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SUMMARY 

A main objective of the human movement analysis is the quantitative description of joint 

kinematics and kinetics. This information may have great possibility to address clinical problems 

both in orthopaedics and motor rehabilitation. Previous studies have shown that the assessment of 

kinematics and kinetics from stereophotogrammetric data necessitates a setup phase, special 

equipment and expertise to operate. Besides, this procedure may cause feeling of uneasiness on the 

subjects and may hinder with their walking. The general aim of this thesis is the implementation 

and evaluation of new 2D markerless techniques, in order to contribute to the development of an 

alternative technique to the traditional stereophotogrammetric techniques. 

At first, the focus of the study has been the estimation of the ankle-foot complex kinematics 

during stance phase of the gait. Two particular cases were considered: subjects barefoot and 

subjects wearing ankle socks. The use of socks was investigated in view of the development of the 

hybrid method proposed in this work. Different algorithms were analyzed, evaluated and 

implemented in order to have a 2D markerless solution to estimate the kinematics for both cases. 

The validation of the proposed technique was done with a traditional stereophotogrammetric 

system. The implementation of the technique leads towards an easy to configure (and more 

comfortable for the subject) alternative to the traditional stereophotogrammetric system. 

Then, the abovementioned technique has been improved so that the measurement of knee 

flexion/extension could be done with a 2D markerless technique. The main changes on the 

implementation were on occlusion handling and background segmentation. With the additional 

constraints, the proposed technique was applied to the estimation of knee flexion/extension and 

compared with a traditional stereophotogrammetric system. Results showed that the knee 

flexion/extension estimation from traditional stereophotogrammetric system and the proposed 

markerless system were highly comparable, making the latter a potential alternative for clinical use. 

A contribution has also been given in the estimation of lower limb kinematics of the children 

with cerebral palsy (CP). For this purpose, a hybrid technique, which uses high-cut underwear and 

ankle socks as “segmental markers” in combination with a markerless methodology, was proposed. 

The proposed hybrid technique is different than the abovementioned markerless technique in terms 

of the algorithm chosen. Results showed that the proposed hybrid technique can become a simple 

and low-cost alternative to the traditional stereophotogrammetric systems. 
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SOMMARIO 

Uno dei principali obiettivi dell’analisi del movimento umano è la descrizione quantitativa della 

cinematica e della dinamica delle articolazioni. Questa informazione può avere grandi potenzialità 

nell’individuazione di approcci clinici sia in ortopedia che in riabilitazione motoria. Alcuni studi 

hanno mostrato che la stima della cinematica e dinamica da dati stereofotogrammetrici richiede una 

fase di preparazione, della strumentazione molto specifica e delle competenze per utilizzarla. Inoltre 

tali procedure possono creare nei pazienti un senso di impaccio e possono modificarne il cammino 

naturale. Lo scopo generale di questa tesi è l’implementazione e la valutazione di alcune nuove 

tecniche markerless in due dimensioni, come contributo allo sviluppo di tecniche alternative alle 

tradizionali tecniche stereo fotogrammetriche. 

Inizialmente, lo studio è stato focalizzato sulla stima della cinematica del complesso caviglia-

piede durante la fase di appoggio del cammino. Sono stati considerati due casi particolari: soggetti 

scalzi e soggetti che indossano calzini sportivi alla caviglia. L’uso dei calzini è stato analizzato in 

previsione degli studi successivi che richiedono l’uso di marker segmentali. Sono stati analizzati 

diversi algoritmi, valutati e implementati per avere una soluzione markerless in due dimensioni per 

la stima della cinematica in entrambi i casi. La validazione della tecnica proposta è stata svolta con 

un sistema stereofotogrammetrico tradizionale. L’implementazione della tecnica si muove verso 

un’alternativa ai tradizionali sistemi stereo fotogrammetrici, che sia di facile configurazione e 

meglio accettata dal paziente. 

La tecnica sviluppata è stata poi migliorata in modo che la stima della flesso/estensione del 

ginocchio potesse essere svolta con la tecnica markerless a due dimensioni. Le modifiche principali 

nell’implementazione hanno riguardato la gestione delle occlusioni e la segmentazione dello 

sfondo. Con l’aggiunta di altri vincoli, la tecnica proposta è stata applicata alla stima della 

flesso/estensione del ginocchio e confrontata con un sistema stereo fotogrammetrico tradizionale. I 

risultati hanno mostrato che la stima della flesso/estensione ottenuta con un sistema stereo 

fotogrammetrico. 

E’ stato anche sviluppato un contributo per la stima della cinematica dell’arto inferiore durante il 

cammino di bambini con paralisi cerebrale infantile. In questo caso, è stata sviluppata una tecnica 

markerless ibrida che utilizza la diversa colorazione della maglieria intima e dei calzini per 

identificare dei marker segmentali. Gli algoritmi utilizzati in quest’ultima applicazione sono diversi 

dai precedenti. I risultati hanno mostrato che la tecnica ibrida proposta può diventare una alternativa 

ai tradizionali sistemi stereo fotogrammetrici di semplice uso e a basso costo.  
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GLOSSARY OF TERMS 

 

The following nomenclature is used throughout the thesis: 

 

AF: anatomical frame 

AL: anatomical landmark 

CA: calcaneous 

CAST: calibrated anatomical system technique 

CCD: charged-coupled device  

CP: cerebral palsy 

CSG: constructive solid geometry 

CSP: colored surface points  

DLT: direct linear transformation 

DOF: degree of freedom 

GF: global frame 

GLT: Gauss–Laguerre transform 

HF: head of fibula 

Hyb: hybrid 

LE: lateral epicondyle 

LED: light emitting diode 

LM: lateral malleolus 

MAT: medial axis transform 

Mb: marker-based 

ME: medial epicondyle  

Ml: markerless 

MoG: mixture of gaussians 

NSS: nonlinear spherical shells 

OBE: oriented bounding ellipsoid 

RI: reference image 

RMSD: root mean square deviation 

RMSDv: intra-subject variability 

ROI: region of interest 

SMAC: simultaneous multi-frame analytical calibration 

SPM: scaled prismatic models 

STS: sit-to-stand  

TF: technical frame 

TOE: big toe 

VH: visual hull 

VI: visual intersection 

VM: fifth metatarsal head 
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INTRODUCTION 

Clinical gait analysis performed with video systems usually requires the use of markers to be 

positioned to the patient’s body surface. In some occasions, the presence of markers may represent 

a source of uneasiness and discomfort, may interfere with natural walking. Moreover, operators are 

required to spend some time to set-up the patient, increasing the cost of the evaluation. To 

overcome the abovementioned limitations, markerless techniques are proposed. The main goal of 

this thesis is to develop new 2D markerless approaches for the analysis of gait. 

The thesis is organized as follows.  

Chapter 1 is a summary of the history of human movement analysis. A brief chronology of the 

devices and methods used throughout the history are presented. 

Chapter 2 is about the state of the art of the methods to analyze human movement. Human 

movement is analyzed under the headings of marker-based and markerless human movement 

analysis. Theoretical background, applications and limitations of both methodologies are presented 

thoroughly. 

Chapter 3 defines the aims of the thesis. 

Chapter 4 presents a review of the algorithms used in the image processing implementation of 

this thesis. Besides, a brief comparison of the algorithms in the literature and their limitations are 

taken into consideration.  

Chapter 5 presents a study focusing on the analysis of the 2D kinematics of the ankle-foot 

complex during the stance phase of gait from markerless images. The proposed technique is 

explained in detail with the sections of material and methods, results and discussion. 

Chapter 6 presents an extension to the study proposed in Chapter 5. The proposed technique is 

applied to the knee flexion/extension estimation of children with CP.  

Chapter 7 describes a hybrid technique, which is a combination of a markerless methodology and 

“segmental markers”. The proposed technique is used in analyzing the lower limb kinematics of the 

children with CP. The purpose of the study, material and methods and results are explained in 

detail. 

Finally, Chapter 8 sums up the discussions of the methods presented in this thesis. 
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The historical notes was written on the basis of the book “Biolocomotion: A century of research 

using moving pictures” (Cappozzo A., Marchetti M, Tosi V, 1992, Rome: Promograph). 

 

Cinematography has been an essential instrument for the study and interpretation of animal 

motion. Experimental physiology has served as a catalyst for this technique, which has become a 

key tool for the progress in biological research. Two early scientists, German physiologist Karl 

Ludwig and French physiologist Etienne-Jules Marey - influenced this development. 

Development of cinematography had an important effect on the development of the analysis of 

animal locomotion. During the 17th century, the new physics became embedded in Alfonso Borelli’s 

work on animal motion. This work (Figure 1-1), which is a complete textbook of Physiology, 

claims that “every function in the living body, animal or vegetable, manifests itself through 

movement: macroscopic and apparent, as in locomotion, or microscopic, on an atomic dimension, 

as the movement in which atoms come in contact to form living matter” (Borelli, 1681). The 

fundamental aim of Borelli was to integrate physiology and physical science.  

 

Fig. 1-1. Sample page from the book “De Motu Animalium” that shows the illustrations of biomechanical studies of 

Giovanni Borelli (from De Motu Animalium, 1681). 
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Adoption of the graphic method by Marey in 1857 was a breakthrough for the studies of animal 

locomotion. He used this approach during the following 20 years and applied it to humans, animals 

such as horse and dove together with the mechanical detectors he had designed to complex 

movement of locomotor acts. Marey published what he obtained using this approach in his books 

La Machine Animale”, which was published in 1873, and “La Methode Graphique”, published five 

years later.  

Precisely at that time photography was begun to be used in the physiology in order to advance 

further the studies of biolocomotion. Leland Stanford has been claimed to be the first person to 

propose using photography to prove the real positions of a horse’s leg during galloping. 

English photographer Edward Muybridge made use of the idea of Stanford’s with a series of 

cameras whose shutters were triggered by running horses, which was the beginning of his studies on 

biolocomotion. The most important contribution of Muybridge was the 781 plates he created, each 

having 1, 2 or 3 dozens of serial shots for a total of 20,000 images. These were published with the 

title “Animal Locomotion” (Figure 1-2).  

 
Fig. 1-2. Galloping horse (from Muybridge, 1878). 
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Using photography for the biolocomotion studies also inspired Marey and he envisioned a new 

device in order to obtain multiple images of moving objects at equal time intervals on a single 

photographic plate. This device - “fusil photographique” – was the first device of photographic 

apparatuses he invented for the study of locomotion. The invention of the process was named as 

“chronophotographie” by him (Figure 1-3). 

 

Fig. 1-3. Serial images of a man walking acquired on a still plate by Marey with his “chronophotograph”. The model 

wears a black suit with white stripes and radiant points to indicate the position of one arm, one leg and the joints (from 

Musée Marey, Beaune). 

Another French scientist, Jules Jannsen, had also contributed to his field with the photographic 

device he invented. This device – “revolver astronomique” - was able to record, on a single, 

circular-shaped, photosensitive plate having a rotating motion with regular intermittence, up to 48 

consecutive images, spaced by constant time intervals, of an object in motion. Jannsen applied this 

device to the telescope and obtained the permanent recording of the transit of the planet Venus 

across the sun on December 8, 1874. 

On October 29, 1888 Marey presented the device “chambre chronophotographique” which is 

claimed to contain all the principal components of the modern cine-camera. In 1893, Marey 
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constructed his projector, which was an important inspiration for the improvement of the 

cinematographic technique. 

When the history of motion picture is analyzed, it can be realized that this invention cannot be 

attributed to a single person; it is collective work of optical, chemical and mechanical studies. The 

integration of these interdisciplinary contributions by the science of physiology was a great catalyst 

for the improvements in motion picture. Applying the graphic method to the study of biolocomotion 

was the key point in this contribution. 

The growth of cinematography also contributed to physiology and introduction of 

cinematography can be considered as the “Renaissance” of biomechanics. Marey’s publications 

have contributed to the knowledge of motor phenomena, but the results were largely qualitative. In 

1895, two physiologists, Wilhelm Braune and Otto Fischer, started publishing their works on 

human locomotion which were very important for the science of biomechanics. Besides being able 

to estimate the locomotor act, they were the first to present a three-dimensional analysis of human 

movement by using stereophotogrammetry. They were also the first measure the forces acting on 

the human body. 

In the years between 1927 and 1936, Nikolai Bernstein improved the work of Braune and 

Fischer by increasing the shutter frequency from 26 to 70-100 and in some cases 120-156 frames 

per second. This improvement enabled the details of the human movement to be observed. The 

analysis of coordinated movements became the study of biomechanics which involve kinematics 

and dynamics.   

Research handled at the University of California at Berkeley between 1945 and 1947 on both 

normal and pathological human locomotion was also a great contribution to biomechanics. 

Electromyographic apparatus and the force platform were begun to be used in biomechanics 

laboratories.  

In the mid-1960s many specialized biomechanics laboratories were founded both in Europe and 

in the United States of America. Bioengineering Unit of Strathclyde University in Glasgow, 

Scotland and Institute of Human Physiology of the University of Milan, Italy were among the most 

important of these institutions.  

Starting in the 1970s, the optoelectronic technique began to be used which resulted in easier 

movement recording and faster data reduction. The data can easily elaborated by digital computer 

which enables the analyses to be performed conveniently and fast.  
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2.1 Marker-Based Human Movement Analysis 

2.1.1 Theoretical Background 

“Acquisition of quantitative information about the mechanics of the musculo-skeletal system 

during the execution of a motor task is the main goal of the human motion analysis” (Cappozzo et 

al., 2005). In order to pursue this goal, motion capture is frequently used in biomechanics. Human 

motion capture is widely used in order to study musculoskeletal biomechanics and clinical 

problems. In this context, estimating joint kinematics is of extreme relevance. For this purpose, 

video-based optoelectronic systems are commonly preferred among the human motion capture 

systems. 

