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Abstract 
 
 
 
 
 
 
 
 
 The 3-UPU three degrees of freedom fully parallel manipulator, where U and P are for 

universal and prismatic pair respectively, is a very well known manipulator that can provide the 

platform with three degrees of freedom of pure translation, pure rotation or mixed translation 

and rotation with respect to the base, according to the relative directions of the revolute pair 

axes. 

 In particular, pure translational parallel 3-UPU manipulators (3-UPU TPMs) received great 

attention. Many studies have been reported in the literature on singularities, workspace, and 

joint clearance influence on the platform accuracy of this manipulator. However, much work has 

still to be done to reveal all the features this topology can offer to the designer when different 

architecture, i.e. different geometry are considered.  

 Therefore, this dissertation will focus on this type of the 3-UPU manipulators. The first part of 

the dissertation presents new architectures of the 3-UPU TPMs which offer interesting features 

to the designer. In the second part, a procedure is presented which is based on proposed indexes, 

in order to allow the designer to select the best architecture of the 3-UPU TPMs for a given task. 

Some indexes are proposed related to stiffness, clearance, singularity and size of the 

manipulator in order to apply the procedure. 
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Introduction 
 

 Parallel manipulators (PMs) have focused a great attention in the last decades for their 

complementary characteristics with respect to the serial manipulators. Indeed, just to cite 

a few issues, they exhibit high rigidity, high payload to the manipulator weight ratio, high 

dynamic performance whilst limited workspace and a low dexterous manipulability. Six 

degrees of freedom (DOF) PMs have been widely studied. Recently, parallel manipulators 

(PMs) with less than three degrees of freedom (DOF) have attracted the attention since 

many tasks do not require 6-DOF and consequently less complex and cheaper machines 

are worth to be studied. 

 In particular 3-DOF PMs have been studied in the last two decades mainly after the 

Delta robot was proposed in 1988 [1]. Many different topologies have been presented 

since then with various complexities. Three-DOF PMs of pure translation, rotation and a 

mixed of rotation and translation of the end effector (platform) with respect to the base 

have been deeply studied and almost all possible topologies have been presented [2-19]. 

The influence of the topology on the performances of the manipulator has also been 

investigated. However, much is still to be said, still keeping the same topology, on the 

influence of the manipulator geometry, i.e. of its architecture, which can change 

significantly the behaviour of the manipulator. 

 An interesting 3-DOF PM is the 3-UPU one, presented by Tsai in [4]. Here U and P are 

for universal and prismatic kinematic pairs respectively. Normally the prismatic pairs are 

actuated while the remaining ones are passive. This topology that features three serial 

chains (legs) of type UPU connecting the base with the platform, under certain geometric 

conditions provides the movable platform with 3 DOF of pure translation with respect to 

the base. This paper will focus on this family of 3-UPU translational parallel manipulators, 

hereafter called 3-UPU TPMs. 

 Since its appearance in [4], the influence of geometry on the 3-UPU TPM performances 

has been investigated [6,9,12,14,20,21,22], many different architectures presented, and 

their performances discussed. Moreover, the 3-UPU TPM represented a kind of 

benchmark mechanism for the study of different type of singularities [8,9,12,14,17,20,21] 

in parallel manipulators. Nevertheless, further architectures still deserve attention. 

Indeed, in a recent paper [23], the influence of the location of the legs has been 

investigated leading to new 3-UPU TPM architectures with interesting features. 

 The aim of this dissertation is to present new architectures of the 3-UPU TPM in order 

to show the potential of the 3-UPU topology on one hand, and to propose a procedure 

that allows the designer to select the best architecture of the 3-UPU TPMs for a given task 

on the other hand. In particular, the influence of the orientation of the revolute joint axes 
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on the base and on the platform respectively (each universal joint comprises two revolute 

pairs with intersecting and perpendicular axes), is investigated with special attention to 

its influence on the singularity loci, and consequently on the manipulator workspace free 

from singularity. Six new 3-UPU TPM architectures, which can be classified as planar and 

skew architectures (Planar architectures have the three revolute joint axes connecting the 

base/platform with the leg coplanar while the skew architectures have these three axes 

skewed), are presented. These architectures exhibit attractive kinematic and static 

performances. In addition, two performance indexes are proposed as main tools of the 

procedure to select the best architecture, also exploiting the size of the manipulator and 

the definition of singularity can give useful information for the selection. The first 

proposed index corresponds to the stiffness of the manipulator. The stiffness index is 

based on the computation of the stiffness matrix that provides a relation between the 

external wrench applied on the platform and the displacement of the platform itself; the 

Denavit Hartenberg parameters together with an equivalent mechanism which represents 

the stiffness model of the 3-UPU TPM are used. The second index is the clearance index 

which corresponds to the maximum position errors of the platform due to a given 

clearance in the revolute joints. First, the analytic expression of the pose error of the 

platform due to the clearance in the revolute joints is presented which depends on the 

value of the external wrench applied to the platform. Then, a numerical method based on 

a MATLAB function is proposed to compute the maximum position errors of the platform. 

 This work is organized as follows. Chapter 1 presents the potential of the 3-UPU 

topology by proposing six new architectures and showing the influence of both the 

direction of the revolute joint axes on the base and on the platform respectively and the 

leg position, on the shape of the singularity loci of the manipulator. In Chapter 2, a 

procedure to select the best architecture of the 3-UPU TPM for a given task is presented. 

This procedure is based on some performance indexes. Chapters 3 presents the stiffness 

of the 3-UPU TPM and the position of the platform due to the clearance in the revolute 

joints by means of two indexes which, conversely will be used to apply the procedure 

presented in Chapter 2. A case study is presented which shows the efficiency of the 

proposed selection procedure. Finally, some concluding remarks will be presented. 
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Chapter 1: The potential of the 3-UPU TPM 
 

 

 

 

 

 

 The influence of both the directions of the base/platform revolute axes and the leg 

position is further investigated and six new architectures of the mechanism which exhibit 

interesting performances are presented in this Chapter. 

Moreover, for the architectures where the three legs of the manipulator might intersect at 

one point, some manufacturing solutions are proposed for the leg collision avoidance. 

1.1. Background on the 3-UPU TPM 
 

 A schematic of the 3-UPU TPM is shown in Fig. 1.1. The prismatic joints are actuated. 

Each universal joint comprises two revolute pairs with intersecting and perpendicular 

axes, centred at point Bi, i = 1,2,3 in the base and at point Ai, i = 1,2,3, in the platform. 

The platform pure translational motion is obtained (platform rotation is totally prevented) 

when the following geometric conditions are satisfied for each leg [4,6,9]:  

- the axes of the two intermediate revolute pairs (defined by the unit vectors q2i, i = 1,2,3 

and q3i, i = 1,2,3) are parallel to each other; 

- the axes of the two ending revolute pairs (defined by the unit vectors q1i, i = 1,2,3 and 

q4i, i = 1,2,3) are parallel to each other. 

What follows in this section refers to a special family of 3-UPU TPM architecture: the one 

that has the three axes of the revolute pairs in the base/platform in a same plane 

respectively. 

The singularity of the manipulator, i.e., when the relationship between the external 

wrench applied on the platform and the forces and moments applied on each leg, that are 

related by the Jacobian matrix J  is no longer a one-to-one relationship, occurs when the 

determinant K of the Jacobian matrix, K = detJ, vanishes. This condition is given by [9]: 

 

            1 2 3 1 2 3. . . 0s s s u u u                                                                                                                    (1.1) 

 

where si, ui, i = 1,2,3, (Fig. 1.1) are respectively the unit vector of the i-th leg AiBi and the 

unit vector orthogonal to the cross link of the universal joint connecting the i-th leg to the 

base/platform. 
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Figure 1.1. The 3-UPU Translational Parallel Manipulator 

 

 

Equation (1.1) can be satisfied when: 

i) all unit vectors si, i = 1,2,3, become mutually parallel or coplanar [6,14]; 

ii) two out of three vectors ui, i = 1,2,3, are parallel. By geometric inspection, it can be 

seen that this condition occurs when two axes of the revolute pairs of the platform (q4i, 

q4j, i=1,2; j=2,3; i≠j) projects on the two corresponding axes of the base (q1i, q1j), providing 

the projection direction is along the shortest distance of the two axes. 

Condition ii) is a concise and geometric definition of singularity occurrence and it 

represents a powerful geometric tool for detecting this type of singularity. 

 In [23,24], two architectures of the 3-UPU TPM have been defined. They are here 

recalled for completeness of presentation. 

The first one, defined as architecture 1.A and shown in Fig. 1.2, occurs when the axes q1i,   

i = 1,2,3 and q4i, i = 1,2,3 of the revolute pairs in the base/platform two-by-two intersect 

at three points (points Ci, i = 1,2,3, at the base which define a plane π shown in Fig. 1.2). 

In Fig. 1.2 only the revolute pairs on the base and on the platform are represented for 

clarity, all other ones are omitted. The same simplification has been adopted for all the 

next figures of this Chapter. 

