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Introduction

Purpose of the thesis

As the title clearly states, the purpose of this thesis is to study artificial life

(ALife) systems starting from the dynamics of their microscopic or “funda-

mental” constituents. Nevertheless these terms can be quite misleading if

their are not specified more precisely.

From a physicist’s point of view, to study the microscopic dynamics of a

system composed of many “fundamental” parts (the definition of fundamen-

tal constituents of a system is not absolute but depends on the contest, as

we discuss below) means to rely not on equations regarding the dynamics

of macroscopic quantities (which can be deduced from the dynamics of the

constituents using, for example, statistical mechanics methods), but on the

direct integration of the equation of motion of the constituent “particles”.

Macroscopic observables are then obtained by averages over the microscopic

ones, and compared with the results given by the macroscopic (mean field or

statistical) theory.

From an historical point of view, the success of thermodynamics and statis-

tical mechanics in physics is due to the impossibility, from both a mathe-

matical and an experimental point of view, of obtaining information about

the initial conditions and evolution of the state of a system composed of an

extremely high number of constituents (of order 1023 atoms or molecules for

macroscopic systems). Thermodynamics describes the rules governing the

macroscopic observables (i.e. the only actual available observables for these

systems, as pressure, temperature or volume) and statistical mechanics ex-

plains how these macroscopic observables are connected to the microscopic

ones through the Hamiltonian function describing the microscopic dynamics

of the system.

Nevertheless, the advent of computers has made possible the numerical in-
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Purpose of the thesis

tegration of the equations of systems with many constituents (by many, we

mean a number that can vary with the development of computers and with

the complexity of the problem, but, although being extremely lower than

the number of particles in a actual macroscopic system, is a few orders of

magnitude higher than the number suitable to an analytical study, which is

in many cases just two), and thus physicists, starting from the pioneering

work by Fermi, Pasta and Ulam [1], have tried the numerical study of many

particles systems from a “microscopic” point of view, in order to compare

the results with those obtained in the realm of statistical mechanics (this

operation can be viewed, at least in the case of Pasta Fermi Ulam problem

and the like, as a numerical test of the ergodic hypothesis).

In the extremely vast realm of sciences that study the multiple expressions of

life (from biochemistry to biology, from neurosciences to psychology, from an-

imal behaviour studies to sociology and economics), the advent of computers

has actually created a new science, artificial life, or at least has contributed

in a fundamental way to its development.

According to Parisi [2], the purpose of artificial life is to build man made

“artifacts” that posses at least some of the properties of life (information

exchange, reproduction, evolution, learning, etc.). These “artifacts” can be

robots, chemicals or, as in the case of the systems studied in this thesis,

“virtual worlds” that exist in computers (computer simulations).

Given these premises, the title “microscopic dynamics of artificial life sys-

tems” could suggest that the purpose of this thesis is to study how the

“property of life” (whatever this means) can emerge from the interactions of

basic units that do not posses it, in the same way as life in biological system

emerges from atoms and molecules that “are not alive”. But this surely fas-

cinating study is not the subject of this thesis.

As we said before, the term “fundamental constituent” is not an absolute

one, but it depends on the context and on the scale of the problem. For

example, in physics, when studying the statistical properties of a gas, we

can assume molecules to be its fundamental constituents, but from the point

of view of high energy particle physics, a molecule is a very complex entity

composed of many elementary particles (leptons, quarks). On the contrary,

in fluid dynamics, the most appropriate approach consists in forgetting the

discrete nature of matter, and study it as a continuum, due to the scale of

the problem. Depending on the scale of the problem, in studying the motion

of celestial objects, an entire planet can be considered as a point like body.

12
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The same problem is present in all the sciences that study the possible “ex-

pressions” of life. For example, studying the working of human or animal

body (or of parts of it), the “fundamental constituents” could be considered

the cells (if not aggregates of cells), even if cells are by themselves complex

entities composed of an high number of molecules, and already posses the

aggregate property of “life”. Furthermore, when studying animal or human

societies, the fundamental entities are the single individuals (if not groups of

them), i.e. extremely complex entities able of involved information process-

ing and behaviours. The advent of computer simulations has made possible

the study of the dynamics of these systems on the base of a direct simula-

tion of the interactions of their (complex) constituents, through the so called

multi agent systems. This thesis is focused on the study of these systems.

As we will see, this field of research is not completely unrelated to the study

of how an aggregate property, as life, emerges from the interactions of con-

stituents that do not posses it. Even if cells and animals are extremely

complex, often their interactions can be expressed through simple (and lo-

cal) rules. Nevertheless, these interactions result in the emergence of complex

global properties at the level of the whole system.

Description of the thesis

In chapter 1 we provide a short overview of the basic concepts regarding the

subject of this thesis, as artificial life, complex systems, agents, adaptation,

emergence, self organisation. Even if for some of these subjects a formal and

mathematical treatment is possible, it is not exposed in this presentation (if

not under the form of references), since these methods are not used in the

thesis.

Chapter 2 gives a description of some of the “tools” that are used in the

models of the thesis, as genetic algorithms and neural networks. Even in this

case, the depth and complexity at which these subjects are treated does not

go beyond what is needed to understand the material exposed in the thesis.

Chapters from 3 to 6 are actually devoted to the research projects developed

during the Ph.D. activity. In chapter 3 and 4 we try to establish a connection

between the microscopic (agent to agent) dynamics and the macroscopic one.

In chapter 3 we modify a physical system (Coulomb interaction) in order to

make it resemble a perception based interaction (introducing a non Newto-

nian effect), and we perform an analytical study of the two body problem,

13



Description of the thesis

and a numerical study of the statistical properties of the many body system.

In chapter 4 we study a model inspired by the immune system, in order to

show how is possible to establish a connection between the agent based mi-

croscopic dynamics and the macroscopic population dynamics, governed by

differential equations.

Chapters 5 and 6 represent an actual excursion in the realm of “traditional”

artificial life, since the attention is not, as in the first two chapters, to study

the connection between extremely simple microscopic behaviours and macro-

scopic observables, but to evolve actual complex (even if idealised) adaptive

systems. The purpose of the two models (which are focused on the concept

of mobility in traffic systems, one at a crowd level, and the other on a larger

scale) is both to evolve a complex behaviour at the individual and local level,

and to observe the results of this behaviour as emergent properties at the

global level. This result has been obtained using genetic algorithms on large

heterogeneous populations.

Chapter 5 presents an evolvable crowd dynamics model in which pedestrians

avoid collisions in order to safely reach their goal. The model is based on

the ability of agents to predict the actions of the others using a “Theory of

Mind”. The model studies the emergence of global self-organisation patterns,

and the evolution of the Theory of Mind.

Chapter 6 studies a mobility system on a larger scale, using a discrete space-

time representation. Agents are controlled by evolving neural networks, and

the emergence of global and local strategies (based or not on communication)

that optimise traffic flow is studied.

Each chapter regarding the research projects developed during the Ph.D.

activity is structured as an as independent as possible unit, containing all

the information needed to understand the subject given a basic knowledge

of physics, artificial life and computer science. The basics concepts and com-

putational tools of artificial life, which may not be known to all the readers

with a background in physics, are introduced, as we said before, in chapters

1 and 2.

14
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Chapter 1

Basic concepts in artificial life

1.1 Introduction

In this thesis we will often refer to some basic concepts related to our research

field, as artificial life, evolution, complex adapting systems, emergence, self

organisation, distributed autonomous systems and agents. In this chapter

will try to provide a short introduction to these subjects. Actually this

chapter is more similar to a glossary than to a sound introduction, that

would have resulted in a quite hard and long work. Some of these concepts

are still missing a universally accepted formal definition, which means that

many definitions have been tried, and that many other objections to these

definitions have arisen. In other cases, as for self organisation, which has been

initially studied in physical systems, a formal and mathematical theory is

present but its description would go beyond the purpose and the possibilities

of this thesis. Furthermore, a “linear” exposition of these subjects is quite

difficult, since many of them are closely correlated, and a short description

of one of them is usually very hard without recalling one of the others.

1.2 Life and Alife

1.2.1 Definitions of life

According to the definition by Parisi [1], the purpose of artificial life is to

build artifacts that posses some of the characteristics of living systems. But

which are these characteristics? What is life?

Probably no one would doubt that a cat is alive, and that a stone is not.

17



1.2 Life and Alife

It is also probable that many people would agree than a robot able to navi-

gate safely in a room in an autonomous way (not guided by an human using

remote control) presents some of the characteristic of living systems. Even

more people would agree with the last sentence if told that no one has pro-

grammed the robot to do that, but that the robot has learnt to (or evolved

to be able to) do that (probably most people would be surprised that such a

thing is possible).

But how are we going to answer to the question “is the robot alive?”?. And

what if we were questioning about the life not of cats or stones, but of more

“border line” entities like viruses?

Boden [2] says that “There is no universally agreed definition of life. The

concept covers a cluster of properties, most of which are themselves philo-

sophically problematic: self organization, emergence, autonomy, growth, de-

velopment, reproduction, evolution, adaptation, responsiveness and metabo-

lism”. Part of this list is due to Aristotle, which, according to Matthews [3],

listed as properties characterising life “self-nutrition, growth, decay, repro-

duction, appetite, sensation or perception, self-motion and thinking” (inter-

estingly all these properties tend towards the preservation of the species, as

noted by Matthews).

Many other lists of properties have been proposed. Bedau [4], more than

presenting a long list of properties, associates the concept of life to that of

adaptation to a changing environment, i.e. to evolution. This definition in-

cludes also systems that are not usually considered as alive, such as human

cultures and economic markets. Furthermore, the focus changes from the

individual to the species. Life, according Bedau’s definition, is a property of

cats, not of a single cat. We could say that a cat is alive since it is part of

a species, cats, that being the result of evolution and being able to evolve,

holds the “property of life”.

Also Ray [5] defines a living system as “self-replicating, and capable of open-

ended evolution”. According to him, Alife “creatures”, if meeting these re-

quests, are alive.

Adami [6] classifies definitions of life in five groups: physiological, which cen-

tre on functions performed by organisms (breathing, moving, etc.); metabolic

which centre on the exchange of materials between the organism and its sur-

roundings; biochemical, focusing on the capability to store hereditary infor-

mation in nucleic acid molecules; genetic, focusing on the process of evolu-

tion; thermodynamic, which defines living systems in terms of their ability to

18



Basic concepts in artificial life

maintain low levels of entropy. While the definitions in the first two classes

resulted to be too restricting to describe all known forms of life, the third one

seems to be apt to describe terrestrial life, i.e. life as it is present on earth.

Even if it could be that terrestrial life is the only existing form of life, it

does not mean that other forms of life are not possible. The fourth and fifth

classes of definitions try to encompass any possible form of life, the fifth one

trying to define life on the base of thermodynamical quantities, i.e. creating

a connection with physical laws in order to investigate how the transition to

the “living state” can happen.

One of the main problems in understanding which are the general properties

of life is that we only know a single form of life, terrestrial life, whose mani-

festations share the same basic biochemistry and a common genetic descent

(the DNA code is biologically universal).

1.2.2 History and purposes of Alife

According to Langton [7], artificial life can help us in understanding what

life is and how life is possible. Since we just know a single manifestation of

life, we can try to create new forms of life to gain a better understanding of

its nature.

Of all the properties of life according to the proposed lists, metabolism is

probably the only one that cannot be defined in informational terms. Is thus

not surprising that the advent of modern computers has led many researchers

to try (and partially to succeed) to recreate these properties through infor-

mational concepts and computer modelling.

From an historical point of view, we could say that modern Alife (but see

[7] for a brief review of previous attempts to build machines that could “be-

have like living things”) was born with the pioneering works of Turing [8]

and von Neumann [9]. Using the concept of universal computer (or Turing

machine) developed by Turing, von Neumann investigated and demonstrated

the logical possibility of self reproduction. To von Neumann is also due the

introduction of cellular automata, while Turing [10] published a mathemati-

cal paper on the development of biological forms that had a great influence

on modern embryology and that was at the base (many years later) of many

works in the field of artificial life.

Another fundamental contribution of Turing and von Neumann to artificial

life was their role in the development of computer. Nevertheless, the com-
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1.3 Evolution

putational power of computers in the 1950s was too low to develop their

ideas, and thus artificial life did not emerge as an unitary branch of science

until the 1980s, when the term “Alife” was coined and the first international

conference (1987) was held.

As we said before, the purpose of artificial life is to reproduce in artifacts the

characteristics of living system, and each work in that direction should be

considered as part of Alife. Nevertheless, the true “spirit” of Alife is a little

bit more specific, since central concepts in Alife research are self organisation

and emergence. We will return again on these concepts, but as a first simpli-

fication we could say that an Alife researcher expects her model to show more

properties than those that she put in it. This philosophy is well expressed in

the usual distinction between artificial life and artificial intelligence (AI).

We could define the purpose of AI as to build artifacts (robots or computer

programs) that present some form of intelligence, a definition that resembles

the one we gave for Alife. If we admit intelligence to be one of the charac-

teristics of (some advanced) living systems, we could say that any work in

AI is also a work in Alife (despite that, artificial intelligence emerged as an

independent discipline many years before artificial life). Nevertheless, the

approaches to problems (at least between “classical AI” and Alife) are com-

pletely different. AI researchers proceed top-down, developing an high-level

representation of the problem and trying to pass it as a computer program

to the machine. We could say that they “impose order” on the system. Alife

researchers proceed bottom-up, they just fix a few low level rules, and expect

these rules to lead to an adaptation of the system to the problem, and we

could thus say that they expect order to “emerge by itself” in the system.

(This is obviously just a very rough simplification, that reflects some of the

main original differences between the two disciplines, but does not capture

all the complexity of modern day research in the two fields.)

1.3 Evolution

We have seen that some of the attempts to give a concise definition of life rely

on the concept of evolution. Adami [6] gives a thermodynamical definition of

life, according to which living system are those that are able to maintain low

disorder (entropy) levels. Even if this definition does not make any reference

to the mechanisms that allow living systems to do that, we know that for

terrestrial life this property relies strongly on evolution, meant as the com-
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bination of self replication, survival of the fittest and random search of new

solutions through mutation.

Any individual being seems to be doomed to loose its battle against entropy,

nevertheless if a self replicating ordered structure emerges for some reason,

it would be able to persist in the environment through time under the form

of its copies. Even if the ordered structure has a finite “life”, i.e. it is or-

dered only during a finite time, in case its life is long enough to include a

reproduction cycle, the structure will persist. Furthermore, if the life is long

enough to include many reproduction cycles, the structure will “invade” the

environment.

Obviously both the ability of the structure to “stay ordered for long enough”,

and to self reproduce are not absolute and depend on the interaction with

the environment. If the self reproduction process includes some mistakes or

mutations, sometimes slightly different forms of the original structure will be

created. If these forms are not able of self reproduction, they would disap-

pear as soon as they “die” (loose their ordered structure), while if they are

able to reproduce, they will persist in the environment. As we already said,

life and reproduction depend on the interaction with the environment. They

are not “for free”, and we can imagine that when a large number of ordered

structures is present in the environment, a competition for resources arises.

In case that in the environment a single species of ordered self reproducing

structures is present, each one capable of many reproducing cycles during

its life, competition will cause the reproducing ability of the structure to

get lower, until each structure is able of just a single reproducing cycle, and

the number of structures saturates to the maximum capacity of the environ-

ment. But if in a saturated environment different structures are present, the

structure with the higher reproducing ability in that environment (the one

that is more fit or has the higher fitness to that environment) will invade

the environment, while the others (if relying just on the same resources) will

disappear. Self reproduction and random mutations thus lead to the appear-

ance of structures that are “very fit” to the environment, even if no tendency

to “get fitter” is present in the structures. Most mutations are less fit, but

they just disappear from the environment, while the most fit known solutions

persist, waiting for a fitter solution to emerge and take their place. (Adami

[6] introduces a measure for the complexity of a string with respect to the

environment, which is based on the definition of complexity for a string by

Kolmogorov [11], taking in account the information which is provided by the
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environment, represented as a tape of a Turing machine).

As we have already seen, the proliferation of ordered structures, as the ap-

pearance of new structures, can change the fitness to the environment, since

it introduces a change in the environment itself. This is just one of the pos-

sible causes of environmental changes. Self reproduction by itself would not

allow the structures to resist to major changes, and thus a “perfectly” self

reproducing structure would not be stable and would soon disappear. Never-

theless, self reproduction with mutations allows the emergence of structures

apt to self reproduce and thus persist in the new environment, and it is sta-

ble to changing environments. (Obviously the mutation rate should be low

enough to allow persistence in a stable environment over short time scales,

and high enough to allow adaptation. Since also the reproduction system is

fixed by the nature of the self reproducing structure, we can think that the

mutation rate too adapts in order to be fit to the environment.).

In our search for a mechanism that allows a persistence of ordered structures,

we came out with a description of evolution quite similar to that given by

Darwin [12]. (Our description does not refer to the particular mechanism

used by terrestrial organisms for reproduction, which is briefly exposed in

chapter 2 as an introduction to genetic algorithms. We recall that Darwin

had no knowledge -obviously- of modern genetics nor of Mendelian inheri-

tance). Evolution [13] accounts for the astonishingly diverse and well apt

to the environment forms of life on earth (which originate probably from

common ancestor, given the universality of the DNA genetic code). Never-

theless, evolution does not provide an answer to the question “how did life

arise?”. According to some researchers, the spontaneous emergence of life is

an extremely improbable event. Kauffman [14] says that “Creditable argu-

ments by respected scientists have led to the unfortunate conclusion that we

cannot exist” and “plausible calculations demonstrate that insufficient time

has elapsed for life to have originated by chance”. According to him, “these

arguments fail by failing to utilize the self organized collective properties of

simple and complex systems”. Self organisation would thus be at the origin

of life. Furthermore, it would have a strong influence on evolution.

1.4 Self organisation

Discussing the role of self organisation in the emergence of life and its in-

fluence on evolution would be beyond the purpose of this thesis (and the
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capabilities of its writer). Nevertheless, self organisation has a fundamental

role in Alife research and applications, and thus deserves a brief discussion.

Theories of self organisation originally developed in physics and chemistry to

describe the emergence of macroscopic patterns out of processes and inter-

actions described at the microscopic level [15], [16]. For the purpose of this

thesis a qualitative description, based on the exposition of self organisation in

biological system and on their relevance for computer modelling, as provided

by Camazine et al. [17], will be sufficient.

Many physical and biological systems show the formation of global or “high

level” organised patterns. By global patterns, we mean that the scale of these

patterns is typically a few order of magnitude larger than that of the interac-

tion range between the components of the system. Two different explanations

are possible: the patterns have been created by some kind of external agent

(or even internal to the system, but whose interaction properties go beyond

the range and capabilities that we had supposed), or they are the result of

some “unexpected” non-linear summation of the basic interactions.

According to the definition of Camazine et al., “Self-organization is a process

in which pattern at the global level of a system emerges solely from numer-

ous interactions among the lower level components of the system. Moreover,

the rules specifying interactions among the system’s components are executed

using only local information, without reference to the global pattern”.

When observing a global pattern in a physical system, if there is no evidence

of the intervention of an external agent or force, is quite straightforward,

assuming a certain degree of “simplicity” in the constituents, to assume that

the pattern is due to self organisation. Nevertheless, when observing a bio-

logical system, whose components have a certain degree of complexity, at a

first glance other solutions could seem more plausible. In chapter 6 we will

describe briefly some of the self organising properties of social insects. It was

once believed that some of the complex tasks performed by social insects

(for example nest building) could be attained only under the supervision of

a leader, which was identified with the queen. Nevertheless, more recent re-

searches show that the queen, at least in large colonies and for what concerns

a large number of activities, has no supervision role.

Four alternatives to self organisation in biological systems are proposed in

[17]: leaders, blueprints, recipes and templates. By a leader, they mean an

individual who has a knowledge of the desired pattern, has access to infor-

mation regarding the state of the whole system and directs the work of each
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individual. By a blueprint they mean a compact representation of the desired

pattern, i.e. some kind of map or project. A recipe is a list of sequential

instructions that specify the actions to be performed in order to build the

desired pattern. Finally a template is a full size guide that specifies the final

pattern.

Is not difficult to think about examples in which human agents use one of

these methods to establish a global pattern. The authors provide also a few

examples of biological systems in which these methods are used. Neverthe-

less they also provide a long list of examples in which experiments show that

these methods are not used and thus the global pattern emerges on the base

of self organisation properties of the system (examples regarding social in-

sects are provided, as we said before, in chapter 6, while in chapter 5 we

treat self organisation in human societies and in computer models of human

behaviour).

1.4.1 How self organisation works

Self organising systems usually rely on a combination of positive and negative

feedback. Negative feedback is a mechanism well known in biology, used to

stabilise physiological processes. When a parameter of the system grows, it

originates by negative feedback a process that leads to its diminution and

vice versa. Positive feedback has exactly the opposite result: as soon as a

given parameter of the system subjected to positive feedback starts to grow,

it causes a process that leads to its further growth (“snowball effect”).

Usually, in self organising biological systems, positive and negative feedback

act on different ranges of the parameters. An example is given by the nest-

ing activities of many species of birds. These birds follow the individual and

local rule: “nest where others nest”. If by chance a small aggregate of neigh-

bouring nests arises, positive feedback causes the formation of a large colony

of nests. Let us now suppose that this colony is located on a small island. If

a too large number of birds nests on the island, they will probably exhaust

its resources. It is thus probable that the actual rule would be “nest where

others nest, if not overcrowded”. When the density of nests gets too high,

negative feedback starts to regulate it. (Notice that also the overall number

of birds provides a form of negative feedback. This could seem a very trivial

example, but it is quite typical of self organisation properties in biological

systems: while positive feedback is due to behavioural rules, negative feed-
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back is just caused by the exhaustion of some kind of resource.)

How can positive and negative feedback generate global patterns? The pro-

cess can be described as “amplification of fluctuations under control”. The

global pattern has to emerge over a uniform medium (clusters of nests in an

area initially without nests). At the beginning the process is random (bird

nests are randomly distributed), but then a fluctuation breaks the symmetry

(by random fluctuation, one or a few small clusters are formed) and positive

feedback causes the emergence of the pattern (small clusters turn big due

to the snowball effect). When the final structure of the pattern has been

reached, it has to be kept fixed by negative feedback (overcrowding and ex-

haustion of the number of birds fix the size of clusters).

Another characteristic of self organisation, which is included in its definition,

is the local nature of the behavioural rules and information gathering. A

rule suggesting to “form large clusters” of nests would not be admissible for

a self organising system, since it includes information on the global pattern,

while a rule as “nest near other nests” is admissible, since it only requires

local information.

The behavioural local rules causing the emergence of global patterns are

based on multiple interactions between the individuals. Nevertheless, these

interactions need not to be direct, but could also be mediated through the

environment. This phenomenon is called stigmergy: each individual acts on

the environment and modifies it, but bases its actions on the state of the en-

vironment: thus the “work” performed by an individual influences (on a local

base) that of the others (stigmergy, or “information gathered from work in

progress” is explained in detail in chapter 6.2.2 where a remarkable example

of self organising patter formation, termite nest building, is described).

1.4.2 Characteristic of self organising systems

In general self organising systems are dynamic: the pattern is reached and

maintained by the continual interactions between its constituents. They

posses emergent properties, i.e. they have some properties which are qualita-

tively different from those of the their components and cannot be understood

by a simple addition of individual contributions. They are multistable: de-

pending on initial conditions and random processes they can reach different

final states (patterns). They often exhibit bifurcation as the consequence of

the change of some parameters.
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The dynamic process led by positive and negative feedback usually leads to

the formation of stable patterns: the system is robust to perturbations.

1.4.3 Self organisation and evolution

The authors of [17] to not enter in the discussion on the role of self organi-

sation in the emergence of life nor on its role “in competition” with selection

as discussed by Kauffman [14]. They just suggest that self organisation can

be a very powerful tool through which evolution can find a simple solution

to complex problems: in self organising systems, evolution just needs to en-

code the (simple, and thus probably more easy to find) local rules, and the

solution to the complex problem emerges as a consequence of those rules.

This is the same spirit that leads us to investigate self organising properties

in the models studied in this thesis (and in particular in chapters 5 and 6

where these properties are the result of an evolutionary process).

1.5 Emergence

The word emergence has been used many times during this chapter. Its basic

meaning has been probably already captured: an emergent property is some

kind of complex characteristic of a system resulting from a combination of

apparently simple rules. Nevertheless a formal definition is more difficult to

obtain.

From a mathematical point of view emergence is just a result of non linear-

ity: if the rules that govern the interaction between the components are not

linear, their contributions to the behaviour of the system cannot simply be

summed up. Furthermore the dynamics of very few non linear systems, and

in general only for given initial conditions, can be solved using analytical

methods. For these reasons the behaviour of a non linear system cannot

be understood analysing simply the functioning of its components, and the

global behaviour “emerges” when these components are put together.

Nevertheless it is clear that not all the effects of non linearity deserve to be

called emergent. From the point of view of a researcher studying biological or

Alife systems an emergent property has to be “interesting”. Emergent prop-

erties are often defined in Alife as “unexpected properties”. This definition,

despite being unsatisfactory (what is unexpected for a researcher could be

anticipated by another one on the base of greater understanding of the sub-
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ject or mathematical knowledge) reveals the spirit underlying the notion of

emergence in artificial life: an emergent property has to be surprising. (Clark

[18] says that between the central themes of Alife there is “the emergence of

interesting or adaptive features from clever couplings between agents and

the environment (including other agents)”. We added the boldface.)

A philosophically more sound definition is provided by Steels [19], that sug-

gests that the word emergent can be used when the results of multiple in-

teractions require description in a vocabulary different from that used to

describe the properties of the inner components. According to Clark [18],

emergence involves behaviours that are not (directly) due to any control-

lable part or environmental interaction, but that are side-effects of directly

controllable actions or interactions. He cites an example, due to Steels and

Hofstadter [20]: if an operative system begins to “trash around” as soon as

35 users are on line, it would be a mistake to go to the programmer and ask

him to raise the trashing number to 60, since the trashing number, though

being a feature of the model, is an emergent or uncontrolled variable. All

that the programmer can do is to change the controllable variables in order

to prevent the system to trash.

1.6 Complex (adaptive) systems

A system composed of many interacting units, showing self organisation and

emergent properties, is a complex adaptive system (CAS). Holland [21] gives

a few examples of CAS: metropoleis, the immune system, the nervous sys-

tem, ecosystems, Internet, economies etc.

One of the properties of these systems is adaptation, the process that leads

the system to fit itself to the environment. We have already seen how evo-

lution can lead to adaptation to the environment, but other mechanisms are

possible. For example, if we are considering a system whose fundamental

units are complex enough, as human societies, we can expect these units to

be able to learn, i.e. to adapt to the environment during their life on the

base of their experience. It is obviously not necessary to hypothesise very

complex units with “black box” learning properties in order to have adapta-

tion on the base of experience: the nervous system is composed of relatively

simple units that are able to adapt their connection weights on the base of

their interaction with the environment (more on this in chapter 2). Also the

immune system (see chapter 4) is able to adapt to the menaces of the en-
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vironment to the body, recognising and “remembering” external pathogens,

while being able to distinguish the “self”, i.e. the cells of the body. These

learning abilities are based on the interaction rules between the constituents

of the systems, rules that were obtained as the result of an evolution process.

Deneuborg et al. [22] provide us an interesting example of how fixed be-

havioural rules can result in the adaptation of the system to different en-

vironments, showing that the different foraging patterns of some army ant

species can be obtained using the same local rule given a different prey distri-

bution. The rules are always the same but they are “clever enough” (though

very simple) to provide different and efficient behaviours in different environ-

ments.

1.7 Distributed autonomous systems

When we have introduced the concept of self organisation, we have stressed

that a real self organising process emerges in a system whose units interact on

the base of local and individual rules, without supervisors (leaders) or exter-

nal influences. A system with these interaction rules is said to be distributed

(since its dynamics is due to the individual actions of the basic units) and

autonomous (since there is no leader, internal or external, influencing these

dynamics) [23].

In this thesis we are interested in studying distributed autonomous systems,

systems composed of many fundamental and interacting units which are not

supervised by any external mechanism. As we said in the introduction, we

will assume this fundamentals units to represent “complex entities” provided

with perception and data processing capabilities. These capabilities are in-

troduced in our model as “black box” properties, i.e. we do not investigate

how they can emerge from more fundamental interactions. Nevertheless these

interactions will be introduced in the models as simple rules, and we will ex-

pect emerging and self organising properties to be present at the global level,

in some cases as the result of an evolution process.

1.8 Agent models

As we said in section 1.5, when the interactions between the constituents

of the model are non linear, analytical methods cannot provide much infor-
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mation about the evolution of the system and computer models are needed.

Different approaches can be used to study complex systems with computers.

A traditional approach, based on differential equations (DE), consists in writ-

ing equations for the dynamics of a few average quantities in the system.

These are usually ordinary differential equations (ODE), but more complex

models, taking in account the spatial structure of the system, can be based

on partial differential equations (PDE). These equations are in general non

linear, and thus can only be solved using a numerical approach, but analyti-

cal methods can provide useful information about the evolution of the system

(attractors, stable orbits, etc.). Furthermore, the use of ordinary differential

equations strongly reduces the number of degrees of freedom in the system,

and the computational cost of numerical integration. The major shortcom-

ing of this approach (for what concerns the systems studied in this thesis)

is evident: how can we study distributed systems whose emerging properties

are obtained by individual contribution that cannot be summed up on the

base of equations for the dynamics of average (i.e. summed up) quantities?

(This does not mean that average, or mean field, equations cannot provide

any insight on the nature of the problem, at least in some cases. A compar-

ison between an approach based on differential equations with an approach

based on microscopic dynamics is provided in chapter 4.)

An approach based on cellular automata (CA) is more adequate to describe a

distributed system. Cellular automata [24] are grids composed of many cells,

whose state changes taking in account the state of neighbouring cells on the

base of simple rules. CA are shown to be in principle equivalent to Turing

machines [25] and have been used in many Alife projects. Also cellular au-

tomata have a shortcoming for what concerns our approach to the problem,

since they allow only a discrete description of space. Furthermore, the ba-

sics constituents of CA are the units of the grid, and not moving individuals

(suitable CA evolution rules can describe moving individuals, but this ap-

proach is less intuitive than an approach based directly on the description of

the individual).

An approach that allows a description based on individual and independent

units, without restrictions on the space-time representation, is based on the

use of agents. Agents are units capable of perception (i.e. information from

the environment is passed to the agent according to its particular sensory

properties, which are decided as part of the model), of data processing (even

this process can be arbitrarily complex, and its nature is fixed by the model),
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and on the base of these can perform actions that modify the environment

(for example, they can move).

1.8.1 Space time properties of our models

In the four models presented in this thesis, we use four different space time

representations of agents and their physical interactions (by physical interac-

tions we mean the interactions that modify the motion of the agents and are

not determined by its decision mechanism: for example, the decision mech-

anism could suggest to the agent to go in a certain direction, but its actual

motion could be different due to a collision with a wall or another agent).

In chapter 3 we describe interactions between agents in similarity with the

interactions between charged particles. These repulsive interactions are con-

sidered to be due to the decision mechanism of the agent. Since these agents

are point like particles they do not have a inner physical structure and thus

physical interactions (i.e. collisions) are not introduced in the model. The

agents move in continuous two dimensional space and in continuous time

(obviously numerical integration requires the use of a discrete time step, but

this is not introduced as part of the nature of the model).

In chapter 4 we use a discrete space time to describe the immune system.

Agents occupy cells of two overlapping discrete two dimensional space grids,

and they are thought to have finite dimension. When an agent occupies a

cell no other agent on the same grid can be present on that cell. Interactions

happen between agents on overlapping cells of the two grids, or at the sides

of two occupied neighbouring cells (“the surface of the agents”).

In chapter 5 each agent moves in a continuous two dimensional space and

time (in this case we can say that also time is realised in a continuous way,

or at least using floating point numbers, since the algorithm that regulates

physical interactions does not need a discrete time step), and has a finite body

size (it is represented as a disc). Elastic collisions (physical interactions) of

agents with other agents and with the walls are exactly resolved.

Finally in chapter 6 space is represented as a discrete space time grid, (in

two dimensional space), and agents are point like. The physical interactions

between agents and of agents with the environment, which have a funda-

mental role in the evolution of the system, are introduced as modifying the

transition probabilities of agents from a site to another of the grid.
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Chapter 2

Computational tools of

artificial life

2.1 Introduction

In studying complex adaptive systems with computers we face the problem

of designing systems composed of many autonomous parts from whose in-

teraction emerges some kind of global self organisation pattern. A similar

problem is faced by the designers of distributed autonomous intelligent sys-

tems, i.e. systems used to solve some kind of complex problem and that are

not governed by a central unit, but are based on the autonomous actions of

many constituents. As we have seen, an emergent property is a feature of

the overall system which is caused by local agent behaviour, but that cannot

be deduced directly from the latter since it is the result of many non-linear

interactions. If the deduction of the global pattern from the local rule is not

easy, it is clear that the reverse problem of discovering which rule causes the

global pattern is usually even harder. We can obviously rely on intuition: we

can guess a local rule and use computer simulations to verify if the wanted be-

haviour emerges. (In case we are studying a complex system actually present

in nature, for example a biological one as a social insect colony, this process of

modelling the system can be helped by direct and experimental observations

of the single agent’s behaviour. It is thus not surprising that these biological

systems have lately been an inspiration for the design of intelligent systems,

see for example [1].). Nevertheless finding the local behaviour which can ac-

count for a given global pattern is usually almost impossible especially for
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complex tasks, and even more if we want the system to be actually adaptive,

i.e. resisting to changing conditions.

A similar problem is faced by the designers of intelligent systems, in partic-

ular when these systems are in relation with an actual and complex environ-

ment as the real world is (for example in robotics). The traditional top-down

methodology used in AI, i.e. to create large centralised complex programs,

has showed to be very effective in theorem-proving and game playing, but not

very satisfactory when facing interaction with a real physical environment.

The “animat path to AI” or bottom-up approach [2] consists in constructing

simple agents, which are able to adapt to the environment they are located

in. Here arises a paradox (similar, in some way, to the problem of obtaining

a complex global behaviour as the sum of simple local rules): how can we

construct simple agents able to deal with a complex environment if we are

hardly able to construct complex robots that can perform well in that envi-

ronment?

The solution to these problems resides in the imitation of nature. In nature

we can observe many complex adaptive systems, which arose on the base of

the strength of evolution, i.e. of self-replication, survivor of the fittest, and

emergence of new solutions due to random genetic mutations. The appli-

cation of these principles in the realm of design of intelligent systems and

optimisation problems is usually referred as genetic algorithms (GA).

