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Abstract

Images of a scene, static or dynamic, are generally acquired at different

epochs from different viewpoints. They potentially gather information about

the whole scene and its relative motion with respect to the acquisition de-

vice. Data from different (in the spatial or temporal domain) visual sources

can be fused together to provide a unique consistent representation of the

whole scene, even recovering the third dimension, permitting a more com-

plete understanding of the scene content. Moreover, the pose of the acqui-

sition device can be achieved by estimating the relative motion parameters

linking different views, thus providing localization information for automatic

guidance purposes. Image registration is based on the use of pattern recog-

nition techniques to match among corresponding parts of different views of

the acquired scene. Depending on hypotheses or prior information about the

sensor model, the motion model and/or the scene model, this information

can be used to estimate global or local geometrical mapping functions be-

tween different images or different parts of them. These mapping functions

contain relative motion parameters between the scene and the sensor(s) and

can be used to integrate accordingly informations coming from the different

sources to build a wider or even augmented representation of the scene.

Accordingly, for their scene reconstruction and pose estimation capabilities,

nowadays image registration techniques from multiple views are increasingly

stirring up the interest of the scientific and industrial community. Depend-

ing on the applicative domain, accuracy, robustness, and computational

payload of the algorithms represent important issues to be addressed, and

generally a trade-off among them has to be reached. Moreover, on-line

performance is desirable in order to guarantee the direct interaction of the

vision device with human actors or control systems. This thesis follows a

general research approach to cope with these issues, almost independently



from the scene content, under the constraint of rigid motions. This ap-

proach has been motivated by the portability to very different domains as

a very desirable property to achieve. A general image registration approach

suitable for on-line applications has been devised and assessed through two

challenging case studies in different applicative domains.

The first case study regards scene reconstruction through on-line mosaicing

of optical microscopy cell images acquired with non automated equipment,

while moving manually the microscope holder. By registering the images

the field of view of the microscope can be widened, preserving the resolution

while reconstructing the whole cell culture and permitting the microscopist

to interactively explore the cell culture. In the second case study, the regis-

tration of terrestrial satellite images acquired by a camera integral with the

satellite is utilized to estimate its three-dimensional orientation from visual

data, for automatic guidance purposes. Critical aspects of these applica-

tions are emphasized and the choices adopted are motivated accordingly.

Results are discussed in view of promising future developments.
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Chapter 1

Introduction

Nowadays, vision sensors and systems have gone through a large diffusion in a wide

range of intelligent applications, acquiring an increasing importance for the advantages

that vision technology can bring. Their relative cheapness and their direct relation with

the most meaningful sense of the human perception, the sight, can certainly be con-

sidered as the two main aspects that have accelerated their widespread employment in

different applicative fields in the last two decades. Moreover, their compactness permits

to gather and process a large amount of visual data without requiring a cumbersome

set-up and the information retrieved can be used to interact with human actors or other

devices, fixed or mobile, to perform intelligent tasks. In general, the exploration of a

scene by an agent endowed with a camera can provide a higher level representation

of the scene and contribute to its understanding. The images of the scene, taken at

different times and from different viewpoints, usually refer to part of the scenes, ac-

quired for a precise moment and in the current field of view (FOV) of the sensor, and

this can represent a limit, especially for complex scenes, towards the analysis and the

comprehension of the environment explored. In other words, if these images are treated

separately, only the visual properties of the objects for a precise local (in the spatial

and temporal domain) configuration can be analyzed and/or measured. In this way,

the relations existing among these different views and due to the preservation of some

image property are completely ignored and their potential totally unexploited.

On the other hand, the information shared among the images in different configura-

tions of the vision system and the scene can be utilized to estimate these relations and

provide a more complete and consistent representation of the whole scene. Further-
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1. INTRODUCTION

more, these relations retain information about the relative motion of the vision sensor

and the scene and this property can be employed for pose estimation tasks, in localiza-

tion and automatic guidance applications, only to cite the most important. In order to

recover mutual interactions among different views, pattern recognition algorithms are

used to detect invariant features that can be used as references for subsequent registra-

tion. Image registration of multiple views constitutes the main research field that aims

at facing these issues and represents an important topic for the scientific and academic

research community. Its main goal is to align images of the scene in a common and

scene-consistent reference frame, by estimating the transformations connecting corre-

sponding patterns of the scene in different views.

In this Chapter the motivations and the potentialities of image registration from

multiple views are illustrated, emphasizing the critical aspects to be dealt with in dif-

ferent applicative fields. This better sets up the research approach underlying this

thesis. The structure of the thesis is then outlined, summarizing its general method-

ological approach and the applicative case studies employed for its assessment. Specific

contributions of this thesis are explicitly pointed out accordingly as well.

1.1 Motivations and Goals

The general task of registering multiple views under different viewpoints, in different

acquisition conditions and depending on scene structure, represents a very complex and

challenging research theme. The great effort put in this field by the research commu-

nity in the last years is motivated by the impact of these research topics in different

applicative domains. Patterns related to the same scene feature have to be recognized

in different views and associated accordingly, taking into account their changes under

deformations due to viewpoints motion and possible scene changes (e.g. lighting con-

ditions). Depending on hypotheses or prior information about the sensor model the

motion model and/or the scene model, global or local geometrical mapping functions

between different images or different parts of them can be estimated, and exploited

following two main threads.

The first thread concerns scene reconstruction, providing a more complete repre-

sentation of the scene by fusing consistently in a unique reference frame the visual data

contained in each view, and/or even recovering the third dimension. In other words,

2



1.1 Motivations and Goals

image analysis of single views can be used to overcome the classical limitation of the

restricted field of view to provide a complete scene representation, as in mosaicing ap-

plications. This representation can be subsequently used in further stages of processing

and analysis for complex tasks, like segmentation or object recognition.

Moreover, the geometrical relations between different views retain parameters about

the relative motion of the acquisition device with respect to the scene. Accordingly,

the relative three dimensional position and orientation parameters, that is the pose,

between the device and the scene can be estimated and used to localize the acquisi-

tion device into the scene environment. This outcome can be used directly to feed a

control chain for automatic guidance purposes or indirectly for scene reconstruction

(3D reconstruction) or augmentation (rendering of virtual objects in Augmented Re-

ality (AR) applications). This second thread proceeds from image analysis to scene

synthesis through pose estimation.

Depending on the applicative domains and their related constraints, requirements

in terms of accuracy, robustness and computational payload can be more or less com-

pelling. In fact, the algorithms that match among corresponding part of different views

can work at different (coarser or finer) detail level. This can rebound on the results

in estimating the mapping transform and on the final consistency of the reconstructed

scene. The adaptability to different acquisition conditions and viewpoint changes is im-

portant when repeatability in very different operating conditions is required. Finally,

registration algorithms must take into account the computational resources at their

disposal, in term of the available hardware technology and the computational perfor-

mance. The last issue is particularly important in such applications where interactions

with other (human or not) agent is required, and a well-timed visual feedback on the

properties of the explored scene is needed, accordingly.

This thesis aims at investigating a general approach for on-line image registration

from multiple views, more specifically taking into account these issues in two par-

ticularly challenging case studies. The first case study regards scene reconstruction

through on-line mosaicing of optical microscopy cell images acquired with non auto-

mated equipment, while moving manually the microscope holder. By registering the

images the field of view of the microscope can be widened, preserving the image res-

olution while reconstructing the whole cell culture and permitting the microscopist to

interactively explore the cell culture. In the second application, the registration of

3



1. INTRODUCTION

terrestrial satellite images acquired by a camera integral with the satellite is utilized

to estimate its three-dimensional orientation from visual data, for automatic guidance

purposes.

The choice of such different applicative domains is motivated by the desirable goal

of providing our approach with portability. This goes toward the awkward and still

unreached objective of conceiving a general approach working independently from the

scene content. Throughout this study, the working hypothesis of rigid motions and

absence of deformations are the constraints to be fulfilled.

Moreover, since in both the applications continuous interaction with other agents

is required, the corresponding design choices must take into account the computational

payload to guarantee suitability for real-time performance. In the next paragraph the

structure of the thesis is summarized in more detail, emphasizing the specific contribu-

tions while facing these issues.

1.2 Thesis Outline and Contributions

This thesis is structured as follows.

In Chapter 2 the theoretical background beneath image registration from multi-

ple views is summarized. Current state-of-the-art methodological approaches and the

related main algorithms are recalled, with some important remarks about their perfor-

mance in terms of accuracy, robustness and computational payload. This is essential

for motivating the design choices that have driven the conception of our registration

algorithm. This is described in details in Sect. 2.3, remarking our contribution about

the strategies adopted to accomplish an acceptable trade off among accuracy and com-

putational performances.

In Chapter 3 the application of the algorithm we devised to a scene reconstruc-

tion case study in the biomedical field is described. In particular, on-line mosaicing of

optical microscope imagery with not-automated equipment is investigated. The main

motivation behind this application is to widen the nominal field of view of the micro-

scope while fully preserving at the same time the spatial resolution. In fact, a global

view of the whole cell culture can be useful to identify special spatial patterns, like
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cell colonies, or to build a global reference pattern for subsequent registration or cell

tracking in time lapse experiments. The full-resolution image of the whole cell culture

can be used for subsequent image analysis steps, like cell segmentation, cell counting,

multi-modality image fusion, to cite some of them.

In this context, our approach is capable to overcome some important common limi-

tation in this field. First, it uses only the visual information coming from the acquired

images and does not rely at all on motorized stage offsets, thus being suitable for old

not automated microscopes whose holder is being moved manually. Second, its on-line

performance allows to build the mosaic contemporaneously with the cell culture nav-

igation, permitting to explore the cell culture in its more interesting patterns directly

during the acquisition. Geometrical accuracy and visual consistency of our method are

assessed on large mosaics built from long image sequences using on purpose likelihood

metrics. A discussion of the results obtained is provided in order to identify issues still

unresolved and propose appropriate future strategies for this application.

This research has been carried out in the context of the ADVANCE (Automatic

system to Determine Vital AdhereNt CElls) project, involving the Computer Vision

Group (CVG) at ARCES - University of Bologna and the Bone Regeneration Labora-

tory (BRL), Istituti Ortopedici Rizzoli, Bologna, Italy.

Chapter 4 concerns the application of our registration algorithm on satellite images

of the Earth for an automatic guidance application. This research has been carried out

in the context of the STARS project (Standalone Three-Axis spacecraft oRientation

Sensor) in partnership with the Aerospace Engineering Group at DIEM, II Faculty

of Engineering, University of Bologna. A novel autonomous vision-based approach is

proposed to estimate the attitude of a remote sensing satellite with high accuracy (up

to the order of the arcsec) by registering the Earth images acquired by a camera integral

with a satellite along its terrestrial orbit. The estimated three-dimensional orientation

can be used for attitude stabilization in view of the automatic guidance and control

(AGC) of the satellite. The benefits brought about by this approach are discussed with

respect to other state-of-the-art methods currently employed in this field.

The whole methodological chain devised to provide a consistent proof of concept of

such an approach is also described in details. Initially, a feasibility study has been

carried out to characterize the performance bounds of such an approach, then an

5



1. INTRODUCTION

on-purpose simulation framework based on synthetic images generated from a geo-

referenced Earth imagery dataset (LANDSAT 7 ETM+) has been designed. In-depth

error source identification and characterization have been carried out based on the theo-

retical model adopted and the image registration algorithm chosen. This has permitted

to identify and isolate, through dedicated simulation configurations and experiments,

the critical aspects affecting the overall accuracy. Finally, laboratory tests conducted

with a camera mounted on a numerical control unit have been employed to assess the

accuracy performance and the influence of the hypotheses derived from the theoretical

and simulation frameworks. Discussion of the results obtained encourages the pursue

of devising proper compensation strategies.

Finally, Chapter 5 draws conclusions and outlines future developments of this work.

As for my personal research contributions, they have mainly concerned:

• with regard to the ADVANCE project, the geometric registration algorithms,

with particular attention to the critical issues (registration model, feature ex-

traction and matching, outlier rejection, etc.) arising in this applicative domain,

leading to an automatic and effective method with on-line performance (1, 2).

The geometrical algorithms devised here have been implemented in the C++

programming language, also making use of the OpenCV libraries, and utilized

by a more complex prototype research for microscope image analysis and data

management, integrated with the microscopy system. Microscopy system model-

ing and system integration issues, as well as photometric registration issues, have

been treated taking advantage of the research activity carried out in this field by

the other CVG members. The experience of the BRL staff played the main role

in the microscopy data acquisition process for the experimental stage.

• with regard to the STARS project, the geometrical modeling of the problem and

the image registration issues and algorithms. In particular, I have contributed

to design and implement the simulation framework (interacting with an Orbital

Simulator provided by the DIEM group) and develop and utilize all the experi-

mental setup. The simulations framework and the registration algorithms have

been implemented using Matlab and C++. Specific simulations have been devised

6



1.2 Thesis Outline and Contributions

on-purpose to verify the soundness of the model hypotheses and the effectiveness

of the registration strategies.

It is worth to notice that this complete analysis methodology constitutes by it-

self a further novel contribution to the current research state in the related field,

permitting comprehensive in-depth error analysis and accuracy performance char-

acterization (3, 4, 5, 6, 7).
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Chapter 2

Image Registration from

Multiple Views

In this Chapter the theoretical background underlying this thesis is outlined. A brief

survey of image registration, far from being exhaustive, is initially provided for com-

pleteness in Sect. 2.1, emphasizing the common state-of-the-art approaches employed

and their applications in different applicative domains. Pros and cons of such ap-

proaches are discussed according to critical aspects typically encountered in image

registration. In particular, accuracy, robustness and computational complexity are ad-

dressed with more emphasis, remarking the applicative requirements (Sect. 2.2). The

choices adopted while conceiving our registration algorithm are motivated accordingly,

by describing the single stages of the registration algorithm (Sect. 2.3).

2.1 Methodological approaches: a survey

Image registration being a very important research topic in many scientific areas, it

has been studied deeply in the last three decades. In fact it is widely employed in

Remote Sensing, Biomedical Image Processing, and Computer Vision applications, to

cite only some of them. The consistent combination of visual data that are spatially and

temporally correlated requires to establish visual correspondences among the different

data sources. It implies that a common visual support exists among visual information

acquired from different viewpoints (multi-view analysis), from different time instants

(multi-temporal analysis), or according to different acquisitions sources (multi-sensors

9



2. IMAGE REGISTRATION FROM MULTIPLE VIEWS

analysis).

As a consequence, some invariant features must be shared among the images to

be registered with respect to a reference pattern. Visual features must be detected in

different images according to some distinguishing and relevant properties, preserved in

spite of different viewing conditions. At the next level, pattern recognition algorithms

must have the capability to match the visual features among the images. Finally, these

correspondences can be used to extract at higher levels spatial and temporal relations

among the different views, like their relative pose, for example. Following these steps,

the general paradigm of image registration works according to four different stages (8):

• Feature Detection: salient image properties have to be detected with repeata-

bility under different conditions. In other words, the feature chosen must be

preserved at some level in presence of geometric transformations, photometric

changes, noise, etc. Moreover, detected features can be generally localized in the

image reference frame at different levels, in general at pixel or even sub-pixel

levels. Thus another important property of feature detectors is their spatial ac-

curacy (9).

Mainly two approaches are followed for feature detectors, a featureless dense or

area-based approach and a local sparse approach. In the first case image properties

of a given region, potentially extended to all the image, are used. Generally

this approach is based on the image intensity of all the pixels, without actually

searching for discriminant features, and delegating the feature matching stage to

the registration task.

The second approach relies on the detection of local features, that is localized

patterns different in some image property from their surrounding neighborhoods.

The properties usually employed to extract (and localize) these patterns can fall in

the image domain (color, texture, image gradients and their orientation) or in the

frequency domain. Since these methods do not work directly on image intensities

but rather on image gradients, they are generally more robust to changes in

lighting conditions. The resulting structures can be image regions, or contour lines

or even local patches (feature points), with different level of semantic relevance.

A wide literature addresses local structures like blobs, edges, corners, textons (10,

11), etc.

10



2.1 Methodological approaches: a survey

• Feature Matching: according to this stage, physical patterns of the scene need

to be put in correspondence among different views. The most important property

of this stage is certainly the robustness of the image matching method, since a suf-

ficient number of correct matching should be achieved under different conditions,

avoiding false matchings that can mislead future stages of image registration.

This stage is strongly correlated with the feature detection stage. Following the

main threads used for this stage, two approaches can be outlined. The first, typi-

cal of the featureless area-based methods, performs exhaustive search in the whole

image domain, using likelihood metrics typically employed for template match-

ing (12). The main drawback of such a kind of approach is the computational

effort required for the exhaustive search of the image patterns to be matched.

In feature-based approach, descriptors with different semantic levels are associ-

ated to the detected features. High level descriptors, statistical or morphological,

can be associated with a segmented region, for example, as happens for shape

descriptors (13). In (14), for example, a segmentation algorithm (15) is used to

detect the luminous profile of headlamp light beams among different views (differ-

ent beam orientation) for quality assessment purposes. In this case, the segmented

contour has been used to compute a global descriptor of the profile, that is the

elbow point showing the maximum change in the profile slope. Methods like this,

using global information, can fail when occlusions are present.

Local features descriptors, on the contrary, can cope with this issue. Their sparse

nature captures locally image properties that are invariant to several classes of

transformations of different nature (geometric, photometric, etc.). Together with

robustness, another desirable property of descriptors is their discriminative power,

distinctiveness, that enforces the probability of correct matchings even in clut-

tered environments, when “similar” patterns are present. A great number of works

have addressed this approach. A recent and extensive survey of local invariant

features can be found in (11). However, here it is worth to cite, for the popular-

ity they have currently reached in Computer Vision applications, SIFT (16) and

SURF (17) features. Scale invariance is achieved with a multi-scale approach,

privileging robustness for SIFT and computational performances for SURF.

11



2. IMAGE REGISTRATION FROM MULTIPLE VIEWS

• Warping Model Estimation: once image correspondences are computed, they

can be used to infer the warping transforms linking the different views. Generally,

hypotheses about the sensor model, the motion model and the scene structure

(rigid, deformable, planar, etc.) are necessary in order to avoid degenerate con-

figurations that can cause ambiguity. These mapping transforms can be global

(valid in the whole image domain) or local (referred to local regions). Here we

limit our attention to rigid motions for not deformable objects. The research in

this field has been characterized by a great effort towards fully automatic ap-

proaches (18, 19), working for uncalibrated cameras and in presence of general

scene structures, automatically detecting degenerate configurations and estimat-

ing accurately the “correct” scene model (20) using model selection criteria (21).

This goes in the direction of jointly estimating the relative pose parameters be-

tween the camera(s) and scene and/or reconstructing the photometric and geo-

metric structure of the scene, preserving scene consistency and accuracy. This is

generally achieved by minimizing non linear cost functions on the global dataset,

that is on the whole image sequence or on a large subset of the acquired im-

ages. Accordingly, this often requires the application of iterative minimization

algorithms (generally belonging to bundle adjustment family) on image batches,

requiring the sequence to be known in advance. This typically prevents these

methods from running on-line.

