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Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are 

the two most common inherited optic neuropathies and both are the result of mitochondrial 

dysfunctions. Despite the primary mutations causing these disorders are different, being an mtDNA 

mutation in subunits of complex I in LHON and defects in the nuclear gene encoding the 

mitochondrial protein OPA1 in ADOA, both pathologies share some peculiar features, such a 

variable penetrance and tissue-specificity of the pathological processes. 

Probably, one of the most interesting and unclear aspect of LHON is the variable penetrance. This 

phenomenon is common in LHON families, most of them being homoplasmic mutant. Inter-family 

variability of penetrance may be caused by nuclear or mitochondrial ‘secondary’ genetic 

determinants or other predisposing triggering factors.  

We identified a compensatory mechanism in LHON patients, able to distinguish affected 

individuals from unaffected mutation carriers. In fact, carrier individuals resulted more efficient 

than affected subjects in increasing the mitochondrial biogenesis to compensate for the energetic 

defect. Thus, the activation of the mitochondrial biogenesis may be a crucial factor in modulating 

penetrance, determining the fate of subjects harbouring LHON mutations. Furthermore, mtDNA 

content can be used as a molecular biomarker which, for the first time, clearly differentiates LHON 

affected from LHON carrier individuals, providing a valid mechanism that may be exploited for 

development of therapeutic strategies. Although the mitochondrial biogenesis gained a relevant role 

in LHON pathogenesis, we failed to identify a genetic modifying factor for the variable penetrance 

in a set of candidate genes involved in the regulation of this process. A more systematic high-

throughput approach will be necessary to select the genetic variants responsible for the different 

efficiency in activating mitochondrial biogenesis. A genetic modifying factor was instead identified 

in the MnSOD gene. The SNP Ala16Val in this gene seems to modulate LHON penetrance, since 

the Ala allele in this position significantly predisposes to be affected. Thus, we propose that high 

MnSOD activity in mitochondria of LHON subjects may produce an overload of H2O2 for the 

antioxidant machinery, leading to release from mitochondria of this radical and promoting a severe 

cell damage and death    

ADOA is due to mutation in the OPA1 gene in the large majority of cases. The causative nuclear 

defects in the remaining families with DOA have not been identified yet, but a small number of 

families have been mapped to other chromosomal loci (OPA3, OPA4, OPA5, OPA7, OPA8). 

Recently, a form of DOA and premature cataract (ADOAC) has been associated to pathogenic 

mutations of the OPA3 gene, encoding a mitochondrial protein. In the last year OPA3 has been 

investigated by two different groups, but a clear function for this protein and the pathogenic 

mechanism leading to ADOAC are still unclear. 



Our study on OPA3 provides new information about the pattern of expression of the two isoforms 

OPA3V1 and OPA3V2, and, moreover, suggests that OPA3 may have a different function in 

mitochondria from OPA1, the major site for ADOA mutations. In fact, based on our results, we 

propose that OPA3 is not involved in the mitochondrial fusion process, but, on the contrary, it may 

regulate mitochondrial fission. Furthermore, at difference from OPA1, we excluded a role for OPA3 

in mtDNA maintenance and we failed to identify a direct interaction between OPA3 and OPA1. 

Considering the results from overexpression and silencing of OPA3, we can conclude that the 

overexpression has more drastic consequences on the cells than silencing, suggesting that OPA3 

may cause optic atrophy via a gain-of-function mechanism. These data provide a new starting point 

for future investigations aimed at identifying the exact function of OPA3 and the pathogenic 

mechanism causing ADOAC.  
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Mitochondria 

 

Mitochondria are key organelles in life and death of eukaryotic cells, since they are the main 

players in many cellular processes such as energy production, apoptosis, reactive species of oxygen 

(ROS) production, thermogenesis and calcium homeostasis. 

According to the endosymbiontic theory, these organelles originated from aerobic bacteria, 

incorporated into an eukaryotic cell ancestor and maintained during the evolution (Margulis, 1975).  

Mitochondria are the only cytoplasmic organelles containing their own DNA, in multiple copies, 

which encodes a small number of proteins, essential for functioning of oxidative phosphorylation 

(OXPHOS) (Anderson et al., 1981).  

In the last 20 years several human disorders including neurodegenerative diseases, cancer and  

diabetes, have been shown to be due to mitochondrial dysfunctions. Furthermore, the mitochondrial 

dysfunction may be involved also in the natural process of aging (DiMauro and Schon, 2003; 

Wallace, 2005). 

 

Mitochondrial structure  

Mitochondria are double-membrane organelles. This complex double membrane system is 

composed by the outer membrane (OM) and the inner membrane (IM), which separates the inner 

membrane space (IMS) from the matrix space. The OM is highly permeable, containing many pores 

for small molecules transit, whereas the IM is impermeable to most small molecules and ions, being 

responsible for the maintenance of the electrochemical gradient between the matrix and the IMS 

(Nicholls 2002 ???). The IM is organized in different compartments, the peripheral inner membrane 

and lamellar double-membrane interdigitations called cristae . These compartments are joined by a 

limited number of discrete sites called cristae junctions (Frey and Mannella, 2000; Perkins et al., 

2001) (Fig. 1). Since the IM is the site of OXPHOS, the morphology of cristae and cristae junctions 

can have profound implications in the rate of ATP production (Perotti et al., 1983; D’Herde et al., 

2001). Moreover, the number and shape of these structures can also limit the diffusion of 

cytochrome c by compartmentalization and consequently regulate the propensity to cell death 

(Bernardi and Azzone, 1981; Scorrano, 2002). 

 

 

 



 
 
 
Figure 1 - Mitochondrial ultrastructure (Westermann, Nat Rev Moll Cell Bio 2010) 
The schematic shows the structure of mitochondria. A transmission electron microscopy image of mitochondria in 
ultrathin sections of human fibroblast cells is also shown. 
 
 
The oxidative phosphorylation 

Mitochondria are commonly referred as “the energy powerhouse” of the cell, since they produce 

most of the energy required from the cell in the form of ATP. In fact, they are the site of the 

electron transport chain and the OXPHOS system and through this they oxidizes hydrogen derived 

from our dietary carbohydrates (TCA cycle) and fats (β-oxidation) with oxygen to generate heat and 

ATP. 

The OXPHOS system is composed of five multimeric enzymatic complexes (I-V) and consists of 

approximately 90 subunits, 13 encoded by the mitochondrial DNA (mtDNA). All the complexes are 

integrated in the lipid bilayer of the mitochondrial IM and together with two mobile electron 

carriers, ubiquinone (CoQ) and cytochrome c (cyt c), they make up the electron transport chain 

(Fig. 2) . The electron transport is coupled to the generation of a proton gradient across the IM, 

which is used by Complex V to synthesize ATP from ADP and inorganic phosphate (Saraste 1999). 

Complex I (NADH dehydrogenase) is the largest of the respiratory complexes and is composed 

approximately of 45 subunits, 7 encoded by mtDNA (Carroll et al., 2002). The enzyme transfers 

electrons from nicotinamide adenine dinucleotide (NADH) to CoQ generating ubiquinol (CoQH2), 

with the simultaneous translocation of four protons across the IM into the inner membrane space 

(Nicholls and Ferguson, 2002). 

Complex II (succinate dehydrogenase) is the only respiratory enzyme completely encoded by 

nuclear DNA (nDNA) and it is composed of 4 subunits. Complex II is an alternative source of  

CoQH2, which is produced by the electrons transfer from flavin adenine dinucleotide (FADH2) to 



CoQ (Rustin et al., 2002). A third further source that transfers electrons to CoQ to generate 

ubiquinol is glycerol 3-phosphate dehydrogenase. 

Complex III (ubiquinol cytochrome c oxidoreductase) has only one mtDNA-encoded subunit, 

cytochrome b and 10 nDNA-encoded subunits (Berry et al., 2000). 

This complex transfers two electrons from CoQH2 to cyt c, which then shuttles the electrons to 

Complex IV (cytochrome c oxidase, COX). Complex III couples electron transfer to the 

translocation of two protons across the IM.  

Complex IV is the terminal component of the respiratory chain, composed of 13 subunits, three of 

them encoded by mtDNA. Through Complex IV four electrons are transferred to two molecules of 

oxygen, the final acceptor, producing water. During this reaction four protons are translocated from 

the matrix side to the inner membrane space (Schultz and Chan, 2001). The electrochemical 

gradient, due to the flow of the electrons through the respiratory chain, is finally used by Complex 

V (ATP synthase) to generate ATP (Mitchell, 1961 ). 

 

 
Figure 2 – Mitochondrial respiratory chain (Bellance et al., Front. Biosc. 2009) 
 

Complex V is composed of a membrane-bound portion (F0) and a large extra-membranous portion 

(F1), exposed to the matrix space. Of 17 subunits, only two subunits of this complex are encoded by 

the mtDNA and they take part to the F0 (Abrahams et al., 1994). The ATP synthesized is exported 

across the inner mitochondrial membrane by an exchange mechanism, importing cytosolic ADP by 

the  adenine nucleotide translocator (ANT).          



Reactive Oxygen Species (ROS) production 

Mitochondria are the major source of ROS under normal physiological conditions, with superoxide 

radicals being the primary ROS produced by these organelles. Complex I and complex III are the 

major superoxide (O2
.-)-producing sites in mitochondria (Lenaz, 1998).  The O2

.- is rapidly 

converted into hydrogen peroxide (H2O2) by manganese superoxide dismutase (MnSOD) and is 

further metabolized by glutathione peroxidise (GPX) to H2O. In the presence of transition metals, 

the H2O2  can also form the hydroxyl radical (OH.) through the Fenton reaction. Moreover, O2
.- may 

produce peroxynitrite (ONOO.) reacting with nitric oxide (NO.).  

ROS play an important role in regulating several cellular processes, including apoptosis and 

immune response, and act as second messengers in cellular signaling. ROS affect these normal 

cellular functions by altering the activities of various tyrosine and serine/threonine kinases, mitogen 

activated protein kinases, and transcription factors (Halliwell and Gutteridge, 1992; Rhee, 2006). 

Oxidative damage to DNA causes potentially mutagenic modifications, possibly contributing to 

cancer, premature ageing and neurodegenerative diseases. In particular, due to the peculiar 

structure, mtDNA is very susceptible to ROS attack and the oxidative damage is much higher than 

that in the nuclear DNA. Therefore, ROS induced damage is the principal cause of mitochondrial 

genomic instability leading to respiratory dysfunctions (Bohr,  2002).  

Excessive ROS production may cause local damage to the Fe-S clusters of respiratory enzymes 

(complexes I, II and III), as well as to tricarboxylic acid cycle enzymes (aconitase). Moreover, 

peroxynitrite can nitrate tyrosine residues or thiolic groups of nearby proteins and both complex I 

and MnSOD have been reported to be damaged by this process (Rotig et al., 1997; Melov et al., 

1999). Oxidized proteins are recognized by proteases and degraded. 

Lastly, another important damaging process is lipid peroxidation; this affects vital mitochondrial 

functions, such as respiration and oxidative phosphorylation, inner membrane barrier properties, 

maintenance of mitochondrial membrane potential (∆ψm), and mitochondrial Ca2+ buffering 

capacity (Zhang et al., 1990; Albano et al., 1991; Bacon et al., 1993). In particular, cardiolipin 

(CL), a phospholipid located at the level of the IMM and known to be involved in mitochondrial-

dependent apoptosis and mitochondrial stability and dynamics (Perier et al., 2005; Ban et al., 2010; 

Paradies et al., 2010), is particularly prone to peroxidative attack by ROS. CL peroxidation has 

been shown to play a critical role in several physio-pathological situations (Paradies et al., 2010). 

Many enzyme systems exist in the cell to detoxify ROS. Superoxide dismutases (SODs) are the 

primary ROS scavenging enzymes of the cell and catalyze the dismutation of superoxide radicals to 

hydrogen peroxide and molecular oxygen. Three forms of SOD, encoded by different genes, exist in 

cells. Homodimeric copper- and zinc-containing SOD (CuZnSOD, SOD1) is localized primarily in 



the cytoplasm, but a portion of it is also found in mitochondria, concentrated in the IMS (Kawamata 

and Manfredi, 2010). Extracellular SOD (ECSOD, SOD3), which shares 40–60% amino acid 

homology with CuZnSOD and has copper and zinc in its active site, is found in the extracellular 

region of the cell. Manganese-containing SOD (MnSOD, SOD2) is a homotetramer located in the 

mitochondrial matrix (Holley at al., 2010).  

Mitochondria use two major enzyme systems to decompose hydrogen peroxide into water and 

molecular oxygen. Glutathione peroxidase (GPx) exists in two forms in mitochondria: GPX1 and 

phospholipid-hydroperoxide GPX (PHGPx). GPX1 is localized mainly in the mitochondrial matrix, 

whereas PHGPx is found primarily in the inner membrane of mitochondria. These enzymes use 

reduced glutathione (GSH) to reduce hydrogen peroxide to water with simultaneous formation of 

glutathione disulfide (GSSG).  

The inactivation of hydrogen peroxide through the production of water and molecular oxygen is 

also catalyzed by catalase (CAT), an enzyme located in peroxisomes or in cytoplasm (Forsberg et 

al., 2001a). 

Peroxiredoxin (PRX) also detoxifies hydrogen peroxide to water using thioredoxin as a reducing 

agent. Two forms of PRX are found in mitochondria (PRX III and PRX V), and both reside in the 

mitochondrial matrix (Holley at al., 2010). 

 

 

Mitochondrial pathways of apoptosis 

Apoptosis is a form of programmed cell death essential for homeostasis, which is frequently 

dysregulated  in human pathologies such as cancer, neudegenaritive diseases or viral infections 

(Meier et al., 2000; Vaux and Korsmeyer, 1999).  The defining morphological characteristics of 

apoptosis include cell shrinkage, nuclear fragmentation, chromatin condensation and membrane 

blebbing, all of which are due to the proteolytic activity of the caspase proteases. Caspases 

orchestrate apoptosis through the cleavage of numerous proteins, ultimately leading to the 

phagocytosis of the apoptotic cell, without any release of cytoplasmic content into the extracellular 

matrix or inflammatory response induction (Kerr et al., 1972; Taylor et al., 2008). 

In eukaryotic cells, two major pathways of apoptosis are distinguished. The “extrinsic” pathway is 

triggered by the activation of death receptors of the TNF/Fas family, whereas the “intrinsic” 

pathway involves mitochondria and is activated by many stimuli as cytotoxic stress, DNA damage 

and growth factor deprivation (Jourdain and Martinou, 2009). The mitochondrial pathway is a 

complex signalling cascade, regulated by the Bcl-2 family proteins, which needs the release of 

apoptogenic factors from mitochondria to switch on the caspase activation.  



The intrinsic pathway can be divided in three well defined phases: induction, mitochondrial and 

execution phases. 

During the induction phase external and internal stimuli activate different signalling pathways an 

this signal is transduced to mitochondria by Bcl-2 family proteins. This family includes more than 

30 members, which share a high degree of homology although they have different functions, being 

either pro-apoptotic or anti-apoptotic (Jourdain and Martinou, 2009). Anti-apoptotic proteins have 

usually four Bcl-2 homology (BH) domains (Bcl-2, Bcl-xL, Bcl-W and Mcl-1), whereas pro-

apoptotic proteins display either three BH domains (BH1,2,3 : Bax and Bak) or only one (BH3-

only: Bid, Bad, Bim, Noxa and Puma), corresponding to the most numerous proteins (Adams and 

Cory, 1998; Kroemer et al., 2007; Youle and Strasser, 2008). 

The second apoptotic step is characterized by an alteration of the OM and a release of apoptogenic 

factors in the cytosol. This process is still debated and currently there are at least two hypothesis put 

forward to explain this phenomenon, involving two different channels. These channels are the 

permeability transition pore (PTP) in the IM and the mitochondrial apoptosis-induced channel 

(MAC) in the OM. Whatever is the mechanism of the mitochondrial permeabilization, the final 

result is the release of apoptogenic factors (cytochrome c, AIF, endonuclease G, Smac/DIABLO 

and Omi/HtrA2) (Eskes et al., 2000; Suzuki et al., 2000; van Gurp et al., 2003; Zamzami and 

Kroemer, 2001) (Fig. 3). 

The last step in apoptosis is the executive phase and the major players are specific proteases called 

caspases (cysteine aspartyl-specific proteases) that cleave their substrates at aspartic acid (Asp) 

residues (Thornberry et al., 1998; Cryns and Yuan, 1999).  This family of intracellular proteases is 

composed in humans at least of 12 members, even if not all directly involved in apoptosis, sharing 

an high sequence homology and substrates specificity. Caspases are produced as inactive zymogens 

with three domains: a regulatory N-term, and two highly conserved catalytic domains. They can be 

activated by proteolytic cleavage at conserved Asp residues and can cooperate in proteolytic 

cascades, where caspases activate themselves and each other, and finally cleave their substrates. 

Caspases have as substrates several proteins with structural and enzymatic functions that need to be 

cleaved to continue and conclude the apoptotic process (Taylor et al., 2008). 



 
 
Figure 3 – Apoptogenic factors released from mitochondria during apoptosis. (Vila and Przedborski, Nat Rev 

Neurosci., 2003) 

 

 

The mitochondrial genome  

Human mtDNA is a double-stranded, circular molecule of 16569 bp, present in multiple copies 

within the cell. The two strands of mtDNA, based on their nucleotide composition, can be separated 

in a cesium chloride gradient and are therefore called the “heavy strand” (H-strand), rich in guanine, 

and the “light strand” (L-strand), rich in cytosine (Fernández-Silva et al., 2003). The mtDNA 

sequence is completely elucidated and contains 37 genes: 13 genes encoding for subunits of the 

respiratory chain, 22 tRNA and 2 rRNA necessary for translation of these proteins (Anderson et al., 

1981) (Fig. 4). 



 

 

 

Figure 4 - The mitochondrial genome (Strachan and Read, Human Molecular Genetics, 2nd edition, 1999). 

 

 

In spite of the nuclear genome, the mtDNA has no repetitive sequences, introns or intergenic 

regions. Only two non-coding regions exist in this genome, and they contain most of the known 

regulatory functions. The major one is the D-loop (displacement loop), characterized by the 

presence of a triple strand structure due to the association of the new H- strand in this region 

(Fernández-Silva et al., 2003). The D-loop contains the origin of H-strand DNA replication (OH) 

and is also the site of transcription from opposing heavy and light strand promoters (Clayton, 2000; 

Scarpulla, 2008). The second non-coding region is located in a cluster of five tRNA genes around 

two thirds of the mtDNA length from the OH (Anderson et al., 1981; Fernández-Silva et al., 2003).   

Within mitochondria, the mtDNA molecules are packaged in DNA-protein complexes called 

nucleoids (Legros et al., 2004; Wang and Bogenhagen, 2006), which provide a submitochondrial 

organization of mtDNA, allowing for efficient maintenance of mtDNA in discrete segregating units 

(Gilkerson, 2009).  



This peculiar organization not only protects the mtDNA from various insults, but is also likely to 

put constraints on any transactions involving the DNA, such as replication, repair and transcription 

(Spelbrink et al., 2010).  

Several proteins have been suggested to be part of the mitochondrial nucleoids, but the composition 

and structure of these proteins have not been fully elucidated. Proteins identified have been divided 

into different groups: proteins involved in mtDNA maintenance, chaperon proteins and proteins 

involved in intermediary metabolism, membrane transport and interaction with the cytoskeleton 

(Wang and Bogenhagen, 2006; Kaufman et al., 2007). The major nucleoid component is the 

mitochondrial transcriptor factor A (Tfam) (Bogenhagen et al., 2008; Garrido et al., 2003). In its 

active form Tfam is a homodimer that can bind, unwind and bend DNA, without sequence specifity, 

coordinating in this way the fully compaction of several DNA molecules together to form the 

mitochondrial nucleoids (Kaufman et al., 2007). 