A system of reference Sb fixed to the base with origin Ob (the centre of the circle with 

radius b defined by the centers of the universal joint connected to the base Bi, i = 1,2,3) is 

chosen. Axes x and y are on the plane π, with x axis through point B1, z axis is pointing 

from the base to the platform, while y axis is taken according to the right hand rule. 
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Figure 1.2. Singularity loci for the architecture 1.A of the 3-UPU TPM 

 

 

According to the singularity condition defined above, the singularity for the architecture 

1.A occurs when: 

- the reference point of the platform Op (center of the circle with radius p defined by the 

centers of the universal joint connected to the platform Ai, i = 1,2,3, and origin of the 

reference system Sp fixed to the platform with x axis through point A1 and z axis is 

pointing upward from the base to the platform, while y axis obtained according to the 

right hand rule) lies on the plane π. This plane corresponds to z = 0; 

- points Ai and Aj (i = 1,2,3, j = 1,2,3, i ≠ j) belong respectively to the two planes ϑi and ϑj 

orthogonal to the plane π and containing respectively q1i and q1j (which are the unit 

vectors of the revolute pairs joining the base to the i-th and the j-th leg respectively). In 

this position also q4i and q4j, which are always parallel to q1i and q1j, belong to the planes 

ϑi and ϑj. q4i and q4j are the unit vectors of the revolute pairs joining the platform to the    

i-th and the j-th leg respectively. This condition is represented in Fig. 1.2 when point Op of 

the platform projects into point Op’ in the plane π. Similar conditions occur considering 

vectors q41 and q42, and vectors q42 and q43, which lead to define similar points Op’’ and 

Op’’’ in the plane π. Analytically, it can be proved that a singularity locus is a right cylinder 

ϒ [6], with circular directrix γ and axis coincident with the z axis of Sb. Therefore, 

conversely, once defined the points Op’, Op’’ and Op’’’, the circle γ is defined and the 

cylinder ϒ is defined too. The three points can be easily found by geometrical inspections 

thus representing a simple and efficient method to easily find the cylinder ϒ. This cylinder 

has radius r = 2(b-p). 
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- the base and the platform have the same size (all unit vectors si, i = 1,2,3, become 

mutually parallel for any position of the platform). The manipulator is in singular 

position and the manipulator is structurally singular [6,9,14]. 

The second architecture (defined as architecture 1.B) is obtained by disconnecting the 

platform of the architecture 1.A from the legs and rotating it 180 degrees about the z axis 

of Sb which is defined as in the previous 3-UPU TPM architecture, then connecting again 

the legs to the same corresponding platform revolute pairs. This makes the three legs 

intersect at one point as shown in Fig. 1.3. This is a practical drawback. However, 

manufacturing solutions can overcome it. Indeed, three efficient manufacturing solutions 

will be present in the next section to avoid the collision of the legs [23]. 

The singularity loci of this architecture correspond respectively to: 

- the plane π (z = 0); 

- the cylinder with axis z of Sb and with radius r = 2(b+p); 

- architecture singularity (when the base and the platform have the same size). 

It is worth noting that, for the same size of the base and the platform for the two 

architectures defined above, the 3-UPU TPM with architecture 1.B has a larger cylinder of 

singularity than that with architecture 1.A, and it allows a larger workspace free from 

singularity inside the cylinder. 

1.2. New architectures of the 3-UPU TPM 
 

 This section presents new architectures of the 3-UPU TPM. 3-UPU TPMs that can be 

classified in two main families: 3-UPU TPM with coplanar base/platform revolute joints 

axes and with skew base/platform revolute joints axes: named as planar and skew 

architectures for brevity. 

Planar architectures have the three revolute joint axes connecting the base/platform with 

the leg on a plane (for the base, plane π in Fig. 1.2), while the skew architectures have 

these three axes not belonging to a same plane but they are skewed. 

1.2.1. Planar architectures 

 

In this section, two new architectures of the 3-UPU TPM are presented. The first 

architecture (defined as architecture 2.A) is obtained by taking two axes of the 

base/platform revolute pairs out of the three mutual parallel. Fig. 1.4 shows a case with 

the unit vectors q11 and q13 mutually parallel and orthogonal to the unit vector q12 of the 

third axis. The centers of the universal joints in the base/platform are chosen so as to have 

the angle between the vectors ObBi and ObBi+1, i = 1,2,3, respectively the vectors OpAi and 

OpAi+1, i = 1,2,3, equal to 2π/3. Sb is defined as in the previous architectures. 

Singularity loci: similarly to the two previous architectures (architectures 1.A and 1.B) also 

this new architecture 2.A when b = p is structurally singular. 
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Figure 1.3. Singularity loci for the architecture 1.B of the 3-UPU TPM 
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Figure 1.4. Singularity loci for the architecture 2.A of the 3-UPU TPM 

 

 

For b ≠ p, Eqn. (1.1) is satisfied when: the unit vectors si, i = 1,2,3, become coplanar and 

belong to the plane π (z = 0), and two out of three unit vectors ui, i = 1,2,3, become 

parallel. This latter condition occurs when Ai and Aj, i = 1,2,3, j = 1,2,3, i≠j, belong 

respectively to the two planes orthogonal to the plane π and containing respectively q1i 
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and q1j (defined as in the previous 3-UPU TPM architectures). This condition is shown in       

Fig. 1.4 for the position of the platform when point Op projects into point Op’. A similar 

position occurs when point Op projects into Op’’. The third point, analogous to Op’’’ of the 

previous architectures goes to infinite since q13 and q11 are parallel. Therefore, the circle 

γ’, directrix of the singularity cylinder ϒ’, becomes a line passing through points Op’ and 

Op’’. As a consequence, the singularity cylinder becomes the plane π2, orthogonal to the 

plane π and passing through the two points Op’ and Op’’. 

The equation of this plane (π2) can be determined analytically as follows: 

 

   12

12

λ 2π 2π
y x b p cos b p sin z

κ 3 3

    
          

    
                                                           (1.2) 

 

where κ12 and λ12 are respectively the x and y components of the unit vector q12 in the 

reference system Sb, and x, y and z are the coordinates of the reference point Op of the 

platform in the system Sb. 

 Let α be the angle between the axes of the two revolute pairs connecting the first and 

the third leg to the base, i.e. the angle between the unit vectors q11 and q13,  

 11 13,  q q . In Fig. 1.5 that reports the intersection of the singularity loci with the plane 

π (x,y plane of Sb) for different values of the angle α, shows the changing of the singularity 

loci from a cylinder to a plane according to the value of the angle α, i.e, when the value 

 

 
Figure 1.5. Singularity cylinder and singularity plane of the 3-UPU TPM 
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of the angle α is equal to zero or 180 degrees, the singularity loci correspond to a plane. If 

this condition does not occurs, the singularity loci correspond to a cylinder. 

It is worth noting that 3-UPU TPM with architecture 2.A have a workspace consisting of a 

volume, plane π2 apart, free from singularity. 

Similarly to what done for the transition from architecture 1.A to the architecture 1.B 

(changing the location of the legs), a further 3-UPU TPM architecture can be devised. 

Indeed, by disconnecting the platform from the legs, rotating it 180 degrees about z axis 

of Sb (defined as in the previous 3-UPU TPM architectures), then reassembling it to the 

same corresponding platform revolute pairs, still keeping the same direction of the base 

revolute pairs, a new architecture defined as architecture 2.B, can be found as shown in 

Fig. 1.6. This architecture leads to the intersection of the three legs at one point. 

By the same procedure as in the previous cases, the singularity loci of this architecture are 

found and it corresponds to two planes, π and π’2. 

The equation of π’2 can be determined analytically as follows: 

 

   12

12

λ 2π 2π
y x b p cos b p sin z

κ 3 3

    
          

    
                                                               (1.3) 

 

where κ12 and λ12 are respectively the x and y components of the unit vector q12 in the 

reference system Sb. 

Similarly to the previous case (architecture 2.A), it is worth noting that 3-UPU TPM with 

architecture 2.B have a workspace consisting of a volume, plane π’2 apart, free from 

singularity. 

1.2.2. Skew architectures 

 

 By considering a skew relative position of the axes of the base/platform revolute joints, 

new architectures were found and presented in [23]. Their schematics are reported in   

Fig. 1.7-1.10. In this section, a complete study on the singularity loci is presented. For the 

first architecture defined as architecture 3.A, the axes of two revolute pairs on the base 

are on the plane π (z = 0). The axis of the third revolute pair is orthogonal to the plane π 

as shown in Fig. 1.7-a. The singularity loci correspond to [23]: 

- the plane π. 

- the structural singularity, i.e., the base and the platform have the same size. 

- three lines δij, i = 1,2; j = 2,3; i ≠ j, which represent the locus of the reference point Op of 

the platform when, according to the method reported at section 1.1, two axes of the 

revolute pairs of the platform (q4i, q4j) projects on the two corresponding axes of the base 

(q1i, q1j) providing the projection direction is along the unit vector vij, i = 1,2; j = 2,3; i ≠ j, 

of the shortest distance among the two axes. A geometrical inspection shows that the  
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Figure 1.6. Singularity loci for the architecture 2.B of the 3-UPU TPM 

 

 

lines δ23 and δ13 are on the plane π. While the line δ12 is orthogonal to the plane π. 

In [23] only some information on the singularities were reported based on geometric 

influences, then a complete study is reported based also on analytical (development) 

tools. By substituting the expression of the vectors si and ui, i = 1,2,3, in Eqn. (1.1) and 

equating the numerator to zero, it is possible to find: 

 

                  2 2z Ax Bxy Ay Dx Ey F 0                                                                                     (1.4) 

 

where x, y and z are the coordinates of the reference point Op of the platform in the 

system Sb and the coefficients A, B, D, E and F depend on the x and y coordinates of the 

point Op in the system Sb, on the direction of the revolute joint of the base and on the 

radii b, p (full expression of the coefficients A, B, D, E and F are reported in Appendix A).
 

Equation (1.4) is satisfied when: 

 




                    2 2

z 0

Ax Bxy Ay Dx Ey F 0 z
                                                                     (1.5) 

 

Thus, the singularity loci correspond to the plane π (z = 0) and from the second equation 

of Eqn. (1.5), to two surfaces Г1 and Г2 which are ruled surfaces (represented in Fig. 1.7-a) 
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Figure 1.7. (a) Singularity loci for the architecture 3.A of the 3-UPU TPM 

 (b) View from the top of the singularity loci for the architecture 3.A of the 3-UPU TPM 
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Figure 1.8. Singularity loci for the architecture 4.A of the 3-UPU TPM 

 

 

that intersect the plane π on a rectangular hyperbola as shown in Fig. 1.7-b. 

For the second architecture, defined as architecture 4.A, two axes of the revolute pairs on  
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the base are mutually parallel and belong to the plane π, while the third one is orthogonal 

to the plane π as shown in Fig. 1.8. The singularity loci correspond to the plane π and to a 

line δ13 (δ23) (locus of the platform reference point Op) on this plane obtained by the 

projection of the axes of the two revolute pairs q11 and q13 (q12 and q13) of the platform on 

the two corresponding axes of the base in the direction orthogonal to these two axes. It 

can be concluded that the singularity loci is the plane π *23]. 