• Image Warping: registration of the images in a common reference frame is

finally obtained by warping according to the estimated transform the images in a

common reference frame. Generally, first tonal adjustment has to be performed

in order to preserve the photometric consistency of the scene taking into account

different lighting conditions (22). Once tonally alignment has been performed,

image warping can be done using different image interpolation methods (23).

2.2 General working hypotheses

The research approach we have adopted aims at reaching a trade off between per-

formances in terms of accuracy and robustness an the one hand and computational

payload on the other hand. The design of this approach has been driven by some

working conditions that are commonly encountered in Computer Vision applications:

12



2.3 The registration algorithm

• the relative motions between the camera and the scene can be modeled as rigid

motions, without sensible changes in scale;

• objects of a scene are seen as not deformable;

• image registration must be performed on-line, that is during the scene explo-

ration, with response timing suitable for interaction with human agents or con-

trol electronic devices (typically working at several frames/second). This must

be achieved with common (consumer) or limited hardware resources, for which

algorithm parallelization on multiple pipelines is not always possible.

2.3 The registration algorithm

Following the requirements addressed in the previous paragraph, we have devised an

hybrid registration approach. It takes advantage from both the local feature-based and

area-based approaches at a reasonable computational cost.

Sparse feature-based approaches are usually capable to provide a high number of

features well spread in the image domain. Accordingly, they are more robust to occlu-

sions, in the detection and matching stages, and provides a high number of samples for

the model estimation stage. Moreover, to obtain high accuracy in feature localization,

a restricted search in a local neighborhood should be preferable to a rough localiza-

tion based on higher level descriptors. For these reasons, salient features retaining

punctual image properties have been preferred, even because the low computational

cost generally required by their extraction. However, the robustness of the registration

algorithms can be affected by such a choice. Area-based methods based on Fourier

analysis are, on the other hand, more robust to noise and changes in lighting condi-

tions, but less accurate (generally at pixel level). This robustness is generally obtained

since the visual data are treated globally. With respect to area-based methods based on

image correlation in the spatial domain, their computational cost is lower, due to the

fast computation of FFT algorithms (24). Thus the advantageous properties of both

these approaches can be merged in order to conceive a coarse to fine approach, capable

to provide with good robustness a gross initial estimation of the mapping transform,

which serves as initialization for a subsequent refinement based on accurate feature

tracking.
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2. IMAGE REGISTRATION FROM MULTIPLE VIEWS

Interest points are extracted from a reference image and then matched on the sensed

image using the Lukas-Kanade (25) tracking (LKT) algorithm. In order to be robust

also to large baselines, feature tracking makes use of a guess location provided by the

Phase Correlation algorithm. Once image matchings have been established, robust

model estimation is performed by using statistical filtering algorithms. In the following

paragraphs the choices adopted for each of the stages of our image registration algorithm

are discussed.

2.3.1 Feature detection

We have chosen the Shi-Tomasi feature detector (26) as interest point detector essen-

tially for two reasons. The first is that it shows good repeatability with respect to

noise, local illumination changes and not too severe geometric transforms. The second

reason is that it is the best feature for the Lukas-Kanade tracker (25).

2.3.1.1 The Shi-Tomasi corner detector

Shi and Tomasi proposed a stable corner detector analyzing the condition number of

the pseudo-hessian or auto-correlation matrix: (Eq. 2.1)

G(x, y) =





∑
i∈W

(Ix(xi, yi))
2

∑
i∈W

(Ix(xi, yi)Iy(xi, yi))

∑
i∈W

(Ix(xi, yi)Iy(xi, yi))
∑

i∈W

(Iy(xi, yi))
2



 (2.1)

on image patches of sizes W centered on points (x, y) of the reference image, being Ix,

Iy the local image gradients. It is well known that the image patch can be characterized

according to the eigenvalues of G, λ1 and λ2, as:

• a flat region, if both λ1 and λ2 are small in value;

• an edge, if the eingenvalues are very different and one of them is high, showing

image variability in one specific direction;

• a corner, if both λ1 and λ2 are high in value.

Accordingly, the G matrix is well conditioned if the eigenvalues do not differ too

much. At the same time, the eigenvalues must be greater than a certain threshold λmin
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2.3 The registration algorithm

in order not to capture noise, so that to fulfill the constraint (Eq. 2.2):

min(λ1, λ2) > λth (2.2)

Practically speaking, the minimum eigenvalue is computed for each of the reference

image pixels, yielding an eigenvalues map. Non maxima suppression is performed on

this map on a local neighborhood of the pixel, and the remaining samples are thresh-

olded by a strength value λth. Finally, corner spatial spreadness is ensured rejecting

map locations spatially too close to stronger corners.

2.3.2 Feature matching

As discussed above, the feature matching stage proposed here combines in an efficient

way two well known algorithms, described in the followed paragraphs.

2.3.2.1 Phase Correlation

The Phase Correlation algorithm in its original formulation is based on the Fourier

Shift Theorem, which states that given a reference image I(x, y) and the sensed image

J(x, y) related by a global translation (Eq. 2.3):

I(x + ∆x, y + ∆y) = J(x, y) (2.3)

their Discrete Fourier Transforms (DFTs) FI(ωx, ωy), FJ(ωx, ωy) obey Eq. 2.4:

FJ(ωx, ωy) = FI(ωx, ωy) · e
j(ωx∆x+ωy∆y) (2.4)

Accordingly, the Normalized Cross Power Spectrum can be expressed through Eq. 2.5:

FJ(ωx, ωy)

FI(ωx, ωy)
=

FJ(ωx, ωy) · F
∗

I (ωx, ωy)

|FJ(ωx, ωy)| · |FI(ωx, ωy)|
= ej(ωx∆x+ωy∆y) (2.5)

the symbol (∗) representing the complex conjugate. The Correlation Surface CS(x, y)

can be thus obtained applying the Inverse Fourier Transform (Eq. 2.6):

CS(x, y) = F−1(ej(ωx∆x+ωy∆y)) = δ(x − ∆x, y − ∆y) (2.6)

so that the global translation vector (∆x, ∆y) can be estimated as (Eq. 2.7):

(∆x,∆y) = argmax
(x,y)

CS(x, y) (2.7)
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This algorithm in his basic version provides global translation components at pixel

level. It has been extended also to image rotation (27) and small changes in scale (28),

and to sub-pixel level accuracy (29, 30). It is quite robust to additive noise, blurring

artifacts and changes in lighting conditions (thanks to normalization in Eq. 2.5) (31).

However, the presence of additional geometric distortions, noise and not neglectable

modifications in the image content can introduce further spurious incoherent peaks in

the Correlation Surface, that can even return wrong results in the estimation of the

motion parameters. In order to handle the presence of multiple peaks, a threshold equal

to the 65 percent of the maximum peak amplitude is applied, and only the Nmax
peaks=10

peaks closest to the maximum are kept. For each of these peaks, the correspondent

motion parameters are used to determine the corresponding overlapping area among

the image pair to be registered. Then a score based on the Normalized Sum of Squared

Difference (NSSD) on the overlapping areas is used to choose the best peak (the one

with the minimum score). Even if quite heuristic, this strategy has proved to be quite

robust in our experiments even with images down-sampled with a factor of two, to

speed up the algorithm (see Chapter 3 and 4).

2.3.2.2 The LKT tracker

The result of the application of the Phase Correlation provides a guess value for refining

the matching stage. We have made use of the Lukas-Kanade tracker in order to estimate

residual image transforms with sub-pixel accuracy. This well known method aims at

estimating local optical flow displacements using a linear approximation of the image

intensity spatial and temporal variations. Given a local image patch centered on the

pixel (x,y), under the hypothesis that between the acquisition instants (t, t+ δt) of the

frame couple the optical flow constraint equation (32) is fulfilled (Eq. 2.8):

I(x, y, t) = I(x + δx, y + δy, t + δt) (2.8)

for small motion offsets, the local unknown displacement vector v=(vx, vy) (assumed

locally constant for that image patch) among the image pair I(x, y), J(x, y) can be

found by minimizing the likelihood SSD score (Eq. 2.9):

ǫ(v) =
∑

W

(I(x, y) − J(x + vx, y + vy))
2 (2.9)
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in a neighborhood W of the feature location. Accordingly, the optimum vopt is found

for the vector v satisfying (Eq. 2.10):

∂ǫ(v)

∂v

∣∣∣∣
vopt

= [0 0] (2.10)

Expanding Eq.2.10 according to its Taylor series approximation for small displace-

ments, after some passages, the following expression is found for ǫopt (Eq. 2.11):

ǫopt = G−1 · b (2.11)

being G the auto-correlation matrix in Eq. 2.1 and b a term containing spatial and tem-

poral (that is between the images under registration) derivatives (see (33)). Accord-

ingly, the Shi-Tomasi feature detector ensures that the problem expressed by Eq. 2.11

is well conditioned. The Lukas-Kanade method estimates the vector v and uses it it-

eratively for a subsequent small signal linearization, until the algorithm converges or a

maximum number of iterations is reached.

This algorithm can reach sub-pixel accuracy but can not handle robustly too large

image displacements. Pyramidal implementation of this algorithm (33) aims at coping

with this issue, working on more pyramidal levels on which estimating “small” dis-

placement vectors, then back propagated to higher pyramid levels up to the original

image. However, this approach can lead even to false matchings when “similar” in-

terest points are spread along the image. For this reason, we have preferred to use a

global area-based method like Phase Correlation as a bootstrap step for the tracker

initialization.

2.4 Two-view Geometry: model estimation

Given point correspondences on two views, global or local warping transformations can

be estimated. In general, they depend on the geometrical configuration linking camera

motion and scene, and no assumption about their model can be made if no priors

about camera motion and scene structure are given. In this section some features of the

two-view geometry are briefly recalled, since generally sequential (pairwise) registration

approaches are required for on-line applications. Image points are generally represented

through their homogeneous coordinates (x,y,λ) and accordingly the relations between

image correspondences are homogeneous (defined up to a scale factor).
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2. IMAGE REGISTRATION FROM MULTIPLE VIEWS

Epipolar Geometry constitutes the general approach to projective geometry between

two views. Its most important result is the epipolar equation (Eq. 2.12)

x′

i · F · xi = 0 (2.12)

which represents a necessary condition once two sets X and X ′ of N corresponding

image points (xi,x
′

i), i = 1 . . . N , are established between the two views. The Funda-

mental Matrix F is independent from scene structure and retains the camera’s relative

pose. Accordingly, it can be estimated from image correspondences and exploited to

retrieve the camera relative pose (pose reconstruction). The knowledge of the mutual

camera position and orientation and the image correspondences between the two views

can be then jointly employed to reconstruct the three-dimensional structure of the scene

(scene reconstruction) (34). Estimation of the Fundamental Matrix is subject to am-

biguity when degenerate configurations are encountered. Structural degeneracy is met

when the structure of the scene is planar, while pose degeneracy is encountered when

the two camera centres almost coincide, as for small baselines or pure camera rotations.

In these two cases the epipolar geometry approach is not recommended (35), but can

luckily be simplified to planar projective geometry, referred in the next paragraph. If

no priors about the scene or the camera pose are known, model selection (36) can be

employed to identify degenerate configurations and adopt the right model accordingly.

2.4.1 Planar Registration

For pure camera rotations (independently from the scene structure) and planar regions

(independently from the camera pose) - an approximation that holds also for scenes

distant from the camera - image correspondence are linked through the homography

matrix H according to Eq. 2.13:

X ′ = H · X =




h11 h12 h13

h21 h22 h23

h31 h32 h33



 · X (2.13)

Since it is an homogeneous equation, homography has only 8 degrees of freedom. Ho-

mographies are endowed with a group structure so that their composition is still an

homography. With these hypotheses, given at least 4 non collinear points matchings,

the 9-entries vector h of the homography parameters can be estimated, mainly accord-

ing to two well-known algorithms. The first algorithm, known as the Direct Linear
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Transform (DLT) method, aims at estimating the homography parameters rearranging

Eq. 2.13 so a linear system in 9 unknowns can be written (Eq. 2.14):

A · h = 0 (2.14)

where the entries of the matrix A are function of the image correspondences coordinates

(see (34) for details). A normalization algorithm (37) is applied to the image points

coordinates in order to perform a preconditioning stage and obtain a numerically stable

solution. The vector h is estimated solving the (usually overdetermined) constrained

problem (Eq. 2.15):

min
∥∥A · h

∥∥ = 0 ,
∥∥h

∥∥ = 1 (2.15)

using Singular Value Decomposition (SVD). Accordingly, this algorithm is used to

estimate with a low computational effort the homography parameters in a least square

sense, that is minimizing the residual in 2.15, also known as algebraic error.

The second homography estimation algorithm works by minimizing the geometric

distance between the observed points correspondences (X,X ′) (i.e. found in the images)

and the estimated ones (that is computed from the estimated homography) (X̂,X̂ ′) and

represents the gold standard method. It aims at jointly estimating the homography

matrix Ĥ and the set of image correspondences (X̂,X̂ ′) which minimize the geometric

symmetric distance (Eq. 2.16):

dH =
N∑

i

d(xi, x̂i)
2 + d(x′

i, x̂i
′)2, subject to x̂i

′ = Ĥ · x̂i , ∀i (2.16)

being d(·, ·) the Euclidean distance between image points. This algorithm requires

the minimization of a non linear cost function and it typically makes use of iterative

minimization methods (38), like the Levenberg-Marquardt algorithm. Typically they

are initialized with the outcome of the DLT method and are more computationally

intensive.

The aforementioned algorithms can be employed for more complex scenes struc-

tures and camera motions to estimate local homography mappings on piecewise planar

approximations of the scene (39).
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2. IMAGE REGISTRATION FROM MULTIPLE VIEWS

2.4.2 Robust estimation

The considerations made above about the model estimation are valid assuming that

image correspondences are affected only by measurement errors, that is related to image

features really corresponding to the same point in the scene matched with a limited

accuracy. These random errors follow the Central Limit Theorem and are modeled

with a Gaussian distribution. However, the matching algorithms can return also false

matchings that alter this distribution and can dramatically affect the model estimation

stage. Accordingly, robust model estimation requires the image correspondences to be

filtered, so that outliers are removed and the model computed on a robust support

only. To these purposes the RANSAC algorithm (40) has been widely employed in

the Computer Vision literature. Its working principle consists in randomly choosing

minimal (i.e., with a sufficient number of samples for the model) subsets of the original

data, and for each set estimate the model and compute the corresponding consensus,

that is a function of the number of the other samples of the dataset fitting that model

(inliers). In order to measure the fitting degree of the generic sample, the model residual

is used, and only points with residual under a certain threshold (distance threshold dth)

are classified as inliers. Finally, the subset with the maximum consensus is chosen and

the model refined on the corresponding consensus set, containing the inliers for the

“winning” model.

The algorithm terminates when a set with consensus greater than a threshold Cth

is found or after a maximum number of Nth attempts. Fixed an empirical value for

the probability α that a point is an inlier, and the probability p that at least one of

the random sample set is free of outliers, it is possible to compute the value of the

parameters dth, Cth, and N th, in an adaptive manner, as discussed in (34, 40). In this

work the values α=0.95 and p = 0.99 have been used. As far as homography estimation

is concerned, for the matrix H estimated from the generic sample set, the error function

employed to compute consensus is the symmetric transfer error (Eq. 2.17):

ǫt =
N∑

i

(d(xi, H
−1 · x′)2 + d(x′

i, H · xi)
2) (2.17)
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Chapter 3

On-line Mosaicing of Optical

Microscope Imagery

In this Chapter our image registration approach is employed in a scene reconstruction

application, that is the on-line mosaicing of optical microscope imagery. Through our

method, the visual content of single microscope images acquired while exploring dif-

ferent areas of biological specimen can be integrated, preserving consistency and level

of detail, and thus provide a more complete representation of the whole region under

investigation. The application of our approach in this field permits to overcome some

existing limitations and provide important additional functionalities. Initially, the mo-

tivations behind this application and its potentially strong impact on high-throughput

high-content image analysis (HTHCA) for the biological research are emphasized. The

working context of this application is then described and discussed with respect to

the state of the art in this field. Moreover, significant features of our image registra-

tion algorithm within this applicative context are analyzed, remarking how they can

affect the final outcome. Mosaics resulting from real datasets in different conditions

are presented and evaluated. The experimental results obtained in different biological

examinations confirm the efficacy of our approach. Besides being visually pleasant, the

achieved mosaics exhibit accuracy and consistency with the original images and can be

exploited for further global image analysis steps on the whole cell culture.
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3.1 Introduction

Microscopic imaging of in vitro live cells represents an important tool for researchers to

study spatial and temporal evolution patterns of the whole culture. HTHCA (41, 42)

in this field is stirring up interest for the advantages that it can bring in speeding up

the biologist work, starting from the microscopic imagery acquisition up to its auto-

matic processing and classification of cellular structures. Such image analysis tools

can simplify and expedite different stages of biological experiments, since they allow to

efficiently combine and process different information taken at different time in different

areas of the culture. Besides saving the microscopist from tedious as well as repet-

itive and time expensive tasks, they can enhance the range of functionalities offered

traditionally by the microscope, providing virtual microscopy (43) capabilities.

This aspect is particularly important in time lapse microscopy where a global view of

the whole cell culture can be useful to identify special spatial patterns, like cell colonies,

or to build a global reference pattern for subsequent registration or cell tracking (44).

More in general, this is important to provide the microscopist with a more complete

comprehension of some particular features of the whole culture, that on the contrary

would result awkward to achieve through the user’s visual inspection, at not negligible

temporal costs.

In (45), for example, these issues are discussed with regard to a neuro-imaging

application. In Fig. 3.1, examples of particular spatial patterns of biological interest are

shown. As it can be seen, the study of the properties of the cells (number, morphology,

etc.) and their configurations can be strongly affected by the spatial extent of the

biological structures within the viewed area. To these purposes, image mosaicing (also

called montaging or tiling) techniques can be applied to build a wide field-of-view

image of the whole cell culture area during the microscopic investigation, while fully

preserving spatial resolution of each single image.

The full-resolution image of the whole cell culture can be used for subsequent image

analysis steps, like cell segmentation, cell counting, multi-modality image fusion (see

Fig. 3.2), efficient image storage (through reduction of the redundancy of the over-

lapping areas) (46), to cite some of them. Because of the use of the resulting mosaic

for subsequent processing and measuring stages, geometric and photometric consis-

tency has to be preserved, with compelling requirements on accuracy and robustness.
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Figure 3.1: Examples of particular spatial cell patterns. (Left). Two cell colonies can

be identified (blue separation lines) in this cell culture. (Right). Typical pattern for cell

necrosis (with circular lipid vesicles)

Generally, methods and systems used for microscopic image mosaicing perform in batch

mode, building the mosaic at a separate stage at the end of the image acquisition on the

whole sequence of images. Moreover, the geometric registration of the images makes

often use of human intervention and/or relies on known motorized x-y stage offsets

of the microscope holder (43, 47) to align the images, then requiring the application

of a subsequent global refinement stage by minimizing some objective error function.

