
Alma Mater Studiorum University of Bologna

Ph.D. in Control System Engineering and

Operational Research

MAT/09

XXIII Cycle

Decomposition and Reformulation

of Integer Linear Programming

Problems

Fabio Furini

Coordinator Relators
Prof. Paolo Toth Prof. Paolo Toth

Prof. Alberto Caprara

Final exam 2011

Acknowledgments

To my lovely girlfriend Charlotte Mitchell and to my family who supported me in every
occasions.

Bologna, 2011

Fabio Furini.

i

ii Acknowledgments

“From each according to his ability, to each according to his need”

Critique of the Gotha Program, Karl Marx.

iii

iv Acknowledgments

Keywords

Combinatorial Optimisation, Integer Programming,Decomposition and Reformulation,Column

Generation, Resource Allocation Problem, AVG Assignment Problem.

v

vi Keywords

Abstract

This thesis deals with an investigation of Decomposition and Reformulation to solve Integer

Linear Programming Problems. This method is often a very successful approach computation-
ally, producing high-quality solutions for well-structured combinatorial optimization problems
like vehicle routing, cutting stock, p-median and generalized assignment . However, until now
the method has always been tailored to the specific problem under investigation. The prin-
cipal innovation of this thesis is to develop a new framework able to apply this concept to
a generic MIP problem. The new approach is thus capable of auto-decomposition and auto-
reformulation of the input problem applicable as a resolving black box algorithm and works as
a complement and alternative to the normal resolving techniques. The idea of Decomposing

and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is,
given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the
partially convexified polyhedron(s) obtained. For a given MIP several decompositions can
be defined depending from what sets of constraints we want to convexify. In this thesis we
mainly reformulate MIPs using two sets of variables: the original variables and the extended
variables (representing the exponential extreme points). The master constraints consist of
the original constraints not included in any slaves plus the convexity constraint(s) and the
linking constraints(ensuring that each original variable can be viewed as linear combination
of extreme points of the slaves). The solution procedure consists of iteratively solving the
reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and
in which case adding it to the master and solving it again (columns generation), or otherwise
stopping the procedure. The advantage of using DWD is that the reformulated relaxation
gives bounds stronger than the original LP relaxation, in addition it can be incorporated in
a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality.
If the computational time for the pricing problem is reasonable this leads in practice to a
stronger speed up in the solution time, specially when the convex hull of the slaves is easy
to compute, usually because of its special structure. Finally the thesis is thus organized as
follows:

Chapter 1 The Introduction contains a detailed overview of the thesis.

Chapter 2 We describe the general ideas and methods applying decomposition and refor-
mulations to general problems.

Chapter 3 We introduce the idea of Dynamic MIP and we perform our decomposition with
this class of problems.

Chapter 4 We investigate the Multi-load AGV dispatching problem and we present a new
compact and extended formulation.

Chapter 5 We investigate the 2D Cutting Stock Problem presenting a very effective Column
Generation Heuristic.

vii

viii Abstract

Contents

1 Introduction 1

2 Partial Convexification and Dantzig-Wolfe Reformulations of General MIPs 5

2.1 Introduction . 5

2.1.1 Partial Convexification and Dantzig-Wolfe Reformulations 6

2.1.2 Related Literature . 7

2.2 Almost Automatic Detection of an Arrowhead Form 8

2.3 Computational Results . 9

2.3.1 Notes on the Implementation and Experimental Setup 9

2.3.2 MIPLIB2003 . 9

2.4 Discussion . 10

3 Application: Temporal Knapsack Problem 15

3.1 A Class of Structured MIPs without Block-Diagonal Form 15

3.2 Problem Definition . 16

3.3 Dynamic Programming . 21

3.4 A Pseudo-Compact Reformulation . 24

3.4.1 Cut Generation . 25

3.4.2 Reformulation and Column Generation 25

3.4.3 An alternative view through Dantzig-Wolfe Decomposition 27

3.5 Detailed description of Reformulated Models 28

3.5.1 ”One Constraint Slave” Reformulated Model 28

3.5.2 Projection of ”One Constraint Slave” Model on the ”y variables” space 32

3.5.3 ”Overlapping Constraints Slave” Reformulated Model 35

3.6 Computational Results . 38

3.6.1 Random Instance Generator . 39

3.6.2 Global procedure bound comparison . 42

3.6.3 Reformulation and Cut Generation . 42

3.6.4 Reformulation and Column Generation 50

ix

x CONTENTS

3.6.5 Reformulation, Column Generation and Branch and Price 50

3.6.6 Short Constraints: Dynamic Programming 51

4 Application: Multi-load AGV dispatching in automated seaport container
terminals 61

4.1 Introduction . 61

4.2 Problem description and notation . 63

4.3 A new compact MIP formulation of the AGVDP 64

4.4 A new column generation-based procedure for solving a variant of the AGVDP 67

4.4.1 Set Covering Formulation . 67

4.4.2 Column generation procedure . 68

4.4.3 Sub-problem: finding the sequence of maximum profit 69

4.4.4 A heuristic randomized approach for constructing a set of feasible se-
quences . 71

4.5 An illustrative example . 72

4.6 Computational experiments . 73

4.6.1 Test problem generation . 74

4.6.2 Implementation and numerical results 74

4.7 Conclusions . 76

5 Application: A Column Generation Heuristic for the 2D Cutting Stock
Problem 83

5.1 Cutting Stock Model . 84

5.2 Cutting pattern generation . 85

5.2.1 Initial Heuristic . 86

5.2.2 A Mixed Integer Linear Model for the 2DKP 86

5.2.3 Heuristic Pattern Generation Scheme 89

5.3 Column Generation Heuristic . 90

5.4 Computational Experiments . 92

5.4.1 Performance of the MILP Model M0 for 2DKP 93

5.4.2 Performance of the Overall Method . 93

5.5 Conclusions . 100

List of figures 101

List of tables 104

Bibliography 105

A Decomposition Pictures 113

Chapter 1

Introduction

Decision makers in industry and administration are often faced with decision problems that
are too large and complex for an effective manual solution. To help them in this task, ap-
plied mathematicians in operational research have developed modeling and optimization tools.
These tools are now widely used in large, medium and small industries. However, there re-
mains a gap between the theoretical developments made on pure models on the one hand and
the practical needs for complex application solving. We aim to bridge this gap by developing
a software package that will automatically exploit problem structure to take advantage of the
Dantzig-Wolfe decomposition principle for solving general, large, practical decision problems
formulated as Mixed Integer Programmes (MIP). The principal goal of this thesis is to in-
vestigate and to develop a general framework to take advantage of the Dantzig and Wolfe
Decomposition technique for solving a generic Mixed Integer Programme. This decomposi-
tion concept was introduced in a famous chaper [15] in 1960 by G. B. Dantzig and P. Wolfe
and, since then, academic research has focused its attention on developing a specific algorithm
called Column Generation (CG). The strength of this method lies in the decomposition of
the problem into smaller sub-problems, solving them efficiently and reconstructing a global
solution starting from the partial solutions, known technically as columns. The second main
advantage is that not all the partial solutions, i.e. the columns, are required to prove the
optimality of the entire problem but only a subset, which are generated as necessary by the
general procedure. This fact immediately suggests the possibility of using the method to re-
solve problems of large and complex dimensions. The Dantzig-Wolfe decomposition principle
of linear programming extends to integer programming optimization problems. A sub-system
of constraints is isolated and the problem is reformulated in terms of the solutions of the
subsystem. The resulting integer programming formulation, the so-called master, typically
has a large number of columns or variables, one for each feasible solution of the subsystem.
The master formulation usually has a strong linear programme relaxation which makes it well
suited for a linear programming based branch and bound solution method. To deal with the
large number of variables implicitly, a column generation procedure is used at each node of
the branch and bound tree. The algorithm that combines column generation and branch and
bound is known as branch and price. This approach to solving difficult integer programming
problems is a good alternative to other advanced methods such as cutting plane, Lagrange
relaxation, or variable definition approaches. Moreover, it is an integrative tool that allows
one to take advantage of the latest algorithms developed for general models that appear as
sub problems in solving more complex applications. Since 1960 many academic chapers and

1

2 Introduction

books have demonstrated the efficiency of the Decomposition and Reformulation method for
MIP, but these have all revealed a common weak point: the fact that in order to obtain an op-
timal performance the method has to be tailored to the specific problem in question. Our new
strand of research fits into this context. Starting off from the ideas developed in the literature,
we aim to identify the common points in order to develop a new framework able to apply this
concept to a generic MIP problem. The new approach is capable of auto-decomposition and
auto-reformulation of the input problem, and of the identification of the optimal solutions in
an efficient manner. We thus developed general software for that purpose. This permits us
to overcome the challenge of having to rethink a specific column generation approach from
scratch for each individual problem, and thus to be able to put forward a standard technique,
applicable as a resolving black box algorithm and which works as a complement and alter-
native to the normal resolving techniques that are currently implemented in all commercial
optimization software packages.

In summary, this thesis aims to develop a general framework of Decomposition and Reformu-
lation of generic mixed integer programming problems. To reach this challenging objective it
is necessary to confront numerous difficulties. The first step is the analysis of the different
aspects of the Reformulation of optimization problems. Many different standard approaches
exist in the literature dealing with such problems, and a detailed description of the approaches
is provided in [99] by F. Vanderbeck and L.A. Wolsey. Using their words, the aim of refor-
mulation in general is the following:

Introducing new variables typically permits one to model some combinatorial
structure more precisely and to induce integrality through tighter linear constraints
linking the variables. One such extended formulation is provided by the classi-
cal Minkowski representation of a polyhedron in terms of its extreme points and
extreme rays.

The fundamental reformulation techniques can be identified in the following complementary
methodologies: the so-called ”convexification approach” and the alternative ”discretization
approach”. We concentrated on the identification of the points of strength and weakness
of each method to be able to propose a dominant approach in tackling the reformulation
of generic problems. Moreover, these approaches can be further subdivided into approaches
that make use of the original variables of the problem and approaches that use a projection
of the original model in a different vector space that uses new variables instead. It is also
necessary to identify the points of strength and weakness of these methods in order to identify
the most efficient system. The second large field of research will focus on the decomposition
of optimization problems. As far as this aspect is concerned, little has been done in the lit-
erature regarding automatic decomposition. As has been partially indicated in the previous
paragraph, the algorithms proposed in the Column Generation literature have in fact been
developed for specific problems, that is to say problems characterized internally by a partic-
ular structure that implicitly suggests the best decomposition to use. An example can be
cited to clarify this. When confronting optimization problems which make use of different
resources, for example, which are in turn differentiated by specific characteristics, the natural
decomposition would consider a sub-problem for each of these resources. The present research
project, however, will deal with the decomposition of generic problems in which the nature
of the problem is not known a priori. We develop a software optimization package which
will automatically identify in general the best decompositions. The principal problem that
must be confronted will be the natural trade-off between the decompositions in which the

3

sub-problems include much of the original problem’s information and those that maintain a
large part of the original problem to the original problem instead. In general, the former lead
to better reformulations but which at the same time present sub-problems that will be much
more difficult to resolve. The latter, whilst keeping the resolution of sub-problems simple,
lead to less efficient reformulations. We thus devoted ourselves to the definition of the criteria
that generally lead to good decompositions. Once these phases of theoretical research were
complete, we started the implementation of the optimization framework, which is able to test
the efficiency of the new methods proposed. Algorithms are developed using C in order to
obtain a benchmark comparing with current state-of-the-art commercial optimization soft-
ware such as CPLEX. To test the algorithms, the instances referred to are the set of instances
called MIPLIP2003, often used by major research in this field. These tests resume the main
characteristics of a great variety of optimization problems and also appear to be problems
that are difficult to resolve using the current primary commercial software.

To conclude this introduction, we shall give a brief description of the following chapters.
In chapter 2 we present the general tool which, given an LP file, automatically detects an
exploitable matrix structure, accordingly performs a Dantzig-Wolfe type reformulation of sub-
sets of the constraints (partial convexification), and performs column generation to obtain an
optimal LP relaxation. Our results strongly indicate that Dantzig-Wolfe decomposition holds
more promise as a general-purpose tool than previously acknowledged by the research commu-
nity. We then perform an extensive computational study on general MIPLIB2003 instances
in order to further validate our method. Chapter 3 concerns the Resource Allocation Problem
(RAP), an NP-hard problem which introduces a temporal dimension in classical Knapsack
Problems. RAP asks for the most profitable subset of n given tasks that, at no time, exceeds
the amount of usable resource. Each task has a determined profit, a start and a finish time and
a resource requirement. A classical Integer Linear Programming (ILP) formulation from the
literature models the problem by associating a binary variable to each task, in order to define
which tasks are selected. We propose a reformulated ILP models in order to strengthen this
descriptive model imposing the limit of resource usage by introducing new binary variables,
each variable being associated with a feasible subset of tasks which are simultaneously active.
These variables, whose number is exponential with respect to the problem size, are efficiently
managed by means of a column generation approach. The generation of new variables asks
for the solution of a series of knapsack problems. The continuous relaxation of this model
is systematically stronger than the relaxation of the descriptive model. Finally, in order to
obtain integer solutions, we embed our column generation procedures in a branching scheme,
where we branch on the binary variables of the original formulation (i.e., variables associated
with tasks). We conclude by presenting computational results on a set of random instances.
In chapter 4 we present a column generation approach, specifically conceived for the problem,
where the reformulation is very effective. Here we consider the AGV dispatching problem
(AGVDP) arising at seaport container terminals where vehicles operate under a multi-load
mode and can therefore carry more than one container at a time subject to capacity con-
straints. We propose two new approaches; the first one is based on a new mixed integer
programming (MIP) model and the second one is a column generation procedure based on
a set covering formulation of the AGVDP. Both methodologies are implemented and com-
putationally evaluated for different scenarios with respect to minimizing a defined “cost”
of dispatching AGVs. The reported computational results demonstrate the effectiveness of
the proposed approaches in solving a number of test instances for container terminals, given
various layout configurations and levels of workload. Finally in chapter 5, we consider a

4 Introduction

Two-Dimensional Cutting Stock Problem where stock of different sizes is available, and a set
of rectangular items has to be obtained through two-staged guillotine cuts. We propose a
heuristic algorithm, based on column generation, which requires as subproblem the solution
of a Two-Dimensional Knapsack Problem with two-staged guillotines cuts. A further contri-
bution of the chaper consists in the definition of a Mixed Integer Linear Programming Model
for the solution of this Knapsack Problem, as well as a heuristic procedure based on dynamic
programming. Computational experiments show the effectiveness of the proposed approach,
which obtains very small optimality gaps and outperforms the heuristic algorithm proposed
by Cintra et al. [108].

Chapter 2

Partial Convexification and

Dantzig-Wolfe Reformulations of

General MIPs

2.1 Introduction

A considerable, if not the major, part of the computational (mixed) integer programming
machinery is about outer approximating the convex hull of integer feasible points (or mixed
integer sets). The addition of valid inequalities, a.k.a. cutting planes, is the traditional general-
purpose device which proved powerful in strengthening the linear programming relaxations.
Given that the integer hull is the ultimate object of desire, we ask: Why don’t we just
work with it? Being fully aware of the boldness of this question, we want to seriously re-
consider it by explicitly constructing parts of the integer hull via a generic Dantzig-Wolfe
type reformulation (decomposition). This extends previous partial convexification approaches
which only separate a subset of facets from the integer hull.

Dantzig-Wolfe reformulation (DWR) of mixed integer programs (MIPs) became a computa-
tionally very successful—sometimes the only applicable—approach to producing high-quality
solutions for well-structured combinatorial optimization problems like vehicle routing, cutting
stock, p-median, generalized assignment, and many others. Their common structure is the
(bordered) block-diagonal form of the coefficient matrix, the traditional realm of Dantzig-
Wolfe decomposition. Be aware that so far its use is tailored to the application and far from
being a general-purpose tool: It is the user who does not only know that there is an exploitable
structure present but also what it looks like, and how to exploit it algorithmically. In partic-
ular in view of the automatism with which general-purpose cutting planes are separated in all
serious MIP solvers, this is an unsatisfactory situation. This raises several research questions
of increasing ambition:

• When the MIP contains a known structure suitable to Dantzig-Wolfe reformulation, can
an algorithm detect and exploit it?
• When the contained structure is unknown (to be stated more precisely later), can it still

be detected and exploited?
• When it is known that the MIP does not contain a structure amenable to DWR in the

traditional sense, can DWR still be a useful computational tool?

5

6 Partial Convexification and Dantzig-Wolfe Reformulations of General MIPs

Re-arranging matrices into particular forms is a well-known topic. However, as we will see,
when there are several choices, a “good” one may not be obvious to find at all. Besides our
work, we are not aware of any attempts to systematically answer the first two questions in a
DWR context, and it can be taken as a fact that the research community is very inclined to
answer the last, and most interesting question in the negative. In our computational study
on several of the hardest MIPLIB2003 instances, we do not only suggest first attempts to
accomplish the structure detection in a DWR context. We also support the DWR’s potential
of becoming a general-purpose method for improving dual bounds by giving surprisingly
encouraging computational results. Of course, at the moment, our work is not intended
to produce a competitive tool, but to provide a proof-of-concept and demonstrate that the
direction is promising. The main findings of our work can be summarized as follows:

• A known or hidden double-bordered block-diagonal (so-called: arrowhead) matrix struc-
ture can be effectively recovered and prepared for use in DWR by a suitable use of
(hyper-)graph partitioning algorithms.
• For some of the hardest MIPLIB2003 instances our reformulations produce stronger
dual bounds than CPLEX 12.2 with default cutting planes enabled.
• We provide a general-purpose implementation which reads an LP file and performs the
detection, the reformulation, and the column generation itself in order to obtain a strong
LP relaxation, with only mild user interaction.

The flow of the chapteris as follows: We briefly introduce the concept of partial convexification,
and the overall approach. This is then applied to general MIPs. We report on extensive
computational experiments and close with a discussion of our results.

2.1.1 Partial Convexification and Dantzig-Wolfe Reformulations

Consider a MIP of the form

max{ctx : Ax ≤ b, Dx ≤ e, x ∈ Zn−q ×Qq} . (2.1)

Let P := {x ∈ Qn : Dx ≤ e} and PIP := conv{P ∩ Zn−q × Qq} denote the LP relaxation
and the integer hull with respect to constraints Dx ≤ e, respectively. We assume for ease of
presentation that P is bounded. In the classical Dantzig-Wolfe reformulation of constraints
Dx ≤ e we express x ∈ PIP as a convex combination of the vertices V of PIP , which leads to

max{ctx : Ax ≤ b, x =
∑

v∈V

λvv,
∑

v∈V

λv = 1, λ ≥ 0, x ∈ Zn−q ×Qq} . (2.2)

It is well-known that the resulting LP relaxation is potentially stronger than that of (2.1)
when PIP (P , which is a main motivation of performing the reformulation in the first place.
This partial convexification with respect to the constraints Dx ≤ e corresponds to adding
(implicitly) all valid inequalities for PIP to (2.1), which in a sense is the best one can hope
for.

The reformulated MIP (2.2) has fewer constraints remaining, the so-called master constraints

Ax ≤ b, plus the convexity constraint and the constraints linking the original x variables to
the extended λ variables. On the downside of it, in general MIP (2.2) has an exponential
number of λ variables, so its LP relaxation is solved by column generation, where the pricing
or slave MIP problem to check whether there are variables with positive reduced cost to
be added to the current master LP problem calls for the optimization of a linear objective

Introduction 7

function over PIP . This slave MIP can either be solved by a general-purpose solver or by a
tailored algorithm to exploit a specific structure, if known.

In the classical DWR setting, k disjoint sets of constraints are partially convexified, namely
when the matrix D has block-diagonal form

D =

D1

D2

. . .

Dk

,

where Di ∈ Qmi×ni for i = 1, . . . , k. In other words, Dx ≤ e decomposes into Dixi ≤
ei (i = 1, . . . , k), where x = (x1, x2, . . . , xk), with xi being an ni-vector for i = 1, . . . , k. Every
Dixi ≤ ei individually is partially convexified in the above spirit. We call k the number

of blocks of the reformulation. Often enough, constraints are not separable by variable sets
as above, and a double-bordered block-diagonal (or arrowhead) form is the most specific
structure we can hope for, i.e. the constraint matrix of (2.1) looks like this

D1 F 1

D2 F 2

. . .
...

Dk F k

A1 A2 · · · Ak G

.

The constraints associated with the rows of A1 are called the coupling constraints and the
variables associated with the columns of F 1 are called the linking variables. One can obtain
a form without linking variables (and with additional linking constraints) by replacing each
linking variable by one copy for each nonzero entry of the associated column and adding
constraints imposing that all these copies be equal (see e.g., [118]). Then we are back to the
above traditional setting.

2.1.2 Related Literature

For a general background on Dantzig-Wolfe reformulation of MIPs we refer to the recent
survey [88]. The notion of partial convexification has been used before. For instance, Sherali
et al. [82] choose small subsets of integer variables (and usually only one constraint) to directly
separate cutting planes from the partial convexification PIP . Our approach goes far beyond
that in terms of number of constraints and variables involved in the reformulation.

There are several implementations which perform a Dantzig-Wolfe reformulation of a gen-
eral MIP, and handle the resulting column generation subproblems in a generic way, like
BaPCod [84], DIP [86], G12 [85], and GCG [87]. In [87] it is shown that a generic reformulation
algorithm performs well when a block-diagonal matrix structure is known and given to the
algorithm. Tebboth, in his thesis [118], derived some decomposable matrix structures from
the problem given in a specific modeling language. A similar approach is taken in the G12

project. However, we do not know of a code which automatically detects a possible structure
just from the matrix, that is well-suited and helpful for a Dantzig-Wolfe reformulation (or
creates one by variable splitting), let alone evaluates or exploits it.

Bordered block-diagonal matrices play an important role in, e.g., numerical linear algebra.
One typically tries to identify a fixed number of blocks of almost equal size with as few

8 Partial Convexification and Dantzig-Wolfe Reformulations of General MIPs

constraints in the border as possible. The motivation is to prepare a matrix for parallel
computation, like for solving linear equation systems, see, e.g., [89], and the references therein.
We are not aware of any attempts to evaluate the quality of the re-arranged matrices in terms
of suitability for DWR.

We would also like to note the following possible connection to multi-row cuts which recently
received some attention. Computational experiments [79] suggest that obtaining valid in-
equalities from more than one row of the simplex tableau holds some potential. However, in
order to use this potential it seems to be imperative to have a criterion for which rows to
select. As our choice of which rows to convexify is equally important for similar reasons, the
lessons we learn may help there as well.

2.2 Almost Automatic Detection of an Arrowhead Form

As mentioned, permuting a matrix A into arrowhead form is a common topic in numerical
linear algebra. There is a folklore connection between a matrix and an associated (hyper-
)graph which is also used in the graph partitioning approach by Ferris and Horn [80]. We
first briefly illustrate their algorithm and then adapt it to our purpose of finding tighter LP
relaxations of MIPs through DWR.

Assume the number k of blocks is given. Consider the bipartite graph G with one node ri
associated with each row i of A, one node cj associated with each column j of A, and one
edge (ri, cj) whenever aij 6= 0. Assuming the number m + n of nodes is a multiple of k,
find a min k-equicut of G, i.e. partition its node set into k subsets of equal size so that the
number of edges in the cut, i.e. that join nodes in different subsets, is minimized. Finally,
remove a set of nodes of G so as to ensure, for the remaining graph, that no edge joins nodes
in different subsets of the partition. This yields the final arrowhead form: the row nodes
removed represent the coupling constraints, the column nodes removed represent the linking
variables, and the remaining row and column nodes in the ith subset of the partition define
the submatrix Di. In practice, min k-equicut is solved heuristically by using Metis which is
an implementation of the multilevel graph partitioning algorithm in [90]. The final removal is
done greedily by iteratively removing the node joined to nodes in other subsets by the largest
number of edges. Moreover, to eliminate the need to require that the number of nodes be a
multiple of k or to insist in having subsets of the same size, dummy nodes disconnected from
the rest of the graph are added before doing the partitioning. This imposes only an upper
bound on the size of each subset and on the number of subsets (note that subsets with dummy
nodes only are irrelevant in the end).

We use a variant of this method because we would like to avoid the final removal phase.
Specifically, we define the hypergraph H with a node for each nonzero entry of A. There is
a constraint hyperedge joining all nodes for nonzero entries in the ith row of A. Moreover,
there is a variable hyperedge joining all nodes for nonzero entries in the jth column of A. To
each hyperedge we associate a cost to penalize the use of coupling constraints and linking
variables.

Then, we find a heuristic min k-equicut of H, now with the objective of minimizing the sum of
the costs of the hyperedges in the cut, i.e. that join nodes in different subsets of the partition.
The solution already defines the arrowhead form, as the constraint hyperedges in the cut
represent the coupling constraints, the variable hyperedges in the cut represent the linking
variables, and the remaining constraint and variable hyperedges joining only nodes in the ith

Computational Results 9

subset of the partition define the submatrix Di. Also in this case we use dummy nodes for
allowing for unequal block sizes, 20% proved useful.

(a) original 10teams (b) detected structure

Figure 2.1: (a) Matrix structure directly from the LP file (10teams) and (b) with a bordered
block-diagonal structure detected by our algorithm

2.3 Computational Results

2.3.1 Notes on the Implementation and Experimental Setup

All experiments were done on Intel i7 quad-core PCs (2.67MHz, 8GB memory) running Linux
2.6.34 (single thread). As MIP and LP solver we used CPLEX 12.2 (single thread). Two
independent jobs were run in parallel which has an impact on the CPU time of about 3% in
our experiments. The min k-equicut problems to determine a reformulation (see Sect. 2.2)
are heuristically solved using Hmetis [90].

Concerning the implementation, the overall algorithm detects an arrowhead form in the ma-
trix, splits linking variables in order to obtain a bordered block-diagonal form, and then
performs a Dantzig-Wolfe reformulation of the resulting blocks. Certain parameters must
be given to the algorithm like the number k of blocks or the weights of the hyperedges in
the k-equicut problem. We experimented with very few different settings and selected good
decompositions instance dependent to demonstrate the concept. In the full version of this
chapterwe plan to show that the whole process can be automated without any user interac-
tion at all.

2.3.2 MIPLIB2003

In order to assess the generality of the proposed method we tested the algorithm on MI-
PLIB2003 instances [83]. We selected a subset of instances, for which (a) the optimum is
known, (b) the density is between 0.05% and 5%, (c) the number of non-zeros is not larger
than 20,000, and (d) the percentage of discrete variables is at least 20%. We are consistently
capable of improving over the LP relaxation in terms of the dual bound. Moreover, on average,
our DWR approach closes a larger percentage of the integrality gap than CPLEX with default
cuts applied, see Table 2.1. We do not report on computation times because the experience
is the same as for the RAP (and not the focus here): Often, we need an order of magnitude
more time (even though occasionally, we are competitive with CPLEX).

10 Partial Convexification and Dantzig-Wolfe Reformulations of General MIPs

Choosing a good decomposition We experimented with a few parameter settings for
our algorithm to detect an arrowhead structure. Depending on these settings, different ar-
rowhead forms are produced (for the same input matrix), and these perform differently in
the subsequent Dantzig-Wolfe reformulation. Parameters are (a) the number k of blocks, and
the penalties for hyperedges which (b) split continuous and (c) discrete variables, as well as
(d) penalties for hyperedges which couple constraints. We experimented with k ∈ {2, 3, 4, 5},
penalized (throughout all experiments) hyperedges corresponding to continuous and discrete
with cost 1 and 2, respectively; and finally we used two different settings for penalizing cou-
pling constraints: mildly (cost 5) and extremely (cost 105). Every combination was applied
to each instance, and the best result in terms of dual bound is reported. In other words, in
this paper, we give only a proof-of-concept that a good decomposition can be chosen. How

to find a good decomposition, and even the meaning of “good,” are highly non-trivial issues.
E.g., the “right” number k of blocks is far from obvious for instances that do not have a nat-
ural (bordered) block-diagonal form. We have preliminary computational experience that a
“visually appealing” decomposition performs better than others. We give details on measures
for this intuition, and on how to automate the detection and decomposition process in the
full version.

Table 2.1 shows that in almost all cases the dual bound found by our DWR approach is much
better than that of the continuous relaxation, and often even improves on CPLEX’s root node
bounds with default cuts applied. The time required to compute our bound is not competitive
with the time required by the general-purpose solver to solve the instance, but there remains
the possibility that for some instances the significantly stronger dual bound helps in solving
the instance to integer optimality.

2.4 Discussion

We have performed the first systematic computational study with an automatic partial con-
vexification by a Dantzig-Wolfe type reformulation of subsets of rows of arbitrary mixed
integer programs. While it is clear from theory that a partial convexification can improve
the dual bound, it has not been considered a generally useful computational tool in practice.
Thus, the most unexpected outcome of our study is that already a fairly basic implementation,
combined with a careful choice of the decomposition, is actually capable of competing with or
even beating a state-of-the-art MIP solver in terms of the root node dual bound. Interestingly,
to the best of our knowledge for the first time, the “careful choice of the decomposition” is
done almost entirely by an algorithm, only mildly helped by the user.

One should not deny that an inner approximation of the integer hull still has considerable
disadvantages, as the process is not reversible: we cannot easily get rid of the extended
formulation. Also, the choice of the decomposition is final (at present). This “single shot”
contrasts cutting plane algorithms which can iteratively increase the number of classes of
valid inequalities considered. Therefore, one must carefully decide whether to use a DWR
approach or not. A remote goal would be to be able to make this important decision based
on the instance only. If in, say, even only a small fraction of “all” MIPs a DWR approach
pays, we would have already enriched the generic MIP toolbox.

There are some possible immediate extensions concerning the implementation. Even though
we have mainly solved the LP relaxation so far, our tool is able to perform a true branch-and-
price. Only further experimentation can show whether the advantage in the root node can

Discussion 11

be retained throughout the search tree, not only for dynamic MIPs but also for general MIPs
(it is also conceivable that an advantage becomes visible only further down the tree). If one
is only interested in a strong dual bound, the addition of generic cutting planes is a natural
next step.

All the questions initially posed in the introduction are computationally and conceptually
extremely hard, and at present one cannot hope for conclusive answers to any of them. We
therefore think that our work spawns a number of interesting research directions worth pur-
suing further .

1. The most important task, both from a theoretical and a practical point of view, is to
characterize a good decomposition. This can also help in quickly deciding whether it is
worth trying a reformulation or not.

2. We have seen that the matrix needs not contain any (known) apparent structure in
order to make the method perform well. In particular our third question from the
introduction needs re-formulation in the light of our results: what does the fact that a
model is suitable for application of DWR mean?

3. Extended formulations are a topic on its own in combinatorial optimization, mainly used
as a theoretical vehicle to obtain stronger formulations. As DWR is a particular kind
of extended formulation it is natural to ask: Can an approach like ours turn this into a
computational tool?

4. We complained that, once chosen, a decomposition is static. Is there a computationally
viable way for dynamically updating an extended formulation, like our DWR?

Taking into account that state-of-the-art solvers make successful use of cutting planes for
over 15 years now, it is clear that outer approximations of the integer hull have a prominent
headway in experience over inner approximations. We hope to have inspired further research
and experimentation on the topic of this chapter.

12 Partial Convexification and Dantzig-Wolfe Reformulations of General MIPs

(a) aflow30a (b) fiber

(c) gesa2 (d) glass4

(e) harp2 (f) mkc

(g) noswot (h) p2756

(i) set1ch (j) timtab1

Figure 2.2: Detected matrix structures for selected MIPLIB2003 instances

Discussion 13

LP DWR CPLEX+cuts

instance rows cols k ℓ c gap gap %closed gap %closed

10teams 2025 230 4 0 107 0.758 0.000 100.000 0.000 100.000

aflow30a 842 479 2 0 28 15.098 14.700 2.634 5.353 64.547

aflow40b 2728 1442 5 0 39 13.899 13.899 0.000 6.471 53.441

fiber 1298 363 2 2 21 61.550 1.067 98.266 1.894 96.923

fixnet6 878 478 4 3 14 69.850 18.882 72.967 6.064 91.318

gesa2-o 1224 1248 5 65 0 1.177 0.000 99.986 0.207 82.379

gesa2 1224 1392 3 65 0 1.177 0.000 99.986 0.100 91.507

glass4 322 396 3 16 0 33.334 26.713 19.862 33.334 0.000

harp2 2993 112 5 0 39 0.614 0.614 0.000 0.371 39.599

manna81 3321 6480 2 78 0 1.010 0.000 100.000 0.000 100.000

mkc 5325 3411 2 0 29 8.514 0.153 98.200 3.778 55.625

modglob 422 291 2 18 3 1.493 0.000 100.000 0.142 90.480

noswot 128 182 5 21 3 4.878 0.488 90.000 4.878 0.000

opt1217 769 64 4 0 16 25.134 25.134 0.000 0.000 100.000

p2756 2756 755 4 39 13 13.932 0.269 98.070 7.467 46.407

pp08a 240 136 2 16 0 62.608 2.172 96.530 2.525 95.967

pp08aCUTS 240 246 2 16 0 25.434 2.172 91.459 3.823 84.968

rout 556 291 5 0 16 8.881 0.681 92.335 8.858 0.262

set1ch 712 492 3 20 8 41.311 2.086 94.950 0.923 97.765

timtab1 397 171 2 13 0 96.248 14.473 84.963 39.050 59.428

timtab2 675 294 4 25 0 92.377 24.426 73.559 46.004 50.200

tr12-30 1080 750 3 24 0 89.119 2.713 96.955 0.682 99.235

vpm2 378 234 2 7 0 28.078 1.706 93.924 6.443 77.053

arithm. mean 30.281 6.624 74.115 7.755 68.570

Table 2.1: Comparison of the dual bounds provided by our automatic DWR reformulation
approach and the general-purpose MIP solver CPLEX for 23 selected instances of MIPLIB2003.
Listed are the instance name, the number of constraints and variables, the number k of blocks,
the number ℓ of linking variables, and number c of coupling constraints. Under the heading LP
one finds the relative integrality gap of the LP relaxation (in percent). The relative integrality
gaps of DWR and CPLEX with default cuts applied are listed under DWR and CPLEX+cuts,
respectively. The percentage of the LP gap closed is given under %closed for both approaches.
The last row lists arithmetic means of the columns.

14 Partial Convexification and Dantzig-Wolfe Reformulations of General MIPs

Chapter 3

Application: Temporal Knapsack

Problem

3.1 A Class of Structured MIPs without Block-Diagonal Form

We consider a class of problems which has a natural MIP formulation with a coefficient
matrix which is very structured, but not completely bordered block-diagonal. A dynamic

MIP extends a MIP

max{ctx : Ax ≤ b, x ∈ Zn−q ×Qq}

by a time horizon [0, T] and a time interval [oj , fj] ⊆ [0, T] in which each variable xj is active.
In the dynamic MIP all constraints must be satisfied at any instant in the time horizon
restricting attention to the variables that are active at that instant (with the other variables
fixed to 0). It is simple to observe that the check can be restricted to the instants I :=
{o1, . . . , on, f1, . . . , fn} in which a variable becomes active or inactive, yielding the following
MIP formulation of the dynamic MIP:

max{ctx : Aix ≤ b (i ∈ I), x ∈ Zn−q ×Qq}, (3.1)

where Ai is obtained from A by setting to 0 all the entries of columns associated with variables
not active at i ∈ I.

A simple example of a dynamic MIP is the dynamic 0-1 knapsack problem, in which q = 0
and Ax ≤ b takes the form atx ≤ b, 0 ≤ x ≤ 1 for some a ∈ Qn

+ and b ∈ Q+. Namely, we
have a set of items each with a size aj and active for time interval [oj , fj] and a container of
capacity b and we must select a set of items to pack in the container (for the whole interval
in which they are active) so that the total size packed in each instant is at most b. This
problem is also known as the temporal knapsack problem, resource allocation or unsplittable

flow on a line. The latter name is due to the fact that the time dimension may in fact be a
(one-dimensional) spatial dimension, as is the case in the following real-world application that
we encountered in railway service design [92]. We are given a railway corridor with m stations
1, . . . ,m and n railcars, the jth having weight aj and to be transported from station oj to
station fj , gaining profit cj in this case. Moreover, we have a train that travels from station
1 to station m and can carry at the same time railcars for a total weight b. The problem
is to decide which railcars the train carries in order to maximize the profit, and is clearly a
dynamic 0-1 knapsack problem.

15

16 Application: Temporal Knapsack Problem

Although the dynamic 0-1 knapsack problem has been widely studied in the literature, the
most basic questions on its complexity are still open, namely it is not known whether it is
strongly NP-hard (being trivially weakly NP-hard as it generalizes the 0-1 knapsack problem)
or if it has a polynomial-time approximation scheme.

3.2 Problem Definition

The Temporal Knapsack Problem (TKP) has a set of tasks which share a limited resource.
Each task, if selected, consumes a given amount of the resource during a specified time interval,
and produces a given profit. The problem asks for the selection of the subset of tasks which
maximizes the profit without exceeding the available resource.

Formally, we are given a set of tasks j = 1, . . . , n, each task has a starting time oj , an ending
time fj and profit pj . A quantity wj of resource is consumed by task j during the interval
[oj , fj). The total resource available is C. The problem asks for the selection of the subset of
tasks which maximizes the profit without exceeding the available resource at any time. All
the problem data are positive integers. The TKP is a natural generalization of the Knapsack

Problem, which arises when a time instant is specified.

Following Calinescu et al. [94], we say that a task z is active at an instant t if oz ≤ t < fz,
and for each z we define Tz to be the set of tasks that are active at time tz. A straightforward
ILP model for the TKP , where variable xj is 1 if task j is selected, is [94]:

max

n
∑

j=1

pjxj (3.2)

∑

j∈Tz

wjxj ≤ C z = 1, . . . , n (3.3)

xi ∈ {0, 1} i = 1, . . . , n (3.4)

where a constraint is defined for every starting instant of a task. However this model can
produce redundant dominated constraints, i.e., constraints of the form:

∑

j∈K

wjxj ≤ C (3.5)

when a constraint exists in the model:

∑

j∈K

wjxj ≤ C (3.6)

with K ⊂ K. In order to have only non-dominated constraints, a constraint for an instant si
must be considered only when the next event which takes place in a subsequent instant is the
termination at tj of a task j. From now on, we will consider ILP formulations of the TKP
where the dominated constraints of type (3.5) are removed. In particular, we will have m < n
knapsack constraints, i.e.:

Problem Definition 17

max
n
∑

j=1

pjxj (3.7)

∑

j∈Gi

wjxj ≤ C i = 1, ...,m (3.8)

xj ∈ {0, 1} j = 1,, n (3.9)

where Gi is the index set of the variables which appear in constraint i with a non-zero
coefficient. In this chaper we will denote model (3.7) - (3.9) as TRAD−TKP , to distinguish
it from the reformulations that we are going to propose. This model has multiple knapsack
constraints with right-hand-side equal to C and the following structure:

• The weight of a task i is wi in all the constraints where i appears with a non-zero
coefficient;

• the non-zero coefficients of a given column appear in consecutive rows.

Thus, the TKP is a special case of the Multiple Knapsack Problem, which is a knapsack
problem with more than one constraint and non-negative integer weights and capacity. The
continuous relaxation and the dual of the TRAD − TKP read as follows:

Continuous relaxation of the Primal Model:

max
n
∑

j=1

pjxj (3.10)

∑

j∈Gi

wjxj ≤ C i = 1, . . . ,m (ηi) (3.11)

xj ≤ 1 j = 1, . . . , n (ιj) (3.12)

xj ≥ 0 j = 1, . . . , n (3.13)

Dual Model:

min

m
∑

i=1

Cηi +

n
∑

j=1

ιj (3.14)

∑

i:j∈Gi

wjηi + ιj ≥ pj j = 1,n (3.15)

ηi ≥ 0 i = 1, ...m (3.16)

ιj ≥ 0 j = 1,n (3.17)

The dual minimizes a total cost given by the constraints selected multiplied by the capacity
C plus the dual variables ιj . The constraints ensure that for each item j the summation of

18 Application: Temporal Knapsack Problem

the ηi variables s.t. i : j ∈ Gi multiplied by item weight plus the correspondent ιj is at least
equal to the item profit pj . Algorithm (1) describes the procedure needed to find the Maximal
Knapsack Constraints, the complexity is O(n2).