Like the previous architecture, by substituting the expression the unit vectors si and ui,               

i = 1,2,3, in Eqn. (1.1) and equating the numerator to zero, an equation similar to          

Eqn. (1.4) is obtained, but in this case, the coefficients A and B are equal to zero, therefore 

Eqn. (1.4) becomes: 

 

        z Dx Ey F 0                                               

                                                                                          

(1.6) 

 

Thus, the singularity loci correspond to two planes: the plane π (z = 0) and the plane π3 

(orthogonal to π and containing the line δ13 (δ23) as shown in Fig. 1.8) which has the 

following equation: 

 

 
   

Dx F
y z

E
                                                                                                                                 (1.7) 
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Figure 1.9. (a) Singularity loci for the architecture 3.B of the 3-UPU TPM 
(b) View from the top of the singularity loci for the architecture 3.B of the 3-UPU TPM 
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Figure 1.10. Singularity loci for the architecture 4.B of the 3-UPU TPM 

 
 
Similarly to what done for the transition from architecture 1.A to the architecture 1.B 

(changing the location of the legs), a further 3-UPU TPM architectures can be devised. 

Indeed, by disconnecting the platform from the legs of the architectures 3.A and 4.A 

respectively, rotating it 180 degrees about z axis of Sb, then reassembling it to the same 

corresponding platform revolute pairs, still keeping the same direction of the base 

revolute pairs, two new architectures defined as architecture 3.B and architecture 4.B, can 

be found as shown in Fig. 1.9-a,b and Fig. 1.10. These architectures lead to the 

intersection of the three legs at one point. Analogously to the architectures 3.A and 4.A, 

the singularity loci of the architecture 3.B is the plane π and two ruled surfaces Г1’ and Г2’, 

and for the architecture 4.B, the two planes π and π3’. 

1.3. Manufacturing solutions for the leg collision avoidance of the   

3-UPU TPM 
 

In this section, three manufacturing solutions are presented in order to avoid the leg 

collision in the architectures of type B (crossed legs) of the 3-UPU TPM. Architecture 1.B is 

taken (for clarity) as an example of this type of 3-UPU TPM [23]. 

The first manufacturing solution, is to rebuilt the platform of the manipulator. This is 

obtained by disconnecting the platform of this architecture from the legs and rotating it 

by a suitable angle β about the z axis of Sb, then connecting again the legs to the platform 

still keeping the same base revolute joint axes. This means to manufacture a platform with 
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the revolute axis directions rotated of β (clockwise in the example shown in Fig. 1.11-a) 

with respect to the architecture 1.B. This makes it possible to avoid the leg collision. 

 In Fig. 1.11-a, the universal joints on the base and on the platform are represented by 

points for clarity, and the prismatic ones are omitted. 

 After manufacturing the new platform, the coordinates of the center of the universal 

joint that connect the i-th leg to the platform A’i, i = 1,2,3, are given by: 

 

' ''
p i p i p i

''
p i p i

''
p i p i

O A cos O A sin O A

O A O A i 1,2,3

O A O A

    



 





                                                                                         (1.8) 

 

where Ai, i = 1,2,3, are the centers of the universal joints in the platform of the 

architecture 1.B. 

 The second manufacturing solution, schematically shown in Fig. 1.11-b, is to rebuilt 

both the base and the platform of the architecture 1.B in order to have the coordinates of 

the centers of universal joints at the base and at the platform, respectively B’i and A’i,         

i = 1,2,3, (see Fig. 1.11-b), given as follows: 

 

'
b i b i 1i

'
p i p i 4i

O B O B e
i 1,2,3

O A O A e

  


 

q

q
                                                                                    (1.9) 

 

where Bi and Ai, i = 1,2,3, are respectively the center of the universal joints in the base and 

in the platform of the original architecture 1.B; q1i and q4i, i = 1,2,3, are respectively the 

unit vectors of the revolute joints on the base and on the platform, which maintain the 

same directions of the original architecture 1.B; e is a given distance (offset) between the 

corresponding center of universal joints in the platform of the architecture 1.B and the 

platform rebuilt. 

 The third manufacturing solution, schematically shown in Fig. 1.11-c, is to rebuilt the 

second and the third link of each leg of the architecture 1.B in order to change the 

physical position of the prismatic pairs on each leg along the vector i iEF , where the 

coordinate of the points Ei and Fi, i = 1,2,3 are given by: 

 

b i b i 2i

p i p i 3i

O E O B d
i 1,2,3

O F O A d

  


 

q

q
                                                                                  (1.10) 
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where Bi and Ai, i = 1,2,3, are respectively the centers of the universal joints in the base 

and in the platform of the architecture 1.B; q2i and q3i, i = 1,2,3, are respectively the unit 

vectors of the intermediate revolute joints of the i-th leg; d is a given distance between 

the directions of the prismatic pairs for the architecture 1.B and the manipulator 

architecture after rebuilding. 
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Figure 1.11.  First (a), second (b), and third (c) manufacturing solution for the leg collision avoidance                                

of the architecture 1.B 
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Chapter 2: Procedure to select the best architecture 

of the 3-UPU TPM for a given task 
 

 

 

 

 

 

 

In this chapter, a procedure to select the best 3-UPU TPMs architecture among the 

eight ones (1.A, 1.B, 2.A, 2.B, 3.A, 3.B, 4.A and 4.B) reported in Chapter 1 for a given task, 

is presented. A complementary task is, in particular, to have a given Cartesian workspace 

of the platform free from singularities. It is worth noting that the proposed procedure can 

be applied (in general) to any 3 DOF manipulators. 

The core of the procedure is the definition of a number of geometrical indexes which 

will be used to select the best architecture of the manipulator according to the given task. 

This procedure is composed of five main steps. 

Before proceeding to the first step, a security index related to the singularity 

occurrence of the manipulator should be define. Since K, which represents the 

determinant of the Jacobian matrix J (provides a relation between the external wrench 

applied at the reference point Op of the platform and the forces and moments applied on 

each leg), is a vector product of unit vectors: 

 

   1 2 3 1 2 3K . . .         s s s u u u                                                                                                                 (2.1) 

 

the value of K ranges from -1 to 1, K being equal to zero at singularity. The given value of 

K, Kd can be used as a security index which represents how far the manipulator is from a 

singularity configuration. K depends on the rate b/p (b and p are respectively the radius of 

the circles defined by the centers of the universal joints connected to the base, Bi,               

i = 1,2,3, and the centers of the universal joints connected to the platform, Ai, i = 1,2,3) 

and on the position of the reference point Op of the platform in the workspace. With 

reference to Eqn. (2.1), detJ = Kd represents a closed surface in the Cartesian space 

inside/outside of which K is smaller/greater than a given value of K, Kd [6,16]. 

The first step corresponds to the following: 

- given the manipulator workspace Wd chose to locate it above the plane π (z = 0) 

defined in Chapter 1. 
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- define the same desired value Kd of the security index for the different 

architectures of the 3-UPU TPM presented in Chapter 1 according to the task that 

the manipulator has to perform (the value of Kd is between 0 and 1); 

- chose a value for p (radius of the circle that belongs the centers of the universal 

joints Ai, i = 1,2,3 connected to the platform) as smaller as possible according to the 

manufacturing costs and the strength of materials used; 

- find the smallest sphere S that contains the given workspace Wd, let dS be its 

diameter; 

- the sphere S must be inside and tangent to the closed surface K = Kd. Indeed, for 

the chosen p, many solutions can be found, each of them is characterized by a 

different value of the rate b/p. Different cases may arise: the sphere S can be 

tangent to the surface K = Kd in different positions as shown in Fig. 2.1. 

- the rate b/p which corresponds to the smallest surface K = Kd that contains the 

sphere S (and is also tangent to the sphere S) is chosen, as shown in Fig. 2.1-a. 

The second step is the definition of an objective function that the manipulator has to 

satisfy. The objective function can be defined by a proper weighted selection of one or 

more indexes (will propose in the next Chapter), each of them is related to a specific 

property of the manipulator, such as size, singularity, stiffness and accuracy (corresponds 

to the maximization of the platform position error due to the clearance in revolute joints 

of the 3-UPU TPM) of the manipulator. 

The third step is to compute the selected indexes for a section W of the given 

workspace. The computation should have to be performed on the whole workspace. 

However, this is a time consuming step that is not worth in most cases, thus, quite often, 

it can be avoided by limiting the computation to a significant subset of the workspace, for 

instance, a chosen section of it. The chosen section W contains the center CS of the sphere 

S and is parallel to the plane π (z = 0). 
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Figure 2.1. Three cases of tangency between the sphere S and the closed surface K=Kd 
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The fourth step is to normalize the selected indexes computed in the previous step, in 

order to find a criterion of comparison, as follows: 

 

 




i

W
i

W

t .dW

T i 1,..,n
dW

                                                                                                                                                       (2.2) 

 

where ti and n are respectively the i-th index value and the number of indexes, W is the 

selected subset of the workspace and Ti is the normalized i-th index value. 

There is no closed-form solution for Eqn. (2.2), then the integral of the i-th index, is 

calculated numerically, which can be approximated by a discrete sum: 

 



 i i
v Wv

1
T t i 1,...,n

N
                                                                                                                       (2.3) 

 

where v is one of Nv points which are uniformly distributed in the section W of the given 

workspace. 

The previous four steps have to be completed for all the available investigated 

architectures. 

The fifth step is to select the 3-UPU TPMs architecture which best satisfies the selected 

objective function (see second step above). 
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Chapter 3: Indexes proposed 

 

 

 

 

 

 

 

In this chapter, two indexes are proposed in order to select the best 3-UPU TPMs 

architecture among the eight architectures of the 3-UPU TPM presented in Chapter 1 by 

applying the procedure detailed in Chapter 2. These indexes correspond respectively to 

the stiffness of the manipulator and to the maximum value of the platform position error 

due to the clearance in the revolute joints of the 3-UPU TPM. The indexes are  called 

stiffness and clearance indexes respectively. The best architecture corresponds to the 

highest stiffness of the manipulator and the lowest position error of the platform due to 

the clearance in the revolute joints (highest accuracy of the manipulator). 