Many other proteins were identified, such as mtDNA-associated proteins (Twinkle, Polγ, mtSSB, 

TFB1M, TFB2M), proteins of the IM (ANT, subunits of complex I, subunits of ATP synthase), 

proteins with chaperone activity (Hsp70, Hsp60, LRPPRC, prohibitin) and antioxidant enzyme 

(MnSOD, GPx1) (Bogenhagen et al., 2008; Kienhöfer et al., 2009). 

 

Mitochondrial genetics 

Mitochondrial genetics follows its specific rules and shows a series of  peculiarities and differences 

compared to the nuclear genome: 

1. Mammalian cells contain hundreds of mitochondria and, in turn, each mitochondrion 

contains several (2-20) copies of mtDNA. The condition where all mtDNA molecules are 

identical in sequence (wild type or mutant) is called homoplasmy, whereas the case in which 

molecules of mtDNA differing in their sequence coexist in the same cell is called 

heteroplasmy. Since mitochondria and their genomes are randomly distributed to daughter 

cells during cells division, starting from a given heteroplasmic situation, different levels of 

heteroplasmy can segregate into different cell lineages. Thus, considering heteroplasmic 

pathogenic mutations, a minimal critical percentage of mtDNA molecules have to be 

mutated to exert the pathogenic effect (threshold effect). The threshold is also dependent on 

the tissue energy requirement, since high energy demand tissues are more vulnerable to 

mtDNA mutations (DiMauro and Schon, 2006). 

2. The mitochondrial genome is maternally inherited; the few mitochondria deriving from the 

sperm cells that could enter the oocyte during the fertilization are completely degraded in a 

ubiquitin-dependent mechanism (Sutovsky and Moreno, 1999; Sutovsky et al., 2000). During 



the oogenesis only a small subset of mtDNA molecules are amplified and transmitted to the 

offspring; this phenomenon is known as “bottleneck” and can explain the rapid shift of some 

heteroplasmic mutation to homoplasmy in few generations (Marchington et al., 1998). 

3. The evolution rate of mtDNA is much faster than that of the nuclear DNA (Brown et al., 

1979). This high mutation rate and the maternal inheritance have made the study of mtDNA 

sequence interesting for human population genetics and evolutionary studies (Stoneking, 

1994). A great number of mtDNA variants have been fixed and accumulated characterizing 

different maternal lineages. The mitochondrial haplogroup is defined by different clusters of 

population-specific polymorphisms, present both in coding and control regions. The 

mitochondrial haplogroups usually tend to be restricted to particular geographic areas and 

populations. The most of European population (95%) belongs to haplogroup H, I, J, K, M, 

T, U, V, W or X (Torroni et al., 1996). The mitochondrial haplogroups have been often 

investigated for the possible association with multifactorial disease and aging, based on the 

assumption that any non-synonymous variant may have functional relevance.   

4. Mitochondrial genes are translated using a specific genetic code, different from the universal 

genetic code. Thus, in mammals, UGA specifies tryptophan instead of a termination codon, 

AUA, AUC and AUU are used as translation and integration initiation codons and AGA and 

AGG are termination codons instead of encoding arginine. In addition, a simplified codon–

anticodon pairing system allows translation to proceed with only 22 tRNAs (Attardi and 

Schatz, 1988). 

 

Mitochondrial DNA replication, transcription and translation 

Mitochondrial DNA replication takes place in the mitochondrial matrix and, differing from nuclear 

DNA replication, is independent from cell cycle (relaxed replication) and some mtDNA molecules 

are preferentially replicated while others do not replicate at all (Clayton, 2003). Mitochondrial 

genome copy number per cell is kept at a relatively constant level in a proliferating cell culture for a 

given cell type; however, depending on the tissue/cell-type, mtDNA copy number has been shown 

to vary, with highest levels being present in the most energy demanding tissues such as muscle, 

liver, brain and pancreatic islets and in the ovum (Moraes, 2001; Shoubridge, 2000; Mao and Holt, 

2009). 

The mtDNA replication system requires at least three proteins: the polymerase γ (POLγ), the 

helicase TWINKLE and the mitochondrial single-stranded DNA-binding protein (mtSSB). These 

three proteins together form a processive replisome, able to replicate the entire mtDNA (Falkenberg 

and Larsson, 2007). POLγ is an RNA dependent DNA polymerase and in human is a heterotrimer 



composed by a catalytic subunit (POLγA, 140kDa), with polymerase, 3’-5’exonuclease, and 5’-

deoxyribose phosphate lyase activities, and two smaller accessory subunits (POLγB, 55kDa), able 

to increase the catalytic activity of POLγA (Gray and Wong, 1992; Pinz and Bogenhagen, 1998; 

Kaguni, 2004; Pinz and Bogenhagen, 2000). 

The mtDNA replication mechanism is still unclear and at least two models has been proposed and 

currently debated (Fig. 5). The strand-displacement model describes mtDNA replication as an 

asynchronous displacement mechanism involving two unidirectional, independent origins. In this 

model replication starts from the origin of replication of the H-strand (OH), proceeds along the 

parental L-strand to produce a nascent H-strand (leading strand). When H-strand has reached two 

thirds of genome, the parental H-strand is displaced, the origin of L-strand (OL) is exposed, and 

lagging strand synthesis starts and proceeds in the opposite direction, producing the L-strand. 

Replication is completed when the primers are removed and the completed DNA molecules are 

ligated (Clayton, 1991; Falkenberg and Larsson, 2007). 

The more recent proposed model suggests that mtDNA replicates symmetrical, with leading and 

lagging strands synthesis progressing from multiple bidirectional replication forks, in a specific 

initiation site that includes cyt b and ND5-6 genes (Holt et al., 2000; Yang et al., 2002; Bowmaker 

et al., 2003).  

Moreover, a novel major replication origin has been found at position 57 in the D-loop region, 

probably responsible for mtDNA maintenance under steady-state conditions, while the previously 

characterized origins may be more important for recovery after mtDNA depletion and to improve 

the DNA synthesis in response to certain stimuli (Fish et al., 2004).   

Mitochondrial transcription produces three polycistronic molecules, starting from three different 

transcription origins, one for L-strand and two for the H-strand (Montoya et al., 2006). The primary 

transcripts are processed, according to the “tRNA punctuation” model, to generate the mature 

RNAs after an endonucleolytic cleavage, triggered by the maturation of tRNAs secondary structure 

(Montoya et al., 1983; Ojala et al., 1981).  

The proteins required for the transcription process are the RNA polymerase mtRPOL, the initiations 

factors Tfam, TFB1M and TFB2M, and the termination factor mTERF. 

Interestingly, Tfam levels correlate well with mtDNA copy number, suggesting that it can function 

as a limiting determinant of mtDNA abundance (Scarpulla, 2008). 

 

 

 



 
 

Figure 5 – The two models for mtDNA replication (DNA Replication and Human Disease 2006, Cold Spring Harbor 
Laboratory Press) 
 

The mitochondrial mRNAs are translated in the matrix with a specific translational machinery, the 

mitoribosomes, and using the mitochondrial genetic code. The mitoribosomes are composed by two 

mitochondrial rRNAs (12s and 16s) and nuclear encoded proteins (Fernández-Silva et al., 2003). 

 

Mitochondrial biogenesis 

Mitochondrial biogenesis is a complex process involving the coordinated expression of both nuclear 

and mitochondrial genes. Since the protein coding capacity of mtDNA is restricted to the expression 

of 13 respiratory subunits, nuclear genes play a predominant role in the biosynthesis of the 

respiratory chain and in the expression of the mitochondrial genome. Although the complete 

pathways controlling mitochondrial biogenesis has not been elucidated, in the last few years our 



understanding about this process is much improved. The expression of mitochondrial proteins 

encoded by nuclear genome participating in oxidative phosphorylation, heme biosynthesis, 

mitochondrial protein import, and mtDNA transcription and replication, is regulated by 

transcription factors and transcriptional coactivators (Diaz and Moraes, 2008; Scarpulla, 2006). 

The most important transcription factors involved in the mitochondrial-nucleus communication are 

the nuclear respiratory factors 1 and 2 (NRF-1, NRF-2) (Virbasius et al., 1993) and the estrogen-

related receptor (ERRα) that cooperate with the transcriptional coactivators belonging to the 

peroxisome proliferator-activated receptor γ-coactivator 1 (PGC-1) family (PGC-1α, PGC-1β, PRC) 

(Scarpulla, 2002). 

 

The PGC-1 coactivators family  

This family is composed by three members sharing a sequence homology and regulating several 

metabolic pathways such as cellular respiration, thermogenesis and hepatic glucose metabolism 

(Scarpulla, 2006; Kelly and Scarpulla 2004). Although all these factors can stimulate mitochondrial 

biogenesis, PGC-1α is mainly involved in the regulation of gluconeogenesis and PGC-1β in the 

regulation of β-oxidation of fatty acids, and PRC in the coordination of nuclear and mtDNA 

replication during the cell cycle progression (Lin et al., 2003; Ling et al., 2004; Diaz and Moraes, 

2008). 

The three proteins show conserved domains with well characterized features, such as a 

transcriptional activation domain with the major nuclear hormone receptor-interacting (LXXLL) in 

the N-terminus and an RNA-binding motif, able to enhance the RNA splicing, and a serine-

arginine-rich (RS) domain in the C-terminus (Fig. 6). 

PGC-1α exhibits a tissue-enriched expression pattern and is highly inducible. This coactivator is 

enriched in tissues with high-capacity mitochondrial system, as brown fat, heart, oxidative skeletal 

muscle fibres; moreover PGC-1α is rapidly induced by cold exposure, short-term exercise and 

fasting, conditions known to increase the demand of ATP and heat from mitochondria. All these 

observations suggest a prominent role of PGC-1α in the physiologic control of mitochondrial 

function (Kelly and Scarpulla, 2004). 

 



 
 

Figure 6 - Schematic representation of the primary structures of PGC-1α, PRC, and PGC-1β (Kelly and 
Scarpulla, Genes Dev. 2004) 
 
 

In the last few years several lines of evidence proved the key role of PGC-1α in regulating 

mitochondrial biogenesis in mammals: the activation of mitochondrial uncoupling protein-1 (UCP-

1) (Puigserver et al., 1998), the induced expression of NRF-1, NRF-2, Tfam (Wu et al., 1999) and 

the mitochondrial proliferation in skeletal muscle accompanied by the switch in fibre type 

composition (from glycolytic type to oxidative type) in transgenic mice overexpressing PGC-1α ( 

Lin et al., 2002b). 

Multiple PGC-1α targets have now been identified such as PPARα (Vega et al., 2000), thyroid 

hormone receptor, retinoid receptors, glucocorticoid receptors, estrogen receptor, estrogen-related 

receptors (ERRs) and several non-nuclear partners including myocyte-enhancing factor 2 (MEF-2) 

and FOX-01 (Kelly and Scarpulla, 2004).  

PGC-1α gene expression can be modulated by several pathways in response to different stimuli 

(Fig. 7): 

• In adipocyte, in response to cold exposure, β-adrenergic receptors are activated. This causes 

the signal transduction via protein G and adenylate cyclise, associated with an increase of 

cAMP concentration. The subsequently PKA (Protein kinase A) activation induces the 

phosphorylation of CREB or ATF2 (Activating Transcription Factor 2) and PGC-1α 

transcription. 



• During fasting, the activation of CREB and subsequent PGC-1α increase can induce the 

gluconeogenetic pathway in mouse liver (Yoon et al., 2001). 

• Prolonged exercise in vivo or an increase of Ca2+ levels in myotubes can promote a strong 

activation of PGC-1α by activation of AMPK (AMP-activated protein kinase) and CaMK 

(calcium/calmodulin-dependent protein kinase). MEF-2 induction via calcineurin A is also 

involved in PGC-1α activation in skeletal muscle (Zong et al., 2002; Handschin et al., 

2003). 

• Nitric oxide (NO) generation can also activate PGC-1α transcription through the pathway of 

cGMP signaling (Nisoli et al., 2003; Nisoli and Carruba, 2006).  

 

 

 

 

 Figure 7 – Different signaling pathways regulated by PGC-1α (Scarpulla, Physiol. Rev. 2008). 

 

PGC-1α can be stabilized through phosphorylation in three sites (Thr262, Ser265, Thr298) by p38 

mitogen-activated protein kinase (p38 MAPK) (Puigserver et al., 2001) and repressed by 

interaction with p160 myb-binding protein (Fan et al., 2004); lastly, it can be activated through 

deacetylation operated by Sirt1 (Rodgers et al., 2005). 

PRC (PGC-1-related coactivator) was the first PGC-1α relative identified through a database search. 

PRC has several domains homologous to PGC-1α (Fig. 6) and functional studies indicated that it is 

able to regulate mitochondrial function in a manner similar to PGC-1α. PRC interacts directly with 

NRF-1, promoting its activation, and furthermore it can activates the transcription of cyt c, a NRF-1 



target, through the cooperation with others factors including CREB. Although PRC shares similar 

features with PGC-1α, it presents also some differences: it is ubiquitously expressed, is only slightly 

induced in response to cold exposure and is cell-cycle-regulated  (Andersson and Scarpulla, 2001). 

The third member of the family, PGC-1β, was also identified through database searching and it 

shows a greater degree of homology to PGC-1α than PRC (Fig. 6). The expression pattern of PGC-

1β is very similar to that of PGC-1α, being enriched in heart and brown adipose tissue. This 

coactivator is induced by fasting, but not in response to cold exposure and is able to coordinate 

mitochondrial biogenesis inducing NRF-1 target genes (Kressler et al., 2002; Lin et al., 2002a).   

 

Nuclear respiratory factors (NRF-1 and NRF-2) 

NRF-1 is a transcription factor that recognizes directly a palindromic sequence (5’-

YGCGCAYGCGCR-3’) in the promoter of several nuclear encoded mitochondrial genes (Chau et 

al., 1992; Evans and Scarpulla, 1990). This transcription factor binds the recognition site as an 

homodimer and is a protein of 503 amino acids, with a N-terminal Ser-phosphorylation domain, a 

central DNA binding domain and a C-terminal transactivation domain (Scarpulla, 2008).  

NRF-1 has been associated with the expression of many genes required for mitochondrial 

respiratory function, including the vast majority of nuclear genes that encode subunits of the five 

OXPHOS complexes. Moreover, there are several evidences supporting the idea that NRF-1 could 

be an integrative factor that coordinates respiratory subunit expression with the mitochondrial 

transcriptional machinery.  NRF-1 binds and activates not only the promoters of Tfam and TFB, but 

also genes of the respiratory chain complexes, heme biosynthesis, and mitochondrial 

transmembrane transporters (Scarpulla, 2008). 

Human NRF-2 is composed of five subunits, a DNA-binding α subunit and four others accessory 

subunits (β1, β2, γ1 and γ2) that form a complex with α subunit do not bind DNA alone. All the 

accessory subunits contain a transcriptional activation domain. NRF-2 binding sites contain the 

GGAA core motif, found in many mitochondrial genes promoters, such as all 10 nuclear encoded 

cytochrome oxidase subunits, Tfam, the two isoforms of TFB and three subunits of SDH 

(Scarpulla, 2008; Larsson et al., 1998; Rantanen et al., 2001; Falkenberg et al., 2002). 

 

 

Mitochondrial network morphology and dynamics 

Mitochondria are dynamic organelles able to change number and shape in living cells during 

development, mitosis, and in response to physiological or toxic conditions (Johnson and Asbury, 

1980; Catlett and Weisman, 2000; Malka et al., 2005). In many eukaryotic cell types, mitochondria 



continuously move along cytoskeletal tracks and frequently fuse and divide. The antagonistic and 

balanced activities  of the fusion and fission machineries shape the mitochondrial compartment, 

allowing the cell to respond to its ever-changing physiological conditions (Westermann, 2010).  

A shift toward fusion enables the cell to build an extended and interconnected mitochondrial 

network, whereas a shift toward fission generates many distinct organelles (Fig. 8). The large 

mitochondrial network generated by fusion is beneficial in metabolically active cells, in which it 

avoids the dissipation of energy (Skulachev, 2001). Furthermore, the connectivity of the 

mitochondrial network is an important factor that determines the cellular response to calcium 

signals (Szabadkai et al., 2006), and fusion of mitochondria is an essential step in certain 

developmental processes such as embryonic development (Chen et al., 2003) and spermatogenesis 

(Hales and Fuller, 1997). Loss of fusion has been linked to reduced respiratory activity, embryonic 

lethality, apoptosis and neurodegeneration (Okamoto and Shaw, 2005; Detmer and Chan, 2007; 

Suen et al., 2008).  

Moreover fusion is postulated to promote a protective biological function by allowing the exchange 

of mitochondrial contents, an activity that is thought to be a defence mechanism against aging 

(Chen and Chan, 2006; Chan, 2007). 

In quiescent cells mitochondria are usually present like numerous small spheres or short rods 

(Collins et al., 2002). Mitochondrial fission also plays a key role in cell life and death. Since growth 

and division of pre-existing organelles propagate mitochondria, mitochondrial inheritance depends 

on mitochondrial fission during cytokinesis. The mitochondrial fission machinery actively 

participates in the programmed cell death pathway (apoptosis) by inducing fragmentation of the 

mitochondrial network before the release of cyt c and caspase activation  (Youle and Karbowski, 

2008). 

 



 

 

Figure 8 – Mitochondrial network morphology. (Chen and Chan, Hum. Molec. Gen., 2005) 
Wild-type (Wt) mouse fibroblasts have tubular mitochondria. Inhibition of fusion (left panels) by deletion of both Mfn1 
and Mfn2 (Mfn null) or knock-down of OPA1 (OPA1-RNAi) causes mitochondrial fragmentation. Inhibition of fission 
(right panels) by knock-down of Drp1 (Drp–RNAi) causes excessively elongated and interconnected mitochondria that 
often collapse into perinuclear aggregates (bottom right).  
  
 
Furthermore, fission following selective fusion generates a subpopulation of non-fusing 

mitochondria with reduced membrane potential, to facilitate their removal by autophagy (Twig et 

al., 2008).  

Although most of the evolutionarily conserved core components of the mitochondrial fusion and 

fission systems have been described in the past 15 years (Fig. 9), the number of regulatory proteins 

of these processes is steadily increasing. 



 

 

Figure 9 – Structures of mitochondrial fusion and fission components in yeast and human (Westermann, . Nat Rev 
Mol Cell Biol. 2010). 
 

 

Mitochondrial fusion machinery 

The first step in cellular membrane fusion events is the formation of trans complexes involving 

proteins on the surface of both fusion partners. The first mediator of mitochondrial fusion identified 

was the Drosophila Melanogaster Fuzzy onions protein (Fzo 1), an evolutionarily conserved, large 

transmembrane GTPase localized in the mitochondrial OM (Hales and Fuller, 1997). This protein 

is the founding member of a conserved protein family, the mitofusins, that has members in yeast, 

worms and mammals (Rapaport et al., 1998; Hermann et al., 1998; Kanazawa et al., 2008; Santel 

and Fuller, 2001). Mammals have two mitofusin isoforms, MFN1 and MFN2, showing high 

homology (81%) and similar topologies, both residing in the OM (Santel and Fuller, 2001; Rojo et 

al., 2002; Chen et al., 2003). These proteins contain two transmembrane regions in the OM, with a 

short loop in the intermembrane space and the major parts of the protein facing the cytosol (Rojo et 

al., 2002; Fritz et al., 2001) (Fig. 9). Recent results provide clear evidences that mitofusins act 

early, in the initial step of fusion and are essential for OM fusion (Song et al., 2009). Deletions of 

either Mfn1 or Mfn2 results in mitochondrial fragmentation and poor mitochondrial function (Chen 



et al., 2005). However, MFN2 seems to have a different role from MFN1. First, it has been shown 

that MFN1 has a higher GTPase activity than MFN2, although its affinity for GTP is lower; thus, 

MFN1 exhibits a higher capacity to induce fusion (Ishihara et al., 2004). Moreover, MFN2 has also 

other functions, such as control of mitochondrial metabolism (Bach et al., 2003) and tethering of 

mitochondria to the ER (de Brito and Scorrano, 2008). 