One of the most striking results of evolution is the animal nervous system,

through which animals are able to respond with appropriate actions to the

stimuli provided by the environment. Control systems inspired by the natu-

ral neural system and used in order to provide effective agent to environment

interaction, and also to introduce the ability to learn about the environment

(and thus to quickly adapt to its eventual changes), are usually called Neural

Networks (NN). The use and study of neural network based computer pro-

grams goes often under the name of connectionism.

These methods are not only useful tools to solve complex problems, but, since

they are inspired by and mimic actual biological processes, they provide us

useful insight about how these mechanisms work. If in the realm of intelligent

system design GA and NN are stimulating options whose actual usefulness

needs always to be analysed in relationship with the particular problem to be

solved, in artificial life, i.e. in the attempt to reproduce biological complex

systems or other systems that present some of their features, they are natural

if not obliged choices.

34



Computational tools of artificial life

As we will see, GA and NN are not unrelated subjects, since a useful way to

obtain neural networks that can perform efficiently in a given environment

is to make them evolve through GA.

2.2 Genetic algorithms

Genetic algorithms in their traditional form have been developed by John

Holland [3], and were aimed also to solve optimisation problems but in par-

ticular to study the phenomenon of adaptation as it occurs in nature. An

introduction to the subject, which served as a base for this short presentation,

can be found in [4].

2.2.1 Biological terminology

The original formulation of GA, and the usual explanation of their working,

is so strongly related to the process of biological evolution that is probably

useful to introduce some biological terminology and to revise briefly how evo-

lution in actual biological organisms works.

Each cell of a living organism contains the same set of chromosomes (strings

of DNA), that serve as a blueprint for the organisms. A chromosome is

divided in genes, each gene being located in a given locus or position and

encoding for a particular protein. Each gene can assume different forms or

alleles. One could think (even if it is just a simplification) that each gene

encodes a trait or characteristic of the organisms, and that to different alleles

correspond different expressions of the trait (for example, a given gene could

encode the colour of the eyes, the trait, and to different alleles could corre-

spond different colours). The collection of an organism’s chromosomes forms

its genome, while the particular set of genes in a given organism’s genome

is the genotype. The genotype gives rise to the phenotype, the collection of

the organism’s physical and mental characteristics. The distinction between

genotype and phenotype is a fundamental one: even if the genotype encodes

the phenotype, there is not a one to one correspondence between the two,

since the phenotype is the result of a development process, during which the

organisms undergoes constant interactions with the environment. (Just to

make it more clear, a human being has always the same genotype during

her life, but her phenotype changes during development from the foetal and

child forms to the adult one. Furthermore, this phenotype depends on the
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conditions under which development happened, as for example nutrition).

Most sexually reproducing organisms are diploid, i.e. chromosomes are ar-

rayed in pairs. For example, each human cell has 23 pairs of chromosomes.

In sexual reproduction crossover occurs: genes are exchanged between each

pair of chromosomes of each parent in order to obtain a single chromosome

(gamete), and gametes from the two parents form a full set of diploid chro-

mosomes. Offspring are subject to mutations, i.e. due to copying errors

elementary bits of DNA are changed from parent to offspring.

The ability of the organisms to perform in the environment (its fitness) is

basically determined by its ability to reproduce (its number of offspring or its

fertility) and thus pass and diffuse its characteristics in future generations,

an ability which is due to its phenotype.

Holland [3] gives an estimate of the complexity of finding a genotype that en-

codes a good phenotype: assuming 2 alleles for 10000 genes for a vertebrate

genotype, we have roughly 103000 different solutions. Furthermore, as we said

before, thinking that to each gene corresponds a trait is just a simplification,

and actually to each allele corresponds a different protein. The form of cells

is determined by the highly non linear interactions between these proteins.

As always happens in complex systems, the final product is not just the sum

of the contribution of different alleles, a phenomenon known in biology as

epistasis.

How does nature manage to solve this optimisation problem? As we have

already seen, the “strength” of life resides in the combination of self repro-

duction, survival of the fitness and search of new solutions through casual

mutations. The use of these strategies in computation problems goes under

the name of evolutionary computation.

2.2.2 Original formulation of GA

Holland’s genetic algorithms (it should be noticed that the term genetic algo-

rithm is used nowadays, and also in this thesis, to refer to a more broader class

of evolutionary algorithms, usually quite different from Holland’s original

formulation) stresses the importance of the particular encoding and genetic

operators used by nature, and thus tries to reproduce them in a simplified

but faithful way.

The characteristics of the “candidate solution” to the problem (for example

the characteristics of an agent) should be encoded as a bit string, a chro-
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mosome. The genes are the single bits (or groups of them), and the alleles

are 0 or 1 (larger alphabets, i.e. a larger number of symbols to represent

an higher number of alleles, are also allowed, even if in the following we

will always refer to the binary representation). The performance of a given

solution is measured using a fitness function, and in each generation of the

genetic algorithm the fitness of a population (a fixed number) of solutions

is tested. While the first generation is randomly created, the following ones

are obtained from the previous one using three genetic operators: selection,

crossover and mutation.

Selection consists in the choice of the chromosomes to be passed to the fol-

lowing generation: since in biology fitness is the number of offspring, also in

GA the number of offspring of a given solution should be proportional to the

fitness. If we define fi as the fitness of solution i, and N as the number of

solutions in each generation, the probability of solution i in generation n to

be the parent of a solution in generation n + 1 is

pi
s =

fi
∑

j=1,...,N fj
(2.1)

and thus its expected number of offspring is Npi
s. (This process is called

roulette wheel selection, since it is equivalent to assign to each individual a

slice of a “roulette wheel” proportional to its fitness, and choose N parents

spinning the wheel N times). The selection is obviously made with replace-

ment, i.e. a solution can be the parent of many offspring.

Crossover consists in pairing the chromosomes of two selected parents and

with probability pc (crossover probability) cross over the pair at a randomly

selected point, to create two offspring (since crossover is performed in a single

point of the chromosome, this is usually referred as “single point crossover”,

figure 2.1.). In case crossover does not happen, the chromosomes of the par-

ents are simply copied in the offspring.

Mutation consists in randomly flipping each gene in each offspring with prob-

ability pm. Using these operators a new generation of N “solutions” is ob-

tained and tested. Since the described process generates an even number of

offspring, in case of odd N a chromosome is randomly chosen and discarded.

A whole evolutionary process, or a run of the GA, consists of a fixed number

of generations (the actual number of generations depends on the nature of

the problem, including computational cost, but in general at least a few hun-

dreds of generations are necessary). Since GA strongly depend on random
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Figure 2.1: Chromosomes before (top) and after (bottom) single point

crossover. The crossing point is identified by the thick line.

processes, different runs give often different results, and thus an evolutionary

experiment in general consists of many runs, from which averaged results can

be obtained.

A (very trivial) application of genetic algorithms could be the optimisation

of a real positive function with a single variable. The “candidate maximum”

would be a real number, coded as a string of bits, and the fitness function

would just be the value that the function assumes at the candidate solution.

To each possible solution (string) corresponds a value of the fitness, and the

set of all these values forms “the fitness landscape” of the problem. We ex-

pect the genetic algorithm to explore effectively this “landscape” and reach

its maximum.

When facing an real problem, many questions about how to use GA arise,

and actually different evolutionary strategies (corresponding to different en-

codings, or different forms of the operators) could be necessary. Before pro-

ceeding in the analysis of these problems, let us first study how the original

formulation of GA works.

2.2.3 Schemata and building block hypothesis

According to Holland the success of evolution depends on its ability to find

coadapted sets of alleles, i.e. sets of alleles from different genes which to-
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gether significantly augment the performance of solutions. This sets should

be the “building blocks” of good solutions, and should be evaluated and re-

combined (without being destroyed) in an effective way. Holland formalises

these concepts introducing the notion of “schemata”. A schema is “family”

of bit strings, i.e. a string of three symbols, 0, 1 and *. The additional *

stands for “any possible symbol”, i.e. the schema 1*0 stands for a family

composed of two strings, 110 and 100, while 1*****1 stands for all the (25)

possible 7 bit strings that begin and end with a 1.

The introduction of the concept of schemata poses the attention, more than

on the particular strings, on classes of strings that share some features. If

these features are exactly those that make a solution to be a good one, i.e.

if the schema corresponds to an useful “building block”, all the strings that

represent that particular schema will receive an high fitness, independent of

the actual values assumed by the bits marked with an *. We could thus

say that GA, while explicitly testing strings, are implicitly testing schemata.

Since each string of length l is an instance of 2l schemata (to each gene or

bit can be substituted either the actual allele of the string or an * in order

to obtain a valid schema; for example string 11 is in schemata **, 1*, *1

and **), a population of N strings contains a number of schemata between

2l and 2lN . Holland shows that while testing N strings, GA process at least

N3 different schemata at time (“implicit parallelism”). The schema theorem

(see [3, 4] for mathematical details) shows how selective reproduction gives a

larger number of offspring to schemata with higher fitness. It also shows that

schemata whose component are closer ( for example ****11*) have a larger

probability to be preserved by single point crossover than schemata whose

components are far apart (1*****1), since the latter are more easily broken.

The “building block hypothesis” suggests thus that GA are able to find the

building blocks of the solutions, i.e. useful groups of close alleles (evaluating

them as schemata through implicit parallelism), to reproduce them with se-

lective reproduction, and to recombine while preserving them through single

point crossover.

According to this interpretation, crossover has the main role. The only role

of mutation, whose probability should be kept at very low values, is to pre-

vent loss of diversity at a given position. Let us assume, for example, that

the best possible solution to our problem is a string that begins with a 1,

and is thus in schema 1******. . . . If at a given point during evolution all

the strings in the population start with a zero and are in schema 0******. . . ,
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crossover will not be able to generate the best possible solution. Mutation

solves this problem randomly creating instances of 1******. . . .

2.2.4 Alternative formulations

Nevertheless, schema theorem and its implications for the behaviour of GA

have been the subject of critical discussion in the GA community, as described

by [4]. Furthermore, in their book on evolutionary robotics (a subject closely

related to the research projects described in this thesis, as we will see), Nolfi

and Floreano [5] state that “Several practitioners reported that crossover had

no influence in their experiments, or even that it lowered the performance of

the genetic algorithm. In those experiments, crossover operates as a sort of

macro mutation operator and may generate instability. Over the last years,

much more attention is being paid to the mutation operator. In most of the

experiments described in this book the crossover probability is zero or very

small”.

The details of the particular “evolutionary strategy” to be used depend on

the kind of problem that is faced. Of course a first serious question, when

trying to solve an optimisation problem, is “should I use GA or another search

strategy?”. Nevertheless, when trying to study the evolution of an artificial

life complex adaptive system, like those studied in this thesis, GA are more

than an option, and in some way impose themselves, and thus the question

of the performance of GA with respect to other optimisation strategies is

not relevant in this thesis (we’ll return on this point in section 2.4, and in

particular we will stress on the impossibility to define a traditional fitness

landscape for the systems studied in this thesis).

Different kinds of encoding (some of them introducing a difference between

genotype and phenotype and thus the concept of development in interaction

with the environment), selection, crossover and mutation operators have been

proposed in different optimisation and Alife problems. Without giving an

overview of all these different options (we refer once again to [4, 5] and to a

large GA and Alife literature) we will expose in section 2.4 the choices that

we have made in our models and the reasons that led us to those choices.
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2.3 Neural Networks

2.3.1 Real nervous system

The human brain [6] consists of roughly 1011 nerve cells or neurons. Neu-

rons communicate using short impulsive electric signals, that propagate as

variations of potential difference between the interior and exterior parts of

the neural membrane. The connections between neurons are mediated by

electrochemical junctions called synapses, which are located on branches of

neurons named dendrites.

Each neuron has thousands of synapses and thus receives incoming signals

from thousands of other neurons. These signals are “summed up” and if the

total exceeds a threshold, the neuron “fires” i.e. it produces a new impulse

that propagates through a branch of the neuron called axon and reaches other

neurons.

Synapses are the neuron’s input: at synapses arrive the impulses that have

propagated through the axons of other neurons. The influence of these im-

pulses on the activity of the receiving neuron depends on the strength of

synaptic connections (there is a weighted sum of inputs); furthermore some

impulses have an excitatory effect on the firing of neurons, while others have

an inhibitory effect (the weights have a “sign”).

The axon is the the neuron’s output, and it is unique: each neuron has a sin-

gle axon (even if it branches in order to reach synapses of different neurons),

and all the pulses have the same characteristic profile, height and width.

Neurons can thus be viewed as communicating with yes/no (1 or 0) binary

signals.

(This short introduction reflects obviously only a minimal part of the ac-

tual complexity or real neurons, and focuses on the features that have been

considered fundamental in the computing abilities of neurons and have been

introduced in neural networks models. In particular no mention has been

done about the role of time, even if propagation delays and pulses frequen-

cies influence the neuron activity).

41



2.3 Neural Networks

2.3.2 Artificial neural networks and supervised learn-

ing

The term connectionism refers to the approach of using neural networks,

both for computational purposes and for the study of the actual human and

animal brain and nervous system (in a broader sense, connectionism, in neu-

roscience and psychology, is an approach that models mental or behavioural

phenomena as emergent properties of networks of simple units).

A neural network (NN, see [7] for a throughout exposition of the subject,

and [8] for an simple introduction to the main ideas), is “an interconnected

assembly of simple processing elements, units or nodes, whose functionality

is loosely based on the animal neuron. The processing ability of the network

is stored in the inter-unit connection strengths, or weights, obtained by a

process of adaptation to, or learning from, a set of training patterns” (We

added the boldface to the definition by [8]).

Basically neural networks try to reproduce the fundamental computational

features of actual neurons, and thus their nodes are computational units

which take a few inputs, weight them and produce an output based on the

inputs (in general the output is a non linear function of the inputs). As

for actual neurons, inputs are provided by other neurons, and thus various

nodes are connected between them (obviously also external inputs, that can

be considered as the inputs of the whole network, are allowed). Equally,

there are also outputs which are not, or not only, passed to other nodes, and

have the role of external outputs or outputs of the network (figure 2.2).

Perceptrons

A first, and the most simple, example of neural network is a threshold logic

unit (TLU) or perceptron (figure 2.3). As the name suggests, it is a network

that consists of a single unit, takes n external inputs, weights them, and

produces a “logic” or binary output (if the weighted sum is higher than

a threshold θ the output is 1, otherwise it is 0). The choice of a binary

output reflects the yes or no response of biological neurons, while the external

inputs can be in principle binary or real numbers. The behaviour of a TLU

is obviously determined by its weights. Denoting these weights with a n

component vector w and the inputs as the vector x, the output of the network

is

y = ϑ(w · x − θ) (2.2)
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Figure 2.2: A neural network. Circles represent units, lines represent con-

nections, arrows synapses. All the lines exiting from a unit have the same

value. Green lines are external inputs, red ones external outputs (for these

lines arrows do not stand for synapses, and just show the “direction” of the

line).

Figure 2.3: A perceptron or TLU with 5 inputs.
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where by ϑ we have denote the step function

ϑ(x) =

{

0 if x ≤ 0

1 if x > 0
(2.3)

The negative of the threshold −θ is usually treated as an “input independent

weight” or a bias, i.e. as a weight that is multiplied for a constant (equal to 1)

input. From now on we will use the latter notation, and assume that a TLU

with n input has a n + 1 dimensional weight vector w = (w1, . . . , wn,−θ),

and that equation (2.2) becomes

y = ϑ(w · x) (2.4)

where x = (x1, . . . , xn, 1). It is clear that the hyperplane w · x = 0 separates

the n dimensional space of inputs in two sets, one that is classified by the

TLU with 1, and another which is classified with 0.

Perceptron and delta rules

The main feature of neural networks is their ability to learn. An application

of a TLU is thus that of learning how to classify the inputs. Let us suppose

that we have two sets of objects, A and B, whose characteristics can be

expressed as n dimensional real vectors, that the two sets are linearly (i.e.,

by an hyperplane) separable, and that we want to teach a neural network

to recognise which element is in set A (which will correspond, for example,

to output 1) and which one is in B (0). The procedure (called supervised

learning since there is a teacher that provides a few examples and tells to the

network which answers are right), consists in giving to the network a training

set, a group of vectors xi together with the “right answers” or targets ti
(i = 1, . . . , M where M is the size of the training set.) The weights (and

biases) of the network are thus initialised to values next to zero, and the

network is tested on the training set. After each test on vector xi the weights

are adjusted (w′ = w + ∆w) following the perceptron rule

∆w = α(ti − yi)xi (2.5)

The idea is to correct the weights, in a direction that compensates the error,

every time that the network gives a wrong answer, the amount of the cor-

rection being determined by a learning parameter α. It can be shown that,

following this procedure, the network will end having a vector of weights that
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classifies exactly the two sets.

Until now we have always considered networks with a binary output, but in

some situations it is useful to have networks with a continuous output. For

example, instead of using a neural network to classify two (or more) sets, we

would like to use it to approximate or fit a function. In these cases, instead

of applying a step function on the activation (the weighted sum of inputs

and bias) of the node a ≡ w · x, a sigmoid function is used

y = σ(a) ≡ 1

1 + e−ka
(2.6)

This function can be viewed as a smooth version of the step function, which

is obtained in the k → ∞ limit. (The output can also be considered as

the probability to have output y = 1 in case of a yes or no unit. The use of

continuous outputs can be justified, from a biological point of view, observing

that the activity of real neurons is actually determined by the frequency of

impulses, which is a real number).

In general it can be showed that, using a smooth y = Φ(a) function for the

output, the delta rule (where Φ̇(a) ≡ d
da

Φ(a))

∆w = α (ti − yi)xi Φ̇(a) (2.7)

corresponds to a procedure of minimisation of the error function

E =
1

2

∑

i

(ti − yi)
2 (2.8)

of the network on the training set. In case we use a sigmoid output function,

the delta rule can be expressed using the values of the outputs, since

σ̇(a) = k y (1 − y) (2.9)

If we want classify more than two sets, or fit vector functions, we just need

more than a single output unit, and all the previous formulae remain valid

under a substitution of the scalar values y, t with vectors y and t (see figure

2.4).

Feedforward networks with hidden layers and backpropagation al-

gorithm

Obviously not all the problems are linearly separable, and thus we should

expect perceptrons to fail in many situations. Nevertheless, it can be showed
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Figure 2.4: Two perceptrons used in a neural network with 3 inputs (black

circles) and two outputs.

that a network that uses an hidden layer of nodes that elaborate the external

inputs, and pass their output as inputs for the output units, can identify any

region (including non convex and non connected ones) of R
n. Furthermore

these feedforward neural networks with an hidden layer (figure 2.5) can ap-

proximate any continuous function as closely as wanted.

The delta rule generalises to the backpropagation algorithm in case of the

presence of an hidden layer. Following [5], denoting x with n components

xk, k = 1, . . . , n as a vector in the training set (external inputs); h as the

vector of outputs of the l nodes in the hidden layer with components hj,

j = 1, . . . , l, y as the vector of m external outputs with components yi,

i = i, . . . , m; the matrices vjk and wij as the connections (weights), respec-

tively, between the inputs and the hidden layer units, and of hidden layer

units with the output nodes; we have

hj = Φ

(

∑

k

vjkxk

)

(2.10)

and

yi = Φ

(

∑

j

wijhj

)

(2.11)
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Figure 2.5: A (fully connected) feedforward neural network with 3 inputs

(black circles), 4 units in the hidden layer and 2 outputs.

We define the delta error of the output units as

δi = Φ̇

(

∑

j

wijhj

)

(ti − yi) (2.12)

where ti are the m components of the target (expected) output t.

Assuming that the error “propagates back” through the connection weights

we define the delta error at the hidden units as

δj = Φ̇

(

∑

k

vjkhk

)

∑

i

wijδi (2.13)

Finally the weights are corrected according to

∆wij = αδihj (2.14)

∆vjk = αδjxk (2.15)

and the procedure is repeated for any x in the training set.

Networks with a suitable architecture and trained with backpropagation can

learn, in principle, any arbitrary mapping between input units and output

47



2.3 Neural Networks

units (even if problems of overfitting of the data and convergence to local

error function minima are present).

Also architectures different from feedforward networks are currently used

in many applications (for example, to introduce memory effects recurrent

connections are necessary, see for example [5]), but are not used in this

thesis.

2.3.3 Ecological Networks

Until now we have exposed supervised learning algorithms, i.e. algorithms in

which neural networks are trained on sets of examples which are provided,

together with the right answers, by a teacher (the programmer). Two major

shortcomings are present in this approach from the point of view of study-

ing complex adaptive systems, i.e. if we want to use neural networks as the

control system of agents in a distributed autonomous system.

The first problem is due to the fact that in this situation we are usually

interested in agents moving freely in their environment, exploring it and

“learning” about it (here learning is meant in a broader sense, since, as we

will see, in many situations we are interested in agents that can evolve but

not learn, or, even if the subject is not treated in this thesis, that can evolve

and learn), and thus learning is not limited to a set of training problems

given by a teacher. The “problems” that the agent controlled by the net-

work experiences are determined by the direct interaction of the environment

with the agent. Furthermore, the agent is not just passive in this process,

since its interaction with the environment modifies the environment around

the agent and thus the kinds of “experiences” that it can have.

Parisi [9] talks about ecological neural networks: these are the networks which

are situated in their environment and thus are not simple passive receivers of

inputs but can control their inputs through their actions. A typical strategy

that ecological networks (i.e. agents which are controlled by networks) can

follow to influence their input is movement: let us suppose that agents are

located in an environment in which they have to perform a large number of

tasks (they have to solve some problems), that each task affects in the same

way their possibility to “survive” in the environment (the notions of “ecol-

ogy” and “environment” are leading us back to the concept of fitness. . . not

surprisingly GA will be back soon), and that these problems present them-

selves in spatially distinct regions of the environment. A trainer will probably
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try to give to the network-agent a general training set, in which all kinds of

problems are present, in order to obtain an individual able to perform in

any possible situation. Typically an ecological neural network follows a quite

different strategy: it specialises on a single task, and tries to move in the

environment in order to have to face only that task. The strategies that

ecological neural networks use to solve problems are at the same time simple

and surprising, (they are usually emergent, using in this case the meaning

of “unexpected”, since the researcher is not usually able to predict how the

agent will solve the problem). In many cases these networks are able to solve

problems that the researcher who set up the experiment thought that they

could not solve, for too simple. (Many cases are described in [9], [5] and

also in chapter 6. In particular, chapter 5 in the book by Nolfi and Flore-

ano is extremely interesting, with the description of how, by sensory motor

coordination, i.e. moving in the right way, ecological networks -in their case

the control system of real robots- are able to classify objects that trained

networks are not able to classify).

2.3.4 Evolution of neural networks

In describing ecological neural networks we deliberately used the expression

“possibility to survive” to describe the ability of networks to perform in the

environment. This could seem a little surprising after the previous discussion

about training sets, targets and delta rules, in which no notion of survival

was present. This leads us to the second problem that “traditional” networks

present if used in a distributed (adapting) autonomous system: not only we

cannot (nor want to) provide to the agents a training set, since they find the

problems to solve directly on the environment, but in general we neither know

which is the “right” output that the network should correspond to a certain

input. In fact, if we are interested in studying a system in which some kind

of self organised global property emerges from the local behaviour of agents,

in general we do not know which local rule will correspond to an high level

global performance, and thus we do not have any criterion to judge the single

actions of agents, and thus if the network gave a good output. This does not

mean that we cannot “judge” in any way the performance of a single agent

(ecological network): it is possible to establish a criterion to judge how well

an agent is “fit” to a given environment, but often it will be impossible to

establish a correspondence between this “fitness” and a single evaluation of
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the neural network based control system, since the performance of the agent

depends on a long succession of actions.

We are now back to the usual language of genetic algorithms: when using

ecological neural networks, i.e. NN as the control system of agents interacting

with the environment, the focus is usually shifted from learning to evolution:

the weights of networks are evolved using GA. Instead of using a single net-

work, whose weights are updated at each evaluation in order to obtain a

better response (learning), a population of networks is created. The weights

of the network are kept fixed during the whole life of an agent (length of a

generation), and are evaluated using a fitness function related to its overall

performance. At the end of the generation a new population is created using

the genetic operators.

In this formulation adaptation does not happen on an individual level, during

a single life, but at a population level, during many generations.

Many applications of neural networks in artificial life rely strongly on the use

of evolutionary methods. Very interesting results have been obtained in the

field of evolutionary robotics, i.e. using evolving neural networks as control

system of real robots. The fact that evolution and GA have a predominant

role in these applications does not mean that is not possible to use also learn-

ing methods, even if they are not used in this thesis. Chapter 7 of the book

on evolutionary robotics by Nolfi and Floreano [5] treats the subject of the

interaction between evolution and learning, which is interesting also from a

biological point of view (Baldwin effect, [10]). Furthermore, evolution is not

the only way to treat NN when supervised learning is not possible: reinforce-

ment learning techniques are possible (see for example [11]). Finally, we have

to notice that, even if in this thesis by evolution of neural networks we will

always mean only evolution of the weight of the networks, actually GA have

been used also to evolve learning rules and the structure of the networks. This

last subject, in particular, is very interesting because it is strictly connected

to the problem of open ended evolution (in order to evolve the structure of

the network to arbitrarily complex structures chromosomes of unfixed length

are necessary), and of the introduction of an actual distinction between geno-

type and phenotype (when the structure of the network gets more complex,

it cannot be completely described by the genotype). Both [4] and [5] (chapter

9) give an introduction to these subjects, which have been object of many

research works in the last years.
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2.4 Application to the models in this thesis

2.4.1 Nature and purposes of the models

Two of the models studied in this thesis, and in particular the models on

crowd dynamics and the evolution of the Theory of Mind (chapter 5) and

that on the emergence of a communication system and of traffic flow rules

in a mobility system (chapter 6), concern adaptive distributed autonomous

systems with a large number of individuals.

Both models regard a similar problem, motion in a medium (a mobility sys-

tem) with finite carrying capacities, i.e. optimisation of a traffic flow problem.

Even if we use the word “optimisation” the problem is not faced from an en-

gineering point of view, i.e. our purpose is not to find an optimal solution

to an existing traffic flow problem. Neither the purpose of these models is

to reproduce the behaviour of agents (people or even animals) in real mobil-

ity systems, even if we hope that the proposed models can give some insight

about the nature of these systems (and at least in the crowd dynamics model

we found some resemblance with the behaviour of actual pedestrians).

Our models are thought as experiments on emergent properties in the field of

artificial life, in which a number of agents are located in an environment that

changes according to their actions, and agents are expected to find a way to

adapt to this environment. According to the interest of our research group

to the study of problems related to the motion of pedestrians and vehicles

in urban areas, we decided to use environments that, even if in a extremely

simplified way, reflect the nature of these systems.

2.4.2 Justification of the use of GA and NN

Given these premises (a theoretical interest in general emergent proper-

ties and thus the search for a simple formulation of the problem in which

those properties could arise with the smaller possible external -i.e. by the

researcher- intervention) an approach based on genetic algorithms has been

considered as the most natural. The suppression of learning could seem a

major shortcoming for models describing the behaviour of agents in mobility

systems (after all pedestrians and car drivers are complex individuals with

learning ability) but this simplification seemed compatible with the request

of simplicity and the pure theoretical nature of the work (the focus is more

on the emergence of effective strategies and global properties than on the
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reproduction of the actual mechanisms that can lead to these properties).

While in the crowd dynamics model, in order to introduce the concept of

Theory of Mind, the qualitative nature of the control mechanism has been

designed by us, letting to the GA the role of evolving a few parameters that

fixed its quantitative behaviour, in the model on the evolution of traffic flow

rules the request for a general and not biased control mechanism has led us

to the use of feedforward neural networks with an hidden layer. Since the

number of the neurons (units) in the hidden layer can affect the performance

of the network, we took advantage of the high number of agents in our model

to analyse in a parallel way which structure was more suitable to the solution

of the problem (we could say that we used an extremely simplified version of

a GA in order to evolve the structure of the network, a GA in which we used

only selection and neither mutation nor crossover, i.e. we did not create any

new structure but just choose between the existing ones).

2.4.3 Encoding

In both models the control mechanism of the agents was determined by a

string of real numbers, the parameters of the collision avoiding mechanism

in the crowd dynamics model and the weight of the neural networks in the

model on emergence of communication and traffic flow rules (actually in both

models also a single integer value was present, the “level of Theory of Mind”

in the first model and the number of hidden units in the second one).

In order to use the original GA formulation by Holland, it should have been

necessary to encode these numbers as binary strings. Nevertheless, the re-

marks that we have already expressed about the actual effectiveness of the

crossover operator, at least in what regards these applications of genetic al-

gorithms, have led us to the decision to encode these number directly as

floating point numbers.

2.4.4 Mutation

We thus decided not to use at all a crossover operator, and the search in the

space of solutions was performed only by the mutation operator. Mutation

was performed adding to the real value (the “gene”) a number chosen using

a Gaussian probability distribution with mean zero and width chosen in

relation to the possible range of values assumed by the mutated gene. This
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formulation seemed to us the most appropriate one under the assumption

that the fitness of the agents is in some way a smooth function of the real

parameters. The use of a Gaussian probability distribution assures that a

large number of small mutations will lead to solutions which are similar to the

previous ones (these mutations allow the system to climb up local maxima in

the fitness landscape) while a few major mutations prevent the system to be

stuck in local minima (for simplicity’s sake we used the expressions “fitness

of the agents” and “fitness landscape”, even if these concepts are not well

defined for the problems that we have studied, as we discuss below).

2.4.5 Fitness function

The choice of the fitness function is one of the most important steps in the use

of a genetic algorithms, not only from a computational point of view (the use

of an non appropriate one could prevent the evolution of the system) but also

from a “philosophical” point of view, i.e. the choice of the fitness function has

to reflect the “spirit” of the research project (see also the discussion about

fitness space in [5]). To state it more clearly, since in our research projects

we are interested in studying general emerging self organisation properties

of the system, and want these properties to emerge in a “spontaneous way”

(i.e. with a minimum possible intervention of the researcher), the fitness

function has to be very simple, i.e. it has to include a very low number

of terms. In particular, since in our mobility models the purpose of the

agents is to reach a goal point in the shortest possible time, we just used

as a fitness function the ratio between the distance from the starting to the

goal point over the the time elapsed to reach the goal. Since in one of the

two models (the crowd dynamics model) the physical interactions between

the agents (collisions) have been described in detail, in the fitness function

of that model we introduced also a negative term due to these collisions

(since collisions were represented as elastic bounces between rigid discs, we

considered the amount of exchanged momentum as the most straightforward

way to represent these collisions in the fitness function).

2.4.6 Selection

An appropriate choice of the selection operator is very important in the devel-

opment of a GA. Roulette wheel selection assigns to each agent a probability
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to reproduce which is proportional to its fitness. Even if this choice is consis-

tent with the biological definition of fitness, it depends very strongly on the

details of the fitness function. Furthermore, this choice presents some prob-

lems in the first stages of evolution (when usually few agents, or even a single

one, have a fitness considerably higher than that of the others, and thus are

the only ones to be selected, leading to a genetically very poor population)

and in the last stages, when the differences in fitness between the agents are

present but very small, in which case all the agents have almost the same

probability to be selected, even if their performance is actually different.

For these reasons, rank based selection operators have been introduced, i.e.

selection operators in which the probability to be selected was not directly

proportional to the agent’s fitness, but just to its position in the fitness rank.

In our opinion, the most “natural” selection operator (i.e. the one that has

the smaller dependence on particular choices made by the researcher) is tour-

nament selection. In our implementation of tournament selection, a number

st (the size of tournament) of agents from the previous generation is picked

up and their fitness is compared. The winner, i.e. the agent with the highest

fitness, “takes all” and his genes are passed to the following generation. This

procedure is iterated N times in order to obtain a complete new generation.

The size of tournament st has been fixed to 2 in case of small populations

(N ≈ 100) but could reach higher values for larger N (up to 40 for N = 4000).

2.4.7 The problem of defining a fitness landscape

Heterogeneous and homogeneous populations

When an agent is tested alone on the environment, i.e. not in presence of

other agents, it is possible to talk about the agent’s fitness according to the

environment, and thus we can introduce the concept of fitness landscape.

Obviously, if both the environment and the actions of the agents are proba-

bilistic, we cannot expect to obtain always the same results under different

tests of the same agents, nevertheless if our fitness function and our test

conditions are general enough to reflect the nature of our problem, we can

consider the fitness of the agent as a good estimate of its “absolute” ability

to perform in the environment.

The situation is quite different when other agents, with a different genome,

are present in the environment, competing and/or collaborating with them.

In this situation the fitness of an agent cannot be considered anymore as
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absolute (i.e. depending only on the structure of the environment) but it is

relative to the other agents. (This situation is present, for example, in the

experiments in which a coevolution of prey and predators is performed, see

for example chapter 8 in the book by Nolfi and Floreano [5]).

When we are studying the behaviour of a crowd, or of a large scale mobility

system, we obviously have to test agents in an environment in which other

individuals are present. In this situation two contrasting choices are possible,

the first one consisting in using homogeneous populations, i.e. populations of

clones with an identical genome, and the second one in using heterogeneous

populations in which each agent has a different genome.

In the first case we can talk about a fitness landscape: to each genome cor-

responds a fitness value (that can slightly vary due to random oscillation

between different tests), which is the average fitness of the clones in the pop-

ulation. Also in the second case we can talk about the overall (and average)

fitness of the population: to each collection of genomes in the population

corresponds a fitness value. Nevertheless this information is of no use to the

GA: the selection operator can rely only on individual fitness values, which

are always relative to the composition of the population.

Two reasons led us to the choice of using heterogeneous populations. The

first one is purely computational and due to the large number of agents used

in our models. A genetic algorithm has always to operate on a population

of genomes, even in the case in which population of clones with identical

genomes are used, and thus in order to test all the genomes a larger number

of simulation tests have to be performed. For example, in the case of the

model studying the emergence of communication and traffic flow rules, we

used an heterogeneous population with 4000 agents. Using 20 homogeneous

populations with different genomes would have increased the computational

time by a factor 20, while lowering the diversity of the population by a factor

200. In the case of the crowd dynamics model, in which N = 100, to an

increase of a factor 20 of the computational cost would have corresponded a

decrease in diversity of a factor 5. (Nevertheless is some situations the use

of homogeneous populations has some benefits due to an higher reliability

of the fitness test. For example, in the model on the emergence of commu-

nication and traffic rules, given the high dependence of the performance of

agents on initial conditions, each agent had to be tested 20 times to obtain

a reliable fitness. Using homogeneous populations we would have obtained,

with a single simulation, a very reliable test, and thus the computational cost
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of the two experiment would have been the same. Furthermore, the loss of

diversity would have been partially compensated by the higher reliability of

the fitness function. In the crowd dynamics model this effect was not present

because, even if also in that model agents have to be tested under different

conditions to obtain a reliable fitness function, these conditions regard the

nature of the environment, and thus no benefit comes from the use of homo-

geneous populations.).