3.1. Stiffness of the 3-UPU TPM 

3.1.1. Stiffness matrix of the 3-UPU TPM 
 

 

 The focus of this section, is to present a stiffness index. In some cases, indeed, the 

deformation of the links under the applied loads must be taken into account. In this case, 

with the assumption of small deformations, the spatial force–deflection relation of the 

manipulator is linear, and is described by a 6x6 symmetric positive semi definite matrix 

called stiffness matrix H. i.e., this matrix provides the relation between the external 

wrench applied at the reference point of the platform and the displacement of the 

platform itself. According to the static analysis [12,16,22], when the external wrench is 

applied on the reference point of the platform of the 3-UPU TPM, the i-th leg is loaded by 

a torque mti, i = 1,2,3, by an axial forces fi, i = 1,2,3, and a bending moment mbi, i = 1,2,3. 

An upper bound of the variation of the rate bending moment/torque, μi, i = 1,2,3, applied 

on the i-th leg of the manipulator in the whole workspace is computed according to a 

procedure which will be detailed in the next section. The value of this upper bound is 

small than 0.5 when the axes of the revolute joints on the base and on the platform 

respectively are coplanar (this case corresponds to the planar architectures 1.A, 1.B, 2.A 

and 2.B of the manipulator). For this reason, the bending moment, mbi, i = 1,2,3, will be 

neglected in the stiffness model of the i-th leg for the planar architectures of the 

manipulator. For the architectures when the base/platform revolute joints axes are skew 
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(this case corresponds to the skew architectures 3.A, 3.B, 4.A and 4.B of the manipulator), 

it can be obtained that the bending moment mbi, i = 1,2,3, applied on the i-th leg is still 

keeping the same direction when the reference point Op of the platform moves in the 

whole workspace. According to this result, the legs can be rebuilt in order to support this 

bending moment mbi, in the corresponding direction. Thus, the bending moment mbi,         

i = 1,2,3, can be neglected in the stiffness model of the i-th leg for the skew architectures 

of the manipulator. 

 For a given input of the actuators, the 3-UPU TPM becomes a structure. Each leg can 

be considered as a serial chain of type UU, because the actuated prismatic pair variable is 

given.  

 Due to the torque mti, i = 1,2,3, and the axial force fi, i = 1,2,3, the i-th leg undergoes a 

torsion and an axial deformation. Fig. 3.1 depicts the elastic model of the 3-UU structure, 

where kri and kai, i = 1,2,3, represent respectively the rotational and the axial stiffnesses of 

the i-th leg and the base and platform universal joints are not represented for simplicity 

(the platform, the base and the universal joints are considered as rigid, while the legs as 

deformable). 

In order to consider the displacement of the platform produced by the deformation of 

the leg links due to the torque and to the axial force, additional elastic pairs are 

introduced for each of the i-th leg, namely: a revolute pair with the axis directed as the 

torque axis and a prismatic pair directed as the unit vector si, i = 1,2,3, of the i-th leg, 

which can model respectively the torsional and the axial elastic deformation of the i-th 

leg, given by the variables θi
3 and di

4, i = 1,2,3, respectively as shown in Fig. 3.2. An 

equivalent manipulator is thus defined, as represented in Fig. 3.2, which allows a general  
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Figure 3.1. Stiffness model of the 3-UPU TPM 
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displacement of the platform (in 3D Cartesian space) that can be expressed as a function 

of the six variables θi
3 and di

4, i = 1,2,3. Therefore, the equivalent mechanism can model 

the influence on the platform displacement of the θi
3 and di

4 variables. 

The stiffness matrix H that provides the relation between the external wrench, [F M]T, 

applied at the reference point Op of the platform and the displacement, [t r]T, of the 

platform itself, is given by the following equation: 

 

   
   

   

F t
H

M r
                                                                                                                                           (3.1) 

 

where t and r are respectively the displacement (translation and rotation) of the platform. 

t and r have to be intended as ‘small’ (infinitesimal) displacements. 

The procedure to compute the stiffness matrix, H, is composed of five main steps. 

The first one is to express the pose of the reference system Sp fixed to the platform 

with origin at point Op with respect to system Sb fixed to the base (systems Sb and Sp are 

defined as in Chapter 1). In other word, to determine the 4x4 matrix, Ni, i = 1,2,3, that 

transforms the homogenous coordinates of a point from Sp to Sb. 

For the i-th leg, the 4x4 matrix Ni, i = 1,2,3, (function of the joint variables θi
1, θi

2, θi
3, di

4, 

θi
5, θi

6 as shown in Fig. 3.2) which transforms the homogenous coordinates of a point 

from Sp to Sb corresponds to the product of the 4x4 matrices Cj
i, i = 1,2,3; j = 1,..,6, that 

transform the homogenous coordinate of a point from the system Si
j (attached to the link 

j-1 of the i-th leg) to the system Si
j+1 (attached to the link j of the i-th leg), j = 0,..,6, (S0 and 

S7 correspond respectively to Sb and Sp as shown in Fig. 3.2). 

The systems Si
j, i = 1,2,3; j = 1,..,6, are defined as follows: 

The z-axis of Si
j, is taken on the direction of the j-th revolute joint as shown in Fig. 3.2. 

The x-axis of Si
j is orthogonal to the two z axes of Si

j and Si
j-1. 

The origin Oi
j of the system Si

j, corresponds to the intersection between x and z axis. y axis 

is taken according to the right hand rule. 

After the systems Si
j, i = 1,2,3; j = 0,...,7, are defined, the Denavit Hartenberg parameters 

(θi
j, αi

j, di
j, ai

j) are determined and shown in Tab. 3.1 and Tab. 3.2 according to the 

architecture of the manipulator. 

The variable ai
j (θ

i
j) is the distance (angle) between the z axes of Si

j and Si
j+1 along (about) 

x- axis of Si
j+1 and di

j (α
i
j) is the distance (angle) between the x axes of Si

j and Si
j+1 along 

(about) x- axis of Si
j+1. Thus, According to Fig. 3.2, Tab. 3.1 and Tab. 3.2, the matrices 

Ci
0,…,Ci

6, i = 1,2,3, are determined by Denavit Hartenberg convention [25] and the matrix 

Ni, i = 1,2,3, is computed by using the following equation: 

 

 , , , , , 
6

i i i i i i i i
1 2 3 4 5 6 j

j 0

d i 1,2,3


      N C                                                                                                  (3.2) 
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Figure 3.2. Denavit Hartenberg Parameters on the i-th leg                                                                                                         

for the architectures of type A of the 3-UPU TPM 

 

 

 

 

 
Table 3.1. Denavit Hartenberg parameters on the i-th leg for the architectures                                                                      

of type A of the 3-UPU TPM 

Link ji θi
j αi

j di
j ai

j 

Base (0) 

1i 

2i 

3i 

4i 

5i 

Platform (6) 

0 

θi
1 

θi
2 

θi
3 

0 

θi
5 

θi
6 

-π/2 

-π/2 

-π/2 

0 

π/2 

π/2 

π/2 

0 

0 

0 

0 

di
4 

0 

0 

a0 

0 

0 

0 

0 

0 

-a6 
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Table 3.2. Denavit Hartenberg parameters on the i-th leg for the architectures                                                                       

of type B of the 3-UPU TPM 

Link ji θi
j αi

j di
j ai

j 

Base (0) 

1i 

2i 

3i 

4i 

5i 

Platform (6) 

0 

θi
1 

θi
2 

θi
3 

0 

θi
5 

θi
6 

-π/2 

-π/2 

-π/2 

0 

π/2 

π/2 

π/2 

0 

-e 

0 

0 

di
4 

0 

e 

a0 

0 

0 

0 

0 

0 

-a6 

 

 

According to Eqn. (3.1), it can be concluded that the first column of the stiffness matrix H 

corresponds to the value of the vector (6x1) of the external wrench applied at the 

reference point Op of the platform, when a platform translation of one unit along the x 

axis of the reference system Sb is performed. 

Then, the second step is to find the variables θ3
i and d4

i, i = 1,2,3, which characterize 

respectively the torsion and the axial deformation of the i-th leg (i = 1,2,3) when a 

platform translation of one unit along the x axis of the reference system Sb is performed. 

In general, the homogeneous matrix Σ that transforms the homogenous coordinates of a 

point from Sb to Sp can be obtained by a successive rotations about axes non-fixed 

method and written as follows [26]: 

 

       
                 
 
                
 
 

2 3 2 3 2

1 2 3 1 3 1 2 3 1 3 1 2

1 2 3 1 3 1 2 3 1 3 1 2

c c c s s x x

s s c c s s s s c c s c y y

c s c s s c s s s c c c z z

0 0 0 1

Σ                      (3.3) 

 

where: 

 

    i i i i 1,2,3                                                                                                                       (3.4) 

 

and c(.) and s(.) stand for the cosine and the sine of the argument; γ1, γ2 and γ3 are the 

Euler angle about x, y, and z axes respectively; Δx, Δy and Δz are respectively the small 

translations of the platform along x, y and z axes of Sb; Δγ1, Δγ2, Δγ3 are respectively the 

small variation of the Euler angles.  

Therefore Δδ = (Δx, Δy, Δz, Δγ1, Δγ2, Δγ3)T represents a small variation of the displacement 

of the platform. 
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For a platform translation of one unit along the x axis of the reference system Sb, that is 

for Δδ = (1,0,0,0,0,0)T, the variables θ3
i and d4

i, i = 1,2,3, in the i-th leg can be found by 

solving the following system: 

 

Ni = Σ (Δδ)           i = 1,2,3                                                                                                                   (3.5) 

 

From system (3.5), six independent equations can be extracted (three from the last 

column of the matrices and three from the rotational part of the matrices). The equations 

have six dependent variables (θi
1, θi

2, θi
3, di

4, θi
5, θi

6), for given x, y, and z (coordinate of 

the point Op in Sb). Then, by writing system (3.5) for all three legs, a system of 18 

independent equations in 18 variables is obtained. The system obtained may admit many 

of 18-tuples solutions. By given a proper initial estimation of the solution, the actual      

18-tuple solution (the one which is of practical interest) is obtained by the              

Newton-Raphson method. Thus, providing the values of the variables θi
3 and di

4, i =1,2,3, 

for each of the i-th leg. 

