
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Research Doctorate in Geophysics – GEO/10

XIX Cycle

Glacial isostasy and sea level change in the

Mediterranean: near and far–field effects on a

millennium to century time–scale

Candidate: Tutor:

Dr. Paolo Stocchi Prof. Giorgio Spada



to my parents and my best friends



This work has been funded by Ministero dell’Universitá, dell’ Istruzione, e della
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Chapter 1

Ice ages and sea level change

Introduction

The long–term sea level variations represent one of the most important conse-

quences of climate change. The present–day concern about the on–going global

warming has recently pointed out the necessity to investigate the causes of the glob-

ally observed secular sea level rise. Despite of its role as indicator of the global

temperature trend, sea level is strongly affected by different physical processes act-

ing on a wide spectrum of time–scales ranging from seconds to millennia (Pirazzoli,

1991). To identify the presence of significant anthropogenic effects on present–day

sea level rise it is necessary to decompose and evaluate the long term mechanisms

unrelated to present–day climate change.

The mean sea level in the proximity of a coast is defined as the height of sea

surface referred to a local terrestrial benchmark and averaged over a period of time

long enough to remove high–frequency oscillations. However, given the high space–

and time–variability of the physical processes perturbing sea surface, the definition

of true mean sea level becomes extremely difficult, or even impossible, and puts on

the characteristics of an elusive concept (Daly, 2002).

The employment of instruments and techniques able to averaging out high fre-
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quency periodic signals, thus removing the effects of noise, does not allow the deter-

mination of the true mean sea level because of the presence of wide–ranging processes

acting on medium to long time scales. Since both the present–day measurements

from the tide–gauges and the paleo–sea level indicators are referred to the solid

surface of the Earth, and also considering that both the sea and the solid surfaces

undergo vertical movements with respect to the center of mass of the earth, the sea

level variations are defined as relative sea level changes.

The long–term vertical movements of the sea surface which are ascribed to the

volume change of the oceanic masses represent the climatic signal and are caused

by two factors:

1. the water mass exchange between the ocean basins and the land based glaciers

(i. e. the cryosphere),

2. the volume increase of the water as a consequence of warming of the oceanic

shallow layers (i. e. steric change).

This global climate related alteration of the water volume contained in the ocean

basins was termed by Suess (1906) as eustatic sea level change.

The history of the Earth has been cyclically marked by periodic phases of sig-

nificant water exchange between the oceans and the land glaciers. Geology revealed

the traces left during relative warm periods by the melting of huge ice sheets which

had formed and expanded over northern and southern latitudes during previous and

longer cold stages. The first contribution to the study of the glacial ages came dur-

ing the XIX century from the field observations of the swiss geologist Louis Agassiz

who, in the course of his expeditions in Northern Europe and North America iden-

tified different erosional and depositional glacial features. The wide extent of the

areas covered by moraine deposits and erratic boulders could only be explained by

assuming the presence of huge continental ice caps. In 1837 Agassiz announced

the new theory that a vast ”ocean of ice” had once extended from the polar to

the present–day temperate regions. The subsequent geological, paleoclimatological
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and stratigraphic investigations revealed the existence of different layers of glacial

deposits characterized by an age increment with depth and corresponding to older

ice ages. The presence between the glacial layers of well developed soils rich in fos-

sils of plants which are characteristic of warm climates, demonstrated that the ice

sheets had retired as a consequence of a global warming. Thus the ice ages had been

succeeded by warmer interglacials during which the continental ice caps retired or

even completely disappeared.

Though stratigrafic and sedimentologial data from the Antarctica and the oceans

indicate the occurrence of glacial periods since the Miocene epoch, when the present–

day polar ice caps started to form, the most studied and well known glaciations

pertain to the recent Pleistocene epoch (1,600,000 – 10,000 yrs before present, BP).

Since earlier investigation it became evident that the unconsolidated nature of the

moraines sediments indicated a recent deposition, which later could be proved to

be of Pleistocene epoch by means of radiocarbon dating methods. The geological

evidences collected until the first half of XX century indicated a succession of at

least five great continental glaciations which had been generated by global oceanic

and atmospheric temperature changes and which in turn resulted in global sea level

oscillations.

A fundamental contribution to the comprehension of the alternating global cli-

mate changes came from the studies of Cesare Emiliani (1955–1958) who developed a

method based on the analysis of the isotopic ratio between the ”heavy” oxygen (18O)

isotope and the ordinary ”light” oxygen isotope (16O) recorded in the sea bottom

carbonate sediments. Foraminefera are unicellular ocean–wide diffused organisms

characterized by en external calcareous shell (CaCO3) which deposits on the sea

bottom after the death. The ratio between 18O and 16O isotopes in the calcite shells

of living organisms is the same as the ratio in the surrounding sea water which, in

turn, is a direct function of the temperature of water. 18O is two neutrons heavier

than 16O and causes the water molecule in which it is present to be heavier by that

amount. The addition of more energy is therefore required to vaporize it than for
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16O, and the molecule must lose less energy to condense. As a consequence cooler

water releases vapor that contains more 16O while cooler air precipitates more 18O

than warmer air. In conclusion cooler water collects more 18O relative to 16O than

does warmer water. On the basis of their temperature dependence the two oxygen

isotopes behave differently in relation to the global hydrological cycle. During the

glaciations, when the sea water temperature is 10 − 15 ◦C lower than present, the

water vapor characterized by a high content of 16O moves towards higher latitudes

and releases 18O through condensation as approaches lower atmospheric tempera-

tures. Afterwards, the precipitation of the vapor in form of snow and its subsequent

accumulation as ice in the continental ice sheets store large amounts of 16O while,

at the same time, the ocean water gets richer in 18O and the sea level drops. Con-

versely, during the interglacials the sea water is up to 5 ◦C warmer than present

and the 18O content is lower.

The 18O to 16O ratio is commonly defined as

δ18O = ([(18O/16O)sample/(
18O/16O)standard] − 1) × 103, (1.1)

where δ18O indicates the deviation in part per thousand of the isotopic ratio mea-

sured by means of mass spectrometry in a benthic core sample and referred to a

standard value, that is the mean isotopic ratio of ocean water. It is estimated that

each 1 part per thousand change in δ18O represents roughly a 1.5 - 2.0 ◦C change

in tropical sea surface temperatures (Veizer et al., 2000). It turns out that high

values of δ18O indicate an increase in the global volume of continental glaciers. The

analysis of the oxygen isotope data from the deep sea bottom core samples reveals

the existence of cyclical variations in the δ18O called Oxygen Isotope Ratio Cycles,

which are correlated to alternating warm and cool periods in the paleoclimate of the

Earth, called Marine Isotopic Stages (MIS).

Recently the the long–term evolution of the oxygen isotope ratio has been ex-

tended to 550 Myrs BP (Figure 1.1), thus covering the entire Phanerozoic Eon

(Veizer et al., 1999). The new data have allowed for a better resolution of the pale-

oclimatic change during the last 65 Myrs (Zachos et al., 2001) and have permitted
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the identification of the stadials and interstadials (see Figure 1.2). A stadial is a

period of colder temperatures during an interglacial, characterized by an insufficient

duration or intensity to be considered a glaciation, or a glacial period. Conversely,

an interstadial is a warmer period during a glaciation of insufficient duration or

intensity to be considered an interglacial.

Figure 1.1: Phanerozoic Eon (from Veizer et al., 2000).
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Figure 1.2: Cenozoic Era (from Zachos et al., 2001).

The early results of Cesare Emiliani were in good agreement with the climatic

theory of Milutin Milankovitch (1930) based on the cyclical fluctuations of the astro-

nomical parameters of the Earth. Milankovitch proposed that variations of orbital

parameters could affect the amount of radiating solar energy received by the Earth,

thus contributing to significant changes in the global climate and producing cyclical

glaciations. The astronomical parameters affected by periodical variations are the

eccentricity of the terrestrial orbit, and the inclination of the earth rotation axis

in space. Since the XVII century Kepler evidenced that the terrestrial orbit was

nearly elliptic and therefore that the distance between the Earth and the Sun was

not constant during the year. Since the eccentricity of the elliptic orbit of the Earth

varies from a minimum to a maximum with a period of 100000 years, the amount of

solar energy received at the aphelion and perihelion varies with the same periodicity

and produces more intense seasons in one hemisphere while cushions them in the

opposite one. Furthermore, the timing of the passage of the Earth at the perihelion
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is not constant because of the movement of precession which implies a cyclical vari-

ation of the position of the rotation axis with a period of 21000 - 26000 years. In

conjunction with the variations of the eccentricity of the orbit and the movement

of precession, Milankovitch considered also the inclination of the axis of rotation,

which oscillates between 21.5◦ and 24.5◦ with respect to the ecliptic in a period of

41000 years. A decrease in the inclination produces an increase of the yearly solar

radiation over the equatorial band and a reduction of radiating heat over the polar

regions.

Milankovitch showed that the combined effect of the three astronomical param-

eters may induce significant oscillations of the intensity of the solar radiation at

global scale or, at least, along the latitudinal bands of the Earth. However, also

other factors such as the albedo, the heat accumulated into the oceans and the dy-

namics of the ice sheets have to be considered. In particular, the existence of short

period climatic fluctuations does not rule out the effects of different factors such as

the variations of the solar activity, the passage of the Earth through cosmic powder,

the impact of meteorites and the volcanic eruptions. From both the astronomical

theory of Milankovitch and the geochemical investigations based on the analysis of

the oxygen isotopic ratio, a detailed description of the glacial events and an expla-

nation of their periodicity during the Pleistocene clearly come out. It is nowadays

accepted that the climate is subject to regular global changes with a long term

glaciation every 100,000 years and shorter term glaciations every 40,000 and 20,000

years (see Figure 1.3, from Lisiecki and Raymo, 2005). When the long term peri-

ods are multiples of the shorter term periods, the changes are significantly greater.

The data suggest, as a first approximation, a simple scheme for the evolution of the

glaciations. The phase of ice accumulation at a constant rate over the continents is

characterized by a length of 90,000 years and is subsequently followed by a 10,000

years of rapid disintegration of the ice caps. During the middle Pleistocene, from

700,000 to 125,000 years BP, 5 - 7 glaciations alternated with a periodicity of 100,000

years (see Figure 1.4).
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Figure 1.3: δ18O anomaly over the last 5.0 × 103 years (from Lisiecki and Raymo,

2005).

During the last interglacial (125,000 years BP), the climate and the vegetation

were similar to those pertaining to the Holocene (from 10,000 years BP to present)

and the sea level was globally 5 - 6 m higher than present. Later the global climate

became colder and at about 80,000 years BP the Last Great Ice Age began with

the growth of isolated centers of ice expansion. In the course of time both the

northern and southern Hemisphere glaciers coalesced to form composite ice sheets

which reached their maximum extension between 30,000 and 18,000 years BP.

During the Last Glacial Maximum (LGM, 21000 - 18000 years BP) huge and

thick ice caps covered not only Greenland and Antarctica but also North America

and Eurasia, while the global sea level was 120 - 130 m lower than present (Denton

and Hughes, 1981). The limit of the perennial snow was generally 1000 m below the

present level and smaller mountain and alpine glaciers developed at lower latitudes

(Smiraglia, 1992). Furthermore many regions which nowadays experience a temper-

ate climate were characterized by periglacial to cold-desert environmental conditions

while the tropical to subtropical deserts reached wider extensions. Conversely, the

African and South American pluvial forests were significantly reduced. It is esti-

mated that during the LGM the global volume of the ice stored over the continents

was about 78×106 km3 and that the regions covered by the ice were about the 30%

of the emerged land, while nowadays their extent is reduced by about one third.
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Figure 1.4: Pleistocene glacial to interglacial phases.

The Eurasian ice sheet reached a maximum extent of about 9 × 103 km2 and

was composed by three centers of ice expansion whereof the scandinavian region

was the most important. During the LGM the fennoscandian ice cap was connected

with the british glacier and to the siberian and Ural ice sheets. The main dome

was characterized by a maximum thickness of 2500 - 3000 m and, with an extent

of about 5× 103 km2, it covered the Baltic sea region, the Poland, a part of Russia

and extended to the plains of central Europe which was delimitated in the south by

the small alpine ice cap.

During the LGM the North American ice sheet reached a maximum thickness of

4000 - 5000 m and an extension of about 16 ×106 km2 (Peltier, 1989), thus covering

the whole Canada, part of Alaska and of the USA (up till the confluence of Ohio

and Missisippi rivers) and making contact with the Greenland ice cap.
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The main components of this huge inlandsis were the Cordilleran ice sheet on

the west, the Ellesmere–Baffin ice sheet on the east and the most important central

dome named Laurentide. The North American inlandsis formed following the coa-

lescence of small northeastern ice caps (Baffin Island, Labrador) which generated the

Laurentide ice sheet. The latter expanded further on until reached the Cordilleran

Ice sheet. The huge North American inlandsis, given its dimensions, could affect

the climate above its surface and on the surrounding areas (Fairbanks, 1989).

During the last Pleistocene glaciation, also defined as Wisconsinian, Vistola or

Würm glaciation respectively from the North American, the Eurasian and the Eu-

ropean Alpine ice sheets, the face of the planet appeared different with respect to

the present configuration. In addition to the northern Hemisphere continental ice

sheets, variations in the form of the emerged lands ascribed to the global sea level

low stand were noticeable. The Strait of Bering was closed and Papua New Guinea

was connected to Australia, while Japan was linked to the asiatic continent and the

Black sea was disconnected from the Mediterranean Sea (Ryan and Pitman, 1997).

Subsequently a global climate change caused the passage from glacial to interglacial

conditions. As a consequence of global warming the Pleistocene continental ice

sheets underwent a relatively rapid melting which occurred between 16,000 and

6,000 years BP. Besides the global climate and temperature modifications also other

factors such as the ice sheets dynamics, the oceanographic and atmospheric regimes

contributed to the rapid melting episodes which punctuated the retire of the North

American and eurasian continental ice sheets. The present Holocene epoch, which

began 10,000 years BP following a phase of rapid sea level rise was characterized

by a general climatic amelioration and reached a climatic optimum at about 7,000

years BP, when the global glaciers extent was reduced with respect to the present–

day configuration. During the last 6,000 years the glaciers experienced different

short period phases of ice re–advance and retreat and the global climate reached a

temperature minimum represented by an ice expansion between the XVI and XIX

centuries called Little Ice Age. Later, a global increase in temperature triggered
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the retire of the glaciers that had formed during the Little Ice Age and led to the

present–day situation.

As stated above, during the last 125,000 years the global sea level experienced

at first a drop of about 130 m and then a subsequent rise to the present level as

a consequence of continental ice accumulation and melting. Despite the first his-

torical observations of Celsius and Linneus, who both ascribed the observed sea

level lowering in Sweden to a global evaporation or diminishing water supply (Saar-

man, 1948), the first authority considering the idea of world–wide sea level changes

as a general working theory was Eduard Suess (1906). Starting from the ideas of

Strabo who ruled out the existence of slopes on the ocean surface, Suess introduced

the concept of ”eustatic” changes in sea level, that is, since the oceans are inter-

connected, the vertical displacements of the ocean surface would follow a uniform

pattern throughout the world. Despite the strong influence of this concept over the

sea level research, the observed evidences of the Holocene relative sea level (RSL)

variations collected around the world during the XX century indicated a strong in-

fluence of local to regional scale factors. The post–glacial global sea level variation

could not be explained by a single sea level curve as stated by Suess. During the

first decades of the XX century Daly (1920, 1940, and 1943) stressed the importance

of the glacio–isostatic effects accompanying the lasts deglaciation phase, with uplift

movements in areas of ice melting and subsidence movements in a wide peripheral

belt (Figure 1.5). It soon became clear that during the last glaciation the huge ice

sheets isostatically deformed the surface of the Earth as a consequence of their load.

While the regions covered by the ice caps were depressed below the level prior to

the glaciation, the surrounding peripheral regions were raised up above. Following

the subsequent melting phase, the depressed regions started uplifting, thus locally

reducing the entity of the sea level rise, while, at the same time, the peripheral

forebulges started subsiding and therefore accelerating the rate of sea level rise.

19



Crust

Mantle

ice sheet

(a) (b)

forebulgeforebulge

(c) (d)

Figure 1.5: Glacial isostatic adjustment. The presence of an ice load (a) causes

a depression of the surface of the Earth and a contemporaneous migration of the

mantle material to peripheral region (b). Following ice melting, the depressed region

undergoes a strong uplift while the forebulge collapses (c) to restore the original

isostatic equilibrium (d).
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The early insights into the glacio–isostatic effects on the sea level change solved

the problem of the sea level lowering observed in Sweden by Celsius and Linneus

(Saarman, 1948). During the LGM the Baltic sea region underwent a depression

of about 500 m (Cathles, 1975) and later the melting of the fennoscandian ice cap

caused a slow uplift of the solid surface which is still nowadays operating and con-

stantly under measurement. This geophysical phenomenon, which also affects the

North America, and especially the Hudson Bay (Canada), is called Post–Glacial

Rebound (PGR) or even Glacio Isostatic Adjustment (GIA) and its study has pro-

vided significant results concerning the rheology, the structure and the composition

of the mantle and of the lithosphere. Vertical movements of the solid surface are

driven by the isostatic adjustment which results from the slow viscoelastic response

of the Earth to the melting of the ice loads and to the contemporaneous addition

of meltwater into the ocean. As a result, PGR contributes to vertical movements of

the solid surface on a global scale. Furthermore, variations in the distribution of the

surface loads, both in the cryosphere and in the hydrosphere, induce an interior re-

distribution of mass which in turn affects the equipotential surface of the terrestrial

gravity field (geoid), and therefore modifies sea level.

The main task of the analysis of the past and present–day sea level data lies in

the effort of separating the two main contributions to the sea level change, that is the

eustatic and the glacio– hydro–isostatic forcing. While the eustatic signal provides

information about global climate change, isostatic contribution yields insights in

the nature of the solid Earth. Since different physical observables such as crustal

deformations, sea level changes and free–air gravity anomalies are directly influenced

by GIA, their measurement represents the fundamental set of informations against

which the results of forward modeling can be tested. Vertical crustal velocities

measured in the regions formerly covered by ice sheets are a function of the mantle

viscosity. Therefore, from the analysis of the sea level variations in general it is

possible to retrieve the mean value of the mantle viscosity which, in turn, allows for

a better understanding of mantle rheology.
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1.1 GIA modeling

The physical and mathematical approach to the study of the post–glacial rebound

is based upon the analysis of the deformations which are induced in a continuum

by forces associated to the presence of ice loads acting on its external surface. In

a geophysical context, the first original modeling of the glacio–isostatic adjustment

acting in northern Europe was performed by Haskell (1935, 1936) by means of a

relatively simple earth model based on a viscous half–space characterized by a new-

tonian rheology and affected by an external ice load.

The main characteristics of the viscous model of Haskell can be summarized as

follows:

• density and viscosity do not vary with depth (the continuum is homogeneous

and isotropic),

• the continuum constitutive relation is linear,

• the geometry is bidimensional (the sphericity of the planet is not considered).

The fundamental governing equation for the flow of a highly viscous incom-

pressible fluid with Newtonian rheology and constant viscosity is the Navier–Stokes

equation

−
−→

∇p +ρ0

→
g +ν∆2 →

v= 0, (1.2)

where p is the pressure, ρ0 and ν are respectively the density and the viscosity of the

fluid,
→
v is the velocity field associated with the interior flux of matter and

→
g is the

gravity acceleration. By assuming that the quantities contained in Eq (1.2), with

the exception of viscosity, are all functions of coordinates (x, y), where x is parallel

to the external surface and y is positive downward, the problem describes the case

of plane deformation.
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The continuity equation for an incompressible fluid

∇· →
v= 0, (1.3)

is satisfied for a vector field (vx, vy) such as

vx = −∂ψ
∂y

; vy = +
∂ψ

∂x
, (1.4)

where the stream function ψ = ψ(x, y) satisfies the biarmonic equation
(

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)

ψ = ∇4ψ = 0, (1.5)

by the introduction of ψ, the vector equation (1.2) reduces to a simple differential

equation involving one unknown. Let suppose that at time t = 0 the external surface

of the half space is subject to a displacement

h(x, t = 0) = h0 cos
2xπ

λ
, (1.6)

where λ is the characteristic wavelength of initial displacement, and h0 << λ is

maximum vertical displacement. By assuming as a boundary condition that the

horizontal velocity at the surface becomes void and by imposing the regularity of

the solutions for y → ∞, the temporal evolution of the displacement becomes

h(x, t) = h0 cos
2xπ

λ
e−t/τH , (1.7)

(Turcotte and Shubert, 1982) where τH is the Haskell’s characteristic relaxation

time,

τH =
4πν

λρ0g0

, (1.8)

where g0 is the modulus of the gravity acceleration at the free surface of the half

space.

Together, the RSL data from the regions affected by the PGR, the time elapsed

from melting of the Pleistocene ice sheets and the amount of the residual uplift

represent the necessary information to retrieve an estimate of τ0. From the available

information it is possible to deduce a relaxation time of about 3000 years relatively
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to the uplifting processes which affect the region once covered by the pleistocene

fennoscandian ice sheet. By assuming for this glacier a lateral extent (wavelength)

λ ≈ 3 × 103 km, and for ρ0 ≈ 2.5 × 103 kg/m3 and g0 = 9.8 m/s2, it is possible

obtain, by inverting for the viscosity

ν ≈ 1021Pa · s, (1.9)

which is the order of magnitude of the mean mantle viscosity.

Previously with respect to the study of Haskell, Darwin (1879) investigated the

deformations at the free surface of a sphere by means of a spherical symmetry model

consisting in a homogeneous viscous fluid characterized by a linear rheology. Unlike

the half space model of Haskell, the spherical model incorporates selfgravitation and

thus reproduces the geopotential variations induced by surface loads. Besides this

fundamental difference, which nowadays characterizes the most recent PGR models,

the relaxation of the surface of the sphere follows the same course of the Haskell’s

half space. The relaxation time of Darwin, τD, is

τD =
(2l2 + 4l + 3)

l

ν

ρ0g0a
, (1.10)

where a is the radius of the sphere, and l is the harmonic degree of the Legendre

polynomial expansion of the velocity field. The relaxation time τD depends only on

the geometrical and mechanical parameters of the model.

Since the Earth exhibits an elastic behavior on short geological time scales, while,

for longer time scales, it acts as a high–viscosity fluid, the simple viscous models are

not enough adequate to the study of the GIA. On the contrary, a viscoelastic body

perturbed by surface loads exhibits both an instantaneous elastic and a delayed

viscous relaxation. The governing equations for a linear viscoelastic continuum are

described in details in Appendix A.
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The study of post–glacial rebound which followed the original work of Haskell

replaced the early constant–viscosity half–space Earth model by taking into account

the spherical symmetry of the Earth, the presence of a high–viscosity lithosphere,

the depth–dependency of the mantle viscosity, and the perturbations of the geoid

caused by the melting of the ice sheets (see e. g., Ranalli, 1987).

From the second half of the XX century to the present day, the modeling

approach to the GIA has generally adopted a (i) spherically symmetric, (ii) in-

compressible, (iii) non–rotating, (iv) stratified, and (v) Maxwell viscoelastic Earth

model (see Appendix A) where, for each layer, density, rigidity and Maxwell viscos-

ity are constant. Furthermore, the inner core is assumed to be homogeneous and

inviscid and the lithosphere is perfectly elastic. For this model the readjustment

of the deformed surface is governed by a spectrum of relaxation times. The results

obtained for different ice chronologies and viscosity profiles have proved to satisfac-

torily account for the GIA–related phenomena without the need to consider different

rheologies and lateral heterogeneities of rheological parameters. However, during the

last decade, attempts have been made to implement non–Newtonian rheologies and

lateral variations of the rheological parameters such as lithospheric thickness and

mantle viscosity (e. g., Spada et al., 2006; Gasperini et al, 2004).
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1.2 Sea level variations and GIA

The exhaustive studies which followed the work of Daly (1920) stressed the

inadequacy of a global eustatic sea level curve and, on the basis of different geological

sea level indicators and studies on the rheology of the Earth, recognized the existence

of regional differences in sea level response to deglaciation.

Farrell and Clark (1976) proposed a numerical model for the PGR–driven sea

level change based on a spherical layered viscoelastic Earth and on different assump-

tions of the extent of the Pleistocene glaciers and of post–glacial melting rates. This

mathematical description of the relation between the ice loads and the sea level

change was called Sea Level Equation (SLE, see Chapters 2–6 for further details).

According to a spatio–temporal discretization in which the ice sheets distributions

vary by steps and the basic unknowns are decomposed in series of spherical har-

monics, Clark et al. (1978) solved the SLE and found global complex patterns for

the post–glacial relative sea level curves. The main limitations of the model were

the little knowledge about both the viscoelastic response of the Earth and the rates

of ice melting in a regional context and finally the lack of the Antarctic ice contri-

bution to the global post–glacial melting. Despite the limitations and the in–built

drawbacks which this circular reasoning involved, at least three significant conse-

quences came out: (i) no part of the Earth’s crust can be considered stable, (ii) the

relationship between eustatic change and isostatic adjustment is not obvious and

(iii) the concept of a global eustatic sea level change must be rejected.

The apparent differences between RSL predictions and observations pointed out

the need to refine the assumptions on the ice sheets extent and melting and on the

Earth’s rheology, and, following the words of Kidson (1982):

”...suggested that as much is to be learned of glacial history and the earth’s rhe-

ology from observations on sea level change as of the history of sea level change from

studies of the earth’s rheology”.
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Clark et al. (1978) confirmed the existence of significant regional differences in

the post–glacial sea level rise and demonstrated the importance of the different

glacio– and hydro–isostatic effects of the ice melting on the global sea level. The

geophysical phenomena which operate simultaneously during the formation and the

melting of the continental glaciers can be summarized as follows:

1. Glacio–eustasy. As previously stated, the post–glacial eustatic sea level

variation is referred to the modification of the oceanic water volume which

follows the mass exchange between the cryosphere and the hydrosphere in the

absence of any deformational and gravitational effect (Figure 1.6).

2. Glacio–isostasy. A previously depressed region tends to restore its original

surface of isostatic equilibrium (solid black line in Figure 1.7) through a sig-

nificant uplift movement, which results in a regional sea level lowering. On

the contrary, the surrounding circular forebulge zone is subject to subsidence

that enhances the rate of post–glacial sea level rise.

3. Hydro–isostasy. The eustatic sea level rise (Figure 1.6, right frame) is fol-

lowed by a deformation of the the ocean floor as a consequence of the change

in the water load (Figure 1.8). This effect produces a complex pattern in the

regional to global post–glacial sea level rise.

4. Geoidal eustasy. The equipotential surface of the ocean (i. e. the geoid)

shows undulations which are related to local to regional variations of the

Earth’s gravitational field. The shape and the position of these deformations

vary with time following the readjustment of the earth’s gravitational field in

response to the interior fluxes of matter and to the modification of the ice

sheets configurations.
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T1

ice sheet (LGM)

T2

T1

Figure 1.6: Glacio-eustasy. At the initial time T1, which refers to the LGM (left

frame), the sea level is at a low–stand. After the end of melting (T2, right frame)

the new sea level reaches a highstand.

ice sheet

peripheral
depression

forebulge

pre-glacial surface P2
P1

Figure 1.7: Glacio–isostasy. The rate of vertical uplift which affects both the previ-

ously covered region and the peripheral depression (P1) exceeds the rate of sea level

rise ascribed to the ice melting, and results in a relative sea level drop. Subsidence

of the forebulge region (P2) contributes to accelerate post–glacial sea level rise.
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sea bottom at T1

sea bottom subsidence

T2

solid surface at T1

continental levering

(B)

sea level at T1

T2

Figure 1.8: Hydro–isostasy. The addition of post–glacial meltwater to the ocean at

time T1 causes subsidence of the sea bottom and a simultaneous uplift of continents

(continental levering). The combined effects result in a sea level fall along the

oceanic margins of the continents.

T1
ice sheet

T2

Figure 1.9: Geoidal eustasy. The surface of the ocean is subject to the gravitational

attraction of the continental ice sheets and results in a regional sea level highstand

around the ice masses (left frame). After the deglaciation sea level around the

previous ice caps tends to fall (right frame).
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The simultaneous forcing of the geophysical phenomena accompanying melting

of continental glaciers results in a complex zonation of the global ocean based on the

shape of post–glacial sea level curves. Figure 1.10 shows results of Clark and Lingle

(1979) for an ice chronology lacking of Antarctic component. It is interesting to

observe the differences between the eustatic sea level rise ending at 5,000 years BP

and the curves pertaining to zones I–VI. Zone I encompasses regions once covered

by Pleistocene ice sheets and exhibits a post–glacial sea level fall up to present–day

as a consequence of uplift (see Figures 1.5 and 1.7). The forebulge regions pertain

to Zone II where a monotonous sea level rise driven by a regional subsidence follows

the end of melting (see Figure 1.7). Zones V and VI refer respectively to mid–ocean

regions and continental borders. Both Zones show a sea level higher than present in

correspondence to the end of melting (5.0 kyrs BP). The subsequent sea level fall of

Zone VI is ascribed to continental levering (see also Figure 1.8) while in Zone V it

results from a complex mechanism called ”equatorial ocean syphoning” (Mitrovica

and Milne, 2002) consisting in the combined effect of sea bottom subsidence and

water migration from oceans to fill the gaps left by collapsing forebulge regions.

The general departure from eustasy and the zonal trends of sea level change

after the end of melting are driven by the delayed viscous response of the Earth

to deglaciation. Since the the last deglaciation ended about 6,000 years BP the

GIA is still affecting the measured present–day sea level change and solid surface

movements of Earth. Furthermore, because this melting phase lies in the range in

which the radioactive carbon 14C is applicable to provide chronological control of

the recorded planetary response to this event, quantitatively constrained analyses of

both solid Earth rheology and paleo–climatic dynamics may be performed by means

of numerical models.
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Figure 1.10: Clark’s zones (after Clark and Lingle, 1979).
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1.3 Research objectives

The present Doctoral Thesis work has been developed in the framework of the

National Research Program PRIN2004: ”Global sea level variations and isostatic

postglacial adjustment: effect of the rheological properties of the Earth mantle on

the present rate of sea level rise”. This project originated from the joint efforts of

the two research groups, respectively pertaining to the Universities of Urbino and

Bologna, which have been cooperating for a long time and have a specific experience

on the topic of the post-glacial isostatic adjustment. As previously stated, this

phenomenon has accompanied and followed the melting of the Pleistocene ice sheets

and its implications have both a relevant scientific and a socio-economical impact.

As testified by a broad scientific literature, a correct description of this phenomenon

is a key for the understanding of a major planetary emergency: the progressive sea

level rise in response to the increased mean surface temperature of the planet.

The link between isostatic adjustment, which is mainly a solid Earth process, and

sea level rise, is apparent when one considers the problem of obtaining an eustatic

signal from the longest available tide-gauge records, that represent the most valuable

source of information about the present-day changes in the mean sea level. It is thus

clear that a more accurate knowledge of the rheological properties of the mantle

would allow to reliably correct to the tide-gauge derived rates and, in turn, for

an improved estimate of the present-day sea level rise and for a the quantification

of possible contributions of anthropic origin (enhanced greenhouse effect, urban

warming, etc.).

In this work we have addressed the problem of postglacial isostatic adjustment

by making use of innovative methods and also of alternative hypotheses for the

Earth rheology. Following the general aim of improving our knowledge of both solid

Earth and glacial dynamics, we have adopted advanced numerical modeling tools

and considered available geological and geophysical data to constraining rheological

properties and deformation mechanisms of the Earth, and inferring phenomenology
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of the last deglaciation phase. We have faced various aspects of glacial isostatic ad-

justment, with the purpose of improving the usual approach to the problem, based

on the hypothesis that Earth mantle materials obey to a linear rheology, and that

the physical parameters of this rheology can be only characterized by their depth

dependence. Getting through these assumptions and also through the ”standard

model” till now employed to study the GIA has demanded new modeling strategies

and the development and distribution of new computing tools and theories finalized

to the study of postglacial deformations and related phenomena. Therefore in the

preliminary phase of this work we have developed a free source pseudo-spectral code

(SELEN) aimed at the solution the Sea level Equation assuming a depth-dependent

rheology (see Chapter 5). As previously mentioned in Section 1.1 the SLE is an in-

tegral equation that allows to predict the sea level variations accompanying glacial

isostatic adjustment. By means of the ”pseudo–spectral” solution method the SLE

can be solved to obtain predictions of relative sea level variations and other geo-

physical quantities. The theory of the SLE (see Chapters 2, 3 and 4 of Part II) is

based on these approximations:

1. the Earth is assumed to be radially stratified and incompressible, and the vari-

ous layers are characterized by a linear viscoelastic rheology. This is a common

approximation, but recent work has been done to include non–Newtonian rhe-

ologies and lateral viscosity variations in spherical Earth models (see e. g.,

Giunchi and Spada, 2000; Wu and Vanderwal, 2003),

2. it is assumed that the ocean function is constant, that implies fixed shorelines.

The effect of allowing for time–dependent shorelines has been discussed in

Johnston (1993),

3. we totally neglect the effects of rotation on the GIA–induced sea level varia-

tions. The reader is referred to Milne (1998) for the theoretical details con-

cerning the rotational feedback and for the numerical evaluation of its conse-

quences.
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In view of the approximations above, our code provides a zeroth–order model

for the postglacial sea level changes (see Chapter 6 for some applicative examples),

that can be considerably improved in the future.

In the course of 2005 we have joined with SELEN in the SBL/GGFC project

”Standard model of present-day signals due to post-glacial rebound” aimed at the

definition of a ”standard GIA model” (see Section 6.4 for further details). The theory

described in Part II is a synthesis of a number of works that have been published

in the course of the last three years (Spada et al., 2004; Spada and Stocchi, 2006;

Spada and Stocchi, 2007).

Within the PRIN 2004 project, we have tested the potentialities of the PS method

to investigate the GIA signatures in the Mediterranean Sea. By means of SELEN

we have modeled and characterized the Holocene and present–day RSL changes as-

cribed to the melting of the remote Pleistocene ice sheets and of the Würm Alpine

glacier. A fundamental part of this has task concerned the definition of a RSL ref-

erence database and of its resolving power of Holocene sea level variations in order

to constrain the glacial chronology and the three–dimensional rheological structure

of lithosphere and mantle. Part III of this dissertation describes the study of the

Holocene and present–day sea level changes in the Mediterranean Sea and is a syn-

thesis of published papers (Stocchi et al., 2005a, 2005b; Stocchi and Spada, 2006;

Stocchi and Spada, 2007). The reader is referred to Section 7.2 and further Chapters

in Part III for more details.
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Chapter 2

The GIA problem

The first part of this chapter is devoted to the description of the Green’s function

approach in the context of the GIA theory. The Green’s functions (henceafter GFs)

provide a way to quantify the three dimensional displacements and the variation

of the gravitational potential when a point–like, impulsive load is applied to the

surface of a spherically symmetric, layered Earth model. The usefulness of the GFs

technique is limited to the case of elastic or linear viscoelastic rheologies.

Except for models characterized by a very simple internal structure (Wu and Ni,

1996), the GFs cannot be established by means of purely analytical methods. For

multi–layered models the GFs can only be computed numerically by means of the

load–deformation coefficients (LDCs) obtained by the ”normal modes” technique

Peltier, 1974, 1985; Vermeersen and Sabadini, 1997; Spada et al., 2004).

Once the viscoelastic GFs have been constructed, the response of the Earth

model to surface loads of arbitrary geometries and time–histories can be obtained

by spatio–temporal convolutions. This will be explained in detail in Section 2.3,

that is devoted to the solution of what we have called ”simplified GIA problem”, in

which the water load is assumed to be uniformly distributed.
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2.1 Green’s functions

Here we introduce the GFs for the three components of the displacement field

and for the incremental gravitational potential, in the case of rigid (Section 2.1.1),

elastic (2.1.2), and viscoelastic (2.1.3) layered Earth models, respectively. The sea

level GF, that constitutes one of the basic ingredients of the sea level equation, will

be defined in Section 2.1.4.