The second reason is related to the nature and “spirit” of our work. Real bi-

ological environments (including crowds and urban areas) are not populated

by clones, and thus diversity can be the source of some of the most interest-

ing phenomena in these systems. For this reason we think that the use of

heterogeneous populations is at the same time more sound (at least for what

concerns the kind of problems that we want to solve) and more challenging

(for example, in the case of the evolution of communication, at least in our

model, one of the most interesting points was to study how and if a common

communication system could be developed between heterogeneous agents).

Criteria for evaluating the results

Obviously the use of heterogeneous populations for which a purely individual

fitness function cannot be defined presents some problems to a genetic algo-

rithm that performs the search of a better solution on the base of individual

fitness, and for this reason an efficient solution is more difficult to be found

than in the case in which homogeneous populations are used. Furthermore,

the results are more difficult to analyse. Since fitness can be properly de-

fined only in relation to populations, we always used three criteria to test

the agents evolved by our GA. The first criterion consisted in analysing the

results obtained by the best heterogeneous population during evolution (i.e.

the highest average fitness value obtained during the experiment). The sec-

ond criterion consisted in testing a population of clones, whose genes where

obtained performing an average over the corresponding gene positions in the

generation with the highest fitness. The third criterion consisted in testing

a population of clones of the individual agent with the higher fitness during

the experiment (in general the fitness of the best individual was lower, once

tested in a population of clones, than that of the average individual in the

best population, and thus sometimes these results, as in the case of the model

on emerging communication, are not shown).
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2.4.8 A remark about our terminology

A last remark regarding the terminology has to be done. As we said before,

to obtain a reliable fitness function agents in our models had to be tested

under different conditions. Since in each one of these “sub-test” our agents

had to “run” from their starting point to their goal, we call these tests effec-

tuated under different conditions runs. In each run all the agents are tested

together, and thus we can say that a generation (a complete test of all the

agents) is composed of “many runs”. This notation is quite different from

the standard one in GA, that, as we said before, uses the term run to refer

the succession of all the generations in a single repetition of the experiment.

(We will use in this case the term evolutionary process or just repetition of

the experiment). Notice also that we will often use the term generation to

refer to a complete test of the fitness of agents. Even if these tests repre-

sent the most computationally demanding part of our programs, actually a

generation consists of the test and the application of the genetic operators.
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Chapter 3

A gas of automata

3.1 Introduction

We propose the “gas of (von Neumann) automata” as a basic model for com-

plex systems formed by a large number of interacting individuals provided

with a sensory system, such as a crowd or a swarm [1]. By “automata”, in

this context, we mean a point-like particle in a 2 dimensional space whose

interaction properties are used to model in a very simplified way the inter-

actions of agents provided with a sensory and decision system. The purpose

of the model is not to build an accurate nor even a toy model of an actual

complex agent system, but just to create a bridge between physical systems,

that can be studied with the analytical methods of dynamical systems and

statistical mechanics, and systems constituted of agents with a more complex

perception and decision mechanisms that can be hardly studied with these

methods. To do that we modify a known physical system (a gas of Coulomb

particles) in order to describe an interaction based on perception, in particu-

lar sight. We thus assume that particles (automata) interact with the others

only when these fall in their “sight cone”, a condition that introduces a non

Newtonian effect (the third law of dynamics does not apply) and makes the

behaviour of the system quite different from that of usual physical particles.

We then assume, to introduce a very simplified “decision mechanism”, that

the interaction between the agents is purely repulsive or “misanthropic”, i.e.

intended to maximise the distance to other automata. In other words, we will

just assume that, when the automata see each other, they interact as usual

charged particles with the same charge sign and repel with central forces.

The structure of the model is very simple and cannot describe neither ac-
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tual perception (sight is simply introduced as a sharp on or off condition for

interaction) nor actual social interactions (that are more complex than pure

misanthropy), but these simplifications allow us to focus on the effect of non

Newtonian “perception like” interactions and to use the analytical methods

applied to physical particles.

3.2 The model

We consider a set of automata A1, . . . , AN moving in the plane. Each au-

tomaton is point-like and its dynamic state is specified by its phase space

coordinates xi = (xi, yi, vx i, vy i). The collective behaviour of the system is

determined by external forces and by the mutual interactions. We introduce

as an extremely naive representation of the interaction of two people a repul-

sive force which decreases with the distance and eventually vanishes beyond

a given range R. Two automata A1 and A2 behave as two charged particles if

they see each other. As a consequence in the asymmetric situations when A1

sees A2 but A2 does not see A1 the third principle of dynamics is manifestly

violated and the behaviour is substantially different with respect to a usual

system of interacting particles.

3.2.1 The sight cone

The forces F1 and F2 acting on the automata A1 and A2 are defined by

F1 = Fext(r1) +
r1 − r2

r12
f(r12) ϑ(C1) (3.1)

F2 = Fext(r2) +
r2 − r1

r12
f(r12) ϑ(C2) (3.2)

where C1 and C2 are defined by

C1 = v1 · (r2 − r1) − v1 r12 cos α C2 = v2 · (r1 − r2) − v2 r12 cos α (3.3)

By ϑ we have denoted the step function

ϑ(u) =

{

0 if u ≤ 0

1 if u > 0
(3.4)

and by v1, v2, r12 the norm of the vectors v1, v2, r1 − r2. Since the force is

repulsive we have f(r12) > 0. Letting φ1 be the angle between the vector v1
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Figure 3.1: Definition of cones. The non Newtonian effect is due to the fact

that A1 “sees” (interacts with) A2, but A2 does not “see” A1.

and the vector r2 − r1 pointing to particle 2 we have ϑ(C1) = 1 if φ1 < α,

see figure 3.1.

In case the automata have a finite sight (interaction) range, i.e. if the cone

of vision is given not only by the angle α, but also by a radius rv, the cone

conditions (3.3) are multiplied by a ϑ(rv − r12) factor

Crv

1 = C1ϑ(rv − r12) Crv

2 = C2ϑ(rv − r12) (3.5)

(we will assume rv = ∞, and thus apply conditions 3.3, any time that we

omit its value).

3.2.2 The two automata problem

We distinguish three cases to which correspond different dynamical proper-

ties.

I) The automata see each other: ϑ(C1) = ϑ(C2) = 1.

Supposing the forces are conservative the energy function is a first integral

and the total angular momentum is conserved.

HI =
v2

1

2
+

v2
2

2
+ V ext(r1) + V ext(r2) + V (r12) (3.6)
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II) The automata do not see each other: ϑ(C1) = ϑ(C2) = 0.

The energy function is different because the mutual interaction potential has

been switched off. The total angular momentum is still preserved.

HII =
v2

1

2
+

v2
2

2
+ V ext(r1) + V ext(r2) (3.7)

III) Automaton A1 sees A2 but A2 does not see A1: ϑ(C1) = 1 ϑ(C2) = 0.

In this case there is no longer a preserved energy function nor the angular

momentum is preserved. We notice that the power of the interaction force

Fint(r1−r2) acting on A1 is always negative if α < π/2, so that HII decreases,

since

dHII

dt
= Fint · v1 =

f(r12)

r12
(r1 − r2) · v1 < −f(r12)

r12
v1 r12 cos α < 0 (3.8)

IV) Automaton A2 sees A1 but A1 does not see A2: ϑ(C1) = 0 ϑ(C2) = 1.

This case is similar to the previous one, with non conservation laws and a

dissipative effect on HII .

We consider the equations of motion

dv1

dt
= F1

dv2

dt
= F2 (3.9)

where the forces F1, F2 are given by (3.1), (3.2). As for the usual two

body problem the analysis is more conveniently performed by introducing

the relative and centre of mass positions r, R/2 and velocities v, V/2

r = r1 − r2 R = r1 + r2 v =
dr

dt
V =

dR

dt
(3.10)

We shall consider two different types of external confining forces: linear

attracting or impulsive. In the first case the system moves in an harmonic

potential well and the advantage is that the forces are linear. The second

case corresponds to rigid boundaries where the reflection condition applies.

Even though in the absence of mutual interaction we have a free motion, the

potential of the unilateral forces does not split into the sum potential for the

relative motion and centre of mass coordinates as in the usual case.

Choosing Fext(r1) = −ω2 r1 and Fext(r2) = −ω2 r2 the equations for the

relative motion read

dr

dt
= v

dv

dt
= −ω2r +

r

r
f(r)

(

ϑ(C1) + ϑ(C2)
)

(3.11)
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The centre of mass equations read

dR

dt
= V

dV

dt
= −ω2R +

r

r
f(r)

(

ϑ(C1) − ϑ(C2)
)

(3.12)

The geometric picture of motion is simple. Phase space is split into four

regions by the manifolds C1 = 0 and C2 = 0. Each region in phase space

is labelled by sign(C1), sign(C2) and consequently according to the previous

classification we have

I = (+, +) II = (−,−) III = (+,−) IV = (−, +)

We notice that the relative angular momentum L = r × v is preserved and

that three different energy functions HI , HII , HIII are preserved in the re-

gions I, II and III, IV respectively. Taking into account the conservation

of the angular momentum norm L we can write

HI =
ṙ2

2
+ V eff

I (r) V eff
I (r) =

L2

2 r2
+ ω2 r2

2
+ 2V (r) (3.13)

HII =
ṙ2

2
+ V eff

II (r) V eff
II (r) =

L2

2 r2
+ ω2 r2

2
(3.14)

HIII =
ṙ2

2
+ V eff

III(r) V eff
III(r) =

L2

2 r2
+ ω2 r2

2
+ V (r) (3.15)

As a consequence we are back to one dimensions problems where the standard

analysis applies.

3.2.3 The geometry of switching

The non trivial aspect is the switch from one region to another since the

boundaries are manifolds defined in the space R
6 whose points are identified

by (r,v,V). The motion develops on the 5-dimensional manifold defined by

xvy − yvx = L for any given initial condition. Since the boundaries between

the regions are not defined in the radial phase space R
2 whose points are

identified by (r, ṙ), the picture is not geometrically intuitive even though

the overall mechanism is clear. The problem is solved stepwise by quadra-

tures. We determine r(t), ṙ(t) by a quadrature from HI(r, ṙ) = E and then

φ(t), φ̇(t) by another quadrature. The determination of R(t),V(t) follows by

two quadratures of (3.12) since r(t) is known. Starting from region I or II

the centre of mass motion is given by harmonic oscillations so that

V(t) = −ω R(0) sin(ωt) + V(0) cos(ωt) (3.16)

65



3.2 The model

(

Vr

Vφ

)

=

(

cos φ sin φ

− sin φ cos φ

) (

Vx

Vy

)

(3.17)

Starting from region III or IV the solution for V(t) is obtained by

V(t) = −ω R(0) sin(ωt) + V(0) ±
∫ t

0

cos (ω(t− τ)) f(r(τ))
r(τ)

r(τ)
dτ (3.18)

As consequence, evaluated at the value V takes at time t, the 5D manifold

becomes 3D, and the intersection with the (r, ṙ) plane gives a line. Thus at

any instant t we have in the (r, ṙ) plane two lines defining the four regions

(++, +−,−+,−−). When time varies these lines move: we denote (see

figure 3.2) by Γ1(t) and Γ2(t) the lines corresponding to C1 = 0 and C2 = 0

respectively. The point P (t), representative of the relative motion, moves

along its trajectory defined by the level line Γ of the corresponding energy

function. Denoting by Q1(t) and Q2(t) the intersections of Γ1(t) and Γ2(t)

with Γ, let us suppose that P (t) and Q1(t) move towards each other on Γ.

When they meet a change occurs from one region to another. The point

will start moving along another trajectory defined as the level line of the

corresponding energy functional until a new encounter with the intersection

of one of the two moving lines Γ1(t) and Γ2(t) occurs again. The process can

end when some sort of equilibrium point is reached. Since we are in the radial

space this will be a relative equilibrium. This asymptotic situation, which is

to be expected because in region II and III the overall energy is monotonically

decreasing when α is smaller that π/2, will in general correspond to a location

intermediate between the equilibria of the effective potentials V eff
I (r) and

V eff
II (r).

To be more explicit the cone conditions are given by

C1 = −r · (V(t) + v) − r ||V + v|| cosα (3.19)

C2 = −r · (V(t) − v) − r ||V − v|| cosα (3.20)

Recalling that the transverse component of v is rφ̇ = L/r, the equations of

the curves which split the radial phase plane into the four different regions

are

L2

r2
+ V 2

φ (t) ± 2
L

r
Vφ(t) = tan2 α

(

ṙ2 + V 2
r (t) ± 2Vr(t) ṙ

)

(3.21)

We notice that when α → π the cone condition is always satisfied (C1 > 0,

C2 > 0), whereas when α → 0 this condition is never satisfied. In the
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Figure 3.2: Radial phase space with a trajectory defined by the level lines of

the Hamiltonian HI supposing we start with initial conditions in the region

I. In blue and red we plot the (time varying) cone conditions.

intermediate case α = π/2 the cone condition takes a very simple form,

namely

C1 = −ṙ − Vr(t) C2 = −ṙ + Vr(t) (3.22)

As a consequence in this specific case we find that if Vr(t) > 0 then

Region I (+ +) ṙ < −Vr

Region IV (−+) −Vr < ṙ < Vr

Region II (−−) Vr < ṙ

If Vr < 0 we have instead

Region I (+ +) ṙ < Vr

Region III (+−) Vr < ṙ < −Vr

Region II (−−) −Vr < ṙ
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Even though the cone condition is very simple in this case the actual an-

alytical calculation is cumbersome because it requires integration (3.18) in

order to obtain V(t) and the determination of the time law φ = φ(t) in order

to compute its radial component by using (3.16).

In order to understand in a simple way the dynamical implications of the

cone condition we shall first consider a related but simpler problem, namely

a particle moving in a central repulsive field, active only when the force centre

falls within the cone of the particle.

3.3 The automaton in a central force field

We consider an automaton which moves in a central confining field and a

repulsive potential which acts only when the force centre falls within the cone

of the automaton. We choose the confining field to be linear corresponding

to the potential V ext(r) = 1
2
ω2r2 attractive field. It may also be replaced by

a circular repulsive boundary at r = R which corresponds to the limit of a

non linear confining field defined by the potential

V ext(r) = lim
m→∞

{

0 if r < R

(r − R)2m if r > R
=

{

0 if r < R

+∞ if r > R
(3.23)

The cone condition is defined by η < α where η is the angle between the

velocity, along which we choose the axis of the cone, and the vector −r

pointing from P to the origin.

−r · v = r v cos η η < α (3.24)

As a consequence the cone condition can be written as cos η > cos α, since

the angles φ and α are defined in the interval [0, π], so that equation (3.24)

becomes

−r · v > r v cos α (3.25)

Using polar coordinates r = r e
r

and v = ṙ er + rφ̇ eφ we have

−r ṙ > r (ṙ2 + r2φ̇2)1/2 cos α (3.26)

We distinguish two cases:

a) Small cone: 0 ≤ α < π/2

ṙ < 0 |vφ| ≡ r |φ̇| < |ṙ| tanα (3.27)
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This condition is well defined even when r = 0, a condition that is never

reached if the repulsive potential diverges at the origin as it is the case on

the Coulomb like potential V = −q2 log r.

b) Half plane cone: α = π/2.

The cone condition is simply ṙ < 0.

c) Large cone: α > π/2.

In this case cos α < 0 and the cone condition is always satisfied if ṙ < 0.

When ṙ > 0 we write equation (3.26) as ṙ < (ṙ2 + r2φ̇2)1/2 from which we

obtain

|vφ| ≡ r |φ̇| > ṙ tan(π − α) (3.28)

Since the forces are always central the angular momentum is preserved and

we define L = ||r × v|| = r2|φ̇| as its norm, observing that the sign of φ̇

is preserved in any orbit. As a consequence we can summarise the cone

conditions in the form

a) −r ṙ > L cotα b) −ṙ > 0 c) r ṙ < L cot(π − α)

Finally the cone condition can be expresses in a compact form

ϑ(C) C = −r ṙ − L cotα (3.29)

As a consequence the line separating the cone from the no-cone region is just

C = 0 r ṙ = −L cot α (3.30)

The equations of motion read

dr

dt
= v

dv

dt
= −ω2r − r

r

dV (r)

dr
ϑ(C) (3.31)

Taking into account the angular momentum conservation we introduce two

energy functions: HI(r, ṙ) which is preserved in the cone region C > 0 and

HII(r, ṙ) which is preserved in the no-cone region C ≤ 0

HI(r, ṙ) =
ṙ2

2
+ V eff

I (r) V eff
I (r) =

L2

2r2
+ ω2 r2

2
+ V (r) (3.32)

and

HII(r, ṙ) =
ṙ2

2
+ V eff

II (r) V eff
II (r) =

L2

2r2
+ ω2 r2

2
(3.33)

The geometric construction is rather simple: after drawing the hyperbola

separating the cone and no-cone regions and supposing we start in region
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3.3 The automaton in a central force field

II we draw an arch of the trajectory defined by HII(r, ṙ) = E0 where

E0 = HII(r0, ṙ0). Supposing that the trajectory intersects the hyperbola

at the point (r1, ṙ1), the orbit continues on the arc defined by HI(r, ṙ) = E1

where E1 = HI(r1, ṙ1). The first intersection (r2, ṙ2) of this new arc with

the hyperbola defines the transition to a new arc in the region II defined by

HII(r, ṙ) = E2 where E2 = HII(r2, ṙ2). The process usually ends on one orbit

of HI or HII (see figure 3.5).

In figures 3.3, 3.4 we show the plot in the radial and configuration space for

a given random choice of the initial conditions and different values of α. In

figure 3.5 the asymptotic orbits in configuration space are shown.

In this case we chose a Coulomb repulsive potential namely

V ext
I (r) =

L2

2r2
+

r2

2
− log r2 (3.34)

where L = x(0) ẏ(0) − y(0)ẋ(0).

To summarise we can say in a synthetic way that the 2D model is governed

by one conservation law, the angular momentum, and one alternating con-

servation law for the energy function. As a consequence we may resume the

motion by introducing the following energy H = HII + (HI − HII) ϑ(C)

H(r, ṙ) =
ṙ2

2
+

L2

2r2
+ ω2 r2

2
+ V (r) ϑ(−r ṙ − L cot α) (3.35)

where

L = r2φ̇ (3.36)

3.3.1 The stop condition for α = π/2

The simplest case to analyse is when α = π/2 since the cone condition

becomes ṙ < 0 and the change between regions I and II occurs at ṙ = 0

namely at the inversion points. It is not hard to see that in this case as soon

as the inversion point rn falls between the minimum rmin
I of V eff

I (r) and the

minimum rmin
II of V eff

II (r) the motion is arrested and thus this inversion point

becomes a stopping point. As a consequence the sequence of inversion points

is

r2 < . . . < r2n−2 < rmin
I < r2n < rmin

II < r2n−1 < . . . < r1 (3.37)

and the orbit is formed by the arcs r0 − r1 in region I, r1 − r2 in region II,

r2 − r3 in region I, and so on until r2n−1 − r2n in region II, with the point r2n
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Figure 3.3: Plot of the orbits in the radial phase space (r, ṙ) corresponding to

the initial conditions x(0) = 3.721, ẋ(0) = 2.221, y(0) = 2.496, ẏ(0) = 2.171

for different values of α. The potential is V = 1
2
r2 − log r2 ϑ(C).
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Figure 3.4: Plot of the orbits in the configuration space (x, y) corresponding

to the initial conditions x(0) = 3.721, ẋ(0) = 2.221, y(0) = 2.496, ẏ(0) =

2.171 for different values of α.
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Figure 3.5: Plot of the asymptotic orbits 150 ≤ t ≤ 200 in the configuration

space (x, y) (red) and the radial phase space (r, ṙ) (blue) corresponding to

the same initial conditions as for figures 3.3 and 3.4.
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Figure 3.6: Dynamics in the r coordinate for an automaton in 2D central

field, α = π/2. The automaton feels the red potential (V eff
I (r)) when ṙ < 0,

the blue (V eff
II (r)) one when ṙ > 0. At each inversion point there is a switch

with energy loss, until it reaches a point between the two minima where it

stops.

being the last point of the orbit, because this inversion point falls between

the two minima and is a stopping point. This can be easily seen by drawing

the corresponding orbits and taking into account that on any orbit we move

clockwise. The dynamics in the r coordinate is described in figure 3.6. (See

also the discussion about the stopping point in 1 dimension, section 3.4.1).

3.4 The 1D model

The 1D model is basically equivalent to the 2D model with central fields in

the α = π/2 case. The cone condition is given by ϑ(−xẋ) and the motion is

governed by two alternating energy functions HI in the cone region xẋ < 0

and HII in the no cone region. Using a compact notation we introduce the

function H = HII + (HI − HII) ϑ(−xẋ). More explicitly we have

H(x, ẋ) =
ẋ2

2
+ V ext(x) + V (x) ϑ(−xẋ) (3.38)

If the potentials are even functions of x we may consider only the phase space

defined in the half plane R+×R and we recover the correspondence with the
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2D case with α = π/2 by replacing V ext(x) with V ext(x) + L2/(2x2).

We shall consider a Coulomb-like repulsive potential V (x) = −q2 log |x| and

two types of confining forces corresponding to a harmonic potential and to

repulsive barriers.

V ext(x) =
ω2

2
x2 V ext(x) =

{

0 if |x| < R

+∞ if |x| > R
(3.39)

3.4.1 Harmonic potential

In the left frame of figure 3.7 we show the potentials VI(x) and VII(x) which

act when the cone condition is on and off respectively, for a confining har-

monic potential, choosing ω = 1, q2 = 2. Since the potentials are even we

refer to the x positive axis x ≥ 0

VI(x) =
1

2
x2 − 2 log x2 if ẋ < 0 (3.40)

VII(x) =
1

2
x2 if ẋ ≥ 0 (3.41)

In the right frame of figure 3.7 we show the phase space trajectories. Since

the minimum of VII(x) is at x = 0 and the minimum of VI(x) is at x = 2

when the particle moving towards the origin reaches its inversion point x1 it

stops because this is at the left of the minimum of VI(x) and on the right of

the minimum of VII(x). This can be proved in different ways: as soon as the

particle reaches the inversion point x1 of VI(x) at t = t̄ then the potential

is switched at VII(x). Since the force due to this potential is attractive the

particle should start moving towards the origin with ẋ < 0. But this causes

the immediate switch to the potential VI(x) and so on. The final effect is that

the inversion point becomes a stopping point as previously claimed. (When

a numerical integration scheme is used the automaton has small excursions

to the left and right of x1 whose amplitude decreases with the integration

step. The presence of this inversion point is a source of instability for any

numerical scheme, since a time step that is sufficient to resolve the smooth

potential faces some problems when it reaches the stopping point. See also

the relevance of this problem in the numerical study of the two automata

problem, section 3.5.2).

Also the analysis of the phase space trajectories clearly explains the stopping

mechanism: when x1 is reached the motion along any arc of the curves defined
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Figure 3.7: 1D model. Left: plot of the potentials VI(x) (red) and VII(x)

(blue). The purple line corresponds to the energy level of the initial condi-

tions. When the intersection with the blue (VII(x)) potential is reached, the

motion switches to the red (VI(x)) potential and energy drops to the green

level. Then when the intersection at left between the green line and the red

curve is reached, the motion is arrested: this is the x1 stopping point. Right:

phase space orbits for different initial conditions. When the v = 0 axis is

crossed in the (−2, 2) interval, the motion is arrested.

by HI(x, ẋ) = VI(x1) and HII(x, ẋ) = VII(x1) terminates. One might say that

the automaton continuously looks on the right and on the left but it cannot

move.

3.4.2 The infinite potential well

A similar picture occurs when the oscillator potential is replaced by rigid

barriers (infinite potential well). In figure 3.8 we show the mechanism which

brings to the stopping point which occurs after that the particle is reflected

on the barriers and reaches its inversion point. At x = x1 the particle is

switched from the repulsive potential, that we choose to be V (x) = − log |x|,
to the free state and since its velocity is zero it will stand still forever. In

this case the turning back and forth while standing is avoided.
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Figure 3.8: Left: plot of the potential V (r) = − log r, the infinite barrier at

x = R and the inversion point x1 after reflection. Right: the corresponding

orbit in phase space.

It is easy to show that, denoting with (x0, v0) the initial position and velocity

of the automaton, and with R the position of the barrier, the stopping point

is given by

x1 =

{

R e−
v0

2

2 if v0 > 0

x0 e−
v0

2

2 if v0 < 0
(3.42)

3.4.3 Constant force

Another situation in which an analytic solution is possible is that in which

we consider an attractive harmonic potential and a repulsive constant force

with the cone condition

H =
v2

2
+

x2

2
− gx ϑ(−xẋ) (3.43)

In this case the automaton is allowed to reach x = 0. To study the potential

as symmetric, the y axis should be treated as a infinite barrier at which the

velocity is reversed and the potential switched. Otherwise if we decide to use

an asymmetric potential and the ẋ < 0 cone condition even for x < 0, we

obtain that when ẋ > 0 the particle feels the potential VI(x), while it feels

VII(x) when ẋ < 0 where

VI(x) =
x2

2
VII(x) =

(x − g)2

2
− g2

2
(3.44)
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Figure 3.9: Phase space curves for different values of v0 in case of a constant

force potential with g = 1.

Suppose that our initial condition is x(0) = 0, ẋ(0) = v0 > 0. Then the first

inversion point is x1 = v0. The nest one is x2 where V (x2) = V (x1) namely

x2 = 2g − x1. The sequence is
VI VII

x1 = v0 x2 = 2g − v0

x3 = v0 − 2g x4 = 4g − v0

. . . . . .

x2n+1 = v0 − 2ng x2n+2 = (2n + 2)g − v0

The motion is arrested when the condition that xk falls between the two

minima is verified. As a consequence 0 < xk < g implies the arrest and k is

given by

k =

[

v0

g

]

+ 1 (3.45)

where the square brackets denote the integer part. In figure 3.9 we show the

phase space curves for different values of v0 (g = 1). In case of a symmetric

potential (3.45) applies only for 0 < v0 < 2g.
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3.5 Numerical analysis of the two body prob-

lem

3.5.1 General behaviour for different α values

We have analysed numerically the two body problem for a repulsive potential

V (r12) = − log r2
12 (which corresponds, if α = π, to a 2D Coulomb potential

with q2 = 2) and a harmonic confining potential with ω = 1. We have chosen

a set of random initial conditions and integrated the system by using a second

order symplectic symmetric integrator and a fourth order Runge-Kutta. The

time step was typically chosen equal to ∆t = 0.01 but this was lowered to

∆t = 0.001 in some critical situation. We recall that ∆t = 0.1 is enough

to integrate the system when α = π with a relative variation of the first

integrals within 10−4 for t ≤ 103.

The orbits for the relative motion of the two automata resemble in some way

the behaviour of the single automaton moving in a cental force, perceived only

when the centre of forces falls in its cone (figures 3.3, 3.4). In Figure 3.10 we

show the asymptotic curves for the centre of mass and relative motion, which

result to be ellipses for any α < π. The simulations show that, in a small

neighbourhood of α = π/2, the centre of mass comes to rest asymptotically.

Nevertheless, this zone is numerically quite instable for a standard integrator

and should be investigated by using exact algorithms based on the use of the

fist integrals (or using a very short integration time step, as we do in the

next section).

3.5.2 Stable orbits for α = π/2

The analytical analysis performed for the 1D model and its equivalent 2D

model in the α = π/2 case can help us in the analysis of stable orbits for the

two body problem, at least for α = π/2.

Let us put ourselves in the centre of mass reference frame and suppose that

the two automata perform a circular orbit with velocities of equal norm and

opposite in direction, as in figure 3.11, and that the relative distance between

automata r (the diameter of the orbit) is such that RII < r < RI , where by

RI and RII we denote the minima of potentials (3.13), (3.14).

This configuration is stable because, in a way similar to what occurred for the

1D stopping point, if the automata switch to cone zone I they feel a repulsive
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Figure 3.10: Asymptotic orbits for the centre of mass (blue) and the relative

motion (red) taken in the time interval 150 ≤ t ≤ 200. The confining poten-

tial is harmonic with ω = 1 while the repulsive potential is − log r2
12. The

various frames refer to different values of α. The initial conditions randomly

chosen are x1(0) = 3.721, ẋ1(0) = 2.221, y1(0) = 2.496, ẏ1(0) = 2.171 for

particle 1 and x2(0) = 1.425, ẋ2(0) = −1.091, y2(0) = −0.2983, ẏ2(0) = 2.220

for particle 2.
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interaction and are pushed towards zone II, while the reverse happens in zone

II, in which they feel an attractive force and are pushed towards zone I. The

situation is somehow made more complex by the possible switches to zones

III and IV and probably for this reason actual stable radii rs are usually,

according to numerical simulations, next to the minimum RIII of potential

(3.15).

In figure 3.12 we show four (asymptotic) orbits for a two automata system

with a − log r2 interaction term and an harmonic confining potential (ω = 1).

The two orbits with larger radius were obtained for systems with L = 10 (one

with initial kinetic energy T0 = 10, the other with T0 = 1), while those with

smaller radius for systems with L = 1 (T0 = 10 and T0 = 1).

The minima of the potentials are given by

RI =
L

(

(4 + L2)1/2 − 2
)1/2

RII = L1/2 RIII =
L

(

(1 + L2)1/2 − 1
)1/2

(3.46)

We have performed a large number of simulations with different values of

L, initial kinetic energy T0 and different randomly chosen initial conditions

for the automata positions. The resulting values for the radius of the stable

orbit r̄ resulted to be always centred around RIII (the average value, once

fixed L and T0, resulted to be in a first approximation equal to RIII , the

difference being lower than the mean square deviation. The average value

of r̄ resulted thus to depend only on L). Using L = 7 we have RI ≈ 3.046,

RII ≈ 2.645, RIII ≈ 2.841. Figure 3.13 shows the occurrence of r̄ values

for 300 simulations with different initial conditions and L = 7, T0 = 10.

These results show that also in the two body problem, as it happened for the

stopping point in the one dimensional problem with a single automaton, the

value of the radius of the stable orbit r̄ depends in general from the initial

conditions, and the only constraint is given by the conservation of L, i.e.

RII ≤ r̄ ≤ RI . Nevertheless, for a very large number of initial conditions, we

have r̄ ≈ RIII (i.e., |r̄ − RIII | ≪ RI − RII).

While the radial asymptotic orbits always result in circular uniform motion,

the centre of mass orbit, in whose reference frame the simple orbits in figure

3.11 are described, are in general not so trivial (figure 3.14).

These results were obtained using ∆t = 10−5 and the overall integration

time was T = 103. If a longer (∆t ≥ 10−4) integration step was used, the

asymptotic orbits resulted to be unstable, since dissipation led to a slow but
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1

2

Figure 3.11: Top, left: a stable orbit for the two automata α = π/2 prob-

lem. Right: if the automata get closer switching to cone zone I (they see

each other) they feel a repulsive force, since their distance is lower than RI .

Bottom, left: when they switch to cone zone II the force is attractive, since

their distance is greater than RII . Right: this situation corresponds to cone

zone III (1 sees 2 but 2 does not see 1).
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Figure 3.12: Four asymptotic orbits (900 < t < 1000) for the α = π/2 2

automata system, radial motion. The red and black curves correspond to

L = 10, the green and blue ones to L = 1.
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Figure 3.13: Occurrence of r̄ over 300 simulations with different initial con-

ditions, T0 = 10, L = 7. The red line shows the value of RIII .
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Figure 3.14: An asymptotic orbit (900 < t < 1000) for the α = π/2 2

automata system, centre of mass motion. Initial condition corresponded to

L = 1 and kinetic energy T0 = 10.

progressive decrease of the radius r̄ of the orbit, due to numerical instability.

Even if the chosen integration method (second order symplectic integrator)

would be apt to integrate a similar problem when using a smooth potential,

the “switching” nature of the automata potential gives rise to numerical

instabilities (see also the discussion about the difficulties of the numerical

integrators when the one dimensional system reaches the stopping point,

section 3.4.1). Nevertheless, since the integrator respects the conservation of

L, the condition RII ≤ r̄ ≤ RI is respected up to ∆t ≈ 10−1.

Figure 3.14 shows that also the complete loss of kinetic energy for the centre

of mass motion in the α = π/2 case, as shown in figure 3.10, where due to

numerical instability.

3.6 The N automata problem

The N = 2 problem is in some way unique since it is the only one that

presents dynamically stable asymptotic orbits, like those described in section

3.5.2, while in all the N ≥ 3 systems that we have numerically tested the

kinetic energy dropped quickly to zero, i.e. the system converged to a state

in which all the automata had velocity vi = 0. Figure 3.15 shows the time
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Figure 3.15: Time evolution of kinetic energy for a N = 2 (red line) and

N = 3 (black line) system.

evolution of the average kinetic energy T for a system with N = 2 and

N = 3 automata. While T oscillates around a stable equilibrium value T∞

for N = 2 (corresponding to the relative motion and centre of mass orbits in

figures 3.11, 3.12, 3.14), it quickly drops to zero for N = 3.

The equilibrium configuration for the N = 3 system corresponds, for any

initial condition, to a (roughly) equilateral triangle centred around the centre

of forces (figure 3.16), but this feature is unique and is not present for N ≥ 4

(see figure 3.21) since as the number of automata grows dissipation gets

stronger and the equilibrium state depends strongly on initial conditions and

does not show any ordered structure (as for the one automaton 1D system

the stopping condition is not unique but depends on initial conditions, as

also does the radius of stable orbits in the α = π/2 one and two automata

problems).

Due to this strong energy dissipation the N ≫ 1 automata system as we

formulated it does not show any interesting dynamics. Dissipation can be

attenuated choosing the right values of α and rv (the radius of view, as defined

in equation (3.5)) since conservative systems are obtained in the rv → 0, α →
0 and α → π limits (the first two cases correspond to non interacting particles

moving in the confining potential, while the latter to regular interacting

particles, or Coulomb oscillators in case the interaction potential is chosen
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3.6 The N automata problem

Figure 3.16: Equilibrium configuration for N = 3.

as −q2 log r) but this does not introduce substantial changes in the dynamics

of the system (figures 3.17, 3.18).

