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RIASSUNTO 

La tesi è basata sull’analisi dei meccanismi responsabili della patogenesi e resistenza al 

trattamento con inibitori tirosino-chinasici (TKI) nei pazienti con leucemia acuta linfoblastica 

(LAL) Philadelfia positiva (Ph+). Tale forma di leucemia rappresenta il più frequente e 

prognosticamente sfavorevole sottotipo di LAL dell’adulto. In particolare i suoi obbiettivi sono 

stati quelli di analizzare, con una metodica ad alta risoluzione (SNP array), la frequenza e 

l’estensione delle delezioni nel locus 9p21 in 112 pazienti adulti con LAL Ph+ e di determinare i 

principali meccanismi di inattivazione, al fine di definire nuovi marcatori diagnostici e 

prognostici ed identificare nuovi meccanismi coinvolti nella progressione leucemica. La regione 

cromosomica 9p21 è un sito frequentemente alterato in differenti tumori umani, sia solidi che 

ematologici. Questo locus codifica per importanti proteine coinvolte nella regolazione del ciclo 

cellulare e nell’apoptosi (ARF, CDKN2A e di CDKN2B), inoltre viene trascritto un RNA non 

codificante, ANRIL. L’analisi dei dati di SNP ha dimostrato alterazioni genomiche alla diagnosi 

in CDKN2A/ARF e in CDKN2B rispettivamente nel 29 e nel 25% dei pazienti alla diagnosi . 

Mentre ANRIL era deleto nel 29% dei casi. Nel 72% dei casi le delezioni erano monoalleliche. In 

particolare, nel 43% dei casi la delezione era limitata ai geni CDKN2A e CDKN2B, mentre nel 

57% si estendeva anche ai geni vicini o all’intero cromosoma 9. Nel 28%, invece, la delezione 

era biallelica e nella maggior parte di questi casi era limitata ai soli geni CDKN2A e CDKN2B. 

Al fine di valutare se le delezioni di CDKN2A/B potessero essere coinvolte nella progressione 

leucemica, abbiamo analizzato le alterazioni genetiche nel locus 9p21 (30 pazienti) al momento 

della ricaduta. Solo in CDKN2A/ARF abbiamo riscontrato un incremento quasi significativo (p = 

0.06) nella percentuale di delezione (47%) rispetto a quella della diagnosi. Sia alla diagnosi che 

al relapse le delezioni erano in eterozigosi nella maggior parte dei casi. Per verificare se nella 

nostra casistica anche le mutazioni puntiformi potessero inattivare il locus 9p21 abbiamo 

analizzato la sequenza di tutti gli esoni di ARF, CDKN2A e di CDKN2B. Mutazioni sono state 

raramente riscontrate, e solo una, ha comportato una sostituzione amminoacidica. In conclusione 

si può affermare che l’inattivazione degli oncosoppressori CDKN2A e ARF è un evento frequente 

nelle LAL Ph+, che il principale meccanismo di inattivazione è dato dalle delezioni genomiche, 

mentre le mutazioni che comportano la sostituzione amminoacidica sono rare, e che le delezioni 

sono frequentemente acquisite al momento della progressione leucemica e risultano essere un 

sfavorevole marcatore prognostico. 
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ABSTRACT 

This 9p21 locus, encode for important proteins involved in cell cycle regulation and apoptosis 

containing the p16/CDKN2A (cyclin-dependent kinase inhibitor 2a) tumor suppressor gene and 

two other related genes, p14/ARF and p15/CDKN2B. This locus, is a major target of inactivation 

in the pathogenesis of a number of human tumors, both solid and haematologic, and is a frequent 

site of loss or deletion also in acute lymphoblastic leukemia (ALL) ranging from 18% to 45% 1. 

In order to explore, at high resolution, the frequency and size of alterations affecting this locus in 

adult BCR-ABL1-positive ALL and to investigate their prognostic value, 112 patients (101 de 

novo and 11 relapse cases) were analyzed by genome-wide single nucleotide polymorphisms 

arrays and gene candidate deep exon sequencing. Paired diagnosis-relapse samples were further 

available and analyzed for 19 (19%) cases.  

CDKN2A/ARF and CDKN2B genomic alterations were identified in 29% and 25% of newly 

diagnosed patients, respectively. Deletions were monoallelic in 72% of cases and in 43% the 

minimal overlapping region of the lost area spanned only the CDKN2A/2B gene locus. The 

analysis at the time of relapse showed an almost significant increase in the detection rate of 

CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06). Point mutations within the 9p21 

locus were found at very low level with only a non-synonymous substition in the exon 2 of 

CDKN2A. Finally, correlation with clinical outcome showed that deletions of CDKN2A/B are 

significantly associated with poor outcome in terms of overall survival (p = 0.0206), disease 

free-survival (p = 0.0010) and cumulative incidence of relapse (p = 0.0014).  

The inactivation of 9p21 locus by genomic deletions is a frequent event in BCR-ABL1-positive 

ALL. Deletions are frequently acquired at the leukemia progression and work as a poor 

prognostic marker.  
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1.1 ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) PHILADELPHIA  

CHROMOSOME POSITIVE (Ph+) 

The Philadelphia chromosome (Ph) is the most common cytogenetic abnormality associated with 

adult acute lymphoblastic leukemia (ALL). Age is an important determinant of prognosis and 

outcome for patients with acute lymphoblastic leukemia. Long-term survival rates approach 80% 

in children aged <5 years but decrease to approximately 50% to 60% in adolescents and young 

adults, to approximately 30% in adults ages 45 to 54 years, and rarely exceed 15% in older 

adults. Prognostic changes that occur with increasing age may be attributable in part to age-

dependent increases in unfavorable cytogenetic abnormalities. Although Ph+ ALL occurs in only 

approximately 5% of patients with ALL aged <20 years, the incidence escalates to 33% in 

patients aged 40 years and is 49% in patients aged >40 years; the incidence decreases to 35% in 

patients aged >60 years 2. 

1.2 MOLECULAR BASIS OF THE PHILADELPHIA CHROMOSOME 

TRANSLOCATION 

The Philadelphia chromosome is observed in 95% of adult chronic myeloid leukaemia (CML), 

15–20% of adult ALL, 3–5% of childhood ALL and very rarely in acute myeloid leukaemia 

(AML) 3,4. It was the first specific genetic lesion identified in a human cancer and it results from 

a reciprocal translocation (t) between chromosomes 9 and 22 [t(9;22)]. This translocation creates 

a fusion of human homologue of the Abelson Murine Leukaemia virus ABL on 9q34 with 

breakpoint cluster region BCR on 22q11. Bcr-Abl fusion proteins are constitutively active 

tyrosine kinases that can alter multiple signaling pathways, contributing to tumor growth and 

proliferation. The breakpoint may occur within 1 of 4 sites on the BCR gene to produce 3 

proteins of different sizes: p190, p210, and p230 2. Immunophenotyping is pre-B (CD19+, 

CD10+), often associated to the expression of myeloid markers (CD13+, CD33+).  

1.2.1 Structure and functions of the Bcr and Abl proteins 

The BCR and ABL genes are expressed ubiquitously.  

Bcr is a 160-kd cytoplasmic protein with several functional domains. The N-terminal 426 amino 

acids of Bcr, encoded by the first exon, are retained in all Bcr-Abl fusion protein isoforms. This 

region contains a serine-threonine kinase domain, whose only known substrates are Bcr and Bap-

1 (a member of the 14-3-3 family of proteins), and two serine/threonine–rich regions that bind 
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Src homology (SH)2 domains. The proximal SH2-binding domain is essential for transformation 

of rat fibroblasts by Bcr-Abl 5. The two key motifs of the first BCR exon are tyrosine 177 and the 

coiled-coil domain contained in amino acids 1 to 63. Phosphorylated tyrosine 177 forms a 

binding site for Grb-2 (an adapter molecule that links BCR to the Ras pathway) and is required 

for the induction of myeloid leukemia 6. The coiled-coil is crucial for dimerization of Bcr-Abl 7, 

which in turn is required for activation of Abl kinase activity and oncogenicity of Bcr-Abl. BCR 

regions of exon 1 are not essential to oncogenicity but influence the specific phenotype of the 

leukaemia (Fig. 1.1).  

The ABL gene, the human homolog of v-abl (the oncogene of the Abelson murine leukemia 

virus), codes for a 145-kd nonreceptor tyrosine kinase. Two isoforms exist that differ in the first 

exon (1a and 1b). Only Abl type 1b protein contains a myristoylation site and, therefore, can be 

anchored to the plasma membrane. Three domains located toward the N-terminus of Abl are 

named after their homology to the respective domains in Src, the prototype non-receptor tyrosine 

kinase. The SH1 domain carries the tyrosine kinase function, the SH2 domain binds 

phosphotyrosine-containing consensus sites, and the SH3 domain binds to proline-rich consensus 

sequences in proteins like Crk 8 and Crkl 9. Abl differs from Src in having a long (~90-kd) C-

terminal region that contains actin-and DNA-binding domains 7, three nuclear localization 

signals, and one nuclear export signal. Another unique feature of Abl is the N-terminal ‘‘Cap’’ 

region that is critical to the regulation of kinase activity. Abl is expressed predominantly in the 

nucleus10 but shuttles between nucleus and cytoplasm. The functions of the Abl protein are 

complex and include cell cycle inhibition, cellular responses to genotoxic stress 11, and signal 

transduction from growth factor receptors and from integrins 12 (Fig. 1.1). 

 

Fig. 1.1 Schematic representation of the Abl (a) and Bcr (b) proteins. There are several important domains that 

make up ABL and BCR proteins 13.  
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1.2.2 BCR-ABL fusion gene 

1.2.2.1 Breakpoints in ABL 

Breakpoints within the ABL gene can occur anywhere within a 50 segment that extends for over 

300 kilobases (kb) 14. Typically, breakpoints are within intronic sequences, most frequently 

between the two alternative first exons of ABL. Thus, BCR-ABL fusion genes may contain both 

exons 1b and 1a, exon 1a alone, or neither of the alternative first exons. BCR-ABL mRNA lacks 

exon 1, regardless of the structure of the fusion gene, with the transcript consisting of BCR exons 

fused directly to ABL exon a2. 

1.2.2.2 Breakpoints in BCR 

The breakpoints within the BCR gene on chromosome 22 are found within three defined regions. 

In 95% of patients with CML and approximately one third of patients with ALL, the BCR gene is 

truncated within a 5.8-kb region known as the major breakpoint cluster region. This region 

contains five exons, originally named b1 to b5, but now referred to as e12 to e16, according to 

their true positions in the gene. Most breakpoints are within introns immediately downstream of 

exon 13 (b2) or exon 14 (b3). Because processing of BCR-ABL mRNA results in the joining of 

BCR exons to ABL exon a2, hybrid transcripts are produced that have an e13a2 (b2a2) or an 

e14a2 (b3a2) junction. In both cases, the mRNA consists of an 8.5-kb sequence that encodes a 

210-kd fusion protein, p210 Bcr-Abl (Fig. 2). In two-thirds of patients with Ph+ ALL and in rare 

cases of CML and AML, the breakpoint in BCR occurs in a region upstream of the major 

breakpoint cluster region known as the minor breakpoint cluster region. This region consists of 

the 54.4-kb intron between the two alternative second exons of the BCR gene, e20 and e2. BCR-

ABL fusion genes that have breakpoints within the minor breakpoint cluster region contain both 

BCR alternative first exons (e1 and e10) together with the alternative second exon (e20). The 

hybrid mRNA consists of sequences that are approximately 7 kb in length in which exon e1 from 

BCR is joined to exon a2 of ABL. The translated product is a 190-kd fusion protein, p190 Bcr-

Abl (also referred to as p185 Bcr-Abl). Interestingly, transcripts with an e1a2 junction are 

detectable at very low levels in patients with a major breakpoint cluster region rearrangement. 

The third defined breakpoint cluster region within the BCR gene was named ‘‘micro’’ breakpoint 

cluster region 15. In this case, the breaks occur within a 30 segment of the BCR gene between 

exons e19 and e20 (known as c3 and c4 in the original nomenclature) (Fig. 1.2). Transcription of 

the hybrid gene yields an e19a2 BCR-ABL fusion transcript that encodes a 230-k protein, p230 

BCR-ABL. 
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The p190 BCR-ABL fusion gene occurs in about 90% of children with Ph+ ALL and between 

50% and 80% of adults with Ph+ ALL. The p210 BCR-ABL gene constitutes the rest of the Ph+ 

ALL population. The p230 BCR-ABL mutation is associated with Ph+ chronic neutrophilic 

leukemia 2. 

Fig. 1.2 Three BCR-ABL variants and association of leukemia types. (A) Locations of the breakpoints in the 

ABL and BCR genes and (B) structure of the chimeric BCR-ABL mRNA transcripts derived from the various 

breaks. (C) Functional domains of p210 BCR-ABL. 
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1.2.3 Mechanisms of BCR-ABL-mediated leukaemogenesis  

Tyrosine kinase enzymatic activity is central to cellular signaling and growth, and constitutively 

elevated kinase activity has been associated with transformation in several systems. The Abl 

protein is a non-receptor tyrosine kinase whose enzymatic activity is under close physiologic 

control 16 . In contrast, Bcr-Abl proteins are constitutively active tyrosine kinases. The degree of 

transforming activity of Bcr-Abl correlates with the degree of tyrosine kinase activity. p190 Bcr-

Abl, which has higher tyrosine kinase activity, is therefore associated with the development of 

the more aggressive acute leukemia phenotype, while p210 Bcr-Abl plays a role in the more 

indolent chronic leukemia phenotype. 

1.2.3.1 Altered cellular adhesion 

In normal hematopoiesis, progenitor cells adhere to the stromal cells of the bone marrow and 

their associated extracellular matrix. The latter contains proteins such as fibronectin that function 

as adhesive ligands for receptors expressed on the surface of hematopoietic progenitor cells. 

Current thinking holds that the process of adhesion is essential for the regulation of 

hematopoiesis, providing a means of anchoring progenitors within the vicinity of cytokine-

secreting cells 17, exposing them to specific signals that determine their fate. Ph+ progenitors 

exhibit reduced adhesion to stromal cells and the extracellular matrix 18, which ‘‘liberates’’ them 

from the regulatory signals that are supplied to normal, adherent hematopoietic progenitors. It 

also may explain why their homing to the bone marrow is disturbed, leading to the appearance of 

immature cells in the peripheral blood. There is evidence that the function of β integrins on the 

surface of CML progenitor cells is perturbed, the net effect being reduced adhesion and 

increased proliferation 17. In addition, migration, in response to certain chemokines such as MIP-

1a, is abnormally high 19. 

1.2.3.2 Activation of mitogenic signaling pathways  

Bcr-Abl is known to activate several signaling pathways with mitogenic potential 20. It is 

important to remember that in many cases, the available data comes from experiments in Bcr-

Abl–positive cell lines, and activation of some of these pathways in primary CML cells has yet 

to be verified. 

Ras and the mitogen-activated protein kinase pathways 

Bcr-Abl binds directly to proteins that activate Ras 21. Autophosphorylation of tyrosine 177 

generates a binding site for the adapter molecule Grb-2 5. Grb- 2 associates with the Sos protein, 
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which stimulates the conversion of the inactive GDP-bound form of Ras to the active GTP-

bound state 21. Ras also may be activated by two other adapter molecules, Shc and CrkL, which 

are substrates of Bcr-Abl 22. Although CrkL appears to be necessary for the transformation of 

fibroblasts by Bcr-Abl, direct binding of Crkl to Bcr-Ablis not required for the transformation of 

myeloid cells. Activated Ras binds to the serinethreonine kinase Raf-1, recruiting it to the plasma 

membrane where it is activated by tyrosine phosphorylation and initiates a signaling cascade by 

way of the mitogen-activated protein kinase (MAPK) pathway. Grb-2 also recruits the 

scaffolding adapter Gab2, which then is phosphorylated by Bcr-Abl, resulting in activation of 

phosphatidylinositol 3 (PI-3) kinase/Akt and Ras/Erk 23. Bcr-Abl activates different types of 

mitogen-activated protein kinases, including extracellular signal–related kinases (ERK)-1/2 and 

JNK or stress-activated protein kinase. Ultimately, these pathways regulate gene transcription. 

Janus kinase–signal transducer and activator of transcription pathway.  

Phosphorylation of members of the signal transducer and activator of transcription (STAT) 

family of transcription factors has been reported in Bcr-Abl–positive cell lines24 and in primary 

CML cells. Physiologically, STATs are phosphorylated by Janus kinases (Jak) that are 

downstream of growth factor receptors. In contrast, phosphorylation of STAT5 in Bcr-Abl–

expressing myeloid cells appears to be mediated by the Src family kinase, Hck, which binds the 

SH2 and SH3 domains of Bcr-Abl25. There is evidence that activation of STAT5 by p210 Bcr-

Abl contributes to malignant transformation of K562 cells26 and inhibits apoptosis by up-

regulating the transcription of Bcl-xL27. STAT5, however, is not required for leukemia induction 

by Bcr-Abl in mice, casting doubt on its relevance in a more physiologic context. Interestingly, 

p190 Bcr-Abl differs from p210 Bcr-Abl in that it also is able to activate STAT6. It remains to 

be seen whether the predominantly lymphoblastic phenotype associated with p190 Bcr-Abl is 

related to this property of the shorter form of the oncoprotein. 

Phosphatidylinositol 3 kinase pathway.  

Proliferation of BCR-ABL–positive cell lines and primary cells is dependent on PI-3 kinase. Bcr-

Abl apparently activates this pathway by forming a multimeric complex with PI-3 kinase, 

p120Cbl, and the adaptor molecules Crk and CrkL. In BCR-ABL–expressing cells, activated PI-3 

kinase stimulates the serine-threonine kinase Akt 28, which in turn phosphorylates the forkhead 

transcription factor, FKHRL1. The net result of activating this pathway appears to be the 

proteasome-mediated degradation of the key cell cycle inhibitor p27Kip1, although the precise 

intermediates are unknown. Activated Akt may function in an antiapoptotic capacity. A key 

substrate of Akt is the proapoptotic protein or ‘‘death agonist’’ Bad. Bad promotes cell death by 
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binding to and thereby inactivating the antiapoptotic Bcl-2 and Bcl-xL. Thus, phosphorylation of 

Bad by Akt may prevent it from binding to these proteins, resulting in reduced apoptosis. Indeed, 

increased Bad phosphorylation was seen in BCR-ABL–positive cells; however, even with Bad 

completely dephosphorylated, a fraction of cells survived, indicating the existence of Bad-

independent survival pathways. 

Myc pathway.  

Myc is classed as a proto-oncogene because it is overexpressed in many human malignancies. As 

a transcription factor and immediate early response gene, Myc converts mitogenic signals to 

alterations of gene expression. Not surprisingly, Myc targets include genes related to cell cycle 

and apoptosis. Within Bcr-Abl, the SH2 domain 29 and the C-terminus are required for full 

activation of Myc. It recently has been shown that Jak2 is involved in Myc induction by Bcr-Abl, 

apparently by way of induction of Myc mRNA and by stabilization of the protein.  

1.2.3.3 Inhibition of apoptosis 

Apoptosis caused by growth factor withdrawal is eliminated when factor dependent cell lines are 

transfected with exogenous BCR-ABL. The mechanisms by which Bcr-Abl inhibits apoptosis in 

cell lines are not well understood. The release of cytochrome C from mitochondria, a 

prerequisite for caspase-3 activation, apparently is blocked in BCR-ABL–expressing cell lines. 

Members of the Bcl-2 family of proteins may be involved in mediating the antiapoptotic effect of 

Bcr-Abl. Up-regulation of Bcl-2 by Bcr-Abl has been demonstrated in two different cellular 

contexts: one dependent on the Ras pathway and the other on the PI-3 kinase pathway. Bcl-2 

targets Raf-1 to mitochondria where it inactivates the proapoptotic protein Bad by 

phosphorylating it on serine residues 30. Down-regulation of interferon consensus sequence 

binding protein (ICSBP) by Bcr-Abl also has been implicated as an important antiapoptotic 

event; conversely, ICSBP antagonizes Bcr-Abl by decreasing Bcl-2 expression. Another 

regulator of apoptosis targeted by Bcr-Abl is Bcl-xL, the expression of which is dependent of 

STAT5 activation. Surprisingly, a recent report has demonstrated that Bcr-Abl can actively 

induce apoptosis when trapped in the nucleus 31. Treatment of human and murine Bcr-Abl–

positive cell lines with imatinib stimulated entry of the oncoprotein into the nucleus.  