Gait analysis is generally carried out by mounting retro-reflective markers on the body of the 

subjects and reconstructing their 3D position using video-based optoelectronic systems (Figure 2-1). 

Retro-reflective markers and infrared illumination - produced by light-emitting diodes (LEDs) 

around the lens of the cameras - are used for the 3D reconstruction. By adjusting the camera 

thresholds, reflective markers are sampled and the recognition of the markers in the video frames is 

performed.  

The 3D position of a marker in a reference frame fixed to the laboratory (global frame - GF) can 

be reconstructed if the marker is visible from at least two cameras at the same time. Visibility from 

additional cameras is usually beneficial (Chiari et al., 2005). Additional reference frames associated 

to body segments (technical frame - TF) can be defined from the position in the GF of cluster of 

markers attached to the same body segments.  

The pose of the TFs in the GF can then be determined. However, although considered fixed to 

the underlying bone, the TFs are not necessarily representative of the anatomy of the body segment 

they are attached to. For this reason for each body segment being analyzed an additional frame is 

defined: the anatomical frame (AF). The AF has a time invariant relationship with the respective 

TF. To define AFs, it is necessary to determine the location of selected anatomical landmarks (ALs) 

with respect to the relevant TF (Cappozzo, 1995). Standards for the definitions of AFs have been 

proposed (Wu et al., 2002; Wu et al., 2005). 

The pose of an AF is the orientation and position in space of a body segment. Given the pose of 

the AFs of two adjacent body segments, the kinematics of the joint between the two body segments 

can be determined. 
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Fig. 2-1. The human movement analysis laboratory with basic measurement instruments, with their systems of axes (p: 

photogrammetry; d: dynamometry). When level walking is analysed, the motor task frame may overlap with the frame 

of one of the two force plates (from Cappozzo et al., 2005). 

2.1.2 Calibration of Anatomical Landmarks   

ALs are either bony prominences or bone points of geometrical relevance. In the first case they 

are normally identified by palpation, in the second case, they can be identified using imaging, 

regression equations or functional movements (Cappozzo et al., 2005). In any case, once identified, 

their location with respect to the relevant TF has to be determined. Once the location of ALs in their 

relevant TF is determined, it is possible to reconstruct their position in the GF by simple coordinate 

transformations (Figure 2-2). The Calibrated Anatomical System Technique (CAST) is an 

experimental methodology that formalizes the concept of AL calibration and allows the 

implementation of various calibration methods. 

The AL calibration can be implemented using a) a marker positioned on the AL during a static 

acquisition, b) a pointer where a minimum of two markers are mounted with a known distance from 

its tip, pointing at the AL during a static acquisition, c) determining the centre of rotation of 

recorded functional movements (for joint centres, such as the hip centre), d) by imaging of the bone 

and the relevant TF (Cappozzo et al., 1995; Benedetti et al., 1998). 

Recently, the CAST methodology was updated, by adding information on the subject-specific 

bone geometry. By determining the position of unlabelled points (UPs) situated over all prominent 
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parts of the bone surface, initial estimation is employed. After the estimation step, a digital model of 

a template-bone is matched to them. The estimated subject-specific bone contains all relevant 

anatomical landmark locations. The technique, UP-CAST, is evaluated in terms of repeatability and 

accuracy on average weight subjects (Donati et al., 2007). 

 

Fig. 2-2. Anatomical calibration using stereophotogrammetry. The following external, palpable, anatomical landmarks 

are indicated: prominence of the greater trochanter external surface (GT), medial epicondyle (ME), lateral epicondyle 

(LE). The location of the external anatomical landmarks relative to the marker cluster technical frame (xc, yc, zc) may be 

reconstructed using markers denoting the anatomical landmarks, or using a wand which carries a cluster of at least two 

markers. Prior to recording, the end point of the wand, the position of which relative to the latter cluster of markers is 

accurately known, is made to coincide with the target anatomical landmark (from Cappozzo et al., 2005).  

2.1.3 Protocols 

Human movement analysis and gait analysis in particular, typically makes use of the theory of 

multi- rigid body systems. The portion of human body is modelled with a number of rigid segments. 

Adjacent segments are connected by joints. The number of degrees of freedom of the each modelled 

joint characterizes the multi-body system model employed. Protocols – data collection and 

reduction practices – have been proposed in gait analysis offering various ways of modelling the 

system of rigid bodies of interest. Often, in clinical gait analysis, all model joints are rotational 

(either cylindrical or spherical) and AFs are defined based also on this assumption. The rationale 

behind this choice is related to the errors affecting the human movement recordings (see following 

section).  
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Proposed protocols also differ in the marker-sets used to identify AFs and joint centre locations. 

Typically data acquired with different protocols cannot be compared. 

From these protocols, “Newington model” is the pioneer and the most commonly used practice 

for gait data acquisition and reduction which has also been used by the commercial applications like 

Plug-in Gait (PiG—Vicon Motion Systems, Oxford, UK). “Servizio di Analisi della Funzioni 

Locomotoria” developed their protocol named “SAFLo” - which differs from the Newington model 

in terms of segmental anatomical references and anatomical marker configurations. Then, 

“Calibration Anatomical System Technique” (CAST) was introduced which standardizes and 

defines references, internal anatomical landmarks and external technical markers. Then, protocols 

of “Laboratorio per l’Analisi del Movimento nel Bambino” (LAMB) and “Istituiti Ortopedici 

Rizzoli Gait” were proposed, of which the latter was the basis of the software “Total 3D Gait” 

(T3Dg-Aurion s.r.l, Milan, Italy) (Ferrari et al., 2008; Baker, 2006). 

Ferrari et al. compared these commonly used protocols and find out that same gait cycles 

revealed good intra-protocol repeatability. Regardless of the known significant differences among 

the techniques, reasonable correlations are observed for most of the gait variables. It was pointed 

out that model conventions and definitions seem to be more important than the design of the 

relevant marker-sets. Sharing the model conventions and definitions can be sufficient for worldwide 

clinical gait analysis data comparison (Ferrari et al., 2008). 

2.1.4 Sources of errors 

Human movement analysis performed with stereo-photogrammetry is affected by three major 

sources of errors. 

- Instrumental errors: these errors are the results of both instrumental noise and volume 

calibration inaccuracies. These errors have been studied intensively in the 80s and 90s (Fioretti and 

Jetto, 1989; Chen et al., 1994), tests for estimating them have been proposed (Della Croce and 

Cappozzo, 2000). The instrumental noise can be substantially reduced by low pass filtering. The 

volume calibration inaccuracies stem from the inadequate number of cameras and the volume 

calibration algorithm chosen for the application. Direct linear transformation (DLT) algorithm 

(Abdel-Aziz and Karara, 1971) is broadly used, but when the volume of interest is large, the 

construction of a suitable calibration object to be used with DLT becomes restrictive. Simultaneous 

multi-frame analytical calibration (SMAC) (Woltring, 1980) - a technique based on a planar 

calibration object with a grid of known control points - suffices the recording of the calibration 

object by at least two convergent cameras. SMAC allows covering larger volumes when compared 

with DLT, but for very large volumes, analytical self-calibration is more appropriate (Chiari et al., 
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2005). Thus, the volume calibration inaccuracies can be remarkably lowered by increasing the 

number of cameras and improving the volume calibration algorithms. 

 The contribution of the instrumental errors to the total error is currently considered negligible. 

- Soft tissues artefacts: the markers captured by the cameras can be directly attached to the skin 

or arranged in clusters and positioned with fixtures over a body segment. Due to its origin, this error 

has the same frequency content as the bone movement. Thus, there is no way of separating the 

artefact from the actual bone movement by simply using a filter, as opposed to most instrumental 

errors. However, its effect on the end results may be reduced in the following ways. First of all 

marker locations (marker points) must be chosen so that the above-mentioned relative displacement 

is minimal, and secondly through a proper choice of the mathematical operator which estimates 

position and orientation of the bone from skin marker positions (Lucchetti et al., 1998; Alexander 

and Andriacchi, 2001). Operators that cope with this problem in an optimization context have been 

proposed” and their use in movement analysis is being developed. 

Knowledge regarding the characteristics of the artefact movement in different body segments is 

required in order to utilize the mentioned countermeasures against the experimental artefacts.  

- Anatomical landmark misplacement: The incorrect location of subcutaneous bony ALs through 

palpation can be caused by three main factors: (1) the palpable ALs are not points but surfaces,  

sometimes large and irregular; (2) a soft tissue layer of variable thickness and composition covers 

the ALs; (3) the identification of the location of the ALs depends on which palpation procedure was 

used. Studies showed that AL position uncertainty and consequently the erroneous determination of 

AF axes may result in erroneous clinical interpretations of the estimation (Della Croce et al., 2005). 

In addition to the abovementioned sources of errors, marker based movement analysis is affected 

by the influence of markers attached to the body on the subject’s movement and the need of an 

extended setup time for marker placement (Corazza et al., 2006).  

2.2 Markerless Human Movement Analysis 

Some of the limitations of marker based systems can be overcome using a completely different 

approach. Markerless systems of human motion capture have been proposed where cameras can be 

utilized without the necessity of using special clothing or hardware (Deutscher et al., 2000). 

Markerless motion capture ensures an important reduction of the amount of time for setup 

preparation in comparison to marker-based techniques. Besides, the problem of inter-operator 
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variability is removed because no specialized operator is needed to place markers on the skin 

(Corazza et al., 2006).  

Markerless techniques can be classified into model-based and model-free techniques both for the 

cases of 2D and 3D applications. Model-based approaches utilize an a priori human body model and 

are composed of two stages: modelling and estimation.  

Modelling is the building step of a likelihood function by taking camera model, image 

descriptors, body model, and matching function into consideration. Estimation step is fitting the 

optimum pose in the likelihood domain planned in the modelling step. Model-free approaches do 

not use an a priori model, but “implicit model variations in pose configuration, body shape, camera 

viewpoint and appearance” (Poppe, 2007). 

In the next section, current markerless techniques, brief algorithm explanations and their 

limitations are analyzed and exemplified with current applications. 

2.2.1 2D Markerless Techniques 

Much of the work on motion analysis uses detailed 3D kinematic models and 3D motion 

estimation. These techniques require multiple camera viewpoints, but motion analysis can also be 

operated using a single camera input (Cham and Rehg, 1999).  

Motion capture with a single camera is a significant task since data acquisition is very simple, 

besides being an interesting computer vision challenge that focuses on inference as much as 

movement (Howe et al., 2000).  

Hence, 2D markerless techniques, which can be classified as model-based and model-free, have 

been proposed. In the following section, the algorithms and the applications of these techniques are 

introduced. 

2.2.1.1 Model-Based Techniques 

Ju et al. (Ju et al., 1996) uses a cardboard model to define the human body as a set of connected 

planar patches and to approximate the limbs as planar regions (Figure 2-3). The main assumption 

behind this model is that, the motions of the limb planes are assumed to be the same at the points of 

articulation. The motion of each patch is estimated using the energy minimization (annealing) 

concept and estimated motions are called “absolute motions”. After the estimation of the absolute 

motions, it is necessary to estimate the articulated motions. To estimate the articulated motions, the 

motions of limbs which are relative to their preceding (parent) patches should be recovered. The 

relative motion of the patch is calculated using the displacements of the connected patches.  
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The estimated articulated motion between two frames is used in the tracking step in order to 

predict the location of each patch in the next frame. In the first frame, each patch is manually 

defined by its four corners. For every patch, the first two corners are defined as the articulated 

points, whose corresponding points are the last two corners of its previous patch. This shows that 

two connected patches share an “edge”. After the “chain” structure definition step is over, automatic 

object tracking starts. The articulated motion between two frames is used to predict the location of 

each patch in the next frame. Then, the location of each of the four corners of each patch is updated 

by applying its estimated planar motion to it.  

The experiments demonstrate that the image motion models are able to track motion correctly 

during long sequences. In this study, optical flow is estimated with the parameterized model, 3D 

model is not necessary and edges are not used. 

In the study of Deutscher et al. (Deutscher et al., 2000), the idea of annealing is adapted to 

perform a particle based stochastic search. The adapted algorithm is called annealed particle 

filtering and is capable of recovering full articulated body motion. The authors focused on the 

problem of constraining the search space along which the real posture of the subject is investigated. 

Other studies (Hogg, 1983; Goncalves et al., 1995; Bregler and Malik, 1998) in the literature do this 

making the following assumptions: 1) assuming that the subject is walking, 2) assuming a constant 

angle of view, 3) performing a hierarchical search using color cues. The study of Deutscher et al. 

does not depend on these assumptions and reduces the dimensionality of the search space through 

annealed particle filtering (Condensation algorithm). 

 

Fig. 2-3. The “chain” structure of a three-segment articulated object (from Ju et al., 1996).  
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This algorithm includes an edge detection procedure followed by a particle filtering, developed 

to match a 3D human body model of 29 DOF to the 2D image edge (Figure 2-4). However, this 

matching process has a very high computational cost. Also, a number of particles are required to the 

posterior density representations, which increase with the size of the model’s configuration space. 

In order to solve these problems, a multi-layer method using simulated annealing approach was 

implemented. Even if knee and ankle joints are modelled as simple hinge joints, the algorithm 

performance is in general satisfactory. The tracking performance of the algorithm was compared to 

the standard Condensation algorithm (i.e. Particle filtering algorithm which is used for tracking 

objects in clutter (Isard and Blake, 1996)) and resulted to perform better even if it uses fewer 

particles. 

2.2.1.2 Model-Free Techniques 

When there is not a priori human body model, there has to be a mapping between the image 

output and pose. Model-free algorithms, which do not suffer from (re)initialization problems, can be 

used for initialization of model-based pose estimation approaches (Poppe, 2007). 