3.6.1 Memory

In order to have an equilibrium state with positive average kinetic energy

(or “temperature”) T =
(

∑

i
v2

i

2

)

/N , we have introduced a “memory mech-

anism”. The idea at the base of this mechanism is that an agent with some

kind of memory can retain for some time information about the position of

another agent even after that this one has exited its sensory system (fig-

ure 3.19). A very simple way to introduce this mechanism would be to let

the “observer” interact with the “observed” automaton for a time τ as if

it were located in the point of space in which it has left the cone of vision

(the observer just remembers the last point where it has seen the observed

automaton). In a more complex and computationally expensive formulation,

the “observer” would calculate an approximate trajectory for the “observed”

automaton, in order to predict its position for a time τ after that it has left

the cone of vision. In our model we use a more powerful and computationally

not expansive (even if highly unrealistic) formulation: we suppose that the

“observer” is able to calculate and thus to know precisely the position of

the “observed” automaton for a certain amount of time after that the latter
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Figure 3.17: Time evolution of average kinetic energy for N = 100 automata,

rv = ∞, for different values of α. Initial condition were obtained as described

in section 3.6.2.
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Figure 3.18: Time evolution of average kinetic energy for N = 100 automata,

α = π/2, for different values of rv. Initial condition were obtained as de-

scribed in section 3.6.2.
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has left the cone of vision and thus interacts with the observer for that time

interval τ .

Therefore we introduce the memory mechanism in the following way: au-

tomaton A will continue to interact with automaton B for a time τ after B

has left its cone of vision, at least until their distance will be inferior to the

radius of vision r < rv (i.e. memory acts only on the α part of cone con-

ditions (3.5), but not on the rv part. In this interpretation, while α stands

for a physical limit to the vision of the automaton, rv is to be interpreted

as a “zone of interest”: automaton A decides not to interact with B if their

distance is greater than rv).

In the τ → ∞ limit the conservative case is restored, at least after a tran-

sient phase (since not all the automata see each other at t = 0). Using finite

values of τ , we found that an interesting dynamics was restored, since for

high enough values of the memory time the system reached an equilibrium

state with T > 0 (or at least a value of T which remained almost constant

in the time scale that we investigated, see figure 3.20), while for very low

but positive τ > 0 values in the equilibrium configuration the automata had

velocities vi ≈ 0 (and thus T ≈ 0) but were distributed in a spatially ordered

structure (a “crystal”, see figure 3.21).

3.6.2 Numerical analysis of the N body problem

Initial Conditions

We have thus proceeded to explore the dependence on the control parameters

α, rv and τ of the equilibrium state of the system. In our numerical simu-

lations we have used N = 100 agents located in a 2D open space, confined

by an harmonic potential with ω = 1, and interacting with a 2D logarithmic

Coulomb potential −q2 log r.

In the α = π, rv = ∞ case the system corresponds to a system of 2D Coulomb

oscillators [2] and is described by the Hamiltonian function (the mass of the

particles has been fixed to m = 1)

H =
∑

i

p2
xi + p2

yi

2
+
∑

i

ω2x2
i + y2

i

2
− ξ

N

∑

i<j

log rij (3.47)

where, following the convention used in beam dynamics, we have defined

ξ = 2Nq2. In the N → ∞ limit of this equation the one particle phase space
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.

Figure 3.19: Three different mechanisms for memory. The red ball is the

“observer”, while the green ball is the “observed” automaton, whose tra-

jectory is given by the green line. A first memory mechanism consists in

“remembering” the observed automaton in the point where it exits the cone,

i.e. to interact for time τ with the automaton as if it were located on the

violet ball. A second mechanisms consists in remembering also its velocity,

and thus extrapolate its position as the blue (straight) line. A third method,

the one we used, to let the observer interact with the observed automaton

located in its actual position. Continuous lines represent the part of orbits

which is remembered (for a time interval τ). If τ is very high, the interaction

continues until the distance between automata is r < rv.
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Figure 3.20: Time evolution of the “temperature” T of a system with N =

100 automata, rv = 1, α = 0.1, for different values of τ . Dissipation decreases

as τ grows and for high enough values of τ the system reaches an equilibrium

state after a transient.

Figure 3.21: Equilibrium configurations for N = 4, α = π/2, rv = ∞.

Left: equilibrium configuration for automata without memory, τ = 0. Right:

spatially organised configuration obtained using τ = 0.01, in which all the

automata have (roughly) the same distance from their first neighbours.
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distribution ρ(x, y, px, py) is governed by the Liouville equation

∂ρ

∂t
+ [H1, ρ] = 0 (3.48)

where H1 is the one particle Hamiltonian whose interaction potential is

V (x, y) = −
∫

ρs(x
′, y′) log[(x − x′)2 + (y − y′)2]1/2dx′dy′ (3.49)

that satisfies the Poisson equation

∆V = −4πρs(x, y) (3.50)

where

ρs(x, y) =

∫

ρ(x, y, px, py)dpxdpy (3.51)

A self consistent solution of these equations is the KV distribution

ρ(x, y, px, py) = C−1δ(ω2(x2 + y2) + vx
2 + vy

2 − ω2R2) (3.52)

where R is the radius of the self consistent charge distribution, while ω gives

the frequency of oscillations of particles in the charge distribution, and is

given by

ω2 = ω2 − ξ

R2
(3.53)

In our simulations for the N automata problem, we used equation (3.52) as a

probability distribution for our initial conditions, for any value of the control

parameters, using R = 1.84, ξ = 2. The overall integration time has been

chosen as 10 periods of Coulomb oscillators in the self consistent charge distri-

bution, as given by (3.53), and the integration time step as ∆t = 10−3 using

a second order symplectic integration method, which allowed, for Coulomb

oscillators, a energy variation of order 10−3 in the studied time scale. Obvi-

ously the initial conditions correspond to a self consistent charge distribution

for the Coulomb oscillators (at least in the N → ∞ limit, i.e. the distribu-

tion is quite stable if N ≫ 1) but neither for the non conservative automata

systems nor for the α = 0 non interacting system (see for example figure 3.18,

where the kinetic energy oscillates strongly and to higher values for α = 0

while it is almost constant for α = π).

We studied the behaviour of the system in the 0 ≤ α ≤ π, 0 < rv < 4 and

0 < τ < 20 range. The maximum chosen value of rv is larger than the di-

ameter of the charge distribution, while the maximum τ value is more than
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twice the period of oscillation of particles, and thus this range of parameters

should allow us to describe any feature of the behaviour of the system. The

α range has been divided in 10 regular intervals, while the rv and τ ones

in 30 intervals, for an overall number of more than 8 · 103 simulation with

different values of the parameters.

Temperature

We define the equilibrium temperature T eq of our system as the average (over

time) of the average (over the number of automata) kinetic energy

T eq =

∑

i
vi

2

2

N
(3.54)

where the time average is performed over the second half of the integration

time, in order to avoid the contribution of the transient. (See figure 3.20.

Actually not all the simulations reached such a clear equilibrium state within

the chosen integration time and for those values the obtained “equilibrium

value” has just an indicative significance).

The results are shown in figure 3.22. For any value of α, the highest T eq value

is reached when rv = 0, i.e. for conservative non interacting particles (the

red vertical line at left in each figure), while the lowest values are obtained

for τ = 0, i.e. for automata without memory whose kinetic energy drops to

zero (deep violet bottom lines).

As a general rule we can say that T eq, while keeping the other parameters

fixed, grows with τ , decreases as rv grows and has a minimum for α = π/2.

The reason of these rules can be easily explained. We know from the dis-

cussion in the previous sections, and in particular from equation 3.8, that

non Newtonian interactions are dissipative since their direction is (always if

α ≤ π/2 and in prevalence if π/2 < α < π) opposite to the direction of the

motion and thus have negative power. Introducing a memory effect we allow

the automata to restore at least some part of the “positive power” interac-

tions, and thus obtain an increase of energy. As we said before, when τ is

high enough, the system behaves exactly as a conservative one (at least after

a transient).

Also the decrease of T eq for growing values of rv is due to the negative power

of interaction, since increasing the radius of view increases the range of in-

teraction and thus dissipation. A particular case of this rule is obtained for
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Figure 3.22: Dependence of the equilibrium value of the temperature T eq on

α, varying from 0.1 (top left) to 0.9 (bottom right); rv (x axis) and τ (y axis).

Red corresponds to higher values, violet to lower ones, as indicated on the

colour bars.
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Figure 3.23: Time evolution of the “temperature” T of a system with N =

100 automata, rv = 2, α = 0.1, for different values of τ . Inside a given τ

range the system reaches an higher equilibrium value.

high values of τ and α (top of the α = 0.9 π graph in figure 3.22): for these

values the system behaves as a conservative one, and as rv grows a larger

part of the energy is stored in potential energy, and thus kinetic energy (T eq)

decreases.

As we have already said, in the α → π and α → 0 limits we obtain conser-

vative systems, while for α = π/2 all and only the interactions with negative

power are present and thus dissipation is maximised, which explains the third

law.

Nevertheless a few exceptions to these laws are found, in particular for low

values of α. For example, when α = 0.1 π, we can see an “island” of high

temperature in the 2 < τ < 6 range (figure 3.22, top-left), a temperature

that decreases for higher τ values. An analysis of the dynamics of the sys-

tem for these values of the parameters shows that, after a transient phase in

which the behaviour is the same for all the τ values, for some values of α the

system regains part of the energy it had lost (figure 3.23).

A possible explanation of this energy gain can be obtained on the base of

figure 3.24. Let us consider an automaton moving in a central field (i.e., we

suppose for the sake of simplicity that the other automaton it sees is not

moving). The red circle in the figure represents rv, the radius of view or
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Figure 3.24: Energy gain mechanism for an automaton with low α and high

τ .

range of interaction of the automaton. When the orbit of the automaton

crosses the red circle it cannot see the centre of forces (red ball) because,

due to the low α value, it does not fall into its cone of vision; but as soon

as it sees the centre of forces, if τ is high enough, it will continue to interact

until it exits the red circle. The violet curve in the figure stands for the

portion of the automaton orbit in which it interacts with the centre of forces,

and shows that the direction of the interaction is prevalently directed as the

motion, and thus leads to an increase of kinetic energy. Nevertheless, if τ

assumes an even higher value, the system behaves as a conservative one, and

this process does not apply. Since this mechanism is based on memory, it

occurs with some delay and is not present in the transient phase, in which

all the systems behave in the same way.

Crystals

Coulomb systems are known [3] to assume crystal configurations when frozen

to very low temperature T ≈ 0. In our system, which is equivalent to

Coulomb oscillators when α = π, freezing occurs spontaneously as a re-

sult of dissipation for 0 < α < π. Moreover, we have verified that the T ≈ 0

configuration corresponds to an uniform configuration in case of a few body
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Figure 3.25: Equilibrium configuration for N = 100, rv = ∞, α = π/2 and

τ = 0.1.

system (figures 3.16, 3.21). We thus studied the possible occurrence of reg-

ular structures as equilibrium configuration for N ≫ 1 automata systems.

In figure 3.25 we show one of these T eq ≈ 0 “crystal like” configurations,

obtained using N = 100, rv = ∞, α = π/2 and τ = 0.01. In these structures

automata are uniformly distributed inside a disc of given radius, and thus,

in order to study the occurrence of these crystals, we studied a parameter,

defined as

γ =
∆df

< df >
(3.55)

where < df > is the mean value of the distance to first neighbours, while

∆df is its mean square deviation, which denotes in some way the “disorder”

of the distribution, since its value is next to 1 for a random distribution, but

drops to zero for uniform distributions as that of figure 3.25. The equilibrium

values are shown in figure 3.26, which shows that crystals (violet lines at the

bottom of graphs) arise in case of low but strictly positive memory τ > 0

(as we have seen before, in the τ = 0 case dissipation is too fast to form

ordered structures, while for high enough τ the system does not freeze).

Furthermore, in order to have an order structure, automata have to interact

properly between them, and thus crystal do not arise for low values of α and

rv.
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Figure 3.26: Dependence of the equilibrium value of the “disorder” parameter

γ (defined in equation 3.55) on α, varying from 0.1 (top left) to 0.9 (bottom

right); rv (x axis) and τ (y axis). Red corresponds to higher values, violet to

lower ones, as indicated on the colour bars.
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3.7 Heterogeneous population of automata with different “social
spheres”

Figure 3.27: The force field around an automaton moving with the velocity

denoted by the blue arrow. Outside its social radius rs the force is attractive

(violet zone), while inside the disc of radius rs the force is null outside the

cone of vision, and repulsive inside it.

3.7 Heterogeneous population of automata with

different “social spheres”

We have used the results of this model in order to develop a slightly more

complex system in which the interaction between automata was attractive

if their distance r was higher than a given “social radius” rs, while it was

repulsive when r < rs. The “force field” of the agent, as explained in figure

3.27, is given by equation

F12 = q2 r12

r2

(

1 − r12

rs

)

C (3.56)

where the cone condition C is defined by

C =

{

1 if r12 > rs

ϑ (v1 · (r2 − r1) − v1 r12 cos α) if r12 ≤ rs
(3.57)

The force can be interpreted in this way: automaton A1 is attracted to

automaton A2 by a “vision independent” attractive force that goes to zero

as soon as r12 ≤ rs
1, where rs

1 is the “social radius” of A1, which can be
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different from rs
2. Then, if its distance from A2 gets lower than rs

2, A1 ap-

plies a repulsive force in order to restore its “social distance”, but only if it

sees A2. Since the α dependence of the cone condition is present only for

the repulsive part of the force, the system is once again dissipative and, in

absence of memory, for 0 < α < π its kinetic energy drops to T eq = 0.

In our simulations we split the agents in two groups with rs
2 > rs

1. In this

way we have introduced another non Newtonian effect, besides that due to

the cone condition, since now the intensity and direction of F12 and F21 can

be different even when both cone conditions are switched on.

Figure 3.28 shows the equilibrium configuration for a system of 50 automata

with rs
1 = 2 and 50 automata with rs

2 = 1.5. The values of the other pa-

rameters were α = π/2 and τ = 0.1.

Due to the low τ > 0 value, the kinetic energy of the system goes quickly

to zero, but the presence of a memory effect allows the system to reach a

minimum energy ordered configuration. Nevertheless, this configuration is

not the regular lattice in figure 3.25, since the interaction between automata

is asymmetric, but a configuration like that of figure 3.28 (right) in which the

two groups are clearly separated, those with the higher rs value being more

farther from the centre of mass and at a larger distance one from the other

(no confining force was applied for this system since the interaction potential

is attractive for large distances). The stable configuration was reached in a

quite large time, since the system remained for a long period in metastable

states as that in the left panel of figure 3.28.

Similar configurations can be obtained also for completely heterogeneous au-

tomata, in which social radii are Gaussian distributed (figure 3.29).

3.8 Conclusions

We have introduced a simple model in which the interaction between phys-

ical particles was modified in order to introduce non Newtonian effects that

could simulate perception. We have performed an analytical and numerical

study of the one and two body problem, studying in particular the effect of

dissipation, which leads to a stopping condition (in one dimensional models)

or to particular stable orbits that can be analysed or even predicted with the

help of analytical methods.

We then performed a numerical study of the N body system, after having in-
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Figure 3.28: Metastable (left) and stable (right) T eq ≈ 0 configurations for

automata split in two groups with different “social radii” rs. Green automata

have rs = 2, red ones rs = 1.5.

Figure 3.29: Stable T eq ≈ 0 configuration for heterogeneous automata whose

social radii are given by a Gaussian distribution (pure green correspond to

the highest values, pure red to the lowest ones).
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troduced a memory effect which contrasts dissipation, studying in particular

the kinetic energy (temperature) of the equilibrium system and the eventual

formation of ordered structures at zero temperature.

We finally performed a preliminary study of a more complex model, in which

heterogeneity and attractive social forces have been introduced.
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Chapter 4

An agent model inspired by

clonal expansion

4.1 Introduction

In this work we try to create a bridge between two different ways to study

clonal expansion in the immune system (IS). One kind of approach consists

in studying concentrations of different species of cells, whose behaviour and

interaction is modelled through a system of differential equation (DE), the

other one in studying microscopic interactions between single cells, that are

usually modelled as cellular automata (CA).

It is our opinion that in immunology as in other fields of research the lan-

guages of microscopic (CA or agent) and macroscopic (DE) models could be

integrated, in order both to use the analytical results to explain and partially

predict the behaviour of the simulated models, and to utilise simulations to

enrich with microscopic details the assumptions of macroscopic models.

In this paper we present a simplified model of clonal expansion, in which

we stress our attention on spatial interaction between T cells and antigen

presenting cells (APC), while omitting the details of the T cell-antigen and

APC-antigen interactions, and ignoring many other important agents of the

IS. The aim of this paper is thus not to present a new model for clonal ex-

pansion, but to start a project of work in which two different ways to model

it could be combined.
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4.2 The immune system

4.2 The immune system

Hofmeyer [1] provides a short introduction to the immune system for re-

searchers without background in immunology, but that are interested in

studying the immune system as a distributed autonomous system (i.e. as

the kind of system that is studied in this thesis). In our brief introduction to

the main features of this system we will mainly follow his description, which

we have completed with the help of [2], which is a short introduction to the

immune system for undergraduate students in immunology.

4.2.1 Structure of the immune system

The immune system is one of the most deeply studied biological distributed

autonomous systems, due to its cardinal biological and medical importance,

and a great deal of information is available concerning its operation, from

sub-molecular events to cellular population evolution [3].

We could say that the purpose of the immune system is to protect the body

from threats posed by pathogens, a term by which we mean a large class of

microorganisms (parasites, viruses, bacteria, fungi etc.) that can cause some

kind of harm (diseases) to the body. This is a very complex task, which

is mainly composed of two linked but different problems: detection, i.e. to

recognise the danger (and, equally important, recognise what is not a dan-

ger), and elimination, i.e. the removal of this danger.

The immune system is constituted of different defence layers of growing com-

plexity. The first and most elementary is the skin, while the second barrier is

physiological, since the body environment (pH, temperature) provides inap-

propriate living conditions for many foreign organisms. Once pathogens fit

to survive in the inner body environment enter the organism, they have to

face the innate and adaptive immune systems, that are in charge of detection

and elimination tasks.

4.2.2 The innate immune system

The innate immune system is called in this way both because it is present

in all animals and because it remains the same through time and does not

change or adapt to specific pathogens. It consists primarily of a chemical re-

sponse system, the complement system, and of the phagocytic system, which

involves cells as macrophages, whose task is to detect and engulf extracellular
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molecules and materials, cleaning the system of both debris and pathogens.

The molecules of the complement system can eliminate bacteria in two ways,

directly through lysis (i.e. rupturing the membrane of the bacterium) or

indirectly through opsonisation (i.e. binding to the bacterium surface and

signalling it as a harmful pathogen to macrophages). Self cells (the cells that

are part of the organism, and should not be attacked by the immune system)

have proteins on their surface that prevent complement from binding.

As said before, macrophages are able to engulf and thus eliminate extracellu-

lar materials, have receptors for some bacteria and in particular for comple-

ment, and thus recognise as harmful and eliminate opsonised bacteria. Once

activated, they secrete cytokines, whose effect is to create an inflammatory

response and to increase the body temperature, in order to recruit a large

number of immune system cells and to provide an appropriate environment

for the “battle”.

4.2.3 The adaptive immune system

The adaptive immune system is able to learn to recognise specific kinds of

pathogens, and also to retain a memory of them for future response. Learn-

ing occurs during the so called primary response, i.e. during a slow response

to a kind of pathogen not encountered before. After that the adaptive system

has learnt to recognise the pathogen, the secondary response is so quick and

efficient that often there are no medical indicators of reinfection.

The most important components of the adaptive system are lymphocytes, or

white blood cells, that have a role in both pathogen detection and elimina-

tion.

4.2.4 Recognition of a specific pathogen

Each lymphocyte has on the order of 105 identical receptors on its sur-

face. These receptors have a complex three dimensional structure which

can bind more or less easily to epitopes, which are locations on the surface

of a pathogen or protein fragment, a peptide (the strength of this bond is

called the affinity between the receptor and the epitope). If the number of

bound receptors exceeds a threshold, it means that the lymphocyte is in an

environment in which a large number of pathogens to which it has an high

affinity is present, and thus the lymphocyte is activated. This activation
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threshold could be lower in a certain class of memory cells that are responsi-

ble of secondary responses. The structure of all the receptors is the same on a

given cell, but these receptors can recognise a small set of similar structures,

and thus there is no need to have a different lymphocyte for every possible

epitope pattern. Nevertheless one of the most serious problems that the im-

mune system has to face is to provide a repertoire of lymphocytes diverse

enough to recognise any pathogen, since according to estimates the human

body manufactures a number of proteins ten orders of magnitude lower than

that of the foreign patterns to be recognised. The problem is partially solved

through a pseudo-random DNA recombination, and partially through dy-

namic protection, i.e a continual turnover of lymphocytes.

The effectiveness of the adaptive immune system is based not only on the

large number of receptors, but also on its ability to adapt to specific kinds

of epitopes, and to remember these adaptations for speeding up future re-

sponses. In these tasks a core role is performed by a class of lymphocytes

called B cells. When a B cell is activated, it migrates to a lymph node (one

of a few hundreds glands distributed throughout the body) where it produces

many short lived clones through cell division. In this process of cloning, B

cells undergo a form of mutation called somatic hyper-mutation, i.e. the mu-

tation rate is nine orders of magnitude higher than common, in order to have

an high chance to obtain different receptor structures. In the lymph nodes,

new B cells have the opportunity to bind to pathogenic epitopes which are

collected from the site of infection and presented to B cells on the surface of

cells called follicular dendritic cells. If the receptors of these new B cells do

not bind to pathogens, the cells die after a short time, while if they do they

leave the node and differentiate into plasma or memory B cells.

Plasma B cells secrete a soluble form of their receptors, called antibodies,

which have a double role: they opsonise pathogens (i.e. they signal them to

macrophages, as the complement does, but in this case the response is highly

specific to a given kind of pathogen), and they neutralise them preventing

them from binding to self cells. Since the pathogens cause the production

of antibodies by plasma B cells, they are often called antigens (antibody-

generating, a term that actually refers to anything that causes antibody

production in the organism). Memory B cells are those responsible of the

secondary response: since they have an higher than average affinity to the

pathogen epitopes, they provide a quick response to a second infection caused

by the same pathogen, or even by a pathogen whose structure is similar to
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that of the one that caused the primary response (this phenomenon is at

the base of immunisation, a process in which a subject is exposed to a be-

nign form of a pathogen in order to be lately able to develop an immune

response also to the virulent form). Actual understanding of immune mem-

ory is limited by the the fact that B cells live only a few days, and thus

also memory cells should be quickly removed from the organism. A possible

explanation assumes that activated B cells are long lived, and survive for up

to the lifetime of the organism, while another one assumes that traces of the

non-self proteins that caused the infection are retained in the organism for

many years, causing the permanence of the corresponding memory cells.

4.2.5 Tolerance of self

The other big issue the immune system has to deal with is to avoid autoim-

munity, i.e. to attack the cells of its own body (or to be tolerant of the self).

T-helper or Th cells are responsible of tolerance. They are called “helper”

since they help B cells in recognising the self from the non-self. The name

T cells derives from an organ called thymus, in which they mature. In this

organ they are exposed to most self epitopes and, through a process called

clonal deletion or negative selection, they are eliminated if bind to self epi-

topes. Also B cells undergo a similar process in the bone marrow (from which

the “B” in their name), but the hyper-mutation they are subjected to in the

lymph nodes could produce also auto-reactive clones.

This peripheral (or distributed, as opposed to the central one in the bone

marrow and thymus) tolerisation of B cells is performed in the following way.

To be activated, B cells need co-stimulation by two signals: one (signal I),

as already described, when an high enough number of receptors binds to

the epitopes, and a second (signal II) is provided by Th cells. In a process

known as antigen processing, B cells engulf pathogenic peptides and then ex-

pose them on their surface, using molecules of the major histocompatibility

complex (MHC). The T-cell receptors binds to the MHC-peptide complex on

the B cell surface. If binding is successful, the B cell is activated, while if it

is unsuccessful the B cell is caused to die.
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4.2.6 Antigen presentation

B cells are not the only cells that are able to engulf endogenous peptides and

then present them on their MHC molecules. This characteristic is shared

with other cells in the immune system (macrophages and dendritic cells)

which are called for this reason antigen presenting cells (APC).

The role of dendritic cells is to activate virgin T cells. Usually, when non

activated, dendritic cells spend their time filtering great amounts of extracel-

lular fluids, but when they are located in an infected area (i.e. when receptors

on their surface recognise molecules characteristic of microbial invaders, or

cytokines that are released during an infection) they become activated and

migrate to the nearest lymph node. Here, showing on their MHC molecules

the peptides they picked up in the battle zone, they can activate virgin T cells.

In the lymph node dendritic and T cells are engaged in a so called “dance”.

The surfaces of these cells are kept together by very weak and non specific

binding forces, that allow them to be bound for very short times. Neverthe-

less, if the T cell receptors find on the APC surface matching antigen-MHC

compounds, the bond gets stronger and T cells can be activated. After acti-

vation is complete, the dendritic and the T cell part; while the first goes to

activate other cells, the second one starts its proliferation process, doubling

its number every six hours. After a few days of proliferation (during which

some of the members of the clone could interact newly with the APC and

thus proliferate even more) T cells are released and free to perform their two

main tasks. The first one, as we have already described, is to “help” or con-

trol B cells, while the second one is to release the right kind of cytokines in

the battle (infected) sites, cytokines that, as we said before, will regulate the

battle against the pathogen (notice, as we said before, that dendritic cells

need cytokines in order to be activated, migrate to lymph nodes and activate

T cells. Then T cells release cytokines that can direct the response and thus

activate macrophages, dendritic cells, B cells, which later can act as APC

cells and activate helper T cells. . . this complex network of co-stimulation is

one of the main features of the immune systems that allows its efficiency and

correct work).

4.2.7 Detection of intracellular pathogens

We have said that cells as dendritic cells, macrophages and B cells can ex-

pose endogenous peptides on their surface, on MHC molecules. These MHC
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molecules, that are present only on immune system cells, are called class

II MHC molecules. Nevertheless, a different kind of MHC molecule, called

class I MHC, is present on every kind of cell, and these molecules are used

to expose on the surface fragments of proteins (peptides) from within the

cell. The class I MHC-peptide complex are recognised by the receptors of

another class of lymphocytes, the cytotoxic or killer T cells (Tk cells). This

name is due to the fact that if the Tk cell recognises the peptide of an harm-

ful pathogen and thus is activated, it kills the infested cell. Tk cells are the

most effective weapons of the immune system against intracellular infections.

Limits of our model

In this short introduction we have presented only a part of the complexity of

the immune system, enumerating its main actors and giving a short sketch

of some of their basics interactions. Nevertheless, even this short exposition

shows clearly that in the following model we will describe only to little extent

and a great approximation the components and interaction of the immune

system, and thus that our model has not a predictive or descriptive power,

but is just a preliminary work intended to study some of the spatial effects

of the APC-T cell interaction, and, as already said, to create a bridge be-

tween macroscopic (based on differential equations) and microscopic (based

on agents or cellular automata) models.

4.3 Description of the model

4.3.1 Differential equations model

One of the major open question in immunology is the problem of understand-

ing clonal expansion, i.e. how T cells, that belong to a very large repertoire,

are selected in response to a specific treat (the presence of an antigen) and

proliferate to form a large clone, and how this proliferation is regulated.

De Boer and Perelson presented a model that justifies the maintenance of

diversity in the periphery through the concept of competitive exclusion [4].

This competition between T cells (between the different clones and inside the

same clone) arises as competition for the peptides presented on the surface

of APC. In fact these peptides can be freely available on the surface of an

APC, or be captured in the receptor of a T cell bound to an APC; in the
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second occurrence they are no longer available to other T cells.

De Boer and Perelson imposed a quasi-steady-state condition for the num-

ber of complexes given the number of peptides, and obtained a system of

differential equations for the different clone sizes, which corresponds to the

well-known principle of competitive exclusion in biology (two different species

cannot co-exist in equilibrium if they use just the same resource) and intro-

duced also a capacity (equilibrium size for a single clone).

In their model the number of peptides is considered to be proportional to

antigen concentration, which is assumed as fixed. This assumption is well

justified in case of self antigens, while for pathogens they assumed this fixed

concentration to be the equilibrium value of a prey equation for the antigens,

in which T cells had the role of predators. Using these assumptions, immune

memory is attained through the persistence of antigen at a controlled concen-

tration. (See [5] and appendix 4.6 for a treatment of prey-predator equations,

and [6] for an application to the immune system).

This is one of the many models that describe clonal expansion using a system

of differential equations (see for example [7] for a short review) and has been

further on studied and improved by the authors [8]. Our interest in the first

version of the model is due to its simplicity and to the fact that its basic as-

sumptions concern the microscopic spatial interactions between T cells and

APC, averaged in the quasi-steady-state condition.

Since there are many experimental results concerning how these interactions

happen [9, 10, 11, 12], we think that this model is well apt to a microscopic

formulation, in which the different individual cells are represented as agents

in a computer simulation .

These are the differential equations that describe our version of the De Boer-

Perelson model

Ȧi = aAi − bAi
2 −

∑

j

cijAiTj (4.1)

Ṗi = dAi − rPi (4.2)

ṄAPC = 0 (4.3)

ṪN
i = 2gTi

A − hTi
N −

∑

j

kijTi
NTj − lf(

∑

j

mijPj)FTi
N + oCi + s (4.4)

ṪA
i = qCi − gTi

A (4.5)

ĊA
i = −qCi − oCi + lf(

∑

j

mijPj)FTi
N (4.6)
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Ḟ +
∑

i

Ċi = 0 (4.7)

Equation (4.1) tells us that the nA species of antigens Ai follow a logistic prey

equation in which the nT T cell clones Ti have the role of predators. Equa-

tion (4.2) gives the average number of peptides of species i, Pi, (we assume

for simplicity a one to one correspondence between peptides and antigens)

presented on a site of an APC cell. This number grows with the number of

antigens and follows a decay rule (peptides remain on the APC’s surface for

a finite average time). With equation (4.3) we fix the number of APC cells.

Equations (4.4) and (4.5) concern the number of non-activated Ti
N and ac-

tivated Ti
A T cells (Ti ≡ Ti

N + Ti
A). Non activated T cells are produced by

duplication of activated ones with a rate g and die by apoptosis with rate

h. The probability rate s represents an external source (thymus). F is the

total number of free sites on the APC’s surface, to which T cells can bind

with a probability rate that depends on a function f of the probability to

find a given species of peptides multiplied by its affinity mij to it (l is the

probability of binding in case of maximum affinity). We call Ci a complex

formed by a T cell Ti and a site of an APC. These complexes can unbind

with probability rate q in case of successful activation (equation (4.5)) and

with probability rate o in case of unsuccessful activation (equation 4.4). The

terms kij in equation (4.4) rule the fratricide competition between the T cells

(see for example [13]).

The number of complexes and free sites is governed by equations (4.6), (4.7)

coherently with the assumptions of equations (4.4), (4.5) and with the re-

quest that their sum has to be fixed as the total number of sites (nsNAPC if

ns is the number of sites on a single cell).

4.3.2 Microscopic model

In the differential equations based model we tried to write explicitly an equa-

tion for each agent of the process, and we defined a probability rate for each

interaction between these agents, since we want these equations to be the

mean field version of a microscopic model. Given the high number of equa-

tions and parameters we won’t try an analytical treatment and we will rely

on numerical integration for their solution.

Our microscopic model is realised on two superposed 2D squared grids, one

on which antigens move and one for APC and T cells. The physical region
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corresponding to each layer will be the same (creating a correspondence be-

tween sites “located in the same physical space”) while the step of the grids

and thus the number of sites could be different.

All the cells move by random walk obeying an exclusion principle (no more

than a single cell on a given site of a layer), and the interaction between cells

can happen by superposition when they are located on different layers, or

by contact (i.e. if the are located on first neighbour sites) if they are on the

same layer. We call these events that allow an interaction between the cells

encounters (see also figure 4.1). An encounter between an antigen Ai and a

T cell Tj leads to the elimination of the antigen with probability pc
ij, while

an encounter between an antigen and an APC leads with probability pd to

the presentation of a peptide on the “surface” (i.e. on one of the four sides)

of the APC (in our convention we associate to the probabilistic rate x in the

continuous macroscopic model the probability px in the discrete microscopic

one). Encounters between a T cell Ti and an APC can form a complex, with

a probability pl multiplied by the affinity to the site f(
∑

j mijΠj) (a function

of the averaged affinity to the peptides Πi presented on the site, where Πi is

the number of peptides in species i present on the site). Encounters between

the antigens lead to an over-population due “logistic” elimination of the anti-

gen with probability pb, while those between T cells in clones i and j lead

to fratricide apoptosis with probability pk
ij. These fratricide terms are in a

certain sense ad hoc in our model (they are not present in the original for-

mulation by De Boer and Perelson, even if they are present in other models,

as in [13]), since we need them to avoid a filling of the grid. They should be

chosen in such a way that they are not relevant under normal conditions (i.e.

when the number of occupied sites is low with respect to the total number

of sites). All the other processes are encounter independent and can happen

with given probabilities at each time step (as for example T cell duplication

or antigen reproduction).

We can say that our model is devoted to the description of the biological

process described in 4.2.6, while all the processes regarding antigen removal

are just expressed by the rule (local, i.e. based on encounters) the more affine

T cells are present, the more the antigen is removed. It is quite clear that

this model is too simple to describe all the complex processes that concern

clonal expansion in the immune system. A more complete formulation should

use at least two different 2D grids to describe the site of infection and the

lymph-nodes (connected in some way to allow the displacement of T and
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Figure 4.1: Possible interactions between different agents in the model. Anti-

gens (small green squares) move on the red grid, while APC (blue squares)

and T cells (yellow squares) on the black one. At bottom-left we see an

encounter (overlapping) between a T cell and an antigen, that can lead to

antigen removal. At top-left we see an encounter between an APC and an

antigen, that can lead to the presentation of a peptide (green circle) on the

surface of the APC. Finally, at top-right we see an encounter between an

APC and a T cell, interacting on a “surface” that presents 3 peptides. This

encounter can lead to the formation of a compound and to activation of the

T cell, if the affinity of the T cell to the peptides is high enough.
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dendritic cells), while for a realistic description of immunological memory a

differentiation between naive and memory T cells is necessary.

4.3.3 Mean field equations

While in section 4.3.1 we have proposed a differential equations based model

for clonal expansion, in section 4.3.2 we have proposed a microscopic agent

model to describe the same dynamics. We now show how the equations in

section 4.3.1 can be obtained as mean field equations for the model in section

4.3.2.

