinoflagellates O. cf. ovata, strain OOAB0801 

(1) and C. monotis (2) and in the Raphidophyte F. japonica (3). Western blot analysis of PKS proteins 

using peptide polyclonal anti-KS against K. brevis KS domain protein KB2006 (A) and peptide-

blocked anti-KS demonstrating specificity for the 100 kDa band (B); anti-KR against K. brevis KR 

domain protein KB2599 (A) and peptide-blocked anti-KR demonstrating specificity for the  about 90 

kDa band (B); and anti–ACP/KS against K. brevis ACP/KS domain protein KB1008 (A) and peptide-

blocked anti-ACP/KS demonstrating specificity for the about 95 kDa band (B). 
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To summarize, the expression of the PKS proteins was compared in protein extracts from the 

isolated chloroplasts and whole cells by Western blotting with the KS domain (KB2006), KR 

domain (KB5299), and ACP/KS PKS antibodies. PKS showed prominent bands in the 

chloroplast (Fig. 5.4, 5.5, 5.6) almost in all cases, besides for the KR5299 which was absent 

in the chloroplast of the dinoflagellates. 
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In fact, negative controls with peptide-blocked antibodies demonstrate the specificity of the 

bands, as reported in Fig. 5.7 for the three PKS proteins in all the algal species. The 75 kDa 

bands found in C. monotis chloroplasts resulted no specific. 

 

5.2.2. Determination of toxin content and localization by HR LC-MS  

Culture and chloroplast pellets of O. cf. ovata were collected during the late exponential 

growth phase. Samples were separately extracted as reported in the experimental and the 

crude extracts were used to evaluate the toxin profile. HR LC-MS experiments were acquired 

in full MS mode by using an LC method which allowed chromatographic separation of the 

major components of the toxin profile. The presence of putative palytoxin and of all the 

ovatoxins (ovatoxin-a, -b, -c, -d, and -e) recently identified in O. cf. ovata (Ciminiello et al., 

2008, 2010) was highlighted in all the analyzed samples.  

With the purpose of gaining information on the toxin localization in the cells, total toxin 

content was expressed on the basis on the chlorophyll a concentration. Spectrometric 

determination of chlorophyll-a content is in fact a method for the algal biomass evaluation, 

therefore after evaluation of pg cl-a cell-1 in the culture utilized for chloroplast isolation, it 

provides an estimation of the number of cells corresponding to the chloroplast sample. Due to 

lack of standards for ovatoxins, quantitative analyses were carried out basing on the tentative 

assumption that they present the same molar response as palytoxin. Concentrations of putative 

palytoxin and ovatoxins were extrapolated from a calibration curve of palytoxin standard 

injected under the same conditions and the obtained results were corrected basing on recovery 

percentages of the extraction procedures, namely 98% (Ciminiello et al., 2006) for pellet 

extracts.  

Total toxin content expressed as ng per chlorophyll a (ng cl-a-1, Fig. 5.8) reported no 

significant differences between the culture and CHLP extracts (ANOVA, P>0.05) of 

OOAB0801 O. cf. ovata, whereas it resulted significantly different (ANOVA, P<0.001) in the 

OOTL0707 O. cf. ovata strain. The toxin content in the CHLP of the Tyrrhenian strain 

resulted about 25% of the total content in the cell, thus suggesting a partial localization of the 

palytoxin-like compounds in this plastid. 
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Fig. 5.8 – Total toxin content (pPLTX and OVTX-a,b,c,d,e) in the two O. cf. ovata strains, expressed 

on the basis of chlorophyll a concentration. Samples are algal (WC) and chloroplast (CHLP) pellets, 

obtained as reported in the experimental (n=3).  
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5.3. Conclusion - PKS 

This study identifies PKS proteins in the benthic dinoflagellate O. cf. ovata and C. monotis 

and in the raphidophyte F. japonica for the first time. Genes with sequence similarity 

to Type I PKS have previously been identified in K. brevis (Snyder et al., 2003, 2005; Monroe 

and Van Dolah, 2008; Monroe et al., 2010), where full-length PKS transcripts predicted 

proteins smaller than typical Type I PKSs that encode only single catalytic domains (Monroe 

and Van Dolah, 2008).  