 

Fig. 2-4: The model is based on a kinematic chain consisting of 17 segments (a). Six degrees of freedom are given to 

base translation and rotation. The shoulder and hip joints are treated as sockets with 3 degrees of freedom, the clavicle 

joints are given 2 degrees of freedom and the remaining joints are modelled as hinges requiring only one. This results in 

a model with 29 degrees of freedom. The model is fleshed out by conical sections (b) (from Deutscher et al., 2000). 

Mori and Malik (Mori and Malik, 2006) estimate body pose in 3D by placing the joint points in a 

single 2D image with a human figure. First, a number of example views of the human body in 

different viewpoints with respect to the camera, are acquired. Each of the views are manually 

marked from the body joints and labelled. Then, the input figure is matched to each stored view 

using the shape context matching with a kinematic chain-based deformation model. By extracting 
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external and internal contours of an object, shape contexts are employed to encode the edges 

(Figure 2-5).  

 

Fig. 2-5. The deformation model. (a) Underlying kinematic chain. (b) Automatic assignment of sample points to 

kinematic chain segments on an exemplar. Each different symbol denotes a different chain segment. (c) Sample points 

deformed using the kinematic chain (from Mori and Malik, 2006). 

Following the correspondence step, the locations of the body joints are then moved from the 

example views to the test figure. The 3D body configuration and pose are then estimated using the 

existing algorithm of Taylor with the 2D joint locations (Taylor, 2000) which uses point 

correspondence in a single image. In an estimation step, the stored example images are deformed to 

match the image observation. The 2D joint estimate is found by enforcing 2D image distance 

consistency between body parts. This technique can be applied to each frame of a video sequence so 

that tracking recognition becomes repeated for every frame. The experiments of this study are 

performed with CMU MoBo Database (Gross and Shi, 2001) and the main contribution of this 

study was demonstrating the use of deformable template matching to example views in order to 

localize human body joint positions.  

In another 2D model-free markerless application, Elgammal and Lee (Elgammal and Lee, 2004) 

use human silhouettes extracted from a single camera to derive 3D poses. The purpose of this study 

is to recover the intrinsic body configuration and reconstruct the silhouette excluding the outliers 

from the visual input. To recover intrinsic body configurations from the silhouette, manifolds are 

learned from the visual input and afterwards mappings are learned from manifolds to visual input 

and 3D poses (Figure 2-6).  

The experiments demonstrate that the model can be learned from the data of one person and 

successfully adapt to recovering poses for other people from noisy data. When compared to 

previous approaches for inferring 3D body pose from visual input, this approach has certain 

advantages and limitations. This framework makes interpolation of intermediate 3D poses easy 

even if they are not part of the training data. This approach constrains the mapping to the learned 

manifold which facilitates robust pose recovery from noisy inputs as well as for reconstruction of 



 

 16 

the input. It is based on learning activity manifold and so its application is limited to recovery of 

poses for the learned activities only. Although in this study the focus is gait, the framework is 

general and can be applied to other activities by learning their manifolds. In the experiments, 

validation was done with a sequence obtained from the Georgia Institute of Technology (Atlanta, 

GA, USA) data compared to relevant motion capture data. CMU Mobo Gait database was used to 

demonstrate that the proposed approach, which is based on “learning” from the data of a single 

person, is also applicable to different people. CMU Mobo Gait database contains six views of each 

walking person. Five views from one person were used for the learning process of the study. In 

order to evaluate the 3D reconstruction, five sequences (five people with five views, each) were 

used. Overall correct classification rate from a single frame was 93.05%, while it increased to 

99.63% after five frames were used for the classification.  

 

Fig. 2-6. Embedded gait manifold for a side view of the walker. Sample frames from a walking cycle along the 

manifold with the frame numbers shown to indicate the order. Ten walking cycles are shown (from Elgammal and Lee, 

2004). 

In another markerless 2D study, Goffredo et al. (Goffredo et al., 2009) use a region of interest 

(ROI) based tracking approach for the kinematic analysis of sit-to-stand (STS) tasks. Their 

approach uses Gauss–Laguerre transform (GLT) since image features such as edges, lines and 

orthogonal crosses are enhanced easily regardless of their orientations. A 4-segment human body 
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model was applied (only for the purpose of pose reconstruction of the body segments); each 

segment was assumed to be rigidly connected the next segment with an ideal rotational joint. Four 

body markers on ankle, knee, hip and shoulder joints were selected in the initial frame of every 

sequence and the GLT algorithm was applied to these ROIs. By computing the corresponding 

candidate points via calculating the log-likelihood function between the textures of consecutive 

frames, points relevant to motion estimation were tracked (Figure 2-7). The authors used GLT-

based motion estimation method in a 2D setting, but this method could be used in stereo vision 

applications where GLT coefficient matching can be applied for motion and disparity field 

estimations. Estimating both the translations and the rotations of related anatomical segments in the 

transform domain with a pattern algorithm appeared to be a good solution for the movement 

reconstruction. For validation purposes, marker-based results from the study of Gross et al. (Gross 

et al., 1998) were used. The results of the validation are reported in Figure 2-8.  

 

Fig. 2-7. Estimated trajectories obtained with the proposed method (upper panel: elderly subject I; lower panel: young 

subject D). The circles are the points of interest on which the GLT algorithm has been applied. The lines are the 

estimated trajectories at the end of the phases characterizing the STS task (from Goffredo et al., 2009). 

2.2.2 3D Markerless Techniques 

When the observation is limited to a single camera, the 3D motion of humans is not determined 

thoroughly, due to the inherent 3D ambiguity of 2D video (Howe et al., 2000). In order to overcome 

this ambiguity, 3D markerless techniques are proposed.  
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Fig. 2-8. Hip, knee, ankle, and γ (shin orientation) angles at liftoff during chair rise. The results obtained with the 

proposed markerless system (gray bars) are compared with the one obtained by Gross et al. (black bars) with a marker-

based system (from Goffredo et al., 2009). 

2.2.2.1 Model-Based Techniques 

An important study exemplifying 3D model-based markerless technique is the study of Bottino 

and Laurentini (Bottino and Laurentini, 2001). Bottino and Laurentini presented a technique to 

reconstruct unconstrained motion from multiple-view images, which were computed using volume 

intersection data. First, views of the human body were acquired using different cameras and their 

2D silhouette was extracted from each of the images. Then, a volumetric description was formed by 

intersecting the cones derived by back-projecting from each viewpoint of the corresponding 

silhouette. This step, called the volume intersection (VI), provided the final voxel representation. 

Then, a human body model was fitted to the extracted volume (Figure 2-9). Model fitting was done 

with the minimization of a distance function between the volume and the model via a search 

through the space of pose parameters. Pose recovery was based on a search through the 32 

dimensional space of pose parameters and entailed finding the pose of the model closest to the 

actual appearance of the moving subject. The approximation accuracy was measured by a similarity 

function between the current model pose and the volume obtained by VI. This function was 

obtained by summing the squared distance between each voxel center to the closest segment of the 

model. Each segment was approximated with an oriented bounding ellipsoid (OBE) at the first step 

of the reconstruction algorithm in order to reduce the number of computations. The size of the axes 

of each OBE was the same as the dimensions of the boundary box of the related segment. The 

posture recovery was a two-step process: first, the OBEs were fitted to the volume reconstructed 

and then, fitting was employed to the model. In order to recover the motion of the model, the 

procedure mentioned above was applied to every frame, followed by the implicit filtering to avoid 

the phantom volumes. 
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Fig. 2-9. Human body model used in the study of Bottino and Laurentini (from Bottino and Laurentini, 2001). 

The experimental setup is composed of two phases. First, the system was tested in a virtual 

environment in order to investigate the precision of 3D direct reconstruction. Second, the proposed 

approach was applied to real image sequences (Figure 2-10). Results showed that the proposed 

approach could reconstruct unconstrained human motion without using markers or external devices 

attached to the subject’s body. 

 

Fig. 2-10. Original images, reconstructed voxel models, and parameterized shape models for a bow sequence (from 

Bottino and Laurentini, 2001). 
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Corazza et al. (Corazza et al., 2006) also used the annealing approach in order to implement a 

markerless technique making use of visual hull reconstruction. The full body model contained 

morphological information (surface with 1600 points) and kinematics information on the possible 

movements of the model. The morphological information was provided by a laser scan of a 

reference pose of the subject. The model was segmented into parts corresponding to twelve 

anatomical segments (pelvis, thighs, shanks, feet, arms, forearms, and combined torso and head). 

The full body kinematic model had 33 degrees of freedom (DOF) where joints were modelled as 

ball-and-socket joints or as hinge joints. The geometrical formulation of the model was flexible 

such that each joint model could be modified separately without readjusting the others. The 

completed model was formed by rigidly combining the morphological representations to the 

kinematic model. (Figure 2-11). Visual hull was reconstructed, and matched to the model with an 

adapted fast simulated annealing approach. The validation of the technique was done in a virtual 

environment where an animated virtual character with known kinematics, provided the gold 

standard. The validation results are reported in Table 2-1. 

 
Fig. 2-11. Results of the matching algorithm (colored points) applied to the virtual environment sequence superimposed 

over the virtual character (gray surface) (from Corazza et al., 2006). 

 Mean Error (º) Standard Deviation (º) RMS Error (º) 

Hip flexion/extension 2.0 3.0 3.6 

Hip adduction/abduction 1.1 1.7 2.0 

Knee flexion/extension 1.5 3.9 4.2 

Knee adduction/abduction 2.0 2.3 3.1 

Ankle plantar/dorsiflexion 3.5 8.2 9.0 

Ankle inversion/eversion 4.7 2.8 5.9 

Shoulder flexion/extension 1.2 4.2 4.4 

Shoulder adduction/abduction 3.8 1.2 4.0 

Tab. 2-1. Summary of validation results for joint angles at the hip, knee, ankle and shoulder (from Corazza et al., 2006). 
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Another application to 3D model-based application is proposed by Bregler and Malik (Bregler 

and Malik, 1998). Bregler and Malik presented a motion estimation technique capable to extract 

high degree-of-freedom articulated human body configurations from complex video sequences 

using exponential maps and twist motions. The product of exponential maps and twist motions and 

their integration into differential motion estimation is a significant parameterization. The pose of 

each body segment was defined with respect to its “parent” segment to which is attached through a 

revolute joint. Moreover, the formulation is a very simple linear representation of the motion model. 

The visual tracking was based on an initial frame, in which the angular configuration was known 

beforehand. The 2D joint locations in all views were manually marked by a user. The 3D poses and 

the image projection of the matching configuration was found by minimizing the sum of squared 

differences between the joint locations of the projected model and of the marked model. The study 

provided a new technique for articulated visual motion tracking. The tracking results were 

qualitatively tested on video recordings of moving subjects, and on the Muybridge photographic 

sequences (Figure 2-12), but no quantitative information on the tracking parameters was given.  

In the studies of Cheung et al. (Cheung et al., 2005 (Part I and Part II)) voxel based surface from 

silhouette algorithms combined with a new colour based approach, were used. Colored Surface 

Points (CSP) – multi-view stereo points – were extracted from the surface of the object and used in 

a 3D alignment algorithm, rigid motion between visual hulls determined and recursively refined and 

the silhouette images were used to refine the object’s shape. Figure 2-13 shows the CSPs on the 

visual hull of the subject. 

 

Fig. 2-12. Muybridge’s Woman Walking: Motion Capture outputs. This shows the tracked angular configurations and 

its volumetric model projected to two example views (from Bregler and Malik, 1998). 
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A sample of shape reconstruction and digital model rendering are reported in Figure 2-14. 

Tracking algorithm is evaluated with ground-truth data, obtained from synthetic sequences 

generated with OpenGL. Figure 2-15 shows the results of this validation. The use of the method 

requires a controlled environment since the algorithm is based on color information. 

 

Fig. 2-13. The Shape-From-Silhouette problem scenario: a head shaped object O is surrounded by four cameras at time 

t1. The silhouette images and camera centres are represented by Skj and Ck respectively (from Cheung et al., 2005). 

 

Fig. 2-14. Articulated model of (a) synthetic virtual person, (b) Subject E, (c) Subject G and (d) Subject S. In (a) and 

(b), the CSPs are shown with their original colours. In (c) and (d), the CSPs of different body parts are shown with 

different colours. For display clarity, the CSPs drawn are down-sampled in the ratio of one in two in total number of 

points (from Cheung et al., 2005). 
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Fig. 2-15. Graphs comparing ground-truth and estimated joint angles of the left arm and right leg of the synthetic 

sequence. The estimated joint angles closely follow the ground-truth values throughout the whole sequence (from 

Cheung et al., 2005).  

Sundaresan and Chellappa (Sundaresan and Chellappa, 2006) modelled the human body with a 

set of articulated super-quadrics and proposed algorithms in order to estimate the model parameters 

from video sequences. The model was a combination of different body segments and some labelled 

joints. Each body segment was modelled with a tapered super-quadric (i.e. 3D parametric objects 

which give the flexibility of defining a large variety of shapes in geometric modelling (Barr, 1981)). 

The trunk segment was the base, and together with neck, head and four limbs formed the kinematic 

chain of the human body. Figure 2-16 shows the 3D body model used in the study. A 3D scanned 

model was used to obtain the dimensions of the super-quadrics. The trunk segment had 6 DOF 

while the other segments had at most 3 rotational DOF with respect to the trunk. The body model 

involved the shape and the joint locations of the body segments. Given the pose at timet , the pose 

at time 1+t  was computed by using the images at time t  and 1+t . The pose estimation required 

the prediction step and the correction step. Pixel displacement estimation, pose prediction and 

silhouette-motion combination were necessary to estimate the pose at 1+t . The authors claimed the 

method to be accurate and robust using a visual feedback. Accuracy of the method is strongly 

dependent on the quality of the estimation of joint location during the model acquisition. The 

flexibility of the model on some joints (e.g. shoulder joint) affects the performance of the method. 
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Fig. 2-16. Tracking results using both motion and spatial cues (from Sundaresan and Chellappa, 2006). 