While all the probability rates in a macroscopic model have to be chosen

on the base of macroscopic observations, in such a way that the behaviour

of the solutions will correspond to the behaviour of the biological species

under some given assumptions, the probabilities of the microscopic model,

according to the spirit of this work, should be given on the base of micro-

scopic observations, as reported for example in [9, 10, 11, 12]. The time

step step should be chosen smaller than the shorter characteristic time of the

processes involved, and all these characteristic times should be expressed as

probabilities. An average process would be necessary to describe 3 dimen-

sional cells with a complex shape as 2D squared objects, and probably also

minor changes on the geometry (allowing for example APC and T cells to

have different size) could be necessary. Nevertheless, given the preliminary

stage of this work and its general purposes, and considering also our limits in

the interpretation of experimental data given our scientific formation, we just

do very simple considerations that allow us to have some qualitative result,

without any claim to quantitative or predictive results.

We can obtain the mean field equations for the microscopic model in the

following way. Let us assume for example that the average time for anti-

gen duplication is one day. If we choose a time step ∆t of 15 minutes, the

probability for antigen duplication is fixed to pa = 0.01. Defining NA as the

number of sites of the antigen’s grid and assuming random distribution for all

the cells, the probability for an antigen to have an encounter with another

antigen on one of its 4 sides is A/NA, and thus the time evolution of the

number of antigens in absence of T cells is given by

A(t + ∆t) = A(t) + paA(t) − pbA(t)2/NA (4.8)
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The value of pb can be fixed given the wanted maximum density of antigens

(the capacity),

Amax/NA = pa/pb (4.9)

and in the continuous limit we obtain equation (4.1) through the identifica-

tions a = pa/∆t, b = pb/(NA∆t).

Proceeding in the same way the discrete version of equation (4.2) is, recalling

that Πi is the number of peptides of species i on a single side of an APC,

while Pi is the average number of peptides on sides
∑

APC

Πi(t + ∆t) =
∑

APC

Πi(t) + pdAi(t)NAPC/NT − pr
∑

APC

Πi(t) (4.10)

or, averaging over all the 4NAPC sides

Pi(t + ∆t) = Pi(t) + pdAi(t)/(4NT ) − prPi(t) (4.11)

where NT is the number of sites of the APC-T cell grid. The continuous

version of (4.11) is equation (4.2), through the identification d = pd/(4∆tNT ),

r = pr/∆t. Equation (4.2) has solution

Pi(t) = e−rt

[
∫

Ai(t
′)ert′d + const

]

(4.12)

that reduces to

Pi(t) =
Aid

r
+

[

Pi(0) − Aid

r

]

e−rt (4.13)

in case of constant Ai concentration. We use pd = 1 (the APC always recog-

nises the antigen) and pr = 0.02, corresponding to a permanence of the

peptide on the antigen surface for an average time of 12 hours.

We compare in figure 4.2 the numerical integration of equation (4.1) (for a

single species and in absence of T cells) with the corresponding results given

by the microscopic model, and in figure 4.3 we present the same comparison

for the analytical result of equation (4.13). (We have used for these simula-

tions NT = 9 ·104, NA = 3.6 ·105 and pb = 0.05 which corresponds, according

to equation (4.9), to a capacity of an antigen every 5 sites).

While there is an almost perfect correspondence between the curves in figure

4.3, there is a slight difference between those in figure 4.2. This effect is due

to the fact that while the behaviour described by equation (4.10) depends on

the interaction between cells located on different layers, and thus is not ac-

tually based on microscopic spatially constrained interactions, the behaviour
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Figure 4.2: Comparison between the free growth of the antigen number A(t)

as obtained from the microscopic model (black line) and the mean field equa-

tions (red line). The time unit is one day, as in all the figures to follow.

described by equation (4.8) relies on and influences the spatial distribution

of antigens. For this reason the mean field equation describes well the mi-

croscopic model in the initial configuration, when a uniform distribution is

imposed, and at the equilibrium, while the discrepancy is stronger during the

expansion.

The local effects are obviously stronger when we consider the spatial T-APC

interaction. Let us fix NAPC = 2 · 103 on the NT = 9 · 104 grid, use the

sigmoid function

f(
∑

j

mijΠj) ≡
1 − e

P

j mijΠj

1 + e
P

j mijΠj
(4.14)

to obtain the affinity of a T cell to a site on the APC surface, pg = 0.05

(an activated T cell needs 5 hours to split referring to the time step of 15

minutes), ph = 0.001 (a life span of 10 days for the T cells), pl = 0.25 (an

hour to form a complex in case of maximum affinity), pq = 0.2, po = 0.04.

(These are the probabilities to unbind with and without activation in case of

maximum affinity. The dependence of these microscopic probabilities on the

affinity has been chosen ad hoc is such a way that the first one grows and

the second one decreases with affinity).
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Figure 4.3: Average number of peptides in presence of a fixed number of

antigens, as obtained by the microscopic model (black line) and the mean

field equations (continuous red line).

We can now consider a single clone T with maximum affinity to a sin-

gle species of antigen A (m ≡ m11 = 1), fix A to its maximum capacity

(c ≡ c11 = 0, i.e. antigens are not removed), and obtain in the usual way

the discrete mean field equations for T , F and C whose continuous limit

leads to equations (4.4)-(4.6), redefining the parameters on the base of the

microscopic probabilities.

Figure 4.4 refers to the growth of the clone, and compares the integration

of the mean field equation with the results given by the microscopic model

(the fratricide term value is fixed to pk = 0.1). In this case the discrepancy

is stronger, and it is also a qualitative one. The growth in the microscopic

model is lower at the beginning, while the equilibrium value is higher. Two

different effects are present, both due to the presence of zones around the

APC in which T cells reproduce: the fratricide effect is enforced because of

the higher density in these zones, but also the probability to meet an APC

and thus to be activated is enhanced. Since these effects depend strongly on

the density of cells, is possible to obtain the parameters of equations (4.1)-

(4.7) by a process of best-fitting only on regions in which the values of A

and T are almost constant (this means that those equations are able to de-
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Figure 4.4: T clone expansion in response to a fixed number of antigens in

the microscopic (black line) and mean field models (red line).

scribe properly the behaviour of the microscopic system only if we introduce

a dependence of the parameters on A and T ).

4.4 Results of the simulations

4.4.1 Acute antigenic impulse

In order to complete the model we fix the value of the parameters cij as

cij ≡ c mij (we are assuming that the ability of a T cell in removing an anti-

gen is proportional to its affinity to it). We have used c = 0.2 in order to

obtain a realistic time scale for the response of the immune system to the

infection.

In figure 4.5 we plot the evolution of the clone size T and antigen A pop-

ulations, comparing the results of the microscopic model with the solutions

of the mean field equations. In agreement with the previous discussion the

results are very similar at equilibrium values, while the agreement is only

qualitative during the transient part. Damped oscillations are present in

both models, and both the period and the height of peaks and valleys are of

the same order of magnitude (the damping rate and the period of oscillations

are higher in the microscopic model).
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Figure 4.5: Evolution of the system under an acute antigenic stimulus. The

evolution of the antigen number in the microscopic and mean field model

is shown at left, while the size of the T cell clone is reported on the figure

at right (black lines correspond to the microscopic model, red ones to mean

field equations).

This behaviour corresponds to that of a prey-predator system (see appendix

4.6 and [5]). To an equilibrium value with A 6= 0, B 6= 0 corresponds a

“memory” effect due to the permanence of the antigen. In this situation the

response to a secondary stimulus is obviously quicker (figure 4.6).

4.4.2 The clonal repertoire model

We finally consider the effects of both fratricide and spatial competition terms

between different clones in presence of a differentiated antigen repertoire. By

using a fratricide term in which the decrease is proportional to the overall size

of the clones, ∆−Ti = −kTi

∑

j Tj, we obtain a mutual exclusion principle.

In fact, if we summarise with ∆+Ti the growth terms, the relative variation

of the clone size is
Ṫi

Ti
=

∆+Ti

Ti
− ∆−Ti

Ti
(4.15)

Since ∆−Ti/Ti is the same for all the clones, supposing that there is a unique

antigen with the highest affinity to the clone Tj , i.e.

∆+Tj/Tj > ∆+Ti/Ti ∀i 6= j (4.16)

if the clone j reaches an equilibrium

∆+Tj = ∆−Tj (4.17)
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Figure 4.6: Left: evolution of the antigen population after a secondary im-

pulse occurring 50 days after the primary, microscopic model. Right: corre-

sponding evolution of the T cells clone.

then any other clone extinguishes since

∆+Ti − ∆−Ti < 0 (4.18)

(These are the basics of competitive exclusion, see [5]).

To show that in our model there is competition for peptides presented at

the APC surface (the mechanism investigated in [4]), we can use a “pure

fratricide” term −kTi
2. This is actually a “non-competitive” one since it

favours the small clones. In fact, studying the expansion of 3 clones under

the stimulus of a single antigen, using an affinity matrix mi,1 such that mi,1 ≪
m1,1 = 1 if i 6= 1, we have (figure 4.7) an equilibrium with T2 6= 0.

Nevertheless even in this situation the competition for the peptides on the

APC surface leads to a control in the overall number of T cells, at least when

the number of clones is large. To study this effect we introduce an antigen

with constant concentration, to which 10 clones have maximal affinity. Once

these clones have reached their equilibrium size, we introduce three different

additional antigens at which three new clones are highly affine. The results of

figure 4.8 show that the size of the ”old” clones shrinks as a a reaction to the

growth of the new ones (this effect can be due only to spatial competition for

resources since no fratricide competition between different clones is present).

4.5 Conclusions

Analytical models and simulations are usually treated as completely distinct

fields of research, even when they face the same problem. In this work we
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Figure 4.7: Time evolution of the size of three clones one of which (black

line) has higher affinity to a given antigen.

Figure 4.8: Time evolution of the size of 10 clones (continuous lines) stim-

ulated by a single antigen and shrinkage due to the expansion of three new

clones (not continuous lines).
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4.6 Appendix

have presented a microscopic dynamical model inspired by clonal expansion

in the immune system, together with a system of differential equations that

could be interpreted as its mean field theory. We have shown how the mean

field equations can be used to interpret the results of simulations, while the

microscopic model can be used to add a local and spatial character to a

macroscopic system based on differential equations.

We do not claim that the results of our model are biologically relevant, but

we present it as a starting point for a more complex model and as a solution

for a compromise between pure analytical and pure simulated models that

could be used in different fields of research.

4.6 Appendix

The dynamics of the model can be described by a simplified system of differ-

ential equations for A and T . We assume that the antigen-APC-T average

interaction consists of a growth term for the T clone proportional to A. The

equations become

Ȧ = A(a(1 − cA) − bT ) Ṫ = T (−d + eA − fT ) (4.19)

These Lotka-Volterra equations with a logistic term have been extensively

investigated (see [5]) and if e > cd they exhibit a critical stable point

Tc =
a(e − cd)

eb + caf
Ac =

af + db

eb + caf
(4.20)

Every solution in the positive sector T > 0 A > 0 is attracted by this point

which is topologically a focus. Convergence rate to equilibrium and the

oscillations period are determined by the eigenvalues of the Jacobian matrix.

From its trace and determinant

Tr J = −a
acf + bcd + ef − cdf

eb + acf
< 0 det J =

a(e − cd)(bd + af)

eb + acf
> 0

(4.21)

we obtain the eigenvalues λ± = 1
2
[ Tr J ±

√
Tr J2 − 4det J ] which are real

negatives or complex with negative real part. We have oscillations if is

∆ = trJ2 − 4detJ = −ω2 < 0 and their period is 2π/ω.
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Chapter 5

An evolutionary crowd

dynamics and ToM model

5.1 Introduction

We develop an evolutionary agent model to study the behaviour of pedestri-

ans in a crowd. Pedestrians are known, on the base of direct observations,

to present forms of self organisation on a local base in order to optimise

traffic flow. For example, if two different flows are directed in opposite direc-

tions inside a single corridor, pedestrians tend to self organise in lanes when

the density is high enough (the number and dimension of lanes depend on

the density of pedestrians and dimension of the corridor), while if two flows

are located in corridors crossing at a given angle, self organisation emerges

through the formation of stripes roughly parallel to the bisector of the angle

between the two corridors.

Different computer simulation models that reproduce this kind of behaviour

have been developed. In the model that we present we try to obtain the

same kind of behaviour as the output of an evolutionary process, in which

the self organisation behaviour emerges as a natural way to overcame a traffic

flow problem due to the physical collisions between the agents. In our model

agents are realised as 2 dimensional discs moving in corridors delimited by

walls, and all the collisions (agent to agent and agent to wall) are exactly

resolved using an event based algorithm. The agents are evolved using a sim-

ple fitness function that gives a positive value to the velocity in the direction

of their goal, and a negative one to the physical momentum exchanged in
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5.2 Crowd dynamics

collisions, and we expect evolution to develop the lanes and stripes formation

behaviour as a way to maximise the fitness function.

The ability of the agents in avoiding collisions is based on their prediction

of future positions of the others. In order to predict the movement of the

others, agents need a model of their behaviour. We thus use our model also

as a way to study the evolution of the Theory of Mind (ToM), meant as the

ability of individuals to understand that also the others have intentions and

beliefs, and in particular, on the base of a previous model, we define and

study the evolution of the “level of Theory of Mind” (ToM level or recursion

level) of an agent. Level 0 agents are those that ignore the behaviour of the

others while level 1 agents are those that take in consideration the behaviour

of other agents, assuming that they behave as level 0. Level 2 agents assume

the others to be level 1 and are thus capable of “recursive thinking”, and so

on.

5.2 Crowd dynamics

Pedestrian crowds have been studied on an empirical base (using direct obser-

vations, photographs and films) and with the aid of simulation models during

the last four decades (a detailed description of experimental observations and

simulation results can be found in [1, 2], to which we will refer during all this

section). Human behaviour is supposed to be “chaotic” and very irregular

but, while this can be true for extremely complex circumstances, in standard

situations individuals do not usually choose between many possible alter-

natives, but act more or less in a automatic way relying on a previously

optimised (learnt by trial and error) behavioural strategy. This seems to

be the case of pedestrian behaviour. According to observations, pedestrians

seem to like to walk on straight lines as long as possible, and thus their tra-

jectory usually assumes a polygonal shape. If alternative routes are of the

same length, a pedestrian prefers the one where she can go straight ahead

for as long as possible and change direction as late as possible. If it is not

necessary to hurry up to reach the destination in a given time, pedestrians

prefer to walk at a certain individual desired speed, which minimises energy

consume. The desired speeds are Gaussian distributed with a mean value of

about 1.34 m/s and a standard deviation of 0.26 m/s. Pedestrians keep a

certain distance from other pedestrians and obstacles, a distance that gets

smaller as the pedestrian hurries and as the density gets higher. At given
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An evolutionary crowd dynamics and ToM model

densities and situations, the movement of pedestrians shows similarities with

that of gas and fluids, or with the dynamics of granular fluids.

In our work we were particularly interested in phenomena of local self organ-

isation that emerge when fluxes of pedestrians with different directions cross.

It has been observed that, if the density is high enough, pedestrians spon-

taneously organise themselves in lanes of uniform walking direction, when

two parallel but opposed fluxes are located in the same “corridor”. This be-

haviour can be found under the form of a (spontaneous) traffic flow rule (see

the discussion in chapter 6, in particular 6.5) or as self organisation at a local

level (as described in chapter 1.4). We can talk about a traffic flow rule when

all the pedestrians (usually inside a given geographical area) use to choose

a priori (or just prefer) to walk in a certain side of the “corridor” in order

to minimise traffic flow problems. Studies show that this tendency actually

exists, and that sort of spontaneous traffic flow rules are present, usually at

the level of a national country area (these rules may or may not be related

to the corresponding traffic flow rules for vehicles). Nevertheless, usually self

organisation emerges on a local base and not as a priori rule, and the num-

ber and dimension of lanes depend on the dimension and density of fluxes.

According to Helbing et al. [1], “The mechanism of lane formation can be

understood as follows : pedestrians moving against the stream or in areas of

mixed directions of motion will have frequent and strong interactions. In each

interaction, the encountering pedestrians move a little aside in order to pass

each other. This sidewards movement tends to separate oppositely moving

pedestrians. Moreover, pedestrians moving in uniform lanes will have very

rare and weak interactions. Hence the tendency to break up existing lanes

is negligible, when the fluctuations are small. Furthermore, the most stable

configuration corresponds to a state with a minimal interaction rate and is

related to a maximum efficiency of motion”.

The phenomenon of lane formation that occurs when two parallel fluxes cross

can be considered as a particular case of the “stripe formation” self organisa-

tion phenomenon that as been observed ([3]) when two fluxes of pedestrians

cross at an angle α. In this situation “stripes” of pedestrians moving in the

same direction are observed to form in the crossing zone, the direction of the

stripes being parallel to the bisector of the angle between the fluxes (see for

example the behaviour of evolved agents in our model, figure 5.13).

In order to describe these local self organising phenomena it is probably nec-

essary to use a individual based micro-simulation of crowd dynamics (i.e.
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in the spirit of this thesis). Helbing ([1, 2]) has introduced a “social force

model” in which the various terms of the pedestrian to pedestrian interac-

tion were modelled as position and velocity dependent physical forces, and

that can reproduce the phenomena we have just described (and other self

organisation phenomena, as the behaviour at bottlenecks).

5.3 Theory of Mind

Following the paper “Does the Chimpanzee have a Theory of Mind?”, by

Premack and Woodruff [4], in recent years the term Theory of Mind (ToM)

has been used in behavioural sciences to identify the ability to understand

that also the others have minds, with different beliefs, desires, mental states,

and intentions, and to develop mental models about these beliefs and inten-

tions.

This ability is surely present in human beings, and has a fundamental role in

social interactions. For example, focusing on the crowd dynamics problem,

while moving in a crowd trying to reach our goal, we have to realise that

also the other persons have goals and are trying to reach them, and take in

account and try to predict their behaviour in order to avoid collisions with

them.

We can also think that the other pedestrians too are trying to predict the

behaviour of people in the crowd (including ourselves), and take in consid-

eration the influence of those predictions on their behaviour. And finally, to

forecast accurately their motion, we could take in consideration the ability of

the others “to read our mind” and thus to predict all the considerations that

we are doing about the others’ behaviour, et cetera. This “recursive thinking

structure” (I think that she thinks that I think. . . ) is surely possible for hu-

man beings, and plays a role, if not in crowd dynamics (after all even social

insects are capable of efficient traffic flow organisation, see the discussion in

chapter 6), in complex social situations.

Having a Theory of Mind of the other individuals and using it to predict their

behaviour means, following Dennet [5], to assume “the intentional stance”

while interacting with them. According to Dennet when trying to explain

and predict the behaviour of an “object” we can assume three different lev-

els of abstraction: the physical stance, the design stance and the intentional

stance.

In the physical stance, we analyse the properties of an object on the base
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of its physical and chemical structure. This approach is the only possible

when studying the basic elements of the physical world (particles, etc.) and

even when analysing more complex systems which are composed of many

“fundamental” components that are not part of the biological world, nor ar-

tifacts produced by the human activity. This level is the more “concrete”

one, since it is related to well defined physical quantities, and allows quan-

titative predictions. Nevertheless, it is very expensive from a computational

point of view, since it requires and processes a lot of information. In fact, just

sticking to the physical stance, the analysis of a system composed of many

fundamental components cannot be based simply on the laws that rule these

components, but requires approximations and the study of average macro-

scopic components (thermodynamics, statistical mechanics).

The design stance is very useful when dealing with objects in the realm of

biology and engineering. It uses concepts like purpose, function and design

to predict the behaviour of a given object, assuming that it corresponds to

some kind of plan the object as been built (by its designer or by evolution)

for. This approach requires less information and has an higher computational

power. For example, when dealing with a thermometer, we do not need to

study the physical behaviour of all its components to infer the environment’s

temperature, we just need to assume that someone else (the designer) has

done all the work for us and built an appropriate scale to read the tem-

perature, and read it. Obviously the design stance does not give us all the

information about the object, for example it does not say anything about the

behaviour of the object in situations it has not been designed for (we rely on

the physical stance to know how much time it will take for the thermometer

to fall on the floor when left from a given height, to know if it will break

on the impact and even to study its behaviour outside the range of temper-

ature it has been designed for, for example to predict at which temperature

it melts).

The more abstract level is the intentional stance, that uses concepts like be-

liefs, thinking and intent, and is useful to deal with “minds”. When we are

dealing with the behaviour of other human beings, but also with animals

and even with complex computer software, for example when we are playing

chess against a computer, we use the intentional stance. While using the

intentional stance to predict the next chess move by the software, we are

not necessarily assuming that the software really has beliefs or intentions, we

are just using a powerful approach to predict its behaviour. Once again, the
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intentional stance does not provide us all the information regarding the “ob-

ject”. For example, to study the physiology of the human body, the design

or physical stance, depending on the required detail or abstraction level, are

obviously more appropriate.

Large part of the experimental studies in the field of Theory of Mind have

been devoted to investigate if there are signs of the presence of ToM in an-

imals (especially in non human primates) and if ToM deficits are related

to autism. According to recent works some animals, as dogs [6], dolphins

[7], goats [8] and crows [9], are able to follow the gaze of other individuals.

Other researches seem to show the presence of a limited ToM in primates [10],

but no indisputable signs have been found [11], and probably true recursive

thinking distinguishes the human mind from the mind of other animals.

5.4 A previous model on ToM evolution

The idea at the base of the crowd dynamics model that we have developed

was present in a model by Takano, Katō and Arita [12, 13]. These papers,

assuming the perspective of evolutionary psychology, that views the human

mind as a product of evolution [14], explore the dynamics and adaptivity of

the mechanism of recursion in ToM, using the computer modelling methods

of artificial life. A know evolutionary hypothesis regarding ToM is the social

intelligence hypothesis [15] which states that intelligence has evolved not to

solve physical problems, but to solve complex social problems. In their model

social interactions are represented by collision avoiding between agents mov-

ing in the same environment. Each agent tries to predict the moves of the

others on the base of its ToM, and uses these predictions to avoid collisions.

The model does not assert to simulate realistic collision avoiding, but to be

a thought experiment used to investigate under which conditions recursive

thinking emerges.

Agents are represented as discs of radius r moving in a 2 dimensional contin-

uous space. Each agent is provided with a goal and feels an attraction force

towards it. Its fitness function is given by the ratio d/t of the distance from

the starting point to the goal over the time it takes to reach the goal. Discs

(the agents’ bodies) can overlap, and in that situation they are in collision

mode; when in collision mode their velocity is diminished by a factor 400 and

thus collisions severely affect the agent’s fitness.

In order to avoid collisions agents predict the future positions at the next
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Figure 5.1: Convergence of collision avoiding magnitude M as a function of

ToM level l (the figure has simply a qualitative and descriptive value).

time step ∆t of all the agents that fall in their sensory system which is a fan

shaped visual cone of radius rv and angle av. These predictions are based on

the ToM or recursion level l of the agent, which is defined as follows: level

0 agents are those that do not take in account the others’ action while level

n agents are those that trying to predict the others’ behaviour assume them

to be level n − 1. Following this definition a level 1 agent will try to predict

the others’ moves assuming that they are level 0, and thus that they do not

take in consideration the actions of their neighbours, while a level 2 agent

assumes also the others to take in consideration the neighbours’ moves, but

to have a simple model of their behaviour, since it considers them to be level

1, and so on.

The key finding of the papers was that the magnitude of collision avoidance

is higher for odd levels than for even ones, the difference being greater the

lower the level is. In particular, it is minimum for level 0 agents and reaches

its maximum for level 1 agents, while it converges to a given value when

l → ∞ from above for odd levels and from below for even ones (figure 5.1).

Stronger collision avoiding does not mean by itself higher fitness, since an

agent that tries too strongly to avoid collision could need a very long time

to reach the goal. The authors performed a throughout study of the rv and

l dependence of fitness for homogeneous populations, and verified that even

level agents had an high fitness when rv was high, while fitness was higher

for odd levels in case of low values of rv, meaning that when the visual cone
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was reduced it was necessary to have a strong collision avoidance behaviour,

which resulted harmful in case of a large visual cone. The most interesting

values of rv resulted to be at the boundary between the two zones, since they

were the ones for which the highest fitness was obtained by the high l levels.

Furthermore, this value represented the optimal fitness value, i.e. the highest

value for any rv.

They performed also simulations with non homogeneous populations, and

found that to this “boundary” area corresponded a value of rv for which the

highest (odd) level invaded all the population.

According to the authors’ interpretation, when the degree of social interac-

tion is very high, even low levels (0, 2) are adaptive, while in case of very

low social interaction level 1 is adaptive. But when the degree of social inter-

actions is at a given specific level, agents could evolve, from a functionalist

point of view, higher and higher levels. Humans are the only species that

has evolved an high level of recursion (about five according to [5, 16], but

individual difference could be present since according to [17] there is a large

gap in distribution between level 4 and 5 in humans).

5.5 Description of our model

In this work we perform an evolutionary simulation of pedestrians in a crowd,

that move towards a given goal trying to avoid mutual collisions. A partic-

ular stress is posed on the mechanism of prediction of the movement of the

other pedestrians, that is at the base of the collision avoiding mechanism

and that allows us to introduce in the model the concept of Theory of Mind

(ToM).

To this purpose we introduce an idealised collision avoiding mechanism in

which a few free parameters can be optimised by a genetic algorithm, ac-

cording to a fitness function in which a positive term is given by the velocity

to reach the goal, and a negative one by collisions. Since the outcome of our

model is given by evolution corresponding to a very simple fitness function,

we do not claim that it can describe actual human behaviour, but we expect

it to present at least at a qualitative level some of the features of the self or-

ganised motion of actual crowd dynamics, as described in section 5.2. Since

our personal experience shows that the lane formation in the α = 0 case can

be obtained (at least at a very rough level) also using simply a model based

on velocity independent forces, we will explicitly focus on evolving a model
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which is able to show self organisation in corridors crossing at an arbitrary

α value.

We decided to use, instead of a completely evolvable decision mechanism (as

for example a neural network), a given decision mechanism whose basic char-

acteristics were fixed, while a few parameters were let free to evolve, since

this formulation is suitable to a more clear interpretation of the results and

to the introduction of concepts like that of Theory of Mind.

5.5.1 Description of the collision avoiding “cognitive”

dynamics

All the agents-pedestrians in our model are represented by hard discs in 2

dimensions that undergo elastic collision between them and with the walls.

We can divide the dynamics of the agents in two parts, their physical (i.e.

collisions between agents and of agents with walls) and their “decision” or

“cognitive” dynamics, which is based on their sensory system and decision

mechanism.

Physical interaction

While the latter one, which will be described in details below, is performed

at fixed time steps of length ∆t, the physical one is exactly integrated using

an event-driven algorithm, which means that, regardless of the length of the

time step that we use to integrate the “cognitive” dynamics, the moment of

each collision is exactly calculated assuming that agents move with constant

velocity when their motion is not changed by collisions or “decisions”, and the

dynamics of collisions is resolved assuming elastic bounces, i.e. exchanging

the components of the agents’ velocity that are perpendicular to the surface

of collision.

Decision mechanism force

Each agent is provided with a “goal”, i.e. a region or point of the environ-

ment that it “wants” to reach. At each time step ∆t a decision mechanism,

independent of the physical dynamics, is applied simultaneously by all the

agents, on the base of their goal and of their sensory perception of the other

agents. The output of the decision mechanism is an impulsive force f that
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Figure 5.2: The red agent sees the green one but does not see the violet

one, while the green one does not see anything. The arrows show the agents’

velocities around which the visual cones are centred.

modifies the motion of the agent according to

v(t) = v(t − ∆t) + f(t) (5.1)

x(t + ∆t) = x(t) + v(t) (5.2)

(actually in our model the agents cannot exceed a maximum velocity vmax,

which is imposed as a constraint on these equations).

f is given by two terms: an “external force” fe, that does not depend on

the interaction between agents (for example a driving force to the goal and

eventually an obstacle avoidance force, as in the experimental setting that

we describe below), plus an “interaction” one (fint).

Perception

The “interaction” term of the decision force is determined by the “observed”

agents, i.e. those that fall in the field of view of the observer, which is a

visual cone of given radius and angle centred around the agent’s velocity

(figure 5.2).

For each one of these observed agents, the observer is supposed to know

exactly the position (of the centre of mass), velocity and direction to the

goal. The third assumption could seem unrealistic, but this information can

be approximately deduced, in the case of real pedestrians, by observing the

gaze or the “body language” of other people (obviously an exact knowledge,

not only of the goal, but also of the position and velocity, is unrealistic, and

is just one of the approximations of our model).
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Figure 5.3: The green spot corresponds to the (future) position of minimal

distance of the observed red agent with respect to the blue observer. Veloc-

ities are calculated in the frame of reference of the blue agent.

Prediction of collision

The logic at the base of the decision mechanism is to understand if there

is the danger of a collision and to apply a force to avoid it. In order to do

that the observer (agent i) examines all the relative positions and velocities

of the observed (j) agents (rij and vij) and calculates the time at which the

approaching agents (defined as those for which the angle between rji and vij

is θij < π
4
) will reach the minimum distance.

The minimum of these times

tpi = min
j∈field of view,θij< π

4

rij cos(θij)

vij
(5.3)

is defined as the “time of probable impact” (figure 5.3) at which the future

positions of all the observed agents (both approaching or not) are calculated

(figure 5.4).

Interaction force

The interaction force fint is calculated as a sum of central repulsive forces

depending on these future relative distances at the time of probable impact

dij(tpi).

Each term will be given as (figure 5.5)

fint(d) =

{

w(tpi, vpi) γ ed if d ≤ D0

w(tpi, vpi) γ
(

d
D0

)−δ

ed if d > D0

(5.4)
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Figure 5.4: The red agent is the observer and applies the decision mechanism.

tpi is determined as the future position of minimal distance of the violet agent,

and at that time all the (future) positions of the observed agents, violet,

green and blue, are calculated. The red agent feels repulsion central forces

(coloured arrows, each colour corresponds to that of the agent causing the

force) determined by these future positions (dotted empty balls). Velocities

in the observer’s frame of reference are given by yellow arrows.
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Figure 5.5: Left: absolute value of the interaction force (equation (5.4)) for

D0 = 1, δ = 1, γ = 1 and w = 1 (“long range” interaction). Right: the same

function with δ = 10, (“hard core” interaction).
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with δ > 0 and γ > 0, where vpi is the velocity of the agent that is going to

cause the “impact” at tpi and w is a term that determines the “danger” of

the situation as

w(tpi, vpi) = min

(

vpi

γ tpi
, 1

)

(5.5)

where γ is the maximum force that the agent can apply. w is defined in such

a way to attain a complete stop in case of a frontal impact, and in some way

renormalises γ (actually these formulae have to be slightly modified in order

to take in account the presence of the driving force to the goal).

In figure 5.5 we show two possible forms of the function given by equation

(5.4). When δ is low (δ ≈ 1) we can talk about “long range” interaction,

because the agents interact also when their (future predicted) distance d is

higher than D0, while for δ ≫ 1 there is an “hard core” interaction, since

considerable interactions happen only if d ≤ D0. D0 can be interpreted as the

agent’s perception of the size of its own body (its diameter, or the sum of its

radius plus the other agent’s radius, assumed as equal), or as a “comfortable

distance” to another agent. The first interpretation is more accurate in case

of “hard core” interaction: agents interact only if they predict their bodies

to overlap in the future.

Recursion level

The last point to be clarified is how the new positions of the observed agents

are calculated, which is correlated to (and thus allows us to introduce) the

agent’s ToM recursion level. If the agent has no ToM, the calculations just

described will not be performed at all (fint = 0), and the agent changes its

motion according just to its goal (the “external force”, thus a level 0 agent is

a non interacting particle, or, more properly, it interacts only through elastic

physical collisions, but not through a decision mechanism).

In case of a level 1 agent, the other agents are assumed to be level 0, and

their future position at time tpi are calculated on the base of their velocity

corrected by the impulsive external force fint. As we said before, “following

the gaze”, the observer is able to know the goal of the observed agent, i.e.

the direction of the driving force. But this does not mean that it knows the

intensity of this force. Actually, in this first version of the model, each agent

will assume that all the agents are identical to itself, and will consider that

they are driven to their goal with the same attraction that it feels for its own

one, even if this is not necessarily the case. (We could say that in our model
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Figure 5.6: The red agent thinks that the green one does not see any agent,

while it sees the yellow agent.

agents assume the others to have the same Theory of Mind and behavioural

patterns that they have, while they admit the others to have different inten-

tions and beliefs, i.e. different goals and perceptions).

Since we are talking about relative positions (following the discussion de-

scribed in figure 5.4), to calculate them the observer has to consider its own

future position too. This is calculated applying to itself the same Theory of

Mind it applies to the others, i.e. assuming that it will act as a level 0 agent

(even if it “knows” to be level 1, since obviously all the calculations about

future position have to undergo some approximation).

We notice that even in this first (level 1) case a superposition principle does

not apply. Due to the presence of tpi the force that the observer feels when

it sees simultaneously two agents is not the sum of the two forces felt when

a single agent is observed.

In case of an agent with a level 2 ToM (or a level n > 1 one), the observer

performs all the level 1 (level n − 1) calculations for all the observed agents

(including itself). Obviously it performs these calculation on the base of its

own observations, which do not necessarily imply a perfect knowledge of the

other agent’s observations (see figure 5.6).

In the case of a level n > 1 agent, the superposition principle does not apply,

not only for the presence of the “time of probable impact” tpi, but also be-

cause in this case the “future predicted positions” of the observed agents are

modified by the presence of other agents (since these agents are considered

by the observer to be at least level 1 and thus to interact with the others).
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α

Figure 5.7: The arrows represent the goals or driving forces of the agents.

5.5.2 Description of the evolutionary and experimen-

tal settings

The environment

The model does not impose any constraint on the position of the goals, but

in order to study the emergence of the self organisation properties described

in section 5.2, we split agents in two groups with different goals, each group

moving in a corridor. The two corridors form a crossroad with an angle α

(figure 5.7).

Goals are realised with a constant driving force term fg directed along the

corridors, while a tendency to avoid collisions with the walls is introduced as

a term fw whose direction is normal to the walls and whose intensity is given

by

fw =

{

0 if x > d

c d−x
d

if x ≤ d
(5.6)

where x is the distance to the wall and d the maximum distance at which

the wall is “felt”, while c stands for the strength of the repulsion.

Genetic code

The “genetic code” of the agents is given by the set of continuous parameters

fg, c and d (that fix the “external” force), αv (the angle of view), rv (the

radius of view), γ (the maximum possible interaction strength), δ (the scal-

ing law for the interaction force in equation (5.4)) and D0 (the “perceived
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diameter of body”), plus a discrete one, the ToM recursion level l. This lat-

ter parameter was kept fixed in some of the experiments, devoted simply to

study the evolution of the collision avoiding behaviour, while it was let free

to evolve in experiments aimed to study the evolution of the ToM level.