1.2.3.4 Proteasomal degradation 

It recently was reported that Bcr-Abl tyrosine kinase activity induced the proteasome-mediated 

degradation of the ABL-interactor proteins Abi-1 and Abi-2 30. Bcr-Abl was found to cause 

down-regulation of the DNA repair protein DNA-PKcs in cell lines. Loss of DNA-PKcs activity 
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was correlated with impaired DNA repair and may facilitate the acquisition of additional genetic 

lesions that lead to disease progression. Another important degradation target is the cell p27, a 

crucial inhibitor of progression from the G1 to the S phase of the cell cycle. Furthermore, Bcr-

Abl can stabilize the expression of Mdm2, a protein that targets the tumor suppressor p53 for 

ubiquitination, which also would promote genomic instability 32. 
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1.3 DISCOVERY OF NOVEL ALTERATIONS IN ALL PH+ 

The recent coming of new “genome-wide” techniques, like gene expression profiling (GEP) and 

analysis of single nucleotide polymorphism (SNP) arrays has enabled to identify multiple novel 

genetic alterations targeting key cellular pathways, including lymphoid differentiation, cell cycle, 

tumor suppression, apoptosis and drug responsiveness. By GEP analysis, several down/up-

expressed genes have been identified. By genome-wide SNP array analysis of leukaemia blast 

cells of paediatric and adult CML blastic phases and Ph+ ALL patients 33, the presence of three 

frequent genetic deletions affecting IKZF1 (IKAROS), PAX5 deletions (Fig. 1.3) and the 

CDKN2A/B locus was identified.  

 

 

 

 

 

Fig. 1.3 Schematic representation of PAX5 deletion in a patient with Ph+ ALL as detected by SNP array 

analysis. The interrupted blue line represents the diploid genome (2) in the region containing MELK, PAX5 and 

ZCCHC7 genes. Deletion is represented by a stretch of SNPs, below the level of the diploid line (1). Copy number 

variations (CNVs) are represented by grey boxes 34. 
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IKZF1 and PAX5 encode transcription factors required for normal lymphoid development. 

CDKN2A/B locus encodes three tumour suppressor genes that are widely inactivated in many 

human cancers. At diagnosis, 84% of patients had already sustained IKFZ1 deletions and more 

than 50% of patients exhibited PAX5 loss; mono- or biallelic losses, encompassing the entire 

CDKN2A (CDKN2A and ARF) and CDKN2B gene cluster were also recognized in half of the 

patients (Tab. 1.1). Several other recurring deletions were identified in BCR-ABL1 ALL, albeit at 

a lower frequency, including C20orf94, RB1, MEF2C and EBF1.  

 

Tab. 1.1 Frequency of deletions in Ph+ ALL (Modified from C. G. Mullighan, Gene and Development 2008) 35. 

 

 
a No significant differences in gene deletion frequencies were observed between 21 paediatric and 22 adult cases 

subjected to analysis. Study of the CDKN2A/B gene cluster in 41 of these cases by quantitative PCR using primers 

directed to each of the INK4A, ARF and INK4B exons indicated an overall deletion frequency of 64%. 

 

IKFZ1 deletions, limited to the gene in the majority of the cases, were mostly monoallelic and 

were responsible for the expression of a dominant-negative isoform 36. In T-cell ALL, the 

frequencies of IKFZ1 and PAX5 deletions were much lower (Tab. 1.1), consistent with findings 

that these two genes play key roles in regulating B-cell lineage commitment and differentiation 
37. Although differentiation arrest is a distinctive feature of ALL, the manner by which IKFZ1 

and PAX5 inactivation collaborate with BCR-ABL to induce lymphoblastic leukemia is not yet 

understood. CDKN2A/B deletions occur in all lymphoid malignancies (Tab. 1.1), pointing to 

their general role in tumor suppression in both T- and B-cell ALL, as well as in many other 

tumor types. The fact that deletion of PAX5 and CDKN2A/B generally occurred together with 

IKFZ1 loss implies that disruption of each of these genes contributes independently to Ph+ B-

cell ALL 35. GEP is providing a new diagnostic marker and could identify some therapeutic 

targets, having a major impact on the way we diagnose and treat Ph+ leukaemia patients. 

Although considerable work remains to be done before these predictions are realized, our 

capacity to obtain these type of data continues to mature at a rapid speed. Thus, the fruits of GEP 

should soon help us to accurately identify specific leukaemia subtypes, abnormally expressed or 
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spliced genes and to select targeted therapies. For instance, recent GEP studies have identified a 

new ALL subtype with a gene-expression pattern resembling that of BCR-ABL1-positive ALL. 

This newly recognized group includes 15–20% of all precursor B-ALL cases and is associated 

with an unfavourable outcome. 
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1.4 9p21 LOCUS (INK4A/ ARF/ INK4B/ ANRIL) 

The chromosome 9p21 segment is a 40-kb region encoding two members of the INK4 family of 

Cyclin-Dependent Kinase inhibitors, CDKN2B (p15INK4B, ENSG00000147883) and CDKN2A 

(p16INK4A, ENSG00000147889), and one other related gene ARF (p14ARF), transcribed in an 

Alternative Reading Frame compared to CDKN2A; all of them encode critical factors for the 

regulation of cell cycle and for the influence on key physiological processes such as replicative 

senescence, apoptosis, and stem-cell self-renewal. 9p21 also contains a newly annotated non-

coding RNA, termed ANRIL (CDKN2BAS, ENSG00000240498), which spans 126.3 kb and 

overlaps at its 5’ end with CDKN2B, and it is transcribed from the opposite strand to CDKN2A/B 

(Fig. 1.4).  

 

 

 

Fig. 1.4 9p21 Locus NC_000009.11 Homo sapiens chromosome 9, GRCh37.p2 primary reference assembly 

MapViewer representation. Green bars show the length and the gene transcription verse. Blu bars show exons and 

red bars represent gene translation. Modified from NCBI MapViewer 

http://www.ncbi.nlm.nih.gov/nuccore/224589821 

 

CDKN2B and CDKN2A arose from a gene duplication event and are consequently very similar 

(77% amino acid sequence identity in humans). CDKN2A and ARF have different promoter and 

different first exons (1α and 1β, respectively) (Fig. 1.5), giving rise to products in alternate 

reading frames with no homology at the protein level and with distinct functions in the cells.  



 

 

Fig. 1.5 Organization of the CDKN2A

p14ARF are in black. The alternative first exons are transcribed from different promoters (arrows). *Denotes the 

p16INK4A and p14ARF termination codons. 

(p16) gene. Intronic sizes derived from http://snpper.chip.org are indicated.

Biochem Cell Biol, 2006 38. 

 

Exons 1α, 2, and 3 encode p16

Exons 1β, 2, and 3 encode p14

Therefore, the 9p21 locus has a un

frames (ORFs) that initiate in different first exons and continue in alternative reading frames in a 

common second exon. This unusual utilization of overlapping exonic sequences in mammalian 

cells enables a single gene to encode two completely unrelated protein products

the gene CDKN2A, in a more centromeric position, two exons encode for another tumor 

suppressor gene: CDKN2B (p15

Therefore on chromosome 9p21.3 there are

and ‘4’ (Appendix A), each conta

http://www.ncbi.nlm.nih.gov/nuccore/NM_000077.4
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amino acids; isoform ‘1’ encodes p16

that is structurally unrelated to p16 but acts in cell cycle G1 control by stabilizing the tumor 

suppressor protein p53. 

The chromosome band 9p21 shows a 

where a multispecies sequence alignment shows 76% sequence identity and 94% sequence 

CDKN2A/ARF locus. The coding regions of p16INK4A are shown in 

alternative first exons are transcribed from different promoters (arrows). *Denotes the 

termination codons. Exon 1β of the p14ARF gene  is 19 kb upstream of exons 1

Intronic sizes derived from http://snpper.chip.org are indicated. Modified from Stuart J.Gallagher, 

, 2, and 3 encode p16INK4A, which induces G1 cell cycle arrest via the Rb pathway. 

, 2, and 3 encode p14ARF, which inhibits p53 degradation via binding to 

has a unique gene structure that generates two distinct open reading 

frames (ORFs) that initiate in different first exons and continue in alternative reading frames in a 

common second exon. This unusual utilization of overlapping exonic sequences in mammalian 
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p15INK4B). 
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ov/gene/1029), respectively. They encode proteins of 156 and 173 
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that is structurally unrelated to p16 but acts in cell cycle G1 control by stabilizing the tumor 

The chromosome band 9p21 shows a significant evolutionary conservation only in 

ultispecies sequence alignment shows 76% sequence identity and 94% sequence 
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similarity across six mammalian species

overlaps, the drop in conservation beyond the coding region of isoform 4 suggests that this 

isoform is more responsible for the observed conservation

The CDKN2A/ARF locus encodes proteins that

RB are at the heart of the two main tumour

to potentially oncogenic stimuli. Each pathway consists of several upstream regulators and 

downstream effectors. The pathways interact at several points, and 

(Fig. 1.6). p53 is a transcription factor that regulates apoptosis and cellular senescence by 

inducing the transcription of specific genes; the RB pathway directly regulates the cell cyc

hence cellular senescence, but is also important in apoptosis, probably by interacting with the 

p53 pathway. 

 

 

Fig. 1.6 The CDKN2A/ARF/CDKN2B

INK4 family of cyclin.dependent kina

p53 stabilization. Modified from Judith Campisi

  

y across six mammalian species. While exon 2 of both alternative reading frames 

overlaps, the drop in conservation beyond the coding region of isoform 4 suggests that this 

isoform is more responsible for the observed conservation 41. 

locus encodes proteins that function upstream of both RB and p53. p53 and 

RB are at the heart of the two main tumour-suppressor pathways that control cellular responses 

to potentially oncogenic stimuli. Each pathway consists of several upstream regulators and 

he pathways interact at several points, and cross

). p53 is a transcription factor that regulates apoptosis and cellular senescence by 

inducing the transcription of specific genes; the RB pathway directly regulates the cell cyc

hence cellular senescence, but is also important in apoptosis, probably by interacting with the 

 

CDKN2B locus and the p53 and RB tumour-suppressor pathways

kinase inhibitors bind to and inactivate CDK4/6. ARF inhibits MDM2, resulting in 

Modified from Judith Campisi, Nature Reviews Cancer, 2003 42. 
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In the p53 pathway, signals such as DNA damage induce ARF. The tumor suppressor activity of 

ARF is largely ascribed to its ability to regulate p53 in response to aberrant growth or oncogenic 

stresses such as c-MYC activation. ARF increases p53 levels by sequestering Mdm2, which 

facilitates the degradation and inactivation of p53. One mechanism that has been proposed to 

explain how Mdm2 regulates p53 is that it acts as an E3 ubiquitin ligase to target p53 for 

proteasomal degradation. Although strong biochemical and genetic evidence link ARF and p53 

in tumor suppression, several p53-independent functions of ARF have also been reported. 

Moreover, ARF has been reported to interact with multiple proteins other than Mdm2, including 

E2F-1, MDMX, HIF-1α, topoisomerase I, MYC, and nucleophosmin (NPM). p53 has both 

transactivation and transrepression activity, and so controls the transcription of numerous genes. 

Among the p53 target genes are WAF1, an inhibitor of cyclin-dependent protein kinases (CDKs) 

that, among other activities, causes cell-cycle arrest, and BAX, which promotes apoptotic cell 

death. 

CDKN2A/B inhibit the complex between cyclin-dependent kinases 4/6 (CDK4/6) and cyclin D 

(the binding of the INK4 proteins INK4A/INK4B to CDK4/6 induces an allosteric change that 

abrogates the binding of these kinases to D-type cyclins) that phosphorylate, and therefore 

inactivate, RB during the mid-late G1 phase of the cell cycle (RB phosphorylation interrups its 

interactions with both histone deacetylase HDAC and E2F, enabling E2F to promote S phase 

entry). RB also controls the expression of numerous genes, although it does so primarily by 

recruiting transcription factors and chromatin remodelling proteins. One downstream 

consequence of RB activity is the inhibition of E2F activity, which is important for the 

transcription of several genes that are required for progression through the G1 and S phases of 

the cell cycle. RB also regulates p53 activity through a trimeric p53–Mdm2–RB complex 42,43. 

The ARF/CDKN2A/B proteins are established tumour suppressors altered in a range of human 

cancers including familial cutaneous malignant melanoma, glioma (60%), head and neck cancers 

(50%) and bladder cancers (45%). High frequencies of 9p21.3 deletions have been documented 

in acute lymphoblastic leukemia ranging from 18% to 45% 1. Moreover, the chromosome 9p21.3 

region adjacent to the loci encoding CDKN2A and CDKN2B is an important susceptibility locus 

for several diseases with a complex genetic background. Recent genome-wide association 

(GWA) studies have shown that single nucleotide polymorphisms (SNPs) in this region are 

associated with coronary artery disease (CAD), ischaemic stroke, aortic aneurysm, type II 

diabetes, glioma, and malignant melanoma. Candidate gene approaches have also reported SNPs 

in this region to be associated with breast, ovarian, and pancreatic carcinoma, melanoma, and 
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acute lymphoblastic leukaemia 44. Most of the risk variants in the chromosome 9p21 region 

identified by GWA studies are in non-coding regions, suggesting that their effects are likely to 

be mediated by influences on gene expression. Sequence variation can influence expression by 

cis or trans mechanisms 45. 

Finally, the human CDKN2A/ARF locus encodes one additional transcript, isoform ‘3’ (p12), and 

perhaps others as well. The p12 transcript represents a p16INK4A-isoform that shares the p16INK4A 

promoter, 5’ UTR, ATG and exon 1α, but then uses an alternative splice donor within the first 

intron of p16INK4A to splice to exon 2. The extra sequence contains a stop codon, and therefore 

the transcript produces a 12 kDa protein that shares the only first ankyrin repeat of p16INK4A. In 

non-diseased tissue, this transcript is only expressed in pancreas but not other human tissues. The 

significance and function of this transcript is unknown, but based on crystal structure studies of 

INK4 proteins, p12 would not be predicted to bind cdk4 or cdk6. Even if the p12 transcript does 

not encode a direct tumor suppressor protein, however, its intimate relationship with the 

INK4A/ARF locus makes it likely that its transcription influences the expression of p16INK4A 

and/or p14ARF 46. 

 

1.4.1 ARF/p14ARF  

1.4.1.1 Gene structure 

The ARF tumor suppressor transcript was first identified in humans in 1995 (p14ARF) 47,48, and its 

protein product confirmed in mice (p19ARF) that same year 49. Its gene locus is on the short arm 

of chromosome 9 in humans, and on a corresponding location on chromosome 4 in mice. ARF is 

an alternate reading frame (ARF) product of the CDKN2A locus. It spans approximately 26 kb of 

genomic DNA and comprise three exons 1β, 2, and 3 (Fig. 1.7). The p14ARF open reading frame 

is derived from a distinct first exon (exon 1β), originating approximately 19 kb centromeric to 

the first exon of p16INK4A (exon 1α) and 23 kb centromeric to exon 2. Exon 1β, under the control 

of its own promoter, is spliced to the second and third exons that are separated by 3 kb of 

intronic sequence and are shared with p16INK4A. The open reading frame of the 1.1 kb ARF 

transcript is terminated within exon 2, with exon 3 comprising an untranslated 3‘ exon. 

 

 



 

 

Fig. 1.7 ARF NM_058195.3 MapViewer representation.

verse. Blu bars show exons and red bars represent gene translation. Modified from NCBI MapView

http://www.ncbi.nlm.nih.gov/gene/1029#

 

 

1.4.1.2 ARF is a peculiar protein with unusual primary structure 

The human protein comprises 173 amino acids with a molecular weight of 13,902 Da, whereas 

the mouse homologue of 169 amino acids has a molecular weight of 19,238 Da. Both proteins 

share only limited sequence homology (50%) that could explain some of their functional 

differences but both are capable of inducing cell cycle arrest at the G2/M as well

cycle boundaries. The ARF proteins show significant sequence similarity within their amino

terminal 14 amino acids (11/14 identity), and this region retains many of the known ARF 

functions, including nucleolar localization, Mdm2 binding an
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both composed of more than 20% arginine residues conferring them highly basic and 
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and the protein probably needs to form complexes with other molecules, both to be folded and 

for its charge to be neutralized at physiological pH. This probably explains the increasing 
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residues (Met45 and Met48 respectively). Translational initiation from these methionine residues 

produces both in mouse and human a short form of the protein that, when overexpressed, 

localizes to mitochondria (smARF). Nevertheless, full

nucleoli thanks to nucleolar localization signals (NoLS). 

NM_058195.3 MapViewer representation. Green bar shows the length and the gene transcription 

verse. Blu bars show exons and red bars represent gene translation. Modified from NCBI MapView

http://www.ncbi.nlm.nih.gov/gene/1029#. 

ARF is a peculiar protein with unusual primary structure  

The human protein comprises 173 amino acids with a molecular weight of 13,902 Da, whereas 

mouse homologue of 169 amino acids has a molecular weight of 19,238 Da. Both proteins 

share only limited sequence homology (50%) that could explain some of their functional 

differences but both are capable of inducing cell cycle arrest at the G2/M as well

cycle boundaries. The ARF proteins show significant sequence similarity within their amino

terminal 14 amino acids (11/14 identity), and this region retains many of the known ARF 

functions, including nucleolar localization, Mdm2 binding and ability to induce cell cycle arrest. 

ARF also encodes functional domains. In particular, the C
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nucleoli thanks to nucleolar localization signals (NoLS). p19ARF contains 

24 

 

Green bar shows the length and the gene transcription 

verse. Blu bars show exons and red bars represent gene translation. Modified from NCBI MapViewer 

The human protein comprises 173 amino acids with a molecular weight of 13,902 Da, whereas 

mouse homologue of 169 amino acids has a molecular weight of 19,238 Da. Both proteins 

share only limited sequence homology (50%) that could explain some of their functional 

differences but both are capable of inducing cell cycle arrest at the G2/M as well as at G1/S cell 

cycle boundaries. The ARF proteins show significant sequence similarity within their amino-

terminal 14 amino acids (11/14 identity), and this region retains many of the known ARF 

d ability to induce cell cycle arrest. 
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exon1β (aa 26-37) which deletion induces the nuclear translocation of the protein. The situation 

is more complex for p14ARF as two NoLS have been identified in the protein. The first one 

localized in exon 1β plays a key role in the antiproliferative function of p14ARF as its deletion 

inhibits the ability of p14ARF to stop the cell cycle and to bind Mdm2. The second one stands in 

exon 2 (aa 83-101) and is involved in the ability of p14ARF to promote the sumoylation of its 

binding partners 50. 

1.4.1.3 Expression and turnover 

Expression 

Normal cells contain low levels of ARF but the expression of a variety of proliferation-

promoting proteins, including Myc, E2F, E1A, oncogenic Ras and v-Abl, upregulate ARF as part 

of a checkpoint response conveying on the well known p53-Mdm2 pathway. The discovery of 

multiple ARF interactors and the observation that, aside oncogenic stimuli, also viral, genotoxic, 

hypoxic and oxidative stresses activate an ARF-dependent response, suggest that ARF could 

exert a wider role to protect the cell. It is becoming clear that the ARF response is quite complex 

and is likely accomplished by the interaction with a multitude of different cellular partners that in 

part explain the p53-independent activities of ARF 51. ARF is ubiquitously expressed and is 

elevated in cells lacking p53. In human cells p14ARF expression levels remain low as cells near 

senescence and p14ARF depleted cells still undergo a senescence-like arrest when challenged with 

Ras 46. Not much is known about the regulation of p14ARF expression. p14ARF transcription is 

induced by E2F1, but not by oncogenic Ras and while p14ARF transcription is inhibited by Tbx-2, 

Tbx-3 and Cbx-7, it is not down-regulated by Bmi-1 38,46,52. 

Degradation 

ARF is a relatively stable protein, with half-life estimations ranging from approximately 1–6 h. 

p19ARF and p14ARF undergo amino-terminal ubiquitination and their degradation depends on the 

ubiquitin-proteosome pathway, and may be enhanced by Mdm2 expression. Stress induced 

nucleoplasmic redistribution of ARF destabilises the protein and targeting of a p14ARF fragment 

encompassing amino acids 2–29 to the nucleolus increased its half-life 53. Consistent with these 

data, ARF-B23 complex formation, which restricts ARF to the nucleolus, stabilises ARF by 

blocking its ubiquitination 54. In contrast, Mdm2-ARF complex formation occurs preferentially 

in the nucleoplasm and this may allows for enhanced ARF ubiquitination and proteasomal 

degradation 38. 
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1.4.1.4 Biological functions 

The ARF tumour suppressor is a critical activator of the p53 pathway 

The ARF tumour-suppressor protein suppresses aberrant cell growth in response to oncogene 

activation by inducing the p53-pathway. The ARF induction of p53 is mediated through two 

ubiquitin ligases, Mdm2, a RING finger oncoprotein and ARF-BP1/Mule (ARF-binding protein 

1/Mcl-1 ubiquitin ligase E3), a HECT (homology to E6-AP C-terminus) containing protein. Both 

Mdm2 and ARF-BP1 act as specific E3 ubiquitin ligases for p53, are highly expressed in various 

types of tumours, and have the potential to abrogate the tumour-suppressor functions of p53. 

