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SUMMARY

A main objective of the human movement analysighis quantitative description of joint
kinematics and kinetics. This information may hgveat possibility to address clinical problems
both in orthopaedics and motor rehabilitation. Rres studies have shown that the assessment of
kinematics and kinetics from stereophotogrammetidta necessitates a setup phase, special
equipment and expertise to operate. Besides, tbhisedure may cause feeling of uneasiness on the
subjects and may hinder with their walking. The egahaim of this thesis is the implementation
and evaluation of new 2D markerless techniquegrder to contribute to the development of an
alternative technique to the traditional stereopgmimmetric techniques.

At first, the focus of the study has been the esfiiom of the ankle-foot complex kinematics
during stance phase of the gait. Two particularesawere considered: subjects barefoot and
subjects wearing ankle socks. The use of socksmwastigated in view of the development of the
hybrid method proposed in this work. Different aioms were analyzed, evaluated and
implemented in order to have a 2D markerless soiutib estimate the kinematics for both cases.
The validation of the proposed technique was doii® @& traditional stereophotogrammetric
system. The implementation of the technique leangatds an easy to configure (and more
comfortable for the subject) alternative to thelitianal stereophotogrammetric system.

Then, the abovementioned technique has been imghrevethat the measurement of knee
flexion/extension could be done with a 2D markerléschnique. The main changes on the
implementation were on occlusion handling and bemkgd segmentation. With the additional
constraints, the proposed technique was appliethéoestimation of knee flexion/extension and
compared with a traditional stereophotogrammetrystesn. Results showed that the knee
flexion/extension estimation from traditional stgpbotogrammetric system and the proposed
markerless system were highly comparable, makiadatter a potential alternative for clinical use.

A contribution has also been given in the estinmatib lower limb kinematics of the children
with cerebral palsy (CP). For this purpose, a hyiechnique, which uses high-cut underwear and
ankle socks as “segmental markers” in combinatidh & markerless methodology, was proposed.
The proposed hybrid technique is different thanahevementioned markerless technique in terms
of the algorithm chosen. Results showed that thegeed hybrid technique can become a simple

and low-cost alternative to the traditional stefempgrammetric systems.



SOMMARIO

Uno dei principali obiettivi dell’analisi del moviemto umano € la descrizione quantitativa della
cinematica e della dinamica delle articolazionie§a informazione pud avere grandi potenzialita
nell'individuazione di approcci clinici sia in opgedia che in riabilitazione motoria. Alcuni studi
hanno mostrato che la stima della cinematica eniceada dati stereofotogrammetrici richiede una
fase di preparazione, della strumentazione mokaifipa e delle competenze per utilizzarla. Inoltre
tali procedure possono creare nei pazienti un séngopaccio e possono maodificarne il cammino
naturale. Lo scopo generale di questa tesi € lemgintazione e la valutazione di alcune nuove
tecniche markerless in due dimensioni, come caunwilallo sviluppo di tecniche alternative alle
tradizionali tecniche stereo fotogrammetriche.

Inizialmente, lo studio € stato focalizzato sulfana della cinematica del complesso caviglia-
piede durante la fase di appoggio del cammino. Steid considerati due casi particolari: soggetti
scalzi e soggetti che indossano calzini sportia ehviglia. L'uso dei calzini é stato analizzato i
previsione degli studi successivi che richiedonsd di marker segmentali. Sono stati analizzati
diversi algoritmi, valutati e implementati per a#ema soluzione markerless in due dimensioni per
la stima della cinematica in entrambi i casi. Lidazione della tecnica proposta € stata svolta con
un sistema stereofotogrammetrico tradizionale. plementazione della tecnica si muove verso
un’alternativa ai tradizionali sistemi stereo fatmgmetrici, che sia di facile configurazione e
meglio accettata dal paziente.

La tecnica sviluppata e stata poi migliorata in matdhe la stima della flesso/estensione del
ginocchio potesse essere svolta con la tecnicaariasls a due dimensioni. Le modifiche principali
nell'implementazione hanno riguardato la gestiorsdedocclusioni e la segmentazione dello
sfondo. Con l'aggiunta di altri vincoli, la tecnigaroposta € stata applicata alla stima della
flesso/estensione del ginocchio e confrontata cosistema stereo fotogrammetrico tradizionale. |
risultati hanno mostrato che la stima della fless@hsione ottenuta con un sistema stereo
fotogrammetrico.

E’ stato anche sviluppato un contributo per la atoella cinematica dell’arto inferiore durante il
cammino di bambini con paralisi cerebrale infantife questo caso, € stata sviluppata una tecnica
markerless ibrida che utilizza la diversa coloragiadella maglieria intima e dei calzini per
identificare dei marker segmentali. Gli algoritntilimzati in quest’ultima applicazione sono diversi
dai precedenti. | risultati hanno mostrato cheetanica ibrida proposta puo diventare una alteraativ

ai tradizionali sistemi stereo fotogrammetrici digplice uso e a basso costo.
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GLOSSARY OF TERMS

The following nomenclature is used throughout ttesis:

AF: anatomical frame
AL: anatomical landmark
CA: calcaneous

Mb: marker-based
ME: medial epicondyle
MI: markerless

CAST: calibrated anatomical system techniqguevioG: mixture of gaussians

CCD: charged-coupled device
CP: cerebral palsy

CSG: constructive solid geometry
CSP: colored surface points
DLT: direct linear transformation
DOF: degree of freedom

GF: global frame

GLT: Gauss—Laguerre transform
HF: head of fibula

Hyb: hybrid

LE: lateral epicondyle

LED: light emitting diode

LM: lateral malleolus

MAT: medial axis transform

NSS: nonlinear spherical shells
OBE: oriented bounding ellipsoid
RI: reference image

RMSD: root mean square deviation
RMSD;: intra-subject variability
ROI: region of interest

SMAC: simultaneous multi-frame analytical calibwati
SPM: scaled prismatic models
STS: sit-to-stand

TF: technical frame

TOE: big toe

VH: visual hull

VI: visual intersection

VM: fifth metatarsal head
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INTRODUCTION

Clinical gait analysis performed with video systeussially requires the use of markers to be
positioned to the patient’s body surface. In somm@asions, the presence of markers may represent
a source of uneasiness and discomfort, may intevigh natural walking. Moreover, operators are
required to spend some time to set-up the patiewteasing the cost of the evaluation. To
overcome the abovementioned limitations, markerdesbniques are proposed. The main goal of
this thesis is to develop new 2D markerless appemtor the analysis of gait.

The thesis is organized as follows.

Chapter 1 is a summary of the history of human mwrd analysis. A brief chronology of the
devices and methods used throughout the historgrasented.

Chapter 2 is about the state of the art of the authto analyze human movement. Human
movement is analyzed under the headings of markeed and markerless human movement
analysis. Theoretical background, applications landations of both methodologies are presented
thoroughly.

Chapter 3 defines the aims of the thesis.

Chapter 4 presents a review of the algorithms usdbe image processing implementation of
this thesis. Besides, a brief comparison of theralgns in the literature and their limitations are
taken into consideration.

Chapter 5 presents a study focusing on the anabfstbe 2D kinematics of the ankle-foot
complex during the stance phase of gait from mé&kerimages. The proposed technique is
explained in detail with the sections of materiadl anethods, results and discussion.

Chapter 6 presents an extension to the study pedpiosChapter 5. The proposed technique is
applied to the knee flexion/extension estimatiostofdren with CP.

Chapter 7 describes a hybrid technique, whichcsmabination of a markerless methodology and
“segmental markers”. The proposed technique is usadalyzing the lower limb kinematics of the
children with CP. The purpose of the study, makteaiad methods and results are explained in
detail.

Finally, Chapter 8 sums up the discussions of ththods presented in this thesis.
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CHAPTER 1

HUMAN MOVEMENT ANALYSIS: HISTORICAL NOTES



The historical notes was written on the basis eflithok “Biolocomotion: A century of research
using moving pictures” (Cappozzo A., Marchetti MsilV, 1992, Rome: Promograph).

Cinematography has been an essential instrumenthéorstudy and interpretation of animal
motion. Experimental physiology has served as algsttfor this technique, which has become a
key tool for the progress in biological researcivoTearly scientists, German physiologist Karl
Ludwig and French physiologist Etienne-Jules Mareluenced this development.

Development of cinematography had an importantcefba the development of the analysis of
animal locomotion. During the T7century, the new physics became embedded in Alf@uselli’s
work on animal motion. This work (Figure 1-1), whics a complete textbook of Physiology,
claims that “every function in the living body, aml or vegetable, manifests itself through
movement: macroscopic and apparent, as in locomotio microscopic, on an atomic dimension,
as the movement in which atoms come in contactotm fliving matter” (Borelli, 1681). The

fundamental aim of Borelli was to integrate physgy and physical science.

Fig. 1-1. Sample page from the book “De Motu Animalium” tlsfiows the illustrations of biomechanical studiés o

Giovanni Borelli (from De Motu Animalium, 1681).



Adoption of the graphic method by Marey in 1857 \aasreakthrough for the studies of animal
locomotion. He used this approach during the folhg20 years and applied it to humans, animals
such as horse and dove together with the mechadet&ctors he had designed to complex
movement of locomotor acts. Marey published whabb&ined using this approach in his books
La Machine Animale”, which was published in 1878d&La Methode Graphique”, published five
years later.

Precisely at that time photography was begun tadesl in the physiology in order to advance
further the studies of biolocomotion. Leland Stadfbas been claimed to be the first person to
propose using photography to prove the real paositad a horse’s leg during galloping.

English photographer Edward Muybridge made usehefitlea of Stanford’s with a series of
cameras whose shutters were triggered by runnirgeBpwhich was the beginning of his studies on
biolocomotion. The most important contribution ofijbridge was the 781 plates he created, each
having 1, 2 or 3 dozens of serial shots for a totét0,000 images. These were published with the
title “Animal Locomotion” (Figure 1-2).

= 13
Fig. 1-2. Galloping horse (from Muybridge, 1878).




Using photography for the biolocomotion studie®atsspired Marey and he envisioned a new
device in order to obtain multiple images of movioigjects at equal time intervals on a single
photographic plate. This device - “fusil photograpie” — was the first device of photographic
apparatuses he invented for the study of locomoflitre invention of the process was named as

“chronophotographie” by him (Figure 1-3).

L ((g ‘f,\_;"_'wnu"fffﬁwﬁnlll SIS
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Fig. 1-3. Serial images of a man walking acquired on & sidite by Marey with his “chronophotograph”. Theadel
wears a black suit with white stripes and radiarib{s to indicate the position of one arm, oneded the joints (from

Musée Marey, Beaune).

Another French scientist, Jules Jannsen, had alswilouted to his field with the photographic
device he invented. This device — “revolver astroigue” - was able to record, on a single,
circular-shaped, photosensitive plate having atirganotion with regular intermittence, up to 48
consecutive images, spaced by constant time idggrgBan object in motion. Jannsen applied this
device to the telescope and obtained the permaeentding of the transit of the planet Venus
across the sun on December 8, 1874.

On October 29, 1888 Marey presented the devicenibih@a chronophotographique” which is
claimed to contain all the principal componentstioé modern cine-camera. In 1893, Marey
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constructed his projector, which was an importamspiration for the improvement of the
cinematographic technique.

When the history of motion picture is analyzed;ah be realized that this invention cannot be
attributed to a single person; it is collective woif optical, chemical and mechanical studies. The
integration of these interdisciplinary contributsoby the science of physiology was a great catalyst
for the improvements in motion picture. Applyingtraphic method to the study of biolocomotion
was the key point in this contribution.

The growth of cinematography also contributed toysphlogy and introduction of
cinematography can be considered as the “Renassafiddiomechanics. Marey’s publications
have contributed to the knowledge of motor phenanént the results were largely qualitative. In
1895, two physiologists, Wilhelm Braune and OttsdhRier, started publishing their works on
human locomotion which were very important for fugence of biomechanics. Besides being able
to estimate the locomotor act, they were the fogpresent a three-dimensional analysis of human
movement by using stereophotogrammetry. They wise the first measure the forces acting on
the human body.

In the years between 1927 and 1936, Nikolai Bemmstaproved the work of Braune and
Fischer by increasing the shutter frequency frontd@280-100 and in some cases 120-156 frames
per second. This improvement enabled the detailth@fhuman movement to be observed. The
analysis of coordinated movements became the sitityomechanics which involve kinematics
and dynamics.

Research handled at the University of CalifornidBatkeley between 1945 and 1947 on both
normal and pathological human locomotion was als@reat contribution to biomechanics.
Electromyographic apparatus and the force platfevere begun to be used in biomechanics
laboratories.

In the mid-1960s many specialized biomechanicsrigbdes were founded both in Europe and
in the United States of America. Bioengineering tUoi Strathclyde University in Glasgow,
Scotland and Institute of Human Physiology of thevérsity of Milan, Italy were among the most
important of these institutions.

Starting in the 1970s, the optoelectronic techniagan to be used which resulted in easier
movement recording and faster data reduction. Hta dan easily elaborated by digital computer
which enables the analyses to be performed convidiend fast.



CHAPTER 2

HUMAN MOVEMENT ANALYSIS: STATE OF THE ART



2.1 Marker-Based Human Movement Analysis

2.1.1 Theoretical Background

“Acquisition of quantitative information about theechanics of the musculo-skeletal system
during the execution of a motor task is the maial gé the human motion analysis” (Cappozzo et
al., 2005). In order to pursue this goal, motioptaee is frequently used in biomechanics. Human
motion capture is widely used in order to study ooliskeletal biomechanics and clinical
problems. In this context, estimating joint kinerositis of extreme relevance. For this purpose,
video-based optoelectronic systems are commonlfeqpesl among the human motion capture
systems.