At the beginning of the evolutionary process N agents (we used N = 100

in all experimental settings) are generated and the parameters are randomly

chosen in a given range of values. (We fixed some maximum values for the

external forces, namely 20 for c and 4 for fg and choose the corresponding

parameters between 0 and those values; let d vary between 0 and the half

width of the corridors; fixed maximum values for rv and D0 as 10 times the

actual radius of the agent r; let αv evolve in all the allowed range [0, π];

randomly choose δ between 0 and 10 and γ between 0 and a very high upper

bound, 4000. Some of the parameters, D0, γ and δ, were let free to be driven

by evolution over the upper bounds of these ranges).

Heterogeneous population

Throughout all the evolutionary process agents are part of a heterogeneous

population, which means that the genetic code of each agent is chosen in an

independent way, i.e. each agent is different from the others, but all these

agents are located at the same time in the same environment. As discussed

below this choice poses some problems in the evaluation of a single agent

performance, and thus on the effectiveness of the genetic algorithm, because

the fitness of a given agent is determined not only by its own genetic code,

but also from those of the other agents it interacts with (we treated this prob-

lem, i.e. the impossibility of defining a fitness landscape for heterogeneous

populations, also in chapter 2.4.7). Nevertheless, we chose to use this setting,

instead of a more traditional setting in which the agents were evolved using

homogeneous populations composed of clones, for two reasons. The first rea-

son is merely a computational one: since we are studying crowd dynamics,

we need populations with a quite large number of agents (for example we

used N = 100). In case of a non homogeneous population each run, which is

usually computationally expensive, especially if high ToM levels are involved,

allows us to test N genetic codes, while it would allow us to test only a single

genetic code if we used clones. The second reason is a theoretical one, since

we assume that differences in the individual behaviour in the population have

an important role both in crowd dynamics and in ToM evolution.
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Generalisation at different angles

To test properly the ability of agents to generalise their behaviour in different

situations, each generation is composed by several runs (see also chapter 2.4.8

for an explanation of what we mean by “run”, which is quite different from

the usual GA terminology). In each run the agents are randomly located

in one of the two groups with different goals, and the angle between the

corridors is changed. Each time that the agents reach the end of the corridor

(their goal) they are relocated at the beginning of it, in a random position

(i.e. they have no memory of their transverse position).

Fitness

If we define the average velocity of the agent towards the goal vg = ∆x
∆t cos(α)

as the total displacement of the agent along the corridor over time, averaged

over all the runs, and ∆p as the overall physical momentum exchanged by

the agent during collisions, the fitness is given by

f = vg − β∆p (5.7)

β is defined as the “pain” factor in the evolution of agents, and determines

their tendency not only to reach the goal in the shortest time, but also to

avoid collisions (obviously in order to reach the goal moving in a crowded

environment is important to avoid collisions, but the β term makes this de-

pendence explicit, and introduces a tendency to avoid collisions “for collision

avoidance’s sake”).

Genetic operators

At the end of each generation agents are chosen for reproduction on the base

of a tournament selection (two agents are randomly selected and the best

one passes its genes to the next generation), and then the genetic codes are

mutated with mutation probability pm = 0.05 for each gene. We also used

crossover, with a very low crossing probability pc = 0.01. The continuous

parameters are directly represented as real numbers and mutated with a

Gaussian error, while the ToM level l is allowed to change up to l ± 2 (the

reason to allow also a two step mutation will be more clear when we will

discuss the difference between even and odd ToM levels). The number of

generations in a complete evolutionary process is 500.
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Physical dimensions of parameters

In our experiments we use agents with physical radius r = 0.5 and maximum

velocity vmax = 2. These parameters are intended as adimensional but they

can also be considered as expressed in meters and meters per second. It will

follow that, assuming masses to be fixed at 1, all the quantities in the model

have proper dimension and can be scaled changing the space and time unities

(∆t scales as time; fg, γ and c as forces; d, D0 and rv as distances). We used

a time integration step ∆t = 0.05.

5.5.3 Comparison with Takano’s Model

Since we compare our results to the model of Takano et al. described in

section 5.4, it is important to understand which are the basic differences be-

tween that model and the model that we are proposing.

In Takano’s model collisions and collision avoiding were introduced to repre-

sent and simulate social interaction. There was no intent to describe actual

collisions, nor to develop a realistic or efficient collision avoiding behaviour.

The interaction between agents was given and fixed a priori, and the be-

haviour of agents depended only on the extent of the sensory system and on

the ToM level. As stated in their paper, keeping low the number of parame-

ters in the model allows a deeper analysis of the parameter space and a more

clear interpretation of results.

In our model, we described physical collisions in a realistic way, giving to each

agent a finite, fixed and impenetrable volume, and measuring the “pain” of

the agents on the base of a physically well defined function (momentum) and

tried to evolve an efficient (and possibly similar to the pedestrians’ actual

one) collision avoiding behaviour. As a result, in our model we have a rela-

tively large number of parameters, whose value is fixed by the evolutionary

process, which makes an exploration of the parameter space more difficult.

Moreover, in our model a certain amount of “plasticity” is present, which

means that given a certain value of the ToM level, the evolutionary process

will fix the values of the other (continuous) parameters in order to have an

appropriate collision avoiding behaviour. This means that studying the evo-

lution of the ToM level l in our model means to study the co-evolution of l

and of the continuous parameters.

We also notice that two concepts that has been fundamental in our model

in order to develop an efficient collision avoiding behaviour, the “time of
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probable impact” tpi (equation (5.3)) and the “danger” weight w (equation

(5.5)), were not present in Takano’s model, in which future positions were

calculated at the next time step ∆t, and thus the behaviour of the agents in

the two models is quite different.

5.6 Description of an evolutionary experiment

Parameter space

As we just said the behaviour of the agents in the model is the output of

an evolutionary process, and obviously depends on how the experiment is

performed, i.e. on a few parameters that fix the structure of the environment

in which agents are evolved. These parameters are the number of runs for

each generation, the angles α between the corridors in these runs, the density

ρ of the agents in the environment and the value of the pain factor β, the

parameter that fixes the negative weight of collisions in the fitness function

(5.7). We have observed that agents evolved using 3 runs for each generation,

with values of the angles α given by π
4
, π

2
and 3

4
π, were we able to generalise

their behaviour to any value of α, and thus we kept these values fixed for any

evolutionary experiment that we have performed, and studied the dependence

of the evolutionary output on the values assumed by ρ and β.

Density

Regarding the density of the agents, since we have kept the number of agents

N fixed to 100 in all experiments, ρ was actually determined by the length

an width of corridors. The maximum density that we used, to which we are

going to refer as ρ = ρ1, was obtained locating N = 100 agents with radius

r = 0.5 in corridors of length 30 and width 10 (Figure 5.8 shows the agents

in an environment with density ρ1. The red agents start at the top-left of

the figure, and their goal is at bottom-right, while the white ones move from

top-right to bottom-left. Agents are initially located in random positions

in their own corridor, but the evolved agents shown in the figure are self

organised in large clusters.). The other values for the density ρ that we have

used in the evolutionary experiments are ρ2 = 2
3
ρ1, ρ3 = 1

2
ρ1 and ρ4 = 1

4
ρ1.

In order to understand in a better way the results of our experiments, before

studying the β and ρ dependence, we first analyse several repetitions of single
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5.6 Description of an evolutionary experiment

Figure 5.8: Evolved agents moving in the experimental setting using ρ = ρ1.

experimental setting in which N = 100 agents with ToM recursion level fixed

to l = 1 were evolved using β = 1 and ρ = ρ1.

Fitness, velocity and heterogeneity

In figure 5.9 we show the fitness and average speed to the goal of the agents

through generations in 5 repetitions of the experiment. Both f and vg reach

their maximum value (roughly 1 for f and 1.8 or 90% of the maximum

allowed speed for vg) after around 200 generations, but their evolution is

quite unstable and shows many negative “spikes”. This instability (which

is present only at high densities, and was not observed in experiments re-

garding agents evolved with ρ ≤ ρ2, see for example figure 5.16), that could

be probably partially attenuated through an accurate choice of the mutation

and crossing probabilities, is substantially due to the use of heterogeneous

populations. As we stressed before, the fitness of a given agent could be very

high when moving within agents different form itself, but the overall fitness

could drop down if its characters invade the population. Moreover, mutated

agents, whose presence is indispensable for the evolution of the system, can

affect seriously the behaviour of the whole system, including the potentially

fittest agents.

To show that these effects are actually present, we tested in different runs

the performances of evolved agents, using both homogeneous and heteroge-

neous populations. In particular, we used three populations obtained in the
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Figure 5.9: Left: f as a function of generations for 5 repetitions of the

β = 1, ρ = ρ1 experiment. Right: vg as a function of generations for the

same repetitions.

following way: population 1 is the non homogeneous population that had

the best fitness during the whole evolution, population 2 is an homogeneous

population composed by N = 100 clones whose genetic code was obtained

averaging over all the corresponding genes in population 1, and population 3

is an homogeneous population composed of N clones of the best individual

throughout evolution (see also the discussion in chapter 2.4.7). The results

(figure 5.10) show that diversity affects the overall fitness and velocity of the

agents (population 1 has the poorest performance) but also that the best

individual (population 3) does not produce the best crowd behaviour. The

fact that population 3 has a lower fitness but higher velocity suggests that

the best individual had a behaviour which preferred reaching the goal than

avoiding collisions, and took in some way advantage of the collision avoiding

behaviour of the others.

Evolution of parameters

Studying the evolution of the (averaged over the population) values of the

continuous genes, we have observed that the evolution of the interaction

strength γ and of the parameters regarding the interaction with the walls

is quite erratic and does not have a large impact on the behaviour of the

agents, at least if their values are within a quite large range. (We recall that

γ is just the maximum possible strength, while the actually applied one is

modulated through the w term in equation 5.5. This means that once γ is
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Figure 5.10: Comparison between 10 test simulations for a crowd of clones

and a crowd of non homogeneous (evolved) agents. Black lines shows the re-

sults obtained by the best generation during evolution (population 1), green

ones those obtained by clones of the “average member” of that generation

(population 2) and red ones those obtained by the clones of the best indi-

vidual throughout evolution (population 3). Circles show the values corre-

sponding to the fitness f , while diamonds those corresponding to the velocity

to the goal vg.
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Figure 5.11: Evolution of the average value of rv (left) and av (right) as a

function of generations for 5 repetitions of the experiment.

high enough, its exact value is not of great importance in the model.)

For this value of β the attraction to the goal fg reaches quickly and stays

next to its maximum allowed value (fg = 4), while the values regarding the

dimension of the cone of vision (figure 5.11) approach initially their maxi-

mum allowed values, rv = 5 and av = π, at least in some repetitions of the

experiment, but in the following stages of evolution seem to settle to lower

values (in particular av reaches a value next to π
2

in most simulations, i.e.

perception is limited only to the agents located in the direction of move-

ment).

An interesting result regards the evolution of the “perceived size” D0, which

was initially chosen as a random value between 5 (the maximum allowed

value for rv) and 0, but converges quickly to a stable value next to the actual

size of the agent 2r = 1 (D0 ≈ 1 for three simulations, D0 ≈ 0.8 for the

other two). A confrontation between the graphs in figure 5.12 shows that

D0 ≈ 1 was obtained by agents that had developed an “hard core interac-

tion” (δ ≫ 1), and thus suggests that the agents had “learnt” their actual

size, i.e. they interact only with agents whose future position will overlap

their own. (This is quite clear in the “hard core interaction” cases, while it

seems reasonable also in the other two repetitions, since D0 is slightly lower

than the actual diameter and δ assumes values around 3 and 5, which implies

a quite quick decrease of interaction strength with distance. We also tested

that changing the actual agents’ radius r to a different value r̄ while leaving

the other parameters unchanged, evolution leads to D0 ≈ 2r̄).
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Figure 5.12: Evolution of the average value of D0 (left) and δ (right) as a

function of generations for 5 repetitions of the experiment. Notice that to

“hard core interaction” δ ≫ 1 corresponds D0 ≈ 2r = 1.

5.6.1 Self organising properties

We show in figure 5.13 the behaviour of agents evolved in the β = 1, ρ = ρ1

experiment, which present the patterns observed in actual pedestrian dy-

namics, as described in section 5.2. (The figures show the results obtained

by an homogeneous population of clones of the average member of the best

generation in the five repetitions of the experiment. Nevertheless, qualita-

tively similar results can be obtained using best agents from each repetition

and also, even if the pattern formation is slightly more unstable, using het-

erogeneous populations). As the figures show, agents are able to organise

for any value of α, i.e. to generalise their behaviour also to angles between

the fluxes that have not been tested during evolution (including the extreme

values α = 0 and α = π).

We have thus been able to obtain the self organising behaviour of actual

pedestrians as the output of an evolutionary process in which agents with a

finite size body try to maximise their velocity and minimise the “pain” felt

in collisions.

We claim that these patterns are clearly the result of self organisation. It

can be questionable that the interaction rules that we have introduced are

simple (nevertheless, in the l = 1 and δ ≫ 1 case, they can be simplified as

“assuming that everyone moves on straight lines, check which agents will be

the first ones to collide, and interact with them proportionally to the ratio

between their velocity and the time at which the collision will happen”) but
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Figure 5.13: Lanes and stripes formation in evolved agents. These figures

have been obtained using N ≫ 100 agents (while keeping density fixed to ρ1)

in order to make the stripes and lanes formation more evident. The angles

between corridors are α = 0, α = π
2
, α = π.
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they are surely local, since the sensory system does not allow a complete

knowledge of the state of the system (this is especially true for δ ≫ 1, when

interaction is limited only to the agents that are predicted to collide) and

individual, since the dynamics of the system is determined solely by the de-

cision mechanisms of the agents.

Nevertheless the self organising nature of the patterns is assured by the fact

that no description of the overall pattern is included in the decision mecha-

nism (agents are not requested to form lanes or stripes, for example follow-

ing other agents moving in their same direction). Furthermore, the observed

pattern has not been obtained as the result of a “biased” parameter fixing

(parameters are fixed by a GA which uses a fitness function in which no

description of the pattern is provided).

The process of positive feedback (see the discussion in chapter 1.4) is given by

the tendency of agents to follow other agents moving in their same direction,

but we stress once again that this tendency is not included directly in the

model, but arises because when a small group of agents moving in the same

direction is formed as the result of a fluctuation, it is extremely profitable,

from the point of view of collision avoiding, to follow it when moving in the

direction of the goal of the “observer”, and to avoid it very strongly if going

in the opposite direction. It is thus very likely that any efficient collision

avoiding mechanism could lead to a similar pattern formation.

Negative feedback in our setting is due, besides to the finite number of agents,

to the fact that clusters are destroyed as soon as agents reach the end of the

corridors. Pattern formation in the model is dynamic and continuous: usu-

ally agents arriving at the crossing point enter in already formed stripes or

lanes (the pattern is stable), but if some fluctuation destroys an existing

pattern, a new one is formed in a short time.

5.7 The role of pain

Keeping fixed l = 1 we analyse now the role of the pain parameter β in evo-

lution. To compare the performance of agents evolved with different values

of β we can study the value, both reached during evolution and attained by

evolved agents, of the velocity towards the goal vg, which is the common part

of the fitness function (since it does not depend on β). We could expect vg to

be a decreasing function of β, since the agents evolved with β = 0 are only

requested to maximise vg, while those evolved with high β are supposed to

152



An evolutionary crowd dynamics and ToM model

0 100 200 300 400 500
generation

0

0.5

1

1.5

2
v

  =0
  =0.1
  =0.5
  =1
  =2
  =3
  =5
  =10

β
β
β
β
β
β
β
β

g

Figure 5.14: vg as a function of generations for agents evolved with different

values of β (see the legend for the correspondence between colours and values

of β).

avoid strongly collisions even if this behaviour prevents them from reaching

an high velocity. Quite interestingly, this is not necessarily the case.

5.7.1 Evolution in a high density environment

In figure 5.14 we show, for 100 agents with density ρ1, the evolution through

generations of the average value of vg (the average is performed over the

N = 100 agents and over 5 repetitions of the experiment). This figure shows

that agents evolved with β = 0.5 and β = 1 reach during evolution a vg value

higher than that reached by those evolved with other values of β. When

agents are evolved using β ≫ 1, vg decreases during evolution and finally

drops to a value next to 0. Nevertheless, an analysis of the corresponding fit-

ness function shows that f is an increasing (even if always negative) function

and thus that in these cases evolution leads the agents to move very slowly

in order to avoid collisions that would strongly decrease their fitness (in par-

ticular, evolved β = 5 and β = 10 agents are almost still, while for β = 2

and β = 3 the behaviour can be quite different between different repetitions

of the experiment and also during the same evolutionary process, and the

corresponding curves are more noisy).
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For low values of β, in most repetitions of the experiment vg reached a quite

lower value than that reached in the β = 0.5 and β = 1 experiments. Since

for β ≈ 0 we have f ≈ vg, this means that the agents evolved with β ≈ 1

can perform better that the β ≈ 0 agents the task the latter have been evolved

for. Given that the initial values of the parameters and the structure of the

genetic algorithm are the same, this means that the absence of a “sense of

pain” prevents the correct evolution of the system.

It is difficult to understand why this happens, but some hints can be obtained

studying the evolution of some parameters that are strongly related to the β

pain factor. In figure 5.15 we can observe the average evolution of fg (attrac-

tion to the goal) and D0 (perceived size of the body) for different values of

β. For agents evolved with β ≈ 0 fg converges very quickly to its maximum

value, while for β ≈ 1 this convergence is quite slower (for β ≫ 1 fg drops to

0, allowing agents to “stand still”). These data seem to suggests that, while

agents evolved with β ≈ 1 are “urged” by the form of their fitness function

to develop a collision avoiding behaviour in the first stages of evolution, the

β ≈ 0 ones can have “an easy reward” just increasing their attraction to the

goal, but they pay the cost of this behaviour later, being trapped in a zone

of the parameters (a local maximum) that does not allow them to develop a

good collision avoiding behaviour. This conjecture is confirmed also by the

evolution of D0.

Agents evolved with β ≈ 1 are able to learn quickly the size of their body

(D0 → 2r = 1), while those evolved with β ≈ 0 do not show an appropriate

learning curve. (Also agents evolved with β ≫ 1 tend to overestimate their

size, but this could be due to their tendency to avoid strongly any possible

collision. Furthermore, since these agents tend to have fg = 0, it is quite

hard to talk about any collision avoiding strategy, because evolved agents

almost do not move at all. See for example the D0 curve for β = 5: as soon

as fg goes to zero, the agents loose the perception of the size of their body

that they had previously learnt).

Obviously, since evolution is a random process, we could think that some

particularly large fluctuation could drag the β ≈ 0 agents outside the local

maximum and allow them to develop an appropriate collision avoiding be-

haviour, and actually this has been the case at least for few simulations. We

could also think that if we let agents evolve for a larger time, an efficient be-

haviour would sooner or later emerge in any experiment (notice for example

how at the end of the evolutionary process for β = 0.1 vg reaches a value
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Figure 5.15: Evolution of the average (over agents and over 5 repetitions of

the experiment) value of fg (left) and D0 (right) as a function of generations.

See the legend at left (or in figure 5.14) for the correspondence between

colours and values of β.

next to that of β = 0.5 and β = 1, figure 5.14). Nevertheless the results show

clearly that an appropriate β pain factor leads to an easier emergence of the

collision avoiding behaviour.

If we analyse the behaviour of evolved agents we see that the self organisation

(lanes and stripes formation) behaviour is present only for the agents with

vg > 1.7, i.e for all the repetitions of the experiment in which agents had

been evolved with β ≈ 1, but only in some repetitions for β ≈ 0.

5.7.2 Evolution with low density and generalising abil-

ities

In the simulations that we have just examined, the density of the agents was

quite high, i.e. they occupied a large portion of the overall volume of the

corridors (figure 5.8). We repeated the same analysis of the effect of β on

evolution (limiting ourselves to three values β = 0, β = 1 and β = 10) for an

environment in which the density of agents was 2 times lower (ρ = ρ3). The

results of these simulations (figure 5.16) show that in this case all the agents,

regardless of the value of β they were evolved with, reach an average speed

around vg = 1.95 in the last stages of evolution. An analysis of the evolution

of the perception of the size of their body, D0, shows that agents evolved

with β = 1 and β = 10 learnt the actual size of their body D0 ≈ 2r = 1,
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Figure 5.16: Left: evolution of vg through generations for N = 100 with

density ρ3 (average over agents and repetitions of the experiment). Right:

corresponding values of D0. The black lines stands for agents evolved with

β = 0, the red ones for β = 1 and the green ones for β = 10.)

while those evolved with β = 0 tend to underestimate it by a factor 3
4

(all

the agents had developed a quite high value of δ and thus an hard core

interaction, and we can interpret D0 directly as the agent’s perception of the

size of its body).

In order to understand if this different “perception of the size of body” has

any effect on the behaviour of agents, we tested them in a environment

different from the one they were evolved in (N = 400 clones of the average

agent in the most fit generation over all the repetitions of the experiment

for each value of β were located in corridors of length 60 and width 20, i.e

with density ρ1 or the double of the density in the experiments they were

evolved in, and the angle at which corridors crossed was chosen as α = π,

as in the experimental setting in the bottom of figure 5.13). Figure 5.17

shows the performances of the agents. In the environment of the evolutionary

experiment, agents evolved with β = 0 exchange more momentum than those

evolved with β > 0, but move with a slightly higher velocity. Nevertheless,

they cannot generalise this behaviour to higher values of density and α. It

is also interesting to see that while the performance of the β = 1 agents was

better than that of the β = 10 ones in the first environment (they exchanged

the same amount of momentum and had a slightly higher vg) the situation is

reversed in the generalised environment were the β = 10 agents exchange a

sensibly lower amount of momentum. These results show that agents evolved

with an appropriate pain factor are able to generalise their behaviour to more
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Figure 5.17: Left: average vg of the evolved agents as a function of β. Right:

exchanged momentum ∆p for the same agents, in logarithmic scale. (Black

and circles report the agents’ performance in the original environment, while

red and diamonds in the generalised environment).

crowded environments, while those evolved with a low “sense of pain” are not

able to.

5.8 Comparison between different l values

5.8.1 Behavioural difference between even and odd lev-

els

One of the most interesting features of the model by Takano and Arita was the

difference between odd and even levels in the Theory of Mind, as described

in section 5.4. We find the same difference in our model. In figure 5.18 we

show the average (over agents and repetitions of the experiment) momentum

transferred in collisions ∆p through generations for different values of l (l

was equal for all the agents in a given population, β was fixed to 1 and the

density was ρ2). The results show that the amount of exchanged momentum

is minimum for agents with l = 1, and that there is a clear distinction

between odd and even levels (the results for l = 0, to which corresponded a

noisy curve centred around ∆p ≈ 4, are not shown).

To explain (following the discussion in [12, 13]) this difference we can say

that even levels act in a “bold” way, while odd ones are “careful”. A level 0

agent is “bold” in the sense that it doesn’t care about the others’ behaviour,
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Figure 5.18: Average momentum exchanged in collisions ∆p for agents

evolved with a fixed value of l, for different values of l (see legend), using

β = 1.

and thus a situation in which two level 0 agents have contrasting goals leads

to a collision. Level 1 agents consider everyone (including themselves) to be

level 0, and thus they predict the collision, and in order to avoid it their

behaviour is very “careful”. But level 2 agents consider everyone to be very

“careful”, and thus “try to take advantage” of this situation behaving in a

“bold” way, and so on (figure 5.19).

5.8.2 Level dependence of the continuous parameters

As stated before, the main difference between our model and the model de-

scribed in section 5.4 is the presence of many parameters evolved by the

genetic algorithm, which means that the behaviour of an agent is not deter-

mined a priori, but is the consequence of the evolutionary process. For this

reason, before any evaluation of the agents’ fitness, we need to evolve them,

which is very expensive from a computational point of view, in particular

when high ToM levels are concerned, and thus a throughout analysis of the

(ρ and β) parameter space, even at fixed l, has not been possible. Never-

theless, our model has more plasticity, and at the end of the evolutionary

process we can expect, for any value of l > 0, agents to have developed a
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Figure 5.19: Top: the blue agent is a l = 1 (or in general odd) one and

predicts the red one not to avoid the collision, and tries to avoid it (careful

behaviour). Bottom: now the blue agent is l = 2 (or in general even),

predicts the red agent to avoid the collision, and does not try to avoid it

(bold behaviour).

certain ability to perform in the environment (for example, in figure 5.18 ∆p

is a decreasing function of generations for any l value, even if its equilibrium

value depends on l). In fact an analysis of the behaviour of evolved agents

shows the lanes and stripes formation (at least at some degree) for any value

of l, including even ones. Figure 5.20 shows how this is attained. While D0

reaches quickly a value next to the actual size 2r for odd levels, the value

is higher for even ones. Nevertheless, the curves for even levels are different

from the erratic ones that agents with too low or high β had in figure 5.15,

and are similar (in particular the l = 4 one) to those obtained for odd lev-

els, just with an higher asymptotic value. Remembering (see the discussion

following figure 5.5) that the evolution of D0 is tied to that of δ, since these

parameters fix the form of the function in equation 5.4, a detailed analysis

of the output of each evolutionary experiment shows that while odd levels

developed D0 ≈ 2r and δ ≫ 1, i.e. an “hard core” interaction within the

actual size, for even levels two possible strategies are present: one with δ ≈ 1

and D0 ≈ 2r, and another one with δ ≫ 1 and D0 ≈ 4r; both resulting in an

overestimation of the size of the body that attenuates the “bold” behaviour
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Figure 5.20: Evolution of D0 for agents evolved with a fixed value of l, for

different values of l (see legend), using β = 1.

of even levels (if in the bottom part of figure 5.19 the blue even level agent

projected the future position with a radius larger than the actual one, it

would consider the collision more probable to happen).

5.8.3 Evolution of agents with high l in high ρ envi-

ronment

We have verified that when the density is high enough (ρ ≥ ρ3), the fitness

equilibrium value attains always the highest value for l = 1, and it attains

always an higher value for odd levels than for even ones. In particular (figure

5.21), when the density is quite high (for example if ρ = ρ1), the fitness

reached by level 1 agents is quite higher than that of the other levels, includ-

ing odd ones. These results seemed to show that odd high levels could not

properly self organise in case of high density. Actually, an analysis of the

best agents through evolution shows that the performance of level 3 agents

is comparable, even if lower, to that of level 1 agents (figure 5.22). In par-

ticular, they attain almost the same value for the velocity vg (1.82 for level 1

agents and 1.79 for level 3 ones) and show similar self organisation properties.

Moreover, the difference in performance between clones and heterogeneous

population is higher for level 3 agents than for level 2 and level 1 ones (defin-
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ing this difference as ∆f we have ∆f = 0.72 for level 3, ∆f = 0.16 for level 2

and ∆f = 0.24 for level 1). It is not hard to convince ourselves that high odd

levels are more unstable in case of a heterogeneous population. We expect

the behaviour of our agents to converge to a very accurate prediction of the

others’ motion for l → ∞, but this assumes an exact knowledge of the values

of parameters (genetic code) of the other agents, i.e., in our model in which

each agent assumes for the others its same behaviour, homogeneity. The

presence of different values for the behavioural parameters in the population

leads to non accurate predictions. This error in the prediction of future po-

sitions probably propagates at each evaluation, and thus is higher for high

l (furthermore level 1 agents are even more stable in case of heterogeneous

population, since they have to take in account only the parameters regarding

the “external” -attraction to the goal, interaction with the walls- interaction

of the others, and not those regarding the “internal” -agent to agent- inter-

action). Since evolution is performed using non homogeneous population, it

is possible that the evolutionary process is more difficult for high levels, and

that their performance would be equal to or even better than that of level 1

agents if we used clones for evolution.

We also tried to test the performance of the evolved l = 1 agents as l = 3

agents (i.e. keeping the continuous parameters fixed and changing l) but the

results were very poor (the fitness dropped to a value next to 0), showing

the importance of the adaptation of the continuous parameters to the l value

(co-evolution of l and of the continuous parameters).

5.9 Evolution of ToM recursion level

5.9.1 Co-evolution of l and continuous parameters

Finally we have performed a few simulation to study how the ToM level l

evolved in a population that was heterogeneous both in the continuous pa-

rameters and in the ToM level. At the first stage of evolution the continuous

parameters were randomly chosen in the same ranges used for the previous

simulations, while l was randomly chosen between 6 integers going from 0

to 5. The genetic algorithm was performed in the same way as before, just

adding l to the parameters that were inherited, crossed and mutated. Ran-

dom mutation could change l to l ± 1 and l ± 2. We allowed also a jump of

two ToM levels because we have verified that, due to the difference between
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Figure 5.21: Left: Fitness through evolution (average over 5 repetitions) for

l = 1 (black), l = 2 (red) and l = 3 (green) agents.
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Figure 5.22: Performance of the best agents as a function of ToM level l

(ρ = ρ1, averages over 10 repetitions). Blue lines show the results of a family

of clones of the best (average) individual, while the red ones show the results

of the best heterogeneous family. Triangles show the values of the velocity

towards the goal vg, while circles those of the fitness f .
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Figure 5.23: Evolution of ToM level for ρ = ρ1, β = 1. The coloured surfaces

stand for the number (percentage) of agents with a given value of l. The l

values are shown from bottom to top in increasing order: brown stands for

0, yellow for 1, blue for 2, green for 3, red for 4 and black for 5. These results

are the average over 5 different repetitions of the experiment.

even and odd levels, one step mutations resulted always to be bad mutations.

We can summarise our results in this way: high enough density and β ≈ 1

led to an invasion of all the population by level 1; high density and β ≈ 0 or

low density and β ≈ 1 showed no clear prevalence of any value of l 6= 0, but

each particular evolutionary history showed the prevalence of even or odd

levels; low density and β ≈ 0 led to the invasion of the population by even

l 6= 0 levels.

In particular, figure 5.23 shows the typical result for high density (ρ = ρ1,

ρ2, ρ3) and β ≈ 1. Even levels (brown, l = 0; blue, l = 2; and yellow, l = 4 in

the figure), quickly disappear from the population. l = 5 has an important

role in the first stages of evolution, but it also disappears as l = 1 invades the

population. The prevalence of l = 3 over l = 5 in the last stages of evolution

is probably due to mutations from 1 to 3 (mutations from 1 to 5 are not

possible).

Figure 5.24 shows the evolution of the ToM level for ρ = ρ3, β = 0, with no

clear prevalence of any value of l (even if l = 1 occupies a predominant part

of the population, at least in the last stages of evolution).
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Figure 5.24: Evolution of ToM level for ρ = ρ3, β = 0, average over 10

repetitions. See figure 5.23 for legend and explanation.

These results, that show the coexistence of all the levels (with the excep-

tion of l = 0), were obtained as the average of 10 different repetitions of

the experiment, but actually single repetitions show the prevalence of a few

levels, and never show the coexistence of even and odd levels. For example,

in figure 5.25 we show the results of 2 repetitions of the experiment, the first

one dominated by odd levels, the second one by even levels. The emergence

of even or odd levels had no effect on the overall fitness of the agents, which

resulted to be almost the same in the two cases.

The reason of the impossibility of coexistence between even and odd levels

can be found in an analysis of the values of the evolved continuous parame-

ters. As stressed before, these values are not l independent, and in particular

have a strong dependence on the parity of l. For example, in figure 5.26 we

show a comparison between the evolution of the perceived size of the body

D0 in a “odd level dominated” and in a “even level dominated” population

(average over the same repetitions shown in figure 5.25). The difference in

the values of the continuous parameters makes transitions between even and

odd levels very difficult to happen.

The same (qualitative) results in figures 5.24, 5.25, 5.26 have been obtained

using ρ = ρ4, β ≈ 1, while for high values of ρ and β ≈ 0 we observed

coexistence between even and odd levels in the same repetition of the exper-
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Figure 5.25: Evolution of ToM level for ρ = ρ3, β = 0, in two different

repetitions. Left: after around 100 generations even levels disappear, and

odd ones (yellow, l = 1; green, l = 3; black, l = 5) invade the population.

Right: even levels (with the exception of 0) invade the population, with a

gradual shift from l = 2 (blue) to l = 4 (red).
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Figure 5.26: Evolution of D0 for a population dominated by odd levels (black

line, corresponding to the simulations at left in figure 5.25), and for a pop-

ulation dominated by even ones (red line, corresponding to the simulations

at right in figure 5.25). While for odd levels D0 converges to a value slightly

inferior to 2r, it converges to ≈ 4r for even levels, making the transition

between even and odd levels hard to happen.
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Figure 5.27: Evolution of the ToM level for ρ = ρ4 and β = 0, averaged

over 5 repetitions of the experiment. l = 2 (blue) and l = 4 (red) invade the

population.

iment, but this result was due the to incapability of the agents evolved with

these values of the parameters to develop an appropriate behaviour (see the

discussion about the role of β in evolution, section 5.7.1: agents evolved with

β ≈ 0 and ρ = ρ1 are not able to learn the size of their body, and thus the

discussion following figure 5.26 does not hold).

A different situation was present for very low density ρ = ρ4 and β = 0. The

results shown in figure 5.27, averaged over 5 repetitions of the experiment,

show that even levels invade the population in each repetition. Probably the

“bold” behaviour of even levels is more apt to the solution of the problem

(the disappearance of l = 0 shows that the problem could not be solved just

“going straight to the goal”). Nevertheless, an analysis of the evolution of the

perceived size of the body shows that D0 converges to a value quite higher

than 2r, which means that evolution corrected the behaviour of even level

agents in order to make it more “careful”.

5.9.2 Evolution of l keeping fixed the other parameters

As we said before, one of the problems that we had to face in reproducing

the results described in section 5.4 was due to the coevolution of l (recursion
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Figure 5.28: Evolution of ToM recursion level keeping fixed the continuous

parameters. Left: using ρ = ρ1, β = 1; right: using ρ = ρ2, β = 0. The

results were obtained as averages over five repetitions of the experiment. See

figure 5.23 for the legend and explanation of the correspondence between

colours and l values.

ToM level) and of the continuous parameters. For this reason we tried to

split the evolutionary process in two steps, a first one in which we evolved

the collision avoiding mechanism (i.e. the continuous parameters) keeping

l = 1 fixed, and a second one in which we evolved l.

We thus used as a starting population the family of l = 1 clones that had

developed the most efficient collision avoiding mechanism (more precisely,

we use clones of the average individual of a family with the highest fitness

through evolution, obtained using β = 1 and ρ = ρ1), and performed an

evolutionary simulation in which the continuous parameters were kept fixed

while l could mutate (with probability pm = 0.1), to see for which values of

β and ρ high levels could invade the population.