This approach, besides not working for the most common not motorized microscopes,

even for current-generation motorized stage microscopes can introduce an additional

functionality but however requiring the microscopist to wait the end of the acquisition

process to achieve the mosaic. This completely jeopardizes the interaction between

the microscopic system and the researcher in order to make him know, during the

acquisition, of the most of the interesting patterns of the cell culture. Our approach

permits to interactively navigate the cell culture through regions of interest within the

acquisition process, providing the microscopist with an immediate visual feedback and

contributing to the scene navigation even for cluttered patterns at different cell den-

sity. In other words, the explored field of view can be used directly by the microscopist

to localize structures of interest that would be possibly scanned again, once a better

understanding of the whole (often cluttered) area under investigation is reached.
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(a) (b)

(c) (d) (e)

Figure 3.2: (a) Image of a cell culture acquired in phase contrast mode and in fluorescence

mode after coloring with different cell markers identifying nuclei and cytoplasm of all the

cells (b), nuclei of necrotic cells (c), nuclei of the active cells (d), respectively. (e) Image

obtained by multi-modality fusion of the registered images. Functional properties (live,

apoptotic cells, etc.) can be studied according to visual features (cell morphology, etc.).

In this Chapter our registration approach is used to design an automatic on-line

mosaicing method for optical microscopy imagery based on visual information only,

capable to preserve photometric and geometric consistency during the manual motion

of the microscope holder. In Sect. 3.2 approaches utilized in this research field are

illustrated. In Sect. 3.3 the mosaicing algorithm we devised is discussed, remarking the

strategies chosen to process light microscopy imagery. First, a photometric-consistent

adjusting step based on flat field compensation is used to cope with the uneven spatial

distribution of the microscope light illumination field and avoid shading artifacts. Sec-

ond, accurate image registration is performed in order to geometrically align couples

of consecutive frames. Image motion is estimated robustly even in the presence of mi-

grating bodies (e.g. impurities, cell secretions) and condense artifact using statistical

filtering of outliers. Global consistency even for looping path sequences is achieved on-
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line using a Frame-to-Mosaic registration approach, preventing the registration error to

accumulate and amplify. In Sect. 3.4 the experimental setup used to collect and process

microscopic images is illustrated, together with useful metrics used for the evaluation

of the resulting mosaics. Finally, Sect. 3.5 draws some conclusions about the current

achievements and proposes future developments.

3.2 Previous Work

Image Mosaicing represents an important issue in the Computer Vision research com-

munity, and accordingly a high number of papers have been published in this field in

the last two decades.

Usually, panning motion of the camera and/or planar or general distant scene are

assumed, so that parallax effects are not present and planar registration (Sect. 2.4.1) can

be applied. Images to be registered can be taken from video shots (48) or can present

wide baseline (49), thus affecting the robustness requirements of the matching stage.

Both featureless dense correlation-based methods working on pixel intensity (50, 51) or

sparse feature-based approaches (49) have been employed in this stage, depending on

the computational and accuracy performance required. Then, the warping parameters

are estimated, in the majority of the cases, by using sequential pairwise registration

at first, and finally by applying global registration on the whole image sequence or on

a large subset of the acquired images. Global registration is generally performed by

minimizing non linear cost functions containing many unknowns, generally depending

on the extent of overlapping areas, the number of features, the number of views and the

motion model complexity. Works in (48, 51, 52) follow this approach, using iterative

optimization in a bundle adjustment fashion. Accordingly, the high computational

payload associated to this optimization stage requires off-line processing.

More specifically, as far as mosaicing of light microscopy imagery is concerned, it has

been often focused on post processing the whole sequence of images to provide visually

pleasant mosaics. The algorithms employed in this context have different hardware

requirements and degrees of automation.

A first class of algorithms follow a dense featureless registration approach with likeli-

hood error function based on pixel image intensities and accordingly are computational

intensive.
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The work described in (53) concerns a semiautomated method, based on pairwise

registration through image cross correlation, and its implementation on a desktop com-

puter, performing off-line without requiring the holder to be motorized. In (54), a semi-

automated method which requires the user to manually align the tiles for a subsequent

fine registration stage is presented. This work being focused on accuracy performance

(up to sub-pixel level), images are pixel-wise registered using a dense featureless ap-

proach, thus resulting in a high computational burden that prevents this method to

be used on-line. The methods proposed in (55) and (56) are conceived to be used nec-

essarily with high-precision motorized x-y stages. Metadata provided from motorized

stage controllers (55) and mosaic initialization through manual alignment (56) are used

for a coarse geometric registration, while global tonal and geometric alignments are

performed by minimizing a cost function over the pixel intensities of all the images’

stack. Accordingly, these methods work in batch mode at the end of the acquisition.

A second class of algorithms relies on sparse feature-based registration approaches,

detecting and matching salient regions in consecutive images. The algorithm described

in (57) utilizes Harris detectors (58) to identify salient points and normalized moment

of inertia (NMI) as their feature descriptor. This method is applied to single couples of

images while general issues regarding the mosaic generation (consistency of photometric

and geometric registration) are not addressed in this work. In (59) the software package

Autostitch (49) developed for panoramic image generation is tested on microscopic

image stacks acquired during manual or motorized motion of the microscopes holder.

Autostitch is based on SIFT (16) detection and matching to increase robustness, but it

operates off-line. The method proposed in (60) uses wavelet-based edge correlation to

detect feature points and normalized cross correlation for their matching. This method

is not conceived for on-line mosaicing since it needs global registration to achieve an

accurate mosaic.

3.3 The method

The algorithm we devised has been tailored to provide on-line, and hopefully real

time, performance, while preserving contemporaneously geometrical and photometric

consistency. Inhomogeneous spatial distribution of the microscope light field should

be taken into account and compensated in order to avoid seams, when compositing
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the images into the mosaic, due to shading or vignetting effects. To this purpose,

the microscope luminous field has to be modeled and the acquired images normalized

accordingly. In Sect. 3.3.1 the methods proposed to deal with this issue are described

in more detail.

Once the images have been mapped to the same luminous range, geometric registra-

tion is needed to represent them in a common geometric reference frame. By registering

sequentially couples of consecutive frames through our sparse-features algorithm, the

warping transformation between them is estimated and they can be rendered in a

common reference frame. This requires that a certain percentage of overlapping areas

is shared between the image pair. Considerations on how the acquisition conditions

and the scene model affect this warping transform estimation stage are discussed in

Sect. 3.3.2.

During the biological specimen navigation, the same area can be revisited more

times. It is well known that for (long) looping path sequences, errors due to pair-

wise registration (Frame-to-Frame registration, F2F) can accumulate, resulting in mis-

registrations (and accordingly mosaic seams) of the corresponding region of the scene.

To compensate also for this drift effects preserving on-line capabilities, additional

Frame-to-Mosaic (F2M) registration (61, 62) is applied. The geometric registration

framework is illustrated in detail in Sect. 3.3.2.

3.3.1 Flat Field Correction

In this paragraph two possible strategies, employed in our framework to estimate light

field and to correct for its uneven spatial distribution, are addressed. With respect to

natural images, for which it is difficult to model the camera response to light distri-

bution, in microscopy laboratories we can assume that the illumination conditions are

relatively well controlled. We have seen from our experiments that the limited extent

of the area analyzed during the specimen investigation is more sensitive to the optical

layout of the microscopy system rather than to external light variation. Accordingly,

the main factor affecting the photometric domain of the acquired images is the different

spatial response of the microscope lenses to light. This results in evident vignetting and

shading effects that must be compensated before warping the frames into the common

geometrical reference frame.
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Considering image intensities as linearly correlated to light intensity, the illumi-

nation field can be estimated by analyzing the spatial distribution of the image gray

values. Light distribution within the field of view of the microscope can be estimated

from images of an empty field or directly from several initial images also containing

objects of interest and acquired on-line during the specimen investigation.

In the first case, a stack of empty field images is created during a bootstrap acquisi-

tion stage, performed before positioning the specimen on the holder (i.e., in empty field

conditions). Temporal averaging is performed for each pixel gray level over the stack

to obtain a smoothed distribution pattern of the empty field. Then the illumination

field IF (x, y) is computed normalizing the empty field to its minimum non-zero value.

In Fig. 3.3 an example of the estimated illumination field surface is shown.

(a) (b)

Figure 3.3: (a) Image resulting from averaging on the empty field images stack. (b)

Mesh of the estimated empty field, assuming a Gaussian-like shape.

Illumination field can be alternatively estimated from a first set of images of the bi-

ological specimen, by measuring image intensities from regions with uniform reflectance

and spatially distributed over the specimen area. For these reasons, for their differ-

ent densities (and reflectance), candidate areas must not contain cells, and are chosen

among the regions of background, that is belonging to the cell culture medium devoid

from cells. To this purpose, an algorithm for background detection has been devised

within our research group, and only image intensities extracted from the background

areas are used to estimate the illumination field according to a fitting procedure. More

details about this algorithm are given in (63).

Once the illumination field is estimated, a flat field correction is applied to each

acquired image I(x, y) before its geometric registration and warping into the mosaic.
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It consists in weighting (through pixel-wise division) image intensities according to the

estimated illumination field. Accordingly, the resulting normalized images I∗(x, y) are

defined by Eq. 3.1:

I∗(x, y) =
I(x, y)

IF (x, y)
(3.1)

3.3.2 Geometric Registration

We have chosen to adopt a sequential registration approach between consecutive frames

based on sparse visual features, rather than using dense optical flow methods, essentially

for computational reasons. During acquisition, each (normalized) current frame is

registered with the previous one in a common reference frame using the algorithms

described in Chapter 2.

The coarse-to-fine strategy proposed represents in fact a good trade-off between ac-

curacy and computational payload. The Shi-Tomasi corner detector is able to extract

salient points even from poorly contrasted image, as it happens for phase contrast (64)

acquisitions. The corresponding strength threshold used in our experiments has been

empirically set to the higher 35th percentile of the pseudo-hessian eigenvalues of the

image, so that only values greater than this threshold are kept. Although being heuris-

tic, this value has proved to be valid in real world cases. An example of the eigenvalues

map and the positions of the extracted corner points is shown in Fig.3.4 (a),(b). This

example is related to a live stem cell culture and it can be noticed how, in spite of the

poor contrast of the cytoplasmic membrane with respect to the cell culture medium, a

considerable number of corners can be extracted (and matched).

The Phase Correlation stage can cope with “large” translations of the microscope

holder while preserving accuracy. To reduce the computational burden due to the Phase

Correlation, this algorithm has been applied on down-sampled images (with a factor of

2), and then the estimated translation at this level is rescaled in the original domain.

This gives a coarse approximation for the image translative field that can be refined

using the LKT. For each image pair, the frame-to-frame (F2F) warping transformation

has to be estimated from the sets of corresponding features. In Fig.3.4 (c),(d) corre-

sponding features in the two views are referred through a common numerical identifier.
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a b

c d

Figure 3.4: (a), (b) Eigenvalues maps for a sample image pair of a histological sample. As

it can be seen, higher eigenvalues are often located near the borders of cellular membranes.

(c), (d) Corresponding features resulting from the registration algorithm in the two views

are associated through a common numerical identifier.
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3.3.2.1 Model Estimation

The acquisitions conditions, the scene model and the camera model should be taken

into account for the selection of the warping model to be estimated. The system can be

modeled as composed of a fixed (projective) camera which observes the manual rigid

movement of the microscope holder. The thickness of the specimen (some microns)

being negligible with respect to the objective working distance (some centimeters), the

scene can be considered planar. In these conditions the parallax effect can be neglected

and corresponding features Xi, Xj on two consecutive views Ii(x, y), Ij(x, y) are related

by a planar homography Hj
i according to the homogeneous Eq. 2.13, here recalled for

completeness (Eq. 3.2):

Xj
∼= Hj

i · Xi =




h11 h12 h13

h21 h22 h23

h31 h32 h33



 · Xi (3.2)

with
∥∥h

∥∥=1. Thus, proceeding by a set of at least 4 non collinear feature matchings

in the system of Eq. 3.2, the estimation of this eight-parameter transform would be

required in general.

However, the warping transform actually depends on the real acquisition conditions

and can belong even to sub-groups nested in the group of the homographies. In our case

study, two additional approximations can be considered as satisfied. The depth extent

of the scene (the biological sample) is small if compared with the average distance from

the camera principal point, and because of the “small” field of view of the camera, the

imaged points can be considered close to the optical axis. Under these hypotheses, the

perspective camera model can be relaxed to the affine model (34) expressed by Eq. 3.3:

Xj = Aj
i · Xi =




a11 a12 a13

a21 a22 a23

0 0 1



 · Xi (3.3)

and the parameters to be estimated decrease to six. Moreover, by proceeding with

this complexity reduction approach, we can suppose to neglect the mechanical play

of the holder (that can be affected by drift effects due to its continuous use) and the

relative deviation of the camera optical axis from the normal to the holder, conceiving

accordingly a translative model, with the number of parameters to be estimated reduced
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Model k Nmin H

Projective 8 4 H=




h11 h12 h13

h21 h22 h23

h31 h32 h33



 ,
∥∥h

∥∥=1

Affine 6 3 A=




a11 a12 a13

a21 a22 a23

0 0 1





Translative 2 1 T=




1 0 ∆x

0 1 ∆y

0 0 1





Table 3.1: Properties of the warping models employed in this context. k is the number of

parameters (degrees of freedom) of the model, Nmin is the minimum number of matchings

needed to estimate the model.

to two (the x and y translation components)(Eq. 3.4):

Xj = T j
i · Xi =




1 0 ∆x
0 1 ∆y
0 0 1



 · Xi (3.4)

In Table 3.1 the main features of these models are summarized. The estimation of

these models is carried on solving the (overdetermined) system in Eq. 3.2, minimizing

the algebraic re-projection error, that in these last two cases has the same expression

of the geometric distance.

It is worth to notice that the estimation procedure of the warping transform is quite

sensitive to the presence of outliers (false matchings) and to the percentage of the over-

lapping area between two consecutive frames. Outliers can be due to the registration

algorithm, as it happens when (false) matchings are established between points related

to different parts of the scene, or to the presence of migrating impurities corpuscles

and slight modifications of not stable structures. Furthermore, the depth of field is

not spatially uniform, so that corresponding points in different views can present out-

of-focus blurring effect. Rather than characterize each of these error components and

compensate for them, the statistical filtering stage based on RANSAC (40) algorithm

is employed to cope with these factors.

In Fig. 3.5 corresponding features for a couple of consecutive frames according to

this procedure are shown, with a numerical identifier associated to each matched pair
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of features. Inliers are identified by corresponding circled cross ticks, while rejected

outliers are identified by simple not circled crosses. Boxes with magnified details show

how structural modification of cells, among the other factors, can affect the feature

matching stage and how the RANSAC stage can cope with this effect.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23
24

25

26

27

28

29

30
31

32

33

34 35

36

37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

3031
32

33

34 35

36

37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

Figure 3.5: Couple of consecutive frames with corresponding feature points superimposed

(with common numerical identifier). Circled crosses identify inliers of the RANSAC stage,

isolated crosses indicates outliers. Images with magnified details show how the RANSAC

stage is able to cope with outliers even due to local morphological changes.

However, outliers are correlated also with the warping model chosen to represent

the transform between two views. As discussed in general (21), and more specifically for

mosaicing applications in (65), the model selection issue for the geometrical transform

to be estimated can affect the resulting mosaic. The estimation process for the warp-

ing parameters can result unstable if noisy correspondences are established in a small

overlapping region. In the presence of outliers, estimating more complex models can
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lead to ill-conditioned problems, while less complex models can be more robust to the

risk of overfitting the model parameters to the noisy data. In order to avoid degenerate

configurations, that can lead to large image distortion, the warping model has to be

selected properly. A very popular criterion for model selection is the GIC (Geometric

Information Criterion) and its variants (21), in particular for on-line application, due

to the efficiency of its computation. It takes into account different features of the set

of models and chooses the model with the least GIC score as the most adequate. GIC

is defined as (Eq. 3.5):

GIC =
n∑

i=1

e2
i

σ2
+ λ1 · d · n + λ2 · k (3.5)

The first term on the right-hand side (RHS) derives from the Maximum Likelihood

Estimation (MLE) of the model parameters, maximizing the probability of observing a

set of given features correspondences for a certain set of model parameters. In partic-

ular, this term is the log likelihood of the correspondences for a Gaussian distribution

of the noise perturbed data, being ei the re-projection error (between the measured

data and the data returned from the estimated model) with variance σ2. The third

term of RHS is proportional to the number of parameters of the model and penalizes

more complex models through the weight λ2. For λ2=2 the first and the third terms of

RHS form the well known Akaike Information Criterion (AIC) (66). GIC is obtained

by integrating AIC with the second term of the RHS, which takes into account the

number of the samples n used to estimate the model and the dimension d of the model.

This geometric fitting approach aims at selecting the correct model using the ob-

served data from the current couple of frames provided that the noise distribution is

known. By choosing λ1=λ2=2, as it happens for the Geometric Akaike Information

Criterion (GAIC) (67), the influence of the model complexity can be masked from the

high number of samples. For this reason, the choice of these weights is important in

order to obtain a robust criterion, as discussed in Sect. 3.4.

3.3.2.2 Registration Modes

Once the pair-wise matrix Hj
i has been estimated, obtaining the matrix Ĥj

i , it is used

to perform a guided search using the estimated features X̂j=Ĥj
i ·Xi as guess values for a

further LKT tracking. The pairwise warping model is the estimated by using RANSAC
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on this last set of image correspondences, and the global transform that warps each

image into the mosaic reference frame can be computed. We have chosen the mosaic

reference frame XM to be coincident with the first frame X0, with H1
0 being equal to

the identity matrix. The mosaic warping matrix for the nth frame, Mn, defined by the

relation (Eq. 3.6):

XM = X0 = Mn · Xn (3.6)

can be obtained by incrementally chaining, through the matrix left-productory operator

(Eq. 3.7),
n−1∏

i=0

H i+1
i = Hn

n−1 · · ·H
1
0 (3.7)

the transform matrices estimated for the previous frames, according to Eq. 3.8:

Mn = (
n−1∏

i=0

H i+1
i )−1 (3.8)

still belonging to the homography group.

This incremental approach is prone to dead reckoning effects due to accumulation

of the estimation errors, that can turn to increasing geometric deformations and mis-

alignments. This effect is more evident for long looping path sequences, where frames

of revisited areas of the scene can present a visible misalignment with the frames al-

ready mapped into the mosaic. As discussed above, generally a global registration of

the collected frame is required to compensate for these effects. However, this would

require to know all the image sequence in advance and would result in a computational

intensive optimization stage. Alternatively, we have chosen to adopt a Frame-to-Mosaic

approach (61, 62) that permits to reach a good trade off between the accuracy of the

resulting mosaic and computational performances. According to this approach, the

current nth frame is registered not only with the previous (n−1)th frame, but also with

the mosaic built up to that point, Mn−1. In other words, a corrective contribution is

estimated by registering the current frame with the corresponding area, according to

the F2F registration, in the mosaic reference frame. Being HC
n the matrix taking into

account this corrective term, Eq. 3.6 becomes Eq. 3.9:

XM = HC
n · Mn · Xn (3.9)

This further registration has the advantage of compensating mis-registrations at a re-

duced computational cost, since it requires only one more LKT tracking stage, fed by
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the estimated model resulting from the F2F registration. Accordingly, the application

of the Phase Correlation stage, more computationally expensive, is not needed at this

point.