Mgm1 is a dynamin-related large GTPase that is essential for IM fusion in yeast (Meeusen et al., 

2006). The mammalian orthologue, optic atrophy protein 1 (OPA1), and related proteins in worms 

and flies have also been shown to be required for mitochondrial fusion (Cipolat, 2004; Yaroshi, 

2008). Mgm1 and OPA1 display a sequence identity of approximately 20% and maintain a highly 

conserve secondary structure , consisting of a N-terminal mitochondrial target sequence (MTS) 

composed of positively charged amino acids resuides, two consecutive hydrophobic segments, a 

GTPase domain, a middle domain, and a C-terminal coiled-coil domain, corresponding to GTPase 

effector domain (GED) (Fig. 9) (Satoh et al., 2003).  

OPA1 is present in eight isoforms that are generated by alternative splicing of exons 4, 4b and 5b, 

that might be present or absent (Olichon et al., 2007a). Precursors translated from the OPA1 

mRNAs are targeted to mitochondria via their MTS, which is removed upon import by the 

mitochondrial processing peptidase (MPP) to give rise to long isoforms (l-OPA1) (Olichon et al., 

2002; Satoh et al., 2003).  Each l-OPA1 isoform is then subjected to a limited proteolysis 

generating one or two short isoforms (s-OPA1) (Ishihara et al., 2006; Song et al., 2007). Both short 

and long isoforms of OPA1are associated to mitochondrial membranes, and it is proposed that l-

OPA1 is anchored to the IM while s-OPA1 is peripherally attached to the IM, a fraction of it having 

the possibility to diffuse in the IMS and to associate to OM (Olichon et al., 2002; Griparic et al., 

2004; Satoh et al., 2003; Cipolat et al., 2006). To date, two cleavage sites have been identified in 

the primary sequence of OPA1, S1 and S2, located respectively in exon 5 and 5b (Ishihara et al., 

2006; Song et al., 2007). Isoforms containing exon 4b are totally processed in s-OPA1 (Song et al., 

2007), but the cleveage site has not been identified yet. 

 Several proteases have been implicated in processing of mammalian OPA1, including the 

rhomboid-related protease presenilins-associated rhomboid-like (PARL) (Cipolat et at, 2006), AAA 

proteases in the matrix and in the inner membrane space (Griparic et al, 2007; Ishihara et al., 2006; 

Song et al., 2007; Ehses et al., 2009) and the inner membrane peptidase OMA1 (Ehses et al., 2009; 

Head et al., 2009).  

Loss of function of OPA1 by RNAi or gene knockout causes fragmentation of the tubular 

mitochondrial reticulum (Griparic et al., 2004; Olichon et al., 2003; Song et al., 2009). Conversely, 

overproduction of this protein promotes mitochondrial elongation in cells where mitochondria are 



punctuated (Olichon et al., 2002; Cipolat et al., 2004). Surprisingly, over-expression of the 

dynamin in cells with tubular mitochondria causes mitochondrial fragmentation (Griparic et al., 

2004). The profusion activity of OPA1 is further confirmed by experiments showing that 

mitochondrial fusion is impaired in OPA1-depleted or Opa1−/− cells (Song et al., 2007; Song et al., 

2009; Cipolat et al., 2004). Interestingly, the levels of OPA1 can differentially influence two types 

of fusion: a “transient fusion”, also called “kiss and run” events, that result in rapid exchange of 

soluble components without affecting the morphology of mitochondria, and a “complete fusion” 

that permits the exchange of all mitochondrial components and affect mitochondrial morphology 

(Liu et al., 2009). 

In addition to its role in mitochondrial fusion, OPA1 is also important for maintaining normal 

cristae structure; this was proved by the fact that cultured mammalian cells lacking OPA1 have 

highly disorganized IM structures (Grisparic et al., 2004; Olichon et al., 2002).  

OPA1 has been proposed to protect cells from apoptosis by restricting the diameter of cristae 

junctions and thereby preventing cytochrome c release. This protective effect of OPA1 expression 

occurs even in Mfn1 and Mfn2 double-null cells, suggesting that it is independent of mitochondrial 

fusion (Frezza et al., 2006). The anti-apoptotic effect of OPA1 has also been linked to the 

proteolytic activity of PARL. The s-OPA1 soluble form present in the IMS is reduced in PARL-

deficient cells. Oligomers of OPA1 include this soluble form, and such oligomers have been 

proposed to act with membrane-bound OPA1 to close cristae junctions (Cipolat et al., 2006).  

Since mitochondrial fusion is thought to be important for mitochondrial function by allowing the 

exchange of intra-mitochondrial content, and considering that OPA1 is the fifth gene associated 

with mtDNA “breakage syndrome” together with ANT1, Twinkle, PolG1-2, and TYMP 

(Spinazzola and Zeviani, 2009), a role of OPA1 in mtDNA stability has been proposed. This 

hypothesis has been recently confirmed in a study that associates OPA1-containing exon 4b 

isoforms with the mtDNA maintenance, regulating replication and distribution of the genome 

(Elachouri et al., 2011). 

Thus, OPA1 functions are schematically summerized in figure 10. 

 

 

 



 

 

Figure 10 – Mitochondrial functions of OPA1 (Landes et al., Semin Cell Dev Biol. 2010) 
 
 
 
 
Mitochondrial fission machinery 

A dynamin-related protein, termed Dnm1 in yeast and dynamin-related protein 1 (DRP1) in 

mammals, is the master regulator of mitochondrial division in most eukaryotic organisms 

(Westermann et al., 2010). DRP1 is a soluble protein containing a dynamin-like central domain, a 

C-terminal GED domain involved in self-assembly and a N-terminal GTPase domain; an additional 

alternative splicing site is present between the middle domain and the GED domain, producing a 

brain-specific DRP1 isoform (Fig. 9) (Smirnova et al., 1998). DRP1 is mostly located in the 

cytosol, but a part is visible as spots on mitochondrial tubules and a subset of these spots mark a 

future site of fission (Labrousse et al., 1999; Smirnova et al., 2001). It has been proposed that 

DRP1 couples GTP hydrolysis with mitochondrial membrane constriction and fission (Zhang and 

Hinshaw, 2001; Smirnova et al., 2001). Cells lacking DRP1 contain highly interconnected 

mitochondrial nets that are formed by ongoing fusion in the absence of fission activity (Smirnova et 

al., 1998). 

FIS1, the second component required for mitochondrial fission, is a small tail-anchored protein in 

the OM. Its N-terminal domain faces the cytosol, where it forms a six-helix bundle with tandem 

tetratricopeptide repeat motifs (TPR) that, in yeast,  provide an interface for interaction with the 

adaptor protein Mdv1 (mitochondrial division protein 1) (Fig. 9) (Zhang and Chan, 2007). The C-

terminal of FIS1 has a predicted TM domain and a short stretch of aminoacids facing the IMS. FIS1 

is predicted to recruit DRP1 to punctuate structures on mitochondria during mitochondrial fission 

(Yoon et al., 2003). Overexpression of FIS1 leads to mitochondrial fragmentation that is dependent 



on DRP1 (James et al., 2003; Yoon et al., 2003). Knockdown of FIS1 cause elongation of 

mitochondrial tubules (Lee et al., 2004). 

The precise mechanism of OM fission in mammals has not been elucidated yet. Conversely, in 

yeast it is well characterized and the core machinery consists in four proteins: Fis1 in the OM and 

three cytosolic proteins (Dnm1, Mdv1 and Caf4) (Fig. 9). Fis1 functions as a membrane receptor, 

whereas Mdv1 and Caf4 serve as adaptor proteins to recruit Dnm1 (Karren et al., 2005; Griffin et 

al., 2005). In mammals the hortologues for Mdv1 and Caf4 have not been identified. 

Only little is known about division of the mitochondrial inner membrane. Two components have 

been proposed to contribute to IM fission: Mdm33 in yeast and MTP18 in mammals. Mdm33 is a 

mitochondrial IM protein exposing extensive coiled-coil domain in the matrix. Over-expression of 

Mdm33 induces vesciculation of the IM, possibly due to enhanced IM fission activity, whereas 

mutants lacking Mdm33 contain giant ring-shaped mitochondria (Messerschimitt et al., 2003).  

MTP18 is an unrelated protein in the IM of mammalian mitochondria. Over-expression of MTP18 

induces fragmentation of the mitochondrial network, whereas depletion results in formation of 

highly fused mitochondria (Tondera et al., 2005). However, it is presently difficult to prove a direct 

role of Mdm33 and MTP18 in inner membrane division. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mitochondrial disorders 

 

The first pathogenic mtDNA point mutation was discovered in 1988 in association with Leber’s  

hereditary optic neuropathy (LHON) (Wallace, 1988); in the same year mtDNA deletions were 

found in patients affected by mitochondrial myopathies (Holt et al., 1988). After these reports, 

numerous mtDNA mutations were associated with several maternally inherited and sporadic 

disorders, most of them affecting the central and peripheral nervous system, as well as skeletal and 

cardiac muscle (Fig. 11). 

The genetic classification of the primary mitochondrial diseases distinguishes disorders due to 

defects of mtDNA, inherited according to the rules of mitochondrial genetic, from those due to 

nDNA mutations or rearrangements in genes encoding mitochondrial proteins and transmitted by 

mendelian inheritance (DiMauro and Schon, 2003). Moreover, mitochondrial diseases can also be 

divided in those affecting the OXPHOS function (mitochondrial encephalomyopathies) and those 

affecting mitochondrial dynamics. In the last years, a mitochondrial involvement has also been 

proposed for some neurodegenerative disease, such as Parkinson and Alzheimer disease (DiMauro 

and Schon, 2008).    

Mitochondrial disorders due to mtDNA defects show peculiar characteristics, such as genetic and 

phenotypic heterogeneity (Filosto and Mancuso, 2007), the maternal inheritance, the threshold 

effect, variable penetrance and different clinical expression and severity also within the same 

family. Moreover, it has been shown that mitochondrial haplogroups may modulate the OXPHOS 

and the complex I assembly, being predisposing or protective to or from certain disorders (Hudson 

et al., 2007; Pello et al., 2008).  

The most frequent rearrangements of mtDNA are deletions, even if duplications can also occur. 

Multiple deletions are caused by defects in nuclear genes encoding enzymes involved in mtDNA 

maintenance and nucleotide metabolism, whereas single deletions are usually sporadic (DiMauro 

and Schon, 2008). The main syndromes associated with single sporadic deletions are Kearns-Sayre 

Syndrome (KSS), Pearson marrow-pancreas Syndrome (PS) and some forms of Chronic 

Progressive External Opthalmoplegia (CPEO).  

Mitochondrial depletion syndromes are recessive diseases with various phenotypical expression, 

caused by mutations in several nuclear genes (DiMauro and Schon, 2008) The two major 

syndromes are hepatocerebral syndrome (mutations in POLG1, DGUOK, MPV17) (Spinazzola and 

Zeviani, 2008; Spinazzola et al., 2006) and pure myopathic syndromes (mutations in TK2, 

SUCLA2 and RRM2B) (Elpeleg et al., 2005; Bourdon et al., 2007).  

 



 

 
Figure 11 – Pathogenic mutations in human mtDNA (DiMauro and Schon, N Engl J Med. 2003) 

 

 

Mitochondrial DNA is also a hot spot for pathogenic point mutations. These defects can involve 

tRNA genes leading to MELAS (Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-

like episodes) and MERFF (Myoclonus, Epilepsy and Ragged-Red Fibers), or structural 

mitochondrial genes leading to LHON (Leber’s Hereditary Optic Neuropathy), NARP (Neuropathy, 

ataxia, retinitis pigmentosa) and MILS (Maternally Inherited Leigh Syndrome).  

Mitochondrial DNA deletions, depletion and point mutations can also occur all together in the 

complex syndrome MNGIE (Mitochondrial NeuroGastroIntestinal Encephalomyopathy), a disorder 

caused by mutations in the gene TP, encoding the enzyme thymidine phosphorylase (Nishino et al., 

1999; Hirano et al, 2004). 

Lastly, disorders involving mitochondrial network dynamics are ADOA (Autosomal Dominant 

Optic Atrophy), due to mutations in the nuclear gene OPA1, and  CMT-2A (Charcot- Marie- Tooth 



Type 2A), caused by mutations in the MFN2 gene. Recently, a defect in DRP-1 gene has been 

reported in a severe infantile encephalopathy (Waterham et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Inherited mitochondrial optic neuropathies 

 

Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are 

the two most common inherited optic neuropathies and both are the result of mitochondrial 

dysfunctions.  

Despite the primary mutations causing these disorders are different, being an mtDNA mutation in 

subunits of complex I in LHON and defects in the nuclear gene encoding the mitochondrial protein 

OPA1 in ADOA, both pathologies share some peculiar features: 

• A variable penetrance modulated by both genetic and environmental factors, leading to a 

inter and intra-familial phenotypical heterogeneity   

• The tissue-specificity of the pathological mechanism, involving a highly specialised group 

of cells within the retina: the retinal ganglion cells (RGCs), whose axons compose the optic 

nerve. 

These features have not been completely explained yet, but their elucidation represent a prerequisite 

for the development of effective therapeutic strategies, which are currently limited (Yu-Wai-Man et 

al., 2009).  

 

Leber’s hereditary optic neuropathy (LHON) 

LHON is a maternally inherited disease characterized by severe loss of central vision, affecting 

predominantly young males. It was first described by Leber in 1871 (Leber, 1871), but only in 1988 

Wallace and colleagues discovered that the causative mutation was in the mtDNA (Wallace et al., 

1988). LHON is now recognized as the most frequent mitochondrial disease (Man et al., 2003a). 

 

Clinical features 

LHON patients present rapid and painless loss of central vision in one or both eyes, accompanied 

by dyschromatopsia. The second eye is usually involved in a short time laps (Newman, 1998; 

Carelli et al., 2009). Visual acuity reaches stable values at or below 20/200 within a few months, 

and the visual field defect involves the central vision in the form of a large centro-cecal absolute 

scotoma. Fundus examination during the acute/subacute stage reveals circumpapillary telangiectatic 

microangiopathy, swelling of the nerve fiber layer around the disc (pseudoedema), and absence of 

leakage on fluorescein angiography (Nikoskelainen et al, 2003; Nikoskelainen et al., 1984). 

Microangiopathy and fundus changes may be present in asymptomatic maternal family members 

(Nikoskelainen et al., 1982). In the acute phase, axonal loss in the papillomacular bundle leads to 



temporal atrophy of the optic nerve, and the endpoint of the disease is generally a full optic atrophy 

with permanent severe loss of central vision but with relative preservation of pupillary light 

responses. Spontaneous recovery of visual acuity may infrequently occur even years after the onset, 

and the most favourable prognostic factors are young age of onset and the 14484/ND6 mutation 

(Carelli et al., 2004).  

The optic nerve morphology may have a protective role in the development and prognosis of 

LHON. A recent study demonstrated that LHON carriers (harbouring the mutation, but unaffected) 

display a larger optic disc area and a higher vertical disc diameter, compared to controls and 

affected LHON. Furthermore, among the LHON-affected, larger discs were correlated with visual 

recovery and better visual outcome (Ramos Cdo et al., 2009). 

Even if LHON is a monosymptomatic disorder, a subset of patients show a syndromic form of optic 

atrophy frequently referred as “Leber’s plus” (Nikoskelainen et al., 1995), which may include 

central nervous system involvement and movement disorders frequently associated with basal 

ganglia lesions, Leigh-like syndrome, cerebellar atrophy, migraine, epilepsy and peripheral 

neuropathy, and also cardiac involvement with conduction abnormalities or skeletal deformities 

(Larson et al., 1991; Funalot et al., 2002; Funakawa et al., 1995; Cupini et al., 2003; 

Nikoskelainen et al., 1985). The occurrence of “Leber plus” has been related to specific mtDNA 

mutations, different from the primary LHON mutation, or to the presence of a LHON primary 

mutation together with other putative pathogenic changes, multiple pathogenic mutations and the 

co-occurrence of two primary LHON mutations (Howell et al., 1991; De Vries et al., 1995; Howell 

et al., 2002). 

Histopathologic description of LHON patients have demonstrated a very selective loss of a single 

cell type, the RGCs, and their axons, which constitute the retinal nerve fiber layer (RNFL) and optic 

nerve (Sadun et al., 2000). Mitochondria accumulate in the RNFL, especially in the unmyelinated 

portion anterior to the lamina cribrosa, representing the area with the greatest energy requirements 

(Carelli et al., 2004). The high energy demand of the unmyelinated RNFL may explain why the 

optic nerve is the target tissue in LHON (Sadun et al., 2000).  

 

Genetics 

LHON is transmitted with a maternal pattern of inheritance, indicative of mutations in the mtDNA. 

The most common pathogenic point mutations are 11778/ND4, 3460/ND1 and 14484/ND6, 

characterizing about 90% of LHON cases; several rare but truly pathogenic mutations of mtDNA 

have been identified, all affecting subunits of complex I (Carelli et al., 2004; Yu-Wai-Man et al., 

2009).  



Incomplete penetrance in homoplasmic LHON maternal lineages and male prevalence among the 

affected individuals are still poorly understood features. In the last years, the importance of the 

mtDNA background has been fully recognized. It has been definitely demonstrated that two 

subclades of haplogroup J (J1c and J2b) are relevant to increase the penetrance of the 11778/ND4 

and 14484/ND6 mutations, whereas the haplogroup K results associated with the 3460/ND1 

mutation (Hudson et al., 2007). Moreover, some “private” non –synonymous changes in mtDNA 

may modify the clinical expression of LHON (La Morgia et al., 2008).  

Apart from the role of the mtDNA background, the existence of other genetic determinants, such as 

nuclear modifying genes, has been suggested and widely debated (Bu and Rotter, 1991, Giordano et 

al., 2011).  

Chromosome X has been extensively investigated and recently two loci have been identified 

(Hudson et al., 2005; Shankar et al., 2008). However, to date no significant genetic variants 

associated with LHON were reported by several approaches, such as direct sequencing of candidate 

genes in the X-linked loci or studies on the X-inactivation pattern in affected females (Chen et al., 

1989; Carvalho et al., 1992; Chalmers et al., 1996b; Pegoraro et al., 1996; Oostra et al., 1996; 

Pegoraro et al., 2003).  

Recently, it has been demonstrated in vitro a protective role of 17-β-estradiol in cells harbouring the 

three primary LHON mutations, proposing a metabolic basis for the unexplained male prevalence in 

LHON (Giordano et al., 2011).  

A recent genome-wide linkage scan of LHON families of Asian ancestry suggested the existence of 

multiple loci, with the strongest association with two SNPs in the PARL gene encoding for a 

mitochondrial protease (Phasukkijwatana et al., 2010). The association between these two variants 

in PARL gene and LHON has not been confirmed by a following study in a cohort of Chinese 

LHON patients (Zhang et al., 2010).  