When we evolve the recursion level in the same β = 1 and ρ = ρ1 environ-

ment in which the continuous parameters of the collision avoiding model had

been evolved, levels l 6= 1 are produced just as direct mutations from l = 1,

but their fitness is always very low and they cannot occupy a considerable

part of the overall population (figure 5.28 left). As density assumes lower

values (β = 0 and ρ = ρ2, figure 5.28 right), the fraction of l 6= 1 agents be-

comes higher, and also the l = 4 and l = 5 agents, that cannot be obtained

by direct mutation from the l = 1 ones, appear, but the population is still

almost entirely composed of l = 1 agents.

Figure 5.29 shows the results obtained for ρ = ρ3. In the β = 0 case (right)
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Figure 5.29: Evolution of ToM recursion level keeping fixed the continuous

parameters. Left: using ρ = ρ3, β = 1; right: using ρ = ρ3, β = 0. The

results were obtained as averages over five repetitions of the experiment.

l = 1, although still in a dominant position, occupies only half population.

Using ρ = ρ4 (figure 5.30) the high l levels invade the population, and in

particular the highest allowed level (l = 5) has a predominant role, while

l = 1 is reduced to a low percentage. When β = 1 (left) only odd levels

are present, but if we further diminish the role of collision using β = 0 also

even levels (and in particular l = 4) start to occupy a considerable portion

of the overall population (the difference between figure 5.27, in which even

levels invaded the population, and figure 5.30 at right is due to the use, in

the second case, of agents whose continuous parameters had been evolved for

an odd l = 1 recursion level).

These results confirm substantially those described in section 5.4. When

agents have a strong need of avoiding collisions, l = 1 occupies almost the

entire population, but as the role of collisions on the fitness gets smaller,

gradually high (odd) recursion levels start to have a predominant role. We

also found that further diminishing the role of collisions, even levels, starting

from the high ones, begin to occupy a considerable portion of the popula-

tion. (We used as control parameters for these simulation ρ and β as we

did for all the previous simulations, following the rule that increasing these

parameters increased the role of collisions in evolution. Using the right value

of β resulted crucial in order to evolve the collision avoiding mechanism con-

tinuous parameters, but probably is not very important for the evolution of

the recursion level alone, and thus a future throughout investigation of this

phenomenon could be simplified using only ρ as a control parameter).
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Figure 5.30: Evolution of ToM recursion level keeping fixed the continuous

parameters. Left: using ρ = ρ4, β = 1; right: using ρ = ρ4, β = 0. The

results were obtained as averages over five repetitions of the experiment.

5.10 Conclusions

We have proposed an evolutionary model to simulate crowd dynamics, using

agents with a finite size impenetrable body. We have shown that using a sim-

ple fitness function, which assigned a positive value to the velocity towards

the goal, and a negative one to momentum exchanged in collisions, we could

evolve the same self organising behaviour observed for actual pedestrians.

Agents were able to self organise even in quite crowded environments, but in

order to do that it was necessary to give them a high enough sense of “pain”,

i.e. to give an high enough negative weight to collision in the fitness function,

to prevent agents to be kept in a local maximum that did not allow them to

attain proper self organisation.

We think that a further study of the dynamics of our model is necessary.

In particular, we would like to investigate which is the range of the agents’

density that gives rise to self organising patterns. We have verified that self

organisation is not present at very low densities, while cannot occur at too

high densities. We have also verified that the structure of patterns depends

on the density, length and width of corridors (as figure 5.13 clearly shows),

but we are still missing a throughout quantitative investigation. We would

like also to compare our results to those obtained by other models and to

perform a quantitative comparison to actual pedestrian dynamics. It would

be extremely interesting to understand which are the minimal requests to

have a model that presents these self organisation patterns.
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The best results, regarding the optimisation of traffic flow, have been ob-

tained using l = 1 and δ ≫ 1. Under these conditions the model can be

easily optimised, and we intend to use it as part of a software that simulates

crowd dynamics in complex and realistic topologies.

We also performed, using the same model, an evolutionary study of the emer-

gence of recursive thinking for agents moving in a crowd and trying to avoid

collisions. We verified that there is a difference between even levels, which

have a “bold” behaviour, and odd ones, that show a “careful” behaviour, and

due to this difference some of the parameters of the model (for example the

“learnt” or “perceived” size of the agent’s own body) evolve to quite different

values for odd or even levels.

Our results seem to show that actual recursive thinking cannot emerge from

evolution of heterogeneous agents in a crowded environment, since l = 1 in-

vades the population. Even if an accurate analysis of the parameter space

has not been possible, our results seem to show also that for some values of

these parameters (in particular when the agents’ density is quite low) higher

recursion levels are adaptive. This confirms the results of a previous paper

in which the authors used an idealised collision avoiding mechanism to sim-

ulate social interactions, and verified that choosing an appropriate range of

interaction high recursion levels were adaptive. This is probably true also

in our model, even if that parameter area is of no great interest for crowd

dynamics, since it corresponds to very low densities.

Even if recursive thinking is not adaptive for crowd dynamics, actual pedes-

trian are capable of recursive thinking, and this ability could have some effect

on the way they move in a crowd. We have supposed that high (odd) recur-

sion levels could perform efficiently also in crowded environments, but that is

very hard to evolve them in heterogeneous populations. This hypothesis has

not still been tested for computational reasons, but could be used to obtain

efficient high level agents. A future development could consist in comparing

the performance of actual pedestrians with those of evolved ones, to see if

their behaviour shows features which are typical of high recursion levels, or

of non homogeneous populations.

We also believe that in order to perform an evolutionary study of the emer-

gence of recursive thinking in a realistic setting, it is necessary to introduce

more complex social interactions and tasks. We suppose that introducing

some level of cooperation (for example, requiring agents to move in little

groups inside the crowd) could require the emergence of high recursion level,
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and probably also break the asymmetry between even and odd levels which

represented a problem in the co-evolution of the continuous and recursion

level parameters in our model.
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given cues in dogs”, Animal Cognition, 1, 113-121 (1998).

[7] A. Tschudin, J. Call, R. Dunbar, G. Harris and C. Van der Elst, “Com-

prehension of signs by dolphins (Tursiops truncates)”, Journal of Com-

parative Psychology, 115, 100-105 (2001).

[8] J. Kaminski, J. Riedl, J. Call and M. Tomasello, “Domestic goats (Capra

hircus) follow gaze direction and use social cues in an object choice task”,

Animal Behaviour, 69, 11-18 (2001).
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Chapter 6

An evolutionary urban scale

traffic model

6.1 Introduction

In this work we develop a multi-agent traffic model on a urban scale. The

model is realised on a discrete grid, and agents are considered as point like,

moving at discrete time steps from a site to another of the grid. This means

that the interactions between agents and of agents with the environment are

not described in detail, but just expressed using simple rules representing an

adequate average of microscopic behaviours. Nevertheless, the model is an

actual distributed autonomous system, since all the actions of the agents are

performed on an individual base.

The model is aimed at understanding how self organisation patterns and

communication between agents can emerge in a agent system in order to avoid

a traffic flow problem. We study in particular two phenomena: the emergence

of a communication system through which agents are able to choose the (time

dependent) best path to reach their goals (a communication system which

has been inspired by pheromone based trail laying and trail following in social

insects, as ants), and the emergence of a global traffic flow rule, independent

of communication and related to the geometry of the mobility system (the

urban area) that leads to a minimisation of traffic flow problems.
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6.2 Social insects

6.2 Social insects

According to the common opinion between the researchers in the field, social

insect colonies are a remarkable example of distributed autonomous system.

Insects living in colonies (ants, termites, and many species of wasps and bees)

are capable of accomplishing tasks whose complexity has often surprised and

fascinated naturalists. Bonabeu et al. ([1, 2]) briefly expose and report a

large literature about these activities, in particular those related to foraging,

nest building and maintenance, and also the ability of task allocation, i.e. the

(dynamic) division of the population in groups performing different duties.

6.2.1 Some tasks performed by social insects

To cite a few examples, army ants are able to organise hunting raids that

involve up to 200,000 workers, while leaf cutter ants are able to forage at

hundreds of meters from the nest, organising “highways” between the nest

and the foraging site. Weaver ants can form chains with their own bodies in

order to cross wide gaps or to accomplish results that could not be obtained

by a single worker, while honey bees form chains to induce a local tempera-

ture increase and shape more easily wax combs. Nest building reaches very

high levels of complexity in tropical wasps and termites.

In a social insect colony, usually a worker does not perform all the tasks, but

is specialised. Often this specialisation corresponds to morphological dif-

ferences between individuals, as, for example, the coexistence of minor and

major workers, the first ones performing brood feeding and nest maintenance

duties, the second ones defending the nest or cutting large preys. Neverthe-

less, social insects are capable of dynamic task allocation, modifying the size

and composition of groups of workers involved in different tasks to respond

to environmental changes and changing colony needs.

6.2.2 Self organisation

It was once believed that such a complex colony behaviour needs some kind

of supervision or hierarchical structure, for example the queen was supposed

to collect and centralise information and give direct orders to control the

activities of the colony, but recent observations show that the activities are

almost totally unsupervised. Even if an insect is surely, from a microscopic

point of view, a quite complex creature (for example, if compared with the
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agents of virtual models described in this thesis), since it can process a large

number of sensory inputs and stimuli and perform decisions on the base of a

large amount of information, it is today widely believed that the complexity

at the level of the single agent is not sufficient to account for the complexity

of the whole system, and thus that the complex behaviours of social insect

colonies are due to self organisation phenomena, i.e. emerge as the result of

simple interactions between the agents.

Following [2] we can say that self organisation, i.e. the appearance of global

level structures on the base of local interactions between elemental units,

relies on four basic ingredients: positive feedback, negative feedback, ampli-

fication of fluctuations and multiple interactions; and is characterised by a

few key properties, as the creation of a spatiotemporal structure over a previ-

ously homogeneous medium, multistability, and the existence of bifurcations

under the variation of parameters.

These properties can be illustrated with the help of an example, the con-

struction of pillars in termites. Termites use soil pellets impregnated with

pheromone (a chemical used by animals to communicate) to build pillars

[3] . Two phases take place: a non-coordinate one during which pellets are

randomly deposited, and a coordinated one, which starts when one of the de-

posits is large enough and stimulates workers to accumulate more material.

This is a phenomenon of positive feedback and amplification of fluctuations:

initially the medium is homogeneous, but a fluctuation makes one of the de-

posits get larger than the others, and then this deposit attracts more workers

due to the presence of a larger amount of pheromone. The bigger the deposit

becomes, the more it attracts workers, and finally a pillar emerges. To have

the formation of a pillar, the number of workers has to be higher than a

threshold, because if too little workers are present, the pheromone will evap-

orate between two passages of the workers. This is an example of negative

feedback, since pheromone evaporation limits “the snowball effect” due to

positive feedback, and also of bifurcation, since spatial density of termites

acts as a parameter for the emergence of pillars. This macroscopic structure

emerges over a medium that was initially uniform, and it is obviously not

unique (it could have emerged in a different location). This process is based

on multiple interactions, since the emergence of the pillar is not due to the

“individual initiative” (the single worker does not seem to remember where

pellets have been located, nor to follow a given plan, but just to react to the

actions of other workers).
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6.2.3 Stigmergy

In particular, in this pillar construction process, we do not see direct termite

to termite interaction, but just the response by the individual workers to

particular features of the environment (pellet deposits size and correspond-

ing pheromone densities), features which are determined by the actions of

other termites. This form of indirect communication through modification

of the environment is an example of stigmergy, a term which was introduced

by Grassé [3] to describe how, in termite nest building, the actions of the

individual termites are not determined by direct communication between

workers, but by the nest structure (which is determined by the actions of

the workers). Stigmergy thus means communication through actions (on the

environment).

6.2.4 Pheromone based trail following in ants

Another example, more closely related to the model that we are going to

expose, is that of trail tracing and following in foraging ants, which is also

based on pheromone communication. Deneunburg et al. [4] showed that

path selection to a food source in the Argentine ant Linepithema humile is

based on self organisation. In their experiment, a food source is separated

from the nest by a bridge with two equally long branches. Initially the two

branches are equally probable to be taken, since there is no pheromone on

them. Nevertheless, random fluctuations will cause one of the branches to

be chosen by a few more ants, and thus to have a little more pheromone.

The positive feedback due to this pheromone difference causes more ants to

choose that branch, which finally turns out to be the only exploited one.

This is a nice example of multistability: the two paths were initially equally

probable to be chosen, but the system always finishes in one of the two stable

states.

Deneunburg et al. [4] developed a simple mathematical model that could

describe the results of the experiment. If we denote with A and B the two

branches, with Ai + Bi = i the number of ants that have chosen branches A

and B, the probability PA (PB) that ant i + 1 chooses branch A (B) is

PA =
(k + Ai)

n

(k + Ai)
n + (k + Bi)

n = 1 − PB (6.1)
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The probability to choose a given branch grows with the number of ants that

have already chosen it, i.e. with the amount of laid pheromone (assuming

no evaporation, which means that, as it actually was the case, the time scale

of pheromone evaporation was considerably higher than that of the experi-

ment). k quantifies the degree of attraction of an unmarked branch, while n

determines the non-linearity of the choice function (the values of the param-

eters that gave the best fit to the experiment were k ≈ 20 and n ≈ 2).

If the two branches were of different length, the first ants to come back from

the food source would be the ones that took two times the shortest path,

causing at that time a larger amount of pheromone to be on that path, and

thus influencing the system to converge to a state in which only the shortest

path is exploited. Experiments show indeed that the chance of the shortest

path to be selected grows with the ratio r between the branches.

One of the most interesting features of the behaviour of social insects colonies

is their ability to adapt to environmental changes (see for example the dis-

cussion about task allocation), but in this particular case the ants were not

able to switch to the short path in case this one was presented to the colony

after that the longest one had already been chosen (nor they were able to

switch to the shortest path in case that initial fluctuation led to the choice

of the longest one). A different species of ants, Lasius niger [5], resulted to

be able to choose systematically the shortest path, but this ability was due

to the combination of pheromone based mass recruitment (a term that refers

to a process whereby an ant chooses a path to a source food on the base of

a chemical) and individual memory.

6.2.5 Ant colony optimisation

The ability of social insect colonies of solving complex and time changing

problems, in a flexible and robust way, using simple and decentralised units,

has attracted the interest of researchers in the field of intelligent system

design, since many of these tasks have a counterpart in engineering and com-

puter science (see [2] for a throughout exposition of the subject).

A classical example of a “social insect inspired” algorithm is the application

of ant colony optimisation (i.e. the use of pheromone trail laying and follow-

ing techniques) to the travelling salesman problem (TSP).

TPS is a path optimisation problem whose goal is to find a closed tour of

minimum length connecting n given cities, each one being visited once and
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just once. We do not enter in the details of how this problem can be solved

with the aid of ant colony optimisation techniques (see for example [6, 7])

but we just stress that in order to solve this complex task, it is necessary to

avoid to be trapped on suboptimal solutions, as could happen for the sim-

pler task of choosing the shortest path from the nest to the food source for

Linepithema humile. In ant colony optimisation this is usually accomplished

by introducing negative feedback as pheromone evaporation over short time

scales. Since a well marked pheromone trail is harder to maintain if the path

is longer, pheromone evaporation allows the colony to exploit systematically

the shortest path [2].

It is interesting to notice that in actual ant systems pheromone is persistent,

i.e. evaporation is insignificant on relevant time scales. Biological systems

can be an useful inspiration in computer science and engineering problem

solving, but the latter do not suffer from biological limitations and do not

need to be biologically plausible (in contrast with modelling, i.e. with the

use of computer models in order to understand and explain biological sys-

tems). In general biological evolution has to solve very complex problems,

in which optimisation undergoes many constraints, including ecological ones:

for example, in the case of Linepithema humile it is probable that sticking to

a known even if suboptimal solution is more efficient from the point of view

of trail protection (from competition with other colonies or predation) than

further seek for a better solution (see again [2]).

6.3 Description of the model

The model that we are going to expose is to be intended basically as an

abstract model that studies how agents located in a mobility system with a

traffic problem can develop strategies (in particular based on communication)

aimed to optimise traffic flow. Since we want the model to be simple and

general (i.e. we want it to capture the basic features of any mobility system

more than describe an actual mobility system, nor a particular class of mo-

bility systems), we decided to use point like agents moving at discrete time

steps on a discrete spatial grid. This setting allows us to avoid a detailed

description of the agent to agent dynamics, which is expressed by simple

rules based on the number of agents on each site, without renouncing to the

individual agent (distributed autonomous) approach. For the same need of

simplicity, communication is not introduced in the model as a direct agent
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Figure 6.1: Basic structure of the mobility system. Thick lines correspond

to “wide roads”, i.e. to sites on which agents are allowed to have an higher

“speed” (probability to move).

to agent interaction, but as indirect communication through a modification

of the environment (stigmergy).

Nevertheless we provide also an interpretation according to which our model

corresponds to a given class of actual mobility systems, studied on a space-

time scale some order of magnitude higher than that of actual agent to agent

interactions, which are thus substituted by suitable averages.

6.3.1 Dynamics of motion on the grid

Structure of the grid

Our mobility system is constituted by a Manhattan square grid (figure 6.1).

The grid can in principle be non homogeneous, i.e. the agents are allowed

to have a different maximum speed on different sites of the grid (we define

below what is meant by an agent speed and maximum speed). If that is the

case, sites on which an higher speed is allowed are disposed in rows (thick

lines in figure 6.1) in order to form “highways”.
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Definition of an agent’s velocity

At each time step agents are located on a site of the grid. In principle,

any number of agents can be located on the same site, whose state is thus

identified by the number of agents on it n(i, j) (where (i, j) denotes the

coordinates of the site). At each time step agents can perform one of five

possible actions, whose result is to move on a first neighbour site, or stand

still on the same site. Since actions are always performed at discrete time

steps, and their result is a space step displacement or no displacement, the

speed of the agent, if defined as the ratio between displacement and time,

would always be equal to 1 or 0 (in adimensional space time grid units). To

allow agents to have different velocities, speed is defined in our model on a

probabilistic base. In particular we will define the maximum allowed speed

of an agent on a given site of the grid as its maximum probability to perform

an action, or 0 ≤ wij ≤ 1 (since it is a site dependent quantity, we will refer

to it also as the “width” of site (i, j)).

We refer to wij as the maximum speed or probability for two reasons: first

of all, w is neither the probability to move nor the probability to move in

a given direction, just the probability to perform one of the five possible

actions. Which action will be performed is decided by the agent decision

mechanism, which is described below. The second reason is that w gives the

probability for the agent to move just in the case it is located alone on the

site, i.e. if n(i, j) = 1.

Probability to act and the effect of crowding

In general we define, for any occupied site, a traffic function 0 ≤ tij(n(i, j)) ≤
1 as

tij(n(i, j)) =

(

1

n(i, j)

)γij

(6.2)

where γij ≥ 0 is a (site dependent) traffic factor. t(n) determines the de-

pendence of the velocity of the agent on the overall number of agents on the

site. It is defined in such a way that if the agent is alone on the site we have

t(1) = 1, for any γ value. We have t(n) = 1 also when γ = 0, regardless of

the n value. When γ > 0, t is a decreasing function of n and it is a decreasing

function of γ at fixed n (we remind that n ∈ N, but in the n = 0 case it is

meaningless to define the probability to perform an action since no agent is

present).
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To summarise, we define the probability to perform an action or speed of an

agent located in site (i, j) as the product of the width or maximum speed of

that site with the traffic function

pij(n(i, j)) = wijtij(n(i, j)) (6.3)

6.3.2 Pheromone

At each time step an agent “tries” to perform an action, and succeeds with

probability p (equation 6.3). Depending on the success of this attempt, the

agent drops, on the site on which it tried to perform the action, a given

amount of pheromone, namely D0 in case of unsuccess and D1 in case of

success (regardless of the performed action). Following [8], we define the

dynamics of the dropped and the evaporated pheromone fields. The dynamics

of dropped pheromone is given by

D(t + 1, i, j) = (1 − β)D(t, i, j) + ∆D(t, i, j) (6.4)

where by D(t, i, j) we mean the amount of dropped pheromone on site of

coordinates (i, j) at time t, by β the evaporation rate coefficient of dropped

pheromone and by ∆D(t, i, j) =
∑

k∈n Dl
k the sum of pheromone dropped

by the n agents located on site (i, j) at time t as the result of their success

(Dl = D1) or unsuccess (Dl = D0) of their attempt to perform an action.

The dynamics of evaporated pheromone is given by a discrete diffusion equa-

tion

P (t + 1, i, j) = βD(t, i, j) − 5δP (t, i, j) (6.5)

+δ(P (t, i− 1, j) + P (t, i + 1, j) + P (t, i, j − 1) + P (t, i, j + 1))

where P (t, i, j) is the amount of evaporated pheromone on site (i, j) at time

t, and δ is the diffusion rate coefficient (the factor 5 accounts for diffusion in

the vertical direction, i.e. for pheromone which leaves the plane). We allow

in principle the D and P fields to assume also negative values, i.e. we let

D0, D1 ∈ R. This fields could be interpreted as the difference between two

different pheromone fields, or, more properly (since this is a model inspired

by a biological system but not a model of a biological system) simply as a

diffusing fields with sign that our agents use to communicate.
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6.3.3 Decision mechanism and its evolution

At the initial time, agents are located in a starting point s = (sx, sy), and

have to reach a goal point g = (gx, gy).

The decision mechanism, applied, as we said before, with probability pij(nij)

at each time step, is based on a fully connected neural network with an hidden

layer (see figure 6.2 and discussion below) that takes as 6 inputs the distances

in the x and and y coordinates of the agent to its goal, and the “gradients”

of the (evaporated) pheromone field in the direction of the 4 neighbouring

sites, that is, defining x = (x, y) as the site in which the agent is located at

the moment of decision, the six inputs Ii are given by

I1 = gx − x ≡ ∆x

I2 = gy − y ≡ ∆y

I3 = P (i, j) − P (i + 1, j)

I4 = P (i, j) − P (i − 1, j)

I5 = P (i, j) − P (i, j + 1)

I6 = P (i, j) − P (i, j − 1) (6.6)

The five outputs of the network correspond to the five possible actions, i.e.

to move to a first neighbouring site or stand still, and the action with the

highest output value is deterministically performed.

The decision mechanism of agents is evolved using a genetic algorithm. Each

generation of the genetic algorithm is composed of various runs. In each run,

to any agent are assigned randomly chosen start and goal points (which are

requested to be at least at a given distance one from the other), in order to

generalise the ability of the agent to reach any point of the grid starting from

any other point. The fitness of the agent is simply obtained as the ratio

|sx − gx| + |sy − gy|
τ

(6.7)

of the Manhattan distance from the start to the goal over the time τ needed

to reach the goal (fitness is zero if the goal is not reached), averaged over

runs. Defining h as the number of nodes in the hidden layer, the genetic code

of agents is given by the 7 × (h + 1) × 5 connections between the nodes and

biases of the network, connections that are directly expressed as real num-

bers. As shown in figure 6.2, h is not fixed but is determined by evolution.

The evolution of the neural network structure has been performed using the
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Figure 6.2: Evolvable structure of the neural network. The algorithm de-

velops in parallel different structures and chooses the most apt to solve the

problem.

following strategy, which has been inspired by [9, 10] (that actually describe

more complex strategies than the simple one we used). In the first generation

agents were divided in ns families or species, each family with a fixed number

h of hidden neurons. For gs generations, at the end of each generation, tour-

nament selection is performed inside the boundaries of a single family, and

thus the size of species remains fixed (in order to “protect” families whose

evolution is slower) but any gs generations there is a “revolutionary” tourna-

ment selection which is performed without respect to the family boundaries,

and thus changes the size of species (the GA does not use a mutation operator

on the structure of the networks, but just a selection operator. Furthermore,

the selection operator is not applied at each generation but just any gs gen-

erations). The size of tournament selection is then adapted to the size of the

family.

We decided to use this method because in the model we use a very large num-

ber of individuals and thus of genetic codes and for this reason we wanted to

develop in a parallel way different structures, without bothering about which

structure was a priori more apt to a solution of the problem, nor need to

repeat many simulations with a fixed number of hidden neurons to find the

optimal solution.

Mutation is performed adding a Gaussian error to the values of the con-

nections, while the number of hidden neurons h can be inherited but not
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mutated, and thus there is not the problem of creating new connections.

The use of feedforward neural networks with an hidden layer, and the par-

allel test of different numbers of hidden units, should allow us to explore a

very large space of solutions regarding the choice of a path from the starting

point to the goal (see chapter 2.3.2 for the general properties of feedforward

networks).

6.3.4 An interpretation of dynamics and communica-

tion

As we said before the aim of the model is to introduce in a simple way

a traffic flow problem and a communication system aimed to solve it. Our

model introduces both a static (time constant, due to the site width w) and a

dynamic (time changing, due to the traffic function t(n)) traffic flow problem.

If agents are located on a “narrow” site, or are in a large number over the

same site, their probability p to act is very low. Agents can signal the local

state of the grid through a “mark” left on the the environment, a mark that

depends on their individual experience (their success in trying to perform an

action), and this mark is an information that can reach also distant agents

through pheromone evaporation and diffusion. We do not provide agents with

an ability to use this information (there is not in our model an equivalent

of equation (6.1) in which pheromone concentrations are directly connected

to path choices), and let evolution make such an ability emerge (together

with, as we will see, other communication unrelated traffic flow optimising

behaviours).

Nevertheless we can provide an interpretation in which our model can be

seen as a large scale model for a more realistic mobility system. Let us

consider a group of agents with a finite body size moving on a network with

finite carrying capabilities (two examples could be the road system and the

underground system of an urban area). If a large number of agents is located

in the same portion of the system, traffic turns slower (too much cars in

the same road or crossroad cause a traffic jam; if too much passengers are

in an underground station part of them cannot get on the train). If our

purpose is to describe the overall behaviour of the system, usually we do not

want to or cannot describe in detail the physical interactions between agents

and of agents with the medium, and prefer to use just point like agents

moving on a discrete grid. Each site of the grid represents a portion of the
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actual system whose dimension are a few orders of magnitude higher than

the physical dimension of agents (for example, a crossroad and a portion of

the roads around it; or an underground station and the portion of railway

to the neighbouring stations), and the physical interactions are replaced by

simple rules that express the fact that with growing densities the motion

slows down, and also eventual spatial differences in the medium (the t(n)

and w in our model).

“Pheromone” communication can be interpreted in the following way: agents

in our model are not provided with memory (for the sake of simplicity; they

could be viewed as strangers, who have never been in town before) and are

not provided with any centralised information system, and thus in order

to move in an efficient way they have to communicate with other agents.

But since the model is a large scale model that does not describe actual

agent to agent interaction, but only averaged interactions through simple

rules, it also does not introduce direct communication. We can think that

every time the agent experiences something about the state of the system,

it “drops a comment” (dropped pheromone) about it, a comment that turns

into a rumour and spreads around (evaporated pheromone) until it is picked

up by another agent (as a neural network input). Which is the medium

over which rumours-pheromone diffuses? We can think that in the actual

mobility system two kinds of agents are present, moving ones and stationary

ones. While the moving ones are represented in our model as the pheromone

dropping, action taking ones, the stationary agents are just represented by

the medium over which rumours diffuse.

6.3.5 Parameters

In all simulations we have used a 50 × 50 grid, and an overall number of

N = 4000 agents, divided in ns = 10 families with values of the number of

hidden neurons h going from 5 to 14. The agent population was completely

heterogeneous, i.e. in the first generation N different genetic codes were

created, and all these agents were tested at the same time on the same grid.

Tournament selection was initially performed over 4 randomly chosen agents,

and then the size of tournament was scaled as [Ns/100] (where Ns is the

species size, and square brackets denote the integer part). Each generation

was composed of 20 different runs in which agents had different start and

goal points, constrained only by the request to be at a Manhattan distance
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d = |sx − gx| + |sy − gy| > 35. Each run of each generation lasted 2500

time steps, and agents were removed from the grid when they reached their

goal. The size of species was allowed to change every gs = 100 generations.

Each evolutionary experiment consisted of at least 500 generations (but we

performed up to 2000 generations in many experiments). The pheromone

diffusion and evaporation rates were kept fixed to β = 0.1 and δ = 0.1.

6.4 Evolutionary experiments

6.4.1 Description of the experiments

To understand which kinds of strategies agents could develop in order to op-

timise their motion on the mobility system, we performed many simulations

under different conditions, which means that we both used homogeneous grids

(i.e. grids on which all the sites had the same width, wij = w ∀ i, j) and het-

erogeneous grids (i.e. grids with a structure corresponding to figure 6.1), and

with different values of the traffic factor γ. For each experimental setting,

we evolved both agents that could drop pheromone, and agents that could

not drop it (D0 = D1 = 0) and thus could not develop any communication

system. Once the evolution process was over, we extracted “evolved agents”

as the “average” agent over the best population over the whole evolutionary

history (i.e., we obtained a family of 4000 clones, the genetic code of each

clone being obtained as the average code in the family with the higher fit-

ness throughout evolution). These best agents were tested in all the possible

environments, the pheromone dropping agents being tested both with and

without pheromone. A test corresponded to an analysis of the fitness of the

4000 clones over 20 runs of the experiment, i.e. to 8 · 104 individual tests.

Agents selected in this way perform better than the individual agents that

had the highest fitness during evolution, once the latter were tested over a

large number of trials and inside a population of clones.

This process has been performed to investigate the ability of evolution to

optimise traffic flow under different situations, to study the role of communi-

cation, and also to analyse if the found solutions were stable under changes

of the environment. We first describe the experiments one by one, and then

summarise the results in tables 6.1, 6.2 and 6.3.
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6.4.2 Simulations without traffic jams, γ = 0

We first studied the behaviour of the system in case γij = 0, i.e. when the

velocity of agents on a given site did not depend on the number of agents

located on that site. In this situation agents have to learn to reach their goal

(on the base of the “distance to the goal” inputs) and to use properly the

sites with an high w value to reach quickly their goal. Since agents are not

provided with a map of the network nor know their actual position (they just

know their relative position with respect to their goal), their ability to attain

an high fitness strongly depends on the development of a communication

system.

Different settings

The experiments were performed in the following way. First we evolved

agents on a grid in which all the sites had “width” w = 0.05. Since the grid

is homogeneous, there is no need for communication, and thus we fixed the

amount of dropped pheromone to zero (both for successful and unsuccessful

agents, i.e. D0 = D1 = 0). Then we modified the structure of the grid accord-

ing to figure 6.1, in which “highways” had width w = 1. In this environment

we evolved both agents that could and could not drop pheromone.

Fixed pheromone dropping

For pheromone dropping agents, after a few attempts with different D0 and

D1 values, we arrived at the conclusion that the best performances could be

attained using a positive value of D0 and a null value of D1. (In particular we

used D0 = 1, D1 = 0). This choice allows a clear distinction between zones

with high and low w values, and works much better than the D0 = 0, D1 > 0

choice because it allows a better “description” of the grid (agents spend a

longer time on sites with low w and thus is better if they can communicate

“their experience” when located on these sites, i.e. when they cannot move,

at least if quite high values of the δ and β evaporation and diffusion rates

are used).

Evolving pheromone dropping

Finally we tried to evolve the pheromone dropping mechanism directly with

a genetic algorithm. More explicitly we evolved the values of two parameters
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Figure 6.3: Evolution of fitness through generations for agents evolved in an

homogeneous grid (black line), in a heterogeneous one without pheromone

(red line), in an heterogeneous one with a fixed pheromone dropping system

(blue) and with an evolving pheromone dropping system (green).

D̄C and D̄B defined in such a way that the amount of dropped pheromone

D was given by

D = ID̄C + D̄B (6.8)

were I is the input of an extremely simple “neural network” (with a single

connection D̄C , bias D̄B and output D) that assumes value 1 if the agent is

allowed to perform an action and 0 if it is not allowed to (these parameter

are related to D0 and D1 by formulae D0 = D̄B, D1 = D̄C + D̄B and thus

D̄C = −D̄B is qualitatively equivalent to our previous D0 6= 0, D1 = 0

choice).

Results

Figure 6.3 shows the evolution of fitness through generations in the four

cases. Agents evolved in the homogeneous grid reach and remain at the

maximum allowed fitness f ≈ 0.050, which means that they are able to go

straightly to the goal. When the evolved best agents (according to the defi-

nition previously given) were tested in the heterogeneous environment, they

had f ≈ 0.062.
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Agents evolved in the heterogeneous environment reached a maximum fit-

ness f ≈ 0.068, while the best evolved agents performed with the maximum

available fitness f ≈ 0.050 in the homogeneous grid and with f ≈ 0.070 in

the heterogeneous one. A surprising point is that agents evolved in the het-

erogeneous grid can have, in this environment, an higher fitness than those

evolved in the homogeneous one, even without any information about neither

the coordinates nor the width of the point they are located in. This is due

to the fact that even if they do not have any direct knowledge neither of the

overall structure of the grid, neither of the point they are located on, they

have an “historical” (i.e. due to evolution) knowledge (or better, memory) of

the structure of the grid. In fact, evolution leads agents to develop, between

all the possible paths of minimum Manhatthan length to the goal, those that

make higher the probability to use the “highways” of maximum width (a

similar phenomenon will be deeply analysed in the γ > 0 case in sections

6.4.3 and 6.5). As we will see this choice of a particular path corresponds

to a “symmetry breaking traffic flow rule”. In this case, as shown in figure

6.4, this rule corresponds to choosing paths with a single change of direction.

Since sites with an high value of w are located along straight lines (figure

6.1) if (by chance) the agent is located on one of these “highways” it will

remain on it for a longer time.

Agents evolved with a fixed pheromone dropping mechanism reached a maxi-

mum fitness f ≈ 0.173 during evolution and f ≈ 0.188 when tested as clones,

while if tested without pheromone they had the maximum possible fitness in

the homogeneous environment, i.e. f ≈ 0.050, and f ≈ 0.063 in the hetero-

geneous one, exactly as the agents evolved in the homogeneous environment

without pheromone, i.e. they do not develop any “traffic flow rule”. Never-

theless, since in presence of pheromone the fitness is three times higher than

in absence of pheromone, we can say that an efficient communication system

has emerged between the agents.

An analysis of the trajectories of these agents in presence and absence of

pheromone (figure 6.5) shows that when the communication system is switched

off the agents evolved with pheromone behave just as those evolved without

pheromone (compare figure 6.4) while when they can communicate they are

attracted by the “highways”, a behaviour which results into an increase of

their fitness. Nevertheless, even the trajectories that agents follow when com-

municating are always trajectories that minimise the Manhattan distance,

and not the time to reach the goal. (More precisely, in a first approximation,
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Figure 6.4: Trajectories of agents evolved in a homogeneous grid (black lines)

and in a heterogeneous one (red lines). The second class of curves, with a

single change of direction, makes more probable the use of “highways” of

“wide” sites in figure 6.1.

agents choose, between the trajectories of minimal Manhattan distance, those

that minimise the time to reach the goal). This is due to the fact that agents

have only local and not global information about the structure of the grid,

and thus cannot choose a path that corresponds to a global time minimum,

but just a minimum between the paths of minimal Manhattan distance to

the goal (their distance to the goal is the only global information provided).