Once the mosaic warping matrix has been computed, the nth image is then warped

into the mosaic reference frame, accordingly, using bilinear interpolation and merged

into the mosaic using a stitching approach, that is replacing the underlying pixel value.

This choice has been preferred to traditional blending approaches in order to avoid

ghosting effects due to the motion of particles in adjacent frames. Moreover, as men-

tioned before, for microscopic imagery mosaic seams are almost due to vignetting and

shading effects. Our flat field correction stage, compensating for these artifacts, per-

mits to create a visually pleasant mosaic while keeping the high geometric accuracy

achieved by our registration method, as shown in the next paragraph.

3.4 Experimental Results

In order to test our algorithm, image sequences of biological samples have been ac-

quired in phase contrast mode, using standard non-motorized optical microscopy in-

strumentation, and processed on-line. In particular, an inverted microscope Nikon

Eclipse TE2000-U, widely used in research labs, has been equipped with a digital cam-

era (Nikon DXM1200) able to perform live acquisition at 640 × 512 pixel resolution.

The system has been connected to a consumer PC (Intel Pentium 2GHz, 4GB RAM).

Fig. 3.6 summarizes the framework used for our experiments. During our experiments,

a magnification factor of 100× has been applied, this resulting in a spatial resolution

of 1.0152 µm/pix. Before positioning the specimen on the holder, empty-field images

have been acquired for several seconds (yielding a stack of 68 elements) in order to es-

timate the illumination field, as described in Sect. 3.3.1. Then, during acquisition, the

holder is moved manually by a microscopist to his liking and the mosaic built on-line

accordingly.

To evaluate the results of our algorithm in different working conditions, two different

test configurations have been set up. The first consists of images of a histological sample

(HS, hereinafter) of altered bone tissue, characterized by the presence of background

regions among connected structures. The second refers to a live stem cells culture (SC,

afterwards). Both are acquired in phase contrast mode.
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Figure 3.6: Experimental setup used in our tests. The inverted microscope Nikon Eclipse

TE2000-U has been equipped with a digital camera (Nikon DXM1200). The system has

been connected to a consumer PC.

3.4.1 Metrics for Quality Assessment

The quality of the resulting mosaic can be evaluated quantitatively using proper qual-

ity indexes. Usually, a consistent metric must be adopted for the comparison of the

results with the ground truth data. However, in our case study, since the experimental

equipment is not automated, ground-truth data are not available, even as far as the

holder motion is concerned. The only ground-truth data available are the single frames

acquired during the holder motion, that is the reference images. Accordingly, the in-

formation contained in the single frame can be compared with its corresponding area

in the mosaic according to some metric.

In fact, given the input image sequence and the mosaic M(x, y) built accordingly, it

is possible to achieve for each original image, by means of the mosaic warping matrices,

the corresponding overlapping area in the mosaic. Given the sequence of N reference

images Ii to be mosaicked, let Ri
I(x, y) the ith warped reference image, i.e. achieved by

warping Ii(x, y) according to the matrix M i, and Ri
M (x, y) the mosaic region having

the same support T i. The area Ri
M (x, y) of the mosaic is generally the result of the

contributions of the Ri
I(x, y) and also of other different warped reference images. Ac-

cordingly, Ri
M (x, y) is generally partitioned into mi +1 regions Ai

i(x, y) . . . Ai
i+mi

(x, y),

each partition containing only the mosaic pixel derived from one of the reference images

that are warped into Ri
M (x, y). This formalism is illustrated through Fig. 3.7.
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Figure 3.7: Explicative figure for the symbols used to indicate the regions defined to com-

pute quality metric indexes. In this case mi=3. Dimensions are not preserved purposely

to improve visualization.

.

For the sake of clarity, in the following we consider the generic Ri
M (x, y) and omit the

index i in the subscript of the expression mi and in the superscript of the expressions

Ai
i. For the generic ith reference image, the support Si used to compute metric indexes

is defined as follows (Eq.3.10):

Si =
⋃

j=(i+1)...(i+m)

Aj (3.10)

that is the union of the partition subsets of Ri
M (x, y), except for the Ai

i region which

contains information related to the ith reference frame only. Since Si(x, y) is a subset of

the support T i, common to both Ri
M (x, y) and Ri

I(x, y), also Ri
I(x, y) can be referred

to Si(x, y). We denote as P (Si) the number of pixels of Si.

The Root Mean Squared Error (RMSEi) and the Signal to Noise Ratio (SNRi)

can be defined by considering the image intensities on the support Si(x, y), as follows

(Eq. 3.11, Eq. 3.12):

RMSEi =

√√√√√

∑

(x,y)∈Si

(Ri
I(x, y) − Ri

M (x, y))2

P (Si)
(3.11)
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SNRi =





∑

(x,y)∈Si

(Ri
M (x, y))2

∑

(x,y)∈Si

(Ri
I(x, y) − Ri

M (x, y))2



 (3.12)

usually expressing SNR in [dB].

Accordingly, a sequence of N images yields N samples for each of the two metric indexes.

The ith sample of the metric index sequence aims at measuring the likelihood of the ith

reference image with the corresponding area Ri
M (x, y) in the resulting mosaic, provided

that in Ri
M (x, y) only the contributions coming from images different from the reference

one are taken into account. In fact, if a region of the mosaic arises from the stitching of

a single reference image, the comparison of Ri
M (x, y) with its warped reference image,

i.e. Ri
I(x, y), would not be consistent since the two regions are related, in this case,

simply by the estimated warping, and their likelihood would be obviously close to the

maximum. On the other hand, if errors in image registration occur and propagate, it is

likely that the reference images are not registered consistently into the mosaic reference

frame, thus even with respect to the other images bringing contribution for building (or

hitting) the corresponding area of the mosaic. In this case, a misalignment in the mosaic

should rebound on the metric indexes. Accordingly, only the pixels of the mosaic not

hit by the reference frame are taken into account in Eq. 3.11 and Eq. 3.12. It is worth to

notice that the support of the N th frame is the empty set (SN=∅), since this last frame

is integrally stitched on the mosaic, so that the mosaic region RN
M (x, y)=RN

I (x, y) is

simply obtained warping the reference frame IN (x, y) according to the mosaic warping

matrix. As a consequence, the computation of the metric indexes can be skipped for

the last frame, yielding N − 1 samples in total.

To better explain how this evaluation methodology works, in Fig. 3.8 the masks related

to the Ri
M (x, y) regions are shown for a sample mosaic, each with a corresponding

label. For example, observing the mask corresponding to the eighth R8
M (x, y) region

(identified by blue borders), it is hit, besides by itself, also by the ninth, the tenth and

the eleventh reference images. The support to be considered to compute the metric

indexes is the union set of the pixels hit by only these three last reference images.

The expressions in Eq. 3.11 and Eq. 3.12 can be extended taking into account all

the Si(x, y) areas of the first N − 1 reference images, and referred to the whole mosaic

as global quality metrics. More formally, we define the global support SM as follows
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Figure 3.8: Labeled masks of the hit regions Ri
M (x, y), being each numerical identifier

associated with the corresponding ith warped reference frame (Ri
I(x, y)). Blue borders

surround R8

M (x, y). The support used to compute metric indexes for the eighth frame is

formed only by the (not green) mosaic areas hit from the ninth, the tenth and the eleventh

reference images.

(Eq. 3.13):

SM =
⋃

h=1...(N−1)

Sh (3.13)

and accordingly the mosaic Root Mean Squared Error RMSEM and the mosaic Signal

to Noise Ratio SNRM are defined as follows: (Eq. 3.14, Eq. 3.15):

RMSEM =

√√√√√√√√√

N−1∑
i=1

[
∑

(x,y)∈Si

(Ri
I(x, y) − Ri

M (x, y))2

]

N−1∑
i=1

P (Si)

(3.14)

SNRM =

N−1∑
i=1

[
∑

(x,y)∈Si

(Ri
M (x, y))2

]

N−1∑
i=1

[
∑

(x,y)∈Si

(Ri
I(x, y) − Ri

M (x, y))2

] (3.15)

These metrics have been defined in order to evaluate our results according to three

different aspects:

40

3/./figures/subsample_cerchio_CIBCB/ImageLabelsOnMosaic_masks_col.eps


3.4 Experimental Results

• flat field normalization: the effect of the application of the flat field com-

pensation can be discussed with respect to the results obtained processing raw

data;

• choice of the warping model: once flat field correction has been applied, being

all the reference images in the same photometric domain, results obtained choos-

ing different warping models (projective, affine, translative) can be compared;

• registration mode: especially for long looping path, the impact of the F2M

compensation is evaluated with respect to the incremental F2F registration.

3.4.2 Results

Results related to three image sequences are here presented and analyzed. They have

been chosen as representative of the behavior of our algorithms among sample sequences

collected in extensive acquisition campaigns. Other results, consistent with the ones

reported here, can be found in (1).

The first sequence (HS) is relative to a set of 60 images (59 image pairs) of a histolog-

ical sample, registered incrementally (F2F) with the three different warping models. In

Fig. 3.9 (a),(b), the resulting mosaics for the translative and affine models are shown,

with neglectable differences. Fig. 3.9 refers to a detail of the mosaic obtained with

translative model without (c) and with (d) the application of the flat field correction

stage. In the first case, it can be clearly noticed the presence of seams due to shad-

ing and vignetting effects. These artifacts disappear when the flat field correction is

applied.

In Fig. 3.10 (a) the resulting tonally-aligned mosaic for the projective model is

shown. It can be noticed how, for the projective model, error propagation leads to

large, unnatural, image deformations.

Fig. 3.10 (b), (c) confirm that it is due to the ill-conditioned nature of the estimation

of the projective model, being the data used for model estimation small in number and

concentrated in a small region.

As far as the quality metric indexes are concerned, Table 3.2 reports the results

of the global mosaic indexes RMSEM and SNRM (expressed in [dB]) relative to the

sequence HS, without (HS-RAW) and with (HS-FF) the application of the flat field

compensation.
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(a)

(b)

(c) (d)

Figure 3.9: Mosaics obtained from the sequence HS using F2F registration with flat field

correction for the translative (a) and affine models (b). Detail of the mosaic achieved with-

out applying the flat field compensation ((c)) compared with the correspondent tonally-

aligned region (d). Seams due to vignetting and shading effects can be seen (better on the

electronic version) in (c), while disappear in (d) thanks to the flat field correction.
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(a)

(b) (c)

Figure 3.10: (a) Mosaic obtained from the tonally aligned sequence HS using the pro-

jective model. (b), (c) An image pair with a small number of features concentrated in

region. This configuration can make the model estimation an ill-conditioned problem for

complex models.

To evaluate consistently the effect of the flat field compensation only, the metric

indexes can be compared by row once the model (column) has been selected. In other

words, it is not consistent to compare directly indexes before and after the flat field

correction for different models, since in this case both the geometric and photometric

aspect would affect the final results. Accordingly, first we select a model, and evaluate

the effect of the illumination field correction on that model. As in can be seen, fixed

a model (column), by applying the flat field correction the RMSE value decreases, for

all the three models. Conversely, as expected, the SNR increases when the flat field

correction in applied. This is consistent with the improved visual quality of the mosaics

43

3/./figures/pFP2/subsample_CIBCB_2/MosaicBMP_proj_siTonal.eps
3/./figures/pFP2/subsample_CIBCB_2/PrevTrackCorners_proj_deg.eps
3/./figures/pFP2/subsample_CIBCB_2/CurrTrackCorners_proj_deg.eps


3. ON-LINE MOSAICING OF OPTICAL MICROSCOPE IMAGERY

Sequence RMSEM SNRM [dB]

Trasl Affine Proj Trasl Affine Proj

HS-RAW 4.77 4.36 10.21 29.13 29.91 20.51

HS-FF 2.72 1.99 8.62 33.52 36.22 24.78

Table 3.2: Quality metric indexes for the 60-frame HS sequence. The first row concerns

results obtained working on raw (not tonally compensated) images, while values in the

second row refer to flat field normalized images.

due to the flat field correction stage, for all the adopted models. Considering the models

separately, it can be seen that the RMSE gain (i.e. its decrease) due to the application

of the flat field normalization assumes comparable values for the translative (about

43%) and the affine models (about 54%), while the RMSE value for the projective

model is less sensitive (with a gain of about 16%) to the flat field correction. In fact

for the projective model the main contribution to the error is reasonably due to the

geometric distortion introduced by this model. The SNR gain values (i.e. its increase)

are about 15%, 21%, 21%, for the translative, affine and projective models, respectively.

Thus, these values are still comparable not only for the translative and affine models,

but even for the projective model. For this model, with respect the other two models,

to a smaller RMSE gain corresponds a comparable value of the SNR gain, so that

necessarily an higher signal intensity gain (related to the numerator in Eq.3.15) must

compensate for that. Accordingly, the SNR gain is less sensitive to the model, that is

the appearance of the mosaic built according to each of the models is “improved” by

the flat field correction in the same way for all the models, each of them introducing

its own geometrical distortion independently from the tonal compensation.

In order to evaluate consistently the soundness of the selected model with respect

to their geometric distortions, the values of the metric indexes for the three models

must be compared once the flat field correction has been applied, that is comparing

values on the HS-FF row only. Considering the RMSE in the HS-FF row, for both the

translative and affine models the corresponding values are quite small, both in abso-

lute terms and in comparison with the gray level ranges of the images (0-255). For

the projective model, the RMSE values are bigger, due to the large image distortion

introduced by using this model. The SNR values show, as expected, an opposite trend,
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Sequence RMSEM SNRM [dB]

Trasl Affine Proj Trasl Affine Proj

SC-1-RAW 4.03 3.78 5.32 29.44 30.01 27.05

SC-1-FF 2.68 2.31 3.42 32.33 33.60 30.21

Table 3.3: Quality metric indexes for the 26-frame SC-1 sequence. The first row concern

results obtained working on raw (not tonally compensated) images, while values in the

second row refer to flat field normalized images.

decreasing for the projective model. Accordingly, in absolute terms the translative and

the affine model performances are very similar (the latter being slightly better), and

worsen, as hypothesized, for the projective model.

The second sequence is related to 26 images of a live stem cell culture (SC-1). It

is characterized by different image content and different degree of overlapping of the

frames. In Fig. 3.11 the mosaics obtained by registering these frames with the three

models in the F2F mode are shown.

In Table 3.3 the global quality indexes RMSEM and SNRM for the mosaics obtained

in the F2F mode using the three geometric models, without (SC-1-RAW) and with (SC-

1-FF) the application of the flat field compensation, are reported, in order to propose

a comparison with the ones obtained with the first sequence.

Considerations similar to the ones made for the HS sequence can be made. Chosen

a model, the flat field correction yields, as expected, a decrease of the RMSE value

and an increase of the SNR value also for the SC-1 sequence. It can be noticed that

corresponding values of both the metric indexes in Table 3.3 and Table 3.2 are very

similar, except for the projective model. In fact, for the sequence SC-1 the model

estimation is more numerically stable, since the overlapping area percentage is at least

about the 30% of the image size. In this case a slighter perspective distortion can

accumulate during th pairwise registration, yielding, accordingly, “better” values of

the metric indexes for the projective model with respect to the sequence HS.

Similar observations can be made also for the RMSE and SNR gain due to the

illumination field correction. As far as the RMSE gain is concerned, the values for the

translative, the affine and the projective models are equal to about 33%, 38% and 36%,
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(a)

(b)

(c)

Figure 3.11: Mosaics obtained registering the tonally compensated SC-1 sequence in the

F2F mode using the translative (a), affine (b) and projective model (c), respectively.
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respectively. The corresponding values for the SNR gain are equal to about 10%, 12%

and 12%, respectively. Accordingly, the gain values for both the metric indexes are

quite independent from the model. This behavior has been discussed previously for the

SNR gain. For this sequence, the reduction of the RMSE brought by the illumination

field compensation for the projective model is comparable to the values obtained for

the other two models, since the geometric distortion in this case is not to severe with

respect the other two models (see Fig. 3.11). In other words, the geometric registration

performance of the different warping model being similar, the flat field compensation

affects the mosaic quality in the same way for all the warping models. On the other

hand, when high geometrical misalignments are present, like occurs for the projective

model in the HS sequence, the corresponding poor quality performance can not be

compensated by the tonal alignment.

By comparing the quality indexes models on the row SC-1-FF, that is after the

illumination field correction, the affine model is the “winner”, as happens also for the

sequence HS, having the lower value for RMSE and the higher for SNR.

The third sequence is built adding 7 frames to the sequence SC-1, with the purpose

to form a looping path sequence of 33 images (SC-2). For this sequence, the fifth and

the last frames coincide. These sequence has been designed since we want to compare

quality indexes for different warping models with Frame-to-Frame ad Frame-to-Mosaic

registration approaches. Since this comparison concerns the geometric registration, it

can be achieved by analyzing the results related to the tonally-aligned configuration,

still being valid the considerations assessed above for the flat field compensation. In

Fig. 3.12 (a) the resulting mosaic for the affine model is shown. Details obtained from

the mosaic achieved by using F2F registration only and by applying the F2M regis-

tration are illustrated in Fig. 3.12 (b) and (c), respectively. As it can be seen, seams

due to mis-registration of images of a revisited scene are corrected by re-synchronizing

them with the mosaic built at the current epoch.

Table 3.4 summarizes the quality indexes RMSEM and SNRM values achieved for

sequence SC. It can be observed that, chosen a model, the F2M registration performs

in general better than F2F registration, in terms of a lower RMSE and a higher SNR.

Regarding the choice of the model, the translative and affine models show values of the

quality indexes that are comparable, and better quality when F2M is applied. This is
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(a)

(b) (c)

Figure 3.12: (a) Resulting mosaic for the affine model, employing flat field normalization

and F2M registration on the sequence SC-2. (b), (c) Details of the mosaics obtained with

F2F registration only and with the application of F2M registration. At the center of the red

boxes seams due to the geometric drift (b) and their compensation due to F2M registration

(c) are clearly visible.

particularly evident with the affine model, for which the RMSE decrease and the SNR

increase are due to the compensation of the geometric misalignments, as it can be seen

also comparing by visual inspection Fig. 3.12 (b) and (c). For the projective model,

in general the overfitting effect can affect even the F2M registration, compensating
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Method RMSEM SNRM

Trasl Affine Proj Trasl Affine Proj

SC-2:F2F 2.63 3.96 9.24 32.51 29.02 21.61

SC-2:F2M 2.59 2.56 8.90 32.63 32.74 21.93

Table 3.4: Values of the global quality metric indexes of the SC-2 sequence for the three

different models (columns), without (first raw) and with (second row) application of F2M

registration.

only partially or even worsening the metric performances. For this reason the next

considerations are referred only to the first two models, capable to “fulfill” the physical

constraints of the acquisition system and thus less prone to model misclassification,

referring to Sect.3.4.2.1 for further observations.