Gait analysis is generally carried out by mountrago-reflective markers on the body of the
subjects and reconstructing their 3D position usidgo-based optoelectronic systems (Figure 2-1).
Retro-reflective markers and infrared illuminatierproduced by light-emitting diodes (LEDS)
around the lens of the cameras - are used for EheeBonstruction. By adjusting the camera
thresholds, reflective markers are sampled andeb@gnition of the markers in the video frames is
performed.

The 3D position of a marker in a reference framedito the laboratory (global frame - GF) can
be reconstructed if the marker is visible fromeatst two cameras at the same time. Visibility from
additional cameras is usually beneficial (Chiaralet 2005). Additional reference frames associated
to body segments (technical frame - TF) can benddfifrom the position in the GF of cluster of
markers attached to the same body segments.

The pose of the TFs in the GF can then be detetnidewever, although considered fixed to
the underlying bone, the TFs are not necessarnisesentative of the anatomy of the body segment
they are attached to. For this reason for each kedyent being analyzed an additional frame is
defined: the anatomical frame (AF). The AF hasnaetinvariant relationship with the respective
TF. To define AFs, it is necessary to determineldleation of selected anatomical landmarks (ALS)
with respect to the relevant TF (Cappozzo, 199&ndards for the definitions of AFs have been
proposed (Wu et al., 2002; Wu et al., 2005).

The pose of an AF is the orientation and positiospace of a body segment. Given the pose of
the AFs of two adjacent body segments, the kinemati the joint between the two body segments

can be determined.



Fig. 2-1. The human movement analysis laboratory with bageasurement instruments, with their systems of §xe
photogrammetry; d: dynamometry). When level walkisgnalysed, the motor task frame may overlap thighframe

of one of the two force plates (from Cappozzo gt24105).

2.1.2 Calibration of Anatomical Landmarks

ALs are either bony prominences or bone pointseaingetrical relevance. In the first case they
are normally identified by palpation, in the secarabe, they can be identified using imaging,
regression equations or functional movements (Cagapet al., 2005). In any case, once identified,
their location with respect to the relevant TF ttabe determined. Once the location of ALs in their
relevant TF is determined, it is possible to retaas their position in the GF by simple coordinate
transformations (Figure 2-2). The Calibrated Anatain System Technique (CAST) is an
experimental methodology that formalizes the cotcep AL calibration and allows the
implementation of various calibration methods.

The AL calibration can be implemented using a) akerapositioned on the AL during a static
acquisition, b) a pointer where a minimum of tworkess are mounted with a known distance from
its tip, pointing at the AL during a static acqtimn, c) determining the centre of rotation of
recorded functional movements (for joint centreshsas the hip centre), d) by imaging of the bone
and the relevant TF (Cappozzo et al., 1995; Betieziadl., 1998).

Recently, the CAST methodology was updated, byragdiformation on the subject-specific
bone geometry. By determining the position of ualkdal points (UPs) situated over all prominent
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parts of the bone surface, initial estimation igpkayed. After the estimation step, a digital moolel
a template-bone is matched to them. The estimatbgect-specific bone contains all relevant
anatomical landmark locations. The technique, URSTAs evaluated in terms of repeatability and

accuracy on average weight subjects (Donati e@07).
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Fig. 2-2. Anatomical calibration using stereophotogrammefitye following external, palpable, anatomical laradks
are indicated: prominence of the greater trochaeégrnal surface (GT), medial epicondyle (ME)etat epicondyle
(LE). The location of the external anatomical laedks relative to the marker cluster technical frdrgy,, z.) may be
reconstructed using markers denoting the anator@odimarks, or using a wand which carries a clustett least two
markers. Prior to recording, the end point of trend; the position of which relative to the latterster of markers is

accurately known, is made to coincide with the@aanatomical landmark (from Cappozzo et al., 2005)

2.1.3 Protocols

Human movement analysis and gait analysis in paatictypically makes use of the theory of
multi- rigid body systems. The portion of human pa&modelled with a number of rigid segments.
Adjacent segments are connected by joints. The ruwftdegrees of freedom of the each modelled
joint characterizes the multi-body system model leygd. Protocols — data collection and
reduction practices — have been proposed in gaitysis offering various ways of modelling the
system of rigid bodies of interest. Often, in aali gait analysis, all model joints are rotational
(either cylindrical or spherical) and AFs are definbased also on this assumption. The rationale
behind this choice is related to the errors affecthe human movement recordings (see following

section).



Proposed protocols also differ in the marker-seeduto identify AFs and joint centre locations.
Typically data acquired with different protocolsxoat be compared.

From these protocols, “Newington model” is the gienand the most commonly used practice
for gait data acquisition and reduction which hias &#een used by the commercial applications like
Plug-in Gait (PiG—Vicon Motion Systems, Oxford, UK)Servizio di Analisi della Funzioni
Locomotoria” developed their protocol named “SAFL-aihich differs from the Newington model
in terms of segmental anatomical references andomm@al marker configurations. Then,
“Calibration Anatomical System Technique” (CAST) svantroduced which standardizes and
defines references, internal anatomical landmarksexternal technical markers. Then, protocols
of “Laboratorio per I'’Analisi del Movimento nel Baymo” (LAMB) and “Istituiti Ortopedici
Rizzoli Gait” were proposed, of which the lattersadne basis of the software “Total 3D Gait”
(T3Dg-Aurion s.r.l, Milan, Italy) (Ferrari et aR008; Baker, 2006).

Ferrari et al. compared these commonly used prtdoand find out that same gait cycles
revealed good intra-protocol repeatability. Regesdlof the known significant differences among
the techniques, reasonable correlations are olddovemost of the gait variables. It was pointed
out that model conventions and definitions seenbéomore important than the design of the
relevant marker-sets. Sharing the model convenaorsdefinitions can be sufficient for worldwide
clinical gait analysis data comparison (Ferraalet2008).

214 Sourcesof errors

Human movement analysis performed with stereo-gratometry is affected by three major
sources of errors.

- Instrumental errors: these errors are the resoitdoth instrumental noise and volume
calibration inaccuracies. These errors have bagtiest intensively in the 80s and 90s (Fioretti and
Jetto, 1989; Chen et al., 1994), tests for estigathem have been proposed (Della Croce and
Cappozzo, 2000). The instrumental noise can betanitaly reduced by low pass filtering. The
volume calibration inaccuracies stem from the igadée number of cameras and the volume
calibration algorithm chosen for the applicationiredt linear transformation (DLT) algorithm
(Abdel-Aziz and Karara, 1971) is broadly used, ldten the volume of interest is large, the
construction of a suitable calibration object toused with DLT becomes restrictive. Simultaneous
multi-frame analytical calibration (SMAC) (Woltringl980) - a technique based on a planar
calibration object with a grid of known control pts - suffices the recording of the calibration
object by at least two convergent cameras. SMAGhallcovering larger volumes when compared
with DLT, but for very large volumes, analyticalfsealibration is more appropriate (Chiari et al.,
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2005). Thus, the volume calibration inaccuracies ba remarkably lowered by increasing the
number of cameras and improving the volume calidmadlgorithms.

The contribution of the instrumental errors to tb&l error is currently considered negligible.

- Soft tissues artefacts: the markers capturechbycameras can be directly attached to the skin
or arranged in clusters and positioned with fixtupger a body segment. Due to its origin, thisrerro
has the same frequency content as the bone moveirtauig, there is no way of separating the
artefact from the actual bone movement by simplpgis filter, as opposed to most instrumental
errors. However, its effect on the end results ayreduced in the following ways. First of all
marker locations (marker points) must be chosethabthe above-mentioned relative displacement
is minimal, and secondly through a proper choicehef mathematical operator which estimates
position and orientation of the bone from skin neargositions (Lucchetti et al., 1998; Alexander
and Andriacchi, 2001). Operators that cope witk tirioblem in an optimization context have been
proposed” and their use in movement analysis isgbéeveloped.

Knowledge regarding the characteristics of thefactemovement in different body segments is
required in order to utilize the mentioned counteasures against the experimental artefacts.

- Anatomical landmark misplacement: The incorrecation of subcutaneous bony ALs through
palpation can be caused by three main factorsthid)palpable ALs are not points but surfaces,
sometimes large and irregular; (2) a soft tissyerlaf variable thickness and composition covers
the ALs; (3) the identification of the location thfe ALs depends on which palpation procedure was
used. Studies showed that AL position uncertainty @onsequently the erroneous determination of
AF axes may result in erroneous clinical interpretes of the estimation (Della Croce et al., 2005).

In addition to the abovementioned sources of ermaesker based movement analysis is affected
by the influence of markers attached to the bodythensubject’'s movement and the need of an

extended setup time for marker placement (Corazah,2006).

2.2 MarkerlessHuman Movement Analysis

Some of the limitations of marker based systemsb@aonvercome using a completely different
approach. Markerless systems of human motion captave been proposed where cameras can be
utilized without the necessity of using specialtltiog or hardware (Deutscher et al., 2000).
Markerless motion capture ensures an important ctextu of the amount of time for setup

preparation in comparison to marker-based techsigBesides, the problem of inter-operator
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variability is removed because no specialized dpers needed to place markers on the skin
(Corazza et al., 2006).

Markerless techniques can be classified into mbdsked and model-free techniques both for the
cases of 2D and 3D applications. Model-based appesautilize an a priori human body model and
are composed of two stages: modelling and estimatio

Modelling is the building step of a likelihood fuman by taking camera model, image
descriptors, body model, and matching function icbmsideration. Estimation step is fitting the
optimum pose in the likelihood domain planned ia thodelling step. Model-free approaches do
not use an a priori model, but “implicit model \&rons in pose configuration, body shape, camera
viewpoint and appearance” (Poppe, 2007).

In the next section, current markerless technique®f algorithm explanations and their

limitations are analyzed and exemplified with catrapplications.

2.2.1 2D Markerless Techniques

Much of the work on motion analysis uses detail&l KBnematic models and 3D motion
estimation. These techniques require multiple camveswpoints, but motion analysis can also be
operated using a single camera input (Cham and,R&I99).

Motion capture with a single camera is a significask since data acquisition is very simple,
besides being an interesting computer vision chgélethat focuses on inference as much as
movement (Howe et al., 2000).

Hence, 2D markerless techniques, which can beiftbabss model-based and model-free, have
been proposed. In the following section, the atgans and the applications of these techniques are

introduced.

2.2.1.1 Mode-Based Techniques

Ju et al. (Ju et al., 1996) uses a cardboard ntodifine the human body as a set of connected
planar patches and to approximate the limbs asapl@yions (Figure 2-3). The main assumption
behind this model is that, the motions of the lipidnes are assumed to be the same at the points of
articulation. The motion of each patch is estimatsthg the energy minimization (annealing)
concept and estimated motions are called “absohations”. After the estimation of the absolute
motions, it is necessary to estimate the articdlatetions. To estimate the articulated motions, the
motions of limbs which are relative to their preilogd(parent) patches should be recovered. The
relative motion of the patch is calculated using displacements of the connected patches.

12



The estimated articulated motion between two framessed in the tracking step in order to
predict the location of each patch in the next fanm the first frame, each patch is manually
defined by its four corners. For every patch, tinst ftwo corners are defined as the articulated
points, whose corresponding points are the lastdwroers of its previous patch. This shows that
two connected patches share an “edge”. After thaift structure definition step is over, automatic
object tracking starts. The articulated motion ket two frames is used to predict the location of
each patch in the next frame. Then, the locatioeach of the four corners of each patch is updated
by applying its estimated planar motion to it.

The experiments demonstrate that the image motiodeia are able to track motion correctly
during long sequences. In this study, optical fiswestimated with the parameterized model, 3D
model is not necessary and edges are not used.

In the study of Deutscher et al. (Deutscher et 20Q0), the idea of annealing is adapted to
perform a particle based stochastic search. Thetadlaalgorithm is called annealed particle
filtering and is capable of recovering full artiatéd body motion. The authors focused on the
problem of constraining the search space alongiwthie real posture of the subject is investigated.
Other studies (Hogg, 1983; Goncalves et al., 188&gler and Malik, 1998) in the literature do this
making the following assumptions: 1) assuming thatsubject is walking, 2) assuming a constant
angle of view, 3) performing a hierarchical seansing color cues. The study of Deutscher et al.
does not depend on these assumptions and redwcegribnsionality of the search space through

annealed patrticle filtering (Condensation algorithm

point X

2
{. e fa@},iﬂkl \

the set of articulated |
points for region 1 -

Fig. 2-3. The “chain” structure of a three-segment arti@dadbject (from Ju et al., 1996).
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This algorithm includes an edge detection procednltewed by a particle filtering, developed
to match a 3D human body model of 29 DOF to theildBge edge (Figure 2-4). However, this
matching process has a very high computational édsb, a number of particles are required to the
posterior density representations, which increaske the size of the model’s configuration space.
In order to solve these problems, a multi-layer hndtusing simulated annealing approach was
implemented. Even if knee and ankle joints are rtedeas simple hinge joints, the algorithm
performance is in general satisfactory. The tragiiarformance of the algorithm was compared to
the standard Condensation algorithm (i.e. Parfiittering algorithm which is used for tracking
objects in clutter (Isard and Blake, 1996)) andultesl to perform better even if it uses fewer
particles.