Several studies reported the exclusion of single polymorphic variants in candidate modifying genes 

for LHON, including debrisoquine hydroxilase (Chalmers et al., 1996a), NDUFA1 (Man et al., 

2002), NDUFB11 (Petruzzella et al., 2007), APOE (Man et al., 2003b), MTHFR (Hudson et al., 

2009), whereas two polymorphic variants in the TP53 and EPHX1 genes were associated with age 

at onset in a Japanese study (Ishikawa et al., 2005). 

Lastly, also the exposure to certain environmental factors may influence LHON penetrance, 

triggering the pathological features in previously unaffected mutation carriers. These factors include 

not only tobacco smoking and alcohol consumption, but also exposure ti n-hexane and other 

solvents, head trauma, non-controlled diabetes, ethambutol and antiretroviral therapy in HIV 

patients (Carelli et al., 2009).  



 

Biochemistry 

Primary LHON mutations generally induce moderate changes in the catalytic function of complex I, 

with the only exception of 3460/ND1 mutation, the most severe, which has been shown to decrease 

the electron transport activity of complex I (Majander et al., 1991; Carelli et al., 1997). Moreover, 

the three common LHON mutations decrease the sensitivity to rotenone, a powerful complex I 

inhibitor, and the 14484/ND6 and 3460/ND1 mutations induce an increase sensitivity of complex I 

to myxothiazol and nonyl-benzoquinol (Carelli et al., 1999; Majander et al., 1996), suggesting that 

the LHON mutations may influence the interaction between complex I and ubiquinone (Degli 

Esposti et al., 1994). 

Several biochemical studies have been carried out on cellular models, including primary cultured 

cells and transmitochondrial cytoplasmic hybrids (cybrids). Cybrids are generated from human 

immortalized cell lines, lacking their own mtDNA (Rho0 cells), and repopulated with mitochondria 

from patients, harbouring mtDNA mutations (King and Attardi, 1989). This cell model is used to 

study the pathological features of the mtDNA mutations, without the influence of the nuclear 

background of the patients.  

The main consequences of the complex I activity defect are a decrease of net energy production and 

a chronic increase of oxidative stress.  

The amount of ATP produced by complex I is consistently decreased in the presence of all three 

common LHON mutations, even if cells may compensate this energy reduction by alternative 

pathways, such as glycolysis and complex II/glycerol 3-phosphate dehydrogenase (Baracca et al., 

2005). These results fit with the 31P magnetic resonance spectroscopy (MRS), indicating a defective 

ATP synthesis in skeletal muscle and brain (Lodi et al., 1997; Lodi et al., 2002). 

A significant increase in ROS production and glutathione depletion have been observed in NT2 

neuronal differentiated LHON cybrids carrying the 11778/ND4 and 3460/ND1 mutations and in 

osteosarcoma cybrids (Wong et al., 2002; Schoeler et al., 2007).  

Growing LHON cybrids in a glucose free/galactose medium, which forces cells to relay on 

oxidative metabolism, causes cell death characterized by the typical apoptotic hallmarks, including 

changes in nuclear morphology, chromatin condensation and fragmentation of chromosomal DNA 

(Ghelli et al., 2003). The apoptotic process under this condition is caspase-indipendent and involves 

AIF and EndoG (Zanna et al., 2003; Zanna et al., 2005). Moreover, an increased sensitivity to cell 

death was also reported in LHON cybrids after treatment with Fas, a well-known activator of the 

extrinsic apoptotic pathway (Danielson et al., 2002). 



Only recently it has been demonstrated that, even if the LHON mutations do not affect the steady 

state levels of respiratory chain complexes, an accumulation of low molecular weight subcomplexes 

is evident in LHON cybrids. Moreover, LHON mutants belonging to different haplogroups shows a 

differentially delayed assembly rates of complexes I, III and IV, revealing that specific mtDNA 

polymorphisms may modify the pathogenic potential of LHON mutations (Pello et al., 2008). 

 

Therapy and experimental treatments 

Many treatments has been proposed for LHON, such as vitamins, cofactors, steroids and surgical 

treatment, but none of these resulted effective (Carelli et al., 2004; Carelli et al., 2006). The 

clinical trial with a neuroprotective agent, the brimonidine, during the acute phase of LHON, failed 

to avoid the involvement of the second eye, during the disease progression (Newman et al., 2005). 

A partial improvement of visual recovery and neurological symptoms have been described with 

idebenone treatment, a coenzyme Q analogue (Mashima et al., 2002; Mashima et al., 2000). 

 The induced expression of corrected mitochondrial genes by the nucleus and targeted to 

mitochondria (allotopic expression) has been used to rescue the biochemical defect, due to 

mutations 8993 in ATPase 6 gene (NARP/MILS) and 11778 in ND4 gene (LHON) (Manfredi et al., 

2002; Guy et al., 2002). However, the use of this approach is still controversial, especially because 

of the lacking of complete and long-lasting rescue (Oca-Cossio et al., 2003; Bokori-Brown and 

Holt, 2006). Recently, the allotopic expression has been optimized and the approach for 

mitochondrial genes ATPase6, ND1 and ND4 has been developed, obtaining a complete restoration 

of mitochondrial activity in mutated human fibroblasts (Bonnet et al., 2007; Bonnet et al., 2008). 

The same authors also demonstrated that the allotopic expression of the human mitochondrial ND4 

prevents blindness in a LHON rat model. The LHON 11778/ND4 mutation was introduced in rat 

eyes in vivo by electroporation causing the RGCs degeneration. Subsequent electroporation with 

the wild-type ND4 gene prevented the degeneration and the impairment of visual function (Ellouze 

et al., 2008). Another similar approach, consists to complement the mitochondrial defect through 

the expression of a transgene with ND subunits from other species. This approach has been applied 

on human cybrids bearing the 11778/ND4 mutation, using the nuclear protein Ndi1, a rotenone 

sensitive NADHquinone oxidoreductase, from S.cerevisiae (Park et al., 2008). Mutant cells 

expressing Ndi1 show a recovery in complex I specific activity and in complex I driven respiration, 

a partial increase in ATP synthesis, a decrease in ROS production and are able to grow in galactose 

medium (Park et al., 2008). 

 The biochemical phenotype of LHON mutations includes an increase of cellular oxidative stress, 

due to the “electron leaking” of impaired complex I. Different strategies have been tested in order to 



reduce the chronic oxidative condition. Ghelli et al. in 2008 demonstrated that exogenous 

glutathione is the only one, in an variety of antioxidant and antiapoptotic compounds, able to reduce 

the cell death induced by the exposure of LHON cybrids to oxidative stress (Ghelli et al., 2008). 

Moreover, the overexpression of human MnSOD is able to rescue the apoptotic cell death induced 

by galactose medium in mutant cells 11778/ND4 (Qi et al., 2007). 

 

 

Autosomal Dominant Optic Atrophy (ADOA) 

ADOA was first described in one British family by Batten in 1896; the phenotype was further 

clarified by Kjer in 1959, but only in 2000 two side by side studies identified mutations in the 

OPA1 gene in patients affecting by DOA (Alexander et al., 2000; Delettre et al., 2000).  The 

prevalence of DOA is not well established, but a frequency of 1:50000 is often reported in the 

literature (Lyle, 1990). 

 

Clinical features  

DOA is characterized by a slowly progressive bilateral loss of central vision starting in childhood 

and variably progressing in adult life (Carelli et al., 2009; Yu-Wai-Man et al., 2011).  

The disease is highly variable in clinical expression and shows incomplete penetrance in some 

families (Hoyt, 1980; Johnston et al., 1999; Votruba et al., 1998). Visual impairment is usually 

moderate (6/10 to 2/10), but ranges from mild or even insignificant to severe (legal blindness). 

Patient examination demonstrates centrocecal scotomas and impairment of colours vision and 

temporal pallor of the optic disc. The endpoint is similar to that in LHON, beginning with the 

predominant involvement of the papillomacular bundle (Carelli et al., 2009). 

The predominant colour defect in DOA is a generalize dyschromatopsia, involving both the blue-

yellow and red-green axes, with a minority of patients having pure tritanopia (Berninger et al., 

1991). 

Postmortem studies of two patients with DOA identified similar histopathological changes, with 

diffuse atrophy of the RGC layer, loss of myelin and fibrillary gliosis along the anterioe visual 

pathways extending to the lateral geniculate body (Johnston et al., 1979; Kjer et al., 1983). MRI 

data from patients also confirmed significant tissue loss and thinning of the optic nerve along its 

entire length (Votruba et al, 2000). Although less pronounced, the underlying ocular pathology in 

DOA is therefore remarkably similar to LHON, with the primary loss of RGCs leading to ascending 

optic atrophy.  



Patients with mutations in OPA1 gene and DOA show a significantly smaller optic disc size 

compared to controls, suggesting a role of OPA1 in shaping the conformation of the optic nerve 

head in DOA patients (Barboni et al., 2010). Overall, similar to LHON, the optic disc size may be 

involved in the pathological mechanism of the disease (Ramos Cdo et al., 2009). 

Most of the patients affected by DOA have no additional neurologic deficits; however, 

sensorineural hearing loss is not uncommon, and tends to cluster within the families. The hearing 

loss ranges from severe and congenital to subclinical. In most cases it is unclear whether these 

pedigrees represent a phenotypic variant of DOA, a genetically distinct disorder or a genetically 

heterogeneous group of disorders with a similar phenotype (Amati-Bonneau et al., 2005). In patients 

showing a “DOA plus” phenotype, optic atrophy may be associated with additional severe 

phenotypes including neuromuscular involvement, such as sensorineural deafness, cerebellar ataxia, 

axonal sensory-motor polyneuropathy and mitochondrial myopathy frequently complicated by 

CPEO (Amati-Bonneau et al.,2008; Hudson et al., 2008). In these patients evidence of 

mitochondrial myopathy  was observed in muscle biopsies and correlated with accumulation of 

mtDNA multiple deletions (Amati-Bonneau et al., 2008). 

Recently, a form of DOA and premature cataract (ADOAC) has been associated to pathogenic 

mutations of the OPA3 gene, encoding a mitochondrial protein (Reynier et al., 2004). 

 

Genetics 

Mutations in OPA1 are causative for ~ 60% of DOA cases; interestingly, a recent report suggested 

that large scale rearrangements of entire OPA1 coding regions could account for up to 20% of all 

OPA1 negative cases (Fuhrmann et al., 2009). The causative nuclear defects in the remaining 

families with DOA have not yet been identified, but a small number of families have been mapped 

to other chromosomal loci (OPA3, OPA4, OPA5, OPA7, OPA8) (Yu-Wai-Man et al., 2011; Carelli 

et al., 2011), of which only OPA3 gene has been characterised (Reynier et al., 2004). 

Over 200 pathogenic mutations have been identified and most of it localised in two specific regions: 

the GTPase region and the C-terminus, which is the proposed site of the GTPase effector domain.  

At the protein level the 40% of the OPA1 mutations results in premature translation termination, 

supporting haploinsufficiency as the pathogenic mechanism, 27% are in frame splice variants, and 

6% are deletions or duplications (eOPA1 database at http://lbbma.univ-angers.fr/lbbma.php?id=9). 

To date , no mutations have been found in exon 4 and 4b, which are alternatively spliced.  

In addition to haploinsufficiency, some data indicate that DOA can also develop as a consequence 

of a dominant negative mechanism. In support of this idea, several missense OPA1 mutations that 

ablate the consensus elements for GTP-binding have been reported (G300E, G401D, K468E, 



D470G), and GTPase mutants of OPA1 show a dominant effect in the presence of the wild-type 

protein. The dominant negative effect is due to the capacity of mutant OPA1 to oligomerize with 

wild-type proteins and, in this way, interfere with GTPase activity (Amati-Bonneau et al., 2008; 

Ferraris et al., 2008; Hudson et al., 2008).  

 

Biochemistry and pathophysiology  

Altered maintenance of mitochondrial network is central to the pathophysiology in DOA and there 

is good experimental evidence to support a predominant complex I defect. Reduced mitochondrial 

membrane potential and ATP synthesis have been observed in cultured fibroblasts carrying 

pathogenic OPA1 mutations (Amati-Bonneau et al., 2005; Chevrollier et al., 2008). Moreover, in 

vivo impairment of oxidative metabolism was evident in skeletal muscle of DOA patients using 31P-

MRS (Lodi et al., 2011). 

Another link between OPA1 mutations and the defective mitochondrial respiratory chain in DOA is 

provided by immunoprecipitation studies, that demonstrated a direct interaction of OPA1 with 

complexes I, II and III and a role of OPA1 has been proposed in the assembly and stabilisation of 

supercomplexes (Zanna et al., 2008).  

Mutations in OPA1 have obvious consequences in the mitochondrial network morphology. 

Fibroblasts from DOA patients show either normal or fragmented mitochondrial networks in 

comparison with controls (Zanna et al., 2008; Chevrollier et al., 2008). Mitochondrial structural 

alterations have been frequently reported in fibroblasts (Amati-Bonneau et al., 2005; Olichon et al., 

2007b; Zanna et al., 2008), in myotubes (Spinazzi et al., 2008), in skeletal muscle from DOA 

patients (Amati-Bonneau et al., 2008) as well as in OPA1 mouse models (Alavi et al., 2007; Davies 

et al., 2007). In one study a specific OPA1 mutation has  been implicated in altered fusion activity 

without affecting bioenergetics or increasing sensitivity to apoptosis. Thus, in this case, pro-fusion 

activity of OPA1 per se seemed most relevant in DOA pathogenesis (Spinazzi et al., 2008).  

 

Therapy 

There is no effective therapy at this moment for these patients. Open trials with idebenone are under 

way, showing preliminary encouraging results (recovery of visual acuity) (Carelli, unpublished 

results). 

 

Autosomal Optic Atrophy plus Cataract (ADOAC) and OPA3  

The OPA3 gene was originally identified in eight Iraqi Jewish families affected by Costeff 

syndrome: an autosomal recessive form of optic atrophy, associated with neurocognitive deficits, 



elevated urinary excretion of 3-methyl glutaconic acid, and increased plasma 3-methylglutaric acid 

levels (Costeff et al., 1989; Anikster et al., 2001; Kleta et al., 2002).  

Later, pathogenic dominant mutations in the OPA3 gene have also been identified in two French 

families in association with DOA and premature cataract  (ADOAC) (Reynier et al., 2004; Verny et 

al., 2005). 

Recently, a mutation in OPA3 gene has been associated with dilated cardiomyopathy in bovines, 

suggesting that this gene might also be responsible for some forms of familiar dilated 

cardiomyopathies in human (Owczarek-Lipska et al., 2011). 

OPA3 gene was mapped on chromosome 19 and consists of three exons; two transcript variants 

have been identified, deriving from alternative splicing of exon 2 and exon 3 (also named exon 2b) 

(Fig. 12) (Huizing et al.,  2010). The nucleotide sequences of exon 2 and exon 3, including their 

intron/exon boundaries, closely resemble each other (80% homology), suggesting a segmental 

duplication event. This hypothesis is supported by the presence of a transposon in OPA3 ~ 24kb 

upstream of exon 2 (Fig. 12). OPA3A variant (or OPA3V1) (ex1-ex2) is expressed and conserved 

from fungi to primates, whereas OPA3B (or OPA3V2) variant (ex1-ex3) seems to have arisen 

between fish and mammals (Huizing et al., 2010). 

OPA3A and OPA3B both localised in mitochondria, thanks to the presence of a mitochondrial 

targeting sequence (MTS) at the N-terminal (Da Cruz et al., 2003; Huizing et al., 2010; Ryu et al., 

2010), but it is still controversial their localisation within the organelle. The presence of a 

transmembrane domain in the protein structure, suggests that the protein is anchored to a 

membrane. A proteomic investigation indicated a location for the OPA3 protein in the inner 

membrane of rodent mitochondria suggesting that this also may apply to mammals (Da Cruz et al., 

2003), but a recent study also demonstrated that OPA3 is located in the outer mitochondrial 

membrane (Ryu et al., 2010). 

OPA3A and OPA3B contain respective C-terminal tripeptides SKK and SEK, that resemble the 

peroxisomal targeting signal type 1 (SKL), but the peroxisomal localisation has been excluded in 

cellular systems (Huizing et al., 2010). 

Despite the high percentage of homology between the two protein variants, OPA3B has a lower 

expression level than OPA3A, and may not yield a significant translation product in human cells, 

since OPA3B is not identified in proteomic database and no human disease has been associated 

with mutations in the OPA3B-specific exon 3. However OPA3B gene expression is significantly 

up-regulated in OPA3A deficient cells (3-MGCA type III fibroblasts), suggesting that the gain of 

expression of OPA3B may be important in the etiology of the disease (Huizing et al., 2010). 

 



 
Figure 12 – Human OPA3 gene structure. (Huizing et al., Mol Genet Metab. 2010)  

 

 

A mitochondrial coupling defect has been observed in fibroblasts from patients affected by 

ADOAC (313_C>G; Q105E), demonstrated by a lower respiratory capacity respect to controls, and 

a reduction of the mitochondrial membrane potential and of ATP/O ratio. Surprisingly, in these 

cells the level of ATP synthesis is similar to that of controls, indicating a possible mechanism of 

compensation (Chevrollier et al., 2008). Furthermore, also the mitochondrial network morphology 

in the OPA3 mutant cells was similar to that of controls (Chevrollier et al., 2008). 

Mutant OPA3 was proposed to play an important role in optic atrophy and neuronal degeneration. 

However, OPA3 protein function and regulation that underlie OPA3-linked pathogenic processes 

remains poorly understood. Recently, a functional study of OPA3 revealed that overexpression of 

the protein significantly induced mitochondrial fragmentation, whereas OPA3 knockdown resulted 

in highly elongated mitochondria (Ryu et al., 2010). Cells with mitochondria fragmented by OPA3 

did not undergo spontaneous apoptotic cell death, but were significantly sensitized to staurosporine- 

and TRAIL-induced apoptosis. In contrast, overexpression of a familial OPA3 mutant (G93S) 

induced mitochondrial fragmentation and spontaneous apoptosis, suggesting that OPA3 may cause 

optic atrophy via a gain-of-function mechanism (Ryu et al., 2010). 

A  mouse model of OPA3-related disease was created recapitulating most of the clinical features 

observed in the patients affected by Costeff Syndrome (Davies et al., 2008), whereas a OPA3 null 

mutant zebrafish modelling Costeff Syndrome demonstrated a requirement for mitochondrial OPA3 

to limit 3-hydroxy-3-methylglutarylcoenzyme-derived 3-methylglutaconic acid and to protect the 

electron transport chain against inhibitory compounds (Pei et al., 2010). 
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Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are 

the two most common inherited optic neuropathies and both are the result of mitochondrial 

dysfunctions.  

LHON is one of the most common mitochondrial diseases, characterized by a very rapid loss of 

central vision and optic atrophy, due to the selective degeneration of retinal ganglion cells. The age 

of onset is around 20, and the degenerative process is fast and usually the second eye becomes 

affected in weeks or months. Even if this pathology is well known and has been well characterized, 

there are still open questions on its pathophysiology, such as the male prevalence, the incomplete 

penetrance and the tissue selectivity. 

Probably, one of the most interesting and unclear aspect of LHON is the variable penetrance. This 

phenomenon is common in LHON families, most of them being homoplasmic mutant. Inter-family 

variability of penetrance may be caused by nuclear or mitochondrial ‘secondary’ genetic 

determinants or other predisposing triggering factors. However, within-family variability of 

penetrance in pedigrees with a homoplasmic mutation harboured by all maternally related 

individuals remains unexplained. Thus, the first aim was to identify some molecular markers that 

may clearly differentiate affected individuals from carriers. 