2.1.1 Rigid Earth

We consider a localized point mass placed at the surface of a rigid, spherically

symmetric Earth. We define the ”dynamic” mass of the surface load as

µ(t) = f(t)ms, (2.1)

where f(t) describes its time–evolution, and ms represents its intrinsic (or static)

mass. For an impulsive load, f(t) = δ(t) where δ(t) is Dirac’s delta, so that in this

specific case the dynamic mass

µ(t) = δ(t)ms (2.2)

has dimensions of a mass per unit time.

The gravitational potential per unit time exerted by the localized mass at a point

P on the Earth surface is

φr(d, t) =
Γµ(t)

d
, (2.3)

where Γ is Newton’s constant, d is the distance between the mass and P , and

the superscript r recalls that we are dealing with a rigid Earth. Since φr adds to

the background potential of the Earth, we will refer to it as to the incremental

gravitational potential.

By simple trigonometry,

d(α) = 2a sin(α/2), (2.4)
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where α is the colatitude of P with respect to the point load and a is the radius of

the Earth. This allows to write

φr(α, t) =
aγmsδ(t)

2me sin(α/2)
, (2.5)

where

γ =
Γme

a2
(2.6)

is the surface gravity acceleration in spherical approximation, and me is the mass of

the Earth.

Since φr only results from the gravitational attraction of the imposed point

mass, it is sometimes referred to as direct potential. The GF for the incremental

gravitational potential for a rigid Earth is defined as

Gr
φ(α, t) ≡

φr(α, t)

ms

=
aγδ(t)

2me sin(α/2)
, (2.7)

where, by its own definition, Gr
φ(α, t) has the dimensions of a gravitational potential

per unit time and unit mass.

An equivalent expression for the GF can be obtained recalling the Legendre sum:

∞
∑

l=0

Pl(cosα) =
1

2 sin(α/2)
, (2.8)

where Pl(cosα) is the Legendre polynomial of harmonic degree l (Appendix B.1).

Hence, from (2.7), the spectral form of Gr
φ is

Gr
φ(α, t) = δ(t)

∞
∑

l=0

φr
lPl(cosα), (2.9)

where

φr
l ≡

aγ

me
. (2.10)
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2.1.2 Elastic Earth

For an elastic Earth, the action of the impulsive mass (2.2) produces two related

effects. First, the planet yields under the pressure exerted by the load. Second,

there is a variation of the gravitational potential following the change of the shape

of the Earth. In analogy with (2.9), the corresponding GF may be written as

Ge
φ(α, t) = δ(t)

∞
∑

l=0

φe
lPl(cosα), (2.11)

which is in phase with Gr
φ as a consequence of elasticity. Furthermore, since the

Earth responds linearly to the imposed forces, the spectral coefficients φe
l are pro-

portional degree-by-degree to φr
l :

φe
l = ke

l φ
r
l , (2.12)

where the non–dimensional number ke
l is the elastic load–deformation coefficient

(hereafter LDC) for the incremental gravitational potential.

The total GF for the incremental gravitational potential stems from a rigid and

an elastic component

Gφ(α, t) = Gr
φ(α, t) +Ge

φ(α, t), (2.13)

and, according to Eqs. (2.9-2.12) above, can be cast in the following spectral form

Gφ(α, t) = δ(t)
aγ

me

∞
∑

l=0

(1 + ke
l )Pl(cosα). (2.14)

At the surface of the Earth, the elastic displacement induced by the applied load

can be expressed as

~u(α, t) = Gu(α, t)r̂ +Gv(α, t)α̂, (2.15)

where r̂ and α̂ are unit vectors in the directions of increasing radius and colatitude,

and Gu and Gv are the GFs relative to the vertical and horizontal components of

displacement, respectively. By virtue of the spherical symmetry of the Earth, the
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longitudinal component of displacement – perpendicular to both r̂ and α̂ – vanishes

identically. Therefore, in analogy with (2.13), we write the displacement GFs as

Gu(α, t) = Gr
u(α, t) +Ge

u(α, t), (2.16)

and

Gv(α, t) = Gr
v(α, t) +Ge

v(α, t), (2.17)

where

Gr
u(α, t) = Gr

v(α, t) = 0 (2.18)

since the Earth is rigid.

The vertical and horizontal components of displacement can be expressed in

spectral form by means of appropriate LDCs. Following (2.11) we write

Ge
u(α, t) = δ(t)

∞
∑

l=0

ue
lPl(cosα) (2.19)

Ge
v(α, t) = δ(t)

∞
∑

l=0

ve
l

∂Pl(cosα)

∂α
, (2.20)

where

ul = he
l

φr
l

γ
(2.21)

vl = `el
φr

l

γ
(2.22)

define the elastic LDCs he
l and `el .

From above, the GFs pertaining to vertical and horizontal displacement are

Ge
u(α, t) = δ(t)

a

me

∞
∑

l=0

he
lPl(cosα) (2.23)

and

Ge
v(α, t) = δ(t)

a

me

∞
∑

l=0

`el
∂Pl(cosα)

∂α
, (2.24)

that with (2.14) constitute the basic set of GFs for an elastic Earth. We observe

that Ge
u and Ge

v have dimensions of displacements per unit time and per unit mass.
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2.1.3 Viscoelastic Earth

Viscoelasticity introduces a delayed response of the Earth to the surface load.

As first shown by Peltier (1974) and later discussed in a number of papers, for a

spherically symmetric layered and linear viscoelastic Earth, the GF relative to the

total incremental gravitational potential reads

Gφ(α, t) = Gr
φ(α, t) +Ge

φ(α, t) +Gv
φ(α, t), (2.25)

where the rigid and elastic components are given by (2.7) and (2.11), respectively,

while the viscous part is

Gv
φ(α, t) = H(t)

aγ

me

∞
∑

l=0

( M
∑

j=1

klje
sljt

)

Pl(cosα), (2.26)

where

H(t) =







1, t ≥ 0

0, t < 0
(2.27)

is the Heaviside step function, klj are the viscoelastic LDCs for the incremental

potential, and

slj = −1/τlj , (2.28)

where τli are the relaxation times of the Earth model that is being adopted. The

couple {klj, slj} (l = 0, 1, . . . ; j = 1, 2, . . .M) is referred to as the j–th viscoelastic

mode of degree l. The fluid LDCs are














kf
l

hf
l

`fl















(t) =















ke
l

he
l

`el















+

M
∑

j=1

τlj















klj

hlj

`lj















. (2.29)

The number of viscoelastic modes M in (2.26) and (2.29) increases with increas-

ing number of layers and also depends on the nature of the internal boundaries

(Peltier and Andrews, 1976; Peltier, 1985; Spada et al., 1992). The reader is re-

ferred to Spada et al. (2003) for more details on how the modes can be numerically
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determined. Using (2.14) and (2.26) in (2.25), the complete form of the viscoelastic

GF for the incremental potential turns out to be

Gφ(α, t) =
aγ

me

∞
∑

l=0

(

δ(t)(1 + ke
l ) +H(t)

M
∑

i=1

klie
slit

)

Pl(cosα). (2.30)

The GFs pertaining to the vertical and horizontal components of displacement

can be similarly written as the sum of elastic and viscoelastic parts, with

Gu(α, t) = Ge
u(α, t) +Gv

u(α, t) (2.31)

and

Gv(α, t) = Ge
v(α, t) +Gv

v(α, t), (2.32)

where we have used (2.18), the elastic components Ge
u and Ge

v are given by (2.23)

and (2.24), respectively, and in analogy with (2.26) the viscous components are

Gv
u(α, t) = H(t)

a

me

∞
∑

l=0

( M
∑

j=1

hlje
sljt

)

Pl(cosα) (2.33)

and

Gv
v(α, t) = H(t)

a

me

∞
∑

l=0

( M
∑

j=1

`lje
sljt

)

Pl(cosα)

∂α
, (2.34)

where hlj and `lj are the viscoelastic LDCs relative to the radial and horizontal com-

ponents of displacement, respectively (notice that the relaxation times are common

to all of the three viscous GFs so far introduced). The total GFs for the components

of displacement are thus

Gu(α, t) =
a

me

∞
∑

l=0

(

δ(t)he
l +H(t)

M
∑

j=1

hlje
sljt

)

Pl(cosα) (2.35)

and

Gv(α, t) =
a

me

∞
∑

l=0

(

δ(t)`el +H(t)

M
∑

j=1

`lje
sljt

)

Pl(cosα)

∂α
. (2.36)



2.1.4 The sea level Green function 43

A more compact form for the GFs can be established introducing the time–

dependent LDCs:














kl

hl

`l















(t) =















1 + ke
l

he
l

`el















δ(t) +

M
∑

j=1

H(t)















klj

hlj

`lj















esljt, (2.37)

that finally allows to write














1
γ
Gφ

Gu

Gv















(α, t) =
a

me

∞
∑

l=0















kl

hl

`l















(t)















1

1

∂α















Pl(cosα), (2.38)

with ∂α ≡ ∂
∂α

.

2.1.4 The sea level Green function

The sea level GF Gs constitutes one of the essential ingredients of the SLE (see

Section 3.3). Physically, Gs represents the offset between the Earth’s geoid and the

topography, hence its relevance in the context of sea level change. It is defined as

Gs

γ
(α, t) ≡

Gφ

γ
−Gu, (2.39)

where Gφ and Gu are given (2.38). Using (2.25) and (2.31) into (2.39), we obtain

Gs

γ
(α, t) =

Gr
φ

γ
+

(

Ge
φ

γ
−Ge

u

)

+

(

Gv
φ

γ
−Gv

u

)

, (2.40)

where the first, second, and third term represent the rigid, the elastic, and the

viscous components of Gs, respectively.

In the discussion of Section 4.3.2, it will be convenient to write the sea level GF

in the equivalent form

Gs

γ
(α, t) = β

(

ψδ(α)δ(t) + ψh(α, t)H(t)
)

, (2.41)

where

ψδ(α) ≡
∞

∑

l=0

(1 + ke
l − he

l )Pl(cosα), (2.42)
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and

ψh(α, t) ≡
∞

∑

l=0

( M
∑

j=1

(klj − hlj)e
sljt

)

Pl(cosα), (2.43)

with

β =
a

me

. (2.44)

2.2 Surface loads

The response of the Earth to a localized impulsive load (i. e. the GFs), can be

used to build the response to finite–size, time–evolving surface loads. In general, we

can write the total load as

L(ω, t) = Li + Lo, (2.45)

where ω = (θ, λ), θ and λ are colatitude and longitude, t is time, and Li and Lo

are the surface loads associated with changes of the weight of the ice sheets and of

the oceans, respectively. These two terms are separately studied in the following

sections.

2.2.1 Ice load

Given the ice thickness T (ω, t) at a point P of coordinates ω and at a given time

t, the ice thickness variation is defined as

I(ω, t) = T (ω, t) − T0, (2.46)

where T0 is the ice thickness at P at the remote reference time t0. The ice load is

Li(ω, t) = ρiI(ω, t), (2.47)

where ρi is the ice density (ρi = 931 kg m−3). By its own definition, Li has units of

mass per unit surface. The mass variation of the whole ice sheet is

mi(t) = a2

∫

i

dωLi(ω, t), (2.48)
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where

dω = sin θdθdλ (2.49)

and i is the region where I(ω, t) 6= 0.

For an ice load with fixed margins, the following factorization is possible

Li(ω, t) = σ(ω)f(t), (2.50)

where σ(ω) is the load function, and f(t) is the load time–history (the load function

is defined for ω ∈ i, and vanishes outside the ice margins). The more general case of

a complex ice load with time–evolving margins can be dealt with by a combination

of loads of the form (2.50).

The spectral form of the load function is

σ(ω) =
∑

lm

σlmYlm(ω), (2.51)

where we have used the abbreviation

∑

lm

=
∞

∑

l=0

l
∑

m=−l

(2.52)

and Ylm(ω) are the 4π–normalized complex spherical harmonics (B.3). Using (B.6),

the coefficients σlm are

σlm =
1

4π

∫

Ω

dωσ(ω)Y∗
lm(ω). (2.53)

From (2.48) and (2.50) we observe that

mi(t) = msf(t) (2.54)

where the static mass of the load is

ms = a2

∫

i

dωσ(ω). (2.55)
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2.2.2 Water load

The growth or the melting of the ice sheets is accompanied by a variation of

the mass of the oceans, that constitutes the water load. To define it, we need to

introduce the sea level and the sea level change. With r = r′t we denote the radius

of a point P of the Earth’s solid surface of coordinates ω, while with r = r′g we

indicate the radius of the projection of P to the surface of the geoid, at the same

time. The (absolute) sea level at P is the difference

SL(ω, t) = r′g(ω, t) − r′t(ω, t), (2.56)

while the sea level change is

S(ω, t) = SL(ω, t) − SL0, (2.57)

where SL0 is the sea level measured at ω at the reference time t0 ≤ t. Notice that

SL and S are defined also across the continental masses, not only on the oceans.

The sea level change defined by (2.57) results from (i) vertical displacements of the

surface topography, (ii) alterations of the shape of the geoid, and (iii) changes of the

amount of water contained within the oceans. These three geophysical processes are

simultaneously described by the sea lavel equation, that will be introduced in the

next chapter.

The water load is

Lo(ω, t) = ρoS(ω, t)O(ω), (2.58)

where ρw is the density of water (ρw=1000 kg m−3), and O(ω) is the ocean function

O(ω) =







1, ω ∈ oceans

0, ω /∈ oceans,
(2.59)

with spectral form

O(ω) =
∑

lm

OlmYlm(ω), (2.60)
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and coefficients

Olm =
1

4π

∫

o

dωY∗
lm(ω), (2.61)

where o is the surface of the oceans.

An estimate of Lo can obtained assuming that the Earth does not deform under

the action of the loads (rigid Earth hypothesis), and that no geoid changes occur

(Newton’s constant is Γ = 0). In this case, the sea level changes are called eustatic,

a word coined by Suess (1906). Given a change mi(t) in the ocean mass, eustasy

imposes a spatially uniform sea level change of opposite sign

S(ω, t) = −mi(t)

ρwAo

, (2.62)

that, according to (2.58) implies

Lo(ω, t) = −mi(t)

Ao

O(ω). (2.63)

2.3 The simplified GIA problem

The vertical displacement U and the variation of the gravitational potential

Φ at a point ω and time t result from the displacements and potentials due to

changes of the ice and of the oceanic mass distributions at any point ω′ and times

t′ ≤ t. This involves a spatial integration over the whole surface of the Earth and a

time convolution which accounts for the load time–history and the time–dependent

response of the viscoelastic mantle. Since the GFs for vertical displacement Gu and

gravitational potential Gφ have similar forms,1 the spatio–temporal convolutions can

be compacted as






U

Φ







(ω, t) =

∫ t

−∞

dt′
∫

e

dA′







Gu

Gφ







(α, t− t′)L(ω′, t′), (2.64)

1The computation of the horizontal component of displacement requires further considerations,

that will be illustrated in Section 3.5.3.
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where L is the total load,

dA ≡ a2 sin θdθdλ, (2.65)

and α implicitly depends upon ω and ω′ via the cosines formula

cosα = cos θ cos θ′ + sin θ sin θ′ cos(λ′ − λ). (2.66)

It is useful to introduce the concise notation

(G⊗dL)(ω, t) ≡
∫ t

−∞

dt′
∫

d

dA′G(α, t− t′)L(ω′, t′), (2.67)

where here G and L are a generic GF and a generic load, respectively, and d is a

subset of the Earth’s surface. Hence, using (2.45), (2.64) reads






U

Φ







(ω, t) =







Gu

Gφ







⊗eL =







Ui + Uo

Φi + Φo







, (2.68)

where






Ui

Φi







(ω, t) ≡







Gu

Gφ







⊗iρiI, (2.69)

and






Uo

Φo







(ω, t) ≡







Gu

Gφ







⊗oρwS, (2.70)

represent the ice and the oceanic components of the total response, and with ⊗i and

⊗o we indicate integrations over the ice sheets and the oceans, respectively.

By its own definition (see 2.45), the total load L depends both on the ice thick-

ness and the sea level variations. While the former can be reasonably assumed to

be known from geological or geophysical evidence, the latter will depend, beside

on the amount of water exchanged between the ice sheets an the oceans, also on

vertical displacement of the solid Earth and geoid height changes, which can only

be determined once the sea level changes themselves are known! Here we will escape

to this circularity assuming an eustatic ocean load, which leads to a simple – but

possibly inaccurate – analytical solution for the responses. Once we will introduce

the sea level equation in Chapter 3, the eustatic approximation will be abandoned.
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2.3.1 Response to the ice load

Here we provide the details on the derivation of the ”ice components” of the

response of the Earth to the surface loads. Using (2.69) with (2.47) and (2.50), we

obtain






Ui

Φi







(ω, t) =

∫ t

−∞

dt′
∫

i

dA′







Gu

Gφ







(α, t− t′)σ(ω′)f(t′), (2.71)

that with the expressions of Gu and Gφ (2.38) and the spectral decomposition of

the load function (2.51), becomes






Ui

1
γ
Φi







(ω, t) =
a3

me

∫ t

−∞

dt′f(t′)

∫

i

dA′

∞
∑

l=0







hl

kl







(t− t′) ×

× Pl(cosα)
∑

l′m′

σl′m′Yl′m′(ω′), (2.72)

which can be further transformed recalling the addition theorem for spherical har-

monics (B.8) and integrating over the whole sphere – this is possible since σ(ω) = 0

outside i:






Ui

1
γ
Φi







(ω, t) =
a3

me

∫ t

−∞

dt′f(t′)

∫

Ω

dω′

∞
∑

l=0







hl

kl







(t− t′) ×

× 1

2l + 1

+l
∑

m=−l

Y∗
lm(ω′)Ylm(ω) ×

×
∑

l′m′

σl′m′Yl′m′(ω′), (2.73)

hence






Ui

1
γ
Φi







(ω, t) =
a3

me

∑

lm

∑

l′m′

σl′m′

2l + 1







hl

kl







(t)Ylm(ω) ×

×
∫

Ω

dω′Y∗
lm(ω′)Yl′m′(ω′), (2.74)

where






hl

kl







(t) ≡
∫ t

−∞

dt′







hl

kl







(t− t′)f(t′). (2.75)
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Also taking into account the orthonormality relationship for the spherical harmonics

(B.6) and introducing the average density of the Earth

ρe =
3me

4πa3
= 5511.57 kg m−3 (2.76)

from (2.74) we finally obtain






Ui

1
γ
Φi







(ω, t) =
3

ρe

∑

lm

σlm

2l + 1







hl

kl







(t)Ylm(ω). (2.77)

2.3.2 Response to the water load

Assuming an eustatic load (2.63), the ”oceanic components” of the responses

(2.70) read






Uo

Φo







(ω, t) = −
∫ t

−∞

dt′
∫

o

dA′







Gu

Gφ







(α, t− t′)
mi(t

′)

Ao

f(t′), (2.78)

that can be rephrased recalling (2.54) and (2.38):






Uo

1
γ
Φo







(ω, t) = −ms

me

a3

Ao

∫ t

−∞

dt′f(t′) ×

×
∫

o

∞
∑

l=0







hl

kl







(t− t′)Pl(cosα)dω′. (2.79)

With (2.75) and (B.8), we obtain






Uo

1
γ
Φo







(ω, t) = −ms

me

a3

Ao

∞
∑

l=0

1

2l + 1







hl

kl







(t) ×

×
+l
∑

m=−l

Ylm(ω)

∫

o

dω′Y∗
lm(ω′), (2.80)

that, using (2.61), (2.52) and (2.76), provides the result:






Uo

1
γ
Φo







(ω, t) = − 3

ρe

ms

Ao

∑

lm







hl

kl







(t)
Olm

2l + 1
Ylm(ω). (2.81)
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2.3.3 Solution of the simplified GIA problem

According to (2.77) and (2.81), the vertical displacement and the change in the

gravitational potential due to the combined action of the ice and of the ocean loads

is






U

1
γ
Φ







(ω, t) =
3

ρe

∑

lm

σ′
lm

2l + 1







hl

kl







(t)Ylm(ω), (2.82)

where

σ′
lm = σlm − ms

Ao
Olm. (2.83)

The expansions (2.82), that solve the simplified GIA problem, have been imple-

mented in Spada (2003), and Spada et al. (2003) to account for various ice load

time–histories and shapes. Since we have assumed an extremely simplified water

load, we expect that these solutions may be somewhat inaccurate in the far field

with respect to the former ice sheets, where the effects of the water and ice loads

can be of comparable magnitude. The difficulty is circumvented introducing the sea

level equation (SLE), that is the subject of the next chapter.



Chapter 3

The Sea Level Equation

This chapter is devoted to the study of the Sea Level Equation, that has been

introduced in Sectionr̃efgia-sle of Chapter ??. The theoretical aspects of our analysis

are largely based on the manuscripts by Farrell and Clark (1976), and Wu and Peltier

(1983).

The basic idea of the SLE dates back to 1888, when Woodward published his

pioneering work on the form and position of mean sea level (Woodward, 1888), and

later has been refined by Platzman (1971) and Farrell (1973) in the context of the

study of the ocean tides. In the words of Wu and Peltier (1983), the solution of

the SLE yields the space– and time–dependent change of ocean bathymetry which is

required to keep the gravitational potential of the sea surface constant for a specific

deglaciation chronology and viscoelastic earth model. This constitutes a significant

improvement with respect to the approach of the last chapter, where we have as-

sumed an eustatic water load to simplify the discussion.

3.1 Background

Consistently with the definitions of Section 2.2.2, the sea level at a point P of

coordinates ω is the offset between the surface of the geoid and that of the solid

52
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Earth (Figure 3.1b):

SL = SL(ω, t) = r′g − r′s, (3.1)

while the sea level change is

S(ω, t) = SL− SL0, (3.2)

where SL0 is a reference sea level, measured at the same point but at the remote

time t = t0 (Figure 3.1a):

SL0 = rg − rs. (3.3)

The quantity provided by (3.2) represents exactly the sea level variation that would

be measured by a stick–meter at P (Figure 3.1), as described by Farrell and Clark

Farrell and Clark (1976).

solid surface

geoid

stick-meter

P

(a)

rg

rs

SL 0

t = t 0 SL 0 = rg − rs

solid surface

geoid
stick-meter

P

(b)

SL

S =SL −SL 0

′rg

′rs

SL = ′rg − ′rs

Figure 3.1: Sea level at a point P.

A particularly illuminating expression for S(ω, t) can be obtained combining

(3.1) with (3.3):

S(ω, t) = N − U, (3.4)

where

N(ω, t) = r′g − rg (3.5)
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is the geoid height change, and

U(ω, t) = r′s − rs. (3.6)

represents the vertical displacement of the solid surface of the Earth. Eq. (3.4)

explicitly shows that the sea level change is determined by changes in the shape of

the two surfaces that define the geoid and the solid Earth.

The sea level change (3.4) is defined on the whole surface of the sphere, since both

N and U have a precise meaning also across the continents. However, it is convenient

to define the reduced sea level change, that coincides with S on the surface of the

oceans, and vanishes outside:

Z(ω, t) = OS, (3.7)

where O is the ocean function (2.59). The reduced sea level change will play an

important role in Chapter 4, that describes the ”pseudo–spectral method” for solving

the SLE

In our ensuing discussion, it is assumed that the Earth’s solid surface and the

geoid slightly depart from a sphere having of r = r0 and the same mass me of the

real Earth, but characterized by a radially varying density. In this quasi–spherical

approximation, the gravity acceleration is

~g = −grr̂ + gtt̂ (3.8)

with

gr = γ(r) + δgr(ω, r) (3.9)

and

gt = δgt(ω, r), (3.10)

where the perturbations δgr and δgt are small compared to

γ(r) =
Γme

r2
, (3.11)
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that represents the modulus of the gravity field of the spherically symmetric Earth.

The total gravitational potential W includes contributions from the solid Earth,

the oceans, and the ice sheets. It is related to the gravity field by

~g = ∇W, (3.12)

that from (3.8) implies

gr = −∂W
∂r

. (3.13)

We now observe that if r = rep is an equipotential surface close to the sphere

r = r0 and ε = ε(ω) is a small radius, we have

W (rep + ε) −W (rep) ' ε
∂W

∂r
(rep)

= −εgr(rep)

= −ε(γ(rep) + δgr(rep))

' −εγ(r0)

= −εγ (3.14)

where we have used (3.9) and (3.13), we have neglected terms of second order in the

small quantities ε and δgr, we have approximated εγ(rep) with εγ(r0), and

γ = γ(r0). (3.15)

In the particular case ε = c = constant � r0, from (3.14) we obtain

W (rep + c) = W (rep) − cγ, (3.16)

showing that if r = rep is an equipotential surface, r = rep + c is an equipotential as

well.

3.2 Obtaining the SLE

To obtain the SLE, we need first to evaluate how the surface of the geoid has

changed from the reference state to the current state. Both states are characterized
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by an arbitrary distribution of ice and ocean masses, and they differ by the mass

contained in these reservoirs – the total mass being unaltered. Here we denote

with mi(t) the ice mass variation, where conventionally a positive change denotes

accretion. We recall that we are assuming fixed shorelines, so that the shape of

the continents is unaltered by the exchange of mass between the ice sheets and the

oceans.

We first observe that it is possible to determine a (non constant) small height

h = h(ω) with |h| � r0 such that the current gravitational potential at radius rg +h

equals the potential in the reference state at r = rg, i. e.:

W ′(rg + h) = W (rg) = constant, (3.17)

where the right–hand equality holds because r = rg is the geoid in the reference

state. But from (3.14) we have

W ′(rg + h) 'W ′(rg) − hγ, (3.18)

hence

h =
W ′(rg) −W (rg)

γ
=

Φ(rg)

γ
, (3.19)

where Φ is the variation of the total gravitational potential with respect to the

reference state. Since the masses involved in the process of glacio–isostasy are small

compared to the Earth mass, the potential Φ can be considered as a small quantity.

Therefore, to a high degree of approximation we can write Φ(rg) ' Φ(r0), that gives

h =
Φ(r0)

γ
, (3.20)

where Φ(r0) is given by (2.68) as a spatio–temporal convolution between the GF Gφ

and the surface load: it results from variations of the ice load, of the water load, and

from the deformations of the solid Earth in response to the varying surface loads.

The surface r = rg+h determined above is certainly an equipotential surface, but

it does not necessarily coincide with the geoid. In fact, beside being an equipotential

surface, the geoid must be constrained by the requirement of mass conservation.
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Since from (3.16) we know that a new equipotential surface can be obtained by a

uniform shift of a near by equipotential surface, we seek the current geoid in the

form

r′g = rg + h+ c, (3.21)

where the small constant c will be determined below imposing mass conservation. As

a consequence of (3.21) and (3.20), the geoid height variation (3.5) can be expressed

as

N =
Φ

γ
+ c, (3.22)

and according to the definition (3.2), the sea level change is

S = SL− SL0

= (r′g − r′s) − (rg − rs)

= rg + h+ c− r′s − rg + rs

= h+ c− (r′s − rs)

=
Φ

γ
− U + c, (3.23)

where U is the vertical displacement of the solid surface of the Earth (3.6), that is

given by (2.68) in the form of a convolution between the appropriate GF and the

surface load.

The requirement of mass conservation can be stated as

∆M = 0, (3.24)

where the mass variation of the system ice + oceans is

∆M = mi(t) +

∫

o

SρwdA. (3.25)

Using (3.24) with (3.25) and (3.23) we obtain

mi(t) +

∫

o

ρw

(

Φ

γ
− U + c

)

dA = 0, (3.26)
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that gives

mi(t) + cρw

∫

o

dA+ ρw

∫

o

(

Φ

γ
− U

)

dA = 0, (3.27)

where we have assumed a constant water density. Hence

mi(t) + cρwAo + ρwAo

(

Φ

γ
− U

)

= 0, (3.28)

where the overbar denotes the average over the surface of the oceans:

(·) ≡ 1

Ao

∫

o

(·)dA. (3.29)

Solving (3.28) for the constant c gives

c = −mi(t)

ρwAo

−
(

Φ

γ
− U

)

, (3.30)

that substituted into (3.23) finally provides

S =

(

Φ

γ
− U

)

− mi(t)

ρwAo

−
(

Φ

γ
− U

)

, (3.31)

which represents the sea level equation.

3.3 ”Gravitationally self–consistent” SLE

The SLE is an implicit equation. This can be seen recalling the expressions for

the vertical displacement and the incremental gravitational potential (2.68), that

give

Φ

γ
− U =

ρi

γ
Gs⊗iI +

ρw

γ
Gs⊗oS, (3.32)

where Gs is the sea level GF (2.39). Upon substitution of (3.32) into (3.31), the

SLE can be arranged as

S =
ρi

γ
Gs⊗iI +

ρw

γ
Gs⊗oS + SE − ρi

γ
Gs⊗iI −

ρw

γ
Gs⊗oS, (3.33)

where

SE = −mi(t)

ρwAo

(3.34)
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represents the eustatic term of the SLE.

In the literature, the solution of the SLE in the form (3.33) is often referred to as

”gravitationally self–consistent” solution, since it has been obtained imposing that

the geoid is that particular equipotential surface constrained by the requirement of

mass conservation. The water load is thus ”consistent” with the gravity field.

The unknown sea level variation S appears explicitly to left–hand side of (3.33),

but it is also embedded in spatio–temporal convolution products at the right–hand

side. This makes the SLE a (linear) integral equation. We observe that, differently

from the simplified rebound problem described in Section 2.3, the solution of (3.33)

directly provides the sea level variations, that allows to make direct comparisons

with geophysical observations, as discussed in Section 3.5 below. Once S has been

determined, the vertical displacement of the solid surface of the Earth and the

incremental gravitational potential can be obtained from (2.68), that do not imply

an eustatic ocean load, as the approximate solution (2.82) does.

The solution of the SLE is a particularly challenging task and cannot be un-

dertaken by means of analytical methods, except in the particular cases described

in Section 3.4.2. The ”pseudo–spectral method” that we will discuss in Chapter 4

takes advantage from an iterative approach, similar to the Neumann’s method that

is used in the context of the Fredholm integral equations (see e. g., Krasnov et al.,

1977). As described in detail in Section 4.4, at first the test solution S(0) = SE

is substituted to S on the right–hand side of (3.33). In this way, a new estimate

S(1) is obtained at the left–hand side, and the process is iterated. The experience

has shown that this procedure quickly converges to a stable solution Peltier et al.

(1978).

3.4 Approximate solutions of the SLE

Here we show that in some conditions the SLE can be reduced to a non–integral

equation that can be solved without invoking the iterative method. These particular
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solutions of the SLE should only be used in special circumstances, e. g., when the

traditional Green’s functions approach outlined in Chapter 2 is not viable due to the

presence of lateral viscosity contrasts or non–Newtonian rheologies. The approxi-

mate solutions presented here are useful because they allow to better appreciate the

physical meaning of the various terms that appear in the SLE. Some of them will

be explicitly considered in the numerical examples of Chapter 6.

3.4.1 Eustatic solution

The eustatic term of the SLE

SE(t) = −mi(t)

ρwAo

(3.35)

plays an important role in our discussion. From (3.31), we observe that the SLE

has solution

S = SE (3.36)

provided that

U = 0, (3.37)

and

Φ = 0. (3.38)

According to (2.68) and (2.31), the first implies

Ge
u = Gv

u = 0, (3.39)

while from (2.25) the second yields

Ge
φ = Gv

φ = 0 (3.40)

and

Gr
φ = 0. (3.41)
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Eqs. (3.39) and (3.40) state that the Earth is rigid, while (3.41) implies that the

variations of gravitational potential due to the rearrangement of the ice and ocean

masses are neglected. From (2.40) we also observe that Gs = 0 in the eustatic

approximation.

Since the real Earth is deformable and the Newton’s constant is not zero, we must

expect that the melting of the ice sheets produces spatially non–uniform sea level

variations, which may significantly depart from eustasy. This is widely confirmed

by the results published in the literature and will be fully appreciated in Chapter 6,

where the SLE will solved numerically.

More insight into the meaning of the eustatic approximation can be gained taking

the ocean–average of both sides of (3.31). Since c = c for any constant c, this yields

S =

(

Φ

γ
− U

)

+ SE −
(

Φ

γ
− U

)

= SE, (3.42)

showing that the spatially–averaged sea level variations coincide with the eustatic

term. This property holds independently from the ice sheets chronology and the

shape of the shorelines.

3.4.2 Other rigid–Earth solutions

Woodward (1888) found an analytical solution of the SLE assuming that (i) the

Earth is rigid, (ii) the mass load is localized and impulsive – so that in this problem

we are faced with is the instantaneous freezing (or melting) of a point load –, (iii)

the oceans cover uniformly the Earth, and (iv) variations in the ocean mass distri-

bution do not affect the gravity field – i. e., the oceans are not ”self–gravitating”.

Woodward’s solution shows that the sea level changes can significantly depart from

eustasy even when essential physical ingredients – such as the deformations of the

solid Earth and the shape and self–gravitation of the oceans – are totally neglected.

Since the Earth is rigid, U = 0. Furthermore, since we are dealing with an

impulsive point mass, we can identify the incremental potential Φ with the GF Gr
φ
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given by (2.7). Accordingly, from (3.31) we write the SLE as

S∗ =
Gr

φ

γ
+ SE∗ −

Gr
φ

γ
, (3.43)

where the asterisk indicates that the sea level changes are referred to a unit mass

and unit time.

The three terms in (3.43) can be worked out analytically. Using (2.7), the first

is simply

Gr
φ

γ
= δ(t)

a

me

1

2 sin(α/2)
. (3.44)

The second term – that represents the eustatic component of the SLE – can be

transformed as follows

SE∗ = − δ(t)

ρwAo

= − δ(t)

4πa2ρw

= − δ(t)
3me

aρe

ρw

− δ(t)
a

me

ρe

3ρw

, (3.45)

where we have set mi(t) = δ(t), we have taken into account that the oceans cover

uniformly the Earth, and we have used (2.76). The third term of (3.43) is

−
Gr

φ

γ
≡ − 1

Ao

∫

o

dA
Gr

φ

γ

= −δ(t) 1

4πa2me
a3

∫ 2π

0

dλ

∫ π

0

dα sinα

2 sin(α/2)

= −δ(t) a

2me

∫ π

0

dα cos(α/2)

= −δ(t) a
me

, (3.46)

where we have written the element of area as dA = a2 sinαdαdλ, where λ is longi-

tude, and we have integrated over the uniform oceans.

Thus, from above, the solution of the Woodward’s problem is

S∗(α, t) = δ(t)
a

me

(

1

2 sin(α/2)
− ρe

3ρw

− 1

)

, (3.47)

showing that, as a consequence of the point–source approximation and of spherical

symmetry, S∗ only depend on the angular distance from the point mass.
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It is also clear from (3.47) that Woodward’s solution departs from eustasy: this

is merely a consequence of the gravitational attraction exerted by the point mass

on the uniform oceans. We observe in particular that (i) S∗ ≥ S∗
E for α ≤ 60◦ and

(ii) S∗ ≥ 0 if sin(α/2) ≤ (2(1+ρe/3ρw))−1, that gives α ≤ 10.2◦ for ρe = 5511.57 kg

m−3 and ρw = 1000 kg m−3. The singularity shown by (3.47) for α 7→ 0 disappears

as soon as a finite–size ice sheets is employed.

The Woodward approach can be generalized to account (i) for realistic ice loads

and shorelines distribution and (ii) for the self–gravitation of the oceans. Using

(3.33) with Gs = Gr
φ, in the first case the SLE takes the form

S =
ρi

γ
Gr

φ⊗iI + SE − ρi

γ
Gr

φ⊗iI, (3.48)

that immediately provides the solution (since the geometry of the ice sheets and of

the shorelines are complex, the solution is not analytical). In the second case, to

account for self–gravitation of the oceans we just modify (3.48) into

S =
ρi

γ
Gr

φ⊗iI +
ρw

γ
Gr

φ⊗oS + SE − ρi

γ
Gr

φ⊗iI −
ρi

γ
Gr

φ⊗oS, (3.49)

that must be solved iteratively, since in this form the SLE is an integral equation.