2.2.1.2 Model-Free Techniques

When there is not a priori human body model, tHeas to be a mapping between the image
output and pose. Model-free algorithms, which dosudfer from (re)initialization problems, can be

used for initialization of model-based pose estiomapproaches (Poppe, 2007).

Fig. 2-4: The model is based on a kinematic chain congisiinl7 segments (a). Six degrees of freedom amngio
base translation and rotation. The shoulder anddimps are treated as sockets with 3 degreeseefifsm, the clavicle
joints are given 2 degrees of freedom and the m@n@joints are modelled as hinges requiring omig.dr his results in

a model with 29 degrees of freedom. The modekshiéd out by conical sections (b) (from Deutscheat.22000).

Mori and Malik (Mori and Malik, 2006) estimate bogdgse in 3D by placing the joint points in a
single 2D image with a human figure. First, a numbleexample views of the human body in
different viewpoints with respect to the camera acquired. Each of the views are manually
marked from the body joints and labelled. Then, itiput figure is matched to each stored view

using the shape context matching with a kinemaiaircbased deformation model. By extracting
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external and internal contours of an object, shepetexts are employed to encode the edges
(Figure 2-5).

Fig. 2-5. The deformation model. (a) Underlying kinematicaich (b) Automatic assignment of sample points to
kinematic chain segments on an exemplar. Eachrdifftessymbol denotes a different chain segmentSé&hple points

deformed using the kinematic chain (from Mori andlid, 2006).

Following the correspondence step, the locationthefbody joints are then moved from the
example views to the test figure. The 3D body agpnfation and pose are then estimated using the
existing algorithm of Taylor with the 2D joint lowans (Taylor, 2000) which uses point
correspondence in a single image. In an estimatie®p, the stored example images are deformed to
match the image observation. The 2D joint estimatéound by enforcing 2D image distance
consistency between body parts. This techniquéeampplied to each frame of a video sequence so
that tracking recognition becomes repeated for yeWeme. The experiments of this study are
performed with CMU MoBo Database (Gross and ShQ120and the main contribution of this
study was demonstrating the use of deformable @ephatching to example views in order to
localize human body joint positions.

In another 2D model-free markerless applicatiogaBimal and Lee (Elgammal and Lee, 2004)
use human silhouettes extracted from a single catoederive 3D poses. The purpose of this study
is to recover the intrinsic body configuration aedonstruct the silhouette excluding the outliers
from the visual input. To recover intrinsic bodynéigurations from the silhouette, manifolds are
learned from the visual input and afterwards magpiare learned from manifolds to visual input
and 3D poses (Figure 2-6).

The experiments demonstrate that the model cared®dd from the data of one person and
successfully adapt to recovering poses for othapleefrom noisy data. When compared to
previous approaches for inferring 3D body pose fraisual input, this approach has certain
advantages and limitations. This framework makesrfpolation of intermediate 3D poses easy
even if they are not part of the training data.sT&pproach constrains the mapping to the learned
manifold which facilitates robust pose recoverynfrooisy inputs as well as for reconstruction of
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the input. It is based on learning activity mardf@nd so its application is limited to recovery of
poses for the learned activities only. Althoughtls study the focus is gait, the framework is
general and can be applied to other activities darriing their manifolds. In the experiments,
validation was done with a sequence obtained frloenGeorgia Institute of Technology (Atlanta,

GA, USA) data compared to relevant motion captwea.dCMU Mobo Gait database was used to
demonstrate that the proposed approach, whichdedban “learning” from the data of a single

person, is also applicable to different people. CMbbo Gait database contains six views of each
walking person. Five views from one person wereduse the learning process of the study. In
order to evaluate the 3D reconstruction, five sages (five people with five views, each) were
used. Overall correct classification rate from agk frame was 93.05%, while it increased to

99.63% after five frames were used for the classHifdn.

(13 i
|

|

o

Fig. 2-6. Embedded gait manifold for a side view of the walkSample frames from a walking cycle along the
manifold with the frame numbers shown to indicéie order. Ten walking cycles are shown (from Elgainamd Lee,
2004).

In another markerless 2D study, Goffredo et al.ffl@do et al., 2009) use a region of interest
(ROI) based tracking approach for the kinematiclymmm of sit-to-stand (STS) tasks. Their
approach uses Gauss—Laguerre transform (GLT) smege features such as edges, lines and

orthogonal crosses are enhanced easily regardigbgip orientations. A 4-segment human body
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model was applied (only for the purpose of poseomstruction of the body segments); each
segment was assumed to be rigidly connected thieseggent with an ideal rotational joint. Four
body markers on ankle, knee, hip and shoulder goivgre selected in the initial frame of every
sequence and the GLT algorithm was applied to tiSés. By computing the corresponding
candidate points via calculating the log-likelihofuthction between the textures of consecutive
frames, points relevant to motion estimation weeeked (Figure 2-7). The authors used GLT-
based motion estimation method in a 2D setting,thist method could be used in stereo vision
applications where GLT coefficient matching can d&egplied for motion and disparity field
estimations. Estimating both the translations &edrotations of related anatomical segments in the
transform domain with a pattern algorithm appeam@de a good solution for the movement
reconstruction. For validation purposes, markeetagsults from the study of Gross et al. (Gross

et al., 1998) were used. The results of the vabdadre reported in Figure 2-8.

Fig. 2-7. Estimated trajectories obtained with the propasethod (upper panel: elderly subject I; lower pagelng
subject D). The circles are the points of intemstwhich the GLT algorithm has been applied. Timedi are the
estimated trajectories at the end of the phasesctesizing the STS task (from Goffredo et al., 200

2.2.2 3D Markerless Techniques

When the observation is limited to a single cam#éra,3D motion of humans is not determined
thoroughly, due to the inherent 3D ambiguity of @Beo (Howe et al., 2000). In order to overcome

this ambiguity, 3D markerless techniques are pregos
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Fig. 2-8. Hip, knee, ankle, ang (shin orientation) angles at liftoff during chaise. The results obtained with the
proposed markerless system (gray bars) are compatiedhe one obtained by Gross et al. (black baif) a marker-

based system (from Goffredo et al., 2009).

2.2.2.1 Mode-Based Techniques

An important study exemplifying 3D model-based nealdss technique is the study of Bottino
and Laurentini (Bottino and Laurentini, 2001). Bodt and Laurentini presented a technique to
reconstruct unconstrained motion from multiple-viemages, which were computed using volume
intersection data. First, views of the human bodyenacquired using different cameras and their
2D silhouette was extracted from each of the imagksn, a volumetric description was formed by
intersecting the cones derived by back-projectimgnf each viewpoint of the corresponding
silhouette. This step, called the volume intersec(VI), provided the final voxel representation.
Then, a human body model was fitted to the extdaetdume (Figure 2-9). Model fitting was done
with the minimization of a distance function betwethe volume and the model via a search
through the space of pose parameters. Pose recewasybased on a search through the 32
dimensional space of pose parameters and entardohd the pose of the model closest to the
actual appearance of the moving subject. The appeaion accuracy was measured by a similarity
function between the current model pose and the&mel obtained by VI. This function was
obtained by summing the squared distance betwednwexel center to the closest segment of the
model. Each segment was approximated with an @genounding ellipsoid (OBE) at the first step
of the reconstruction algorithm in order to redtiee number of computations. The size of the axes
of each OBE was the same as the dimensions ofdbedary box of the related segment. The
posture recovery was a two-step process: firstGB&s were fitted to the volume reconstructed
and then, fitting was employed to the model. Ineortb recover the motion of the model, the
procedure mentioned above was applied to everydrdotiowed by the implicit filtering to avoid

the phantom volumes.
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Fig. 2-9. Human body model used in the study of Bottino badrentini (from Bottino and Laurentini, 2001).

The experimental setup is composed of two phasest, Ehe system was tested in a virtual
environment in order to investigate the precisibB direct reconstruction. Second, the proposed
approach was applied to real image sequences &@0). Results showed that the proposed
approach could reconstruct unconstrained humanomaetithout using markers or external devices

attached to the subject’s body.
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Fig. 2-10. Original images, reconstructed voxel models, aachmeterized shape models for a bow sequence (from
Bottino and Laurentini, 2001).
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Corazza et al. (Corazza et al., 2006) also usecithealing approach in order to implement a
markerless technique making use of visual hull metmiction. The full body model contained
morphological information (surface with 1600 po)nésd kinematics information on the possible
movements of the model. The morphological inforovatwas provided by a laser scan of a
reference pose of the subject. The model was sdgohanto parts corresponding to twelve
anatomical segments (pelvis, thighs, shanks, &rets, forearms, and combined torso and head).
The full body kinematic model had 33 degrees oédiem (DOF) where joints were modelled as
ball-and-socket joints or as hinge joints. The gewital formulation of the model was flexible
such that each joint model could be modified sdpbrawithout readjusting the others. The
completed model was formed by rigidly combining thmrphological representations to the
kinematic model. (Figure 2-11). Visual hull wasaestructed, and matched to the model with an
adapted fast simulated annealing approach. Theatan of the technique was done in a virtual
environment where an animated virtual characteh viihown kinematics, provided the gold

standard. The validation results are reported iolera-1.

Fig. 2-11. Results of the matching algorithm (colored poiatsplied to the virtual environment sequence sugersed

over the virtual character (gray surface) (fromazaa et al., 2006).

Mean Error (9) Standard Deviation (°) RMSError (9)
Hip flexion/extension 2.0 3.0 3.6
Hip adduction/abduction 1.1 1.7 2.0
Knee flexion/extension 1.5 3.9 4.2
Knee adduction/abduction 2.0 2.3 3.1
Ankle plantar/dorsiflexion 3.5 8.2 9.0
Ankle inversion/eversion 4.7 2.8 5.9
Shoulder flexion/extension 1.2 4.2 4.4
Shoulder adduction/abductior 3.8 1.2 4.0

Tab. 2-1. Summary of validation results for joint anglestat hip, knee, ankle and shoulder (from Corazzd. £2006).
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Another application to 3D model-based applicatisrpioposed by Bregler and Malik (Bregler
and Malik, 1998). Bregler and Malik presented aiormotestimation technique capable to extract
high degree-of-freedom articulated human body gométions from complex video sequences
using exponential maps and twist motions. The prodtiexponential maps and twist motions and
their integration into differential motion estimai is a significant parameterization. The pose of
each body segment was defined with respect tqaseht” segment to which is attached through a
revolute joint. Moreover, the formulation is a vesiynple linear representation of the motion model.
The visual tracking was based on an initial frameyhich the angular configuration was known
beforehand. The 2D joint locations in all views eenanually marked by a user. The 3D poses and
the image projection of the matching configuratwas found by minimizing the sum of squared
differences between the joint locations of the gct@d model and of the marked model. The study
provided a new technique for articulated visual iorottracking. The tracking results were
qualitatively tested on video recordings of movewpjects, and on the Muybridge photographic
sequences (Figure 2-12), but no quantitative in&tiom on the tracking parameters was given.

In the studies of Cheung et al. (Cheung et al.52@@rt | and Part 1)) voxel based surface from
silhouette algorithms combined with a new colousdah approach, were used. Colored Surface
Points (CSP) — multi-view stereo points — were aotlrd from the surface of the object and used in
a 3D alignment algorithm, rigid motion between wakhulls determined and recursively refined and
the silhouette images were used to refine the tbjebape. Figure 2-13 shows the CSPs on the

visual hull of the subject.

Fig. 2-12. Muybridge’'s Woman Walking: Motion Capture outputdis shows the tracked angular configurations and

its volumetric model projected to two example vigivem Bregler and Malik, 1998).
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A sample of shape reconstruction and digital maeeldering are reported in Figure 2-14.
Tracking algorithm is evaluated with ground-trutlatal obtained from synthetic sequences
generated with OpenGL. Figure 2-15 shows the resaflthis validation. The use of the method

requires a controlled environment since the alborits based on color information.

Object O forms ;
silhouette image S, on
camera k at time t,

Fig. 2-13. The Shape-From-Silhouette problem scenario: a Beaged objedD is surrounded by four cameras at time
t1. The silhouette images and camera centres aresamed b andCk respectively (from Cheung et al., 2005).

Fig. 2-14. Articulated model of (a) synthetic virtual persdh) Subject E, (c) Subject G and (d) Subject Saand
(b), the CSPs are shown with their original colodins(c) and (d), the CSPs of different body pats shown with
different colours. For display clarity, the CSPawln are down-sampled in the ratio of one in twaoital number of

points (from Cheung et al., 2005).
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Fig. 2-15. Graphs comparing ground-truth and estimated jamdles of the left arm and right leg of the synthet
sequence. The estimated joint angles closely follbes ground-truth values throughout the whole segeigfrom
Cheung et al., 2005).

Sundaresan and Chellappa (Sundaresan and Chel2@p®), modelled the human body with a
set of articulated super-quadrics and proposedittigus in order to estimate the model parameters
from video sequences. The model was a combinafidifferent body segments and some labelled
joints. Each body segment was modelled with a &peuper-quadric (i.e. 3D parametric objects
which give the flexibility of defining a large vaty of shapes in geometric modelling (Barr, 1981)).
The trunk segment was the base, and together witk, thead and four limbs formed the kinematic
chain of the human body. Figure 2-16 shows the 88ybmodel used in the study. A 3D scanned
model was used to obtain the dimensions of thersyypedrics. The trunk segment had 6 DOF
while the other segments had at most 3 rotatior@F vith respect to the trunk. The body model
involved the shape and the joint locations of thdybsegments. Given the pose at timie pose
at timet +1 was computed by using the images at tim&ndt+1. The pose estimation required
the prediction step and the correction step. Pdisplacement estimation, pose prediction and
silhouette-motion combination were necessary timeseé the pose dt+1. The authors claimed the
method to be accurate and robust using a visualbfek. Accuracy of the method is strongly
dependent on the quality of the estimation of jdodation during the model acquisition. The

flexibility of the model on some joints (e.g. shoeit joint) affects the performance of the method.
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Fig. 2-16. Tracking results using both motion and spatiakdfiem Sundaresan and Chellappa, 2006).