 The third step is to use the axial, kai, i =1,2,3, and the rotational, kri, i = 1,2,3, stiffnesses 

of the i-th leg in order to compute the value of the axial force fi, i = 1,2,3, along si, and the 

moment mi, i = 1,2,3, around ui, respectively related to the displacement di
4, i = 1,2,3, and 

the rotation θi
3, i = 1,2,3, of the i-th leg: 

 
i

i ai 4f k .d i 1,2,3                                                                                                                (3.6) 

i
ri 3

i

i

k .
m i 1,2,3

cos


 


                                                                                                                 (3.7) 

 

where φi, i = 1,2,3, is the angle between the unit vectors si and ui. By choosing an annular 

section of the leg, the axial and the rotational stiffnesses kai and kri can be computed as 

follows: 

 

 2 2
i ext,i int,i

ai

i

E R R
k i 1,2,3

l

 
                                                                                                               (3.8) 

i 0i
ri

i

GI
k i 1,2,3

l
                                                                                                            (3.9) 

 

where Ei and Gi are respectively the Young and the Coulomb modules of the i-th leg; Rext,i 

and Rint,i are the external and the internal radii of the annular section of the i-th leg; I0i is 

the polar moment of inertia of the i-th leg and li is the i-th leg actual length. 
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The fourth step is to compute the external forces F, and the external moments M, 

applied at the reference point Op of the platform as shown in Fig. 3.3, which correspond 

to the first column of the stiffness matrix H, by using the following equation [22]: 

 

 
   

   
   

T

1 2 3 1 2 3f f f m m m
S 0 F

R U Μ
                                                                                     (3.10) 

 

where: 

 

  1 2 3S s s s                                                                                                                                  (3.11) 

     p1 1 p2 2 p3 3R r s r s r s                                                                                                       (3.12) 

  1 2 3U u u u                                                                                                                                      (3.13) 

 pi p iO A i 1,2,3r                                                                                                                     (3.14) 

 

 The fifth step is to repeat the three previous steps (from the second to the fourth) to 

compute, analogously to what done for the first column, the second, the third, the fourth, 

the fifth and the sixth column of the stiffness matrix H. This can be performed by 

imposing respectively a translation of one unit and a rotation of one unit as well in all and 

around all directions, that is by imposing Δγ=(0,1,0,0,0,0)T, Δγ=(0,0,1,0,0,0)T, …, 

Δγ=(0,0,0,0,0,1)T. 
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Figure 3.3. Different forces and moments applied on the reference point Op                                                                           

of the platform of the 3-UPU TPM 
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At this stage a stiffness index can be defined. The determinant of the stiffness matrix H 

cannot be taken as a stiffness index because it has components which do not have the 

same units [27]. One of the best alternatives is to make partition of the stiffness matrix H 

computed above in four 3x3 matrices Hk (components of Hk, k = 1,2,3,4, have the same 

units) as follows [28]: 

 

1 2

3 4

 
  
 

H H
H

H H
                                                                                                                                        (3.15) 

                                                                                                                                      

Then, the stiffness indexes sfk, k = 1,2,3,4, correspond to the absolute value of the 

determinants of the four 3x3 matrices Hk, k = 1,2,3,4, and consider them independently. 

The two indexes sf1 and sf2 represent respectively the stiffness of the manipulator to 

the translation and the rotation of its platform due to the external force F. While the 

indexes sf3 and sf4 represent respectively the stiffness of the manipulator to the 

translation and the rotation of its platform due to the external moment M. 

3.1.2. Procedure to compute an upper bound for the variation of the rate 

(bending moment/torque) applied on each leg of the 3-UPU TPM in the whole 

workspace 

 

 In this section, a procedure that computes an upper bound for the variation of the 

absolute value of the rate between the bending moment and the torque applied on each 

leg of the 3-UPU TPM in the whole workspace is presented. 

The moment mi, i = 1,2,3, applied by the platform to the i-th leg about the vector ui, 

orthogonal to the cross link of the universal joint (can be computed by the static analysis 

of the manipulator) can be decomposed in two moments, the torque mti, i = 1,2,3, about 

the direction of the leg si and the bending moment mbi, i = 1,2,3, about a direction bi 

orthogonal to the plane defined by the vectors si and ui as shown in Fig. 3.4: 

 

  i i ti i bi im m m i 1,2,3u s b                                                                                                             (3.16) 

 

where the torque mti, i = 1,2,3, and the bending moment mbi, i = 1,2,3, can be expressed 

as: 

 

ti i im m cos i 1,2,3                                                                                                                                          (3.17) 

bi i im m sin i 1,2,3                                                                                                                 (3.18) 

 
where φi is the angle between the unit vectors si and ui. 
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The absolute value of the rate μi, i = 1,2,3, between the bending moment mbi, and the 

torque mti, applied on the i-th leg is given as follows: 

 

i
i

i

sin
i 1,2,3

cos


  


                                                                                                          (3.19) 

  
 The core of the procedure is to compute an upper bound for the variation of the rate 

μi, i = 1,2,3, for each of the i-th leg of the manipulator, in the whole workspace. This 

procedure is composed of four main steps. 

 The first step is to envelope the given workspace by a sphere S which locate it above 

the plane π (defined as in Chapter 1) and placed inside a closed surface K = Kd, where Kd is 

a given value of the determinant of the Jacobian matrix J. 

 Then, the second step is to express the rate μi, i = 1,2,3, function of the angle ωi which 

corresponds to the angle formed by the unit vectors si and the unit vector of the direction 

of the revolute joint connected the i-th leg to the base, q1i, as shown in Fig. 3.4. First, 

according to a routine done and given in Appendix B, the relationship between the two 

angles φi and ωi corresponds to: 

 

   i icos sin i 1,2,3                                                                                                              

   

(3.20) 
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Figure 3.4. The i-th leg of the 3-UPU TPM 
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According to Eqs. (3.19, 3.20), the absolute value of the rate μi, i = 1,2,3, can be written 

as: 

 

i
i

i

cos
i 1,2,3

sin


  


                                                                                                      (3.21) 

  

 The third step is to determine the expression of the absolute value of the rate μi,           

i = 1,2,3, function of the coordinate of the reference point Op of the platform and the radii 

b and p (the radii of the two circles, which the center of the universal joints in the base 

and the platform respectively belong to). The expression of cosine of ωi, i = 1,2,3, 

corresponds to the scalar product of the two unit vectors q1i and si. The expression of the 

unit vector si for the architecture of type A and type B are given as follows: 

 

 

 

 

 


 

  



 
 

T

i i
i 1/22 2 2

i i

T

i i
i 1/22 2 2

i i

N P z
i 1,2,3, architectures of type A

N P z

R T z
i 1,2,3, architectures of type B

R T z

s

s

                                                           (3.22) 

 

where: 

 

 i iN x b p cos i 1,2,3                                                                                                                (3.23) 

 i iP y b p sin i 1,2,3                                                                                                                         (3.24) 

 i iR x b p cos i 1,2,3                                                                                                                  (3.25) 

 i iT y b p sin i 1,2,3                                                                                                                  (3.26) 

 

x, y and z are the coordinates of reference point Op of the platform in the system Sb fixed 

to the base and ξi, i = 1,2,3, is the angle between the x-axis of Sb and the vector ObBi. 

 The unit vectors q1i, (i = 1,2,3, for the architectures 1.A, 1.B, 2.A, 2.B and i = 1,2, for the 

architectures 3.A, 3.B, 4.A, 4.B) of the direction of the revolute joint connected the i-th leg 

to the base are coplanar and belongs the plane π (z = 0) can be written as: 

 

 
T

1i 1i 1i

i 1,2,3, architectures 1.A,1.B,2.A,2.B
0

i 1,2, architectures 3.A,3.B,4.A,4.B


   


q                                                 (3.27) 
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where: 

 

 
1/22

1i 1i1                                                                                                                                              (3.28) 

 

κ1i is the x component of the unit vector q1i in the system Sb. The value of κ1i depends to 

the architecture chosen and ranges from -1 to 1. 

For the architectures 3.A, 3.B, 4.A and 4.B, the unit vectors q13, of the direction of the 

revolute joint connected the leg 3 to the base is orthogonal to the plane π (z = 0): 

 

 
T

13 0 0 1q                                                                                                                                   (3.29) 

 

According to the Eqs. (3.22, 3.27, 3.29), the expression of cosines of the angles ωi,               

i = 1,2,3, for the different architectures is obtained as follows: 

 

 

 

 

1i i 1i i
i 1/22 2 2

i i

1i i 1i i
i 1/22 2 2

i i

3 1/22 2 2
3 3

i 1,2,3, architectures 1.A,2.AN P
cos

i 1,2, architectures 3.A,4.AN P z

i 1,2,3, architectures 1.B,2.BR T
cos

i 1,2, architectures 3.B,4.BR T z

z
cos archit

N P z

  
  

 

  
  

 

 
 

 
3 1/22 2 2

3 3

ectures 3.A,4.A

z
cos architectures 3.B,4.B

R T z














 
 

                                              (3.30) 

 

Thus, by substituting the cosine of the angle ωi, i = 1,2,3, given by Eqn. (3.30) in             

Eqn. (3.21), the rate μi, i = 1,2,3, for the different architectures are computed and given 

by the following equation: 

 
1/22 2 2 2

1i i 1i i 1i 1i i i
i 2 2 2 2 2

1i i 1i i 1i 1i i i

2 2 2 2
1i i 1i i 1i 1i i i

i 2 2 2 2 2
1i i 1i i 1i 1i i i

i 1,2,3, for the architectures 1.A, 2.AN P 2 NP

i 1,2, for the architectures 3.A, 4.AN P 2 NP z

R T 2 R T

R T 2 R T z

       
   

        

      
 

      

 

 

1/2

3 1/22 2
3 3

3 1/22 2
3 3

i 1,2,3, for the architectures 1.B, 2.B

i 1,2, for the architectures 3.B, 4.B

z
for the architectures 3.A, 4.A

N P

z
for the architectures 3.B, 4.B

R T






 
   


 
 


 



             (3.31)
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The fourth step is the following:  

- According to the first two equations of Eqn. (3.31), the rate μi, (i = 1,2,3, for the 

architectures 1.A, 1.B, 2.A , 2.B and i = 1,2, for the architectures 3.A, 3.B, 3.A , 3.B) is 

inversely proportional to the value of z coordinate of the reference point Op of the 

platform, but also it depends to the value of x and y coordinates of the point Op. Thus, the 

upper bound for the variation of this rate in the whole workspace, corresponds to the 

maximum value of μi in the biggest section W of the sphere S (its normal is the z axis of Sb) 

and insert it for the lowest value of z as shown in Fig. 3.5-a. 