The current study confirms the presence of PKS proteins predicted by the in silico translation 

of the transcripts found in K. brevis also in other species. Western blotting identified a 100 

kDa band cross-reactive to a peptide antibody to the KS domain (KB2006), in close 

agreement to the result obtained in K. brevis. A protein band detected by the antibody specific 

to the KR domain (KB5299) is larger (about 95 kDa) than predicted by in silico translation 

(56 kDa) and K. brevis protein (about 40 kDa). By comparison with the K. brevis proteins, 

Type I PKS proteins typically encode polypeptides containing multiple catalytic domains and, 

in the case of modular PKSs, multiple modules. It appears that even the PKS proteins found in 

these species are more similar in size to Type II PKSs, as previously found for K. brevis 

(Monroe et al., 2010) where PKS are multi-protein complexes made up of monofunctional 

proteins each containing a single catalytic domain.  

Although all species, including the raphidophyte expressed proteins cross-reactive with one or 

more K. brevis antibodies, different protein sizes were reported likely due to differences in 
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species. C. monotis and F. japonica from the Adriatic Sea have never reported the production 

of toxins; however, the raphidophyte is known to produce high concentrations of free fatty 

acids (FFA). Thus, these results lead hypothesize that either (1) these proteins are FAS or (2) 

single PKS units could be cobbled together to form complexes that synthesize different 

polyketide compounds and/or fatty acids in different species (Sieber et al., 2002).   

Immunolocalization studies and subcellular fractionation of chloroplasts suggested 

chloroplast localization of both KS and KR proteins in K. brevis (Monroe et al., 2010). KR 

appeared to be chloroplast specific since the density of the Western blotting bands was similar 

to that of whole-cell protein lysates whereas, the KS domain protein appears to occur in other 

compartment(s) more prominently than the chloroplast, based on the relative intensity of the 

chloroplast band and that in the whole cell. The chloroplast localization of K. brevis PKSs 

was consistent with the localization of another dinoflagellate polyketide toxin, okadaic acid 

(OA), in Prorocentrum lima (Zhou and Fritz, 1994; Barbier et al., 1999). Cyanobacterial 

toxins microcystin and nodularin are similarly strongly associated with the photosynthetic 

apparatus, with 70% of labeled microcystin observed in the thylakoid, especially the outer 

portion of the thylakoid (Shi et al., 1995; Young et al., 2005).  

The identification of O. cf. ovata PKSs and the localization of the palytoxin-like compounds 

produced by this dinoflagellate in a similar location (chloroplast) as that observed for other 

dinoflagellate and cyanobacterial toxins provides some indication that these proteins may be 

involved in polyketide biosynthesis. However, their potential function as fatty acid synthases 

cannot be ruled out, as plant fatty acid biosynthesis also occurs within chloroplasts, albeit in 

the stroma. This last hypothesis is also supported by the fact that even in the other two 

species, and in particular in F. japonica, PKS proteins were present. PKSs are structurally and 

functionally similar to FASs and likely originated when an early ancestor of extant 

prokaryotes and eukaryotes evolved a simple condensing enzyme to make other cellular 

functions more efficient (Hopwood, 1997). From this primitive enzyme, a PKS is thought to 

have evolved through the addition of an ACP and AT, and further additions of a reductive 

cycle converted the primitive PKS to an FAS. PKSs subsequently evolved distinct and diverse 

pathways through mutations, recombinations, and gene duplications, while the simple FAS 

were retained because fatty acids had become essential components of the cell.  

It is important to point out that the real biological origin of palytoxin-like compounds remains 

controversial. Palytoxin content in Palythoa spp. in fact significantly varies among species, 

population of the same species and even seasonally (Moore et al., 1982) and, besides algae, 

sporadic occurrence of palytoxins had been detected also in crabs (Yasumoto et al., 1986), 
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and fish (Fukui et al., 1987). Therefore, many have defended the assumption that this class of 

toxins are indeed produced by microorganisms. The occurrence of palytoxins in such a large 

number of even biogenetically distant marine organisms could reasonably imply a symbiotic 

relationship of the above organisms with bacteria (Katikou, 2008). This is also consistent with 

experimental observation that showed haemolytic activity of some Pseudomonas (Carballeira 

et al., 1998), Brevibacterium, Acinetobacter and Bacillus cereus extracts and others proving 

that Vibrio spp. and Aeromonas spp. were producers of molecules antigenically related to 

palytoxin (Frolova et al., 2000a,b). The co-isolation of symbiontic bacteria in the chloroplast 

samples can not be excluded, because the small size of the chloroplasts in C. monotis  and O. 

cf. ovata (about 1-3 µm) could potentially allow for comigration of larger bacteria to a similar 

density in the sucrose gradient. Therefore even the origin of the palytoxin-like compounds 

detected in these extracts remains uncertain. 