3.4.3 Ice–free approach

In their 1976 manuscript, Farrell and Clark Farrell and Clark (1976) have consid-

ered the problem of solving the SLE in the absence of ice loads, assuming a purely

elastic Earth. In their own words, ... the mass is added (to the oceans) from out-

side the Earth, rather than coming from a melting ice sheet. With I = 0, the SLE

becomes

S =
ρw

γ
Gs⊗oS + SE − ρw

γ
Gs⊗iS, (3.50)

where in the sea level GF (2.40) the viscous terms are dropped. This ice–free

version of the SLE was developed in order to show how the changes of sea level may

depart from eustasy, even neglecting the deformations induced by the ice loads. Of
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course, the viscous response of the Earth can be accounted for just substituting the

complete form of Gs into (3.50). In Section (6.1) this ”ice–free” solution of the SLE

is compared to the gravitationally self–consistent solution in terms of relative sea

level variations.

3.4.4 Explicit solutions

The SLE can be reduced to an explicit form also in the general case of a vis-

coelastic Earth and of spatially complex surface loads. The implied brute–force

method of solution is based on the assumption of negligible water loads, and may be

appropriate to describe the sea level variations after the end of the melting of the ice

sheets. Due to the simple solution that we find in this case – that takes advantage

from the approximate solution of the GIA of Section 2.3 – this may provide first

guesses of postglacial sea level changes in the vicinity of the formerly glaciated areas,

where the ice load effect is expected to dominate the water load effect.

In Section 3.2 we have determined the value of the constant c that allows to

write the SLE in the form

S =
Φ

γ
− U + c, (3.51)

so that mass is conserved, with

∆M = mi(t) +

∫

o

dASρw = 0. (3.52)

From (3.52), here we observe that the constraint ∆M = 0 can be also satisfied – for

any value of c – provided that

mi(t) = 0, (3.53)

and

ρw = 0, (3.54)

where (3.53) states that the mass of the ice load has not changed since the remote

reference time, while with (3.54) the weight of the meltwater that has filled the
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oceans is neglected. The indeterminacy of the constant c shows that the geoid cannot

be unequivocally determined for a weightless ocean; for the sake of convenience, we

choose c = 0, that minimizes the offset between the new and the former geoid. From

(3.22), this condition gives

N =
Φ

γ
, (3.55)

while from (3.51) the SLE reduces to

S =
Φ

γ
− U, (3.56)

that still appears as an implicit equation, since both U and Φ in general depend on

S itself (see 2.68). However, because of (3.54), the ocean components of U and Φ

vanish (see 2.70), that gives the explicit solution

S =
Φi

γ
− Ui, (3.57)

where Φi and Ui are given by (2.69).

An even more drastic approach to the SLE consists in neglecting Φi in front of

Ui, that leads to

N = 0 (3.58)

and

S = −Ui. (3.59)

This further approximation may be helpful for investigators employing finite ele-

ments techniques, that often do not allow for a straightforward implementation of

the gravitational forces.

3.5 By–products of the SLE

Once the SLE has been solved for the sea level change, it is possible to compute

a number of interesting geophysical quantities. In the following we discuss how they
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can be derived. We first introduce the relative sea level and the rate of sea level

change. Then, we discuss the velocity field and the time–variation of the Stokes

coefficients of the gravity field.

3.5.1 Relative sea level variations

As previously discussed, the SLE does not provide absolute sea level variations,

but rather it allows to compute sea level changes referred to a remote time. More

specifically, if tBP denotes a given time before present, solving the SLE yields the

difference

S(ω, tBP ) = SL(ω, tBP ) − SL(ω, tr), (3.60)

where SL is the (absolute) sea level, and tr is a remote (and arbitrary) time BP; at

the present time t = tp, we can similarly write

S(ω, tp) = SL(ω, tp) − SL(ω, tr). (3.61)

The relative sea level at a given epoch tBP is defined as the past sea level referred

to the present–day level:

RSL(ω, tp) = SL(ω, tBP ) − SL(ω, tp), (3.62)

that according to (3.60) and (3.61) can be directly related to the sea level change,

i. e., the solution of the SLE:

RSL(ω, tBP ) = S(ω, tBP ) − S(ω, tp). (3.63)

As discussed in e. g. Farrell and Clark (1976), the RSL observations are typ-

ically inferred from elevated beach terraces formed during the retreat of the late–

Pleistocene ice sheets and from archaeological evidence in anciently populated ar-

eas. In Section 6 we will provide RSL predictions for some of the sites of the global

database of Tushingham and Peltier (1992, 1993) for which radiocarbon–controlled

data are available1.
1http://www1.ncdc.noaa.gov/pub/data/paleo/paleocean/relative sea level/.
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3.5.2 Present–day sea level changes

The currently observed rate of sea level change ζ̇ constitutes another important

source of information in addition to the Holocene relative sea level variations. While

the latter data set spans several thousand of years, the former only provides a

snapshot of present–day changes:

ζ̇(ω) =
dS

dt
(ω, tp), (3.64)

that according to (3.63) represents the steepness of the RSL curve at present time.

In Section 6.2 we will present predictions of ζ̇ for some of the tide–gauges of the

database of the Permanent Service for the Mean Sea Level2 (PSMSL), that provides

changes in global sea level during the last two centuries.

3.5.3 Displacement and velocity fields

From Section 2.3 we recall that the vertical displacement is

U(ω, t) = ρiGu⊗iI + ρwGu⊗oS, (3.65)

where the GF Gu is given by (2.38). According to Spada et al. (2003), the horizontal

components of displacements are






Uθ

Uλ







(ω, t) = ρiGv







cosX

sinX







⊗iI + ρwGv







cosX

sinX







⊗oS, (3.66)

with

cosX =
cos θ′ − cos θ cosα

sin θ
√

(1 − cos2 α)
(3.67)

and

sinX =
sin(λ− λ′) sin θ′
√

(1 − cos2 α)
, (3.68)

where cosα is given by (2.66).

2http://www.pol.ac.uk/psmsl/datainfo/rlr.trends.
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The three components of the velocity field (U̇ , U̇θ, U̇λ) are obtained from (3.65)

and (3.66) by time differentiation. These quantities can be observed by modern

geodetic techniques, such as GPS and VLBI, that allow for the determination of

crustal velocities based on observations of relative displacements over finite time

periods. If needed, the velocity field can be projected along the conventional unit

vectors (l̂, t̂, v̂) of the geodetic baseline that connects two sites. The relevant formulas

are given by Spada (2003).

3.5.4 Geoid height variation and Stokes coefficients

When S and U have been obtained solving the SLE and from (3.65), respectively,

the geoid height variation N can be easily deduced by (3.4), giving

N(ω, t) = S + U, (3.69)

that according to (3.22) allows to determine the incremental gravitational potential

as

Φ

γ
(ω, t) = N − c, (3.70)

where the constant c is given by (3.30).

It is now useful to expand

Φ(ω, t) =
∑

lm

ΦlmYlm(ω), (3.71)

where the 4π–normalized, complex spherical harmonics are given by (B.3). Equiva-

lently, we can represent the incremental potential in terms of real harmonics, with

Φ(ω, t) =
Γme

a

∑

lm,l≥2

(δclm cosmλ+ δslm sinmλ)Plm(cos θ), (3.72)

where a if the Earth’s average radius, the associated Legendre functions Plm(cos θ)

are given by (B.2), the sum is for orders m ≥ 0, and the non–dimensional, time–

dependent quantities (δclm, δslm) represent the variations of the Stokes coefficients
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of the gravity field. The relationship between (δc2m, δs2m) and the change of the

inertia tensor is given e. g. by Eqs. (2.102) and (2.103) of Spada (2003).

Since mass is conserved and we assume that the origin of the reference system

coincides with the Earth’s center of mass, the sum in (3.72) is restricted to degrees

l ≥ 2 (Spada et al., 2003). The constant c represents a term of harmonic degree

l = 0, that from (3.70) implies

Nlm =
Φlm

γ
, l ≥ 2, (3.73)

where Nlm are the coefficients of the expansion of the geoid height change

N(ω, t) =
∑

lm

NlmYlm(ω). (3.74)

In geodynamics, it is particularly interesting to consider the trend of the Stokes

coefficients, since this quantity can be observed by means of satellite geodetic tech-

niques (Lambeck, 1988). Using (3.72), and (3.73), and proposition (5) of Spada et

al. (2003), for l ≥ 2 they are related with Ṅlm by






δċlm

δṡlm







(tp) =
(2 − δ0m)µlm

a







+Re

−Im







Ṅlm(tp), (3.75)

where tp is present time and µlm is given by (B.4).



Chapter 4

Solving the SLE: the

Pseudo–Spectral approach

The ”pseudo spectral” (PS) method for solving the SLE has been introduced by

Mitrovica and Peltier (1991), and later revised and updated in a number of papers

(see e. g., Mitrovica et al., 1994). It constitutes a significant improvement with

respect to the ”finite–element” method, that was originally introduced in Peltier

et al. (1978). As discussed in Mitrovica et al. (1994), the PS approach allows to

avoid the computation of coupling coefficients between sets of spherical harmonics

(Dahlen, 1976), that may severely limit the maximum degree of the analysis.

In the illustration of the PS method we will largely follow the previous studies

on this subject, but with the intent to facilitate the inexperienced readers we will

provide a number of details that are often omitted. Section 4.1 shows how the SLE

is transformed by the introduction of the reduced sea level change, while Sections

4.2 and 4.3 are devoted to the spatio–temporal discretization and to a step–by–

step analysis of the various terms of the SLE, respectively. An iterative scheme for

solving the SLE is proposed in Section 4.4.
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4.1 Transforming the SLE

The key–point of the PS method is the introduction of the reduced sea level

change Z (3.7), that allows to transform (3.33) into

S =
ρi

γ
Gs⊗eI +

ρw

γ
Gs⊗eZ + SE − ρi

γ
Gs⊗eI −

ρw

γ
Gs⊗eZ, (4.1)

where we have substituted Gs⊗iI with Gs⊗eI (I vanishes outside the region i), and

Gs⊗oS with Gs⊗eZ, that follows from the definition of Z. Multiplying both sides

of (4.1) by the ocean function gives

Z=Oρi

γ

(

Gs⊗eI−Gs⊗eI

)

+OSE+Oρw

γ

(

Gs⊗eZ−Gs⊗eZ

)

, (4.2)

that represents the new form of the SLE in the unknown Z. The vertical displace-

ment (3.65) reads

U(ω, t) = ρiGu⊗iI + ρwGu⊗oZ, (4.3)

where Gu is given by (2.38).

For the ongoing discussion, it is convenient to introduce the new variables






A

B







(ω, t) =
1

γ







ρi

ρw







Gs ⊗e







I

Z







, (4.4)

so that the SLE (4.2) takes the form

Z = H + ZE +K(Z), (4.5)

where

ZE = OSE, (4.6)

and

H = O(A− A) (4.7)

K(Z) = O(B −B). (4.8)
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In terms of the new variables, (4.1) becomes

S = A−A+ SE +B − B, (4.9)

while (4.3) reads

U = AU +BU , (4.10)

where AU and BU have the same form of the terms A and B in (4.4), with Gs/γ

substituted by Gu.

4.2 Discretization

Before showing how the SLE can be written in a PS form, it is necessary to

discretize the physical quantities involved. They are i) the ice thickness T and its

variation I, ii) the sea level change S, the vertical displacement U and the change

of geoid height N , iii) the reduced sea level change Z, and iv) the ocean function

O. The temporal discretization is made assuming that, at a given place on the

Earth surface, these variables vary stepwise in time. At a given time, their spatial

discretization is accomplished by spherical harmonics expansions.

4.2.1 Ice thickness

The basic input variable of the problem is the ice thickness T (ω, t), for which we

adopt the discretization

T (ω, t) =















T0(ω), t < t0

Tk(ω), tk−1 ≤ t < tk, k = 1, 2, ..., N

TN+1(ω), t ≥ tN ,

(4.11)

where N ≥ 1 is the number of time steps within the interval 0 ≤ t ≤ tN , and

tk − tk−1 = ∆ =
tN
N
, (4.12)
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where ∆ is the length of each time step. The time discretization (4.11) is usually

applied assuming that t = tN is present time, and that t0 = 0 marks the beginning of

the last deglaciation. This latter condition implies a complete isostatic equilibrium

before the Last Glacial Maximum (LGM). However, it is clear that (4.11) can be em-

ployed to approximate any time–evolution of the ice load, possibly containing cycles

of loading and unloading before the LGM. The discretization (4.11) characterizes

most of the currently available ice thickness models, in which Tk(ω) has normally

the form

Tk(ω) =







Hk, ω ∈ D

0, ω /∈ D,
(4.13)

where Hk is a constant, and D is a subset of the sphere.

It is straightforward to verify that (4.11) is equivalent to

T (ω, t) = T0(ω) +

N
∑

k=0

δTk(ω)H(t− tk), (4.14)

where H(t) is the Heaviside step function (2.27), and

δTk(ω) = Tk+1(ω) − Tk(ω), k = 0, 1, ..., N, (4.15)

represents the ice thickness variation at ω between two successive time steps. A

time–history of the type (4.11) characterizes the two deglaciation models considered

in this study, i. e., ICE1 (Peltier and Andrews, 1976) and ICE3G (Tushingham and

Peltier, 1991). For both models, Tk(ω) has the form

Tk(ω) =
Ne
∑

e=1

HkeΘDe
(ω) (4.16)

where Ne is the number of ice elements that compose the aggregate, Hke is ice thick-

ness at time tk within each subdomain of the sphere De, and Θ is the characteristic

function

ΘD(ω) =







1, if ω ∈ D

0, if ω /∈ D.
(4.17)
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In model ICE1 (for which Ne = 153), regions De are disjoint “spherical quadrilater-

als”, whereas in model ICE3G (Ne = 808) they are (in some case overlapping) circu-

lar disc (see Figure 5.4). Notice that where overlaps occur, according to Eq. (4.16)

the total ice thickness results from the sum of individual discs thicknesses. We will

return on this issue in Section

The spatial discretization of the functions Tk(ω) in (4.13) is accomplished by a

spherical harmonics decomposition as

Tk(ω) =
∑

lm

Tlm,kYlm(ω), k = 0, 1, . . . N + 1, (4.18)

where the 4π–normalized harmonics Ylm(ω) are given by (B.3).

When Tk(ω) is assumed to be constant within circular discs (this is the case of

ICE3G of Tushingham and Peltier, 1991), the spectral coefficients Tlm,k of (4.18) can

be computed analytically by virtue of the symmetry of the ice element. For more

complex geometries (i. e., the quadrilateral elements of model ICE1 of Peltier and

Andrews, 1976), it is necessary to evaluate numerically the coefficients with

Tlm,k =
1

4π

∫

Ω

Tk(ω)Y∗
lm(ω)dω, k = 0, 1, . . .N + 1, (4.19)

that can be obtained by (4.18) and the orthogonality condition (B.6).

The relation (4.19) can be written as

Tlm,k =

Ne
∑

e=1

flmeHke, (4.20)

with non–dimensional shape factors

flme =

∫

De

Y∗
lm(ω)dω (4.21)

given explicitly in Section 5.3.1 for both ice chonologies.

Using (4.18), we finally observe that (4.15) can be expanded as

δTk(ω) =
∑

lm

∆Tlm,kYlm(ω), (4.22)

where

∆Tlm,k ≡ Tlm,k+1 − Tlm,k, k = 0, 1, . . .N. (4.23)
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4.2.2 Ice thickness variations

Recalling (2.46), the ice thickness variation is

I(ω, t) = T (ω, t) − T0(ω), (4.24)

where T0(ω) is the ice thickness at the remote time t0 (see Section 2.2.1). According

to (4.14), I(ω, t) can be equivalently written as

I(ω, t) =
N

∑

k=0

δTk(ω)H(t− tk), (4.25)

with δTk(ω) given by (4.15).

The ice thickness variation is spatially discretized writing

I(ω, t) =
∑

lm

Ilm(t)Ylm(ω), (4.26)

where, using (4.22) and (4.25), it can be easily verified that

Ilm(t) =

N
∑

k=0

∆Tlm,kH(t− tk). (4.27)

If we further define

Ilm,i ≡ Ilm(ti), (4.28)

(4.27) gives

Ilm,i =
i

∑

k=0

∆Tlm,k, (4.29)

that implies

Ilm,i = ∆Tlm,i + Ilm,i−1, i = 0, 1, . . .N, (4.30)

with Ilm,−1 = 0.
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4.2.3 Sea level change, vertical displacement, and geoid

In analogy with (4.26), we assume the following spectral decomposition for the

sea level change

S(ω, t) =
∑

lm

Slm(t)Ylm(ω), (4.31)

where the coefficients Slm(t) will be determined solving the SLE. In a similar manner,

the spherical harmonics expansions for the vertical displacement and the geoid height

change are

U(ω, t) =
∑

lm

Ulm(t)Ylm(ω), (4.32)

and (3.74), respectively. Similarly to (4.28), with Slm,i, Ulm,i, and Nlm,i we indicate

Slm(ti), Ulm(ti), and Nlm(ti), respectively, where ti is a given time.

4.2.4 Reduced sea level change

The reduced sea level change Z(ω, t), that represents the new unknown of the

SLE (4.2), can be spectrally decomposed following the scheme outlined above. Sim-

ilarly to (4.26) and (4.27), we write

Z(ω, t) =
∑

lm

Zlm(t)Ylm(ω), (4.33)

where

Zlm(t) =
N

∑

k=0

∆Wlm,kH(t− tk). (4.34)

With Zlm,i = Zlm(ti), in analogy with (4.30), we have

Zlm,i = ∆Wlm,i + Zlm,i−1 i = 0, 1, . . .N, (4.35)

with Zlm,−1 = 0.
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4.2.5 Ocean function

Since we assume fixed shorelines, the ocean function O(ω) (2.59) only needs to

be spatially discretized. In terms of 4π–normalized harmonics, its spectral represen-

tation is already given by (2.60) with coefficients (2.61).

The issue of the numerical computation of Olm will be addressed in Section 5.2

below. Here we only observe that the area of the surface of the oceans is

Ao ≡
∫

o

dA =

∫

o

a2dω = a2

∫

Ω

O(ω)dω

= a2

∫

Ω

∑

lm

OlmYlmdω

= a2
∑

lm

Olm

∫

Ω

YlmY∗
00dω

= 4πa2O00, (4.36)

where we have used Y00 = 1 (see Table B.3) and (B.6), that yields

a2

Ao
=

1

4πO00
. (4.37)

4.3 The SLE term by term

This section is devoted to a term–by–term discussion of the SLE. Starting from

(4.5), we will consider separately the terms ZE, A and B, (A − A) and (B − B),

H and K, and AU and BU . Our purpose is to find computationally convenient

expressions of these quantities. Since the material that follows is admittedly boring,

the reader may go directly to the PS form of the SLE (4.86).

4.3.1 Eustatic term

The (reduced) eustatic term of the SLE is given by (4.6). With (3.35) we can

write

ZE(ω, t) = −mi(t)

ρwAo

O(ω), (4.38)
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where mi(t) is the change of the mass of the ice load, ρw is the density of water,

and Ao is the area of the surface of the oceans. In order to put ZE in spectral form

we first observe that using (4.26) mi(t) can be expressed in terms of the degree zero

component of the change of the ice thickness:

mi(t) ≡ ρi

∫

i

dAI(ω, t)

= ρia
2

∫

Ω

dω
∑

lm

Ilm(t)Ylm

= ρia
2
∑

lm

Ilm(t)

∫

Ω

dω Ylm

= ρia
2
∑

lm

Ilm(t)

∫

Ω

dω Y∗
00Ylm

= 4πρia
2
∑

lm

Ilm(t)δl0δm0

= 4πρia
2I00(t), (4.39)

where we have used Y00 = 1 and (B.6). Substituting (4.39) into (4.38) gives

ZE(ω, t) = − ρi

ρw

I00(t)

O00

∑

lm

OlmYlm, (4.40)

where we have used (4.37) and (2.60).

From above we conclude that, at a given time t = ti the (reduced) eustatic term

is

ZE(ω, ti) =
∑

lm

ZE
lm,iYlm(ω), (4.41)

with

ZE
lm,i = − ρi

ρw

I00,i

O00
Olm, (4.42)

and I00,i = I00(t = ti).

A direct consequence of (3.35) and of (4.39) is that the coefficients of the expan-

sion

SE(ω, ti) =
∑

lm

SE
lm,iYlm(ω) (4.43)
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are

SE
lm,i = − ρi

ρw

Ilm,i

O00

δl0δm0. (4.44)

4.3.2 The A term

According to (4.4) and (2.41), the A–term of the SLE can be decomposed as

A(ω, t) = A1 + A2, (4.45)

where

A1(ω, t) = βρiψ
δ(α)δ(t) ⊗e I (4.46)

and

A2(ω, t) = βρi(ψ
h(α, t)H(t)) ⊗e I, (4.47)

where ψδ(α) and ψh(α, t) are given by (2.42) and (2.43), respectively.

In the following pages, our purpose will be to determine the coefficients of the

spherical harmonics expansion

A(ω, ti) =
∑

lm

Alm,iYlm(ω). (4.48)

We will show that

Alm,i = A1lm,i + A2lm,i (4.49)

where

A1lm,i = 3
ρi

ρe

ElIlm,i, (4.50)

and

A2lm,i = −3
ρi

ρe

i
∑

k=0

(Ilm,k − Ilm,k−1)βl(∆(i− k)), (4.51)

with

El ≡
1 + ke

l − he
l

2l + 1
(4.52)
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and

βl(t) ≡
1

2l + 1

M
∑

j=1

klj − hlj

slj
(1 − esljt). (4.53)

(4.49):

Alm,i = 3
ρi

ρe

(

ElIlm,i −
i

∑

k=0

(Ilm,k − Ilm,k−1)βl(∆(i− k))

)

. (4.54)

The A1 term

Using (4.46) and recalling (2.67), we get

A1(ω, t) = β

∫ t

−∞

dt′
∫

e

dA′ψδ(α)δ(t− t′)ρiI(ω
′, t′)

= βρi

∫

e

dA′ψδ(α)I(ω′, t), (4.55)

where we have used the basic property of the Dirac delta. With the aid of the

addition theorem for spherical harmonics (B.8), from (2.42) ψδ(α) can be expanded

as follows

ψδ(α) =
∞

∑

l=0

(1 + ke
l − he

l )Pl(cosα)

=

∞
∑

l=0

1 + ke
l − he

l

2l + 1

l
∑

m=−l

Y∗
lm(ω′)Ylm(ω)

=
∑

lm

ElY∗
lm(ω′)Ylm(ω), (4.56)

where El is given by (4.52). Hence, substituting (4.56) into (4.55) and using (4.26),

we obtain

A1(ω, t) = βρi

∫

e

dA′

(

∑

lm

ElY∗
lm(ω′)Ylm(ω)

)(

∑

l′m′

Il′m′(t)Yl′m′(ω′)

)

= βρia
2
∑

lm

El

∑

l′m′

Il′m′(t)

(
∫

Ω

dω′ Y∗
lm(ω′)Yl′m′(ω′)

)

Ylm(ω)

= 4πβρia
2
∑

lm

ElIlm(t)Ylm(ω), (4.57)
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where we have also taken advantage from (B.6).

Thus, from (2.44) and (2.76), the spherical harmonics expansion of A1 at time

ti is

A1(ω, ti) =
∑

lm

A1lm,iYlm(ω), (4.58)

with coefficients

A1lm,i = 3
ρi

ρe

ElIlm,i, (4.59)

that proves our statement (4.50).

The A2 term

From (4.47) and (2.67) we have

A2(ω, t) = β

∫ t

−∞

dt′
∫

e

dA′ψh(α, t− t′)H(t− t′)ρiI(ω
′, t′)

= βρe

∫ t

−∞

dt′
∫

e

dA′ψh(α, t− t′)I(ω′, t′), (4.60)

where we have used (2.27). Recalling (4.25), we obtain

A2(ω, t) = βρi

∫ t

−∞

dt′
∫

e

dA′ψh(α, t− t′)

( N
∑

k=0

δTk(ω
′)H(t′ − tk)

)

= βρi

N
∑

k=0

∫

e

dA′δTk(ω
′)

∫ t

−∞

dt′ψh(α, t− t′)H(t′ − tk), (4.61)

that with the new variable τ = t′ − tk becomes

A2(ω, t) = βρi

N
∑

k=0

∫

e

dA′δTk(ω
′)

∫ t−tk

−∞

dτψh(α, t− tk − τ)H(τ), (4.62)

where, because of the term H(τ), the integral over time vanishes for t− tk < 0 and

can be otherwise restricted to the interval 0 ≤ τ ≤ t− tk. Hence

A2(ω, t) = βρi

N
∑

k=0

∫

e

dA′δTk(ω
′)H(t− tk)

∫ t−tk

0

dτψh(α, t− tk − τ)

= βρi

N
∑

k=0

∫

e

dA′δTk(ω
′)ψ̃h(α, t− tk), (4.63)
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where we have defined

ψ̃h(α, t) ≡ H(t)

∫ t

0

dτψh(α, t− τ). (4.64)

Using (2.43) into (4.64) gives

ψ̃h(α, t) = H(t)

∫ t

0

dτ
∑

lj

(klj − hlj)e
slj(t−τ)Pl(cosα)

= H(t)
∑

lj

(klj − hlj)

∫ t

0

dτ eslj(t−τ)Pl(cosα)

= −H(t)
∑

lj

klj − hlj

slj

(1 − esljt)
1

2l + 1

l
∑

m=−l

Y∗
lm(ω′)Ylm(ω)

= −H(t)
∑

lm

βl(t)Y∗
lm(ω′)Ylm(ω), (4.65)

where we have also used the addition theorem (B.6) and βl(t) is given by (4.53).

Substituting (4.65) into (4.63) we obtain

A2(ω, t)=βρi

N
∑

k=0

∫

e

dA′ δTk(ω
′)ψ̃h(α, t− tk)

=−βρi

N
∑

k=0

∫

e

dA′

(

∑

l′m′

∆Tl′m′,kYl′m′(ω′)

)

×

×
(

∑

lm

βl(t− tk)H(t− tk)Y∗
lm(ω′)Ylm(ω)

)

=−βρia
2
∑

lm

( N
∑

k=0

βl(t− tk)H(t− tk)
∑

l′m′

∆Tl′m′,k ×

×
(

∫

Ω

dω′ Yl′m′(ω′)Y∗
lm(ω′)

))

Ylm(ω)

=−3
ρi

ρe

∑

lm

( N
∑

k=0

∆Tlm,kβl(t− tk)H(t− tk)

)

Ylm(ω), (4.66)

where we have also taken advantage from (4.22), (2.44), (2.76), and (B.6). Thus, at

time t = ti, using (4.30) from above we obtain

A2(ω, ti) = −3
ρi

ρe

∑

lm

( i
∑

k=0

∆Tlm,kβl(ti − tk)

)

Ylm(ω)
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= −3
ρi

ρe

∑

lm

( i
∑

k=0

(Ilm,k − Ilm,k−1)βl(∆(i− k))

)

Ylm(ω)

=
∑

lm

A2lm,iYlm(ω), (4.67)

where A2lm,i is given by (4.51).

4.3.3 The B term

According to (4.4) this term of the SLE has exactly the same structure of A;

its spectral decomposition follows immediately from (4.54) replacing ρi with ρw and

Ilm,k with Zlm,k, respectively:

B(ω, ti) =
∑

lm

Blm,iYlm(ω), (4.68)

with

Blm,i = 3
ρw

ρe

(

ElZlm,i −
i

∑

k=0

(Zlm,k − Zlm,k−1)βl(∆(i− k))

)

. (4.69)

4.3.4 The (A−A) and (B − B) terms

The SLE in the form (4.5) involves the differences (A− A) and (B − B), where

the overbar denotes the average over the surface of the oceans. Here we determine

the coefficients of the spherical harmonics expansion of these two terms. We first

observe that if f = f(ω) denotes a given function defined on the unit sphere, with

expansion

f(ω) =
∑

lm

flmYlm(ω), (4.70)

its average value can be written in terms of flm and Olm as follows

f ≡ 1

Ao

∫

o

fdA (4.71)

=
a2

Ao

∫

Ω

Of dω
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=
a2

Ao

∫

Ω

O∗f dω

=
a2

Ao

∫

Ω

(

∑

lm

O∗
lmY∗

lm

)(

∑

l′m′

fl′m′Yl′m′

)

dω

=
a2

Ao

∑

lm

∑

l′m′

O∗
lmfl′m′

∫

Ω

Y∗
lmYl′m′dω

=
4πa2

Ao

∑

lm

O∗
lmflm

=
1

O00

∑

lm

O∗
lmflm, (4.72)

where we have used (4.37) and (B.6). Hence,

f − f =
∑

lm

flmYlm − f

=
∑

lm

flmYlm − fY00

=
∑

lm

flmYlm − f
∑

lm

δl0δm0Ylm

=
∑

lm

(flm − fδl0δm0)Ylm. (4.73)

From above we conclude that






A−A

B −B







(ω, ti) =
∑

lm







A′
lm,i

B′
lm,i







Ylm(ω) (4.74)

with






A′
lm,i

B′
lm,i







=







Alm,i

Blm,i







−







Ai

Bi







δl0δm0 (4.75)

and






Ai

Bi







=
1

O00

∑

lm

O∗
lm







Alm,i

Blm,i







. (4.76)
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4.3.5 The H and K terms

From the definitions of Section 4.1, we recall that H = O(A − A) and K =

O(B −B), where O is the ocean function (2.59). We expand the H term

H(ω, ti) =
∑

lm

Hlm,iYlm(ω), (4.77)

where Hlm,i ≡ Hlm(t = ti) is ultimately to be determined by the knowledge of the

coefficients of the expansion for O and (A−A). Inverting (4.77), we obtain

Hlm,i =
1

4π

∫

Ω

dωH(ω, ti)Y∗
lm(ω), (4.78)

that, according to property (5.1) of the pixelization scheme illustrated in Section

5.2, can be discretized as

Hlm,i =
1

Np

Np
∑

j=1

H(ωj, ti)Y∗
lm(ωj), (4.79)

where Np is the number pixels over the sphere, and ωj are the coordinates of their

centroids. But from (4.7) and (4.74),

H(ωj, ti) = O(ωj)(A− A)(ωj, ti)

= O(ωj)
∑

pq

A′
pq,iYpq(ωj), (4.80)

hence, from (4.79) and the definition of ocean function, we obtain

Hlm,i =
1

Np

∑

j∈oce

(

∑

pq

A′
pq,iYpq(ωj)

)

Y∗
lm(ωj), (4.81)

that solves the problem of the spectral decomposition of H(ω, t). The coefficients

of K(ω, t) follow immediately from (4.8):

Klm,i =
1

Np

∑

j∈oce

(

∑

pq

B′
pq,iYpq(ωj)

)

Y∗
lm(ωj). (4.82)

with B′
pq,i given by (4.75).
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4.3.6 The AU and BU terms

Based on the observations at the end of Section (4.1), the spherical harmonics

expansions of the terms AU and BU are







Alm,i

Blm,i







U

=
3

ρe







ρi

ρw







(

EU
l







Ilm,i

Zlm,i







+

−
i

∑

k=0







Ilm,k − Ilm,k−1

Zlm,k − Zlm,k−1







βU
l (∆(i− k))

)

, (4.83)

with

EU
l ≡ he

l

2l + 1
, (4.84)

and

βU
l (t) ≡ 1

2l + 1

M
∑

j=1

hlj

slj
(1 − esljt). (4.85)

4.3.7 PS form of the SLE and related quantities

From the results so far obtained, it is possible to write the SLE (4.2) in a PS

form as

Zlm,i = Hlm,i + ZE
lm,i +Klm,i(Zpq,k), (4.86)

where the spectral coefficients ZE
lm,i, Hlm,i, and Klm,i are given by (4.42), (4.81), and

(4.82), respectively, and where we have emphasized that the harmonic components

of K depend on all of the components of Z at all times, that reflects the integral

nature of the SLE. The SLE in the form (4.86) is solved iteratively according to the

scheme presented in Section 4.4.

Once Zlm,i is retrieved from (4.86), recalling (4.9), it is easy to recover the spectral

coefficients of the usual sea level change:

Slm,i = A′
lm,i + SE

lm,i +B′
lm,i(Zpq,k), (4.87)
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where A′
lm,i, and B′

lm,i are given by (4.75), and SE
lm,i is obtained from (4.44). The

spectral coefficients Slm,i can be used to compute the present–day rate of sea level

change (see Section 6.2), and the Holocene relative sea level variations (Section 6.1).

From (4.10), the spectral coefficients for vertical displacement are

Ulm,i = AU
lm,i +BU

lm,i(Zpq,k), (4.88)

where AU
lm,i and BU

lm,i are given by (4.83). Using (4.88), it is possible to obtain

predictions of the present–day vertical velocity, as it will be shown in Section 6.2

below.

Recalling the fundamental relationship (3.4) between S, U , and N , the spectral

coefficients of the geoid height change are

Nlm,i = Slm,i + Ulm,i, (4.89)

where Slm,i and Ulm,i are given by (4.87) and (4.88), respectively. Using (4.89), we

will determine the present–day rate of change of the Stokes coefficients and of the

geoid height (see Sections 6.3 and 6.4, respectively).

4.4 A solution scheme for the SLE

Here we propose a simple scheme for solving the SLE, in which the steps from 1

to 6 describe the preliminary procedures (the discretization of the spherical domain,

the computation of the spherical harmonics coefficients of the ice sheets distribution,

and the determination of the of the LDCs). More details on these steps can be found

in Section 5.2. The iterative method for solving the SLE is described at step 7, while

step 8 concerns the by–products of the SLE. Our numerical implementation of the

SLE (Chapter 5) follows exactly the solution scheme described here.

1. According to the desired spatial resolution, (i) determine the maximum har-

monic degree lmax of the analysis, (ii) determine the coordinates of the pixels

centroids ω = ωj (1 ≤ j ≤ Np), where Np ≥ l2max/3 and lmax is the maximum

harmonic degree, and (iii) separate wet (ocean) from dry (continental) pixels,
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2. Compute a set of 4π–normalized harmonics of degree 0 ≤ l ≤ lmax at the

centroids of the pixels (ω = ωj),

3. Pixelize the ocean function (2.59) and determine numerically its harmonic

coefficients for 0 ≤ l ≤ lmax using (5.2),

4. Choose one of the available ice sheets distributions, and determine (i) the

shape factors flme (1 ≤ e ≤ Ne) (see Eq. 4.21), (ii) the harmonic coefficients

Tlm,k (4.19), ∆Tlm,k (4.23), and Ilm,k (4.30) for 0 ≤ l ≤ lmax, and 0 ≤ k ≤ N ,

5. Compute the LDCs and the arrays El (see 4.52), EU
l (4.84), βl(ti) (4.53), and

βU
l (ti) (4.85), for a spherically symmetric, viscoelastic Earth model,

6. Compute the spectral coefficients ZE
lm,i (4.42), Alm,k (see 4.54), A′

lm,k (4.75),

and Hlm,k (4.81),

7. For s = 1, 2, . . . , smax solve the SLE in the recursive form

Z
(s)
lm,i = Hlm,i + ZE

lm,i +Klm,i(Z
(s−1)
pq,k ), (4.90)

with initial value

Z
(0)
lm,i = ZE

lm,i, (4.91)

where Klm,i is given by (4.82), and where Blm,i and B′
lm,k are obtained from

(4.69) and (4.75), respectively,

8. Set Zlm,i=Z
(smax)
lm,i , and compute Slm,i, Ulm,i, and Nlm,i from (4.87), (4.88), and

(4.89), respectively.