Gagalowicz and Quah (Gagalowicz and Quah, 2009), proposed a novel 3D model-based 

framework and algorithm that can manage clutters and occlusions, is proposed. This method uses a 

3D geometrical human model similar to the subject, in order to synthesize the candidate posture 

producing the image minimizing the matching error with the real image. In this approach, 

segmentation is performed through the direct projection, texturing and shading via the 3D 

geometrical human model onto the images (Figure 2-17). The use of analysis-by-synthesis and error 

feedback allows avoiding the ill-posed problem of standard segmentation. Results of tracking the 

arms in the presence of occlusions and clutters were presented. 

 

Fig. 2-17. Generating the human pose for matching (from Gagalowicz and Quah, 2009). 
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2.2.2.2 Model-Free Techniques 

An example study in the 3D model-free markerless application is the study presented by Chu et 

al. (Chu et al., 2003). They proposed an approach that generates “underlying nonlinear axes” (or 

skeleton curve) from a volume of a human subject. Multiple cameras were used for human volume 

capture and skeleton curves estimated the kinematic model and posture for each volume. Skeleton 

curves were used to automatically produce kinematic motion. Isomap transformation was used in 

order to map a set of 3D points describing a human body volume into a “pose-invariant intrinsic 

space posture”. This transformation allowed finding a correspondence between volume points in 

both Euclidean and intrinsic spaces. By building principal curves in intrinsic space and mapping 

back to the volume feature produces a skeleton curve. An a priori body model is not used (Figure 2-

18). This is a fast technique to be applied to image sequences and manages to define the posture 

without the help of an a priori model. However, it is not known if the technique gives position and 

orientations of body segments accurately enough for clinical purposes since no validation is 

presented. The technique can be used as the initialization step of the marker-based techniques.  

 

Fig. 2-18. The outline of the approach. (1) A human viewed in multiple cameras is used to build (2) a Euclidean space 

point volume of the human. This volume is transformed into (3) an intrinsic space pose invariant volume and its (4) 

principle curves are found. The principal curves are projected back into Euclidean space to provide (5) a skeleton curve. 

The skeleton curve is used to determine (6) the posture of the human. Using the postures of a volume sequence, (7) the 

kinematic motion of the human is found and (8) actuated on the Adonis humanoid simulation (from Chu et al., 2003). 
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In another application, Grauman et al. (Grauman et al., 2003) presented an image-based 

approach to infer 3D structure parameters. By using a probability density of multi-view silhouette 

images with known 3D structure parameters, a probabilistic shape and structure model was created 

(Figure 2-19). This probabilistic model was merged with a model of the observation uncertainty of 

the silhouettes seen in each camera to compute Bayesian estimate of structure parameters. This was 

the first study where an image-based statistical shape model was used for the inference of 3D 

structure. Besides, by using a computer graphics model of articulated bodies, a database of views 

augmented with the known 3D feature locations were formed in order to learn the image-based 

models from known 3D shape models. This synthetic training set removed the necessity of labelled 

real data. The study’s novelty was the use of a probabilistic multi-view shape model to narrow the 

possible object shape and configurations to those that are more “probable” given the class of the 

object and the current observation.  

 

Fig. 2-19. Top row shows noisy input silhouettes, middle row shows contour reconstructions, and bottom row shows 

inferred 3D joint locations (solid blue) and ground truth pose (dotted red) (from Grauman et al., 2003). 
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2.2.3 Goal-Oriented Classification of the Markerless Studies 

In this review, the mentioned markerless studies were analyzed in terms of their shape 

representations, existence of models and application space. Yet it is also possible to make a 

classification based on the goal of these studies.  

Markerless studies can be classified in terms of the goal of the applications: 1) studies that 

merely provide graphical representations of the human body, 2) studies that aim to estimate joint 

kinematics. The table below (Table 2-2) depicts this classification and provides an overview of the 

abovementioned markerless studies together with their validation information. 

 

 
 

Graphical 
Representation 

Joint Kinematics 
Estimation 

Notes Validation 

Ju et al., 1996 - - - 

Deutscher et al., 2000    Comparison with Standard 
Condensation Algorithm 

Mori and Malik, 2006   CMU MoBo database 

Elgammal and Lee, 
2004 

  Georgia Tech gait data with 
ground-truth 

2D 

 Goffredo et al., 2009 Hip, knee and ankle 
angles are 
estimated. 

Comparison with the results of the 
marker-based study by Gross et al. 
(Gross et al., 1998)  

Bottino and Laurentini, 
2001 

   

 Corazza et al., 2006 Shoulder, hip, knee, 
ankle angles are 
estimated  

Comparison with the ground-truth 
provided by virtual environment 

Bregler and Malik, 
2002 

  Qualitatively validated by the 
Muybridge sequence, but 
quantitative information regarding 
the parameters are not presented. 

 Cheung et al., 2005 Shoulder, hip, and 
elbow angles are 
estimated 

Synthetic sequences with ground-
truth 

Sundaresan and 
Chellappa, 2006 

   

Gagalowicz and Quah, 
2009 

   

Chu et al., 2003    

3D 

Grauman et al., 2003    

Tab. 2-2. Classification of the previously presented markerless techniques and their validation information.  
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2.2.4 Limitations 

Markerless techniques are quite promising in terms of proposing an alternative to marker-based 

techniques, easy setup and low-cost solution. However, the use of markerless techniques to capture 

human movement for biomechanical or clinical applications has been restricted by the complexity 

of acquiring accurate 3D kinematics. The general problem of estimating the free motion of the 

human body or more generally of an object without markers, from multiple camera views, is under-

constrained when compared with marker-based systems. 

Existing computer vision approaches focusing on markerless movement analysis may have great 

potential to be used in biomechanical applications, but most of them have not been validated for 

these applications. Evaluation of these approaches in terms of applicability to clinical applications is 

essential. 

For the purpose of enhancing computational performance, simple or generic models of human 

body with fewer joints or reduced number of degrees of freedom are frequently used. Nevertheless, 

detailed and accurate representation of 3D joint mechanics is required in biomechanical and clinical 

applications. 

Another challenge for the whole-body movement capture is the non-rigid nature of human body 

segments and the variability of human motion, the presence of self-occlusion or occluding objects 

(Mündermann et al., 2006). This diversity causes the some predefined parameters to be created or 

assumptions to be made, which restrict the analysis (Poppe, 2007; Bray, 2001). 

To sum up, the field of markerless movement analysis is a promising and active research which 

will continue to evolve by considering the abovementioned challenges as a roadmap.  
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Marker-based human movement analysis suffers from the instrumental errors, soft tissues 

artefacts and anatomical landmark misplacement. Besides, markers hinder with the subject’s 

movement and an extended setup time is required. To solve these limitations, markerless 

human movement analysis has been introduced. Even though the markerless techniques 

mentioned in the previous chapter are promising, they often lack validation and accurate 

representations, which are crucial for the clinical applications. Therefore, this thesis aims to 

provide new 2D markerless techniques to overcome the abovementioned difficulties of both 

systems.  

In particular, the following issues are dealt with listed in order of relevance: 

1) Development of two different markerless techniques to determine joint kinematics: Two 

different markerless techniques (cross-correlation-based and skeletonization-based) are 

implemented. 

2) Validation of the proposed markerless techniques with the marker-based techniques: 

The proposed markerless techniques are validated with traditional 

stereophotogrammetric marker-based systems by recording the same trials at the same 

time. 

3) Extraction of additional information from anthropometric measurements and garments 

used during the acquisition (high-cut underwear and ankle socks used as “segmental 

markers”) to be combined to the information extracted with a markerless methodology, 

implementing a hybrid technique applied to children with CP. 

4) Analysis of the influence of the presence of socks on the performance of the markerless 

technique.  

The present work was conducted at the Biomedical Sciences Department of University of 

Sassari, Sassari, Italy. The experiments of the study in Chapter 5 were done in University of 

Rome, “Foro Italico”, Rome, Italy while the experiments of the studies in Chapter 6 and 7 

took place in the Motion Analysis Lab at Spaulding Rehabilitation Hospital, Boston, MA, 

USA.  
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4.1  Image Segmentation 

Vision is a deduction problem where the aim is to find out the source of the outputs from a 

given model and measurements. The main difficulties in the deduction problem of vision are the 

abundance of data and the ambiguity on whether a specific data item is a part of the deduction 

problem or not. To overcome these difficulties, image data is generally represented by grouping 

the features that highlight its main properties, as in segmentation. There are several algorithms 

for image segmentation depending on the application. In an application where there is a static 

background, removing an estimate of the background from the image would be functional as 

image segmentation. However, when the backgrounds change over time, this approach would 

not work fruitfully (Figure 4-1 and Figure 4-2) (Forsyth and Ponce, 2003). 

 

Fig. 4-1. Subject with barefoot, short socks and long socks. 

Fig. 4-2. Output of Fig. 4-1 after background subtraction. 
 

Estimating the background using a moving average is a better solution compared to simple 

background subtraction. Instead of removing the static background, the value of the background 

is computed by calculating the weighted average of the previous values of the background 

pixels. Thus, the pixels from the initial frames have a weight of zero and the moving average 

adapts to the changes in the background. Even though this method can be useful for coarse scale 
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images, in the dynamic scenes the performance of the adaptation is low (Forsyth and Ponce, 

2003).  

The motion of the objects in 3D space causes motion on the image plane which can be 

computed by the displacements of the image points or displacement vectors of the entire 

image place, which are defined as “optical flow”. Even though optical flow is highly used on 

the images where there is motion, ambiguity stemming from 3D to 2D projection is still a 

major problem (De Micheli et al. 1993; Fermuller et al., 2001). 

Many segmentation methods suffer from the changes in the lighting. Ridder et al. (Ridder 

et al., 1995) used Kalman Filter to model the pixels, which enabled the lighting changes to be 

handled. Even though this methods has a “pixel-wise automatic threshold”, recovering from 

the light changes is slow and not effective with bimodal backgrounds. Yet, this method has 

been successfully used in an automatic traffic monitoring application by Koller et al. (Koller 

et al., 1994). In another application, Pfinder (Wren et al., 1997), background is modelled by a 

single Gaussian per pixel and a multi-class statistical model is preferred for the object 

tracking. In the Pfinder application, the system works well after an initialization phase where 

the room is empty. However, the performance of the tracker in outdoor scenes is not reported. 

Expectation-Maximization (EM) is highly used for image segmentation; Friedman and 

Russell (Friedman and Russell, 1997) used this method to develop a pixel-wise EM 

framework for vehicle detection. With this method, pixel values are classified into three 

separate distributions based on the road color, the shadow color and vehicle color. This 

system manages the effects of the shadows, but the behaviour of the system when these three 

distributions are not available, is not known. The performance of the method would be 

affected if there is a single background or a multiple colored background stemming from 

motion, shadow or reflectance. 

Mixture of Gaussians (MoG) (Hu et al., 2004) is a commonly used method which 

computes the dynamic features from the image sequence and in this thesis, it has been used as 

the segmentation method. In this structure, the underlying principle is to describe each single 

pixel in the image statistically, through a set of Gaussian probability distributions. With this 

model, the variability of each pixel over time is characterized. 

In the study of Stauffer and Grimson (Stauffer and Grimson, 2000), the value of a 

particular pixel is modelled as a mixture of Gaussians, instead of using a single Gaussian 

distribution. Gaussians that form the background are determined by calculating the variance 

of each of the Gaussians of the mixture. Pixels that do not fit to this estimated background are 
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grouped as foreground pixels. This approach manages “lighting changes, slow-moving objects 

and introducing or removing objects” successfully (Figure 4-3). 

 

Fig. 4-3. The execution of the program. (a) the current image, (b) an image composed of the means of the most 

probable Gaussians in the background model, (c) the foreground pixels, (d) the current image with tracking 

information (from Stauffer and Grimson, 1999).  

In this approach, there are two important parameters – α, the learning constant and T, the 

percentage of the data that has be used for by the background. Every image pixel in the image 

sequence can be statistically described as a series of values changing over time: 

{ } { }TttyxIXX t ≤≤= 1:),,(,, 001 K  

where I(x,y,t) represents the intensity value of the pixel at position (x,y) and time t, in the 

image sequence. The latest changes of the intensities can be modelled as the mixture of K 

Gaussian probability density distributions: 

)(∑ ∑=
⋅= K

i titittit XXP
1 ,,, ,,)( µηω  

where K is the number of Gaussian distributions, ωi,t is the individual weight of each 

Gaussian at time t (the sum being equal to 1), µi,t and Σi,t are the mean the covariance matrix 

associated with the i th Gaussian at time t. 

The general formula of the Gaussian distribution is: 

(a) (b) 

(c) (d) 
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At every frame, pixel densities are updated due to their intensity values. This update is 

calculated by changing the Gaussian distribution with a mean value at a distance less than 2.5 

times its standard deviation, which is found to be optimal.   

The probability density distribution is calculated by modifying the weight associated to 

each Gaussian according to the following formula:  

( )tktktk M ,1,, )1( αωαω +−= −  

where Mk,t is a binary value which checks if the pixel belongs to one of the Gaussians, α is 

a parameter which determines the learning capability of the distribution, and the sum of all K 

weights is equal to 1. The value of α identifies the adaptation speed of the distribution which 

is an important factor to update the model to the desired temporal frequency. The parameters 

of the Gaussian are modified according to the following formula: 

ttt Xρµρµ +−= −1)1(  

)()()1( 2
1

2
tttttt XX µµρσρσ −−+−= Τ

−  

),|( kktX σµαηρ =  

After the update step is over, the Gaussians are ordered according to the ratio ω/σ. The first 

Gaussian, which has the lower weight and higher variance, represents the background in the 

image. 

MoG is a highly effective model since it handles the new objects or changes and adapts its 

background model. The parameter α defines the period to adapt to new objects. Initialization 

phase is a key step to determine the initial model which can be achieved either by calculating 

the mean values of each Gaussian or by choosing the most repeated Gaussian as the initial 

Gaussian. Both of these methods perform well. 