Gagalowicz and Quah (Gagalowicz and Quah, 2009pgsed a novel 3D model-based
framework and algorithm that can manage cluttecsaclusions, is proposed. This method uses a
3D geometrical human model similar to the subjectorder to synthesize the candidate posture
producing the image minimizing the matching erroithwthe real image. In this approach,
segmentation is performed through the direct ptmec texturing and shading via the 3D
geometrical human model onto the images (Figur@)2-The use of analysis-by-synthesis and error
feedback allows avoiding the ill-posed problem @inglard segmentation. Results of tracking the

arms in the presence of occlusions and clutters wesented.
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Fig. 2-17. Generating the human pose for matching (from Gagak and Quah, 2009).
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2.2.2.2 Mode-Free Techniques

An example study in the 3D model-free markerlegsieation is the study presented by Chu et
al. (Chu et al., 2003). They proposed an approhah denerates “underlying nonlinear axes” (or
skeleton curve) from a volume of a human subjedctltigfle cameras were used for human volume
capture and skeleton curves estimated the kinemaiael and posture for each volume. Skeleton
curves were used to automatically produce kinenrattion. Isomap transformation was used in
order to map a set of 3D points describing a hubmaaly volume into a “pose-invariant intrinsic
space posture”. This transformation allowed findangorrespondence between volume points in
both Euclidean and intrinsic spaces. By buildingn@pal curves in intrinsic space and mapping
back to the volume feature produces a skeletorecdm a priori body model is not used (Figure 2-
18). This is a fast technique to be applied to inagquences and manages to define the posture
without the help of an a priori model. Howeverisitnot known if the technique gives position and
orientations of body segments accurately enoughcfimical purposes since no validation is

presented. The technique can be used as theigatiah step of the marker-based techniques.

Fig. 2-18. The outline of the approach. (1) A human viewedhuitiple cameras is used to build (2) a Euclidspace
point volume of the human. This volume is transfedninto (3) an intrinsic space pose invariant vauamd its (4)
principle curves are found. The principal curves @ojected back into Euclidean space to provijla (&keleton curve.
The skeleton curve is used to determine (6) théupe®f the human. Using the postures of a voluetpience, (7) the

kinematic motion of the human is found and (8) at#d on the Adonis humanoid simulation (from Chalgt2003).
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In another application, Grauman et al. (Graumanalet 2003) presented an image-based
approach to infer 3D structure parameters. By uaimpgobability density of multi-view silhouette
images with known 3D structure parameters, a pritibtd shape and structure model was created
(Figure 2-19). This probabilistic model was mergéth a model of the observation uncertainty of
the silhouettes seen in each camera to computesBayestimate of structure parameters. This was
the first study where an image-based statisticapgshmodel was used for the inference of 3D
structure. Besides, by using a computer graphicdeinof articulated bodies, a database of views
augmented with the known 3D feature locations wereed in order to learn the image-based
models from known 3D shape models. This synthetioihg set removed the necessity of labelled
real data. The study’s novelty was the use of dadvdistic multi-view shape model to narrow the
possible object shape and configurations to thbaedre more “probable” given the class of the

object and the current observation.

Fig. 2-19. Top row shows noisy input silhouettes, middle sivows contour reconstructions, and bottom row shows

inferred 3D joint locations (solid blue) and groungth pose (dotted red) (from Grauman et al., 2003
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2.2.3 Goal-Oriented Classification of the Markerless Studies

In this review, the mentioned markerless studiesewanalyzed in terms of their shape

representations, existence of models and applicatjpace. Yet it is also possible to make a

classification based on the goal of these studies.

Markerless studies can be classified in terms ef dbal of the applications: 1) studies that

merely provide graphical representations of the dnurnody, 2) studies that aim to estimate joint

kinematics. The table below (Table 2-2) depicts thassification and provides an overview of the

abovementioned markerless studies together with\thkdation information.

Graphical Joint Kinematics Notes Validation
Representation Estimation
Juetal., 1996 - - -

Deutscher et al., 2000

Comparison with Standard
Condensation Algorithm

Mori and Malik, 2006

CMU MoBo database

D

2D
Elgammal and Lee, Georgia Tech gait data with
2004 ground-truth
Goffredo et al., 2009 Hip, knee and ankl&€€omparison with the results of th
angles are marker-based study by Gross et
estimated. (Gross et al., 1998)
Bottino and Laurentini,
2001
Corazza et al., 2006 Shoulder, hip, kne€Gomparison with the ground-trut
ankle angles are provided by virtual environment
estimated
Bregler and Malik, Qualitatively validated by the
2002 Muybridge sequence, but
guantitative information regardin
the parameters are not presente
3D

Cheung et al., 2005

Shoulder, hip, an
elbow angles are
estimated

J Synthetic sequences with groung
truth

Sundaresan and
Chellappa, 2006

Gagalowicz and Quabh,
2009

Chu et al., 2003

Grauman et al., 2003

Tab. 2-2. Classification of the previously presented madssitechniques and their validation information.
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2.2.4 Limitations

Markerless techniques are quite promising in teomgroposing an alternative to marker-based
techniques, easy setup and low-cost solution. Hewekie use of markerless techniques to capture
human movement for biomechanical or clinical agdlans has been restricted by the complexity
of acquiring accurate 3D kinematics. The generabl@m of estimating the free motion of the
human body or more generally of an object withoatkars, from multiple camera views, is under-
constrained when compared with marker-based systems

Existing computer vision approaches focusing onkerdess movement analysis may have great
potential to be used in biomechanical applicatidng, most of them have not been validated for
these applications. Evaluation of these approaichiesms of applicability to clinical applicatiomns
essential.

For the purpose of enhancing computational perfageasimple or generic models of human
body with fewer joints or reduced number of degmefeseedom are frequently used. Nevertheless,
detailed and accurate representation of 3D joirdhaeics is required in biomechanical and clinical
applications.

Another challenge for the whole-body movement aagpisi the non-rigid nature of human body
segments and the variability of human motion, thesence of self-occlusion or occluding objects
(Mindermann et al., 2006). This diversity causesgbme predefined parameters to be created or
assumptions to be made, which restrict the ana{iPgippe, 2007; Bray, 2001).

To sum up, the field of markerless movement angligsa promising and active research which

will continue to evolve by considering the abovetrmared challenges as a roadmap.
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CHAPTER 3

AIMSOF THE THESIS
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Marker-based human movement analysis suffers fremristrumental errors, soft tissues
artefacts and anatomical landmark misplacementidBesmarkers hinder with the subject’s
movement and an extended setup time is requiredsolee these limitations, markerless
human movement analysis has been introduced. Bweumgh the markerless techniques
mentioned in the previous chapter are promisingy tbften lack validation and accurate
representations, which are crucial for the clinigpplications. Therefore, this thesis aims to
provide new 2D markerless techniques to overcoraeatiovementioned difficulties of both
systems.

In particular, the following issues are dealt wisited in order of relevance:

1) Development of two different markerless technigieedetermine joint kinematics: Two
different markerless techniques (cross-correlatiased and skeletonization-based) are
implemented.

2) Validation of the proposed markerless techniqueth whe marker-based techniques:
The proposed markerless techniques are validatedth witraditional
stereophotogrammetric marker-based systems bydiegothe same trials at the same
time.

3) Extraction of additional information from anthropetnc measurements and garments
used during the acquisition (high-cut underwear ankle socks used as “segmental
markers”) to be combined to the information extedcivith a markerless methodology,
implementing a hybrid technique applied to childvath CP.

4) Analysis of the influence of the presence of samkshe performance of the markerless
technique.

The present work was conducted at the Biomedic&n8es Department of University of
Sassari, Sassari, Italy. The experiments of theéysiu Chapter 5 were done in University of
Rome, “Foro Italico”, Rome, Italy while the expesnts of the studies in Chapter 6 and 7
took place in the Motion Analysis Lab at SpauldiRghabilitation Hospital, Boston, MA,
USA.
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CHAPTER 4

IMAGE PROCESSING: REVIEW OF THE ALGORITHMS
EMPLOYED
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4.1 Image Segmentation

Vision is a deduction problem where the aim isimol out the source of the outputs from a
given model and measurements. The main difficuitigke deduction problem of vision are the
abundance of data and the ambiguity on whetheeeifgpdata item is a part of the deduction
problem or not. To overcome these difficulties, gmalata is generally represented by grouping
the features that highlight its main propertiesinasegmentation. There are several algorithms
for image segmentation depending on the applicatioan application where there is a static
background, removing an estimate of the backgrdwomd the image would be functional as

image segmentation. However, when the backgrounadsge over time, this approach would
not work fruitfully (Figure 4-1 and Figure 4-2) (lRyth and Ponce, 2003).

Fig. 4-1. Subject with barefoot, short socks and long socks.

Fig. 4-2. Output of Fig. 4-1 after background subtraction.

Estimating the background using a moving averagehstter solution compared to simple
background subtraction. Instead of removing thicst@ckground, the value of the background
is computed by calculating the weighted average¢hefprevious values of the background
pixels. Thus, the pixels from the initial frames/éa weight of zero and the moving average
adapts to the changes in the background. Even lhiigymethod can be useful for coarse scale
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Images, in the dynamic scenes the performanceeotdaptation is low (Forsyth and Ponce,
2003).

The motion of the objects in 3D space causes maiiothe image plane which can be
computed by the displacements of the image pointdisplacement vectors of the entire
image place, which are defined as “optical flowvek though optical flow is highly used on
the images where there is motion, ambiguity stergnfiom 3D to 2D projection is still a
major problem (De Micheli et al. 1993; Fermulleaét 2001).

Many segmentation methods suffer from the changeia lighting. Ridder et al. (Ridder
et al., 1995) used Kalman Filter to model the @xelhich enabled the lighting changes to be
handled. Even though this methods has a “pixel-@isg®matic threshold”, recovering from
the light changes is slow and not effective witmbdal backgrounds. Yet, this method has
been successfully used in an automatic traffic mooimg application by Koller et al. (Koller
et al., 1994). In another application, Pfinder (Wet al., 1997), background is modelled by a
single Gaussian per pixel and a multi-class stedistmodel is preferred for the object
tracking. In the Pfinder application, the systenrkgowell after an initialization phase where
the room is empty. However, the performance ofttheker in outdoor scenes is not reported.

Expectation-Maximization (EM) is highly used for age segmentation; Friedman and
Russell (Friedman and Russell, 1997) used this odetto develop a pixel-wise EM
framework for vehicle detection. With this methqaxel values are classified into three
separate distributions based on the road color,stteglow color and vehicle color. This
system manages the effects of the shadows, bietmaviour of the system when these three
distributions are not available, is not known. Tperformance of the method would be
affected if there is a single background or a mldticolored background stemming from
motion, shadow or reflectance.

Mixture of Gaussians (MoG) (Hu et al.,, 2004) is amemonly used method which
computes the dynamic features from the image seguamd in this thesis, it has been used as
the segmentation method. In this structure, theetyithg principle is to describe each single
pixel in the image statistically, through a setGdussian probability distributions. With this
model, the variability of each pixel over time Isacacterized.

In the study of Stauffer and Grimson (Stauffer @admson, 2000), the value of a
particular pixel is modelled as a mixture of Gaassj instead of using a single Gaussian
distribution. Gaussians that form the backgroured determined by calculating the variance

of each of the Gaussians of the mixture. Pixelsdbanot fit to this estimated background are
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grouped as foreground pixels. This approach mandigesing changes, slow-moving objects

and introducing or removing objects” successfulig(re 4-3).

(b)

(d)

Fig. 4-3. The execution of the program. (a) the current iedlg) an image composed of the means of the most
probable Gaussians in the background model, (ciotleground pixels, (d) the current image with kiag

information (from Stauffer and Grimson, 1999).

In this approach, there are two important pararsetar, the learning constant afd the
percentage of the data that has be used for byatleground. Every image pixel in the image

sequence can be statistically described as a sd#nedues changing over time:
{Xp X ={ 1%, yo.t) A=t < T}

wherel(x,y,) represents the intensity value of the pixel aifpan (x,y) and timet, in the
image sequence. The latest changes of the inefhigitin be modelled as the mixturekof

Gaussian probability density distributions:

P(X) =" @, B(X 1,3 )

where K is the number of Gaussian distributionsg; is the individual weight of each

Gaussian at time(the sum being equal to 1) andzi,t are the mean the covariance matrix

associated with thi' Gaussian at time

The general formula of the Gaussian distribution is
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At every frame, pixel densities are updated duéh@r intensity values. This update is
calculated by changing the Gaussian distributiath @wimean value at a distance less than 2.5
times its standard deviation, which is found taopémal.
The probability density distribution is calculatbg modifying the weight associated to

each Gaussian according to the following formula:
W = (1_ O’) W T O'(M k,t)

whereMy; is a binary value which checks if the pixel belsng one of the Gaussiansjs
a parameter which determines the learning capglofithe distribution, and the sum of &l
weights is equal to 1. The value afidentifies the adaptation speed of the distributihich
is an important factor to update the model to tbsireéd temporal frequency. The parameters
of the Gaussian are modified according to the Walhg formula:

M = 1- p):ut—l + pxt
ol =@A-p)o_+p(X = u) (X, =)
p=an (X, |u.,0\)

After the update step is over, the Gaussians alered according to the ratio’o. The first
Gaussian, which has the lower weight and higheiamee, represents the background in the
image.