Chapter 5

SELEN: a Fortran 90 program for

solving the SLE

5.1 Introducing SELEN

SELEN is a collection of standard Fortran 90 programs and subroutines, and of GMT

Wessel and Smith (1991)1 and gnuplot2 scripts, which are compiled and executed

by the bash shell script selen.sh. The definition of constants and parameters used

by all program units, with a short description, is given in the include file data.inc

(a sample of this file is given in Appendix C.1). The user can easily modify it to

prepare the input data or for setting a new problem. In the applications of Chapter 6

we will give examples on how to configure some of the relevant parameters.

The components of SELEN have been written from scratch, with the exception of

(i) some routines from Numerical Recipes Press et al. (1992), (ii) the freely available

pixelization code of Tegmark (1996) 3, (iii) some ALFPACK4 routines for the evaluation

of the associated Legendre functions, and (iv) the program TABOO5 (Spada, 2003;

1Help is available at http://gmt.soest.hawaii.edu/.
2Gnuplot is a copyright by Thomas Williams, Colin Kelley, and many others.
3http://space.mit.edu/home/tegmark/icosahedron.html.
4http://www.cisl.ucar.edu/softlib/ALFPACK.html.
5http://samizdat.mines.edu/taboo.
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Spada et al., 2004), which provides the LLNs for a suite of spherically symmetric

Earth model.

SELEN has been developed using the IBM XL Fortran compiler and runs on a 1.5

GHz Macintosh Power PC G4. With minor modifications SELEN can be employed

under other Unix or Linux environments with different Fortran 90 compilers. Efforts

have been made throughout to use clearly written and testable algorithms, which can

be easily modified according to the user’s needs. The Fortran 90 routines are written

in single precision, which safely allows to perform spherical harmonic expansions up

to harmonic degree lmax = 96. If a finer spatial resolution is desired (i. e., a

degree lmax > 96), the memory requirements of SELEN will exceed ∼ 0.5 Gb (i. e.,

making the execution virtually impossible on a 1 Gb RAM Power PC), and the

spherical harmonic codes (see description below) will need to be implemented in

double precision.

All the numerical experiments performed in this study have been carried out

using lmax = 72 and a geometrical resolution r = 14 in the Tegmark algorithm that

generates the pixels coordinates (see Section 5.2.1 below). As shown in Figure 6.2,

increasing lmax to 96 would not significantly affect the results. According to Tegmark

(1996), the r value chosen here implies a number of pixels Np = 40r(r−1)+12 = 7292

that largely exceeds, for lmax = 72, the minimum number Nmin
p = l2max/3 = 1728

that ensures an optimal quadrature on the sphere. When model ICE3G is employed,

the CPU time needed for fully solving the SLE, (i. e., for compiling the codes, for

evaluating all the steps listed in Section 4.4 with smax = 3, and for running all the

graphical GMT and gnuplot procedures that can be scheduled by selen.sh) is of

about 600 s, which reduces to ∼ 400 s if all the graphical procedures are bypassed.

Since a considerable fraction of CPU time for a single run (∼ 120 s) is devoted

to the computation of SH at the pixels coordinates, the CPU requirements can

be further alleviated saving in a library the harmonics computed during previous

runs. The CPU time sensibly increase, however, when ICE1 is employed, since

the SH decomposition of the “rectangular” ice elements of this aggregate requires
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numerical instead of analytical procedures (see Section 5.3.1).

The next Sections 5.2–5.5 follow the solution scheme proposed in Section 4.4. For

each Section a case–sensitive list gives the main Fortran and GMT units of SELEN; its

order reflects the order of execution of the programs, consistently with the script

selen.sh. At each entry, we also mention other procedures directly connected to

the main ones. The functions of the program units are summarized in Table C.2

(more details can be found in the files headers), while Table C.1 gives the names of

their input files.

5.2 Preliminary steps

Solving the SLE demands the evaluation of the spectral coefficients of the ocean

function O (2.61), as well as of the functions H and K (see Section 4.3.5). The im-

plied numerical integrations have been performed using the hycosaedral pixelization

of the sphere described by Tegmark (1996). This approach6 is particularly conve-

nient in the framework of the PS method, since it provides a set of equal–weight

Gauss points that allow for a straightforward quadrature on the sphere. By the

properties of the pixelization Tegmark (1996), the integral of any function f(ω) over

a subset D of the unit sphere Ω can be discretized as follows
∫

D

f(ω)dA =
1

Np

∑

ωj∈D

f(ωj), (5.1)

where ωj are the coordinates of the centroids of the pixels (see Figure 5.3), and Np is

their number. According with the Tegmark method, the resolution r must be chosen

consistently with the desired minimum resolvable spatial wavelength λ, that in turn

determines the maximum harmonic degree of the expansions lmax = 2πa/λ. The

approximation of integrals on the surface of the sphere with discrete sums is exact

as far as Np ≥ l2max/3 Tegmark (1996). With this in mind, for λ ∼ 500 km, that is

sufficient to describe the global pattern of relative sea level variations, lmax should be

6Free software is available at http://www.sns.ias.edu/∼max/icosahedron.html.
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close to 80. Since the number of pixels for a given resolution is Np = 40r(r−1)+12,

this requires Np ≥ 2200, that is ensured as far as the resolution is r ≥ 8. The

global pixelization employed in this study, that has been obtained by the code of

Max Tegmark with resolution r = 14, is shown in Figure 5.3. For such resolution,

the number of pixels is Np = 7292.

The ocean function O(ω) (2.59) is pixelized running the GMT7 utility gmtselect

(see Wessel and Smith (1991)). The centroids of the wet and dry pixels are shown

in Figure 5.2. The spherical harmonic coefficients of the ocean function Olm are

theoretically given by (2.61). According to (5.1), they can be determined numerically

as

Olm =
1

Np

∑

j∈oce

Y∗
lm(ωj), (5.2)

where ωj denotes the coordinate of the centroids of the wet pixels. Some low–degree

(0 ≤ l ≤ 4) coefficients of the ocean function are reported in Table 5.1. Figure 5.3

shows the ocean function reconstructed at degree lmax = 72 from the computed

coefficients, using (5.2) into (2.60).

5.2.1 PX.F

PX.F executes substep (i) of step (1) of the algorithm outlined in Section 4.4. It

computes the coordinates (i. e., longitude and colatitude) of the centroids of the

pixels ωj for 1 ≤ j ≤ Np using the icosahedral discretization algorithm Tegmark

(1996).For a given spatial resolution r, the number of pixels on the sphere is Np =

40r(r − 1) + 12.

5.2.2 px.gmt

px.gmt is a GMT script that accomplishes substep (ii) of step (1) of the SLE

algorithm in Section 4.4, separating ocean from continental pixels by the utility

7Help is available at http://gmt.soest.hawaii.edu/.
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gmtselect (different sets of pixels may be obtained tuning the -A and -D options).

The wet and dry pixelizations, as well as the global one generated by program PX.F

(see above), may be visualized by pxmap.gmt.

5.2.3 SH.F

This program computes the 4π–normalized SH Ylm(ωj) by Eq. (B.3) using the

ALFPACK codes collected in the include file SHTOOLS.F (step (2) of the algorithm of

Section 4.4).

5.2.4 WNW.F

In SELEN, the maximum degree of the analysis lmax must be such that Np ≥
l2max/3 to take advantage of the “window property” of the pixelization, which ensures

that the orthonormality condition of the SH (B.6) holds numerically (Tegmark,

1996). On the basis of Eq. (5.1), program WNW.F evaluates the errors due to the

spatial discretization and, in particular, it computes

εlm(%) =

∣

∣

∣

Np
∑

j=1

Y∗
lm(ωj)Ylm(ωj) −Np

∣

∣

∣

Jmax
× 100, (5.3)

where Jmax = 1
2
(lmax + 1)(lmax + 2) is the number of spherical harmonics for degree

lmax.

5.2.5 SH OF.F

SH OF.F computes the coefficients Olm from Eq. (5.2) for degrees 0 ≤ l ≤
lmax (see step (3) of the algorithm of Section 4.4). The ocean function may be

reconstructed at the pixels centroids using REC OF.F, and visualized by of.gmt.
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Figure 5.1: Spatial distribution of the centroids of the pixels obtained with r = 14

using the algorithm by Tegmark (1996). The distribution of pixels is quasi–uniform

on the surface of the sphere.
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Figure 5.2: Wet and dry pixels distributions. The pixels coordinates have been

obtained by the global distribution of Figure 5.3 using the utility gmtselect of

GMT (Wessel and Smith, 1991).



5.2.5 SH OF.F 95

Table 5.1: Complex coefficients of the spherical harmonics decomposition of the

ocean function for degrees 0 ≤ l ≤ 4. Here j stands for l(l + 1)/2 +m+ 1, where l

and m are the degree and order, respectively.

j l m Re(Olm) Im(Olm)

1 0 0 +0.716 0.000

2 1 0 -0.111 0.000

3 2 1 +0.785E-01 -0.421E-01

4 2 0 -0.512E-01 0.000E+00

5 2 1 +0.294E-01 -0.445E-01

6 2 2 +0.257E-01 0.364E-02

7 3 0 +0.557E-01 0.000

8 3 1 -0.320E-01 -0.289E-01

9 3 2 +0.442E-01 0.643E-01

10 3 3 +0.656E-02 -0.571E-01

11 4 0 -0.240E-01 0.000

12 4 1 -0.258E-01 0.175E-01

13 4 2 +0.607E-01 0.160E-01

14 4 3 +0.349E-01 0.350E-02

15 4 4 +0.989E-02 0.699E-01
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Figure 5.3: Ocean function obtained for r = 14 (see Table 5.1).
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5.3 Ice sheets

In the current numerical implementation of the SLE, we have made use of the

ICE3G chronology (Tushingham and Peltier, 1991), that is freely available and

widely used in the literature. With a few changes, the code can also manage the

ICE1 chronology (Peltier and Andrews, 1976) and can be easily modified to account

for arbitrary chronologies. ICE3G comes in a discretized form where the whole load

is seen as an aggregate of simple disc–shaped ice elements with a time–dependent

thickness (see also Spada et al., 2003). The time–discretization of ICE3G follows the

scheme (4.11) with ∆ = 1 kyr and tN = 18 kyrs, so that this ice–sheets chronology

can be very easily conveyed within our formalism.

The change of ice thickness is expanded in spherical harmonics taking advantage

of the simple geometry of the discs, without the aid of the grid of pixels introduced

above. The spherical harmonics expansion of each disc is first determined in the

reference frame where the z axis is the axis of symmetry of the disc, and then

transformed into the geographical reference frame Spada et al. (2003). This directly

provides the coefficients Tlm,k (see 4.18), and, from (4.23) and (4.29), the terms Ilm,k.

5.3.1 SH3 C.F, SH3.F

These two programs execute step (4) of the SLE algorithm outlined in Section

4.4. In particular, SH3 C.F computes the shape factors flme pertaining to the ICE3G

global ice–sheets chronology Tushingham and Peltier (1991). The ice–sheet parame-

ters for model ICE3G are read from the input file ice3.dat. Since ICE3G is composed

of an aggregate of axis–symmetrical disk–shaped ice elements (see Figure 5.4), the

computation of the shape factors is fully analytical. Taking advantage of the discs

symmetry, one obtains

flme =
1

2(2l + 1)
Y∗

lm(ωice
e )[−Pl+1(cosαe) + Pl−1(cosαe)], (5.4)

(Spada, 2003) where ωice
e denotes colatitude and longitude of the discs centers, and

αe is the half–amplitude of the ice elements. In other approaches to the solving of the
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SLE (Hugo Schotman, personal communication, 2006), ICE3G is interpolated on a

set of spherical quadrilaterals before being decomposed in spherical harmonics, with

the advantage of eliminating the superpositions and the interstices inherent in the

discs distribution (but with the disadvantage of an increased CPU time). Of course,

the two methods may give slightly different results, with the largest discrepancies

expected at the margins of the former ice–sheets.

In order to deal with the ICE1 chronology of Peltier and Andrews (1976), which

already comes as an aggregate of spherical rectangles defined by meridians of longi-

tudes λ1e and λ2e, and parallels of colatitudes θ1e and θ2e, with λ2e−λ1e = θ2e−θ1e =

5◦ (see input file ice1.dat and Figure 5.4) the user can employ the routines SH1 C.F

and SH1.F in lieu of SH3 C.F and SH3.F. Using the results of Spada (2003), SH1 C.F

computes the shape factors

flme =
1

4π
µ̄lmεmeγlme, (5.5)

where

εme =







λ2e − λ1e, m = 0
sinmλ2e − sinmλ1e

m
+ i

cosmλ2e − cosmλ1e

m
, m 6= 0,

(5.6)

and

γlme = −
∫ cos θ2e

cos θ1e

Plm(z)dz (5.7)

For the two ice–sheets chronologies, the SH coefficients Tlm,k and Ilm,k in Eqs. (4.27)

and (4.20) are computed by SH3.F and SH1.F, respectively. The two–character string

[k] indicates the time elapsed since the Last Glacial Maximum (LGM), expressed in

(uncalibtrated) kyrs. For models ICE1 and ICE3G the LGM was 18 kyrs BP.

Any of the two ice–sheet distributions may be reconstructed at a given time–step

by REC ICE.F, and portrayed running the script ice3(1).gmt, which provide images

of the ice sheets.Examples of ice sheet reconstructions are given in Figure 5.5.

Although SELEN in its present form only includes ICE1 and ICE3G, it can be

easily modified to deal with any other (publicly available) ice sheet model, provided

that its form is described by either disk–shaped elements or spherical quadrilaterals.
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Figure 5.4: Spatial discretization of ICE3G (top, left and right) and of ICE1 (bot-

tom), based on “discs” and “spherical quadrilaterals”, respectively. In ICE1 Antarc-

tica is stationary during Holocene.
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Figure 5.5: Reconstructed (LMAX=72) ice thickness for ICE3G (left) and ICE1

(right) at different time steps. Fringes particularly visible over Antarctica (left)

reflect overlaps and gaps between disk–shaped ice elements of ICE3G (see Figure

5.4), which could be avoided by smoothing before SH decomposition.
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5.4 Earth model

Before solving the SLE, it is necessary to choose an Earth model and to determine

its elastic and viscous LDCs, that are needed to build the arrays El (see Eq. 4.52)

and βl(t) (Eq. 4.53), respectively. This can be done using TABOO (Spada, 2003;

Spada et al., 2004), a free Fortran 90 code that also solves the ”simplified GIA

problem” discussed in Section 2.3.

TABOO includes a set of built–in layered viscoelastic models whose parameters

can be tuned to obtain the desired rheological profile. The LDCs are computed ac-

cording to the ’normal modes’ method (e. g., Peltier, 1985), based on the analytical

form of the poloidal propagator matrix (Sabadini et al., 1982; Spada et al., 1992). At

its present stage of development, TABOO only allows to deal with coarsely layered

models. The forthcoming version of TABOO is planned to include models with an

arbitrary number of layers (Spada and Boschi, 2006). All of the computations of

this chapter are based on the rheological profile employed in Cianetti et al. (2002),

that is reported in Table 5.2 (REF rheological profile).

The spectrum of relaxation, and the elastic and fluid LDCs as a function of the

harmonic degree (see Section 2.1 for their definition), are shown in Figure 5.7.

5.4.1 TB.F

Program TB.F essentially duplicates the program TABOO (Spada, 2003). Accord-

ing to step (5) of the algorithm described in Section 4.4 above, TB.F computes the

elastic (he
l , k

e
l ), fluid (hf

l , k
f
l ), and viscoelastic (hlj, klj) LDCs, as well as the relax-

ation times τlj , for a spherically symmetric, incompressible, self–gravitating Earth

model (see Eq. 2.37). According to e. g., Spada and Boschi (2006), the fluid LDCs

are defined by Eq. 2.29 and represent the long–term asymptotes of the LDCs rela-

tive to an Heaviside load. The number of mantle layers and the physical parameters

of the Earth model (density, rigidity, and viscosity profiles), are controlled by the

include file data.inc (see Appendix C.1 and the TABOO documentation). All of the
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models available by TABOO include an elastic lithosphere and an inviscid homoge-

neous core. In addition, TB.F builds the arrays El (Eq. 4.52), EU
l (4.84), βl(t)

(Eq. 4.53), and βU
l (t) (Eq. 4.85).

Table 5.2: Earth model parameters employed in this study (REF, see Section 7.3).

Layering, density and rigidity are from e. g. Cianetti et al. (2002). Viscosity is that

implicit in model ICE3G Tushingham and Peltier (1991).

Layer Range Density Rigidity Viscosity

(km) (kg m−3) (GPa) (×1021 Pa · s)

LITHOSPHERE 6251 − 6371 4120 73 ∞
UPPER MANTLE 5951 − 6251 4120 95 1

TRANSITION ZONE 5701 − 5951 4220 110 1
LOWER MANTLE 3480 − 5701 4508 200 2

CORE 0 − 3480 10925 0 0
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function of l, for the model of Table 5.2, which carries M = 12 modes.
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5.5 Solution of the SLE and outputs

5.5.1 SLE.F

This program solves the recursive form of the SLE (Eq. 4.90) for the unknown

Zlm,k, and also determines the harmonic coefficients Slm,i (see Eq. 4.87), Ulm,i (4.88),

and Nlm,i (4.89). This corresponds to steps (7) and (8) of the algorithm of Section

4.4 above. In order to show the role of each of the terms of the SLE, SLE.F can

solve the equation in various possible forms, as described in Section 6.1 below. The

particular form of the SLE and the number of iterations are defined by the switch

IMODE and by the parameter SMAX and of the include file data.inc, respectively

(see Appendix C.1).

5.5.2 SH RSL.F, RSL.F

These programs determine the relative sea level curves for each site of the

database of Tushingham and Peltier (1992, 1993) for which radiocarbon–controlled

data are available8 (the RSL sites and the observations are listed in the user–supplied

input file sealevel.dat). More specifically, SH RSL.F computes the SH at the RSL

sites, Y(ωrsl
j ), whereas RSL.F determines the RSL curves by Eq. 3.63. Program

RSL.F also computes individual and global χ2 misfits between the observations and

the model–based predictions.

5.5.3 GMAPS.F

Program GMAPS.F computes the rate of sea level change Ṡ, the rate of vertical

displacement U̇ , and the rate of change of the geoid height Ṅ at present time t = tp

taking the discrete time–derivative of

R(ωj , tp) =
∑

lm

Rlm,iY(ωj), (5.8)

8http://www1.ncdc.noaa.gov/pub/data/paleo/paleocean/relative sea level/.
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where R represents any of the three scalar fields, and Rlm,i are the corresponding

harmonic coefficients. Maps of the three scalar fields can be obtained by the GMT

script gmaps.gmt.

5.5.4 SH PSMSL.F, PSMSL.F

These two codes compute the sea level secular trends at the sites of the database

of the Permanent Service for the Mean Sea Level(the PSMSL sites and the obser-

vations are listed in the user–supplied input file psmsl.dat). SH PSMSL.F computes

the SH at the PSMSL sites, Y(ωpsm
j ), while PSMSL.F computes the rates of sea level

change at the sites by the discrete time–derivative

Ṡ(ωpsm
j , tp) ≈

lmax
∑

lm

Slm,N − Slm,N−1

∆
Y(ωpsm

j ). (5.9)

5.5.5 STOKES.F

This program computes the time–derivatives of the cosine and sine Stokes coef-

ficients of the gravity field at present time, in the range of degrees specified in the

include file data.inc (see Appendix C.1). STOKES.F implements the formula






ċlm

ṡlm







(tp) ≈
2 − δ0m

a
µ̄lm







+Re

−Im







Nlm,N −Nlm,N−1

∆
, (5.10)

where Re and Im denote real and imaginaly parts, respectively.



Chapter 6

Applications of SELEN

To the purpose of illustrate the potentiality of the PS method for the SLE in the

following sections we present three applications of SELEN that concern (i) predictions

of the Holocene relative sea level variations for the Hudson bay region, (ii) estimates

of the present–day rates of sea level variations, vertical deformations and geoid

heights in the Mediterranean, and (iii) the determination of the time–derivatives of

the Stokes coefficient of the gravity field. In Section 6.4 we show predictions of global

GIA signatures which have been submitted to the Special Bureau for Loading.

In the following applications, the SLE will be normally solved in its gravita-

tionally self–consistent form given by Eq. (4.5) for both the ICE1 and the ICE3G

chronology (see Figure 5.5). However, in one of the proposed applications, we will

solve the SLE in various simplified manners to appreciate the role of its individual

components. The spatial resolution will be kept fixed to r = 14, (r corresponds

to the parameter RES of the input file data.inc, see Appendix C.1), which implies

Np = 7292. The pixels distribution obtained for such resolution is shown in Figures

5.3 and 5.2.

In the ensuing computations, we will use the density and rigidity values of the

REF rheological profile (see Table 5.2 in Chapter 5), but the shallow upper mantle

and lower mantle viscosities will be changed accordingto our needs.

106
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6.1 RSL curves for the Hudson Bay

This first example consists in the computation of RSL curves for the sites of

the Hudson Bay region (see Figure 6.1). The purpose is to calibrate the method of

solution and to analyze the sensitivity of RSL predictions to the settings of various

free parameters.
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Figure 6.1: Hudson Bay RSL sites considered in this study, according to Tushingham

and Peltier (1992, 1993). RSL predictions and observations for these sites are shown

in Figures 6.2 and 6.3.
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In the ensuing examples, the RSL has been computed according to Eq. (3.63),

which is implemented in program RSL.F of SELEN (see Section 5.5).

In Figure 6.2 we consider various solutions of the SLE for the site of Ungava

Peninsula, Quebec, for the mantle viscosity of Table 5.2 and the deglaciation chronol-

ogy ICE3G (see Figure 5.5). In order to test the convergence of the recursive scheme

in Eq. (4.90) in Figure 6.2a we show a set of RSL curves pertaining to different val-

ues of the SMAX parameter of data.inc, which determines the number of iterations

smax. The maximum harmonic degree, which is defined by LMAX parameter (see

data.inc), here is lmax = 72. All the RSL curves shown have been obtained setting

IMODE=1 in data.inc, which implies a “gravitationally self–consistent” approach to

the SLE. The curve for SMAX=0 (dashed), corresponding to the eustatic solution

of the SLE, is characterized by a monotonous sea level rise since the LGM, and is

the same that we would obtain in the case of a rigid, non–self–gravitating Earth, i.

e. setting IMODE=3 in data.inc. Other curves of the sequence show essentially a

monotonous sea level fall. This trend is characteristic of the sites close to the center

of the former ice–load (i. e. Clark’s zone I, see Figure 1.10); RSL curves of different

shapes are expected with increasing distance from this central region (Clark et al.,

1978; Spada and Stocchi, 2006). It is apparent that the sequence quickly converges

to a stable solution that is reached already for SMAX=3, consistently with Farrell

and Clark (1976). For this same value of SMAX, and keeping fixed IMODE=1,

Figure 6.2b shows the effect of choosing different values of LMAX, the maximum

harmonic degree of the analysis. After a few oscillations, the solution converges for

LMAX=72; a further increase of this parameter (i. e., LMAX=96) does not alter sig-

nificantly the results. In Figure 6.2c we show the eustatic RSL curve (EUS) obtained

setting IMODE=3 in data.inc and the converged gravitionally self–consistent one

(thick line, GSC), reproduced from Figure 6.2b, which represent two end–members

of the response of Earth to the surface loads. While the eustatic sea level changes is

computed for a rigid, non–gravitating Earth, the latter accounts for both the elastic

and the viscous response, and for the (gravitationally self–consistent) ocean load as
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well. In terms of LDCs, the eustatic solution for a rigid Earth is obtained setting

1 + ke
l − he

l ≡ 0 and klj = hlj = 0 in Eqs. (4.52) and (4.53), respectively, which

implies Zlm,i = ZE
lm,i in (4.90).

Figure 6.2c also shows another rigid–Earth solution (WOO), in which we only

account for the gravitational interaction between the ice sheets and the ocean mass,

with ke
l = he

l = klj = hlj = 0 in Eqs. (4.52) and (4.53), respectively, and IMODE=4

in data.inc. An analytical solution for this problem, valid for a point–like ice

sheet, was originally found by Woodward (1888) (and reproduced by Farrell and

Clark, 1976) in his pioneering work on the form and position of mean sea level.

The RSL curve labeled by ILN shows the prediction obtained when the ice load

is switched out in the GSC solution, obtained setting Ilm,i = 0 in Eq. (4.83) and

IMODE=5 in data.inc. In this case, the postglacial sea level changes only result

from the deformations driven by the ocean load and the associated geoid variations.

The results obtained fall close to the eustatic curve. A similar approach, but limited

to the elastic response, was proposed by Farrell and Clark (1976) to illustrate the

physics of the SLE. As a final example, the RSL curve marked by ELA depicts the

GSC solution when the viscous LDCs are neglected (ke
l = he

l = 0 in Eq. (4.52),

obtained setting IMODE=2 in data.inc). The comparison with the fully GSC result

clearly shows how significant the contribution is of the delayed viscoelastic effects

on RSL. With the exception of EUS, all the solutions shown in Figure 6.2 require

an iterative approach to the SLE, according to Eq. (4.90). They have been obtained

setting SMAX=3 and LMAX=72 in the configuration file data.inc. The whole set of

RSL observations available form the Hudson Bay region are considered in Figure 6.3,

where solid and dashed curves show the results of computations using the deglacia-

tion chronologies of ICE3G and of ICE1, respectively. The particular ice chronology

can be chosen in selen.sh before execution (see Section 5.3.1 above). In all of the

cases considered in Figure 6.3, LMAX=72, and SMAX=3, and the gravitationally

self–consistent solution of the SLE has been employed (IMODE=1). The input file

sealevel.dat can be easily easily modified by the user.



6.1 RSL curves for the Hudson Bay 110

 3
60

 3
00

 2
40

 1
80

 1
20

 6
0

 0
-6

0
-1

20

 0 2 4 6 8 10 12 14 16 18

R
S

L 
(m

)

time BP (kyrs)

 108  62.0  -75.0  7 UNGAVA PEN. QUE.

(a)

RSL data
SMAX=0

1
2
3
4
5

 3
60

 3
00

 2
40

 1
80

 1
20

 6
0

 0
-6

0
-1

20

 0 2 4 6 8 10 12 14 16 18

R
S

L 
(m

)

time BP (kyrs)

 108  62.0  -75.0  7 UNGAVA PEN. QUE.

(b)

RSL data
LMAX=6

12
24
36
72
96

 3
60

 3
00

 2
40

 1
80

 1
20

 6
0

 0
-6

0
-1

20

 0 2 4 6 8 10 12 14 16 18

R
S

L 
(m

)

time BP (kyrs)

 108  62.0  -75.0  7 UNGAVA PEN. QUE.

(c)

RSL data
EUS

WOO
ELA
ILN

GSC

Figure 6.2: Predicted and observed RSL curves for Ungava Peninsula, Quebec.

Frame (a) shows RSL curves corresponding to various SLE iterations, (b) illustrates

how RSL curves are affected by varying LMAX, while in (c) we consider various

possible SLE solutions (see text).
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Figure 6.3: Observed and predicted RSL curves for sites of Figure 6.1. “Gravita-

tionally self–consistent” computations using ICE3G and ICE1 are shown by solid

and dashed curves, respectively (see Figure 5.5).
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6.2 Present–day rate of sea level change in the

Mediterranean

In Figure 6.4 we show the present–day rate of sea level change in the Mediter-

ranean, computed for a shallow upper mantle viscosity of 0.5 × 1021 Pa · s and a

transition zone viscosity of 1021 Pa · s. The lower mantle viscosity is 2 × 1021 Pa

· s in frame (a) and 50 × 1021 Pa · s in frame (b), respectively. The other physi-

cal parameters of the Earth are given in Table 5.2. The rates of sea level change

shown in Figure 6.4 have been obtained using GMAPS.F, which implements Eq. (5.8)

with coefficients Rlm,i = Slm,i. In all of the computations of this section, we have

run SELEN using the deglaciation model ICE3G and the parameters IMODE=1,

SMAX=3, RES=14, and LMAX=72 in file data.inc.

From the results of Figure 6.4a it is apparent that glacial–isostatic adjustment

has the effect of producing a sea level rise in the central portion of the Mediterranean,

with a maximum close to 0.45 mm yr−1. However, for the viscosity values and ice

chronology employed here, a sea level fall close to −0.1 mm yr−1 is predicted along

most of the continental coasts of the Mediterranean. The pattern of sea level change

shown in Figure 6.4, characteristic of the Mediterranean and other closed mid–

latitude basins (Mitrovica and Milne, 2002), has been identified as a new “Clark’s

zone” (Clark et al., 1978) named Clark’s zone VII (see Chapter 9 for further details).

An increase of the viscosity of the lower mantle (Figure 6.4b, with 50 × 1021 Pa ·
s) has the effect of increasing the peak value of sea level rise to ∼ 0.65 mm yr−1,

and to significantly narrow the regions characterized by a sea level fall that are now

completely absent along the Tyrrhenian coast of France and Italy. This appears to

be more consistent with the available observations of late–Holocene RSL variations

changes in this regions (see Chapters 9 and 10).

For the same viscosity profile and parameters of Figure 6.4a, we show in Figure

6.5 the present–day rates of vertical velocity and geoid height change driven by

glacial–isostatic adjustment in the Mediterranean. These scalar fields are computed
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by GMAPS.F along with Ṡ. According to Eq. (3.56), the fields U̇ (frame a) and Ṅ (b)

are related by Ṅ− U̇ = Ṡ , where Ṡ is shown in Figure 6.4a. We observe that U̇ and

Ṅ are both negative across the Mediterranean, to indicate that in this region the

surface topography and the geoid are both subject to subsidence. However, while

U̇ is characterized by a significant spatial variability, Ṅ is almost constant, which

reflects a larger content of long–wavelength harmonics. We also observe that in the

Mediterranean |Ṅ | is not small with respect to |U̇ |, as we could expect in formerly

glaciated regions, where sea level changes are mainly due to vertical deformations.

The issue of present–day sea level variations is considered more in detail for

the Italian PSMSL sites shown in Figure 6.6. Using the programs SH PSMSL.F and

PSMSL.F and the same settings used to obtain Figure 6.4a, we have computed Ṡ

as a function of lower mantle viscosity. The results, shown in Figure 6.7, clearly

show that along the coasts of Italy the expected glacial–isostatic contribution to

the currently observed sea level variations is generally positive, which indicates a

sea level rise. Consistently with Figure 6.4a, a moderate sea level fall is predicted

for the sites of northern Italy (Porto Maurizio, Genova, Porto Corsini, Venezia, and

Trieste) provided that the lower mantle viscosity does not exceed ∼ 3× 1021 Pa · s.

A horizontal asymptote of the Ṡ curves is only obtained for the unrealistically large

viscosity of ∼ 1024 Pa · s which indicates that the observations for the Mediterranean

are sensitive to the rheological properties of lower mantle for a wide range of possible

mantle viscosities. The inverted parabola profile shown by the curves of Figure 6.7 as

a function of lower mantle viscosity can be explained observing that for relatively low

values of the viscosity of the lower mantle the Earth has already reached equilibrium

at present time, while for relatively large viscosities it is always far from equilibrium

on the time scales of glacial–isostatic adjustment. For intermediate viscosity values

(close to 2 × 1022 Pa · s), a maximum is attained.
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Figure 6.4: Rate of present–day Mediterranean sea level variations, for a low–

viscosity lower mantle (2 × 1021 Pa · s, frame a) and a high–viscosity lower mantle

(50 × 1021 Pa · s, b). Shallow upper mantle and transition zone viscosities are

0.5 × 1021 and 1 × 1021 Pa · s,respectively.
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Figure 6.5: Present day Mediterranean rates of vertical uplift (a) and of geoid height

change (b) with mantle viscosity as in Figure 6.4a.
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Figure 6.6: Italian PSMSL sites considered in Figure 6.7.
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Figure 6.7: Present–day rate of sea level change for Italian PSMSL sites shown

in Figure 6.6, as a function of lower mantle viscosity. Shallow upper mantle and

transition zone viscosities are kept fixed to 0.5 and 1 × 1021 Pa · s, respectively.
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6.3 Rates of variation of the Stokes coefficients

This last application of SELEN concerns a study of the effects of glacial–isostatic

adjustment on the rates of variation of the Stokes coefficients of the gravity field

(ċlm, ṡlm), which are computed by the routine STOKES.F using Eq. (5.10) and the

parameters of Table 5.2. The minimum and maximum harmonic degree of the Stokes

coefficients to be computed is set by the parameters STMIN and STMAX of the

include file data.inc, respectively.

Figure 6.8 shows some low–degree cosine and sine coefficients ċlm and ṡlm ob-

tained from the gravitationally self–consistent solution of the SLE (i. e., IMODE=1),

with SMAX=3 and LMAX=72 in file data.inc. From the results shown, it is clear

that the terms with m = 0 are those of largest amplitude, due to the strong zonal

symmetry imposed by the spatial distribution of the ice sheets in model ICE3G (see

Figure 5.5).

Among the Stokes coefficients, a particular role is played by c20. Variations of

this coefficient reflect variations of the inertia tensor of the Earth Iij , being

c20 = −I33 − (I11 + I22)/2

mea2
, (6.1)

(e. g., Lambeck, 1980). A positive value of ċ20 indicates that the shape of the

Earth is progressively approaching that of a sphere, as a consequence of the global

readjustment in response to the melting of the Holocene ice sheets. In view of the

very long wavelength involved, the sensitivity of ċ20 to the lower mantle viscosity is

known to be significant (see e. g., Spada et al., 1992).

To address this issue, we show in Figure 6.9 ċ20 for various values of the lower

mantle viscosity. All of the three curves shown have been obtained by the gravita-

tionally self–consistent solution and the same settings as in Figure 6.8. With filled

squares we show the results obtained using all of the elements of the ice aggregate

ICE3G, while the curve with open squares pertains to computations where we have

not included in the Antarctic component of ICE3G (a partition of ICE3G in its re-

gional components is available with the TABOO package of Spada, 2003). The ICE3G
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results of Figure 6.9 are in good agreement with those obtained by Spada et al.

(1992) (see their Figure 6, left frame), although in this latter the eustatic approx-

imation was used for the water load, and a very coarse implementation of ICE3G

was employed.

From Figure 6.9 it is clear that the Antarctic component of the whole deglacia-

tion model accounts for a large fraction (≈ 60%) of the total signal in the range of

lower mantle viscosities considered. The curve with circles pertains to the deglacia-

tion model ICE1, which assumes a zero antarctic ice aggregate (see Figure 5.5). The

similarity between the results obtained with ICE1 and ICE3G–ANT confirms that

at long–wavelengths the northern Hemisphere portions of the two aggregates have

similar shapes and time–histories (see Figure 5.5). The inverted parabola profile

shared by the three ċ20 curves as a function of lower mantle viscosity may be ex-

plained in the same manner as for the rates of sea level change shown in Figure

6.7.
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6.4 Submission of post-glacial rebound predictions

to the SBL

In the course of 2005 the Special Bureau for Loading (SBL)1 of the Global Geo-

physcial Fluid Center (GGFC)2 called for submission of predictions determined by

geophysical models of the secular present–day 3–d motions of the surface of the

Earth and secular variation of the gravitational field due to post–glacial rebound.3

The SBL is one of the seven Special Bureaus of the GGFC, which in turn is a com-

ponent of the International Earth Rotation and Reference Frame Service (IERS).4

The SBL was set up in 2002 by the IERS to provide information and data products

related to variations in shape, gravitational field and rotation of the Earth induced

by surface mass loading. Until recently, the focus had been on the signals caused

by present–day surface mass variations.

The IERS Conventions, which are the basis for the determination and monitoring

of the International Terrestrial Reference Frame (ITRF)5 consider three principal

classes of models:

1. models that are recommended to be used in order to determine geodetic pa-

rameter estimates from raw space geodetic observations,

2. models that are purely conventional such as physical constants or models re-

placing physical specifications of properties of the reference frame,

3. models that are useful particularly for the interpretation of the results obtained

from geodetic observations.