Algorithm 1 Procedure to find Maximal Knapsack Constraints

Input:
ITEMS= vector of the items arranged by beginning time non decreasing
oj= beginning time of item j,fj=finishing time of item j, for j = 1,....,n
Output:
m = number of Maximal Constraints, Gi for i = 1,....,m

m = 0,check = -1
for k = 1 to n do

for z = 1 to n do
time= oz;
if oz < fk then

time = oz;
else
break;

end if
end for
if time != check then

Im = time; m++;
end if
check = time;

end for
for k = 1 to m do

g=0;
for z = 1 to n do

if (oz ≤ Ik) AND (fz > Ik) then
Gk,g= ITEMSz; g++;

end if
end for

end for

The TKP and some closely related problems have been considered in the literature with vari-
ous names. Computational approaches can be found in Hall and Magazine [97], who consider
a generalization of the TKP problem where tasks have a fixed duration but the starting time
can vary in a specified interval. This models the scheduling of tasks during a space mission,
where each task can take place only during a specified time interval. They propose some
heuristic algorithms and upper bounds, which are integrated in an exact approach, and tested
on a set of randomly generated instances with 50 to 200 tasks. The proposed exact approach
can consistently solve instances with up to 50 tasks.

Barlett et al. [95] consider a generalization of the TKP where the dimension of the Knapsack
(i.e., the capacity C), is not fixed but varies over time. The authors propose an algorithm
which integrates search tree techniques with cuts generation. The algorithm is experimentally
tested on small instances with fixed C (i.e., TKP instances) and compared with the solution

Problem Definition 19

of model (3.2)–(3.4) by means of the general purpose ILP solver CPLEX 8.1.

As far as computational complexity is concerned, the TKP is clearly NP-hard since it gen-
eralizes the classical 0-1 Knapsack problem, while the question of whether a PTAS for TKP
exists is still open (see [94]).

Arkin and Sivelsberg [96] consider the problem of scheduling jobs with predefined starting
and ending times on C identical machines, by maximizing the value of the completed jobs.
This corresponds to a TKP where all the weights are identical: the problem is trivially
polynomially solvable because the constraint matrix of the ILP model (3.2)–(3.4) is, in this
case, totally unimodular; the authors also give a O(n2 log n) algorithm. They also prove
that the scheduling problem with identical weights and a subset of machines associated with
each job (i.e., for each job a subset of machines where it can be scheduled is given) remains
NP-hard, and they give a O(nC+1) algorithm for the case of a fixed number of machines C.

Chen et al [98] refer to the TKP as Bandwidth Allocation and sketch a possible dynamic
programming approach which is closely related to the O(nC+1) algorithm in [96]. In addition,
they propose a polynomial-time approximation algorithm for the special case of TKP where
the profit of an item i is proportional to (ti − si)wi.

Calinescu et al [94] show that the TKP , which they call Resource Allocation Problem, can
be (1/2 − ǫ)-approximated in polynomial time with a randomized algorithm, while recently
Darmann et al. [93] discuss some generalizations of the problem, review complexity results
for special cases of TKP and prove that the problem remains NP-hard for the case where
all the items’ profits are identical. In addition, they give a deterministic polynomial time
(1/2 − ǫ)-approximated algorithm for the special case where the tasks’ start and end times
define a proper interval graph (i.e., no interval of activity of a task is contained in another
interval of activity).

Example

Table 3.1 contains the data for the Temporal Knapsack Example 1, then figure 3.1 and
figure 3.2 show the interval graph representation of that example. An interval graph is the
intersection graph of a multiset of intervals on the real line. It has one vertex for each interval
in the set, and an edge between every pair of vertices corresponding to intervals that intersect.
These graphs are useful in modeling temporal knapsack problems, each interval represents a
request for a resource for a specific period of time. In figure 3.1 the ellipses represent the sets
T of model (3.2) - (3.4) while in figure 3.2 they represent the sets G of model (3.7) - (3.9).
Tables 3.5 and 3.3 show the objective functions and the constraints of models, respectively.

Task Profit Weight Start Finish

Item1 1 2 1 3
Item2 2 2 2 14
Item3 1 3 5 10
Item4 3 2 7 8
Item5 4 1 12 13

C=5

Table 3.1: Data example 1

20 Application: Temporal Knapsack Problem

time

p1=1,w1=2

1 3

p2=2,w2=2

2 14

p3=1,w3=3

5 10

p4=3,w4=2

7 8

p5=4,w5=1

12 13

T={1}

T={1,2}

T={2,3}

T={2,3,4}

T={2,5}

Figure 3.1: Interval Graph Example 1

O.F. 1x1 +2x2 +1x3 +3x4 +4x5

S.T. 2x1 ≤5
2x1 +2x2 ≤5

+2x2 +3x3 ≤5
+2x2 +3x3 +2x4 ≤5
+2x2 +1x5 ≤5

Table 3.2: Example 1 Model (3.2) - (3.4)

time

p1=1,w1=2

p2=2,w2=2

p3=1,w3=3

p4=3,w4=2

p4=1,w5=1

1 2 3 5 7 8 10 12 13 14

G={1,2}

G={2,3,4}

G={2,5}

Figure 3.2: Interval Graph Example 1 ”Maximal Constraints”

O.F 1x1 +2x2 +1x3 +3x4 +4x5

S.T. 2x1 +2x2 ≤5
+2x2 +3x3 +2x4 ≤5
+2x2 +1x5 ≤5

Table 3.3: Example 1 Model (3.7) - (3.9)

Dynamic Programming 21

3.3 Dynamic Programming

Dynamic Programming Algorithm 1

The first Dynamic Programming Algorithm is the extension of the dynamic programming for
KP01 and it has an overall complexity is O(n(c+1)h). To initialize the algorithm we need to
compute F g for g = 0, . . . , (C+1)h which represent all the possible fillings of the h knapsacks.
In our case however we always have n updates, one for each item, but the data structure must
be suitable to contain all the possible configurations of h knapsacks of capacity C. Algorithm
2 shows the pseudo code of the procedure.

Algorithm 2 Dynamic Programming Algorithm 1

Input:
C, (pj , wj) for j = 1, . . . , n Gi for i = 1, . . . , h
F g for g = 0, . . . , (C + 1)h

Output:

J({C}h) = optimal subset
f({C}h) = optimal profit

for g = (C + 1)h − 1 down to 0 do
f(F g) = 0;
J(F g) = {};

end for
for j = 1 to n do

for g = (C + 1)h − 1 down to 0 do
for i = 1 to h do
if j ∈ Gi then
F ∗
i = F g

i − wj ;
if F ∗

i < 0 then
break;

end if
end if
if f(F ∗) + pj > f(F g) then

f(F g) = f(F ∗) + pj ;
J(F g) = J(F ∗) ∪ {j};

end if
end for

end for
end for

This algorithm is very effective for instances characterized by a low value of capacity C, but
the computational complexity grows exponentially in the number of knapsacks h. The number
of items simultaneously present in each knapsack does not affect the complexity, while the
only important thing is the absolute number of items n.

22 Application: Temporal Knapsack Problem

Dynamic Programming Algorithm 2

Arkin and Silverberg [96] give an O(nC+1) algorithm for scheduling jobs on C machines
where a job can only be processed by a subset of the available C machines. The algorithm
is polynomial when the number of machines C is fixed. The key ingredient of the algorithm
is the fact that in every instant at most C jobs can be selected, thus giving O(nC) possible
job configurations (per instant). The idea is used to build a polynomial-size acyclic digraph
where paths correspond to feasible selections of items.

The same observation is valid for the TKP with regard to the polynomial number of job
combinations which can be selected at a given instant. This is used in [98] to sketch a
dynamic programming algorithm and prove that the TKP is polynomially solvable for fixed
C.

We follow instead the line of [96] and propose an algorithm which is based on an acyclic
digraph representation. Let the amount of resource C be fixed, and consider the formulation
TRAD − TKP . We define a directed graph Γ = (V,A) with a layer for each subset Gi. We
now introduce the sets Ei−1,i which represent the common items between Gi−1 and Gi. The
first set E0,1 is the empty set. Given a layer, there is a node for each feasible combination of
tasks that belong to the set Gi /Ei−1,i, i.e. new active items at the constraint associated with
the layer. In other words, each node is thus associated with a constraint, a list of active tasks
and the corresponding amount of used resource. There are m of such layers, plus an initial
layer σ and a final layer τ with only one node, when no task is active.
For each layer, there are at most 2|Gi\Ei−1,i| subsets of active tasks, so there are at most
O(2|Gi\Ei−1,i|) nodes at layer i, i.e., there are at most O(2C) nodes per layer (each items uses
at least one unit of resource), and O(m2C) nodes in the whole graph. Now let graph Γ be
constructed up to layer i − 1. We connect the node s of layer i with the nodes s of the
preceding layer i − 1 if and only if s ∪ Ei−1,i is equal to (s ∩ Ei−1,i) ∪ s. We set the arch
profit equal to the profit of the items in s. According to this construction each node has at
least one exiting arch and one entering arch, probably more than one. Finally the source
node σ is linked to all the nodes of the first layer and all the nodes of the last layer are linked
to the sink node τ . It is easy to demonstrate that the number of arches in this graph is
O(m22|Gr/Er−1,r|) and a path of maximum length for Γ, from the super source σ to the super
sink τ , represents an optimal solution of the associated Temporal Knapsack Problem. It is
important to underline that although the graph size is polynomial for fixed C, this can be
unnecessarily large in practice. This idea works when the item number simultaneously active
is low (≤25) in all the constraints or when we have an high number of items active in many
subsets G.

The pseudo code 3 formally describes an efficient way of computing the path of maximum
length for Γ, i.e. the optimal solution of the Temporal Knapsack Problem. You update two
data structures, f and J , of variable dimension according to the number of feasible subsets of
each layer, m times. Each element of the first one, let’s say fi,k, stores the value of the best
path up to each feasible subset k of layer i. Each element of the second one, let’s say Ji,k,
stores the optimal item subset respectively. In the final layer m, you can find the optimal
solution scanning the entire data structure fh, i.e. identifying the optimal value fh,opt and
the correspondent optimal item subset Jh,opt.

Dynamic Programming 23

Algorithm 3 Dynamic Programming Algorithm 2

Input:
C, (pj , wj) for j = 1,....,n Gi for i = 1,....,m
Ei−1,i for i = 1,....,m
Si = {s ⊆ Gi/Ei−1,i : weight(s) ≤ C} for i = 1,....,m
Output:
Jh,opt = optimal subset
fh,opt = optimal profit

for g = 1 to g = 2|S1| do
f1,g = profit(s1,g);
J1,g = s1,g;

end for
for j = 2 to m do

for k=1 to k=2|Sj−1| do
for g=1 to g=2|Gj/Ej−1,j | do

s∗ = (sj−1,k ∩ Ej−1,j) ∪ sj,g;
if weight(s∗) ≤ C then
if ((profit(sj,g) + fj−1,k) ≥ fj,g) then

Jj,g = J(sj−1,k) ∪ sj,g;
fj,g = profit(sj,g) + fj−1,k;

end if
end if

end for
end for

end for
opt = index of the best subset

The figure 3.3 gives a sketch of the behavior of this algorithm related to the data of example
1. In that case we have 3 subsets G, i.e { 1,2 } { 2,3,4 } { 2,5 }. Each node of the graph is
divided in 3 parts: the item subset, the correspondent weight and the the profit of the best
path up to the current node. That profit is the profit of the current subset plus the profit of
the best father node minus the profits of the common elements between the two nodes. In
this figure we enumerated all the subsets of each G to make it simpler to understand while,
as shown in the pseudo code of the dynamic programming algorithm 3, it is sufficient to deal
with the subset of items which are in Gi and not in Gi−1. It is important to notice that
subsets with a weight higher than the capacity C are deleted; for instance subset { 2,3,4 }
of G2 which has a weight of 7 has been deleted because the capacity C is only 5. In this
example the optimal final node is { 2,5 } The cumulative profits is 10, which represents also
the optimal solution value. The optimal path of the node { 2,5 } is { } - { 1,2} - { 2,4 }
and finally { 2,5 }. Finally it is important to stress that the implementation of the algorithm
requires storing just two layers of subsets each time, in that the optimal path up to the nodes
is stored in the profit value.

24 Application: Temporal Knapsack Problem

Profit

Weight

Set

0

0

{ }

0

0

{ }

1

2

{1}

2

2

{2}

3

4

{1,2}

1

0

{ }

3

2

{2}

2

3

{3}

4

2

{4}

4

5

{2,3}

6

4

{2,4}

5

5

{3,4}

*

*

{2,3,4}

6

0

{ }

6

2

{2}

9

1

{5}

10

3

{2,5}

Figure 3.3: Dynamic Programming Algorithm 2 example

3.4 A Pseudo-Compact Reformulation

In this section we give a reformulation of model TRAD−TKP (3.7) - (3.9), whose continuous
relaxation produces stronger upper bounds, thus being more suitable for the exact solution
of the TKP with a general purpose ILP solver. Although the reformulation is discussed for
the case of TKP , it is general enough to be applied to any (mixed) Integer Linear Program.
However, the structure of the constraint matrix of TRAD − TKP (discussed in Section 3.2)
makes the reformulation particularly effective. In Section 3.4.1 we review the “traditional”
procedure for deriving valid cuts for an ILP, and compare it with the proposed reformulation,
which is presented in Section 3.4.2. The same reformulation is interpreted in a Dantzig-Wolfe
fashion in Section 3.4.3.

A Pseudo-Compact Reformulation 25

3.4.1 Cut Generation

Consider a generic subset of the constraints (3.8), call it h and let Ih ⊂ {1, . . . ,m} be the
index set of the constraints in h. We denote by Gh the index set of the variables which appear
in at least one of the constraints in h with a non-zero coefficient. We consider the exact

separation over the convex hull PI(h) of the vectors, restricted to variables in Gh, satisfying
these constraints and the integrality requirements (which is bounded for the TKP):

PI(h) := conv{x :
∑

j∈Gi

wjxj ≤ C, i ∈ Ih xj ∈ {0, 1}, j ∈ Gh} (3.18)

Let z1h,. . . , z
p
h be the vertices of PI(h), where zkh,j is the value of the j-th component in the

k-th vertex.

Given a fractional solution x∗ to model TRAD−TKP , the “traditional” procedure for deriving
a cut separating x∗ and which is valid for PI(h), i.e. which is valid for all vertices z1h,. . . , z

p
h,

is by solving the following separating LP, where we restrict the variables not in Gh to be zero:

max
∑

j∈Gh

x∗jαj − β (SEP) (3.19)

∑

j∈Gh

zkh,jαj ≤ β k = 1, . . . , p (3.20)

0 ≤ αj ≤ 1 j ∈ Gh (3.21)

0 ≤ β (3.22)

where (3.21) is a normalization condition on the values of α. Model SEP has exponentially
many constraints, one for each vertex of PI(h), which can be managed by separation as well.
Given an optimal solution α∗, β∗ to model SEP where only a subset of the constraints (3.20)
are imposed, we look for a violated constraint (if one exists), i.e., for a vertex zkh such that:

∑

j∈Gh

zkh,jα
∗
j > β∗ (3.23)

The vertex can be obtained by introducing binary variables zj , j ∈ Gh, and solving the
following ILP:

max
∑

j∈Gh

α∗
jzj sep(SEP) (3.24)

∑

j∈Gi

wjzj ≤ C i ∈ Ih (3.25)

xj ∈ {0, 1} j ∈ Gh (3.26)

If a violated constraint exist, it is added to model SEP and the procedure is iterated. Other-
wise, model SEP provides a valid inequality for model TRAD−TKP which cuts the current
fractional solution x∗.

3.4.2 Reformulation and Column Generation

An alternative to explicit cut generation is to impose directly in model TRAD − TKP that
all the valid inequalities for PI(h) are satisfied. This is equivalent to asking that no valid
inequality exists in model SEP .

26 Application: Temporal Knapsack Problem

To enforce this condition, we drop the normalization condition on αj , j ∈ Gh in model SEP
and obtain a (potentially) unbounded problem. The dual of this model reads:

min 0 D(SEP) (3.27)
p

∑

k=1

zkh,jy
k
h = x∗j j ∈ Gh (3.28)

p
∑

k=1

ykh = 1 (3.29)

ykh ≥ 0 k = 1, . . . , p (3.30)

0 ≤ αj j ∈ Gh (3.31)

0 ≤ β (3.32)

Model D(SEP) is feasible if and only if all valid inequalities for PI(M) are satisfied by x∗,
otherwise, when D(SEP) is infeasible, SEP is unbounded, i.e., a valid inequality exists for
PI(h) which is violated by x∗.

Thus, we can impose the feasibility of D(SEP) directly in TRAD−TKP by using the binary
variables y1h, . . . , y

p
h associated with the vertices z1h, . . . , z

p
h, and obtain a reformulated model

where the constraints of subset h can be (eventually) removed:

max

n
∑

j=1

pjxj (3.33)

∑

j∈Gi

wjxj ≤ C i /∈ Ih (3.34)

p
∑

k=1

zkh,jy
k
h = xj j ∈ Gh (3.35)

p
∑

k=1

ykh = 1 (3.36)

ykh ∈ {0, 1} k = 1, . . . , p (3.37)

xj ∈ {0, 1} j = 1, . . . , n (3.38)

The same procedure can be applied to more than one subset of constraints, say to g subsets, so
as to cover all the original m constraints. In other words, we have

⋃

h=1,...,g Ih = {1, . . . ,m},
and obtain the following reformulated Temporal Knapsack Problem REF − TKP :

max

n
∑

j=1

pjxj REF − TKP, (3.39)

p
∑

k=1

zkh,jy
k
h = xj h = 1, . . . , g, j ∈ Gh (3.40)

p
∑

k=1

ykh = 1 h = 1, . . . , g (3.41)

ykh ∈ {0, 1} k = 1, . . . , p (3.42)

xj ∈ {0, 1} j = 1, . . . , n (3.43)

A Pseudo-Compact Reformulation 27

In model REF − TKP there is a binary variable y1h, . . . , y
p
h for every vertex z1h, . . . , z

p
h of

the convex hull PI(h) defined by every subset of constraints h. Thus, for every subset of
constraints h there are exponentially many yh variables.

In model REF − TKP , every xj variable is linked by a constraint (3.40) to the yh variables
corresponding to a subset of constraints h where xj appears with a non-zero coefficient (i.e.,
such that j ∈ Gh). For a general (mixed)-ILP model the number of such constraints can be
very large: if j ∈ Gh for all h = 1, . . . , g, we have ng additional constraints, which can make
REF − TKP not easily tractable. On the other hand, for problems with a “quasi” block-
diagonal structure like the TKP , the reformulation is very effective (see the computational
results of Section 3.6) and the number of additional constraints remains limited, because the
non-zero coefficients of each column of the constraint matrix appear in consecutive rows.

Branch and Price

In order to manage the exponentially many yh variables, column generation techniques can
be used. Given a restricted master problem REF − TKP which can be initialized by all the
x variables and a subset of the exponentially many yh, h = 1, . . . , h variables, the column
generation scheme necessitates the generation of a column yh associated with constraints of
group h and which has positive reduced profit with respect to the current solution of the
restricted master. Let us call αh,j the dual variables associated with the constraints (3.40)
and βh the dual variables associated with the constraints 3.41, and α∗

h, β
∗
h the current optimal

solution of the restricted master problem REF−TKP . The column generation problem (slave
problem) necessitates finding a subset of items in Gh which satisfies constraints of subset h
and has maximum profit with respect to the values α∗

h,j . This is exactly the same as the
sep(SEP) problem of model (3.24)–(3.26) discussed in Section 3.4.1.

Once the optimal solution of the continuous relaxation of REF − TKP is obtained, one may
need to branch to obtain an integer solution. Note that in this case it is quite straightforward
to embed the column generation scheme in a full Branch-and-Price approach, by performing
a binary branching on the x variables.

3.4.3 An alternative view through Dantzig-Wolfe Decomposition

The reformulation discussed in the previous Section can be interpreted in terms of Danzing-
Wolfe decomposition (we refer the reader to the recent chapter by Vanderbeck and Wolsey [99]
for an introduction to Danzing-Wolfe and to the notation adopted in this Section). Consider
an instance of the TRAD − TKP and partition the capacity constraints in g subsets, as
previously discussed. Consider two groups of constraints h and l and let j be an item such
that j ∈ Gh and j ∈ Gl (i.e., j appears in at least one of the constraints of group h (resp.
l) with non-zero coefficient). Now introduce two new variables to replace xj : xhj for the

constraints of group h and xlj for the constraints of group l, and let πj = πh
j = πl

j = pj/ρj be
the profits of the new variables, where pj is the original profit of item j and ρj the number
of groups of constraints where j appears with non-zero coefficient. Make the substitution
and add a linking constraint xhj = xlj for every j and every two groups of constraints h and
l such that j ∈ Gh, j ∈ Gl. Let n be the number of variables after the replacement of
variables. The obtained (equivalent) model has a set of (new) linking constraints (let dx = 0
be the i-th linking-constraints, where d in a vector of size n with djh = 1, djl = −1, and

dq = 0, q 6= jh, q 6= jl) plus the original knapsack constraints (with renamed variables). The

28 Application: Temporal Knapsack Problem

capacity constraints now have a block-diagonal structure.

Let zkh be the k-th integer solution of the subproblem defined by the constraints of group
h, zkh,j the j-component of zkh, and ph the number of such solutions. We can now apply the
Dantzig-Wolfe discretization approach for the case of problems with a block-diagonal structure,
where a binary variable λk

h is associated with zkh, the k-th integer solution satisfying the
constraints of group h. Thus, any feasible solution x to the TRAD− TKP can be written as
x =

∑

h=1,...,g

∑

k=1,...,ph
zkhλ

k
h. We get the following reformulation of the linking constraints:

∑

k=1,...,ph

(dzkh)λ
k
h +

∑

k=1,...,pl

(dzkl)λ
k
l = 0 (3.44)

where Dzkh = 1 if and only if zk
h,jh

= 1, i.e., if and only if the solution zkh includes item j, and

Dzkl = −1 if and only if zk
l,jl

= 1, i.e., if and only if the solution zkl includes item j (note that

item j is indexed as jh in block h and jl in block l).

By substituting the objective function as well we obtain the following reformulated REF2−
TKP model:

max
∑

h=1,...,g

∑

k=1,...,ph

λk
h

∑

j=1,...,n

zkh,jπj (3.45)

∑

k=1,...,ph

zkh,jhλ
k
h =

∑

k=1,...,pl

zkl,jlλ
k
l h = 1, . . . , g, l = h+ 1, . . . , g, j ∈ Gh ∩Gl (3.46)

∑

k=1,...,ph

λh
k ≤ 1 h = 1, . . . , g (3.47)

λh
k ∈ {0, 1} h = 1, . . . , g, k = 1, . . . , ph (3.48)

Model REF2−TKP is equivalent to model REF −TKP once one observes that constraints
(3.46) are the counterpart of the x− y linking constraints (3.40), and (3.47) are the same as
(3.41).

3.5 Detailed description of Reformulated Models

In this section we describe in detail the ”One Constraint Slave” Reformulated Model and the
”Overlapping Constraints Slave” Reformulated Model. Precisely we take into consideration
the specific case of Model REF − TKP (3.39) - (3.43) where each slave is composed by one
single constraint and several overlapping constraints respectively. In both cases the slaves are
generated in such a way that all the constraints of the traditional formulation are covered and
reformulated.

3.5.1 ”One Constraint Slave” Reformulated Model

In order to define the first model we introduce Si = {si ⊆ Gi :
∑

j∈si
wj ≤ C} which repre-

sents the set of all the possible feasible item subsets of Gi. As before we use two groups of
binary variables. The first one, xj , is a binary variable indicating whether item j is in the
optimal solution. The second one, ysi , is a binary variables indicating whether items j ∈ si
are in the optimal solution. It is important to notice that here the variables ysi are associ-
ated to feasible subsets of items instead of to extreme points; but for the Temporal Knapsack

Detailed description of Reformulated Models 29

Problem these two entities are exactly the same. For the following models we will also use
an extension of the idea of the dual feasible functions used by Fekete and Schepers [100] to
get a lower bound for the bin packing problem. To this end we define θi1 = ⌊C/maxj∈Gi

(wj)⌋
and θi2 = ⌊C/minj∈Gi

(wj)⌋ which are respectively the minimum and the maximum number
of items you can possible insert in each knapsack constraint i. We are using them to define
additional valid inequalities for the model. Finally in order to strengthen the formulation a
little bit more we leave also the original constraints of Model TRAD − TKP (3.7) - (3.9),
precisely constraints (3.8). As will become clearer in the following paragraphs, these con-
straints do not affect the column generation procedure and they can be easily inserted as the
extended model keeps the original variables.
The model objective function (3.49) maximizes the profit of the item subset chosen. Con-
straints (3.50) impose that you can select an item in a specific knapsack if and only if at
least one feasible subset which contains that specific item is in chosen. Constraints (3.51) are
the convexity constraints one for each knapsack i, and they impose that you can select at
most one feasible item subset per knapsack.The primal model of the ”One Constraint Slave”
Reformulated Model reads as follows.

”One Constraint Slave” Primal Model:

max
n
∑

j=1

pjxj (3.49)

∑

si∈Si:j∈si

ysi ≥ xj i = 1,m, ∀j ∈ Gi (3.50)

∑

si∈Si

ysi ≤ 1 i = 1,m (3.51)

∑

j∈Gi

⌊

wj

C
µ+1

− ǫ

⌋

xj ≤ µ+ 1 i = 1, ...,m, µ = θi1, ..., θ
i
2 (3.52)

∑

j∈Gi

wjxj ≤ C i = 1,m (3.53)

xj ∈ {0, 1} j = 1,, n (3.54)

ysi ∈ {0, 1} i = 1, ...m, ∀si ∈ Si (3.55)

It is important to notice that we replace the equalities with the inequalities in both (3.50) and
(3.51), to be more general we put the equalities in REF − TKP model (3.39)-(3.43) while
in this model inequalities are sufficient in that we are dealing with a maximization problem
with positive profits and weights and just inequalities in the original formulation. This cuts
half of the dual space and it works as a speed up in the convergence to the optimization
process. Although in general this is a relaxation of the original model, for our problem we
do not deteriorate the quality of the upper bound of the continuous relaxation value. Con-
straints (3.53) are the original constraints of TRAD − TKP . Constraints (3.54) and (3.55)
impose the binary condition on the variables. It is important to notice that it is possible
to replace constraints (3.55) with just the non negativity requirement on y variables thanks
to constraints (3.50). In addition, constraints (3.52), which are the extension of the dual

30 Application: Temporal Knapsack Problem

feasible function, impose a maximum number for different items simultaneously present in a
knapsack according to the weights. Constant ε is a number smaller than 1, used to decrease
by one unit the value associated with items which are inserted into the knapsack and have
a weight which is perfectly divisible by a specific percentage of the capacity. Precisely, there
are some simultaneous insertion incompatibilities between items in a knapsack i. With those
constraints some non integer feasible solutions are cut. For example, when θ is 1, if there
are items whose weight is bigger than half of the capacity, only one item of that kind can be
chosen.
The following model (3.49)-(3.55) is the continuous relaxation of the previous model, we put
the constraints in the classical form to better illustrate the relations with the dual model. In
addition for each constraint, we report the associated specific dual variable name.
Then we show the dual of the model (3.56) - (3.62), this is important in that it contains
the constraints to be separated during the Column Generation procedure, i.e. (3.64). As
previously mentioned, the y variables are exponential and you cannot enumerate all of them
in advance but they must be generated during the optimization thanks to the dual variable
values. Due to the fact that we keep the original variables x, constraints (3.65) are all present
from the beginning and they do not need separation.

Continuous relaxation of (3.49)-(3.55)

max
n
∑

j=1

pjxj (3.56)

xj +
∑

si∈Si:j∈si

−ysi ≤ 0 i = 1,m, ∀j ∈ Gi (πi,j) (3.57)

∑

si∈Si

ysi ≤ 1 i = 1,m (γi) (3.58)

∑

j∈Gi

⌊

wj

C
µ+1

− ǫ

⌋

xj ≤ µ+ 1 i = 1, ...,m, µ = θi1, ..., θ
i
2 (βi,µ) (3.59)

∑

j∈Gi

wjxj ≤ C i = 1,m (ηi) (3.60)

xj ≥ 0 j = 1,, n (3.61)

ysi ≥ 0 i = 1, ...m, ∀si ∈ Si (3.62)

Dual Model of (3.56)-(3.62)

Detailed description of Reformulated Models 31

min
m
∑

i=1

γi +
m
∑

i=1

θi2
∑

µ=θi1

(µ+ 1)βi,µ +
m
∑

i=1

Cηi (3.63)

∑

j∈si

−πi,j + γi ≥ 0 i = 1,m, ∀si ∈ Si (3.64)

∑

i:j∈Gi

πi,j +

m
∑

i=1

θi2
∑

µ=θi1

⌊

wj

C
µ+1

− ǫ

⌋

βi,µ +

m
∑

i=1

wjηi ≥ pj j = 1,n (3.65)

πi,j ≥ 0 i = 1, ...m, j = 1,n (3.66)

βi,µ ≥ 0 i = 1, ...m, µ = θi1, ..., θ
i
2 (3.67)

γi ≥ 0 i = 1, ...m (3.68)

ηi,≥ 0 i = 1, ...m (3.69)

Column Generation Procedure for (3.56)-(3.62)

The continuous relaxation of Model (3.49)-(3.55) must be solved using Column Generation,
i.e. constraints (3.64) must be separated. Now, since we have m different knapsacks, we set
a slave for each of them. The details of the procedure follow. Given i, π∗

i,j ,γ
∗
i the separation

problem is to determine, if it exists, a subset s∗i ⊆ {Si} such as:

∑

j∈s∗i

−π∗
i,j + γ∗i < 0 (3.70)

∑

j∈s∗i

π∗
i,j > γ∗i (3.71)

Introducing a new binary variable βj which has value 1 if j ∈ s∗i and 0 otherwise, the Slave

Problem becomes:

max
∑

j∈Gi

π∗
i,jβj (3.72)

∑

j∈Gi

wjβj ≤ C (3.73)

βj ∈ {0, 1} j = 1,n (3.74)

If the optimal solution of Model (3.72) - (3.74) (let’s call it δ∗i) is ≤ γ∗i then all the dual
constraints defined by i are satisfied by the solution π∗

i,j ,γ
∗
i , otherwise the subset s∗i = {j ∈

{1,, n} : β∗
j = 1} defines the most violated constraint to be added and then the procedure

is reiterate. It is important to notice that the Slave Problem becomes a simple KP-01, but
at each iteration, instead of the original profits, you optimize using the values of the dual
variables.
In addition, at a certain point of the column generation procedure, we can obtain a feasible
dual solution, i.e. a valid upper bound for the original problem. Calling φ∗ the current optimal
value of (3.56)-(3.62), the bound is equal to the following formula:

32 Application: Temporal Knapsack Problem

φ∗ +
∑

i:δ∗i −γ∗
i >0

δ∗i − γ∗i

This is due to the fact that all the dual constraints are feasible giving at least that extra value
to the variables γ. The objective function increases accordingly from φ∗ to that bound value.

The table 3.4 reports the Model (3.49)-(3.55) with the complete variable y enumeration. In
that example we have 3 subsets G and accordingly here we have 3 convexification constraints
(3.51), it is important to notice that item 2 is present in all the subsets G and the link is
made by 3 constraints of kind (3.50).

O.F. +1x1 +2x2 +1x3 +3x4 +4x5

S.T. +x1 -y{1}1 -y{1,2}1 ≤ 0

+x2 -y{2}1 -y{1,2}1 ≤ 0

+x2 -y{2}2 -y{2,3}2 -y{2,4}2 ≤ 0

+x3 -y{3}2 -y{2,3}2 -y{3,4}2 ≤ 0

+x4 -y{4}2 -y{2,4}2 -y{3,4}2 ≤ 0

+x2 -y{2}3 -y{2,5}3 ≤ 0

+x5 -y{5}3 -y{2,5}3 ≤ 0

+y{1}1 +y{2}1 +y{1,2}1 ≤ 1

+y{2}2 +y{3}2 +y{2,3}2 +y{4}2 +y{2,4}2 +y{3,4}2 ≤ 1

+y{2}3 +y{5}3 +y{2,5}3 ≤ 1

Table 3.4: Example 1 Model (3.49)-(3.55) (complete variable enumeration)

3.5.2 Projection of ”One Constraint Slave” Model on the ”y variables”

space

Model (3.49)-(3.55) uses both binary variables x and y but it is possible to avoid using the
first one, projecting the polyhedra on the y variables only. The idea here is to model the
presence of an item in more than one G using equality constraints between overlapping G.
To this end we define lj as the number of maximal knapsack constraints G in which item
j is present and N+ as the set of items which belongs to more than one maximal knapsack
constraint G. Using these new entities we can introduce a new version of item subset profit,
i.e. Psi =

∑

j∈si
(pj/lj). Each item contributes to the subset profit with a fraction of its profit

pj in that, in the optimal solution, you have to select a feasible subset for each G in which
item j is present. In this way you can reconstruct the original value of profit. Projection of
”One Constraint Slave” Model on the ”y variables” space reads as follows:

Projection of ”One Constraint Slave” Model on the ”y variables” Primal Model

Detailed description of Reformulated Models 33

max

m
∑

i=1

∑

si∈Si

Psiysi (3.75)

∑

si∈Si:j∈si

ysi =
∑

si+1∈Si+1:j∈si+1

ysi+1 j ∈ N+, ∀i : j ∈ Gi ∩Gi+1 (3.76)

∑

si∈Si

ysi ≤ 1 i = 1,m (3.77)

ysi ∈ {0, 1} i = 1, ...m, ∀si ∈ Si (3.78)

The new objective function (3.75) models the total profit of the item selected in the optimal
solution. Constraints (3.77) are the convexity constraints as in the previous model. Con-
straints (3.76) make the link for the item j ∈ N+, i.e. which appear in more than one G.
They say that for an overlapping couple of knapsack constraints which share item j, if you
select a subset of Gi with item j, you have to select one subset of Gi+1 with that item as
well. Constraints (3.78) impose the binary condition on the variables. To be able to easily
write the dual of this model we report the continuous relaxation of Model (3.75)-(3.78) in a
slightly different manner. We introduce Θj as the set of couples (k, u) of Maximal Knapsack
constraints Gi, Gi+1 which include item j. Moreover we show the dual variable names asso-
ciated with each group of primal constraints. The relaxed model reads as follows:

Continuous relaxation of (3.75)-(3.78)

max
m
∑

i=1

∑

si∈Si

Psiysi (3.79)

∑

sk∈Sk:j∈sk

ysk −
∑

su∈Su:j∈su

ysu = 0 j ∈ N+, ∀o ∈ Θj (πo,j) (3.80)

∑

si∈Si

ysi ≤ 1 i = 1,m (γi) (3.81)

ysi ≥ 0 i = 1, ...m, ∀si ∈ Si (3.82)

Once we have the continuous relaxation written in this way it is simple to write the dual
model. This time we only have a set of constraints and the variable π is free in that we have
equality constraints in the primal model.

Dual Model of (3.79)-(3.82)

34 Application: Temporal Knapsack Problem

min

m
∑

i=1

γi (3.83)

∑

j∈si

∑

o∈Θj :i=k,i 6=u

πo,j +
∑

j∈si

∑

o∈Θj :i=u,i 6=k

−πo,j + γi ≥ Psi i = 1,m, ∀si ∈ Si (3.84)

γi ≥ 0 i = 1, ...m (3.85)

(3.86)

Column Generation Procedure for (3.79)-(3.82)

As before the continuous relaxation of Model (3.75)-(3.78) must be solved using Column Gen-

eration, i.e. constraints (3.84) must be separated. Given i, π∗
o,j ,γ

∗
i determine, if it exists, a

subset s∗i ⊆ {Si} such as:

∑

j∈s∗i

∑

o∈Θj :i=k,i 6=u

π∗
o,j +

∑

j∈s∗i

∑

o∈Θj :i=u,i 6=k

−π∗
o,j + γ∗i < Psi∗ (3.87)

∑

j∈s∗i

[
∑

o∈Θj :i=k,i 6=u

π∗
o,j +

∑

o∈Θj :i=u,i 6=k

−π∗
o,j]− Ps∗i

< −γ∗i (3.88)

∑

j∈s∗i

[
∑

o∈Θj :i=k,i 6=u

−π∗
o,j +

∑

o∈Θj :i=u,i 6=k

+π∗
o,j] + Ps∗i

> γ∗i (3.89)

Using the binary variable βj which has value 1 if j ∈ s∗i and 0 otherwise, the Slave Problem

becomes:

max
∑

j∈Gi

[
∑

o∈Θj :i=k,i 6=u

−π∗
o,j +

∑

o∈Θj :i=u,i 6=k

+π∗
o,j + pj/lj]βj (3.90)

∑

j∈Gi

wjβj ≤ C (3.91)

βj ∈ {0, 1} j = 1,n (3.92)

If the optimal solution of Model (3.90)-(3.92) is ≤ γ∗i then all the dual constraints defined
by i are satisfied by the solution π∗

o,j ,γ
∗
i , otherwise the subset s∗i = {j ∈ {1,, n} : β∗

j = 1}
defines the most violated constraint. It is important to notice that the Slave Problem is still
a simple KP-01, but this time the dual variable value is just a part of the new item profit to
be optimized.

The table 3.4 reports the Model (3.75)-(3.78) with the complete variable y enumeration. Here
we have again the 3 convexity constraints for the 3 maximal knapsack constraints G and 2
constraints modeling the presence of item 2 in every subset G.

Detailed description of Reformulated Models 35

O.F. +1y{1}1 +2/3y{2}1 +5/3y{1,2}1 +2/3y{2}2 +1y{3}2
+3y{4}2 +5/3y{2,3}2 +11/3y{2,4}2 +4y{3,4}2 +2/3y{2}3 +4y{5}3 +14/3 y{2,5}3

S.T. +y{2}1 +y{1,2}1 -y{2}2 -y{2,3}2 -y{2,4}2 = 0

+y{2}2 +y{2,3}2 +y{2,4}2 -y{2}3 -y{2,5}3 = 0

+y{1}1 +y{2}1 +y{1,2}1 ≤ 1

+y{2}2 +y{3}2 +y{2,3}2 +y{4}2 +y{2,4}2 +y{3,4}2 ≤ 1

+y{2}3 +y{5}3 +y{2,5}3 ≤ 1

Table 3.5: Example 1 Model (3.75)-(3.78) (complete variable enumeration)

3.5.3 ”Overlapping Constraints Slave” Reformulated Model

In this section we focus our attention on the ”Overlapping Constraints Slave” Reformulated
Model, here the idea is to create a Slave Problem with more than one overlapping original
constraint. The goal is to achieve higher value of continuous relaxation, i.e. better bounds.
On the other hands, if the Slave Problem becomes too big the column generation process
starts to be slow and there is a balance between the speed of the overall method, the quality
of the bound and number of constraints reformulated for each Slave Problem. For simplicity
we will describe the case of just 2 overlapping constraints but it can be easily extended to the
general case of n constraints. To define the new model we need to introduce H(i,i+) = Gi ∪
Gi+ as a subset of items which belongs to an overlapping couple (i, i+1) of maximal knapsack
constraints and S(i,i+) = {s(i,i+) ⊆ H(i,i+) :

∑

j∈s(i,i+)∩Gi
wj ≤ C,

∑

j∈s(i,i+)∩Gi+
wj ≤ C},

which represents the set of all the possible feasible item subsets of H(i,i+). As before, we use
two groups of binary variables. The first one, xj , is a binary variable indicating whether item
j is in the optimal solution. The second one, ys(i,i+1)

, is a binary variable indicating whether
items j ∈ si,i+1 are in the optimal solution.

”Overlapping Constraints Slave” Primal Model

max

n
∑

j=1

pjxj (3.93)

∑

s(2i−1,2i)∈S(2i−1,2i):j∈s(2i−1,2i)

ys(2i−1,2i)
≥ xj i = 1, ..,m/2, ∀j ∈ H(i−,i) (3.94)

∑

s(2i−1,2i)∈S(2i−1,2i)

ys(2i−1,2i)
≤ 1 i = 1, ..,m/2 (3.95)

xj ∈ {0, 1} j = 1,, n (3.96)

ys(i,i+1)
∈ {0, 1} ∀s(i,i+1) ∈ S(i,i+1) (3.97)

The model objective function (3.93) maximizes the profit of the subset of items chosen. Con-
straints (3.94) impose that you can select an item in a specific couple of knapsacks if and only
if at least one feasible subset which contains that specific item is chosen. Constraints (3.95)
are the convexity constraints, one for each couple of knapsacks i and they impose that you
can select at most one feasible item subset. Constraints (3.96) and (3.97) impose the binary
condition on the variables. It is important to notice that it is possible to replace constraints

36 Application: Temporal Knapsack Problem

(3.96) with just the non negativity requirement on y variables thanks to constraints (3.97).
For simplicity we have omitted to write the additional inequalities but they obviously hold
also in this case.