ARF associates with Mdm2 to inhibit the ubiquitination, nuclear export and subsequent 

degradation of p53. It has been proposed that ARF physically sequesters Mdm2 in nucleoli, thus 

relieving nucleoplasmic p53 from Mdm2-mediated degradation 53. Recent data, however, suggest 

that nucleolar relocalization of Mdm2 is not required for p53 activation and that the 

redistribution of ARF into the nucleoplasm enhances its interaction with Mdm2 and its p53-

dependent growth-suppressive activity 54. This current model of ARF function supports the 

concept that nucleolar disruption contributes to p53 signalling since many stress signals perturb 

the nucleolus, causing the release of nucleolar proteins (including ARF, L5, L11, L23 and B23) 

that activate the p53 pathway. In addition to Mdm2, ARF-BP1 is a key regulator of the p53 cell 

cycle regulatory pathway; ARF-BP1 directly binds and ubiquitinates p53 in an Mdm2-

independent manner. Silencing of ARF-BP1 extended the half-life of p53, resulted in the 

transcriptional activation of the p53 targets, p21Waf1 and BAX, and activated a p53- dependent 

apoptotic response. Unexpectedly, ARF-BP1 also ubiquitinates and promotes the degradation of 

the anti-apoptotic bcl-2 family member, Mcl-1, and down-regulation of ARF-BP1 expression can 

also render cells more resistant to killing by genotoxic agents. Thus, ARF-BP1 has been assigned 

both anti-apoptotic (via p53 degradation) and pro-apoptotic (via Mcl-1 degradation) functions. 

Whilst the effect of ARF on ARF-BP1- mediated Mcl-1 degradation is presently unexplored, the 

divergent roles of ARF-BP1 may be regulated by ARF. Following aberrant oncogene activation, 

ARF expression is induced and inhibits ARF-BP1 activity toward p53 in the nucleus, thereby 

leading to p53-dependent cell cycle arrest or apoptosis. In the cytoplasm, where ARF is not 

abundant, oncogene activation may lead to ARF-BP1 mediated Mcl-1 degradation further 

promoting apoptosis. ARF also enhances p53 function by promoting the phosphorylation and 

inhibiting the transcriptional activity of the RelA NF-kB subunit. The NF-kB family of 

transcription factors display anti-apoptotic activity and antagonise the p53 pathway through 

induction of Mdm2 and repression of p53. Thus, by counteracting the functions of Rel A, ARF 

increases the effectiveness of the p53 pathway 38. 
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Nucleolar functions of the ARF tumour suppressor 

ARF is predominantly a nucleolar protein and rather than residing in inactive “storage” within 

the nucleolus, ARF may regulate ribosome biogenesis by retarding the processing of early 

47S/45S and 32S rRNA precursors 46. These effects do not depend on Mdm2 or p53 but may 

involve the interaction of ARF with B23. B23 is an abundant nucleolar endoribonuclease that is 

required for the maturation of 28S rRNA and interacts with many cellular proteins, including 

p53, Mdm2, ARF, NPM3 and the BARD-BRCA1 ubiquitin ligase. The interaction of ARF and 

B23 retains both proteins in the nucleolus, bound to the pre-60S ribosome, where they appear to 

influence ribosome biogenesis and/or function. The actual role of the nucleolar ARF–B23 

complex remains unclear; p19ARF can promote the ubiquitination and degradation of B23, 

whereas p14ARF had no effect on B23 protein expression. In response to cytotoxic drugs, such as 

actinomycin D and DNA damaging agents, including UV light, B23 and ARF undergoes 

nucleoplasmic redistribution, where Mdm2 and B23 compete for ARF binding. The 

nucleoplasmic translocation of ARF and B23 promotes the formation of the B23-Mdm2 and the 

ARF-Mdm2 binary complexes and induces potent activation of the p53 pathway. Thus, ARF 

may directly access ribosome function to inhibit cell growth through its nucleolar association 

with B23, and it may regulate the p53 cell cycle pathway via its nucleoplasmic interaction with 

Mdm2 and ARF-BP1 38.  

ARF regulates the protein turnover and function of most of its interacting partners 

ARF can also suppress the proliferation of mouse cells lacking both Mdm2 and p53, implying 

interactions with other regulators. Consistent with these findings, the spectrum of tumours seen 

in mice lacking ARF and p53, with or without Mdm2, was significantly greater than that 

associated with animals lacking either gene 38. 

During the last years many efforts have been attempted in search of ARF partners that could 

partly explain the p53-Mdm2 ARF independent functions. In addition to its first ‘‘spouse’’ 

Mdm2, the ARF interactors ‘‘harem’’ consists of something like 30 different proteins involved 

in various cellular activities (Fig. 1.8, Tab. 1.2): proteins involved in transcriptional control, such 

as E2Fs, DP1, c-Myc, p63, Hif1a, Foxm1b, nucleolar proteins such as nucleolin/ C23 and 

nucleophosmin (NPM/B23), viral proteins such as HIV-1Tat, proteins involved in copper 

metabolism like COMMD1, proteins involved in chromosomal stability and/or chromatin 

structure such as Topoisomerase I, Tip60, and WRN helicase, ubiquitin ligases like Ubc9 (the E2 

ligase required for sumoylation), Mdm2 and ARF-BP1/Mule, (E3-ubiquitin ligases) 51. 
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Fig. 1.8 A schematic view of the ‘‘ARF harem’’. ■ Orange is for partners whose activity is blocked by ARF. ■ 

Red is for partners that are induced to proteasome and ubiquitin-dependent degradation by ARF. ■ Pink is for 

partners that are induced to proteasome and ubiquitin-independent degradation by ARF. ■ Green is for partners 

whose activity or stability are positively regulated by ARF. ■ Blue is for partners that regulate ARF protein 

turnover. A second black circle indicate nucleolar sequestration 51. 

  



29 
 

Tab. 1.2 Cellular protein partners of the ARF tumour-suppressor protein, and its biological effect. Modified 

from Stuart J.Gallagher, Int J Biochem Cell Biol, 2006 38. 

 

ARF binding partner Biological effect of ARF binding 

APA-1  No apparent effects 

ARF-BP1/Mule1  Inhibition of ARF-BP1 ubiquitin ligase activity 

B23  Degradation of B23, inhibition of B23 shuttling 

BCL6  Inhibition of BCL6 transcriptional activity 

CARF Enhanced ARF-mediated cell cycle arrest 

c-MYC  Inhibition of c-MYC transactivation 

COMMD1 Poly-ubiquitination of  COMMD1 

CtBP2 Degradation of CtBP2; 

DP-1  Inhibition of ARF-induced E2F proteolysis 

E2F-1, -2, -3  Degradation of E2F 

Foxm1b  Inhibition of Foxm1b transactivation 

HIF-1α  Inhibition of HIF-1α transactivation 

HIV1-Tat protein Ubiquitin-independent degradation of the HIV1-Tat protein 

Mdm2  Inhibition of mdm2 ubiquitin ligase activity 

MdmX  Enhanced p53 transactivation 

Neurabin  Enhanced ARF-mediated cell cycle arrest 

p120E4F  Enhanced ARF-mediated cell cycle arrest 

Pex19p  Inhibition of p19ARF, pex19p does not bind human ARF 

SUMO Conjugation of SUMO to p53 and MDM2 

Tat-binding protein-1  Induces ARF stabilization 

Topoisomerase I  Enhanced topoisomerase I activity 

Ubc9  Probable involvement in p14ARF-mediated sumoylation 

Werners helicase  Nucleolar exclusion of Werners helicase 

 

Although the actual mechanism by which ARF affects the activity of its partners is still unclear, 

the functional consequence is, quite invariably, inactivation.  

For some targets, ARF interaction causes alteration of stability. For example, B23/NPM and E2F 

become degraded by the proteasome in an ubiquitin-dependent manner, while the CtBP2 

antiapoptotic transcriptional co-repressor and HIV-1 Tat become degraded by the proteasome in 
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a ubiquitin-independent manner. Other targets changes their localization like E2Fs, c-Myc, 

Foxm1B, Mdm2, ATR, DP-1, Hif1a upon ARF expression. Only few others, like Tip60, Topo I 

and COMMD1 become activated or stabilized. Finally, most of the partners become sumoylated 

although a precise function to this modification has not yet been assigned.  

Particularly interesting is the inhibitory effect that ARF exerts on oncogenes such as members of 

the E2F family, required both for cell-cycle progression and to mediate ARF oncogenic 

activation, suggesting a potential role of these interactions as being part of a negative feedback 

loop. In a series of reports ARF was shown to interact with E2F1, and this interaction prevented 

the formation of active E2F1 transcritional complexes, inhibited E2F1 transactivation potential, 

and promoted the proteasome-dependent degradation of E2F1, 2 and 3. In line with a role of 

ARF in promoting ubiquitin-dependent degradation of its partners is the observation that 

NPM/B23, an abundant nucleo/nucleolar multifunctional protein involved in ribosome 

biogenesis, is a molecular target of ARF. The vast majority of ARF appears localized in nucleoli, 

tightly associated with NPM/B23. There is a regulative loop between ARF and B23, in which 

degradation and inhibition of both proteins is finely and tightly modulated by external stimuli. In 

such a situation, ARF serves a dual function to restrain both growth and proliferation. 

Interestingly, ARF appears to mediate also ubiquitin-independent degradation like that of the 

antiapoptotic transcriptional co-repressor C-terminal binding protein 2 (CtBP2) and of the HIV1-

Tat protein. Interestingly, Mdm2 has been shown to ubiquitinate HIV1-Tat, although, in this 

case, ubiquitination determines an increase of the Tat-mediated transactivation properties. This 

lead to the speculation that ARF could act on HIV-1Tat in two ways: directly mediating its 

degradation and inhibiting the Mdm2 activity versus Tat, thus blocking viral transcription. This 

hypothesis would intriguingly fit with the ARF role in viral defense. 

As mentioned above, in some cases, ARF is able to stabilize its partners from proteasomal 

degradation. In a quite recent study, it has been described the ARF’s ability to induce a non-

classical poly-ubiquitination of a new interacting partner, the COMMD1 factor, a multifunctional 

protein involved in copper metabolism and apoptosis. While in normal conditions COMMD1 is 

degraded by the proteasome, ARF coexpression leads to a stabilization of the protein through its 

poly-ubiquitination on K63 lysine of the ubiquitin peptide.  

Altogether, although these observations reinforce the idea that the ARF antioncogenic activity 

could be partly exerted through the cellular degradation machinery. In this sense, ARF 

interaction with the proteasome could serve dual roles: on one side it is necessary to regulate 

ARF protein turnover, while, on the other side, it could play a role in bringing ARF interacting 

partners in contact with the ubiquitin/proteasome machinery 51.  
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The human protein (the longer one) comprises 138 amino acids with a molecular weight of 

14,722 Da; like CDKN2A has a basic structural motif of a series of four ankyrin repeats 

responsible for protein–protein interactions. 

Whereas the tumour suppressor functions for CDKN2A and ARF have been firmly established, 

the role of CDKN2B remains ambiguous. However, many 9p21 deletions also remove CDKN2B, 

so we hypothesized a synergistic effect of the combined deficiency for CDKN2B, ARF and 

CDKN2A 57. 

In leukemias, the CDKN2B gene is commonly inactivated in association with promoter region 

hypermethylation involving multiple sites in a 5'-CpG island, whereas point mutations are rare 
58. Hypermethylation of the CDKN2B gene was more frequent in cases with T-cell origin ALL 

(46.2%), but similar among children with B-cell origin ALL (13.0%) and AML (18.8%). 

Hypermethylation of CDKN2B may be involved in the pathogenesis of T-cell origin ALL, but 

not in that of AML or B-cell origin ALL 59. 

1.4.4 ANRIL/CDKN2BAS (CDKN2B-AS1 CDKN2B antisense RNA 1) 

In the 9p21 locus overlaps a newly annotated non-coding RNA (ncRNA), termed ANRIL, for 

‘‘antisense noncoding RNA in the INK4 locus’’. ANRIL spans 126.3 kb, with a first exon located 

in the promoter of the ARF gene and overlapping at its 5‘ end the two exons of CDKN2B. It 

consists of 20 exons subjected to alternative splicing, that are transcribed in the anti-sense 

orientation (Fig. 1.13).  

 

 

Fig. 1.13 A genomic organization of the 9p21 gene cluster. Boxes, location of exons (approximately to scale). 

Exons 1α, 2, and 3 of CDKN2A encode p16 protein, whereas exon 1β, spliced to exons 2 and 3of CDKN2A in a 

different reading frame and transcribed using a different promoter, encodes p14ARF protein. The ANRIL gene 

overlaps the two exons of CDKN2B and is transcribed in the orientation opposite to the CDKN2B-CDKN2A-ARF 

gene cluster. Exon 1 of ANRIL is present about 300 bp upstream of the transcription start site of ARF (exon 1β) 60. 
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Up to now three ANRIL variants were identified. Full-length ANRIL (3834 bp), deposited under 

GenBank accession number DQ485353, encompasses the first 12 exons plus exons 14 to 20. At 

least 2 shorter variants of ANRIL that end with an alternative exon 13 have been reported, 

DQ485454 and EU741058. DQ485454 (2659 bp) comprises the first 12 exons and an alternative 

exon 13, whereas EU741058 (688 bp) encompasses exons 1, 5 to 7, and 13 (Fig. 1.14).  

 

 

 

Fig. 1.14 Physical Map of the 9p21.3 region. ANRIL produces alternative transcripts DQ485453, DQ485454, and 

EU741058. Modified from Olga Jarinova, Arterioscler Thromb Vasc Biol, 2009 61. 

 

Exon sequences of ANRIL are highly conserved in primates, furthermore, several exons of 

ANRIL retain repetitive elements and encompasses multiple binding sites for transcription factors 

that regulate transcriptional repression. Thus, exons 7 and 12 of ANRIL consist entirely of Alu 

repeats; exons 8 and 16 of Long Terminal Repeats (LTRs); exon 14 of the LINE2 element (long 

interdispersed elements), and exons 4, 17, and 20 contain multiple MIR SINEs (short 

interdispersed elements). The presence of repetitive elements within the ANRIL gene is 

surprising because low complexity DNA sequences are not usually found within coding regions. 

A recent study suggests that the presence of repetitive elements is a common signature for novel 

genes originated from retroposition and exon shuffling, and degeneration of such elements is 

correlated with the increasing ages of the genes. Thus, ANRIL may have arisen relatively 

recently in mammalian evolution before the divergence of the primate lineage and may possess 

novel primate-specific functions. Alternatively, low sequence conservation of ANRIL may reflect 

high rates of primary sequence evolution suggested for long ncRNAs. 

Tumour suppressor genes (TSGs) inhibiting normal cellular growth are frequently silenced 

epigenetically in cancer. DNA methylation is commonly associated with TSG silencing, yet 

mutations in the DNA methylation initiation and recognition machinery in carcinogenesis are 
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unknown. An intriguing possible mechanism for gene regulation involves widespread non-

coding RNAs such as microRNA, Piwi-interacting RNA and antisense RNAs. Widespread 

sense-antisense transcripts have been systematically identified in mammalian cells, and global 

transcriptome analysis shows that up to 70% of transcripts have antisense partners and that 

perturbation of antisense RNA can alter the expression of the sense gene. Therefore, noncoding 

RNAs such as ANRIL can alter expression of associated protein coding genes through multiple 

mechanisms that include RNA interference, gene silencing, chromatin remodeling, gene co-

suppression, imprinting, or DNA methylation. There is growing evidence of involvement of 

ncRNAs transcribed from the 9p21 locus in disease etiology. A natural p15 antisense, p15AS, 

triggers transcriptional silencing in cis and in trans of p15 through heterochromatin formation 

but not DNA methylation and shows increased levels of expression in acute myeloid leukemia 

cell lines; in addition the silencing persisted after p15AS was turned off, although methylation 

and heterochromatin inhibitors reversed this process 62. Broadbent and colleagues have 

demonstrated that ANRIL is expressed in many cell types known to be affected by atherosclerosis 

and suggested that this gene is a possible candidate gene at the 9p21 CAD risk locus 63. Jarinova 

et al. examined the structure and function of 4 conserved noncoding sequences (CNS) present in 

the 9p21.3 locus and demonstrated that the CNS3 regulatory region acts as an enhancer and 

significantly increases reporter gene expression. This regulatory activity is attributable to the 

presence of a single nucleotide polymorphism, rs1333045, in strong LD with representative 

SNPs of the previously defined 9p21.3 risk region. They also found that CDKN2B may be 

directly affected by alterations in ANRIL expression related to the 9p21.3 risk haplotype 61. 

Despite the potential importance of ANRIL, limited information is available on its genetic 

architecture. 

Moreover, it cannot rule out the possibility that ANRIL gene could be able to produce mature 

miRNAs or encode a small peptide. Additional studies are thus necessary to elucidate the 

putative role via a genetic (or epigenetic) mechanism of ANRIL gene on the regulation 

(deregulation in tumorigenesis) of the p15/CDKN2B-p16/CDKN2Ap14/ARF locus 60. 
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1.5 CDKN2A LOCUS ALTERATIONS  

Genetic alterations including chromosomal translocation, promoter hypermethylation, somatic 

mutation, and gene deletion are thought to play a key role in oncogenesis. Alterations of the 

9p21 locus have been implicated in many types of cancer, indicating a role for the tumor 

suppressor genes CDKN2A/ARF and CDKN2B. Loss of cell proliferation control and regulation 

of the cell cycle are known to be critical to cancer development. It has been reported that 

CDKN2A and CDKN2B are frequently inactivated in various hematologic malignancies 64. The 

mechanism of CDKN2A/ARF inactivation in human cancers is somewhat tumor specific. 

Homozygous deletions at CDKN2A/9p21 are common in bladder tumors and have been 

described in a variety of other sporadic tumors, including melanomas and gliomas. Pancreatic 

adenocarcinomas show inactivation of CDKN2A by either homozygous deletion or point 

mutation, whereas esophageal tumors commonly show inactivation by point mutation. A third 

mechanism of inactivation, transcriptional silencing by promoter hypermethylation, is commonly 

found in colorectal carcinoma. Point mutations have only rarely been identified in bladder 

tumors and promoter methylation, only infrequently 39. 

An excellent 1998 review (Drexler, 1998) summarized the alterations of the INK4 family 

members in leukemias of primary samples and cell lines 65. Most alterations occur by 

inactivation of CDKN2A and CDKN2B due to hypermethylation of CpG islands in their 

promoters or by deletions in the 9p21 region, frequently involving all three genes. A high 

frequency of hypermethylation of the CDKN2B promoter occurs in AML (79%) including acute 

promyelocytic leukemia (APL) (73%) and MDS (42%). T-ALL and Pre-B-ALL cells often have 

hypermethylation of the CDKN2B promoter (44%) and deletions of the CDKN2A (33%) and the 

CDKN2B (32%) genes 66. 

Inactivation of CDKN2A and CDKN2B is primarily a consequence of mono- or biallelic 9p21.3 

deletion rather than promoter methylation or mutations 67. 

In fact, the chromosomal region of 9p is a frequent site of loss or deletion in several human 

cancers, lung cancer, esophageal cancer, melanoma, in glioma (60%), head and neck cancers 

(50%) and bladder cancers (45%) 68. Homozygous deletion of CDKN2A has been suggested as 

the dominant mechanism of its inactivation in leukemogenesis 64. High frequencies of 9p21.3 

deletions have been documented also in acute lymphoblastic leukemia ranging from 18% to 45% 
69-79,1. 