- According to the last two equations of Eqn. (3.31), the rate μ3, for the architectures 3.A, 

3.B, 4.A and 4.B is proportional to the value of z coordinate of the reference point Op of 

the platform, but also it depends to the value of x and y coordinates of the point Op. Thus, 

the upper bound for the variation of this rate in the whole workspace corresponds to the 

maximum value of μ3 in the biggest section W of the sphere S (its normal is the z axis of 

Sb) and insert it for the biggest value of z as shown in Fig. 3.5-b. 

3.2. Maximum platform position error caused by the clearance in 

the revolute joints of the 3-UPU TPM 
 

In this section, the analytic expression of the manipulator pose error caused by the 

axial and radial clearance in the revolute joints, for a given external wrench applied on 

the reference point Op of the platform is recalled. In addition, a numerical procedure to 

find the maximum of the platform position error is presented by the optimization of an 
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(a)                                                                                                                   (b) 

Figure 3.5. Location of the section W of the workspace for computing the upper bound of the rate                         

bending moment/torque applied on each leg 
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objective function defined as the negative of the absolute value of the platform position 

error. The obtained maximum platform position error, is considered as the clearance 

index and can be used in order to apply the procedure defined in Chapter 2. 

 

3.2.1. Expression of the pose error of the platform caused by the clearance in 

the revolute joints 

 

 The virtual work method is used in order to find the relation between the platform 

pose error and the axial and radial clearance considered in the revolute joints (the 

clearance is not considered on the actuated prismatic joints). The superposition method is 

used in order to quantify the pose error induced by all the joints clearances. Moreover, 

the joint displacement will be presented as a function of the contact forces [29-36]. 

According to Eqn. (3.10), the wrenches supported by the three legs are given by: 

 

 


  

   
    

   

1
T

1 2 3 1 2 3 1 1 1
f f f m m m

FS 0

MU RS U
                                                                          (3.32) 

 

where the 3x3 matrices S, R and U (the matrices U and S are fully ranked) are defined 

respectively by Eqs. (3.11, 3.12, 3.13). 

Then, the wrench, τi, i = 1,2,3, applied by the platform to the i-th leg, which formed by an 

axial force fi and a moment mi around the unit vector ui, is expressed by the following 

equation: 

 

i i ext i 1,2,3 τ Gτ                                                                                                                   (3.33) 

 

where: 

 

 
  
 

ext

F
τ

M
                                                                                                                                                       (3.34) 

l

l 

   
    
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i i

i

i i 3

0
i 1,2,3

0

s
G

u
                                                                                               (3.35) 

 

li and li+3 are respectively the i-th and (i+3)th line vectors (1x6) from the (6x6) matrix 

defined by Eqn. (3.32). 

Figure 3.6 shows the axial, εa, and radial, εd, clearance in the j-th revolute joint connected 

to the i-th leg of the manipulator. 

 Two local reference systems are considered respectively fixed to the two links of the 

revolute pair (at the actual manipulator configuration) with their origins in the middle of 
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the pair pin (with axial length 2L) at point Ai, i = 1,2,3, of the revolute pair axis (Fig. 3.6), 

and with x, y axes and z axis respectively orthogonal to and along the revolute axis. 

The wrench τi, i = 1,2,3, transmitted by the revolute joint can be transformed into an 

equivalent system to three contact forces [29,30,31]. Namely, σ1,ji and σ2,ji, (i = 1,2,3;          

j = 1,2,3,4) perpendicular to the axis of the revolute joint and belonging to the trust plane 

of the joint (a plane through the revolute axis), and σ3,ji.qji along the revolute joint axis. 

The three forces in the local systems are given by [29,30,31]: 

 

1,ji 1,ji i

2,ji 2,ji i

3,ji ji 3,ji i

i = 1,2,3; j = 1,2,3,4

σ

 







σ W τ

σ W τ

q W τ

                                                                            (3.36) 

 

where W1,ji and W2,ji are 3x6 matrices and W3,ji is a vector of six components, which 

depend to the architecture and the configuration of the manipulator (the analytic 

expression of the matrices W1,ji, W2,ji and W3,ji, i = 1,2,3; j = 1,2,3,4, are given in    

Appendix B). 

The Principal of Virtual Work gives: 

 



 
3

T T
ext ji k,ji k,ji

k 1

r 0 i = 1,2,3; j = 1,2,3,4τ ΔΓ σ Δ                                                                         (3.37) 

 

where Δrk,ji, (i = 1,2,3; j = 1,2,3,4; k = 1,2,3) are the infinitesimal displacements of the 

application points of the forces σ1,ji, σ2,ji and σ3,ji.qji and ΔГji, is the corresponding platform 

pose error caused by the clearance in the j-th revolute joint of the i-th leg. 

The displacements Δrk,ji, (i = 1,2,3; j = 1,2,3,4; k = 1,2,3) can be assumed as vectors with 

the same direction as σk,ji and opposite versus. Their magnitude is the clearance value (εd 

for σ1,ji and σ2,ji, εa for σ3,ji.qji): 
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                                                                         (3.38) 

 

 

 



Chapter 3                                                                                                                                                    Indexes proposed 

43 
 

1,jiσ

iA

3,jiσL

L

a

a

dd

2,jiσ

 
Figure 3.6. Clearances in the j-th revolute joint connected to the i-th leg 

 

 

By substituting the expression of Δrk,ji, (i = 1,2,3; j = 1,2,3,4; k = 1,2,3) given by Eqn. (3.38), 

the expression of the forces σ1,ji, σ2,ji and σ3,ji.qji given by Eqn. (3.36),  and the expression 

of τi, i = 1,2,3, given by Eqn. (3.33), in Eqn. (3.37): 

 

1,ji i ext 2,ji i ext 3,ji i extT T T T T
ext ji i d 1,ji d 2,ji a 3,ji

1,ji i ext 2,ji i ext 3,ji i ext

0
  
        

  
  

W G τ W Gτ W Gτ
τ ΔΓ G W W W

W G τ W Gτ W Gτ
              (3.39) 

 

Equation (3.39) holds regardless of the external load acting on the mechanism, and can 

be arranged as: 

 

1,ji i ext 2,ji i ext 3,ji i extT T T T
ji i d 1,ji d 2,ji a 3,ji

1,ji i ext 2,ji i ext 3,ji i ext

 
      

 
 

W G τ W Gτ W Gτ
ΔΓ G W W W

W G τ W Gτ W Gτ
                                      (3.40) 

 

Thus, the overall displacement ΔГ, of the platform due to the clearance in the revolute 

joints can be determined by adding all the effects (provided clearance is very small and a 

linear approximation is acceptable): 

 

3 4
1,ji i ext 2,ji i ext 3,ji i extT T T T

i d 1,ji d 2,ji a 3,ji
i 1 j 1 1,ji i ext 2,ji i ext 3,ji i ext 

 
      

 
 

 
W G τ W Gτ W Gτ

ΔΓ G W W W
W G τ W Gτ W Gτ

                            (3.41) 
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By the condition of the pure translation of the platform, which corresponds to the axes of 

the two intermediate revolute pairs in the i-th leg are parallel to each other (q2i = q3i,         

i = 1,2,3) and the axes of the two ending revolute pairs in the i-th leg are parallel to each   

other (q1i = q4i, i = 1,2,3), it can be obtained that: 

 

k,2i k,3i

k,1i k,4i

i 1,2,3; k 1,2,3


 


W W

W W
                                                                                                    (3.42) 

 

By taking into account the result obtained by Eqn. (3.42), the platform pose error due to 
the axial and radial clearance in the revolute joints given by Eqn. (3.41) can be rewritten 
as: 
 

3 2
1,ji i ext 2,ji i ext 3,ji i extT T T T

i d 1,ji d 2,ji a 3,ji
i 1 j 1 1,ji i ext 2,ji i ext 3,ji i ext

2
 

 
      

 
 

 
W G τ W Gτ W Gτ

ΔΓ G W W W
W G τ W Gτ W Gτ

                          (3.43) 

 

3.2.2. Numerical procedure to compute the maximum position error of the 

platform due to the clearance in the revolute joints 

 

 In this section, a numerical procedure to find the maximum of the position error of the 

platform due the clearance in the revolute joints by using a function from the MATLAB 

Optimisation Toolbox is presented. 

 The position error of the platform, Ep, caused by the clearance in the revolute joints, 

which depends to the external wrench applied on the platform τext, is computed by the 

following equation: 

 

   
1/22 2 2

p px py pzE E E E                                                                                                                                   (3.44) 

 

where Epx, Epy and Epz are respectively the first, the second and the third component of the 

(6x1) vector ΔГ obtained by Eqn. (3.43). 

The procedure to compute the maximum position error of the platform due to the 

clearance in the revolute joints is composed of three main steps. 

 The first one is the definition of an objective function as the negative of the absolute 

value of the platform position error: 

 

func = - Ep                                                                                                                                       (3.45) 
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The maximum of the platform position error Ep, numerically corresponds to the 

optimization of the objective function ‘func’. Thus, the second step is to define the 

optimization problem as follows: 

 




 

func

    b b

min ( )x

l x u
                                                                                                                                       (3.46) 

 

where the objective function ‘func’ is defined by Eqn. (3.45); x is the vector (6x1) of 

variables which represents the external wrench applied on the reference point Op of the 

platform τext; lb and ub are (6x1) vectors which correspond respectively the lower and the 

upper bounds of the value of the components of the external wrench τext. 