Monroe et al. (2010) compared PKS transcript expression and protein abundance in the ‘‘non-

toxic’’ strain and its parental, toxic K. brevis (Wilson) isolate. By both microarray and qPCR 

analysis, PKS transcript levels were not significantly different in the ‘‘nontoxic’’ cultures 

compared to toxin-producing cultures. This was not surprising since many other functions in 

K. brevis are known to be regulated post-transcriptionally (Van Dolah, 2009; Brunelle et al., 

in prep.). Therefore, more insight might be provided by assessing their expression at the 

protein level. In fact, the KS domain was expressed at lower levels in the non-toxic isolate, 

suggesting it may be involved in brevetoxin biosynthesis. However, KB5299 (the KR 

domain) was more abundant in ‘‘non-toxic’’ cultures.  

An interesting finding from the current study is that KR domain was present only in one of 

the two O. cf. ovata strains used, confirming the previous results found in K. brevis which 

indicated as KR protein may be not involved in the same cellular process as the KS proteins 

recognized by the antibodies used in this study (Monroe et al., 2010). Additionally, since this 

strain (OOTL0707) is the one which showed only about 25% of the toxins being localized in 

the chloroplast it could be interesting to investigate more deeply the role of KR protein in 

polyketide biosynthesis.  

The previous studies on K. brevis suggested the roles for polyketides in photosynthetic 

processes in algae (Monroe et al., 2008; 2010), as reported also for okadaic acid (OA) (Zhou 

and Fritz, 1994). Moreover, both the association of microcystins with the thylakoid and the 

increase in microcystin transcripts in response to light (Kaebernick et al., 2000) led to the 

hypothesis that microcystins may also have a functional role in photosynthesis and other 

light-related processes. The localization of PKSs and O. cf. ovata toxins in the chloroplast 
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may also suggest a functional role of palytoxin-like compounds in chloroplast processes or 

suggest that these toxins may be confined in these plastids to avoid damages to the 

cytoskeleton. 

This study provides evidence of the presence of PKS proteins in other dinoflagellates and a 

raphidophyte, and their localization in the chloroplast. Further studies are needed to clarify the 

role that these enzymes may have in the toxin biosythesis. 
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6.  General conclusions 
 
The main goal of the present thesis was to study some harmful algal species which cause 

blooms in Italian coastal waters, leading to consequences for human health, coastal 

ecosystem, fishery and tourism.  

In particular, in the first part of this thesis the toxicity of Adriatic strains of the raphidophyte 

Fibrocapsa japonica was investigated. Despite several hypotheses have been proposed for the 

toxic mechanism of the raphidophytes, especially for the species Chattonella antiqua and C. 

marina, which have been studied more extensively, just a few studies on the toxic effects of 

these species for different organisms were reported. Moreover, a careful reading of the 

literature evidenced as any ichthyotoxic events reported worldwide can be linked to F. 

japonica blooms. Although recently several studies were performed on F. japonica strains 

from the USA, Japan, Australia, New Zealand, the Netherlands, Germany, and France in order 

to characterize their growth and toxicity features, the work reported in this thesis results one 

of the first investigation on the toxic effects of F. japonica for different organisms, such as 

bacteria, crustaceans and fish. Mortality effects, together with haemolysis of fish erythrocytes, 

probably due to the relatively high amount of PUFAs produced by this species, were 

observed. Mortality for fish, however, was reported only at a high cell density and after a long 

exposition period (9-10 days); moreover a significant increase of H2O2 obtained in the tanks 

where sea basses were exposed to F. japonica was also relevant. This result may justify the 

absence of ichthyotoxic events in the Italian coasts, despite F. japonica blooms detected in 

these areas were characterized by high cell densities. This work reports also a first complete 

characterization of the fatty acids produced and extracellularly released by the Adriatic F. 

japonica, and results were also compared with the fatty acid profile of other strains. The 

absence of known brevetoxins in F. japonica algal extracts was also highlighted, leading to 

the hypothesis that the toxicity of F. japonica may be due to a synergic effect of PUFAs and 

ROS. 

Another microalgae that was studied in this thesis is the benthic dinoflagellate Ostreopsis cf. 

ovata. This species was investigated with the aim to investigate the effect of environmental 

parameters on its growth and toxicity. O. cf. ovata, in fact, shows different blooming periods 

along the Italian coasts and even the reported toxic effects are variable. The results of this 

work confirmed the high variability in the growth dynamic and toxin content of several Italian 

strains which were isolated in recent years along the Adriatic and Tyrrhenian Seas. Moreover, 
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the effects of temperature and salinity on the behaviour of the different isolates are in good 

agreement with the results obtained from field surveys, which evidence as the environmental 

parameters are important factors modulating O. cf. ovata proliferation. Another relevant result 

that was highlighted is the anomaly in the production of palytoxin-like compounds reported 

by one of the studied isolate, in particular the one isolated in 2008 in Ancona (Adriatic Sea). 