Class 3 models gain increasing importance for scientific and non–scientific appli-

cations requiring access to the ITRF. ITRF is gaining a wide–spread acceptance as

1http://www.sbl.statkart.no.
2http://bowie.gsfc.nasa.gov/ggfc/.
3http://www.sbl.statkart.no/projects/pgs/.
4http://www.iers.org.
5http://itrf.ensg.ign.fr/.
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the global terrestrial reference frame, and many applications require that coordinates

determined at different epochs can be compared directly or that the velocity field

can be interpolated between ITRF points. Ultimately, this will require a detailed

model of the Earth’s surface kinematics, which would be a typical class 3 model.

The PGS is a global signal which regionally dominates the secular displacement

field and significantly biases the rigid motion of the tectonic plates. Thus, it ap-

pears to be worthwhile to inter–compare the existing PGS models with the aim of

quantifying the accuracy and documenting the inter–model differences. The SBL is

taking the lead in an effort of the GGFC towards this goal and aims to identify a

candidate for a class 3 model of the present–day PGS in the Earth’s shape, grav-

itational field, and rotation, that can be used in space-geodetic studies e. g. as a

conventional model for the correction of PGS or for the inclusion of PGS in a model

of the present-day kinematics of the Earth’s surface.

As a group active in the field of post-glacial rebound studies, we have fulfilled the

request of the SBL for predictions of the present–day secular PGS in the shape of

the Earth, the surface gravity field, and relative sea level. Our submission6 included

predictions of:

• RSL curves for the 392 sites included in the Tushingham and Peltier database

(see also Section 6.1),

• rates of variation of the Stokes coefficients (see Section 6.3),

• present–day rates of sea level change at a number of selected tide gauges

included in the PSMSL dataset,

• global velocity fields (Ṡ, U̇ , and Ṅ).

The maps of Figures 6.10, 6.11, and 6.12 show respectively the predicted present–

day rate of sea level change Ṡ, the vertical velocity U̇ , and the rate of change of the

geoid height Ṅ for ICE3G and ICE1 models (Figure 5.4 and 5.5), respectively.

6http://www.sbl.statkart.no/projects/pgs/authors/.



6.4 Submission of post-glacial rebound predictions to the SBL 123

180˚ 225˚ 270˚ 315˚ 0˚ 45˚ 90˚ 135˚ 180˚
-90˚ -90˚

-45˚ -45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚
-1.0 -0.5 0.0 0.5 1.0

mm/yr

Rate of sealevel change (ICE3G)

180˚ 225˚ 270˚ 315˚ 0˚ 45˚ 90˚ 135˚ 180˚
-90˚ -90˚

-45˚ -45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

Rate of sealevel change (ICE3G)

180˚ 225˚ 270˚ 315˚ 0˚ 45˚ 90˚ 135˚ 180˚
-90˚ -90˚

-45˚ -45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

180˚ 225˚ 270˚ 315˚ 0˚ 45˚ 90˚ 135˚ 180˚
-90˚ -90˚

-45˚ -45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚
-1.0 -0.5 0.0 0.5 1.0

mm/yr

Rate of sealevel change (ICE1)

180˚ 225˚ 270˚ 315˚ 0˚ 45˚ 90˚ 135˚ 180˚
-90˚ -90˚

-45˚ -45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

Rate of sealevel change (ICE1)

180˚ 225˚ 270˚ 315˚ 0˚ 45˚ 90˚ 135˚ 180˚
-90˚ -90˚

-45˚ -45˚

0˚ 0˚

45˚ 45˚

90˚ 90˚

Figure 6.10: Present–day rate of sea level change Ṡ computed by means of models

ICE3G and ICE1 using physical parameters of Table 5.2.
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Figure 6.11: Present–day rate of vertical uplift U̇ obtained using the same parame-

ters as in Figure 6.10.
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Figure 6.12: Present–day rate of change of the geoid height Ṅ . Based on (3.4),

this scalar field equals Ṡ + U̇ , where Ṡ and U̇ are shown in Figures 6.10 and 6.11,

respectively.
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6.5 Conclusions

We have presented and for the first time we have made available a simple Fortran

90 program (SELEN) for the computation of the sea level variations driven by the

melting of the Holocene ice sheets. SELEN allows to solve the SLE in its gravita-

tionally self–consistent form, but it is also possible to obtain the solution for some

simplified versions of the SLE. Tuning the parameters of the include file data.inc

and acting on the script selen.sh, it is possible to solve many problems in the

context of GIA ranging from Holocene RSLvariations to present–day variations of

the Stokes coefficients of the gravity field.

SELEN can be improved in a number of ways, with the implementation of time–

dependent shorelines, mantle compressibility, a finely–layered mantle stratification,

rotational feedbacks between sea level changes and Earth rotation, and horizontal

deformations. However, in its present form, SELEN already performs well on a wide

range of problems, giving results that are consistent with those already published in

the literature. The programs that compose SELEN are designed to operate on a Mac

OS X environment, and have been developed using the IBM XL Fortran compiler.

However, the programs described herein can be easily ported to other hardware

platforms. The source codes of the Fortran 90 and GMT procedures are publicly

available upon request to the authors.
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Chapter 7

Past and present–day sea level

changes in the Mediterranean Sea

7.1 Studies on the Mediterranean sea level

Given the low tidal excursion and the presence of geological indicators and ar-

chaeological remains, the Mediterranean coasts are particularly suitable for the re-

construction of past sea levels (Flemming, 1972, 1978). The Holocene and the

present–day sea level changes observed along the coasts of the Mediterranean basin

stem for the contribution of several factors which span a wide range of space– and

time–scales (Pirazzoli, 1991). The global glacio– and hydro–isostatic readjustment

of the Earth to the melting of the late–Holocene ice–sheets is one of the most im-

portant long–term mechanisms, along with the vertical movements associated with

subduction (Carminati et al., 2003) and marine sedimentation (Pirazzoli, 1991). On

decadal to secular time–scales the sea level variations are affected by a climatological

component (partly ascribed to an anthropogenic influence), which can be modeled

as the sum of an eustatic and steric terms, both associated with the current cli-

mate changes, and of a local term due to human–driven subsidence (Carminati and

Didonato, 1999; Pirazzoli, 1996).

128
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The whole Mediterranean area is affected by a significant tectonic activity which

contributes to a widespread coastal instability (Figure 7.1). Vertical movements,

both sudden and continuous, have displaced, in the course of time, some coastal

traits above or below the present–day sea level, preventing the depositional or ero-

sional features from the destructive wave action. This spatially heterogeneous and

short wavelength signal makes arduous the determination of a unique sea level curve

representative of the Mediterranean region.

Figure 7.1: Mediterranean tectonic settings (from Morhange and Pirazzoli, 2005).

Our knowledge of the role played by the Holocene deglaciation on the relative

sea level variations in the Mediterranean Sea mainly comes from numerous regional

analyses aimed to the interpretation of various geological observations. Due to the

significant evidence of past sea level changes, a number of these studies have dealt

with the northern Mediterranean coasts (e. g., Lambeck and Bard2000). These

are, potentially, the most affected by the process of isostatic adjustment due to the

relatively small distance from the Fennoscandian and Alpine ice sheets (Figures 7.2

and 8.1). In general the glacio-isostatic term is a dominant factor in shaping the
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overall pattern of apparent land subsidence within a distance of typically 40◦ to 60◦

of the ice centres (Lambeck and Johnston, 1995).
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Figure 7.2: Position of the Fennoscandian and British components of the ICE3G

model relative to the Mediterranean coasts.
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Other investigations considered the interplay between tectonic and postglacial

isostatic uplift in the central Mediterranean region (e. g., Pirazzoli et al. 1997;

Lambeck 1995), and more remote regions, such as the coasts of Tunisia (Jedoui et

al., 1998), and of Israel (Sivan et al., 2001). For a comprehensive review of the

available Holocene observations, the reader is referred to Pirazzoli (1991) and Pi-

razzoli (1996). More recently, Pirazzoli (2003) compiled a collection of the existing

investigations relative to the Mediterranean area, also including a discussion about

eustatic, isostatic and tectonic contributions for a number of selected sites. Due to

the relevance held by sea level variations in the context of the present–day climate

change, recent geological and geomorphological investigations have been comple-

mented by geodetic, palaeontological and archaeological evidence (Lambeck et al.,

2004a). The latter have allowed us to better constrain the age of the paleo–sea

level indicators available and to address the influence of tectonic motions upon the

observed uplift. Quantitative interpretations of the data based upon global models

of glacio–isostatic adjustment have been recently proposed by Lambeck and Purcell

(2005), and Pirazzoli (2005).

7.2 Application of the PS method to the Mediter-

ranean Sea

The need of an improved comprehension of both past– and present–day observed

sea level changes along the Mediterranean coasts has motivated our study of the GIA

related signatures. By means of our code for the solution of the SLE (see Chapter 5)

we have investigated the effects of the melting of the Pleistocene glaciers on past

and present–day observed sea level trends. A fundamental part of this work has

regarded the collection and the revision all the available and updated observations

concerning the sea level change in the Mediterranean (i. e. RSL curves, tide gauges

time–series, and GPS vertical velocities). By analyzing and comparing the available

data with the solutions of the Sea Level Equation for a Maxwell Earth we have
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tested the sensitivity of RSL data to the melting of remote ice sheets (i. e., North

America, Fennoscandia, Antarctica) and to the near field Würm Alpine glacier. Fol-

lowing the original work of Clark et al. (1978) we have investigated the existence

in the Mediterranean Sea of regions characterized by similar RSL curves (see Fig-

ure 1.10). Furthermore we have tested the sensitivity of the observations to different

values of the earth rheological parameters (i. e. lithospheric thickness and verti-

cal viscosity profile), and to the time–history of the remote ice sheets. This latter

task has been accomplished by modifying the pre–existing ice models on the basis of

the Mediterranean evidences to obtain a revised and improved global ice chronology.

The following chapters describe the main published and submitted results of this

investigation:

• Chapter 8 shows the study of the response of the Earth to the melting of the

Würm Alpine glacier (Stocchi et al., 2005a; Stocchi et al., 2005b). In particular

it describes the results of the computation of the glacio– and hydro–isostatic

effects which affect the post–glacial RSL curves and the present–day vertical

velocities in the Mediterranean basin,

• Chapter 9 concerns the investigation of the Clark’s zones (Figure 1.10) in the

Mediterranean Sea and describes the role of the remote ice sheets and of the

Earth parameters (Stocchi and Spada, 2006) . In particular it focuses on the

role of Antarctica and on the sensitivity of the Tunisian coast to this particular

ice sheet,

• Chapter 10 describes the analysis of the sensitivity of the Holocene sea level

record for SE Tunisia to the time–history of the Antarctic ice sheet. In particu-

lar, it shows that the mismatch between predictions and observations improves

for a reduced and impulsive melting of Antarctica (Stocchi and Spada, 2007).
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7.3 Methods

The present investigation has been carried out by means of code SELEN (Chap-

ter 5) which solves the Sea Level Equation (Chapter 3) through the pseudo–spectral

approach (Chapter 4). The following paragraph describes the general settings of the

program and the input data that we have chosen in our investigations.

7.3.1 SLE solver configuration

Pixelization

We have kept the spatial resolution fixed to r = 14, which implies a global number

of pixels of Np = 7292 (Tegmark, 1996). The wet and dry pixels distribution over

the Mediterranean area obtained for such resolution is shown in Figure 7.3. For the

maximum harmonic degree of the expansions we have chosen a value of lmax = 72.

This choice represents a good compromise in terms of resolution and CPU time.
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Figure 7.3: Wet (blue) and dry (red) pixels. See Figures 5.3 and 5.2 in Chapter 5

for the global distribution of pixels.
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Ice models

In our investigations we have considered two distinct global ice sheets chronolo-

gies: ICE1 Peltier and Andrews (1976) and ICE3G Tushingham and Peltier (1991),

shown in frames (a) and (b) of Figure 7.4, respectively, at the epoch of the Last

Glacial Maximum (LGM, 18 kyrs BP). ICE1 describes the retreat of the northern

Hemisphere ice sheets according to geological and geomorphological evidence, and

stores ∼ 78 m of equivalent sea level (ESL) at the LGM (see Figure 7.4d, solid

curve). Differently from ICE1, ICE3G has been built to improve the fit to the

global RSL data in the near field assuming the REF rheological profile described in

Table 7.3.1 (Tushingham and Peltier, 1991, 1992). While ICE1 assumes stationary

southern Hemisphere ice masses, ICE3G accounts for the chronologies of Antarctica

and South America, and consequently stores a larger water volume at the LGM,

with an ESL of ∼ 113.5 m (see Figure 7.4d). The Antarctic component of ICE3G

stores ∼ 28 m of ESL at the LGM and its volume is constant until 10 kyrs BP. Its

deglaciation occurs between 10 and 5 kyrs BP, when the North American and the

Fennoscandian ice aggregates had already lost most of their mass.

With the purpose of evaluating the sensitivity of the Mediterranean Clark zones

to the time–history of remote Holocene ice aggregates, in the computations of Chap-

ters 9 and 10 we have also considered alternative chronologies for the Antarctic ice

sheet.

The spatially minor but important Würm Alpine glacier (see Figure 8.1) is con-

sidered in Chapter 8 (Stocchi et al., 2005a) were we have analyzed the effects of its

melting on the Mediterranean sea level.

Earth model parameters

The Earth model employed in this work (REF rheological profile) has been pre-

viously introduced in Chapter 5 (see Table 5.2). As discussed above the value of the

lithospheric thickness and the viscosity profile have been assumed by Tushingham

and Peltier (1991, 1992) to build the ICE3G model.



7.3.1 SLE solver configuration 135

180˚ 240˚ 300˚ 0˚ 60˚ 120˚ 180˚

-60˚

0˚

60˚

180˚ 240˚ 300˚ 0˚ 60˚ 120˚ 180˚

-60˚

0˚

60˚

(a)

ICE1 (LGM)

180˚ 240˚ 300˚ 0˚ 60˚ 120˚ 180˚

-60˚

0˚

60˚

180˚ 240˚ 300˚ 0˚ 60˚ 120˚ 180˚

-60˚

0˚

60˚

(b)

ICE3G (LGM)

0 700 1400 2100 2800 3500

m

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

ICE1

0

20

40

60

80

100

120

(c)
0

20

40

60

80

100

120
FENNOSCANDIA

LAURENTIDE

E
S

L 
(m

) 

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0 4 8 12 16 20

0

20

40

60

80

100

120

0 4 8 12 16 20

0

20

40

60

80

100

120

0 4 8 12 16 20

0

20

40

60

80

100

120

0 4 8 12 16 20

A3

ICE3G

0

20

40

60

80

100

120

0 4 8 12 16 20

(d)
0

20

40

60

80

100

120

0 4 8 12 16 20

E
S

L 
(m

) 

time BP (kyrs) 

Figure 7.4: Global ice thickness distribution according to ICE1 (a) and ICE3G (b) at

the Last Glacial Maximum. Frames (c) and (d) show the equivalent sea level (ESL)

of ICE1 and ICE3G and of their largest components: Fennoscandia (dashed–dotted),

North America (dashed), and Antarctica (A3, dotted, only included in ICE3G).

Notice that in ICE1 and ICE3G the end of deglaciation occurs 8.0 and 5.0 kyrs BP,

respectively.
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SLE solution

The solution of the SLE has always been obtained for a number of iterations

SMAX = 3 through the “gravitationally self–consistent” approach (IMODE=1 in

data.inc, see Appendix C.1). For the computation of the ESL curves showed in

Figures 7.4 and 9.8 the solution is obtained switching IMODE=3, which implies the

eustatic solution (see Section 3.4 in Chapter 3).

Furthermore, in the analyses of Section 9.2.3 we have considered separately the

ice– and ocean–load induced sea level variations. Following Mitrovica and Milne

(2002), we write the total ”reduced” sea level change as

Z = O(SICE + SEUS + SOCE), (7.1)

where SICE , SEUS (see Eq. 3.34), and SOCE account for glacio–isostasy, eustasy,

and hydro–isostasy, respectively, with

SICE =
ρi

γ

(

Gs ∗ I −Gs ∗ I
)

, (7.2)

and

SOCE =
ρw

γ

(

Gs ∗ Z −Gs ∗ Z
)

(7.3)

where Z represents the solution of the SLE (4.2) in its complete form. As discussed

in Mitrovica and Milne (2002), another measure exists of the ocean load–induced sea

level variation, namely that arising from the meltwater loading in the total absence

of ice–loading effects. Such ‘hypothetical’ sea level variation is computed assuming

that the mass is added to the oceans from outside the Earth, rather than coming

from a surface load (Farrell and Clark, 1976). Using ρi = 0 in (4.2), and indicating

with ZHY P the solution of the SLE so obtained, one gets

SHY P = SEUS +
ρw

γ

(

Gs ∗ ZHY P −Gs ∗ ZHY P
)

(7.4)

that differs from (7.3), since the latter brings information about ice–loading effects

through Z. Since SHY P and SOCE have largely similar patterns in the far–field of

the former ice sheets (Mitrovica and Milne, 2002), in our ensuing discussion we have

employed (7.3) as a measure of the ocean–load induced sea level change.



Chapter 8

Isostatic rebound following the

Alpine deglaciation

8.1 Introduction

In all of the studies published so far, the RSL changes have been predicted

by postglacial rebound models that account for the major ice–sheets at the last

glacial maximum (LGM), i. e., the Fennoscandian, the Laurentian, the Greenland,

and the Antarctica ice sheets (Denton and Hughes, 1981). However, a potentially

important contribution to the Holocene and present–day vertical movements in the

Mediterranean area could be played by the isostatic rebound caused by the melting

of the Würm Alpine glacier (Pirazzoli et al., 1997; Lambeck and Bard, 2000; Stewart

et al., 2000; Lambeck et al., 2004a). To date, the only study that explicitly modeled

the effects of the Alpine ice sheet is by Gudmundsson (1994), who focused on the

vertical movements in the Swiss Alps region. Despite of the simplified rebound

model adopted, based on a flat–Earth approximation and on an axis–symmetric

ice–sheet, the deformations computed by Gudmundsson (1994) indicate that, for a

range of plausible rheological parameters, the Alpine deglaciation may significantly

contribute to the geodetically determined present–day uplift rates of the Swiss Alps.

137
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The results attained by Gudmundsson (1994) and the increased amount of obser-

vations, spanning from RSL to geodetic data, have justified the present investigation

aimed to study the effects of Alpine deglaciation on a wide set of geophysical observ-

ables. Here we have abandoned the axis–symmetric load description to introduce

a more realistic geometry, constrained by the geological and glaciological informa-

tion. While the simplified disc load employed by Gudmundsson (1994) is certainly

appropriate to describe the present–day postglacial deformations close to the center

of the former Alpine ice–sheet, a more refined description was needed here since we

were also concerned with the response of the solid viscoelastic Earth outside the

load margins, where significant geophysical data are available.

The forward approach to the postglacial rebound problem would require two

basic inputs: the chronology of the ice load imposed at the Earth surface and the

rheological profile of the mantle. However, our knowledge of these inputs is seldom

exact, so that it is generally by inverse approaches that we can get information

about the ice chronology and the viscosity of the Earth mantle (Mitrovica and

Peltier, 1995; Johnston and Lambeck, 2000; Cianetti et al., 2002). The purpose of

this work was not to provide bounds on the extent and time history of the Alpine

deglaciation nor to infer the rheology of the mantle. Rather, we have intended to

use available geological evidence and a reasonable viscosity profile (REF rheological

profile, see Table 5.2) to assess the relevance of the melting of the Alpine glacier on

the Holocene and present–day deformations in the Mediterranean region, where the

effects are expected to be the largest. We have accomplished this goal through a

suite of forward computations (see Chapter 5) based on a spherically layered Earth

model including both the Alpine glacier and the major Holocene ice sheets.

8.2 History of the Alpine glacier

With a width of ∼ 600 km and a length of ∼ 200 km, the Alpine glacier was the

largest among the southern Europe local glaciers at the LGM. Other ice aggregates
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of smaller extent partly covered the Pyrenees and other European mountain ranges

(Denton and Hughes, 1981), but their reconstruction is still incomplete (Clapperton,

1995). In view of the scarce information about the advance and retreat of these

secondary aggregates, and since most of the geophysical data currently available

pertain to the central Alps and to the immediately surrounding coastlines, in the

following we have restricted our attention to the combined effects of the Alpine

glaciation and of the major remote Pleistocene ice sheets. Due to the linearity of

the problem, the contribution from other glaciers have been computed separately

and linearly added to the results presented here.

While the boundaries of the Alpine glacier at the LGM are quite well constrained,

the thickness and the melting chronology are uncertain. According to the synthesis

of Gudmundsson (1994) and to Florineth and Schlüchter (2000), the last phase of

expansion prior to the LGM begun ∼ 25 kyrs ago. Differently from Fennoscandia

and other local European ice aggregates, the Alpine expansion was preceded by a

∼ 30 kyrs long warm period during which the ice was limited to the central portion

of the glacier. After LGM, the Alpine glacier has been characterized by a complex

pattern of deglaciation. This has been well documented by geomorphological inves-

tigations in the Swiss Alps (Ehlers, 1996) and in the eastern Alps (Van Husen, 1997),

which indicate alternate phases of advance and retreat of relatively short duration.

The thickness of the Alpine glacier during the various phases outlined above is far

from being completely reconstructed. As indicated by the available trimline data

(Florineth and Schlüchter, 2000), the central Alpine ice cap showed a considerable

complexity, characterized by several individual ice domes with a maximum thick-

ness as large as 3000 m. It is recognized that the ice coverage at the LGM may

have been characterized by a strongly variable thickness, with steep gradients and

ice–free regions of considerable extent (Florineth and Schlüchter, 2000). While it

appears plausible that the ice may have reached a thickness in excess of 1 km in the

Alpine valleys, in the Alpine foreland the maximum ice thickness is unlikely to have

exceeded few hundred meters (see Gudmundsson 1994).
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The extent of the Alpine glacier at the LGM has been recently reviewed by

Florineth and Schlüchter (2000) and is still the subject of active research.1

In the attempt to merge the available geological and geomorphological informa-

tion, we have constructed the ice sheet model shown in Figure 8.1, hereafter referred

as to model ALPS1. The contours of ALPS1, shown here at the LGM (i. e., during

the Late Würm period, 20 to 18 kyrs BP), are consistent with those of Gudmunds-

son (1994), that are based on previous climatological and glaciological evidence (see

Denton and Hughes1981 and Gudmundsson1994 and references therein). Each of

the crosses in Figure 8.1 shows the centroid of the hexagonal finite elements used to

discretize the Earth surface, as explained in Section 5.2. The black, gray and light

gray crosses in Figure 8.1 show the thickness of each ice element at the LGM, being

1000, 500, and 250 m, respectively. To mimic the shrinkage of the glacier, these

elements are subject to a constant rate of deglaciation, and disappear at 11, 12, and

13 kyrs BP, respectively. For ALPS1, we have conventionally placed the LGM at 18

kyrs BP, and we have assumed isostatic equilibrium prior to that epoch. To test the

sensitivity of near–field sea level variations to the shape and to the chronology of

the Alpine ice sheet, in some of the ensuing computations we have also considered

an extremely simplified Alpine glacier (ALPS2) in which all the ice elements have

a thickness of 500 m at the LGM (18 kyrs BP) and melt synchronously following a

linear time–history until they disappear 12 kyrs BP. As for ALPS1, isostatic equi-

librium prior to the LGM is assumed for ALPS2. The volume of ALPS1 and ALPS2

at the LGM is close to 0.09 × 106 km3, i. e., roughly two times that employed by

Gudmundsson (1994), who adopted a uniform thickness of 250 m for the simplified

small-size disk load that was meant to be representative of the Swiss portion of the

whole glacier.

In addition to the Alpine glacier, we have also included the major remote Pleis-

tocene ice–sheets. Among the currently available chronologies, we have alternatively

adopted ICE1 by Peltier and Andrews (1976) (see Figure 7.4 top), which is indepen-

1see http://www.skq.ch/IT/LGM.html.
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dent from specific assumptions about the mantle viscosity profile (see also Spada,

2001) and ICE3G (Tushingham and Peltier, 1991), more accurate in reproducing

the geometry and chronology of the ice aggregates (see Figure 7.4 bottom). The

relatively coarse structure of ICE1 and ICE3G may constitute a problem if one is

concerned with the response of the Earth at specific RSL or geodetic sites placed in

the vicinity of the ice margins. This is not the case here, since the Fennoscandian

ice–sheet is sufficiently distant from the region of interest.
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Figure 8.1: Contour lines showing the thickness of the ALPS1 model for the Alpine

deglaciation at the LGM (e. g., 18 kyrs BP). The crosses show the centers of the

single hexagonal ice elements that compose the aggregate, whose thickness is shown

in the inset.
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8.3 Results

8.3.1 Holocene sea level variations

The impact of the melting of the Alpine glacier on sea level changes in the

Mediterranean Sea is shown in Figure 8.2, where we have employed the deglaciation

model ALPS1 described above. Here and in the ensuing computations, the RSL

curves are obtained by the solution of the SLE (Eq. 3.33) according to Eq. 3.63 (see

Section 3.5). To focus on the effects of the small alpine glacier, the remote ice masses

have not been included in our modelization at this stage. We have first considered

the Mediterranean RSL sites included in the database of Tushingham and Peltier

(1993), evidenced by the open circles of Figure 8.2a (see also Section 6.1). The

predicted RSL curves, shown in Figure 8.2b, confirm the intuition that the melting

of the Alpine glacier has had mainly a regional influence. In fact, amongst the sites

considered here, the largest effects are predicted for the southern France sites of

Marseilles and Roussillon, for Civitavecchia (central Italy), and Catania (Sicily). A

monotonous sea level fall is predicted for the three Tyrrhenian sites, to indicate that

the melting of the Alpine glacier has produced a significant uplift on a broad region

spanning several hundreds of kilometers, that amounts to ∼ 7.0 m and to ∼ 3.5 m

since the LGM for Marseilles and Civitavecchia, respectively. Although Roussillon

and Civitavecchia are placed at comparable distances from the centroid of the former

Alpine glacier (see Figure 8.2), the amplitude of the computed RSL are distinctly

different in the two cases as a consequence of the non–axially symmetric contour of

the glacier (see Figure 8.1). Since the actual geological observations clearly indicate

a monotonous sea level rise both along the coasts of southern France and along the

Tyrrhenian coasts of Italy (Schmiedt, 1972; Lambeck and Bard, 2000), from the

results of Figure 8.2b we have concluded that if the chronology employed here for

the Alpine glacier is correct and the viscosity profile of the mantle that we have

adopted is appropriate for this region, the melting of the Würm Alpine glacier has

counteracted the general Holocene sea level rise that is observed in this region. In
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the case of Catania (Sicily) we have predicted a monotonous sea level rise of ∼ 1 m

since the LGM, that can be mainly attributed to the collapse of the small peripheral

topographic bulge associated with the Alpine glacier.

As shown in Figure 8.2b, in the remaining sites of the Mediterranean area, the

sea level variations driven by the melting of the Alpine glacier ALPS1 have been

much less pronounced than in southern France and central Italy and in some case

characterized by a non–monotonous behavior. An absolute RSL variation of less

than 1 m is predicted at all of these sites since the LGM.

Due to the proximity of the former Alpine glacier, we expect that sites along the

coasts of the northern Adriatic sea have been affected to some extent by the Alpine

deglaciation (see Figure 8.1). A precise assessment of postglacial sea level variations

at these sites is particularly important in view of efforts aimed to separate natural

and anthropogenic movements on a secular scale in this area (see e. g., Carminati

and Didonato, 1999). This issue is addressed in Figure 8.2c, where we have focused

on the predictions of long–term RSL variations for three relevant sites of the Adriatic

Sea, namely Venice, Trieste, and Porto Corsini (these sites are marked by stars in

Figure 8.2a). According to the results shown by solid lines, the melting of ALPS1 has

produced a monotonous sea level fall at these three sites. The effect is significantly

enhanced with respect to southern France (see Figure 8.2b), with ∼ 30 m for Venice

and ∼ 20 m for Porto Corsini and Trieste since the LGM. To test the sensitivity of the

computed RSL curves to the shape and to the chronology of the Alpine aggregate, we

have also shown in Figure 8.2c the results obtained using the uniform–thickness ice

model ALPS2 (dashed curves). The introduction of ALPS2 has the effect of slightly

diminishing the sea level variations: the RSL curve for Venice is roughly scaled by

15%, while for Trieste and Porto Corsini the effect is close to 5%, showing that the

sensitivity to the geometry and chronology of the Alpine ice load is moderate even

at this near–field sites. Since Holocene RSL data analogous to those available for

southern France are not at our disposal, the computations that we have done here

have merely an illustrative character. However, it is clear from these results that
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the melting of the Alpine glacier has mitigated the postglacial rise of sea level in

northern Adriatic. Judging from Figure 8.2c, this reduction has been between 1 and

2 m since the end of the melting of the Holocene ice–sheets, that occurred 5 kyrs

ago according to the chronology of model ICE3G (Tushingham and Peltier, 1991).

The role of the melting of the Alpine glacier in this region will be further addressed

in Section 8.3.2, that is devoted to the present–day sea level changes.

The analysis of Figure 8.2 supports the observations by Lambeck et al. (2004a),

who suggested that in the last 12 kyrs the contribution to sea level change from

the melting of the Alpine glaciers could have been potentially significant only for

the northern Mediterranean sites. However, the RSL variations effectively observed

along the coast of the Mediterranean Sea stem from the contribution of all the

ice sheets active during the Holocene. To study quantitatively how the melting of

the Alpine glacier could have interfered with the action of the remote ice sheets

and to analyze the sensitivity of the available RSL data to uncertainties in the

global ice sheets distribution, we have considered the results of Figure 8.3. Here we

present RSL predictions for the sites Roussillon, Marseilles, and Civitavecchia that,

according to Figure 8.2b, are mostly affected by the melting of the Alpine glacier.

The chosen time window is large enough to include all the RSL data available in the

database by Tushingham and Peltier (1993) along with their uncertainties.
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Figure 8.2: (a): the circles show the Mediterranean RSL sites included in the

database by Tushingham and Peltier (1993). Three relevant northern Adriatic sites

are marked by stars. The triangle shows the centroid of the former Alpine glacier.

Frames (b) and (c): predicted RSL curves for sites marked with circles and stars,

respectively. In both cases, solid curves only account for the effects of the Alpine

glacier ALPS1. Dashed lines in (c) portray the results obtained using model ALPS2.
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Dashed lines in Figure 8.3 portray the RSL curves predicted for model ICE3G,

while those that account for the combined effects of ICE3G and ALPS1 are depicted

by solid curves. As shown in Figure 8.3a for Roussillon, the eustatic portion of the

RSL curve is dominated by the effect of the remote ice sheets that compose ICE3G,

very large in comparison to the small size of the Alpine glacier. Furthermore the

inset of Figure 8.3a evidences that the sensitivity to the melting of ALPS1 is modest

since 5 kyrs BP, the time that marks the end of deglaciation for ICE3G (compare

dashed with solid curves). Although this sensitivity is more enhanced when the

RSL sites of Marseilles and Civitavecchia are considered (Figure 8.3b and 8.3c),

both the ICE3G and the ICE3G+ALPS1 predictions fall within the error bars of

the available RSL data. It is remarkable that, since the LGM, the melting of ALPS1

appears to produce significant variations of the steepness of the RSL curves relative

to Marseilles and Civitavecchia, thus suggesting a possible role of the rebound driven

by the Alpine glacier on the present–day sea level changes at these locations (this

issue will be addressed in Section 8.3.2 below).

The results shown by dash–dotted curves in Figure 8.3 pertain to the combined

effects of the ICE1 and ALPS1 models. The rough time discretization of ICE1

compared to ICE3G is responsible for the saw–tooth behavior of the RSL curves

during the phase dominated by the eustatic sea level rise (see Figure 8.3a). Two

features are noticeable. First, comparing solid with dash–dotted curves, we observe

that a variation of the global structure of the ice load produces effects that largely

exceed those produced by the glacier ALPS1 on the three RSL sites considered

in Figure 8.3. Second, for the French sites, we observe that predictions based on

model ICE1+ALPS1 well agree with the observed monotonous sea level rise that is

supported by all of the data sets currently available in this region since the LGM

(Morhange et al., 2001; Lambeck and Bard, 2000). This shows the inadequacy of

ICE3G to model the RSL curves relative to southern France, a feature that is shared

with the more recent global chronology ICE4G (Peltier, 1994), as already evidenced

by Morhange et al. (2001). In the case of Civitavecchia, both the ICE1 and ICE3G
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predictions agree with the available datum, that indicates a sea level rise of ∼ 50

cm in the last 2 kyrs. Recent investigations based on archaeological evidence in the

central Mediterranean however indicate a significantly larger sea level change at this

site since 2 kyrs BP, close to 1.4 m (Lambeck et al., 2004b).
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Figure 8.3: Observed and synthetic RSL curves for Roussillon (a), Marseilles (b),

and Civitavecchia (c) (see Figure 8.2a). The predictions have been performed using

four distinct ice aggregates, as described in the inset of the top frame.
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In an attempt to understand the reasons for the disagreement between observa-

tions and predictions obtained using ICE3G in southern France, we have performed

further computations in which the Fennoscandian portion of ICE3G has been re-

placed by that of ICE1. The deglaciation model so obtained is denoted by ICE3GM.

The results show that when this hybrid ice model is employed, the synthetic RSL

curves do not show the clear decreasing trend exhibited by ICE3G, but rather a

stationary (Roussillon) or marginally increasing trend (Marseilles). This supports

the idea that the anomalous trend of the RSL curves in southern France is to be

at least partly attributed to the chronology of the Fennoscandian sub–aggregate of

ICE3G.

A further point concerning the differences in the predictions obtained by ICE1

and ICE3G is addressed in Figure 8.4, where the RSL curves for Roussillon, Mar-

seilles, and Civitavecchia have been obtained using Eq. (3.63) with S = SOCE,

where SOCE (see Eq. 7.3) is the sea level change arising from the deformation and

gravitational effects due to the loading of ocean meltwater in the total absence of

ice–loading effects Mitrovica and Milne (2002). The term SOCE thus represents the

sea level variation that we would observe if the meltwater were gradually transferred

into the ocean basins from a source placed at an infinite distance from the Earth

instead of coming from the vanishing ice–sheets (see also Farrell and Clark, 1976).

The results show that in the three sites considered the ocean load produces signals

of varying amplitude, with predictions based on ICE3G+ALPS1 in excess to those

pertaining to ICE1+ALPS1 due to the larger volume of the former. However, in

both cases, the RSL curves indicate a sea level fall and share a similar trend. This is

not the case when the effects of the ice load are accounted for as done in Figure 8.3,

where both the amplitudes and the trends of the RSL curves depend significantly

from the ice load employed (compare solid with dash–dotted curves). This shows

that, despite of the distance from the centers of the remote ice aggregates, the ice–

load term (and particularly its Fennoscandian component) is the major cause of the

distinct RSL trend obtained in this region when the two chronologies are considered.
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From the results of Figure 8.3 and Figure 8.4 we can estimate that the contribu-

tion of the meltwater accounts for about 1/3 of the observed discrepancies between

ICE3G and ICE1 in these Mediterranean sites since 5 kyrs BP.
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Figure 8.4: RSL predictions for the three sites of Roussillon Marseilles, and Civi-

tavecchia when the ice load is completely neglected. See text for further details.