 In several mitochondrial disorders, the respiratory chain impairment is followed by an increase in 

mitochondrial mass, a common cellular strategy to compensate for the energy defect. The 

compensatory activation of mitochondrial biogenesis is particularly evident in skeletal muscle of  

MELAS and MERRF patients, in which there is a massive subsarcolemmal accumulation of 

aberrant mitochondria responsible for the histological hallmark known as ragged-red fibers (RRFs). 

In LHON this mitochondrial proliferation is less evident, but an increase in SDH staining in skeletal 

muscle has been shown. The compensatory mechanism consisting in activation of the mitochondrial 

biogenesis could be an important factor in the regulation of the variable penetrance in LHON. Thus, 

in this part of the project, carried out in collaboration with Dr. Carla Giordano and Prof. Giulia 

d’Amati, at the University La Sapienza, Roma, we investigated the mitochondrial biogenesis in 

LHON patients and furthermore we screened single nucleotide polymorphisms in five candidate 

genes involved in the regulation of this process or of mtDNA replication.  

The main consequences of the complex I defect in LHON are a decrease of net energy production 

and a chronic increase of oxidative stress. The efficiency of the enzymes belonging to the 

antioxidant machinery could influence the risk of expressing the pathology contrasting the 

overproduction of ROS. Thus, we investigated the modifying role of the antioxidant system 

screening functional polymorphisms in the most important genes involved in the detoxifying 



process in LHON patients, with the collaboration of Prof. Patrick Chinnery, at the Newcastle 

University. 

 

ADOA is characterized by a slowly progressive bilateral loss of central vision starting in childhood 

and variably progressing in adult life. The disease is highly variable in clinical expression and 

shows incomplete penetrance in some families.  

ADOA is due to mutation in OPA1 gene in the majority of cases. The causative nuclear defects in 

the remaining families with DOA have not yet been identified, but a small number of families have 

been mapped to other chromosomal loci (OPA3, OPA4, OPA5, OPA7, OPA8). Recently, a form of 

DOA and premature cataract (ADOAC) has been associated to pathogenic mutations of the OPA3 

gene, encoding a mitochondrial protein. The OPA3 gene was originally identified in eight Iraqi 

Jewish families affected by Costeff syndrome: an autosomal recessive form of optic atrophy, 

associated with neurocognitive deficits, elevated urinary excretion of 3-methyl glutaconic acid, and 

increased plasma 3-methylglutaric acid levels. Furthermore, a mutation in OPA3 gene has been 

associated with dilated cardiomyopathy in bovines, suggesting that this gene might also be 

responsible for some forms of familiar dilated cardiomyopathies in human. 

 In the last year OPA3 has been investigated by two different groups, but a clear function for this 

protein and the pathogenic mechanism leading to ADOAC have not been identified yet. Thus, the 

second aim was to develop a functional investigation of OPA3, discriminating for the first time the 

two different isoforms, to shed light on the role of OPA3 within mitochondria and the pathogenesis 

of ADOAC. This part of the project has been carried out in the laboratory of Prof. Guy Lenaers at 

the Institut of Neurosciences of Montpellier (INM). 

  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

  

 

 

 
 
 
 

 
 
 
 

Materials and methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Cell culture 

HeLa cells and HEK cells were cultured in Dulbecco Modified Eagle Medium (DMEM Euroclone) 

supplemented with 10% fetal bovine serum (FBS Euroclone), 2 mmol/L L-glutamine, 100 units/mL 

penicillin, and 100 µg/mL streptomycin, at 37°C in a 5% CO2 humidified incubator.  

 

Transfection of HeLa cells 

HeLa cells transfection were performed with Lipofectamine 2000 reagent (Invitrogen). Briefly 105 

cells were seeded the day before the transfection on a 6 well plate. Transfections were performed 

according to the manufacturer’s instructions by using 4µg of plasmid DNA and 12µl of 

Lipofectamine reagent per well. Plasmids used in this study were pCDNA, pCDNA-OPA3A, 

pCDNA-OPA3B, pCDNA-OPA3G93S, pIRES-GFP, pIRES-GFP-OPA3A, pIRES-GFP-OPA3B, 

pIRES-GFP-OPA3G93S, pEYFP, pEYFP-OPA3V1, pEYFP-OPA3V2, pEYFP-OPA3V1G93S, 

pEYFP-AIF. All this vector were previously constructed by Dr Cecile Delettre, Institute de 

Neurosciences de Montpellier. 

In silencing experiments the final concentration of the siRNA duplex (Darmacon) in culture 

medium was 100nM and 6µl of Lipofectamine reagent was used. For the microscopy observations 

the kit Silencer® siRNA Labeling Kit (Ambion) was used to stain siRNAs molecules, following 

manufacturer’s instructions. 

For plates with different surface, the number of cells, transfection reagent volume and amount of 

DNA or siRNA were varied proportionally to the area of the plate. 

 

Mitochondrial network morphology 

After 24h or 48h of transfection HeLa cells were incubating with 100nM CMXros Mitotracker Red 

(Molecular Probes) for 30 minutes to label mitochondria. The incubation was followed by two PBS 

washes and direct observation. Images were captured by a confocal microscope (Zeiss, LSM 510 

Meta) or by an epifluorescent microscope (Zeiss Axiolmager Z1/Apotome) with 63X or 100X oil 

objectives (Diaphot, Nikon, Japan). 

 

Mitochondrial membrane potential 

After 24h or 48h of transfection HeLa cells were incubated with 5µg/ml JC-1 (Molecular Probes) 

for 20 minutes. The incubation was followed by two PBS washes and direct observation. Images 

were captured by a confocal microscope (Zeiss, LSM 510 Meta) or by an epifluorescent microscope 

(Zeiss Axiolmager Z1/Apotome) with 63X or 100X oil objectives (Diaphot, Nikon, Japan). 

 



Apoptosis assay on fixed cells 

After 24h or 48h of transfection, HeLa cells were incubated with Staurosporine 1µM for 3h at 37°C. 

After two washes with PBS cells were incubated with 4% paraformaldehyde (PFA) in PBS at RT 

for 1h. After the fixation, cells were washed twice with PBS for 5 min and incubated with Hoechst 

(Sigma) 5µg/ml for 20 min at dark. Cells were washed twice with PBS and the cover slips were 

mounted using a fluorescent  mounting medium (DACO) and observed at microscope (Zeiss 

Axiolmager Z1/Apotome). 

 

Immunofluorescence on fixed cells or tissues 

HeLa cells were washed with PBS cells were incubated with 4% paraformaldehyde (PFA) in PBS at 

RT for 1h. After the fixation, cells were washed twice with PBS for 5 min and the incubated with 

30% Donkey serum and 0.3% Triton solution for 1h at RT to permeabilize. Eyes from 7 days old 

mice were fixed in 4% PFA overnight at 4°C, included in paraffine and the slice of retina were 

mounted on the microscope slide and incubated with 30% Donkey serum and 0.3% Triton. After 

permeabilization,  cells and retina were incubated with primary antibodies in 5% Donkey serum and 

0.3% Triton solution, overnight at 4°C. The day after they were washed three times for 5 min with 

PBS and then incubated with secondary antibodies in PBS for 1h at RT and at dark. After three PBS 

washes, microscope slide were mounted using a fluorescent mounting medium (DACO) and 

observed at a confocal microscope (Zeiss, LSM 510 Meta). The primary antibody used are OPA3A 

(1:500, homemade), OPA3B (1:500, homemade), ATP synthase (1:500, Sigma), Brn3a (1:500, 

Santa Cruz), while secondary AlexaFluor® antibodies (1:1000, Invitrogen) anti-rabbit and anti-

mouse  were used with different conjugated fluorophores. 

 

Total cellular lysates preparation  

Cells were scraped and cells pellets were washed in PBS and resuspended in 100µl of RIPA lysis 

buffer (PBS, 1% Triton X-100, 0.5 mM EDTA, 0.6 mM PMSF and 100µl/mL protease inhibitors). 

The lysate was incubated in ice for 15 min, frozen and thawed twice, sonicated in waterbath for 2 

min and centrifuged at 12000 rpm for 10 min at 4°C. The supernatant was the collected and protein 

content was assessed according to Bradford (Bradford, 1976). 

 

Mitochondria isolation from cultures cells 

HEK cells were washed once with PBS, resuspended in 0.5mL of 200mM mannitol, 70mM sucrose, 

1mM EGTA, 10mM Hepes (pH 7.6), with protease inhibitor cocktail and homogenized for 30 

strokes with a Dounce homogenizer at 4°C. The homogenate was centrifuged for 10 min at 500 x g, 



and supernatant re-centrifuged for 20 min at 10000 x g. The resulting pellet (mitochondrial fraction) 

was resuspended in 100µl RIPA buffer (50mM Tris-HCL pH 7.6, 150mM NaCl, 1% NaDOC, 1% 

SDS, 5mM EDTA) and protein content determined (Bradford, 1976). 

 

Coimmunoprecipitation  (CoIP) 

Mitochondria fraction from HEK cells were resuspended in 100µl RIPA buffer and protein content 

determined (Bradford). IP was performed following the protocol from Zanna et al., 2008, with 

minor modifications. Briefly, 250µg of mitochondrial proteins were incubated with 5µg primary 

antibody cross-linked to protein A-Sepharose (Sigma) at 4°C for 3h. Immuno-precipitated 

complexes were loaded on Biorad columns, centrifuged for 1 min at 500 x g, and 20µl of the 

unbound eluates were collected and solubilised with 5µl Laemmli buffer. Columns were washed 

five times with PBS then eluted in 400µl 7M Urea, 2M Thiourea, 2% Chaps. Eluates were 

precipitated with acetone overnight at -20°C and resuspended in 25µl Laemmli buffer. The protein 

A-Sepharose was resuspended in PBS and 20µl were solubilised with 5µl Laemmli buffer. Samples 

were separated on 12% SDS-PAGE and analysed by Western blot using OPA3, OPA1, MFN2, 

POLG, cyt c, and α-tubulin primary antibodies. 

 

SDS-PAGE and Immunoblotting 

30-40µg of proteins were solubilised in Laemmli sample buffer and boiled for 10 min. Samples 

were separated on polyacrylamide gels. 8-12% gels were run in SDS running buffer for 1h and 30 

min at 100V, according to the manufacturer’s instruction. After SDS-PAGE, the protein were 

transferred onto a nitrocellulose membrane (0.22mm BioRad) or Hybond nitrocellulose 

(Amarsham) using an apparatus (BioRad), in transfer buffer containing 20% of methanol. Transfer 

was performed at RT for 1h at 100V, according to the manufacturer’s instructions. The membrane 

was blocked with Tris-buffered saline (0.9% NaCl, 50mM Tris-HCl, pH 7.6) with 0.1% Tween 20 

(TBS-T) containing 5% skin milk for 1h at RT, the hybridized with the primary antibody in 

blocking solution overnight at 4°C, washed with TBS-T, hybridized with secondary antibody in 

TBS-T with 0.5% milk for 1h at RT, and then washed with TBS-T. Immunodetection was 

performed using the secondary horseradish-peroxidase conjugated anti-mouse/rabbit IgG (Sigma) 

or with the anti-rabbit IgG-Alkaline phosphatise and revealed by BCIP/NBT. Membranes were 

stained using the following antoobodies: OPA3 (1:500, Sigma), OPA1 (1:500, BD), POLG (1:500, 

Abcam), α-tubulin (1:1000, Sigma), MFN2 (1:1000, Sigma), cyt c (1:500, BD), secondary anti-

mouse and anti-rabbit IgG-Hrp conjugated (Jackson immunoresearch 1:2000). 

 



Nucleic acid extraction 

DNA samples were extracted from whole blood and skeletal muscle using the standard phenol-

chloroform method, resuspended in MilliQ water and stored at -20°C. Cells were pelleted and 

washed once in PBS. PBS was removed and DNA extracted with the standard phenol-chloroform 

method, resuspended in MilliQ water and stored at -20°C. 

Total RNA from cells was extracted with the RNeasy Mini kit (QIAGEN) following the 

manufacturer suggested protocol. Briefly, cells were scraped, washed once in PBS and resuspended 

in 350µl of RLT lysis buffer containing 143mM β-mercaptoethanol and vortexed. One volume 

(350µl) of ethanol 70% was added to the sample, mixed well and transferred into a RNeasy spin 

column (supplied) to be centrifuged 15s at > 8000 x g. After a series of washes with 2 different 

buffers (RW1 and RPE), RNA was finally eluted with 20µl of RNase-free water. 

All the RNA samples were treated with DNase I (Promega), to avoid any contamination with 

genomic DNA, at 37°C for 30 minutes, followed by enzyme inactivation at 65°C for 10 minutes. 

Nucleic acids concentration and purity was evaluated measuring 1µL of sample with Nanodrop 

1000 Spectrophotometer (Thermo Scientific), at the wavelengths 260 nm and 280 nm. 

 

Identification of LHON common mutations 

The PCR mixture contained 2 ng of DNA, 0.2 U Taq DNA Polimerase (Eppendorf), 1x Buffer 

Advanced (Eppendorf), 200 µM PCR nucleotide Mix (Roche), 200 µM each primer (Invitrogen), in 

a final volume of 25 µL. For the PCR reaction we used a GeneAmp PCR System 2700 (Applied 

Biosystems) thermal cycler. Primers sequences and PCR conditions are reported in appendix . The 

PCR reaction was checked with an electrophoresis on agarose gel and ethidium bromide staining. 

The PCR fragments were of 119 bp (11778/ND4), 75 bp (14484/ND6) and 398 bp (3460/ND1).  

The PCR products were subsequently digested with the following restriction enzymes LweI 

(Fermentas) for the G11778A mutation, Bsp143I (Fermentas) for the G14484A mutation and Hin1I 

(Fermentas) for the T3460A mutation. LweI recognize a restriction site in the wild type DNA and 

generates two fragments of 64 bp and 55 bp; Bsp143I recognize a restriction site in the wild type 

DNA and produce two fragments of 64 bp and 21 bp; Hin1I recognize a restriction site in the 

mutant DNA and produce two fragments of 298 bp and 91 bp. The digestion mixture was composed 

by 5 or 8 µL of PCR product, 1 U/µL of restriction enzyme, 1x suggested Buffer, in a final volume 

of 10 µL, and was incubated for 16 hours at 37°C. Subsequently the fragments were separated with 

electrophoresis on Metaphor (BioSpa) gel at 3% or 4% and displayed with ethidium bromide 

staining. 

 



Restriction fragment length polymorphism (RFLP) assay for nuclear genes polymorphisms 

The PCR mixture contained 2 ng of DNA, 0.2 U Taq DNA Polimerase (Eppendorf), 1x Buffer 

Advanced (Eppendorf), 200 µM PCR nucleotide Mix (Roche), 200 µM each primer (Invitrogen), in 

a final volume of 25 µL. 

For the PCR reaction we used a GeneAmp PCR System 2700 (Applied Biosystems) thermal cycler. 

Primers sequences and PCR conditions are reported in appendix. The PCR reaction was checked 

with an electrophoresis on agarose gel and ethidium bromide staining. 

The PCR products was subsequently digested with different restriction enzymes (Fermentas). The 

digestion mixture was composed by 5 or 8 µL of PCR product, 1 U/µL of restriction enzyme, 1x 

suggested Buffer, in a final volume of 10 µL, and was incubated at condition of time and 

temperature suggested by the manufacturers . Subsequently the fragments were separated with 

electrophoresis on Metaphor (BioSpa) gel at 4% or agarose gel at 3% and displayed with ethidium 

bromide staining. 

 

Mitochondrial DNA copy number evaluation 

Absolute quantification of mtDNA relative to nuclear DNA (nDNA) was performed by a real-time 

PCR based method using the LightCycler480 (Roche). This method is a multiplex assay based on 

hydrolysis probe chemistry. A mtDNA fragment (ND2 gene) and a nDNA fragment (FasL gene) 

were co-amplified by multiplex polymerase chain reaction according to the primers, probes and 

conditions previously published (Cossarizza et al., 2003). These two fragments were cloned tale to 

tale in a vector and serial dilutions were used to construct a standard curve, obtaining a ratio of 1:1 

of the reference molecules. Primers and probes sequences and PCR conditions are available on 

request. 

 

Reverse transcription and quantitative assay for gene expression 

Reverse transcription was performed on extracted RNA, using Transcriptor First Strand cDNA 

Synthesis Kit (Roche) and following the manufacturer’s protocol. The cDNA was generated 

performing a reverse transcription of 1µg of total RNA using random hexameric primers. 

Absolute mRNA quantification was performed by a real-time PCR based method using the 

instrument LightCycler480 (Roche). Standard curves using a cDNA reference sample were used to 

determinate concentrations of  OPA3V1, OPA3V2, OPA1 genes. The amount of target genes were 

normalized for the concentration of a reference gene (RPL27). 

 

Statistical analysis 



Statistical analysis was performed using the SigmaStat ver.3.5 software package, choosing the most 

appropriate test. Student t-test or paired t-test were performed to compare two different groups of 

data, while ANOVA Dunn’s test, ANOVA Holm-Sidak or Mann-Whitney test were performed to 

compare more than two groups. Fisher’s exact test or χ2 test were used to correlate frequencies and 

proportions, and a multiple linear regression was performed to analyse combinations of genotypes. 

Data were considered significantly different for p-values < 0.05. 
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Part 1 – Modifying factors of penetrance in LHON   

 

Molecular characterization of  LHON mutations 

In this study we have analyzed 207 individuals belonging to 111 different LHON Italian families 

and 64 individuals belonging to a single large Brazilian family of Italian ancestry (conventionally 

named SOA-BR) (Fig.13). Each individual has been previously investigated by RFLP analysis and 

characterized for LHON common mutations (11778/ND4, 14484/ND6 and 3460/ND1) and rare 

LHON mutations (3733/ND1, 14586/ND6, 14482/ND6 and 14459/ND6). 

 
Figure 13 – SOA-BR family tree. 

 

Based on the clinical phenotype all subjects have been categorized in affected and unaffected 

mutation carriers (herein called carriers), represented by individuals carrying a LHON pathogenic 

mutation, older than 35 years, and showing no signs of clinical expression of the disease. In the 

SOA-BR family, carrying the 11778/ND4 homoplasmic mutation, 25 individuals were considered 

affected and 39 carriers (Tab. 1). Moreover, molecular characterization of Italian families revealed 

that 147 individuals harboured the 11778/ND4 LHON mutation (82 affected and 65 carriers), 20 



individuals had the 14484/ND6 mutation (10 affected and 10 carriers), 36 individuals had the 

3460/ND1 mutation (19 affected and 17 carriers) and 4 individuals had rare mutations (Tab. 1).  

 

FAMILY MUTATION AFFECTED CARRIER TOTAL 

SOA-BR 11778/ND4 25 39 64 

ITALIAN 11778/ND4 82 65 147 

 14484/ND6 10 10 20 

 3460/ND1 19 17 36 

 RARE 4  4 

 

Table 1 – LHON affected and carriers from SOA-BR and Italian families. 