The majority of human tumors with homozygous deletion of this genomic region have large 

deletions of the whole CDKN2A/ARF locus often including the gene encoding p15 (CDKN2B) 39. 
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A majority of interstitial deletions in lymphoid leukemia have been indicated to be mediated by 

illegitimate V(D)J recombination between two ectopic heptamer-recombination signal sequences 

(RSS) sites in the 9p21 segment, where DNA double-strand breaks (DSBs) trigger 9p21 

deletions at no specific DNA sequences, although they preferentially occur in or near the 

CDKN2A locus. At present, nucleotide sequences susceptible to DSBs in the CDKN2A locus 

remain unclear. Interestingly, recent studies have indicated that the packaging structure of 

chromatin affects the susceptibility to several DNA damaging agents. Thus, it is also possible 

that the open chromatin structure associated with the CDKN2A gene expression rather than 

nucleotide sequences might be responsible for susceptibility to DSBs 80. 

CDKN2A and CDKN2B deletions might be also initiated by ‘off-target’ effects of the lymphoid 

mutagenic enzymes Recombination Activating proteins 1 and 2 (RAG1 and RAG2) or 

activation-induced cytidine deaminase (AID). 

Therefore, another possibility is that the association between increased risk of ALL and inherited 

variation in CDKN2A and CDKN2B reflects its structural or sequence-based vulnerability as a 

substrate 67. 

In ALL patient samples, the size and position of 9p21.3 deletions seem to vary substantially, but 

in most cases CDKN2A is co-deleted with CDKN2B and MTAP (methylthioadenosine 

phosphorylase) 77,79,1. The frequence of genomic deletions is of 21% in B-cell precursor ALL 

and 50% in T-ALL patients 1.  

In childhood ALL, the reported frequencies of both heterozygous and homozygous deletions 

vary, 9% to 27% and 6% to 33% in B-cell precursor (BCP) ALL and 7% to 18% and 30% to 

83% in T-ALL, respectively64. Sulong et al. (2009) demonstrated that genomic deletion of 

CDKN2A is substantially more prevalent in childhood ALL (20% in BCP-ALL and 50% in T-

ALL) than either mutation or methylation. They concluded that genomic deletion is the principal 

mode of CDKN2A inactivation in childhood ALL. In agreement with previous large studies 
1,77,81, they found that the incidence of CDKN2A deletions was significantly higher among T-

ALL patients compared with BCP-ALL patients, which included the proportion of biallelic 

deletions. Among BCP-ALL patients, they found a frequency of CDKN2A deletions of 21%, 

which was the same as Kawamata et al. 82 (21%) but lower than Bertin et al. 77 (31%), Usvasalo 

et al. 1 (46%) and Mullighan et al. 81 (34%). They also found that 50% T-ALL harbored a 

CDKN2A deletion, a frequency substantially lower than that reported by Bertin et al. 77(78%), 

Mullighan et al. 81 (72%), and Kawamata et al. 82(78%) 64. 

Compared with childhood, adult ALL deletions characterization in the 9p21 chromosomic band 

were less studied. Paulsson K. et al (2008) found CDKN2A deletions in the 47% of the cases. 
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Their findings in adult ALL are strikingly similar to what has recently been reported in pediatric 

ALL. Mullighan et al. 81 detected deletions of CDKN2A in a high proportion of childhood cases; 

a finding that was subsequently confirmed by Kuiper et al. 81. Kawamata et al. 82 also reported 

frequent CDKN2A deletions in pediatric cases, although they used a different sampling 

populations or differing analytical methods. The similarity between childhood and adult ALL as 

regards CDKN2A deletions was unexpected considering that the cytogenetic patterns of these 

disease entities are quite different; in particular, adult ALLs display a higher frequency of 

t(9;22)-positive cases but virtually lack the most common pediatric abnormalities, t(12;21) and 

high hyperdiploidy. It is thus possible that microdeletions in comparison may play a more 

general leukemia-promoting role and may be shared among different clinical, morphological and 

cytogenetic subgroups of ALL 83. 

In addition to deletions, the CDKN2A locus can also be inactivated by epigenetic silencing 

through DNA methylation of the CpG islands associated with their respective or by point 

mutations, both resulting in gene silencing . Methylation of CDKN2A and CDKN2B (frequencies 

of 6% and 57%, respectively) seems to lack prognostic significance in ALL 84, and the rate of 

point mutations has been extremely low in ALL 1,78,85-89. 

The frequency of hypermethylation of the CDKN2A promoter has been reported to vary from 0 

to 40% in childhood ALL 90-94. As reported data on CDKN2A alterations in childhood ALL are 

discrepant, it remains important to reveal the role of this gene in cancer development. CDKN2A 

hypermethylation is not a disease-specific event because it has been observed in the mononuclear 

cells from normal participants 64. 

Mutation or methylation was rare, whereas genomic deletion occurred in 21% of B-cell 

precursor ALL and 50% of T-ALL patients 1. 
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1.6 SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs) IN 9p21 LOCUS  

Until recently, little was known about alterations of cyclin dependent kinase inhibitors CDKN2B, 

CDKN2A and ARF due to SNPs located within the CDKN2A/B genes and/or neighboring loci, 

but in the last few years studies aimed to investigate the potential involvement of such common 

DNA sequence variants in tumour susceptibility increased. 

For example Brian G.K. et al. published (Jan-2011) a study on a 58 kb region on chromosome 

9p21.3 which consistently showed a strong association with coronary artery disease in multiple 

genome-wide association analyses in populations of European and East Asian ancestry. In this 

study, they characterized the role of genetic variants in 9p21.3 in African American individuals. 

Apparently healthy African American siblings of patients with documented CAD <60 years of 

age were genotyped and followed for incident CAD for up to 17 years. The findings 

demonstrated a significant protective effect of single SNP within the CDKN2B gene, rs3217989, 

against incident CAD in African American siblings of persons with premature CAD 95. 

Also the rs10811661 polymorphism near the CDKN2B/CDKN2A genes was associated with 

impaired insulin release and impaired glucose tolerance (IGT), suggesting that this variant may 

contribute to type 2 diabetes by affecting β-cell function 96. 

The locus 9p21.3 variants associate with multiple disease phenotypes CAD, type 2 diabetes 

mellitus (T2DM), ischemic stroke, and abdominal aortic aneurysm 97,48, breast, ovarian, 

pancreatic carcinoma, melanoma, and acute lymphoblastic leukaemia 44. Variants associated with 

these diseases are represented in Figure 1.15 97,45. 

Nature Genetics published, on June 2010, a study showing that a common variation at 9p21.3 

influences acute lymphoblastic pediatric leukemia risk. This SNP is the rs3731217, located in the 

intron between 1β and 1α of CDKN2A/ARF (Chr9: 21,974,661 base pairs; within a 174-kb region 

of linkage disequilibrium at 9p21.3) 67. 

 



42 
 

 

 

 

Fig. 1.15 SNPs associated with disease in the chromosome 9p21.3 region. Genes are illustrated in blue at the top, 

with arrows representing the direction of transcription. SNPs associated with various diseases are represented by 

black bars. Diseases in bold are those with association data from genomewide association studies. The hatched box 

represents the core risk haplotype for CAD defined by Broadbent et al 63. Promoter regions for each gene are shown 

as pale blue boxes. DM= diabetes mellitus type II; BCC = basal cell carcinoma. 

doi:10.1371/journal.pgen.1000899.g001 45. 

 

Our laboratory (manuscript in press) performed a case-control association study by genotyping 

23 SNPs spanning the MTAP, CDKN2A/B and CDKN2BAS loci, as well as relative intergenic 

regions, in a case-control cohort made up of 149 leukemia patients, including Ph+ acute 

lymphoblastic leukemia and AML samples, and 183 healthy controls. We found, among these 

genetic variations, a statistically significant association between a common ANRIL genetic 

variant, rs564398, mapping to the CDKN2BAS locus that encodes for ANRIL, and the ALL 

phenotype. This probably reflects a condition of high linkage disequilibrium between such 

polymorphism and a causative variant that is able to alter 3 CDKN2A/B expression profiles, thus 

leading to abnormal proliferative boosts and consequent increased ALL susceptibility.  
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1.7 PROGNOSTIC SIGNIFICANCE OF 9p21 INACTIVATION  

The prognosis of B-lineage acute lymphoblastic leukemia (B-ALL) of children is significantly 

superior to that of adults 98,99. The difference in prognosis has been attributed to a differing 

incidence in genetic changes that determine the prognosis, such as the presence of the 

Philadelphia chromosome, ETV6/RUNX1 (formerly TEL/AML1) abnormality, MLL gene 

rearrangement, and ploidy changes. Nonetheless, the prognostic disparity between childhood and 

adult B-ALL is not fully explained by these genotypic differences, suggesting a role of other 

factors in the clinical behavior of B-ALL. 

The silencing of the 9p21 gene cluster is thought to be one of the factors that cause a difference 

in the outcome 69,98-100. The band is identified like one of the major aberration hot spots in human 

cancers 99,100.  

Many studies have been performed on the deletion or methylation patterns of CDKN2A, ARF and 

CDKN2B and their prognostic significance in ALL 98,101,102. Most studies, however, have been 

limited by a small study cohort, leading to uncertain statistical significance, a lack of concurrent 

deletion and methylation profiles, and a lack of comparison between adult and childhood B-

ALL.  

The interesting study on the pattern of deletion and methylation status of the CDKN2A, ARF and 

CDKN2B genes in the context of established prognostic cytogenetic changes in childhood and 

adult B-ALL, of Kim M. et al. (2009) suggest that (a) homozygous deletion occurs more 

frequently in adults than in children; (b) homozygous deletion affects OS only in adult B-ALL; 

(c) homozygous deletion, but not hemizygous deletion, has prognostic effect; and (d) 

methylation of p16, p14, and p15 does not affect the survival of B-ALL patients 103. 

One thing that might explain the higher prevalence of homozygous deletion in adults than in 

children is cellular senescence, which increases with aging. Because the deletion of a gene 

results from faulty DNA replication, the homozygous deletion of tumor suppressor genes, which 

is a cumulative consequence of hemizygous deletion, could be associated with cell senescence. 

Why homozygous deletion has little effect on survival in children is unclear. Other good 

prognostic factors or other oncogene alterations that were not investigated in that study might 

have prevented or weakened the negative effects of homozygous 9p21 deletion on disease 

progression. 

The prognostic significance was limited to homozygous deletion of 9p21, which could be 

explained by loss of heterozygosity 65. Unlike homozygous deletion, hemizygous deletion might 

not be sufficient to turn off the function of these genes. Another explanation could be the high 

genomic instability in leukemia. Genomic instability, evidenced by the increased frequency of 
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cytogenetic, genetic, and epigenetic alterations, is a prominent hallmark of neoplastic evolution 

and tumor progression. Homozygous deletion of CDKN2A, ARF and CDKN2B might reflect the 

disease progression of B-ALL, for which the prognosis is worse than B-ALL with hemizygous 

deletion of CDKN2A, ARF and CDKN2B 103. 

As regards the prognostic relevance of CDKN2A deletions exclusively in childhood ALL, the 

literature is divided, with some studies have suggested that CDKN2A deletion is a poor 

prognostic factor 69,70,72,101,104,105, whereas others show no correlation 74,76,100. Beyond, Usvasalo 

et al. didn’t observe any difference in the incidence of CDKN2A deletion between diagnosis and 

relapse 64. 

The prognostic significance of methylation of the CDKN2A, ARF and CDKN2B genes is also 

controversial and differs in several studies. The level of gene expression might be controlled by 

the extent of methylation, rather than by methylation itself, and thus further clarification requires 

the quantitation of methylation of CDKN2A, ARF and CDKN2B using pyrosequencing or 

methylation sequencing analysis 103. 

Although studied by several groups, the prognostic value of CDKN2A deletion in ALL remains 

uncertain, as summarized in the two tables below (Tab. 1.3 and 1.4). 
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Table 1.3 and 1.4 Prognostic relevance of CDKN2A/ARF (p16, p14) and CDKN2B (p15) alterations (summary of 

literature). Highlighted paper title refers to childhood (■) and adult (■) study. 
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Author Title Journal Year 

Kim M. et al. 
103

 

Homozygous deletion of CDKN2A (p16, p14) and CDKN2B 

(p15) genes is a poor prognostic factor in adult but not in 

childhood B-lineage acute lymphoblastic leukemia: a 

comparative deletion and hypermethylation study.(*) 

Cancer Genet 

Cytogenet 
2009 

Papadhimitriou 

SI. et al.
106

 

p16 inactivation associated with aggressive clinical course and 

fatal outcome in TEL/AML1-positive acute lymphoblastic 

leukemia. 

J Pediatr 

Hematol 

Oncol. 

2005 

Primo D. et 

al.
102

 

Genetic heterogeneity of BCR/ABL
+
 adult B-cell precursor 

acute lymphoblastic leukemia: impact on the clinical, 

biological and immunophenotypical disease characteristics. 

Leukemia 2005 

Dalle JH. et 

al.
107

 

p16(INK4a) immunocytochemical analysis is an independent 

prognostic factor in childhood acute lymphoblastic leukemia.  
Blood 2002 

Calero Moreno 

TM. et al.
70

 

Deletion of the Ink4-locus (the p16ink4a, p14ARF and 

p15ink4b genes) predicts relapse in children with ALL treated 

according to the Nordic protocols NOPHO-86 and NOPHO-92. 

Leukemia 2002 

Hoshino K. et 

al.
108

 

The absence of the p15INK4B gene alterations in adult 

patients with precursor B-cell acute lymphoblastic leukaemia 

is a favourable prognostic factor. 

Br J Haematol 2002 

Carter TL. et 

al.
101

 

Hemizygous p16(INK4A) deletion in pediatric acute 

lymphoblastic leukemia predicts independent risk of relapse.  
Blood 2001 

Ramakers-van 

Woerden NL. 

et al.
109

 

In vitro drug resistance and prognostic impact of 

p16INK4A/P15INK4B deletions in childhood T-cell acute 

lymphoblastic leukaemia 

Br J Haematol 2001 

Heerema NA. 

et al.
105

 

Association of chromosome arm 9p abnormalities with 

adverse risk in childhood acute lymphoblastic leukemia: a 

report from the Children’s Cancer Group.  

Blood 1999 

Moreno TC et 

al.
110

 

Inverse correlation between Ink4-locus deletions and ICM-

DNA hyperdiploidy in childhood acute lymphoblastic 

leukaemia, relation to clinical characteristics and outcome 

Eur J 

Haematol. 
2000 

Kees UR. et 

al.
69

 

Homozygous deletion of the p16/MTS1 gene in pediatric 

acute lymphoblastic leukemia is associated with unfavorable 

clinical outcome.  

Blood 1997 

Zhou M. et 

al.
111

 

Incidence and clinical significance of CDKN2/MTS1/P16ink4A 

and MTS2/P15ink4B gene deletions in childhood acute 

lymphoblastic leukemia.  

Pediatr 

Hematol 

Oncol 

1997 

Heyman M. et 

al.
72

 

Prognostic importance of p15INK4B and p16INK4 gene 

inactivation in childhood acute lymphocytic leukemia. 
J Clin Oncol 1996 

Heyman M. et 

al.
112

 

Inactivation of thep15INKB and p16INK4 genes in hematologic 

malignancies. 

Leuk 

Lymphoma 
1996 

Fizzotti M. et 

al.
104

 

Detection of homozygous deletions of the cyclin-dependent 

kinase 4 inhibitor (p16) gene in acute lymphoblastic leukemia 

and association with adverse prognostic features. 

Blood 1995 
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Author Title Journal Year 

Sulong S. et 

al. 64
 

A comprehensive analysis of the CDKN2A gene in childhood 

acute lymphoblastic leukemia reveals genomic deletion, copy 

number neutral loss of heterozygosity, and association with 

specific cytogenetic subgroups. 

Blood 2009 

Uvasalo A. et 

al. 
1
 

CDKN2A deletions in acute lymphoblastic leukemia of 

adolescents and young adults: an array CGH study. 
Leuk Res 2008 

Mirebeau D. 

et al.
74

 

The prognostic significance of CDKN2A, CDKN2B and MTAP 

inactivation in B-lineage acute lymphoblastic leukemia of 

childhood. Results of the EORTC studies 58881 and 58951. 

Haematologica 2006 

L.J. van 

Zutven et al.
76

 

CDKN2 deletions have no prognostic value in childhood 

precursor-B acute lymphoblastic leukaemia. 
Leukemia 2005 

Cipollotti R. et 

al.
113

 

Inactivation of the p15 gene in children with acute 

lymphoblastic leukemia. 

Sao Paulo Med 

J 
2003 

Manero G.G. 

et al.
99

 

Aberrant DNA methylation in pediatric patients with acute 

lymphocytic leukemia 
Cancer 2003 

Manero G.G. 

et al.
98

 

DNA methylation of multiple promoter-associated CpG islands 

in adult acute lymphocytic leukemia 

Clin Cancer 

Res 
2002 

Graf Einsiedel 

H. et al
100

 

Deletion analysis of p16INKa and p15INKb in relapsed 

childhood acute lymphoblastic leukemia. 
Blood 2002 

Graf Einsiedel 

H. et al.
114

 

Prognostic value of p16(INK4a) gene deletions in pediatric 

acute lymphoblastic leukemia.  
Blood 2001 

Chim CS. et 

al.
84

 

Methylation of p15 and p16 genes in adult acute leukemia: 

lack of prognostic significance. 
Cancer 2001 

Faderl S. et 

al.
115

 

The prognostic significance of p16INK4a/p14ARF and 

p15INK4b deletions in adult acute lymphoblastic leukemia. 

Clin Cancer 

Res 
1999 

Rubnitz JE. et 

al.
116

 

Genetic studies of childhood acute lymphoblastic leukemia 

with emphasis on p16, MLL, and ETV6 gene abnormalities: 

results of St Jude Total Therapy Study XII. 

Leukemia 1997 

Dicianni MB 

et al.
117

 

Shortened survival after relapse in T-cell acute lymphoblastic 

leukemia patients with p16/p15 deletions. 
Leuk Res 1997 

Batova A. et 

al.
118

 

Frequent deletion in the methylthioadenosine phosphorylase 

gene in T-cell acute lymphoblastic leukemia: strategies for 

enzyme-targeted therapy.  

Blood 1996 

Ohnishi H. et 

al.
78

 

Homozygous deletions of p16/MTS1 and p15/MTS2 genes are 

frequent in t(1;19)-negative, but not in t(1;19)-positive B 

precursor acute lymphoblastic leukemia in childhood. 

Leukemia 1996 

Okuda T. et 

al.
119

 

Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in 

pediatric acute lymphoblastic leukemia.  
Blood 1995 

Stock W. et al. 

High incidence of p16 deletion in adult acute lymphoblastic 

leukemia (ALL): correlation with clinical features and response 

to treatment: CALGB 8762. 

Blood 1995 

Takeuchi S. et 

al.
88

 

Analysis of a family of cyclin-dependent kinase inhibitors: 

p15/MTS2/INK4B, p16/MTS1/INK4A, and p18 genes in acute 

lymphoblastic leukemia of childhood. 

Blood 1995 
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1.8 TREATMENT OF PH+ ACUTE LYMPHOBLASTIC LEUKEMIA  

Until recently, Ph+ ALL carried a dismal prognosis in both children and adults. Patients with 

Ph+ ALL who received conventional chemotherapy reportedly had long-term survival rates of 

approximately 10%, and only allogeneic stem cell transplantation (alloSCT) extended long-term 

survival in 38% to 65% of patients. Outcomes for patients with Ph+ ALL improved substantially 

with the introduction of the tyrosine kinase inhibitor (TKI) imatinib mesylate. Although imatinib 

monotherapy in previously treated patients with Ph+ ALL produced only a modest, short-lived 

response, imatinib combined with chemotherapeutic regimens has induced complete remissions 

(CRs) in almost every patient (~95%) with newly diagnosed Ph+ ALL. However, imatinib 

resistance develops in a substantial proportion of imatinib-treated patients with Ph+ ALL. About 

50–80% of the Ph+ ALL patients who achieved a CR with imatinib relapse within 1 year, mainly 

due to the emergence of Bcr-Abl kinase domain point mutations, which impair imatinib binding 

either by affecting critical contact residues or by inducing a Bcr-Abl conformation to which 

imatinib is unable to bind. Second-generation TKIs (eg, dasatinib and nilotinib) have 

demonstrated promising efficacy in the treatment of imatinib-resistant, Ph+ ALL 2,34. 

1.8.1 Standard chemotherapy and allogeneic stem cell transplantation (alloSCT) 

Although CRs may occur in 70% to 90% of patients with Ph+ ALL who receive intensive 

chemotherapy alone, most patients relapse and die within 6 to 11 months of treatment. AlloSCT 

substantially improves long-term survival rates. Several factors influence the outcome of patients 

who undergo alloSCT. Patients who underwent alloSCT during first CR had substantially better 

outcomes than patients who underwent alloSCT in second or later CR. Other favorable factors 

include younger age, total body irradiation conditioning, the use of a human leukocyte antigen-

identical sibling donor, and the occurrence of acute graft-versus-host disease. The widespread 

use of alloSCT often is hindered by donor availability. This limitation has been overcome in part 

by the use of unrelated donors, nonmyeloablative conditioning regimens to facilitate the 

extension of eligibility for SCT, and harvesting stem cells from umbilical cord blood. 