We report the continuous relaxation of the previous model, along with the associated specific
dual variable name for each constraint.

Continuous relaxation of (3.93)-(3.97)

max

n
∑

j=1

pjxj (3.98)

∑

s(2i−1,2i)∈S(2i−1,2i):j∈s(2i−1,2i)

ys(2i−1,2i)
≥ xj i = 1, ..,m/2, ∀j ∈ H(i−,i) (π(2i−1,2i),j) (3.99)

∑

s(2i−1,2i)∈S(2i−1,2i)

ys(2i−1,2i)
≤ 1 i = 1, ..,m/2 (γ(2i−1,2i)) (3.100)

xj ≥ 0 j = 1,, n (3.101)

ys(i,i+1)
≥ 0 h = 1, ...mc, ∀s(i,i+1) ∈ S(i,i+1) (3.102)

Then we show the dual of the model (3.98) - (3.102), also in this case constraints (3.104) must
be separated during the Column Generation procedure, in that the y variables are exponential
and one cannot enumerate all of them in advance. Accordingly they must be generated during
the optimization thanks to the dual variable values.

Dual Model of (3.98)-(3.97)

min

m/2
∑

i=1

γ(2i−1,2i) (3.103)

∑

j∈s(2i−1,2i)

−π(2i−1,2i),j + γ(2i−1,2i) ≥ 0 i = 1, ..,m/2, ∀s(i,i+1) ∈ S(i,i+1) (3.104)

∑

(i,i+1):j∈H(i,i+1)

π(i,i+1),j ≥ pj ∀j (3.105)

γ(2i−1,2i) ≥ 0 i = 1, ..,m/2 (3.106)

π(2i−1,2i),j ≥ 0 i = 1, ..,m/2, j = 1,n (3.107)

Column Generation for (3.98)-(3.97)

The continuous relaxation of Model (3.93)-(3.97) must be solved using Column Generation,
i.e. constraints (3.104) must be separated. Given (i,i+1), π∗

(i,i+1),j ,γ
∗
(i,i+1) determine, if it

exists, a subset s∗(i,i+1) ⊆ {S(i,i+1)} such as:

Detailed description of Reformulated Models 37

∑

j∈s∗
(i,i+1)

−π∗
(i,i+1),j + γ∗(i,i+1) < 0 (3.108)

∑

j∈s∗
(i,i+1)

π∗
(i,i+1),j > γ∗(i,i+1) (3.109)

Using the binary variable βj which has value 1 if j ∈ s∗i and 0 otherwise, the Slave Problem

becomes:

max
∑

j∈H(i,i+1)

π∗
(i,i+1),jβj (3.110)

∑

j∈Gi

wjβj ≤ C i, i+ 1 (3.111)

βj ∈ {0, 1} j = 1,n (3.112)

If the optimal solution of model (3.110)-(3.112) ≤ γ∗(i,i+1) then all the dual constraints de-

fined by (i,i+1) are satisfied by the solution π∗
(i,i+1),j ,γ

∗
(i,i+1), otherwise the subset s∗(i,i+1) =

{j ∈ {1,, n} : β∗
j = 1} defines the most violated constraint. It is important to notice that

the Slave Problem is not a KP-01, but at each iteration you have to solve a small Temporal

Knapsack Problem with just 2 constraints using the values of the dual variables as profits.

Table 3.6 contains the data for the Temporal Knapsack Example 2, then figure 3.4 shows the
interval graph representation of that example. In the figure the ellipses represent the sets G
and H.

Task Profit Weight Start Finish

Task1 3 1 1 3
Task2 5 2 2 14
Task3 4 3 5 10
Task4 3 4 7 8
Task5 2 5 12 19
Task6 1 6 15 19

C=8

Table 3.6: Data example 2

38 Application: Temporal Knapsack Problem

time

p3=6,w1=1

p2=5,w2=2

p3=4,w3=3

p4=3,w4=4

p5=2,w5=5

p5=1,w5=6

1 2 3 5 7 8 10 12 14 15 19

G={1,2}

G={2,3,4}

G={2,5}

G={5,6}

H, = G1 ∪ G2

= {1, 2, 3, 4}

H, = G3 ∪ G4

= {2, 5, 6}

Figure 3.4: Interval Graph Example 2

The table 3.6 reports the Model (3.103) - (3.107) with the complete variables y enumeration
for Example 2.

O.F. +3x1 +5x2 +4x3
+3x4 +2x5 +1x6

S.T. +x1 -y{1}1 -y{1,2}1 -y{1,3}1 -y{1,2,3}1 -y{1,4}1 -y{1,2,4}1 -y{1,3,4}1 ≤ 0

+x2 -y{2}1 -y{1,2}1 -y{2,3}1 -y{1,2,3}1 -y{2,4}1 -y{1,2,4}1 -y{2,4}1 ≤ 0

+x3 -y{3}1 -y{1,3}1 -y{2,3}1 -y{1,2,3}1 -y{1,3,4}1 ≤ 0

+x4 -y{4}1 -y{1,4}1 -y{2,4}1 -y{1,2,4}1 -y{2,4}1 -y{1,3,4}1 ≤ 0

+x2 -y{2}2 -y{2,5}2 -y{2,6}2 ≤ 0

+x5 -y{5}2 -y{2,5}2 ≤ 0

+x6 -y{6}2 -y{2,6}2 ≤ 0

+y{1}1 +y{2}1 +y{1,2}1 +y{3}1 +y{1,3}1 +y{2,3}1 +y{1,2,3}1
+y{4}1 +y{1,4}1 +y{2,4}1 +y{1,2,4}1 +y{2,4}1 +y{1,3,4}1 ≤ 1

+y{2}2 +y{5}2 +y{2,5}2 +y{6}2 +y{2,6}2 ≤ 1

Table 3.7: Example 2 model (3.103) - (3.107) (complete variable enumeration)

3.6 Computational Results

In this section we report computational experiments on randomly generated instances, so as
to evaluate the performance of the algorithms and the reformulations previously presented:

• TRAD − TKP - the model is directly solved through CPLEX12.2 with standard pa-
rameters set-up, we also tested a more aggressive cut generation setting without notable
improvement. Note that the continuous relaxation of the model provides a valid upper
bound for the problem. A better upper bound can be obtained by solving the root
node of the TRAD− TKP model with CPLEX12.2, which in this case adds families of
general cuts to strengthen the relaxation;

• Cut Generation - according to Section 3.4.1, given a fractional solution to model TRAD−
TKP we generate a valid cut for every group of constraints by solving model SEP
(whose exponentially many constraints are separated by solving model sep(SEP)) with

Computational Results 39

CPLEX12.2. The constraints of the TRAD − TKP model are partitioned in groups,
so as to cover the whole constraint matrix. All generated cuts are added to the model,
which is then re-optimized. The procedure is iterated until no cut violated by the cur-
rent solution can be found. Note that when the procedure is stopped before convergence,
the rounded down value of the continue relaxation of model TRAD − TKP (with the
added cuts) is a valid upper bound on the value of the optimal integer solution to TKP ;

• REF−TKP Continuous Relaxation - To solve the continuous relaxation of the REF−
TKP model, the constraints of the original TRAD−TKP model are are partitioned in
groups, so as to cover the whole constraint matrix, and the restricted master problem
is initialized by the x variables (which allow the null solution). New y variables with
positive reduced profit, associated with each group of constraints, are then generated
by solving slave problems of the form (3.24)–(3.26) (one slave problem is defined for
each group of constraints). The generated y variables are added to the restricted master
problem which is re-optimized. The column generation scheme is iterated until no
column (y variable) with positive reduced profit is generated. The master problem
and the slave problems are solved with CPLEX12.2. The continuous relaxation of the
REF−TKP model provides a valid upper bound on the optimal solution value of TKP .
If the column generation procedure is stopped before convergence, a valid upper bound
can be computed by adding to the current solution (of the restricted master problem)
the maximal violations of the constraints of the REF −TKP dual, which are equivalent
to (3.20) (one for each group of constraints). This bounding procedure is equivalent to
computing the value of a feasible solution to the dual of model REF − TKP ;

• REF − TKP Integer Solution - The solution to the continuous relaxation of model
REF − TKP can be fractional, thus, in order to obtain a feasible integer solution to
TKP , we apply the branching procedure described in Section 3.4.2. Note that we do
not take advantage of the sophisticated branching scheme implemented by CPLEX12.2,
which cannot be integrated with a column generation procedure;

• Dynamic Programming algorithm - it is directly applied to the formulation TRAD −
TKP .

All computational tests were conducted by using 1 core of an INTEL Core2 Duo E6550 at
2.33GHz with 8GB of RAM and Cplex 12.2, under LINUX Ubuntu 10.4 operating system.

3.6.1 Random Instance Generator

In this section we describe the way we generated the instances to test the performance of the
models described in the previous sections. Our random instance generator produces TKP
instances according to the TRAD − TKP formulation. The first parameter is the number
m of constraints. The second input parameter is the interval [dimCmax, dimCmin] we use
to define the number of items simultaneously present in one constraint. To be precise, the
constraint dimension is a random number generated with a uniform distribution within this
interval. Due to the fact one constraint is generated starting from the previous one, the third
parameter indicates the percentage of items to be taken from the previous constraint. As
before, this percentage is a random number generated with a uniform distribution in the in-
terval [dimOmax, dimOmin]. As far as the profit and the weight of the items are concerned, we
generate them as a random number chosen in the intervals [Prmax, P rmin] and [Wmax,Wmin],

40 Application: Temporal Knapsack Problem

which are the fourth and fifth parameters. The whole case study is composed of ten groups
of ten test instances with similar characteristics. To generate the 10 instances of each group,
we fix the value of all the parameters except the number of constraints. For the first 4 groups
the number of constraints of the first instance of each group is set to 2688 and the others are
obtained adding 128 constraints, each time. The same idea is used for the other groups, but
the starting value of constraints is set to 768. The first four groups are specifically conceived
to test the performance of the dynamic programming algorithm and the cardinality of the
constraints is relatively small. The last six groups are on the other hand conceived to test the
REF −TKP models. The cut generation scheme is tested on these groups as well. The main
characteristic of these groups is a greater constraint cardinality which makes the dynamic
programming algorithm unusable in practice.
The values of the input parameters used to generate the ten groups are presented in Table
3.8. It shows the parameter values, described before, used to generate the 10 random groups,
the last column p = w is equal to 1 if we set the item weight equal to the random profit, 0
otherwise.

Table 3.8: Input parameter values used to generate the test instances

dimCmin dimCmax dimOmin dimOmax dimPmin dimPmax dimWmin dimWmax p = w

Group I 10 10 95 90 100 10 100 10 0
Group II 15 15 95 90 100 10 100 10 0
Group III 20 20 95 90 100 10 100 10 0
Group IV 25 25 95 90 100 10 100 10 0
Group V 30 30 95 90 100 10 100 10 0
Group VI 30 30 90 70 100 10 100 10 0
Group VII 30 30 95 90 100 10 100 10 1
Group VIII 35 25 95 90 100 10 100 10 0
Group IX 35 25 90 70 100 10 100 10 0
Group X 40 30 95 90 100 10 100 10 0

In table 3.9 we report the specific features of each instances for the groups V-X. These are
the most important groups in that we test on those the reformulated models. In details, the
first column is the instance name then the number of variables and constraints followed by 3
indices. Index I1 is the average number of constraints in which each item is present, Index I2
is the average number of items for each knapsack constraints and finally Index I3 reports the
biggest and the lowest cardinality of subsets G.

Computational Results 41

cols rows Index I1 Index I2 Index I3 opt

I41 2071 768 11.1 30.0 30-30 30866
I42 2422 896 11.1 30.0 30-30 35771
I43 2756 1024 11.1 30.0 30-30 40934
I44 3104 1152 11.1 30.0 30-30 46180
I45 3433 1280 11.2 30.0 30-30 50324
I46 3789 1408 11.1 30.0 30-30 55495
I47 4154 1536 11.1 30.0 30-30 59255
I48 4476 1664 11.2 30.0 30-30 65465
I49 4797 1792 11.2 30.0 30-30 69530
I50 5129 1920 11.2 30.0 30-30 75756
I51 4948 768 4.7 30.0 30-30 71998
I52 5769 896 4.6 30.0 30-30 81898
I53 6721 1024 4.7 30.0 30-30 97056
I54 7382 1152 4.7 30.0 30-30 107491
I55 8266 1280 4.6 30.0 30-30 120505
I56 9002 1408 4.7 30.0 30-30 129053
I57 9865 1536 4.7 30.0 30-30 142486
I58 10661 1664 4.7 30.0 30-30 151489
I59 11448 1792 4.7 30.0 30-30 165076
I60 12498 1920 4.6 30.0 30-30 182813
I61 2071 768 11.1 30.0 30-30 22044
I62 2422 896 11.1 30.0 30-30 26115
I63 2763 1024 11.1 30.0 30-30 29110
I64 3103 1152 11.1 30.0 30-30 32692
I65 3434 1280 11.2 30.0 30-30 37016
I66 3774 1408 11.2 30.0 30-30 39593
I67 4164 1536 11.1 30.0 30-30 44735
I68 4488 1664 11.1 30.0 30-30 48182
I69 4786 1792 11.2 30.0 30-30 50559
I70 5142 1920 11.2 30.0 30-30 54842
I71 2916 768 8.0 30.3 35-25 40982
I72 3424 896 7.8 29.8 35-25 47914
I73 3832 1024 8.0 30.1 35-25 52447
I74 4316 1152 8.0 30.0 35-25 59790
I75 4771 1280 8.1 30.1 35-25 66179
I76 5403 1408 7.8 30.0 35-25 75070
I77 5793 1536 8.0 30.0 35-25 81982
I78 6167 1664 8.1 30.0 35-25 85314
I79 6800 1792 7.9 29.9 35-25 95037
I80 7241 1920 7.9 29.9 35-25 100031
I81 5210 768 4.5 30.3 35-25 71426
I82 6057 896 4.4 30.0 35-25 82942
I83 6901 1024 4.4 29.8 35-25 96115
I84 7737 1152 4.5 30.1 35-25 110102
I85 8656 1280 4.5 30.1 35-25 119233
I86 9370 1408 4.5 30.0 35-25 128178
I87 10271 1536 4.5 30.1 35-25 142056
I88 11057 1664 4.5 29.9 35-25 154745
I89 11992 1792 4.5 30.0 35-25 167916
I90 13025 1920 4.4 30.1 35-25 176881
I91 3117 768 8.7 35.3 30-40 42685
I92 3594 896 8.7 35.0 30-40 46526
I93 4176 1024 8.6 34.9 30-40 54437
I94 4671 1152 8.6 34.8 30-40 60719
I95 5209 1280 8.6 34.9 30-40 68432
I96 5628 1408 8.8 35.0 30-40 72337
I97 6215 1536 8.7 35.0 30-40 80122
I98 6730 1664 8.6 35.0 30-40 88460
I99 7172 1792 8.7 34.9 30-40 92380

I100 7709 1920 7.7 34.9 30-40 100915

Table 3.9: Instance Groups V-X features

All instances are publicly available at http://www.or.deis.unibo.it/research.html

42 Application: Temporal Knapsack Problem

3.6.2 Global procedure bound comparison

Initially we want to evaluate the performance of the proposed reformulation and compare it
with the cut and column generation procedure described in Section 3.4.1 and 3.4.2 . Table
3.10 gives a general idea of the main results. The first column of the table is the instance
name, in the second and third column we report the time that CPLEX12.2 needs to solve
the continuous relaxation of the TRAD − TKP formulation and the optimality gap of the
corresponding upper bound with respect to the optimal solution. Columns four and five report
the time spent by CPLEX12.2 to solve the root node of the TRAD − TKP formulation and
the optimality gap of the corresponding upper bound with respect to the optimal solution.
This means that several families of general cuts are added by CPLEX to obtain a tighter upper
bound. The sixth and seventh columns reports the computing time and the gap obtained by
solving through column generation the root node of the REF − TKP formulation, where
constraints are grouped by 16 at the time. The last 2 columns report the computing time and
the gap obtained by solving the root node of the formulation which explicitly adds cuts derived
by grouping constraints 16 at the time. According to our computational experience this is the
best configuration, which gives on average the best compromise between computing time and
quality of the bound. All results were obtained with a time limit of 1 hour of computing time;
note that when the time limit is reached (TL in the table), the cut formulation still provides a
valid upper bound. It is clearly shown by the results that the explicit cut generation procedure
is not competitive for the TKP , while the continuous relaxation of the REF − TKP model
provides an improved upper bound on the TRAD − TKP model.

3.6.3 Reformulation and Cut Generation

For the same subset of instances, in Table 3.11 we investigate the performance of the REF −
TKP cut generation model for different groupings of the constraints, i.e., we consider different
cardinalities for the sets Ih, h = i, . . . , g. For |Ih| = {1, 2, 4, 8, 16, 32, 64} we report the time
needed to solve the continuous relaxation of the corresponding REF − TKP through cut
generation and the optimality gap between the optimal solution and the obtained upper
bound. We do not report the time for constraint group of 64 because the procedure always
goes in TL. In Table 3.12 we present the comparison of bounds obtained by different block
dimensions, more in detail the table shows the absolute difference of bound achievable grouping
by 1-2, 2-4, 4-8, 8-16, 16-32 and 32-64. In Table 3.13 we present the same comparison of the
previous table but comparing the computing times. These tables show that grouping by 2
not only dominates grouping by 1 in terms of bounds but also in terms of computing time. In
Table 3.14 we present the absolute improvement on the TRAD−TKP continuous relaxation.
In Table 3.15 we present the improvement on original TRAD − TKP continuous relaxation
per second. In Table 3.16 we present the absolute improvement on TRAD − TKP root
node. Generally speaking, as expected, by increasing the size of the groups of constraints the
obtained optimality gap is reduced. The computing time is smaller for very small groupings (1
or 2 constraints in each group), because in this case during the cut generation there is a large
number of (easy) subproblems to be solved but they are easy. By increasing the size of the
groups the overall computing time increases, in that there are few subproblems to solve, but
very hard ones. For these instances it is not convenient grouping more than 64 overlapping
constraints in that even if the potential bounds is better the procedure requires too much
time and the bounds at time limits are not strong enough.

Computational Results 43

tC−T gap tR−T gap tCOL16
gap tCUT16

gap

I41 0.01 14.02 1.48 1.07 11.43 0.07 2055.27 0.07
I42 0.01 13.62 1.97 1.10 15.46 0.15 2405.59 0.15
I43 0.01 13.50 1.74 1.15 14.55 0.14 2923.17 0.14
I44 0.01 13.08 2.18 0.94 22.5 0.20 2875.49 0.20
I45 0.02 13.58 2.72 1.29 22.33 0.20 2994.7 0.20
I46 0.02 13.63 2.77 1.03 19.89 0.09 3036.36 0.09
I47 0.02 14.04 3.04 0.92 21.23 0.13 TL 0.13
I48 0.02 13.25 3.83 1.11 23.08 0.09 TL 0.16
I49 0.03 13.40 4.01 1.27 29.03 0.09 TL 0.16
I50 0.03 13.36 4.73 1.25 30.27 0.05 TL 0.17
I51 0.02 11.56 3.61 0.68 24.08 0.04 TL 2.64
I52 0.02 12.40 3.96 0.54 31.68 0.07 TL 2.85
I53 0.02 11.88 4.13 0.45 43.09 0.02 TL 3.16
I54 0.02 11.71 4.39 0.68 32.48 0.04 TL 3.41
I55 0.03 12.24 4.53 0.63 62.42 0.02 TL 3.36
I56 0.03 12.21 5.79 0.58 54.7 0.09 TL 3.65
I57 0.03 12.31 6.55 0.59 57.17 0.05 TL 3.52
I58 0.04 11.96 7.20 0.82 47.9 0.06 TL 3.55
I59 0.04 12.24 10.08 0.69 57.16 0.08 TL 3.77
I60 0.04 11.44 11.76 0.61 65.14 0.07 TL 3.91
I61 0.01 10.51 1.07 0.09 4.04 0.06 451.18 0.06
I62 0.01 10.20 0.91 0.14 5.37 0.01 412.58 0.01
I63 0.01 9.64 1.13 0.12 5.36 0.00 524.71 0.00
I64 0.01 9.80 1.24 0.15 7.39 0.01 679.41 0.01
I65 0.02 10.06 1.50 0.10 7.22 0.01 657.11 0.01
I66 0.02 10.16 2.36 0.05 11.11 0.05 963.01 0.05
I67 0.02 9.44 1.76 0.09 10.55 0.00 883.5 0.00
I68 0.02 9.68 1.78 0.05 10.5 0.02 1123 0.02
I69 0.02 9.39 1.41 0.14 11.86 0.02 1178.46 0.02
I70 0.03 10.12 2.13 0.12 12.53 0.03 1108.91 0.03
I71 0.01 11.32 1.26 0.75 13.25 0.10 3342.02 0.10
I72 0.02 11.70 1.78 0.88 11.53 0.07 TL 0.07
I73 0.02 12.14 1.97 0.74 19.38 0.06 TL 0.13
I74 0.01 11.69 2.53 0.53 12.71 0.07 TL 0.13
I75 0.02 12.11 2.63 0.79 16.12 0.11 TL 0.35
I76 0.03 11.39 3.08 0.49 19.21 0.13 TL 0.43
I77 0.02 11.32 3.02 0.68 18.85 0.09 TL 0.38
I78 0.02 11.84 4.17 0.69 33.89 0.12 TL 0.40
I79 0.03 11.60 4.89 0.58 26.08 0.08 TL 0.54
I80 0.02 11.53 5.96 0.75 32.82 0.07 TL 0.54
I81 0.02 11.69 2.67 0.54 16.57 0.05 TL 2.15
I82 0.02 11.23 2.99 0.50 28.26 0.03 TL 2.24
I83 0.02 10.84 2.78 0.38 24.09 0.03 TL 2.10
I84 0.02 10.29 3.57 0.43 28.23 0.02 TL 2.49
I85 0.03 11.55 4.53 0.41 65.35 0.05 TL 2.70
I86 0.03 10.99 5.85 0.54 45.76 0.01 TL 2.86
I87 0.03 10.68 7.00 0.64 42.94 0.06 TL 2.86
I88 0.04 10.94 7.35 0.53 51.67 0.08 TL 2.94
I89 0.04 10.75 8.46 0.44 48.62 0.06 TL 3.20
I90 0.04 11.39 11.09 0.66 54.27 0.05 TL 3.62
I91 0.01 11.95 1.82 0.79 10.75 0.07 TL 0.15
I92 0.01 11.15 1.72 0.96 29.76 0.03 TL 0.18
I93 0.02 11.54 2.09 0.79 14.9 0.09 TL 0.28
I94 0.02 12.11 2.50 1.15 25.38 0.08 TL 0.37
I95 0.03 10.96 3.01 0.75 21.02 0.03 TL 0.43
I96 0.03 11.41 5.21 0.91 24.45 0.11 TL 0.54
I97 0.03 11.82 3.78 0.75 33.9 0.07 TL 0.57
I98 0.03 11.97 4.42 0.98 36.59 0.13 TL 0.81
I99 0.03 12.29 5.15 0.85 33.76 0.07 TL 0.75

I100 0.03 11.64 5.22 0.95 41.22 0.13 TL 1.02

0.02 11.64 3.80 0.65 27.55 0.07 1624.38 1.18

Table 3.10: Comparison of the continuous relaxations (without and with cuts) of TRAD-

TKP and REF-TKP with explicit cut and column generations; 1 hour of computing time and
groups of 16 overlapping constraints.

44 Application: Temporal Knapsack Problem

tCUT1
gap tCUT2

gap tCUT4
gap tCUT8

gap tCUT16
gap tCUT32

gap gapCUT64

I41 116 2.09 128 1.27 168 0.63 477 0.34 2055 0.07 TL 1.37 5.20
I42 226 2.54 190 1.67 237 0.79 581 0.37 2406 0.15 TL 1.98 6.63
I43 307 2.05 234 1.34 308 0.77 711 0.38 2923 0.14 TL 2.03 6.09
I44 301 2.03 223 1.34 295 0.73 662 0.35 2875 0.20 TL 2.18 6.02
I45 373 2.37 290 1.67 341 0.97 764 0.40 2995 0.20 TL 2.31 6.82
I46 408 1.87 312 1.30 342 0.70 828 0.22 3036 0.09 TL 2.20 6.26
I47 460 1.69 349 1.16 388 0.60 824 0.26 TL 0.13 TL 2.42 6.68
I48 544 2.08 401 1.39 467 0.72 951 0.34 TL 0.16 TL 2.61 6.85
I49 610 2.09 432 1.37 502 0.68 1141 0.25 TL 0.16 TL 2.87 7.37
I50 677 2.06 516 1.30 627 0.60 1338 0.24 TL 0.17 TL 2.56 6.46
I51 272 1.32 393 0.51 1123 0.18 TL 0.33 TL 2.64 TL 6.52 9.43
I52 335 1.39 465 0.78 1288 0.29 TL 0.38 TL 2.85 TL 6.55 10.01
I53 387 1.20 517 0.52 1658 0.25 TL 0.57 TL 3.16 TL 7.03 10.00
I54 505 1.35 689 0.65 1789 0.28 TL 0.83 TL 3.41 TL 7.17 10.18
I55 526 1.18 675 0.50 1993 0.19 TL 0.74 TL 3.36 TL 7.29 10.25
I56 593 1.27 750 0.61 2057 0.26 TL 0.95 TL 3.65 TL 7.47 10.38
I57 681 1.24 937 0.56 2404 0.25 TL 0.88 TL 3.52 TL 7.22 10.54
I58 724 1.47 897 0.69 2546 0.33 TL 0.80 TL 3.55 TL 7.33 10.22
I59 767 1.52 983 0.70 2616 0.32 TL 0.75 TL 3.77 TL 7.69 10.47
I60 893 1.38 1066 0.61 3061 0.30 TL 1.11 TL 3.91 TL 7.72 10.18
I61 123 0.21 86 0.16 105 0.13 154 0.06 451 0.06 2326 0.00 1.18
I62 136 0.14 92 0.11 107 0.03 152 0.02 413 0.01 2174 0.00 1.26
I63 170 0.21 128 0.16 135 0.12 195 0.00 525 0.00 3030 0.00 1.21
I64 195 0.20 150 0.14 149 0.11 222 0.01 679 0.01 3420 0.00 1.24
I65 268 0.23 180 0.16 171 0.05 257 0.04 657 0.01 TL 0.02 1.17
I66 294 0.20 216 0.13 225 0.07 359 0.05 963 0.05 TL 0.06 1.55
I67 350 0.22 226 0.13 214 0.03 316 0.00 884 0.00 TL 0.06 1.87
I68 370 0.14 282 0.11 253 0.05 368 0.02 1123 0.02 TL 0.09 1.74
I69 464 0.23 315 0.12 280 0.08 409 0.03 1178 0.02 TL 0.13 2.02
I70 492 0.20 321 0.12 287 0.08 402 0.06 1109 0.03 TL 0.14 1.79
I71 231 1.38 189 0.96 352 0.53 808 0.13 3342 0.10 TL 1.82 5.52
I72 279 1.59 227 1.06 414 0.57 1022 0.22 TL 0.07 TL 2.39 6.00
I73 323 1.28 331 0.82 509 0.38 1027 0.15 TL 0.13 TL 2.36 6.40
I74 356 1.42 309 0.91 456 0.32 988 0.17 TL 0.13 TL 2.47 6.61
I75 393 1.61 361 1.06 577 0.47 1476 0.19 TL 0.35 TL 3.01 6.92
I76 474 1.19 429 0.84 762 0.40 1710 0.22 TL 0.43 TL 3.26 6.89
I77 573 1.43 457 0.97 693 0.43 1629 0.16 TL 0.38 TL 3.06 6.76
I78 628 1.41 518 0.92 745 0.55 1472 0.23 TL 0.40 TL 3.14 6.95
I79 725 1.38 600 0.97 767 0.52 1668 0.21 TL 0.54 TL 3.35 7.06
I80 781 1.43 521 0.93 617 0.48 1801 0.16 TL 0.54 TL 3.17 6.89
I81 317 1.24 298 0.58 791 0.30 TL 0.09 TL 2.15 TL 5.72 8.82
I82 317 1.04 454 0.64 1077 0.30 TL 0.19 TL 2.24 TL 5.75 9.01
I83 393 0.95 543 0.47 1144 0.20 TL 0.15 TL 2.10 TL 5.88 8.66
I84 494 1.03 677 0.48 1426 0.20 TL 0.22 TL 2.49 TL 5.84 8.48
I85 554 0.92 695 0.45 1708 0.19 TL 0.39 TL 2.70 TL 6.32 9.18
I86 628 1.12 837 0.48 1642 0.17 TL 0.32 TL 2.86 TL 6.55 9.28
I87 681 1.04 819 0.56 2059 0.26 TL 0.56 TL 2.86 TL 6.38 9.07
I88 756 1.11 986 0.55 2118 0.29 TL 0.59 TL 2.94 TL 6.72 9.20
I89 845 1.04 1096 0.54 2000 0.28 TL 0.78 TL 3.20 TL 6.67 9.22
I90 1000 1.18 1237 0.60 2756 0.28 TL 0.87 TL 3.62 TL 7.09 9.58
I91 329 1.87 301 1.23 373 0.49 954 0.17 TL 0.15 TL 2.35 5.98
I92 339 1.41 362 0.88 467 0.39 1174 0.12 TL 0.18 TL 2.31 6.16
I93 429 1.34 347 0.98 468 0.52 1210 0.26 TL 0.28 TL 2.64 6.50
I94 500 1.93 390 1.16 597 0.52 1362 0.20 TL 0.37 TL 2.87 6.82
I95 632 1.32 424 0.87 692 0.33 1740 0.09 TL 0.43 TL 3.13 6.80
I96 670 1.39 575 1.07 696 0.62 1644 0.26 TL 0.54 TL 3.13 6.64
I97 656 1.44 622 0.90 764 0.48 1853 0.20 TL 0.57 TL 3.19 7.05
I98 744 1.58 674 1.01 894 0.56 2244 0.30 TL 0.81 TL 3.47 7.07
I99 868 1.53 753 0.98 922 0.53 2262 0.26 TL 0.75 TL 3.57 7.37
I100 973 1.68 475 1.09 721 0.48 2709 0.23 TL 1.02 TL 4.05 7.58

491 1.27 483 0.77 922 0.38 1047 0.31 1624 1.18 2738 3.61 6.76

Table 3.11: Comparison of the explicit cut generations models with different dimensions; 1
hour of computing time.

Computational Results 45

bCUT1−2
bCUT2−4

bCUT4−8
bCUT8−16

bCUT16−32
bCUT32−64

262.7 202.6 91.2 80.9 -404.3 -1264.3
323.9 324.9 152.5 78.1 -670.3 -1817.5
298.6 240.8 159.5 100.5 -790.4 -1810.0
327.6 290.5 176.4 67.2 -935.2 -1927.9
368.7 359.9 288.8 105.3 -1091.2 -2491.0
327.7 343.4 266.6 73.8 -1198.9 -2456.0
325.2 339.8 200.1 80.3 -1391.9 -2777.4
471.4 447.9 252.7 116.8 -1651.9 -3061.3
519.6 491.7 298.9 61.1 -1943.0 -3476.1
593.8 543.3 274.0 52.9 -1861.1 -3238.0
595.1 242.6 -110.2 -1710.7 -3073.4 -2476.5
507.7 408.2 -75.8 -2089.1 -3337.3 -3370.0
674.7 270.6 -313.6 -2617.3 -4168.5 -3451.5
762.8 411.1 -602.5 -2895.0 -4502.2 -3885.5
831.3 377.3 -664.1 -3299.4 -5283.4 -4279.6
868.9 456.2 -902.4 -3641.4 -5528.0 -4542.3
976.6 449.3 -904.0 -3930.1 -5894.4 -5695.0
1217.9 549.8 -728.2 -4357.4 -6393.7 -5269.5
1379.0 645.0 -722.8 -5227.7 -7283.8 -5544.7
1420.0 589.6 -1514.6 -5376.4 -7857.6 -5433.5
9.5 7.4 15.5 0.0 13.5 -263.8
9.1 21.7 2.3 2.0 2.5 -333.3
13.4 13.5 34.0 0.0 0.0 -357.4
18.0 9.2 35.4 0.5 1.7 -410.3
24.5 40.1 6.0 7.7 -0.8 -432.2
29.1 22.2 9.2 0.0 -5.6 -600.8
41.4 42.3 14.3 1.0 -26.9 -827.5
16.7 29.8 10.8 3.0 -37.0 -805.7
58.3 20.5 23.6 6.0 -55.5 -976.9
44.6 20.1 14.1 15.8 -62.9 -918.2
175.4 178.8 165.0 13.3 -719.8 -1632.2
260.3 240.5 170.6 68.9 -1139.6 -1882.5
246.2 232.2 122.9 8.6 -1198.3 -2320.1
313.5 355.9 92.9 24.3 -1440.4 -2713.0
372.8 393.2 187.9 -107.9 -1822.9 -2866.7
270.0 330.5 140.1 -159.6 -2208.7 -3024.0
389.1 447.5 223.8 -185.9 -2275.5 -3351.8
423.7 323.9 274.6 -148.2 -2425.3 -3601.4
397.2 438.2 295.6 -321.4 -2776.9 -3919.7
520.1 456.6 316.3 -376.7 -2740.2 -4118.5
479.7 205.4 144.8 -1502.3 -2765.8 -2575.0
339.1 277.8 95.5 -1741.3 -3160.0 -3158.8
463.6 264.8 47.0 -1917.8 -3943.8 -3108.2
611.8 313.4 -29.3 -2569.8 -4014.0 -3380.0
571.1 311.5 -242.6 -2836.3 -4746.9 -4005.2
844.5 390.1 -187.8 -3357.0 -5216.8 -4125.2
681.3 438.0 -436.0 -3378.5 -5499.8 -4484.2
872.7 414.4 -468.8 -3775.8 -6463.8 -4531.6
844.7 446.0 -847.2 -4231.1 -6453.6 -5043.3
1034.0 570.1 -1047.6 -5092.4 -6863.7 -5241.6
281.6 324.7 134.0 8.0 -961.0 -1686.1
252.2 228.9 125.4 -26.1 -1016.9 -1956.9
200.2 254.7 140.2 -11.7 -1324.3 -2304.8
486.3 393.2 196.0 -101.3 -1568.3 -2655.3
319.1 370.3 164.6 -229.3 -1921.1 -2780.7
234.5 330.7 262.9 -198.8 -1948.1 -2803.5
440.4 344.5 223.0 -298.8 -2178.9 -3436.1
519.0 401.4 231.9 -450.3 -2461.6 -3553.4
515.0 427.8 253.6 -465.5 -2722.6 -3922.2
613.9 631.8 247.5 -807.1 -3217.8 -4016.2

454.9 315.8 -53.6 -1141.0 -2543.8 -2873.2

Table 3.12: Cut generation: comparison of bounds obtained by different block dimensions.

46 Application: Temporal Knapsack Problem

tCUT1−2
tCUT2−4

tCUT4−8
tCUT8−16

tCUT16−32
tCUT32−64

11.5 40.2 308.8 1578.7 * *
-35.7 47.7 343.7 1824.4 * *
-73.4 74.4 403.1 2212.1 * *
-78.6 72.2 367.1 2213.5 * *
-82.8 50.7 422.9 2231.1 * *
-95.7 30.6 485.1 2208.8 * *
-111.0 38.9 436.7 2770.5 * *
-142.1 65.7 484.0 2649.0 * *
-178.3 69.9 639.4 2459.9 * *
-160.5 110.9 710.5 2263.5 * *
120.8 729.3 * * * *
130.5 822.5 * * * *
130.5 1141.2 * * * *
183.5 1100.2 * * * *
148.5 1318.0 * * * *
157.1 1307.0 * * * *
256.4 1467.2 * * * *
173.6 1648.6 * * * *
215.7 1633.6 * * * *
173.0 1994.5 * * * *
-37.6 19.6 48.6 297.5 1874.4 *
-43.5 15.4 44.9 260.3 1761.9 *
-42.1 7.4 60.1 329.5 2505.8 *
-45.7 -1.0 73.1 457.5 2740.2 *
-87.6 -9.4 86.1 400.5 * *
-78.2 8.6 133.8 604.4 * *
-123.9 -12.4 101.7 567.7 * *
-87.5 -29.4 114.9 755.2 * *
-149.3 -34.7 128.8 769.6 * *
-170.8 -34.1 115.1 706.5 * *
-42.4 163.4 455.8 2533.8 * *
-52.3 186.7 608.2 2580.0 * *
8.1 178.1 518.3 2574.9 * *
-47.1 147.7 531.5 2615.1 * *
-32.0 215.3 899.0 2125.2 * *
-44.7 332.9 947.8 1891.0 * *
-115.4 236.2 935.9 1972.5 * *
-110.2 227.8 727.1 2130.9 * *
-125.1 167.3 900.6 1932.8 * *
-259.8 95.5 1184.0 1801.0 * *
-18.6 492.5 * * * *
137.1 622.3 * * * *
150.4 600.7 * * * *
183.0 748.7 * * * *
141.3 1013.0 * * * *
208.7 805.4 * * * *
137.5 1240.0 * * * *
230.5 1132.1 * * * *
250.6 904.3 * * * *
237.1 1518.2 * * * *
-27.5 72.3 580.3 2653.4 * *
22.8 104.7 706.9 2428.2 * *
-81.9 120.8 741.9 2390.3 * *
-109.6 206.9 765.5 2241.5 * *
-208.0 267.3 1048.5 1860.2 * *
-94.2 121.0 947.3 1957.3 * *
-33.3 141.8 1088.8 1748.4 * *
-69.6 220.1 1350.0 1356.0 * *
-114.4 168.4 1340.4 1338.0 * *
-498.1 245.7 1988.8 891.1 * *

-8.3 439.8 975.6 1143.5 506.4 *

Table 3.13: Cut generation: comparison of times obtained by different block dimensions.