 

Mitochondrial DNA evaluation in LHON individuals 

The mtDNA content has been determined in DNA samples extracted from peripheral blood of the 

large SOA-BR Brazilian family and from selected individuals belonging to the Italian families. For 

this analysis two approaches have been carried out. First, we examined the mtDNA content in the 

25 affected individuals and the 39 carriers of the SOA-BR family, comparing them with a control 

group consisting in 70 unrelated Brazilian individuals. Next, we repeated the analysis on the Italian 

patients, selecting those carrying the homoplasmic LHON mutations and comparing one affected 

individual, usually the proband, with one asymptomatic carrier on the same maternal lineage, 

siblings when it was possible. Therefore, we analysed 39 affected individuals, and their 

corresponding 39 carriers, 21 harbouring the 11778/ND4 mutation, 5 harbouring the 11484/ND6 

mutation and 13 harbouring the 3460/ND1 mutation. Lastly, we evaluated the mtDNA content also 

in DNA samples extracted from skeletal muscle biopsies in 13 controls and 31 LHON individuals 

harbouring the 11778/ND4 and 3460/ND1 mutations (25 affected and 6 carriers). 

In the SOA-BR family the mtDNA copy number/cell resulted significantly higher in the individuals 

harbouring the mutation respect to the controls (p<0.001). In turn, the carrier individuals showed a 

significantly higher mtDNA copy number/cell value compared to the affected individuals 

(p<0.001). In the control group the average value of mtDNA copy number/cell was 181±7, whereas 

Brazilian affected and carriers had respectively 358±18 and 550±26 (Fig. 14). 

The distributions of mtDNA copy number in the three groups examined divided for sex are reported 

in figure 15. The mtDNA copy number resulted normally distributed in controls and affected 

individuals (Fig. 15A), whereas in carriers two peaks were easily distinguishable (Fig. 15A). In 

control population no differences were found in males and females, being both normally distributed 



(Fig. 15D). On the contrary, a reduced mtDNA content in females carriers  respect to males led to 

the presence of two peaks in both these distributions (Fig. 15C). In ~ 83% of male carriers the 

mtDNA content overcame the value of 500 copies/cell, whereas in females only the 37% reached 

this number.    
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Figure 14 –  Mitochondrial DNA copy number in Brazilian controls and SOA-BR affected and carriers. 
Data are reported as average ± SEM. Asterisks indicate statistical significance (at least p<0.05). 
 

The evaluation of mtDNA copy number in the 39 Italian families reproduced the results from the 

SOA-BR family analysis. Figure 16 shows the increase in mtDNA content in the unaffected carriers 

compared to the affected individuals and this feature was similar indipendently from the LHON 

mutation. In affected individuals the average values of mtDNA copy number were 305±14 

(11778/ND4), 340±11 (14484/ND6) and 315±14 (3460/ND1), whereas in LHON carriers were 

688±21 (11778/ND4), 660±77 (14484/ND6) and 583±41 (3460/ND1). The difference between 

affected and carrier is statistically significant for all the three LHON mutations (p<0.001 for 

11778/ND4 and 3460/ND1 and p=0.011 for 14484/ND6). In spite of what we observed in the SOA-

BR, the distribution of mtDNA copy number of the Italian families were normally distributed, both 

in affected and carrier groups. This is probably due to the different design of the study, being for the 

SOA-BR an intra-familiar study and for the Italian families an association study. 

*  

*  



 
Figure 15 – Mitochondrial DNA distributions in controls and SOA-BR affected and carrier.  
A) Distribution in affected, carrier and controls individuals. B) Distribution in males and females affected. C) 
Distribution in males and females carriers. D) Distribution in males and females controls. 
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Figure 16 - Mitochondrial DNA copy number in Italian affected and carriers. 
Data are reported as average ± SEM. Asterisks indicate statistical significance (at least p<0.05). 
 
 

The mtDNA quantification in DNA extracted from skeletal muscle biopsies confirmed the results 

obtained in the previous analysis on blood samples. Also in this tissue, the mtDNA copy number 

was higher in LHON affected and carriers than in controls (p≤0.001), and carriers showed a higher 

mtDNA content compared to the affected individuals (p<0.05), although this difference is less 
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pronounced compared to SOA-BR and Italian blood samples, probably because of the limited 

number of carriers analysed. We found an average value of  5450 ± 336 in controls, 6853 ± 243 in 

affected individuals and 8065 ± 485 in carrier individuals (Fig. 17). 

All these results suggest the existence of a compensatory mechanism, due to the presence of LHON 

mutations, being the controls and LHON individuals clearly distinguishable based on their mtDNA 

content. In particular, the unaffected carriers seem to have a higher efficiency in upregulating 

mtDNA copy number than affected individuals, making this parameter a possible biomarker of a 

modifying mechanism regulating LHON penetrance.  
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Figure 17 – Mitochondrial DNA quantification in controls and LHON skeletal muscles. 
Data are reported as average ± SEM. Asterisks indicate statistical significance (at least p<0.05). 
 
 

Screening of polymorphisms in nuclear genes involved in the regulation of mitochondrial 

biogenesis 

The results from the previous section strongly support a role for mitochondrial biogenesis in the 

modulating LHON penetrance. Thus, we investigated genetic variants in some of the genes 

regulating this process and regulating specifically mtDNA replication. We selected single 

nucleotide polymorphisms (SNPs) already reported in literature as associated with diseases or 

having a functional activity. We screened SNPs in the coding region of PGC-1α, PGC-1β, p53, 

Tfam, and two SNPs in PARL, one in the coding region and one in the promoter (Table 2).  

The screening of the genetic variants of these genes was carried out on the previously described 

SOA-BR family (25 affected and 39 carriers), analysing DNA extracted from peripheral blood by 

RFLP. The affected and carrier individuals were compared, considering genotypes and alleles 

frequencies. The off-pedigree group has been genotyped to provide reference frequencies of a 

*  

*  



Brazilian control population. Moreover, a possible correlation between genotypes and mtDNA copy 

number has been investigated. 

 

GENE SNP 
SNP rs# CLUSTER 

ID 
REFERENCE 

PGC-1α Gly482Ser rs8192678 Choi et al., 2006 

PGC-1β Ala203Pro rs7732671 Wirtenberger et al., 2007 

p53 Arg72Pro rs1042522 Matlashewski et al., 1986 

Tfam Ser12Thr rs1937 Günther et al., 2004 

PARL -191T/C rs3792589 Curran et al., 2010 

PARL Leu262Val rs3732581 Powell et al., 2008 

 
Table 2 – SNPs  in genes involved in mitochondrial biogenesis analysed. 
 
 

None of the six genetic variants analysed resulted associated with the status of affected or carriers, 

being genotypes and alleles frequencies not statistically different in the three groups (Fig. 18-19). 

Furthermore, no correlation between SNPs and mtDNA content was found (not shown). 
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Figure 18 – Genotypes distributions in off-pedigree individuals and in SOA-BR affected and carrier individuals. 
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Figure 19 – Alleles distributions in off-pedigree individuals and in SOA-BR affected and carrier individuals. 
 

Screening of polymorphisms in nuclear genes involved in the antioxidant machinery 

Since the increase in ROS production is one of the consequences of complex I impairment in 

LHON, we screened six SNPs by RFLP in five nuclear genes with involved in buffering oxidative 

stress. Also in this study we selected SNPs already reported in literature as associated with diseases 

or having a functional activity. The genetic variants were located in the coding region of MnSOD 

and GPx and in the promoter or intronic regions of Cu/ZnSOD, catalase and aldose reductase (Table 

3).  

 

GENE SNP 
SNP rs# CLUSTER 

ID 
REFERENCE 

MnSOD Ala16Val rs4880 Ambrosone  et al.,1999 

GPx1 Pro198Leu rs1050450 Sutton et al., 2006 

Cu/ZnSOD +35A/C rs2234694 Young  et al., 2006 

CAT -21A/T rs7943316 Podgoreanu et al., 2006 

CAT -262C/T rs1049982 Forsberg  et al., 2001 

ALDR1 -106C/T rs759853 Granier et al., 2008 

 

Table 3 – SNPs in antioxidant genes analysed. 



All the selected SNPs were investigated on DNA samples extracted from peripheral blood of the 

SOA-BR pedigree, and genotypes and alleles frequencies were compared in the affected and 

carriers groups. 

The only significant association was found between the Ala16Val polymorphism in MnSOD gene 

and the LHON phenotypes. In particular, the Ala/Val genotype was more represented in the affected 

group (65.4%), whereas the Val/Val genotype was more frequent among the carrier group (55.3%, 

P=0.036) (Fig. 20A). Similarly, the Ala allele resulted associated with the affected status (P=0.037, 

odd ratio=2.37), and the Val allele resulted protective for the expression of LHON, being associated 

with the carrier status (Fig.20B).  

Based on this significant result, we expanded the genetic analysis of MnSOD Ala16Val in 111 

Italian unrelated probands (affected) of which 82 carrying the 11778/ND4 mutation, 16 the 

3460/ND1, 9 with the 14484/ND6 and 4 carrying rare but proven pathogenic mtDNA point 

mutations (3733/ND1, 14586/ND6, 14482/ND6 and 14459/ND6). In this cohort the distributions of 

Ala16Val variant overlapped the affected individuals of the SOA-BR family, being significantly 

different from a control group of  Italians matched for age and sex (P=0.05), although the 

association between the alleles was not confirmed (Fig.20D-E).  

The distribution of the Ala16Val polymorphism was then replicated, in collaboration of Prof. 

Chinnery’s group (Newcastle), in a third independently collected cohort composed of mutation-

carrying individuals from different European nationalities (UK, Finnish, French, Hungarian and 

Slovenian), including 347 subjects of which 179 were affected with LHON and 168 were 

unaffected mutation carriers. In this cohort both genotypes and alleles distribution gave a significant 

signal in association with LHON status (P≤0.05) (Fig.20G-H). 

Moreover, based on unpublished results from our group (Mattiazzi et al., manuscript in 

preparation), we grouped the MnSOD genotypes characterized by a high enzymatic activity 

(Ala/Ala and Ala/Val) and we found a significant association with the status of affected, whereas 

the low activity genotype Val/Val resulted associated with the status of carrier in all the three 

cohorts (P=0.021, P=0.05, P=0.05) (Fig.20C-F-I). 
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Figure 20 – Ala16Val genotypes, alleles and activity distributions. 
A) Genotypes distribution in Brazilian affected and carrier. B) Alleles distribution in Brazilian affected and carrier. C) 
Activity distribution in Brazilian affected and carrier. D) Genotypes distribution in Italian affected and controls. E) 
Alleles distribution in Italian affected and controls. F) Activity distribution in Italian affected and controls. G) 
Genotypes distribution in Nord-European cohort. H) Alleles distribution  in Nord-European cohort. I) Activity 
distribution in Nord-European.  

 
 
 
 
 
 
 
 
 
 
 
 



Part 2 – Elucidating the mitochondrial function of OPA3 and its role in ADOAC 

pathogenesis  

 

OPA3 isoforms expression in different mouse tissues and in Hela cells 

The amount of OPA3V1 and OPA3V2 transcripts has been measured by a quantitative Real Time-

PCR in different tissues from a 7 days old mouse. The qRT-PCR was carried out on total RNA 

samples extracted from frozen kidney, lung, skeletal muscle, liver, retina, heart, brain and cochlea. 

The gene expression of OPA3 isoforms in each tissue has been compared with OPA1 mRNA 

content, using primers recognizing all OPA1 isoforms. The ribosomal protein RPL27 has been used 

as reference. 

Although OPA3V1 seemed to be more expressed than OPA1 in most of the tissues analyzed, the 

pattern of expression resulted comparable to OPA1, except for the brain where the OPA1 content 

was much higher than OPA3V1 (Fig 21). Similar to results previously published by others, 

OPA3V2 clearly showed a lower expression level compared with both OPA3V1 (from a minimum 

of 4 fold of difference in lung to a maximum of  9 fold in heart) and OPA1, reaching their mRNA 

content only in the cochlea, where OPA3V1 and OPA1 seemed to have a very low expression (Fig. 

21).  

OPA3 isoforms transcripts were quantified also in HeLa cells and compared with OPA1 total 

mRNA content. Also in these cells OPA3V1 showed an higher gene expression than OPA1, 

whereas OPA3V2 resulted expressed at very low levels (~ 40 fold less express than OPA3V1) (Fig. 

22). 
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Figure 21 – Relative gene expression of OPA3V1, OPA3V2, OPA1 in different mouse tissues. 
Data are normalized for RPL27 gene expression and reported as average (3 independent experiments) ± SEM. 
 



 
Figure 22- Relative gene expression ofOPA3V1, OPA3V2 and OPA1 in HeLa cells 
Data are normalized for RPL27 gene expression and reported as average (3 independent experiments) ± SEM. 
 
 

The expression of OPA3V1 and OPA3V2 was qualitatively evaluated  by Immunofluorescence in 

slices of mouse retina. Home made polyclonal antibodies generated in rabbit and specific for 

OPA3V1 and OPA3V2 were used to characterize the expression of the two isoforms in the different 

cellular types constituting the retina. Retinal ganglion cells were stained with a monoclonal 

antibody against BRN3A, a specific marker of these cells, and nuclei were stained with Hoechst. 

Both variants showed a widespread expression in the different retina layers, even if the picks of 

expression were in retinal ganglion cells (RGCs) and photoreceptors, both cell types being enriched 

in mitochondria. Moreover, OPA3V1 had qualitatively a higher expression in RGCs than OPA3V2, 

confirming the results from qRT-PCR (Fig. 23). 

 
Figure 23 – Immunofluorescence on mouse retina. 
A) Staining for OPA3V1(green), nuclei (blue) and RGCs (pink). B) Staining for OPA3V2 (green), nuclei (blue) and 
RGCs (pink). 
OPA3V1, OPA3V2 and OPA3V1-G93S over-expression in HeLa cells 
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To investigate the possible role played by OPA3 in mitochondria, we transfected HeLa cells with 

plasmids expressing OPA3V1, OPA3V2 and OPA3V1 carrying the dominant mutation G93S (exon 

2), causative for ADOAC. After confirmation by Western blot of the increased proteins expression 

due to the transfection, we evaluated different mitochondrial functional indicators such as the 

integrity of mitochondrial network, the mitochondrial membrane potential, the mtDNA content and 

the susceptibility to apoptosis after treatment with a pro-apoptotic compound (staurosporine).  

HeLa cells transfected with pCDNA-OPA3V1, pCDNA-OPA3V2, and pcDNA-OPAV1-G93S  

plasmids were pelleted and after 24 hours cells lysated and proteins were extracted. 30 µg of 

proteins were analysed by SDS-PAGE, transferred on a nitrocellulose membrane and blotted for 

OPA3V1 and OPA3V2, using α-tubulin as reference. Two distint membranes have been assessed to 

discriminate the OPA3 variants. Interestingly, both OPA3V1 and OPA3V2 were not detectable in 

the control untransfected sample, whereas it was evident the efficiency and specificity of the over-

expression in all the transfected sample (Fig. 24).  

 

 

 

 
Figure 24 – Western blot on HeLa transfected cells. 
Left side was blotted for OPA3V1and α-tubulin, right side was blotted for OPA3V2 and α-tunulin. Lane 1 untransfected 
cells, lane 2 pCDNA-OPA3V1, lane 3 pcDNA-OPA3V2, lane 4 pcDNA-OPA3G93S. 
 
 
 
Mitochondrial network morphology evaluation 

HeLa cells were transfected using plasmids expressing the target protein fused with the yellow 

fluorescent protein (YFP): pEYFP, pEYFP-OPA3V1, pEYFP-OPA3V2, pEYFP-OPA3V1G93S, 

and pEYFP-AIF. After 24 hours, cells were fixed and processed for immunostaining. An antibody 

against the ATP synthase was used to visualize the mitochondrial network and the fluorescence 

emitted from the YFP was used to identify transfected cells. Transfection with a plasmid expressing 

the mitochondrial protein AIF was used as a control. 

Transfection with a plasmid expressing only the YFP gave a diffuse green fluorescence in the cells 

and the staining for ATP synthase in red defined a normal mitochondrial network, with tubular 

mitochondria extending on the whole cellular body. On the contrary, the over-expression of both 

OPA3V1 and OPA3V2 produced mitochondria aggregation and the complete disappearance of 

tubular mitochondria, leading to the loss of mitochondrial network integrity. OPA3V1 



overexpression seemed to cause a more severe damage compared to OPA3V2. In fact, OPA3V2 

overexpression led to aggregation but mitochondria seemed to have a more scattered distribution in 

the cytoplasm compared to cells overexpressing both wild-type and mutant OPA3V1 . No 

consequences in the network morphology have been observed by inducing AIF expression (Fig. 

25).   

 

 

Figure 25 – Mitochondrial network estimation in HeLa transfected cells 
HeLa cells were transfected with plasmids expressing YFP and the target protein. The mitochondrial network was 
stained with Ab anti-ATP synthase.  
 
 

Mitochondrial membrane potential estimation 

The mitochondrial membrane potential has been evaluated using the fluorescent probe JC-1. The 

dye undergoes a reversible change in fluorescence emission from green to red as mitochondrial 

membrane potential increases. Cells with high membrane potential promote the formation of dye 

aggregates, which fluoresce red; cells with low potential will contain monomeric JC-1 and fluoresce 

green.  



HeLa cells were transfected with plasmids containing the green fluorescent protein (GFP) and the 

target proteins, which are not fused in the same construct, thus expressed independently: pIRES-

GFP, pIRES-GFP-OPA3V1, pIRES-GFP-OPA3V2, pIRES-GFP-OPA3V1G93S. 

The cells overexpressing the GFP alone, showed an homogeneous green fluorescence overlapping 

the JC-1 green fluorescence, and concomitantly the red fluorescence due to the formation of JC-1 

aggregates, evidencing a high mitochondrial potential. Interestingly, the over-expression of 

OPA3V1, OPA3V2 and OPA3V1G93S produced a consistent loss of membrane potential, as 

documented by the complete disappearance of the red fluorescence in transfected cells (Fig. 26).  

  
Figure 26 – Membrane potential assessment in HeLa transfected cells. 
Hela cells were transfected with plasmids coexpressing the GFP and the target proteins. Mitochondrial membrane 
potential was revealed using the JC-1 dye. 
 

 

Measurement of the susceptibility to apoptosis   

HeLa cells were transfected with pIRES-GFP, pIRES-GFP-OPA3V1, pIRES-GFP-OPA3V2 and 

pIRES-GFP-OPA3V1G93S and after 24 hours were treated with staurosporine, a pro-apoptotic 

compound, for three hours. After the incubation cells were fixed and nuclei were stained with 

Hoescht. Nuclei morphology was observed microscopically, and 100 cells for each sample were 

counted, distinguishing apoptotic cells with chromatin condensation and non-apoptotic cells with 

normal nuclei. 



Over-expression of OPA3V1, OPA3V2 and OPA3V1G93S produced no effect on the apoptosis, 

having the three samples the same percentage of apoptotic cells as the control (GFP only). On the 

contrary, after incubation with staurosporine the percentage of apoptotic cells increased in cells 

overexpressing OPA3V1, OPA3V2 and OPA3V1G93S, being significantly different from the 

control transfected with the GFP alone (p<0.001). The increase of apoptotic cell number was not 

different in cells over-expressing the mutant OPA3V1 compared to those overexpressing the wild-

type protein (Fig. 27).  

 

 
Figure 27 – Quantification of apoptotic nuclei in HeLa transfected cells 
Data are reported as average (3 experiments) ± SEM. Asterisks indicates statistic significance associated to a p<0.001.  
    

 

Mitochondrial DNA content quantification 

To investigate if overexpression of OPA3 had consequences on mtDNA maintenance and 

replication, HeLa cells were transfected with pCDNA, pCDNA-OPA3V1, pCDNA-OPA3V2 and 

cotransfected with both pCDNA-OPA3V1 and pCDNA-OPA3V2. After 24 hours, cells were 

pelleted, the DNA was extracted and analysed by quantitative Real Time-PCR.  