 

Fig. 4-4. Output of Fig. 4-1 after using MoG algorithm. 
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Learning the correct scene characterization takes few frames, where slowly moving 

vehicles are merged with the steady objects in the scene, but slowly vanish as the model is 

updated. The maximal velocity of the objects to be included in the background is calculated 

by the learning speed of the Gaussian model.  

4.2 Cross-Correlation 

Cross-correlation, also known as sliding dot product, is a similarity measure of two signals 

and is commonly used in signal processing, computer vision and image processing. 

Normalized cross correlation, as in the study of Lewis JP (Lewis, 1995), can be applied in the 

image processing template matching applications where the image brightness and template 

can change due to lighting and exposure  

First, the distance is calculated as follows: 

[ ]2

,

2
, ),(),(),( ∑ −−−=

yx
tf vyuxtyxfvud  

where f  is the image and the feature t positioned at vu, . 

[ ]∑ −−+−−−=
yx

tf vyuxtvyuxtyxfyxfvud
,

222
, ),(),(),(2),(),(  

the term ),(2 vyuxt −−∑ is constant. If the term ),(2 yxf∑ is constant then the cross-

correlation term is as below: 

∑ −−=
yx

vyuxtyxfvuc
,

),(),(),(  

Cross-correlation term represents the similarity factor between the feature and the image.  

However, this approach has the following disadvantages: 

1) When the image energy ),(2 yxf∑ varies with position, matching may fail. 

2) The range of ),( vuc is dependent on the size of the feature. 

3) The formula is not invariant to lighting changes. 
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To overcome these disadvantages, the correlation coefficient is calculated: 
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where t  is the mean of the feature and vuf , is the mean of ),( yxf . The formula above is 

referred as “normalized cross-correlation”. 

Normalized correlation is a template matching method in which the aim is to find the 

incidences of a pattern in an image. It is widely used in computer vision application such as 

stereo vision, motion tracking and image mosaicing. This method is a simple, yet effective 

method as a similarity measure and easy to be implemented for real-time applications. In this 

thesis, normalized cross correlation has been used for the studies in Chapter 5 and Chapter 6. 

4.3 Skeletonization 

Thinning is a morphological operation which removes the selected pixels from the binary 

images. It is widely used for skeletonization applications where the aim is to sort out the edge 

detection outputs by reducing the thickness of the lines to single pixels. The main advantages 

of thinning in image processing are reduction of the data amount of an input binary image and 

the preservation of the skeleton (Vanajakshi et al., 2010). 

Euclidean Distance transforms are commonly used for extracting the medial axis or 

skeleton of the image. It is the simplest approach for the skeletonization algorithm and is 

based on extracting the skeleton by finding the pixels furthest from the boundary. Euclidean 

distance is used for the distance measurements. Even though this approach is faster than the 

thinning operation, the output may not preserve connectivity (Daya, 2008).  

Blum (Blum, 1967) introduced the medial axis transform (MAT) in order to explain 

biological shape. MAT can be considered as the locus of the center of a maximal disc rolling 

inside an object. It has been widely used in pattern and image analysis, mold design and path 

planning. There is a unique MAT for each object and it is possible to reconstruct an object by 

using its MAT. The MAT can be used in constructive solid geometry (CSG), boundary 

representation (B-rep) and in applications requiring the abstract representation of the geometry.  

The mathematical definition of the MAT is as follows:  
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“The medial axis (MA), or skeleton of the set D, denoted M(D), is defined as the locus of 

points inside D which lie at the centers of all closed discs (or balls in 3D) which are maximal 

in D, together with the limit points of this locus. A closed disc (or ball) is said to be maximal 

in a subset D of the 2D (or 3D) space if it is contained in D but is not a proper subset of any 

other disc (or ball) contained in D. The radius function of the MA of D is a continuous, real-

valued function defined on M(D) whose value at each point on the MA is equal to the radius 

of the associated maximal disc or ball. The MAT of D is the MA together with its associated 

radius function.” The boundary and the corresponding MAT of an object are shown in Figure 

4-5. (Ramanathan and Gurumoorthy, 2002). 

 

Fig. 4-5. Boundary and its medial axis (from Ramanathan and Gurumoorthy, 2002). 

In the present work, MAT has been used for the study in Chapter 6. Below, Figure 4-6 

shows the skeletonised outputs of Figure 4-1. 

 

Fig. 4-6. Skeletonized outputs of Fig. 4-1 after MAT algorithm was applied. 

4.4 Convex Hull 

The definition of convex hull is as follows: “A subset Sof the plane is called convex if and 

only if for any pair of points Sqp ∈, the line segment pq is completely contained in S . The 

convex hull )(SCH of a set S is the smallest convex set that contains S . To be more precise, 
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it is the intersection of all convex sets that contain S” (Figure 4-7 and Figure 4-8) (De Berg 

et al., 2008). 

 

Fig. 4-7. Illustrations depicting the concepts of convex and not convex (De Berg et al., 2008). 

The convex hull is an important concept which is used mainly in mathematics and 

computational geometry. It is used in the analysis of spectrometry data, power diagrams, 

halfspace intersection, Delaunay triangulation, Voronoi diagrams (Barber et al., 1996).  

 

Fig. 4-8. Illustration of the working principle of convex hull method (De Berg et al., 2008). 

In the review article by Aurenhammer, other applications of convex hull are listed as: mesh 

generation, file searching, cluster analysis and image processing (Aurenhammer, 1991) .In the 

present work, convex hulls are used as described in Chapter 7. 
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A MARKERLESS ESTIMATION OF THE ANKLE-FOOT COMPLEX 

2D KINEMATICS DURING STANCE 
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(This chapter was written on the basis of the accepted article “A markerless estimation of the 

ankle-foot complex 2D kinematics during stance”(Surer E., Cereatti A., Grosso E., Della 

Croce U. Gait & Posture, doi: 10.1016/j.gaitpost. 2011.01.003, 2011 (in press).) 

5.1 Introduction 

Quantitative gait analysis is generally carried out by mounting retro-reflective markers on 

the skin of subjects and reconstructing the three-dimensional (3D) position in the laboratory 

space by means of stereophotogrammetric systems. The use of stereophotogrammetry requires 

the placement of markers on selected points of the body segments. Typically, an expert 

operator spends a considerable amount of time in attaching the markers. In order to do so, 

subjects are often asked to remove their clothing, including shirts, shoes and socks, sometimes 

causing feelings of uneasiness. A technique less time consuming, requiring less expertise, 

discomfort-free to the subject would be favorably accepted in clinical applications. 

Markerless techniques (Ml) have been recently presented (Mündermann et al., 2006) and 

may potentially play an important role in this respect. Different approaches have been 

proposed for estimating the human body kinematics based on an Ml approach. Corazza et al. 

(Corazza et al., 2006) employed a full 3D body model of the subject to be matched with the 

visual hull by using Simulated Annealing. Bregler and Malik (Bregler and Malik, 1998) used 

twist and exponential maps to define the motion of their model. Chu et al. (Chu et al., 2003) 

proposed a model-free approach by describing the human body with a set of points to be 

mapped to a pose-invariant intrinsic space posture. The use of 3D Ml techniques in the 

clinical and research fields has been so far limited due to the high computational cost (Azad et 

al., 2006; Deutscher et al., 2000) and equipment requirements (Mündermann et al., 2006), 

especially in the full body analysis. 

In two-dimensional (2D) quantitative analysis of joint kinematics, Ml approaches could 

possibly be effectively implemented in clinical applications. By using a Cardboard kinematic 

model, Howe et al. (Howe et al., 2000) modeled the limbs as planar patches and enforced 2D 

constraints on capturing and analyzing the motion To make the model representation 

independent of the original image, image descriptors such as silhouettes, edges, color and 

texture are frequently used in 2D Ml approaches (Poppe, 2007). In answering to some specific 

clinical questions, 3D gait analysis showed that the most significant differences between 

groups were concentrated in the sagittal joint kinematics (Calhoun et al., 2010; Picelli et al., 
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2000; Galli et al., 2010), therefore, in such cases, the information provided by a 2D 

quantitative sagittal joint kinematics analysis may be sufficient, assuming that the main joint 

axis remains approximately perpendicular to the image plane throughout the recording of the 

motor task. 

Since the shank and foot complex is key for propulsion and support during locomotion, the 

analysis of its kinematics provides important information for the diagnosis and treatment of 

pathologies affecting locomotion (Gage et al., 1995; Chin et al., 2009). 

Based on the considerations above, in this study we focus to the sagittal kinematics of the 

shank and foot complex during the stance phase of walking, with two aims: a) to propose a 

2D Ml technique and b) to verify if the performance of the proposed technique is affected 

when the subject walks with socks on (as opposed to barefoot). The proposed method was 

validated (both in barefoot and socked conditions) by acquiring the same walking trials both 

with a single camera (used in the Ml approach) and a simple marker-based (Mb) system. 

5.2 Materials and methods  

5.2.1 Acquisition Setup 

Three healthy subjects (one male and two females; 27, 28 and 28 years old, respectively) 

were asked to walk at self-paced speed (approximately 0.7 m/s) in two different conditions: 

barefoot and wearing ankle sport socks. Five trials for each condition were recorded for each 

subject.  

The Mb data were acquired simultaneously with the Ml data using a six-camera 

stereophotogrammetic system (Vicon MX, 1.3 Mpixel, 120 frames/s). The measurement 

volume was 1.5m3 (1.5m × 1m × 1m). The markers were positioned on the head of fibula 

(HF), on the calcaneus, on the lateral malleolus and on the first and fifth metatarsal heads. The 

marker positions were projected to 2D in the estimation of the joint kinematics. A force 

platform (AMTI, Watertown, MA) was also used to detect heel strikes and toe offs. 

The Ml estimate of the sagittal plane kinematics of the shank and foot complex required 

the execution of the following steps (Figure 5-1). 
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Fig. 5-1. The block diagram of the processing steps used in the proposed markerless technique. 

5.2.2 Video Acquisitions 

Sagittal view images of the shank and foot complex of the subjects were acquired during 

the stance phase with a single digital camera (Basler A101f, resolution: 800×600 pixels). The 

camera, acquiring at 15 frames/s, was positioned laterally to the subject to obtain a sagittal 

view of the shank and foot during the stance phase. The measurement plane was 1.5m2 (1.5m 

× 1m). Sample frames of acquisitions with the subject barefoot and wearing ankle socks are 

shown in Figure 5-2 (a and b, respectively). 

 

 

Fig. 5-2. Reference images of a subject barefoot (a) and wearing ankle socks (b).  

5.2.3 Segmentation 

The objective of the segmentation procedure is to subtract the background from the 

moving body parts on the acquired image frames. To accomplish this aim, the Mixture of 

Gaussians method (MoG) (Stauffer and Grimson, 1999) was applied. The MoG is a widely 

used statistical method, particularly effective when dealing with moving objects and 

illumination changes (Lagorio et al., 2008).  

(a) (b) 
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Using the combination of a finite number of Gaussian distributions rather than a single 

Gaussian distribution, enables the MoG method to optimally characterize the statistical 

content of image sub-parts, handling sequences of images with overlaps and occlusions. By 

calculating the variance of each Gaussian in the mixture, the correct statistical distribution of 

the corresponding background is determined. Pixel values that do not fit the background 

distributions form the foreground. 

The segmented outputs of the images can be seen in Figure 5-3 (a and b, respectively). 

 

Fig. 5-3. Relevant segmented output images (a and b). 

5.2.4 Multi-Segment Model 

The multi-rigid body model adopted for the kinematic analysis consisted of three rigid 

body segments: shank (tibia and fibula), rearfoot (tarsus and metatarsus) and forefoot 

(phalanges), connected by cylindrical hinges. The model was characterized by two degrees of 

freedom: the ankle plantar/dorsi-flexion angle (α) and the rearfoot-forefoot flexion/extension 

angle (β) as described in Figure 5-4a. 

5.2.5 Anatomical Axes Definition 

For each subject, anatomical axes were defined using a reference image (RI) extracted 

from the video recordings of the shank and foot complex with markers on at mid stance. In 

general, this phase does not require the use of markers, although it might be helpful to mark 

the anatomical landmarks on the subject’s skin after palpation and prior to the RI acquisition. 

In this study, to validate the proposed Ml technique, the same markers used for the Mb 

acquisitions were also used to identify anatomical landmarks in the RI.  

 

(a) (b) 
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 (a)   (b) 

Fig. 5-4. Definition of ankle joint angle (α) and rearfoot-forefoot joint angle (β) (HF=head of fibula, LM=lateral 

malleolus, CA=calcaneous, VM=fifth metatarsal head, TOE= big toe) (a). Reference patches and anatomical 

axes (b). Symbols *, + and  represent the anatomical axes and reference patches of shank, rearfoot and 

forefoot, respectively. 

An axis for each of the three segments was identified from the RI: the shank axis was 

identified as the axis passing through the head of fibula and the lateral malleolus, the rearfoot 

axis was made to join the calcaneous to the fifth metatarsal head, the forefoot axis passed 

through the fifth metatarsal head and the toes (Figure 5-4a). Moreover, in the RI, patches 

containing portions of the body segments, expected to show minimum changes in shape 

during movement, were identified (Figure 5-4b). Axes and patches belonging to the same 

body segment were assumed to be rigidly connected. 

5.2.6 Cross-Correlation  

Image cross-correlation was applied to the selected image patches to track the movement 

of the body segments. In image processing, cross-correlation is a well known and effective 

technique for template matching (Goshtasby et al., 1984). The cross-correlation coefficients, 

usually normalized in the range [0;1], express similarity between two different images: 1 

represents full similarity, 0 no similarity. 