MoG is a highly effective model since it handles ttew objects or changes and adapts its
background model. The parametedefines the period to adapt to new objects. liEtéon
phase is a key step to determine the initial madeth can be achieved either by calculating

the mean values of each Gaussian or by choosinght® repeated Gaussian as the initial

Gaussian. Both of these methods perform well.

Fig. 4-4. Output of Fig. 4-1 after using MoG algorithm.
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Learning the correct scene characterization talkse frames, where slowly moving
vehicles are merged with the steady objects instteme, but slowly vanish as the model is
updated. The maximal velocity of the objects tarmuded in the background is calculated

by the learning speed of the Gaussian model.

4.2 Cross-Correation

Cross-correlation, also known as sliding dot pradisca similarity measure of two signals
and is commonly used in signal processing, compuwision and image processing.
Normalized cross correlation, as in the study okise]P (Lewis, 1995), can be applied in the
image processing template matching applicationsreviiee image brightness and template

can change due to lighting and exposure

First, the distance is calculated as follows:

d2, V) = [F(x ) -t(x-u,y-v)°

where f is the image and the featurpositioned at,v .

d?, (uv) :Z[fz(x, y)—2f(x,y) t(x—u,y—v)+t2(x—u,y—v)J

the term ) t?(x—u,y —V)is constant. If the tern}_ f ?(x, y)is constant then the cross-

correlation term is as below:

o(uv) = (% Mx-u,y-v)

Cross-correlation term represents the similaritgdabetween the feature and the image.

However, this approach has the following disadvgega

1) When the image energz f ?(x, y) varies with position, matching may fail.
2) The range ofc(u,Vv) is dependent on the size of the feature.

3) The formula is not invariant to lighting changes.
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To overcome these disadvantages, the correlatiefficent is calculated:

nyy[f (X, Y) _Tu,v][t (x=u,y-v)~t]
SR b T

where t is the mean of the feature ar?q“is the mean of (x,y). The formula above is

y(u,v) = {

referred as “normalized cross-correlation”.

Normalized correlation is a template matching metiro which the aim is to find the
incidences of a pattern in an image. It is widedgdiin computer vision application such as
stereo vision, motion tracking and image mosaicifiigs method is a simple, yet effective
method as a similarity measure and easy to be mmgaiéed for real-time applications. In this

thesis, normalized cross correlation has been imsdte studies in Chapter 5 and Chapter 6.

4.3 Skeletonization

Thinning is a morphological operation which remottes selected pixels from the binary
images. It is widely used for skeletonization apgions where the aim is to sort out the edge
detection outputs by reducing the thickness oflitress to single pixels. The main advantages
of thinning in image processing are reduction efdlata amount of an input binary image and
the preservation of the skeleton (Vanajakshi e24al10).

Euclidean Distance transforms are commonly usedefdracting the medial axis or
skeleton of the image. It is the simplest approfrhthe skeletonization algorithm and is
based on extracting the skeleton by finding theelgiXurthest from the boundary. Euclidean
distance is used for the distance measurements: tBeeigh this approach is faster than the
thinning operation, the output may not preservenectivity (Daya, 2008).

Blum (Blum, 1967) introduced the medial axis tramsf (MAT) in order to explain
biological shape. MAT can be considered as theslafuhe center of a maximal disc rolling
inside an object. It has been widely used in patéerd image analysis, mold design and path
planning. There is a unique MAT for each object #@nd possible to reconstruct an object by
using its MAT. The MAT can be used in constructiselid geometry (CSG), boundary
representation (B-rep) and in applications reqgithre abstract representation of the geometry.

The mathematical definition of the MAT is as follew
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“The medial axis (MA), or skeleton of the set Dndeed M(D), is defined as the locus of
points inside D which lie at the centers of allsed discs (or balls in 3D) which are maximal
in D, together with the limit points of this locus.closed disc (or ball) is said to be maximal
in a subset D of the 2D (or 3D) space if it is @amed in D but is not a proper subset of any
other disc (or ball) contained in D. The radiusduon of the MA of D is a continuous, real-
valued function defined on M(D) whose value at epoimt on the MA is equal to the radius
of the associated maximal disc or ball. The MATDois the MA together with its associated
radius function.” The boundary and the correspogpdifAT of an object are shown in Figure
4-5. (Ramanathan and Gurumoorthy, 2002).
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Fig. 4-5. Boundary and its medial axis (from Ramanathan@umadimoorthy, 2002).

In the present work, MAT has been used for theysindChapter 6. Below, Figure 4-6

shows the skeletonised outputs of Figure 4-1.

Fig. 4-6. Skeletonized outputs of Fig. 4-1 after MAT algomithvas applied.

4.4 Convex Hull

The definition of convex hull is as follows: “A ssiét Sof the plane is called convex if and
only if for any pair of pointsp,q Sthe line segmenﬁ is completely contained 5. The

convex hullCH § pf a setSis the smallest convex set that contaisTo be more precise,
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it is the intersection of all convex sets that eemtS” (Figure 4-7 and Figure 4-8) (De Berg

et al., 2008).
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Fig. 4-7. lllustrations depicting the concepts of convex anticonvex (De Berg et al., 2008).

The convex hull is an important concept which igdusnainly in mathematics and
computational geometry. It is used in the analggispectrometry data, power diagrams,

halfspace intersection, Delaunay triangulation,o/rmi diagrams (Barber et al., 1996).

Fig. 4-8. lllustration of the working principle of convex lhmethod (De Berg et al., 2008).
In the review article by Aurenhammer, other appiaas of convex hull are listed as: mesh

generation, file searching, cluster analysis anagenprocessing (Aurenhammer, 1991) .In the

present work, convex hulls are used as describ&thapter 7.
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CHAPTER S

A MARKERLESSESTIMATION OF THE ANKLE-FOOT COMPLEX
2D KINEMATICSDURING STANCE
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(This chapter was written on the basis of the ataprticle “A markerless estimation of the
ankle-foot complex 2D kinematics during stance”€UuE., Cereatti A., Grosso E., Della
Croce U. Gait & Posture, doi: 10.1016/j.gaitpos012.01.003, 2011 (in press).)

5.1 Introduction

Quantitative gait analysis is generally carried loytmounting retro-reflective markers on
the skin of subjects and reconstructing the thieeedsional (3D) position in the laboratory
space by means of stereophotogrammetric systenesugéhof stereophotogrammetry requires
the placement of markers on selected points ofbib@y segments. Typically, an expert
operator spends a considerable amount of timetatlahg the markers. In order to do so,
subjects are often asked to remove their clothimgiyding shirts, shoes and socks, sometimes
causing feelings of uneasiness. A technique lese tonsuming, requiring less expertise,
discomfort-free to the subject would be favoraltgepted in clinical applications.

Markerless techniquedi{) have been recently presented (Mindermann e2@D6) and
may potentially play an important role in this resp Different approaches have been
proposed for estimating the human body kinematassed on aMl approach. Corazza et al.
(Corazza et al., 2006) employed a full 3D body nadd¢he subject to be matched with the
visual hull by using Simulated Annealing. BregladaMalik (Bregler and Malik, 1998) used
twist and exponential maps to define the motiothefr model. Chu et al. (Chu et al., 2003)
proposed a model-free approach by describing tmeahubody with a set of points to be
mapped to a pose-invariant intrinsic space postline use of 3DMI techniques in the
clinical and research fields has been so far lidhitee to the high computational cost (Azad et
al., 2006; Deutscher et al., 2000) and equipmemtirements (Mindermann et al., 2006),
especially in the full body analysis.

In two-dimensional (2D) quantitative analysis ofnjokinematics,Ml approaches could
possibly be effectively implemented in clinical éipgtions. By using a Cardboard kinematic
model, Howe et al. (Howe et al., 2000) modeledlithés as planar patches and enforced 2D
constraints on capturing and analyzing the motian nmiake the model representation
independent of the original image, image descrgptuch as silhouettes, edges, color and
texture are frequently used in 2l approaches (Poppe, 2007). In answering to sonwfispe
clinical questions, 3D gait analysis showed tha thost significant differences between

groups were concentrated in the sagittal joint ikiagcs (Calhoun et al., 2010; Picelli et al.,
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2000; Galli et al., 2010), therefore, in such cadée information provided by a 2D
quantitative sagittal joint kinematics analysis nfeysufficient, assuming that the main joint
axis remains approximately perpendicular to thegenglane throughout the recording of the
motor task.

Since the shank and foot complex is key for prapualand support during locomotion, the
analysis of its kinematics provides important infiation for the diagnosis and treatment of
pathologies affecting locomotion (Gage et al., 29%95in et al., 2009).

Based on the considerations above, in this studjoaeas to the sagittal kinematics of the
shank and foot complex during the stance phaseatKimg, with two aims: a) to propose a
2D MI technique and b) to verify if the performance loé proposed technique is affected
when the subject walks with socks on (as opposedaatefoot). The proposed method was
validated (both in barefoot and socked conditidnspcquiring the same walking trials both
with a single camera (used in thi approach) and a simple marker-badd)(system.

5.2 Materialsand methods

5.2.1 Acquisition Setup

Three healthy subjects (one male and two femalgs22 and 28 years old, respectively)
were asked to walk at self-paced speed (approxiyn@té m/s) in two different conditions:
barefoot and wearing ankle sport socks. Five tfiasach condition were recorded for each
subject.

The Mb data were acquired simultaneously with th# data using a six-camera
stereophotogrammetic system (Vicon MX, 1.3 Mpixe20 frames/s). The measurement
volume was 1.5m(1.5m x 1m x 1m). The markers were positioned len head of fibula
(HF), on the calcaneus, on the lateral malleolusa@nthe first and fifth metatarsal heads. The
marker positions were projected to 2D in the edimnaof the joint kinematics. A force
platform (AMTI, Watertown, MA) was also used to eletheel strikes and toe offs.

The MI estimate of the sagittal plane kinematics of than& and foot complex required

the execution of the following steps (Figure 5-1).
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Fig. 5-1. The block diagram of the processing steps usétkiproposed markerless technique.

5.2.2 Video Acquisitions

Sagittal view images of the shank and foot complethe subjects were acquired during
the stance phase with a single digital camera @asl01f, resolution: 800x600 pixels). The
camera, acquiring at 15 frames/s, was positionetdllly to the subject to obtain a sagittal
view of the shank and foot during the stance phalse.measurement plane was 12%h5m
x 1m). Sample frames of acquisitions with the sttbparefoot and wearing ankle socks are

shown in Figure 5-2 (a and b, respectively).

(b)

Fig. 5-2. Reference images of a subject barefoot (a) andimgeankle socks (b).

5.2.3 Segmentation

The objective of the segmentation procedure is ubtract the background from the
moving body parts on the acquired image framesadamplish this aim, the Mixture of
Gaussians method (MoG) (Stauffer and Grimson, 1988 applied. The MoG is a widely
used statistical method, particularly effective whdealing with moving objects and

illumination changes (Lagorio et al., 2008).
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Using the combination of a finite humber of Gausstistributions rather than a single
Gaussian distribution, enables the MoG method ton@y characterize the statistical
content of image sub-parts, handling sequencemageés with overlaps and occlusions. By
calculating the variance of each Gaussian in thdure, the correct statistical distribution of
the corresponding background is determined. Piedlies that do not fit the background
distributions form the foreground.

The segmented outputs of the images can be sdegure 5-3 (a and b, respectively).

(@)

Fig. 5-3. Relevant segmented output images (a and b).

524 Multi-Segment M odel

The multi-rigid body model adopted for the kinernatinalysis consisted of three rigid
body segments: shank (tibia and fibula), rearfaers(gs and metatarsus) and forefoot
(phalanges), connected by cylindrical hinges. Tlhelehwas characterized by two degrees of
freedom: the ankle plantar/dorsi-flexion anglg¢ &nd the rearfoot-forefoot flexion/extension

angle @) as described in Figure 5-4a.

5.25 Anatomical Axes Definition

For each subject, anatomical axes were definedyusineference image (RI) extracted
from the video recordings of the shank and foot giem with markers on at mid stance. In
general, this phase does not require the use dfaersralthough it might be helpful to mark
the anatomical landmarks on the subject’s skirr giédpation and prior to the RI acquisition.
In this study, to validate the propos&tl technique, the same markers used for ke

acquisitions were also used to identify anatomeatimarks in the RI.
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(b)

Fig. 5-4. Definition of ankle joint angleo and rearfoot-forefoot joint angl@)((HF=head of fibula, LM=lateral
malleolus, CA=calcaneous, VM=fifth metatarsal he@@E= big toe) (a). Reference patches and anatbmica
axes (b). Symbols *, + and represent the anatomical axes and reference pawhshank, rearfoot and

forefoot, respectively.

An axis for each of the three segments was idedtifrom the RI: the shank axis was
identified as the axis passing through the hedibafa and the lateral malleolus, the rearfoot
axis was made to join the calcaneous to the fifdtatarsal head, the forefoot axis passed
through the fifth metatarsal head and the toesufEidp-4a). Moreover, in the RI, patches
containing portions of the body segments, expettedhow minimum changes in shape
during movement, were identified (Figure 5-4b). A&xand patches belonging to the same

body segment were assumed to be rigidly connected.