We found average mtDNA copy values of 1434 ± 115 in untransfected cells, 1521 ± 121 in cells 

transfected with pCDNA, 1362 ± 46 in cells overexpressing OPA3V1, 1456 ± 30 in cells 

overexpressing OPA3V2, and 1247 ± 70 in cells overexpressing both OPA3V1 and OPA3V2. 

Thus, no significant differences in mtDNA content were observed between the samples and cells 

over-expressing OPA3 showed almost the same mtDNA copy number than the untransfected cells 

or cells expressing the plasmid without the target proteins (Fig. 28). 

 



 
 
Figure 28 – Mitochondrial DNA quantification in Hela transfected cells 
Data are reported as average (3 independent experiments) ± SEM. 
 

 

OPA3 isoforms silencing in HeLa cells 

To investigate the effects of OPA3 loss, we selectively inhibited the expression of endogenous 

OPA3 variants using a silencing approach. siRNAs matching Ex1, Ex2, and Ex2b were transfected 

into HeLa cells and the effects on mitochondrial function were investigated using the same 

parameters evaluated in the overexpression experiment. For all the studies consisting in microscopy 

observations, we used a kit able to stain specifically siRNAs molecules, making possible the 

selective analysis of transfected cells. 

The efficiency and specificity of siRNAs was measured by quantification of  the OPA3 transcripts 

in Real Time-PCR after 24, 48 and 72 hours from transfection, using RPL27 as reference. Since the 

silencing efficiency resulted independent from the time, we decided to study the mitochondrial 

functions after 48 hours from transfection. The effects of silencing on OPA3 isoforms gene 

expression are reported in figure 29. Transfecting cells with siEx1, we were able to abolish about 

80% of OPA3V1 and OPA3V2 mRNA expression (P<0.001), being the Ex1 present in both the 

variants. The effect of siEx2 was specific for OPA3V1, producing about 90% of decrease in mRNA 

expression (P<0.001), whereas siEx2b showed a decrease of 70% of OPA3V2 (P<0.001). 

Interestingly, the suppression of OPA3V1 induced by siEx2, produced an increase in OPA3V2 gene 

expression (P=0.02) and vice versa an increase of OPA3V1 gene expression was found in cells 

treated with siEx2b (P=0.01).  

 



 

 
 
Figure 29 – OPA3 gene expression after 48h from silencing 
HeLa cells were transfected with a scramble siRNA, siEx1, siEx2 and siEx2b. After 48 hours OPA3 transcripts were 
quantified. Data are shown normalized for the expression in the scramble and as average (3 independent experiments) ± 
SEM.   
 
 

Mitochondrial network morphology evaluation 

HeLa cells were transfected with a scramble siRNA, siEx1, siEx2, and siEx2b and after 48h were 

incubated with Mitotracker Red for 20 minutes and observed at microscope.  

The qualitative evaluation of mitochondrial network demonstrated that there were no differences 

between cells transfected with the scramble siRNA and cells transfected with siEx1, siEx2 and 

siEx2b. Moreover, no differences have been observed silencing both isoforms (siEx1) or OPA3V1 

(siEx2) and OPA3V2 (siEx2b) separately. In the figure 30, representative pictures of mitochondrial 

network are reported.   

 

Mitochondrial membrane potential estimation 

The membrane mitochondrial potential has been estimated after 48 hours from the silencing. HeLa 

cells were transfected with scramble siRNA, siEx1, siEx2 and siEx2b and after 48 hours have been 

incubated with JC-1 dye for 20 minutes. 

The microscopy observation showed no drastic differences between cells transfected with the 

scramble siRNA and those transfected with siRNA specific for OPA3 isoforms, the latter exhibiting 

the typical red spots corresponding to high membrane potential sites and formation of J-aggregates. 

No differences have been observed between cells silenced for both the variant simultaneously and 

cells silenced for OPA3V1 and OPA3V2 separately (Fig. 31).       

 



 
Figure 30 – Mitochondrial network evaluation in HeLa transfected cells 
 
 

 
Figure 31 – Mitochondrial membrane potential evaluation in HeLa transfected cells 
 

 

Measurement of the susceptibility to apoptosis  

 HeLa cells were transfected with scramble siRNA, siEx1, siEx2, siEx2b and after 48 hours treated 

with staurosporine, a pro-apoptotic compound for three hours. After the incubation cells were fixed 

and nuclei were stained with Hoescht. Nuclei morphology was observed microscopically, and 100 



cells for each sample were counted, distinguishing apoptotic cells with chromatin condensation and 

non-apoptotic cells with normal nuclei. 

The silencing of OPA3V1 and OPA3V2, alone or together, did not exert effects on the percentage 

of apoptotic cells, however cells transfected with siEx2 and siEx2b resulted more sensitive to 

staurosporine, exhibiting about 50% of apoptotic cells after the treatment, compared to 30% of 

apoptotic cells in cells transfected with the scramble and cells transfected with siEx1 (Fig. 32).  In 

both cases the differences in the groups were statistically significant (p<0.01) 

 

 

 

 
Figure 32 - Quantification of apoptotic nuclei in HeLa transfected cells 
Data are reported as average (3 independent experiments) ± SEM. Asterisks indicates statistic significance associated to 
a p<0.001.  
 
 

 

Mitochondrial DNA content quantification 

We investigated the effects of  silencing of OPA3V1, OPA3V2, or both on the mtDNA 

maintenance or replication. HeLa cells were transfected with  a scramble siRNA, siEx1, siEx2 and 

siEx2b. After 48 hours from the transfection, cells were pelleted, DNA extracted and analysed by 

Real Time-PCR. 

The average mtDNA copy values were 1451 ± 107 in the untransfected cells, 1421 ± 128 in cells 

transfected with the scramble, 1717 ± 44 in cells transfected with siEx1, 1244 ± 69 in cells 

transfected with siEx2, 1123 ± 136 in cells transfected with siEx2b. No significant differences have 

been found between the cells transfected with the scramble and cells silenced for OPA3V1, 

OPA3V2 or both (Fig. 33). 



 

 
Figure 33 – Mitochondrial DNA quantification in Hela transfected cells 
Data are reported as average (3 independent experiments) ± SEM. 
 
 
 

Coimmunoprecipitation of OPA3V1 on isolated mitochondria from HEK cells 

To identify possible interactors of OPA3, we carried out a coimmunoprecipitation (CoIP) 

experiment. Since HEK cells are characterized by a high number of mitochondria, we chose this 

cell line for this experiment. The CoIP was carried out  in purified mitochondrial extracts using a 

commercial antibody specific for OPA3V1, since OPA3V2 is expressed at very low levels and 

therefore it is hardly detectable. The different immunoprecipitate fractions (unbound, eluted, resin) 

were analysed by Western blot to detect the presence of OPA1, MFN2, two proteins involved in the 

mitochondrial fusion, POLG, a regulator of mtDNA replication, and cytochrome c, for its role in 

apoptosis. 

Western blot revealed the presence of all these proteins in the unbound fraction (Fig. 34), indicating 

that no interaction exists between OPA3V1 and OPA1, MFN2, POLG and cytochrome c.  

 

 

 

      



      

 
Figure 34 – Coimmunoprecipitation for OPA3 in HEK cells 
Western blots using OPA1, MFN2, POLG, cyt c, OPA3 antibodies, performed on the flow through (UB), eluted (E) and 
resin (R) proteins from mitochondrial fractions of HEK cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Discussion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 1 – Modifying factors of penetrance in LHON  

 

Mitochondrial DNA content as a biomarker to distinguish LHON affected individuals from 

carriers 

The increase in mtDNA content has been observed in mitochondrial diseases and aging. This feature 

is currently interpreted hypothesizing that the impairment of  respiratory chain activity and the 

consequent reduction of ATP production due to mtDNA mutations may trigger a retrograde 

pathway, which activates mitochondrial biogenesis and compensates the mitochondrial dysfunction. 

Similarly, an increase in mtDNA content has been reported in different tissues from elderly 

individuals, such as brain, lungs, and skeletal muscle (Barrientos et al., 1997; Lee et al., 1998; 

Pesce et al., 2001). Futhermore, an up-regulation of two master regulators of mtDNA replication, 

NRF-1 and Tfam, has been found in skeletal muscle of elderly subjects (Lezza et al., 2001).  

The increase in mitochondrial biogenesis and in mtDNA content has been documented in 

mitochondrial encephalomyopathies, such as MELAS and MERRF, where mtDNA copy number is 

significantly increased in leukocytes of young subjects compared to controls, whereas it is lower in 

old affected individuals (Liu et al., 2006). Moreover, accumulation of large collections with 

frequently aberrant mitochondria is common in the skeletal muscle (RRFs) of patients affected by 

these diseases, indicating a signalling for a compensatory mechanism based on the activation of 

mitochondrial biogenesis (Hirano et al., 1999). The RRFs have been reproduced in an animal model 

by disrupting the expression of mitochondrial transcription factor A (mtTFA). The increased 

mitochondrial mass partly compensated for the reduced function of the respiratory chain by 

maintaining overall ATP production in skeletal muscle (Wredenberg et al., 2002). Thus, within 

certain limits, the increase of mitochondrial mass is a successful compensatory strategy. 

Although RRFs are not detectable, some signs of mitochondrial proliferation in LHON patients 

skeletal muscles is also occurring as shown, for example by the increased subsarcolemmal SDH 

activity (Valentino et al., 2004; Carelli et al., 1998). In LHON patients with the 11778/ND4 

mutation, an increased succinate cytochrome c reductase activity, with normal complex III activity, 

has been reported in blood cells mitochondria, suggesting the occurrence of a nuclear compensatory 

effect for defective respiratory chain (Yen et al., 1996). Moreover, an increased mtDNA copy 

number in blood cells of LHON affected and asymptomatic carrier individuals harbouring the 

11778/ND4 and 14484/ND6 mutations, has also been reported (Yen et al., 2002; Nishioka et al., 

2004). Finally, it has been recently demonstrated that an increase in mitochondrial biogenesis 

induced by β-estradiol is able to rescue the energetic defect in LHON cybrids (Giordano et al., 

2011), supporting the relevance of an efficient mitochondrial biogenesis in LHON.  



Based on these observations, we measured the mtDNA content in blood cells and skeletal muscle of 

LHON affected subjects and unaffected mutation carriers individuals. The results from this 

investigation showed a significant increase in mtDNA copy number in individuals carrying LHON 

mutations compared to controls individuals, and, interestingly, the LHON unaffected carriers had a 

significantly higher mtDNA content also compared to the affected individuals. The increase in 

mtDNA content was found in both blood cells and skeletal muscle and it was independent from the 

type of mutation. In fact, this result was reproducible in the large Brazilian family carrying the 

11778/ND4 mutation and in the 39 Italian families carrying the three common LHON mutations. 

The increase in mtDNA copy number could be influenced by genetic and/or environmental factors, 

determining the difference between affected and carrier. In fact, the subjects with an efficient 

compensatory response have a high mtDNA copy number and may not develop the disease 

(unaffected carriers), whereas those characterized by a lower mtDNA copy number cannot 

completely compensate for the energy defect and will be more prone to develop LHON converting 

to affected. 

No correlation between mtDNA copy number and age or sex was observed in this study. However, 

in the carrier group the distribution of mtDNA content showed two different populations, 

represented by males and females, expressing a lower mtDNA copy number. Considering the 

compensatory response as a multifactorial mechanism, it is possible that females need a lower 

mtDNA content, but the compensation mechanism could be efficient being influenced by other sex-

related factors, such as estrogens.     

 

Seven selected SNPs in nuclear regulators of mitochondrial biogenesis do not influence LHON 

penetrance 

Mitochondrial biogenesis is a complex process involving the coordinated expression of 

mitochondrial and nuclear genes, the import of mitochondrial proteins encoded by nuclear genome 

and turnover of mitochondrial population. Although the complete pathway has not been elucidated 

yet, key players have been identified in the last few years (Diaz and Moraes, 2008).  

Two classes of nuclear regulators of mitochondrial biogenesis can be distinguished: transcriptional 

coactivators (PGC-1α, PGC-1β, PPRC, etc.) and transcriptional factors (NRF1, NRF2, ERRα, Tfam, 

etc.). The first class includes nuclear proteins which do not bind directly the DNA but are able to 

activate transcriptional factors through direct interaction. Once activated, the transcriptional factors 

can stimulate expression of genes involved in the OXPHOS functioning or in mtDNA replication 

(Kelly and Scarpulla, 2004). 



Several SNPs are able to influence the expression or the activity of these genes. The polymorphism 

Gly482Ser in PGC-1α gene has been associated to a variety of pathologies, such as hypertension, 

diabetes mellitus and insulin resistance (Brito et al., 2009; Su et al., 2008; Lai et al., 2008). A recent 

study demonstrates that PGC-1α variant with Gly/Gly at 482nd amino acid impairs Tfam 

transcription, thus lowering mtDNA replication (Choi et al., 2006). A polymorphic variant of PGC-

1β, Ala203Pro, has been associated with obesity and breast cancer (Andersen et al., 2006; 

Wirtenberger et al., 2007). The position 203 is in close proximity of  the nuclear receptor box 1 

(NR1), through which PGC-1β interacts with nuclear receptors such as ERα/β or PPARγ, recruiting 

a complex of coactivators to target DNA sites (Nolte et al., 1998; Feng et al., 1998). Therefore, the 

Ala203Pro change is predicted to interfere with the interaction of PGC-1β with ERs and ERRs, 

leading to an altered transactivation of target genes (Kressler et al., 2002). Tfam is a major 

transcription factors promoting the mitochondrial biogenesis, being an important regulator of 

mtDNA replication and transcription. Only three missense SNPs have been identified in the gene 

sequence, and one of these, Ser12Thr, has been investigated for correlation with insulin resistance 

(Gianotti et al., 2008) or neurodegenerative diseases, showing a significant association with late-

onset Alzheimer (Zhang et al., 2011; Alvarez et al., 2008; Günther et al., 2004). 

 In recent studies, a new role in mitochondrial biogenesis, mtDNA maintenance and mtDNA  

replication has been attributed to the tumor suppressor protein p53 (Kulawiec et al., 2009; Park et 

al., 2009; Lebedeva et al., 2009). In fact, in response to endogenous or exogenous stimuli, such as 

oxidative stress, p53 is recruited to mitochondria and interacts with apoptotic proteins and regulators 

of mtDNA transcription and replication, such as Tfam and POLG (Park et al., 2005; Mihara et al., 

2003). It has been demonstrated that the Pro72Arg polymorphism can influence p53 ability to 

promote the apoptosis, due to its increase within mitochondria (Matlashewski et al., 1987). 

Moreover, this polymorphism has been largely investigated for association to different type of 

tumors, chemo-radiotherapy resistance and neurological disease (Rangel-López et al., 2006).   

In the last year, some evidences for a role in mtDNA replication of the mitochondrial protease 

PARL has been found. A polymorphic variant in the promoter region (-191T/C) has been shown to 

influence mtDNA content in a control Caucasian population (Curran et al., 2010). Moreover, a 

genome-wide scan analysis indicated two variants in non coding regions of PARL gene (rs3749446 

and rs1402000) as associated with LHON in Thai families (Phasukkijwatana et al., 2010), although 

this result has not been replicated by a following study in LHON Chinese patients (Zhang et al., 

2010). The variant Leu262Val is the only SNPs in the coding region of PARL associated with 

pathologies, such as metabolic syndrome and coronary artery disease (Powell et al., 2008).  



We selected PGC-1α, PGC-1β, Tfam, p53 and PARL as potential candidate genes to have a 

modifying role in LHON penetrance and we investigated the distributions of the most relevant SNPs 

in these genes (Gly482Ser, PGC-1α; Ala203Pro, PGC-1β; Ser12Thr, Tfam; Pro72Arg, p53; -

191T/C, Leu262Val, PARL) in the large Brazilian family. No correlation between these 

polymorphic variants and the status of affected and carrier has been found. Moreover, we didn’t find 

any significant correlation between mtDNA copy number and the SNPs in LHON affected and 

carrier groups.  

 

Ala16Val variant in MnSOD modify the LHON penetrance  

Mitochondria are the major source of ROS under normal physiological conditions, with superoxide 

radicals being the primary ROS produced by these organelles. Complex I and complex III are the 

major superoxide (O2
.-)-producing sites in mitochondria (Lenaz, 1998).  The LHON mutations in 

complex I promote a chronic increase in oxidative stress (Wong et al., 2002; Schoeler et al., 2007), 

which, together with the decrease of net energy production (Baracca et al., 2005; Lodi et al., 1997; 

Lodi et al., 2002), have a key role in the pathogenesis of the disease.  

We selected polymorphic variants in the major players of the cellular antioxidant machinery to 

identify genetic determinants able to modify LHON penetrance.  

The Ala16Val in the MTS of MnSOD has been reported as associated with several pathologies, 

including Alzheimer diseases (Wiener et al., 2007), and with aging and longevity (Soerensen et al., 

2009).  It has been demonstrated that the Ala allele confers a 40% higher MnSOD activity  and a 

higher content of the protein within mitochondria than the Val allele (Sutton et al., 2005). The 

variant +35A/C in the cytosolic SOD, CuZnSOD, is located in a splice site (exon3/intron3) of the 

gene and is related to the enzyme activity, having the AA genotype the higher CuZnSOD activity. 

This SNP has been found associated with diabetes mellitus (Flekac et al., 2008) and diabetic 

nephropaty in type I diabetes (Panduru et al., 2010).  

The Pro198Leu variant in GPx gene has an influence on the enzymatic activity of the protein, being 

the Pro198 allele related to a higher detoxifying activity than the Leu198 allele (Hu and Diamond, 

2003). According to this founding, the Leu allele has been reported to increase risk to develop 

different cancers, such as hepatocellular carcinoma, prostate, breast and lung cancer (Sutton et al., 

2006).  

The two polymorhisms in the CAT gene (-21A/T; -262C/T) are located in the promoter and have 

been reported as modifier of the catalase gene expression (Forsberg et al., 2001b). Moreover, the -

262C/T variant has been associated with the systemic lupus erythematosus (SLE) (D'souza A et al., 

2008). 



Aldose reductase (ALDR1) is a cytosolic enzyme that, in the presence of NADPH, catalyzes the 

rate-limiting step of the polyol pathway converting glucose in sorbitol, but some evidences of a role 

of this enzyme in detoxification from ROS are also reported. In particular, it has been shown that 

H2O2 can promote the expression and activity of this enzyme (Stefan et al., 1997) and the 

participation of ALDR1 in an oxidative defence mechanism able to neutralize toxic effects of lipid 

peroxidation has been proposed (Heike et al., 1999). Moreover, ALDR1 is able to translocate into 

mitochondria after protein kinase C-dependent phosphorylation, although its role in the organelle is 

still unknown (Varma et al., 2002). A further link between aldose reductase and mitochondria was 

shown by a microarray analysis of LHON and controls cybrids, documenting its over-expression in 

LHON cells and 35% increase of protein expression in their mitochondria. Thus, a role for ALDR1 

in LHON pathogenesis has been proposed (Danielson et al., 2005). The -105C/T polymorphism in 

the promoter seems to modify the gene expression of ALDR1 (Liu et al., 2002) and it has been 

found associated with diabetic nephropathy in subjects affected with type 2 diabetes mellitus 

(Makiishi T et al., 2003).  