The patches identified in the RI were searched in all the images of the sequence, one at the 

time, over a search space stemming from the possible translations and rotations. The patch in 

the searched image that showed the highest cross-correlation value was selected (Lewis, 

1995). Cross-correlation coefficients were first computed translating the template along the 
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vertical and horizontal axes of the whole picture. When a first maximum was found, then the 

patch was rotated by up to ten degrees and a second maximum was computed for each rotated 

patch over a limited search area. The highest cross-correlation value defined the position and 

orientation of the searched patch. The selected patch then became the new reference image for 

the succeeding frame and the whole procedure was repeated until the last frame. 

5.2.7 Data Analysis 

The duration of the stance phase was defined as the number of the Ml frames between heel 

strike and toe off. Since Ml data and the Mb data were not synchronized, an ad-hoc procedure 

was implemented. For each trial, heel-strike and toe-off event frames were selected. This was 

done through visual inspection on the Ml frames and using force platform data for the Mb 

acquisitions. Since the Ml frame rate was 1/8th of the Mb frame rate, the Mb frame best 

matching the Ml event was defined as the Mb frame with α and β values most similar to the 

values obtained from the marker locations in Ml event images.  

Once the Ml and Mb frames were aligned in time, the Mb sagittal joint kinematics were 

down-sampled to the Ml frame rate for comparison purposes. 

Ml and Mb joint kinematics were compared as follows. 

- In order to account for offsets between the Ml and the Mb ankle kinematics, the absolute 

difference between their mean values (Mlα  and Mbα , respectively) over the stance phase 

was determined. 

MbMl ααα −=∆ )(  

- In order to account for pattern differences, for each time series the deviation from the mean 

values were determined: 

MlMliMli ααα −= __' , and MbMbiMbi ααα −= __'  

where the subscript i refers to the i th frame; 

and the Root Mean Square Deviation (RMSD) of the Mli _'α  values from the Mbi _'α  values, 

was estimated: 
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The same processing was applied to the rearfoot-forefoot joint kinematics (β). 

To verify if measurements obtained with the two techniques were comparable to the intra-

subject variability, similar indexes were introduced to estimate the intra-subject variability of 
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the ankle kinematics obtained with the Mb measurements: baV ααα −=∆ )(  and 
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αα , where a and b represent any two of the five trials 

performed per condition per subject. Similar indexes were introduced for the β angle 

measurements. 

The maximum values of )(αV∆  and )','( baVRMSD αα were compared to the maximum 

values of )(α∆  and )','( MbMlRMSD αα , and similarly was done for the indexes regarding the 

angle β. 

5.3 Results 

A representative sagittal joint kinematics during the stance phase, estimated with the Ml 

technique and the Mb technique is reported in Figure 5-5 for the three subjects.  

The differences )(α∆  and )(β∆  between the mean angle values for each trial and the 

maximum values of the intra-subject variability indexes )(αV∆  and )(βV∆  are reported in 

Table 5-1. Table 5-2 shows the values of the RMSD of the joint angles α and β, 

)','( MbMlRMSD αα  and )','( MbMlRMSD ββ , the maximum values of the intra-subject 

variability indexes )','( baVRMSD αα  and )','( baVRMSD ββ obtained for the three subjects in 

barefoot and socked conditions. No noticeable differences were found between barefoot and 

socked trials. 

5.4 Discussion and Conclusion 

3D marker based motion capture systems are commonly used for estimating joint 

kinematics in clinical contexts. This approach requires expensive equipment and a high level 

of expertise to operate, limiting its use in clinical routine. Unfortunately, valid alternatives are 

not available yet. However, in some specific clinical issues, the determination of 2D joint 

kinematics is sufficient. 
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Fig. 5-5. Ankle kinematics (α) and rearfoot-forefoot joint kinematics (β) of three subjects (#1, #2, #3), obtained 

both in barefoot and socked conditions during the stance phase of walking. The solid lines are the joint 

kinematics obtained using the marker-based technique while dots are the joint kinematics obtained using the 

proposed markerless technique. Quantities are expressed in degrees. 
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[deg]   Subject #1 Subject #2 Subject #3 
angle  trial barefoot ankle socks Barefoot ankle socks barefoot ankle socks 

  1 0.2 0.2 1.7 1.1 0.4 1 
  2 0.2 0.7 2.5 0.8 0.2 0.6 
  3 0.9 0.2 0.3 1.5 0.2 0.6 
Α ∆ 4 1.5 0.8 0 2.2 1.1 1.4 
  5 0 1.6 0 0.4 0.8 1.7 
  average 0.6 0.7 0.9 1.2 0.6 1.0 
 ∆V max 2.5 3.3 1.6 1.9 2.1 1.8 
  1 4.2 5.2 0.7 5.6 0.8 5.8 
  2 2.4 3 6.9 8.2 2.4 3.1 
  3 5.8 3.4 2.7 6 2.5 1.4 

β ∆ 4 5.4 3.2 0.6 6.9 1.5 4.2 
  5 2.4 4.5 1.8 4.5 0.4 3.7 
  average 4.0 3.9 2.5 6.2 1.5 3.6 
 ∆V max 2.9 2.5 5.9 6.5 4.4 3.4 

Tab. 5-1. The absolute difference (∆) between the mean values during stance of ankle (α) and rearfoot-forefoot 

(β) angles for each trial, condition and subject, obtained with marker-based and markerless techniques. Trial 

averages are reported in bold (maximum values in gray cells). In the grayed area the maximum intra-subject 

variability values (from marker-based measurements) of the absolute difference (∆V) are reported. 

 
[deg]   Subject #1 Subject #2 Subject #3 
angle  trial barefoot ankle socks barefoot ankle socks barefoot ankle socks 

  1 1.6 0.6 1.7 1.6 3.4 1.7 
  2 1.8 1.4 1.7 1.5 2.8 3 
  3 2.6 0.7 2.1 1.3 2.4 2 
Α RMSD 4 1.1 1.5 1.3 0.8 3.1 2.9 
  5 0.7 2.7 1.1 2.4 2.7 2.2 
  average 1.6 1.4 1.6 1.5 2.9 2.4 
 RMSDV max 4.1 2.7 2.8 3.0 2.6 4.2 
  1 2 1.2 2.8 4 5 2.3 
  2 1.3 3.2 7.1 3.6 3 3.5 
  3 3.7 1.7 3.7 5.1 2.3 2.6 

β RMSD 4 2.8 3.8 3.2 3.4 3.5 3.1 
  5 1.6 3 3.8 3.4 3 2.7 
  average 2.3 2.6 4.1 3.9 3.4 2.8 
 RMSDV max 3.2 3.9 6.6 6.5 3.1 6.5 

Tab. 5-2. Root Mean Square Deviation (RMSD) estimated during stance of the markerless joint kinematics 

values from the marker-based joint kinematics (α and β) values. Trial averages are reported in bold (maximum 

values in gray cells). In the grayed area the maximum intra-subject variability values (from marker-based 

measurements) RMSDV values are reported. 
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In this study, we presented a low-cost, low-discomfort markerless technique along with a 

preliminary validation and reliability assessment in estimating the sagittal kinematics of the 

shank and foot complex during the stance phase of normal walking.  

The proposed technique requires a series of steps: video acquisition, segmentation, multi-

rigid body model definition, anatomical axes definition and cross-correlation. 

The segmentation outputs indicated that the algorithm chosen for segmenting the images 

had limited sensitivity to the presence of socks, suggesting that if subjects wore socks during 

the trials, results would not be affected. This can represent an advantage of the use of the Ml 

technique when analyzing the gait of subjects feeling more comfortable walking with socks 

than barefoot. 

The ankle kinematics (α) estimated with the Ml and Mb techniques showed very similar 

results throughout the stance phase (both ∆ and RMSD values are in general within the intra-

subject variability). Differently, for the rearfoot-forefoot kinematics (β), ∆ showed values 

about two degrees higher than the relevant intra-subject variability values (∆V) in all three 

subjects (except for the barefoot condition of subject #3). On the converse, the RMSD values 

for the β angle were in most cases within the relevant intra-subject variability index (RMSDV). 

The different results obtained for the angle β are most probably due to the small size of the 

forefoot segment and consequently, to the lack of reliability in identifying the anatomical axis 

using either technique. The larger intra-subject variability determined for the angle β increases 

the chances of having larger differences in the joint kinematics estimated with the two 

techniques. 

In general, the accuracy and precision of both Ml and Mb methods suffer from body 

segments of reduced size. Mb techniques perform better in identifying body segments 

orientation when segment markers are farther from each other (i.e. larger body segments). 

Similarly, Ml techniques may use a larger number of pixels to estimate the orientation of a 

large body segment. However, in general, while Mb techniques use a minimum number of 

points to describe the segment kinematics (typically three or four points), it is reasonable to 

expect that future Ml techniques may fruitfully use the redundancy of the information carried 

by the hundreds of pixels used to estimate the segment kinematics and may increase its 

precision. For instance, since markers are often located over a layer of soft tissues, near a joint 

or over an active muscle, their movement relatively to the underlying bone introduces errors 

in the estimation of joint kinematics (Cappozzo et al., 1995; Leardini et al., 2005). The 

redundant number of points used by Ml techniques in determining segment kinematics could 

potentially reduce such errors.  
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The Ml technique employed in this study suffers of the same limitations of any 2D 

kinematics analysis of gait performed with a single camera. They are mostly related to the 

impossibility a) of describing the out-of-plane joint kinematics, b) of obtaining a bilateral 

analysis, c) of describing segment deformity and d) of keeping image plane and sagittal plane 

parallel. The last limitation has a limited effect on the resulting joint kinematics for small 

angles between the two mentioned planes (a 10 degrees angle between planes generates a 

1.5% difference in the sagittal joint kinematics estimate).  

From an algorithmic standpoint, the chosen Ml technique shows limitations to be overcome 

for increasing its potential in clinical applications. To analyze the sagittal kinematics of pelvis 

and lower limbs during the entire gait cycle, the improved Ml technique should cope with 

complex backgrounds, shadows and occlusions. In this study, background subtraction was 

simplified by covering the contra-lateral leg with a long black sock. A more robust cross-

correlation and/or image processing technique such as deformable contours (Shahrokni et al., 

2005) could help in solving the problem. Moreover, the processing time of the proposed Ml 

technique in the current version implemented in MATLAB® (MathWorks, Natick, MA, 

USA) needs to be reduced to be fruitfully used in clinical applications (currently about 15 

minutes are required to process a trial).  

Finally, in order to assess the differences in the sagittal joint kinematics, the two 

techniques had to be registered at a reference point in time. This required the use of the 

markers located on anatomical landmarks for the definition of anatomical axes in the Ml 

technique. As a consequence, this study does not provide information regarding the 

discrepancy (an offset) due to different ways of calibrating anatomical landmarks (from a 

reference image in an Ml technique as opposed to palpation in an Mb technique). A reliable 

automatic anatomical axes identification procedure from the Ml images would increase the 

robustness of the proposed technique. 

The performance of the Ml technique proposed to estimate 2D joint kinematics is 

promising for future use in clinical settings. In fact, the acquisition of movement data without 

the need of attaching markers to the subject’s skin, and yet obtaining results comparable to 

those obtained with a simple marker based technique, represents an important step toward the 

design of an acquisition system for clinical use. Such a system could also be easy to configure 

and operate and most probably relatively affordable. 
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MEASUREMENT OF KNEE FLEXION/EXTENSION USING A 2D 

MARKERLESS TECHNIQUE 
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6.1 Introduction 

Several measurement tools have been used to quantify knee joint angles and knee 

movements. The selection of a measurement tool depends on the purpose of testing (Miller, 

1985) and psychometric properties such as reliability and validity (Rothstein et al., 1983). To 

be valid, tools for quantifying knee position and movement need to produce minimal 

measurement error. Measurement error can arise from the tool, the tester or from variability in 

the performance of the individual (Stratford et al., 1984; Russek 2004). 

Assessment of knee flexion/extension is typically done wıth a number of measurement 

tools: electro-goniometers, inertial sensors, 2D and 3D marker-based motion analysis systems 

(Piriyaprasarth and Morris, 2007). Most of the traditional clinical analysis methods involve 

applying sensors to the patients, which may cause discomfort and hinder the natural 

movement. Besides, they necessitate expertise to operate and expensive hardware. 

To overcome the abovementioned limitations, in this study, a 2D markerless technique is 

proposed to measure knee flexion/extension. This study is an enhancement to our previous 

study (Surer et al., 2011), which is explaind in detail in the Chapter 5 of this thesis.  

The focus of the first study was the analysis of the 2D kinematics of the ankle-foot 

complex using a single lateral view by defining a three-segment model and tracking its 

movement using selected patches rigid to the segment. To simplify the problem, a black 

background was used and the subjects wore long black socks to cover the contra-lateral leg. 

In this study, a 2D markerless technique is developed, in which the presence of a more 

complex background was dealt with by using an adaptive statistical background subtraction 

model and the occlusions were dealt with by defining an additional patch per segment to be 

used when the occlusion occurs on the main patch. The proposed technique is validated with a 

traditional stereophotogrammetric system and the results of the proposed technique are 

comparable to those obtained with the stereophotogrammetric system. 
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6.2 Materials and methods  

The material and methods used in the proposed technique is very similar to those used in 

the previous study. Still, for the purposes of integrity, an overall summary of the similarities 

between the studies will be presented in this chapter as well. 

6.2.1 Acquisition Setup 

Two CP children (one female and one male, 14 and 7 yrs, respectively) were asked to walk 

at self-paced speeds. Five trials from each direction were recorded for each subject. During 

the acquisitions, subjects wore white high-cut underwear and white ankle socks. One of the 

subjects prepared for the study can be seen in Figure 6-1. 

 

 

Fig. 6-1. Subject prepared for the study. For validation purposes, retro-reflective markers were mounted on the 

subject. 