5.26 Cross-Corrdation

Image cross-correlation was applied to the selectedje patches to track the movement
of the body segments. In image processing, crogglation is a well known and effective
technique for template matching (Goshtasby etl@B4). The cross-correlation coefficients,
usually normalized in the range [0;1], express lgirity between two different images: 1
represents full similarity, O no similarity.

The patches identified in the Rl were searchedlithe images of the sequence, one at the
time, over a search space stemming from the pess#uhslations and rotations. The patch in
the searched image that showed the highest crossdaion value was selected (Lewis,

1995). Cross-correlation coefficients were firstnputed translating the template along the
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vertical and horizontal axes of the whole pictihen a first maximum was found, then the
patch was rotated by up to ten degrees and a secaxichum was computed for each rotated
patch over a limited search area. The highest @osglation value defined the position and
orientation of the searched patch. The selectezthpghen became the new reference image for
the succeeding frame and the whole procedure vpesired until the last frame.

5.2.7 DataAnalysis

The duration of the stance phase was defined asuitmder of thevil frames between heel
strike and toe off. Sinckll data and th&1b data were not synchronized, ag-hocprocedure
was implemented. For each trial, heel-strike amddib event frames were selected. This was
done through visual inspection on the frames and using force platform data for Wb
acquisitions. Since th¥l frame rate was 1/8of the Mb frame rate, thevib frame best
matching theMl event was defined as théb frame witha andp values most similar to the
values obtained from the marker location$/linevent images.

Once theM|l andMb frames were aligned in time, tib sagittal joint kinematics were
down-sampled to thell frame rate for comparison purposes.

Ml andMb joint kinematics were compared as follows.

- In order to account for offsets between Mkand theMb ankle kinematics, the absolute

difference between their mean valuesw( and aw,, respectively) over the stance phase

was determined.

Ala) = v —awb

- In order to account for pattern differences, factheime series the deviation from the mean

values were determined:

a'

i = d T awm, anda'i_Mb =4 wp ~a0w
where the subscriptrefers to thé™ frame;

and the Root Mean Square Deviation (RMSD) of#hem values from the?'i_wv values,

was estimated:

@ )’
RMSOa'y, 0"y, ) = \/2|:1( M _Mb) .
n
The same processing was applied to the rearfoefeot joint kinematicsf).
To verify if measurements obtained with the twchteques were comparable to the intra-

subject variability, similar indexes were introddde estimate the intra-subject variability of
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the ankle kinematics obtained with thelb measurements:A, (@) =|aa —a»| and

Zn (@' .—a' b)2 . .
RMSD (@', ,a',) = = _n —— , wherea andb represent any two of the five trials
performed per condition per subject. Similar indexgere introduced for th@ angle
measurements.

The maximum values oy (@) and RMSQ, (o', ,a", ) were compared to the maximum

values of2(@) and RMSOq',, ,a',, ), and similarly was done for the indexes regardiveg

anglep.

5.3 Results

A representative sagittal joint kinematics durihg stance phase, estimated with ffie

technigue and thklb technique is reported in Figure 5-5 for the trsekjects.

The differences®(@) and A(8) between the mean angle values for each trial had t
maximum values of the intra-subject variability éxes &y (@) and Ay (8) are reported in
Table 5-1. Table 5-2 shows the values of RBSD of the joint anglesa and B,
RMSO¢',, ,a',) and RMSOS',, .0'w ) the maximum values of the intra-subject

variability indexesRMSD), ¢ ' ¢ ,' )Jand RMSD, (3. [, )btained for the three subjects in

barefoot and socked conditions. No noticeable diffees were found between barefoot and
socked trials.

5.4 Discussion and Conclusion

3D marker based motion capture systems are commosdd for estimating joint
kinematics in clinical contexts. This approach leggiexpensive equipment and a high level
of expertise to operate, limiting its use in cladicoutine. Unfortunately, valid alternatives are
not available yet. However, in some specific chhicssues, the determination of 2D joint

kinematics is sufficient.
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Fig. 5-5. Ankle kinematics ¢) and rearfoot-forefoot joint kinematicg)(of three subjects (#1, #2, #3), obtained
both in barefoot and socked conditions during ttense phase of walking. The solid lines are thatjoi
kinematics obtained using the marker-based tecknighile dots are the joint kinematics obtained gdine

proposed markerless technique. Quantities are sspdein degrees.
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[deg] Subject #1 Subject #2 Subject #3

angle trial barefoot ankle socks Barefoot ankle socks refomt ankle socks
1 0.2 0.2 1.7 1.1 0.4 1
2 0.2 0.7 2.5 0.8 0.2 0.6
3 0.9 0.2 0.3 15 0.2 0.6
A A 4 15 0.8 0 2.2 1.1 1.4
5 0 1.6 0 0.4 0.8 1.7
average 0.6 0.7 0.9 1.2 0.6 1.0
Ay max 2.5 3.3 1.6 1.9 2.1 1.8
1 4.2 5.2 0.7 5.6 0.8 5.8
2 2.4 3 6.9 8.2 2.4 3.1
3 5.8 3.4 2.7 6 2.5 1.4
B A 4 5.4 3.2 0.6 6.9 1.5 4.2
5 2.4 4.5 1.8 4.5 0.4 3.7
average 4.0 39 25 6.2 15 3.6
Ay max 2.9 2.5 5.9 6.5 4.4 3.4

Tab. 5-1. The absolute differencé) between the mean values during stance of anflan(d rearfoot-forefoot
(A) angles for each trial, condition and subject,aoted with marker-based and markerless technidqiesl
averages are reported in bold (maximum values a@y gells). In the grayed area the maximum intrgestib

variability values (from marker-based measuremesttf)e absolute differencéy) are reported.

[deg] Subject #1 Subject #2 Subject #3
angle trial barefoot ankle socks barefoot ankle socks refoat ankle socks
1 1.6 0.6 1.7 1.6 3.4 1.7
2 1.8 1.4 1.7 1.5 2.8 3
3 2.6 0.7 2.1 1.3 2.4 2
A RMSD 4 1.1 1.5 1.3 0.8 3.1 2.9
5 0.7 2.7 1.1 24 2.7 2.2
average 1.6 14 1.6 15 2.9 24
RMSDy max 4.1 2.7 2.8 3.0 2.6 4.2
1 2 1.2 2.8 4 5 2.3
2 1.3 3.2 7.1 3.6 3 35
3 3.7 1.7 3.7 5.1 2.3 2.6
B RMSD 4 2.8 3.8 3.2 3.4 3.5 3.1
5 1.6 3 3.8 3.4 3 2.7
average 2.3 2.6 41 39 34 2.8
RMSDy max 3.2 3.9 6.6 6.5 3.1 6.5

Tab. 5-2. Root Mean Square Deviation (RMSD) estimated dustance of the markerless joint kinematics
values from the marker-based joint kinematic4d ) values. Trial averages are reported in bold (maxn
values in gray cells). In the grayed area the marimintra-subject variability values (from markersbd

measurement$IMSD;, values are reported.
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In this study, we presented a low-cost, low-disaaniarkerless technique along with a
preliminary validation and reliability assessmamtestimating the sagittal kinematics of the
shank and foot complex during the stance phaserofia walking.

The proposed technique requires a series of stgso acquisition, segmentation, multi-
rigid body model definition, anatomical axes ddfon and cross-correlation.

The segmentation outputs indicated that the algorithosen for segmenting the images
had limited sensitivity to the presence of sockggesting that if subjects wore socks during
the trials, results would not be affected. This ogpresent an advantage of the use oMhe
technigue when analyzing the gait of subjects geinore comfortable walking with socks
than barefoot.

The ankle kinematicsof estimated with thél and Mb techniques showed very similar
results throughout the stance phase (odndRMSDvalues are in general within the intra-
subject variability). Differently, for the rearfofrefoot kinematics f{), A showed values
about two degrees higher than the relevant intbgesti variability values4y) in all three
subjects (except for the barefoot condition of sab#3). On the converse, tRMSDvalues
for theP angle were in most cases within the relevantistnigject variability indexRMSD)).
The different results obtained for the anfjlare most probably due to the small size of the
forefoot segment and consequently, to the lacleldlility in identifying the anatomical axis
using either technique. The larger intra-subjeciaality determined for the angleincreases
the chances of having larger differences in thatj&inematics estimated with the two
techniques.

In general, the accuracy and precision of bethand Mb methods suffer from body
segments of reduced siz®b techniques perform better in identifying body segis
orientation when segment markers are farther fracheother (i.e. larger body segments).
Similarly, Ml techniques may use a larger number of pixels timate the orientation of a
large body segment. However, in general, wMle techniques use a minimum number of
points to describe the segment kinematics (typiddliee or four points), it is reasonable to
expect that futurdll techniques may fruitfully use the redundancy e&f itiformation carried
by the hundreds of pixels used to estimate the eagrkinematics and may increase its
precision. For instance, since markers are ofteatéul over a layer of soft tissues, near a joint
or over an active muscle, their movement relatitelyhe underlying bone introduces errors
in the estimation of joint kinematics (Cappozzoaét 1995; Leardini et al.,, 2005). The
redundant number of points used My techniques in determining segment kinematics could
potentially reduce such errors.
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The MI techniqgue employed in this study suffers of thenedimitations of any 2D
kinematics analysis of gait performed with a singéanera. They are mostly related to the
impossibility a) of describing the out-of-plane rjpikinematics, b) of obtaining a bilateral
analysis, c) of describing segment deformity andfddeeping image plane and sagittal plane
parallel. The last limitation has a limited effemt the resulting joint kinematics for small
angles between the two mentioned planes (a 10 elegmegle between planes generates a
1.5% difference in the sagittal joint kinematictiraate).

From an algorithmic standpoint, the chos#éintechnique shows limitations to be overcome
for increasing its potential in clinical applicat® To analyze the sagittal kinematics of pelvis
and lower limbs during the entire gait cycle, thgrovedMI| technique should cope with
complex backgrounds, shadows and occlusions. Bghidy, background subtraction was
simplified by covering the contra-lateral leg wighlong black sock. A more robust cross-
correlation and/or image processing technique sisctieformable contours (Shahrokni et al.,
2005) could help in solving the problem. Moreowee processing time of the propogdd
technique in the current version implemented in MAB® (MathWorks, Natick, MA,
USA) needs to be reduced to be fruitfully used linical applications (currently about 15
minutes are required to process a trial).

Finally, in order to assess the differences in #agittal joint kinematics, the two
techniques had to be registered at a referencd poitime. This required the use of the
markers located on anatomical landmarks for thentieih of anatomical axes in thell
technique. As a consequence, this study does mnotider information regarding the
discrepancy (an offset) due to different ways dfbcating anatomical landmarks (from a
reference image in aMl technique as opposed to palpation inMimtechnique). A reliable
automatic anatomical axes identification proceduoen the Ml images would increase the
robustness of the proposed technique.

The performance of thé/l technique proposed to estimate 2D joint kinematgs
promising for future use in clinical settings. bcft, the acquisition of movement data without
the need of attaching markers to the subject’s, skmal yet obtaining results comparable to
those obtained with a simple marker based technigpeesents an important step toward the
design of an acquisition system for clinical usectsa system could also be easy to configure

and operate and most probably relatively affordable
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CHAPTER 6

MEASUREMENT OF KNEE FLEXION/EXTENSION USING A 2D
MARKERLESS TECHNIQUE
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1) Surer E, Kasi P, Cereatti A, Bonato P, Della Crdde (2010) Measurement of Knee
Flexion/Extension Using a 2-D Markerless TechnidueProc. of Secondo Congresso Nazionale

di Bioingegneria, Turin, Italy, 8-10 July 2010.
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6.1 Introduction

Several measurement tools have been used to qudatide joint angles and knee
movements. The selection of a measurement toolndispen the purpose of testing (Miller,
1985) and psychometric properties such as religltahd validity (Rothstein et al., 1983). To
be valid, tools for quantifying knee position andbwvement need to produce minimal
measurement error. Measurement error can arisetfrertool, the tester or from variability in
the performance of the individual (Stratford et #084; Russek 2004).

Assessment of knee flexion/extension is typicalbnel with a number of measurement
tools: electro-goniometers, inertial sensors, 2B 3D marker-based motion analysis systems
(Piriyaprasarth and Morris, 2007). Most of the itiadal clinical analysis methods involve
applying sensors to the patients, which may causeohfort and hinder the natural
movement. Besides, they necessitate expertisegi@tgpand expensive hardware.

To overcome the abovementioned limitations, in #tigly, a 2D markerless technique is
proposed to measure knee flexion/extension. Thidysis an enhancement to our previous
study (Surer et al., 2011), which is explaind itaden the Chapter 5 of this thesis.

The focus of the first study was the analysis @& #D kinematics of the ankle-foot
complex using a single lateral view by defining hmee-segment model and tracking its
movement using selected patches rigid to the segmiensimplify the problem, a black
background was used and the subjects wore lon§ btazks to cover the contra-lateral leg.

In this study, a 2D markerless technique is dewepin which the presence of a more
complex background was dealt with by using an adamtatistical background subtraction
model and the occlusions were dealt with by de§ram additional patch per segment to be
used when the occlusion occurs on the main patot pfoposed technique is validated with a
traditional stereophotogrammetric system and thgilt® of the proposed technique are

comparable to those obtained with the stereophatogretric system.
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6.2 Materials and methods

The material and methods used in the proposed itpghis very similar to those used in
the previous study. Still, for the purposes of gnity, an overall summary of the similarities

between the studies will be presented in this aragd well.