The function used from MATLAB Optimization Toolbox to solve the problem defined by 

Eqn. (3.46) is ‘fmincon’ [37]. The goal of this function is to find a minimum of a 

constrained nonlinear multivariable function. Thus, ‘fmincon’ solves the following 

problem: 

 

 

 







 

  

eq

eq eq

b b

c 0

c =0

min f(x) such that .

.

    

x

x

A x b

A x b

l x u

                                                                                                       (3.47) 

 

where x, b, beq, lb, and ub are respectively vector of variables, vector for non linear 

equality constraints, vector for linear equality constraints, vectors of lower bounds and 

vectors of upper bounds of the variables; Aeq and A are respectively matrices for linear 

and non linear equality constraints; f is the objective function to be minimized; c(x) and 

ceq(x) are two functions which can be nonlinear. 

 The function ‘fmincon’ is based on the SQP (Sequential Quadratic Programming) 

algorithm. In this method, a Quadratic Programming subproblem is solved at each 

iteration. An estimate of the Hessian of the Lagrangian is updated at each iteration and a 

line search is performed using a merit function. The Quadratic Programming subproblem 

is solved using an active set strategy. The limitation of ‘fmincon’ is the following: 

- the objective function that is to be minimized and the constraints must be continuous 

functions. 

- the obtained result is a minimum local. 

- the objective function and the constraints functions must return real values. 

The third step is to define the vectors of lower bound lb, and upper bounds ub of the 

external wrench τext applied on the reference point Op of the platform. Since the position 



Chapter 3                                                                                                                                                    Indexes proposed 

46 
 

error of the platform Ep, depends on the direction of the external wrench τext, and does 

not depends on its module, the vectors lb and ub are defined as follows: 

 

   
T

b b 1 1 1 1 1 1u l                                                                                                              (3.48) 

 

By using the value of the vectors ub and lb given by Eqn. (3.48), and taking an arbitrary 

initial point (initial guess) x0 of the vector of variable x, the problem defined by Eqn. (3.46) 

can be solved. But the result obtained represents a minimum local of the objective 

function ‘func’ and its absolute value corresponds to a maximum local of the position 

error of the platform Ep. One of the best alternatives to solve the problem, is to consider 

a combination of external wrench applied to the platform τext, as initial guess (initial 

population). The value of each components of τext  can be -1, 0, and 1, thus, the number 

of combination of the vector τext is equal to 36 = 729). Thus, the minimum chosen 

corresponds to the minimum of all the minimum local of ‘func’ as shown in Fig. 3.7. The 

absolute value of the minimum chosen corresponds to the maximum position error of the 

platform due to the clearance in revolute joints which will be taken as clearance index in 

order to apply the procedure detailed in Chapter 2. 

 

 
Figure 3.7. Minimum local of the objective function ‘func’ 
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Chapter 4: Results and discussion 

 

 

 

 

 

 

 

 This chapter reports the application of the procedure presented in the Chapter 2 for 

the selection of the best architecture of the 3-UPU TPMs among the eight ones (1.A, 1.B, 

2.A, 2.B, 3.A, 3.B, 4.A and 4.B) as reported in Chapter 1 for a given task. The best 

architecture is selected based on each index in the first section and based on an objective 

function (a proper weighted selection of one or more indexes) in the second section of 

this chapter. 

 

The given data are:  

- the radius of the circle defined by the centers of the universal joint Bi, i = 1,2,3, 

connected to the platform: p = 45 mm. 

- the security index Kd = 0.6. 

- the diameter dS of the sphere S that envelope the given workspace: dS = 200 mm. 

- the value of the angles ξi, i = 1,2,3, (angle between the x-axis of the reference system 

Sb and the vector ObBi): ξ1 = 0; ξ2 = 2π/3; ξ3 = 4π/3. 

 

For each leg:  

- the offset used in order to avoid the collision of the legs for the architecture of type B: 

e = 30 mm. 

-  the external radius of the annular section of the leg: Rext = 8 mm. 

-  the internal radius of the annular section of the leg: Rint = 5.5 mm. 

-  Young module (Aluminium): E = 69000 N/mm2. 

-  Coulomb module (Aluminium): G = 26000 N/mm2. 

 

For each revolute joint: 

- axial length: 2L = 60 mm 

- axial clearance: εa = 0.1 mm 

- radial clearance: εd = 0.1 mm 
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 The directions of the base/platform revolute pairs axes of each architecture of the      

3-UPU TPM, measured in Sb, are taken as: 

* Architectures 1.A and 1.B: q1i, i = 1,2,3, are along the line tangent to the circle defined 

by the points Bi, i = 1,2,3: 

 

 
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* Architectures 2.A and 2.B: 
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* Architectures 3.A and 3.B: 
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* Architectures 4.A and 4.B: 
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0
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 
  

q                                                                                     (4.4) 

 

 In order to avoid the collision of the legs for the architectures of type B (1.B, 2.B, 3.B 

and 4.B), the second of the three manufacturing solutions presented in section 1.3 of the 

Chapter 1 has been chosen. The value of the offset e, will be used only for these 

architectures in order to avoid the legs collision. 
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4.1. Selection of the best architecture of the 3-UPU TPM according to 

the indexes 
 

 This section presents the selection of the best architecture of the 3-UPU TPM 

presented in Chapter 1 according to each index proposed in Chapter 3. The size and the 

singularity loci of the manipulator are considered as two additional indexes. 

4.1.1. Size of the 3-UPU TPM 

 

 By applying the first step of the procedure presented in Chapter 2, the coordinates of 

the center CS of the sphere S expressed in the system Sb in [mm] for the architectures 

(1.A, 1.B), (2.A, 2.B), (3.A, 3.B) and (4.A, 4.B), are respectively (0, 0, 177.39),                    

(50, -90, 218.125), (-27.5, 15, 348.6) and (0, 0, 172) in order to have the same security 

condition,   K ≥ Kd (represents how far the manipulator is from a singularity configuration). 

Then, the computed rate b/p, is taken as manipulator size index, and given in Tab. 4.1 for 

each architecture of the manipulator. The best architecture corresponds to the minimum 

value of the rate b/p (small size of the manipulator). Thus, according to Tab. 4.1, the 

architecture 4.B is the best. 

4.1.2. Singularity of the 3-UPU TPM 

 

 One of the frequently index used for the singularity of the manipulator, is the area Aζ, 

inside the closed curve ζ obtained by intersection of the plane (parallel to the plane π 

defined in Chapter 1, and contain the center of the sphere CS) with the closed surface       

K = Kd. Figures 4.1-a,b show a view of the shapes of the closed curves ζ and a (represents 

the curves of the section W chosen of the workspace) in the planes (x,z) and (x,y) 

respectively. The shape of the closed curve ζ changes according to the architecture of the 

manipulator. Indeed, architectures 1.A and 1.B (respectively (2.A and 2.B), (3.A and 3.B), 

(4.A and 4.B)) have the same shape of the closed curve ζ as shown in Fig. 4.1-c, since the 

closed surface K = Kd depends on the directions of the unit vectors si and ui, i = 1,2,3, that 

are the same for these two architectures for the same platform position. To compute the 

area Aζ, a square uniform mesh is considered for the section surrounded by the closed 

curves ζ. Then, the value of Aζ is computed by an approximation: 

 

pt eA n A                                                                                                                                                         (4.5) 

 

where Ae, the area of the mesh element (chosen too small in order to have a height 

precision of the value Aζ) and npt is the number of the nodes inside the closed curve ζ.  
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                         (a)                                                        (b)                                                                (c) 

Figure 4.1. (a) View of the shape of the closed curves a and  ζ in the plane (x,z) 

(b) View of the shape of the closed curves a and ζ in the plane (x,y) 

(c) View of the shape of the closed curve ζ for the different architectures in the plane (x,y) 

 

 

 Thus, the value of Aζ, is computed for each architecture and given in Tab. 4.2. The best 

architecture corresponds to the maximum value of Aζ, i.e., Aζ measures the space where 

the reference point Op of the platform moves on it and still keeping the same value of z (z 

is the coordinate of the point Op in the system Sb, when the platform moves in the chosen 

section W of the workspace), and the same security condition K ≥ Kd. Thus, according to 

the value of Aζ, given in Tab. 4.2, the architectures 3.A and 3.B are the best. 

4.1.3. Stiffness of the 3-UPU TPM 

 

 The distributions of the stiffness indexes sfi, i = 1,2,3,4, (correspond to the absolute 

values of the determinants of the four 3x3 matrices Hi, i = 1,2,3,4, defined in Chapter 3) of 

each architecture of the 3-UPU TPMs in the section W of the workspace are shown in   

Fig. 4.2-4.5. According to Eqn. (2.3), the values of the normalized stiffness indexes, Tsfi,         

i = 1,2,3,4, are computed for each architecture and reported in Tab. 4.3. The best 

architecture of the 3-UPU TPM corresponds to the maximum value of the normalized 

stiffness indexes, Tsfi, i = 1,2,3,4 (highest stiffness). From Tab. 4.3, it can be seen that the 

architecture of type B of the 3-UPU TPM have the highest stiffness to the rotation of the 

platform and the lowest stiffness to the translation of the platform itself due to the 

external force F applied on the platform than the corresponding architecture of type A. 

Thus, according to the values of normalized stiffness indexes Tsf1 and Tsf2, the architecture 

4.A and 4.B of the 3-UPU TPM have respectively the highest stiffness to the translation 

and the highest stiffness to the rotation of the platform due to the external force F 
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applied on the platform itself. In addition, the architecture of type B of the 3-UPU TPM 

have the highest stiffness to the translation and the rotation of the platform due to the 

external moment M applied on the platform than the corresponding architecture of type 

A. Thus, according to the values of the normalized stiffness indexes Tsf3 and Tsf4, the 

architecture 1.B have the highest stiffness to the translation and the rotation of the 

platform due to the external moment M applied on the platform itself. 