Being the SC-2 composed of 33 images, 32 values of RMSE and SNR can be com-

puted for the first 32 reference images, the last not giving contribution, as discussed

in the previous paragraph. In Fig. 3.13 these values are plotted. It can be noticed

that, for both the models and the metric indexes, two main behaviors can be identified,

observing the values before and after the tenth frame. In fact, the first tenth frames are

revisited, with different overlapping area percentages, when closing the loop. For these

frames, for both the models, the application of the F2M registration yields a reduction

of the RMSE value and an increase of the SNR value, accordingly, with respect to the

F2F registration mode. This is especially evident in the fifth frame, that closes the

loop. This measures and thus assesses the geometric compensation supplied by the

F2M mode. On the other hand, after the tenth frame the quality indexes have com-

parable values between the two registration modes, as expected, since in this interval

the F2M registration is done on not-revisited areas and accordingly it does not take

advantage of the information contained in the mosaic.

3.4.2.1 Model Selection: Discussion

To discuss the model selection issue, GIC values for the three models have been com-

puted using in our tests λ1=ln(r), λ2=ln(rn), being r the dimension of the data. Since

features correspondences are expressed by couples of bi-dimensional coordinates, r=4.

The dimension d of the model has the same value d=2 for the three models. The resid-
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Figure 3.13: (a), (b) Values of the RMSE index for each reference frame for the transla-

tive and affine models, respectively, for F2F e F2M registration of the sequence SC-2. (c),

(d) Values of the SNR index for each reference frame for the translative and affine models,

respectively, for F2F e F2M registration of the sequence SC-2.

uals ei are computed for simplicity in a Least Square mode (see (21)) over the set of

inliers returned by RANSAC. Using these values for the weights in Eq. 3.5, GIC values

for the sequence HS and SC-2, respectively, registered according to the F2F mode, are

shown in Fig. 3.14.

According to these results, model selection would privilege in almost all the cases

the translative model for both the sequences, since in both the cases, even with a

better fitting for more complex models (that is, a lower value of the residuals), the

corresponding increase of the number of parameters would make the GIC score increase.

For the SC-2 sequence (Fig. 3.14 (b)) this is consistent with the values of the metric

indexes (Table 3.4) obtained with the translative model, that can be considered globally

the best. Moreover, the score distances for the three models show a quite robust margin,

being the scores sufficiently “separable” for the three models in this case. On the other
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Figure 3.14: GIC values for the HS (a) and SC-2 (b) sequences registered according to

F2F mode.

hand, for the HS sequence, according to the quality indexes (Table 3.4) the affine

model would be the best, with a noticeable worsening for the projective model. Yet

the corresponding GIC scores show (Fig. 3.14 (b)) a quite similar behavior between

the affine (the “best”) and the projective model (the “worst”), which make this model

selection criterion not robust in this case. For this reason, we are currently proceed

toward researching a more robust score function that could take into account also the

spatial distribution of the features and weight with a different law the model complexity.

3.4.3 Computational Performance

As far as the computational performances are concerned, the algorithms works on a

consumer PC (Intel Pentium 2GHz, 4GB RAM), processing 640×512 images stored on

the hard disk at about 2 − 3 frames/second with gray level images. In particular, the

main computational payload is due to the Phase Correlation stage, taking approxima-
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tively 150 − 250 ms, while the remaining 150 − 250 ms are employed for the matching

and warping stages. For color images, the warping stage can be heavier, slowing down

the temporal performance to approximately 1 frame/second. Since at the moment the

algorithm is implemented on a research prototype, we are quite confident that a fur-

ther optimization stage can be applied to improve on the computational performances,

towards real time performance with respect to the user reaction time. Moreover, for

color images at the moment we are working with the HSV (Hue-Saturation-Value)

space, performing flat field normalization on the V channel. This approach works well

for “flat images”, that is characterized by similar values of the RGB channels, for which

the hue does not change too much. In presence of high variations of the hue and in

saturated areas, “false colors” can be generated. We are still working on the flat field

normalization and warping stages to try to compensate for these undesired effects.

3.5 Conclusions

In this Chapter we have described the application of our registration algorithms to

a scene reconstruction application, the mosaicing of optical microscopy images. By

widening the field of view of the microscopy system, the life sciences researchers are

provided with a global view of the whole cell culture, and can better identify and local-

ize patterns of interest during their inspecting working session. The strategies adopted

to preserve the tonal and geometrical consistency of the scene have been presented,

discussing the problems encountered. Compensation of uneven illumination in quite

controlled condition has been faced by studying the illumination field at system level,

without analyzing the single dynamics responsible for this artifact. While working well

for images of uniform hue, “false colors” artifacts are still present and proper compen-

sating strategies are currently under study. Geometrical registration approaches have

been discussed in order to prevent drift effect that can accumulate in severe distor-

tion, while preserving on-line performance, using an incremental registration approach.

To assess the soundness of the methods devised to cope with these issues, on-purpose

quality metric indexes has been devised.

The effectiveness of our approach has been proved through experiments on different

biological samples, a histological sample and a middle density cell culture. In fact,

results about the mosaic quality metric indexes confirm the positive effect of the flat field

52



3.5 Conclusions

normalization and of the Frame-to-Mosaic registration mode. However, the robustness

of the geometrical model selection must be improved.

These promising results are driving us to conduct experiments on a wider range of

different biological samples, with different cell density, appearance, etc. The robustness

of the matching stage in very high-density cultures must be assessed, being likely that

in these cases more robust descriptors might be necessary to avoid a high number of

mis-matched features.

It is worth to remark that this application has been carried out in the context

of the ADVANCE (Automatic system to Determine Vital AdhereNt CElls) project,

involving the Computer Vision Group at ARCES - University of Bologna and the

Bone Regeneration Laboratory (BRL), Istituti Ortopedici Rizzoli, Bologna, Italy. The

algorithms described here have been integrated in a more complex prototype research

for microscope image analysis and data management, that is currently under validation

by the researchers at BRL.
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Chapter 4

Camera Attitude estimation: the

STARS project

In this Chapter our registration algorithm is applied to estimate the attitude of a remote

sensing satellite from the Earth images acquired during its orbit. This application have

been carried out in the context of the STARS project (Standalone Three-Axis spacecraft

oRientation Sensor) in partnership with the Aerospace Engineering Group at DIEM,

II Faculty of Engineering, University of Bologna.

The Earth images are exploited as a “native target” in order to recover the three

dimensional orientation of the camera with high accuracy. Initially, this novel approach

is discussed within the ambit of the state of the art in this field. The working hypothe-

ses of this application are outlined and accordingly a geometric model is formulated.

Then properties of the image registration algorithm have been discussed based on the

theoretical model, building accordingly a simulation framework. Finally, simulations

and experiments designed on purpose provide useful hints about the error sources,

performance and some compensation strategy of our approach.

4.1 Introduction

The automatic guidance and control of remote sensing devices in different fields (ma-

rine, aerospace, biomedical, etc.) represents a complex and challenging task, often

involving the intelligent integration of a great variety of information. Applications of

computer vision to these fields are nowadays standing out for the advantages they can

carry. The employment of a CCD camera together with a processing unit can replace
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ensembles of different sensors which would require a subsequent data integration. For

example, navigation systems based on visual odometry have been conceived to achieve

measurements of the motion parameters of the controlled object. This problem has

been addressed using ego-motion estimation, where the sensor’s pose in an inertial

reference frame is recovered by processing images of the surrounding environment ac-

quired from one or more cameras mounted on-board. Usually motion parameters are

required to be estimated with a certain order of accuracy, strongly depending on the

application’s purposes. Accordingly, due to these requirements, an in-depth analysis

of error sources and their dynamics can represent a fundamental step to devise some

compensation strategy.

In the following paragraphs, we describe a novel vision based approach to cope

with a mission critical application, the three-axial attitude estimation of a Low Earth

Orbit (LEO) satellite for autonomous guidance purposes. It exploits visual informa-

tion, extracted from terrestrial images acquired by a camera integral with the satellite,

to estimate satellite orientation from their registration. The attitude parameters are

recovered from the geometrical transformation that maps views of the Earth acquired

at different epochs along the orbit. For such an application, where high accuracy is

required, the methodological approach adopted is crucial. In general, the theoretical

model employed to describe the system, as well as the algorithms chosen to estimate the

quantities of interest, can affect the global application performances. For that reason, it

is not less important to identify the different sources of error and evaluate how they can

affect the resulting overall accuracy, so to devise proper corrective strategies. Starting

from the hypothesis introduced by the theoretical model, a simulation framework can

be designed to detect, at a first stage, the most important critical aspects. To this

purpose, specific simulations configurations can be designed to identify the “weight”

of each error components on the overall performance. Finally experiments are used

to reject or confirm the hypothesis previously arising, and consequently to assess the

soundness of the design strategies devised.

The structure of this chapter traces out this approach. Sect. 4.2 deals with other

approaches previously employed in this field. In Sect. 4.2.1 the working hypotheses

and the requirements of the problem are illustrated. The novelty of our approach and

the advantages brought are then discussed in Sect. 4.3. This paragraph outlines the

methodological stages we have gone through for assessing the proof of concept of this

application. In particular, physical and geometrical models adopted for the sensor

and for the scene (the Earth) are described. From the overall model the equations to

recover the satellite attitude from image correspondences are also derived. In Sect. 4.4
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the peculiar features of our image registration algorithm in this context are discussed

in details with respect to other approaches. In Sect. 4.5 an in-depth error analysis

is carried on to describe the influence of different sources of error. Sect. 4.7 reports

the results regarding simulations of realistic orbits on synthetic satellite images and

experiments related to laboratory images. The discussion of the results in Sect. 4.7

introduces to the futures perspectives summarized in Sect. 4.8.

4.2 Previous Works

Attitude estimation for the automatic guidance of remote unmanned systems has been

generally faced by researchers by using specific devices and sensors in terrestrial or aerial

applications and space missions. Most of the currently available navigation systems

based on attitude estimation follow two different approaches.

In the first approach, a combination of sensors is employed. In terrestrial and aerial

applications, GPS, accelerometers and gyroscopes are widely employed. For satellite

missions, where estimation accuracy is a key requirement, orbital gyrocompass and

horizon sensors are used to estimating pitch, roll and yaw attitude angles. However,

accuracy is limited to tenths of degree (68). Furthermore, in Low Earth Orbit (LEO)

system, Earth’s horizon appears as not being perfectly circular and infrared radiation

deflected by the atmosphere can lead to false detections, that worsen accuracy as low

as few degrees (68).

The second approach exploits vision based methods. In particular, the Simultaneous

Localization and Mapping (SLAM) approach has been conceived to cope with dead

reckoning effects for long looping image sequences by reducing drift errors. The research

presented in (69) well resumes the state of the art, where a combined approach of SLAM

and visual odometry is proposed to reduce the impact of cumulative errors. Although

attitude estimation is also provided, it shows a limited accuracy (some degrees). In (70),

sequences of monocular aerial images acquired in real time are compared with a geo-

referenced Earth image database to estimate position and velocity of the aircraft. This

also helps to reduce drift errors in position estimation. However, no results are reported

for the attitude, although authors state to recover it. In addition, processing large

database images could be not compliant with the limited resources available on board

of a satellite. However, these approaches aim mostly at guaranteeing robustness in

looping path sequences, while accuracy is left in the background, since it does not

represent a key issue for these applications. Accordingly, error analysis is not carried

out in depth in order to increase the accuracy.
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As far as it concerns specifically satellite systems, star trackers constitutes the

state-of-the-art sensors to be employed for accurate attitude estimation. They aim

at estimating the three-dimensional orientation of the aircraft by matching stars from

acquired pictures of the celestial sphere with a referenced database of stars (star field)

stored on board. They generally suffer from Sun and Moon light blinding, so that they

are generally employed in couples in a counter-phased set-up and require specific cooling

plants. This can bear on the global power consumption, which constitutes a compelling

feature for such power budget-limited systems. In particular, the authors in (71) report

a fully autonomous star tracker capable of achieving an angular estimation accuracy

below 1 arcsec. The system is able to operate in different modes depending on the

environmental conditions. However, only indoor testing has been reported and the

accuracy strongly depends on the quality and number of matched stars. Also in (72),

sub-pixel centroid estimation is achieved by matching the camera Point Spread Function

(PSF) with the star’s pixel values. The overall accuracy is influenced by the centroid

estimation as well as the probability of correct star identification. The authors report

an accuracy for attitude estimation of about 2 arcsec for both synthetic and real (urban

scene) images. Nevertheless, stars trackers are not immune to problems, as reported

in (73), where the radiation impact is analyzed. The testing of stars trackers in real

working condition has been recently reported in (74). The 3-sigma accuracy along the

three axis is less than, or equal to, [7 7 70] arcsec, respectively. Here, also the effects of

the satellite motion on performance, stray light and direct Sun blinding are discussed,

analyzing in which conditions the recognition will fail.

4.2.1 Working Hypotheses

Satellites are usually equipped with remote sensing devices, like imaging sensors, and

they are oriented in nadir pointing attitude, that is one axis always looks at the Earth

during the orbit. Our approach aims at estimating the three-axial orientation (attitude)

from Earth images acquired by a calibrated CCD camera integral with the satellite, its

position supposed to be known (generally provided by other devices). In such an ap-

plication, strict requirements must be fulfilled in terms of accuracy and computational

performances. What follows is a brief resume of the main constraints related to our

target application.

• LEO satellites have a typical orbital radius between 650 − 700 km and a ground

velocity which varies from 5.5 to 7.5 km/s, covering about 15 circular non-

geostationary orbits per day, with a period of about 94 min/orbit, about 30
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of which in eclipse condition. These factors can affect the camera frame rate, the

exposure time to be chosen and the design of the optical layout of the sensor;

• limited computational resources are available on board, generally one-older gen-

eration hardware architectures (486 µP family);

• limited available power: this can play an important role on the choice of sensors

that can be mounted on board, their sensing elements and the need of on-purpose

cooling devices;

• limited available volume, with direct consequences especially on the choice of the

optics layout.

The motion velocity has to be taken into account since it can affect the image

quality (e.g., because of blurring). The working frame rate is also important for the

feedback frequency in the spacecraft control, since iterative algorithms for refining the

estimation can be too “heavy” to be supported from the HW available on mini satellites.

Therefore, in the choice of the algorithms for attitude estimation, the computational

complexity must be kept under control.

4.3 A novel vision-based approach

We have proposed a novel vision-based approach that had not ever been explored

before to determine the satellite attitude. According to this approach, the satellite

three-dimensional orientation is derived by analyzing the geometrical relation between

couple of subsequent, and partly overlapping, images of the Earth taken by a camera

integral with the orbiting satellite. The aim of our algorithm is to estimate, from the set

of correspondences established by the image registration algorithm on these image pairs,

the satellite orientation parameters in an appropriate reference frame, and in particular

their deviation with respect to nominal (i.e. stabilized) values. Our approach requires

that several aspects are investigated, stemming from the model used to describe the

problem, up to the mathematical methods employed to solve it and their algorithmic

implementation.

4.3.1 Physical and geometrical model

The Earth is modeled as a sphere of known radius (RE = 6371 km), rotating at the con-

stant velocity ω, taken equal to the Earth mean angular velocity ΩE = 7.272 · 10−5 rad/s.

The camera is modeled as a full projective pinhole camera, supposed to be calibrated
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Figure 4.1: (a) Reference frames adopted to model the framework. (b) Satellite reference

frame with attitude perturbations.

off-line once and for all, integral with the satellite orbiting following LEO orbits. The

three dimensional orientation of the camera can be measured in different reference

frames, but for stabilization purposes the value of interest is the deviation from the

nominal values with respect to a standard reference. To this purpose, a consistent and

convenient set of reference frames has been adopted to represent the system’s behavior,

as illustrated in Fig. 4.1:

• the Earth-Centered Inertial reference frame (ECI): the ECI reference frame is a

quasi-inertial geo-centered system having the x-axis pointing towards the vernal

equinox, the z-axis along the rotation axis of the Earth and the y-axis oriented

to form a right-handed triad;

• the Earth-Centered Earth-Fixed reference frame (ECEF): the ECEF reference

frame has its origin in the centre of mass of the Earth and rotates together with

it, the x-axis is in the equatorial plane pointing towards the Greenwich meridian,

the z-axis along the axis of rotation of the Earth and the y-axis forms a right-

handed triad. Accordingly, the ECEF and ECI reference frames are equivalent

up to the Earth rotation, and we refer to them, with abuse of notation, as the

world reference frame, afterwards;

• the Local Orbital reference frame (LORF): it has its origin in the centre of mass

of the satellite, the z-axis along the straight line joining the Earth centre and

the satellite centre (~rLORF in Fig. 4.1), pointing toward the satellite, the y-axis
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perpendicular to the satellite orbital plane in the direction that sees the satellite

moving in the counter-clock-wise way ( ~HLORF in Fig. 4.1) and the x-axis, such

that the system forms a right-handed triad – in case of circular orbit the x-axis

is directed like the satellite velocity vector (~ΘLORF in Fig. 4.1). This reference

frame depends on the orbital parameters of satellite trajectory, that is the right

ascension O and the inclination I (see Fig. 4.1). The satellite attitude should be

stabilized towards the target nominal configuration aligned with this reference

frame;

• the Satellite (body) reference frame (SRF): SRF is integral with the satellite, with

its origin in the satellite centre of mass and axes nominally aligned with LORF.

The displacement in orientation from LORF (which represents the nominal atti-

tude) is measured as roll, pitch and yaw angles;

• the Camera reference frame (CRF): CRF is integral with SRF, with the optical

centre of the camera coinciding with the satellite centre of mass (or being at a

known displacement, without loss of generality);

• the Image reference frame (IRF) is related to CRF through the matrix of the

camera intrinsic parameters (known after camera calibration).

As it can be seen from Fig. 4.1, a roll perturbation corresponds to camera panning,

while a pitch perturbation leads to camera tilt. The first four reference frames are

commonly used in the aerospace field of satellite navigation (75) and here reported

for completeness. From the motion displacement estimation in the IRF the values

of deviation from the nominal attitude should be expressed in the LORF (or SRF).

However, generally in satellite navigation the current attitude is referred to an inertial

reference system, the ECI, thus requiring the chaining the geometrical transformations

linking the intermediate reference frames.

Under these assumptions, given a point on the scene (i.e., the Earth), with assigned

geographic coordinates (latitude and longitude in the ECEF), it corresponds to different

coordinates in the IRF in two consecutive image frames, according to the motion field

of the satellite. In general, two views of the same scene under general camera rigid

motions are linked through the well-known relation (Eq. 4.1 (34)):




x′

y′

1′



 = KR′R−1K−1








x

y

1



 −
KR(C ′ − C)

Zcam



 (4.1)

where:
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• [x y 1]T and [x′ y′ 1]T represent the homogeneous coordinates of the corresponding

points (i.e. related to the same point on the scene) in the previous epoch t and

in the current epoch t′, respectively;

• K is the matrix of the intrinsic parameters of the camera. In our application,

K is supposed to be estimated once and for all through an off-line calibration

process during an earlier sensor characterization procedure;

• the rotation matrices of CRF with respect to the world (scene) reference frame

are represented by R and R′ in the previous and the current epoch, respectively;

• the symbols C and C ′ stand for the three dimensional coordinates of the cam-

era optical centre expressed in the world reference frame in the first and in the

second epoch, while Zcam is the component along the z-axis of CRF of each of

the projection rays of the image points in the first epoch. The ratio in Eq. 4.1

forms the parallax shift term which must be subtracted from the coordinates of

the first image reference frame. The difference in camera optical centre due to

the translation of the satellite is responsible for the parallax effect, whereas the

term Zcam takes into account the three-dimensional structure of the scene. Given

satellite position and orientation and being known the model of the Earth, it is

possible to compute Zcam for every pixel of the camera by intersecting the visual

rays with the terrestrial sphere.