To complete our analysis, in Figure 8.5 we have considered the remaining subset

of Mediterranean RSL curves available in the database of Tushingham and Peltier

(1993). Due to the large distance between the former Alpine glacier and these sites,

we do not observe any significant effect on the RSL curves neither on their steepness

at present time (compare dashed with solid curves). Furthermore, the offset be-

tween (ICE3G+ALPS1) and (ICE3GM+ALPS1) markedly tends to decrease with

increasing distance from the Fennoscandia ice aggregate. This indicates that the

RSL curves at these sites are mostly determined by the chronology and large–scale

structure of the deglaciation model ICE3G, that also shows a better overall fit with

the available observations. Significant differences in the predictions based on ICE1

and ICE3G are visible in the whole set of frames.
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Figure 8.5: Observed and synthetic RSL curves for the other sites contained in the

Peltier RSL database (see Figure 8.2a). The frames are ordered clockwise from

Termoli (Italy) to Algiers. The same models of Figure 8.3 have been employed.
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8.3.2 Present–day sea level change and crustal movements

The analysis of the previous section has suggested that the melting of the Alpine

glacier may play a role in the present–day land movements and sea level changes

in the Mediterranean area. This has been guessed by looking at the sensitivity

of the steepness of the RSL curves to the imposed surface loads (see in particular

Figure 8.3 above). More quantitative results are reported in Figure 8.6, showing

from top to bottom the rate of sea level change expected in the Mediterranean area

in response to the melting of the ALPS1 ice load alone (a), of ICE1+ALPS1 (b), and

of ICE3G+ALPS1 (c), respectively. Frame (d) shows the rate of sea level change

along the A1–A2 arc depicted in frame (a).

The rates have been computed by time–differentiation of the solution of the

SLE (see Eq. 3.64). The signal associated with ALPS1 is negative (indicating a

sea level fall) across a nearly–circular region with a radius of ∼ 800 km centered

on the former ice load (this can be better appreciated in frame (d)). A negligible

sea level rise is predicted outside this region. The sea level fall associated to the

melting of the Alpine glacier is substantially due to the ongoing postglacial uplift in

this region. An explanation for the considerable extent of the uplift region is given

below. When the effects of the remote ice aggregates ICE1 and ICE3G are included

(middle and bottom frames, respectively), the trends of the rate of sea level change

show similar patterns on a Mediterranean scale, characterized by a maximum of

about 0.4 mm/yr southeast of Italy, and by a significant spatial variability (see also

frame d). When ICE3G+ALPS1 is employed, negative sea level trends are predicted

in the northern Adriatic sea and along the coasts of southern France. As it can be

deduced by Figure 8.3, the melting of the Alpine glacier enhances the sea level fall

in these regions, that is also predicted when ICE3G alone is employed.
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Figure 8.6: Predicted present–day rate of sea level change in the Mediterranean

region when the melting chronologies of ALPS1 (a), ICE1+ALPS1 (b), and

ICE3G+ALPS1 (c) are employed. Frame (d) shows the results projected along

the arc A1–A2 shown in (a).
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In Figure 8.7 we show predictions of the present–day rate of sea level change at

specific PSMSL sites (see Section 3.5) along the coasts of the Mediterranean Sea.

We have only considered sites for which at least four decades of data are available, so

that the observed sea level trend from these sites is expected to be representative of

actual secular trends. The predictions based on ICE1+ALPS1 and ICE3G+ALPS1

(solid lines) are characterized by opposite signs, and in both cases they poorly

explain the available data. The glacially–induced sea level variations have a distinct

long–wavelength character, that is in contrast with the spatially varying tide–gauge

observations. This points to a significant role of local effects, that are particularly

evident for Venice, where anthropogenic vertical movements are indeed important

(e. g., Carminati and Didonato, 1999). It is noteworthy that for Venice the melting

of the Alpine glacier counteracts the observed sea level rise (see the dotted curve

and Figure 8.6a). When the deglaciation model ALPS2 is considered (dashed lines),

the predicted rates of sea level change are only slightly modified at all of the sites

considered, showing that the observations made at these sites are not significantly

affected by the shape and melting time–history of the glacier.

Once the SLE is solved for S (see Eq. 3.33), and thus the gravitationally self–

consistent ocean load is determined, other geophysical observables such as the verti-

cal displacement U and the variations in the geoid height N can be easily obtained.

The first can be computed according to U = ρi Gu∗iI+ρw Gu∗oS (Eq. 3.65 ), where

Gu is the Green function appropriate for vertical displacement. A similar expression

holds for N , with Gu substituted by the geoid Green function Gg. The fundamental

relationship S = N −U (Eq. 3.4) exists between sea level change, the vertical uplift,

and the geoid height change (e. g., Mitrovica and Milne, 2002). The uplift rate U̇ in

the Mediterranean region is shown in Figure 8.8 for the three different ice aggregates

already considered in Figure 8.6.
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Figure 8.7: Present–day rate of sea level change at nine PSMSL sites located in

the northern Mediterranean area. The dotted curve shows the predictions based on

model ALPS1, while for the solid ones we have also included the contribution of the

remote aggregates ICE1 and ICE3G. The dashed curves show the results obtained

when the deglaciation model ALPS1 is substituted by ALPS2. The datum of Venice

(2.40 ± 0.16 mm/yr) falls out of scale.

In the proximity of the former Alpine ice–sheet, we observe an uplift rate pattern

that closely matches that of −Ṡ shown in the top frame of Figure 8.6, that implies a

rate of geoid change Ṅ ∼ 0 (compare also frames (d) of these two figures). This is in

general to be expected in the near field of the former ice loads, where the topographic

contribution U̇ to the sea level changes dominates. Since the Mediterranean region is

in the far field with respect of the major Pleistocene ice sheets, we expect a significant

contribution of Ṅ to the predicted rates of sea level change when the ice aggregates

ICE1+ALPS1 or ICE3G+ALPS1 are considered. This is confirmed by the results

of Figure 8.8. In particular, comparing Figure 8.8c with the corresponding frame of

Figure 8.6, we notice the rate of geoid change accounts for a large fraction of the
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rate of sea level change, with |Ṅ | ' Ṡ/2 in the central portion of the Mediterranean

region. A similar result is obtained when ICE1+ALPS1 is considered (Figure 8.8b).

A noticeable feature of Figure 8.8a is the broad region of uplift caused by the

melting of the small Alpine ice–sheet, that extends as far as southern Italy. To

understand the physical reasons of this uplift pattern, we have considered a simplified

axis–symmetric rebound model, in which an ice–load with parabolic profile has a

constant height until 18 kyrs BP, and then melts at a constant rate until it disappears

6 krs BP. Here we mantaine the same rheological profile, and to focus on the basic

physics of the problem, we do not account for the gravitationally self–consistent

ocean load. The computations have been performed using a recently published

public domain software (Spada et al., 2004), that has been benchmarked against

independent methods.2 The results are shown in Figure 8.9, where frame (a) shows

the lateral extent β of the region of present–day uplift as a function of the half–

amplitude of the load, α. The thickness TLGM of the load at the LGM (18 kyrs ago)

is imposed to scale with α, with TLGM = 3500 m for α = 15◦ km (this load has a

size comparable with that of the Laurentian ice dome at its maximum extent). It is

clear from frame (a) that, for a small glacier, the size of the uplifting region sensibly

exceeds that of the ice load, in qualitative agreement with the results obtained above

in Figure 8.8a in the case of the Alpine glacier, characterized by α ' 2.5◦. With

increasing α, the ratio β/α approaches unity (dashed line). The anomalously large β

values obtained for small α can be explained observing that the vertical deformations

induced by a small load are mostly determined by the properties of the uppermost

portions of the mantle, that behaves elastically according to our assumptions. The

load is supported by the lithosphere, that bends over large distances and promotes

uplift regions of large extent at present time. Conversely, when the size of the load

is large if compared to the thickness of the lithosphere, the viscoelastic properties of

the mantle dominate, and the deformations are focused on a narrower range, that

decreases the ratio β/α.

2http://geo.mff.cuni.cz/gia–benchmark/results.html.
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According to the results of Figure 8.9, for extremely large values of α, the spatial

scale of the present–day uplifting region reflects the size of the former ice sheets, the

elastic lithosphere being almost transparent at large wavelengths.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

α (deg)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

β 
(d

eg
)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

Figure 8.9: Half amplitude β of the region of uplift as a function of the half–

amplitude α of the disk load according to the semplified rebound model described

in the text.

From Figure 8.8, it is noteworthy to observe that the vertical motions in the

Alpine region vary significantly according to the remote ice aggregates. The subsi-

dence expected for ICE1+ALPS1 (Figure 8.8b) is turned into uplift when ICE3G is

employed (Figure 8.8c). This finding may have an impact on the interpretation of

vertical motions detected in the Alpine region, and may possibly hinder attempts

to separate the glacio–isostatic from tectonic contributions. As a specific example,

we consider the observations made by the permanent GPS REGAL network and by

other European national institutions, that are available from the REGAL web site.3

Here we only consider the vertical datum, since from a suite of test computations

3http://kreiz.unice.fr/regal/.
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we have verified that in this region the typical GIA–induced rates of horizontal de-

formations do not exceed 0.15 mm/yr, negligible in front of the observed velocities,

that range between 3 and 5 mm/yr when corrected for the motion of the Eurasian

plate (Vigny et al., 2002). The reason for the small GIA– induced horizontal motions

can be explained by their peculiar pattern, characterized by a vanishing amplitude

close to the center of the rebound, and by a maximum close to the periphery of the

ice load, where divergent motions are expected (see e. g., Spada, 2001). The large

distance from the location of the former Fennoscandian ice dome of most of the

stations of the REGAL network, their vicinity to the center of the Alpine ice–sheet,

and the small size of the latter, are all factors that concur to produce very modest

rates of postglacial horizontal deformation in the Alpine region.

The vertical velocity data, shown in Figure 8.10 along with their uncertainties,

indicate the existence of two broad regions dominated by uplift and subsidence, re-

spectively. The first (hereafter region I) encompasses the western portion of the Alps

and the conterminous regions (black arrows), while the second (region II) mainly

includes the Italian peninsula and the coasts of southern France (gray arrows). From

inspection of Figure 8.8, we observe that this pattern qualitatively agrees with the

predictions based on the deglaciation model ICE3G+ALPS1, while it is in contrast

with that based on ICE1+ALPS1, that shows subsidence in region I. The measured

rates of deformations are as large as a few millimeters per year at some sites, con-

siderably larger than the values expected from the melting of the ice sheets (see

Figure 8.8) in both regions.

A more quantitative analysis is shown in Figure 8.11, where the GPS observa-

tions for regions I and II are compared with the predictions based on the same three

ice models considered in Figure 8.8. The x–axes of this figure report the names

of the stations, ordered for increasing East longitude. For both regions, the long–

wavelength signals associated with the postglacial rebound are in contrast with the

observed trends, that show a larger spatial variability. If the melting of the Alpine

glacier were the only source of deformation, it would produce an average uplift
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at the level of 0.1-0.2 mm/yr of the GPS stations of both regions. When model

ICE3G+ALPS1 is employed in region I (Figure 8.11a), the glacial isostatic adjust-

ment is expected to produce an effect that averages to zero, while ICE1+ALPS1

produces a spatially uniform subsidence close to 0.4 mm/yr in the whole region,

that has the tendency to counteract the observed uplifts. In region II (Figure 8.11b),

both ICE3G+ALPS1 and ICE1+ALPS1 drive subsidence, coherently with most of

the GPS observations in this area.
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Figure 8.10: Vertical component of velocity field at some of the REGAL GPS net-

work sites. Black and gray arrows show the data pertaining to regions I and II,

respectively (see text for further details).
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Figure 8.11: Predictions of glacially–induced uplift rate at the REGAL network sites

(see Figure 8.10). Frames (a) and (b) refer to regions I and II, respectively.
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8.4 Conclusions

In this work we have analyzed the effects of the melting of the Alpine glacier on

a suite of geophysical observations across the Mediterranean Sea. Up to now, these

observations were solely interpreted in terms of tectonic deformations, of glacially–

induced movements associated with the melting of remote ice sheets, and anthro-

pogenic effects. Our findings can be summarized as follows.

1. The melting of the Alpine glacier has mainly affected the Holocene sea level

variations at the sites of Marseilles and Civitavecchia, with sea level falls of

∼ 7 and ∼ 3.5 m since the LGM, respectively. Minor effects are predicted for

the other sites of the Mediterranean. When the postglacial RSL variations at

Roussillon, Marseilles, and Civitavecchia are considered, we have found that it

is not possible to resolve the effects of the melting of the Alpine glacier, mainly

because of the large data uncertainties and to the small glacial mass involved.

From a suite of forward computations, we have verified that the RSL data are

by far more sensitive to the time–history of the remote ice sheets than to the

melting of the former Alpine glacier. In particular, we have confirmed previous

findings suggesting the inadequacy of the deglaciation model ICE3G to model

the southern France data of postglacial RSL curves, and we have evidenced

that the failure of ICE3G may be mostly attributed to its Fennoscandian

component.

2. Due to the delayed postglacial uplift, the melting of the Alpine glacier is

presently driving a sea level fall as large as 0.1–0.3 mm/yr along the coasts

of southern France and of the northern Adriatic Sea. However, as previously

observed, a correct estimate of sea level rate change in these areas cannot

be obtained by means of the deglaciation model ICE3G, which also fails in

predicting the observed Holocene sea level fall in these regions. When the

deglaciation model ICE1 is used in conjunction with model ALPS1, a long–

term sea level rise in the range 0.2–0.4 mm/yr is to be expected at a number of
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representative Mediterranean PSMSL stations. As we have explicitly shown,

the present–day postglacial sea level rate change at the Mediterranean scale

cannot be simply explained as the result of the ongoing vertical deformations.

A relevant role is played by glacially–induced changes of geoid height, which

confirms the importance of a self–consistent modelization of the ocean load in

the far–field of the Holocene ice sheets (Mitrovica and Milne, 2002).

3. The melting of the Alpine glacier may account for uplift rates as large as 0.2

mm/yr at the sites of the permanent GPS REGAL network (see Figures 8.10

and 8.11), whereas the horizontal motions are negligible in front of the ob-

servations. As in the case of the present–day sea level changes, the effective

contribution of the postglacial deformations varies significantly according to

the remote ice aggregate employed. An upper bound for the effect is obtained

using model ICE1, that in conjunction with ALPS1 provides an average rate

of subsidence close to 0.5 mm/yr. This value amounts to up to ∼ 1/3 of

the typical observed rates, indicating that present–day vertical deformations

in the Alps and surrounding regions may be significantly affected by post-

glacial uplift induced by the Alpine and the remote glaciers. However, due to

uncertainties in the deglaciation chronologies of both, a separation of the ob-

served deformations in glacial and tectonic components must await for further

investigations.



Chapter 9

Clark’s zones in the

Mediterranean Sea

9.1 Introduction

In the previous chapter we have verified that the melting of the Holocene remote

ice sheets and the subsequent global glacio– and hydro–isostatic readjustment pro-

foundly modified the geological environment of the Mediterranean. While the sea

level signals caused by tectonic forces and other local mechanisms may exhibit a

complex spatial and temporal variability (see e. g., Carminati and Didonato (1999)

for a regional case study), those associated to glacio–isostatic adjustment are char-

acterized by a smooth, long–wavelength pattern (see Figures 6.4, 6.5 in Section 6.2,

and Figures 8.7, 8.11 in Section 8.3.2) that, on a global scale, allows to identify

various regions (or zones) sharing the same relative sea level signatures (see Fig-

ure 1.10 in Section 1.2) and named after Clark (Clark et al., 1978; Clark and Lingle,

1979). The mechanisms that determine the shape of the Clark’s zones can be iden-

tified solving the “gravitationally self–consistent” sea level equation (Eq. 3.33). Due

to the limited computing resources, the early determinations of the Clark’s zones

(Farrell and Clark, 1976) failed to resolve important details of their global pattern,

163
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including their contours and their possible fine structure in the Mediterranean basin

(see Figure 1.10 in Section 1.2). The recent high–resolution approach of Mitrovica

and Milne (2002) has shed new light on the mechanisms that determine the shape

of the Clarks’ zones on a global scale. Using the ice sheet chronology ICE3G Tush-

ingham and Peltier (1991) and assuming a moderate increase of mantle viscosity

across the 670 km depth discontinuity, Mitrovica and Milne have shown that the

bulk of the Mediterranean and of other mid–latitude basins is presently subject to

a sea level rise of postglacial origin. However, no attempts have been carried out to

date to interpret quantitatively these findings nor to investigate the details of the

Clark’s zones along the continental margins of the Mediterranean. Furthermore, for

this region, the sensitivity of the Clark’s zones to the time–history of the Pleistocene

ice aggregates and to the Earth’s rheological parameters is still unknown. In the

present investigation we have addressed these points by a straightforward approach

based on the solution of the sea level equation. Our knowledge of the chronol-

ogy of the Antarctic ice sheet since the Last Glacial Maximum is still affected by

large uncertainties. During the last two decades geological and geomorphological

evidence supported by glaciological and glacio–isostatic adjustment modeling and

ice core analysis have yielded several (and sometimes divergent) estimates of the

Antarctic contribution to global sea level (see e. g., Kaufmann, 2002 and references

therein). We have considered several plausible models for the Holocene time–history

of Antarctica and we have evaluated the consequences on the relative sea level obser-

vations in the Mediterranean. This has been motivated by our preliminary results

concerning the sensitivity of the relative sea level observations along the coast of

North Africa to the time–history of remote ice sheets and particularly of Antarctica

(Stocchi et al., 2005c).

Here we have first qualitatively characterized the relative sea level variations in

the Mediterranean Sea by studying the shape of the Clark zones and then we have

compared the results based on ICE1 and ICE3G with the observations available from

the database of Tushingham and Peltier (1993). The pattern of sea level change in



9.2 Results 165

the Mediterranean has also been discussed by considering separately the oceanand

the ice–load components SOCE and SICE , and evaluating the role of individual

regional components of the two global ice sheet distributions. An in–depth analysis

of the sensitivity of the Mediterranean relative sea level variations to the ice sheets

chronology and to mantle rheology is presented in the discussion section with the

aid of further sea level indicators.

9.2 Results

9.2.1 Pattern of Clark zones for the Mediterranean Sea

As shown in Figure 9.1, the solution of the SLE discloses complex patterns of

RSL change across the Mediterranean that strongly depend upon the assumptions

about the ice sheets chronology of the far–field ice sheets. Model ICE3G (frame

a) implies a late–Holocene highstand that marks the end of deglaciation (5.0 kyrs

BP) along most of the Mediterranean coasts, with the exception of southern Italy,

Greece and part of the coasts of Algeria, Lybia and of the southern Levant, while

submergence is predicted in the bulk of the basin. The regions of emergence and sub-

mergence are separated by narrow transition zones in which sea level nearly follows

the eustatic curve. The pattern of sea level change predicted in the Mediterranean

Sea using model ICE3G might be mistakenly interpreted as a match of Clark’s

zones VI and II (see Figure 1.10), that characterize the far–field continental shore-

lines as a consequence of ‘continental levering’ and the collapsing forebulge regions,

respectively (Walcott, 1972; Clark et al., 1978). However, as shown by Mitrovica

and Milne (2002) and Lambeck and Purcell (2005) (and independently confirmed

by our computations), submergence in the central Mediterranean Sea mainly stems

from hydro–isostasy, being the glacio–isostatic effects of the northern Hemisphere

aggregates, characteristic of zone II, confined to the coasts of France and northern

Italy. In general, Clark’s zones of type VI show up as bands of offshore sea level rise

and onshore sea level fall, with the size of the submerging areas that show signif-
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icant spatial variability with the tendency to increase for concave coastlines (this

is clearly visible in the map of Figure 1 of Mitrovica and Milne, 2002). When the

shorelines close on themselves to define a relatively small basin, as in the Mediter-

ranean, the area of submergence tend to cover the central portion of the basin (this

is also observed for the Black Sea and in other mid–latitude basins in the global

map of Mitrovica and Milne), possibly leaving narrow regions of highstand onshore.

To characterize the peculiar RSL pattern predicted for these mid–latitude basins,

where zone VI is manifest as a central submergence region contoured by a narrow

highstand zone, we propose the name of Clark’s zone VII.

When model ICE1 is considered (see Figure 9.1b) the portion of zone VII charac-

terized by highstands is narrowed significantly, being only present along the coasts

of Spain, Northern Morocco, Tunisia and Lybia. Furthermore, the two transition

regions of Figure 9.1(a) are not observed. Differently than in ICE3G, in ICE1 it

is assumed that the Antarctic ice sheet is stationary during the Holocene, but the

two aggregates also differ for the details of the melting chronologies of the North

American and Fennoscandian ice aggregates (see Figure 7.4). To understand the

origin of the distinct patterns in Figures 9.1(a) and 9.1(b), in Figure 9.1(c) we

consider the ICE3G-A3 chronology, in which ICE3G is deprived of its Antarctic

component. The pattern obtained is strikingly similar to that of ICE1 (b), indi-

cating that the existence of late–Holocene highstand in the Mediterranean mainly

result from the melting of the Antarctic ice aggregate as it is implemented in model

ICE3G. When Antarctica is built into model ICE1 (Figure 9.1(d), model ICE1+A3),

the configuration of Clark zones closely matches that of ICE3G (a). Significant dif-

ference between the results obtained for ICE3G and ICE1+A3, visible along the

northern Adriatic and Tyrrhenian coasts, can be attributed to differences in the

time–histories of the northern Hemisphere components of ICE3G and ICE1, with

the relatively contiguous Fennoscandian ice sheet that is likely to play a major role.

In terms of Clark zones, for model ICE1+A3 zone II counteracts the highstand of

zone VII and merges with its core approximately North of the 42◦ N parallel. If
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the Antarctic component of ICE3G were acting alone (frame e, deglaciation model

A3), zone VII would disappear from the Mediterranean region leaving an ubiquitous

late–Holocene highstand that, as we have verified, would extend north of the 45◦ S

parallel.
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Figure 9.1: Shape of the Mediterranean Clark zones for models ICE3G (a), ICE1

(b), ICE3G-A3 (c), ICE1+A3 (d), and A3 (e). The RSL variations expected within

each zone, qualitatively shown in the bottom right frame, include a monotonous sub-

mergence (red), a late–Holocene emergence characterized by a marked highstand of

a few meters (blue), and two narrow transition zones (green and yellow). In all of

the computations shown here, the SLE has been solved using the REF rheological

model described in the text.
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9.2.2 Observed and synthetic RSL curves

Figure 9.2(a) shows the location of the RSL Mediterranean sites pertaining to

the publicly available database of Tushingham and Peltier (1993), while the data

are displayed in Figure 9.2(b). Since ICE3G has been built to improve the fit with

the available RSL observations, the database is an integral part of this ice sheets

chronology. The RSL sites are quite evenly distributed across the Mediterranean,

but since in the database only one datum is available for the coasts of North Africa

(i. e., Algiers, site 12), we have included in our analysis the site of Djerba (Tunisia),

based on the work of Jedoui et al. (1998). According to Figure 9.2(b), the only

observations that indicates a sea level highstand in the late Holocene are those

relative to Beirut (9), Djerba (11) and Algiers (12). While data from Beirut and

Algiers are generally supposed to be influenced by local tectonic deformations (see

Figure 9.3 top and bottom, respectively from Meghraoui et al., 2004, and Pirazzoli,

2005) the observations from Tunisia are mainly thought to reflect glacio– and hydro–

isostatic RSL variations (Morhange and Pirazzoli, 2005). We observe that sites

showing an highstand are only situated along the southern and eastern continental

Mediterranean coasts. This is qualitatively consistent with the pattern of Clark’s

zones that we have obtained for models ICE1 and ICE1+A3, while it appears to be

at variance with predictions based upon ICE3G (see Figure 9.1).

To better assess the role of Antarctica in the determination of the RSL variations

in the Mediterranean, in Figure 9.4 we compare individual RSL observations with

model calculations based on ICE3G (solid lines), ICE1 (dashed), ICE1+A3 (dotted)

and A3 (dash–dotted). Consistently with the qualitative study of Figure 9.1(e), the

RSL variations driven by the melting of A3 show a clear highstand at 5 kyrs BP in all

of the sites considered, with a peak amplitude varying between ∼ 2 m (Roussillon,

frame 1) and ∼ 1 m (Messenia, 4). For models ICE3G and ICE1+A3, predicted

RSL curves are characterized by a knee at 5.0 kyrs BP caused by their Antarctic

components that with the sole exception of the Aegean sites of Messenia (6) and

SW Turkey (7) corresponds to a sea level highstand.
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Figure 9.2: Top: location of the RSL sites considered in the analysis of Section 9.2.2,

namely Roussillon (1), Marseilles (2), Civitavecchia (3), Termoli (4), Catania (5),

Messenia (6), SW Turkey (7), Cyprus (8), Beirut (9), Jaffa (10), Djerba (11), and

Algiers (12). With the exception of Djerba (filled triangle), all the sites shown here

belong to the RSL database of Tushingham and Peltier (1993). Bottom: full set of

RSL observations available for the sites considered in (a) during the last 10 kyrs,

where filled symbols denote observations from North Africa and the Levant Sea.
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Figure 9.3: Top: elevated shoreline in Lebanon formed as a consequence of a coseis-

mic uplift (possibly at the time of the devastating earthquake of 9 July, 551 AD).

Bottom: coseismic coastal uplift at Le Figuier (Algeria) associated with the Mw =

6.8 Zemmouri earthquake of 21 May, 2003 (see text for references).
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When ICE1 is considered instead (dashed), the curves clearly show a monotonous

sea level rise that broadly agrees with the trend of the Tushingham and Peltier

observations from France, Italy and SW Turkey. In Roussillon (1), Marseilles (2)

and Civitavecchia (3), the offset between the ICE1+A3 and the ICE3G predictions

reflect differences in the time–history of the northern Hemisphere ice sheets. At

lower latitudes, with increasing distance from the former margins of Fennoscandia,

the gap between solid and dotted curves tends to diminish. In the case of Djerba (8),

ICE1 implies a highstand of a few centimeters at 5.0 kyrs BP, and the predictions by

A3, ICE1+A3, and ICE3G almost overlap, to indicate that RSL observations at this

site are virtually sensitive to the sole Antarctic component of the Holocene ice sheets.

Although evidence in favor of a late–Holocene highstand at Djerba is weak due to

the large data uncertainties, the sensitivity of North Africa RSL observations to the

chronology of Antarctica merits further investigations (see Section 9.3.2). Even a

cursory inspection of Figure 9.4 reveals that in general model ICE3G provides a

poor fit to the RSL observations in the Mediterranean. Conversely, with the sole

exception of sites belonging to tectonically unstable regions such as Beirut (6) and

Algiers (12) (Figure9.3 top and bottom respectively), the ICE1 chronology always

matches the observed RSL trends. The results strongly suggest that the Antarctic

component is the main responsible of the disagreement between predictions and

observations, but it is also possible that the rheological profile REF impled in model

ICE3G is not fully suitable to describe the RSL variations in the Mediterranean.

We will return to these issues in depth in Sections 9.3.2 and 9.3.3, respectively.
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Figure 9.4: Observed and synthetic RSL observations during the last 8.0 kyrs for

some of the sites of Figure 9.2a. The predictions have been obtained using the

rheological model REF and the ice sheets models ICE3G, ICE1+A3, ICE1, and A3

(see inset of frame a). The RSL observations and their error bars are taken from

the database of Tushingham and Peltier (1993) with the sole exception of Djerba

(Jedoui et al., 1998). In this site melting of Antarctica provides virtually the whole

signal during the last 6 kyrs (compare solid with dash–dotted curve in frame h).
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9.2.3 Ocean and ice–induced RSL variations

Since the Mediterranean is moderately distant from the former late–Pleistocene

ice sheets, the ice–induced RSL variations in this region are not expected to dom-

inate the ocean components, as it is the case in the near–field Clark’s zones I and

II (Lambeck and Purcell, 2005). To address this point, using the rheological model

REF, in Figure 9.5 we have separately considered the RSL variations of glacio–

isostatic and hydro–isostatic origin at the three sites of Roussillon, Jaffa and Djerba,

representative of the northern, eastern, and southern coasts of the Mediterranean

basin, respectively (see Figure 9.2). Dashed and dotted lines show ocean– and ice–

induced RSL components, obtained using Eq. (3.63) with S = SOCE (see Eq. 7.3)

and S = SICE (see Eq. 7.2), respectively. Since SEUS = 0 after the end of deglacia-

tion, in this time period the RSL variations are solely given by a combination of the

ocean– and ice–load induced effects. For both the ice sheets chronologies consid-

ered here, the trend of the ice–induced component of RSL (dotted) does not change

across the Mediterranean, being mostly determined by long–wavelength deforma-

tions driven by distant sources. However, the ice–load induced RSL variations are

clearly sensitive to the ice sheets time–histories adopted, with a sea level fall for

ICE3G (top frames) and a sea level rise for ICE1 (bottom). As discussed below,

this diametrically opposite trend is to be attributed to the sea level changes driven

by the melting of Antarctica in ICE3G. Differently from the ice term, the ocean

term in Figure 9.5 (dashed) shows a significant spatial variability, with a clear sea

level fall in Roussillon and Djerba, and a moderate sea level rise in Jaffa. Such vari-

ability is caused by the sensitivity of this component of RSL to local effects related

to the irregular shape of the shorelines (e. g., Mitrovica and Milne, 2002; Lambeck

and Purcell, 2005). The trend of the hydro–isostatic term is the same for both ice

sheets, but its amplitude tends to be larger for ICE3G, due to the effect of the extra

water load provided by its Antarctic component.
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Figure 9.5: Ice– and ocean–load induced components of RSL for the sites of Rous-

sillon, Jaffa, and Djerba (the sites location is shown in Figure 9.2(a)), using ICE3G

(top) and ICE1 (bottom). Since in ICE1 the end of deglaciation occurs 8.0 kyrs BP

(see Figure 7.4), its eustatic component vanishes in this time window.

In Figure 9.6 the expected RSL variations are decomposed into contributions of

the major late–Pleistocene ice sheets, namely North America, Fennoscandia, and

Antarctica (minor constituents of ICE3G and ICE1 are not considered here). The

results obtained clearly illustrate how the distance from the former ice sheets affects

the total response. In the case of Roussillon, the sea level rise produced by the rel-

atively nearby Fennoscandian component of ICE3G is counteracted by Antarctica
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and North America to produce a marked late–Holocene highstand . This feature is

only barely visible in the predictions for Jaffa, since during the last 5.0 kyrs the melt-

ing of the northern Hemisphere aggregates almost exactly compensates the effects

from the southern Hemisphere. Finally, for Djerba, in the last 6.0 kyrs, the North

American and Fennoscandian ice sheets have produced equal but opposite trends for

both ICE1 and ICE3G that make the RSL observations from the coasts of Tunisia

particularly sensitive to the deglaciation of Antarctica, as already anticipated in

Section 9.2.2.
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Figure 9.6: Contributions to RSL from individual components of ICE3G (top

frames) and ICE1 (bottom) at Roussillon, Jaffa, and Djerba (see Figure 9.2a).
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9.3 Discussion

Assuming ICE3G and REF as a–priori models for the late–Pleistocene ice sheets

and for the Earth’s rheological profile, respectively, in the previous sections we have

confirmed that Antarctica significantly affects the Holocene sea level variations in the

Mediterranean through the mechanism of continental levering. However, from the

results obtained (see in particular Figure 9.4) it is apparent that ICE3G provides a

poor fit to the field observations in this area, that are qualitatively better reproduced

by ICE1, a model that assumes a stationary Antarctic ice sheet during the whole

Holocene. In an attempt to reconcile the Mediterranean RSL observations with

a global ice sheets chronologies that account for a non–stationary Antarctic ice

sheet, we have first reviewed some of the available models of the deglaciation of

Antarctica and then we have assessed their impact on the sea level observed in the

Mediterranean without modifying the REF rheological profile. Since the ice model

ICE3G is biased from the Earth viscosity profile used in its reconstruction (i. e.,

the same REF viscosity profile that we have employed so far), in a second step

we have also assessed the effect of varying the mantle viscosity profile upon the

RSL predictions, which have been compared with field observations from various

locations along the coasts of the Mediterranean Sea, digitalized from the compilation

of Pirazzoli (1991) and from more recent sources. With respect to the database of

Tushingham and Peltier (1991), the sea level indicators used here provide a better

spatial coverage for the regions that have been investigated starting from Section

9.3.2.

9.3.1 Three ice models for Antarctica

In the following, we have modified the original ice model ICE3G by including

the three distinct melting chronologies for Antarctica that in Figure 9.8 are denoted

by S, G, and D, respectively. All of them contribute 14 m of equivalent sea level (i.

e., ∼ one half of the ICE3G value). Considering the distance of the Mediterranean
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from the margins of the former Antarctic ice sheet, here we have modeled this ice

sheet by a disc load of rectangular cross–section having an half–amplitude of 20◦

and a thickness of ∼ 355 m at the LGM (see figure 9.7). To fit the ∼ 113 m lowstand

predicted by ICE3G in the far– field sites at the LGM (see Figure 7.4(d)), we have

increased the volume of the northern Hemisphere ICE3G aggregates at this epoch

keeping their isochrons unaltered.
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Figure 9.7: Antarctic disc model.

The chronologies so obtained are named ICE3G(S), ICE3G(G), and ICE3G(D),

respectively. Evidence in support of the chosen ESL for Antarctica comes from a

number of sources. In his review about the volume of Antarctica at the LGM, Bent-

ley (1999) has proposed an ESL in the range of 6.1–13.1 m that matches the 12

m estimate of Huybrechts (1992) based on glaciological modeling. Through a 3–D



9.3.1 Three ice models for Antarctica 178

thermo–mechanical modeling, recently Huybrechts (2002) has derived an ESL in the

range of 14–18, consistent with the value of 14 m obtained from geologic constraints

by Denton and Hughes (2002), whereas from an ice–dynamical approach Bintanja

et al. (2002) have estimated that Antarctica has contributed ∼ 5 m of ESL since the

LGM. These ESL predictions for Antarctica are consistently smaller (by at least a

factor of 2) than former values based on the classical reconstruction of Denton and

Hughes (1981), and of the ICE3G figure (∼ 27 m). As we will show in the following,

a reduced ESL for Antarctica improves the fit with the RSL observations in the

Mediterranean, mainly because the amplitude of the late–Holocene highstand is sig-

nificantly reduced. The simplest of the three time–histories considered for Antarctica

(solid curve labeled by S in Figure 9.8) is characterized by a constant rate of melting

between 12.0 and 5.0 kyrs BP, when geological evidence indicate that the Antarctic

deglaciation was complete (Goodwin, 1996). However, a few global models suggest

that some additional meltwater was still added to the ocean during the last 6.0 kyrs.