Deviations from these paths of minimal distance and time are present, but

are probably due to the fact that this local information provided to agents is

not absolute but depends on the other agents’ experience, and is thus par-

tially incomplete (and time varying).

As figure 6.3 clearly shows, the results obtained when evolving also the pheromone

dropping system are worst and more instable than those obtained with a

fixed pheromone dropping system. Nevertheless also in this case an effec-

tive communication system emerges (the maximum fitness during evolution

is f ≈ 0.155, more than twice that obtained by agents evolved without

pheromone). Furthermore, the behaviour of evolved agents is very simi-

lar to that obtained by agents using a fixed pheromone dropping system

(f ≈ 0.190).
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Figure 6.5: Trajectories of agents evolved with a fixed pheromone dropping

mechanism. Red lines show the behaviour in absence of pheromone, while

green and violet lines those of agents using pheromone. The “highways” of

wide sites are shown by black lines.

Evolution of the pheromone dropping system (figure 6.6) clearly shows that

the D1 = 0 choice is the most effective one, since there is a clear tendency to

have D̄C = −D̄B (see equation (6.8)).

Comments

We can thus say that an effective (even if not necessarily optimal) pheromone

based communication can emerge between agents evolved in environments

in which“highways” on which an higher speed is possible are present. This

communication system allows agents to choose trajectories to their goal that

use effectively these “highways”. In order to have a pheromone field that

describes in an appropriate way the structure of the grid, and thus effectively

leads agents, an adequate exploration of the grid is necessary. It is thus

not surprising that, as the number of agents gets higher, the communication

mechanism gets better (figure 6.7). Even when a communication system is

not available, evolution leads agents to exploit the geometry of the system in

the best possible way.
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Figure 6.6: Evolution of D̄C (red line) and D̄B (green line).
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Figure 6.7: Evolution of fitness through generations for agents with a fixed

dropping pheromone system. The black line shows the results obtained with

N = 4000 agents, the red one with N = 400, and the green one with N = 200.

(Discontinuous jumps in fitness are due to the particular form of the genetic

algorithm that evolves the neural network structure).
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Figure 6.8: Evolution of fitness through generations for agents in an homo-

geneous grid with γ > 0. Left: γ = 1, right: γ = 2. Red lines show agents

using pheromone, black ones those not using it.

6.4.3 Traffic jams in a homogeneous network, γ > 0

Using wij = 1, γij = γ > 0 ∀ i, j we switch to the problem of avoiding traffic

jams, i.e. overcrowded sites. This problem is qualitatively different from the

previous one, since the velocity pij (equation (6.3)) is time dependent and it

is not trivial (if not impossible) to find a priori a time minimising path to

the goal.

Figure 6.8 shows the evolution of fitness in the γ = 1 and γ = 2 cases, for

agents using (D0 = 1, D1 = 0) or not (D0 = 0, D1 = 0) pheromone.

Traffic flow rules

The results show clearly that effective communication emerged only in the

γ = 2 case. In order to understand why agents evolved with pheromone

could not develop communication in the γ = 1 case, we have to notice that

the performance of evolved clones (f ≈ 0.380 both for agents using or not

pheromone) was higher than that of agents going straightly to the goal (i.e.

agents evolved without pheromone in the homogeneous γ = 0 grid), which

resulted to be, in the γ = 1 homogeneous setting, f ≈ 0.330. This means

that agents evolved in the γ = 1 case had developed a “traffic flow rule” i.e.

the choice of a particular path to the goal that minimises the traffic problem.

In the γ = 2 case the fitness of evolved clones was f ≈ 0.037 for agents not

using pheromone, f ≈ 0.114 for those using it, while it was f ≈ 0.023 for

agents going straight to the goal, showing also in this case the presence of
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a traffic flow rule (since agents going straight to the goal have lower fitness

than those evolved in the γ = 2 environment but not using pheromone).

An analysis of the trajectories of agents evolved without pheromone in the

homogeneous grid for different values of γ helps us to understand the nature

of this traffic flow rule (figure 6.9). Agents evolved with γ = 1 follow paths

with few changes of directions, similar to those of pheromone dropping agents

in the heterogeneous γ = 0 case (see figure 6.5). But a deeper analysis (figure

6.10) shows two differences: first, agents evolved with γ = 1 do not follow

paths of minimal Manhattan distance, since little detours are present, and

furthermore, all the trajectories are followed clockwise (or all counter clock

wise, depending on the output of the evolutionary process). When γ = 2,

the detour from paths of minimal Manhattan distance is stronger (actually

in the γ = 2 case the dependence of the trajectory on the position of the

start and goal points gets stronger and an analysis of the traffic flow rule

is harder to perform, as shown in figure 6.11. Probably this dependence on

initial conditions optimises the overall motion of the system. It is quite clear,

from figure 6.11, that the motion of agents is in some way guided by the edge

of the grid. This edge had been realise as a constraint on the possible moves

of the agents, but evolution led agents to exploit this constraint.). A deeper

analysis of how and why these rules emerge is performed in section 6.5.

Traffic flow rules and communication

Finally an analysis of the trajectories of pheromone dropping agents evolved

with γ = 2 shows clearly that in this case an effective communication system

overlaps a traffic flow rule (figure 6.12). The traffic flow rule corresponds

to the (evolutionary) memory of the geometry of the mobility system, and

suggests to the agent the way to behave in absence of communication based

inputs, while pheromone communication gives to the agent time varying in-

formation about the current state of the area of the grid it is located on. If

the evolved agents are tested suppressing pheromone, their fitness drops from

f ≈ 0.114 to f ≈ 0.031. This value is higher than that of agents without

traffic flow rules, but lower than that of those who developed a pheromone

independent traffic flow rule.
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Figure 6.9: Trajectories of agents evolved in a homogeneous grid without

pheromone. Red lines show trajectories of agents evolved with γ = 0, green

ones those of agents evolved using γ = 1, the blue line a trajectory of the

γ = 2 case.

Comments

The results show that an effective communication system emerges also for

agents moving on a homogeneous γ > 0 grid, i.e. on a mobility system whose

structure is changed along time by the movement of the agents themselves. In

this case, the communication system is developed along with a communication

independent traffic flow rule, that stands for the evolutionary memory of the

geometric structure of the grid. When γ is low enough, communication does

not emerge, and traffic flow is optimised only through the traffic flow rule.

6.4.4 Heterogeneous grid, γ > 0

We finally tried to evolve agents that could solve the problem of moving on

a a priori heterogeneous and time varying mobility system. In particular we

used the usual structure in figure 6.1, with γ = 0 on “narrow” (w = 0.05)

sites, and γ = 2 on “wide” (w = 1) ones. This corresponds to a common sit-

uation in car mobility systems, in which the roads on which an higher speed

is possible are also more prone to traffic jams. To show that in this situation
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Figure 6.10: 15 randomly chosen trajectories of agents evolved in a homo-

geneous grid without pheromone, γ = 1. All the trajectories are followed

counter clock wise, and most of them are not of minimal Manhattan dis-

tance. In the latter case, the agent always performs a change of direction few

steps before arriving to the goal. The position of these changes of direction

helps in understanding the direction in which trajectories are followed. See

also figure 6.19 for a better understanding. To each colour corresponds a

single trajectory.
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Figure 6.11: 10 randomly chosen trajectories of agents evolved in a homoge-

neous grid without pheromone, γ = 2. All the trajectories are followed clock

wise. To each colour corresponds a single trajectory.
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Figure 6.12: Trajectories of agents evolved in a homogeneous grid with

pheromone, γ = 2. Green lines show (three) trajectories followed when

communication was suppressed, while red ones (three) trajectories followed

when agents could communicate. All the trajectories are followed clock wise.
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a dilemma was actually present, we tested on these networks agents going

straightly to the goal, that performed with f ≈ 0.036. Since this value is

lower than the maximum velocity allowed on “narrow” sites, this means that

“highways” are harmful if not used cum grano salis. Agents evolved directly

on the heterogeneous γ > 0 grid without using pheromone performed, once

tested as clones, with f ≈ 0.046 showing that an appropriate pheromone

independent traffic flow rule could increase fitness, even if it remained un-

der the maximum velocity allowed on narrow sites. Finally, agents dropping

pheromone (D0 = 1, D1 = 0, but equivalent results were obtained evolving

also the pheromone dropping mechanism) could perform with f ≈ 0.060, and

thus had evolved an effective communication system.

Figure 6.13 shows the evolution of agents in this environment, while figure

6.14 shows the trajectories of pheromone dropping evolved agents. A com-

parison of figure 6.14 with figure 6.5 shows that while in the γ = 0 case

agents remained as long as possible on wide sites, in the γ = 2 case they

have a tendency to use “highways”, but only for short stretches. These re-

sults suggest thus that evolved agents are able to use “highways” when they

are free from traffic jams, but are able to leave them if they incur in a traffic

jam.

6.4.5 Resume of the results

We have seen that a pheromone based (indirect) communication system can

effectively emerge between agents moving on an idealised mobility system.

The communication system allows agents to have a local knowledge of the

structure of the mobility system and thus to choose properly a path to the

goal. This communication system usually emerges alternatively (or even to-

gether) to a communication independent traffic flow rule which accounts for

the evolutionary memory of the geometric structure of the mobility system.

The communication system showed to be quite general, since when we tested

evolved pheromone dropping agents in environments different from those in

which they had been evolved in, they in general performed with a fitness

higher than that of agents simply going straight to the goal (the only ex-

ceptions being the homogeneous environments with low γ, in which, as we

have seen, is difficult to develop a communication system). For example,

pheromone dropping agents evolved in the heterogeneous γ = 0 grid had

f ≈ 0.041 in the homogeneous γ = 2 grid, a fitness higher than that of
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Figure 6.13: Evolution of fitness through generations for agents in an het-

erogeneous grid with γ = 2. The black line shows the results given by agents

with a given pheromone dropping system, the red line the results for agents

with an evolving pheromone dropping system, while the green line those of

agents that could not drop pheromone.
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Figure 6.14: Trajectories of pheromone dropping agents evolved in a hetero-

geneous grid with γ = 2. The black lines show the “wide” sites (“highways”).
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Table 6.1: Agents evolved without pheromone in homogeneous environments,

tested in different environments. Columns correspond to different evolved

agents, lines to different test environments. np means no pheromone, pd

means pheromone dropping, ho means homogeneous, ht means heteroge-

neous.

np, ho, γ = 0 np, ho, γ = 1 np, ho, γ = 2

np, ho, γ = 0 0.050 0.047 0.039

np, ho, γ = 1 0.329 0.381 0.293

np, ho, γ = 2 0.023 0.033 0.037

np, ht, γ = 0 0.062 0.065 0.048

np, ht, γ = 2 0.037 0.045 0.032

agents going straight to the goal (f ≈ 0.023), but also of agents that had de-

veloped a pheromone independent traffic flow rule for that grid (f ≈ 0.037).

In that environment, agents evolved with pheromone in the homogeneous

γ = 1 grid reached f ≈ 0.058 and those evolved in the heterogeneous γ = 2

one an even higher f ≈ 0.075.

We have also seen that agents were able to evolve not only their ability to

use the pheromone fields, but also the pheromone dropping mechanism. In

the latter case evolution was more unstable, but the performance of evolved

agents was as high as in the case of agents evolved with a fixed pheromone

dropping system. The evolution of the pheromone dropping mechanism is

not trivial due to heterogeneity: an agent could be able to develop an efficient

pheromone dropping mechanism, but not to exploit it, and thus the charac-

ter would disappear even if increasing the overall fitness of the population.

All the performances of evolved agents in the different environments are

shown in tables 6.1, 6.2 and 6.3 (the results regarding agents with an evolved

pheromone dropping system are not shown, since they are almost identical to

those of the corresponding evolved agents with a fixed pheromone dropping

system).

Nevertheless in order to develop an optimal communication system, it

would be probably necessary to test (or maybe evolve) different values of the

pheromone evaporation and diffusion rates, since in order to have an optimal

information about the state of the grid, it is important also to optimise the
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Table 6.2: Agents evolved without pheromone in heterogeneous environ-

ments, tested in different environments. See the legend of table 6.1.

np, ht, γ = 0 np, ht, γ = 2

np, ho, γ = 0 0.050 0.050

np, ho, γ = 1 0.380 0.373

np, ho, γ = 2 0.028 0.029

np, ht, γ = 0 0.070 0.065

np, ht, γ = 2 0.047 0.046

Table 6.3: Agents evolved with pheromone , tested in different environments.

See the legend of table 6.1.

pd, ht, γ = 0 pd, ho, γ = 1 pd, ho, γ = 2 pd, ht, γ = 2

np, ho, γ = 0 0.050 0.047 0.048 0.050

pd, ho, γ = 0 0.049 0.047 0.036 0.049

np, ho, γ = 1 0.327 0.374 0.370 0.328

pd, ho, γ = 1 0.278 0.381 0.308 0.332

np, ho, γ = 2 0.021 0.034 0.031 0.023

pd, ho, γ = 2 0.041 0.058 0.114 0.075

np, ht, γ = 0 0.063 0.062 0.063 0.063

pd, ht, γ = 0 0.188 0.070 0.076 0.147

np, ht, γ = 2 0.037 0.044 0.044 0.039

pd, ht, γ = 2 0.046 0.048 0.045 0.060
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way in which information diffuses over the grid.

6.4.6 Notes on the evolution of the structure of the

network

In order to obtain an optimal system, it would be probably also necessary

a more accurate study of the structure of the network. It is also probable

that using more complex networks different traffic flow optimising strategies

would emerge in the system. Nevertheless we think that the study we have

performed nicely accounts about how different strategies can emerge using

quite simple settings.

As we already said, since we used a large number of agents and thus had

a large number of available genetic codes, we thought that we could avoid

to bother about the particular structure of the neural network, and try to

develop in a parallel way different values of the number of hidden neurons h.

Nevertheless we have not performed a large enough number of simulations

(at least not in the same environment) to obtain a valid statistic about the

evolution of the number of nodes. In general a few families invaded the

population. In figure 6.15 we show a case in which the h = 13 family invaded

all the population.

6.5 Emergence of traffic flow rules

6.5.1 Traffic flow rules

We have seen that traffic flow can be optimised in our mobility system in two

ways: through the emergence of communication an through the emergence

of a traffic flow rule. The are two main differences between these two phe-

nomena: the first one relies on multiple interactions between agents (even

if mediated through the environment) and on local information, while the

second one relies on individual behaviour and global information about the

structure of the mobility system.

Thus, to a first glance, the definition of self organisation given in section

6.2.2 and chapter 1.4 does not apply to traffic flow rules, but the distinction

is more subtle, since actually no global information is provided to agents,

but it is acquired through local interaction during evolution. We could say

that the traffic flow rule by itself is not a self organisation phenomenon, but
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Figure 6.15: Evolution of the number of neurons in the hidden layer, in the

heterogeneous γ = 2 case. h = 13 invades the population.

the evolutionary process that leads to the rule is in some way a form of self

organisation.

We could define a traffic flow rule as a restriction on the movement of an

individual, which results in an higher collective benefit, i.e. an optimisation

of traffic flow. Many examples of the emergence of global patterns that opti-

mise traffic flow are present both in human and animal societies, for example

in car circulation, as described in [11] and [12], or in pedestrian flow, see

[13, 14, 15] and chapter 5, and between social insects [16].

Focusing on human behaviour, we can say that while the phenomenon of

“stripe formation” when pedestrians flows cross ([15] and chapter 5) is clearly

due to local interaction and thus purely a phenomenon of self organisation,

the situation is slightly different for pedestrians lane formation, and com-

pletely different for car circulation. As described in [13, 14], even if lane

formation is basically due to self organisation, an individual tendency in all

pedestrians (in a given country or geographical area) to walk always on the

same side is surely present. This tendency is often related to the car circula-

tion traffic rule of that country. At the present day, car circulation rules are

present in each country as a centralised form of organisation (imposed by an

authority), which has no dependence on individual interactions (cars travel

always -or almost!- on the side prescribed by the rule, even if no other car is
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present). Nevertheless, they probably emerged through history as a form of

self organisation (see [12]), and thus resemble the emergence of traffic flow

rules in our system.

In some of these cases (car circulation, lane formation) self organisation as-

sumes clearly the form of a symmetry breaking phenomenon, in which one of

two a priori equivalent choices is performed (we refer also to the phenomenon

of multistability, described in section 6.2.2 and chapter 1.4).

6.5.2 Corrections to the model

Introduction of direction

In order to study the emergence of traffic flow rules in our mobility system, we

modify equation (6.3) in order to take in consideration the different directions

in which agents move (since in mobility systems traffic flow rules usually

emerge to avoid collisions between agents moving in different directions), and

we thus define as nk(i, j) the number of agents on the site with coordinates

(i, j) coming from direction k (k = 0, 1, 2, 3, 4 stands for the last action

performed by the agents, for example 0 could stand for going in the direction

of growing xs, 1 for growing ys, etc.) The overall number of agents on the site

is obviously given by n(i, j) =
∑

k nk(i, j), while with n(i, j) we mean the

set of values nk(i, j). For simplicity’s sake we use only homogeneous grids,

and thus we fix γij = γ, wij = 1 ∀ i, j and remove w from our equations. We

thus distinguish between two cases, direction independent and collision.

Direction independent setting

The direction independent setting is completely equivalent to the previous

model in the homogeneous case, and thus the probability to act (or velocity)

of an agent coming from direction l is given by

pl(n(i, j)) =

(

1

n(i, j)

)γ

(6.9)

and for γ = 0 we have p = 1 for any value of nk, i.e. no traffic congestion

can occur. When γ > 0, pl = 1 occurs only if nl = 1, nk = 0 ∀ k 6= l, i.e. if

the agent is alone on the site.
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Collision setting

In the collision setting to calculate pl(n(i, j)) we distinguish between the

agents moving in directions orthogonal to l (or standing still), no, and those

opposite to it, nc, and define

pl(nk(i, j)) =

(

1

1 + 1
2
(
∑

o no(i, j)) + nc(i, j)

)γ

(6.10)

Also in this case the probability to move in direction l is always 1 if γ =

0, while for γ > 0 it does not depend on nl and is equal to 1 if all the

agents have the same direction, i.e. agents moving in the same direction are

not an obstacle for the motion of the others. The agents moving in other

directions slow the motion, and in particular in this setting agents moving

in the opposite direction cause a stronger traffic effect than those moving in

orthogonal ones.

Neural network and GA parameters

Since we are interested in the emergence of a communication independent

traffic flow rule, we remove pheromone from the model, and thus neural

networks use as inputs only the distances ∆x ≡ gx − x and ∆y ≡ gy − y to

the goal from the point x = (x, y) on which the agent is located.

We used in simulations N = 4000 agents with initially randomly chosen

genetic codes (connections) and a fixed network structure, i.e. we did not

try to evolve the number of nodes in the hidden layers. Nevertheless, in some

simulations, we split the agents in ns = 4 different families or species (with

h =5, 6, 7, 8 nodes in the hidden layer), each composed of 1000 agents, that

could not exchange genetic information between them, in order to study how

the evolution processes of different species mutually influenced each other. In

case only one species was present, we used h = 5 nodes in the hidden layer.

All the other parameters (and the fitness function described in equation (6.7))

remained equal to those described in section 6.3.5.

6.5.3 Clock wise and counter-clock wise behaviours

Studying the trajectories of agents evolved in a γ > 0 homogeneous grid (see

for example figure 6.10) we observed that all the trajectories were followed

(counter) clock wise. To study how this behaviour emerges, we classify the
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A

B
Figure 6.16: Four “good” paths (g = 1) from point A to B. The red ones

have almost an equal number of r and l moves, while the blue one is clock

wise (l = 1 r = 0.5) and the green one counter clock wise (r = 0.5 l = 1).

possible moves of agents, and define as “good move” g a move that lowers the

Manhattan distance to the goal, and we split these moves as counter clock

wise (or right-handed r) and clock wise (or left-handed l), corresponding to

the different behaviours in figure 6.16 and table 6.4.

We thus characterise the system by the fraction of g, r and l moves over the

overall number of moves, averaged over all the agents (we will usually refer

to these averaged fractions simply as the g, r and l values of the systems,

assuming values between 0 and 1). Nevertheless agents use more information

that the one shown in table 6.4, since they also know the magnitude of the

distances to the goal, and thus by line of principle any path from the start

to the goal is available (in the sense that we can find a neural network that,

given a starting and a goal point, will perform a given path). Furthermore,

the definition of a “good move” is exact only in the γ = 0 case, since when a

traffic problem is present, as we have seen for example in figure 6.11, it can

be more efficient to choose longer (in Manhattan metric, but not in time)

trajectories. Nevertheless, the given definitions will show to be sufficient to

study the emergence of traffic flow rules in the system, at least for low values

of γ.
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Table 6.4: Definition of “good” (g), “left-handed” (l), “right-handed” (r) and

“wrong” (w) moves on the base of the sign of the distances to the goal.

x++ means direction of growing xs, following the C programming language

convention. Notice that the l and r sets overlap and thus g ≤ l + r.

x++ y++ x- - y- -

∆x > 0 ∆y > 0 g r g l w w

∆x > 0 ∆y < 0 g l w w g r

∆x > 0 ∆y = 0 g r l w w w

∆x < 0 ∆y > 0 w g r g l w

∆x < 0 ∆y < 0 w w g r g l

∆x < 0 ∆y = 0 w w g r l w

∆x = 0 ∆y < 0 w w w g r l

∆x = 0∆y > 0 w g r l w w

6.5.4 Experimental results

Evolution in absence of a traffic problem

We first tested that for γ = 0 no traffic rule emerged. In this situation the

optimal solutions are known, and correspond to perform a g move at each

time step. Following figure 6.16 we expected solutions with an almost equal

number of “left handed” and “right handed” moves to be more probable than

those with “symmetry breaking”, and actually evolution always led to an

almost overall equal number of l and r percentages, both for a single species

with 4000 agents and for 4 different species composed each of 1000 agents.

Every path with g = 1, regardless of the values of r and l, is equally good,

but the ones with a value of r and l around 0.5 are more numerous and thus

represent a kind of “thermodynamic equilibrium” of the evolutionary process

in case γ = 0. The fitness (and thus the percentage of g moves) quickly

reached a value next to 1, showing that the evolutionary process easily solves

the problem.

Evolution of one species in presence of a traffic problem

We then studied the case with γ > 0, using a single species of 4000 agents,

both in the direction independent and in the collision case.
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Figure 6.17: Fitness (green line), g (blue line), l (red line) and r (black line)

moves as a function of the generations for γ = 1 in the case of one species.

Direction independent setting.

In figure 6.17 we show the results of the evolutionary process in the γ = 1

direction independent case. We can see that the two curves for the average

values of l and r moves split during the evolutionary process, reaching in

one case a value next to 1 (≈ 0.9), while in the other one a value next to 0

(≈ 0.1). Since this is a symmetry breaking process, if we perform different

evolutionary experiments, we observe with equal probability the emergence

of a clock wise or counter clock wise motion.

In figure 6.18 we show the average values of l, r and g in the last 100 gen-

erations of the evolutionary process for different values of γ in the direction

independent case, showing that both clock wise and counter clock wise be-

haviours emerge.

As we said before, when γ = 0, we have r ≈ l ≈ 0.5. When γ > 0, we can

distinguish two zones. For low values of γ > 0, while the “winning” (most

performed) move reaches a value next to 1, the “losing” one has a value

around 0.5. This corresponds to a “perfect clock wise” or “perfect counter

clock wise” behaviour according to table 1, as we have verified observing the

trajectories of the agents. For higher values of γ the “losing” move assumes

very low values, while the number of g moves is slightly lower. An analysis
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Figure 6.18: Averages over the last 100 generations as a function of γ: fitness

(green squares), g (blue diamonds), l (red crosses) and r (black circles) moves.

Direction independent setting.

of the trajectories of the agents shows that they are always clock or counter

clock wise (figure 6.19 or figure 6.10), but not in the sense of table 1, since

also “wrong” moves are performed.

According to our interpretation of the results, since the starting and goal

points of the agents are chosen to be far and thus probably located in oppo-

site parts of the mobility system, the centre of the “town” (grid) is a critical

traffic point for agents that perform an almost equal number of l and r moves,

and thus evolution breaks the symmetry making the agents choose a path that

avoids passing in the centre (figure 6.20). While for low values of γ this choice

is performed between all the paths of minimum Manhattan length, for higher

values of γ the agent chooses a longer (but quicker) path that allows it to

stay distant from the centre.

It is interesting to see what happens for very low values of γ (figure 6.21).

In some experiments we have verified the emergence of a traffic flow rule,

with a winning (l or r) choice with a value around 0.9, and a loosing choice

with value around 0.5. Other experiments showed no symmetry breaking,

since l and r had the same value, but this value was not 0.5 but around

0.7. In these cases agents developed only a partial circulation rule, with few
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A

B
Figure 6.19: The blue path from point A to B corresponds to a perfect clock

wise behaviour of minimum Manhattan length with l = 1, r = 0.5; while the

red one has a l next to 1 and r next to 0, is not of minimum length and is

the path chosen by evolved agents for high values of γ.

Figure 6.20: The straight (i.e., with r ≈ l) paths at left have a high proba-

bility to pass through the centre and can cause a traffic jam, while the clock

wise paths at right avoid it.
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Figure 6.21: Averages over the last 100 generations as a function of γ (low

values): fitness (green squares), g (blue diamonds), l (red crosses) and r

(black circles) moves. Direction independent setting.

changes of direction but no clear predilection for clock wise or counter clock

wise motion. The transition to an actual (counter) clock wise rule seems to

happen around γ ≈ 0.05 but the results for low values of γ seem to depend

strongly on the output of the single repetition of the experiment and thus a

larger number of repetitions should be necessary to obtain average values.

The collision case for a single species leads to almost the same results of the

direction dependent case (figure 6.22). In this case the separation between

the two zones (a first one in which paths are of minimum Manhattan length,

and a second one in which detours are possible) occurs for an higher value of

γ, since the traffic effect is reduced because the agents do not interact with

those moving in their same direction and interact more weakly with those

moving in a direction which is not opposite to their one.

Evolution of different species in presence of a traffic problem

In the experiments with a single family it was not completely clear how

symmetry breaking arose. The process is surely due to the appearance of an

agent that uses a clock wise or counter clock wise path to reach the goal and,
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Figure 6.22: Averages over the last 100 generation as a function of γ: fitness

(green squares), g (blue diamonds), l (red crosses) and r (black circles) moves,

in the collision case.

avoiding the centre, performs with a high fitness and passes its genes to the

future generations. What is not clear is if this character simply invades all

the population, or if the motion of the fitter agents influences the evolution

of the others.

In order to understand which hypothesis is right, we have split the population

in ns = 4 different species, that could not exchange genetic information

between them. The results obtained in the direction independent case could

not show clearly which hypothesis was right, since, even if in a few cases we

found hints that the evolution of a species influenced those of the others (see

for example figure 6.23), in general symmetry breaking arose only inside a

single species, but not in the whole population.

The results for the “collision” case showed clearly the emergence of a same

global traffic flow rule in all the different species. In figure 6.24 we show the

evolutionary process for all the species for γ = 2, while in figure 6.25 we show

the γ dependence of the average values of all the moves and of the fitness for

all the species in the last 100 generations. Symmetry breaking, at least for

large values of γ, emerges again as a global property in all the population,

since the values of the l and r averages are always clearly separated. We can
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Figure 6.23: Average fitness over species (green line), average number of

g (blue line), l (red lines) and r (black lines) moves for all the species as

a function of generations for γ = 1 in the direction independent case of 4

species with 5, 6, 7, 8 hidden neurons. Three families developed a counter

clock wise rule, while the fourth one initially used a clock wise rule, then

switched around generation 200 to an equal distribution between l and r

choices, to reach the same r ≈ 0.9, l ≈ 0.1 strategy of the other species

around generation 900.
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Figure 6.24: Average fitness over species (green line), average values of g

(blue line), l (red lines) and r (black lines) moves for all the species as a

function of generations for γ = 2 in the “collision” case with 4 species.
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Figure 6.25: Averages over the last 100 generation as a function of γ: fitness

(green squares), g (blue diamonds), l (red crosses) and r (black circles) moves,

in the “collision” case, 4 species. For γ ≥ 1 circles and crosses are clearly

distinct, i.e. a single rule has emerged in all the species.
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thus assume that the agents following a traffic flow rule are able to influence

the evolution of the other ones.

Also in this case we can see two zones, the first one corresponding to a traffic

rule that follows a trajectory of minimal distance, while for higher values of γ

a traffic rule that follows a longer path (we refer again to figure 6.19) emerges

in all the species. For low values of γ some of the simulations have not shown

the emergence of a clear traffic flow rule in the first 1000 generations. Since

the simulations with a single family lead to a traffic flow rule for the same

values of γ, we can think that the absence of this rule in the 4 species case

is due to a greater difficulty to develop it simultaneously for many families.

The transition to a clear emergence of a traffic flow rule seems to happen

around γ = 1.

The difference between the direction independent and collision case is due to

the fact that in the first case only the geometry, and not the direction, of

trajectories matters, and thus families can develop different rules, while in

the second case the flow is optimised only if all the agents move in the same

direction.

6.6 Conclusions

We have shown that a quite general indirect communication system can

emerge between agents moving in a mobility system, in order to optimise

traffic flow. The communication system can solve both the time independent

problem of finding the paths on which an higher velocity is possible, and

the time varying problem of avoiding traffic jams. Communication emerges

together with a traffic flow rule that depends on the geometry of the mobility

system, as the result of a form of “evolutionary memory”. This rule emerges

as a symmetry breaking choice between paths of equal length when the oc-

currence of traffic jams is quite low, while it emerges as an actual choice of a

longer but quicker path when the occurrence of traffic problems is very high.

We have also shown that, if the motion of the agents depends on the direc-

tion of the motion of the other agents located in the same site, as expected

for a realistic mobility system, the evolution of a group of agents, and thus

their ability to develop a traffic flow rule, can influence the evolution of other

agents even if there is no exchange of genetic information.
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Conclusions

The purpose of this thesis has been the study of artificial life systems start-

ing from the dynamics of basic constituents. In particular we focused on

systems whose fundamental units are individuals capable of perception and

data processing, used as the basis of their decision mechanisms and thus of

their ability to modify the environment. These systems have been studied

using computer models (agent models) in which each individual is an inde-

pendent unit (the system is distributed and autonomous). In particular we

have studied models of the dynamics of agents moving in crowds or in large

scale mobility systems (“urban areas”) and of cells in the immune system.

Even if the fundamental components of these systems are extremely complex,

usually their behaviour is introduced in computer models using simple local

rules, and one of the purposes of our research has been to investigate how

from these simple rules could emerge global self organising properties, also

as the result of an evolutionary process.

After a brief introduction to the basic concepts of interest in the field of artifi-

cial life (chapter 1) and of the computational tools used in the thesis (chapter

2), in the chapters from 3 to 6 we exposed the research projects developed

during the Ph.D. activity. This activity can be divided in two parts: in chap-

ter 3 and 4 we have studied the possible connection between the microscopic

dynamics and the macroscopic one in models with very simple interaction

rules, while in chapters 5 and 6 we have used a more “genuine” Alife ap-

proach based on genetic algorithms and neural networks to study evolving

and emergent properties of complex adapting systems.

In chapter 3 we modify a physical system (interacting charged particles)

in order to make it resemble a perception based interaction (sight). More

precisely, we have introduced a dependence on the relative positions and

velocities in the forces between particles, in order to introduce a “cone of vi-

sion”. As a consequence of this dependence the interaction between particles
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is non Newtonian, since if a particle (an “automaton”) sees another particle,

but is not seen by the latter, the third law of dynamics does not apply. We

have performed an analytical and numerical study of the two body problem,

and a then a numerical study of the statistical properties of the many body

system. To prevent the strong energy dissipation in the many body system

we introduced a “memory effect”, and studied the dependence of the equi-

librium state on the control parameters of the model. We also verified that

for a given range of parameters the equilibrium state of the system results in

a ordered structure ( a “crystal”) and proposed a model with attractive and

repulsive forces in order to simulate a more realistic behaviour.

In chapter 4 we have studied a model inspired by the immune system. T

cells, APC and antigens have been represented as agents moving on two

overlapping discrete grids, and particular attention has been given to the

T cell-APC interaction, simulated as happening on the surface of the cells.

Also a differential equation based mean field theory has been proposed and

the results between the microscopic agent model and the mean field theory

have been compared.

In Chapter 5 we have developed an evolvable crowd dynamics model in which

pedestrians avoid collisions in order to safely reach their goal. The model

was based on the ability of agents to predict the actions of the others using a

“Theory of Mind”, i.e. trying to predict the future actions of the others. The

model presented emergent global self-organisation patterns, which resemble

those of actual pedestrians. We also used this model to study the evolution

of the “level” of Theory of Mind, i.e. we examined for which range of the

control parameters in the model agents developed “recursive thinking”.

In chapter 6 we have studied a mobility system on a larger scale, using a

discrete space-time representation. Agents are controlled by evolving neural

networks, and the model presents the emergence of global and local strate-

gies that optimise traffic flow. In particular, we studied the emergence of

a communication system (inspired by pheromone communication in social

insects) and the emergence of traffic flow rules.

All the models in this thesis are at a preliminary stage and should deserve

more study. In particular, for what concerns the “gas of automata” model

in chapter 3, the relevance with respect to more realistic situations, and thus

the possible application to the study of actual crowd or animal behaviours,

has to be investigated. Also the model on the immune system should be

investigated more deeply, and both the space structure of the environment,
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and the interactions between cells should be formulated in a more biologi-

cally sound way.

The crowd dynamics model in chapter 5 opens different directions of research.

Given the ability of the model to reproduce actual self organising pedestrian

behaviour, we intend to optimise it and to use it in realistic simulations of

pedestrians dynamics (i.e. in environments with a complex topology repro-

ducing actual urban areas or large buildings). We also intend to study more

deeply the self organising properties of the model, with a particular attention

to their dependence on density, comparing the results with those obtained

using more simple models, in the attempt to understand which are the min-

imal requests to reproduce these patterns.

Finally, we would like to use the neural network based approach of chapter

6 to the physical setting of chapter 5, to verify if self organising patters can

result also from a completely emergent behaviour. Furthermore, a first ap-

proach to this problem has shown the emergence of traffic flow rules, similar

to those of chapter 6.
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