Nevertheless, approximately 30% of patients who undergo SCT relapse, and treatment-related 

mortality (up to 40%) is a frequent cause of failure. The role of TKIs after alloSCT is discussed 

below. In summary, improved therapies for patients with Ph+ ALL are still needed 2. 
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1.8.2 Tyrosine kinase inhibitors 

1.8.2.1 Imatinib mesylate. (Gleevec, Glivec; STI571) 

The first BCR-ABL inhibitor to gain clinical approval was imatinib mesylate, which partially 

blocks the adenosine triphosphate (ATP) binding site of BCR-ABL, preventing a conformational 

switch of the oncogenic protein to the activated form. Early studies demonstrated that many 

patients with previously treated, Ph+ ALL initially responded to imatinib monotherapy with CR 

rates of 20% then but quickly relapsed after a median treatment duration of 58 days. Thus, 

although imatinib was well tolerated and produced a modest response in patients with previously 

treated, Ph+ ALL when it was used as single-agent therapy, responses were short-lived, and 

relapses were common. 

Imatinib resistance has been attributed to BCR-ABL-dependent and BCR-ABL-independent 

mechanisms. BCR-ABL-dependent mechanisms include amplification of the BCR-ABL gene 

and mutations within ABL that reactivate BCR-ABL and disrupt binding to the drug 

target.Indeed, more than 90 separate resistance conferring point mutations at 57 residues in the 

Abl kinase have been documented, and these generally fall within four regions of the kinase 

domain: the ATP-binding pocket (P-loop), the contact site (eg, threonine at codon 315 [T315] 

and phenylalanine at codon 317 [F317]), the Src homology 2 (SH2)  binding site (eg, methionine 

at codon 351 [M351]) and the activation loop (A-loop). A common mutation that occurs 

frequently after imatinib therapy in Ph+ ALL patients is the glutamic acid to lysine mutation at 

codon 255 (E255K). P-loop mutations are 70-fold to 200-fold less sensitive to imatinib 

compared with native BCR-ABL, and studies indicate that patients with these mutations have a 

worse prognosis. Gatekeeper mutations (eg, the threonine to isoleucine mutation at codon 315 

[T315I] and the phenylalanine to leucine mutation at codon 317 [F317L]) impede contact 

between imatinib and BCR-ABL and, thus, contribute to imatinib resistance and resistance to 

other second-generation TKIs. Different mutants seem to have different degrees of resistance to 

imatinib: in vitro data indicate that while some mutations might be overcome by dose escalation, 

others confer a highly resistant phenotype, thereby suggesting withdrawal of imatinib in favour 

of alternative therapeutic strategies. Indeed, because resistance often coincides with reactivation 

of the kinase activity within the leukaemic clone, either Bcr-Abl itself or Bcr-Abl-triggered 

downstream signaling pathways remain good targets for molecular therapy. Soverini et al. 

reported a high rate of Bcr-Abl mutations in resistant Ph+ ALL patients. Although Bcr-Abl point 

mutations are primarily responsible for the development of secondary, or acquired, resistance in 

Ph+ ALL and CP CML, there are also Bcr-Abl independent mechanisms which are poorly 
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understood 34. BCR-ABL-independent mechanisms include chromosomal abnormalities in 

addition to the Ph chromosome abnormalities (clonal evolution), disruptions in drug uptake and 

efflux, and activation of alternative signaling pathways that cause proliferation or promote cell 

survival. Maintaining effective intracellular drug concentrations also is a major hurdle to 

imatinib efficacy. Imatinib is a substrate of the drug efflux permeability glycoprotein (PgP), and 

increased PgP expression can decrease intracellular concentrations of imatinib to confer drug 

resistance in vitro. Stromal support also has been proposed as a mechanism of resistance to TKIs 

in Ph+ ALL. One study reported that murine p190 BCR-ABL ALL cells with low BCR-ABL 

expression were able to grow in the presence of stroma. Another recently identified mechanism 

of TKI resistance involves the expression of spliced isoforms of IKAROS family zinc (Ikaros) 

(IKZF1), a critical regulator of normal lymphocyte development. Constitutive activation of 

downstream signaling molecules that results in pathway activation, regardless of BCR-ABL 

inhibition, represents another mechanism of imatinib resistance 2,34. 

1.8.2.2 Second-generation tyrosine kinase inhibitors 

Since point mutations are the major mechanism of resistance to first-line imatinib therapy in Ph+ 

leukemia, different drugs active on mutant BCR-ABL or on its signal transduction pathway have 

been developed and tested at clinical level. 

Dasatinib (Sprycel) 

Dasatinib (BMS-354825, Sprycel; Bristol Myers Squibb, NewYork, USA) has reached a peculiar 

and specific role. Dasatinib is a multi-target kinase inhibitor of Bcr-Abl, SFK, ephrin receptor 

kinases, PDGFR and Kit, has 325-fold greater potency than imatinib in cells transduced with 

unmutated BCR-ABL and is active against many of the BCR-ABL mutations, conferring 

imatinib resistance and is effective against the imatinib-resistant active conformation of the 

kinase domain. It is capable of inhibiting the proliferation and kinase activity of wild type and of 

14 out of 15 Bcr-Abl mutant cell lines, except the T315I mutant. Furthermore, the cellular uptake 

of dasatinib is not dependent, as opposed to imatinib, on the organic cation transporter-1 (OCT-

1) activity, although, like imatinib, it is a substrate for efflux proteins. Dasatinib is usually well 

tolerated, but grade 3–4 myelosuppression is common, especially in the advanced phases. Non-

haematological side effects include diarrhea, nausea, headache, peripheral edema and pleural 

effusion. However, resistance to dasatinib is a crucial emerging problem. Not surprisingly, the 

pre-existence or selection of the T315I mutant is the most frequent mechanism of resistance. In 

addition, the emergence of a F317L mutant, which is sensitive to imatinib, has been commonly 

observed in dasatinib-resistant patients. 
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Dasatinib is approved in the United States for patients with Ph+ ALL who have failed to respond 

to imatinib, and clinical trials evaluating its efficacy in patients with newly diagnosed Ph+ ALL 

are ongoing 2,34. 

Nilotinib (Tasignia, AMN107) 

The N-methylpiperazine moiety was originally incorporated into imatinib to improve its 

solubility and oral bioavailability. Substitution of this amide moiety with alternative binding 

groups, while maintaining hydrogen-bond interactions to Glu286 and Asp381, led to the 

discovery of a more potent compound, nilotinib (Tasignia, AMN107, Novartis).  

This highly specific BCR-ABL inhibitor is approximately 30-fold more potent than imatinib and 

is active in vitro against 32 of 33 BCR-ABL mutations, except the T315I mutant. It is a substrate 

for both OCT-1 and efflux proteins. It is superior to imatinib in reducing leukemic burden and 

prolonging the survival of mice transplanted with wild-type BCR-ABL, the M351T and E255V 

mutants. A phase I study of nilotinib in patients with imatinib-resistant CML and Ph+ ALL 

indicated that nilotinib had a relatively favorable safety profile, and responses were noted in a 

subset of adult patients with imatinib-resistant, Ph+ ALL. Specifically, 10% of patients who had 

hematologic relapses achieved a partial hematologic response, and 33% of patients with 

persistent molecular signs of ALL achieved complete molecular remission after nilotinib 

therapy. Myelosuppression was frequent, and common grade 3-4 nonhematologic toxicities 

included indirect hyperbilirubinemia, skin rashes and elevated serum lipase. A subsequent phase 

II study of nilotinib in relapsed or refractory Ph+ ALL reported that 24% patients attained a 

complete hematologic response (CHR). Data from studies in patients with CML indicate that 

BCR-ABL P-loop mutations (eg, tyrosine to phenylalanine or histidine mutation at codon 253 

[Y253F/H] or glutamic acid to methionine or valine mutation at codon 255 [E255K/V]) are 

resistant to nilotinib. Nilotinib is approved only for imatinib-resistant or imatinib-intolerant 

chronic-phase and accelerated-phase CML 2,120. 

Bosutinib (SKI-606;Wyeth) 

Another Src kinase-active TKI is bosutinib (SKI-606; Wyeth). It has a potent anti-proliferative 

activity against imatinib-sensitive and -resistant Bcr-Abl-positive cell lines, including the 

Y253F, E255K and D276G mutants, but not the T315I form. It is able to bind to both inactive 

and intermediate conformations of Bcr-Abl. Unlike dasatinib, bosutinib does not significantly 

inhibit Kit or PDGFR and has a more favourable toxicity profile. The main adverse events are 

commonly gastrointestinal, including diarrhea, whereas myelosuppression usually occurs only in 

the advanced phases 34.  
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The 9p21 chromosomal region is a frequent site of genetic loss in several human cancers, 

including solid tumors and hematologic malignancies. This region spans 40 kb of genomic DNA 

and has an unusual and complex genomic organization, encoding three important tumor 

suppressor genes (p16/CDKN2A, p14/ARF and p15/CDKN2B) involved in the regulation of cell 

cycle and/or apoptosis. Disruption of tumor suppressor genes and/or activation of oncogenic 

pathways by point-mutations, amplifications and phosphorylation result in constitutive mitogenic 

signalling and defective responses to anti-mitogenic stimuluses that contribute to unscheduled 

proliferation in tumor cells. Understanding and contrasting the causes of unlimited proliferation 

will allow us to fight the tumor cells. 

In literature several groups studied how the 9p21 chromosome band is inactivated in acute 

lymphoblastic leukemia (ALL), but most of them referred to a small cohort of patients, mainly 

pediatrics, and using low resolution methodologies. 

For example, traditional techniques, that have a limited number of probes, are not able to detect 

small deletions that often occur in this locus. 

To exceed these restraints, in this study, we performed high resolution Affymetrix single 

nucleotide polymorphism (SNP) arrays in 112 Ph+ ALL adult patients (pts) to: 

•   Explore the frequency and size of deletions on 9p21 affecting the CDKN2A/ARF/ 

CDKN2B gene in adult BCR-ABL1-positive ALL patients; 

•   Determine the main mechanism of inactivation of CDKN2A/ARF/ CDKN2B; 

•   Investigate whether the CDKN2A/ARF deletions have any prognostic value; 

We chose to investigate the frequency and role of 9p21 deletions in Ph+ ALL, since it represents 

the most frequent and the most unfavorable subtype of leukemia in adults. It has become clear 

that although BCR-ABL is responsible for transformation of a normal cell in a malignant cell, 

additional and cooperating events are required for leukemia progression. The identification of 

these genetic factors may lead to a more efficacious target therapies. 
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PATIENTS 

All patients gave informed consent to blood collection and biologic analyses, in agreement with 

the Declaration of Helsinki. The study was approved by the Department of Hematology and 

Oncological Sciences “Seràgnoli”. After obtaining informed consent, 112 adult BCR-ABL1-

positive ALL patients, enrolled from 1996 to 2008 in different clinical trials of GIMEMA 

(Gruppo I taliano Malattie EMatologiche dell'Adulto) Acute Leukemia Working Party or in 

Institutional protocols, were analyzed.  

101 (90%) were de novo ALL cases analyzed at the time of diagnosis, while 11 (10%) were 

relapse cases analyzed only at the time of treatment failure. In 19 cases out 101 (19%) both 

diagnosis and relapse samples were collected and thereafter analyzed (Tab. 3.1). 

 

Tab. 3.1. Demographics and Clinical Characteristics of patients with BCR-ABL1 positive ALL  analyzed for the 

genomic status of CDKN2A/ARF and CDKN2B. 

 

 

 
Newly diagnosed 
BCR-ABL1 ALL 

(n=101) 

Unpaired Relapse 
BCR-ABL1 ALL 

(n=11) 

Paired Relapsed 
BCR-ABL1 ALL 

(n=19) 

Age (median, range) 51 yrs (18-81) 44 yrs (18-65) 54 yrs (23-74) 

Gender (M/F) 56/45 6/5 10/9 

Blast cell count (%, range) 90 (18-99) 90 (20-96) 90 (25-99) 

BCR-ABL transcript 
        p190 
        p210 
        p190-p210 

 
74 (73%) 
20 (20%) 
7 (7%) 

 
5 (45%) 
5 (45%) 
1 (10%) 

 
11 (58%) 
8 (42%) 

- 

 

 

SINGLE NUCLEOTIDE POLYMORPHISM (SNP) MICROARRAY ANALYS IS 

Genomic DNA was extracted using the DNA Blood Mini Kit (Qiagen, Valencia, CA) from 

mononuclear cells isolated from peripheral blood or bone marrow aspirate samples by Ficoll 

gradient centrifugation. DNA was quantified using the Nanodrop Spectrophotometer and quality 

was assessed using the Nanodrop and by agarose gel electrophoresis. 
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83 samples (63 diagnosis, 20 relapse) were genotyped with GeneChip® Human Mapping 250K 

NspI and 48 samples (38 diagnosis, 10 relapse) with Genome-Wide Human SNP 6.0 array 

microarrays (Affymetrix Inc, Santa Clara, CA) following the manufacturer’s instructions, as 

briefly described in the workflow in the Figure 3.2 121.  

 

 

 

 

Fig. 3.2: Overview of the Genome-Wide Human SNP Assay 6.0.  Briefly, total genomic DNA (500 ng) is 

digested with Nsp I and Sty I restriction enzymes and ligated to adaptors that recognize the cohesive 4 bp overhangs. 

All fragments resulting from restriction enzyme digestion, regardless of size, are substrates for adaptor ligation. A 

generic primer that recognizes the adaptor sequence is used to amplify adaptor-ligated DNA fragments. PCR 

conditions have been optimized to preferentially amplify fragments in the 200 to 1,100 bp size range. PCR 

amplification products for each restriction enzyme digest are combined and purified using polystyrene beads. The 

amplified DNA is then fragmented, labeled and hybridized to the array. 

http://www.affymetrix.com/_media/images/assayimage.gif 

 

The new Affymetrix Genome-Wide Human SNP Array 6.0 features 1.8 million genetic markers, 

including more than 906,600 single nucleotide polymorphisms (SNPs) and more than 946,000 

probes for the detection of copy number variation. The high number of SNPs and non 

polymorphic probes (NNPs) enable to have a good coverage, spaced along the genome, with a 

median distance between markers of only 700 bp (Tab. 3.2).  

 



 

Tab. 3.2 Genome-Wide Human SNP Assay 6.0 features.

 

 

 

Copy number aberrations were scored using the segmentation

Partek Genomics Suite TM software package (http://www.partek.com/) as well as by visual 

inspection and by a comparison with a set of 270 H

samples obtained from 25 acute lymphoblastic leukaemia cases in remission in order to reduce 

the noise of raw copy number data. Affymetrix CEL files were also imported in and analyzed by 

dChip (www.dchip.org)122. Copy numbers per SNP marker were generated according to 

Mullighan et al.123 and imported into UCSC Genome Browser website (http://genome.ucsc.edu/) 

for visualization. In the Figure 

Genome-Wide Human SNP 6.0 array is shown. Loss of heterozygosity (LOH) was analyzed 

using Genotyping Console v3.1 (Affymetrix Inc.).

 

SNP Assay 6.0 features. 

 

Copy number aberrations were scored using the segmentation approach available within the 

Partek Genomics Suite TM software package (http://www.partek.com/) as well as by visual 

inspection and by a comparison with a set of 270 HapMap normal individuals and a set of 

samples obtained from 25 acute lymphoblastic leukaemia cases in remission in order to reduce 

the noise of raw copy number data. Affymetrix CEL files were also imported in and analyzed by 

. Copy numbers per SNP marker were generated according to 

and imported into UCSC Genome Browser website (http://genome.ucsc.edu/) 

the Figure 3.3 the probe density in CDKN2A/ANRIL/CDKN2B

Wide Human SNP 6.0 array is shown. Loss of heterozygosity (LOH) was analyzed 

using Genotyping Console v3.1 (Affymetrix Inc.). 
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approach available within the 

Partek Genomics Suite TM software package (http://www.partek.com/) as well as by visual 

apMap normal individuals and a set of 

samples obtained from 25 acute lymphoblastic leukaemia cases in remission in order to reduce 

the noise of raw copy number data. Affymetrix CEL files were also imported in and analyzed by 

. Copy numbers per SNP marker were generated according to 

and imported into UCSC Genome Browser website (http://genome.ucsc.edu/) 

CDKN2A/ANRIL/CDKN2B locus on 

Wide Human SNP 6.0 array is shown. Loss of heterozygosity (LOH) was analyzed 



 

 

Fig. 3.3 UCSC genome browser screenshot of a region on chromosome 9p21 (20

containing the CDKN2A and CDKN2B

locus (ANRIL or CDKN2BAS). Markers on Affymetrix SNP6.0 are shown as black lines on the  bottom of the 

figure. ANRIL overlaps the two exo

CDKN2A-ARF gene cluster. Exon 1 of 

1β of CDKN2A. Original image at 

bin/hgTracks?insideX=118&revCmplDisp=0&hgsid=187245851&hgt_doJsCommand=&hgt.out1=1.5x&position=c

hr9%3A21869592-

22072649&hgtgroup_map_close=0&hgtgroup_phenDis_close=1&hgtgroup_genes_close=0&hgtgroup_rna_close=0

&hgtgroup_expression_close=0&hgtgroup_regulation_close=0

al_close=0&hgtgroup_denisova_close=0&hgtgroup_varRep_close=0&hgtgroup_encodeGenes_close=0&hgtgroup_

encodeTxLevels_close=0&hgtgroup_encodeChip_close=0&hgtgroup_encodeChrom_close=0&hgtgroup_encodeCo

mpAndVar_close=1.  

  

Fig. 3.3 UCSC genome browser screenshot of a region on chromosome 9p21 (20

CDKN2B genes and a newly annotated  antisense noncoding RNA in the 

Markers on Affymetrix SNP6.0 are shown as black lines on the  bottom of the 

overlaps the two exons of CDKN2B and is transcribed in the orientation opposite to the 

gene cluster. Exon 1 of ANRIL is present about 300 bp upstream of the transcription start site of exon 

. Original image at http://genome.ucsc.edu/cgi

cks?insideX=118&revCmplDisp=0&hgsid=187245851&hgt_doJsCommand=&hgt.out1=1.5x&position=c

22072649&hgtgroup_map_close=0&hgtgroup_phenDis_close=1&hgtgroup_genes_close=0&hgtgroup_rna_close=0

&hgtgroup_expression_close=0&hgtgroup_regulation_close=0&hgtgroup_compGeno_close=0&hgtgroup_neandert

al_close=0&hgtgroup_denisova_close=0&hgtgroup_varRep_close=0&hgtgroup_encodeGenes_close=0&hgtgroup_

encodeTxLevels_close=0&hgtgroup_encodeChip_close=0&hgtgroup_encodeChrom_close=0&hgtgroup_encodeCo
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Fig. 3.3 UCSC genome browser screenshot of a region on chromosome 9p21 (20,283,199-20,587,785) 

genes and a newly annotated  antisense noncoding RNA in the INK4 

Markers on Affymetrix SNP6.0 are shown as black lines on the  bottom of the 

and is transcribed in the orientation opposite to the CDKN2B-

is present about 300 bp upstream of the transcription start site of exon 

http://genome.ucsc.edu/cgi-

cks?insideX=118&revCmplDisp=0&hgsid=187245851&hgt_doJsCommand=&hgt.out1=1.5x&position=c

22072649&hgtgroup_map_close=0&hgtgroup_phenDis_close=1&hgtgroup_genes_close=0&hgtgroup_rna_close=0

&hgtgroup_compGeno_close=0&hgtgroup_neandert

al_close=0&hgtgroup_denisova_close=0&hgtgroup_varRep_close=0&hgtgroup_encodeGenes_close=0&hgtgroup_

encodeTxLevels_close=0&hgtgroup_encodeChip_close=0&hgtgroup_encodeChrom_close=0&hgtgroup_encodeCo
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FLUORESCENCE IN SITU HYBRIDIZATION (FISH) AND PROBE S 

FISH analysis was performed as previously described124. Briefly, chromosome preparations from 

bone marrow cells were hybridized in situ with 1 µg of probe labeled by nick translation. 