6.2.1 Acquisition Setup

Two CP children (one female and one male, 14 ayrd, respectively) were asked to walk
at self-paced speeds. Five trials from each dwoactvere recorded for each subject. During
the acquisitions, subjects wore white high-cut ume@ar and white ankle socks. One of the

subjects prepared for the study can be seen imd-iyl.

Fig. 6-1. Subject prepared for the study. For validationppses, retro-reflective markers were mounted on the

subject.

Marker-basedNlb) data were recorded simultaneously with Miedata using a six-camera
stereophotogrammetic system (BTS® SMART-D steretggrammetric system, 640x480
pixels, 60 Hz). The infrared filter of one of thantceras was removed and modifications on
the shutter and strobe timing were made by the faaturer. The remaining five cameras
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were used for the marker based acquisitions onljewthe modified camera acquired the
lateral view of the subject as grayscale imageiriguthe analysis, only the leg in focus was
taken into consideration.

“Simple Davis” protocol of the BTS® SMART-D systemere used for the positioning of
the markers, so they were positioned on the sachetween PSIS), right and left ASIS,
greater trochanter (GT), femoral condyle, headmfl, lateral malleolus and fifth metatarsal
joint. Lateral bars were used between the greetehanter and femoral condyle and between
head of fibula (HF) and lateral malleolus. A foptatform (AMTI, Watertown, MA) was also
used in order to detect heel strikes and toe offs.

The MI sagittal plane kinematics estimate of the lowabk necessitated the execution of

the following steps.

6.2.2 Segmentation

As in the previous study, segmentation of the lolwvebs was performed to separate the
background information from the regions of intenesing MoG method. MoG is an adaptive
background modelling method where the paramete@aoissians are updated to separate the
background from the moving foreground (Stauffer @mnonson, 1999).

While a simple black background was used for thevipus study, in this study, a more
complex background is preferred. Besides, the atatgral leg is not covered with black
socks. Despite of the complex background, the t®sol the segmentation were quite
successful. The occlusions stemming from the ctatéal leg were handled in the model and
axes definition step.

Figure 6-2 shows a segmentation sample. As for glevious study, the proposed
technique was validated acquiring the same triath Wwoth the single camera used in the
proposed markerless technique and a traditionsdgddotogrammetric system.

6.2.3 Modd and Axes Definition

The multi-segment model adopted for the kinemadigsalysis consisted of two different
rigid segments — shank and thigh. Anatomical axegewisually identified and patches in a
reference frame were selected.

To manage occlusions — portions of segmented imeagaposed by the overlapping of the
two legs — two patches rigidly connected are defifiestead of one) per segment, one on the

front edge of the segmented image and one in Hrecdge.
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The patch on the front edge of the segments is albrroonsidered active except when an
occlusion occurs in the front edge. Then, the pch automatically becomes the active
patch until the occlusion ends (Figure 6-3). Bo#tiches are also rigidly connected to the

segment anatomical axis and are the portions afthges used in the cross correlation.

Fig. 6-2. Sample image and its segmentation output. As easebn, complex background did not diminish the

performance of the segmentation algorithm.

6.2.4 CrossCorreation

The cross-correlation (Goshtasby et al., 1984),cwhs a template matching approach,
calculates similarity coefficients between two eréint images. The coefficients express
similarity between the images (value 1 represantssimilarity, O value no similarity) in the
search space derived from the possible translatiodsotations. It was used in order to track
the movements of thigh and shank segments of therider analysis.

The patches identified in the reference image (B®dje searched in all the images of the
sequence, one at the time, over a search spacenstgrirom the possible translations and
rotations. The patch in the searched image thatatidghe highest cross-correlation value was
selected. Cross-correlation coefficients were fimhputed translating the template along the
vertical and horizontal axes of the whole picture.

When a first maximum was found, then the patch re#sted by up to ten degrees and a
second maximum was computed for each rotated pateha limited search area. The highest
cross-correlation value defined the position angkrwation of the searched patch. The
selected patch then became the new reference ifoaglee succeeding frame and the whole
procedure was repeated until the last frame.
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6.3 Resultsand Discussion

Table 6-1 shows the results of the two subjectslyaed for this study. In order to
compare the pattern differences between the prdpésehnique and the marker-based,
RMSD results, after removing the mean differenceshe curves (offsets). Besides intra-
subject variability and correlation outputs of tfwe techniques are presented for the knee-

flexion extension angleBy.

Fig. 6-3. Segmentation outputs with patches and axes asemed. Green and pink are the active patchein th
left image. In the right image, purple and bluechas are the active ones; notice that the actitehps are

swapped.

Subject #1 Subject #2
Correlation 0.98 0.98
RMSD 4.4 4.6
RMSDv 26.5 2.3

Tab. 6-1. The correlation between the two techniques, tfmot Mean Square Deviation (RMSD), and
intrasubject variability (RMSD).

Figure 6-4 shows the knee-flexion kinematics cuade two subjects.
Results show that lower limb sagittal kinematicginestes from marker-based and
proposed markerless methods are highly comparafaking the latter a potential alternative

for clinical use.
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CHAPTER 7

2D GAIT ANALYSISOF CHILDREN WITH CEREBRAL PALSY
USING SEGMENTAL MARKERSAND A MARKERLESS APPROACH
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7.1 Introduction

Cerebral palsy (CP) is defined as a group of mowveraad posture disorders stemming
from the abnormalities that occurred in the devielggetus or infant (Bax et al., 2005). The
motor disorders of CP are often accompanied by imaats of sensation, cognition,
communication and perception (Marlow, 2004).

The standard assessment approach in CP is to mee&iics, kinetics, electromyography
(EMG) and clinical examinations for a comprehensagsessment (Whittle, 1996). In
determining the joint kinematics of patients witR @uring walking, marker-based movement
analysis is frequently used (Baker, 2006).

Marker-based movement analysis has played a signifirole in the assessment of CP
with its use in documentation, operative planning @ostoperative evaluation (Gage et al.,
1995). However, attaching markers to the subjee$pecially to the children, may cause
feelings of uneasiness and may hinder the walkm@ddition, they require expensive setup
and expertise to operate. For these reasons, aigeehless discomfort-free, low-cost and
easy to use would be appealing in determiningdh# kinematics of patients with CP.

Markerless techniques may provide solutions to @v@e the abovementioned difficulties.
Several algorithms, such as Simulated AnnealingrdZza et al., 2006) and twist and
exponential maps (Bregler and Malik, 1998) in 3Dvéhdeen proposed for estimating the
joint kinematics based on markerless approacheéshby have not been validated for clinical
applications. Also, up to now, the use of 3D mddss techniques in the clinical applications
has been limited due to the high computational ¢osutscher et al., 2000) and equipment
requirements (Mindermann et al., 2006).

Despite the fact that most studies use sophisticgilemeasurement systems to collect gait
data in three planes of motion, using sagittal @limematics is sufficient as in the cases of
classification of CP (Dobson et al., 2007) and cangon of right and left hemiplegia (Galli
et al., 2010).

Markerless approaches could be successfully apptedthe clinical applications
determining the two-dimensional (2D) sagittal jokmematics. Cham and Rehg (Cham and
Rehg, 1999) used scaled prismatic models (SPM3.-aiclass of 2D kinematic models — to
model the human body in 2D. Howe et al. (Howe et2000) modeled the limbs as planar

patches and enforced 2D constraints on capturirth aaralyzing the motion by using a
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Cardboard kinematic model. Even though these sutleve great potential for clinical
applications, they have nor been validated either.

In this study, we propose a 2D markerless technigimed as hybridHyb) since it uses
garments (high-cut underwear and ankle socks) ttvaex additional information as
“segmental markers” in defining pelvis and foot reegts. The validation of the proposed

technique was done by acquiring the same triats\waith a marker-based system.

7.2 Materialsand methods

7.21 Acquisition Setup

Ten CP children (five females, ages = 9 + 4 yrsjenasked to walk at self-paced speeds.
Five trials from each direction were recorded faicke subject. During the acquisitions,
subjects wore white high-cut underwear and whitdeagocks.

Marker-based NIb) data were acquired simultaneously with tHgb data using a six-
camera stereophotogrammetic system (BTS® SMART-&eephotogrammetric system,
640x480 pixels, 60 Hz). The markers were positioaedording to the “Simple Davis”
protocol of the BTS® SMART-D system, and therefavere positioned on the sacrum
(between PSIS), right and left ASIS, greater trotbia(GT), femoral condyle, head of fibula,
lateral malleolus and fifth metatarsal joint. Lalebars were used between the greater
trochanter and femoral condyle and between heafibofa (HF) and lateral malleolus. A
force platform (AMTI, Watertown, MA) was also usigdorder to detect heel strikes and toe
offs.

TheHyb sagittal plane kinematics estimate of the lowabk necessitated the execution of
the following steps.

7.2.2 Anthropometric M easurementsand Calibration

In order to extract additional information for thge of high-cut underwear and ankle socks
as “segmental markers”, the following measuremé¢higure 7-1a) were made before the
acquisitions:

M1: distance between the high-cut of the underweal) @nd the femoral condyle;

M2: distance between the femoral condyle and the efithee ankle sock (ankle);

M3: foot length
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The camera was positioned laterally and calibratedrder to mapgvil and M2 to their
pixel-lengths on the imagesvi3 was used to validate the mapping calculation. A
checkerboard of known geometry and size (Figurd)7wlas used in order to calibrate the

camera.

(b)

Fig. 7-1. The measurements M1, M2 and M3 (a). Checkerbgrd

7.2.3 Video Acquisitions

Sagittal view images of the lower limbs of the tb$ were acquired with a single BTS®
SMART-D camera. In order to acquire the sagittabwiof the lower limbs, infrared filter of
the camera was removed and modifications on th#estand strobe timing were made by the
manufacturer. The camera, also acquiring at 60w, positioned laterally to the subject to
obtain a sagittal view of the lower limbs. Samplenie of an acquisition with the subject is

shown in Figure 7-2a.

7.24 Segmentation
As in the studies of Chapter 6 and 7, Mixture oug&sans (MoG) method (Stauffer and

Grimson, 1999) was applied in order to subtractiekground from the moving parts on the
acquired image frames. The MoG is a widely usetisstzal method, particularly fruitful
when handling moving objects and illumination ches@_agorio et al., 2008).

Using the combination of a finite humber of Gaussibstributions instead of a single
Gaussian distribution enables the MoG method tov@dy characterize the statistical content

of image sub-parts, dealing with sequences of imagéh complex backgrounds. By
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calculating the variance of each Gaussian in thdure, the correct statistical distribution of
the corresponding background is determined.

Example of the output of the segmentation procedureported in Figure 7-2b.

7.2.5 Skeetonization

Medial Axis Transform (MAT) is a shape model thharacterizes an object by the set of
maximal circles that are completely contained i@ tihject. The medial axis consists of the
centers of the circles, and can be intuitively tyfduof as the skeleton of the object (Lam et
al., 1997). In order to determine the medial atkis,pixels are eroded from the boundary until
a skeleton is formed (Tam and Heidrich, 2003). MA&@s numerous applications in
visualization, computer graphics and computer wisio

MAT was applied to the segmented image framesderaio “skeletonize” the lower limbs
so that joint segments could be extracted.

The skeleton of the segmented frame is shown iarEig-2c.

(@) (b)

Fig. 7-2. Sampleframe (a). Segmented frame (b). Skeletonized freane

7.2.6 Thresholding and Labeling of the Gar ments

To distinguish the high-cut underwear and the askleks, intensity values of the garments
were used in thresholding. By checking the vidipiof the garments during a sequence of a
proper number of frames, the sock on the contexdhtleg was eliminated. Thresholded
garments can be seen in Figure 7-3a.

Labeling is a process which finds the connectedpmmants on a binary image and groups
them as an object (Haralick and Shapiro, 1992) igndspecially practical to operate on
related image parts. In order to access garmesily dabeling process was applied.
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(@) (b)

Fig. 7-3. Thresholded garments (a). Edged garments (l&rd@ttion points (c).

7.2.7 Edge Detection and Extracting Body Segments

Following the labeling of the garments, Robert'sgyedoperator (Roberts, 1965) was
applied to the distinctive garments in order todfithe edges. The outputs of the edge
detection were overlapped with the skeletonizatiotputs so that the intersection points were
identified. Intersection points were significant body segment extraction step. Edged
garments and intersection points can be seen uré-igr3b and 7-3c, respectively.

Body segments were extracted after the edge detedio locate the thigh in the images, a
line was drawn from the hip to the intersectiorire circle ofM1 radius and the skeletonized
line of the leg. Similarly, to locate the shanklime was drawn from the ankle to the
intersection of the circle oM2 radius with the skeletonized leg (Figure 7-4a)ingsthe
morphological operators, the side edges of the garsnwere automatically eroded and
labeled. After the erosion, only the upper and loe@ges remained, i.e. two edges for each
garment. The pelvis reference axis was extracteftiyg a line to the upper edge of the
underwear. The foot reference axis was extractefittbyg a line to the rear part of the lower

edge of the sock (Figure 7-4b). The four axes @sden in Figure 7-4c.
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Fig. 7-4. Thigh and shank segmentg) Pelvis and foot segmenté) The four reference axes fitted on the

skeleton (c).

7.2.8 Occlusion Handling

During walking, swing of the arms caused occlusitrst affected the visibility of the
high-cut underwear. Because of the occlusionspimesof the image frames the garment was
seen partially or as two blobs and the interseguiomt on the high-cut underwear became
invisible.