Marker-based (Mb) data were recorded simultaneously with the Ml data using a six-camera 

stereophotogrammetic system (BTS® SMART-D stereophotogrammetric system, 640x480 

pixels, 60 Hz). The infrared filter of one of the cameras was removed and modifications on 

the shutter and strobe timing were made by the manufacturer. The remaining five cameras 
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were used for the marker based acquisitions only while the modified camera acquired the 

lateral view of the subject as grayscale image. During the analysis, only the leg in focus was 

taken into consideration.  

“Simple Davis” protocol of the BTS® SMART-D system were used for the positioning of 

the markers, so they were positioned on the sacrum (between PSIS), right and left ASIS, 

greater trochanter (GT), femoral condyle, head of fibula, lateral malleolus and fifth metatarsal 

joint. Lateral bars were used between the greater trochanter and femoral condyle and between 

head of fibula (HF) and lateral malleolus. A force platform (AMTI, Watertown, MA) was also 

used in order to detect heel strikes and toe offs. 

The Ml sagittal plane kinematics estimate of the lower limbs necessitated the execution of 

the following steps. 

6.2.2 Segmentation 

As in the previous study, segmentation of the lower limbs was performed to separate the 

background information from the regions of interest using MoG method. MoG is an adaptive 

background modelling method where the parameters of Gaussians are updated to separate the 

background from the moving foreground (Stauffer and Grimson, 1999).  

While a simple black background was used for the previous study, in this study, a more 

complex background is preferred. Besides, the contralateral leg is not covered with black 

socks. Despite of the complex background, the results of the segmentation were quite 

successful. The occlusions stemming from the contralateral leg were handled in the model and 

axes definition step. 

Figure 6-2 shows a segmentation sample. As for the previous study, the proposed 

technique was validated acquiring the same trials with both the single camera used in the 

proposed markerless technique and a traditional stereophotogrammetric system.  

6.2.3 Model and Axes Definition 

The multi-segment model adopted for the kinematics analysis consisted of two different 

rigid segments – shank and thigh. Anatomical axes were visually identified and patches in a 

reference frame were selected. 

To manage occlusions – portions of segmented images composed by the overlapping of the 

two legs – two patches rigidly connected are defined (instead of one) per segment, one on the 

front edge of the segmented image and one in the rear edge. 
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The patch on the front edge of the segments is normally considered active except when an 

occlusion occurs in the front edge. Then, the rear patch automatically becomes the active 

patch until the occlusion ends (Figure 6-3). Both patches are also rigidly connected to the 

segment anatomical axis and are the portions of the images used in the cross correlation. 

 

  

Fig. 6-2.  Sample image and its segmentation output. As can be seen, complex background did not diminish the 

performance of the segmentation algorithm. 

6.2.4 Cross Correlation 

The cross-correlation (Goshtasby et al., 1984), which is a template matching approach, 

calculates similarity coefficients between two different images. The coefficients express 

similarity between the images (value 1 represents full similarity, 0 value no similarity) in the 

search space derived from the possible translations and rotations. It was used in order to track 

the movements of thigh and shank segments of the leg under analysis. 

The patches identified in the reference image (RI) were searched in all the images of the 

sequence, one at the time, over a search space stemming from the possible translations and 

rotations. The patch in the searched image that showed the highest cross-correlation value was 

selected. Cross-correlation coefficients were first computed translating the template along the 

vertical and horizontal axes of the whole picture.  

When a first maximum was found, then the patch was rotated by up to ten degrees and a 

second maximum was computed for each rotated patch over a limited search area. The highest 

cross-correlation value defined the position and orientation of the searched patch. The 

selected patch then became the new reference image for the succeeding frame and the whole 

procedure was repeated until the last frame. 
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6.3 Results and Discussion  

Table 6-1 shows the results of the two subjects, analyzed for this study. In order to 

compare the pattern differences between the proposed technique and the marker-based, 

RMSD results, after removing the mean differences of the curves (offsets). Besides intra-

subject variability and correlation outputs of the two techniques are presented for the knee-

flexion extension angle (β). 

  

Fig. 6-3. Segmentation outputs with patches and axes are presented. Green and pink are the active patches in the 

left image. In the right image, purple and blue patches are the active ones; notice that the active patches are 

swapped. 

 

 Subject #1 Subject #2 

 Β 

Correlation 0.98 0.98 

RMSD 4.4 4.6 

RMSDv 26.5 2.3 

Tab. 6-1. The correlation between the two techniques, their Root Mean Square Deviation (RMSD), and 

intrasubject variability (RMSDV). 

Figure 6-4 shows the knee-flexion kinematics curves of the two subjects. 

Results show that lower limb sagittal kinematics estimates from marker-based and 

proposed markerless methods are highly comparable, making the latter a potential alternative 

for clinical use.  
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Fig. 6-4 Knee flexion/extension angles of the two subjects are shown in the figure below respectively (Fig. 6-4a 

– subject #1; Fig. 6-4b – subject #2. Blue lines represent the estimates obtained using the marker-based system 

(MB) and the orange lines those obtained using the markerless method (ML).  

 

 

 

(a) 

(b) 
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2D GAIT ANALYSIS OF CHILDREN WITH CEREBRAL PALSY 

USING SEGMENTAL MARKERS AND A MARKERLESS APPROACH 
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7.1 Introduction 

Cerebral palsy (CP) is defined as a group of movement and posture disorders stemming 

from the abnormalities that occurred in the developing fetus or infant (Bax et al., 2005). The 

motor disorders of CP are often accompanied by impairments of sensation, cognition, 

communication and perception (Marlow, 2004).  

The standard assessment approach in CP is to use kinematics, kinetics, electromyography 

(EMG) and clinical examinations for a comprehensive assessment (Whittle, 1996). In 

determining the joint kinematics of patients with CP during walking, marker-based movement 

analysis is frequently used (Baker, 2006). 

Marker-based movement analysis has played a significant role in the assessment of CP 

with its use in documentation, operative planning and postoperative evaluation (Gage et al., 

1995). However, attaching markers to the subjects, especially to the children, may cause 

feelings of uneasiness and may hinder the walking. In addition, they require expensive setup 

and expertise to operate. For these reasons, a technique less discomfort-free, low-cost and 

easy to use would be appealing in determining the joint kinematics of patients with CP.  

Markerless techniques may provide solutions to overcome the abovementioned difficulties. 

Several algorithms, such as Simulated Annealing (Corazza et al., 2006) and twist and 

exponential maps (Bregler and Malik, 1998) in 3D have been proposed for estimating the 

joint kinematics based on markerless approaches, but they have not been validated for clinical 

applications. Also, up to now, the use of 3D markerless techniques in the clinical applications 

has been limited due to the high computational cost (Deutscher et al., 2000) and equipment 

requirements (Mündermann et al., 2006). 

Despite the fact that most studies use sophisticated 3D measurement systems to collect gait 

data in three planes of motion, using sagittal plane kinematics is sufficient as in the cases of 

classification of CP (Dobson et al., 2007) and comparison of right and left hemiplegia (Galli 

et al., 2010).  

Markerless approaches could be successfully applied to the clinical applications 

determining the two-dimensional (2D) sagittal joint kinematics. Cham and Rehg (Cham and 

Rehg, 1999) used scaled prismatic models (SPM) – i.e. a class of 2D kinematic models – to 

model the human body in 2D. Howe et al. (Howe et al., 2000) modeled the limbs as planar 

patches and enforced 2D constraints on capturing and analyzing the motion by using a 
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Cardboard kinematic model. Even though these studies have great potential for clinical 

applications, they have nor been validated either. 

In this study, we propose a 2D markerless technique defined as hybrid (Hyb) since it uses 

garments (high-cut underwear and ankle socks) to extract additional information as 

“segmental markers” in defining pelvis and foot segments. The validation of the proposed 

technique was done by acquiring the same trials also with a marker-based system. 

7.2 Materials and methods  

7.2.1 Acquisition Setup 

Ten CP children (five females, ages = 9 ± 4 yrs) were asked to walk at self-paced speeds. 

Five trials from each direction were recorded for each subject. During the acquisitions, 

subjects wore white high-cut underwear and white ankle socks.  

Marker-based (Mb) data were acquired simultaneously with the Hyb data using a six-

camera stereophotogrammetic system (BTS® SMART-D stereophotogrammetric system, 

640x480 pixels, 60 Hz). The markers were positioned according to the “Simple Davis” 

protocol of the BTS® SMART-D system, and therefore were positioned on the sacrum 

(between PSIS), right and left ASIS, greater trochanter (GT), femoral condyle, head of fibula, 

lateral malleolus and fifth metatarsal joint. Lateral bars were used between the greater 

trochanter and femoral condyle and between head of fibula (HF) and lateral malleolus. A 

force platform (AMTI, Watertown, MA) was also used in order to detect heel strikes and toe 

offs. 

The Hyb sagittal plane kinematics estimate of the lower limbs necessitated the execution of 

the following steps. 

7.2.2 Anthropometric Measurements and Calibration 

In order to extract additional information for the use of high-cut underwear and ankle socks 

as “segmental markers”, the following measurements (Figure 7-1a) were made before the 

acquisitions:  

M1: distance between the high-cut of the underwear (hip) and the femoral condyle; 

M2: distance between the femoral condyle and the edge of the ankle sock (ankle); 

M3: foot length 
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The camera was positioned laterally and calibrated in order to map M1 and M2 to their 

pixel-lengths on the images. M3 was used to validate the mapping calculation. A 

checkerboard of known geometry and size (Figure 7-1b) was used in order to calibrate the 

camera. 

 

  

(a) (b) 

Fig. 7-1. The measurements M1, M2 and M3 (a). Checkerboard (b). 

7.2.3 Video Acquisitions 

Sagittal view images of the lower limbs of the subjects were acquired with a single BTS® 

SMART-D camera. In order to acquire the sagittal view of the lower limbs, infrared filter of 

the camera was removed and modifications on the shutter and strobe timing were made by the 

manufacturer. The camera, also acquiring at 60 Hz, was positioned laterally to the subject to 

obtain a sagittal view of the lower limbs. Sample frame of an acquisition with the subject is 

shown in Figure 7-2a. 

7.2.4 Segmentation 

As in the studies of Chapter 6 and 7, Mixture of Gaussians (MoG) method (Stauffer and 

Grimson, 1999) was applied in order to subtract the background from the moving parts on the 

acquired image frames. The MoG is a widely used statistical method, particularly fruitful 

when handling moving objects and illumination changes (Lagorio et al., 2008).  

Using the combination of a finite number of Gaussian distributions instead of a single 

Gaussian distribution enables the MoG method to optimally characterize the statistical content 

of image sub-parts, dealing with sequences of images with complex backgrounds. By 
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calculating the variance of each Gaussian in the mixture, the correct statistical distribution of 

the corresponding background is determined. 

Example of the output of the segmentation procedure is reported in Figure 7-2b. 

7.2.5 Skeletonization 

Medial Axis Transform (MAT) is a shape model that characterizes an object by the set of 

maximal circles that are completely contained in the object. The medial axis consists of the 

centers of the circles, and can be intuitively thought of as the skeleton of the object (Lam et 

al., 1997). In order to determine the medial axis, the pixels are eroded from the boundary until 

a skeleton is formed (Tam and Heidrich, 2003). MAT has numerous applications in 

visualization, computer graphics and computer vision. 

MAT was applied to the segmented image frames in order to “skeletonize” the lower limbs 

so that joint segments could be extracted.  

The skeleton of the segmented frame is shown in Figure 7-2c. 

 

   

(a) (b) (c) 

Fig. 7-2. Sample frame (a). Segmented frame (b). Skeletonized frame (c). 

7.2.6 Thresholding and Labeling of the Garments 

To distinguish the high-cut underwear and the ankle socks, intensity values of the garments 

were used in thresholding. By checking the visibility of the garments during a sequence of a 

proper number of frames, the sock on the contra-lateral leg was eliminated. Thresholded 

garments can be seen in Figure 7-3a. 

Labeling is a process which finds the connected components on a binary image and groups 

them as an object (Haralick and Shapiro, 1992) and is especially practical to operate on 

related image parts. In order to access garments easily, labeling process was applied.  



 

 67 

 

 

   

(a) (b) (c) 

Fig. 7-3. Thresholded garments (a). Edged garments (b). Intersection points (c). 

7.2.7 Edge Detection and Extracting Body Segments 

Following the labeling of the garments, Robert’s edge operator (Roberts, 1965) was 

applied to the distinctive garments in order to find the edges. The outputs of the edge 

detection were overlapped with the skeletonization outputs so that the intersection points were 

identified. Intersection points were significant in body segment extraction step. Edged 

garments and intersection points can be seen in Figure 7-3b and 7-3c, respectively.  

Body segments were extracted after the edge detection. To locate the thigh in the images, a 

line was drawn from the hip to the intersection of the circle of M1 radius and the skeletonized 

line of the leg. Similarly, to locate the shank, a line was drawn from the ankle to the 

intersection of the circle of M2 radius with the skeletonized leg (Figure 7-4a). Using the 

morphological operators, the side edges of the garments were automatically eroded and 

labeled. After the erosion, only the upper and lower edges remained, i.e. two edges for each 

garment. The pelvis reference axis was extracted by fitting a line to the upper edge of the 

underwear. The foot reference axis was extracted by fitting a line to the rear part of the lower 

edge of the sock (Figure 7-4b). The four axes can be seen in Figure 7-4c. 
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(a) (b) (c) 

Fig. 7-4. Thigh and shank segments. (a) Pelvis and foot segments. (b) The four reference axes fitted on the 

skeleton (c). 

7.2.8 Occlusion Handling 

During walking, swing of the arms caused occlusions that affected the visibility of the 

high-cut underwear. Because of the occlusions, in some of the image frames the garment was 

seen partially or as two blobs and the intersection point on the high-cut underwear became 

invisible.  