Since the main source of this late–Holocene additional global sea level rise of ∼ 3

m is assumed to be the Antarctic ice sheet (Nakada and Lambeck, 1988), we have

also implemented a delayed (D) melting phase (dotted). This second chronology

follows S until 7.0 kyrs BP but subsequently the rate of deglaciation decreases and

the eustatic curve reaches the present–day sea level 1.0 kyrs BP. The D chronology

provides a late–Holocene water release sufficient to increase sea level by about 3 m

since 6 kyrs BP (Lambeck and Bard, 2000), while its contribution since 3.0 kyrs BP

is less than 1 m (Fleming et al., 1998). Various evidence indicate a mid– to late–

Holocene sea level highstand in the South Pacific, Indian Ocean and in parts of the

Northern Atlantic and Pacific Oceans. The subsequent sea level fall is generally at-

tributed to the “ocean siphoning” (Mitrovica and Milne, 2002). However, based on

glaciological and geological field evidences, Goodwin (1998) suggested that a late–

Holocene increase of the Antarctic ice volume may be partly responsible for this sea

level fall. According to this hypothesis, the expansion of mountain glaciers, ice sheet

margins and the thickening of the ice sheet interior could account for ∼ 1.0 m of the
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sea level fall on mid–oceanic islands. Hence, differently from D, the G chronology,

shown by a dashed line in Figure 9.8, is characterized by a late–Holocene ice sheet

re–advance causing a general eustatic sea level fall of ∼ 1.0 m since 5.0 kyrs BP,

with ∼ 0.7 m of sea level fall between 4.0 and 2.0 kyrs BP (Goodwin, 1998).
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Figure 9.8: Time–histories of the Antarctic component of ICE3G according to the

S, G, and D models described in the text. They are constituted by a simple disc–

shaped ice element that stores an equivalent sea level of 14 m before the beginning

of melting (12.0 kyrs BP).
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9.3.2 RSL data and predictions

French coasts

From the collection of sea level field observations of Pirazzoli (1991), we have

borrowed data from nine sites along the Golfe du Lion and the coasts of Corsica,

ranging from Roussillon (1) to South Corsica (9). The sites locations are shown by

filled circles in Figure 9.9.
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Figure 9.9: Sites from southern France and Corsica (sites 1–9), the Tyrrhenian coast

of Italy (sites 10–16), northern Adriatic (17), and Tunisia (18).
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In the original compilation of Pirazzoli (1991), only two sites show some indica-

tion of a late–Holocene highstand, with an emergence of ∼ 2.0 m near Cap Romarin

between 5 and 4 kyrs BP (Aloisi et al., 1978), and a highstand in the range of 2 to 4

m ∼ 4 kyrs BP deduced from undated beach deposits in the Nice area and in the sur-

roundings (Dubar, 1987). From a reexamination of the available record, Lambeck

and Bard (2000) concluded that along the French coast Holocene sea levels have

never exceeded the present level, being the highstand marked in the erosional notch

at cap Romarin of pleistocenic age (Laborel et al., 1998). Some further evidence

against a late–Holocene highstand comes from archaeological excavations of the an-

cient harbor of Marseilles, which have provided a new set of high–precision data for

the past 4 kyrs (Morhange et al., 2001), and from the preservation of half–submerged

Paleolithic paintings on a wall of the Cosquer cave near Marseilles (Vouvet et al.,

1996), showing that during the Holocene sea level never has never exceeded its

present–day level. In our previous calculations of Figure 9.1, the ice models ICE3G

and ICE1+A3 have evidenced a late–Holocene emergence along the Mediterranean

coast of France. As shown in Figure 9.10, different results are obtained when the

three modified Antarctic chronologies of Figure 9.8 are implemented in ICE3G. The

solution for ICE3G(S) (solid lines) evidences a sea level highstand of ∼ 1 m at 5

kyrs BP both in Roussillon and in the Rhone Delta region. Due to the reduced ESL

of ICE3G(S) and to the 2 kyrs anticipation of the melting inception of its Antarctic

component (see Figure 9.8), the maximum transgression is diminished by about a

factor of 2 with respect to the original ICE3G (compare with Figure 9.4).

The amplitude of the highstand diminishes eastward until it vanishes at Port Cros

(site 6); in Corsica (sites 7–9) the highstand is canceled by the submergence that

characterizes Clark zone VII in the bulk of the Mediterranean. Model ICE3G(S)

generally provides a poor fit to the data. The late–Holocene re–advance of the

Antarctic ice sheet, implied in the ICE3G(G) chronology (dashed lines), enhances

the development of highstands. Those with largest amplitude (∼ 1.5 m) are observed

at Roussillon (1) and in the Rhone Delta (2). The predictions for this hypothetical
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chronology of Antarctica systematically lie above those based upon ICE3G(S) (solid)

and are found to be in clear disagreement with the field observations from southern

France. The ICE3G(D) chronology (dotted lines) implies a smooth sea level rise

through the late Holocene, similar to that predicted by ICE1 and ICE3G-A3 (see

Figures 9.1(a) and 9.1(b)) and a subsequent barely visible sea level fall ending be-

tween 2 and 1 kyrs BP. The general agreement of the ICE3G(D) predictions with

the sea level observations from this region is apparent.

Tyrrhenian and northern Adriatic coasts of Italy

The pioneering investigations of Alfieri and Caputo (Schmiedt, 1972) have shown

the importance of the archaeological remains as sea level indicators of past sea

levels along the Tyrrhenian coasts of Italy. For this region, they estimated a sea

level rise of ∼ 1.7 mm yr−1 between 600 BC and 100 AD; in particular, dating

Roman fish tanks and submerged harbors, they showed that between 100 years BC

and 100 years AD the sea level was ∼ 1.0 m lower than present. Subsequently, the

radiocarbon–based RSL curve of Antonioli and Frezzotti (1989) has evidenced, for

the southern coasts of Lazio, a sea level similar to the present one between 7 and

5.4 kyrs BP, followed by a slight oscillation below present level (Pirazzoli, 1991),

while the cumulative Tyrrhenian sea level curve of Alessio et al. (1994) confirmed

that, during the Holocene, sea level has never been above the present datum. From

the recently published RSL data set of Lambeck et al. (2004a) we have selected

the field observations in the tectonically stable Tyrrhenian sites marked by open

circles in Figure 9.9. The observations shown in Figure 9.11 clearly indicate a

monotonous submergence since 8 kyrs BP with no evidence of highstands. With the

exception of the northern Adriatic (site 17), the results based upon the ICE3G(D)

deglaciation model (dotted curves) systematically overestimate the RSL observations

but reproduce correctly their trends. In qualitative agreement with the results

obtained for southern France (see Figure 9.10), the two alternative chronologies

ICE3G(S) and ICE3G(G) do not improve the fit with the observations.
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Figure 9.10: Relative sea level observations from southern France and Corsica ac-

cording to the compilation of Pirazzoli (1991), to which the reader is referred for the

original sources. Data uncertainties are taken from the original contributions with

the exception of Roussillon (1) and the Rhone Delta (2), to which a standard devi-

ation of 1 m has been arbitrarily assigned. Solid, dashed, and dotted curves show

the results obtained for model ICE3G(S), ICE3G(G), and ICE3G(D), respectively.
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Figure 9.11: Relative sea level observations and uncertainties from the Tyrrhenian

coasts of Italy (sites 10–16) and from the northern Adriatic (17) according to Lam-

beck et al. (2004a). The data are compared with predictions based on the three

variants of model ICE3G described in Figure 9.8.
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Gulf of Gabes, Tunisia

Paskoff and Sanlaville (1983) proposed a tentative sea level curve for the southern

coasts of Tunisia in the last 8.0 kyrs (see also Pirazzoli, 1991). The fluctuating

RSL curve of Paskoff and Sanlaville, relative to Djerba (site 18) and reproduced in

Figure 9.12 by filled squares, shows a transgression peak of ∼ 1.7 m between 6.5

and 4.5 kyrs BP and a second minor highstand at ∼ 3.0 kyrs BP. The subsequent

study of Jedoui et al. (1998) evidenced two fossilized bioclastic beaches at different

elevations (see the diamonds in Figure 9.12a). The older paleobeach deposit (∼ 5.3

kyrs BP), is found at an elevation of about 40 to 100 cm above the present sea

level, while the younger deposit, dated ∼ 1.85 kyrs BP, lies at the present sea level.

Uncertainties on the interpretation of past sea level indicators from this area have

been discussed by Pirazzoli (1987) and Lambeck et al. (2004a). Recently Morhange

and Pirazzoli (2005) have published a tentative sea level curve for SE Tunisia based

on new indicators collected between the Gulf of Gabes and the Libyan border. The

curve, reproduced by open circles in Figure 9.12, shows a transgression peak of

∼ 2.0 ± 0.10 m between 6, 000 and 5, 000 14C years BP.

In Figure 9.12 we compare RSL observations from Djerba with predictions based

on the three modified ICE3G chronologies described in Section 9.3.1. While ICE3G(S)

(solid line) and ICE3G(G) (dashed) support the late–Holocene highstand suggested

by the tentative curves of Morhange and Pirazzoli (2005) and Paskoff and Sanlaville

(1983) in the last ∼ 5.0 kyrs, the predictions obtained by ICE3G(D) (dotted) show

a monotonous sea level rise that is in contrast with these observations. However,

since confidence bands for the tentative curves are lacking, it is difficult to judge

the misfit of the predictions presented here. Provided that the data uncertainties

reported by Jedoui et al. (1998) are reliable, Figure 9.12 clearly shows that none of

the three time–histories considered is indeed in contrast with the observations. In

every instance, from the results obtained for this region it is clear that improved

RSL observations for the coasts of Tunisia could significantly contribute to constrain

the time–history of Antarctica in the last 6.0 kyrs. The cancellation of the effects
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from the northern Hemisphere ice sheets that occurs in this region is apparent,

observing that the ICE3G(D) results basically reproduce the effect from the sole

Antarctic component of this ice sheet (dash–dotted curve). The reader is referred

to Chapter 10 for further investigations concerning the sensitivity of SE Tunisia to

the Antarctic melting.
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Figure 9.12: Relative sea level observations for Djerba and model predictions

obtained using the ice model ICE3G(S) (solid line), ICE3G(G) (dashed), and

ICE3G(D)(dotted). The dash–dotted RSL curve shows the results obtained as-

suming that the Antarctic ice sheet model D of Figure 9.8 is the only active load

since the LGM.
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The Levant sea, Israel

Evidence for late Holocene sea level higher than present in Israel (see Figure 9.13)

has been reported by Sneh and Klein (1984) and by Raban and Galili (1985) who

have derived two similar sea level curves for the site of Dor, showing sea level fluctu-

ations of over 2.0 m of amplitude Pirazzoli (1991) as portrayed in Figure 9.14(a). In

a subsequent study, Nir and Eldar (1987) proposed a curve characterized by small

oscillations for the last 2.5 kyrs. From the investigation of submerged archaeological

remains along the continental shelf of Israel, between Haifa and Atlit, (Galili et al.,

1988) obtained the RSL curve shown by a dashed line in Figure 9.14(a), indicat-

ing a monotonous and smooth sea level rise until ∼ 1 kyrs BP (Pirazzoli, 1991).

As shown in frame (b), archaeological evidences from the sites of Tel Nami (20),

Dor (21), Michmoret (23) and Yavne Yam (24), indicate that at 6 kyrs BP the sea

level was ∼ 4 m lower than today and that it reached the present–day level between

3 and 2 kyrs BP Sivan et al. (2001). The observational limits derived from the

coastal water wells in Caesarea Maritima (site 22) have extended the record of the

late Holocene sea level change to 1300 AD (Sivan et al., 2004) and suggest that

during the Byzantine period sea level was higher by ∼ 30 cm than today. The RSL

curve obtained using ICE3G(G) (dashed curve in Figure 9.14(b)) shows an high-

stand between 5 and 4 kyrs BP, followed by a sea level fall and lastly by a negative

oscillation. When the ICE3G(S) and the ICE3G(D) ice chronologies are considered

(solid and dotted lines, respectively), the predicted late Holocene sea level curves

define a narrow band broadly consistent with the archaeological evidence until ∼ 2

kyrs BP. These latter predictions do not match the more recent sea level data and

clearly cannot explain the higher than present sea level between 2 and 1 kyr BP

observed at Caesarea Maritima according to Sivan et al. (2004).
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Figure 9.13: Sites along the coast of Israel, ranging between Haifa (site 21) and

Yavne Yam (24). Predictions for these RSL sites are shown in Figures 9.14.
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Figure 9.14: Relative sea level observations from a number of sites along the coasts

of Israel, ranging between Haifa (site 21) and Yavne Yam (24) (see left frame). In

(a) we have reproduced tentative RSL curves from the existing literature, while in

(b) we compare the data of Sivan et al. (2001) and Sivan et al. (2004) with results

based on the same models previously considered in Figure 9.12.
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9.3.3 Effects of mantle rheology

Up to now, we have assumed that the REF viscosity profile, based on the work

of Tushingham and Peltier (1991), provides a correct picture of mantle rheology.

However, the REF viscosity profile has been recently challenged by various evidence

related with GIA both on a regional and on a global scale, suggesting an upper man-

tle viscosity between 0.2 and 0.5×1021 Pa · s, well below the traditional (REF) value

of 1021 Pa · s (Forte and Mitrovica 1996, Mitrovica 1996, Peltier 1996, Vermeersen

et al. 1998, Lambeck et al. 1998, Spada 2001, Cianetti et al. 2002). Estimates

of the lower mantle viscosity range between 5 and 50 × 1021 Pa · s (Nakada and

Lambeck 1989, Mitrovica and Forte 1997, Lambeck et al. 1998).

Consistently with the above studies, we have adopted a new viscosity profile

(different from REF) where the shallow upper mantle and the transition zone vis-

cosities are kept fixed to ηSM = 0.5 × 1021 and ηTZ = ×1021, respectively. For the

lower mantle, we have explored the effects of large viscosity values, with ηLM = 1022

Pa · s. The purpose of this analysis is to show the trade–off between the choice of

the viscosity profile and of the time chronology of the surface ice sheets. The re-

sults, shown in Figure 9.15 for a set of four different ice sheets chronologies (namely,

ICE3G, ICE1+A3, ICE3G(S), and ICE1(S)), indicate that for a high–viscosity con-

trast across the mantle, all the ice models employed imply a clear submergence in the

sites of Marseilles, Cap Corse, and Northern Adriatic, with no highstands predicted.

The results obtained for Marseilles are qualitatively consistent with those by Lam-

beck and Purcell (2005), although here we are using different ice sheets chronologies.

In these three sites, the predicted RSL curves vary in a range bounded by models

ICE3G and ICE1(S) that among those considered show the largest contrasts in their

Antarctic and Fennoscandian components. As we have verified, the disappearance

of highstands when ηLM is increased to the current value is due to the variation of

the trend of sea level change driven by the ice–load effects of the North America

ice sheets, that changes from emergence to submergence. We have also verified that

the contribution of Antarctica is almost unchanged with respect to the REF model,
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since the comparatively smaller size of this ice aggregate implies a reduced sensitiv-

ity to a viscosity increase in the lower mantle. As shown in Figure 9.15, the large

data uncertainties for sites (a–c) does not allow us to identify a preferred ice sheet

chronology, although for the viscosity profile employed here ICE3G appears to be

superior to the others in Marseilles and Cape Corse. The improved agreement of

ICE3G with the observations along the coasts of France and Corsica is essentially

due to the disappearance of the highstand that characterize the REF viscosity pro-

file employed in our previous computations (see e. g., Figure 9.4), whose existence

is clearly not supported by data.

Among those considered here, the only site showing an highstand is Djerba (see

panel d) when ice models including an ESL of 27 m for Antarctica are employed (i.

e., models ICE3G and ICE1+A3). For this site, an essentially stationary RSL curve

since the end of deglaciation is obtained reducing the Antarctic ESL to 14 m (models

ICE3G(S) and ICE1(S)). As we have already observed in Section 9.2.2 using the

rheological profile REF, RSL observations in Djerba virtually only reflect the effects

of Antarctica. Figure 9.15 shows that this is also true for a stiff lower mantle. This

is illustrated by the small offset between predictions based on models ICE3G and

ICE1+A3 (compare solid with dashed), that share the same Anctartic ice sheet but

differ from the melting histories of other far–field aggregates. In a similar manner,

changing the Antarctic time–history to S (dotted with dash–dotted), the predictions

obtained are very similar to one another. By a suite of further computations (see

Chapter 10) we have verified that the sensitivity to the chronology of Antarctica

is indeed significant in the range of longitudes between ∼ 10 and ∼ 20◦E, i. e.

approximately between the Gulf of Gabes and the Gulf of Sirte, a region that has

not shown a significant tectonic activity in the last 130, 000 years (see Morhange

and Pirazzoli (2005) and references therein).
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Figure 9.15: Relative sea level observations for Marseille (a), Cap Corse (b), northern

Adriatic (c), and Djerba (d), compared to model computations based on mantle

rheological profile characterized by a stiff lower mantle (see text).
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9.4 Conclusions

Our analysis confirmed that the postglacial sea level changes across the Mediter-

ranean exhibit a complex spatio–temporal variability through the Holocene Lambeck

and Purcell (2005). By a straightforward analysis based on the solution of the Sea

Level Equation, we have systematically explored the relative importance of some

of the key factors that contribute to this variability, namely, the melting history of

remote ice sheets (and particularly of Antarctica), and the viscosity of the lower

mantle. The main results can be summarized as follows.

1. The pattern of sea level change in the Mediterranean can be described by

means of two types of RSL curves. The first denotes a rising sea level through

the late Holocene, while the second exhibits a late Holocene highstand that

implies a sea level fall in the last ∼ 5.0 kyrs. The extent of the so–called Clark’s

regions characterized by these distinct sea level patterns is strongly dependent

upon the assumptions about the time–history of the late–Pleistocene ice sheets

surrounding the Mediterranean. When the ICE3G chronology of Tushingham

and Peltier is employed, a well developed highstand region is expected to

surround the Mediterranean coasts, while the submergence region covers the

bulk of the basin. Such peculiar pattern for closed basins has been named

here as “Clark’s zone VII”. The assumption of a stationary Antarctic ice sheet

and the enhanced effect of the melting of Fennoscandia disrupt zone VII when

ICE1 is employed, leaving highstand zones along the indented coastlines of

the Alboran Sea and South Tunisia. This clearly shows the significant role

played by the melting of Antarctica upon the Holocene sea level variations in

the Mediterranean.

2. Using model ICE3G, we have shown that along the coasts of South Tunisia (i.

e., at Djerba) the effects due to the melting of Fennoscandia are almost exactly

counterbalanced by that of North America. Such fortuitous cancellation make

the highstand of ∼ 2.0 m predicted in this region for this ice-sheets chronology
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only sensitive to the effects of the remote Antarctica ice sheet. An highstand is

indeed suggested by both the available RSL observations and tentative RSL

curves at Djerba, but their resolving power is not sufficient to constrain its

amplitude unequivocally. Incorporating within ICE3G a suite of plausible

models for the melting of Antarctica during the last 6.0 kyrs, all characterized

by a sensibly reduced ESL at the LGM, it has been possible to fully enlighten

the sensitivity of RSL observations from South Tunisia to the details of the

time–history. A late–Holocene highstand of ∼ 1 m in this region is predicted

when Antarctica is assumed to melt at a constant rate between 12.0 and 5.0

kyrs BP, and its amplitude is enhanced (nearly doubled) if a late ice re–advance

is assumed. On the contrary, a delayed melting of Antarctica until 1 kyr BP

is responsible for a regular sea level rise since 6.0 kyrs BP. Only an improved

spatial coverage and sampling frequency of the RSL data, made difficult by the

large tidal excursions in the Gulf of Gabes Sammari et al. (2006), could help

to put tight bounds on the details of the melting chronology of Antarctica.

3. In the last part of the manuscript we have studied the impact of uncertain-

ties on lower mantle viscosity on the results previously obtained. An increase

of ηLM from 2 × 1021 to 1022, a value more appropriate according to a num-

ber of authors, has a significant influence in the predicted RSL curves for

the Mediterranean. In particular, this implies the disappearance of the late–

Holocene highstand from the coasts of South France, that would improve the

agreement with the observations available from this region. In general, an

increase in lower mantle viscosity limits the variability of the predicted RSL

curves corresponding to different assumptions about the chronology of Antarc-

tica. For the revised viscosity profile, the confirmation of the existence of a

late–Holocene highstand in Djerba would indicate for Antarctica an ESL con-

sistent with the value implicit in ICE3G, whereas an essentially stationary sea

level would be suggestive of a sensibly reduced ESL.



Chapter 10

Holocene deglaciation of

Antarctica

10.1 Introduction

The geological evidences showed in Figure 9.12 and reviewed in Section 10.2.2 be-

low (Figure 10.6), indicate that in SE Tunisia sea level has been continuously falling

during the mid– to late–Holocene, and that a peak of ∼ 2.0 m above the present

datum was reached between 6.0 and 7.0 kyrs BP1. Since no significant tectonic ac-

tivity has been reported in this area during the last ∼ 130 kyrs (see Morhange and

Pirazzoli, 2005 and references therein), the observed relative sea level variations are

thought to only reflect the effects of hydro–isostatic adjustment.

In the previous Chapter we have noticed that the observed mid– to late–Holocene

sharp highstand in SE Tunisia mostly reflects the history of melting of the Antarc-

tic ice sheet, since contributions to relative sea level from the two major northern

Hemisphere ice sheets (Laurentia and Fennoscandia) have opposite sign and almost

1Here and in the following, unless differently stated, the RSL data published in the litera-

ture have been converted from 14C to calendar time scale using the radiocarbon calibration pro-

gram available at http://radiocarbon.ldeo.columbia.edu research/radcarbcal.htm by Fairbanks et

al. (2005).

195
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cancel out each other in this particular region. Starting from the evidence in SE

Tunisia, we have elaborated on the previous results of Chapter 9, in an attempt to

constrain the melting history of Antarctica from available RSL observations. We

have found that to explain amplitude and timing of SE Tunisia sea level highstand,

the total equivalent sea level (ESL) of Antarctica may be reduced approximately by

a factor of two relative to the global deglaciation model ICE3G (Tushingham and

Peltier, 1991), provided that melting is allowed to occur catastrophically between

7.0 and 8.0 kyrs BP. This revised ESL and melting history for Antarctica is com-

patible with evidence from antarctic studies (Bentley, 1999) and, as it is shown here

for the first time, with RSL observations ranging from a global to a Mediterranean

scale.

The scenario that has emerged from this study is at variance with the Shepard

school of thought, which suggests a nearly continuous (monotonous) sea level rise

since 18.0 kyrs BP (see e. g., Kidson, 1982). Rather, it agrees with the Fairbridge

school that favors a more episodic sea level rise (Fairbridge, 1961). Along these lines,

Ruddiman (1987) has proposed and compared three different deglaciation models:

1. the “smooth deglaciation model”,

2. the “french two–step” deglaciaton model, with maximum rates from 14, 000

to 12, 000 and from 10, 000 to 7, 000 radiocarbon years BP,

3. the“younger Dryas” deglaciation model which differs from (2) by a mid–

deglacial reversal with significant ice growth at 11, 000–10, 000 radiocarbon

years BP.

Evidence in support of two surges in melt water at about 14, 000 (referred to as

MPW–1A) and 11, 000 radiocarbon years BP (MPW–1B) came from the fundamen-

tal work of Fairbanks (1989), who extended an existing coral–reef sea level curve

for Barbados to the last glacial maximum (Figure 10.1). Fairbanks et al. (1992)

and Blanchon and Shaw (1995) argued that MWP–1A and MWP–2A may relate

to a two step–wise collapse of Laurentide. While according to Bassett et al. (2005)
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a sudden melting of Antarctica could be the “prime mover” of MWP–1A, Peltier

(2005) rejects a significant role of this ice sheet.

Sea level records from drowned Acropora palmata in the Caribbean analyzed by

Blanchon and Shaw (1995) have documented three other possible catastrophic rise

events (CREs):

1. CRE1 (with an amplitude of 13.5 m, 14.2 kyrs BP),

2. CRE2 (7.5 m, 11.5 kyrs BP),

3. CRE3 (6.5 m, 7, 6 kyrs BP).

CRE1 and CRE2 are synchronous to the two collapse events possibly experienced by

Laurentide during deglaciation (Bond et al., 1992, 1993), and their timing coincides

with that of MWP–1A and MWP–1B, respectively (see Table 1 of the review of

Bentley, 1999).

More specifically, on the basis of terrestrial and submerged diamictons, Kaufman

et al. (1993) have indicated the possibility of collapses of the Labrador Dome 14 and

11.5 kyrs BP, which further supports a North American origin for CRE1 and CRE2.

As pointed by Blanchon and Shaw (1995), due to the small volume of ice remaining

in the northern Hemisphere at the epoch of CRE3, its origin could be explained in-

voking a role of the Antarctic ice sheet. In this study, we have shown that allowing

for a CRE3 of Antarctic origin helps to explain the RSL records in the Mediter-

ranean during the last 8.0 kyrs. The traditional, monotonously melting ICE3G is

in fact unable to simultaneously account for RSL observations in SE Tunisia and

in the northern Mediterranean. As discussed in the following, the melting scenario

proposed here also constitutes an improvement, in the Mediterranean region, with

respect to competing models characterized by a delayed melting phase (Nakada and

Lambeck, 1988) or by an ice re–advance during the late–Holocene (Goodwin, 1998).
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Figure 10.1: Barbados sea level curve (adapted and calibrated from the original

curve of Fairbanks, 1989).
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10.2 RSL curves for North Africa

10.2.1 Model predictions

The shape of the coastlines is important in determining the trend of postglacial

RSL curves since this factor tunes the amplitude of the “continental levering” effect

(Mitrovica and Milne, 2002), the process that mostly contributes to RSL variations

in the Mediterranean (see Section 9.2). Since the Gulf of Gabes and the Gulf of Sirte

have comparable shapes and latitudes (see Figure 10.2), we expect that solving the

SLE provides similar patterns of sea level change.

This is confirmed in Figure 10.4 (top), where we show the RSL curves expected

at Djerba, representative of the Gulf of Gabes, and Gulf of Sirte, when the ICE3G

chronology is employed (the two sites are marked by a cross and a black dot in

Figure 10.2). The major feature of solid curves is a sharp highstand at the end of

deglaciation, with a peak amplitude of ∼ 2 m at both sites. Dashed curves show

that for model ICE3G–A3, in which ICE3G is deprived of its Antarctic component,

no significant RSL variations are expected during the last ∼ 6.0 kyrs. Thus, at these

North African sites, during the mid– to late–Holocene the sea level has evolved as

if Antarctica was the only active ice sheet (see dotted curves). Frames (c) and

(d) pertain to the model ICE1. Since ICE1+A3 substantially reproduces ICE3G

(top), at these sites RSL is basically insensitive to the history of deglaciation of

the northern Hemisphere ice aggregates, in spite of significant differences between

the Fennoscandian components of models ICE3G and ICE1 (see Figure 10.3 and

Section 9.3). Dashed curves, relative to ICE1, show no RSL change during the last

5.0 kyrs, similarly to ICE3G–A3 (top). The peculiarity of the two sites considered

in Figure 10.4 can be better appreciated in Figure 10.5, showing the highstand

amplitude at t = 5.0 kyrs BP for all the North African sites marked by open circles

and in Figure 10.2. For model ICE3G (solid), the highstand region ranges in the

interval of longitudes between ∼ 10◦ and ∼ 22◦E, corresponding to sites from 12 to

44, respectively.
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Figure 10.2: Map of the tudy region showing the RSL sites of Djerba (site 19, cross)

and Gulf of Sirte (40, filled circle), as well as a number of other equidistant test sites

(open circles). Also shown are the northern Mediterranean RSL sites considered in

the analyses of Figures 10.10 and 10.11.
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By further computations, we have verified that beyond these limits the RSL

curves show no highstands, but rather a monotonous submergence with a kink at

the time corresponding to the end of deglaciation. Where the dashed curve (ICE3G–

A3), crosses the horizontal axis, RSL only stems from the contribution of Antarctica

(dotted). Djerba is close to one of these points, and another is found at the center

of the Gulf of Sirte (site 40 in Figure 10.2), consistent with the observation that

“continental levering” is magnified at deep inlets (Mitrovica and Milne, 2002).
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Figure 10.4: RSL histories predicted at Djerba (left) and Gulf of Sirte (right). In

the top frames we use the ICE3G ice sheets chronology of Tushingham and Peltier

(1991), ICE3G–A3 (i. e., ICE3G deprived of its Antarctic component A3), and A3.

In the bottom frames, we employ the old ICE1 model of Peltier and Andrews (1976),

ICE1+A3, and again A3. A marked highstand at 5.0 kyrs BP is visible as far as A3

is accounted for. The grey curve in frame (a) shows the results obtained using the

simplified AD model of Antarctica introduced in Section 10.2.3.
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Figure 10.5: RSL at time t = 5.0 kyrs BP along the coasts of Tunisia and Libya

in the range of longitudes between 8◦ and 24◦ W; numbers on the horizontal axis

denote sites shown in Figure 10.2. Ice models are the same as in Figure 10.4 (top).

Vertical shaded bars denote the location of Djerba and Gulf of Sirte, respectively.
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10.2.2 RSL observations

From the analysis of previous section, the presence of a late–Holocene highstand

is expected to be a stable feature along a significant portion of the coasts of Tunisia

and Lybia (see Figure 10.5). This is confirmed by the available field observations

for the Gulf of Gabes which are reported in Figure 10.6 (as far as we know no RSL

observation is available to date for the Gulf of Sirte). As pointed by Sammari et al.

(2006), the relatively large error bars which characterize some of the RSL data can

be attributed to the considerable tidal excursions in this region.

As previously described in Section 9.3 the tentative RSL curve of Paskoff and

Sanlaville (1983) (Figure 10.6, solid), suggests a maximum transgression of ∼ 1.7

m between 6.4 and 4.3 kyrs BP, with the subsequent sea level fall which follows an

erratic curve. Evidence from two fossilized bioclastic beaches (Jedoui et al. 1998,

diamonds) also indicates the existence of a late–Holocene highstand, but the am-

plitude of emergence is only weakly constrained due to the large error bars. From

a review of previous evidence and new indicators along the coast of the Gulf of

Gabes, Morhange and Pirazzoli (2005) have recently published a quite detailed RSL

history for Tunisia for the last 8.0 kyrs. Here we have analyzed and calibrated the

single measurements of Morhange and Pirazzoli (2005) reproduced by solid circles

in Figure 10.6. The observations are of improved precision relative to Paskoff and

Sanlaville (1983) and Jedoui et al. (1998), and clearly indicate an anticipated ma-

rine transgression between 7.0 and 8.0 kyrs BP culminating in a sea level highstand

between 6.0 and 7.0 kyrs BP, and followed by a quite irregular sea level fall. The

best–fitting RSL history suggested by Morhange and Pirazzoli, here reproduced by

a dashed curve (see also Figure 9.12, open circles), suggests a peak highstand of

∼ 2 m at 6.0 kyrs BP. Finally, the recent study of Lakhdar et al. (2006), based

on sedimentary record, also indicates the occurrence of a marine transgression at

∼ 7.0 kyrs BP followed by a mid–Holocene highstand and provides a further tenta-

tive RSL curve for SE Tunisia, consistent with that of Paskoff and Sanlaville (1983)

(gray curve in Figure 10.6). To summarize, all the available data and indicators
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relative to the region of Gulf of Gabes denote, albeit sometimes weakly, a sea level

highstand of 1–2 m between 5.0 and 7.0 kyrs BP. In the ensuing subsection, we will

study how the timing and the amplitude of the highstand can be useful to constrain

the melting history of Antarctica.
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Figure 10.6: RSL data for SE Tunisia according to various authors. All the sources

indicate the presence of a mid– to late–Holocene highstand in this region, with an

amplitude between 1 and 2 m.
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10.2.3 Sensitivity analysis

Since the Gulf of Gabes is in the far–field of Antarctica, it is appropriate to model

this ice sheet by a simple disc of constant thickness and radius. Its time–history

reproduces the main features of ice sheet A3 (the Antarctic portion of ICE3G), i.

e., a quiescence until time t = ti kyrs BP followed by a complete deglaciation at a

constant rate until time t = tf kyrs BP. For the A3 ice sheet, ti ∼ 10.0, tf ∼ 5.0

kyrs BP and the equivalent sea level is ESL ∼ 28 m, comparable with the figure of

24 m proposed in the classical work of Denton and Hughes (1981) (see Figure 10.3).

The simplified Antarctic ice model proposed here will be henceafter referred to as

AD model, while with RAD we will indicate a disc model with a total equivalent

sea level ESL(RAD)=ESL(AD)/2 ≈ 14 m. The equivalence between ICE3G and

ICE3G(AD) can be quantitatively appreciated by inspection of the grey curve in

Figure 10.4a.

In Figure 10.7, contour lines show the highstand peak amplitude HSmax pre-

dicted at Djerba (site 19 in Figure 10.2) for 0 ≤ tf ≤ ti, while shades of gray in

the background denote values of tHS, the highstand epoch (see caption on top). In-

sets show the time–history of AD (left) and RAD (right), which here represent the

Antarctic components of the global time–history of deglaciation (i. e., ICE3G, top),

and ICE1 (bottom). Since HSmax > 0 it is apparent that an highstand is always

predicted at Djerba. However, its maximum amplitude is greatly sensitive to the

value of ti and tf , and increases towards the line ti = tf , corresponding to a sudden

melting of the Antarctica. In particular, for ICE3G(AD), a value HSmax ' 4.3 m

is obtained for ti = 6 and tf = 5.0 kyrs BP (not visible in figure). A qualitatively

similar pattern is observed for ICE1+AD (c), with HSmax ' 4.5 m and a slight

anticipation of melting (ti = 7.0, tf = 6.0 kyrs BP). Differences between frames (a)

and (c) are only due to the distinct time–histories of the northern Hemisphere ice

sheets in ICE3G and ICE1, respectively.

Circles and diamonds in Figure 10.7 indicate HSmax and tHS values that agree

with the qualitative curve of Morhange and Pirazzoli (2005) (MP05) and with the
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observations of Paskoff and Sanlaville (1983) (PS83), respectively (see Figure 10.6).

Peak amplitudes of the PS83 and MP05 highstands differ by ∼ 30 cm, with the

former delayed by ∼ 1 kyr relative to the latter. From frame (a) we observe that to

explain the PS83 highstand by the Antarctic model AD, the beginning of melting

must be shifted backward of ∼ 1 kyr with respect to A3 (triangle), while tf must not

be significantly modified. An opposite trend is observed for the MP05 highstand,

which requires a ∼ 2 kyrs anticipation of the termination melting that implies a

significant shortening of the melting phase of Antarctica.

In order to fit the MP05 highstand using model ICE1+AD (frame c), the begin-

ning of melting must be anticipated by ∼ 3 kyrs with respect to A3, and similarly

the end of melting must be anticipated by ∼ 2 kyrs. By a suitable adjustment

of the two free parameters ti and tf , it is also possible to fit the PS83 highstand

(diamond). Thus, from frames (a) and (c) of Figure 10.7 it is apparent that by a

simplified representation of A3, the HSmax and tHS values suggested by the RSL

curves of PS83 and MP05 can be always be fitted satisfactorily. As the geometry

of the contour lines and the shaded regions indicate, the ti and tf values can be

simultaneously constrained only by knowledge of both HSmax and tHS for a given

highstand (i. e., MP05 or PS83).

The sensitivity of North Africa RSL observations to the time–history of Antarc-

tica, already addressed in Figure 10.4, motivates this analysis shown in frames

(b) and (d) of Figure 10.7 where we use the RAD model of Antarctica, with

ESL(RAD)=ESL(AD)/2 (see inset). Evidence in support to RAD comes from a wide

spectrum of observations ranging from paleo–climatology to thermo–mechanical

modeling of ice dynamics (see e. g., Bentley 1999 and Denton and Hughes 2002).

When RAD is employed (b), HSmax is reduced by approximately a factor of 2 with

respect to AD (a), that is, it scales with the amount of melt water released from

Antarctica (a perfect scaling would indicate that the site of Djerba is in fact only af-

fected by the melting of this remote glacier). While ICE3G(RAD) can only account

for the PS83 highstand (diamond), ICE1+RAD can also explain MP05 (circle).
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Figure 10.7: Highstand amplitude HSmax (contour lines, in meters) and highstand

epoch tHS (shades of gray) predicted at Djerba for all the possible values of pa-

rameters ti and tf , which describe the simplified time–history of Antarctica. Left

and right frames pertain to the geometrically simplified models AD and RAD for

Antarctica (their time–histories are shown in the insets). In top and bottom frames

the chronologies of the northern Hemisphere ice sheets follow ICE3G and ICE1, re-

spectively. Circles and diamonds show HSmax and tHS values from the observations

of MP05 and PS83, respectively (see text).
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It is however clear from these diagrams that, for ICE1+RAD it is necessary to

allow for a ∼ 1 kyr long melting phase from Antarctica to explain the observed

highstand. Due to the coarse time discretization employed, the duration of this

possible melting episode cannot be constrained more precisely.

10.3 Discussion

The study above has indicated that a drastic reduction of the ESL of Antarctica

to 14 m may be reconciled with RSL observations in the Gulf of Gabes choosing

appropriate ti and tf values. Also on the basis of the mentioned supporting evidence

from Antarctic studies, this finding motivates us to test wether such revised melting

history may improve the agreement with other rls observations on a regional or on

a global scale. Here we will consider separately two facets of the problem, i. e.,

(i) the determination of an optimum ESL for Antarctica and (ii) the plausibility of

a catastrophic rise episode that is suggested by the diagrams in Figures 10.7b and

10.7d.