Accordingly, after the parallax shift term compensation, corresponding points in the

two image reference frames are related through a plane homography H∞ (the infinite

homography) retaining the attitude variation R′R−1 (Eq. 4.2):

H∞ = λ KR′R−1K−1, λ 6= 0 (4.2)

The parameter λ can be retrieved from Eq. 4.2 once H∞ has been estimated, yielding

Eq. 4.3:

det(H∞) = λ3det(KR′RT K−1) = λ3det(K)det(K−1)

= λ3
(4.3)

being the rotation matrices orthogonal.

4.3.2 Attitude parametrization

We have adopted a convenient parametrization for representing the aircraft attitude.

Let the rigid-body motion group denoted as SE(3). We represent the group of three
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dimensional rotation SO(3) using unit quaternions (76). This choice has been expressly

carried out because of the specific advantages it introduces. In fact, unit quaternions

have a group structure (S3 from now onward), they are closely related to the intuitive

axis-angle representation of rotations and the composition of rotations is performed

by 4-components vector products, resulting in a more computational advantageous

and numerically stable solution. Attitude estimation from noisy data usually yields

non-orthonormal rotation matrices, which must be somehow re-orthogonalized, while

quaternions need only to be normalized to the unit vector. For these properties, quater-

nions are usually employed in satellite dynamics (75).

Unit quaternions q are related to the rotation matrix R through an homomorphism

R(q) : S3 → SO(3). Usually, in satellite dynamics the rotation matrix associated with

the satellite attitude quaternion q satisfies the relation (Eq. 4.4):








X

Y

Z



 −




XC

YC

ZC









ECI

= R(q)




XSat

YSat

ZSat



 (4.4)

thus referring the satellite orientation to ECI. By using the Direction Cosine Matrix

corresponding to the quaternion q (77), DCM(q) = R(q)T , and taking into account

the Earth rotation velocity ω, after some passages Eq. 4.2 can be rewritten as Eq. 4.5:

H = λ KDCM(q(t′))R3(ω(t′ − t))T DCM(q(t))T K−1 (4.5)

Therefore, if in Eq. 4.6 we set:

R(∆q)(= DCM(∆q)T )=̇
1

λ
(K−1H∞K)T (4.6)

then the relative orientation quaternion ∆q can be computed by the estimated homog-

raphy H∞ (77). Accordingly, starting from the estimation of the previous attitude

quaternion q(t), the current absolute attitude quaternion can be estimated using the

relation expressed in Eq. 4.7:

q(t′) = qω(ω(t′ − t)) ◦ q(t) ◦ ∆q (4.7)

where (◦) represents the canonical product between quaternions.

4.4 Image Registration

Our approach provides that image correspondences are established between image con-

secutive pairs and fed into the geometrical model described in Sect. 4.3.1.
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In this applicative context, the image registration algorithm must be capable to

detect with high accuracy features on satellite imagery yet being preserved scene gen-

erality, because of the variety assumed by terrestrial landscape. Once extracted, the

features corresponding to the same scene point (i.e., the Earth surface) on images on

two subsequent epochs has to be matched reliably. A common approach to the problem

used in airborne image analysis (78) is to exploit native structured patterns, like moun-

tains, roads, coastal lines, etc. However these high-level patterns are not always present

on the scene and their detection is usually based of voting algorithms (e.g generalized

Hough transform) that can be computationally intensive. Moreover, since the attitude

perturbations between consecutive epochs involved in realistic orbits are not too severe,

strong invariance to perspective distortions is not a strong requirement. Accordingly,

robust local region descriptors, like SURF (17) for example, which privileges robustness

in cluttered and “distorted” scenes over accuracy, have not been considered. Moreover,

such region descriptors requires a further layer of “refinement” to provide a punctual

sub-pixel accuracy.

On the other hand, sparse punctual features can be extracted directly from the

natural textured patterns on Earth imagery with a low computational payload. It is

possible to use high gradient points, that generally present good robustness to variation

in image geometry and illumination, since they do not rely directly on image intensity,

and generally works at sub-pixel accuracy. Their sparseness within the scene image

permit to deal with partial occlusions of the scene (for example due to clouds). The al-

gorithm described in Chapter 2 well suits these motivations. For each couple of frames

to be registered, Shi and Tomasi feature points (26) are extracted each time from the

first image. The prevailing motion component in our context is due to the motion of the

satellite, and consequently features are no longer visible after a couple of frames. Ac-

cordingly, it is preferable to re-extract stronger features each time and track them only

on the subsequent frame, temporally closer and then less prone to scene changes, thus

better preserving the optical flow conservation constraint. Moreover, choosing small

patches can retain more punctual information, but can be then less discriminative in

very textured patters like Earth’s satellite images. In this context, the application of

our coarse-to-fine approach permits to estimate the global 2-D translational compo-

nents of the image motion field (∆x,∆y) and then measure the residual local motion

field vector at a sub-pixel accuracy for each feature.

After the correction with the parallax term (see Eq. 4.1), using the DLT algo-

rithm (34) jointly with the RANSAC (40) outlier rejection method to remove false

matchings, a robust estimation of H is achieved. Once the matrix H has been esti-
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mated, it is used to perform a guided search using the estimated features estimated

accordingly (that is projected according to H) as guess values for a further LKT track-

ing on the current image. Model is estimated again on the inliers (after RANSAC

filtering) of this new, more robust set of correspondences. It is worth remarking that

this registration algorithm does not need any model of terrestrial landmarks to be

learned in advance.

4.5 Error Analysis

In order to assess our method, it is important to identify the main sources of error

that can stem from such a kind of approach. In particular, approximations due to

chosen models have to be at first investigated, considering the resulting performances

as the best-case. Then, errors intrinsic to the image registration algorithm have to be

evaluated with respect to this best case. Finally, the dynamic model underlying the

satellite attitude estimation, based on sequential registration, is analyzed in order to

characterize error propagation and devise proper compensating strategies.

4.5.1 Modelling Errors

At a first level, the mathematical models chosen to represent the acquisition system

and the (world) scene introduce approximations that can affect the whole accuracy in

attitude estimation. In fact, in the ideal condition of image continuous domain (i.e.

sensors with infinite resolution) the attitude should be estimated without errors by

computing the matching between point sets simply through ray projection between the

couple of frames (and so generating the corresponding set of “computed matchings”).

The procedure used to find out these set of computed matchings can be summarized

as follows:

• a sparse set S(t) of n points p uniformly distributed is chosen in the first im-

age plane (in case of discrete domains, they represent pixels and have integer

coordinates);

• the geo-referenced projections of the image planes on Earth are found, taking into

account the camera and the Earth model chosen. Practically speaking, points p

are projected onto the spherical terrestrial surface through visual rays passing by

the camera centre at the epoch t, so as to find on Earth the set S(t)E expressed

in latitude and longitude;
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• starting from each point of the set S(t)E , the matching set S(t′) in the second

frame is found back-projecting visual rays from the set S(t)E towards the camera

centre at the epoch t, until they intersect the plane of the second image, so as to

find directly the matching coordinates;

In the continuous domain, the errors in computing the homography are just the

numerical ones, so that this situation represents the best case yielding an upper bound

for the registration accuracy. However, the model described is only theoretical since in

real working conditions the image domain is discrete, due to the nature of the sensor

matrix, and necessarily the image formation process introduces quantization errors that

must be taken into account.

To evaluate the effect of this error on the attitude estimation, simulations with

geometrical model of the Earth and the camera sensor have been performed in both

the cases. Related results are discussed in Sect. 4.7.1.

4.5.1.1 Parallax Error

The parallax term is due to the motion of the satellite along the orbit, with its position

supposed to be known. With current technology, satellite position can be provided in

real time using GPS/DGPS, with an accuracy within one meter. Its knowledge makes

the estimation of the attitude parameters more robust and accurate (79).

As it can be seen in Eq. 4.1, the parallax term depends through a non linear relation

on the previous attitude estimation and affects the homography estimation indepen-

dently from the algorithm chosen for feature matching. Accordingly, by defining the

parallax term as in Eq. 4.8:

f(q(t)) =
KDCM(q(t))(C ′ − C)

Zcam(q(t))
(4.8)

Eq. 4.7 becomes:

q(t′) = qω(ω(t′ − t)) ◦ q(t) ◦ ∆q(S(t, t′), f(q(t))) (4.9)

where S(t, t′) represents the two sets of corresponding points in the two views at consec-

utive epochs, these depending on the registration algorithm. The registration contribu-

tion can be decoupled performing a simulation by annulling the motion of the satellite,

but leaving the attitude free to vary. This procedure is employed in conjunction with

Eq. 4.9 to study the error propagation, in Section 4.5.3. The impact of this contribution

on the overall accuracy is discussed in Section 4.7.
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4.5.2 Image Registration Error

Combining the matching resolution among satellite image pairs of our image registra-

tion algorithm with the ground resolution achieved by the camera sensor permits to

evaluate the accuracy reachable in estimating the attitude. The registration algorithm

described in Sect 4.4, working with discrete images, shows necessarily a finite precision

in matching corresponding features between two epochs. Since it aims at tracking local

gradients with high accuracy, the image formation process can play a key role on the

resulting performance. Building a priori a model of the contribution of the image reg-

istration error is not a feasible task. A method to overcome this limitation is to assess

the registration accuracy experimentally. When evaluating the accuracy of the method,

the experimental setup introduces further sources of error which cannot be left out of

consideration to achieve a reliable measure of the system accuracy. In particular, due to

the lack of raw satellite image sequences acquired in real conditions, the evaluation of

our attitude determination system has been carried out using two sets of experiments,

using respectively:

• Synthetic images. Synthetic images are generated from a compatible database

of satellite images of the Earth. They present artifacts but work on the real

operating scene and environment necessary to test the capabilities of feature ex-

tractor and tracker. Tracking errors can be caused by image gradient artifacts,

with tracking resolution being limited by the quantization error intrinsic in the

discrete nature of the sensor. To study the impact of this contribution, earlier

simulations have been carried out over “synthetic” images generated by sampling

a geo-referenced Earth imagery dataset. More in details, geo-referenced views

of the Earth acquired at different attitude along the orbit are sampled from the

database by projecting the camera’s Field Of View (FOV), computed at known

position and spatial orientation, over the corresponding geographic area in the

database. Realistic ground truth data for the satellite pose along its orbit are

provided by the orbital simulator described in Sect 4.6. The state of the satellite

imaging sensor is geo-referenced at each epoch, that is the corresponding maps of

latitude and longitude on Earth are computed for each pixel of the sensor, taking

into account the camera model (projective) and the Earth model (spherical and

rotating at a known velocity) chosen. In this way, for each point in the current

image reference frame, the corresponding latitude and longitude viewed on Earth

by each sensor location can be achieved. To generate the corresponding terres-

trial image, a magnitude value (i.e. gray level) must be assigned to each sensor
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Camera Model

+

Earth Model

Orbital Simulator
(ground truth)

Position ( t , t’ ) Attitude( t , t’)

Georeferenced

Database
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(Earth Observed Images)

Figure 4.2: Diagram of the procedure used to generate the EOIs sequences. The ground-

truth pose data are used to geo-reference the camera field of view, assigning to each pixel

the geographical coordinates of the points seen on Earth. Image interpolation on a geo-

referenced satellite database is finally used to generate the EOIs couples to be registered.

pixel according to the values of the image database tile that covers the sensor

geographic map built in this way (at least, the camera geo-referenced FOV). This

procedure is summarized in Fig. 4.2 and generate, for each orbit, a correspond-

ing sequence of Earth observed images (EOI). Since the image model provided

by the satellite image database is discrete by definition, image interpolation is

used to sample the geo-referenced tile in correspondence of the sensor geographic

maps. The interpolation technique chosen can affect the image generation pro-

cess and the accuracy of the tracking algorithm, accordingly, due to the artifacts

introduced by the sampling process (aliasing, edge halos, etc.).

However, it should be noticed that EOIs are generated from an already available

database, obtained after the acquired raw images have undergone a certain num-

ber of processing stage (e.g., radiometric normalization, etc.). For this reason, the

related simulations occur in quite optimistic conditions as far as it concerns the

number of factors affecting the real image acquisition conditions in such a kind of

application. The purpose of the test with the EOIs is to evaluate the registration

algorithm provided that the acquisition conditions are properly compensated,

for example through a complete characterization of the sensor, or through other
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strategies however out of the scope of this work.

• Laboratory testbed. Acquiring sequences of images in real time from a real

world environment permits to evaluate the accuracy (and therefore the error) in

real operating conditions. At the current stage of the project, it has not been

possible to assess our algorithm directly on the raw data really acquired by an

orbiting satellite. We have tested our approach with images of similar scene

content but acquired with a laboratory testbed. With respect to the test with

EOIs, these tests occur in more realistic acquisition condition, being necessary

to take into account also camera calibration, lens distortion, not fully controlled

lighting conditions, etc. Furthermore, contrarily to what happens for synthetic

images, although the image domain is discrete the object domain is represented by

a continuous model. Therefore, sampling and interpolation errors due to synthetic

images are left out of scope, although these kinds of errors still remain as intrinsic

to the digital sensor acquisition system. However, a great error contribution in

these cases can be due to the instrumentation required to capture the ground-

truth. Whereas on the one hand with real time images the quantization error

is kept as low as possible, on the other hand the ground-truth uncertainty is

much higher. As we will see, simulations with laboratory images present a sort

of “uncertainty principle” in which ground-truth accuracy and quantization noise

play the main role.

4.5.3 Error dynamic

Our sequential approach is intrinsically affected by the propagation of all the errors

typologies aforementioned, since the attitude computed at each epoch is fed into the

attitude determination chain for estimation at the next epoch (according to Eq. 4.9).

To this purpose, three different configurations for simulations have been devised to

understand the impact of the different error sources to error propagation:

• in NoUPD configuration, the attitude estimation is not propagated, that is the

attitude in the initial epoch coincides with the ground-truth attitude (qtrue(t)),

so that the error is due to the F2F image registration only (Eq. 4.10):

qest(t′) = qω ◦ qtrue(t) ◦ ∆q(S(t, t′), f(qtrue(t))) (4.10)

• in UPD configuration, the attitude estimation is propagated, thus following this

relation (Eq. 4.11):

qest(t′) = qω ◦ qest(t) ◦ ∆q(S(t, t′), f(qest(t))) (4.11)
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• in spurious SP configuration, the attitude estimated at the previous epoch is not

propagated in the parallax term f(q(t)), so that the following relation (Eq. 4.12)

holds:

qest(t′) = qω ◦ qest(t) ◦ ∆q(S(t, t′), f(qtrue(t))) (4.12)

In the NoUPD configuration, the estimated attitude qest(t) is affected by the image

registration error only. By analyzing this error it is possible to predict the attitude

errors trends in dynamic working conditions, that is the UPD configuration. In par-

ticular, even considering a zero-mean normal distribution for the error of the attitude

determination process from image pairs, this could determine a drift in the subsequent

system evolution. The worst case condition occurs when the F2F error is modeled

as a skewed distribution, that is a non-zero mean process. This systematic error can

heavily affect the following attitude determination, since there is always a bias that is

propagated to the subsequent attitude evaluations.

In other words, a bias on this error that moves its distribution away from null

mean can cumulate into drift effects in the UPD configuration. This is evident when

the attitude variation concerns almost one of the three angles, so that for rotation

composition in this case commutative property basically holds and the error trend in

the UPD configuration approximates the cumulative sum of the errors in the NoUPD

configuration. However, even a non-biased temporal distribution of NoUPD pairwise

errors can yield a cumulative error that at a certain epoch can exceed the accuracy

required. This is a well-known problem of “dead reckoning” systems. Trying to reduce

the error between couples of subsequent estimations, in order to minimize the overall

cumulative error, does not solve the problem. A typical solution is to periodically re-

sync the attitude along the trajectory with a known fixed reference (it could come from

an external instrumentation, with compatible accuracy). However, in our approach

a feasible solution is to have a geo-referenced map of just some patches of the Earth

along the orbit. In this way, the absolute attitude can be determined through image

registration when necessary. Different strategies can be adopted to cope with this

problem, but their analysis is out of the scope of this work.

Finally, through the SP configuration the impact of the parallax error on error

propagation can be evaluated with respect to the contribution of the registration error.

In fact, similar results related to the UPD and SP configurations means that the main

contribution to drift is given by the registration errors, being the influence on parallax

term negligible.

Sect. 4.7.1 goes deep into discussion of the results related to these configurations

using synthetic images.
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4.6 Simulation Framework

The simulation framework devised in our application integrates three main blocks:

• an orbital simulator, developed by the DIEM group, to provide ground-truth at-

titude data. It consists of an Orbit Propagator (which integrates the Two-Body

problem equations) and an Attitude Propagator (which describes the attitude

dynamics and kinematics). The outcome of this block is a sequence of state vec-

tors [t, Alt, Lat, Lon, q1, q2, q3, q4], containing for each time instant t the position

coordinates (altitude, latitude, longitude, expressed with respect to ECEF) of the

satellite, and the attitude unitary quaternion (expressed with respect to the ECI).

For nominal attitudes, the camera centre “looks” for each epoch at the point on

the Earth at the corresponding latitude and longitude present in the state vector.

• an image sequence generator, capable to geo-reference the camera field of view

according to the state vector. The corresponding area under the camera view

is firstly computed from the geo-referenced database, following the procedure

described in Sect.4.5.2. Then, different kinds of image interpolation can be used

in order to generate the EOIs sequence corresponding to the orbit. Bilinear and

bicubic interpolation have been used since they are sensitive to low-frequency and

high-frequency components of the image, respectively.

• an image registration framework, which processes the EOIs sequence and the

ground-truth state vector and returns for each couple of consecutive frames several

useful outputs, including the estimated attitudes and the errors with respect to

the ground-truth ones.

All these blocks, though being general, have to take into account the application

requirements. In the following subsections the specific choices adopted for this appli-

cation are discussed.

4.6.1 Image Acquisition Model

Based on the image registration algorithm described in 4.4, we have studied a proper

model for the image acquisition process that is compliant with problem requirements.

As a first preliminary stage, the relation between sensor size (ground area, accord-

ingly), overlapping area between subsequent frames (for feature tracking), frame rate

and ground velocity has been analyzed. The overlapping area between two consecutive

frames should be reasonably kept at least at about 25% − 30%, in order not to yield
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Acquisition frame rate [fps] 1 2 5 10

Ground velocity [pixel/s] 460 230 92 46

Sensor size [pixel] Ground area [km2] Overlapping area (%)

320 × 240 4.8 × 3.6 0 28.1 71.3 85.6

640 × 480 9.6 × 7.2 28.1 64.1 85.6 92.8

Table 4.1: Relation among resolution, acquisition frame rate and overlapping area be-

tween consecutive frames.