Hybridization was performed at 37°C in 2X SSC, 50% (vol/vol) formamide, 10% (wt/vol) 

dextran sulfate, 5 µg COT1 DNA (Bethesda Research Laboratories, Gaithersburg, MD, USA), 

and 3 µg sonicated salmon sperm DNA in a volume of 10 µL. Post-hybridization washing was 

performed at 60°C in 0.1X SSC (three times). In cohybridization experiments, the probes were 

directly labeled with Fluorescein and Cy3. Chromosomes were identified by DAPI staining. 

Digital images were obtained using a Leica DMRXA epifluorescence microscope equipped with 

a cooled CCD camera (Princeton Instruments, Boston, MA). Cy3 (red; New England Nuclear, 

Boston, MA, USA), fluorescein (green; Fermentas Life Sciences, Milan, IT), and DAPI (blue) 

fluorescence signals, which were detected using specific filters, were recorded separately as 

gray-scale images. Pseudocoloring and merging of images were performed with Adobe 

Photoshop software.  

Bacterial artificial chromosome (BAC) [RP11-70L8 (Accession Number 

AL359922)(chr9:21,732,609-21,901,258), RP11-149I2 (Accession Number 

AL449423)(chr9:21,899,259-22,000,413), and RP11-145E5 (Accession Number AL354709) 

(chr9:21,998,414-22,155,946)] and fosmid [G248P82557D2 (Accession Number WIBR2-

1053H3) (chr9:21,975,653-22,011,179), and G248P82010F5 (Accession Number WIBR2-

1034K10) (chr9:21,926,491-21,967,852)] probes, specific for the MTAP-CDKN2A-CDKN2B 

locus, as well as a BAC for BCR gene [RP11-164N13 (chr22:21,897,904-22,091,572)], were 

properly selected accordingly to the March 2006 release of the University Santa Cruz (UCSC) 

Human Genome Browser (http://genome.ucsc.edu/cgi-

bin/hgGateway?hgsid=169374627&clade=mammal&org=Human&db=hg18). 

 

CDKN2A GENE EXPRESSION LEVELS  

Total cellular RNA was extracted using the RNeasy total RNA isolation kit (Qiagen, Valencia, 

CA) and one microgram was reverse transcribed using the High Capacity cDNA Archive Kit 

(Applied Biosystems, Foster City, CA). Quantitative Polymerase chain reaction (PCR) analysis 

was performed using Hs00924091_m1 assay (Applied Biosystems) and the Fluidigm Dynamic 

Array 48 x 48 system, a real-time quantitative PCR assay which enables to automatically 

assemble 48 samples and 48 assays to create individual TaqMan reactions of a final volume of 

6.75 nanolitres each (Fluidigm, San Francisco, CA, http://www.fluidigm.com/). The Fluidigim 



 

BioMark system (Fig. 3.4-A) provides orders of magnitude higher throughput for real

quantitative PCR compared to con

chips that contain fluidic networks that automatically combine sets of samples with sets of 

assays.  

 

Fig 3.4 (A) The BioMark Real-Time PCR system

position of the sample inlets and the detector inlets in which the gene expression assay reagents are added. The 

check valves allow pressure to be applied and released. The accumulators provide reservoirs to hold the pressure and 

keep the valves closed during the reaction. The integrated Fluidic Circuit (IFC) is in the center of the chip. This is a 

network of fluid lines, NanoFlex™ valves and reaction chambers. The insert shows a blow

IFC with one of the 2304 individual reac

interface valve (IV) There are two containment valves and one interface valve associated with each reaction 

chamber.  

 

The BioMark cassette works using thousands of NanoFlex(TM) valves to fi

individual reactions from a matrix of samples and primers. 

Array (Fig 3.4-B) systematically combine 48 samples and 48 assays in 

reactions, of final reaction volume of 

placed on the BioMark Real Time PCR system for thermal cycling and real

detection. To examine, annotate, and archive the data (Fig. 3.5), the BioMark Real Time 

Analysis Software was used. 

A) provides orders of magnitude higher throughput for real

quantitative PCR compared to conventional platforms due to its dynamic arrays

chips that contain fluidic networks that automatically combine sets of samples with sets of 

 

Time PCR system. (B) Photograph of a 48x48 dynamic array chip

position of the sample inlets and the detector inlets in which the gene expression assay reagents are added. The 

check valves allow pressure to be applied and released. The accumulators provide reservoirs to hold the pressure and 

closed during the reaction. The integrated Fluidic Circuit (IFC) is in the center of the chip. This is a 

network of fluid lines, NanoFlex™ valves and reaction chambers. The insert shows a blow

IFC with one of the 2304 individual reaction chambers (RC) and the associated containment valves (CV) and 

interface valve (IV) There are two containment valves and one interface valve associated with each reaction 

The BioMark cassette works using thousands of NanoFlex(TM) valves to fi

individual reactions from a matrix of samples and primers. Particularly, t

B) systematically combine 48 samples and 48 assays in 

reactions, of final reaction volume of 6.75 nanolitres each. After setup, the dynamic array is 

placed on the BioMark Real Time PCR system for thermal cycling and real

detection. To examine, annotate, and archive the data (Fig. 3.5), the BioMark Real Time 
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A) provides orders of magnitude higher throughput for real-time 

ventional platforms due to its dynamic arrays—nanofluidic 

chips that contain fluidic networks that automatically combine sets of samples with sets of 

 

48x48 dynamic array chip showing the 

position of the sample inlets and the detector inlets in which the gene expression assay reagents are added. The 

check valves allow pressure to be applied and released. The accumulators provide reservoirs to hold the pressure and 

closed during the reaction. The integrated Fluidic Circuit (IFC) is in the center of the chip. This is a 

network of fluid lines, NanoFlex™ valves and reaction chambers. The insert shows a blow-up of a portion of the 

tion chambers (RC) and the associated containment valves (CV) and 

interface valve (IV) There are two containment valves and one interface valve associated with each reaction 

The BioMark cassette works using thousands of NanoFlex(TM) valves to fill thousands of 

Particularly, the 48x48 Dynamic 

B) systematically combine 48 samples and 48 assays in 2.304 real-time qPCR 

. After setup, the dynamic array is 

placed on the BioMark Real Time PCR system for thermal cycling and real-time fluorescence 

detection. To examine, annotate, and archive the data (Fig. 3.5), the BioMark Real Time 



 

Fig 3.5 The BioMark Real Time Software generated image

obtained after thermal cycling of the chip. Each of the squares represents 1 reaction chamber from the chip. The 

color indicates the CT value according to the lege

on a cell, corresponding to a single reaction, its data and graph curves are activated (right).

 

RNA integrity was confirmed

which is expressed ubiquitously in human hematopoietic cells. Results were expressed as 2exp(

∆∆Ct). GraphPad Prism 5 software (GraphPad, Avenida de la Playa La Jolla, CA USA) was 

used to determine the statistical significance of 

patients and to plot the data for 

 

CDKN2A/ARF AND CDKN2

Genomic re-sequencing of all coding exons of 

search of mutations using primers listed in Table 1S. Two diff

used in a final reaction of 25 

Biosystems) each PCR reaction was performed using: 30

primers; 10X PCR Gold Buffer; 2.5 mM MgCl2; 200 

Gold DNA Polymerase; water to

(Roche, Mannheim, Germany), each PCR reaction was performed using: 30

DNA; 25 pmoli of primers; 10X PCR Buffer; 2.5 mM MgCl2 Solution; 200 

FastStart Taq DNA Polymerase;

 

 

e BioMark Real Time Software generated image (left), heat map, of a 48x48 dynamic array chip 

obtained after thermal cycling of the chip. Each of the squares represents 1 reaction chamber from the chip. The 

value according to the legend shown on the right. Black chambers indicate a C

on a cell, corresponding to a single reaction, its data and graph curves are activated (right).

RNA integrity was confirmed by PCR amplification of the GAPDH mRNA (Hs99999905_m1), 

xpressed ubiquitously in human hematopoietic cells. Results were expressed as 2exp(

GraphPad Prism 5 software (GraphPad, Avenida de la Playa La Jolla, CA USA) was 

used to determine the statistical significance of CDKN2A expression levels in differen

patients and to plot the data for the figure 4.4. 

CDKN2B POINT MUTATION SCREENING

sequencing of all coding exons of CDKN2A/ARF and CDKN2

search of mutations using primers listed in Table 1S. Two different Taq DNA polymerases were 

used in a final reaction of 25 µl. For AmpliTaq Gold DNA Polymerase LD protocol (Applied 

Biosystems) each PCR reaction was performed using: 30-50 ng of genomic DNA; 25 pmoli of 

primers; 10X PCR Gold Buffer; 2.5 mM MgCl2; 200 µM dNTPs; DMSO 2.5%; 1U AmpliTaq 

Gold DNA Polymerase; water to final volume. For Fast Start Taq DNA Polymerase protocol 

(Roche, Mannheim, Germany), each PCR reaction was performed using: 30

DNA; 25 pmoli of primers; 10X PCR Buffer; 2.5 mM MgCl2 Solution; 200 

FastStart Taq DNA Polymerase; water to final volume (Tab. 3.3).  
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of a 48x48 dynamic array chip 

obtained after thermal cycling of the chip. Each of the squares represents 1 reaction chamber from the chip. The 

nd shown on the right. Black chambers indicate a CT>40. Clicking 

on a cell, corresponding to a single reaction, its data and graph curves are activated (right). 

mRNA (Hs99999905_m1), 

xpressed ubiquitously in human hematopoietic cells. Results were expressed as 2exp(-

GraphPad Prism 5 software (GraphPad, Avenida de la Playa La Jolla, CA USA) was 

expression levels in different groups of 

POINT MUTATION SCREENING  

CDKN2B was performed in 

erent Taq DNA polymerases were 

l. For AmpliTaq Gold DNA Polymerase LD protocol (Applied 

50 ng of genomic DNA; 25 pmoli of 

M dNTPs; DMSO 2.5%; 1U AmpliTaq 

final volume. For Fast Start Taq DNA Polymerase protocol 

(Roche, Mannheim, Germany), each PCR reaction was performed using: 30-50 ng of genomic 

DNA; 25 pmoli of primers; 10X PCR Buffer; 2.5 mM MgCl2 Solution; 200 µM dNTPs; 1U 
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Gene Exon Sequence (5’→3’) Tm 
(C°) 

Amplicon 
size (bp) 

DNA 
polymerase 

PCR 
protocol 

(*) 

CDKN2A 1α AGTCCTCCTTCCTTGCCAAC 60.63 
508 

AmpliTaq 
Gold  

95° x 30" 
62° x 30" 
72° x 50" 

CDKN2A 1α CGCTGCAGACCCTCTACC 59.53 40 cycles 

CDKN2A 

sequencing 
1α GCTGCAGACCCTCTACCC 58.32 -  

 

ARF 1β TGCTCACCTCTGGTGCCAAAG 58.60 
218 FastStart 

95° x 30" 
60° x 30" 
72° x 30" 

ARF 1β CTCAGTAGCATCAGCACGAGG 58.60 35 cycles 

CDKN2A/ARF 2 CCTGGCTCTGACCATTCTGT 60.26 
421 

AmpliTaq 
Gold  

95° x 30" 
63° x 30" 
72° x 1' 

CDKN2A/ARF 2 GGCTGAACTTTCTGTGCTGG 60.98 40 cycles 

CDKN2A/ARF 3 TACATGCACGTGAAGCCATT 60.14 
685 FastStart 

95° x 30" 
62° x 30" 
72° x 1' 

CDKN2A/ARF 3 TCTTCCATGCGATGAAATTG 59.62 40 cycles 

CDKN2B 1 TGAAAACGGAATTCTTTGCC 60.05 
632 FastStart 

95° x 30" 
62° x 30" 
72° x 1' 

CDKN2B 1 ACATCGGCGATCTAGGTTCC 61.38 35 cycles 

CDKN2B 2 GGCTCTGACCACTCTGCTCT 59.74 
463 FastStart 

95° x 30" 
62° x 30" 
72° x 1' 

CDKN2B 2 ATGGAAGGTTATTCCCGGTC 60.02 35 cycles 

 
 
Tab. 3.3 Primers used for amplification of CDKN2A/ARF and CDKN2B genes, and relative PCR protocol. (*) 

Protocols with AmpliTaq Gold polymerase involve an initial denaturation of 7’ at 95°C, whereas protocols with 

FastStart polymerase involve an initial denaturation of 5’ at 95°C. Both polymerase have an extension of 7’ at 72°C. 

 
PCR products were purified using QIAquick PCR purification kit (Qiagen) and then directly 

sequenced using an ABI PRISM 3730 automated DNA sequencer (Applied Biosystems, Foster 

City, CA) and a Big Dye Terminator DNA sequencing kit (Applied Biosystems, Foster City, 

CA). In some cases the PCR products were sub-cloned into the PCR®2.1-TOPO vector using the 

TOPO TA Cloning Kit (Invitrogen, San Diego, CA). The cloned PCR products were purified and 

sequenced as described above. All sequence variations were detected by comparison using the 

BLAST software tool (www.ncbi.nlm.nih.gov/BLAST/) to reference genome sequence data 

(GenBank accession number NM_000077.4, NM_058195.3 e NM_004936, for CDKN2A, ARF, 



 

CDKN2B, respectively) obtained from t

bin/hgGateway?db=hg18; March 2006 release). 

 

MUTATION SCREENING IN 

Almost 2ml of saliva samples were collected from 5 patients and mixed with 2 ml DNA

preserving solution contained in the 

Format, DNA Genotek Inc., Kanata, Ontario, Canada 

instructions (Fig. 3.7) and stored at room temperature or 

 

Fig. 3.6 Oragene® DNA Self-Collection Kit (

provides an all-in-one system for the collection, stabilization, transportation and purification of DNA from saliva. 

The kit contains a tube with 2 ml Oragene DNA solution in the 

removing the funnel; a multilanguage donor user instructions

 

Fig. 3.7 Oragene® DNA Self-Collection Kit User Instructions. (a) 

reaches the fill line; (b) Close lid by pushing down hard on the funnel lid. The liquid in it will be released into the 

tube to mix with the saliva; (c) Unscrew the tube from the funnel; 

) obtained from the UCSC browser (http://genome.ucsc.edu/cgi

bin/hgGateway?db=hg18; March 2006 release).  

MUTATION SCREENING IN SALIVA SAMPLES 

Almost 2ml of saliva samples were collected from 5 patients and mixed with 2 ml DNA

preserving solution contained in the Oragene® DNA Self-Collection Kit Oragene (

k Inc., Kanata, Ontario, Canada - Fig. 3.6), according to the manufacturer's 

and stored at room temperature or -20°C till DNA extraction

 

 

Collection Kit (OG-500 DNA Tube Format). The OG

one system for the collection, stabilization, transportation and purification of DNA from saliva. 

The kit contains a tube with 2 ml Oragene DNA solution in the funnel lid; a small cap to close the tube after 

removing the funnel; a multilanguage donor user instructions sheet. 

Collection Kit User Instructions. (a) Spit until the amount of saliva (not bubbles) 

ose lid by pushing down hard on the funnel lid. The liquid in it will be released into the 

Unscrew the tube from the funnel; (d) Close tube tightly with small cap and mix.
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he UCSC browser (http://genome.ucsc.edu/cgi-

Almost 2ml of saliva samples were collected from 5 patients and mixed with 2 ml DNA-

Oragene (OG-500 Tube 

, according to the manufacturer's 

20°C till DNA extraction. 

 

The OG-500 DNA Collection Kit 

one system for the collection, stabilization, transportation and purification of DNA from saliva. 

nel lid; a small cap to close the tube after 

 

Spit until the amount of saliva (not bubbles) 

ose lid by pushing down hard on the funnel lid. The liquid in it will be released into the 

Close tube tightly with small cap and mix. 
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Briefly, the vials were incubated for 1 hours and 30 minutes in a 50°C water incubator and then 

could be stored at room temperature or frozen (-15°C to -20°C), or it could be immediately 

processed. In this case, 500 µl of the mixed Oragene DNA/saliva sample were transferred to a 

1.5 ml microcentrifuge tube, then 20 µl (1/25th volume) of Oragene DNA Purifier (OG-L2P, 

supplied) were added to it and were mixed by vortexing for a few seconds, before incubating on 

ice for 10 minutes. The samples were then centrifuged for 8 min at 13,000 rpm (15,000 × g) at 

room temperature and supernatants were transferred to new microcentrifuge tubes and discard 

the pellet containing impurities. 500 µl of room-temperature 95-100% ethanol were added to 500 

µl of supernatant (an equal volume) and mixed gently by inversion 10 times. The samples were 

then centrifuged for 2 min at 13,000 rpm at room temperature, supernatants were discarded. 250 

µl of 70% ethanol were added for 1 minute and carefully removed. DNA’s pellets were dissolved 

in 30-50 µL AE buffer (Qiagen, Valencia, CA). The DNA samples were stored at −20°C until 

PCR analysis. DNA yield and purity were determined by measuring the absorbance at 260 nm 

(A260) and the ratio of absorbance at 260 nm and 280 nm (A260/A280) at the Nanodrop 

Spectrophotometer. The quality of DNA was confirmed by running 100 ng hydrated DNA on a 

1% agarose gel. 

 

STATISTICAL ANALYSIS 

Differences in the distributions of prognostic factors in subgroups were analyzed by χ2 or 

Fisher’s exact test, and by Kruskal-Wallis test. Median follow-up time was estimated by 

reversing the codes for the censoring indicator in a Kaplan-Meier analysis 125. Overall Survival 

was defined as the time from diagnosis to date of death or date of the last follow-up. DFS and 

Cumulative Incidence of Relapse were calculated from the time of achieving CR to date of first 

relapse, death or date of last follow-up. The probabilities of OS and DFS were estimated using 

the Kaplan-Meier method 125 and the probability of Cumulative Incidence 126 of relapse was 

estimated using the appropriate non-parametric method, considering death in CR as competing 

risk. The log-rank test was used to compare treatment effect and risk factor categories for the 

Kaplan-Meier curves and the Gray test for the Incidence curves. Confidence intervals where 

estimated (95% CIs) using the Simon and Lee method 127.  

Cox proportional hazard regression model 128 was performed to examine and check for treatment 

results and the risk factors affecting Disease Free Survival. 

All tests were 2-sided, accepting p ≤0.05 as indicating a statistically significant difference. All 

analyses where performed using the SAS software (SAS Institute, Cary, NC).  
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4. RESULTS 
 

 

 

 

 

 

 

 

  



 

SNP microarray analysis detects frequent and recurrent deletions in CDK

CDKN2B genes at diagnosis and during leukemia progression

In order to detect the frequency and size of deletions occurring at 9p21 locus in 

positive ALL, data generated by high

diagnosis (n=82), relapse (n=11) or at both time points (n=19). At diagnosis, 

ANRIL genomic alterations were identified in 29 (29%) patients. 

about 300 bp upstream of the transcription start site of exon 1

its 5‘ end the two exons of CDKN2B. 

two exons of CDKN2B. Deletions were monoalleli

median of 1,012 kb in size (range, 2.8

CDKN2A/ANRIL/CDKN2B losses, the minimal overlapping region of the lost area spanned only 

the two genes, but more often (12/29, 57%) the l

sometimes (3/29, 10%) over the entire short chromosome arm eliminating

genes (Fig. 4.1-A). In contrast, cases with bi

majority of deletions (6/8, 75%) 

 

A 

SNP microarray analysis detects frequent and recurrent deletions in CDK

CDKN2B genes at diagnosis and during leukemia progression 

In order to detect the frequency and size of deletions occurring at 9p21 locus in 

positive ALL, data generated by high-resolution SNP arrays were analyzed in adult patients a

diagnosis (n=82), relapse (n=11) or at both time points (n=19). At diagnosis, 

genomic alterations were identified in 29 (29%) patients. ANRIL ha

about 300 bp upstream of the transcription start site of exon 1β of CDKN2A

CDKN2B. In 25 patients (25%) genomic deletions also included the 

. Deletions were monoallelic in the majority of cases (72%) with a 

median of 1,012 kb in size (range, 2.8-31,319 kb). In 9/29 (43%) patients with 

losses, the minimal overlapping region of the lost area spanned only 

the two genes, but more often (12/29, 57%) the loss was considerable larger and extended 

sometimes (3/29, 10%) over the entire short chromosome arm eliminating

A). In contrast, cases with bi-allelic inactivation were 8/29 (28%) with the 

majority of deletions (6/8, 75%) limited to CDKN2A/ANRIL/CDKN2B genes (Fig.
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SNP microarray analysis detects frequent and recurrent deletions in CDKN2A, ANRIL and 

In order to detect the frequency and size of deletions occurring at 9p21 locus in BCR-ABL1 

resolution SNP arrays were analyzed in adult patients at 

diagnosis (n=82), relapse (n=11) or at both time points (n=19). At diagnosis, CDKN2A and 

has a first exon located 

CDKN2A and overlapping at 

25 patients (25%) genomic deletions also included the 

c in the majority of cases (72%) with a 

31,319 kb). In 9/29 (43%) patients with 

losses, the minimal overlapping region of the lost area spanned only 

oss was considerable larger and extended 

sometimes (3/29, 10%) over the entire short chromosome arm eliminating a large number of 

allelic inactivation were 8/29 (28%) with the 

genes (Fig. 4.1-B).  