The first issue is addressed in Figure 10.8, where we consider the chi–square

misfit between data and predictions relative to various data sets, computed as in

Spada et al. (2006). Since a full statistical study of the misfits obtained is not our

purpose here, we proceed heuristically, leaving more rigorous analyses to future work.

The misfit is computed as a function of the scaling factor F (%), which modulates

ESL(A3). The C curves in Figure 10.8 refer to computations in which the ESL

reduction of Antarctica is compensated by a uniform re–scaling of the volumes of

all the other components of ICE3G to preserve its total ESL of ∼ 113.5 m. The

figure shows results obtained for all of the 392 observations of the Tushingham

and Peltier (1993) RSL database (hereafter ”TP database“, solid), and potentially

interesting groups of data as well. In particular, we separately consider a set of

TP sites located along the coasts of Antarctica (dotted, 4 sites) and in the Pacific

Islands region (dashed, 30 sites). In addition, we employ two data sets pertaining
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to the Mediterranean Sea (dash-dotted): the first includes nine out of the eleven

TP observations for this region (the sites of Algiers and Beirut are excluded because

of their recognized tectonic instability, see Meghraoui et al., 2004; Morhange et al.,

2006), while the second collects independent RSL observations taken mostly from

Lambeck et al. (2004a) and scrutinized in Chapter 9.

The solid curve in Figure 10.8 indicates that the agreement with the global TP

observations improves with F , with the minimum misfit obtained when Antarctica

is assumed to be stationary during the whole Holocene (F = 0), as in the ancestor

ICE1 model of Peltier and Andrews (1976). As expected, the maximum sensitivity

to variations of ESL(A3) is observed for the sites located along the coasts of Antarc-

tica (dotted), suggesting a ∼ 60% ESL reduction with respect to the ICE3G value

of 28 m. Qualitatively similar results are obtained for the other regional curves,

showing a minimum for F between ∼ 30 to ∼ 40%. It is clear that when the global

database is considered (solid), the sensitivity to modifications of the ESL of Antarc-

tica is less pronounced than for the regional datasets. This is can be explained by

the significant weight, in the full TP database, of sites belonging to Clark zones I

and II (Farrell and Clark, 1976), which are the most influenced by the effects near–

field glaciers. It is interesting to note that regardless of the F value, the revised

Mediterranean set implies misfit values considerably smaller than for Med TP that

may indicate an improved coherence of these RSL observations. The new data set

also shows an improved sensitivity to variations of ESL, with the optimum value

comparable with that inverted from the Antarctic records (dotted). This is a con-

firmation of our previous findings (see Chapter 9) regarding the value of improved

Mediterranean RSL observations in constraining the mass balance of far–field ice

sheets, and particularly of Antarctica.

Inspection of the “C” curve relative to the full TP database in Figure 10.8,

reveals that a uniform scaling of the ESL of the ICE3G aggregates that compensates

for the ESL reduction of Antarctica deteriorates the misfit relative to the previous

computations (solid).
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Figure 10.8: Effect of varying the ESL of model A3 of Antarctica on the misfit

between observations and predictions on a global (solid line) and a regional scale.

The preferred value of the scaling factor F is close to 40%, as evidenced by the shaded

region. The two curves labeled by “C” refer to the case in which the ESL reduction

of Antarctica is compensated by an equal and opposite uniform ESL increase over

the other ICE3G ice elements. Notice that the misfit scale is logarithmic.
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As we have directly verified, the reason is that an increase of the volumes of

Laurentia and Fennoscandia does not help to better reproduce the RSL observations

in these regions. As shown, the C curve is found to be basically insensitive to

variations of the scaling factor F . In the case of the Med (20) dataset, imposing

the eustatic constraint of ICE3G slightly alters the misft curve, now showing a

minimum for F ∼ 30%. This possibly indicates that the revised Mediterranean

observations can benefit from a simultaneous reduction of the ESL of Antarctica and

a modification of the ICE3G chronology of Fennoscandia, the closest ice aggregate.

The need of a revised chronology of Fennoscandia is also consistent with the findings

of Lambeck et al. (2004a) and Chapter 9. Since mass conservation could not be

attained unambiguously, in the ensuing computations od this section we have chosen

not to compensate for the ESL reduction of Antarctica, also following Bassett et

al. (2005). Possible explanations for the “missing water” problem, discussed by

Bentley (1999), support the idea that at least some of the estimates of ice sheets

volumes are not correct. The second issue, i. e., the details of the melting history of

Antarctica, is addressed in Figure 10.9 by a misfit study aimed to constrain the ti and

tf parameters of model RAD (see inset of Figure 10.7). Here RSL sites from the TP

database and the Pacific Islands are considered in frames (a) and (b), respectively.

In both cases we employ model ICE3G(RAD), in which the ESL of Antarctica is

reduced from the reference value used so far of 14 m to the best–fitting value of 11.2

m, in agreement with the analysis of Figure 10.8. Using the full dataset (a), the best

agreement with observations is met for ti = 15 and tf = 14 kyrs BP. This epoch

approximately corresponds to the rapid melting event known as melt water pulse 1

(MWP–1A), first evidenced by Fairbanks (1989). This result supports a scenario in

which Antarctica has been the main cause of the water pulse, consistently with the

recent work of Bassett et al. (2005). While these authors have considered a limited

set of far–field observations and a significantly different viscosity value for the lower

mantle (see model VP2 of Table 5.2), here the plausibility of MWP–1A appears

even from a global dataset.
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Figure 10.9: Misfit between predictions and observations on a global scale (left)

and for the Pacific Islands (right), for various couples of the temporal parameters

ti and tf of model RAD. The ESL of Antarctica is kept fixed to 11.2 m, according

to Figure 10.8. The epoch of possible melt water pulses (MWP–1A and CRE3) are

shown. A white cross shows the misfit obtained using the A3 time parameters.
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However, since the misfit reduction that we obtain with respect to a RAD model

with the same temporal parameters of ice sheet A3 (white cross in Figure 10.9)

is not dramatically large, estimates of ti and tf from this search should be taken

cautiously. Varying the ensemble of RSL observations may significantly affect values

of the best–fitting parameters ti and tf . In the case study shown in Figure 10.9b,

relative to the Pacific islands, the region of minimum misfit extends diagonally from

point ∼ (ti = 18, tf = 3) kyrs to ∼ (ti = 8, tf = 7) kyrs, where the deepest minimum

is met. Such elongated valley in the parameters space indeed provides a very weak

constraint on the duration of the melting phase of Antarctica, which may range

from ∼ 15 to ∼ 1 kyrs. We note that the region of plausible parameters contains

the Antarctic melting phase of the original A3 model (namely, ti = 10, tf = 5

kyrs). This study shows that a water pulse cannot be rejected from the analysis of

these Pacific Islands observations, but its epoch (∼ 8 kyrs BP) is shifted onward

significantly with respect to MWP–1A (compare with Figure 10.9a). This melt

water pulse may coincide with the catastrophic rise event 3 (CRE3) discussed by

Blanchon and Shaw (1995), the last of a sequence of three episodes the first of which

corresponds to MWP–1A (CRE1).

The issue of how the melting scenarios for Antarctica suggested by Figures 10.7

and 10.9 may influence the Holocene RSL variations across the Mediterranean basin

is addressed in Figure 10.10. Instead of considering the Med data as a whole, as

previously done in Figure 10.9, here we discuss in detail six representative sets of

observations (sites locations are shown in Figure 10.2). With the sole exception of

Djerba, data and error bars are taken from the work of Lambeck et al. (2004a). By

a trial–and–error approach, we have subsequently scrutinized five possible chronolo-

gies for the remote ice sheets, suggested by the results of Figure 10.9 (see inset in

Figure 10.10a). The first is the classical ICE3G model (solid curves), which has

been employed as a reference scenario since the onset of our discussion. In addi-

tion to ICE3G, here we deal with other ice models characterized by various RAD

chronologies. Numbers in brackets following the ice sheets names indicate values of
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ti and tf , in kyrs BP, pertinent to the RAD time history. In particular, a melt wa-

ter pulse is accounted for by models ICE3G[15–14] (MWP–1A), ICE3G[8–7](CRE3)

and ICE1[8-7](CRE3). In this analysis, we also considered model ICE3G[18–3], the

chronology characterized by the very long melting phase suggested by the results

of Figure 10.9b. This particular model, in which Antarctica is subject to a delayed

melting with respect to A3, is broadly similar to the one termed “ANT 3a” by

Nakada and Lambeck (1988), characterized by a significant melting (ESL ∼ 3 m)

over the past 6 kyrs. Here we have not analyzed other competing chonologies that

support an ice sheet re–advance during the late–Holocene (Goodwin, 1998). The

re–advance would cause a global highstand followed by a sea level fall that cannot

explain the observations in the northern Mediterranean (see Chapter 9). To accom-

plish the analytical results of Figures 10.10, Figure 10.11 summarizes misfit values

at each site for the ice models tested.

Even from a cursory inspection of Figure 10.10 shows that ICE3G is unfit to

describe the Holocene sea level rise at the Mediterranean sites considered, which

confirms the pristine observations of Chapters 8 and 9. In particular, it fails both

in predicting the slow and monotonous trend of sea level rise observed in the sites

of Marseilles and N. Adriatic (a, e), and it is also inappropriate at Cap Corse (c),

where data suggest a rapid sea level rise in the last 5.0 kyrs. While the agreement

with the observations is qualitatively acceptable for Versilia Plain (b) and N Sar-

dinia (d), in the case of Djerba (f) ICE3G produces an highstand of the correct

amplitude, but significantly delayed (of about 2 kyrs) with respect to that observed

by Morhange and Pirazzoli (2005) (see also Figure 10.7). The overall inadequacy

of ICE3G is also apparent from Figure 10.11, where misfits from individual sites

are shown by dashed lines, whereas thick solid curves show average misfit values

for the viscosity profile VP1 and for the rheological profile of Bassett et al. (2005)

(VP2) (see Table 5.2). Introducing a melt water pulse that mimics MWP–1A (i. e.,

model ICE3G[15–14], dotted), greatly improves the performance in Marseilles, Cap

Corse, and N. Adriatic (see also Figure 10.11), while for Versilia and N Sardinia
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the agreement with observations improves in the last ∼ 5 kyrs but it grows worse

prior to this period. In Djerba, ICE3G[15–14] basically reproduces the ICE3G–A3

results of Figure 10.4a, since an early deglaciation of Antarctica enhances the effects

of northern Hemisphere aggregates at a later time. The late pulse CRE3 implicit in

model ICE3G[8–7] deteriorates, with respect to ICE3G[15–14], the agreement with

observations in Marseilles, Cap Corse, N. Adriatic, and Versilia Plain as quantita-

tively confirmed in Figure 10.11. However, the match is improved for N Sardinia and

Djerba. In this latter case, the impulse anticipates the transgression, thus providing

a better fit to the observed RSL.

Results on the effects of glacial isostatic movements in northern Italy and south-

ern France (Chapter 8) have enlightened the sensitivity of vertical uplift in these

regions to the time–history of the former northern Europe ice sheets. To shed light

on this issue, in Figure 10.10 we also show results based on the ICE1 history of

deglaciation, which differs from ICE3G for the melting history of Fennoscandia and,

most importantly in this context, for an anticipated cessation (∼ 2 kyrs) of the

melting phase (Peltier and Andrews, 1976; Tushingham and Peltier, 1991) (see Fig-

ure 10.3). According to Figure 10.10f, this feature of ICE1 has a significant effect

at Djerba, where model ICE1[8–7] now reproduces the observed highstand satisfac-

torily (grey, dashed). This is also observed for Marseilles (a), Cap Corse (c), and

N. Adriatic (e), where improvements relative to ICE3G[15–14] are apparent for all

the available observations (see also Figure 10.11). A close inspection of the results

relative to Versilia in Figure 10.10b reveals that ICE1[8–7] helps to better explain

the kink suggested by the RSL observation at t ∼ 8 kyrs BP, which may be inter-

preted as a signature of CRE3. At the same epoch, ICE1[8–7] is also compatible

with the data relative to N Sardinia. Finally, with dash–dotted curves we test the

sensitivity of the Mediterranean records to an extended melting phase for Antarctica

using model ICE3G[18–3]. While this model is generally fit to explain the northern

Mediterranean sea level indicators, it clearly fails along the coasts of SE Tunisia (f),

where the evidences support of a late–Holocene highstand of hydro–isostatic origin.
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Figure 10.10: Observations and predictions relative to significant RSL sites from the

revised Mediterranean data set (sites locations are shown in Figure 10.2). Here we

use model ICE3G and four chronologies based upon ICE3G and ICE1, with ”[ti–tf ]“

indicating the beginning and end of melting, respectively, in kyrs BP.
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As shown in Figure 10.11 (thick black), the failure of ICE3G[18–3] in SE Tunisia

produces a misfit increase with respect to the melt water pulse models.

To test the robustness of our results to variations of the viscosity profile, we

have repeated the analysis of Figure 10.10 using the viscosity values suggested by

Bassett et al. (2005), in which lower mantle viscosity exceeds the sublithospheric

upper mantle viscosity by a factor of 80 (see model VP2 In Table 5.2). The results,

summarized by thick gray curves in Figure 10.11, confirm that introducing a melt

water pulse improves the agreement with the observations in the Mediterranean

with respect to the classical ICE3G model. However, the overall misfit values are

increased relative to the reference viscosity model VP1. As we have verified, this

is mainly to be attributed to the inadequacy of VP2 to reproduce the observed

highstand in Djerba.
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Figure 10.11: Misfist values computed for each of the ice models considered in

Figure 10.10. Symbols used to denote the sites locations in Figure 10.2 are also

employed here to label the misfit trends. Solid curves show average misfit values

representative for all the sites considered. A thick gray line shows results obtained

using the viscosity profile VP2 of Table 5.2.
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10.4 Conclusions

The Holocene sea level record of SE Tunisia provide a unique opprtunity for

calibrating competing models for the history of deglaciation of Antarctica. Our

conclusions can be summarized as follows.

1. Forward computations based on the sea level equation confirm previous find-

ings of Chapter 9 that at the sites of SE Tunisia and Gulf of Sirte the RSL

variations in the last 8 kyrs are mostly determined by the melting of the remote

Antarctic ice sheet, due to the mutual cancellation of the contributions from

the northern emisphere. Attempts to identify other sites worldwide sharing

this features with SE Tunisia were unsuccessful. The RSL curves expected

in this region for the deglaciation model ICE3G are characterized by a neat

late–Holocene highstand, which broadly matches a suite of observations and

geological indicators.

2. In a sensitivity analysis we have established how the choice of the temporal

parameter describing the deglaciation of Antarctica affects the highstand am-

plitude and timing. Such analysis has shown that a sensibly reduced ESL for

Antarctica, compatible with recent reassessments of the Holocene mass bud-

get of this ice sheet (see e. g., Bentley, 1999, and Denton and Hughes, 2002),

may lead to the observed highstands in the study region. In this latter case,

however, a sudden melting model is preferred for Antarctica, in which a melt

water pulse occurs between 8 and 6 kyrs BP, possibly coinciding with the

CRE3 episode discussed by Blanchon and Shaw (1995).

3. To test the reliability of the results obtained from SE Tunisia, we have per-

formed a further analysis aimed to constrain the ESL reduction of Antarctica

from RSL observations on a global to regional scale. We have found that a

∼ 60% ESL reduction relative to ICE3G implies a general misfit reduction

when observations from Antarctica, Pacific Islands, and the Mediterranean
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are considered. When we consider the global TP RSL database, the best

fit with the observations is obtained assuming a stationary Antarctic ice sheet

through the Holocene. A further misfit reduction is achieved allowing for mod-

ifications of the time–history of Antarctica, and particularly introducing melt

water pulses that have been found to approximately coincide with those sug-

gested by independent investigations (Fairbanks, 1989; Blanchon and Shaw,

1995).

4. In the last part of the manuscript we have focussed our attention on the

Mediterranean RSL observations, in an attempt to put bounds to the time–

history of the late–Holocene ice sheets using an improved data set for this

region extracted from the recent literature. A site–to–site study has shown

that the Mediterranean RSL observations demand a CRE3 event of Antarctic

origin between 8 and 7 kyrs BP. Allowing for such a pulse, and assuming a

moderate viscosity increase across the mantle, our model reproduces both the

SE Tunisia highstand at 7 kyrs BP and the generally monotonous sea level

rise observed in the bulk of the Mediterranean and along its northern coasts.

5. The results obtained from the study of the Mediterranean record indicate that

the CRE3 melt water pulse at ∼ 8 kyrs BP may have concluded the whole

history of the last deglaciation. This view is in contrast with previous recon-

structions of the Antarctic chronology in which the melting of this ice sheet

throughout the Holocene (Nakada and Lambeck, 1988). With the preferred

viscosity value adopted here (VP1), such a delayed melting would fit the north-

ern Mediterranean observations reasonably well (see Chapter 9) but would be

totally unable to reproduce the observations relative to SE Tunisia (Morhange

and Pirazzoli, 2005). As we have verified, the misfit would even be larger in

the case of model VP2.

6. In the absence of observations from SE Tunisia, the Mediterranean observa-

tions would be reasonably reproduced by ice chronology ICE3G[18–3], which
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is broadly consistent with the Ant-3a melting history previously introduced

by Nakada and Lambeck (1988) to explain postglacial RSL in the Australian

region. However, when the datum from SE Tunisia is accounted for and it is

assumed to be reliable, the only model that reconciles northern and southern

Mediterranean RSL curves is the melt water pulse model CRE3.



Chapter 11

Final remarks

In this work we have investigated the numerical and geophysical aspects of

post–glacial isostatic readjustment, with particular emphasis on the Holocene and

present–day sea level change in the Mediterranean Sea. Results of our investiga-

tions are reported in details at the end of the Chapters 6, 8, 9, and 10, and are

summarized as follows:

1. In Part II of dissertation we have discussed the numerical aspects of the post–

glacial rebound by introducing at first the theory of the sea level equation and

then describing the pseudo–spectral method for its solution. Solving the SLE

for a given Maxwell viscoelastic Earth model and a particular ice chronology

allows to study a suite of geophysical processes accompanying the mass redis-

tribution associated with the glacial isostatic adjustment, such as relative sea

level variations, vertical deformations of the solid surface of the Earth, and

variations of the shape of the geoid. We have presented the program SELEN

for the computation of the sea level variations following the mass exchange

between oceans and continental ice reservoirs. SELEN is a useful tool for com-

puting different geophysical observables and therefore solving many problems

in the GIA context. As described in Part III, we have adopted and tested the

program to study the post–glacial rebound in the Mediterranean Sea.

222
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2. We have investigated the GIA–related phenomena ascribed to the melting of

the Würm Alpine glacier. By assuming a 120 km thick elastic lithosphere, a

lower mantle viscosity of 2 × 1021 Pa · s, and keeping fixed the value of 1021

Pa · s for both the upper mantle and the transition zone (REF rheological

model), we have solved the SLE for a simplified model of the Würm Alpine

glacier based on geological, glaciological and paleo–ecological evidences. When

considered alone, the melting of the Alpine ice cap is expected to mainly affect

the northern Tyrrhenian and Adriatic coasts with a Holocene sea level drop

typical of the peripheral depression zone. However, when the Alpine glacier

is included in the global ice models ICE1 and ICE3G it is not possible to

resolve the effects of the small ice cap given the large uncertainties of the

RSL data which are more sensitive to the remote ice sheets and suggest the

inadequacy of the global model ICE3G. The predicted present–day sea level

trends show a fall of 0.1− 0.3 mm/yr when the Alpine glacier is considered in

conjunction with the ICE3G, while, for ICE1 a sea level rise of 0.2−0.4 mm/yr

is expected. While the Alpine glaciers alone may account for an uplift rate of

the solid surface of about 0.2 mm/yr in the Alpine region, when considered

in conjunction to the remote ice sheets an average rate of subsidence of ∼ 0.5

mm/yr corresponding to 1/3 of the observed is expected.

3. On the basis of the results obtained from the study of the Würm Alpine

deglaciation, which have in particular enlightened the sensitivity of the RSL

observations to the remote ice sheets, and the inadequacy of the widely em-

ployed ICE3G model, we have investigated the typlogy of RSL curves expected

in the Mediterranean Sea. We have found the existence of two types of curves:

(i) the first describes a monotonous to cuspidate sea level rise through the

Holocene, while (ii) the second is characterized by a sea level highstand at 5.0

kyrs BP followed by a sea level fall. The extent of these two Clark’s regions

depends on the assumptions regarding the ice chronologies of the Pleistocene

remote ice sheets. In particular the extent of the highstand region surrounding
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the Mediterranean coasts is found to be mainly influenced by the Antarctic ice

chronology. Along the South Tunisian coasts the effects of the melting of the

major North Hemisphere ice sheets countervail each other making this region

highly sensitive to Holocene Antarctic deglaciation. By reducing of one–half

the eustatic contribution and assuming a suite of plausible chronologies for the

Antarctic ice sheet in the model ICE3G we have enlightened the sensitivity of

the observed sea level highstand in Tunisia to the time–history of Antarctica.

While the RSL data from the Northern Mediterranean coasts are in agreement

with a delayed melting of the Antarctic ice sheet ending at 1.0 kyrs BP, the

observations from Tunisia suggest a linear deglaciation between 12.0 and 5.0

kyrs BP. When the latter Antarctic ice chronology is included in ICE1 the

agreement between the whole dataset and predictions significantly improves

as a consequence of the reduction of the highstand region extent along the

Northern Mediterranean coasts. Furthermore, the agreement between data

and predictions for the northern coasts improves when a value of 1022 Pa · s is

assumed for the lower mantle viscosity. A high lower mantle viscosity implies

a noticeable reduction of (i) the highstand regions extent, and (ii) the high-

stand peak in SE Tunisia. Given the sensitivity of SE Tunisia to the Holocene

Antarctic melting, a more accurate and precise RSL evidence is needed to

constrain the eustatic contribution and the melting rates of Antarctica.

4. In view of the results obtained from the investigation of the Clark’s zones in the

Mediterranean Sea we have studied the sensitivity of the North African coast

(from Gulf of Gabes to Gulf of Sirte) to Holocene Antarctic melting. In the

range of longitudes between 10◦ and 20◦ W, a sea level highstand of 1.0−2.0 m

at 5.0 kyrs BP is expected for ICE3G. Along this coast the melting of northern

Hemisphere ice sheets produces a stable sea level for the last 5.0−6.0 kyrs and

the predicted highstand is solely driven by the Antarctic melting. We have

calibrated recently published 14C RSL data from Djerba (SE Tunisia). The

new evidences show an anticipated sea level highstand of ∼ 2.0 m between 6
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and 7 kyrs BP kyrs BP followed by a sea level drop to the present–day position.

By varying the temporal parameters describing the deglaciation of Antarctica

and assuming for this remote ice sheet a sensibly reduced equivalent sea level,

we have reproduced the observed sea level highstand by means of a sudden

Antarctic melting occurring between 8 and 6 kyrs BP. We have verified that

for a ∼ 60% ESL reduction of Antarctica the agreement with RSL data from

far–field sites improves. By keeping the Antarctic ESL value fixed to 11.2 m we

have found that the misfit between RSL prediction and observations from the

Pacific Islands, where the hydro–isostatic effects drive the Holocene sea level

variations, reduces when a catastrophic melting (CRE3 event) is assumed to

occur between 8 and 7 kyrs BP. However, an improved agreement between far–

field data and prediction is not univocally attained for this ice chronology and

also an Antarctic melting through the entire Holocene is fit to reproduce the

observations. Though a linear Antarctic melting through the Holocene is in

good agreement with the observations from the North Mediterranean sites, a

catastrophic deglaciation at 8 kyrs BP is able to reconcile both the Tyrrhenian

RSL data and the sea level highstand in SE Tunisia yielding the best fit value.



Appendix A

Maxwell visco–elasticity

On the basis of the correspondence principle (e. g., Fung, 1965), the governing

equations for a linear viscoelastic continuum can be retrieved once the viscous ones

are known.

By considering for simplicity unidimensional constitutive equations, the elastic

and viscous components of the Maxwell rheology are described by

εl =
σ

2G
, (A.1)

and

ε̇v =
σ

2V
, (A.2)

respectively, where εl is the elastic deformation, ε̇v is the rate of viscous deformation,

σ is the applied stress, G is the elastic modulus of rigidity, V is viscosity and the dot

denotes time derivative. By deriving Eq. (A.1) with respect to time and combining

it in series with the viscous component (Eq. A.2), the rate of the total deformation

reads

ε̇ = ε̇l + ε̇v, (A.3)

that is

ε̇ =
σ̇

2G
+

σ

2V
, (A.4)
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which represents the constitutive equation for a viscoelastic Maxwell continuum,

and which incorporates both the effects of elasticity and the behavior of a viscous

fluid. In the particular case of a deformation constant with time (ε̇ = 0), the stress

evolves as

σ = σ0e
−t/τ , (A.5)

where τ = ν/µ is the Maxwell relaxation time. Following the Laplace transformation

of the differential equation (A.4) it comes that

εs =
σ(s)

2G(s)
, (A.6)

where σ(s) and ε(s) are the Laplace transforms of σ(t) and ε(t) respectively, and

G(s) =
Gs

s+G/V
, (A.7)

is complex rigidity. Eq. (A.6) is the constitutive relation for an elastic continuum.

The solution of the governing equations for the equilibrium of a viscoelastic medium

is obtained by replacing in the elastic case equations the elastic shear modulus

with its complex equivalent, and than by interpreting the remaining quantities as

Laplace transforms. Once the solution of the problem in the complex plane has been

achieved, it is possible to retrieve the time dependence of the viscoelastic solutions

by means of an anti–transformation. This represents the essential content of the

correspondence principle for the linear viscoelasticity.

The Maxwell viscoelastic continuum shows opposite behaviors on different time

scales:

• In the limit s→ ∞ (i. e. for t→ 0), Eq. (A.6) gives

σ(s) = 2µε(s), (A.8)

whereof the Laplace anti–transform is

σ = 2µε, (A.9)



APPENDIX A. MAXWELL VISCO–ELASTICITY 228

which represents the constitutive relation for an elastic medium. Thus, for

short time scales, the viscoelastic continuum exhibits a purely elastic behavior

whose analogue model is the spring (Figure A.1a).

• for s→ 0 (i. e. t→ ∞), Eq. (A.6) gives

σ(s) = 2νsε(s), (A.10)

whereof the Laplace anti–transform is

σ = 2νε̇, (A.11)

which represents the viscous constitutive relation. The analogue model for a

viscous body is the dashpot (Figure A.1b).

µ

(a) (b)

ν

Figure A.1: Analogue rheological models for (a) elastic (Hooke) and (b) linearly

viscous (Newton) bodies.

The behavior of a Maxwell viscoelastic body can be represented by combining in

series an elastic and a viscous element (Figure A.2). Different viscoelastic rheologies

can be represented by various combinations of elastic and viscous elements.
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µ ν

Figure A.2: Maxwell viscoelastic model. The spring (Hooke) and the dashpot (New-

ton) are combined in series to couple the elastic instantaneous and delayed viscous

responses.



Appendix B

Spherical Harmonics

Here we provide the basic definitions and conventions concerning the Legendre

polynomials, the associated Legendre functions, and the spherical harmonics.

B.1 Legendre polynomials

The Legendre polynomials are defined by the Rodriguez formula as

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, (B.1)

where l is the degree, x = cos θ, and θ is colatitude. Some low–degree polynomials

are given in Table B.1.

B.2 Associated Legendre functions

The associated Legendre function of degree l (l = 0, 1, 2, . . .) and order m (m =

0, 1, 2, . . . l) is

Plm(x) = (−1)m(1 − x2)m/2 d
m

dxm
Pl(x), (B.2)

where Pl(x) is the Legendre polynomial (B.1). A few associated Legendre functions

are given in Table B.2.
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Table B.1: Legendre polynomials for degrees 0 ≤ l ≤ 5.

l Pl(x)

0 1

1 x

2 (1/2)(3x2 − 1)

3 (1/2)(5x3 − 3x)

4 (1/8)(35x4 − 30x2 + 3)

5 (1/8)(63x5 − 70x3 + 15x)

Table B.2: Associated Legendre functions for degrees 0 ≤ l ≤ 3.

l m Plm(cos θ)

0 0 1

1 0 cos θ

1 1 − sin θ

2 0 (1/2)(3 cos2 θ − 1)

2 1 −3 sin θ cos θ

2 2 3 sin2 θ

3 0 (1/2)(5 cos3 θ − 3 cos θ)

3 1 (−3/2) sin θ(5 cos2 θ − 1)

3 2 15 sin2 θ cos θ

3 3 −15 sin3 θ
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B.3 Complex spherical harmonics

The complex spherical harmonics are

Ylm(θ, λ) = µlmPlm(cos θ) eimλ, (B.3)

where l and m are the degree and the order, θ is colatitude, λ is longitude, i =
√
−1,

and

µlm =

√

(2l + 1)
(l −m)!

(l +m)!
, (B.4)

with

Yl−m(θ, λ) ≡ (−)mY∗
lm(θ, λ). (B.5)

The Y harmonics (see Table B.3) are referred as to ”4π–normalized harmonics”

because of the orthogonality relationship
∫

Ω

dωY∗
l′m′(θ, λ)Ylm(θ, λ) = 4π δll′δmm′ , (B.6)

where Ω is the unit sphere, and

∫

Ω

dω(·) ≡
∫ 2π

0

∫ π

0

(·) sin θdθdλ. (B.7)

The addition theorem for the spherical harmonics states that

Pl(cos Θ) =
1

2l + 1

+l
∑

m=−l

Y∗
lm(θ′, λ′)Ylm(θ, λ), (B.8)

where (θ, λ) and (θ′, λ′) are the spherical coordinates of two points, and Θ is the

colatitude of the second relative to the first, such that

cos Θ =
~r′ · ~r
rr′

, (B.9)

with r′ = ‖~r′‖ and r = ‖~r‖.
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Table B.3: Complex spherical harmonics for degrees 0 ≤ l ≤ 3.

l m Ylm(θ, λ)

0 0 1

1 0
√

3 cos θ

1 1 −
√

3/2 sin θeιλ

2 0 (1/2)
√

5/4 (3 cos2 θ − 1)

2 1 −
√

15/2 sin θ cos θeιλ

2 2 (1/2)
√

15/4 sin2 θe2ιλ

3 0 (1/2)
√

7 (5 cos3 θ − 3 cos θ)

3 1 −(1/4)
√

21 sin θ(5 cos2 θ − 1)eιλ

3 2 (1/2)
√

105/2 sin2 θ cos θe2ιλ

3 3 −(1/4)
√

35/2 sin3 θe3ιλ



Appendix C

Input files and main units of SELEN

Table C.1 gives the names of the input files which are required by the program

units summarized in Table C.2.

Table C.1: User–supplied input files of SELEN.

File Content

selen.sh Bash shell script that executes SELEN

data.inc Include file with the SELEN settings, see Section C.1

ice3(1).dat Ice thickness information for the ICE3G (ICE1) ice aggregate

sea level.dat RSL data from the Tushingham and Peltier (1993) database

psmsl.dat Sea level secular trends from the PSMSL database

234



APPENDIX C. INPUT FILES AND MAIN UNITS OF SELEN 235

Table C.2: Main functions of Fortran 90, GMT, and gnuplot programs accessed by

script selen.sh.

Fortran 90 Purpose or task

PX.F Determines the pixels coordinates

SH.F Computes the SH at pixels centroids

SHTOOLS.F Include file with ALFPACK SH routines

WNW.F Performs the SH ‘Window’ test

SH OF.F Computes the ocean function SH coefficients

REC OF.F Synthesis of the ocean function

SH3(1) C.F ICE3G (ICE1) shape factors

SH3(1).F ICE3G (ICE1) SH coefficients

REC ICE.F Reconstructs the ice sheets thickness

TB.F Computes LDCs and relaxation spectrum

SLE.F Solves the SLE

SH RSL.F Computes SH at RSL sites

RSL.F Determines the RSL curves

GMAPS.F Determines the scalar fields Ṡ, U̇ , and Ṅ

SH PSMSL.F Computes SH at PSMSL sites

PSMSL.F Computes Ṡ at PSMSL sites

STOKES.F Time–derivatives of the Stokes coefficients

COPY.F Moves output files into the /depot

GMT

px.gmt Separates wet from dry pixels

pxmap.gmt Plots global, wet and dry pixels

of.gmt Plots the reconstructed ocean function

ice3(1).gmt Produces maps of the ICE3G (ICE1) ice sheets

gmaps.gmt Produces maps of Ṡ, U̇ , and Ṅ

gnuplot

spectrum.gnu Plots the relaxation spectrum

elastic.gnu Plots the elastic LLNs

fluid.gnu Plots the fluid LLNs

stokes.gnu Plots the Stokes coefficients
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C.1 Sample data.inc input file

Below we provide a sample input file data.inc. The configuration shown that can
be used as a starting point to obtain all the results presented in this manuscript.

!

! =======================

! This is file ‘data.inc’

! =======================

!

! Last modified by GS on 7/20/2006

!

!#------------- 1) General settings --------------------------------------------------

CHARACTER*4, PARAMETER :: RUN=’_yyy’ ! Label for the output files

INTEGER, PARAMETER :: RES=14 ! Resolution

INTEGER, PARAMETER :: NP=2*RES*(RES-1)*20+12 ! Number of pixels

INTEGER, PARAMETER :: LMAX=72 ! Maximum harmonic degree

INTEGER, PARAMETER :: JMAX=(LMAX+1)*(LMAX+1)/2 ! Harmonics for l=l_max

REAL*4, PARAMETER :: PIG=3.14159265358979323840 ! Pi

REAL*4, PARAMETER :: ERADIUS=6.371E6 ! Radius of the earth, m

REAL*4, PARAMETER :: RHOE=5511.57 ! Earth’s average density, kg/m^3

REAL*4, PARAMETER :: RHOW=1000.0 ! Water density, kg/m^3

REAL*4, PARAMETER :: RHOI=931.0 ! Ice density, kg/m^3

!

!# ------------ 2) Ice models settings ------------------------------------------------

INTEGER, PARAMETER :: NE3=808 ! Elements of ICE3G

INTEGER, PARAMETER :: NE1=153 ! Elements of ICE1

INTEGER, PARAMETER :: NN=18 ! Number of time steps

REAL*4, PARAMETER :: DELTA=1. ! Time increment, kyrs

!

!# ------------ 3) TABOO settings -----------------------------------------------------

INTEGER, PARAMETER :: NV=3, CDE=2 ! Earth model (see TABOO user guide)

REAL*4 VSC(NV) ! Viscosity array data

DATA VSC/2.0,1.0,1.0/ ! Viscosities from bottom to top, *1E21 Pa.s

REAL*4, PARAMETER :: LTHIC=120. ! Thickness of the elastic litosphere, km

!

!# ------------ 4) Sea level Equation settings ----------------------------------------

INTEGER, PARAMETER :: SMAX=3 ! Number of iterations for the SLE

INTEGER, PARAMETER :: IMODE=1 ! Mode of solution - see below -

!

! IMODE =1 -> Gravitationally Self-Consistent (GSC)

! IMODE =2 -> GSC, but only elastic (ELA)

! IMODE =3 -> Eustatic (EUS)

! IMODE =4 -> Woodward (WDW)

! IMODE =5 -> Ice Load Neglected (ILN)

!

!# ------------ 5) Relative sea level curves settings ----------------------------------

INTEGER, PARAMETER :: NRSL = 392 ! Number of RSL sites

!

!# ------------ 6) PSMSL predictions settings -----------------------------------------

INTEGER, PARAMETER :: NPSMSL=1016 ! Number of PSMSL stations

!

!# ------------ 7) Stokes coefficients settings ---------------------------------------

INTEGER, PARAMETER :: STMIN=0 ! Min. degree for the Stokes coefficients

INTEGER, PARAMETER :: STMAX=6 ! Max. degree

!

! End of file

!
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