Computational Results 47

imprCUT1
imprCUT2

imprCUT4
imprCUT8

imprCUT16
imprCUT32

imprCUT64

12.18% 12.92% 13.48% 13.73% 13.96% 12.83% 9.31%
11.37% 12.15% 12.93% 13.30% 13.49% 11.87% 7.48%
11.69% 12.33% 12.83% 13.17% 13.38% 11.71% 7.89%
11.28% 11.89% 12.44% 12.77% 12.90% 11.14% 7.51%
11.49% 12.12% 12.74% 13.23% 13.41% 11.54% 7.26%
11.98% 12.49% 13.02% 13.44% 13.55% 11.68% 7.86%
12.56% 13.03% 13.52% 13.81% 13.93% 11.91% 7.88%
11.41% 12.03% 12.62% 12.96% 13.11% 10.92% 6.87%
11.55% 12.20% 12.81% 13.18% 13.26% 10.84% 6.51%
11.54% 12.22% 12.84% 13.15% 13.21% 11.09% 7.38%
10.37% 11.11% 11.40% 11.27% 9.17% 5.39% 2.35%
11.17% 11.72% 12.15% 12.07% 9.84% 6.27% 2.66%
10.80% 11.42% 11.66% 11.38% 9.00% 5.21% 2.08%
10.50% 11.13% 11.47% 10.97% 8.59% 4.90% 1.70%
11.19% 11.80% 12.07% 11.59% 9.18% 5.34% 2.22%
11.07% 11.67% 11.98% 11.36% 8.89% 5.12% 2.03%
11.21% 11.81% 12.09% 11.53% 9.11% 5.49% 1.98%
10.65% 11.35% 11.67% 11.25% 8.72% 5.00% 1.94%
10.89% 11.62% 11.97% 11.58% 8.80% 4.93% 1.98%
10.20% 10.89% 11.18% 10.44% 7.84% 4.03% 1.40%
10.32% 10.36% 10.39% 10.46% 10.46% 10.51% 9.44%
10.07% 10.10% 10.18% 10.18% 10.19% 10.20% 9.05%
9.45% 9.49% 9.53% 9.64% 9.64% 9.64% 8.53%
9.62% 9.67% 9.69% 9.79% 9.79% 9.80% 8.67%
9.85% 9.91% 10.01% 10.03% 10.04% 10.04% 8.99%
9.98% 10.05% 10.10% 10.12% 10.12% 10.11% 8.74%
9.24% 9.33% 9.41% 9.44% 9.44% 9.39% 7.71%
9.55% 9.58% 9.63% 9.66% 9.66% 9.59% 8.08%
9.18% 9.28% 9.32% 9.36% 9.37% 9.27% 7.52%
9.94% 10.01% 10.04% 10.07% 10.09% 9.99% 8.48%
10.08% 10.46% 10.85% 11.20% 11.23% 9.67% 6.14%
10.28% 10.75% 11.20% 11.51% 11.64% 9.54% 6.07%
11.00% 11.41% 11.80% 12.01% 12.02% 10.01% 6.13%
10.41% 10.87% 11.40% 11.54% 11.57% 9.45% 5.44%
10.68% 11.17% 11.70% 11.95% 11.80% 9.38% 5.58%
10.32% 10.64% 11.03% 11.20% 11.01% 8.40% 4.83%
10.03% 10.46% 10.94% 11.18% 10.98% 8.52% 4.89%
10.58% 11.02% 11.35% 11.64% 11.48% 8.98% 5.25%
10.36% 10.73% 11.14% 11.42% 11.12% 8.53% 4.89%
10.24% 10.70% 11.11% 11.39% 11.06% 8.63% 4.99%
10.58% 11.17% 11.42% 11.60% 9.75% 6.33% 3.14%
10.30% 10.67% 10.96% 11.07% 9.20% 5.82% 2.44%
9.99% 10.42% 10.67% 10.71% 8.93% 5.27% 2.39%
9.36% 9.86% 10.12% 10.09% 8.00% 4.73% 1.98%
10.73% 11.15% 11.38% 11.20% 9.10% 5.58% 2.61%
9.98% 10.56% 10.84% 10.70% 8.37% 4.75% 1.89%
9.75% 10.18% 10.45% 10.18% 8.05% 4.59% 1.78%
9.95% 10.45% 10.69% 10.42% 8.24% 4.52% 1.92%
9.82% 10.27% 10.50% 10.05% 7.80% 4.37% 1.69%
10.33% 10.85% 11.14% 10.61% 8.06% 4.62% 2.00%
10.27% 10.85% 11.52% 11.80% 11.81% 9.83% 6.35%
9.89% 10.37% 10.81% 11.04% 11.00% 9.05% 5.32%
10.34% 10.66% 11.08% 11.31% 11.29% 9.14% 5.39%
10.38% 11.08% 11.65% 11.94% 11.79% 9.52% 5.68%
9.76% 10.18% 10.66% 10.88% 10.58% 8.08% 4.46%
10.16% 10.45% 10.85% 11.17% 10.93% 8.55% 5.11%
10.54% 11.02% 11.40% 11.65% 11.32% 8.92% 5.14%
10.56% 11.07% 11.47% 11.70% 11.26% 8.81% 5.27%
10.93% 11.42% 11.82% 12.06% 11.62% 9.04% 5.31%
10.12% 10.66% 11.22% 11.43% 10.73% 7.91% 4.39%

10.50% 10.95% 11.31% 11.36% 10.57% 8.27% 5.17%

Table 3.14: Cut generation: improvement on the TRAD − TKP continuous relaxation.

48 Application: Temporal Knapsack Problem

imprCUT1
imprCUT2

imprCUT4
imprCUT8

imprCUT16
imprCUT32

imprCUT64

0.105% 0.101% 0.106% 0.029% 0.007% 0.004% 0.003%
0.050% 0.064% 0.068% 0.023% 0.006% 0.003% 0.002%
0.038% 0.053% 0.055% 0.019% 0.005% 0.003% 0.002%
0.037% 0.053% 0.056% 0.019% 0.004% 0.003% 0.002%
0.031% 0.042% 0.044% 0.017% 0.004% 0.003% 0.002%
0.029% 0.040% 0.042% 0.016% 0.004% 0.003% 0.002%
0.027% 0.037% 0.039% 0.017% 0.004% 0.003% 0.002%
0.021% 0.030% 0.031% 0.014% 0.004% 0.003% 0.002%
0.019% 0.028% 0.030% 0.012% 0.004% 0.003% 0.002%
0.017% 0.024% 0.025% 0.010% 0.004% 0.003% 0.002%
0.038% 0.028% 0.029% 0.003% 0.003% 0.001% 0.001%
0.033% 0.025% 0.026% 0.003% 0.003% 0.002% 0.001%
0.028% 0.022% 0.023% 0.003% 0.002% 0.001% 0.001%
0.021% 0.016% 0.017% 0.003% 0.002% 0.001% 0.000%
0.021% 0.017% 0.018% 0.003% 0.003% 0.001% 0.001%
0.019% 0.016% 0.016% 0.003% 0.002% 0.001% 0.001%
0.016% 0.013% 0.013% 0.003% 0.003% 0.002% 0.001%
0.015% 0.013% 0.013% 0.003% 0.002% 0.001% 0.001%
0.014% 0.012% 0.012% 0.003% 0.002% 0.001% 0.001%
0.011% 0.010% 0.010% 0.003% 0.002% 0.001% 0.000%
0.084% 0.121% 0.122% 0.068% 0.023% 0.005% 0.003%
0.074% 0.110% 0.111% 0.067% 0.025% 0.005% 0.003%
0.056% 0.074% 0.075% 0.049% 0.018% 0.003% 0.002%
0.049% 0.065% 0.065% 0.044% 0.014% 0.003% 0.002%
0.037% 0.055% 0.056% 0.039% 0.015% 0.003% 0.002%
0.034% 0.046% 0.047% 0.028% 0.011% 0.003% 0.002%
0.026% 0.041% 0.042% 0.030% 0.011% 0.003% 0.002%
0.026% 0.034% 0.034% 0.026% 0.009% 0.003% 0.002%
0.020% 0.029% 0.030% 0.023% 0.008% 0.003% 0.002%
0.020% 0.031% 0.031% 0.025% 0.009% 0.003% 0.002%
0.044% 0.055% 0.057% 0.014% 0.003% 0.003% 0.002%
0.037% 0.047% 0.049% 0.011% 0.003% 0.003% 0.002%
0.034% 0.034% 0.036% 0.012% 0.003% 0.003% 0.002%
0.029% 0.035% 0.037% 0.012% 0.003% 0.003% 0.002%
0.027% 0.031% 0.032% 0.008% 0.003% 0.003% 0.002%
0.022% 0.025% 0.026% 0.007% 0.003% 0.002% 0.001%
0.018% 0.023% 0.024% 0.007% 0.003% 0.002% 0.001%
0.017% 0.021% 0.022% 0.008% 0.003% 0.002% 0.001%
0.014% 0.018% 0.019% 0.007% 0.003% 0.002% 0.001%
0.013% 0.021% 0.021% 0.006% 0.003% 0.002% 0.001%
0.033% 0.037% 0.038% 0.003% 0.003% 0.002% 0.001%
0.032% 0.023% 0.024% 0.003% 0.003% 0.002% 0.001%
0.025% 0.019% 0.020% 0.003% 0.002% 0.001% 0.001%
0.019% 0.015% 0.015% 0.003% 0.002% 0.001% 0.001%
0.019% 0.016% 0.016% 0.003% 0.003% 0.002% 0.001%
0.016% 0.013% 0.013% 0.003% 0.002% 0.001% 0.001%
0.014% 0.012% 0.013% 0.003% 0.002% 0.001% 0.000%
0.013% 0.011% 0.011% 0.003% 0.002% 0.001% 0.001%
0.012% 0.009% 0.010% 0.003% 0.002% 0.001% 0.000%
0.010% 0.009% 0.009% 0.003% 0.002% 0.001% 0.001%
0.031% 0.036% 0.038% 0.012% 0.003% 0.003% 0.002%
0.029% 0.029% 0.030% 0.009% 0.003% 0.003% 0.001%
0.024% 0.031% 0.032% 0.009% 0.003% 0.003% 0.001%
0.021% 0.028% 0.030% 0.009% 0.003% 0.003% 0.002%
0.015% 0.024% 0.025% 0.006% 0.003% 0.002% 0.001%
0.015% 0.018% 0.019% 0.007% 0.003% 0.002% 0.001%
0.016% 0.018% 0.018% 0.006% 0.003% 0.002% 0.001%
0.014% 0.016% 0.017% 0.005% 0.003% 0.002% 0.001%
0.013% 0.015% 0.016% 0.005% 0.003% 0.003% 0.001%
0.010% 0.022% 0.024% 0.004% 0.003% 0.002% 0.001%

0.028% 0.033% 0.034% 0.013% 0.005% 0.002% 0.001%

Table 3.15: Cut generation: improvement on original TRAD − TKP continuous relaxation
per second.

Computational Results 49

imprCUT1
imprCUT2

imprCUT4
imprCUT8

imprCUT16
imprCUT32

imprCUT64

0.00% 0.00% 0.45% 0.74% 1.00% 0.00% 0.00%
0.00% 0.00% 0.31% 0.73% 0.95% 0.00% 0.00%
0.00% 0.00% 0.39% 0.77% 1.01% 0.00% 0.00%
0.00% 0.00% 0.21% 0.59% 0.74% 0.00% 0.00%
0.00% 0.00% 0.32% 0.89% 1.09% 0.00% 0.00%
0.00% 0.00% 0.34% 0.81% 0.94% 0.00% 0.00%
0.00% 0.00% 0.32% 0.66% 0.79% 0.00% 0.00%
0.00% 0.00% 0.39% 0.77% 0.95% 0.00% 0.00%
0.00% 0.00% 0.60% 1.02% 1.11% 0.00% 0.00%
0.00% 0.00% 0.66% 1.01% 1.08% 0.00% 0.00%
0.00% 0.17% 0.50% 0.35% 0.00% 0.00% 0.00%
0.00% 0.00% 0.25% 0.16% 0.00% 0.00% 0.00%
0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 0.00%
0.00% 0.02% 0.40% 0.00% 0.00% 0.00% 0.00%
0.00% 0.13% 0.45% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.32% 0.00% 0.00% 0.00% 0.00%
0.00% 0.03% 0.34% 0.00% 0.00% 0.00% 0.00%
0.00% 0.13% 0.49% 0.01% 0.00% 0.00% 0.00%
0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.00% 0.03% 0.03% 0.09% 0.00%
0.00% 0.03% 0.11% 0.12% 0.13% 0.14% 0.00%
0.00% 0.00% 0.00% 0.12% 0.12% 0.12% 0.00%
0.00% 0.01% 0.04% 0.14% 0.14% 0.15% 0.00%
0.00% 0.00% 0.05% 0.06% 0.08% 0.08% 0.00%
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.06% 0.09% 0.09% 0.03% 0.00%
0.00% 0.00% 0.01% 0.03% 0.04% 0.00% 0.00%
0.00% 0.02% 0.07% 0.11% 0.12% 0.01% 0.00%
0.00% 0.00% 0.04% 0.07% 0.09% 0.00% 0.00%
0.00% 0.00% 0.21% 0.61% 0.65% 0.00% 0.00%
0.00% 0.00% 0.31% 0.67% 0.81% 0.00% 0.00%
0.00% 0.00% 0.35% 0.59% 0.60% 0.00% 0.00%
0.00% 0.00% 0.21% 0.37% 0.41% 0.00% 0.00%
0.00% 0.00% 0.32% 0.60% 0.44% 0.00% 0.00%
0.00% 0.00% 0.09% 0.27% 0.06% 0.00% 0.00%
0.00% 0.00% 0.25% 0.53% 0.30% 0.00% 0.00%
0.00% 0.00% 0.15% 0.47% 0.29% 0.00% 0.00%
0.00% 0.00% 0.07% 0.38% 0.04% 0.00% 0.00%
0.00% 0.00% 0.28% 0.59% 0.22% 0.00% 0.00%
0.00% 0.00% 0.25% 0.45% 0.00% 0.00% 0.00%
0.00% 0.00% 0.20% 0.31% 0.00% 0.00% 0.00%
0.00% 0.00% 0.18% 0.23% 0.00% 0.00% 0.00%
0.00% 0.00% 0.24% 0.21% 0.00% 0.00% 0.00%
0.00% 0.00% 0.22% 0.02% 0.00% 0.00% 0.00%
0.00% 0.06% 0.37% 0.22% 0.00% 0.00% 0.00%
0.00% 0.07% 0.38% 0.08% 0.00% 0.00% 0.00%
0.00% 0.00% 0.24% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00%
0.00% 0.06% 0.38% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.31% 0.62% 0.64% 0.00% 0.00%
0.00% 0.09% 0.57% 0.84% 0.78% 0.00% 0.00%
0.00% 0.00% 0.27% 0.53% 0.50% 0.00% 0.00%
0.00% 0.00% 0.63% 0.95% 0.79% 0.00% 0.00%
0.00% 0.00% 0.42% 0.66% 0.33% 0.00% 0.00%
0.00% 0.00% 0.29% 0.65% 0.38% 0.00% 0.00%
0.00% 0.00% 0.27% 0.55% 0.18% 0.00% 0.00%
0.00% 0.00% 0.42% 0.68% 0.17% 0.00% 0.00%
0.00% 0.00% 0.32% 0.59% 0.09% 0.00% 0.00%
0.00% 0.00% 0.47% 0.72% 0.00% 0.00% 0.00%

0.00% 0.01% 0.28% 0.38% 0.30% 0.01% 0.00%

Table 3.16: Cut generation: Improvement on TRAD − TKP root node.

50 Application: Temporal Knapsack Problem

3.6.4 Reformulation and Column Generation

In table 3.17 and 3.18 we investigate the performance of the REF −TKP column generation
model for different groupings of the constraints, i.e., we consider different cardinalities for the
sets Ih, h = i, . . . , g. For |Ih| = {1, 2, 4, 8, 16, 32, 64, 128} we report the time needed to solve
the continuous relaxation of the corresponding REF − TKP through column generation and
the optimality gap between the optimal solution and the obtained upper bound. As expected,
by increasing the size of the groups of constraints the obtained optimality gap is reduced. The
computing time is larger for very small groupings (1 or 2 constraints in each group), because
in this case during the column generation there is a large number of (easy) subproblems to be
solved. By increasing the size of the groups the overall computing time is reduced, and then
it increases again, when there are few subproblems to solve, but very hard ones. In Table
3.19 we present the comparison of bounds obtained by different block dimensions, more in
detail the table shows the absolute difference of bound achievable grouping by 1-2, 2-4, 4-8,
8-16, 16-32, 32-64 and 64-128. In Table 3.20 we present the same comparison of the previous
table but comparing the computing times. These tables show that grouping by 1 2 4 8 are
dominated not only in terms of bounds but also in terms of computing time. In Table 3.21 we
present the absolute improvement on the TRAD−TKP continuous relaxation. In Table 3.22
we present the improvement on original TRAD− TKP continuous relaxation per second. In
Table 3.23 we present the absolute improvement on TRAD − TKP root node.

3.6.5 Reformulation, Column Generation and Branch and Price

In the following we will consider only groupings of 32, 64 and 128 constraints, which represent
a good compromise between computing time and quality of the obtained upper bound. As
the previous tables have shown the computing time and the gap obtained by solving through
column generation the root node of the REF − TKP formulation where constraints are
grouped by 32, 64 and 128 at the time, respectively prove the effectiveness of the proposed
formulation REF − TKP . The reformulation is able to reduce the optimality gap between
the optimal solution and the upper bound obtained at the root node of the column generation
of around two orders of magnitude with respect to the root node of model TRAD − TKP
computed by CPLEX12.2. The cost of this improved bound, in terms of computing time, is
between one and two orders of magnitude. A natural question is wether this computationally
expensive improved bound pays when one wants to solve the TKP to optimality, i.e., wants to
obtain an optimal integer solution. The question is investigated through the results reported
in Table 3.24 where, for every instance, we report the optimality gap and the time needed for
the TRAD − TKP model through CPLEX12.2. When the time limit of 1 h of computing
time is reached before optimality (TL), we report the current optimality gap (0 otherwise).
In the following columns we report the time needed to solve to optimality the TKP − REF
model through Branch and Price for groupings of 32, 64 and 128 constraints, respectively. The
table shows that it actually pays to spend some computational effort in obtaining a stronger
continuous relaxation: CPLEX12.2 almost always runs into time limit before solving the
considered problem, and the remaining gap is such that the solution of the problem in short
time is unlikely. The only exceptions are the instances of group VII, which are easily solved
also in the TRAD − TKP formulation (in this group the profit of each item equals the cost,
thus the problem is in this case a generalization of the Subset-Sum Problem, see Martello and
Toth [50]). On the other side, the REF−TKP model can be solved to optimality for the large
part of the considered instances, through the straightforward branching scheme described in

Computational Results 51

Section 3.4.2. Only some instances could not be solved within the available computing time,
and the corresponding optimality gap is extremely small. In few words, the advantage of
computing a strong continuous relaxation is such that even a very simple Branch-and-Price
algorithm can rule over the sophisticated Branch-and-Cut implemented in CPLEX12.2.

3.6.6 Short Constraints: Dynamic Programming

In this Section we present the result obtained with the Dynamic Programming algorithm
described in Section 3.3. The considered instances (groups I-IV) have the same structure of
those analyzed in the previous sections, but have constraints of smaller cardinality (namely 10,
15, 20 and 25 items appear in every constraint) and a larger number of constraints (starting
from 2688 and increasing). Having few items per constraint is crucial for the Dynamic Pro-
gramming algorithm, whose time complexity exponentially grows with the cardinality of the
constraints (see Section 3.3). Table 3.25 compares the results from the TRAD−TKP model,
the Dynamic Programming Algorithm, and the REF −TKP . The maximum computing time
for all the tests is 1 hour. The second column shows the optimal value z, which is used to
compute all the percentage gaps. The third column reports the time and, in case of time
limit, the percentage gap for the TKP − TRAD solved with CPLEX12.1. The forth column
shows the computing time tDP of the Dynamic Programming Algorithm. Note that when
the Dynamic Programming algorithm runs into time limit, there are no feasible solutions nor
upper bounds available. The fifth, sixth and seventh columns show the computing time and,
in case of time limit, the percentage gap for the REF − TKP model with groups of 32, 64
and 128 constraints, respectively.

CPLEX12.1 can easily solve instances of the first group with the TRAD−TKP formulation,
but quickly gets into troubles as soon as the cardinality of the constraints grows. For instances
with cardinality equal to 20 it always runs into time limit. For these instances the REF−TKP
model is still effective, in particular when constraints are grouped 128 at the time. Finally, we
observe that the Dynamic Programming algorithm is very fast for instances with constraints of
small cardinality, it behave similarly to the REF −TKP model for constraints of cardinality
20, while it systematically runs into time limit if the cardinality of the constraints is 25 (or
larger).

52 Application: Temporal Knapsack Problem

tCOL1
gap tCOL2

gap tCOL4
gap tCOL8

gap

I41 153 2.09 59 1.27 24 0.63 13 0.34
I42 241 2.54 72 1.67 28 0.79 23 0.37
I43 355 2.05 107 1.34 48 0.77 25 0.38
I44 353 2.03 106 1.34 41 0.73 26 0.35
I45 415 2.37 143 1.67 50 0.97 33 0.40
I46 497 1.87 149 1.30 47 0.70 37 0.22
I47 461 1.69 200 1.16 60 0.60 41 0.26
I48 588 2.08 189 1.39 75 0.72 48 0.34
I49 964 2.09 246 1.37 63 0.68 53 0.25
I50 761 2.06 328 1.30 83 0.60 81 0.24
I51 155 1.32 52 0.51 21 0.18 22 0.10
I52 129 1.39 57 0.78 24 0.29 22 0.14
I53 176 1.20 76 0.52 32 0.25 30 0.09
I54 205 1.35 101 0.65 45 0.28 33 0.12
I55 272 1.18 111 0.50 45 0.19 36 0.07
I56 273 1.27 116 0.61 39 0.26 55 0.12
I57 307 1.24 118 0.56 47 0.25 72 0.10
I58 452 1.47 133 0.69 50 0.33 48 0.11
I59 344 1.52 171 0.70 53 0.32 49 0.14
I60 403 1.38 174 0.61 76 0.30 80 0.14
I61 85 0.21 38 0.16 12 0.13 8 0.06
I62 67 0.14 31 0.11 14 0.03 12 0.02
I63 72 0.21 37 0.16 14 0.12 11 0.00
I64 112 0.20 45 0.14 21 0.11 13 0.01
I65 143 0.23 68 0.16 22 0.05 19 0.04
I66 221 0.20 82 0.13 38 0.07 20 0.05
I67 148 0.22 61 0.13 29 0.03 25 0.00
I68 247 0.14 84 0.11 33 0.05 20 0.02
I69 214 0.23 96 0.12 35 0.08 20 0.03
I70 331 0.20 106 0.12 40 0.08 25 0.06
I71 112 1.38 43 0.96 19 0.53 15 0.13
I72 159 1.59 78 1.06 26 0.57 19 0.22
I73 239 1.28 68 0.82 29 0.38 25 0.15
I74 178 1.42 77 0.91 36 0.32 20 0.17
I75 227 1.61 95 1.06 42 0.47 27 0.19
I76 322 1.19 111 0.84 46 0.40 34 0.22
I77 281 1.43 114 0.97 41 0.43 36 0.16
I78 349 1.41 148 0.92 49 0.55 45 0.23
I79 347 1.38 146 0.97 46 0.52 38 0.21
I80 436 1.43 184 0.93 66 0.48 39 0.16
I81 76 1.24 43 0.58 19 0.30 19 0.08
I82 106 1.04 49 0.64 21 0.30 23 0.11
I83 112 0.95 55 0.47 30 0.20 29 0.09
I84 148 1.03 81 0.48 35 0.20 31 0.09
I85 167 0.92 74 0.45 33 0.19 37 0.11
I86 195 1.12 114 0.48 36 0.17 37 0.05
I87 280 1.04 105 0.56 54 0.26 38 0.13
I88 246 1.11 108 0.55 57 0.29 52 0.14
I89 271 1.04 133 0.54 54 0.28 58 0.14
I90 336 1.18 160 0.60 58 0.28 60 0.10
I91 137 1.87 61 1.23 21 0.49 19 0.17
I92 177 1.41 85 0.88 31 0.39 30 0.12
I93 197 1.34 91 0.98 32 0.52 24 0.26
I94 328 1.93 166 1.16 40 0.52 41 0.20
I95 346 1.32 132 0.87 45 0.33 42 0.09
I96 334 1.39 148 1.07 47 0.62 36 0.26
I97 313 1.44 160 0.90 52 0.48 43 0.20
I98 541 1.58 201 1.01 59 0.56 75 0.30
I99 540 1.53 229 0.98 75 0.53 52 0.26
I100 586 1.68 240 1.09 89 0.48 58 0.23

287 1.27 114 0.77 42 0.38 35 0.16

Table 3.17: Comparison of the column generations models with different dimensions (from 1
to 8) ; 1 hour of computing time.

Computational Results 53

tCOL16
gap tCOL32

gap tCOL64
gap tCOL128

gap

I41 11 0.07 10 0.06 17 0.01 32 0.01
I42 15 0.15 17 0.10 26 0.03 47 0.03
I43 15 0.14 17 0.07 56 0.02 298 0.02
I44 23 0.20 26 0.09 35 0.02 72 0.00
I45 22 0.20 29 0.03 37 0.02 119 0.02
I46 20 0.09 33 0.04 49 0.04 67 0.04
I47 21 0.13 41 0.03 37 0.00 66 0.00
I48 23 0.09 37 0.02 38 0.01 126 0.00
I49 29 0.09 37 0.06 78 0.00 143 0.00
I50 30 0.05 59 0.02 59 0.01 142 0.00
I51 24 0.04 42 0.03 67 0.00 1132 0.00
I52 32 0.07 50 0.04 88 0.03 218 0.02
I53 43 0.02 56 0.01 214 0.00 302 0.00
I54 32 0.04 42 0.04 113 0.01 1166 0.00
I55 62 0.02 102 0.01 155 0.01 492 0.00
I56 55 0.09 74 0.07 202 0.03 623 0.01
I57 57 0.05 95 0.03 153 0.02 504 0.00
I58 48 0.06 160 0.02 285 0.01 777 0.01
I59 57 0.08 165 0.05 602 0.01 3275 0.01
I60 65 0.07 133 0.02 358 0.00 1666 0.00
I61 4 0.06 3 0.00 3 0.00 4 0.00
I62 5 0.01 6 0.00 5 0.00 5 0.00
I63 5 0.00 5 0.00 7 0.00 7 0.00
I64 7 0.01 7 0.00 9 0.00 9 0.00
I65 7 0.01 8 0.01 11 0.01 8 0.01
I66 11 0.05 8 0.00 13 0.00 13 0.00
I67 11 0.00 12 0.00 10 0.00 12 0.00
I68 11 0.02 12 0.00 8 0.00 20 0.00
I69 12 0.02 16 0.01 13 0.01 12 0.00
I70 13 0.03 15 0.02 14 0.02 17 0.00
I71 13 0.10 14 0.03 21 0.00 42 0.00
I72 12 0.07 25 0.02 35 0.00 97 0.00
I73 19 0.06 16 0.01 40 0.01 35 0.01
I74 13 0.07 23 0.05 25 0.01 58 0.00
I75 16 0.11 38 0.06 35 0.05 126 0.03
I76 19 0.13 35 0.08 75 0.05 94 0.03
I77 19 0.09 44 0.06 45 0.02 66 0.00
I78 34 0.12 31 0.03 58 0.00 112 0.00
I79 26 0.08 33 0.06 89 0.04 93 0.01
I80 33 0.07 42 0.03 91 0.02 110 0.01
I81 17 0.05 42 0.02 46 0.02 203 0.01
I82 28 0.03 68 0.01 71 0.01 176 0.01
I83 24 0.03 30 0.01 40 0.01 68 0.01
I84 28 0.02 50 0.01 84 0.00 171 0.00
I85 65 0.05 69 0.02 78 0.01 211 0.01
I86 46 0.01 88 0.01 135 0.00 399 0.00
I87 43 0.06 69 0.02 128 0.01 317 0.00
I88 52 0.08 130 0.06 153 0.03 441 0.02
I89 49 0.06 90 0.03 157 0.01 430 0.00
I90 54 0.05 126 0.03 228 0.02 689 0.01
I91 11 0.07 18 0.05 30 0.00 75 0.00
I92 30 0.03 26 0.02 39 0.02 69 0.00
I93 15 0.09 21 0.03 36 0.01 77 0.00
I94 25 0.08 40 0.02 73 0.02 204 0.00
I95 21 0.03 33 0.03 54 0.03 210 0.00
I96 24 0.11 33 0.05 72 0.01 419 0.01
I97 34 0.07 53 0.07 65 0.04 143 0.01
I98 37 0.13 63 0.06 134 0.02 837 0.01
I99 34 0.07 45 0.01 93 0.01 167 0.00
I100 41 0.13 47 0.07 132 0.05 370 0.03

28 0.07 46 0.03 85 0.01 298 0.01

Table 3.18: Comparison of the column generations models with different dimensions (from 64
to 128); 1 hour of computing time.

54 Application: Temporal Knapsack Problem

s
bCOL1−2

bCOL2−4
bCOL4−8

bCOL8−16
bCOL16−32

bCOL32−64
bCOL64−128

262.7 202.6 91.2 80.9 6.0 14.0 0.0
323.9 324.9 152.5 78.1 19.1 23.8 0.0
298.6 240.8 159.5 100.5 27.2 20.2 0.0
327.6 290.5 176.4 67.2 51.3 32.6 9.0
368.7 359.9 288.8 105.3 82.7 5.7 0.0
327.7 343.4 266.6 73.8 24.2 0.0 0.0
325.2 339.8 200.1 80.3 56.2 19.0 0.0
471.4 447.9 252.7 160.5 44.8 11.0 4.0
519.6 491.7 298.9 112.6 17.5 43.6 0.0
593.8 543.3 274.0 144.9 20.0 7.5 9.0
595.1 242.6 55.4 42.3 11.0 18.5 0.0
507.7 408.2 124.4 57.4 21.0 8.0 7.0
674.7 270.6 154.7 60.0 9.9 9.8 0.0
762.8 411.1 172.1 85.7 0.0 23.5 15.5
831.3 377.3 142.2 60.3 12.3 5.5 3.5
868.9 456.2 181.5 48.3 18.8 53.3 21.0
976.6 449.3 210.6 72.8 36.9 10.0 28.9
1217.9 549.8 325.4 75.7 68.5 15.2 3.0
1379.0 645.0 288.2 110.4 44.0 59.0 2.5
1420.0 589.6 279.3 125.0 99.2 34.8 2.3
9.5 7.4 15.5 0.0 13.5 0.0 0.0
9.1 21.7 2.3 2.0 2.5 0.0 0.0
13.4 13.5 34.0 0.0 0.0 0.0 0.0
18.0 9.2 35.4 0.5 1.7 0.0 0.0
24.5 40.1 6.0 7.7 0.0 0.0 3.5
29.1 22.2 9.2 0.0 18.3 0.0 0.0
41.4 42.3 14.3 1.0 0.0 0.0 0.0
16.7 29.8 10.8 3.0 6.5 0.5 0.0
58.3 20.5 23.6 6.0 7.3 0.0 3.0
44.6 20.1 14.1 15.8 7.0 0.0 9.0
175.4 178.8 165.0 13.3 29.2 12.3 0.0
260.3 240.5 170.6 69.3 26.6 7.5 0.0
246.2 232.2 122.9 48.1 25.6 0.0 0.0
313.5 355.9 92.9 59.1 13.7 24.0 4.0
372.8 393.2 187.9 52.8 34.1 8.5 10.3
270.0 330.5 140.1 68.4 35.0 20.5 18.2
389.1 447.5 223.8 52.1 24.8 33.0 16.0
423.7 323.9 274.6 94.2 75.3 24.0 0.0
397.2 438.2 295.6 116.3 19.2 25.5 25.0
520.1 456.6 316.3 88.9 43.7 6.8 16.5
479.7 205.4 155.2 21.0 19.0 4.5 6.7
339.1 277.8 158.9 68.4 20.0 1.0 0.0
463.6 264.8 109.9 52.8 15.1 9.0 0.0
611.8 313.4 119.9 69.5 11.8 13.5 0.5
571.1 311.5 93.7 73.9 28.7 13.0 0.0
844.5 390.1 164.3 39.8 10.5 3.5 3.3
681.3 438.0 177.2 98.8 59.0 15.0 18.3
872.7 414.4 233.5 82.5 32.8 47.5 22.8
844.7 446.0 226.6 142.6 53.8 31.5 14.5
1034.0 570.1 327.3 77.1 48.6 13.0 12.0
281.6 324.7 134.0 43.0 9.5 20.2 1.5
252.2 228.9 125.4 41.0 7.0 1.0 6.0
200.2 254.7 140.2 94.0 33.5 7.5 8.0
486.3 393.2 196.0 74.9 36.8 0.0 9.8
319.1 370.3 164.6 45.8 0.0 0.0 17.5
234.5 330.7 262.9 109.9 46.5 24.8 0.0
440.4 344.5 223.0 100.6 3.8 23.0 22.8
519.0 401.4 231.9 152.1 67.2 31.4 8.3
515.0 427.8 253.6 169.2 57.8 4.0 5.5
613.9 631.8 247.5 102.6 66.7 11.3 26.5

454.9 315.8 166.6 68.3 28.0 14.2 6.6

Table 3.19: Column generation: comparison of times obtained by different block dimensions.

Computational Results 55

tCOL1−2
tCOL2−4

tCOL4−8
tCOL8−16

tCOL16−32
tCOL32−64

tCOL64−128

-93.8 -35.1 -11.3 -1.5 -1.6 6.9 14.9
-168.8 -44.5 -5.0 -7.4 1.1 9.8 20.3
-248.1 -58.7 -23.3 -10.1 2.8 38.4 241.9
-246.8 -65.4 -14.9 -3.5 3.6 8.5 37.7
-272.6 -92.2 -17.1 -11.0 7.0 7.4 82.2
-347.5 -102.3 -10.0 -16.9 13.0 16.1 18.3
-261.1 -139.8 -19.4 -19.6 19.5 -3.7 28.7
-399.5 -113.7 -27.4 -24.5 13.7 1.6 87.9
-717.9 -183.0 -10.5 -23.9 8.4 40.0 65.0
-433.0 -244.9 -1.9 -51.0 28.6 0.3 82.9
-103.2 -30.7 0.8 2.3 17.6 25.8 1064.5
-72.0 -32.9 -2.8 10.2 17.8 39.0 129.7
-100.2 -44.4 -1.5 13.1 13.2 157.4 87.9
-104.2 -55.4 -12.8 -0.1 9.2 71.0 1053.7
-161.3 -65.6 -9.3 26.8 39.7 52.6 336.9
-156.4 -76.9 15.4 -0.1 18.9 128.1 421.4
-188.7 -71.9 25.2 -14.6 37.6 57.9 351.4
-318.7 -83.6 -1.6 0.0 112.3 124.3 492.9
-172.9 -118.5 -3.8 8.3 107.7 437.5 2672.4
-228.5 -98.8 4.5 -15.0 67.5 225.0 1308.4
-47.4 -26.1 -3.7 -4.2 -0.8 -0.4 1.4
-36.1 -16.6 -2.6 -6.5 0.4 -0.6 0.2
-34.3 -23.2 -2.9 -5.9 0.1 1.8 -0.6
-67.2 -23.8 -8.7 -5.4 -0.5 2.1 0.2
-74.3 -46.6 -2.5 -12.0 0.7 3.0 -3.1
-138.6 -44.2 -18.6 -8.6 -2.9 4.7 -0.4
-86.8 -32.1 -3.7 -14.5 1.5 -1.8 1.7
-162.8 -51.4 -12.3 -10.0 1.0 -3.8 11.8
-118.5 -60.7 -14.9 -8.5 3.9 -2.4 -1.0
-224.7 -65.5 -15.0 -12.9 2.7 -1.6 3.9
-69.1 -24.3 -3.2 -2.1 0.7 6.6 21.2
-80.5 -51.8 -7.5 -7.4 13.9 9.8 61.4
-170.8 -39.2 -3.1 -6.1 -3.8 24.2 -4.7
-101.2 -40.6 -16.3 -7.3 10.6 1.4 33.4
-131.6 -52.7 -15.1 -11.2 21.6 -2.6 90.7
-211.3 -65.0 -12.1 -14.8 16.2 39.3 19.1
-167.0 -72.6 -4.9 -17.5 24.9 1.7 20.7
-201.3 -99.2 -4.1 -10.9 -3.4 27.9 53.2
-201.0 -99.5 -8.1 -11.9 6.4 56.1 4.5
-252.1 -117.8 -27.0 -6.4 8.8 49.5 18.9
-33.3 -23.5 -0.5 -2.3 25.9 3.1 157.1
-57.1 -28.5 2.6 5.1 39.3 3.6 104.4
-57.1 -24.9 -1.0 -4.9 5.5 10.7 27.5
-66.5 -46.6 -3.4 -2.9 22.1 33.7 86.6
-92.4 -40.8 3.8 28.1 3.8 9.2 133.0
-81.4 -77.6 0.3 9.0 42.6 46.5 264.2
-174.9 -50.4 -16.1 4.8 26.3 59.2 188.2
-137.9 -51.6 -4.2 -0.8 78.1 23.0 288.0
-137.7 -79.2 4.2 -9.2 41.2 67.4 272.4
-175.4 -102.8 2.8 -6.0 71.6 102.1 461.2
-76.1 -39.4 -2.1 -8.6 7.4 12.3 44.7
-91.6 -54.1 -0.9 -0.2 -3.4 12.2 30.5
-106.2 -58.1 -8.5 -9.0 6.3 14.5 41.2
-162.3 -126.2 0.8 -15.2 14.4 33.2 131.5
-213.8 -87.3 -2.8 -20.8 12.3 20.5 156.4
-186.1 -101.3 -10.8 -11.6 8.1 39.1 347.0
-152.5 -108.6 -8.3 -9.4 19.1 11.6 78.0
-340.1 -141.7 15.5 -38.3 26.4 71.2 702.7
-311.2 -154.0 -23.3 -18.1 11.0 47.9 74.1
-346.0 -150.9 -30.4 -17.0 5.7 85.1 238.4

-172.9 -72.6 -6.6 -7.5 18.4 39.4 212.6

Table 3.20: Column generation: comparison of times obtained by different block dimensions.

56 Application: Temporal Knapsack Problem

imprCOL1
imprCOL2

imprCOL4
imprCOL8

imprCOL16
imprCOL32

imprCOL64
imprCOL128

12.18% 12.92% 13.48% 13.73% 13.96% 13.98% 14.02% 14.02%
11.37% 12.15% 12.93% 13.30% 13.49% 13.54% 13.59% 13.59%
11.69% 12.33% 12.83% 13.17% 13.38% 13.44% 13.48% 13.48%
11.28% 11.89% 12.44% 12.77% 12.90% 12.99% 13.06% 13.07%
11.49% 12.12% 12.74% 13.23% 13.41% 13.56% 13.57% 13.57%
11.98% 12.49% 13.02% 13.44% 13.55% 13.59% 13.59% 13.59%
12.56% 13.03% 13.52% 13.81% 13.93% 14.01% 14.04% 14.04%
11.41% 12.03% 12.62% 12.96% 13.17% 13.23% 13.25% 13.25%
11.55% 12.20% 12.81% 13.18% 13.32% 13.35% 13.40% 13.40%
11.54% 12.22% 12.84% 13.15% 13.32% 13.34% 13.35% 13.36%
10.37% 11.11% 11.40% 11.47% 11.52% 11.54% 11.56% 11.56%
11.17% 11.72% 12.15% 12.28% 12.35% 12.37% 12.38% 12.38%
10.80% 11.42% 11.66% 11.80% 11.86% 11.86% 11.87% 11.87%
10.50% 11.13% 11.47% 11.61% 11.68% 11.68% 11.70% 11.71%
11.19% 11.80% 12.07% 12.17% 12.22% 12.23% 12.23% 12.23%
11.07% 11.67% 11.98% 12.10% 12.13% 12.15% 12.18% 12.20%
11.21% 11.81% 12.09% 12.22% 12.26% 12.29% 12.29% 12.31%
10.65% 11.35% 11.67% 11.86% 11.91% 11.95% 11.96% 11.96%
10.89% 11.62% 11.97% 12.12% 12.18% 12.20% 12.23% 12.23%
10.20% 10.89% 11.18% 11.31% 11.37% 11.42% 11.44% 11.44%
10.32% 10.36% 10.39% 10.46% 10.46% 10.51% 10.51% 10.51%
10.07% 10.10% 10.18% 10.18% 10.19% 10.20% 10.20% 10.20%
9.45% 9.49% 9.53% 9.64% 9.64% 9.64% 9.64% 9.64%
9.62% 9.67% 9.69% 9.79% 9.79% 9.80% 9.80% 9.80%
9.85% 9.91% 10.01% 10.03% 10.04% 10.04% 10.04% 10.05%
9.98% 10.05% 10.10% 10.12% 10.12% 10.16% 10.16% 10.16%
9.24% 9.33% 9.41% 9.44% 9.44% 9.44% 9.44% 9.44%
9.55% 9.58% 9.63% 9.66% 9.66% 9.67% 9.67% 9.67%
9.18% 9.28% 9.32% 9.36% 9.37% 9.39% 9.39% 9.39%
9.94% 10.01% 10.04% 10.07% 10.09% 10.10% 10.10% 10.12%
10.08% 10.46% 10.85% 11.20% 11.23% 11.30% 11.32% 11.32%
10.28% 10.75% 11.20% 11.51% 11.64% 11.69% 11.70% 11.70%
11.00% 11.41% 11.80% 12.01% 12.09% 12.13% 12.13% 12.13%
10.41% 10.87% 11.40% 11.54% 11.62% 11.64% 11.68% 11.69%
10.68% 11.17% 11.70% 11.95% 12.02% 12.06% 12.07% 12.09%
10.32% 10.64% 11.03% 11.20% 11.28% 11.32% 11.34% 11.36%
10.03% 10.46% 10.94% 11.18% 11.24% 11.27% 11.30% 11.32%
10.58% 11.02% 11.35% 11.64% 11.73% 11.81% 11.84% 11.84%
10.36% 10.73% 11.14% 11.42% 11.52% 11.54% 11.57% 11.59%
10.24% 10.70% 11.11% 11.39% 11.47% 11.51% 11.51% 11.53%
10.58% 11.17% 11.42% 11.62% 11.64% 11.67% 11.67% 11.68%
10.30% 10.67% 10.96% 11.13% 11.21% 11.23% 11.23% 11.23%
9.99% 10.42% 10.67% 10.77% 10.82% 10.83% 10.84% 10.84%
9.36% 9.86% 10.12% 10.21% 10.27% 10.28% 10.29% 10.29%
10.73% 11.15% 11.38% 11.45% 11.51% 11.53% 11.54% 11.54%
9.98% 10.56% 10.84% 10.95% 10.98% 10.98% 10.99% 10.99%
9.75% 10.18% 10.45% 10.56% 10.62% 10.66% 10.67% 10.68%
9.95% 10.45% 10.69% 10.82% 10.87% 10.89% 10.91% 10.93%
9.82% 10.27% 10.50% 10.62% 10.70% 10.73% 10.75% 10.75%
10.33% 10.85% 11.14% 11.30% 11.34% 11.36% 11.37% 11.38%
10.27% 10.85% 11.52% 11.80% 11.89% 11.90% 11.95% 11.95%
9.89% 10.37% 10.81% 11.04% 11.12% 11.14% 11.14% 11.15%
10.34% 10.66% 11.08% 11.31% 11.46% 11.51% 11.53% 11.54%
10.38% 11.08% 11.65% 11.94% 12.04% 12.10% 12.10% 12.11%
9.76% 10.18% 10.66% 10.88% 10.93% 10.93% 10.93% 10.96%
10.16% 10.45% 10.85% 11.17% 11.31% 11.37% 11.40% 11.40%
10.54% 11.02% 11.40% 11.65% 11.76% 11.76% 11.79% 11.81%
10.56% 11.07% 11.47% 11.70% 11.86% 11.92% 11.95% 11.96%
10.93% 11.42% 11.82% 12.06% 12.22% 12.28% 12.28% 12.29%
10.12% 10.66% 11.22% 11.43% 11.52% 11.58% 11.59% 11.61%

10.50% 10.95% 11.31% 11.50% 11.58% 11.61% 11.63% 11.63%

Table 3.21: Column generation: improvement on the TRAD − TKP continuous relaxation.