Model Simulation Parameters

Earth Model
RE = 6371 km

ΩE = 7.272 · 10−5 rad/s

Sensor Model

Dimensions = 320 × 240 pixel

Pixel Size = 8 µm

Focal Length = 336.7 mm

Orbit Model
Altitude = 650 km

Ground Velocity = 6.9 km/s

Table 4.2: Parameters for the Earth model, the sensor matrix and the orbit used in our

simulations.

an ill-conditioned problem when estimating the homographic transform from succes-

fully matched features. Table 4.1 shows how the sensor resolution (in pixel) and the

acquisition frame rate affect the overlapping region. Therefore, we can see how for

a small size image (320 × 240 pixel) the minimum frame rate can be of 2 fps only,

while when doubling the resolution, the image processing algorithm can run at 1 fps.

However, low frame rates have to be avoided since the attitude control feedback would

be responsiveness and would expose the satellite to longer perturbations. According

to these considerations, the parameters used in our simulations, compliant with the

application requirements, are summarized in Table 4.2.

Given these parameters, the instantaneous field of view (IFOV) subtended by each

pixel is of 4.9 arcsec. The required tracking accuracy, that is the minimum accuracy (in

terms of sub-pixels) that must be reliably achieved between two views to achieve the

required attitude accuracy, can be computed according to the procedure described in

Sect 4.5.1. To give an idea about the orders of magnitude of the values involved, given
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Figure 4.3: Image from NASA Blue Marble (left) and Landsat7 databases (right).

the parameters in Table 4.2, a separate perturbation for each of the attitude angles of

1 arcsec leads to a shift of about 0.2 pixel to be appreciated, for roll and pitch, while

results in a shift of the order of 10−3 arcsec for yaw perturbation. Being the system less

sensitive to this latter perturbation, we should expect worse estimates for this angle,

accordingly.

The working frequency of the orbital simulator is 10Hz and 10fps for our algorithm,

accordingly.

4.6.2 Dataset

Regarding the Earth satellite imagery chosen for our simulations, different georefer-

enced databases publicly available have been examined, also considering that the reso-

lution on ground should be compatible with the performance of the tracker algorithm

in terms of accuracy. The choice has fallen on Landsat7 ETM+, since it better fits the

resolution required. In particular, Landsat7 images have a proper geolocation tag and

cover 4×4 arcdeg of the Earth, with a spatial resolution of 15 m/pixel (covering 0.5 arc-

sec in latitude/longitude per pixel) compatible with the sensor’s parameters reported

above. Just as a reference, Fig. 4.3 (left) shows an image from NASA Blue Marble (250

m/pixel) and the corresponding highlighted image from the NASA Landsat7 databases

(right).

4.7 Experimental results

In this Section, the experiments designed to analyze the different kinds of errors are

described and the related results are discussed, according to the classification made in

the previous sections. In general, for each of the test described, the attitude estimated
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at each epoch t′ by our system, qest(t
′) , is compared to the ground-truth quaternion

qGT (t′), provided in different modalities according to the nature of the experiment.

The attitude error quaternion is defined in Eq. 4.13 as:

errq(t
′) = (qGT (t′))−1 ◦ qest(t

′); (4.13)

and converted in roll-pitch-yaw offsets, expressed in arcsec, to compute displacements

from ground-truth data. It retains the rotation that should be applied to the satellite

to bring it from the ground-truth attitude to the estimated one.

4.7.1 Synthetic imagery

In this paragraph the results for tests performed on synthetic image sequences are re-

ported. A first set of simulations (S1, hereinafter) of 301 frames (300 image couples) has

been performed, covering a portion of a slightly perturbed low Earth near polar circular

orbit with an altitude of 650 km. The satellite ground velocity is about 6.9 km/s, span-

ning on the region bounded by the geographical coordinates [44N, 8E] ÷ [48N, 12E].

The corresponding ground truth attitude data, expressed in the LORF (and so with

respect to the nominal attitude), are illustrated in Fig. 4.4, left column. In Fig. 4.4,

(right column), the frame-by-frame angular offsets are shown.
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Figure 4.4: (Left) Ground-truth attitude trends and (right) the corresponding F2F

ground-truth angular offsets for the simulation S1, expressed with respect to the LORF.
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As it can be seen, the roll angle is negative and it increases in absolute value, with a

slightly decreasing velocity, while the pitch value is increasing with an almost constant

velocity. The yaw trend is decreasing as well, but with a slightly increasing velocity.

These ground-truth attitude variations lead to corresponding image optical flows that

can be theoretically estimated from the models adopted, that is using the computed

matchings. By analyzing the results of the related simulations, and comparing them

with the ones obtained on the synthetic imagery, some interesting error dynamics can

be identified and studied.

4.7.1.1 Theoretical accuracy performance

By using in the simulations the computed matchings from the procedure described in

Sect. 4.5.1, the accuracy upper bounds of the adopted model can be characterized.

In Fig. 4.5 the results regarding the accuracy and the statistical distribution for the

three attitude errors for pairwise registration in the NoUPD configuration are reported,

considering the computed matchings for a continuous model of the sensor.
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Figure 4.5: (Left Column) F2F attitude errors values for the S1-NOUPD using com-

puted matchings. (Right Column) Histograms of the F2F attitude errors for S1-NOUPD

using computed matchings.
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In this case only numerical errors affect the accuracy, which reaches the order of

[10−10, 10−10, 10−8] arcsec, for roll, pitch and yaw attitude angles, respectively. It

can be noticed that error distributions are not biased, as expected from numerical

errors randomness. For these reasons, the computed matchings can be considered,

up to negligible numeric approximations, as the ground-truth corners that ideally a

feature tracking system should strive for in order to reach the highest accuracy (without

systematic errors).

On the other hand, other factors, like sensor discretization, can lead to a limited

performance of the tracker, with interesting effects. Initially, the NoUPD configuration

for this sequence has been analyzed to evaluate the F2F error accuracy and distribution

(S1-NOUPD). Simulations for S1-NOUPD have been performed assuming that the

accuracy of the tracker is limited to a certain decimal digit, with a rounding effect,

while estimating the motions in X and Y directions in the image plane. Roll (camera

pan) or pitch (camera tilt) perturbations lead to predominant horizontal or vertical

motion, respectively, in the image plane. Even though the X and Y components are

both correlated with the perturbation of any of the camera angles, results for roll

and pitch errors can be inferred analyzing the X and Y motion components. Fixed

in the sensor matrix a sample pixel to be tracked, the X and Y coordinates of the

corresponding computed matching have the trends shown in the first row of Fig. 4.6

(green circles). The corresponding rounded values at the second decimal digit have

been superimposed (blue stars), and the differences between the computed value and

their rounded version (that is the tracking error in this case) are reported in the second

row. These periodic patterns are due to the rounding effect applied on the monotonic

trends in the first row, caused, in turn, by the monotonic attitude variations of the

ground-truth input data (Fig. 4.4 (left column)). In this case, the hypothetical tracker

appreciate the second decimal digit while sensing the third decimal digit.

As far as attitude errors are concerned, results obtained rounding the computed

matchings at the second and the first decimal digit are reported in Fig. 4.7, left and

right column, respectively. Comparing these results with the ones obtained with the

computed matchings (Fig. 4.5), we can observe that the attitude estimation accuracy

decays as the rounding decimal digit is more significant, as expected. In particular, for

roll, pitch and yaw angles, respectively, the order of magnitude of the error is [10−2,

10−2, 100] arcsec when rounding is applied at the second decimal digit. It reaches the

order of magnitude of [10−1, 10−1, 100] arcsec when the rounding is applied on the first

decimal digit.

Moreover, the periodic oscillating patterns of the tracking error components induce
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Figure 4.6: (a) Trend of the X coordinate of a sample computed corner (green circles)

and its value rounded at the second decimal digit (blue stars), and the X tracking error due

to rounding (c), for sample pixels. (b) Trend of the Y coordinate of the sample computed

corner (green circles) and its value rounded at the second decimal digit (blue stars), and

the Y tracking error due to rounding, for sample pixels (d).

similar patterns in the attitude errors. Observing the left and the right column in

Fig. 4.7, it can be seen that this period depends on the trend of the ground-truth input

data and on the chosen rounding decimal digit. As far the roll error is concerned,

its trend is ruled by the slowly decreasing trend of the X coordinate of the computed

corner (Fig. 4.6, (a)). In fact, rounding at the second digit is sensitive to the third digit

of the computed value, as well as rounding at the first digit is sensitive to the second

digit of the computed value, and so on. Accordingly, since the the second digit of the

computed value varies more slowly than the third digit, the period increases as the

rounding digit passes from the second (Fig. 4.7, (a)) to the first one (Fig. 4.7, (b)). In

general, the period will be much shorter as the chosen rounding digit is less significant.

The pitch error has a different behavior, being ruled by the trend of the Y coordinate

of the computed corner (Fig. 4.6, (b)). The latter does not affect, in the observed frame

interval, the rounding at the first digit, which yields the constant value 142.8 for all

the frame in this interval. Accordingly, the corresponding pitch error (Fig. 4.7, (d))

does not change sign and is ruled by the variations of the green curve in Fig. 4.6, (b),

from this constant value. On the other hand, if the rounding is applied to the second
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Figure 4.7: Attitude error trends obtained rounding the computed corners at the second

(left column) and first (right column) digit.

decimal digit, the corresponding error trend (Fig. 4.7, (c)) is ruled by the periodic

pattern in Fig. 4.6, (d). The yaw error is theoretically affected by a composition of the

dynamics observed for the roll and pitch error. As it can be seen from Fig. 4.7, (e),
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(f), its behavior predominantly follows the roll angle one, and so it is mainly induced

by the variation in the X component of the computed corner, which presents a greater

magnitude in the observed simulation.

Furthermore it is worth to notice that, considering an interval included in a semi-

period, the error is generally biased and its accumulation can yield to drift effects when

used to update the subsequent epoch. These observations are useful in order to better

explain the results obtained by the our registration algorithm on synthetic imagery and

described in the next section.

4.7.1.2 Frame-to-frame registration: Results

The image sequence corresponding to simulation S1 is generated according to the pro-

cedure summarized in Fig. 4.2. The image frames are thus the result of the image

interpolation process applied to the georeferenced image database. In Fig. 4.8 a couple

of the frames with the features extracted and tracked is shown.

(a) (b)

(c) (d)

Figure 4.8: (a) A sample image and the corresponding normalized map (b) of the eingen-

values of the pseudo-hessian for the extraction of the corner points. Couple of consecutive

frames with the extracted (c) and tracked (d) corner points.

Similarly to what has been done with the computed matchings, initially the image se-
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quence has been processed in the NOUPD configuration in order to evaluate the F2F

error accuracy and distribution. In Fig. 4.9 the related results for the attitude error

are shown.
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Figure 4.9: Left Column. F2F attitude errors values for the S1-NOUPD. Right col-

umn. Histograms of the F2F attitude errors for S1-NOUPD.

Regarding accuracy, it is of the order of decimals of arcsec for roll and pitch angles

while it is of tens of arcsec for the yaw angle, because of the far lower sensitivity of the

image motion field to yaw perturbations intrinsic to the system. As far as the error dis-
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tribution is concerned, the histograms of the attitude errors, expressed in arcsec, show

a very skewed distribution for roll and pitch. This can yield drift when the absolute

orientation is computed and used for the subsequent epoch.

4.7.1.3 Frame-to-frame registration: Discussion

These results stem from the different contributions aforementioned, among which the

image registration algorithm (and the tracker performance) plays the main role. To

better characterize the error due to the image registration error only, different test

sequences (S2, afterward) has been generated with the satellite in a fixed position, by

just varying one angle (S2-angle) at a time with a fixed step (S2-step) for each sequence,

while keeping the other two angles unchanged. In this situation the parallax term is

null and the error distribution in this NoUPD configuration can be employed to foresee

the error trend in the UPD configuration.

A first set of simulations S2, S2-ROLL-GEO1, has been performed with the satellite

fixed at an altitude of 650 km, “looking” at the geographical coordinates [46.5N ]÷[9E],

starting from the nominal attitude and varying for 1000 frames the roll angle with a

constant step. A second set of simulations S2 of 1000 frames, S2-ROLL-GEO2, has been

performed in the same manner but over a different sequence of images, in particular

with the satellite “looking” at the geographical coordinates [47.5N ]÷ [9E]. In all these

simulations, steps of different entity are used as ground truth data to modify with a

uniform offset the X and Y component of the corners’ motion vectors for each couple

of consecutive frames. In this way, the tracking errors, obtained comparing the tracked

corners with the computed corners as the ground-truth target corners, can be used to

explain results in terms of attitude errors.

It is well known that projections of fixed scene point (points on the Earth) onto the

image plane during roll (camera pan) or pitch (camera tilt) perturbations move along

hyperbolic paths (80), thus with both image X and Y components changing. However,

as previously hinted, for roll perturbation the predominant component to be analyzed

is the X component and, in the same way, the Y component has to be studied for

simulations with only pitch perturbations. Similarly, the set S2-PITCH-GEO2 refers

to the same configuration used for S2-ROLL-GEO2, but with the pitch angle changing.

To study the error trends, we have defined some useful features as follows. The

set S(t, t′)tr of the tracked corners for the generic frame couple consists in position in

the image plane of the generic ith corners, extracted from the first frame (Xi
ex,Y i

ex)

and tracked in the second frame (Xi
tr,Y

i
tr). We indicate as (Xi

c,Y
i
c ) the corresponding

computed corner and as S(t, t′)c the resulting set of computed corners. The estimated
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frame-to-frame mean motion vector at the frame t′, Vtr(t
′), is defined as the average

motion vector over the set S(t, t′), that is (Eq. 4.14):

V (t′)tr=̇

[
Vx

Vy

](t′)

tr

=




∑N

i=1 (Xi
ex−Xi

tr)
N∑N

i=1 (Y i
ex−Y i

tr)
N




(t′)

tr

(4.14)

where N is the cardinality of the set S(t, t′). Similarly, the computed frame-to-

frame mean motion vector V t′

c can be defined using in the Eq. 4.14 the computed

corners instead of the tracked ones. The mean frame-to-frame tracking error, δV (t′),

is defined as:

δV (t′)=̇

[
δVx

δVy

](t′)

=

[
Vx

Vy

](t′)

tr

−

[
Vx

Vy

](t′)

c

(4.15)

that is the average of contributions related to the single ith corner, (δV i
x(t′)=Xi

c −Xi
tr,

δV i
y (t′)=Y i

c − Y i
tr). The statistical distribution of the contributions (δVx(t′), δVy(t

′)) is

related to the probability, for that frame (t′), of rounding up or down the ground-truth

value of the motion vector components. For example, considering a sample couple

of consecutive frames from the sequence S2-ROLL-GEO1 (with step ∆ = 1 arcsec),

the histograms of (δV i
x(t′),δV i

y (t′)) are shown in Fig. 4.10. As it can be noticed, the
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Figure 4.10: Histograms of δV i
x (a) and δV i

y (b) for a sample frame couple from the

sequence S2-ROLL-GEO1 (with step ∆ = 1 arcsec).

distribution of δV i
x is biased towards positive values, while the distribution of δV i

y is

unbiased, as expected. This holds for all the other frames of the sequence of the same

simulation, so that the mean values (δVx(t′), δVy(t
′)) have the temporal trends reported

in Fig. 4.11. By averaging these values over the sequence of frames (the parameter t′
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Figure 4.11: Temporal trends of δVx(t′) (a) and δVy(t′) (b) for the sequence S2-ROLL-

GEO1 (with step ∆ = 1 arcsec).

disappears), for each image sequence the mean computed motion vector, V̄ c=(V̄ c
x , V̄ c

y ),

and the mean tracking error, ¯δV =( ¯δVx, ¯δVy), can be computed for that sequence.

Similarly, the corresponding standard deviations (σ( ¯δVx), σ( ¯δVy)) can be estimated.

All these features take into account the variability in the corner structure for each

image of the sequence and the variability in the image content along a sequence. In

Table 4.3 the ground-truth values of these features for the S2 sets are summarized.

For such simulations, the Phase Correlation stage is able to return the correct

(expected) X and Y offsets, but being at the same time sensitive to the half pixel,

with a rounding effect to the closest integer. Accordingly, we are interested in the

decimal part of the V̄ c components, that belongs obviously to the interval [0 : 1). In

Fig. 4.12 the values of ¯δVx, for the simulations S2-ROLL-GEO1 and S2-ROLL-GEO2,

and ¯δVy, for the simulations S2-ROLL-GEO2, are plotted against the values of V̄ c
x and

V̄ c
y , respectively. Error bars refers to the corresponding standard deviations (σ( ¯δVx),

σ( ¯δVy)). Since the behavior of the X component of these features for roll perturbations

can be likened to the one of the Y component for the pitch perturbations, the X and Y

subscripts can be removed and the corresponding samples can be plotted together in the

same figure. Natural cubic spline and sinusoidal fitting have been superimposed in order

to extrapolate a trend. It is worth remarking that even the samples of the features ¯δVy

and ¯δVx resulting from the simulation S1-NOUPD (with the satellite moving) fall on this

curve (see the text boxes in Fig. 4.12 (a) corresponding to the light magenta samples).

Moreover, the low standard deviations show the high precision of the motion vector

estimation process, which indicates stability in the estimation process for different

corners and images. The sparse image registration approach using a high number of
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S2 Ground-Truth Simulations Parameters

∆ V̄ c
x V̄ c

y

(arcsec)

S2-ROLL-GEO1

0.700 0.142 0.00

1.0 0.204 0.00

1.1 0.224 0.00

2.4 0.489 0.00

2.5 0.510 0.00

3.0 0.612 0.00

3.5 0.714 0.00

7.0 1.428 0.00

9.0 1.836 0.00

9.5 1.938 0.00

10.0 2.04 0.00

S2-ROLL-GEO2
0.0 0.0 0.0

0.7 0.142 0.00

1.2 0.244 0.00

1.3 0.265 0.00

1.5 0.306 0.00

2.4 0.489 0.00

2.5 0.510 0.00

3.5 0.714 0.00

7.0 1.428 0.00

9.0 1.836 0.00

9.7 1.978 0.00

S2-PITCH-GEO2
0.50 0.0 -0.102

0.64 0.0 -0.130

1.00 0.0 -0.204

2.50 0.0 -0.51

Table 4.3: Parameters for S2 simulations on synthetic images. Values of V̄ c
x and V̄ c

y

induced by the angular perturbation are visualized as rounded to the third decimal digit.

corners permits to increase the measurements and provide a more accurate estimation.

Furthermore, observing Table 4.3 and Fig. 4.12 (a), we can infer that the tracking error

depends only on the sub-pixel value of the ground truth motion field and not on its
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Figure 4.12: (a) Sub-pixel tracking error curve obtained by fitting tracking error samples

from different simulations, against computed motion vectors V̄ c, with V̄ c=V̄ c
y for PITCH

perturbations (in cyan) and V̄ c=V̄ c
x for ROLL perturbations (other colors). Usually bicubic

interpolation is used for EOIs generation, but similar behavior is encountered also when

bilinear interpolation is employed (in green). Light magenta circles surrounds samples

obtained from the simulation S1-NOUPD, which still belong to the estimated sub-pixel

tracking error curve. (b) Sample values related to the roll error for the simulations S2-

ROLL-GEO2 are reported against the computed motion vectors V̄ c=V̄ c
x . They follow, as

expected, the same trend extrapolated from the samples in (a), up to the sign of the error.
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complete value. In other words, the tracking errors corresponding to even very different

attitude perturbations (0 or 10 arcsec, for example) can be of the same order of attitude

(see the last entry of the parameters related to S2-ROLL-GEO1 in Table 4.3). Thus

there is an intrinsic accuracy limit, so that measuring perturbation values comparable

with this limit does not make sense. However the accuracy provided by our method

complies with the accuracy requirements of the application, since our framework is able

to measure, for example, roll perturbations of 1 arcsec with an accuracy of the order

of 10−1 arcsec.