The analysis of distributions of these selected polymorphisms in the large SOA-BR family revealed 

a significant signal from the MnSOD Ala16Val variant. In fact, the Val/Val genotype resulted more 

frequent in the unaffected mutation carrier, whereas the Ala/Val genotype was associated to the 

affected individuals. Moreover, considering the Ala/Ala and Ala/Val genotypes as related to a 

higher enzymatic activity (Mattiazzi et al., manuscript in preparation), the affected individuals 

resulted significantly characterized by a high MnSOD activity, compared to the carrier group. The 

allelic distributions among the two groups, showed that Val allele was protective, being 

significantly associated to the carriers, whereas the Ala allele resulted associated to the increased 

risk for LHON expression with an odd ratio of 2.37. These results have been replicated in a cohort 

composed of individuals from different nationalities and carrying LHON mutations. Furthermore, 

the distribution of  the polymorphism Ala16Val in a cohort of 111 Italian LHON affected unrelated 

individuals overlapped the distribution found in the Brazilian affected, being significantly different 

from a  control group of  Italians matched for age and sex.  

These results on the MnSOD variant are counter intuitive if we assume that high antioxidant activity 

would be a protective factor in LHON. However, our results lead to the conclusion that the 

Ala16Val variant in MnSOD represents one of  the genetic modifiers of LHON penetrance. The Ala 

allele predisposes to the clinical expression of the disease, whereas the protective allele is Val, 

which is known to affect the targeting sequence for mitochondrial import inducing a partial stalling 

of MnSOD transport, and lowering the final amount of active enzyme in the matrix. We propose 

that high MnSOD activity in mitochondria of LHON subjects, which chronically overproduce 



superoxide, may become deleterious if downstream other antioxidant enzymes fail to buffer the 

excess H2O2. As a consequence, we may envisage a scenario where the antioxidant machinery 

within mitochondria may become overwhelmed by  H2O2 production and this radical, more stable 

than superoxide, may spill out of mitochondria and trigger cell damage and ultimately apoptosis.        

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



Part 2 – Elucidating the mitochondrial function of OPA3 and its role in ADOAC 

pathogenesis  

 
OPA3 variants are ubiquitously expressed and OPA3V1 is the most abundant 

Huizing et al. in 2010 reported that OPA3V1 and OPA3V2 were ubiquitously expressed (Huizing et 

al., 2010). In this study we carried out a quantitative analysis in a multiple tissues panel from mouse 

and we compared the OPA3 variants gene expression with OPA1 expression, being this gene a 

major site for mutations causing ADOA.  

We found that OPA3V1 and OPA3V2 were both expressed in kidney, lung, skeletal muscle, liver, 

brain, retina and cochlea from a  7 days old mouse, the OPA3V2 being much less expressed 

compared to the OPA3V1. In particular, OPA3V2 reached expression levels from a minimum of 4 

fold lower in lung to a maximum of 9 fold lower in heart. Expression levels of OPA3V2 were 

similar in all the tissues examined, whereas OPA3V1 showed a pattern of expression close to that of 

OPA1, although it seemed to be more expressed in most of the tissues, except for brain, where 

OPA1 exceeded OPA3V1. 

.In according to what observed in mouse, in HeLa cells OPA3V1 resulted more expressed than 

OPA1, whereas OPA3V2 showed an expression of ~ 40 folds lower than OPA3V1. Interestingly, 

we observed in HeLa cells a compensatory mechanism based on the increase of OPA3V1 mRNA 

expression when OPA3V2 was suppressed, and vice versa. This phenomenon has been already 

observed in fibroblasts from patients carrying a 3-MGCA type III-related mutation located in a 

splice site (143-1G>C). This mutation abolished the OPA3V1 mRNA expression in these cells, but  

OPA3V2 mRNA resulted significantly up-regulated (Huizing et al., 2010). Moreover, we found that 

in HeLa cells the protein expression of both OPA3 variants was considerably low, being not 

detectable in 30-40µg of loaded proteins, indicating the possible existence of a post-transcriptional 

mechanism regulating OPA3 proteins translation. 

The expression of OPA3V1 and OPA3V2 was confirmed in retina by Immunofluorescence, and we 

found that both the variants are clearly detectable in RGCs, and, as the mRNA quantification 

demonstrated, OPA3V2 is less express than OPA3V1.   

 

OPA3 may be involved in the regulation of mitochondrial fission  

To determine the function of OPA3, we investigated if the overexpression or silencing of the two 

isoforms had an impact on mitochondrial morphology in HeLa cells.  

HeLa cells overexpressing OPA3V1, OPA3V2 or OPA3V1G93S showed abnormal mitochondrial 

morphology, which led to extensive mitochondrial aggregation, more marked in the cells 



transfected with the mutated OPA3V1. This observation is in line with the findings reported by Ryu 

after overexpression of OPA3V1 (Ryu et al., 2010).   

 To confirm the effect of OPA3 on mitochondrial morphology, we repressed the expression of 

endogenous OPA3 variants through a silencing approach. We transfected HeLa cells with three 

different siRNAs specific for Ex1, Ex2, and Ex2b and directed respectively to OPA3V1 and 

OPA3V2, OPA3V1, and OPA3V2. Through qualitative observation of the transfected cells, loss of 

OPA3V1 and OPA3V2 seemed to have no effects on the mitochondrial morphology, being cells 

transfected with siEx1, siEx2 and siEx2b comparable to control cells. This result is in contrast to 

what shown by Ryu et al., who found an increase in elongated mitochondria in the cells silenced for 

OPA3V1 (Ryu et al., 2010). The different findings between these two studies may be due to 

technical issues given to the different experimental condition used. 

Contrary to expectations, OPA3 may have an opposite function respect to OPA1, being involved in 

the regulation of mitochondrial fission instead of mitochondrial fusion.  

 

OPA3 affects mitochondrial membrane potential 

The overexpression of OPA3 in HeLa cells had remarkable effects on the maintenance of 

mitochondrial membrane potential. In fact, cells transfected with OPA3V1, OPA3V2 and 

OPA3V1G93S completely lost the membrane potential, since red fluorescence of JC1 aggregates 

disappeared in these cells. On the contrary, silencing of OPA3 isoforms, simultaneously or 

independently, did not affect the membrane potential, showing in these cells the same pattern of 

JC1 fluorescence observed in the control cells.  

Thus, the overexpression of OPA3 may have a deleterious effect on mitochondrial function, since it 

strongly induced lack of membrane potential, required for ATP production and directly involved in 

processes such as mitochondrial proteins import, Ca2+ release from mitochondria and apoptosis. 

 

OPA3 increases sensitivity to apoptotic signals    

It is well known from literature that altered mitochondrial morphology and membrane potential are 

closely related to apoptotic sensitivity (Youle and Karbowsky, 2005; Suen et al., 2008). We 

evaluated whether the induction or repression of OPA3 expression may lead to cell death in absence 

or presence of an apoptotic stimulus.  

The overexpression or silencing of  OPA3 did not influence predisposition to apoptosis, since 

conditions these cells did not undergo to apoptosis spontaneously. On the contrary, treatment with 

staurosporine significantly increased the apoptosis in cells overexpressing OPA3V1, OPA3V2 and 

OPA3V1G93S. A different effect was observed silencing OPA3 and treating cells with 



staurosporine. In fact, cells silenced for both the isoforms showed apoptosis levels comparable to 

control cells, whereas cells silenced for OPA3V1 and OPA3V2 independently significantly 

increased the number of apoptotic cells. This phenomenon could be dependent on the compensatory 

mechanism inducing an increase in OPA3V1 expression when OPA3V2 is repressed and vice versa. 

Thus, the increase in apoptotic cells number could be due to the overexpression of OPA3 isoform 

which was not silenced.  

The increased sensitivity to staurosporine in cells overexpressing OPA3 has been previously 

demonstrated by Ryu et al., and cytochrome c release has been observed in these conditions (Ryu et 

al., 2010). 

 

OPA3 does not influence mtDNA content 

Multiple deletions in mtDNA has been found in association to OPA1 mutations in skeletal muscle 

of “ADOA plus” patients, suggesting a role of  OPA1 in mtDNA stability (Amati-Bonneau et al., 

2008). Moreover, OPA1 has been recently shown as directly involved in the maintenance of 

mitochondrial genome integrity, influencing mtDNA stability and replication and being associated 

to nucleoids (Elachouri et al., 2011).  

To determine if also OPA3 could be involve in the maintenance of mtDNA, we quantified mtDNA 

content after OPA3 overexpression and silencing. OPA3V1, OPA3V2 and OPA3V1G93S 

overexpression and silencing of OPA3 variants did not influence mtDNA copy number/cell, 

showing that these cells had the same mtDNA content as control cells. Thus, contrary to OPA1, 

OPA3 does not seem to be involved in mtDNA maintenance.  

 

OPA3 is not an interactor of OPA1, MFN2, POLG and cyt c 

To identify possible interactors of OPA3, we carried out a CoIP experiment on HEK cells, taking 

advantage of their high content in mitochondria. 

We failed to evidence interactions between OPA3V1 and OPA1 or MFN2, two proteins involved in 

mitochondrial fusion. This result further confirms that OPA3 is not involved in the mitochondrial 

fusion process. Furthermore, we also excluded interactions between OPA3V1 and POLG, 

corroborating the mtDNA quantification experiments, and strongly supporting the absence of 

connection between OPA3 and mtDNA replication. Lastly, since the overexpression of OPA3 

showed a pro-apoptotic effect and the release of cytochrome c has been already demonstrated under 

thi condition (Ryu et al., 2010), we also checked for a direct interaction between OPA3V1 and 

cytochrome c, failing to show this possible connection. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Leber’s hereditary optic neuropathy (LHON) and Autosomal Dominant Optic Atrophy (ADOA) are 

the two most common inherited optic neuropathies and both are the result of mitochondrial 

dysfunctions. Since the first causative mutations have been identified, LHON and ADOA have been 

intensively investigated, even though to date many questions are still open. The genetic factors 

modulating the variable penetrance and tissue-specificity of the pathological mechanism have not 

been completely explained yet. Moreover, many loci have been found associated with ADOA 

families negative for OPA1 mutations, but only theOPA3 gene has been characterized. The function 

of the mitochondrial protein OPA3 and its role in the pathogenic mechanism of ADOAC are still 

elusive, and contradictory findings have been recently published. 

The results here reported contribute to clarify some aspects of the LHON variable penetrance and 

try to elucidate OPA3 function and the ADOAC pathogenic mechanism.     

We identified a compensatory mechanism in LHON patients, able to distinguish affected 

individuals from unaffected mutation carriers. In fact, carrier individuals resulted more efficient 

than affected subjects in increasing the mitochondrial biogenesis to compensate for the energetic 

defect. Thus, the activation of the mitochondrial biogenesis may be a crucial factor in modulating 

penetrance, determining the fate of subjects harbouring LHON mutations. Furthermore, mtDNA 

content can be used as a molecular biomarker which, for the first time, clearly differentiates LHON 

affected from LHON carrier individuals, providing a valid mechanism that may be exploited for 

development of therapeutic strategies. Although the mitochondrial biogenesis gained a relevant role 

in LHON pathogenesis, we failed to identify a genetic modifying factor for the variable penetrance 

in a set of candidate genes involved in the regulation of this process. A more systematic high-

throughput approach will be necessary to select the genetic variants responsible for the different 

efficiency in activating mitochondrial biogenesis.    

A genetic modifying factor was instead identified in the MnSOD gene. The SNP Ala16Val in this 

gene seems to modulate LHON penetrance, since the Ala allele in this position significantly 

predisposes to be affected. Thus, we propose that high MnSOD activity in mitochondria of LHON 

subjects may produce an overload of H2O2 for the antioxidant machinery, leading to release from 

mitochondria of this radical and promoting a severe cell damage and death. 

Our study on OPA3 provides new information about the pattern of expression of the two isoforms 

OPA3V1 and OPA3V2, and, moreover, suggests that OPA3 may have a different function in 

mitochondria from OPA1, the major site for ADOA mutations. In fact, based on our results, we 

propose that OPA3 is not involved in the mitochondrial fusion process, but, on the contrary, it may 

regulate mitochondrial fission. Furthermore, at difference from OPA1, we excluded a role for OPA3 

in mtDNA maintenance and we failed to identify a direct interaction between OPA3 and OPA1. 



Considering the results from overexpression and silencing of OPA3, we can conclude that the 

overexpression has more drastic consequences on the cells than silencing, suggesting that OPA3 

may cause optic atrophy via a gain-of-function mechanism. These data provide a new starting point 

for future investigations aimed at identifying the exact function of OPA3 and the pathogenic 

mechanism causing ADOAC.  
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Appendix  
 
Primer sequences, PCR conditions, restriction enzymes, siRNAs sequences 
 
LHON common mutations 

LHON 11778 
Fw: 5’-GAATGTAGGAGTAATGATAAG-3’  
Rv: 5’-ATTATCGAAAAACTACTGAAC-3’ 
1 cycle 94°C x 5’ - -  
25 cycles 94°C x 30’’, 55°C x 60’’, 72°C x 2’30’’ 
1 cycle 72°C x 7’ 
 
LHON 14484 
Fw: 5’-ATCATATAGGTTTCTGTTGGT-3’ 
Rv: 5’-GGGACTGGGGGTACGGAGTC-3’ 
1 cycle 94°C x 5’  
25 cycles  94°C x 30’’, 49°C x 60’’, 72°C x 2’30’’ 
1 cycle 72°C x 7’ 
 
LHON 3460 
Fw: 5’-AAGTGTTTCGCGGAAGGGGG-3’ 
Rv: 5’-GAGTAACATGGGTAAGATTA-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 30’’, 55°C x 30’’, 72°C x 2’30’’ 
1 cycle 72°C x 7’ 
 
 
RFLP nuclear genes 

PGC1α Gly482Ser 
Fw: 5’-TGCTACCTGAGAGAGACTTTG-3’ 
Rv: 5’- CTTTCATCTTCGCTGTCATC-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 60°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
HpaII (Fermentas), 16 hours at 37°C 
 
PGC-1β Ala203Pro 
Fw: 5’-GTGGGGCTTTGTCAGTGAAT-3’ 
Rv: 5’- GGACTCTGGAGGCATGGTG-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 58°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
NlaIV (Fermantas), 16 hours at 37°C 
 
p53 Pro72Arg 
Fw: 5’-TTGCCGTCCCAAGCAATGGATGA-3’ 
Rv: 5’- TCTGGGAAGGGACAGAAGATGAC-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 60°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 



AccII (Fermentas), 2 hours at 37°C 
 
Tfam Ser12Thr 
Fw: 5’- CCCCGCCCCCATCTTSCCGA-3’ 
Rv: 5’- GACGTCCTGGGCCCTGCTG-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 61°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
DdeI (Fermentas), 16 hours at 37°C 
 
PARL Leu212Val 
Fw: 5’- GGGGCGAAAGAGTGAAAT-3’ 
Rv: 5’- GGGTGAAGGGTATATGAGAACC-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 30’’, 55°C x 30’’, 72°C x 30’’ 
1 cycle 72°C x 10’ 
MvaI (Fermentas), 16 hours at 37°C 
 
PARL -191T/C 
Fw: 5’- GCCTGGTATGTGCCGTTACT-3’ 
Rv: 5’- GCAACACCATAGAGCACGAG-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 30’’, 55°C x 30’’, 72°C x 30’’ 
1 cycle 72°C x 10’ 
BbvI (Fermentas), 16 hours at 65°C 
 
MnSOD Ala16Val 
Fw: 5’- ACCAGCAGGCAGCTGGCGCCGG-3’ 
Rv: 5’- GCGTTGATGTGAGGTTCCAG-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 30’’, 61°C x 30’’, 72°C x 30’’ 
1 cycle 72°C x 10’ 
Cac8-I (Biolabs), 16 hours at 37°C 
 
GPx-1 Pro189Leu 
Fw: 5’- TGTGCCCCTACGCAGGTACA-3’ 
Rv: 5’- CCCCCGAGACAGCAGCA-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 30’’, 55°C x 30’’, 72°C x 30’’ 
1 cycle 72°C x 10’ 
ApaI (Fermentas), 16 hours at 37°C 
 
ALRD1 -106C/T 
Fw: 5’- GTCTAAGAACAAAGTGCGGTAAAC-3’ 
Rv: 5’- CGCCGTTGTTGAGCAGGAGAC-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 59°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
FspBI (Fermentas), 16 hours at 37°C 
 
 



 
Cu/ZnSOD +35A/C 
Fw: 5’- CTATCCAGAAAACACGGTGGGCC-3’ 
Rv: 5’- TCTATATTCAATCAAATGCTACAAAACC-3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 55°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
HingI (Fermentas), 2 hours at 37°C 
 
CAT -21A/T 
Fw: 5’- CCAATCAGAAGGCAGTCCTC -3’ 
Rv: 5’- CCGCTTTCTAAACGCACCTT -3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 58°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
HinfI (Fermentas), 16 hours at 37°C 
 
CAT -262C/T 
Fw: 5’- TAAGAGCTGAGAAAGCATAGCT -3’ 
Rv: 5’- AGAGCCTCGCCCCGCCGGACCG -3’ 
1 cycle 94°C x 5’  
30 cycles 94°C x 60’’, 60°C x 60’’, 72°C x 60’’ 
1 cycle 72°C x 10’ 
SmaI (Fermentas), 2 hours at 30°C 
 
 
Real Time-PCR assay 

OPA3V1 human 
Fw: 5’- CTCCCGCCGGCTCAACTGTA - 3’ 
Rv: 5’- GCCCACGATGAAGATGGTGGCT -3’ 

OPA3V2 human 
Fw: 5’- CCCGCCGGCTCAACTGTACC - 3’ 
Rv: 5’- GGCAGCTGCAGGCGGTGAT -3’ 
 
OPA1 human 
Fw: 5’- TGCGGAGGACAGCTTGAGGGTT - 3’ 
Rv: 5’- TTGAGACGAGCCTGCAGAGCCT - 3’ 
 
RPL27 human 
Fw: 5’- AGCTGTCATCGTGAAGAACAT - 3’ 
Rv: 5’- CTTGGCGATCTTCTTCTTGCC -3’ 
 

OPA3V1 mouse 
Fw: 5’-CCCAGCTGTACCACTGGGTG - 3’ 
Rv: 5’-ACCTCATCCTGCAGAGCGTTC -3’ 

 
OPA3V2 mouse 
Fw: 5’-CCCAGCTGTACCACTGGCTA - 3’ 
Rv: 5’-CTGGGCAATGCTGCCTGCAC -3’ 



 
OPA1 mouse 
Fw: 5’-AGAAATCTCAGCCTTGCTGTG - 3’ 
Rv: 5’-ACAGGGATTGCTGCAGGATTT-3’ 
 
RPL27 mouse 
Fw: 5’- ACGCAAAGCCGTCATCGTGAAG - 3’ 
Rv: 5’- CTTGGCGATCTTCTTCTTGCC -3’ 
 

Preincubation: 1 cycle 95°C x 10’ 
Amplification : 45 cycle 95°C x 30’’, 56°C x 20’’, 72°C x 25’’, acquisition of fluorescence signal   
Melting curve: 1 cycle 95°C x 5’, 64°C x 1’, 65°C - 97°C (ramp rate 0.11°C/s), acquisition of 
fluorescence in continuous 
 

 

OPA3 siRNAs duplex sequences 
 
siEx1     
sense 5’-GCGCGUUCCCUAUGGCGAAAUU- 3’ 
antisense 5’-UUCGCCAUAGGGAACGCGCUU-3’               
 
siEx2     
sense 5’-GCACAGAGCUGCAAGAGGUUU- 3’ 
antisense 5’-ACCUCUUGCAGCUCUGUGCUU-3’ 
 
siEx2b   
sense 5’-GCACAAAGUUCCUACGGACUU- 3’ 
antisense 5’-GUCCGUAGGAACUUUGUGCUU-3’ 
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