Computational Results 57

imprCOL1
imprCOL2

imprCOL4
imprCOL8

imprCOL16
imprCOL32

imprCOL64
imprCOL128

0.080% 0.218% 0.227% 1.059% 1.221% 1.422% 0.839% 0.444%
0.047% 0.168% 0.179% 0.582% 0.873% 0.820% 0.517% 0.292%
0.033% 0.116% 0.120% 0.534% 0.920% 0.776% 0.242% 0.045%
0.032% 0.112% 0.117% 0.491% 0.573% 0.497% 0.377% 0.181%
0.028% 0.085% 0.089% 0.397% 0.601% 0.462% 0.369% 0.114%
0.024% 0.084% 0.087% 0.365% 0.681% 0.413% 0.277% 0.202%
0.027% 0.065% 0.068% 0.338% 0.656% 0.344% 0.380% 0.214%
0.019% 0.064% 0.067% 0.272% 0.571% 0.360% 0.345% 0.105%
0.012% 0.050% 0.052% 0.249% 0.459% 0.356% 0.173% 0.094%
0.015% 0.037% 0.039% 0.162% 0.440% 0.226% 0.225% 0.094%
0.067% 0.215% 0.221% 0.526% 0.479% 0.277% 0.171% 0.010%
0.087% 0.205% 0.213% 0.571% 0.390% 0.250% 0.140% 0.057%
0.061% 0.150% 0.154% 0.394% 0.275% 0.211% 0.056% 0.039%
0.051% 0.110% 0.114% 0.356% 0.360% 0.280% 0.104% 0.010%
0.041% 0.107% 0.109% 0.341% 0.196% 0.120% 0.079% 0.025%
0.041% 0.100% 0.103% 0.221% 0.222% 0.165% 0.060% 0.020%
0.036% 0.100% 0.102% 0.170% 0.215% 0.130% 0.081% 0.024%
0.024% 0.085% 0.088% 0.248% 0.249% 0.075% 0.042% 0.015%
0.032% 0.068% 0.070% 0.248% 0.213% 0.074% 0.020% 0.004%
0.025% 0.062% 0.064% 0.141% 0.175% 0.086% 0.032% 0.007%
0.121% 0.273% 0.274% 1.275% 2.588% 3.234% 3.727% 2.473%
0.150% 0.325% 0.327% 0.861% 1.898% 1.768% 1.992% 1.906%
0.132% 0.255% 0.256% 0.857% 1.798% 1.765% 1.335% 1.467%
0.086% 0.214% 0.214% 0.764% 1.325% 1.414% 1.091% 1.064%
0.069% 0.145% 0.147% 0.523% 1.391% 1.276% 0.927% 1.300%
0.045% 0.122% 0.122% 0.514% 0.911% 1.232% 0.786% 0.810%
0.063% 0.153% 0.155% 0.378% 0.895% 0.783% 0.918% 0.789%
0.039% 0.114% 0.114% 0.471% 0.920% 0.840% 1.245% 0.496%
0.043% 0.097% 0.097% 0.461% 0.790% 0.595% 0.701% 0.757%
0.030% 0.095% 0.095% 0.395% 0.805% 0.665% 0.745% 0.579%
0.090% 0.244% 0.253% 0.729% 0.848% 0.810% 0.551% 0.272%
0.065% 0.138% 0.143% 0.609% 1.010% 0.460% 0.332% 0.121%
0.046% 0.168% 0.174% 0.472% 0.624% 0.777% 0.305% 0.346%
0.059% 0.142% 0.148% 0.577% 0.915% 0.499% 0.473% 0.201%
0.047% 0.118% 0.123% 0.437% 0.745% 0.320% 0.344% 0.096%
0.032% 0.096% 0.099% 0.330% 0.587% 0.320% 0.152% 0.121%
0.036% 0.092% 0.096% 0.308% 0.596% 0.258% 0.249% 0.171%
0.030% 0.074% 0.077% 0.260% 0.346% 0.387% 0.203% 0.106%
0.030% 0.074% 0.077% 0.300% 0.442% 0.355% 0.130% 0.124%
0.023% 0.058% 0.060% 0.290% 0.349% 0.277% 0.126% 0.105%
0.139% 0.261% 0.267% 0.617% 0.703% 0.275% 0.256% 0.058%
0.097% 0.217% 0.223% 0.480% 0.397% 0.166% 0.158% 0.064%
0.089% 0.190% 0.194% 0.371% 0.449% 0.366% 0.269% 0.160%
0.063% 0.122% 0.125% 0.328% 0.364% 0.204% 0.122% 0.060%
0.064% 0.150% 0.153% 0.308% 0.176% 0.167% 0.147% 0.055%
0.051% 0.093% 0.095% 0.298% 0.240% 0.124% 0.081% 0.028%
0.035% 0.097% 0.100% 0.277% 0.247% 0.154% 0.083% 0.034%
0.040% 0.096% 0.099% 0.206% 0.210% 0.084% 0.071% 0.025%
0.036% 0.077% 0.079% 0.184% 0.220% 0.119% 0.068% 0.025%
0.031% 0.068% 0.069% 0.188% 0.209% 0.090% 0.050% 0.017%
0.075% 0.178% 0.189% 0.610% 1.106% 0.657% 0.393% 0.159%
0.056% 0.122% 0.127% 0.368% 0.374% 0.423% 0.289% 0.162%
0.053% 0.118% 0.122% 0.473% 0.769% 0.544% 0.324% 0.150%
0.032% 0.067% 0.070% 0.294% 0.475% 0.304% 0.166% 0.059%
0.028% 0.077% 0.081% 0.260% 0.520% 0.328% 0.203% 0.052%
0.030% 0.071% 0.073% 0.310% 0.463% 0.349% 0.159% 0.027%
0.034% 0.069% 0.071% 0.269% 0.347% 0.222% 0.182% 0.083%
0.020% 0.055% 0.057% 0.156% 0.324% 0.189% 0.089% 0.014%
0.020% 0.050% 0.052% 0.233% 0.362% 0.275% 0.133% 0.074%
0.017% 0.045% 0.047% 0.196% 0.280% 0.247% 0.088% 0.031%

0.050% 0.124% 0.127% 0.415% 0.630% 0.511% 0.403% 0.277%

Table 3.22: Column generation: improvement on original TRAD−TKP continuous relaxation
per second.

58 Application: Temporal Knapsack Problem

imprCOL1
imprCOL2

imprCOL4
imprCOL8

imprCOL16
imprCOL32

imprCOL64
imprCOL128

0.00% 0.00% 0.45% 0.74% 1.00% 1.02% 1.06% 1.06%
0.00% 0.00% 0.31% 0.73% 0.95% 1.00% 1.07% 1.07%
0.00% 0.00% 0.39% 0.77% 1.01% 1.08% 1.13% 1.13%
0.00% 0.00% 0.21% 0.59% 0.74% 0.85% 0.92% 0.94%
0.00% 0.00% 0.32% 0.89% 1.09% 1.26% 1.27% 1.27%
0.00% 0.00% 0.34% 0.81% 0.94% 0.99% 0.99% 0.99%
0.00% 0.00% 0.32% 0.66% 0.79% 0.88% 0.92% 0.92%
0.00% 0.00% 0.39% 0.77% 1.02% 1.09% 1.10% 1.11%
0.00% 0.00% 0.60% 1.02% 1.18% 1.21% 1.27% 1.27%
0.00% 0.00% 0.66% 1.01% 1.20% 1.23% 1.24% 1.25%
0.00% 0.17% 0.50% 0.58% 0.64% 0.65% 0.68% 0.68%
0.00% 0.00% 0.25% 0.40% 0.47% 0.50% 0.51% 0.52%
0.00% 0.00% 0.21% 0.37% 0.43% 0.44% 0.45% 0.45%
0.00% 0.02% 0.40% 0.56% 0.64% 0.64% 0.66% 0.68%
0.00% 0.13% 0.45% 0.56% 0.61% 0.62% 0.63% 0.63%
0.00% 0.00% 0.32% 0.46% 0.49% 0.51% 0.55% 0.57%
0.00% 0.03% 0.34% 0.49% 0.54% 0.57% 0.57% 0.59%
0.00% 0.13% 0.49% 0.70% 0.75% 0.80% 0.81% 0.81%
0.00% 0.00% 0.38% 0.55% 0.62% 0.64% 0.68% 0.68%
0.00% 0.00% 0.31% 0.46% 0.53% 0.59% 0.60% 0.61%
0.00% 0.00% 0.00% 0.03% 0.03% 0.09% 0.09% 0.09%
0.00% 0.03% 0.11% 0.12% 0.13% 0.14% 0.14% 0.14%
0.00% 0.00% 0.00% 0.12% 0.12% 0.12% 0.12% 0.12%
0.00% 0.01% 0.04% 0.14% 0.14% 0.15% 0.15% 0.15%
0.00% 0.00% 0.05% 0.06% 0.08% 0.08% 0.08% 0.09%
0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.05% 0.05%
0.00% 0.00% 0.06% 0.09% 0.09% 0.09% 0.09% 0.09%
0.00% 0.00% 0.01% 0.03% 0.04% 0.05% 0.05% 0.05%
0.00% 0.02% 0.07% 0.11% 0.12% 0.14% 0.14% 0.14%
0.00% 0.00% 0.04% 0.07% 0.09% 0.11% 0.11% 0.12%
0.00% 0.00% 0.21% 0.61% 0.65% 0.72% 0.75% 0.75%
0.00% 0.00% 0.31% 0.67% 0.81% 0.87% 0.88% 0.88%
0.00% 0.00% 0.35% 0.59% 0.68% 0.73% 0.73% 0.73%
0.00% 0.00% 0.21% 0.37% 0.47% 0.49% 0.53% 0.53%
0.00% 0.00% 0.32% 0.60% 0.68% 0.73% 0.74% 0.76%
0.00% 0.00% 0.09% 0.27% 0.36% 0.41% 0.44% 0.46%
0.00% 0.00% 0.25% 0.53% 0.59% 0.62% 0.66% 0.68%
0.00% 0.00% 0.15% 0.47% 0.58% 0.66% 0.69% 0.69%
0.00% 0.00% 0.07% 0.38% 0.50% 0.52% 0.55% 0.57%
0.00% 0.00% 0.28% 0.59% 0.68% 0.73% 0.73% 0.75%
0.00% 0.00% 0.25% 0.46% 0.49% 0.52% 0.53% 0.54%
0.00% 0.00% 0.20% 0.39% 0.47% 0.50% 0.50% 0.50%
0.00% 0.00% 0.18% 0.30% 0.35% 0.37% 0.37% 0.37%
0.00% 0.00% 0.24% 0.34% 0.41% 0.42% 0.43% 0.43%
0.00% 0.00% 0.22% 0.30% 0.36% 0.39% 0.40% 0.40%
0.00% 0.06% 0.37% 0.49% 0.52% 0.53% 0.53% 0.54%
0.00% 0.07% 0.38% 0.50% 0.57% 0.61% 0.63% 0.64%
0.00% 0.00% 0.24% 0.39% 0.45% 0.47% 0.50% 0.51%
0.00% 0.00% 0.16% 0.29% 0.38% 0.41% 0.43% 0.44%
0.00% 0.06% 0.38% 0.56% 0.60% 0.63% 0.64% 0.64%
0.00% 0.00% 0.31% 0.62% 0.72% 0.74% 0.79% 0.79%
0.00% 0.09% 0.57% 0.84% 0.93% 0.94% 0.94% 0.96%
0.00% 0.00% 0.27% 0.53% 0.70% 0.76% 0.77% 0.79%
0.00% 0.00% 0.63% 0.95% 1.07% 1.13% 1.13% 1.15%
0.00% 0.00% 0.42% 0.66% 0.72% 0.72% 0.72% 0.75%
0.00% 0.00% 0.29% 0.65% 0.80% 0.87% 0.90% 0.90%
0.00% 0.00% 0.27% 0.55% 0.67% 0.68% 0.71% 0.73%
0.00% 0.00% 0.42% 0.68% 0.85% 0.92% 0.96% 0.97%
0.00% 0.00% 0.32% 0.59% 0.78% 0.84% 0.84% 0.85%
0.00% 0.00% 0.47% 0.72% 0.82% 0.88% 0.90% 0.92%

0.00% 0.01% 0.28% 0.50% 0.59% 0.62% 0.64% 0.65%

Table 3.23: Column generation: Improvement on TRAD − TKP root node.

Computational Results 59

Table 3.24: Comparison of TRAD-TKP, and REF-TKP models; 1 hour of computing time.

tTRAD gap tTCOL32
gap tTCOL64

gap tTCOL128
gap

I41 682.91 0.000% 44.07 0.000% 19.17 0.000% 61.13 0.000%
I42 731.42 0.000% 264.36 0.000% 165.45 0.000% 246.65 0.000%
I43 TL 0.146% 174.23 0.000% 250.89 0.000% 1823.63 0.000%
I44 TL 0.127% 387.83 0.000% 61.48 0.000% 95.99 0.000%
I45 TL 0.367% 917.26 0.000% 216.19 0.000% 407.14 0.000%
I46 TL 0.039% 145.21 0.000% 363.2 0.000% 1263.9 0.000%
I47 TL 0.012% 109.28 0.000% 36.96 0.000% 65.65 0.000%
I48 TL 0.431% 184.06 0.000% 61.67 0.000% 126.29 0.000%
I49 TL 0.476% 2498.95 0.000% 86.83 0.000% 142.55 0.000%
I50 TL 0.652% 185.32 0.000% 141.72 0.000% 193.85 0.000%
I51 1083.64 0.000% 159.25 0.000% 111.93 0.000% 1555.17 0.000%
I52 3201.23 0.000% 942.02 0.000% 1535.07 0.000% 1171.77 0.000%
I53 3516.77 0.000% 277.24 0.000% 284.75 0.000% 1010.58 0.000%
I54 TL 0.176% 932.89 0.000% 311.35 0.000% 1166.36 0.000%
I55 TL 0.172% 420.11 0.000% 628.44 0.000% 685.45 0.000%
I56 TL 0.120% TL 0.061% 2028.3 0.000% 1690.62 0.000%
I57 TL 0.173% 800.07 0.000% 371.97 0.000% 504.05 0.000%
I58 TL 0.436% 917.84 0.000% 525.66 0.000% 1574.51 0.000%
I59 TL 0.434% TL 0.029% 3459.45 0.000% TL 0.001%
I60 TL 0.335% 2208.74 0.000% 746.49 0.000% 2275.31 0.000%
I61 1.39 0.000% 3.25 0.000% 2.82 0.000% 4.25 0.000%
I62 1.10 0.000% 5.77 0.000% 5.12 0.000% 5.35 0.000%
I63 1.37 0.000% 8.06 0.000% 10 0.000% 9.61 0.000%
I64 4.79 0.000% 6.93 0.000% 8.98 0.000% 9.21 0.000%
I65 2.09 0.000% 25.46 0.000% 42.83 0.000% 9.13 0.000%
I66 2.77 0.000% 8.25 0.000% 12.92 0.000% 12.55 0.000%
I67 7.15 0.000% 12.06 0.000% 10.29 0.000% 11.97 0.000%
I68 2.79 0.000% 21.81 0.000% 11.01 0.000% 22.53 0.000%
I69 8.27 0.000% 25.48 0.000% 24.44 0.000% 12.4 0.000%
I70 12.38 0.000% 16.94 0.000% 15.41 0.000% 17.49 0.000%
I71 96.58 0.000% 61.42 0.000% 20.54 0.000% 41.7 0.000%
I72 1820.70 0.000% 71.31 0.000% 35.24 0.000% 96.62 0.000%
I73 403.50 0.000% 21.25 0.000% 54.55 0.000% 53.42 0.000%
I74 784.95 0.000% 260.15 0.000% 34.04 0.000% 58.08 0.000%
I75 TL 0.055% 304.33 0.000% 286.7 0.000% 410.7 0.000%
I76 1660.95 0.000% 1296.66 0.000% 2020.64 0.000% 124.4 0.000%
I77 TL 0.079% 1328.11 0.000% 184.4 0.000% 156.21 0.000%
I78 TL 0.112% 69.8 0.000% 58.37 0.000% 111.59 0.000%
I79 392.40 0.000% TL 0.016% TL 0.000% 207.5 0.000%
I80 TL 0.234% 1990.92 0.000% 702.74 0.000% 194.15 0.000%
I81 1740.23 0.000% 110.43 0.000% 96.6 0.000% 231.85 0.000%
I82 684.61 0.000% 169.25 0.000% 91.28 0.000% 245.51 0.000%
I83 72.11 0.000% 61.35 0.000% 52.39 0.000% 98.01 0.000%
I84 259.00 0.000% 135.7 0.000% 152.15 0.000% 170.64 0.000%
I85 1841.34 0.000% 407.83 0.000% 166.81 0.000% 415.69 0.000%
I86 TL 0.106% 270.03 0.000% 311.85 0.000% 715.33 0.000%
I87 TL 0.125% 1471.97 0.000% 960.29 0.000% 316.71 0.000%
I88 TL 0.101% TL 0.005% TL 0.000% 1382.36 0.000%
I89 TL 0.085% 2865.74 0.000% 354.72 0.000% 429.63 0.000%
I90 TL 0.142% TL 0.006% TL 0.022% TL 0.000%
I91 277.08 0.000% 278.67 0.000% 50.77 0.000% 75.06 0.000%
I92 1854.41 0.000% 244.28 0.000% 740.21 0.000% 323.86 0.000%
I93 3165.36 0.000% 167.8 0.000% 170.21 0.000% 76.85 0.000%
I94 TL 0.284% 168.78 0.000% 411.54 0.000% 490.8 0.000%
I95 TL 0.070% 123.84 0.000% 231.89 0.000% 210.2 0.000%
I96 TL 0.233% 2947.23 0.000% 1817.19 0.000% TL 0.102%
I97 2600.22 0.000% 1256 0.000% 790.09 0.000% 1860.35 0.000%
I98 TL 0.356% TL 0.000% 399.37 0.000% 1272.27 0.000%
I99 TL 0.351% 154.67 0.000% 283.95 0.000% 166.66 0.000%
I100 TL 0.357% TL 0.027% 2661.28 0.000% TL 0.002%

897.12 0.113% 527.17 0.002% 433.17 0.000% 466.27 0.002%

60 Application: Temporal Knapsack Problem

Table 3.25: Comparison of the Dynamic Programming algorithm, TRAD−TKP and REF −
TKP models; 1 hour of computing time allowed.

z tT /gapT tDP tR32
/ gapR32

tR64
/ gapR64

tR128

I1-2697-2688-10-10 62524 4.3 0.7 54.2 31.6 8.9
I2-2825-2816-10-10 65046 5.0 0.8 82.3 35.4 32.8
I3-2953-2944-10-10 67558 4.6 0.8 14.1 9.4 9.7
I4-3081-3072-10-10 70316 12.0 0.9 182.5 65.5 59.5
I5-3209-3200-10-10 76634 5.6 0.9 26.9 21.3 15.6
I6-3337-3328-10-10 77204 11.7 1.0 103.2 70.4 12.1
I7-3465-3456-10-10 81690 8.0 1.2 321.1 15.5 8.8
I8-3593-3584-10-10 84581 6.5 1.2 45.3 36.2 25.9
I9-3721-3712-10-10 87297 7.8 1.2 126.2 49.2 22.9
I10-3849-3840-10-10 88889 12.5 1.4 104.7 46.0 21.1
I11-4480-2688-9-15 88574 TL (0.05%) 7.5 255.9 144.5 236.2
I12-4749-2816-9-15 96366 3257.9 8.0 267.9 108.0 50.9
I13-4887-2944-9-15 97987 171.6 8.1 386.6 271.3 273.1
I14-5153-3072-9-15 103747 442.3 9.0 317.1 52.6 72.7
I15-5298-3200-9-15 103498 419.8 8.8 988.4 93.8 71.2
I16-5547-3328-9-15 108686 TL (0.01%) 9.8 198.0 165.8 164.2
I17-5745-3456-9-15 112017 57.7 9.7 89.9 25.3 45.0
I18-5929-3584-9-15 116631 1659.0 11.3 267.8 69.2 35.0
I19-6208-3712-9-15 125346 TL (0.03%) 11.0 340.3 58.5 39.9
I20-6462-3840-9-15 128454 TL (0.11%) 12.1 TL (0.07%) 789.3 378.8
I21-4972-2688-11-20 87259 TL (0.14%) 148.1 TL (0.13%) 127.1 48.2
I22-5161-2816-11-20 89548 TL (0.24%) 154.8 1092.6 229.6 47.3
I23-5423-2944-11-20 96418 TL (0.19%) 163.1 601.2 171.1 76.4
I24-5658-3072-11-20 98019 TL (0.57%) 170.9 200.4 124.2 117.7
I25-5875-3200-11-20 104227 TL (0.41%) 181.0 1656.4 591.1 802.2
I26-6112-3328-11-20 107704 TL (0.61%) 186.3 1271.0 797.3 219.3
I27-6380-3456-11-20 109805 TL (0.23%) 192.8 TL (0.06%) 113.2 76.6
I28-6582-3584-11-20 116248 TL (0.53%) 200.2 786.8 369.7 459.3
I29-6817-3712-11-20 119729 TL (0.56%) 208.8 TL (0.06%) 1159.7 295.7
I30-7026-3840-11-20 123463 TL (0.51%) 215.6 TL (0.07%) 1483.6 961.6
I31-6322-2688-11-25 102424 TL (0.72%) TL TL (0.09%) TL (0.07%) 181.6
I32-6546-2816-11-25 103159 TL (1.14%) TL TL (0.06%) 254.7 226.2
I33-6895-2944-11-25 111884 TL (0.92%) TL 2226.2 1079.8 290.7
I34-7209-3072-11-25 117903 TL (0.88%) TL TL (0.05%) 1904.5 287.7
I35-7484-3200-11-25 120668 TL (0.86%) TL 1585.6 728.4 305.4
I36-7784-3328-11-25 123739 TL (0.91%) TL 3554.6 588.6 257.5
I37-8089-3456-11-25 130308 TL (0.87%) TL TL (0.09%) 3387.6 774.5
I38-8425-3584-11-25 133092 TL (1.11%) TL TL (0.05%) 651.3 462.1
I39-8650-3712-11-25 138613 TL (0.93%) TL 2796.9 791.3 200.6
I40-8977-3840-11-25 144612 TL (0.90%) TL TL (0.11%) 587.8 458.7

Chapter 4

Application: Multi-load AGV

dispatching in automated seaport

container terminals

4.1 Introduction

During recent years, maritime cargo transportation has been established as a predominant
means of transportation in international trade. Coupled with the dramatic increase in world
trade volumes, terminal operators have been under pressure to enhance container handling
performance. Between 1995 and 2008, world container traffic more than tripled in volume,
from 137 million twenty feet equivalent units (TEUs) to 387 million TEUs, growing at an
average annual rate of about 8% (figure 4.1), despite the 2008 decline in the world’s eco-
nomic activity. As a result, larger vessels have been introduced including the new super
post-Panamax 12000+ TEUs vessel, and competition between seaports has increased. The
competition is often measured against different performance factors such as the time the ship
is in port (transhipment time) as well as low rates for loading and discharging of ships [68].
Therefore, the main objectives for successful container terminals are the rapid turnover of
containers and the short berthing of the vessels.

Automation has been recognised as one of the means for improving the overall productivity
of the handling and transportation equipment; the demand for designing container termi-
nals with part or full automation has thus increased significantly. The originators of the
Automated Container Terminal concept include the developments at Thamesport and the
European Container Terminals, Rotterdam. Automated or partially automated operations
have since then been introduced at the Container Terminal Altenwerder (CTA) in Hamburg,
at Patrick Brisbane, Australia and at the AP Moller Terminal in Virginia, USA [66]. Cranes,
previously operated manually, have become automated, while manually driven carts have
been replaced by Automated Guided Vehicles (AGVs). For example, at the Euromax Ter-
minal in Rotterdam, (ECT), container vessels are handled using the largest semi-automated
quay cranes in the world as well as unmanned (twice as fast than previous generations) AGVs
which move the containers between ship and stack. In particular, the ECT uses more than
130 automated stacking cranes and 260 AGVs [67] whereas CTA, operates a fleet of around
70 AGVs. Furthermore, these AGVs are automatically re-fuelled and are capable of carrying
more than one container at a time subject to capacity [71]. The multi-load mode of these

61

62 Application: Multi-load AGV dispatching in automated seaport container terminals

Figure 4.1: World container traffic (total TEUs loaded and empty)

vehicles provides a recent development and innovation in transportation technology.

Container terminals are complex and dynamic systems. Considering the requirement for syn-
chronization of all the interrelated component parts, the design of accurate control software
has so far received sufficient attention from the academic community. Comprehensive liter-
ature reviews can be found in [68], [72] and [73]. Most of the research efforts on the AGV
dispatching problem have targetted specific environments, especially flexible manufacturing
systems (FMS), see for example [60] and [74]. Routing approaches include the development
of a hybrid collision-free decomposition method presented in [55] for FMS and a distributed
collision-free routing method under motion delay disturbance in transportation environments
by [62]. A dynamic routing strategy for a generic network of automated material handling
systems was also proposed by [75]. Finally, [61] developed an algorithm for automated con-
tainer terminals producing collision- and deadlock-free routes at the time of route calculation,
based on a shortest path algorithm with time-windows .

The dispatching problem in seaport container terminals has not received much attention in
the literature apart from some notable contributions where issues related to single-load carri-
ers are considered [69, 70, 76, 77, 78]. For the dual-load AGV dispatching problem, thereafter
referred to as AGVDP, [57] propose a flexible priority rule-based approach which is com-
pared to an alternative MIP model. Their computational results, based on two terminal
layout configurations and two workload scenarios show an improvement of the overall ter-
minal performance when multi-load carriers are used. This work is extended in [56] where
a pattern-based off-line heuristic approach with dual-load AGVs is developed and evaluated
using a scalable simulation model which considers stochastic handling times, various terminal
configurations and operation modes for AGVs. The results of the detailed simulation study
show that the developed heuristic clearly outperforms conventional online heuristics adopted
from flexible manufacturing systems. Furthermore, the numerical results suggest that the
performance of dispatching strategies is insensitive to the configuration of the terminal.

The complex and highly dynamic environment found in ports, coupled with the requirement
for perfect synchronisation of several inter-related components of a container terminal, make

Problem description and notation 63

the AGVDP in automated terminals a very hard combinatorial optimisation problem. To this
end, the focus on developing effective and efficient real-time approaches for this problem is
more than understandable. In this chaper, we focus on providing an optimisation methodology
for solving the AGVDP for multi-load carriers that can be used as a benchmark for the
evaluation of various real-time heuristics. In particular, we propose a new MIP model for the
AGVDP and a column generation approach for a variant of this problem. Furthermore, we
present a computational study which verifies that the multi-load AGV dispatching problem
can be solved in reasonable computational times while providing good quality solutions.

The remainder of the chaper is organized as follows. Section 4.2 provides a detailed description
of the problem under investigation as well as the notation used in the chaper. Section 4.3
and 4.4 describe our proposed new formulations and solution methodologies and Section 4.5
provides an illustrative example. Computational results are given in Section 4.6 and the
chaper is concluded in Section 4.7.

4.2 Problem description and notation

Generally, the seaport container terminal system is divided into three parts. Firstly, the
berthing area where the quay cranes are located and are used for the loading/unloading of
the containers onto/from the vessels. Secondly, the storage yard which includes stacking
cranes for storing containers in various blocks. Finally, the AGV area, where the transporting
of the containers between the quay cranes and the storage area is realized by AGVs. The
general AGV control problem typically consists of three sub-problems: (i) assigning a job to
a vehicle (transportation order), (ii) routing the AGVs and (iii) traffic control. The focus of
this chaper is on the assignment problem.

The problem considered in this section assumes that the AGVs can have different capacities
and that they are operated under a multi-carrier mode. Each job involves the transportation
of a container from a pick-up location to a delivery/drop-off location, hence, a job consists
of two operations. We denote the process of picking-up/delivering the container as the pick-
up/delivery operation of a job.

We are given a set of AGVs, M , a set of cranes, C, and a set of jobs J to be performed
within a finite time horizon Tmax. For each pick-up operation i+ associated with a specific
job j ∈ J there is a corresponding delivery operation i−; the set of all such pairs (i+, i−) is
denoted by (I+ : I−). We define set I to include all initial operations iLm ∈ IL, (currently
being undertaken by the vehicles), all pick-up and delivery operations I+ and I−, respectively,
and a dummy end operation iE . Each operation i is released at time tTi (also referred to as
target time) and is associated with a specific service location c ∈ C. The AGV load capacity
requirement of operation i is denoted by qi.

Each vehicle m has load capacity Qm (Qm = 2 for dual-load carriers) and load y0m at time t0m;
the latter denotes the time that operation iLm is completed by AGV m. Fixed travel times,
denoted by di1i2 , are assumed between pairs of locations where operations i1, i2 are performed.
Let Oc be the set of all operations assigned to crane c ∈ C. A summary of the above notation
is given in Table 4.1.

Given the input data stated above, the problem is to determine the optimal assignment of
all operations in set I to vehicles in M so that the total cost associated to the lateness of
the operations is minimized, subject to constraints: (i) each operation is assigned to only one

64 Application: Multi-load AGV dispatching in automated seaport container terminals

m ∈M : AGV vehicles
c ∈ C : set of service locations (quay and stacking cranes)
j ∈ J : set of jobs
iLm ∈ IL : current operation carried out by vehicle m
i+ ∈ I+ : pick-up operations
i− ∈ I− : delivery operations
iE : dummy end operation
I = IL ∪ I+ ∪ I− ∪ {iE} : the set of all operations
(i+, i−) ∈ (I+ : I−) : the set of all pairs of pick-up and delivery operations
tTi : target/release time associated for operation i
tHi : handling time for operation i
t0m : time operation iLm is completed
t ∈ [0, Tmax] : a specific time within the problem’s horizon
qi : load capacity requirement of operation i
Qm : capacity of vehicle m
y0m : load of vehicle m at time t0m
di1i2 : travel time between the locations of operations i1 and i2
Oc : set of operations performed at crane c ∈ C

Table 4.1: AGVDP Notation

AGV, (ii) the pick-up operation for a job precedes its delivery operation and (iii) the load
capacity availability of each AGV is respected.

4.3 A new compact MIP formulation of the AGVDP

In this section, we formulate the AGVDP for multi-load carriers over a finite planning horizon
as a mixed-integer progrmaming (MIP) model. Using the notation presented in the previous
section, the following decision variables are defined:

• Binary variables:

xi1,i2 =

{

1, if op. i1 ∈ I \ {iE} is an immediate predecessor of op. i2 ∈ I \ IL

0, otherwise

zmi =

{

1, if op. i ∈ I is assigned to vehicle m ∈M

0, otherwise

oit =

{

1, if op. i ∈ I has been initiated at time t ∈ [0, Tmax]

0, otherwise

• Continuous variables with integrality property:

yi : load of the AGV after performing operation i

tarri \t
dep
i : arrival\departure time at\from a service location before\after performing

operation i ∈ I\{iE}

– li: lateness in performing operation i ∈ I\{iE}.

A new compact MIP formulation of the AGVDP 65

The complete mathematical formulation of the problem is given in Model (4.1)-(4.23) .

A new MIP formulation for the multi-load AGVDP in container

Minimize:

α
∑

i∈I

li (4.1)

subject to:

∑

i1∈I

xi1,i2 = 1 ∀i2 ∈ I\{IL, iE} (4.2)

∑

i2∈I

xi1,i2 = 1 ∀i1 ∈ I\{iE} (4.3)

∑

m∈M

zmi = 1 ∀i ∈ I (4.4)

zmi+ − zmi− = 0 ∀m ∈M, (i+, i−) ∈ (I+ : I−) (4.5)

zmi − xiLm,i > 0 ∀m ∈M, i ∈ I (4.6)

zmi2 − zmi1 − xi1,i2 > −1 ∀m ∈M, i1 ∈ I\{iE}, i2 ∈ I\IL (4.7)

yiLm = y0m ∀m ∈M (4.8)

yi2 − yi1 + (1− xi1,i2)N1 > qi2 ∀i1 ∈ I\{iE}, i2 ∈ I\IL (4.9)

yi 6
∑

m∈M

Qmzmi ∀i ∈ I\{IL ∪ {iE}} (4.10)

tarri2
− tdepi1

+ (1− xi1,i2)N2 > di1i2 ∀i1, i2 6∈ IE (4.11)

tarri− − tdep
i+

> di+i− ∀(i+, i−) ∈ (I+ : I−) (4.12)

tdepi > tTi + tHi ∀i ∈ I (4.13)

tdepi − tarri > tHi ∀i ∈ I (4.14)

tdep
iLm

> t0m ∀m ∈M (4.15)

li − tdepi > −tTi ∀i ∈ I (4.16)
∑

t

toit > tarri ∀i ∈ I (4.17)

∑

t

toit > tTi ∀i ∈ I (4.18)

∑

t

toit < tdepi ∀i ∈ I (4.19)

∑

t

oit = 1 ∀i ∈ I (4.20)

∑

i∈Oc

t
∑

τ=t−tHi +1

oiτ = 1 ∀c ∈ C (4.21)

xi1,i2 , zmi, oit ∈ {0, 1} ∀i1, i2, i ∈ I,m ∈M, t ∈ [0, Tmax] (4.22)

yi, t
arr
i , tdepi , li ∈ R+ ∀i ∈ I (4.23)

66 Application: Multi-load AGV dispatching in automated seaport container terminals

The objective function (4.1) aims at minimizing the total lateness over all operations.

Assigning operations to AGVs Constraints (4.2) and (4.3) ensure that there is only one
immediate predecessor and one immediate successor, respectively, for each operation. Each
operation must be assigned to exactly one AGV (constraints (4.4)). Both the pick-up and
delivery operations of a given job must be assigned to the same vehicle (constraints (4.5)).
If an operation is an immediate successor of the first operation performed by a vehicle, then
both operations must be assigned to the same vehicle (constraints (4.6)); the same applies
when two operations have a precedence relation (constraints (4.7)).

Balancing vehicle loads The vehicle load after performing an initial operation is updated
by constraints (4.8). If operation i2 assigned to a given AGV is an immediate successor of
operation i1, then the vehicle load after performing i2 is given by the vehicle load after per-
forming i1 adjusted by the changes resulting from the completion of operation i2 (constraints
(4.9)); this is a big-M constraint where N1 is a constant number large enough to render the
constraint redundant if xi1,i2 = 0. The load of the vehicle after performing an operation is
constrained above by the vehicle capacity (constraints (4.10)).

Balancing travel times Constraints (4.11) enforce the requirement that, if operation i2
immediately succeeds operation i1, the arrival time of i2 must be at least greater than the
departure time of i1 plus the travel time from the service location of i1 to that of i2; this is a big-
M constraint where N2 is a constant number large enough to render the constraint redundant
if xi1,i2 = 0. Constraints (4.12) ensure that no cycles are created since the arrival time of the
delivery operation of a given job is set to be at least greater than the departure time of the
pick-up operation plus the corresponding travel time. To ensure feasibility, constraints (4.13)
and (4.14) forbid the departure time of a pick-up operation to be less than its release plus
handling time, or less than its arrival time plus handling time, respectively. The departure
time of the first operation of each vehicle is given by constraints (4.15).

Lateness of operations The lateness in completing an operation is defined as the difference
between its departure time and target time (constraints (4.16)).

Occupancy of service locations The service starting time of any operation is set to be
greater than or equal to the arrival time at its service location (constraints (4.17)), greater than
or equal to the target time of the operation (constraints (4.18)) and less than the departure
time from the service location (constraints (4.19)). Each operation can only start at a given
time (constraints (4.20)) and must be serviced by one crane at any point in time (constraints
(4.21)).

Variable values Finally, constraints (4.22) and (4.23) define the allowable values for the
decision variables.

A new column generation-based procedure for solving a variant of the AGVDP 67

4.4 A new column generation-based procedure for solving a

variant of the AGVDP

In this section, we consider a variant of the AGVDP described in Section 4.2, in which
we impose the additional constraint that each AGV should not serve more than a fixed
number of jobs. This requirement contributes to the balancing of the workload of AGVs and,
hence, provides better coordination between the AGV operations and other types of handling
equipment within the logistics chain at automated container terminals.

4.4.1 Set Covering Formulation

We develop a new set covering formulation of the multi-load AGVDP defined over a finite
time horizon in which an upper bound (say γ) on the number of jobs that can be performed
by each AGV is imposed.

Let s denote a sequence of operations of size 1 + 2γ for a given AGV; the sequence includes
an initial operation plus the pick-up and delivery operations of at most γ jobs. A sequence s
is said to be feasible if (i) each pick-up operation of a given job precedes the corresponding
delivery operation in the sequence and (ii) the load requirement after performing an operation
at a position of the sequence does not exceed the unused capacity of the corresponding vehicle.
Furthermore, we introduce S to denote the set of all feasible sequences s, Sc,t ⊆ S, the set of
all feasible sequences s ∈ S served by crane c at time t and δs , the total lateness associated
to the sequence s. A summary of the above notation is given in Table 4.2.

S : set of all feasible sequences
s ∈ S : a sequence of pick-up and delivery operations
δs : lateness associated to sequence s
γ : maximum number of jobs allowed in a sequence s
k ∈ K = {1, . . . , 1 + 2γ} : set of possible positions of the sequence s

Sct : set of sequences s occupying crane c at time t
α : cost coefficient per unit of lateness

Table 4.2: Notation: set covering formulation

To develop a set covering formulation of the AGVDP, we define a binary decision variable ϑs

that is equal to 1 if and only if sequence s ∈ S belongs to the optimal solution. The resulting
set covering formulation of the problem, called SC, is given in Model (4.24)-(4.28).

Set covering formulation (SC)

Minimize

Z(SC) = α
∑

s∈S

δsϑs (4.24)

subject to:

68 Application: Multi-load AGV dispatching in automated seaport container terminals

∑

s∈S :i∈s

ϑs ≥ 1 ∀i ∈ I (4.25)

∑

s∈S

ϑs ≤ |M | (4.26)

∑

s∈Sc,t
ϑs ≤ 1 ∀c ∈ C, t ∈ [0, Tmax] (4.27)

ϑs ∈ {0, 1} ∀s ∈ S (4.28)

Objective (4.24) minimizes the total delay associated with the sequences which are present
in the optimal solution. Constraints (4.25) impose that each operation i ∈ I is assigned
to at least one sequence. Inequality (4.26) forces the solution to contain no more than |M |
sequences. Finally, constraints (4.27) specify the feasibility of crane occupancy and constraints
(4.28) define the allowable ranges for the decision variables.

4.4.2 Column generation procedure

Problem SC cannot be solved directly since the number of columns may be enormous even
for AGVDP instances of moderate size. In order to solve Model (4.24)-(4.28), we initially
omit the crane occupancy constraints (4.27) and then define the dual problem, called DSC, of
the linear relaxation of the resulting SC, which can be used to generate a valid lower bound
to the AGVDP. We propose a column generation procedure (referred to as Procedure CG)
whereby the DSC is solved at each iteration in order to find the best set of feasible sequences
that satisfy constraints (4.25)-(4.26).