 



 

Fig. 4.1. Schematic representation of heterozygous (A) and homozygous (B) deletions

genomic locus in adult BCR-ABL1 positive ALL patients. Gray bars indicate large deletions ex

CDKN2A/ANRIL/ARF genes; black bars indicate small deletions spanning only the 

schematic position and size of MTAP, CDKN2A, ANRIL

 

 

Next, in order to investigate whe

involved in disease progression, the genomic status of the 9p21 locus was assessed at the time of 

relapse in 30 patients (11 unpaired and 19 paired relapsed cases). In an unpaired analysis, an 

almost significant increase in the detection rate of 

(29%) (p = 0.06) was found by a non parametric 

we found that both at diagnosis and relapse deletions were heterozygous in 

(72% vs 28%) (Tab. 4.1).  

  

B 

 

 

Fig. 4.1. Schematic representation of heterozygous (A) and homozygous (B) deletions

ABL1 positive ALL patients. Gray bars indicate large deletions ex

genes; black bars indicate small deletions spanning only the CDKN2A/ANRIL/ARF

MTAP, CDKN2A, ANRIL and CDKN2B genes are also reported as white bars

Next, in order to investigate whether the deletions of CDKN2A/ANRIL/CDKN2B

involved in disease progression, the genomic status of the 9p21 locus was assessed at the time of 

relapse in 30 patients (11 unpaired and 19 paired relapsed cases). In an unpaired analysis, an 

significant increase in the detection rate of CDKN2A loss (47%) compared to diagnosis 

(29%) (p = 0.06) was found by a non parametric t-test. When we analyzed the type of deletion, 

we found that both at diagnosis and relapse deletions were heterozygous in 

 

66 

 

Fig. 4.1. Schematic representation of heterozygous (A) and homozygous (B) deletions occurring on 9p21 

ABL1 positive ALL patients. Gray bars indicate large deletions extending over the 

CDKN2A/ANRIL/ARF genes. A 

genes are also reported as white bars 

CDKN2A/ANRIL/CDKN2B genes could be 

involved in disease progression, the genomic status of the 9p21 locus was assessed at the time of 

relapse in 30 patients (11 unpaired and 19 paired relapsed cases). In an unpaired analysis, an 

loss (47%) compared to diagnosis 

test. When we analyzed the type of deletion, 

we found that both at diagnosis and relapse deletions were heterozygous in the majority of cases 
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Diagnosis 
(n = 101) % Relapse 

(n = 30) % 

CDKN2A 

Deletion 

Heterozygous 21 20.8 10 33.3 

Homozygous 8 7.9 4 13.3 

Total 29 28.7 14 46.6 

ANRIL 

Deletion 

Heterozygous 23 22.8 10 33.3 

Homozygous 6 5.9 3 10.0 

Total 29 28.7 13 43.3 

CDKN2B 

Deletion 

Heterozygous 19 18.8 9 30.0 

Homozygous 6 5.9 3 10.0 

Total 25 24.8 12 40 

 

 

Tab. 4.1. Deletion rates of CDKN2A/ANRIL/CDKN2B at diagnosis and relapse. 101 patients were analyzed at 

diagnosis, whereas 11 patients (including paired and unpaired cases) were analyzed at the time of relapse. The table 

shows the numbers and percentages of BCR-ABL1-positive ALL patients with heterozygous and homozygous 

deletions at diagnosis and at relapse. 

 

 

FISH analysis confirmed large deletions 

FISH experiments with BACs and fosmids encompassing the whole MTAP-CDKN2A-CDKN2B 

locus (Fig. 4.2-A) were performed in six BCR-ABL1-positive ALL patients, in order to confirm 

the deletion disclosed by SNP array analysis. 

The deletion was detected (at FISH resolution) in two cases, as all the used MTAP-CDKN2A-

CDKN2B probes were shown to be heterozygously deleted on chromosome der(9) in Ph+ 

metaphases [identified by the splitting signal of RP11-164N13, observed respectively on der(9) 

and Ph chromosomes] (Fig. 4. 2-B,C and data not shown).  

The same probes failed to identify the deletion in the other four patients under study (data not 

shown), due to the limited size of the deletion spanning only the two genes and behind the limits 

of FISH resolution, as verified by SNP array. 
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Fig. 4.2 (A) Map of the clones used in FISH experiments to detect MTAP-CDKN2A-CDKN2B deletions, showing 

BACs, fosmids, and genes respectively with red, blue, and green bars. (B) and (C) FISH results obtained in patients 

#1 and #2, respectively, showing a MTAP-CDKN2A-CDKN2B heterozygous deletion. (B) Only one fluorescent 

signal of both BACs (on the left) and fosmids (on the right) observed on normal chromosome 9 in Ph positive 

metaphases (as shown by the three signals of RP11-164N13); (C) Colocalization of all the MTAP-CDKN2A-

CDKN2B BAC probes only on normal chromosome 9. No signal on der(9).  

 

 

Deletions lead to a down-expression of CDKN2A levels 

In order to investigate the functional consequences of genomic deletions affecting the 9p21 

locus, the CDKN2A transcript levels were assessed by quantitative RT-PCR in three different 

groups of BCR-ABL1 positive ALL patients: 1) CDKN2A wild-type cases (n = 18); 2) CDKN2A 

heterozygous deleted cases (n = 5); 3) CDKN2A homozygous deleted cases (n = 7). The 

Hs00924091_m1 assay (Applied Biosystems) amplifying the 1-2 exon boundary of CDKN2A 

(reference sequence NM_058195.3) was used. Results showed a significant decrease of the 

expression of CDKN2A in heterozygous deleted cases (p = 0.04) and in homozygous deleted 

cases (p = 0.01) compared to cases without deletion. The median CDKN2A expression level 

expressed as 2exp(-∆∆ct) in diploid cases was 2.86 (range, 0.81-14.41) versus 0.19 (range, 0.10-

0.53) and 0.004 (range, 0.0003-0.0653) of cases with mono-allelic and bi-allelic losses, 

respectively (Fig. 4.3).  



 

 

Fig. 4.3 Expression levels of CDKN2A

heterozygous CDKN2A deletion; 3) homozygous 

parametric t-test was used to compare group 1 

group 3 (p = 0.004).  

 

A significant difference in the expression of 

heterozygous and homozygous deletions (

lead to CDKN2A haploinsufficiency. 

 

CDKN2A/ARF and CDKN2B mutation screening

9p21 locus can be inactivated in many tumors due to several mechanisms in addition to 

deletions, such as hypermethylation of promoter regions and inactivating mutations. Since 

hypermethylation is a rare event in acute lymphoblastic leukemia

investigate the frequency of point mutations occurring in 

address this issue, a mutation screening o

and 3) and CDKN2B (exons 1 and 2) genes was successfully performed on patients who were 

known to have retained by SNP array at least one 

type (Tab. 4.2).  

  

CDKN2A in BCR-ABL1 positive ALL patients with: 1) wild

deletion; 3) homozygous CDKN2A deletion. Results are expressed as 2exp(

test was used to compare group 1 vs group 2 (p = 0.04), group 1 vs group 3 (p = 0.01) and group 2 

A significant difference in the expression of CDKN2A was also observed among cases with 

heterozygous and homozygous deletions (p = 0.004). Overall, these results suggest that deletions 

haploinsufficiency.  

mutation screening 

9p21 locus can be inactivated in many tumors due to several mechanisms in addition to 

deletions, such as hypermethylation of promoter regions and inactivating mutations. Since 

tion is a rare event in acute lymphoblastic leukemia65,66,84,91

investigate the frequency of point mutations occurring in CDKN2A/ARF and 

address this issue, a mutation screening of all coding exons of CDKN2A/ARF 

(exons 1 and 2) genes was successfully performed on patients who were 

known to have retained by SNP array at least one CDKN2A/CDKN2B allele or who were wild

 

69 

 

with: 1) wild-type CDKN2A; 2) 

deletion. Results are expressed as 2exp(-∆∆ct). Non-

group 3 (p = 0.01) and group 2 vs 

was also observed among cases with 

= 0.004). Overall, these results suggest that deletions 

9p21 locus can be inactivated in many tumors due to several mechanisms in addition to 

deletions, such as hypermethylation of promoter regions and inactivating mutations. Since 
65,66,84,91, here we aimed to 

and CDKN2B genes. To 

A/ARF (exons 1α, 1β, 2 

(exons 1 and 2) genes was successfully performed on patients who were 

ele or who were wild-
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CDKN2A Ex 1α 

    N  % 

Diagnosis (n = 30) 
  

WT 5 16.7 

5’ UTR 21965017 A 11 36.6 

5’ UTR 21965017 G/A 14 46.7 

All mutated pts   25 83.3 

Relapse (n = 10) 
 
  
  

WT 1 10.0 

5’ UTR 21965017 A 2 20.0 

5’ UTR 21965017 G/A 6 60.0 

5’ UTR 21964851 C/T 1 10.0 

All mutated pts   9 90.0 

ARF Ex 1β 

 
  N  % 

Diagnosis (n = 35) WT 35 100.0 

Relapse (n = 12) WT 12 100.0 

CDKN2A/ARF 
 Ex 2 

 
  N  % 

 Diagnosis (n = 32) 
  
  
  

WT 24 75.0 

rs3731249 A A148T 1 3.0 

rs3731249 G/A A148T 5 16.0 

D146NCDKN2A/ 3’UTRARF 

21960922  
1 3.0 

R128CDKN2A/3’ UTRARF 

21960974 
1 3.0 

All mutated pts   2 6.3 

Relapse (n = 12)  WT 12 100.0 

CDKN2A/ARF 
 Ex 3 

 
  N  % 

 Diagnosis  (n = 36) 
  
  

WT 2 6.0 

3’ UTR rs11515 C 22 67.0 

3’ UTR rs11515 C/G 11 34.0 

3’ UTR rs11515 C 
3’ UTR rs3088440 C/T 

1 3.0 

Relapse (n = 11) WT 0 0 

  
  
  

3’ UTR rs11515 C 8 80.0 

3’ UTR rs11515 C/G 2 20.0 

3’ UTR rs3088440 C/T 1 10.0 

CDKN2B Ex 1 
 

  N  % 

Diagnosis  (n = 42) WT 42 100.0 

Relapse (n = 14) WT 14 100.0 

CDKN2B Ex 2 

 
  N  % 

Diagnosis  (n = 42) 
WT 41 97,6 

P83 1 2,4 

Relapse (n = 15) WT 15 100,0 

 

 

Tab. 4.2. Amplification and sequencing of CDKN2A/B in BCR-ABL1-positive ALL patients (pts) at diagnosis 

and relapse; results including wild-type (WT) or mutated sequenze are reported for each exon (Ex). 
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Samples tested were from diagnosis (n = 30 for exon 1α of CDKN2A; n = 35 for exon 1β of 

CDKN2A; n = 32 for exon 2 of CDKN2A; n = 36 for exon 3 of CDKN2A; n = 42 for exon 1 and 

2 of CDKN2B) and relapse (n = 10 for exon 1α of CDKN2A; n = 12 for exon 1β of CDKN2A and 

exon 2 of CDKN2A; n = 11 for exon 3 of CDKN2A; n = 14 for exon 1 of CDKN2B; n = 14 for 

exon 2 of CDKN2B). Amplification and sequencing results showed that in the analyzed subset of 

patients non-synonymous point mutations in coding exons are rare with only one patient 

harboring a somatic non-synonymous mutation. This was detected in a diagnosed sample and 

involved a base substitution of G >A in exon 2 of CDKN2A at codon 146, that resulted in a 

substitution of aspartic acid in asparagine (D146N). A base substitution of G >A in the same 

exon at codon 128 was identified in another case but it resulted in a synonymous substitution of 

arginine (R128). Additional mutations have been identified in the 5’ untraslated region (UTR) of 

CDKN2A exon 1α at position 21965017, 191 bp before the start codon, 

(http://genome.ucsc.edu/cgi-bin/hgGateway?db=hg18; March 2006 release) with a heterozygous 

substitution of G > A in 46.7% of diagnosis patients and in 60.0% of relapse cases. This 

substitution was homozygous in 36.6 % of diagnosis cases and in 20.0% of relapse cases. In the 

same region but at position 21964851, 25 bp before the start codon, a heterozygous substitution 

of C >T was found in only one patient at relapse (10%). Frequent nucleotide variations were 

identified in exons 2 and 3 of CDKN2A but they resulted in known SNP after comparison with 

the database dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). These variations include the 

following known single nucleotide polymorphisms: rs3731249 G/A, rs11515 C/G and rs3088440 

C/T. The rs3731249 G/A is located in the exon 2 of CDKN2A and it is responsible for a non-

synonymous substitution of alanine with threonine at codon 148. The rs11515 C/G and 

rs3088440 C/T polimorphisms are located in the 3’ UTR. The first and second exons of 

CDKN2B resulted wild-type, except for the silent mutation at codon 83 (P83) identified in one 

case at diagnosis (Tab. 4.2 and Fig. 4.4). 

 



 

 

 

Fig. 4.4 Electropherograms of mutations identified

CDKN2A/ARF/CDKN2B genes. For each mutation an electropherogram showing five nucleotides with the starred 

mutated base in the middle is showed in the first column. The wild

Overall we identified the following mutations: two nucleotide

CDKN2A; one substitution at genomic position 21960922 corresponding to a non

the exon 2 of CDKN2A and a variation in the 3’UTR of 

corresponding to a synonymous mutation of 

mutation in the exon 2 of CDKN2B. 

  

Electropherograms of mutations identified by PCR and subsequent sequencing of 

For each mutation an electropherogram showing five nucleotides with the starred 

mutated base in the middle is showed in the first column. The wild-type alleles are reported in the second column. 

Overall we identified the following mutations: two nucleotide substitutions in the 5’ untraslated region (UTR) of 

; one substitution at genomic position 21960922 corresponding to a non-synonymous mutation (D146N) in 

and a variation in the 3’UTR of ARF gene; one substitution at genomic posi

corresponding to a synonymous mutation of CDKN2A (R128) and a variation in the 3’UTR of ARF gene; a silent 

.  
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by PCR and subsequent sequencing of 

For each mutation an electropherogram showing five nucleotides with the starred 

type alleles are reported in the second column. 

substitutions in the 5’ untraslated region (UTR) of 

synonymous mutation (D146N) in 

gene; one substitution at genomic position 21960974 

(R128) and a variation in the 3’UTR of ARF gene; a silent 



 

Comparison between leukemia and germline DNA samples

In order to assess whether the nucleotide sub

acquired at the time of leukemia (somatic mutations), we compared the leukemia DNA samples 

with those obtained from collection of saliva after written informed consent. For this analysis 5 

cases were available. PCR was performed on the promoter region and exon 1

assess the mutational status of the substitution at position 21965017 since the remaining exons 

resulted wild-type or containing single nucleotide polymorphisms. Results showed that the 

mutation was inherited for the cases #1, #2 and #3; it was acquired by the leukemia blast cells 

from the case #4 and interestingly the case #2 showed a weird pattern with the mutation in the 

germline/saliva sample and with the wild

 

 

Fig. 4.5 Comparison between leukemia and saliva DNA samples

promoter region and exon 1α of CDKN2A

since the remaining exons resulted wild

Comparison between leukemia and germline DNA samples 

In order to assess whether the nucleotide substitutions identified in CDKN2A/B

acquired at the time of leukemia (somatic mutations), we compared the leukemia DNA samples 

with those obtained from collection of saliva after written informed consent. For this analysis 5 

PCR was performed on the promoter region and exon 1

assess the mutational status of the substitution at position 21965017 since the remaining exons 

type or containing single nucleotide polymorphisms. Results showed that the 

ation was inherited for the cases #1, #2 and #3; it was acquired by the leukemia blast cells 

from the case #4 and interestingly the case #2 showed a weird pattern with the mutation in the 

germline/saliva sample and with the wild-type allele in the leukemia sample (

Fig. 4.5 Comparison between leukemia and saliva DNA samples. PCR was performed in 5 cases on on the 

CDKN2A  to assess the mutational status of the substitution at position 21965017 

since the remaining exons resulted wild-type or containing single nucleotide polymorphisms. 
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CDKN2A/B genes where 

acquired at the time of leukemia (somatic mutations), we compared the leukemia DNA samples 

with those obtained from collection of saliva after written informed consent. For this analysis 5 

PCR was performed on the promoter region and exon 1α of CDKN2A to 

assess the mutational status of the substitution at position 21965017 since the remaining exons 

type or containing single nucleotide polymorphisms. Results showed that the 

ation was inherited for the cases #1, #2 and #3; it was acquired by the leukemia blast cells 

from the case #4 and interestingly the case #2 showed a weird pattern with the mutation in the 

sample (Fig. 4.5). 

 

. PCR was performed in 5 cases on on the 

to assess the mutational status of the substitution at position 21965017 

type or containing single nucleotide polymorphisms.   
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CDKN2A/B deletions and correlation with clinical outcome 

Finally, after having demonstrated that deletions are the main mechanism of inactivation, we 

investigated their implications in leukemia. Therefore, in order to determine whether deletions in 

CDKN2A/B genes could impair response to treatment in BCR-ABL1 positive ALL patients, 

clinical data were collected from 81 patients. The median follow-up was 25.2 months (range 2.1-

148.1). Patient’s characteristics are reported in Table 4.3.  

 

Variable 
BCR-ABL1-positive 

ALL patients (n=81) 
% 

Age (median, range) 53.71 yrs (18-76)  

Gender (M/F) 48/33  

White blood cell count (x10^9/L) 21.95 (0.40-302.00)  

CDKN2A/B Loss  

CDKN2A/B Normal  

29 

52  

35.80 

64.20 

Protocol* 

   LAL2000 

   LAL1205 

   LAL0201-B 

   Institutional 

 

13 

47 

12 

9 

 

16.05 

58.02 

14.81 

11.11 

Follow-up, months 

Median (range) 

 

25.2 mesi (2.1-148.1) 
 

 

 

Tab. 4.3 Demographics and Clinical Characteristics of patients with BCR-ABL1 positive ALL analyzed for 

the genomic status of CDKN2A/ARF and CDKN2B and for correlation with clinical outcome. *Protocol 

LAL0201-B enrolled elderly (>60 years) Ph+ ALL patients who received imatinib, 800 mg daily, associated to 

steroids as frontline treatment; LAL2000 enrolled adult (>18 years) ALL patients, including Ph+ cases, who 

received induction and consolidation chemotherapy followed by maintenance therapy with imatinib; LAL1205 

enrolled adult Ph+ ALL patients who received Dasatinib 70mg/bid for 84 consecutive days, as induction therapy, 

initially associated to steroids without further chemotherapy as frontline treatment. 

 

 

Briefly, the median age at diagnosis was 53.71 years (range, 18-76), the median white blood cell 

count was 21.95 (x10^9/L) (range, 0.40-302.00) and CDKN2A/B was lost in 29 (35.80%) cases. 

72 patients (89%) were enrolled in the GIMEMA clinical trials (12 patients in GIMEMA 



 

LAL0201-B protocol, 13 in LAL2000 and 47 in the LAL1205 protocols), while 9 patients (11%) 

were enrolled into institutional protocols. Details of the treatment schemes have been previously 

reported129. A univariate analysis of the 

outcome was performed. A shorter overall survival (OS) and disease

found in patients with CDKN2A/B

months, respectively, p = 0.0206; DFS: 10.1 vs 56.1 months, respectively,

Moreover, a higher cumulative incidence of relapse (CIR) for patients with 

versus patients wild-type (73.3 vs 38.1; 

 

 

 

Fig. 4.6 Overall Survival (A), disease

BCR-ABL1-ALL patients enrolled in different clinical trials of GIM

  

B protocol, 13 in LAL2000 and 47 in the LAL1205 protocols), while 9 patients (11%) 

were enrolled into institutional protocols. Details of the treatment schemes have been previously 

. A univariate analysis of the CDKN2A/B genomic status and its association with 

outcome was performed. A shorter overall survival (OS) and disease-free survival (DFS) were 

CDKN2A/B deletion compared with wild-type patients (OS: 27.7 v 38.2 

= 0.0206; DFS: 10.1 vs 56.1 months, respectively,

Moreover, a higher cumulative incidence of relapse (CIR) for patients with 

pe (73.3 vs 38.1; p = 0.0014) was also recognized (Fig. 4.6

Fig. 4.6 Overall Survival (A), disease-free survival (B) and cumulative incidence of relapse (C)

ALL patients enrolled in different clinical trials of GIMEMA according to CDKN2A/B 
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B protocol, 13 in LAL2000 and 47 in the LAL1205 protocols), while 9 patients (11%) 

were enrolled into institutional protocols. Details of the treatment schemes have been previously 

genomic status and its association with 

free survival (DFS) were 

type patients (OS: 27.7 v 38.2 

= 0.0206; DFS: 10.1 vs 56.1 months, respectively, p = 0.0010). 