In order to solve the two blobs problem, labelimgl @onvex hull operations (Barber et al.,
1996) were used. Since the ankle sock in focusalveays visible on the image frames, it was
labeled first. It was not possible to correctlydbthe high-cut underwear by simply using the
thresholding outputs, since two labels were cre&edhe blobs. In order to overcome this
setback, labeled ankle sock was used. Adding tleady known shank and thigh lengths to
the labeled ankle sock, the approximate heighhefhigh-cut was estimated. Then, all the
blobs around that height were considered as pattsedhigh-cut underwear. Then, the blobs
were merged by using convex hull operation, i.enimal region containing the two blobs and
labeled again.

In order to estimate an intersection point whewats invisible, the edge detection was

performed on the convex hull and the output waersgicted with the skeleton.
7.29 DataAnalysis

The proposed hybrid technique was compared withasken-based technique using a
single acquisition system recording the same trRést Mean Square Deviation is used as an
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indicator of differences between the pattern ofvearof proposed hybrid technique and the
marker-based.

Hyb andMb joint kinematics were compared as follows.
- In order to evaluate pattern differences of anKkbntar/dorsi-flexion ¢), for each time

series the deviation from the mean values wereamated:

a' b =i pyo — 'y, and a'i wn=ai w ~aw

where the subscriptrefers to the™ frame;

and the Root Mean Square Deviation (RMSD) of the ,, values from thea’;
values, was estimated:

no, . 2
Zizl(a i b~ b))

n

RMSOa'y, 0wy ) = \/

The same processing was applied to the knee fleatension ) and hip
flexion/extension), for both directions.
To verify if measurements obtained with the twdhteéques were comparable to the intra-

subject variability, similar indexes were introddde estimate the intra-subject variability of

the ankle kinematics obtained with thelb measurements:A, (@) =|aa —a»| and

Zin:]_(ali_a_ali_b )2

n

, Wherea andb represent any two of the five trials

RMSD) (@', ,a',) :\/

for each direction performed per subject. Similadexes were introduced for tifieandy

angle measurements.

7.3 Resultsand discussion

Tables 7-1, 7-2, 7-3 and 7-4 show the values oRNESD of the joint angles,, p andy,
RMSOa'y,,.a'y,) andRMSOS',,, .0 ), the maximum values of the intra-subject
variability indexeRMSD), (a',,a',), RMSDQ (B', .6, )and RMSD, ( . I' | )obtained for

the 10 subjects. Tables 7-1 and 7-2 show the geBolt trials when subjects walked from the
right side, while in Tables 7-3 and 7-4 the resalts from trials when the subjects walked

from the left side.
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[deq]

angle trial Subject #1  Subject#2  Subject #3  Subject #4ubj&t #5
1 3.7 4.5 3.7 5.2 2.1
2 25 3.3 3.2 6.0 2.6
3 2.8 4.1 3.0 6.3 2.8
o RMSD 4 3.4 6.1 4.5 5.4 3.5
5 3.1 4.7 4.7 6.9 3.2
average 3.1 45 3.8 6.0 2.8
RMSDy, max 3.9 6.4 3.8 15.7 2.2
1 3.9 4.1 9.6 6.2 5.8
2 3.7 3.9 8.3 55 6.1
3 3.1 4.5 8.5 5.8 5.2
B RMSD 4 4.7 5.4 7.3 7.1 4.4
5 3.9 5.6 8.8 5.4 4.6
average 3.9 4.7 8.5 6.0 5.2
RMSD, max 7.9 4.5 13.7 10.2 5.0
1 3.4 3.7 7.6 7.1 3.9
2 4.9 3.2 7.1 7.7 3.2
3 5.0 5.7 7.8 7.1 4.0
Y RMSD 4 5.1 2.8 7.0 6.5 4.7
5 5.3 5.2 8.5 7.2 3.7
average 47 41 7.6 7.1 3.9
RMSD, max 5.3 3.8 12.3 6.3 3.3

Tab. 7-1. Root Mean Square Deviation (RMSD) estimated dustance of the markerless joint kinematics
values from the marker-based joint kinematics3(andy) values, from the data tfie subjects (#1 - #5) walking
from the right side. Trial average values are a¢gmrted (in bold). Colored cells represent the imar values

of the trials. In the grayed area the maximum istrbject variability values (from marker-based noeasients)

RMSD, values are reported.
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[deq]

angle trial Subject #6  Subject#7  Subject #8  Subject #ubjé&ct #10

1 25 7.6 6.9 8.1 3.3
2 2.4 11.2 6.2 10.5 2.9

3 3.5 9.2 4.1 12.4 2.7

o RMSD 4 2.8 8.5 4.2 8.3 3.6
5 3.7 12.5 5.5 9.7 3.1

average 3.0 9.8 5.4 9.8 3.1

RMSDy, max 3.0 12.9 7.4 13.4 3.4

1 4.8 10.2 8.8 8.7 6.5

2 4.7 11.4 9.1 10.7 5.0

3 4.9 14.8 8.9 12.5 4.4
B RMSD 4 3.9 10.3 7.3 11.8 4.6
5 4.7 8.9 8.3 10.9 5.3

average 4.6 11.1 85 11.0 52

RMSD, max 7.1 22.0 9.1 18.8 8.9

1 5.6 7.9 6.2 8.7 6.1
2 5.7 9.9 5.9 11.9 5.8

3 4.5 12.2 4.7 8.1 5.0

Y RMSD 4 4.9 12.0 4.6 12.6 4.8
5 6.5 8.5 3.9 9.3 4.1

average 54 10.1 51 10.1 5.2

RMSD, Max 5.4 11.7 11.0 13.5 6.7

Tab. 7-2. Root Mean Square Deviation (RMSD) estimated dustance of the markerless joint kinematics

values from the marker-based joint kinematies A and y) values, from the data dhe subjects (#6 - #10)

walking from the right side. Trial average valueg also reported (in bold). Colored cells represiuet

maximum values of the trials. In the grayed areartaximum intra-subject variability values (from nier-

based measuremenMSD, values are reported.
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[deq]

angle trial Subject #1  Subject#2  Subject #3  Subject #4ubj&t #5

1 7.3 7.4 5.4 104 2.9

2 6.4 5.8 6.2 7.8 3.6

3 7.9 6.5 7.4 10.3 2.8
o RMSD 4 8.6 6.2 5.0 8.4 25
5 4.0 7.7 6.2 9.6 3.2

average 6.8 6.7 6.0 9.3 3.0

RMSDy, max 12.2 7.3 6.5 16.1 3.1

1 8.2 4.1 8.9 6.1 6.8

2 7.8 5.7 8.3 10.1 5.1
3 5.6 5.2 6.3 9.6 55
B RMSD 4 9.0 4.5 6.0 8.2 4.8
5 8.3 3.9 7.1 7.0 5.6

average 7.8 4.7 7.3 8.2 5.6

RMSD, max 24.48 4.8 12.1 15.3 5.2

1 9.2 4.8 9.4 11.0 4.1

2 8.3 3.9 7.1 10.8 5.0

3 10.5 4.6 3.7 13.0 3.6
Y RMSD 4 9.8 3.8 6.6 9.7 3.8
5 6.4 4.1 9.2 8.6 4.0

average 8.8 4.2 7.2 10.6 41

RMSD, max 19.9 4.7 9.0 12.5 3.9

Tab. 7-3. Root Mean Square Deviation (RMSD) estimated dustance of the markerless joint kinematics
values from the marker-based joint kinematics3(andy) values, from the data tfie subjects (#1 - #5) walking
from the left side. Trial average values are aégmorted (in bold). Colored cells represent the maxn values

of the trials. In the grayed area the maximum istrbject variability values (from marker-based noeasients)

RMSD, values are reported.
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[deg] trial  Subject#6 Subject#7  Subject#8  Subject #ubj&t #10

angle
1 3.8 11.8 7.2 9.6 4.5
2 2.5 13.4 8.9 10.7 4.3
3 2.5 12.8 7.4 10.2 5.3
o RMSD 4 2.1 13.7 8.5 114 5.8
5 2.4 14.5 9.1 11.9 5.9
average 2.7 13.2 8.2 10.8 52
max 3.8 14.5 9.1 11.9 5.9
RMSDG, max 2.9 21.1 10.5 13.2 5.5
1 4.5 8.7 12.9 14.7 5.8
2 5.8 11.5 13.3 10.1 4.9
3 3.1 9.4 11.8 12.6 3.9
B RMSD 4 3.1 10.2 14.0 12.9 6.1
5 3.6 8.8 12.5 134 5.9
average 4.0 9.7 12.9 12.7 5.3
RMSDL, max 5.7 13.2 16.6 18.4 8.7
1 4.1 9.8 11.7 9.4 5.8
2 35 8.7 12.6 10.7 55
3 4.2 10.8 12.8 9.9 6.6
Y RMSD 4 3.7 12.0 13.7 11.2 6.4
5 3.8 9.3 13.2 13.8 7.5
average 3.9 10.1 12.8 11.0 6.4
RMSD, max 3.4 10.3 16.8 13.7 5.9

Tab. 7-4. Root Mean Square Deviation (RMSD) estimated dustance of the markerless joint kinematics
values from the marker-based joint kinematies A and y) values, from the data dhe subjects (#6 - #10)
walking from the left side. Trial average values also reported (in bold). Colored cells represemtmaximum
values of the trials. In the grayed area the marimuatra-subject variability values (from marker-bds

measurement§MSD, values are reported.

In the estimation of joint kinematics of childrentivCP, 3D marker-based motion capture
systems are generally used. Marker-based analyst®saitates the use of expensive
specialized hardware and expertise. Besides, tisteage of markers may cause feelings of
uneasiness and interfere with walking.

In this study, we proposed a low-cost, low-discamfaybrid technique along with a
validation in estimating the sagittal kinematicstioé¢ lower limbs of children with CP. The
technique requires a series of steps: anthropamneteasurements and calibration, video
acquisition, segmentation, skeletonization, thr&lhg and edge detection, labeling the
garments and extracting body segments and occliiadling. The lower limb kinematics
estimated with thédyb and Mb techniques showed very similar results throughbatgait

cycle RMSDvalues are in general within the intra-subjectalality).
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This is, to authors’ knowledge, the first attengpapply a markerless technique for the gait
analysis of CP children. The absence of markenesents a valuable advantage in terms of
patient discomfort. The performance of the propdsgdatid markerless approach is promising
for its future use. Another important strength loilststudy is the fact the proposed hybrid
technique was validated with a marker-based system.

As a future work, segmentation and occlusion hagdiechanisms of the technique will
be improved so that CP children with assistive ckevican also be analyzed. Besides, with an
additional sagittal camera, bilateral analysis atso be performed. Finally, the processing
time (about 60 s for each frame) needs to be returcerder to perform clinical analysis in

an efficient way.
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CHAPTER 8

CONCLUSIONS
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Quantitative gait analysis is generally carried loytmounting retro-reflective markers on
the skin of subjects and reconstructing the 3D tmwsiby means of stereophotogrammetric
systems. The use of stereophotogrammetry requieglacement of markers on selected
points of the body segments. Typically, an expedrator spends a considerable amount of
time in attaching the markers. A technique lesse{oonsuming and requiring less expertise
would be preferred in clinical applications. Mailkess techniquesl) may potentially play
an important role in this respect. The presentishasns at providing a contribution towards
the development of new 2D markerless approacheshwtan be fruitfully used in clinical
applications.

The first markerless technique which uses crosgetairon has been used to analyze the
ankle-foot kinematics of healthy subjects. The gsial has been done for two conditions:
subjects wearing ankle socks and subjects barefbetresults have shown that, the proposed
markerless technique is comparable to the curranken-based techniques and may represent
an important step towards the design of an acquisitor clinical purpose. Besides, the
segmentation outputs showed that the algorithm exhder segmenting the images had
limited sensitivity to the presence of socks, sstjgg that if subjects wore socks during the
trials, results would not be affected.

The proposed markerless technique was improvedised in a clinical context, by mainly
on the analysis of the knee flexion/extension angléde children with CP. In order to do so,
additional patches were added to the techniquevard complex backgrounds were handled.
This technique is an important step towards esingahe knee flexion/extension angle with
an easy-to-use and low-cost setup.

The final study combined a markerless methodologk éegmental markers” i.e. high-
cut underwear and ankle socks. For this reasonptbposed technique was defined as
“hybrid”. The lower limb joint kinematics of the itiren with CP is analyzed with a
skeletonization-based markerless technique whisbh abmbines the information extracted
from the garments. Results show that the proposelnique produced comparable results
with the marker-based system and can be fruitfulbed in the lower limb kinematics
estimation of children with CP.

The main contribution of this thesis is that it poses three new markerless techniques,
applied to ankle-foot complex, knee and lower ligmespectively. The strength of each of the
proposed techniques is validated with gold standatd; i.e. the data acquired by the marker-

based system working synchronously with the maeksrisystem. The effectiveness of the
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proposed techniques for biomechanical/clinical mptibns is better understood considering
the fact that most of the markerless studies ar@almated.

As a future work, the processing time of the segatem algorithm in the current version
implemented in MATLAB® (MathWorks, Natick, MA, USAheeds to be reduced to be
fruitfully used in clinical applications. BesideBy adding an extra sagittal camera to the
setups, acquisitions can be done for both direstidimally, the proposed hybrid technique

should be developed so that the CP children wiisage devices can also be analyzed.
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