Let πi, i ∈ I be the dual variables associated with constraints (4.25) and β denote the dual
variable of constraint (4.26). The column generation is performed using the following steps.

Procedure CG

Step 1. Define set S′ ← SEQ (initial set of feasible sequences obtained using the heuristic
described in Section 4.4.4 or any random set of sequences).
Step 2. Solve DSC assuming S = S′ to get the optimal dual values π∗

i ∀i ∈ I and β∗.
Step 3. Using the optimal dual values resulting from Step 2, find sequence s∗ that achieves
maximum violation of the dual constraint given by:

∑

i∈I:i∈s

πi − β ≤ αδs (4.29)

Sequence s∗ is obtained by solving the sub-problem, given by Model 4.4.3, described in Section
4.4.3.
Step 4. If no such sequence exists, exit procedure. Otherwise, append s∗ to S′ and return
to Step 2.

At the end of Step 4, a set of sequences S′ ⊆ S is found by Procedure CG. A feasible solution
to Model (4.24)-(4.28) is then obtained using set S′ and a Branch-and-Bound algorithm; the
value of the resulting solution is a valid lower bound to the AGVDP.

A new column generation-based procedure for solving a variant of the AGVDP 69

4.4.3 Sub-problem: finding the sequence of maximum profit

In this section, we formulate and solve the problem of finding the sequence of operations
which achieves maximum violation of the dual constraint (4.29), namely, the sequence s∗

of maximum profit. The main idea is to construct a feasible sequence for an AGV initially
consisting of 1 + 2γ positions to which operations can be assigned. In order to develop a
mathematical formulation of this problem, the following notation has to be defined. Let
k ∈ K = {1, . . . , 1 + 2γ} be the set of possible positions in a sequence of operations. We
define the following sets of decision variables:

• Binary variable:

ζik =

{

1, if operation i ∈ I is assigned to position k ∈ K

0, otherwise

• Continuous variables with integrality property:
µk: load of the AGV after performing the operation assigned to position k ∈ K of a
sequence
τarrk \τ

dep
k : the arrival\departure time at\from the service location before\after perform-

ing the operation assigned to position k ∈ K of a sequence

The mathematical formulation of the sub-problem is given in Model 4.4.3.

Sub-problem

Maximize:

∑

k∈[1,|I|]

∑

i∈I

π∗
i ζik − α

∑

k∈[1,|I|]

[tdepk −
∑

i∈I

tTi ζik] (4.30)

subject to:

70 Application: Multi-load AGV dispatching in automated seaport container terminals

∑

k∈K

ζik ≤ 1 ∀i ∈ I (4.31)

∑

i∈I

ζik ≤ 1 ∀k ∈ K (4.32)

∑

i∈I

ζik −
∑

i∈I

ζik−1 ≤ 0 ∀k ∈ K \ {1} (4.33)

ζi+k −
∑

k′=k+1,...,|I|

ζi−k′ ≤ 0 ∀(i+, i−) ∈ (I+, I−),

k ∈ K \ {1} (4.34)
∑

i∈IL

ζi1 = 1 (4.35)

∑

i∈IL

ζik = 0 ∀k ∈ K \ {1} (4.36)

τdepk − τarrk −
∑

i∈I

tHi ζik = 0 ∀k ∈ K (4.37)

τarrk − τdepk−1 − di1,i2(ζi1,k−1 + ζi2,k − 1)−N3(
∑

i∈I

ζik − 1) ≥ 0 ∀i1 ∈ I, i2 ∈ I

k ∈ K \ {1} (4.38)

τdepk −
∑

i∈I

(tTi + tHi)ζik ≥ 0 ∀k ∈ K \ {1} (4.39)

µk − µk−1 −
∑

i∈I

qiζik = 0 ∀k ∈ K \ {1} (4.40)

µk ≤
∑

i∈IL

ζi1Qi ∀k ∈ K (4.41)

ζik ∈ {0, 1} ∀i ∈ I, k ∈ K (4.42)

τdepk , µk ∈ Z+ ∀k ∈ K (4.43)

The objective function (4.30) aims at maximizing the profit of the operations inserted in the
sequences using as profit the dual variables π∗

i minus the total delay caused by the generated
sequences.

Assigning operations to sequences Constraints (4.31) and (4.32), respectively, ensure
that each operation must be assigned to at most one position in a sequence and in each
position there must be at most one operation. Constraints (4.33) allow an operation to be
inserted at a position in the sequence only if the previous position is occupied. Constraints
(4.34) force the pick-up operation of a job to precede its corresponding delivery operation.
Constraints (4.35) and constraints (4.36), respectively, guarantee that the first position of a
sequence is assigned one of the initial AGV operations whereas operations linked to vehicles
cannot be assigned from the second position onwards.

Balancing travel times Constraints (4.37) impose that the departure time from a specific
position in the sequence is greater than the arrival time at the same position plus the handling

A new column generation-based procedure for solving a variant of the AGVDP 71

time of the assigned operation. Constraints (4.38) specify that, if position k of a sequence
is occupied, then the arrival time at this position must be greater than the departure time
from the previous position k − 1 plus the travel time between the locations of the operations
assigned to the two positions; this is a big-M constraint where N3 is a constant number large
enough to render the constraint redundant if

∑

i∈I ζik = 0. Finally, no departure from a
position k is possible before the target/release time plus the handling time of the assigned
operation has elapsed (constraints (4.39)).

Balancing vehicle loads Constraints (4.40) ensure that the vehicle load at a certain posi-
tion must be equal to the load of the previous position plus the load capacity requirement of
the assigned operation; furthermore an upper bound is imposed on the vehicle load capacity
by constraints (4.41).

Variable values Constraints (4.42) and (4.43) define the allowable values for the decision
variables.

Similarly to problem SC (Model (4.24)-(4.28)), it is impractical to solve the Sub-problem
(Model 4.4.3) since the computational time required to generate a solution depends on the
allowable number of jobs (γ) in a given sequence. Hence, in our computational experimenta-
tion presented in Section 4.6, we limited the number of jobs performed by each AGV to four
(γ = 4); this implementation, of course, leads to a valid lower bound to the optimal solution of
Model (4.24)-(4.28). Furthermore, due to the large number of constraints (4.38), Model 4.4.3
is initially solved by completely relaxing this set of constraints and subsequently adding, in an
iterative fashion, those that are violated by the current solution to the ILP model. Detailed
computational experimentation has indicated that the best results were obtained by inserting
a restricted number of such violated constraints (< 10) at each iteration.

4.4.4 A heuristic randomized approach for constructing a set of feasible

sequences

This section outlines a heuristic approach that can be used in the initialization step of Proce-
dure CG described in Section 4.4.2 for solving Model (4.24)-(4.28). The proposed procedure
constructs an initial set of feasible sequences to Model (4.24)-(4.28), referred to as SEQ, with
the view to achieving computational savings in the implementation of the column generation
procedure. Set SEQ includes all the sequences consisting of up to three jobs, generated using
complete enumeration. A subset of sequences with at least four jobs, of size Lim, is also
included in SEQ, constructed using a randomized heuristic approach.

The heuristic approach is described as follows. Let Fm be the feasible operations for each
vehicle m ∈ M ; these include all the pick-up operations of the problem, i.e. Fm = I+. We
construct a number of sequences equal to the number of vehicles in the following way. Each
sequence seqm is initialized to seqm = {iLm} and the current operation of the vehicle is set to
icm = iLm. For each m ∈ M we assign operation i ∈ Fm such that tTi + dicmi is minimum. If
i ∈ I−, we update sets Fm′ = Fm′ \ {i} for m′ ∈ M . If i ∈ I+ then Fm = Fm ∪ {i

−} \ {i}
for i− ∈ I− such that (i, i−) ∈ (I+ : I−). We also set icm = i. We repeat this step until
∪m∈MFm = ∅.

The second stage of the procedure constructs a new sequence seq′ from any pre-constructed
sequence seq ∈ SEQ in the following way. We set seq′ = seq. Note that sequence seq′ is

72 Application: Multi-load AGV dispatching in automated seaport container terminals

associated to a vehicle m. For each i+ ∈ seq′, a random number r ∈ [0, 1] is drawn. If the
random number is greater than probd (the probability of deletion), the pick-up operation and
its corresponding delivery operation are removed from seq′. Otherwise, if probr 6 r < probd,
where probr is the probability of replacement, i+ is replaced with i′ = argmin{i ∈ I+ \
{seq′} s.t. qi = qi+}. The corresponding delivery operations are also replaced. Finally, if
r < probr, operation i′ = argmin{i ∈ I+ \ {seq′} s.t. qi ≤ Qm} is added at the end of seq′,
followed by the corresponding delivery operation. If seq′ contains at least four jobs and if
the limit sequences is not exceeded, seq′ is appended to SEQ. This process is repeated while
|SEQ| 6 Lim.

4.5 An illustrative example

In order to illustrate Procedure CG described in Section 4.4, we use an example. We consider
a container terminal with |C| = 4 cranes (two quay cranes, denoted by QC1 and QC2, and
two stacking cranes, denoted by SC1 and SC2), |M | = 2 AGVs and |J | = 2 jobs. Both AGVs
are initially located at QC1 and each has a capacity of Q1 = Q2 = 2 units. The pick-up
operation of job 1 is located at crane SC1 and its delivery operation at SC2, while the pick-
up/delivery operations for job 2 are located at SC2/SC1, respectively. Both jobs require a
capacity of 1 unit. The travel time required by the AGVs between each pair of cranes is equal
to 1 time unit. We define set of operations I = {iL1 , i

L
2 , p1, p2, d1, d2} where p1, p2 refer to the

pick-up operations of jobs 1,2, respectively, and d1, d2 to the delivery operations of job 1,2,
respectively.

Table 4.3 shows the relaxed problem SC (Section 4.4.1) consisting of an initial set S′ of three
sequences. Let θs be the decision variable associated to sequence s ∈ S′, with s = 1 being
the sequence including all the operations, i.e. {iL1 , i

L
2 , p1, p2, d1, d2} = I, s = 2 the trivial

sequence {iL1 } and s = 3 the trivial sequence {iL2 }. Constraints (4.25) of Model (4.24)-(4.28)
are given by rows c1− c6 of this table and constraints (4.26) are represented by row c7. Let
π1 − π6 and β denote the corresponding dual variables for each row.

Minimize
obj z = 1000θ1

subject to:
c1: θ1 + θ2 ≥ 1 (π1)
c2: θ1 + θ3 ≥ 1 (π2)
c3: θ1 ≥ 1 (π3)
c4: θ1 ≥ 1 (π4)
c5: θ1 ≥ 1 (π5)
c6: θ1 ≥ 1 (π6)
c7: θ1 + θ2 + θ3 ≤ 2 (β)

End

Table 4.3: Illustrative example: problem DSC (initialization step)

Table 4.4 shows the output of problem DSC obtained for five consecutive iterations of Proce-
dure CG (Section 4.4.2); each row of the table corresponds to one iteration. Columns identified
by θ1 − θ7 report the set of optimal values of the decision variables in set S′; the procedure

Computational experiments 73

starts by considering the first three sequences described above, adding one new sequence at
each iteration. The remaining columns of Table 4.4 show z, the current optimal solution
value of problem DSP and the set of values (π1−π6, β) of the dual variables associated to the
primal constraints (4.25) and (4.26), respectively. The new sequence s∗, the corresponding

value of lateness, δ, and the value ρ =
∑

i∈I:i∈s∗

πi − β − αδ are also given in Table 4.4 for each

iteration. Note that Procedure CG is terminated after 5 iterations since no sequence which
violates constraint (4.29) can be found. Table 4.5 shows problem DSC solved at the end of
the column generation procedure (root node) producing a lower bound value of z = 12.

The illustrative example is solved to optimality by adding constraints (4.27) (shown in rows
c8 and c9 of Table 4.5) and (4.28) and using a Branch-and Bound procedure. The resulting
optimal solution has a value Z(SC) = 12.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 z π1 π2 π3 π4 π5 π6 β sequence s∗ δ ρ

1.0 1.0 0.0 1000 0 0 1000 0 0 0 0 iL1 -p1-d1 5 995
1.0 1.0 0.0 0.0 1000 0 0 5 995 0 0 0 iL1 -p2-d2 7 988
0.5 0.0 0.5 0.5 0.5 506 0 494 499 501 0 0 494 iL2 -p1-d1-p2-d2 16 984
0.0 0.0 0.5 0.5 0.5 0.5 14 0 2 7 9 0 0 2 iL2 -p1-d1 5 2
0.0 0.0 0.0 0.0 1.0 0.0 1.0 12 0 0 5 7 0 0 0 - 0

Table 4.4: Illustrative example: column generation procedure (5 iterations)

Minimize
obj z = 1000θ1 + 5θ4 + 7θ5 + 16θ6 + 5θ7

Subject To
c1: θ1 + θ2 + θ4 + θ5 ≥ 1
c2: θ1 + θ3 + θ6 + θ7 ≥ 1
c3: θ1 + θ4 + θ6 + θ7 ≥ 1
c4: θ1 + θ5 + θ6 ≥ 1
c5: θ1 + θ4 + θ6 + θ7 ≥ 1
c6: θ1 + θ5 + θ6 ≥ 1
c7: θ1 + θ2 + θ3 + θ4 + θ5 + θ6 + θ7 ≤ 2

End

“crane occupancy” c8: θ4 + θ6 + θ7 ≤ 1
constraints c9: θ4 + θ6 + θ7 ≤ 1

Table 4.5: Illustrative example: solution to Model (4.24)-(4.28) (root node)

4.6 Computational experiments

The aim of this section is to analyze the computational performance of the proposed MIP
model (Model (4.1)-(4.23)) and column generation approach using Model (4.24)-(4.28) for
the multi-load AGVDP. Both methodologies were coded in Microsoft Visual Studio C++ and
run on an Intel Core 2 Processor (2.5GHz with 3.5GB of RAM, Windows Operating System)
using IBM ILOG CPLEX v12.1. We describe our test set generation procedure based on four

74 Application: Multi-load AGV dispatching in automated seaport container terminals

different scenarios. Computational results for a total of 40 test instances are reported for both
methodologies. Note that in all our computational experiments, the cost coefficient α is set
to 1.

4.6.1 Test problem generation

As a test bed, we generate a set of test instances based on four scenarios, following a similar
approach to the one adopted by [57]. In particular, two layouts are defined as follows. The
first one includes six cranes served by a fleet of three AGVs. The three cranes are lined up in
a row along the berth, while the remaining cranes are located in a row in the berthing area,
a typical design in highly automated container ports. All travel times required by the AGVs
are set to 1 time unit for a trip between two adjacent cranes and all distances are assumed
to be symmetrical. The design of the second layout is similar, with the number of cranes and
AGVs doubled. For both layouts we investigate two different workloads specified in terms of
the number of jobs that have to be processed: 8 and 12 jobs for the first layout and 14 and 18
jobs for the second layout. The target/release time for each pick-up operation is drawn from
the uniform distribution U [1, 20] (the corresponding delivery operation has the same target
time). The crane associated to each operation is randomly generated with equal likelihood
given to all possible connections between quay and stacking cranes. The handling time of
each pick-up and delivery operation is set to 1 time unit. For all remaining operations the
handling time is 0. The share of 40/45ft containers is set to 30%. For each of the scenarios 10
problem instances were randomly generated resulting in a total of 40 test instances. Table 4.6
displays the settings used for the layout of the guide-path, the number of jobs and number of
AGVs for each of the four scenarios.

Scenario #Cranes #Jobs #AGVs

1 6 8 3
2 6 12 3
3 12 14 6
4 12 18 6

Table 4.6: Scenario settings for generating test instances

4.6.2 Implementation and numerical results

The performance of the multi-load AGVDP was evaluated for the following proposed methods:

1. MIP Model (4.1)-(4.23)

2. Relaxed MIP Model (4.1)-(4.23) in which the “crane occupancy” constraints (4.17)-
(4.21) are relaxed

3. Same as (i) including the additional constraint for limiting the number of jobs that can
be processed by each AGV by a fixed number

4. Same as (ii) including the additional constraint for limiting the number of jobs that can
be processed by each AGV by a fixed number

5. Set covering formulation Model (4.24)-(4.28)

Computational experiments 75

6. Relaxed Model (4.24)-(4.28) in which the “crane occupancy” constraints (4.27) are re-
laxed

Note that in the implementation of methods (iii) and (iv) we add the following constraint to
the corresponding mathematical formulation:

∑

i∈I+

zmi ≤ γ ∀m ∈M (4.44)

All test instances were solved using any of the above methods terminated when either the
optimal solution was found or a time limit of 1000 or 10000 CPU seconds elapsed for Model
(4.1)-(4.23) or Model (4.24)-(4.28), respectively; a higher time limit was set for Model (4.24)-
(4.28) to allow the computation of a better quality bound for large-size instances.

The results obtained for each test instance using any of the solution methods (i) to (vi) are
displayed in Tables 7 to 10. Each instance is uniquely identified by I |M | |J | |C|k consisting
of |M | vehicles, |J | jobs and |C| service locations. Index k ∈ {1, . . . , 10} denotes the kth

instance within a given scenario. The columns of these tables are defined as follows.

• UB, UB1, UB2: Cost of the optimal AGVDP solution found by the model proposed
in [57] or Model (4.1)-(4.23) or Model (4.24)-(4.28) (methods (i)-(vi)), respectively, (or
cost of the best solution found).

• LB, LB1, LB2: Lower bound computed at the root node of the Branch-and-Bound
(B&B) algorithm using the model proposed in [57] or Model (4.1)-(4.23) (obtained
using CPLEX 12.1) or the continuous relaxation of Model (4.24)-(4.28), respectively.

• %e1,%e2: Lower bound LB1 or LB2 as a percentage of the best upper bound found
(minimum of UB1 and UB2), for a given instance,
%e1 = 100 LB1

min{UB1,UB2}

%e2 = 100 LB2
min{UB1,UB2}

• troot: Computational time (in CPU seconds) for finding LB, LB1 or LB2

• %gap,%gap1: Percentage deviation from UB, UB1 of the best lower bound LB∗, LB1∗

found by the B&B algorithm at the end of the time limit using the model proposed in
[57] or Model (4.1)-(4.23) , i.e.
%gap = 100UB−LB∗

UB1

%gap1 = 100UB1−LB1∗

UB1

• %gap2: Percentage deviation from UB2 of LB2, i.e.
%gap2 = 100UB2−LB2

UB2

• ttot: Total computational time (in CPU seconds) for finding UB, UB1 or UB2

• |S′|: Number of columns (in thousands) generated by Procedure CG used by either
method (v) or (vi)

For comparison purposes, we also implemented the MIP model proposed in [57], here referred
to as GRUN04, and solved all instances on the same computer; the results obtained are also
reported in Table 4.7.

76 Application: Multi-load AGV dispatching in automated seaport container terminals

Table 4.7 demonstrates the performance of the proposed MIP Model (4.1)-(4.23) for the
general AGVDP in which no restriction on the number of jobs assigned to each AGV is
placed. The results displayed for the Relaxed Model (4.1)-(4.23) are compared to GRUN04
for all instances in the four scenarios. The table shows that the Relaxed Model (4.1)-(4.23)
clearly outperforms GRUN04 for all largest and hardest instances; our model solved 65%
of all instances to optimality, in an average CPU time of about 7.5 minutes compared to
only 33% of these problems being solved by GRUN04 with an average time of 12.2 minutes.
More specifically, the instances in scenarios 3 and 4 were beyond the capabilities of GRUN04
given the CPU time limit; the average optimality gap for those instances in all scenarios not
solved to optimality was 37%. On the other hand, the corresponding average optimality gap
computed by the Relaxed Model (4.1)-(4.23) is only 11.45%.

Table 4.8 reports the behaviour of Model (4.1)-(4.23) for a fixed number of jobs performed
by an AGV. In particular, results for γ = 3, 4, 5 jobs per sequence are shown. Note that no
results are reported for instances in scenario 2 and γ = 3 since there was no feasible solution
found by Model (4.1)-(4.23) or Relaxed Model (4.1)-(4.23) . From Tables 7 and 8, we observe
that the behaviour of Model (4.1)-(4.23) or Relaxed Model (4.1)-(4.23) is not significantly
affected by these additional constraints in terms of computational time or percentage of in-
stances solved to optimality in each scenario or the value of the best upper bound found.
For example, we note that without adding the crane occupancy constraints (Relaxed Model
(4.1)-(4.23)), the percentage of instances solved to optimality for γ = 4 are 100%, 70%, 60%
and 20% for scenario 1, 2, 3 and 4, respectively, and 63% over all instances. When the crane
occupancy constraints are added, the corresponding percentages are 100%, 80%, 70% and
10% for scenario 1, 2, 3 and 4, respectively, and 65% over all scenarios. However, for a given
value of γ, the inclusion of crane occupancy constraints in the AGVDP impacts the quality
of solution as reflected in the corresponding values of the average optimality gap (over all
instances obtained by Model (4.1)-(4.23) and Relaxed Model (4.1)-(4.23) , respectively).

Table 4.9 shows the computational results derived from the column generation approach. We
report results for γ = 3, 4 for methods (v) Model (4.24)-(4.28) and (vi) Relaxed Model (4.24)-
(4.28). As in Table 4.8, no results are reported for scenario 2 instances and γ = 3 as no feasible
solution was found for these instances. The table shows that the feasible solutions obtained
with the column generation approach node are of good quality. For the Relaxed Model (4.24)-
(4.28), the column generation procedure is capable of closing the optimality gap in 97% of the
instances for γ = 3 and 75% of the instances for γ = 4 (all the instances in scenario 4 were
found to be beyond the capabilities of Procedure CG). The results corresponding to method
(v) Model (4.24)-(4.28) are also generally of good quality; the optimal solution is found for
46% of the instances over γ = 3, 4.

Finally, Table 4.10 compares lower bounds LB1 and LB2. The table shows that LB2 system-
atically outperforms LB1. In particular, %e2 is 100% over all instances for γ = 3, compared
to 89% for %e1. For γ = 4, LB2 is found to be equal to the optimal value for all instances in
scenarios 1-3 (%e2 = 100%) while %e1 is equal to 87%, 76% and 93% for scenarios 1,2 and 3,
respectively.

4.7 Conclusions

The multi-load AGV dispatching problem in automated container terminals is a complex
and dynamic problem and solutions to this problem need to be capable of adapting to rapid

Conclusions 77

changes. For this reason, most developments in the literature focus on priority rules or
heuristics which can be applied in real-time. The main contribution of this chaper is the
development of effective solution approaches for finding optimal and feasible solutions to the
multi-load AGV dispatching problem. Our focus is on AGVs which are operated in a dual
carrier mode, i.e. capable of carrying either a 40/45-ft container or two 20-ft containers.
The solution approaches proposed in this chaper are capable of providing a platform for
benchmarking heuristic methodologies.

Our numerical results reveal that the new complete MIP formulation we are proposing is
capable of solving efficiently many of the test instances in the literature; in some cases,
however, the solver is not able to close the optimality gap within the time limit of 1000
CPU seconds. In order to obtain stronger lower bounds we have developed a set covering
formulation of the problem. Its continuous relaxation is solved using a new column generation
approach. This approach shows that if the number of jobs assigned to each vehicle is fixed,
strong bounds can be derived. Moreover feasible solutions of good quality are obtained for
most instances. In many cases it is also possible to even close the optimality gap within a
reasonable amount of time.

78
A
p
p
lica

tio
n
:
M
u
lti-lo

a
d
A
G
V

d
isp

a
tch

in
g
in

a
u
to
m
a
ted

sea
p
o
rt

co
n
ta
in
er

term
in
a
ls

GRUN04 (i) Model 1 (ii) Relaxed Model 1
Instance UB LB troot %gap ttot UB1 LB1 troot %gap1 ttot UB1 LB1 troot %gap1 ttot
I 3 8 61 47 24.6 0.8 0.00 4.4 47 41.0 1.4 0.00 4.4 47 41.0 0.9 0.00 2.2
I 3 8 62 45 23.4 0.5 0.00 2.7 45 42.0 1.3 0.00 1.9 45 42.0 0.8 0.00 2.1
I 3 8 63 45 26.8 0.4 0.00 4.0 45 37.0 1.1 0.00 2.5 45 37.0 0.9 0.00 3.3
I 3 8 64 46 24.4 0.5 0.00 3.7 46 42.0 1.3 0.00 1.8 46 42.0 0.9 0.00 1.1
I 3 8 65 48 22.2 0.5 0.00 7.3 48 40.0 1.1 0.00 8.2 48 40.0 0.8 0.00 3.7
I 3 8 66 57 27.7 0.6 0.00 42.4 57 45.0 1.6 0.00 67.6 57 42.0 0.9 0.00 135.5
I 3 8 67 44 28.0 0.6 0.00 2.9 44 42.0 1.1 0.00 1.5 44 40.0 1.2 0.00 1.3
I 3 8 68 49 24.0 0.4 0.00 5.6 49 41.0 1.1 0.00 3.7 49 41.0 0.8 0.00 3.0
I 3 8 69 44 24.5 0.5 0.00 3.9 44 41.0 1.1 0.00 2.8 44 40.0 0.9 0.00 1.7
I 3 8 610 45 25.4 0.4 0.00 4.6 49 43.0 1.6 0.00 2.0 45 41.0 0.9 0.00 2.2

Scenario 1- Averages: 0.00 8.2 0.00 9.6 0.00 15.6
I 3 12 61 72 36.4 1.6 0.00 595.1 77 61.0 2.9 0.00 71.2 72 58.0 3.5 0.00 36.6
I 3 12 62 72 37.3 2.9 0.00 778.9 77 59.0 3.7 0.00 67.5 72 56.0 2.2 0.00 35.4
I 3 12 63 81 34.1 1.9 27.15 1000.0 82 61.0 3.0 9.25 1000.0 84 55.0 2.0 22.49 1000.0
I 3 12 64 75 37.0 2.8 0.00 855.1 75 58.0 2.5 0.00 214.0 75 57.0 2.2 0.00 66.9
I 3 12 65 77 35.4 1.5 15.43 1000.0 77 57.0 2.5 0.00 154.6 77 57.0 2.3 1.33 1000.0
I 3 12 66 88 40.4 2.1 14.98 1000.0 91 65.0 3.5 6.44 1000.0 88 60.0 2.4 0.00 564.7
I 3 12 67 77 38.1 2.4 11.39 1000.0 70 61.0 4.2 0.00 30.7 69 59.0 2.5 0.00 20.4
I 3 12 68 77 36.6 2.4 11.42 1000.0 78 58.0 3.4 3.97 1000.0 77 57.0 2.7 0.00 832.3
I 3 12 69 83 33.8 2.9 24.44 1000.0 83 58.0 2.9 3.27 1000.0 83 58.0 2.2 19.29 1000.0
I 3 12 610 67 33.3 3.0 6.68 1000.0 68 58.0 3.5 0.00 113.3 67 55.0 3.5 0.00 129.4

Scenario 2- Averages: 11.15 922.9 2.29 465.1 4.31 468.6
I 6 14 121 78 34.9 3.1 15.26 1000.0 81 81.0 11.3 0.00 19.6 78 78.0 7.6 0.00 17.9
I 6 14 122 86 28.0 1.7 28.75 1000.0 86 80.0 9.8 0.00 128.4 86 78.0 4.4 0.00 245.9
I 6 14 123 106 34.0 3.5 37.42 1000.0 105 96.0 9.6 6.02 1000.0 102 90.0 7.1 7.43 1000.0
I 6 14 124 115 28.0 1.8 36.03 1000.0 111 99.0 11.7 5.78 1000.0 111 98.0 5.8 8.65 1000.0
I 6 14 125 84 28.0 2.2 24.13 1000.0 87 85.0 18.3 0.00 20.2 84 82.0 9.7 0.00 16.7
I 6 14 126 96 31.3 3.3 24.17 1000.0 96 95.0 9.3 0.00 69.2 96 94.0 5.9 0.00 73.7
I 6 14 127 109 33.5 4.0 37.93 1000.0 102 97.0 8.2 0.00 446.1 98 91.0 5.7 0.00 752.0
I 6 14 128 91 28.0 2.2 27.21 1000.0 87 86.0 5.9 0.00 126.2 87 85.0 10.1 0.00 142.7
I 6 14 129 107 28.0 1.8 42.04 1000.0 104 89.0 10.9 7.78 1000.0 103 87.0 8.4 6.80 1000.0
I 6 14 1210 96 37.0 3.4 16.58 1000.0 97 94.0 8.5 0.00 58.0 96 93.0 7.7 0.00 50.5

Scenario 3- Averages: 28.95 1000.0 1.96 386.8 2.29 429.9
I 6 18 121 162 42.3 103.8 58.62 1000.0 122 104.0 31.1 10.66 1000.0 115 103.0 26.6 8.71 1000.0
I 6 18 122 143 52.3 7.6 38.16 1000.0 131 116.0 42.1 6.49 1000.0 126 113.0 12.6 5.54 1000.0
I 6 18 123 187 45.2 352.6 57.88 1000.0 - 115.0 40.9 - 1000.0 123 110.0 13.2 7.27 1000.0
I 6 18 124 146 51.3 8.1 39.52 1000.0 157 104.0 22.0 27.68 1000.0 130 102.0 16.3 16.72 1000.0
I 6 18 125 179 36.0 5.0 63.23 1000.0 - 110.2 27.2 - 1000.0 138 108.0 13.8 21.73 1000.0
I 6 18 126 194 43.8 222.6 59.82 1000.0 - 107.0 40.3 - 1000.0 - 107.0 19.9 - 1000.0
I 6 18 127 118 47.8 9.6 27.63 1000.0 109 107.0 52.3 0.00 129.3 106 104.0 5.8 0.00 232.9
I 6 18 128 123 52.8 7.0 29.12 1000.0 120 115.0 23.2 0.00 429.4 117 109.0 27.8 0.00 678.6
I 6 18 129 266 42.8 289.2 72.88 1000.0 - 114.0 45.9 - 1000.0 - 110.0 18.1 - 1000.0
I 6 18 1210 164 36.0 5.3 61.46 1000.0 - 109.0 38.9 - 1000.0 - 106.0 24.1 - 1000.0

Scenario 4- Averages: 50.83 1000.0 8.96 855.9 8.57 891.2
All instances - Averages: 22.73 732.8 2.50 429.4 3.40 451.3

%Instances solved to optimality: 33% 60% 65%

T
a
b
le

4.7
:
C
o
m
p
u
ta
tion

al
p
erform

an
ce

of
M
IP

M
o
d
el

(4.1)-(4.23)

C
o
n
clu

sio
n
s

79

(iii) Model 1 (iv) Relaxed Model 1
γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5

Inst. UB1 %gap1 ttot UB1 %gap1 ttot UB1 %gap1 ttot UB1 %gap1 ttot UB1 %gap1 ttot UB1 %gap1 ttot
I 3 8 61 47 0.00 3.8 47 0.00 7.6 47 0.00 4.8 47 0.00 2.3 47 0.00 2.6 47 0.00 2.2
I 3 8 62 45 0.00 2.1 45 0.00 3.3 45 0.00 2.7 45 0.00 2.8 45 0.00 2.3 45 0.00 2.1
I 3 8 63 45 0.00 4.0 45 0.00 3.9 45 0.00 4.5 45 0.00 3.0 45 0.00 3.5 45 0.00 2.3
I 3 8 64 46 0.00 3.1 46 0.00 2.4 46 0.00 1.6 46 0.00 1.0 46 0.00 1.5 46 0.00 1.0
I 3 8 65 48 0.00 5.4 48 0.00 9.7 48 0.00 10.4 48 0.00 4.2 48 0.00 4.9 48 0.00 5.5
I 3 8 66 57 0.00 41.3 57 0.00 67.1 57 0.00 65.3 57 0.00 124.5 57 0.00 172.1 57 0.00 98.4
I 3 8 67 44 0.00 2.0 44 0.00 2.8 44 0.00 1.9 44 0.00 1.3 44 0.00 1.8 44 0.00 1.7
I 3 8 68 49 0.00 3.8 49 0.00 4.3 49 0.00 9.1 49 0.00 2.8 49 0.00 3.7 49 0.00 3.5
I 3 8 69 44 0.00 4.5 44 0.00 3.6 44 0.00 6.1 44 0.00 2.1 44 0.00 2.0 44 0.00 3.2
I 3 8 610 49 0.00 3.4 49 0.00 3.2 49 0.00 4.6 45 0.00 1.8 45 0.00 1.6 45 0.00 4.1

Sc. 1 - Avg: 0.00 7.3 0.00 10.8 0.00 11.1 0.00 14.6 0.00 19.6 0.00 12.4
I 3 12 61 77 0.00 112.3 77 0.00 108.2 72 0.00 58.6 72 0.00 20.4
I 3 12 62 77 0.00 114.3 77 0.00 111.4 72 0.00 58.1 72 0.00 27.5
I 3 12 63 86 16.00 0.0 82 8.07 1000.0 79 14.32 1000.0 79 10.48 1000.0
I 3 12 64 75 0.00 122.3 75 0.00 62.6 75 0.00 179.6 75 0.00 49.4
I 3 12 65 77 0.00 200.3 77 0.00 197.6 77 13.50 1000.0 77 0.00 726.5
I 3 12 66 91 10.02 1000.0 93 13.44 1000.0 88 0.00 652.4 88 8.15 1000.0
I 3 12 67 72 0.00 153.6 70 0.00 80.8 71 0.00 156.5 69 0.00 141.3
I 3 12 68 78 0.00 925.7 78 0.01 1000.0 77 0.00 979.4 77 0.00 681.1
I 3 12 69 83 0.00 986.0 83 5.78 1000.0 83 15.83 1000.0 83 11.94 1000.0
I 3 12 610 68 0.00 145.6 68 0.00 126.4 67 0.00 141.6 67 0.00 116.7

Sc. 2 - Avg: 2.60 376.0 2.73 468.7 4.37 522.6 3.06 476.3
I 6 14 121 81 0.00 9.5 81 0.00 9.6 81 0.00 26.5 78 0.00 8.5 78 0.00 8.9 78 0.00 1000.0
I 6 14 122 86 0.00 210.3 86 0.00 240.5 86 0.00 137.9 86 0.00 164.6 86 0.00 293.7 86 0.00 372.6
I 6 14 123 107 8.13 1000.0 105 6.32 1000.0 105 6.67 1000.0 102 6.84 1000.0 102 8.11 1000.0 102 6.64 1000.0
I 6 14 124 115 11.05 1000.0 111 7.10 1000.0 113 8.85 1000.0 111 8.56 1000.0 111 8.65 1000.0 111 8.36 1000.0
I 6 14 125 87 0.00 41.1 87 0.00 46.9 87 0.00 34.9 84 0.00 37.4 84 0.00 19.7 84 0.00 19.6
I 6 14 126 96 0.00 130.0 96 0.00 100.5 96 0.00 89.5 96 0.00 28.8 96 0.00 76.3 96 0.00 82.1
I 6 14 127 102 3.29 1000.0 102 0.00 688.3 102 2.50 1000.0 98 0.00 666.4 98 2.04 1000.0 98 0.00 569.5
I 6 14 128 87 0.00 53.1 87 0.00 79.7 87 0.00 171.7 87 0.00 179.0 87 0.00 254.0 87 0.00 143.3
I 6 14 129 104 7.88 1000.0 105 8.91 1000.0 104 8.58 1000.0 103 1.51 1000.0 103 7.38 1000.0 103 7.43 1000.0
I 6 14 1210 97 0.00 115.0 97 0.00 106.6 97 0.00 98.5 96 0.00 152.1 96 0.00 86.5 96 0.00 184.0

Sc. 3 - Avg: 3.04 455.9 2.23 427.2 2.66 455.9 1.69 423.7 2.62 473.9 2.24 537.1
I 6 18 121 200 47.00 1000.0 114 5.26 1000.0 334 68.26 1000.0 122 14.95 1000.0 115 9.17 1000.0 121 14.47 1000.0
I 6 18 122 147 19.73 1000.0 376 68.62 1000.0 212 44.13 1000.0 127 6.47 1000.0 126 5.56 1000.0 126 6.46 1000.0
I 6 18 123 139 15.83 1000.0 148 20.95 1000.0 131 10.69 1000.0 128 11.66 1000.0 123 7.56 1000.0 123 7.57 1000.0
I 6 18 124 190 41.89 1000.0 323 65.79 1000.0 - - 1000.0 164 36.23 1000.0 134 21.44 1000.0 128 16.84 1000.0
I 6 18 125 295 62.04 1000.0 216 48.42 1000.0 - - 1000.0 176 38.64 1000.0 - - 1000.0 136 20.17 1000.0
I 6 18 126 179 37.93 1000.0 375 70.32 1000.0 419 73.44 1000.0 119 5.04 1000.0 119 4.62 1000.0 119 3.99 1000.0
I 6 18 127 112 2.68 1000.0 109 0.00 396.7 109 0.00 476.6 110 1.33 1000.0 106 0.00 116.2 106 0.00 137.6
I 6 18 128 128 8.20 1000.0 120 0.47 1000.0 120 0.00 721.9 121 4.96 1000.0 117 0.00 870.8 117 0.00 682.7
I 6 18 129 674 82.64 1000.0 288 59.28 1000.0 - - 1000.0 141 20.23 1000.0 139 19.42 1000.0 - - 1000.0
I 6 18 1210 311 64.81 1000.0 175 34.83 1000.0 183 39.89 1000.0 128 16.48 1000.0 128 16.16 1000.0 125 14.64 1000.0

Sc. 4 - Avg: 38.28 1000.0 37.39 939.7 33.77 919.9 15.60 1000.0 9.32 898.7 9.35 882.0
All inst. - Avg: 13.77 487.75 10.56 438.42 7.85 463.88 5.76 479.43 3.94 478.71 3.52 476.96
%Inst. solved: 53% 65% 60% 57% 63% 65%

T
a
b
le

4.8
:
C
om

p
u
ta
tion

al
p
erfo

rm
an

ce
of

M
IP

M
o
d
el

(4.1)-(4.23)
w
ith

fi
x
ed

n
u
m
b
er

of
job

s

80 Application: Multi-load AGV dispatching in automated seaport container terminals

(v) Model 2 (vi) Relaxed Model 2
γ = 3 γ = 4 γ = 3 γ = 4

Inst. UB2 UB2 UB2 %gap2 ttot |S’| UB2 %gap2 ttot |S’|
I 3 8 61 47 47 47 0.00 0.3 5.0 47 0.00 52.8 5.0
I 3 8 62 45 45 45 0.00 0.5 7.0 45 0.00 26.2 7.0
I 3 8 63 45 45 45 0.00 0.4 7.0 45 0.00 37.6 7.0
I 3 8 64 46 46 46 0.00 0.1 1.7 46 0.00 11.5 1.7
I 3 8 65 48 48 48 0.00 0.3 5.0 48 0.00 113.6 5.0
I 3 8 66 57 57 57 0.00 0.3 5.0 57 0.00 181.7 5.0
I 3 8 67 44 44 44 0.00 0.3 3.5 44 0.00 24.8 3.5
I 3 8 68 49 49 49 0.00 0.3 5.0 49 0.00 38.4 5.0
I 3 8 69 44 44 44 0.00 0.4 7.0 44 0.00 74.4 7.0
I 3 8 610 49 49 45 0.00 0.2 2.4 45 0.00 25.6 2.4

Sc. 1 - Avg: 0.00 0.3 4.9 0.00 58.7 4.9
I 3 12 61 89 72 0.00 272.8 60.3
I 3 12 62 105 72 0.00 402.7 60.3
I 3 12 63 85 79 0.00 308.1 60.3
I 3 12 64 75 75 0.00 116.3 60.3
I 3 12 65 77 77 0.00 201.3 60.3
I 3 12 66 94 88 0.00 273.2 60.3
I 3 12 67 83 71 0.00 331.5 60.2
I 3 12 68 81 77 0.00 347.6 60.3
I 3 12 69 83 83 0.00 315.3 60.3
I 3 12 610 73 67 0.00 207.7 60.3

Sc. 2 - Avg: 0.00 277.7 60.3
I 6 14 121 84 84 78 0.00 7.9 48.0 78 0.00 236.3 72.0
I 6 14 122 86 86 86 0.00 8.4 48.0 86 0.00 1793.2 72.0
I 6 14 123 107 107 102 0.00 12.5 58.6 102 0.00 3233.9 82.6
I 6 14 124 111 111 111 0.00 11.6 71.0 111 0.00 2131.6 95.0
I 6 14 125 90 90 84 0.00 7.8 39.2 84 0.00 239.8 63.2
I 6 14 126 96 96 96 0.00 15.8 85.6 96 0.00 998.5 109.6
I 6 14 127 103 103 98 0.00 11.2 58.6 98 0.00 3628.7 82.6
I 6 14 128 87 87 87 0.00 6.4 39.2 87 0.00 570.8 63.2
I 6 14 129 104 104 103 0.00 4.3 31.9 103 0.00 1459.2 55.9
I 6 14 1210 98 98 96 0.00 14.6 85.6 96 0.00 1243.9 109.6

Sc. 3 - Avg: 0.00 10.1 56.6 0.00 1553.6 80.6
I 6 18 121 121 117 0.00 19.9 134.3
I 6 18 122 132 126 0.00 15.0 98.6
I 6 18 123 126 123 0.00 19.1 115.3
I 6 18 124 128 128 0.00 26.4 155.8
I 6 18 125 136 131 0.00 39.7 180.0
I 6 18 126 119 119 0.00 28.6 155.8
I 6 18 127 112 110 1.82 19.8 84.2
I 6 18 128 122 117 0.00 27.0 155.8
I 6 18 129 136 124 0.00 47.0 180.0
I 6 18 1210 126 125 0.00 34.9 134.3

Scenario 4 - Avg: 0.18 27.7 139.4
All inst. - Avg: 0.06 12.7 66.9 0.00 630.0 42.7

%Inst. solved to opt.: 53% 40% 97% 100%

Table 4.9: Computational performance of column generation approach (Model (4.24)-(4.28))

Conclusions 81

(iv) Relaxed Model 1 vs (vi) Relaxed Model 2
γ = 3 γ = 4

Inst. LB1 %e1 LB2 %e2 LB1 %e1 LB2 %e2
I 3 8 61 41 87.23 47 100.00 41 87.23 47 100.00
I 3 8 62 42 93.33 45 100.00 42 93.33 45 100.00
I 3 8 63 37 82.22 45 100.00 37 82.22 45 100.00
I 3 8 64 42 91.30 46 100.00 42 91.30 46 100.00
I 3 8 65 40 83.33 48 100.00 40 83.33 48 100.00
I 3 8 66 42 73.68 57 100.00 42 73.68 57 100.00
I 3 8 67 40 90.91 44 100.00 40 90.91 44 100.00
I 3 8 68 41 83.67 49 100.00 41 83.67 49 100.00
I 3 8 69 40 90.91 44 100.00 40 90.91 44 100.00
I 3 8 610 41 91.11 45 100.00 41 91.11 45 100.00

Sc. 1 - Avg: 86.77 100.00 86.77 100.00
I 3 12 61 58 80.56 72.0 100.00
I 3 12 62 56 77.78 72.0 100.00
I 3 12 63 55 69.62 79.0 100.00
I 3 12 64 57 76.00 75.0 100.00
I 3 12 65 57 74.03 77.0 100.00
I 3 12 66 60 68.18 88.0 100.00
I 3 12 67 59 83.10 71.0 100.00
I 3 12 68 57 74.03 77.0 100.00
I 3 12 69 58 69.88 83.0 100.00
I 3 12 610 55 82.09 67.0 100.00

Scenario 2 - Averages: 75.53 100.00
I 6 14 121 78 100.00 78 100.00 78 100.00 78 100.00
I 6 14 122 78 90.70 86 100.00 78 90.70 86 100.00
I 6 14 123 90 88.24 102 100.00 90 88.24 102 100.00
I 6 14 124 98 88.29 111 100.00 98 88.29 111 100.00
I 6 14 125 82 97.62 84 100.00 82 97.62 84 100.00
I 6 14 126 94 97.92 96 100.00 94 97.92 96 100.00
I 6 14 127 91 92.86 98 100.00 91 92.86 98 100.00
I 6 14 128 85 97.70 87 100.00 85 97.70 87 100.00
I 6 14 129 87 84.47 103 100.00 87 84.47 103 100.00
I 6 14 1210 93 96.88 96 100.00 93 96.88 96 100.00

Sc. 3 - Avg: 93.47 100.00 93.47 100.00
I 6 18 121 103 88.03 117 100.00 103 89.57
I 6 18 122 113 89.68 126 100.00 113 89.68
I 6 18 123 110 89.43 123 100.00 110 89.43
I 6 18 124 102 79.69 128 100.00 102 76.12
I 6 18 125 108 82.44 131 100.00 108 -
I 6 18 126 107 89.92 119 100.00 107 89.92
I 6 18 127 104 94.55 110 98.18 104 98.11
I 6 18 128 109 93.16 117 100.00 109 93.16
I 6 18 129 110 88.71 124 100.00 110 79.14
I 6 18 1210 106 84.80 125 100.00 106 82.81

Sc. 4 - Avg: 88.04 99.82 87.55
All ins. - Avg: 89.43 99.94 85.78 100.00

Table 4.10: Computational results: Comparison of Model 4.3 and Model (4.24)-(4.28)

82 Application: Multi-load AGV dispatching in automated seaport container terminals

Chapter 5

Application: A Column Generation

Heuristic for the 2D Cutting Stock

Problem

Given a set of rectangular items and infinitely many identical rectangular bins, the Two-

Dimensional Cutting Stock Problem (2DCSP) asks to cut all the items by using the minimum
number of bins or, equivalently, by minimizing the global area of the used bins. We consider
the Two-Dimensional Two-Staged Guillotine Cutting Stock Problem with Multiple Stock Size

(MS2DCSP), that is, a 2DCSP where: i) All the items must be obtained through guillotine
cuts, i.e., cuts that are parallel to the sides of the bin and cross the bin from one side to the
other; ii) All the items must be obtained with two-staged cuts, where each stage consists in
a set of parallel guillotine cuts performed on the shape obtained in the previous stage (we
allow trimming, i.e., a third stage cut can be used to separate a rectangle from a waste area);
and iii) Bins of different sizes are available. We consider the two cases where the items can
or cannot be orthogonally rotated. In the typology introduced by Wäscher et al. [113], the
problem is the constrained version of the Two-Dimensional Rectangular Multiple Stock Size

Cutting Stock Problem.