4.1.4. Maximum position error of the platform due to the clearance in the 

revolute joints of the 3-UPU TPM 

  

 The distribution of the maximum platform position error due to the clearance in 

revolute joints (clearance index) Ep, of each architecture of the 3-UPU TPMs in the section 

W of the workspace (section W at  z = 177.39 mm, z = 218.125 mm, z = 348.6 mm and         

z = 172 mm respectively for the  architectures (1.A, 1.B), the architectures (2.A, 2.B), the 

architectures (3.A, 3.B), and the architectures (4.A, 4.B)) is shown in Fig. 4.6. Then, the 

value of the normalized clearance index, TEp, is computed for each architecture in         

Tab. 4.4. The best architecture corresponds to the minimum value of TEp (highest 

accuracy). Thus, the architecture 1.A is the best. 

4.2. Selection of the best architecture of the 3-UPU TPM according to 

an objective function 
 

 In this section, an objective function defined by a proper weighted selection of the 

indexes defined above is presented. According to this objective function, a new selection 

of the best architecture of the 3-UPU TPM is done. The objective function f, is given by 

the following equation: 

 

f sf sf sf sf sf sf sf sf A A E E b/p b/p1 1 2 2 3 3 4 4 p p
n C n C n C n C n C n C n C                                                          (4.6) 

 

where: 
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 
b/p

min b/p
n

b/p
                                                                                                                                        (4.10) 

 

and max(Tsfi), i = 1,2,3,4, and max(Aζ), are respectively the maximum of the normalized 

values of the stiffness indexes, Tsfi, i = 1,2,3,4, and the maximum of the singularity index 

Aζ, computed for the different architectures of the 3-UPU TPM; min(TEp) and min(b/p), 

are respectively the minimum of the normalized values of the clearance index TEp, and the 

maximum of the rate b/p (manipulator size index) computed for the different 

architectures of the 3-UPU TPM; Csfi, i = 1,2,3,4, CEp, Cb/p and CAζ are respectively the 

weight of the stiffness, clearance, the size of the manipulator and the singularity loci 

indexes, which depend to the task of the manipulator. 

The best architecture of the 3-UPU TPM corresponds to the maximum value of the 

function f. According to a given task, the value of the weight of the different indexes is 

given as follows: 

 



 
 



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sfi

Ep

A

b/p

C 2 i 1,2,3,4

C 2

C 1

C 1

                                                                                                                    (4.11) 

 

By substituting the values of Csfi, i = 1,2,3, CEp, CAζ and Cb/p given by Eqn. (4.11) and the 

values of nsfi, i = 1,2,3, nEp, nAζ and nb/p given in Tab. 4.5 into Eqn. (4.6), the objective 

function f is computed and given in Tab. 4.5. Thus, the architecture 1.B (f = 10.05) is the 

best for the 3-UPU TPM for doing the given task. In addition, it can be seen that the 

architectures of type B of the 3-UPU TPM are better than the corresponding architecture 

of type A. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4                                                                                                                                           Results and discussion 

53 
 

 

 

 

 
Table 4.1. The value of the rate b/p for each architecture 

             Architectures 

Size of  

the manipulator 

1.A 1.B 2.A 2.B 3.A 3.B 4.A 4.B 

b/p 5.81 3.81 7.25 5.25 10.1 8.1 5.15 3.15 

 

 

 

 

 

 

Table 4.2. The value of the area inside the closed curve ζ for each architecture 

Architectures 

Singularity index 

1.A 1.B 2.A 2.B 3.A 3.B 4.A 4.B 

Aζ, cm2 [102] 10.52 10.52 14.05 14.05 19.59 19.59 7.26 7.26 

 

 

 

 

 

 

 
Table 4.3. The value of the normalized stiffness indexes Tsfi, i = 1,2,3,4, for each architecture 

Architectures 

Stiffness indexes 

1.A 1.B 2.A 2.B 3.A 3.B 4.A 4.B 

Tsf1, N2/mm2 [1012] 

Tsf2, N2/rad2 [1014] 

Tsf3, N2 [106] 

Tsf4, N2mm2/rad2 [1020] 

15 

6.74 

1.97 

6.58 

10.06 

1.24 104 

7.23 1011 

8.54 102 

6.73 

2.52 

0.92 

3.07 

5.32 

5.32 103 

3.02 1011 

3.09 102 

2.29 

0.97 

0.22 

0.72 

2.03 

1.94 103 

0.11 1010 

10.25 

17.79 

9.22 

3.13 

10.44 

9.2 

1.44 104 

1.23 1011 

1.95 102 
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Table 4.4. The value of the normalized clearance index TEp for each architecture 

Architectures 

Clearance index 

1.A 1.B 2.A 2.B 3.A 3.B 4.A 4.B 

TEp [mm] 1.41 1.56 1.53 1.82 1.58 1.71 1.62 1.98 

 
 
 
 
 
 
 
 
 
 

Table 4.5. The value of the objective function ‘f’ for each architecture 

Architectures 

Coefficient 

1.A 1.B 2.A 2.B 3.A 3.B 4.A 4.B 

nb/p 0.54 0.83 0.44 0.6 0.31 0.39 0.61 1 

nAζ 0.54 0.54 0.72 0.72 1 1 0.37 0.37 

nsf1 0.84 0.57 0.38 0.3 0.13 0.11 1 0.52 

nsf2 4.68 10-4 0.86 1.75 10-4 0.47 0.67 10-4 0.14 6.4 10-4 1 

nsf3 0.27 1011 1 0.13 1011 0.42 0.03 1011 0.02 0.43 1011 0.17 

nsf4 0.77 10-2 1 0.36 10-2 0.36 0.08 10-2 1.2 10-2 1.22 10-2 0.23 

nEp 1 0.91 0.92 0.78 0.9 0.83 0.87 0.72 

f 4.76 10.05 3.76 5.98 3.37 3.58 4.72 6.65 
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Figure 4.2. Distribution of the stiffness index sf1 in the section W of the workspace for each architecture of the 3-UPU TPM 
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Figure 4.3. Distribution of the stiffness index sf2 in the section W of the workspace for each architecture of the 3-UPU TPM 
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Figure 4.4. Distribution of the stiffness index sf3 in the section W of the workspace for each architecture of the 3-UPU TPM 
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Figure 4.5. Distribution of the stiffness index sf4 in the section W of the workspace for each architecture of the 3-UPU TPM 
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Figure 4.6. Distribution of the maximum of the platform position error Ep in the section W of the workspace for each architecture of the 3-UPU TPM 
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Conclusion 
 

 This dissertation recalls the most relevant features of the 3-UPU TPMs, a very well 

know 3-DOF translational parallel manipulator presented in the literature in the late 

nineties by Tsai [4]. 

 Investigation of the influence of both the directions of the base/platform revolute 

joints axes and the leg position is further investigated and six new architectures of the 

manipulator which exhibit interesting performances are presented. Moreover, three 

manufacturing solutions are proposed for the leg collision avoidance of the architecture 

that feature a crossed leg pattern of the 3-UPU TPM. 

 A procedure to select the best architecture of the 3-UPU TPMs among a number of 

them for a given task has been presented. The procedure is based on a number of indexes 

which correspond to the singularity loci, the size of the manipulator, the stiffness of the 

manipulator (taken as the determinants of the 3x3 matrices obtained by partitioning of 

the stiffness matrix, that relates the external wrench applied to the platform to the 

displacement of the platform itself) and the maximum value of the platform position 

error due to the axial and radial clearance in the revolute joints.  

 Finally, a case study is reported for the application of the procedure. The selection of 

the optimal architecture of the manipulator is done in two ways. The first one is based on 

each individual index. For this selection, the best architecture changes according to the 

index. The second selection is based on an objective function which corresponds to a 

proper weighted selection of the different indexes. According to this selection, one of the 

3-UPU architecture that features a crossed leg pattern has found to be the best, i.e. the 

one that corresponds to the maximum value of the defined objective function. 
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Appendix A 
 

The full expression of the coefficients A, B, D, E and F are the following: 
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where κ11, λ11, κ12 and λ12 are respectively the x and y components of the unit vectors q11 

and q12 in the system Sb. 
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 The routine used in order to obtain the relation given by Eqn. (3.20) is the following: 

the expression of the unit vector q2i, i = 1,2,3, of the direction of the intermediate revolute 

joint of the i-th leg is given by: 

 

1i i 1i i
2i

1i i i

i 1,2,3
sin

 
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 

q s q s
q

q s
                                                                                                      (B.1) 

 

where si, is the unit vector of the i-th leg; q1i, is the unit vector of the direction of the 

revolute joint that connect the i-th leg to the base and ωi is the angle formed by the two 

unit vectors si and q1i. 

 The unit vector ui, i = 1,2,3, of the direction orthogonal to the cross link of the universal 

joint is expressed as: 

 

     1i 1i i 1i i 1i 1i 1i i i 1i i
i 1i 2i
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. . . . cos
i 1,2,3

sin sin sin

    
     

  
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u q q                 (B.2) 

 

By using the expression of the unit vectors ui, i = 1,2,3, given by the previous equation, the 

scalar product of the two unit vectors si and ui, i = 1,2,3, which corresponds to the cosine 

of the angle φi (formed by these unit vectors), is given as follows: 
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(B.3) 

 

Thus, the relation between the two angles ωi and φi, is given by: 

 

   i icos sin i 1,2,3                                                                                                                     (B.4) 

 

Thus, the absolute value of the rate μi, i = 1,2,3, between the bending moment mbi, and 

the torque mti, acting on the i-th leg is expressed as: 
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 The expression of the matrices W1,ji, W2,ji and W3,ji, i = 1,2,3; j = 1,2,3,4, are given as 

follows: 
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where: 

κji, λji and ηji, i = 1,2,3; j = 1,2,3,4, are respectively the x, y and z components of the unit 

vector qji of the j-th revolute joint connected to the i-th leg; L is the half of the axial length 

of the revolute joints. 