The corresponding angular error trends, averaged on the 1000 frames, yield the

samples related to the mean attitude error. For example, in Fig. 4.12 (b) the samples

related to the roll error for the simulations S2-ROLL-GEO2 are reported. They follow,

as expected, the same trend extrapolated from the Fig. 4.12 (a), up to the sign of the

error. In fact, to positive perturbations in the roll angle a positive X component of the

computed motion vector is associated. Thus, underestimating (overestimating) it, as

it happens for positive (negative) values of ¯δVx, leads to a rounding down (up) error in

angle estimation.

The samples in Fig. 4.12 (a) clearly form a periodic pattern (with period equal to one

pixel), that we call Sub-pixel Tracking Error Curve, oscillating between a positive and

a negative part. The tracking error in absolute value reaches its minimum in multiples

of the semi-pixel, while it is maximum at the halves of the semi-pixel (around 0.25 and

0.75). This pattern can be conveniently observed within the window [−0.5:0.5] in order

to better understand it. It stems that for positive components of the ground-truth

motion vector (interval [0:0.5]), the tracker underestimate the ground truth value. For

negative component of the ground-truth motion vector (interval [−0.5 : 0]) the tracker

overestimate the ground truth value. Considering the absolute values of the entities

involved, in both the cases an underestimation occurs, so that it seems that the tracker

tend to the theoretical position of the corner without ever reaching it, because of the

limited image resolution, due to discretization, and a corresponding limited tracking

accuracy.

In Fig. 4.13 a qualitative sketch of the tracker behavior with respect to the computed

features is presented. As it can be noticed, the pixel centers (integer coordinates) N

and N + 1 behave like basins of attraction. In fact there is a symmetric behavior of

the tracker with respect to the pixel centers, with a rounding-down effect, increasing

in absolute value as the distance from the basin of attraction grows. The semi-pixel

position (N + 0.5) seems to behave like a separator between the basins of attraction,

also being already sensed by the Phase Correlation stage. So, when the input angular
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N-0.5 N N+0.5 N+1

A B C D E F G H I

Computed

Tracked

Figure 4.13: Qualitative sketch of the tracker behavior with respect to the computed

features is presented. Circles represent computed features, while stars represent tracked

corners. The trend of the tracking error is qualitatively similar to the one of the sub-pixel

tracking error curve (Fig. 4.12 (a)).

perturbation make the computed corner fall on the other side of the semi-pixel, the

basin of attraction “switches” (inversion F-G in Fig. 4.13) on the other pixel integer

coordinate. This symmetry makes necessarily the tracking error reach its maximum

(B, E, H in Fig. 4.13) at the halves of the semi-pixels. More formally, the extrapolated

curve is continuous and has 2 zeros at integer coordinates, with different signs in the

two semi-periods. For the Bolzano’s Theorem, a third zero must exist, and as it can be

seen it is located near the half of the pixel. Moreover, since also the concavity of the

(twice continuously differentiable) curve changes sign between the two semi-periods,

this is also an inflection point. Considering the semi-periods, in each of them for the

Rolle’s Theorem a stationary point must exist, as in fact happen in 0.25 and 0.75,

respectively.

This behavior is coherent with the LKT algorithm, that works on small image

patches around the corner guess position (already taking into account the Phase Cor-

relation contribution). In this case, where also image interpolation is present, the

sub-pixel motion displacement is sought iteratively. First, the pixel center closest to

the computed corners will show the maximum image likelihood, since it affect with a
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higher weight the image formation process. Starting from this pixel center, the LKT

algorithm then tend to converge, but with limited accuracy, to the computed corner.

Potentially the sub-pixel tracking error curve can be used to compensate the tracking

error, so that even in case of regular variation of the ground truth perturbation data, as

it happens for S1, the resulting histogram of the attitude error would have an unbiased

distribution.

4.7.1.4 Dynamic conditions

In dynamic conditions, the estimated attitude is then propagated to the next frames.

To evaluate the impact of the parallax term on error propagation, the UPD and SP

simulation configurations should be analyzed. In Fig. 4.14 the results related to the

S1 image sequence are reported for pitch and yaw angles (results for roll angle are

comparable to the pitch ones). It can be seen the drift effect expected from the ac-
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Figure 4.14: Error propagation in the UPD (dashed line) and SP (continuous line)

configurations for pitch and yaw angles.

cumulation of the biased F2F error in the UPD configuration. As expected from the

considerations made in Sect. 4.5.3, since the trends are similar, the main contribution

to drift is retained in the propagation of the registration error. However, looking at the

pitch angle, for example, it can be seen that how the two curves tend to diverge, as the

impact of the attitude updating even in the parallax term begins to become relevant.

4.7.2 Laboratory Experiments

Our laboratory testbed consists of a CCD commercial camera (MV-BLUEFOX-121G)

mounted on a Numerical Control Unit (NCU), capable of performing three-axis rota-

tions, and watching a printed airborne scene.
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The NCU allows to measure ground-truth attitude angles with respect to the NCU

reference frame, with a sensitivity of σ = 0.06◦ (≡216 arcsec). This equipment has been

assessed following the vision-based procedure explained in (14).

The camera lens distortion and intrinsic parameters have been obtained once and

for all after an off-line calibration process (81). Images acquired at a resolution of

1024 × 768 pixel are processed with our algorithm on an old generation consumer PC

(AMD2000+, 1.66GHz, 1GB RAM). The camera optical axis is looking at the planar

image of an airborne scene stitched onto a flat panel. Fig. 4.15 shows the experimental

Figure 4.15: A picture of the NCU system together with the reference test image. NCU

reference frame (blue) and world reference frame (red) are also sketched.

test bed used.

Several test series have been performed varying one angle along one axis at a time.

Thus, we can measure roll, pitch and yaw perturbations one at a time, by leaving the

other two components fixed. In order to compare the ground-truth data returned from

the NCU with the measures expressed in terms of camera reference frame, it is necessary

to initially align the two reference frames to a common zero reference. Two devices

have been adopted to compensate for this. Since the present instrumentation does not

provide directly the position of the camera center, the camera has been arranged into the

NCU so that its principal point belongs to the rotation axis (for the angle of interest) of

the NCU reference frame, following the common parallax adjustment procedure usually

employed in photography. In this way, since the camera center does not move during
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the rotation, the knowledge of the relative offset with respect to the center of the NCU

reference frames is not necessary, and the parallax term is nullified. Moreover, the

axis-angle notation (Rodrigues rotation vector (82)) has been adopted. Through this

strategy, the (unknown) fixed angular misalignment between the two reference frames

does not affect the measurements, since it cancels out with this representation.

In this paragraph the results related to two different test sequences are reported.

In the first test sequence (NCU-ROLL) we vary, closing a looping path, roll (camera

pan)angles within a range of [−0.98◦... + 13.15◦], with a mean angular step of about

30 hundredths degree, thus acquiring 75 frames. In order to reduce the influence of

possible drift due to mechanical play, sometimes the camera has been moved back to its

previous position. A couple of consecutive frames processed by our algorithm is shown

if Fig. 4.16.

Figure 4.16: A couple of frames from the sequence NCU-ROLL processed by our algo-

rithm.

Fig. 4.17 reports the results related to this test. A similar behavior should char-

acterize sequences with pitch perturbation. In Fig. 4.17 (a) the correlation between

the NCU ground-truth data and the estimated attitude angles, for this test, is shown,

with the Pearson’s correlation coefficient equal to p = 0.996. Accordingly, this co-

efficient being very close to the unit, a strong linear correlation exists between the

ground-truth roll perturbations (expressed in the NCU reference frame) and the ones

measured by our framework, expressed in the camera reference frame. This confirms

that the Rodrigues rotation vector representation makes the measurements consistent

with the ground truth data.

In Fig. 4.17 the experimental pairwise (b) and with attitude updating (c) errors, for

the whole test sequence, are shown together with the NCU uncertainty range (dotted

lines). The F2F registration angular error almost always lies inside the NCU uncertainty
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Figure 4.17: (a) Correlation among the ground-truth roll perturbations and the ones

measured by our system. Absolute (b) and with attitude updating (c) F2F roll error

(expressed in arcsec).
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range and it spreads across the whole range of accuracy provided by the NCU system.

In particular, now the absolute F2F error has a mean value close to zero (µ = 0.4 arcsec)

with a standard deviation σ = 136.52 arcsec. This means that the error distribution

over the set of 75 samples is slightly biased, thus not resulting in an evident drift

in the UPD configuration. We have tried to interpret these results in the light of the

considerations made above for the sub-pixel tracking error curve. However, the accuracy

of the equipment available at the moment is not sufficient to provide a so fine analysis.

In other words, the ground-truth data are affected themselves by a discretization error.

The quasi-unbiased distribution is probably due to the noise added on the ground-truth

data, which probably leads to samples falling randomly in the positive or negative part

of this curve.

Results concerning a second test sequence of 68 frames for yaw (camera tilt) pertur-

bations (NCU-YAW) are shown in Fig. 4.18. The distances involved in this simulation
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Figure 4.18: Absolute F2F yaw error (expressed in arcsec) resulting from the NCU-YAW

test sequence.

(88, 4 cm in nominal conditions) does not affect dramatically the sensitivity of the sys-

tem to the image motion field, as conversely happens for the simulation with synthetic

images (see consideration made for Fig. 4.9, yaw angle). Because of the particular set

up of the NCU, the parallax adjustment in this case could not be performed. As a con-

sequence, the camera rotates around the NCU yaw axis with a non-zero radius, that we

have tried to measure and estimate indirectly by tracking reference points over several

circular trajectories. However this rough estimate on the camera center position with

respect to the axis of rotation (about 14 cm) leads to a systematic error in the parallax

term. This is the reason for the strong bias in the F2F absolute error in Fig. 4.18, with
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a mean value of µ = 113.4 arcsec and a standard deviation of σ = 136.87 arcsec, this

being comparable with the value obtained for roll and pitch.

4.8 Conclusions

In this Chapter we have presented the application of our registration algorithms for a

camera pose reconstruction application, the estimation of a satellite three-dimensional

orientation exploiting Earth images acquired by an on-board camera. In such a kind

of application, limited hardware resources are available and they must be sufficient to

provide with high accuracy (1 arcsec) and at high rate (several frames/second) the

satellite attitude (expressed in Roll-Pitch-Yaw displacements from nominal values),

for automatic guidance purposes. We have focused our attention on the methodolog-

ical stages adopted to assess the performance of our novel registration approach in

this particular case study. First, the Earth-Satellite system has been modeled. The

achieved model and a realistic orbital simulator have been integrated into a simulation

environment, providing attitude ground-truth values, utilized to study the accuracy

performance at more levels.

Initially, the accuracy theoretical performances have been derived according to the

system model and the numerical error has been characterized, taking the resulting

estimations as the best-case reference configuration. In order to assess our image reg-

istration method, synthetic image sequences have been generated in the simulation

environment referring the camera field of view on a geo-referenced database. Through

these simulations, the accuracy of the registration algorithm in the image domain (pixel

tracking error) can be associated with the error in attitude estimation. In particular,

as far as pairwise registration is concerned, taking as reference the theoretical models,

experiments with synthetic images have shown that the tracking accuracy is between

10−1-10−2 pixels. The corresponding attitude estimation error is of the order of deci-

mals of arcsec for roll and pitch angles, while it is of tens of arcsec for the yaw angle,

because of the far lower sensitivity of the image motion field to yaw perturbations

intrinsic to the system.

To study more in depth the tracker behavior, the effect of the rounding of the tracke

precision has been investigated in relation to the ground truth data. This has permitted

to characterize and thus predict the tracker behavior in terms of accuracy, both in

the image domain and in terms of angular error. Furthermore, different simulation

configurations have permitted to isolate different error sources and study the error

dynamics. They have confirmed, together with laboratory experiments with real world
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images, the correctness of the hypothesis made when characterizing the tracker, and

accordingly the soundness of the methodological approach adopted.

These promising results, without claiming to be thorough, have encouraged us to de-

velop our approach towards the estimation of the complete pose (position and attitude)

of the satellite. In fact, in our approach the position of the satellite is supposed to be

known, being provided in real time by using GPS/DGPS devices. General approaches

aiming at jointly estimating position and attitude usually make use of epipolar geometry

(Sect. 2.4). However, the depth relief of Earth Surface in the camera FOV is very close

to a plane, making the scene configuration degenerate for the epipolar geometry (35),

so that preliminary tests gave unstable results for both position and orientation. On

the other hand, approximating the Earth Surface as a plane can lead to estimate both

the position and the orientation, but affecting accuracy. We are currently evaluating

the accuracy of some approaches proposed in literature (83, 84, 85).
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Chapter 5

Final Conclusions

This dissertation has concerned the application of an hybrid image registration method

to two challenging case studies, requiring at the same time high accuracy and on-line

performances with limited computational resources. The motivations of this research

arise from the need of generality that a method should have in different working con-

ditions while preserving, at the same time, a good trade off between accuracy and

computational costs. Accordingly, the applications treated by our study belong to very

different applicative domains, but have in common compelling requirements about the

registration accuracy, their degree of automation and the computational resources avail-

able.

The first case study refers to the automatic on-line mosaicing of optical microscope

imagery, while the second aims at estimating the three-dimensional orientation of a

satellite through image registration of Earth images acquired by a camera mounted on

board. Despite of their different applicative domain, both these research projects have

been developed following a common methodological approach.

A model of the studied problem has been initially designed, taking into account

configurations that could be critical for the application. In particular, simulations with

the theoretical model and with synthetic data have been useful to validate hypotheses

about the model and/or identify error sources. This has permitted to better design

experiments in well controlled configurations, in order to validate, in collaboration

with expert partners, the results achieved.

It is worth remarking that, following this methodological approach, for both these

two cases, the application of our image registration algorithm has proved additional

functionalities and improvements with respect to approaches currently employed in the

respective research field. The contributions in terms of originality and performance of
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our approach are summarized more specifically with regard to the two case studies in

the following paragraphs.

5.1 Automatic On-line Mosaicing of Optical Microscopy

Imagery: the ADVANCE project

Current approaches for mosaicing of optical microscope images aim at building a com-

plete representation of the biological specimen investigated using motorized holders

and performing in batch mode. With respect to these approaches, our method does not

require automated equipment, working even with old-generation not motorized optical

microscopes, and works on-line with consumer hardware, widening the microscope field

of view and permitting the interactive navigation of the whole cell culture. It has to

be noticed that this application is motivated by the real demand of microscopists and

biologists for high content high throughput image analysis, since it permits to observe

more complex spatial patterns referred to the whole extent of the cell culture.

In such an application, several problems had to be faced in order to preserve pho-

tometric and geometric consistency. Several components, as the microscope and the

camera optical layout, the holder mechanical setup, the typology and the state of the

investigated sample, etc., interact in complex ways affecting the final result. Rather

than studying separately these components, we have studied their effects in term of

photometric and geometric distortion at system level.

The inhomogeneous illumination response of the system has been compensated

characterizing the system illumination field. In particular, vignetting and shading

effects have been identified as the predominant components responsible for possible

“tonal seams”, and normalization according to the estimated illumination field has

proved to cope with this issue.

Also the different causes that can lead to geometric mis-registration of the images

have been analyzed at system level, using robust model estimation to take into account

scene content modifications, being imaged live structures. The model estimation prob-

lem has been discussed in depth, emphasizing how less complex models can generally

give more stable and robust solutions. Moreover, a strategy to compensate also the

geometric drift, due to the pairwise registration approach, while preserving at the same

time on-line capabilities, has been successfully applied.

This approach has proved to be effective with different biological samples, providing
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seamless visually pleasant mosaics. To assess in a quantitative manner the quality of

the achieved mosaics, an original evaluation approach has been conceived, using the

acquired images directly as ground-truth data. Tests performed on sequences of differ-

ent content have assessed the consistency of this methodology.

It is worth remarking that the research carried on in this project has led to the

development of a research prototype that is currently being validated from expert biol-

ogists at the Bone Regeneration Laboratory, Istituti Ortopedici Rizzoli, Bologna, Italy.

At the same time, scientific works related to this study have been accepted (1) or are

in preparation (2) for peer reviewed conferences proceedings and journals. Our collab-

oration to this project is still active in order to test and validate our approach with a

wider range of cellular patterns, different for morphology, density, appearance, etc.

5.2 Camera pose estimation: the STARS project

This research application has emphasized the need of high accuracy in pose estimation

problems. In fact it is fundamental that the satellite attitude is measured with high

accuracy (at the order of 1 arcsec) in order to perform a correct stabilization during its

orbit. We have conceived an original vision-based approach that has the advantage of

exploiting natural patterns present on Earth images acquired by an on-board camera,

avoiding drawbacks typical of traditional approaches (i.e.star trackers). Moreover, by

registering terrestrial images, our approach is capable to estimate the satellite attitude

with comparable and potentially more accurate performance.

In order to reach this accuracy, several methodological stages have been devised, this

representing in itself an original contribution to this research field. In fact, a physical

model of the system has been initially conceived and the corresponding theoretical

performances analyzed.

At a subsequent level, the design of a realistic simulation environment with orbital

ground-truth data, in partnership with experts in the field, has permitted to identify

more clearly the error sources, and in particular the ones deriving from the image

registration method. In fact, thanks to this approach, realistic image sequences, that

are related to the terrestrial scene that would be viewed by a camera integral with the

satellite during its orbit, can be generated.

Moreover, this has permitted to characterize the accuracy performance of the reg-

istration algorithm, relating tracking errors in the image domain (at sub-pixel level) to

angular errors in attitude estimation. This has yield the estimation of an error curve
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that can be potentially employed for error compensation, even avoiding potential drift

effects.

Furthermore, our general simulation environment has permitted to devise different

simulation configurations in order to characterize separately the error sources and their

dynamics. In fact, in such research projects, it is fundamental to characterize, when

possible, the main error sources, being real tests not always possible on the field.

To test the hypotheses formulated in the previous stages, we have conceived a more

consistent assessment methodology. With respect to common approaches that make

use of indirect image-based metrics to evaluate the attitude estimation error, in our

case the ground truth data about camera orientation have been provided directly by a

Numerical Control Unit. This has permitted to perform in controlled conditions and

with more flexibility particular test configurations that are of interest, and can consti-

tute in general a benchmark for other registration approaches. Experiments with this

test-bed have shown high accuracy performance for our registration method.

This research project has led to the publication of several scientific works on peer

reviewed conferences proceedings (3, 4, 5, 6), and other works are currently in prepa-

ration (7).

I am currently working at the Computer Vision Group - ARCES, University of

Bologna, under a research grant in the context of the PERFECT project. It concerns

image registration of Computed Tomography imagery for motion artifacts compensa-

tion in liver perfusion.
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