Formally, we are given m classes of rectangular items, each item class i (i = 1, . . . ,m) having a
demand di, and n classes of rectangular bins, each bin class j (j = 1, . . . , n) having an infinite
number of copies. Each item of class i (i = 1, . . . ,m) has dimensions (li, wi), where li and
wi are, respectively, the length and the width of the item. Each bin of class j (j = 1, . . . , n)
has dimensions (Lj ,Wj), where Lj and Wj are, respectively, the length and the width of the
bin. All the input data are assumed to have integer positive values. We have to define the
cutting patterns (simply denoted as patterns in the following) so as to obtain all the requested
items in the specified demand, by minimizing the global area of the used bins. The problem

83

84 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

is NP-hard and arises in the industry whenever a sheet of chaper, wood, glass, or metal has
to be cut.

2DCSP was introduced by Gilmore and Gomory [105], who as well introduced the k− staged
version of the problem and considered bins of different sizes. Alvarez-Valdes et al. [106] de-
veloped and compared several heuristic methods, based on column generation, for solving the
general Two-Dimensional Cutting Stock Problem. For solving the subproblems, in addition
to dynamic programming, they developed some heuristics. Riehme et al. [107] considered
the two-staged version of the problem in the case where bins of different sizes are available
and the demands of the item classes differ in a large range. Cintra et al. [108] considered
several Two-Dimensional Guillotine Cutting Stock Problems and their variants in which or-
thogonal rotations are allowed. They presented dynamic programming algorithms for the
Rectangular Knapsack Problem, which are then used to generate patterns in approaches for
the Cutting Stock Problems based on Column Generation. In particular, they considered the
two-dimensional two-staged guillotine version of the Cutting Stock Problem where bins of
different sizes are available and rotation of the items is allowed. Their algorithm generates
columns to optimally solve the continuous relaxation of the Cutting Stock Model (see Section
5.1), which is then iteratively rounded-down so as to obtain an integer feasible solution. The
algorithm by Cintra et al. [108] is the only algorithm in the literature reporting detailed com-
putational results which allow a complete comparison. A survey on several Two-Dimensional
Packing Problems can be found in Lodi et al. [110].

The chaper is organized as follows: in Section 5.1 we review a classical Cutting Stock model,
in Section 5.2 we describe a model and a heuristic algorithm for the generation of cutting pat-
terns, and in Section 5.3 we present the overall Column Generation Heuristic. Computational
results are presented and discussed in Section 5.4, and Section 5.5 concludes the presentation.

5.1 Cutting Stock Model

Our approach is based on column generation and follows the seminal work by Gilmore and
Gomory [103, 104] for the One-Dimensional Cutting Stock Problem. Let Sj (j = 1, . . . , n) be
the family of all the feasible cutting patterns for bin class j, that is, cutting patterns which do
not exceed the size of bin class j and can be obtained by two-staged guillotine cuts. Following
Cintra et al. [108], and without loss of generality, we only allow patterns where the first cuts
are horizontal. In addition, we consider only patterns which do not contain more items of an
item class i than specified by the corresponding request di.

MS2DCSP can be modelled by using an integer variable xsj associated with each feasible
cutting pattern sj ∈ Sj for the bin class j (j = 1,, n). The value of this variable denotes
the number of times the pattern is used in the solution. The objective function minimizes the
total area of the used bins. By introducing a parameter Ci

sj to represent the number of items
of item class i (i = 1,,m) in the cutting pattern sj , and by defining κj = LjWj as the area
of a bin of bin class j, a classical model for MS2DCSP reads:

z := min
∑n

j=1

∑

sj∈Sj
κjxsj (5.1)

subject to
∑n

j=1

∑

sj∈Sj
Ci
sjxsj ≥ di i = 1, . . . ,m (5.2)

xsj ∈ Z+, sj ∈ Sj j = 1, . . . , n, (5.3)

Cutting pattern generation 85

By dropping the integrality requirement for the variables, imposed by constraints (5.3), we
obtain the Linear Programming (LP) Relaxation of model (1)-(3), defines by (1), (2) and:

xsj ≥ 0, sj ∈ Sj , j = 1, . . . , n (5.4)

Model (5.1),(5.2) and (5.4), called Master Problem (MP), needs column generation techniques
to be efficiently managed. Actually, it has exponentially many variables, which cannot be ex-
plicitly generated for large-size instances. Instead of the original Master Problem, a Restricted

Master Problem (RMP) is considered which is initialized and solved with a subset of the ex-
ponentially many variables xsj , sj ∈ Sj , j = 1, . . . , n. In particular, RMP is initialized with
the variables (columns) corresponding to a feasible solution computed through the heuristic
algorithm described in Section 5.2.1. Given a solution to RMP, new variables, needed to
optimally solve MP, are obtained by separating the following dual constraints:

m
∑

i=1

Ci
sjπ

∗
i ≤ κj sj ∈ Sj , j = 1, ..., n (5.5)

where π∗
i (i = 1,,m) represents the optimal dual variable associated with the i-th constraint

of type (5.2).

Accordingly, the so-called Slave Problem (SP) is to determine if, for some bin class j, a feasible
pattern s∗j ∈ Sj exists, such that:

m
∑

i=1

Ci
s∗j
π∗
i > κj (5.6)

While the satisfaction of the demand associated with the item classes is imposed in MP, the
SPs (one is defined for each bin class) are devoted to the generation of feasible cutting patterns
satisfying constraints (5.6). SPs (see Section 5.2.2) consist in a series of Two-Dimensional
Two-Staged Knapsack Problems with Guillotine Cuts (2DKP), where one looks for the pattern
of maximum profit according to the current value of the optimal dual variables (profits) π∗

i

(i = 1, . . . ,m). If a feasible pattern s∗j with maximum profit greater than κj is found, the
column corresponding to s∗j is added to the current RMP.

When no feasible pattern with maximum profit greater than the corresponding κj is found,
the rounded-up value of the optimal solution to MP is a valid lower bound for the original
MS2DCSP.

5.2 Cutting pattern generation

A first approach to 2DKP was proposed by Gilmore and Gomory [105] , and is based on two
nested unbounded Knapsack Problems (KP). This is an exact method that generates cutting
patterns which can be characterized by overproduction of items. Overproduction affects the
value of the optimal solution of the continuous relaxation of the model, which can produce a
weaker lower bound on the optimal solution value of the problem.

The best known compact optimization model to solve 2DKP was proposed by Lodi and Monaci
[109]. The idea of this model (called M2 in the following) is to define a potential strip for

86 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

each item to be cut, and to implicitly order the strips according to non-increasing widths
of the associated items. A strip is initialized and can be used only if it contains the item
whose width defines the strip width. This idea removes much of the symmetry which affects
descriptive 2DKP models. Lodi and Monaci [109] proposed as well a model, called M1, more
suited for Two-Dimensional Bin Packing Problems, where each item class contains a single
item, i.e. di = 1 (i = 1, . . . ,m).

5.2.1 Initial Heuristic

A heuristic algorithm for MS2DCSP is used to provide an initial feasible solution to the
problem in a very short computing time. In order to take into account rotation, a copy of
each item class is created by swapping length and width; then the new set of item classes is
sorted according to non-increasing widths. In case more item classes have the same width,
they are ordered by non increasing length. The algorithm associates each item class i with a
bin class, say b(i). b(i) is defined as the bin class of minimum area such that a single bin of
this class can fit the whole demand di of item class i. When no such bin class exists, b(i) is
defined as the bin class of minimum area such that a single bin of this class can fit the largest
number of items of class i.

The items are iteratively inserted into the bins by following the predefined order. The insertion
is performed by strips: each strip determines a guillotine cut in the bin; the width of the strip
equals the width of the first inserted item. Strips are filled from left to right, as explained
in the following. Given an item of class i that has to be cut, we initialize a new strip, which
is inserted in a partially cut bin or in a new bin of class b(i) if such a bin does not exist.
Consequently its demand di and the demand of the corresponding rotated item class are
updated. When the strip cannot fit any additional item of class i, a new strip is initialized
in the same bin or in a new bin of class b(i) and the item is inserted in the new strip. Before
proceeding with the new strip, a greedy procedure looks iteratively for items of the following
item classes (with smaller width) that can fill the remaining space in the first strip.If such
item class exists, the maximum number of items that can be cut according to the remaining
demand di and to the remaining space are inserted. Consequently its demand di and the
demand of the corresponding rotated item class are updated. The greedy procedure continues
to fill the strip until no item can be inserted. The new strip is placed over the first strip in
the current bin whenever it is possible. Otherwise, a new bin of class b(i) is initialized and
the greedy procedure explained before is used to fill the empty space over the strip. When
the demand of the current item class i is satisfied, the algorithm continues with the next item
class, in the order previous defined, that has a remaining demand. If such item class does not
exist, the algorithm terminates.

5.2.2 A Mixed Integer Linear Model for the 2DKP

Given a bin class j (j = 1,...,n) and a feasible dual solution π∗
i (i = 1, . . . ,m) to RMP, in order

to generate new columns with negative reduced cost or to prove the optimality of the current
master solution, we have to solve a 2DKP. In this section we propose a Mixed Integer Linear
Programming (MILP) Model, called M0 in the following. In the computational experiments
(Section 5.4), M0 will be compared with model M2 proposed by Lodi and Monaci in [109]. We
present the case where items can be rotated, which is more general; the case of no rotation
trivially follows.

Cutting pattern generation 87

For a specified bin class with dimensions (L,W), define I = {i : (wi ≤W and li ≤ L) or (li ≤
W and wi ≤ L)} as the index set of the item classes which can fit in the bin, and let ̺ be
the maximum number of strips which can fit in the bin. This value can be computed as the
minimum between the global number of items to be cut and the maximum number of times
the item with the smallest width or length can be cut from that bin:

̺ = min(
∑

i∈I

di,maxi∈I(max(

⌊

W

wi

⌋

,

⌊

W

li

⌋

)) (5.7)

We introduce three groups of variables. The first one contains two binary variables ϕi,r

and ϕi,r, indicating whether at least one item of class i, respectively rotated item class i,
(i = 1, . . . ,m), is in strip r (r = 1, . . . , ̺). The second group of variables contains two integer
variables γi,r and γi,r, which denote the number of items of class i, respectively rotated item
class i (i = 1, . . . ,m), to be cut from strip r (r = 1, . . . , ̺). The third group contains
continuous variables yr representing the width of strip r (r = 1, . . . , ̺). In addition, we
introduce two coefficients θmin and θmax denoting, respectively, the minimum and maximum
number of items which could be cut from a strip of a bin.

θmin =

⌊

L

maxi∈I{li, wi}

⌋

(5.8)

θmax =

⌊

L

mini∈I{li, wi}

⌋

(5.9)

A possible MILP model for 2DKP reads:

88 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

τ := max
∑

i∈I

π∗
i

∑̺

r=1

(γi,r + γi,r) (5.10)

subject to
∑

i∈I

(liwi)(γi,r + γi,r) ≤ yrL r = 1, . . . , ̺ (5.11)

∑

i∈I

(liγi,r + wiγi,r) ≤ L r = 1, . . . , ̺ (5.12)

∑̺

r=1

(γi,r + γi,r) ≤ d̃i i ∈ I (5.13)

∑̺

r=1

yr ≤W (5.14)

wiϕi,r ≤ yr i ∈ I, r = 1, . . . , ̺ (5.15)

liϕi,r ≤ yr i ∈ I, r = 1, . . . , ̺ (5.16)

γi,r ≤ d̂iϕi,r i ∈ I, r = 1, . . . , ̺ (5.17)

γi,r ≤ d̆iϕi,r i ∈ I, r = 1, . . . , ̺ (5.18)

yr ≤ yr+1 r = 1, . . . , ̺− 1 (5.19)
∑

i∈I

⌊li/(L/(θ + 1))− ε⌋ γi,r ≤ θ r = 1, . . . , ̺, θ = θmin, . . . , θmax (5.20)

∑

i∈I

⌊wi/(L/(θ + 1))− ε⌋ γi,r ≤ θ r = 1, . . . , ̺, θ = θmin, . . . , θmax (5.21)

γi,r ∈ Z+ i ∈ I, r = 1, . . . , ̺ (5.22)

γi,r ∈ Z+ i ∈ I, r = 1, . . . , ̺ (5.23)

ϕq,r ∈ {0, 1} i ∈ I, r = 1, . . . , ̺ (5.24)

ϕq,r ∈ {0, 1} i ∈ I, r = 1, . . . , ̺ (5.25)

yr ≥ 0 r = 1, . . . , ̺ (5.26)

where, for i ∈ I:

d̃i = min{di,
(L W)

(li wi)
} (5.27)

d̂i = min{di, ⌊
L

li
⌋} (5.28)

d̆i = min{di, ⌊
L

wi
⌋} (5.29)

(5.30)

Objective function (5.10) maximizes the profit of the selected items. Geometric constraints
(5.11) ensure that the global area of the items in a strip does not exceed the area of the
strip. Constraints (5.12) ensure that the length of each strip does not exceed the length of
the bin. For rotated items, the length corresponds to the width. Constraints (5.13) ensure
that the number of items of class i does not exceed the maximum number d̃i of items in
the bin. The width feasibility of the bin is provided by constraint (5.14). Constraints (5.15)

Cutting pattern generation 89

and (5.16) ensure that the width yr of strip r is not smaller than the width of any item
and the length of any rotated item, respectively, in the strip. Constraints (5.17) and (5.18)
impose the activation of binary variables ϕi,r and ϕi,r whenever at least one item of class i

and, respectively, of its corresponding rotated class, is used in strip r. Parameters d̂i and
d̆i denote the maximum number of items of class i, and, respectively, of its corresponding
rotated class, in the strip. To reduce the symmetry of the model, constraints (5.19) impose
that strips have non decreasing widths. In addition, constraints (5.20) and (5.21) impose
a maximum number of different item classes simultaneously present in a strip according to
its length. These constraints are an extension of the dual feasible functions used by Fekete
and Schepers [100] to obtain a lower bound for the Bin Packing Problem. Parameter ε is a
very small number, used to decrease of one unit the value associated with item classes which
are inserted an integer number of times into the bin. In particular, these constraints impose
some simultaneous insertion incompatibilities between item classes present in a strip r, and
eliminate some non integer feasible solutions. For example, when θ is 1, if there are item
classes whose length is larger than half of the length of the bin, only one item of those item
classes can be cut in a single strip.

5.2.3 Heuristic Pattern Generation Scheme

In this section we discuss a heuristic procedure for solving 2DKP, i.e. for generating patterns,
without resorting to the solution of a MILP, which can be a time consuming task. The
procedure, which does not guarantee optimality of the solution, is based on the solution of
two nested (NP-Hard) Bounded Knapsack Problems (BKP). The inner one combines items
together into feasible strips, while the outer one deals with groups of strips. Let define ω as
the number of possible different strip widths in a bin with dimensions (L,W). This coefficient
is equal to the number of different item widths (and lengths, when rotation is allowed) which
are not larger than the bin width W . For each strip r (r = 1, ..., ω) let wr be the width of
the strip and define Gr as the set which includes the item classes i ∈ I with wi ≤ wr (or
li ≤ wr for rotation) and li ≤ L (or wi ≤ L for rotation). Using variables γi,r and γi,r defined
in Section 5.2.2, the inner BKP, which maximizes the profit of the items cut in a strip r for
the given bin, reads:

Πr := max
∑

i∈Gr
π∗
i (γi,r + γi,r) (5.31)

subject to
∑

i∈Gr
(liγi,r + wiγi,r) ≤ L (5.32)

0 ≤ γi,r ≤ d̂i, γi,r ∈ Z+ i ∈ Gr (5.33)

0 ≤ γi,r ≤ d̆i, γi,r ∈ Z+ i ∈ Gr (5.34)

Given the optimal solution γ∗i,r and γ∗i,r of model (5.31)-(5.34), its corresponding value Π∗
r is

set as profit of strip r in the outer BKP, and γ∗i,r, γ
∗
i,r are interpreted as parameters. We

introduce an integer variable βr, which represents the number of strips of type r (i.e. having
width equal to wr) in the cutting pattern. The outer BKP, for the given bin, reads:

δ := max
∑ω

r=1Π
∗
rβr (5.35)

subject to
∑ω

r=1wrβr ≤W (5.36)

90 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

0 ≤ βr ≤ min(⌊W/ωr⌋ ,mini∈Gr(
⌊

d̃i/(γi,r + γi,r)
⌋

)), βr ∈ Z+ r = 1, ...ω (5.37)

Optimally solving in sequence the two BKPs, clearly does not ensure the global optimality,
because solving to optimum the inner BKP may lead to sub optimal solutions for the outer
one. In addition, some patterns could be characterized by a number of items of class i greater
than the corresponding demand di. This fact deteriorates the lower bound provided by the
optimal solution of MP. We face this problem by introducing a further phase for removing
the exceeding item quantities from the cutting patterns once the procedure is concluded.

Both BKP models are solved using the dynamic programming scheme presented in Algorithm
4, where c represents the capacity of the knapsack, n the number of items, pj , wj and di,
respectively, the profit, the weight and the demand of item j (j = 1, . . . , n). As data structures
we use a vector f of size c+1, whose component f[s] denotes the optimal profit corresponding
to the knapsack problem with capacity s; and a matrix A of size (c+ 1)× n, whose element
a[s][j] denotes the number of copies of item j corresponding to capacity s. The algorithm

complexity is O
∑

j=1,...,n(dj)). The algorithm is an extension of the dynamic programming
approach for the 0-1 Knapsack Problem (see Martello and Toth [50]).

5.3 Column Generation Heuristic

To solve to optimality MP given by model (5.1), (5.2) and (5.4), a classical column generation
scheme is applied. In detail, RMP is initialized with the columns corresponding to a heuristic
solution. Then the current RMP is solved to optimality, thus obtaining a vector of dual
variables π∗. A slave problem SP is defined for every bin class j (j = 1, . . . , n). The SPs
are heuristically solved with the heuristic pattern generation scheme (see Section 5.2.3) and
new columns with negative reduced cost are added to the current RMP. If no column with
negative reduced cost is found, the SPs are tackled with the exact model described in Section
5.2.2, which can find columns to be added to the current RMP or prove the optimality of the
current fractional solution. In detail, we solve for each bin class the 2DKP exact model, using
the dual variables π∗ as profits; if the solution of the model has, for at least one bin class,
negative reduced cost the corresponding column is added to the current RMP and RMP is re-
optimized. Otherwise, i.e. if no negative reduced cost column is found, the current (possibly
fractional) solution of RMP is optimal for the MP.

In order to obtain an integer solution, we tested three different heuristic strategies:

1. The first strategy consists in applying an Integer Linear Programming (ILP) solver
(namely, CPLEX 12.1 [116]) to model (5.1)–(5.3), by considering only the variables
used to optimally solve its continuous relaxation, i.e., the MP (5.1), (5.2) and (5.4).
This strategy takes full advantage of the advanced routines embedded in the ILP solver.

2. The second strategy is a so-called diving heuristic, and consists in iteratively solving MP
by generating columns, and then rounding-up the lower bound of a fractional variable
to the closest integer, until an integer solution is obtained. In detail, after having solved
to optimality MP, at each iteration we set the lower bound of every integer variable to
the current value of the variable, and for the largest fractional variable, we set the lower
bound to its rounded-up value. Then we call the column generation scheme to solve the
current MP with the modified lower bounds associated with the variables. Note that
MP is optimally solved only at the root node, so as to obtain a valid lower bound. At the

Column Generation Heuristic 91

Algorithm 4 KP-Bounded Dynamic Programming

Input:
c, n, (pj , wj , dj) for j = 1,. . .,n
Data structures:
A: (c+ 1)× n integer matrix
f : c+ 1 integer vector
Output:
f[c] : optimal profit;
xj : copies of item j in the optimal solution;

f[s] = 0 s = 0, 1, . . . , c
a[s][j] = 0 s = 0, 1, . . . , c j = 1, . . . , n

for j = 1, . . . , n do
for s = c, . . . , 1 do

for i = 1, . . . , dj do
if (s− (i · wj) ≥ 0) then

if f[s−i·wj] + i · pj > f[s] then
f[s] = f[s−i·wj] + i · pj ;
a[s][j] = i;

end if
else
break;

end if
end for

end for
end for
s = c;
for j = n, . . . , 1 do

x[j] = a[s][j];
s = s− wj · x[j];

end for

92 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

instance m total

gcut1d 10 669
gcut2d 20 982
gcut3d 30 1489
gcut4d 50 2751
gcut5d 10 645
gcut6d 20 1064
gcut7d 30 1626
gcut8d 50 2363
gcut9d 10 590
gcut10d 20 830
gcut11d 30 1298
gcut12d 50 2081

Table 5.1: Instances

subsequent iterations, the columns are generated by applying the heuristic procedure
described in Section 5.2.3. This method is equivalent to a Branch-and-Price algorithm,
based on a depth-first strategy, and stopped when the first integer solution is found.
The advantage of this method is that the column generation is not stopped at the root
node of the Branch-and-Bound tree.

3. The third strategy combines the previous two: we execute the diving heuristic, and
then we apply the ILP solver to problem (5.1)–(5.3) where we consider all the variables
generated during the diving heuristic.

A time limit of 15 seconds is imposed when solving problem (5.1)–(5.3) in strategies 1 and 3.

5.4 Computational Experiments

All the algorithms described in the previous sections where implemented in C and run on one
core of an Intel Core 2 Quad 2.50 GHz, with 7.7 GB shared memory, under Linux Ubuntu 9.04
operating system. All the Linear Programs and the Mixed-Integer Linear Programs where
solved with CPLEX 12.1 [116].

We considered the 12 instances proposed by Cintra et al. [108] and publicly available from
the web [?]. These instances are obtained by adding a random integer demand in the range
[1, . . . , 100] to the 2DKP instances gcut1, . . . , gcut12 from the OR library [114], and by defin-
ing three bin classes for each instance: the first bin class is the original one of dimensions
(L,W), the other two classes have dimensions (1.2L, 0.8W) and (1.1L, 0.9W), respectively.
The features of the instances, which are called gcut1d, . . . , gcut12d, are summarized in Table
5.1, where the number m of item classes and the total number of items are reported. For every
instance, we consider the case where the items can be rotated and the case where rotation is
forbidden. In the following tables, all the computing times are expressed in seconds.

Computational Experiments 93

5.4.1 Performance of the MILP Model M0 for 2DKP

In this section we report the results obtained by solving the 2DKP model M0 (see Section
5.2.2), and compare it with model M2 proposed by Lodi and Monaci [109]. We consider in
this section as profits associated with the items the values of the corresponding dual variables
in RMP. Actually, the aim of this computational comparison is to show that it is better to
use M0 instead of M2 when one has to solve to optimality SP.

In Tables 5.2 and 5.3, we consider instances gcut1d, . . . , gcut12d, in the cases without and
with rotation, respectively. We set as profit associated with each item class i the value of
the corresponding dual variable π∗

i at the first iteration of the column generation procedure.
The tables report the instance name in the first column. For every instance we consider 3 bin
classes, thus we have 3 rows per instance. The value of the objective function (τ) is reported
in the second column. The third and fourth columns of the tables report the value of the
continuous relaxation of model M0, and the corresponding computing time. Column 5 reports
the time needed to solve model M0 to optimality, and column 6 the number of nodes explored
by CPLEX 12.1 [116]. The corresponding information for model M2 is reported in columns 7
to 10 of the tables. The last row of the tables reports average values.

Considering the computing times required to solve models M0 and M2 to optimality, Table
5.3 shows that it is better to use M0 for solving the SP when rotation is allowed, while Table
5.2 shows that the two models are equivalent in terms of computing time when rotation is
forbidden. On one hand, this is somehow surprising, since the number of nodes explored by
CPLEX 12.1 [116] to solve M2 is on average one order of magnitude smaller than the number
of nodes explored when solving M0. On the other hand, the time needed by CPLEX 12.1 [116]
to solve the continuous relaxation of M0 is much smaller than the corresponding computing
time required by M2. Concerning the upper bounds provided by the continuous relaxation of
the models, M0 provides a better upper bound in 24 cases over 36 when rotation is allowed,
while it provides a weaker upper bound in all cases but 1 when rotation is not allowed.

5.4.2 Performance of the Overall Method

In this section we report the results obtained by the overall method, which is compared with
the heuristic algorithm proposed by Cintra et al. [108] on the gcut1d, . . . , gcut12d instances.
The latter algorithm is based on column generation to solve MP, and columns are generated
through dynamic programming. Given a fractional solution to MP, an iterative reduction of
the problem size through rounding-down and fixing of fractional variables is implemented. At
each iteration, the current fractional solution is rounded-down and the corresponding items
are removed from the problem. The residual problem is then solved again through column
generation, and the procedure is iterated until an integer solution is produced.

The results of Cintra et al. were obtained on a PIV at 1.8 GHz with 512 MB under Linux
operating system; CPL (COIN-OR LP Solver) [117] was used as LP solver. According to our
computational experience, this computing system is about 3 times slower than that used in
our experiments. Tables 5.4 and 5.5 report results from [108], for the cases without and with
rotation, respectively. The first column of the tables reports the name of the instance, followed
by the lower bound (LB) in column 2, the upper bound (UB) (value of the integer solution)
in column 3, the global number (Col) of generated columns in column 4, the percentage
optimality gap (GAP) in column 5 and the computing time (T) in column 6. The last line of
the tables reports average values.

94 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

instance τ LPM0 TLP TMIP nodes LPM2 TLP TMIP nodes

gcut1d 90000 154866.00 0.00 0.01 5 159596.00 0.00 0.01 5
105000 149061.00 0.00 0.00 0 158520.00 0.00 0.01 0
120000 153716.00 0.00 0.00 0 155293.00 0.00 0.01 0

gcut2d 96145.8 117463.00 0.00 0.02 14 117373.00 0.00 0.01 0
86041.7 116248.00 0.00 0.02 97 116203.00 0.00 0.01 11
72604.2 112353.00 0.00 0.01 106 112692.00 0.01 0.02 19

gcut3d 90937.5 118319.00 0.00 0.04 165 117721.00 0.01 0.03 17
92777.8 116869.00 0.00 0.03 143 116567.00 0.01 0.03 5
73506.9 113112.00 0.01 0.04 239 113106.00 0.01 0.03 47

gcut4d 174688 249804.00 0.01 0.01 19 264128.00 0.03 0.04 0
180000 263834.00 0.00 0.02 55 262089.00 0.02 0.03 0
180000 250830.00 0.00 0.02 8 255972.00 0.02 0.02 0

gcut5d 288750 376889.00 0.00 0.00 27 403971.00 0.01 0.01 8
311250 366406.00 0.00 0.01 0 387834.00 0.00 0.00 0
332083 391372.00 0.00 0.01 32 399937.00 0.00 0.01 9

gcut6d 330833 481832.00 0.00 0.02 96 484501.00 0.00 0.00 0
367500 465726.00 0.00 0.01 5 466860.00 0.01 0.01 0
350417 475803.00 0.00 0.02 60 480453.00 0.00 0.01 0

gcut7d 496250 800509.00 0.00 0.01 0 806118.00 0.01 0.01 9
495000 785109.00 0.01 0.01 5 780331.00 0.01 0.01 0
495000 778480.00 0.00 0.01 8 799671.00 0.01 0.01 0

gcut8d 353542 439080.00 0.00 0.08 463 439032.00 0.02 0.04 40
311736 421248.00 0.00 0.07 196 421863.00 0.02 0.07 48
364861 434538.00 0.00 0.05 155 434821.00 0.02 0.03 0

gcut9d 1320000 1762300.00 0.00 0.01 8 1747920.00 0.00 0.00 0
1155000 1666100.00 0.00 0.01 9 1683860.00 0.00 0.01 0
1245000 1730220.00 0.01 0.00 5 1731900.00 0.01 0.00 0

gcut10d 1980000 2368450.00 0.00 0.01 7 2345850.00 0.00 0.00 0
1651670 2235250.00 0.00 0.02 33 2260730.00 0.00 0.00 0
1490000 2323130.00 0.00 0.01 27 2324570.00 0.01 0.01 0

gcut11d 1591250 1801060.00 0.00 0.04 43 1854820.00 0.01 0.03 16
1529170 1677110.00 0.00 0.01 25 1782170.00 0.01 0.04 30
1490000 1821250.00 0.00 0.03 95 1836660.00 0.01 0.06 34

gcut12d 1570000 2189500.00 0.00 0.03 182 2178380.00 0.02 0.03 15
1485000 2085060.00 0.00 0.01 14 2095550.00 0.02 0.02 0
1320000 2167580.00 0.00 0.03 114 2158570.00 0.02 0.02 0

averages 657944.83 887791.03 0.00 0.02 68.33 895989.78 0.01 0.02 8.69

Table 5.2: Comparison of models M0 and M2 with dual variables as profits. Rotation is not
allowed.

Computational Experiments 95

instance τ LPM0 TLP TMIP nodes LPM2 TLP TMIP nodes

gcut1d 81875 109259.00 0.00 0.02 28 105692.00 0.01 0.01 8
81875 108167.00 0.00 0.01 15 104790.00 0.01 0.01 0
75625 104889.00 0.00 0.02 70 102082.00 0.01 0.01 0

gcut2d 101667 132640.00 0.01 0.21 523 124338.00 0.02 0.03 0
101458 131314.00 0.02 0.2 389 123164.00 0.02 0.03 24
91145.8 127334.00 0.01 0.12 161 119639.00 0.02 0.03 0

gcut3d 86562.5 105961.00 0.00 0.13 505 105478.00 0.06 0.12 21
85000 104901.00 0.00 0.1 404 104504.00 0.07 0.19 80
85000 101723.00 0.00 0.07 168 101583.00 0.06 0.11 3

gcut4d 91666.7 113760.00 0.00 0.36 1265 113539.00 0.10 0.29 102
95000 112623.00 0.00 0.13 419 112412.00 0.11 0.38 0
90000 109210.00 0.01 0.11 370 109031.00 0.09 0.35 0

gcut5d 333333 403418.00 0.00 0.04 131 399541.00 0.01 0.02 0
311875 387282.00 0.00 0.03 129 384297.00 0.01 0.02 17
338125 399384.00 0.00 0.03 51 395730.00 0.01 0.02 13

gcut6d 355000 407714.00 0.00 0.05 151 406810.00 0.02 0.03 0
317500 391405.00 0.00 0.06 326 390868.00 0.02 0.05 34
330000 403636.00 0.00 0.05 189 402824.00 0.02 0.04 2

gcut7d 370625 552179.00 0.00 0.05 96 551599.00 0.04 0.04 0
371250 530092.00 0.00 0.02 64 529736.00 0.04 0.04 0
371875 546657.00 0.00 0.05 157 546134.00 0.03 0.06 26

gcut8d 506250 580223.00 0.00 0.03 27 573629.00 0.13 0.33 7
416250 557014.00 0.00 0.12 219 552216.00 0.12 0.35 52
403681 574421.00 0.00 0.19 575 568275.00 0.13 0.44 29

gcut9d 1490000 1776660.00 0.00 0.02 32 1747920.00 0.01 0.02 0
1320000 1705590.00 0.00 0.01 19 1683860.00 0.01 0.01 6
1455000 1758890.00 0.00 0.02 35 1731900.00 0.01 0.02 7

gcut10d 1980000 2391060.00 0.00 0.03 129 2345850.00 0.02 0.02 8
1635000 2295420.00 0.00 0.04 164 2260730.00 0.02 0.05 53
1490000 2367150.00 0.00 0.05 262 2324570.00 0.02 0.03 23

gcut11d 1732500 2320330.00 0.00 0.08 257 2351370.00 0.07 0.14 79
1980000 2317050.00 0.00 0.01 4 2287110.00 0.07 0.12 0
1980000 2389460.00 0.00 0.04 126 2335300.00 0.07 0.18 67

gcut12d 1505000 2006860.00 0.01 0.33 793 2004540.00 0.08 0.12 81
1485000 1926590.00 0.01 0.08 295 1888480.00 0.08 0.16 31
1490000 1986790.00 0.00 0.17 598 1986210.00 0.08 0.18 51

averages 695420.53 898251.56 0.00 0.09 254.06 888215.31 0.05 0.11 22.89

Table 5.3: Comparison of models M0 and M2 with dual variables as profits. Rotation is
allowed.

96 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

instance LB UB Col Gap T

gcut1d 14822813 14880000 397 0.386 0.58
gcut2d 16740782 16820625 492 0.477 1.31
gcut3d 20149804 20267500 7877 0.584 21.83
gcut4d 46523512 46591875 11,569 0.147 60.56
gcut5d 41667500 42022500 110 0.852 0.17
gcut6d 77621563 78167500 539 0.703 0.96
gcut7d 123946563 124257500 1316 0.251 2.9
gcut8d 161074885 161575000 3958 0.310 23.67
gcut9d 130802500 131830000 86 0.786 0.12
gcut10d 260444167 262470000 434 0.778 0.81
gcut11d 303137517 304440000 6926 0.430 18.58
gcut12d 609519417 611230000 5452 0.281 36.65

averages 150537585.3 151212708.3 3263.0 0.498678196 14.012

Table 5.4: Results from Cintra et al. [108], case with no rotation.

instance LB UB Col Gap T

gcut1d 13828125 13908750 416 0.583 0.67
gcut2d 15432372 15474375 4616 0.272 37.05
gcut3d 19310806 19436875 12159 0.653 45.33
gcut4d 44767393 44905000 21902 0.307 166.68
gcut5d 40087188 40382500 341 0.737 0.74
gcut6d 70839625 71162500 2411 0.456 5.49
gcut7d 114817717 115312500 13326 0.431 56.78
gcut8d 152634893 153410000 28128 0.508 394.05
gcut9d 119568000 121040000 756 1.231 1.14
gcut10d 247872858 249260000 1545 0.560 5.68
gcut11d 286973907 289430000 23447 0.856 290.64
gcut12d 562898802 564650000 28565 0.311 690.59

averages 140752640.5 141531041.7 11467.66667 0.575361116 141.237

Table 5.5: Results from Cintra et al. [108], case with rotation.

Computational Experiments 97

The results of the algorithms proposed in Section 5.3 are reported in Tables 5.6 and 5.7, for the
case without and with rotation, respectively. The first column of the tables reports the name
of the instance, followed by the solution value (UB) and the number of columns (Col) of the
Initial Heuristic. Columns 4 and 5 report the computing time (T) and the number of columns
(Col) generated to solve to optimality the Master Problem (5.1), (5.2) and (5.4). Columns 6, 7
and 8 report the solution value (UB), the percentage optimality gap (Gap) and the computing
time (T) of the first strategy. Columns 9, 10, 11 and 12 report the solution value (UB), the
percentage optimality gap (Gap), the number of columns (Col) and the computing time (T) of
the diving procedure. Columns 13, 14 and 15 report the solution value (UB), the percentage
optimality gap (Gap) and the computing time (T) of the third strategy. The last line of the
tables reports average values.