Moreover, a higher cumulative incidence of relapse (CIR) for patients with CDKN2A/B deletion 

Fig. 4.6 and Tab. 4.4).  

 

free survival (B) and cumulative incidence of relapse (C) of de novo 

CDKN2A/B deletions.  
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CDKN2A/B loss 

% (C.I. 95%) 

CDKN2A/B  wild-

type 

% (C.I. 95%) 

Pr > Chi-

Square 

Cumulative 

Incidence of 

Relapse 

(CIR) 

Patients 27 51 

0.0014 at 24 mo 73.3% (71.6-75.1) 38.1% (37-39.2) 

Median time 10.1 mo 56.1 

Disease free 

survival (DFS) 

Patients 27 51 

0.0010 at 24 mo 22.2% (18.8-26.3) 57.6% (49.8-66.7) 

Median time 10.1 mo 56.1 mo 

Overall 

survival (OS) 

Patients 29 52 

0.0206 at 24 mo 57.2% (46.5-70.4) 77.8% (68.7-88.1) 

Median time 27.7 mo 38.2 mo 

 

Tab. 4.4. Clinical outcome related to CDKN2A/B loss in univariate analysis. Abbreviations: mo (months), wt 

(wild-type); CIR: Cumulative Incidence of Relapse; DFS: Disease- Free Survival; OS: Overall Survival 

 

Noteworthy, the multivariate analysis confirmed the negative prognostic impact of CDKN2A/B 

deletion on DFS (p = 0051;Tab. 4.5 ). 

 

 Hazard ratio 95% CI p-value 

CDKN2A/B genomic status    

CDKN2A/B loss vs. CDKN2A/B wild-type 2.441 1.306-4.506 0.0051 

Age 0.985 0.959-1.011 0.2405 

Wbc at diagnosis 1.005 0.999-1.005 0.0734 

Protocol treatment    

LAL1205 vs. LAL0201B 1.009 0.423-2.409 0.9839 

LAL2000 vs. LAL0201B 1.641 0.536-5.024 0.3856 

other protocols vs. LAL0201B 0.766 0.253-2.316 0.6366 

 

Tab. 4.5. CDKN2A/B loss and other clinical relevant factors for predicting Disease Free Survival 

(multivariate analysis). 
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5. DISCUSSION 
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CDKN2A and ARF share common second and third exons, but different exon 1 (exon 1α for 

CDKN2A and exon 1β for ARF) and therefore they are translated in alternate reading frames, 

exhibiting no protein sequence similarity. Functionally, CDKN2A is a cyclin-dependent kinase 

inhibitor, whereas ARF (p19 Arf in mice) regulates p53 tumour suppressor function through its 

interaction with Mdm2 130. CDKN2B lies adjacent to CDKN2A/ARF and it encodes p15INK4B, a 

cyclin-dependent kinase inhibitor, which forms a complex with CDK4 or CDK6, and prevents 

the activation of the CDK kinases, thus the encoded protein functions as a cell growth regulator 

that controls cell cycle G1 progression.  

In literature several groups studied how the 9p21 chromosome band is inactivated in ALL, but 

most of them referred to a small cohort of patients, mainly pediatric and using low resolution 

methodologies. For example, traditional techniques, that have a limited number of probes, are 

not able to detect small deletions that often occurs in this locus and may underestimate the real 

occurrence. 

Therefore, in this study, to exceed these restraints we performed high resolution Affymetrix SNP 

arrays in 112 Ph+ ALL adult patients with the aims to explore the frequency and size of deletions 

on 9p21 affecting the CDKN2A/ARF/CDKN2B genes in adult BCR-ABL1-positive ALL patients; 

to determine the main mechanism of inactivation and to correlate deletions with clinical 

outcome. 

In ALL patient samples, the size and position of 9p21.3 deletions seem to vary substantially, but 

in most cases CDKN2A is co-deleted with CDKN2B and 77,79,1 the frequency of genomic 

deletions is 21% in B-cell precursor ALL and 50% in T-ALL patients.  

In this study, by high-resolution single nucleotide polymorphisms arrays we identified at 

diagnosis, CDKN2A/ARF and ANRIL genomic alterations in 29% of BCR-ABL1 positive ALL 

patients. In 25% of cases genomic deletions also included the two exons of CDKN2B. Deletions 

were predominantly monoallelic and the minimal overlapping region of the lost area in more 

than half of leukemia cases (57%) was considerable large and extended sometimes (10%) over 

the entire short chromosome arm eliminating a large number of genes.  

To investigate whether deletion of CDKN2A/ARF could be involved in disease progression, the 

genomic status of 9p21 locus was assessed at the time of relapse and an almost significant 

increase in the detection rate of CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06) was 

found, suggesting that loss of this genomic region is involved in disease progression. But are the 

deletions the only mechanism of 9p21 inactivation? It is well know that in addition to deletions, 

the CDKN2A/B locus can also be inactivated by epigenetic silencing through DNA methylation 

or by point mutations. Methylation of CDKN2A and CDKN2B seems to lack prognostic 
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significance in ALL84, and the rate of point mutations has been extremely low in ALL1,78,85-89. In 

line with these findings, by a gene candidate deep sequencing screening of ARF, CDKN2A and 

CDKN2B, in our BCR-ABL1 positive ALL cohort point mutations were found at very low level 

with only a missense substitution in the exon 2 of CDKN2A (D146N). Additional mutations have 

been identified in the 5’ UTR/promoter of CDKN2A exon 1α at position 21965017, 191 bp 

before the start codon, with a heterozygous substitution of G > A and at position 21964851, 25 

bp before the start codon, with a heterozygous substitution of C >T. There are only few studies, 

mainly conducted on melanoma, addressing the possible impact of 5’-UTR/promoter variants on 

the transcription or translation of the protein. In one of them, the variant at -25 C >T, not 

observed in the control population, exhibited an intermediate impact on functional defects, 

proposing that this variant should be considered as potential mutation 131. Another study, on the 

other hand, indicates that the A-191G variant is probably a polymorphism and that is very 

unlikely to confer a high risk of melanoma, because it is present in the control population at 

approximately the same percentage as in melanoma cases 132,133. 

Moreover, frequent nucleotide variations, known as SNP, were identified in exons 2 and 3 of 

CDKN2A: rs3731249 G/A, rs11515 C/G and rs3088440 C/T. 9p21 is an important susceptibility 

locus for several diseases. The SNPS identified and here showed have been already reported to 

be phenotypically associated with solid tumors like non-Hodgkin lymphoma 134, breast cancer 
135, colorectal cancer 136,137, and they are also associated with disease such Alzheimer 138 and 

melanoma 139, but their role in leukemia has not yet been well established and a larger number of 

patients is required to demonstrate any potential association.  

After having demonstrated that deletions are the main mechanism of inactivation, we 

investigated their implications in leukemia. Preliminary results have showed that in mice the 

combination of BCR-ABL1 and ARF loss are sufficient to induce aggressive B-cell ALL, 

increased self-renewal capacity, inhibition of apoptosis and independence on cytokines, 

contributing to resistance to targeted therapy with TKIs140,141. Moreover, recently Notta F. and 

colleagues142 showed that Ph+ ALL patient samples with a loss of CDKN2A/B had a tendency to 

poorer survival correlated with aggressive dissemination in xenografts and higher leukemia-

initiating cell frequency compared to patients with normal CDKN2A/B, demonstrating that loss 

of CDKN2A/B contributes to clonal predominance at diagnosis and competitive xenograft 

growth.  

How this may be translated in vivo in Ph+ ALL patients? In order to address this issue, we 

investigated the prognostic relevance of CDKN2A/B deletions in our study cohort. This matter is 

still controversial in literature with some studies suggesting that CDKN2A/B deletion is a poor 
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prognostic factor69,70,72,101,104,105, whereas others showing no correlation74,76,100. Beyond, 

Usvasalo et al. did not observe any difference in the incidence of deletion between diagnosis and 

relapse64. 

Our results showed that deletions of CDKN2A/B are significantly associated by univariate 

analysis with poor outcome in terms of overall survival (p = 0.0206), disease free survival (p = 

0.0010) and cumulative incidence of relapse (p = 0.0014). The negative prognostic impact of 

CDKN2A/B deletion on DFS was thereafter confirmed by also a multivariate analysis (p = 0051). 

These results show that there are genetically distinct Ph+ ALL patients with a different risk of 

leukemia relapse and that testing for CDKN2A/B alterations at diagnosis may aid risk 

stratification. Furthermore, the awareness that genetically distinct patients experience different 

responses to treatment points to the need to develop more effective therapies able to eradicate all 

genetic leukemia cells and to prevent disease recurrence. Since the loss of CDKN2A/B eliminates 

the critical tumor surveillance mechanism and allows proliferation, cell growth and tumor 

formation by the action of Mdm2 and CDK4/6, attractive drugs could be represented by the 

inhibitors of Mdm2 143 and CDK4/CDK6 144. 

In conclusions, our findings indicate that the inactivation of CDKN2A/B locus is a frequent event 

in Ph+ ALL. Deletions are frequently acquired at the leukemia progression and work as a poor 

prognostic marker, impairing overall survival, disease free-survival and cumulative incidence of 

relapse. Novel treatment strategies targeting the ARF-Mdm2-p53 and the CDKN2A/B-CDK4/6-

Retinoblastoma pathways may be effective in this subset of patients and in vitro studies are 

ongoing to confirm this hypothesis. 
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CDKN2A/ARF/CDKN2B

1. NCBI Reference Sequences (RefSeq)

Cyclin-dependent kinase inhibitor 2A isoform 4

http://www.ncbi.nlm.nih.gov/gene/1029

NM_058195.3: mRNA-cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4), transcript variant 4

Total range: NC_000009.11 (21,967,751

Total length: 26,740 

mRNA product length: 1,164 

Related Ensembl: ENSP00000355153

Transcript Variant: This variant (4), also known as 

may use an alternative upstream start codon, which would produce an isoform that is 41 aa longer at the N

or an alternative downstream start codon, which would produce an isoform (smARF, described in PMID:16713577)

that is 47 aa shorter at the N-terminus; it is unclear if the isoforms derived from the alternative start codons are 

present in vivo. The p14ARF isoform is known to be nucleoplasmic but may also be recruited to mitochondria, as 

described in PMID:20107316. 

ENSEMBL card  

Cyclin-dependent kinase inhibitor 2A isoform 4

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=co

21995300;t=ENST00000361570 

HGNC Symbol: CDKN2A-201  

Transcript ENST00000361570 

Gene ENSG00000147889 

Protein product ENSP00000355153 

Location Chromosome 9: 21,967,997

Total length: 26,493 

APPENDIX A 

CDKN2A/ARF/CDKN2B ISOFORMS and ANRIL
 

CDKN2A/ARF 

NCBI Reference Sequences (RefSeq) 

dependent kinase inhibitor 2A isoform 4 

http://www.ncbi.nlm.nih.gov/gene/1029 

dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4), transcript variant 4

Total range: NC_000009.11 (21,967,751-21,994,490) 

ENSP00000355153, ENST00000361570 

Transcript Variant: This variant (4), also known as β, encodes isoform 4, which is also called 

may use an alternative upstream start codon, which would produce an isoform that is 41 aa longer at the N

or an alternative downstream start codon, which would produce an isoform (smARF, described in PMID:16713577)

terminus; it is unclear if the isoforms derived from the alternative start codons are 

isoform is known to be nucleoplasmic but may also be recruited to mitochondria, as 

dependent kinase inhibitor 2A isoform 4 

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000147889;r=9:21967752

 

Chromosome 9: 21,967,997-21,994,490 

90 

and ANRIL 

 

dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4), transcript variant 4 

lso called p14ARF. This variant 

may use an alternative upstream start codon, which would produce an isoform that is 41 aa longer at the N-terminus, 

or an alternative downstream start codon, which would produce an isoform (smARF, described in PMID:16713577) 

terminus; it is unclear if the isoforms derived from the alternative start codons are 

isoform is known to be nucleoplasmic but may also be recruited to mitochondria, as 

re;g=ENSG00000147889;r=9:21967752-
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Gene type Known protein coding 

Transcript type Known nonsense mediated decay 

Strand Reverse 

Base pairs 905 

Amino acids 173 

ENSEMBL card 

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000147889;r=9:21967752-

21995300;t=ENST00000530628  

HGNC Symbol: CDKN2A-004  

Transcript ENST00000530628 

Gene ENSG00000147889 

Protein product ENSP00000432664  

Location Chromosome 9: 21,967,997-21,994,490  

Total length: 26,493 

Gene type Known protein coding 

Transcript type Known protein coding 

Strand: Reverse  

Base pairs:905 

Amino acids :132  

 

2. NCBI Reference Sequences (RefSeq) 

Cyclin-dependent kinase inhibitor 2A isoform 1 

http://www.ncbi.nlm.nih.gov/nuccore/NM_000077.4 

NM_000077.4: mRNA-cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4), transcript variant 1 

total range: NC_000009.11 (21,967,751-21,975,132) 

total length: 7,382 

mRNA product length: 1,267  

Related Ensembl: ENSP00000307101, ENST00000304494 

Transcript Variant: This variant (1), also known as alpha, contains an alternate open reading frame (ARF), when 

compared to variant 4. The ARF results from an alternative splicing between a downstream first exon, which 

contains the translation start codon, and the common second exon. Thus, the protein encoded by this variant 

(isoform 1) lacks sequence similarity to the protein product of variant 4. Isoform 1 is also called p16INK4a. 

ENSEMBL card 

HGNC Symbol: CDKN2A-001 

Transcript ENST00000304494 

Gene ENSG00000147889 
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Protein product ENSP00000307101 

Location Chromosome 9: 21,967,752-21,975,097 

Total length: 7,345 

Gene type Known protein coding 

Transcript type Known protein coding 

Strand Reverse 

Base pairs 1,218 

Amino acids 156 

 

3. NCBI Reference Sequences (RefSeq) 

Cyclin-dependent kinase inhibitor 2A p12,variant 3  

http://www.ncbi.nlm.nih.gov/nuccore/NM_058197.4 

NM_058197.4: mRNA-cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4), transcript variant 3 

total range: NC_000009.11 (21,967,751-21,974,826) 

total length: 7,076  

mRNA product length: 1,235 

Related Ensembl: ENSP00000369496, ENST00000380151 

Transcript Variant: This variant (3) contains an alternate open reading frame (ARF), when compared to variant 4. 

The ARF results from an alternative splicing between a downstream first exon, which contains the translation start 

codon, and the common second exon. Thus, the protein encoded by this variant (p12 or isoform 3) lacks sequence 

similarity to the protein product of variant 4. This variant is specifically expressed in pancreas, and has been 

described in PMID:10445844. It is a candidate for nonsense-mediated mRNA decay (NMD), but it is not known if 

the endogenous protein is expressed in vivo. 

ENSEMBL card 

Cyclin-dependent kinase inhibitor 2A p12,variant 3  

http://www.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000147889;r=9:21967752-

21995300;t=ENST00000380151 

HGNC Symbol: CDKN2A-003 

Transcript ENST00000380151 

Gene ENSG00000147889 

Protein product ENSP00000369496 

Location Chromosome 9: 21,968,179-21,974,826 

Total length: 6,647  

Gene type Known protein coding 

Transcript type Known nonsense mediated decay 

Strand Reverse 

Base pairs 794 

Amino acids 116  



 

Synonyms CDK4I, INK4B, MTS2, P15, p15INK4b, TP15

1. NCBI Reference Sequences (RefSeq)

Cyclin-dependent kinase 4 inhibitor B isoform 1
http://www.ncbi.nlm.nih.gov/nuccore/NM_004936.3

 NM_004936.3: mRNA-cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4), transcript variant 1

total range: NC_000009.11 (22,002,902

total length: 6,411  

mRNA product length: 3,878  

Amino acids 138 

Related Ensembl ENSP00000276925

Transcript Variant: This variant (1) encodes the longer isoform (1).

ENSEMBL card 

Cyclin-dependent kinase 4 inhibitor B isoform 1

HGNC Symbol: CDKN2B-001  

Transcript ENST00000276925 

Gene ENSG00000147883 

Protein product ENSP00000276925 

Location Chromosome 9: 22,002,902

Total length 6378  

Gene type Known protein coding 

Transcript type Known protein coding

Strand Reverse 

Base pairs 3,829 

Amino acids 138 

2. NCBI Reference Sequences (RefSeq)

Cyclin-dependent kinase 4 inhibitor B isoform 2

http://www.ncbi.nlm.nih.gov/nuccore/NM_078487.2

M_078487.2: mRNA-cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4), transcript variant 2

CDKN2B 
Synonyms CDK4I, INK4B, MTS2, P15, p15INK4b, TP15

NCBI Reference Sequences (RefSeq) 

dependent kinase 4 inhibitor B isoform 1 
http://www.ncbi.nlm.nih.gov/nuccore/NM_004936.3 

dependent kinase inhibitor 2B (p15, inhibits CDK4), transcript variant 1

22,002,902-22,009,312)  

ENSP00000276925, ENST00000276925 

Transcript Variant: This variant (1) encodes the longer isoform (1). 

dependent kinase 4 inhibitor B isoform 1 

 

Chromosome 9: 22,002,902-22,009,280 

Known protein coding 

NCBI Reference Sequences (RefSeq) 

dependent kinase 4 inhibitor B isoform 2 

http://www.ncbi.nlm.nih.gov/nuccore/NM_078487.2 

dependent kinase inhibitor 2B (p15, inhibits CDK4), transcript variant 2

93 

Synonyms CDK4I, INK4B, MTS2, P15, p15INK4b, TP15 

 

dependent kinase inhibitor 2B (p15, inhibits CDK4), transcript variant 1  

 

dependent kinase inhibitor 2B (p15, inhibits CDK4), transcript variant 2 
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total range: NC_000009.11 (22,002,902-22,009,312)  

total length: 6,411  

mRNA product length: 4,001  

Amino acids 78 

Related Ensembl ENSP00000369487, ENST00000380142 

Transcript Variant: This variant (2) uses a different splice site, which leads to a translation frame shift, when 

compared to variant 1. The resulting protein (isoform 2) is shorter and has a distinct C-terminus when compared to 

isoform 1. 

ENSEMBL card 

HGNC Symbol: CDKN2B-002  

Transcript ENST00000380142 

Gene ENSG00000147883 

Protein product ENSP00000369487 

Location Chromosome 9: 22,005,986-22,009,271 

Total length: 3,285  

Gene type Known protein coding 

Transcript type Known protein coding 

Strand Reverse 

Base pairs 859 

Amino acids 78 

  



 

NCBI Reference Sequences (RefSeq)

CDKN2B antisense RNA 1 (non-protein coding

http://www.ncbi.nlm.nih.gov/gene/100048912

NR_003529.3: CDKN2B antisense RNA (non

total range: NC_000009.11 (21,994,790

total length: 126,307 

processed length: 3,837 

product length: 3,85 

Source sequence(s) AL354709,BC038540,CB109081,DQ485453

ENSEMBL card 

HGNC Symbol: CDKN2B-AS-004 

Transcript ENST00000428597 

Gene ENSG00000240498 

Location Chromosome 9: 21,994,790

Gene type Known processed transcript

Transcript type Known antisense 

Strand Forward 

Base pairs 3,835 

 

CDKN2BAS-ANRIL 

NCBI Reference Sequences (RefSeq) 

protein coding)  

http://www.ncbi.nlm.nih.gov/gene/100048912 

NR_003529.3: CDKN2B antisense RNA (non-protein coding) 

ange: NC_000009.11 (21,994,790-22,121,096) 

AL354709,BC038540,CB109081,DQ485453  

 

Chromosome 9: 21,994,790-22,121,094 

Known processed transcript 
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