Only this strain reported the absence of two (ovatoxin-b and –c) of the five ovatoxins so far 

known in the toxin profile and a different relative abundance of the other toxins. 

The last aspect that was studied in this thesis regards the toxin biosythesis. In fact, toxins 

produced (palytoxin-like compounds) or supposed to be produced (brevetoxin-like 

compounds) by O. cf. ovata  and F. japonica, respectively, are polyketides, which are highly 

oxygenated compounds synthesized by complex enzymes known as polyketide synthase 

(PKS) enzymes. These enzymes are multi-domain complexes that structurally and 

functionally resemble the fatty acid synthases (FASs). This work reports the first study of 

PKS proteins in the dinoflagellates O. cf. ovata, C. monotis and in the raphidophyte F. 

japonica. For the first time some PKSs were identified in these species, confirming the 

presence of PKS proteins predicted by the in silico translation of the transcripts found in K. 

brevis also in other species. The identification of O. cf. ovata PKSs and the localization of the 

palytoxin-like compounds produced by this dinoflagellate in a similar location (chloroplast) 

as that observed for other dinoflagellate and cyanobacterial toxins provides some indication 

that these proteins may be involved in polyketide biosynthesis. However, their potential 

function as fatty acid synthases cannot be ruled out, as plant fatty acid synthesis also occurs 

within chloroplasts. This last hypothesis is also supported by the fact that in all the 

investigated species, and in particular in F. japonica, PKS proteins were present. Therefore, 

these results provide an important contribution to the study of the polyketides and of the 

involvement of PKS proteins in the toxin biosynthesis. 
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Abbreviations 

AA  5,8,11,14-eicosatetraenoic acid  

ACN Acetonitrile  

ACP Acyl carrier protein 

ASP Amnesic shellfish poisoning  

AT Acyl transferase  

AZP Azaspiracid shellfish poisoning  

BHT  2,6-Di-tert-butyl-4-methylphenol 

BSA Bovine serum albumin  

BSTFA-TMCS N,O-Bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane  

BTXs Brevetoxins  

CE Collision energy  

CHLP  Chloroplast  

CIB Chloroplast isolation buffer  

DA Domoic acid  

DH Dehydratase 

DON Dissolved organic nitrogen 

DP Declustering potential  

DSP Diarrhoetic shellfish poisoning  

DTXs Dinophysistoxins  

EC50 50% effect concentration  

ELA  Erythrocyte lysis assay  

EPA 5,8,11,14,17-eicosapentaenoic acid  

ER Enoyl reductase  

ESI Electrospray ionisation  

FA Formic acid  

FASs Fatty acid synthases  

FFA Free fatty acids  

GC-MS Gas chromatography-mass spectrometry  

HABs Harmful algal blooms  

HR High resolution  

KR  Ketoreductase  

KS Ketoacyl synthase 
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LC-MS  Liquid chromatography-mass spectrometry  

LOD  Limit of detection  

MBA  Mouse bioassay  

MDA  Malondialdehyde  

MeOH Methanol  

MRM Multiple reaction monitoring  

NMR  Nuclear magnetic resonance  

NSP Neurotoxic shellfish poisoning  

OA Okadaic acid  

OTA  6,9,12,15-octadecatetraenoic acid  

OUA Ouabain  

OVTX  Ovatoxin 

PBS Phosphate buffered saline  

PKSs Polyketide synthases  

PP2A Protein phosphatise 2A  

pPLTX Putative palytoxin  

PSP Paralytic shellfish poisoning  

PTXs Pectenotoxins  

PUFAs Polyunsaturated fatty acids  

PVDF Polyvinyl difluoride  

RF Response factors  

ROS Reactive oxygen species  

SNK Student-Newman-Keuls test 

SPE Solid phase extraction  

SRM Selected reaction monitoring  

STXs Saxitoxins  

TBA  2-thiobarbituric acid  

TBS Tris-buffered saline  

TCA  Trichloroacetic acid 

TE Thioesterase  

TFA  Trifluoroacetic acid  

THF  Tetrahydrofuran  

TTEP Tetraethoxypropane  

WC Whole cell  
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XIC  Extracted ion chromatograms  

YTXs Yessotoxins  
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