In order to solve the two blobs problem, labeling and convex hull operations (Barber et al., 

1996) were used. Since the ankle sock in focus was always visible on the image frames, it was 

labeled first. It was not possible to correctly label the high-cut underwear by simply using the 

thresholding outputs, since two labels were created for the blobs. In order to overcome this 

setback, labeled ankle sock was used. Adding the already known shank and thigh lengths to 

the labeled ankle sock, the approximate height of the high-cut was estimated. Then, all the 

blobs around that height were considered as parts of the high-cut underwear. Then, the blobs 

were merged by using convex hull operation, i.e. minimal region containing the two blobs and 

labeled again. 

In order to estimate an intersection point when it was invisible, the edge detection was 

performed on the convex hull and the output was intersected with the skeleton.  

7.2.9 Data Analysis 

The proposed hybrid technique was compared with a marker-based technique using a 

single acquisition system recording the same trials. Root Mean Square Deviation is used as an 
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indicator of differences between the pattern of curves of proposed hybrid technique and the 

marker-based.  

Hyb and Mb joint kinematics were compared as follows. 

- In order to evaluate pattern differences of ankle plantar/dorsi-flexion (α), for each time 

series the deviation from the mean values were determined: 

HybHybiHybi ααα −= __' , and MbMbiMbi ααα −= __'  

where the subscript i refers to the i th frame; 

and the Root Mean Square Deviation (RMSD) of the Hybi _'α  values from the Mbi _'α  

values, was estimated: 
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The same processing was applied to the knee flexion/extension (β) and hip 

flexion/extension (γ), for both directions. 

To verify if measurements obtained with the two techniques were comparable to the intra-

subject variability, similar indexes were introduced to estimate the intra-subject variability of 

the ankle kinematics obtained with the Mb measurements: baV ααα −=∆ )(  and 
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αα , where a and b represent any two of the five trials 

for each direction performed per subject. Similar indexes were introduced for the β and γ 

angle measurements. 

7.3 Results and discussion 

Tables 7-1, 7-2, 7-3 and 7-4 show the values of the RMSD of the joint angles α, β and γ, 

)','( MbHybRMSD αα  and )','( MbHybRMSD ββ , the maximum values of the intra-subject 

variability indexes )','( baVRMSD αα , )','( baVRMSD ββ and )','( baVRMSD ΓΓ obtained for 

the 10 subjects. Tables 7-1 and 7-2 show the results from trials when subjects walked from the 

right side, while in Tables 7-3 and 7-4 the results are from trials when the subjects walked 

from the left side. 
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[deg]  
angle  

trial Subject #1 Subject #2 Subject #3 Subject #4 Subject #5 

  1 3.7 4.5 3.7 5.2 2.1 
  2 2.5 3.3 3.2 6.0 2.6 
  3 2.8 4.1 3.0 6.3 2.8 
α RMSD 4 3.4 6.1 4.5 5.4 3.5 
  5 3.1 4.7 4.7 6.9 3.2 
  average 3.1 4.5 3.8 6.0 2.8 
 RMSDV max 3.9 6.4 3.8 15.7 2.2 
  1 3.9 4.1 9.6 6.2 5.8 
  2 3.7 3.9 8.3 5.5 6.1 
  3 3.1 4.5 8.5 5.8 5.2 
β RMSD 4 4.7 5.4 7.3 7.1 4.4 
  5 3.9 5.6 8.8 5.4 4.6 
  average 3.9 4.7 8.5 6.0 5.2 
 RMSDV max 7.9 4.5 13.7 10.2 5.0 
  1 3.4 3.7 7.6 7.1 3.9 
  2 4.9 3.2 7.1 7.7 3.2 
  3 5.0 5.7 7.8 7.1 4.0 
γ RMSD 4 5.1 2.8 7.0 6.5 4.7 
  5 5.3 5.2 8.5 7.2 3.7 
  average 4.7 4.1 7.6 7.1 3.9 
 RMSDV max 5.3 3.8 12.3 6.3 3.3 

Tab. 7-1. Root Mean Square Deviation (RMSD) estimated during stance of the markerless joint kinematics 

values from the marker-based joint kinematics (α, β and γ) values, from the data of the subjects (#1 - #5) walking 

from the right side. Trial average values are also reported (in bold). Colored cells represent the maximum values 

of the trials. In the grayed area the maximum intra-subject variability values (from marker-based measurements) 

RMSDV values are reported. 
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[deg]  
angle  

trial Subject #6 Subject #7 Subject #8 Subject #9 Subject #10 

  1 2.5 7.6 6.9 8.1 3.3 
  2 2.4 11.2 6.2 10.5 2.9 
  3 3.5 9.2 4.1 12.4 2.7 
α RMSD 4 2.8 8.5 4.2 8.3 3.6 
  5 3.7 12.5 5.5 9.7 3.1 
  average 3.0 9.8 5.4 9.8 3.1 
 RMSDV max 3.0 12.9 7.4 13.4 3.4 
  1 4.8 10.2 8.8 8.7 6.5 
  2 4.7 11.4 9.1 10.7 5.0 
  3 4.9 14.8 8.9 12.5 4.4 
β RMSD 4 3.9 10.3 7.3 11.8 4.6 
  5 4.7 8.9 8.3 10.9 5.3 
  average 4.6 11.1 8.5 11.0 5.2 
 RMSDV max 7.1 22.0 9.1 18.8 8.9 
  1 5.6 7.9 6.2 8.7 6.1 
  2 5.7 9.9 5.9 11.9 5.8 
  3 4.5 12.2 4.7 8.1 5.0 
γ RMSD 4 4.9 12.0 4.6 12.6 4.8 
  5 6.5 8.5 3.9 9.3 4.1 
  average 5.4 10.1 5.1 10.1 5.2 
 RMSDV Max 5.4 11.7 11.0 13.5 6.7 

Tab. 7-2. Root Mean Square Deviation (RMSD) estimated during stance of the markerless joint kinematics 

values from the marker-based joint kinematics (α, β and γ) values, from the data of the subjects (#6 - #10) 

walking from the right side. Trial average values are also reported (in bold). Colored cells represent the 

maximum values of the trials. In the grayed area the maximum intra-subject variability values (from marker-

based measurements) RMSDV values are reported. 
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[deg]  
angle  

trial Subject #1 Subject #2 Subject #3 Subject #4 Subject #5 

  1 7.3 7.4 5.4 10.4 2.9 
  2 6.4 5.8 6.2 7.8 3.6 
  3 7.9 6.5 7.4 10.3 2.8 
α RMSD 4 8.6 6.2 5.0 8.4 2.5 
  5 4.0 7.7 6.2 9.6 3.2 
  average 6.8 6.7 6.0 9.3 3.0 
 RMSDV max 12.2 7.3 6.5 16.1 3.1 
  1 8.2 4.1 8.9 6.1 6.8 
  2 7.8 5.7 8.3 10.1 5.1 
  3 5.6 5.2 6.3 9.6 5.5 
β RMSD 4 9.0 4.5 6.0 8.2 4.8 
  5 8.3 3.9 7.1 7.0 5.6 
  average 7.8 4.7 7.3 8.2 5.6 
 RMSDV max 24.48 4.8 12.1 15.3 5.2 
  1 9.2 4.8 9.4 11.0 4.1 
  2 8.3 3.9 7.1 10.8 5.0 
  3 10.5 4.6 3.7 13.0 3.6 
γ RMSD 4 9.8 3.8 6.6 9.7 3.8 
  5 6.4 4.1 9.2 8.6 4.0 
  average 8.8 4.2 7.2 10.6 4.1 
 RMSDV max 19.9 4.7 9.0 12.5 3.9 

Tab. 7-3. Root Mean Square Deviation (RMSD) estimated during stance of the markerless joint kinematics 

values from the marker-based joint kinematics (α, β and γ) values, from the data of the subjects (#1 - #5) walking 

from the left side. Trial average values are also reported (in bold). Colored cells represent the maximum values 

of the trials. In the grayed area the maximum intra-subject variability values (from marker-based measurements) 

RMSDV values are reported. 
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[deg]  
angle  

trial Subject #6 Subject #7 Subject #8 Subject #9 Subject #10 

  1 3.8 11.8 7.2 9.6 4.5 
  2 2.5 13.4 8.9 10.7 4.3 
  3 2.5 12.8 7.4 10.2 5.3 
α RMSD 4 2.1 13.7 8.5 11.4 5.8 
  5 2.4 14.5 9.1 11.9 5.9 
  average 2.7 13.2 8.2 10.8 5.2 
  max 3.8 14.5 9.1 11.9 5.9 
 RMSDV max 2.9 21.1 10.5 13.2 5.5 
  1 4.5 8.7 12.9 14.7 5.8 
  2 5.8 11.5 13.3 10.1 4.9 
  3 3.1 9.4 11.8 12.6 3.9 
β RMSD 4 3.1 10.2 14.0 12.9 6.1 
  5 3.6 8.8 12.5 13.4 5.9 
  average 4.0 9.7 12.9 12.7 5.3 
 RMSDV max 5.7 13.2 16.6 18.4 8.7 
  1 4.1 9.8 11.7 9.4 5.8 
  2 3.5 8.7 12.6 10.7 5.5 
  3 4.2 10.8 12.8 9.9 6.6 
γ RMSD 4 3.7 12.0 13.7 11.2 6.4 
  5 3.8 9.3 13.2 13.8 7.5 
  average 3.9 10.1 12.8 11.0 6.4 
 RMSDV max 3.4 10.3 16.8 13.7 5.9 

Tab. 7-4. Root Mean Square Deviation (RMSD) estimated during stance of the markerless joint kinematics 

values from the marker-based joint kinematics (α, β and γ) values, from the data of the subjects (#6 - #10) 

walking from the left side. Trial average values are also reported (in bold). Colored cells represent the maximum 

values of the trials. In the grayed area the maximum intra-subject variability values (from marker-based 

measurements) RMSDV values are reported. 

In the estimation of joint kinematics of children with CP, 3D marker-based motion capture 

systems are generally used. Marker-based analysis necessitates the use of expensive 

specialized hardware and expertise. Besides, the existence of markers may cause feelings of 

uneasiness and interfere with walking. 

In this study, we proposed a low-cost, low-discomfort hybrid technique along with a 

validation in estimating the sagittal kinematics of the lower limbs of children with CP. The 

technique requires a series of steps: anthropometric measurements and calibration, video 

acquisition, segmentation, skeletonization, thresholding and edge detection, labeling the 

garments and extracting body segments and occlusion handling. The lower limb kinematics 

estimated with the Hyb and Mb techniques showed very similar results throughout the gait 

cycle (RMSD values are in general within the intra-subject variability).  
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This is, to authors’ knowledge, the first attempt to apply a markerless technique for the gait 

analysis of CP children. The absence of markers represents a valuable advantage in terms of 

patient discomfort. The performance of the proposed hybrid markerless approach is promising 

for its future use. Another important strength of this study is the fact the proposed hybrid 

technique was validated with a marker-based system. 

As a future work, segmentation and occlusion handling mechanisms of the technique will 

be improved so that CP children with assistive devices can also be analyzed. Besides, with an 

additional sagittal camera, bilateral analysis can also be performed. Finally, the processing 

time (about 60 s for each frame) needs to be reduced in order to perform clinical analysis in 

an efficient way. 



 

 75 

 

 

 

CHAPTER 8  

 

 

 

 

CONCLUSIONS 

 

 



 

 76 

Quantitative gait analysis is generally carried out by mounting retro-reflective markers on 

the skin of subjects and reconstructing the 3D position by means of stereophotogrammetric 

systems. The use of stereophotogrammetry requires the placement of markers on selected 

points of the body segments. Typically, an expert operator spends a considerable amount of 

time in attaching the markers. A technique less time-consuming and requiring less expertise 

would be preferred in clinical applications. Markerless techniques (Ml) may potentially play 

an important role in this respect. The present thesis aims at providing a contribution towards 

the development of new 2D markerless approaches which can be fruitfully used in clinical 

applications. 

The first markerless technique which uses cross-correlation has been used to analyze the 

ankle-foot kinematics of healthy subjects. The analysis has been done for two conditions: 

subjects wearing ankle socks and subjects barefoot. The results have shown that, the proposed 

markerless technique is comparable to the current marker-based techniques and may represent 

an important step towards the design of an acquisition for clinical purpose. Besides, the 

segmentation outputs showed that the algorithm chosen for segmenting the images had 

limited sensitivity to the presence of socks, suggesting that if subjects wore socks during the 

trials, results would not be affected. 

The proposed markerless technique was improved and used in a clinical context, by mainly 

on the analysis of the knee flexion/extension angle of the children with CP. In order to do so, 

additional patches were added to the technique and more complex backgrounds were handled. 

This technique is an important step towards estimating the knee flexion/extension angle with 

an easy-to-use and low-cost setup.  

The final study combined a markerless methodology with “segmental markers” i.e. high-

cut underwear and ankle socks. For this reason, the proposed technique was defined as 

“hybrid”. The lower limb joint kinematics of the children with CP is analyzed with a 

skeletonization-based markerless technique which also combines the information extracted 

from the garments. Results show that the proposed technique produced comparable results 

with the marker-based system and can be fruitfully used in the lower limb kinematics 

estimation of children with CP. 

The main contribution of this thesis is that it proposes three new markerless techniques, 

applied to ankle-foot complex, knee and lower limbs, respectively. The strength of each of the 

proposed techniques is validated with gold standard data; i.e. the data acquired by the marker-

based system working synchronously with the markerless system. The effectiveness of the 
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proposed techniques for biomechanical/clinical applications is better understood considering 

the fact that most of the markerless studies are not validated.  

As a future work, the processing time of the segmentation algorithm in the current version 

implemented in MATLAB® (MathWorks, Natick, MA, USA) needs to be reduced to be 

fruitfully used in clinical applications. Besides, by adding an extra sagittal camera to the 

setups, acquisitions can be done for both directions. Finally, the proposed hybrid technique 

should be developed so that the CP children with assistive devices can also be analyzed. 
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