By considering the three heuristic strategies described in Section 5.3, the tables show that
the best performing one is strategy 3, which consists in considering the columns needed to
optimally solve MP defined by (5.1), (5.2) and (5.4), and the columns generated by using
strategy 2 (diving), and then solving the MP integer counterpart (5.1)–(5.3). The average
percentage optimality gap is 0.2083% in the case without rotation and 0.0911% in the case
with rotation. The diving procedure (strategy 2) obtains larger percentage gaps: 0.8976%
and 0.8537% in the cases without and with rotation, respectively. However, this procedure in
principle does not require the use of a sophisticated ILP solver as CPLEX 12.1 [116], and has
very short computing times. Finally, strategy 1, which optimally solves model (5.1)–(5.3) by
conidereing only the columns required for the optimal solution of MP, produces just slightly
worse gaps than those obtained by strategy 3.

By considering the results reported by Cintra et al. [108] (see Tables 5.4 and 5.5), with average
percentage gaps of 0.50% and 0.58% in the cases without and with rotation, respectively,
we observe that the corresponding solution values are always worse than those obtained by
procedures 1 and 3 proposed in this chaper. Considering that we use an approximately three
times faster computer, our computational effort is almost equivalent in the case with no
rotation, and smaller in the case with rotation. In particular, we observe that our methods
are able to optimally solve MP and to produce final improved solutions by generating a much
smaller number of columns.

98
A
p
p
li
ca
ti
o
n
:
A

C
o
lu
m
n
G
en

er
a
ti
o
n
H
eu

ri
st
ic

fo
r
th
e
2
D

C
u
tt
in
g
S
to
ck

P
ro
b
le
m

instance
Heur.Ini. Root Heur1 Heur2 Heur3

UB Col T Col UB Gap T UB Gap Col T UB Gap T
gcut1d 16067500 16 0.03 27 14875000 0.352 0.04 14877500 0.369 28 0.04 14875000 0.352 0.31
gcut2d 19651875 32 0.18 64 16775625 0.208 0.25 16876875 0.813 66 0.22 16775625 0.208 0.47
gcut3d 25089375 44 0.74 113 20177500 0.137 1.52 20371250 1.099 113 0.91 20177500 0.137 1.60
gcut4d 56376875 72 3.24 224 46567500 0.095 18.50 46651875 0.276 228 4.03 46566875 0.093 19.13
gcut5d 48302500 16 0.05 28 41705000 0.090 0.06 42007500 0.816 28 0.06 41705000 0.090 0.07
gcut6d 86242500 27 0.17 51 77810000 0.243 15.68 78365000 0.958 52 0.23 77812500 0.246 15.52
gcut7d 146662500 44 0.73 97 124182500 0.190 16.22 124490000 0.438 104 0.96 124172500 0.182 16.35
gcut8d 181427500 74 5.19 191 161102500 0.017 7.09 161810000 0.456 192 5.72 161102500 0.017 10.03
gcut9d 149970000 16 0.09 25 131710000 0.694 0.92 133790000 2.284 26 0.15 131710000 0.694 1.15
gcut10d 311320000 30 0.52 69 261220000 0.298 3.12 263370000 1.123 72 0.70 261220000 0.298 15.96
gcut11d 348380000 46 2.35 106 303510000 0.123 3.17 307350000 1.390 107 3.10 303510000 0.123 4.43
gcut12d 737760000 69 7.15 186 609880000 0.059 7.46 614080000 0.748 192 8.68 609880000 0.059 9.87
averages 177270885.4 40.5 1.703 98.4 150792968.8 0.2088 6.169 152003333.3 0.8976 100.7 2.067 150792291.7 0.2083 7.907

Table 5.6: Results of the proposed algorithms, case with no rotation

C
o
m
p
u
ta
tio

n
a
l
E
x
p
erim

en
ts

99

instance
Heur.Ini. Root Heur1 Heur2 Heur3

UB Col T Col UB Gap T UB Gap Col T UB Gap T
gcut1d 15407500 16 0.10 30 13845625 0.127 0.10 13963750 0.981 30 0.12 13845625 0.127 0.12
gcut2d 18620625 33 2.97 95 15443125 0.070 18.27 15531250 0.641 98 3.12 15443125 0.070 18.36
gcut3d 23811875 45 3.29 129 19335000 0.125 18.57 19609375 1.546 133 3.89 19343750 0.171 19.07
gcut4d 55079375 73 17.63 239 44775000 0.017 18.03 44901875 0.300 245 20.88 44775000 0.017 22.50
gcut5d 47992500 16 0.28 32 40122500 0.088 0.30 40372500 0.712 34 0.36 40112500 0.063 0.37
gcut6d 82945000 31 0.88 71 70915000 0.106 1.32 71387500 0.773 75 1.24 70915000 0.106 1.56
gcut7d 146717500 45 4.49 131 114895000 0.067 5.89 115295000 0.416 137 6.05 114890000 0.063 7.44
gcut8d 180247500 72 28.29 231 152730000 0.062 43.47 153605000 0.636 232 35.52 152740000 0.069 50.63
gcut9d 149970000 16 0.28 30 119930000 0.303 0.33 121020000 1.214 32 0.42 119870000 0.253 0.49
gcut10d 300650000 31 2.44 82 248020000 0.059 2.49 250100000 0.899 83 3.28 248020000 0.059 3.34
gcut11d 351780000 41 15.91 141 287060000 0.030 31.15 291320000 1.514 143 18.05 287050000 0.027 33.23
gcut12d 668570000 69 37.40 214 563340000 0.078 52.63 566350000 0.613 217 46.37 563290000 0.069 61.52
averages 170149322.9 40.7 9.497 118.8 140867604.2 0.0944 16.046 141954687.5 0.8537 121.6 11.608 140857916.7 0.0911 18.219

Table 5.7: Results of the proposed algorithms, case with rotation

100 Application: A Column Generation Heuristic for the 2D Cutting Stock Problem

5.5 Conclusions

We considered a Two-Dimensional Cutting Stock Problem where stock of different sizes is
available, and a set of rectangular items has to be obtained through two-staged guillotine
cuts. This NP-hard problem arises in the industry whenever a sheet of chaper, wood, glass,
or metal has to be cut.

Starting from the classical cutting stock model of Gilmore and Gomory [105], we proposed a
column generation based heuristic algorithm, and tested three different strategies to obtain
integer solutions. The column generation scheme require as subproblem the solution of a Two-
Dimensional Knapsack Problem with two-staged guillotine cuts. For this Knapsack Problem,
we proposed a heuristic algorithm based on dynamic programming, as well as an exact Mixed
Integer Linear Programming (MILP) model.

Computational experiments were performed on a set of instances from the literature to eval-
uate the performance of the proposed algorithms. The MILP model was compared with a
well-known compact model from the literature, and the results showed that it behaves very
well when used to solve the subproblems which arise during the column generation phase.

The overall heuristic method obtains very small percentage optimality gaps and outperforms
the most effective algorithm from the literature, producing improved solutions in comparable
computing times.

List of Figures

2.1 (a) Matrix structure directly from the LP file (10teams) and (b) with a bordered
block-diagonal structure detected by our algorithm 9

2.2 Detected matrix structures for selected MIPLIB2003 instances 12

3.1 Interval Graph Example 1 . 20

3.2 Interval Graph Example 1 ”Maximal Constraints” 20

3.3 Dynamic Programming Algorithm 2 example 24

3.4 Interval Graph Example 2 . 38

4.1 World container traffic (total TEUs loaded and empty) 62

A.1 Selected TKP instances Clique Graph Drawings 113

A.2 10 Blocks Decomposition . 114

A.3 20 Blocks Decomposition . 115

A.4 40 Blocks Decomposition . 116

101

102 LIST OF FIGURES

List of Tables

2.1 Comparison of the dual bounds provided by our automatic DWR reformulation
approach and the general-purpose MIP solver CPLEX for 23 selected instances
of MIPLIB2003. Listed are the instance name, the number of constraints and
variables, the number k of blocks, the number ℓ of linking variables, and number
c of coupling constraints. Under the heading LP one finds the relative integral-
ity gap of the LP relaxation (in percent). The relative integrality gaps of DWR
and CPLEX with default cuts applied are listed under DWR and CPLEX+cuts,
respectively. The percentage of the LP gap closed is given under %closed for
both approaches. The last row lists arithmetic means of the columns. 13

3.1 Data example 1 . 19

3.2 Example 1 Model (3.2) - (3.4) . 20

3.3 Example 1 Model (3.7) - (3.9) . 20

3.4 Example 1 Model (3.49)-(3.55) (complete variable enumeration) 32

3.5 Example 1 Model (3.75)-(3.78) (complete variable enumeration) 35

3.6 Data example 2 . 37

3.7 Example 2 model (3.103) - (3.107) (complete variable enumeration) 38

3.8 Input parameter values used to generate the test instances 40

3.9 Instance Groups V-X features . 41

3.10 Comparison of the continuous relaxations (without and with cuts) of TRAD-

TKP and REF-TKP with explicit cut and column generations; 1 hour of com-
puting time and groups of 16 overlapping constraints. 43

3.11 Comparison of the explicit cut generations models with different dimensions; 1
hour of computing time. 44

3.12 Cut generation: comparison of bounds obtained by different block dimensions. 45

3.13 Cut generation: comparison of times obtained by different block dimensions. . . 46

3.14 Cut generation: improvement on the TRAD − TKP continuous relaxation. . . 47

3.15 Cut generation: improvement on original TRAD−TKP continuous relaxation
per second. 48

3.16 Cut generation: Improvement on TRAD − TKP root node. 49

3.17 Comparison of the column generations models with different dimensions (from
1 to 8) ; 1 hour of computing time. 52

103

104 LIST OF TABLES

3.18 Comparison of the column generations models with different dimensions (from
64 to 128); 1 hour of computing time. 53

3.19 Column generation: comparison of times obtained by different block dimensions. 54

3.20 Column generation: comparison of times obtained by different block dimensions. 55

3.21 Column generation: improvement on the TRAD − TKP continuous relaxation. 56

3.22 Column generation: improvement on original TRAD−TKP continuous relax-
ation per second. 57

3.23 Column generation: Improvement on TRAD − TKP root node. 58

3.24 Comparison of TRAD-TKP, and REF-TKP models; 1 hour of computing time. 59

3.25 Comparison of the Dynamic Programming algorithm, TRAD − TKP and
REF − TKP models; 1 hour of computing time allowed. 60

4.1 AGVDP Notation . 64

4.2 Notation: set covering formulation . 67

4.3 Illustrative example: problem DSC (initialization step) 72

4.4 Illustrative example: column generation procedure (5 iterations) 73

4.5 Illustrative example: solution to Model (4.24)-(4.28) (root node) 73

4.6 Scenario settings for generating test instances 74

4.7 Computational performance of MIP Model (4.1)-(4.23) 78

4.8 Computational performance of MIP Model (4.1)-(4.23) with fixed number of jobs 79

4.9 Computational performance of column generation approach (Model (4.24)-(4.28)) 80

4.10 Computational results: Comparison of Model 4.3 and Model (4.24)-(4.28) . . . 81

5.1 Instances . 92

5.2 Comparison of models M0 and M2 with dual variables as profits. Rotation is
not allowed. 94

5.3 Comparison of models M0 and M2 with dual variables as profits. Rotation is
allowed. 95

5.4 Results from Cintra et al. [108], case with no rotation. 96

5.5 Results from Cintra et al. [108], case with rotation. 96

5.6 Results of the proposed algorithms, case with no rotation 98

5.7 Results of the proposed algorithms, case with rotation 99

Bibliography

[1] C.Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H.
Vance : Branch-and-Price: Column Generation for Huge Integer Programs Operations
Research, 1998, 316–329

[2] K. Aardal and A. K. Lenstra : Hard equality constrained integer knapsacks Mathe-
matics of Operations Research, 2004, 724-738

[3] E. Balas : Disjunctive programming: properties of the convex hull of feasible points

Discrete Applied Mathematics, 1998, 1-44

[4] A. Balakrishnan, T.L. Magnanti and R.T. Wong : A dual ascent procedure for

large-scale uncapacitated network design Operations Research , 1989, 716-740

[5] E. Balas and W. Pulleyblank : The perfectly matchable subgraph polytope of a

bipartite graph Networks, 1983, 495516

[6] F. Barahona and R. Anbil : The algorithm: Producing primal solutions with a sub-

gradient method Mathematical Programming, 2000, 385-399

[7] J.J. Bartholdi, J.B. Orlin and H. Ratliff : Cyclic scheduling via integer programs

with circular ones Operations Research, 1980, 1074-1085

[8] J.F. Benders : Partitioning procedures for solving mixed variables programming prob-

lems Numerische Mathematik, 1962, 238-252

[9] H. Ben Amor, J. Desrosiers and A. Frangioni : On the choice of explicit stabilizing

terms in column generation Discrete Applied Mathematics (to appear), 2008

[10] O. Bilde and J. Krarup : Sharp lower bounds and efficient algorithms for the simple

plant location problem Annals of Discrete Mathematics, 1977, 79-97

[11] G.H. Bradley, P.L. Hammer and L.A. Wolsey : Coefficent reduction for inequalities

in 0-1 variables Mathematical Programming, 1974, 263-282

[12] O. Briant, C. Lemarechal, Ph. Meurdesoif, S. Michel, N. Perrot and F.
Vanderbeck : Comparison of bundle and classical column generation Mathematical
Programming, 2008, 299-344

[13] M.Conforti, M. Di Summa, F. Eisenbrand and L. A. Wolsey : Network formu-

lations of mixed integer programs Mathematics of Operations Research (to appear)

[14] M. Conforti and L. A. Wolsey : Compact formulations as unions of polyhedra Math-
ematical Programming, 2008, 277-289

105

106 BIBLIOGRAPHY

[15] G.B. Dantzig and P. Wolfe : Decomposition principle for linear programs Operations
Research, 1960, 101-111

[16] J.V. de Carvalho : Exact solution of bin packing problems using column generation

and branch-andbound Ann. Oper. Res, 1999, 629-659

[17] J.V. de Carvalho : Using Extra Dual Cuts to Accelerate Column Generation on Com-
puting, 2003, 175-182

[18] J. Desrosiers and F. Soumis : A column generation approach to the urban transit

crew scheduling problem Transportation Science, 1989, 1-13

[19] J. Desrosiers, F. Soumis and M. Desrochers : Routing with time windows by

column generation Networks, 1984, 545-565

[20] G. Desaulniers, J. Desrosiers, M.M. Solomon : Column Generation Springer,
Berlin, 2005

[21] O. du Merle, D. Villeneuve, J. Desrosiers and P. Hansen : Stabilized column

generation Discrete Math., 1999, 229-237

[22] B.P. Dzielinski and R.E. Gomory : Optimal programming of lot sizes Operations
Research, 1965, 874-890

[23] I. Elhallaoui, D. Villeneuve, F. Soumis and G. Desaulniers : Dynamic aggre-

gation of set-partitioning constraints in column generation Operations Research, 2005,
632-645

[24] G. Eppen and R.K. Martin : Solving multi-item capacitated lot-sizing problems using

variable redefinition Operations Research, 1992, 832-848

[25] D. Erlenkotter : A dual-based procedure for uncapacitated facility location Operations
Research, 1978, 992-1009

[26] H. Everett III : Generalized Lagrange multiplier method for solving problems of optimal

allocation of resources Operations Research, 1963, 399-417

[27] M.L. Fisher : The Lagrangean relaxation method for solving integer programming prob-

lems Management Science, 1981, 1-18

[28] R. Fukasawa, H. Longo, J. Lysgaard, M.P. Aragao, M. Reis, E. Uchoa and
R.F. Werneck : Robust branchand-cut-and-price for the capacitated routing problem

Mathematical Programming, 2006, 491-512

[29] P.C. Gilmore and R.E. Gomory : A linear programming approach to the cutting stock

problem Operations Research, 1961, 849-859

[30] P.C. Gilmore and R.E. Gomory : A linear programming approach to the cutting stock

problem: Part II Operations Research, 1963, 863-888

[31] R. Jans and Z. Degraeve : Improved lower bounds for the capacitated lot sizing prob-

lem with set-up times Operations Research Letters, 2004, 185-195

BIBLIOGRAPHY 107

[32] R. Jans and Z. Degraeve : Optimal Integer Solutions to Industrial Cutting-Stock

Problems: Part 2,Benchmark Results on Computing, 2003, 58-81

[33] R. Jans and Z. Degraeve : A New Dantzig-Wolfe Reformulation and Branch-and-

Price Algorithm for the Capacitated Lot-Sizing Problem with Setup Times Operations
Research, 2007, 909-921

[34] Z. Degraeve : Scheduling joint product operations with proposal generation methods on
Computing, 1992, The University of Chicago, Graduate School of Business, Chicago, IL.,
Ph.D. Thesis

[35] Z. Degraeve, L. Schrage : Scheduling joint product operations with proposal genera-

tion methods on Computing, 406-419 1999

[36] H.W. Lenstra, Jr. : Integer programming with a fixed of variables Mathematics of
Operations Research, 1983, 538-547

[37] E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M.P. Aragao and D. An-
drade : Robust branch-and-cut-and-price for the capacitated minimum spanning tree

problem over an extended formulation Mathematical Programming, 2008, 443-472

[38] Vanderbeck, F. : Computational study of a column generation algorithm for bin packing

and cutting stock problems Mathematical Programming, 86, 565-594, 1999

[39] F. Vanderbeck : On Dantzig-Wolfe decomposition in integer programming and ways to

perform branchingin a branch-and-price algorithm Operations Research, 2000, 111-128

[40] F. Vanderbeck and L. A. Wolsey : An exact algorithm for IP column generation

Operations Research Letters, 1996, 151-159

[41] Vanderbeck, F. and L.A. Wolsey : Reformulation and Decomposition of Integer

Programs 50 s of Integer Programming 1958-2008 From the Early s to the State-of-the-
Art, Springer, Berlin Heidelberg, 2010, 431–502

[42] F. Vanderbeck : BaPCod - a generic branch-and-price code

https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod, 2005

[43] F. Vanderbeck and M. Savelsbergh : A generic view of Dantzig-Wolfe decomposition

in mixed integer programming Operations Research Letters, 2006, 296-306

[44] M. Van Vyve : Linear programming extended formulations for the single-item lot-sizing

problem with backlogging and constant capacity Mathematical Programming, 2006, 53-78

[45] D. Villeneuve, J. Desrosiers, M.E. Lubbecke and F. Soumis : On compact formu-

lations for integer programs solved by column generation Annals of Operations Research,
2005, 375-388

[46] A. Caprara, F. Furini, and E. Malaguti : Exact algorithms for the temporal knap-

sack problem DEIS, University of Bologna, OR-10-7, 2010

[47] F. Furini, E. Malaguti, R. Medina, A. Persiani, P. Toth : A Column Generation

Heuristic for the Two-Dimensional Cutting Stock Problem with Multiple Stock Size DEIS,
University of Bologna, OR-10-9, 2010

108 BIBLIOGRAPHY

[48] F. Furini, E. Klerides , E.Hadjiconstantinou : Multi-load AGV dispatching in

automated container port terminals Imperial College London, OR-10-9, 2010

[49] F. Furini A. Persiani, P. Toth : UAV Mission Planning in non segregated Air Space

using Integer Programming DEIS, University of Bologna, OR-10-11, 2010

[50] ”S. Martello and P. Toth” : ”Knapsack Problems: Algorithms and Computer Im-

plementations” ”John Wiley & Sons”, ”Chichester”, 1990

[51] T. Achterberg : SCIP: Solving constraint integer programs Mathematical Program-
ming Computation , 2009, 1-41

[52] G. Desaulniers, J. Desrosiers, and S. Spoorendonk : Cutting planes for branch-

and-price algorithms HEC Montreal, G-2009-52, 2009

[53] M. Junger and S. Thienel : The ABACUS system for branch-and-cut-and-price al-

gorithms in integer programming and combinatorial optimization Softw. Pract. Exper.,
2000, 1325-1352

[54] T. Ralphs and M. Galati : Decomposition and dynamic cut generation in integer

linear programming Mathematical Programming, 2006, 261-285

[55] Correa, A. I. and Langevin, A. and Rousseau, L. M. : Scheduling and routing of

automated guided vehicles: A hybrid approach, Computers & Operations Research, 34,
6, 1688 - 1707, 2007,

[56] Grunow, M. and Gonther H.O. and Lehmann M. : Strategies for dispatching AGVs

at automated seaport container terminals, OR Spectrum, 2006, 28, 587-610,

[57] Grunow, M. and Gonther H.O. and Lehmann M. : Dispatching multi-load AGVs

in highly automated seaport container terminals, OR Spectrum, 2004, 26, 211-235,

[58] Lau, H. Y. K. and Woo, S. O. : An agent-based dynamic routing strategy for automated

material handling systems, International of Computer Integrated Manufacturing, 2008,
21, 3, 269-288,

[59] Lin, L. and Gen, M. Huang, YF and Gen, M and Kim, KH, : A random key-based

genetic algorithm for AGV dispatching problem in FMS, Proceedings of the 4th Interna-
tional Conference on Intelligent Logistics Systems, 2008, 318-330,

[60] Lin, L. and Shinn, S. W. and Gen, M. and Hwang, H. : Network model and effec-

tive evolutionary approach for AGV dispatching in manufacturing system, of Intelligent
Manufacturing, 2006, 17, 4, 465-477,

[61] Mohring, R. H. and Kohler, E. and Gawrilow, E. and and Stenzel, B. :
Conflict-free Real-time AGV Routing, Operations Research Proceedings 2004, 2005, 2004,
series Operations Research Proceedings, 18-24, publisher Springer Berlin Heidelberg,

[62] Nishi, T. and Morinaka, S and Konishi, M. : A distributed routing method for

AGVs under motion delay disturbance, Robotics and Computer-Integrated Manufactur-
ing, 2007, 23, 5, 517-532,

[63] R. Stahlbock and S. Voss : Operations research at container terminals: a literature

update, OR Spectrum, 2008, 30, 1-52,

BIBLIOGRAPHY 109

[64] D. Steenken and S. Voss and R. Stahlbock : Container terminal operation and

operations research: a classiffication and literature review, OR Spectrum, 2004, 26, 3,
3-49,

[65] I. Vis : Survey of research in the design and control of automated guided vehicle systems,
European of Operational Research, 2006, 170, 677-709,

[66] H. Wren : Automation - a case for the future, Port Technology International, 2009, 42,
41-42,

[67] Y. Saanen : Automated Container Handling, Freight International, 2008,
URL http://www.freight-int.com/categories/automated-container-handling/automated-
container-handling.asp,

[68] D. Steenken and S. Voss and R. Stahlbock : Container terminal operation and

operations research: a classiffication and literature review, OR Spectrum, 2004, 26, 3,
3-49,

[69] Bae, J. and Kim, K. : A pooled dispatching strategy for automated guided vehicles in

port container terminals, International of Management Science, 2000, 6, 47-67,

[70] Koo, P. and Lee, W. and Koh, S. : Vehicle dispatching for for container transporta-

tion in seaport container terminals, Proceedings of the 7th international conference of
computers and industrial engineering, 2004, address Jeju, Korea,

[71] Europe Container Terminals : Euromax: a new standard in container handling,
Port Technology International, 2009, 41, 56-61,

[72] Vis, I. F. A. : Survey of research in the design and control of automated guided vehicle

systems, European of Operational Research, 2006, 170, 677-709,

[73] Stahlbock, R. and Voss, S. : Operations research at container terminals: a literature

update, OR Spectrum, 2008, 30, 1, 1-52,

[74] Lin, L. and Gen, M. Huang, YF and Gen, M and Kim, KH, : A random key-based

genetic algorithm for AGV dispatching problem in FMS, Proceedings of the 4th Interna-
tional Conference on Intelligent Logistics Systems, 2008, 318-330,

[75] Lau, H. Y. K. and Woo, S. O. : An agent-based dynamic routing strategy for automated

material handling systems, International of Computer Integrated Manufacturing, 2008,
21, 3, 269-288,

[76] Kim, K. and Bae, J. : A look-ahead dispatching method for automated guided vehicles

in automated port container terminals, Transportation Science, 2004, 38, 2, 224-234,

[77] Zhang, L. W. and Ye, R. and Huang, S. Y. and Hsu, W. J. : Mixed integer

programming models for dispatching vehicles at a container terminal, of Applied Math-
ematics and Computing, 2005, 17, 145170,

[78] D. Briskorn and A. Drexl and S. Hartmann : Inventory-based dispatching of au-

tomated guided vehicles on container terminals, OR Spectrum, 2006, 28, 611-630,

[79] D.G. Espinoza, : Computing with Multi-Row Gomory Cuts, Oper. Res. Lett., 2010, 38,
115–120

110 BIBLIOGRAPHY

[80] Ferris, M.C. and Horn, J.D., : Partitioning mathematical programs for parallel so-

lution, Math. Program., 80, 1, 1998,

[81] du Merle, O. and D. Villeneuve and J. Desrosiers and P. Hansen, : Stabilized
Column Generation, Discr. Math., 1999, 194, 229–237

[82] H.D. Sherali and Y. Lee and Y. Kim, : Partial convexification cuts for 0-1 mixed-

integer programs, European J. Oper. Res., 165, 3, 2005, 625-648,

[83] author ”T. Achterberg and T. Koch and A. Martin”, title ”MIPLIB 2003”, ”Oper. Res.
Lett.”, 34, 4, ”361–372”, 2006,

[84] key bapcod, F. Vanderbeck, : BaPCod – a generic Branch-And-Price Code,
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod, 2005,

[85] J. Puchinger and P.J. Stuckey and M.G. Wallace and S. Brand, : Dantzig-

Wolfe decomposition and branch-and-price solving in G12, 2010,

[86] T.K. Ralphs and M.V. Galati, : DIP – Decomposition for Integer Programming,
https://projects.coin-or.org/Dip, 2009,

[87] G. Gamrath and M.E. Lübbecke, : Experiments with a Generic Dantzig-Wolfe De-

composition for Integer Programs, 2010, 239–252, 6049,

[88] F. Vanderbeck and L. Wolsey, : Reformulation and Decomposition of Integer Pro-

grams, 2010,

[89] Aykanat, C. and Pinar, A. and Çatalyürek,Ü.V., : Permuting Sparse Rectangular

Matrices into Block-Diagonal Form, SIAM J. Sci. Comput., 25, 6, 2004, 1860–1879,

[90] G. Karypis and V. Kumar, : A fast and high Quality Multilevel Scheme for Partition-

ing Irregular Graphs, ”SIAM J. Comput.”, 1998, 20, 1, 359–392

[91] M. Bergner, A. Caprara, F. Furini, M. Luebbecke, E. Malaguti, E. Traversi,
: Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation, O. Gunluk,
G.J. Woeginger (eds.) Proceedings of the Fifteenth Conference on Integer Programming
and Combinatorial Optimization (IPCO’11), 2011 (in press)

[92] A. Caprara and E. Malaguti and P. Toth, : A Freight Service Design Problem for

a Railway Corridor, ”Tran. Sci.”, 2010 (in press),

[93] Darmann, A., and Pferschy, U. and J. Schauer, : Resource Allocation with Time

Intervals ”2009”

[94] Calinescu, Gruia and Chakrabarti, Amit and Karloff, Howard J. and Ra-
bani, Yuval, : Improved Approximation Algorithms for Resource Allocation, booktitle
Proceedings of the 9th International IPCO Conference on Integer Programming and
Combinatorial Optimization, 2002, 401–414,

[95] M. Bartlett, A. M. Frisch, Y. Hamadi, I. Miguel, S. A. Tarim and C.
Unsworth, : The Temporal Knapsack Problem and its Solution, Proceedings of the
International Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 2005, 34–48,

BIBLIOGRAPHY 111

[96] Arkin, E. M. and Silverberg, E. B., : Scheduling jobs with fixed start and end times,
Discrete Applied Mathematics, 18, 1, 1987, 1–8,

[97] Hall, N. G. and M. J. Magazine : Maximizing the value of a space mission EJOR,
”78”, ”224-241”, ”1994”

[98] Chen, B. and Hassin, R. and M. Tzur : Allocation of Bandwidth and Storage ”IIE
Transactions”, ”24”, ”501-507”, ”2002”

[99] Vanderbeck, F. and L.A. Wolsey : Reformulation and Decomposition of Integer

Programs 2010, ”431–502”

[100] Fekete, S. and Schepers, J. : New classes of fast lower bounds for bin packing

problems ”Mathematical Programming”, ”91”, ”11-31”, ”2001”

[101] Vanderbeck, F. : Computational study of a column generation algorithm for bin pack-

ing and cutting stock problems ”Mathematical Programming”, ”86”, ”565-594”, ”1999”

[102] Gabrel, V. and Minoux, M. : A scheme for exact separation of extended cover

inequalities and application to multidimensional knapsack problems ”Operations Research
Letters”, ”30”, ”252-264”, ”2002”

[103] Gilmore, P.C. and R.E. Gomory : A Linear Programming Approach to the Cutting

Stock Problem OR, 1961, 9, ”849–859”

[104] Gilmore, P.C. and R.E. Gomory : A Linear Programming Approach to the Cutting

Stock Problem – Part II OR, 1963, 11, ”863–888”

[105] Gilmore, P.C. and R.E. Gomory : Multistage Cutting Stock Problems of Two and

More Dimensions OR, 1965, 13, ”94–120”

[106] Alvarez-Valdes, R. and Parajon, A. and J.M. Tamarit : A Computational Study

of LP-based Heuristic Algorithms for Two-Dimensional Guillotine Cutting Stock Prob-

lems ”OR Spektrum”, 2002, 24, ”179–192”

[107] Riehme, J. and Scheithauer, G. and J. Terno : The solution of two-stage guillotine

cutting stock problems having extremely varying order demands ”European Journal of
Operational Research”, 1996, 91, ”543–552”

[108] Cintra, G.F. and Miyazawa, F.K. and Wakabayashi, Y. and E.C. Xavier :
Algorithms for two-dimensional cutting stock and strip packing problems using dynamic

programming and column generation ”European Journal of Operational Research”, 2008,
191, ”61–85”

[109] Lodi, A. and M. Monaci : Integer linear programming models for 2-staged two-

dimensional Knapsack problems ”Mathematical Programming”, 2003, 94, ”257–178”

[110] Lodi, A. and Martello, S. and M. Monaci : Two-dimensional packing problems:

A survey ”European Journal of Operational Research”, 2002, 141, ”241–252”

[111] ”F. Furini and E. Malaguti and R. Medina Durán and A. Persiani and P.
Toth” : ”A Column Generation Heuristic for the Two-Dimensional Two-Staged Guil-

lotine Cutting Stock Problem with Multiple Stock Size” ”submitted to an International
Journal”, ”2011”

112 BIBLIOGRAPHY

[112] P. Bonsma and J. Schulz and A. Wiese, : A Constant Factor Approximation

Algorithm for Unsplittable Flow on Paths, CoRR, abs/1102.3643, 2011,

[113] Wäscher, G. and Haussner, H. and H. Schumann : ”An Improved Typology of

Cutting and Packing Problems” ”European Journal of Operational Research”, 2007, 183,
”1109–1130”

[114] ”http://people.brunel.ac.uk/ mastjjb/jeb/info.html”

[115] CPLEX 10, ILOG ”User’s Manual and Reference Manual, ILOG, S.A.,
http://www.ilog.com/ (2006)”

[116] IBM ILOG CPLEX v12.1 ”User’s Manual for CPLEX,
ftp://ftp.boulder.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps usrmancplex.pdf
(2011)”

[117] COIN-OR Linear Program Solver ”An Open Source code for Solving Linear Pro-
gramming Problems, http://www.coin-or-org/Clp/index.html”

[118] J.R. Tebboth, ”A Computational Study of Dantzig-WolfeDecomposition” University
of Buckingham 2001 Ph.D. Thesis

Appendix A

Decomposition Pictures

(a) I45 (b) I55 (c) I65

(d) I75 (e) I85 (f) I95

Figure A.1: Selected TKP instances Clique Graph Drawings

113

114 Decomposition Pictures

I1.lp_10_1_2_100000_0.2_0.0_0.5_100000

(a) I45

I2.lp_10_1_2_100000_0.2_0.0_0.5_100000

(b) I55

I3.lp_10_1_2_100000_0.2_0.0_0.5_100000

(c) I65

I4.lp_10_1_2_100000_0.2_0.0_0.5_100000

(d) I75

I5.lp_10_1_2_100000_0.2_0.0_0.5_100000

(e) I85

I6.lp_10_1_2_100000_0.2_0.0_0.5_100000

(f) I95

Figure A.2: 10 Blocks Decomposition

115

I1.lp_20_1_2_100000_0.2_0.0_0.5_100000

(a) I45

I2.lp_20_1_2_100000_0.2_0.0_0.5_100000

(b) I55

I3.lp_20_1_2_100000_0.2_0.0_0.5_100000

(c) I65

I4.lp_20_1_2_100000_0.2_0.0_0.5_100000

(d) I75

I5.lp_20_1_2_100000_0.2_0.0_0.5_100000

(e) I85

I6.lp_20_1_2_100000_0.2_0.0_0.5_100000

(f) I95

Figure A.3: 20 Blocks Decomposition

116 Decomposition Pictures

I1.lp_40_1_2_100000_0.2_0.0_0.5_100000

(a) I45

I2.lp_40_1_2_100000_0.2_0.0_0.5_100000

(b) I55

I3.lp_40_1_2_100000_ 0.2_0.0_0.5_100000

(c) I65

I4.lp_40_1_2_100000_0.2_0.0_0.5_100000

(d) I75

I5.lp_40_1_2_100000_ 0.2_0.0_0.5_100000

(e) I85

I6.lp_40_1_2_100000_ 0.2_0.0_0.5_100000

(f) I95

Figure A.4: 40 Blocks Decomposition

������� �������

������� ����

������ �������

����� ������

����� �������

��� �������

������ �������

����� ���������

����� ����

������ �������

������� �������

����

��������	���	���������
	����
� ��������	���	�
���	�����

��������	���
����������
������ ��������	���
�����
������

��������	���
����������
������ ��������	���
�����
������

��������	���
����������
�����	 ��������	���
�	���
�����	

���������	�
�	�
��������	������ ���������	�
�	�����	������

�����������	�
�	��������
������ �����������	�
�����
������

���������	�
���
�������������� ���������	�
������������

���������	�
���
��������������	 ���������	�
���	���������	

��������	
��	
	�	
�����	���	�	�� ��������	
��	
	�	�	��	�	��

��������	
�	
	�	
�����	���	�	�� ��������	
�	
	�	�	��	�	��

��������	
�	�	
	������	��
	�	�� ��������	
�	�	
	�	�
	�	��

��������	
�	�	�	������	��	�	�� ��������	
�	�	�		���	�	��

��������	��	
	�	
�����	���	�	�� ��������	��	
	�	�	��	�	��

��������	
�	�	�	������	��	�	�
 ��������	
�	�	�	
	��	�	�

��������	
	�	�	������	��	�	�
 ��������	
	�	�	
	��	�	�

�������������					�	
��	�	
� ������������	�
���
�
�	

����������	��

�
�	�
�
�� ����������	�
���	�����

����������	��

�
�	�
�
�� ����������	�
���	�����

����������	��

�
�	�
�
�� ����������	���
�	�
�
��

��������	�
�	�
��������	����� ��������	�
�	����	�����

��������	�
���
������������� ��������	�
�����������

��������	�
���
������������� ��������	�
�����������

��������	�
���
������������	 ��������	�
���	�������	

��������������������	�����	
 ��������������	
��	�	
�

�������������					�	
��	�	
� ������������	�
���
�
�	

�������������					�	
��	�	
� ������������	�
���
�
�	

�������������					�	
��	�	
� ��������������	
��	�	
�

��������	

�	���	

�
���
�
�� ��������	

�	�����
���
�
��

��������	
�	���	

�
���
�
�� ��������	
�	�����
���
�
��

���������	�
���
					�	���	�	�� ���������	�
�����	���	�	��

��������	
������

�
���
�
� ��������	
�������
��
�
�

��������	
������

�
���
�
� ��������	
�������
��
�
�

��������	
������

�
���
�
�	 ��������	
�����	�
���
�
�	

��������	�
���
��������������	 ��������	�
���	���������	

��������������					�	
��	�	
� �������������	�
���
�
�	

�����������	��

�
�	�
�
�� �����������	�
���	�����

��������������					�	
��	�	
� �������������	�
���
�
�	

�����������	��

�
�	�
�
�� �����������	���
�	�
�
��

����������������������	�����	
 ��������������	��
�����
	

���������������������	�����	
 �������������	��
�����
	

���������������������	�����	
 �������������	��
�����
	

��������������������	�����	
 ��������������	
��	�	
�

���������	���	�������
�����
� ���������	���
���������

�������������					�	
��	�	
� ������������	�
���
�
�	

���������	���	�������
�����
� ���������	���
���������

�������������					�	
��	�	
� ������������	�
���
�
�	

���������	���	�������
�����
� ���������	������
�����
�

�������������					�	
��	�	
� ��������������	
��	�	
�

����������������������	�����	
 ����������������	
��	�	
�

���������������					�	
��	�	
� ��������������	�
���
�
�	

���������������					�	
��	�	
� ��������������	�
���
�
�	

���������������					�	
��	�	
� ����������������	
��	�	
�

�������������������������	 �������������	�����	�

������������������	�����	
 ������������	
��	�	
�

������������������	�����	
 ������������	
��	�	
�

������������������	�����	� �������������	�����	�

����������	���	

�
���
�
�� ����������	���
���������

����������	�
�	��������
����� ����������	�
����
�����

����������	�
�	��������
����� ����������	�
����
�����

����������	�
�	��������
������ ����������	�
�����
������

��������������					�	
��	�	
� �������������	�
���
�
�	

�����������	��

�
�	�
�
�� �����������	�
���	�����

�����������	��

�
�	�
�
�� �����������	�
���	�����

�����������	��

�
�	�
�
�� �����������	���
�	�
�
��

����������������������	�����	
 ����������������	
��	�	
�

���������������					�	
��	�	
� ��������������	�
���
�
�	

���������������					�	
��	�	
� ��������������	�
���
�
�	

���������������					�	
��	�	
� ����������������	
��	�	
�

��������������������	�����	� ���������������	�����	�

�������������					�	
��	�	
� ��������������	
��	�	
�

�������������					�	
��	�	
� ��������������	
��	�	
�

��������������������	�����	� ���������������	�����	�

���������������������������	 ���������������	�����	�

��������������������	�����	
 ������������	��
�����
	

��������������������	�����	
 ������������	��
�����
	

��������������������	�����	� ���������������	�����	�

���������	
	�	
	������	��
	�	�� ���������	
	�	
	�	�
	�	��

���������	
	�	�	������	��	�	�� ���������	
	�	�		���	�	��

���������	
	�	�	������	��	�	�� ���������	
	�	�		���	�	��

���������	
	�	�	������	��	�	�
 ���������	
	�	�	
	��	�	�

�������������������	�����	
 �������������	
��	�	
�

������������					�	
��	�	
� �����������	�
���
�
�	

������������					�	
��	�	
� �����������	�
���
�
�	

������������					�	
��	�	
� �������������	
��	�	
�

��������������					�	
��	�	
� �������������	�
���
�
�	

�����������	��

�
�	�
�
�� �����������	�
���	�����

�����������	��

�
�	�
�
�� �����������	�
���	�����

�����������	��

�
�	�
�
�� �����������	���
�	�
�
��

���������������					�	
��	�	
� ��������������	�
���
�
�	

������������	��

�
�	�
�
�� ������������	�
���	�����

������������	��

�
�	�
�
�� ������������	�
���	�����

������������	��

�
�	�
�
�� ������������	���
�	�
�
��

���������������					�	
��	�	
� ��������������	�
���
�
�	

����������	���	

�
���
�
�� ����������	���
���������

����������	���	

�
���
�
�� ����������	���
���������

����������	���	

�
���
�
�� ����������	�����
���
�
��

����������������������	�����	
 ��������������	��
�����
	

����������������������	�����	
 ��������������	��
�����
	

��������	�������������
�����
� ��������	�����
���������

��������	�������������
�����
	 ��������	�����	��
�����
	

��������������������������	 ��������������	�����	�

�������������������	�����	
 �������������	
��	�	
�

�������������������	�����	
 �������������	
��	�	
�

�������������������	�����	� ��������������	�����	�

