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Chapter 1

Physics case

1.1 Heavy ions collisions

Heavy ions reactions are one of the most powerful way to studynuclear matter be-

haviour in extreme conditions of temperature and density. The heavy ions peculiarity

is due to the fact that these reactions are the best way to produce nuclei with high exci-

tation energy and angular momentum. In order to study the mechanisms of heavy ion

reactions the main goal is to classify collisions accordingto some global features; al-

lowing for the identification and the characterization of the source(s). The topology of

each collision is, to a large extent, related both to the impact parameter of the collision

and to a partial or total transformation of the available centre-of-mass kinetic energy of

the relative motion between the two partners of the collisions into disordered motion

(heat).

This dissipation process is governed by several important ingredients. One of them is

the relative velocity between the initial partners of the reactionvAA. The corresponding

reduced relative wavelength associated with a nucleon-nucleon collision then reads

Ż =
~

mvAA
(1.1)

where m is the nucleon mass. According to equation 1.1, the following values (in the

case of symmetrical systems) ofŻ = 6.5, 2.1, 0.67, 0.24 fm are obtained for 1, 10,

1



2 Physics case

100, 1000 AMeV beam energies, respectively. These values have to be compared with

the mean nucleon-nucleon distance in a nucleus (typically 2fm). If Ż exceeds this

distance, a collective behaviour of nucleons during the collision is expected. In other

words, mean field (one-body) effects overcome nucleon-nucleon collisions (two body)

effects. The situation will be reversed ifŻ is smaller than the mean nucleon-nucleon

distance. According to this criterion, it turns out that mean field effects are expected to

be dominant in the low-energy region (below 15 AMeV).

Furthermore, the different reaction mechanisms can be distinguished using the im-

pact parameter b, i.e. the distance between the center of theideal sphere corresponding

to the target to the flight of the projectile, or the angular momentumℓ correlated to this

one. The impact parameter is the order parameter of any theoretical description of nu-

clear collisions, but it is not experimentally accessible.Estimations of b are obtained

by measurable variables monotonically correlated with b. Referring to Fig. 1.1, one

can identify these regions at low energy (E< 10 MeV/u) connected to different reaction

mechanism:

• elastic scattering forℓ > ℓgr, because the distance between projectile and target

nucleus is to such that the nuclear force is completely negligible with respect to

the Coulomb one;

• quasi-elastic scattering forℓDIC < ℓ < ℓgr where the kinematics of the two nuclei

is just slightly perturbed and only few nucleon transfer between projectile and

target is possible;

• deep inelastic scattering (DIC) forℓcrit < ℓ < ℓDIC, characterized by a strong

interaction between the two nuclei with interchange of nucleons (from few nu-

cleons transfer to highly dissipative processes);

• central collisions forℓ < ℓcrit, where the main process is the complete fusion with

the creation of a Compound Nucleus (CN), defined as the complete thermalized
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Figure 1.1: A schematic diagram of the partial wave decomposition of the reaction

cross-section in low incident energy heavy-ion reactions:the abscissa refers to orbital

angular momentum or to the impact parameter.

sum of the projectile and target nucleons without memory of the entrance reac-

tion channel.

To create a CN a central collision with energy high enough to pass through Coulomb

barrier is needed. In fact, the projectile and target are obviously charged with posi-

tive charge due to the presence of the protons, but if they arrive close enough, they

can enter the range of the attractive nuclear strong forces.The process of merging the

single nucleons from the two initial nuclei can be schematized like the mixing of two

different gases with different temperatures inside a fixed volume.

Through subsequent nucleon-nucleon collisions, the nucleons from the projectile loose

some energy giving it to the nucleons of the target, initially at zero energy. In this way

the thermalization process start which means the equipartition of energy over all the

nucleons, and a new system is formed, with mass and charge equal to the sum of the
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two partners. On has a total dissipation of the initial available kinetic energy from

the projectile into excitation energy, and consequently a non-zero temperature, for the

whole system, assuming this as an equilibrated thermal system

1.1.1 Inelastic collision

In Heavy ions collision the elastic scattering is limited essentially to impact param-

eters which do no lead to a considerable overlap of projectile and target. For smaller

impact parameters inelastic processes (excitation and transfer of nucleons) occur.

We refer as inelastic collisions to all the collisions wherea certain amount of the initial

kinetic energy is dissipated in internal degree of freedomsof the system, ranging from

those in which a few nucleons are transferred from one ion to the other, with little loss

of energy, to the so-called “strongly damped” or “deep inelastic” collisions in which

the projectile lose a substantial fraction of its kinetic energy.

During the collision a composite system is formed, which preserves a di-nuclear fea-

ture: in the contact region a “window“ is formed between the two colliding nuclei.

Through this window, more or less stretched, the energy dissipation takes place by nu-

cleons exchange and angular momentum transfer.

The composite system does not reach complete statistical equilibrium, because there

are a few degrees of freedom which relax very slowly, over times larger than or com-

parable with the contact time of the two fragments. These relaxation phenomena are

connected with mass transfer, kinetic-energy loss and angular momentum dissipation.

Afterward the system splits into two primary fragments, called Projectile and Target

Like Fragments (PLF and TLF), or Quasi Projectile (QP) and Quasi Target (QT), which

preserve memory of the entrance channel.
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1.1.2 Complete and incomplete fusion

Central collisions are the key reactions which really probematter in its extreme

state since they correspond to the largest dissipated energies. In these conditions one

has the largest compression because close collisions lead to a considerable overlap of

the density distribution of the colliding nuclei. In these processes the interacting com-

posite systems may break apart again preserving their di-nuclear feature, as we have

seen in dissipative collisions, or form a fused system.

This latter phenomenon can be described as the result of a strong friction between the

two participating nuclei which leads to a merging of all their nucleons. If the interac-

tion time is long enough with respect to the thermalization time, i.e. when the impact

parameter approaches zero, this dissipative process may eventually lead to the forma-

tion of a unique system which can reach thermodynamical equilibrium. In this way one

can define a temperature of this equilibrated system. The reaction then proceed, ac-

cording to Bohr’s hypothesis [1], through the intermediatestage, known as Compound

Nucleus which is formed by the absorption of the projectile by the target nucleus.

CN reactions between heavy ions are of particular interest because they provide the

most efficient way of forming highly excited systems in high-spin states. Since many

nucleons are involved, the total energy may be high but it is shared by all nucleons.

The CN is formed in an excited state and since the system is in equilibrium, it decays,

after a time long compared with the transit time, by statistical processes, such asγ rays

and/or particles emission (or eventually fission). The decay maybe treated exploit-

ing the nuclear thermodynamics, i.e. statistical models, which are essentially based

on Bohr’s CN picture. The particles emitted (”evaporated”)by equilibrated system

will accordingly have a distribution in energy that is typically of the order of the total

energy of the system and independent of its mode of formationin the CN reference

system one expects an isotropic angular distribution. The CN mass before any decay

is the total initial mass of the system: this process is called complete fusion and dom-

inates central collisions between heavy ions for projectile energies E≈10 AMeV [2].

When the incident energy increases (E> 10 AMeV), the projectile and/or the target
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may lose, in the early stage of the collision, nucleus or cluster of nucleons, emitted as

light particles, which remove an appreciable part of the kinetic energy initially carried

by the entire projectile. On a longer time scale the remnantsof the two colliding nuclei

fuse. Again a complete statistical equilibrium of the merging nucleons is achieved. In

this process, commonly called incomplete fusion [2, 3], as aresult, the mass of the

“reduced“ CN formed is less than the total mass of the system,the velocities of the

evaporation residues and of the fission fragments are different from those of the frag-

ments emitted subsequent to complete fusion. Moreover the ”reduced” CN does not

absorb the full linear momentum of projectile and target.

Later on we refer as compound nucleus to the system produced both in complete and

incomplete fusion reactions since the properties of the system are very similar. With

increasing projectile energy (E≈ 20÷40 AMeV), incomplete fusion becomes prepon-

derant with respect to complete fusion; the total fusion cross section diminishes pro-

gressively.

The way in which a CN is formed is a dynamical problem and it is connected with the

problem of friction or viscosity, i.e. the transfer of energy from one degree of free-

dom (the relative motion) to the many degrees of freedom describing the compound

nucleus.

We now consider the energy balance in nuclear fusion. The excitation energy U of the

CN, at a given center-of-mass bombarding energyE(CM), can be written as:

U = E(CM) + Qf u = E(CM) + (M1 + M2 − M1+2)c
2 (1.2)

whereQf u is the Q-value associated with the formation of the CN in its ground state

andM1, M2 andM1+2 the mass of the projectile, target and CN respectively, at their

ground state. This shows that CN formation represents the limit of a completely in-

elastic process, where the total relative kinetic energy inthe incident channel is ab-

sorbed. Compound nucleus lifetimes can be deduced by statistical model calculations,

which relate the lifetime of the CN to the effective number of open decay channels.
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Typical lifetimes are of the order of 300÷ 3000 fm/c 1 for excitation energy around

U∼100MeV and are long with respect to thermalization times.

1.2 Decay mode

There are two big classes of nuclear excitations, dependingon the type of states

they lead to. The first class concerns excitations leading tospecific states: this is typ-

ically the case of giant resonances which consist in collective modes of motion of the

nucleus. In turn, these states may decay either in a specific way, following proper se-

lection rules, or in a statistical way. In the second class ofdeexcitations, a large set

of states become populated in a non-specific way. This is the situation typically en-

countered in hot nuclei, close to equilibrium (moderate excitation energies and little

compression).

When an isolated state is populated, the reaction cross section have a typical resonant

behaviour trend expressed by the Breit-Wigner formula [4].Such situation concerns

states at low excitation energy.

With the increase of the excitation energy the mean spacing between the nuclear lev-

els is reduced and at the same time their width increases. This implies in the region

of high excitation energy that many states of the compound nucleus are populated in

the reaction, whose widths are superimposed, and a treatment based on the statistical

physics is needed to describe the decay.

In particular the concept of level densityρ(E) becomes important. In this region, called

continuum region, the statistical model (SM) allows to calculate the decay probabili-

ties of the CN in each channel energetically accessible. In such contest the consistent

treatment of the fusion-fission (FF) and fusion-evaporation (FE) decay channels can

provide quantitative predictions of all relevant quantities of the decay products, such

as the cross sections, the angular distributions and the energy spectra of the reaction

products.

11 f m/c = 3.31̇0−24s
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The complete fusion cross sectionσ f us can be obtained by measuring the fusion-

evaporationσFE and fusion-fissionσFF cross sections:

σ f us = σFE + σFF (1.3)

At low temperature as 1 or 2 MeV unexpected large values ofσFE suggest that fis-

sion is a slow process, during which cooling, particularly via evaporation, may occur:

evaporation and fission compete as dominant decay mode in thedeexcitation of hot

equilibrated systems.

The fragment emission or fission requires a description based not only on phase space

considerations (as in evaporation theory) but also on the fact that such large ampli-

tude motion may be strongly dissipative, as several experiments clearly indicate. The

reason is that such processes lead to a large deformation of the system during which

friction has time to act. Description using diffusion equations, such as Langevin [5] or

Fokker-Planck formalisms [6], are typically well appropriated.

For reactions which are associated with compound nucleus excitation energies of less

than 300 MeV, data are routinely compared to predictions of statistical model calcu-

lations. The choice of the parameters used in the model has tobe done in order to

successfully describe light particle emission. Studies ofevaporated particle energy

spectra yield therefore information about the main SM ingredients, the nuclear level

density and barrier penetration probabilities.

Without entering in the detail of the statistical model, we just give an overview of the

main concepts, remarking that the decay probability in a certain exit channel depends

only on the width of the decaying resonance in a given exit channel [7].

1.2.1 Statistical model

The statistical model was originally introduced by N. Bohr [1], Bethe [8] and Weis-

skopf [9]. Wolfenstein [10] and Hauser and Feshbach [11] introduced the conservation

of total angular momentum and afterwards the model was extended and generalized
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by many authors. Actually it has a widespread use in nuclear physics and applied

research.

Let us consider an excited nucleus of mass A, excitation energy U, charge Z and

angular momentum J. The goal is to evaluate towards which states the system pref-

erentially decays. The transition probability from an initial state i to a final state f is

given by the Fermi Golden Rule [12, 14]:
dNi→ f

dt
∝ |Mi→ f |2ρ f (1.4)

whereMi→ f is the transition matrix andρ f is the final density of states. The basic

assumption of the statistical model is to consider that all transition matrix elements are

equal, so that the probability of observing a given state is governed only by the density

of final states.

The nucleus is an isolated system which may be properly described in a microcanon-

ical approach. Let us apply the Fermi golden rule in a case where the final state ’f’

corresponds to the emission by a parent nucleus ’i’ (initial) of a particle ’b’ of spin

s, emitted with a kinetic energy betweenǫ andǫ + dǫ. The corresponding emission

(evaporation) probability per unit of time for the processi → b+ f may be written as:

Pb(ǫ)dǫ = C0ρ f (E
∗
f )dE∗f (2s+ 1)

4πp2dpV
h3

(1.5)

whereC0 is a coefficient and can be obtained from the detailed balance principle 2.

The termρ f (E∗f )dE∗f gives the number of states available for the excitedE∗f daugh-

ter nucleus and it is obtained by the product of the density ofstatesρ f (E∗f ) and the

energy intervaldE∗f . The last term,
4πp2dpV

h3
, indicates the number of states of the

emitted particle with a linear momentum between p and p+ dp; V is the volume of an

imaginary box where the decay takes place. Evaluating eq.1.5 one finally obtains:

Pb(ǫ)dǫ =
ρ f (E∗f )

ρCN
i (U)

(2s+ 1)
4πp2

h3
σc(ǫ)dǫ (1.6)

2the detailed balance principle assumes that the transitionprobability Wa→b of a system from an

initial statea to a final staeb is related to the probability of the inverse transition:ρaWa→b = ρbWb→a,

whereρa andρb are the density of statesa andb respectively andWb→a indicates the transition proba-

bility “time-reversed” fromb to a.
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whereσc(ǫ) is the capture (fusion) cross-section of the particle b by the final nucleus

f 3. A deexcitation channel will thus be the most favoured if thenumber of acces-

sible states (∝ ρ f ) is large. To go beyond equation 1.6 it is necessary to express the

ingredients of this formula, namely the densities of statesand the inverse capture cross-

section. The number of states available for a nucleus with anexcitation energy between

E∗ andE∗ +∆E∗ may be connected to the corresponding entropy S of the system(with

Boltzmann constant k= 1)

S = ln(ρ(E∗)∆E∗) (1.7)

and to its temperature, defined in the microcanonical approach as

β =
1
T
=

dS
dE∗
≈
∆lnρ(E∗)
∆E∗

(1.8)

The density of states thus exhibits an exponential evolution with the excitation energy:

ρ(E∗) ∝ eE∗/T (1.9)

which emphasizes the sensitivity of statistical models to this quantity. The capture

cross-section in equation (1.6) may be written:

σc(ǫ) =
∞
∑

l=0

(2l + 1)π(
λ

2π
)2Tl(ǫ) (1.10)

If the transmission coefficientsTl are set to unity, one obtains:

σc(ǫ) = πR
2

(

1−
BCoul

b

ǫ

)

, for ǫ ≥ BCoul
b (1.11)

and

σc(ǫ) = 0 for ǫ ≤ BCoul
b (1.12)

whereBCoul
b is the Coulomb barrier associated with the emission of particle b. From all

these equations, one finally obtains

Pb(ǫ) =
ǫ − BCoul

b

T2
e−(ǫ−BCoul

b )/T for ǫ ≥ BCoul
b (1.13)

3due to the detailed balance the capture reaction is directlyrelated to the decay inverse reaction
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In this expressionPb(ǫ) has been normalized to unity. The excitation energyE∗f is

expressed as a function of the kinetic energyǫ : E∗f = E∗f max− ǫ. The exponential

term of equation 1.13 comes from equation 1.9 used to expressρ(E∗f ) as a function of

ǫ. This means that the temperature T is the temperature of the final nucleus. It may

be considered as independent ofǫ only for significant excitations. In other words, this

statistical formalism is not valid for nuclei close to theirground state. This limitation

is also required to derive simple expressions for the density of states.

The emission probabilityPb(ǫ) exhibits a maxwellian shape which is typical of the

decay of an equilibrated nucleus. It is worthwhile to remarkthat equation 1.13 has

been obtained without the need of any nuclear model: the onlyingredients which have

been used are the microcanonical description of isolated systems, the density of states,

the entropy and the temperature.

The competition between various channels (i.e. the emission probability for different

particles) may be obtained from the integration of equation1.13 before normalization.

The total emission probability of a given particle b is essentially governed by the final

density of states of the daughter nucleus:

Pb ∝ ρ
(

E∗ − Qb − BCoul
b

)

. (1.14)

In other words, for similar Q values, particles for which theCoulomb barrier is low,

are preferentially emitted.

1.2.2 Level density

The nuclear level density (ρ) is an important quantity for the study of both thermal

and decay properties of excited nuclei, for the determination of cross sections used in

nuclear astrophysics calculations, like in neutron and proton capture processes, and

in supernova dynamics. Moreover as stressed in paragraph 1.2.1 ρ is an essential in-

gredient in calculating the statistical decay of a compoundnucleus (CN) by particle

evaporation, gamma-ray emission, or fission in statisticalmodels. The knowledge of

the level density is thus highly needed in all regimes of excitation energies, compound
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nucleus spins, and for the full range of Z and N from theβ line of stability to the drip

lines4.

In statistical model calculations level density formulas are usually based on the work

of Bethe [8], with the assumption that an energy independentdensity of single particle

states g is present. Fermi-gas model approximation provides a useful reference to start

with, even if other effects have to be included to get more realistic expression of the

level density.

For a given energy E and particle number A, the density of states may formally be

defined as

ρ(E,A) =
∑

i,∋
δ(A− A∋)δ(E − Ei(A∋)) (1.15)

where the summation runs over all the states withA∋ particles andEi energy. One usu-

ally uses an approximate expression when the nucleus can be described in a model of

independent particles with single-particle energy levelsǫk, and for moderate excitation

energies (E∗ = E − Egs)

ρ(E,A) ≃ 1
√

48E∗
e2
√

aE∗ (1.16)

where′a′ is the so-called level density parameter. At the same level of approximation,

one can link the excitation energy to the temperature

E∗ ≃ aT2 with a =
π2

6
ω(ǫF) (1.17)

where the zero-temperature single-particle level densityω(ǫ) reads:

ω(ǫ) +
∑

k

δ(ǫ − ǫk) (1.18)

Note that the single-particle level densityω(ǫ) counts here the number of single-

particle levels per unit energy, while the density of statesρ(E,A) counts the num-

ber of accessible states as a function of the total energy of the nucleus. Finally, one

should keep in mind that equations 1.16 and 1.17 only hold formoderate temperatures

4On a chart of the nuclides, plotting proton number versus neutron number, the boundary beyond

which neutron-rich nuclei are unstable against neutron emission.
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(T ≤ 3− 4MeV).

The Fermi energyǫF plays a dominant role in the calculation ofa and thus in the ex-

pression ofρ(E,A). This reflects the fact that at low temperature the first levels to

become empty are the least bound ones, namely the ones close to the Fermi energy.

Elementary excitations which promote nucleons lying just below the Fermi level to

just above it then become dominant.

Starting from an independent particle picture, which allows noticeable simplifications,

the problem then occurs in the evaluation of the single-particle level density, and espe-

cially the level density parametera. Realistic mean-field calculations do not allow the

recovery of the experimental value ofa. One has to take into account effects beyond

the mean field, in order to reproduce the data. It is sufficient, here, to keep in mind the

average experimental valuea ≃ A/8 (up to shell effects)[13].

1.3 Evolution of decay mechanism: from evaporation

to multifragmentation

We now consider the decay modes of hot nuclei when the excitation energy per

nucleonE∗ increases significantly above 1 MeV/u and may even reach values close

to the binding energy per nucleon. In a somewhat arbitrary way, the transition from

low-energy decay processes to high-energy processes is associated with the transition

from evaporation/fission to fragmentation, namely the transition from a decayprocess

in which two and only two massive fragments are emitted, to a process with at least

three massive fragments in the final state.

A comparison of the two decay channels is made possible by counting the number of

events in which two and only two massive fragments are observed and events in which

at least three fragments have been emitted. In figure 1.2, theyield of three-body (Y3,

fragmentation) versus two-body (Y2, binary decay) mechanisms is shown as a function

of excitation energy per nucleonE∗: a sharp increase starts at about around 3 MeV/u.

From this energy on, fragmentation begins to be a dominant process, although evap-



14 Physics case

oration and fission are still present. It is worth noting thatthe ratio Y3/Y2 displayed

in figure 1.2 is independent of the entrance channel (i.e. both of the projectile and the

bombarding energy) and thus of the mechanism that led to the production of the hot

nuclei considered in these experiments. This gives strong support to the fact that the

transition is essentially governed by the excitation energy.

Figure 1.2: Evolution of the competition between two-body (Y2) and three-body (Y3)

decay as a function ofE∗.

The onset of multifragmentation, i.e. the simultaneus emission of at least three massive

fragment takes place for excitation energies around 3 MeV/nucleon and the maximum

for fragment production is found around 9 MeV/nucleon, i.e. close to the binding en-

ergy of nuclei. At higher excitation energy, due to the opening of the vaporization

channel, the fragment production reduces.

On the other hand, average time intervals between successive emissions have been es-

timated by analysing space-time correlations between fragments, taking advantage of

proximity effects induced by Coulomb repulsion.

A strong decrease of measured times with the increase of excitation energy is observed
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up to around 5 MeV/nucleon. Then a saturation appears around 50-100 fm/c which

reflects the limit of sensitivity of the method. For such short times fragments can be

considered as emitted quasi simultaneously and fragment emissions can not be treated

independently. Note that, sequential statistical models fail in reproducing the observed

emission characteristics.





Chapter 2

The experimental apparatus

2.1 Introduction

In heavy ion reactions one has to deal with a very large range of energies and prod-

ucts. Often, going from the typical processes at low energy up to the most complex

and dissipative phenomena at the higher energies, one can obtain the major informa-

tion on a process, when dealing with the transition regions from a regime to another

one. This is the case passing from the Compound Nucleus (CN) evaporation or Inter-

mediate Mass Fragment sequential emission to the multi-fragmentation regime, and,

again, going from the multi-fragmentation towards the vaporization regime etc.

The opportunity of studying the behaviour of the nuclear system which develops from

one stage to another is very important: any modification in the nuclear matter charac-

teristics (pressure, density, isospin etc), can be reflected in a variation of the experi-

mental signatures, which carry important information.

To measure, disentangle and weight all decay channels of an excited CN it is necessary

to detect and identify all the reaction products. Thus the use of GARFIELD detector,

coupled with Ring Counter (RCo), is very well suited for suchmeasurements.

The coupling of these two detectors allows to have an event byevent nearly complete

information on the residue, on light charged particles and on the intermediate mass

17
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fragments. Moreover, since the coupled system covers∼4π of the total solid angle and

has a high granularity, low energy thresholds, large dynamic ranges in energies and

identification capabilities on an event by event basis, it allows for a complete recon-

struction of the kinematics for each event.

2.2 The GARFIELD apparatus

The GARFIELD apparatus [15, 16] is particularly important:since it represents a

powerful tool that can be used to study the evolution of the nuclear system from the

low energy regime where mean field interactions are predominant to the intermediate

energy regime where new open channels start to be present, due to the contribution of

the nucleon-nucleon forces [14].

The mass and energy of reaction products can vary a lot: from light charged particles

up to heavy fragments and from few KeV up to hundreds of MeV. The situation is,

therefore, complex and it is very important to develop a detection system capable of

detecting and identifying such a variety of reaction products [18]. The GARFIELD

apparatus is based mainly on the∆E-E technique, where the∆E signal is given by the

drift chamber where several microstrip anodes collect and amplify the primary elec-

trons which were produced along the ionization track of the detected particle. Some

CsI crystals, Thallium doped, are then used as stop detectors to get information on the

residual energy. Fig. 2.1 shows a transversal section of thetwo drift chambers.

GARFIELD is made by two independent chambers, one for the forward angles and

the other for the backward angles. In particular, with respect to the beam direction,

they cover the range from 30◦ < θ < 85◦ and from 95◦ < t < 150◦. For the azimutal

angleϕ, the forward camera covers 0◦ < ϕ < 360◦ and the backward chamber the part

0◦ < ϕ < 70◦ and 110◦ < ϕ < 360◦. The side opening in this chamber was designed to

permit the positioning of possible ancillary detectors in this region.

One important parameter to be considered when designing a 4π apparatus is the possi-

bility that 2 particles hit at the same time the same detector(double hit). To avoid this
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Figure 2.1: Trasversal section of the two chambers of Garfield

problem, it is important to have a high granularity. Normally a desired number of de-

tectors is at least 10 times more than the maximum multiplicity expected for the prod-

uct of interest. At relatively low energy, which is the rangeof interest for the physics

to be studied with GARFIELD, maximum multiplicities around15 for light particles

plus 4-5 for heavy fragments (A> 4) are expected. We need, therefore, around 200

indipendent telescopes to perform a reasonable reconstruction of our events.

This granularity is obtained in the GARFIELD drift chambersdividing each of them in

sectors of∆φ = 15◦. This means that the backward chamber is divided into 21 sectors,

while the forward chamber into 24. Each sector contains 4 CsI(Tl) crystals positioned

at differentθ angles plus a microstrip pad (metallic strip photolithography on glass).

The microstrip pad is divided in the 4 collection regions up-right, up-left, down-right

and down-left (see paragraph 2.2.2 for details). In figure 2.2, one can see the scheme

of a drift sector.
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Figure 2.2: Scheme of a drift sector of GARFIELD

2.2.1 The CsI(Tl) crystals.

CsI(Tl) crystals have been chosen due to their excellent characteristics, like the

high stopping power, the good energy resolution (close to 3%with 5.5 MeVα parti-

cles from 241Am source), the small sensitivity to the radiation damage, the relative

small hygroscopy and the fact that they are quite easy to cut and machine in order to

easily obtain the shape needed for the experiment. Moreover, the CsI(Tl) crystals are

relativity cheep with respect to silicon detector.

In the GARFIELD apparatus there are 4 CsI(Tl) per sector, with a total number of 96

in the forward chamber and 84 in the backward chamber. The shapes are different as a

function of the differentθ angles where they are positioned. In fig. 2.3, one can see a

drawing of the different dimensions of the crystals. Their shapes are designedso that
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the front face is always perpendicular to the radial trajectory of the particle emitted

from the target.

The shape of the backward part of the crystal is like a light guide to optimize the

Figure 2.3: A drawing of the different shape of Garfield CsI(Tl) crystals. The A shape

corresponds to the most near to the plane of micro (θ more big respect with to a beam

line)

coupling with the photodiode S3204-05 produced by Hamamatsu (18 mm X 18 mm

of dimension and 500µm as depth). The use of photodiode instead of photomultiplier

tubes is due to the good stability of the first and its smaller dimension which makes its

mounting inside the gas volume much more feasible.

Before being mounted inside the apparatus, every crystal istested using radioactive

sources like the three peaks mixedα-source (241Am (E=5.484 MeV),239Pu (E=5.155

MeV), 244Cm (E=5.806 MeV)) and aγ source (like60Co which produces two lines at

Eγ = 1.17 MeV and Eγ = 1.33 MeV) for investigation of the bulk. We calculated the

resolution with theα-source using the average value of the FWHM (Full Width Half

Maximum) of the 3 peaks.

The results obtained as resolution and light output from theα-source and from theγ-

source are an indication on the crystal properties and on thegluing to the photodiode.
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If the result is not satisfactory, i.e. larger than 4.5% forα-particles, we repeat at least

one more time the procedure of preparation of the CsI crystal(cleaning with powder

of diamond, gluing the photodiode, wrapping procedure).

2.2.2 The drift chamber

One of the most important requirements that a complete apparatus should fulfil,

when used for studies of nuclear reaction mechanism with heavy ions, is the capabil-

ity of identifying the reaction products with a low energy threshold, which permit to

reconstruct the events where slow products are emitted.

The use of a gas detector is of great importance to fulfil theserequirements, allow-

Figure 2.4: Ground of the cylinder of the Backward Camera. The microstrip plane can

be seen.
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ing an easy selection of the effective∆E thickness, which is a compromise between a

very low identification threshold and the necessity to handle large dynamical ranges

of detected products. New possibilities for the gas∆E section arose a few years ago

with the development of micro-strip gas chambers (MSGC), initially designed to meet

the severe needs of counting rate, high gain and position resolution of high energy

physics. The originality of Garfield is in the use of this typeof detector also in low

energy physics ([19]). The advantages of using MSGC’s are mainly due to the large

dynamical range and to the signal-to noise ratio for the low ionizing ions, which is

much higher as compared to ionization chambers. These two characteristics allow the

simultaneous identification, with low energy threshold, ofboth light charged particles

and heavy ions with an only two-stage telescope. In fact, thedetector is characterized

by a wide acceptance in Z, from 1 up to at least 28, with an identification threshold of

about 0.8 MeV/A and a detection threshold much lower (of the order of 10-20 KeV/A).

In fig. 2.5, one can see the drawing of the electric field insidea gas drift chamber of

this kind. The drift lines are perpendicular to the microstrips plane and the intensity of

the field is constant. After the Frish grid close to the microstrip plane, the field starts

to have the dependence of 1/r, where r is the distance from the anodes, and the field

intensity increases allowing an avalanche phenomena of multiplication of the primary

electrons. In this way, we obtain a good electric signal which is still proportional to

the initial ionization produced by the particle in the gas.

Each microstrip (fig. 2.6), as just told, is divided in 4 partsand it is made by hundreds

of very small alternated metallic electrodes which are prepared through photolithog-

raphy on glass. A very small distance (50µm) between the single cathode and anode

permits a fast collection of electrons and positive ions formed close to the microstrips

plane, which results in a faster signal and a better reliability due to the fact that the

electric field near the microstrips remains almost the same in time.

The anode strips, which are 10µm large, are biased at≈ 400 V and connected in 4

groups, while the cathode strips are connected all togetherand grounded. In this way

we have only 4 signals from every microstrip. In fact, for ourpurposes, it is not needed
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Figure 2.5: Drift line of the electric field inside a gas driftchamber with microstrip as

collecting electrodes.

to read the single anode.

The angular resolution along theθ angle is given by the correlation with the different

CsI(Tl) crystals, with a resolution of± 7.5◦. This resolution can be improved down to

about 1◦ when the drift time information given from the microstrip electrons is used.

Theφ resolution is fixed by the fact that a single microstrip is 15◦ and is divided lon-

gitudinally into two parts, so it can arrive down to 7.5◦.

The gas inside the chamber is CF4, a gas characterized by a high stopping power and

a high drift velocity (10 cm/µsat 1 V/cm.Torr) of the electrons produced in the ioniza-

tion process. Due to this characteristic of the gas, the working pressure can be relativity

low (50÷ 200 mbar), with a great advantage for the safety of the entrance windows of

the detector that can be thinner and for the field cage that canbe maintained at lower

voltage and have, therefore, less damage due to possible discharges.

In the GARFIELD apparatus, there is also a semi-automatic recycling gas system to

circulate the CF4 inside the drift chamber. In this way we do not have problems con-

nected to possible decrease of the gas quality.
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Figure 2.6: Scheme of a microstrip of Garfield.

2.3 Ring Counter

The Ring Counter (RCo) [20] is an annular detector designed to be centered at 0◦

with respect to the beam direction. It is an array of three-stage telescopes realized in a

truncated cone shape. The first stage is an ionization chamber (IC), the second a strip

silicon detector (Si) and the last stage a CsI(Tl) scintillator.

Each stage of the RCo is mounted on a low-mass aluminum support that is adjustable,

for the relative alignment of all the active elements of the device. A picture of the

whole apparatus is shown in Fig. 2.7.

The RCO is designed to operate in high vacuum (P≈ 10−6 Torr) with minimal out-

gassing. The RCO has eight separate silicon detectors, pie shaped, each one segmented

into eight independent annular strips on the front surface (junction side), thus increas-

ing the granularity of the detector. The rear surface (ohmicside) consists of an unique

electrode. Each strip has a bonding contact to a track in a Kapton ribbon ending with

a multiple connector, allowing the connection to the preamplifiers. In front of each

silicon detector there is a sector of a specially designed IC(see Section 2.3.1). Behind

each silicon detector there are two 4.0 cm thick CsI(Tl) crystals (see Section 2.3.3),

read out by photodiodes (PD). The geometrical shapes of the CsI crystals has been de-
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Figure 2.7: Ring Counter detector.

signed to cover the cone subtended by the IC. Each couple of crystals is related to one

sector of the IC and in particular the CsI(Tl) closer to the beam axis covers the angular

range of the four inner strips of the Si-detector, while the external CsI(Tl) covers the

four outer strips.

The RCO is mounted on a sliding plate that can be moved forwardand backward by

means of a remote control. In the forward position the RCO is ready to operate, being

inserted in the conical opening of the GARFIELD drift chambers. At the angles sub-

tended by the RCo, silicon detectors can suffer rapid radiation damage by elastically

scattered beams. Protecting the detector from the radiation damage is accomplished

by inserting passive brass shields in front of the inner silicon strips, according to the

grazing angle and the values of the cross-section of the considered reaction. With the

sliding plate in the backward position it is also possible toinsert a screen to avoid a
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possible damage during the beam focusing.

In order to minimize the length and the capacitance of the cables and consequently the

noise contribution, the preamplifiers are mounted inside the scattering chamber, on the

same sliding plate of the RCO; they are placed in metallic boxes which shield them

from external fields (see Fig. 2.7 ). The preamplifiers are thermally connected to the

boxes which are cooled by a simple water cooling system (water temperature about

12◦C), allowing for dispersion of the heat generated by the preamplifiers themselves.

2.3.1 The ionization chamber

The IC is divided in the azimuthal direction into eight equaldetecting sectors. The

IC, which is of the axial field type without Frish grid, has been especially designed

to minimize the active area loss: its dead regions match the dead zones of the silicon

detectors used as second telescope stage. The depth of the active gas region is 6 cm,

the entrance and exit windows are aluminized mylar foils, 3 mm thick.

When the RCO is used as forward ring detector, coupled to the GARFIELD apparatus,

the IC is very close to the external wall of the GARFIELD driftchamber. Therefore, it

has been chosen to bias a middle electrode (1.5 mm thick doubly aluminized mylar) at a

given voltage while keeping the entrance and exit windows grounded, in order to have

the same electric field with one half of the potential needed for the whole thickness

(about 150V at a pressure of 50mb of CF4). The CF4 gas, continuously flowing in

the chamber, has been chosen because of its high density (0.19 mg/cm3 at a pressure

of 50 mbar and at a temperature of 20◦C) and high drift velocity (10 cm/ms at 1.25

V/cm/Torr). The latter parameter is important to reduce the electron collection time

and the electron-positive ion recombination rate. The pressure inside the chamber is

remotely controlled by a newly developed hardware and software system.

The gas enters the chamber through a filtering system for oxygen and water vapor

suppression. The gas outlet is controlled by a dry root pump and by a valve whose

opening is regulated by the control system in order to keep a constant pressure inside

the chamber. Typical working pressures of the IC are in the range 50÷ 200 mbar,
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depending on the measurements to be performed.

2.3.2 The silicon detectors

The eight silicon detectors [20, 21] have a trapezoidal shape (see Fig. 2.8) with

dimensions which fit 18 of the total azimuthal angle and matchthe sectors of the IC.

Figure 2.8: One of the Si detectors of the RCo. Each one of the eight strips has a size

of 8.55 mm. The full length of the silicon detector is 68.4mm (see Table 1).

The front surface (junction side) of each silicon detector is segmented into eight strips,

which cover the polar angle regions quoted in Table 1, when the RCo is at the measur-

ing position, at 270 mm from the target, corresponding to theminimal distance allowed

by the mechanical structure of the Garfield chamber [15]. In Table 1 the internal and

external radii of all the eight strips are also presented.

The covered polar angles run from 3.5◦ to 17.5◦ (see Table 1), corresponding to a solid

angle of about 0.27 sr. The angular resolution of each strip is ∆θ ∼ ±0.9◦ and the

geometrical coverage of the Si detector is about 90%.

The inactive area is due to the interstrip regions (about 220µm wide), containing the

guard rings all around the strips.

The guard rings have to be properly biased, in order to minimize the effects due to the
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field distortion in the inter-strip region. This strongly reduces the charge split and the

cross-talk between contiguous strips, keeping them to about 0.5 and therefore almost

negligible. Another inactive area is the printed circuit board frame that holds each Sil-

icon sector, which extends about 3.2mm beyond the physical dimension of the sector

and provides the voltage supply and the extraction of the signals.

The thickness of the silicon detectors is around 300 mm, as stated by the manufacturer.

Therefore the energy thresholds for particles punching through the detectors are about

6 MeV/A for protons andα-particles and 7-11 MeV/A for light fragments.

Strip Int.radius Ext.radius Min.angle Max.angle

(mm) (mm) (deg) (deg)

1 77.9 85.0 15.3 16.7

2 70.8 77.8 14.0 15.3

3 63.7 70.7 12.6 14.0

4 56.6 63.6 11.3 12.6

5 49.4 56.4 9.9 11.3

6 42.3 49.3 8.5 9.9

7 35.2 42.2 7.1 8.5

8 26.2 35.1 5.3 7.1

Table 2.1: Radii and polar angle limits of RCo silicon strips

2.3.3 The CsI(Tl) scintillators

CsI(Tl) crystals [20] have been chosen as residual energy detectors because they

have high density and therefore high stopping power for ionsand light charged par-

ticles. In addition they are easily machined, not hygroscopic and can suffer without

damage relatively strong mechanical shocks and also a relatively high radiation dose.

Their density (4.51 g/cm3) makes them suitable to stop in few centimeters the ions to
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be detected. The molar percentage of the Tl atoms in our CsI crystals is in the range of

1000-2000 ppm. The light emission is collected by PD and the optic coupling has been

obtained by a two-component silicon glue. PDs have been chosen to read the light out-

put because they require small space, have a good quantum efficiency for the CsI(TI)

light emission spectrum, are insensitive to magnetic fields, have a good gain stability

and require low bias voltages. However, the output signals are small, compared to

those from a photomultiplier, thus requiring a careful signal treatment to optimize the

energy resolution. We mounted Hamamatsu S320405 (1.81̇.8cm2) PDs, 500µm thick,

selected to have a dark current less than 15 nA.

2.3.4 Performances and operation

All the detectors of the RCo have been separately tested in the laboratory with

collimated sources (1 mm in diameter) and the same electronic chain used for in-beam

measurements. Fig. 2.9 shows the spectrum obtained for one of the Silicon strips

with a 241Am α-particle source. A three Gaussian fit is also shown where thethree

peaks correspond in energy and yield to the three decay linesat 5.486MeV (85.2%),

5.443MeV (12.6%) and 5.389MeV (1.3%). The resolution as obtained from the highest

peak is about 0.5% FWHM. It should be noted that the strip resolution shown in Fig.

2.9 includes the electronic noise of the setup.

The CsI(Tl) crystals have been tested with a60Co γ-source in order to check the

response in the bulk crystal (left panel of Fig. 5) and with a239Pu, 241Am, 244Cmα-

particle source in order to measure the energy resolution (Fig. 2.10, right panel), which

resulted in about 3-4% FWHM. Since it is well known that the light output of this kind

of scintillators depends on the charge, mass and energy of the detected particles, a

very careful energy calibration has been performed [22] at LNL with several beams at

different energies, from protons to Ni. The FWHM energy resolution for the CsI(Tl)

has been measured with several beams from7Li at 3-8 MeV/A to 58Ni at 2-4 MeV/A

directly impinging on the crystals during the CsI(Tl) calibration campaign [25]. We

obtained resolutions (FWHM) ranging from 2.7% for58Ni at 239MeV to 3.3% for7Li
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at 23.7MeV.

Figure 2.9: Energy spectrum of one of the strips of the silicon detectors, obtained with

a collimated241Amα-source.

Figure 2.10: Energy spectrum of one of the CsI(Tl) crystals,obtained with a collimated

60Coγ-source (left) and a239Pu, 241Am, 244Cmcollimated a-source (right).
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A scatter plot of the energy loss in the IC as a function of the energy deposited in

the Si detector is shown in Fig. 2.11 (left) for a telescope at15◦ θlab . Energy calibra-

tion of the IC and Si signals were performed through calculated values of the energies

released by scattered32S ions.

The energy resolutions for32S ions with elastic energies, stopped in the silicon detec-

tor, are 1.2% FWHM for the residual energy (Si) (Fig. 2.11 middle panel), including

the kinematical spread due to angular extension of the stripand the energy straggling

in the preceding IC and 11% FWHM for the energy loss in the IC (Fig. 2.11 right

panel).

From Fig. 2.11, it appears that the overall resolution is good enough to obtain Z sep-

aration. The Z lines are clearly visible even beyond the projectile charge. When the

Figure 2.11: left: scatter plot of the IC energy loss versus the Si residual energy for the
32S +64 Ni reaction at 14.5 MeV/A, θlab = 9.8◦; middle: residual energy spectrum of

the scattered32S ions; right: energy loss spectrum of the scattered32S ions.

ions punch through the silicon detector, mass identification, at least for IMF charges

up to Z=8, can be obtained from the correlation between the energy loss in the Si strip

and the residual energy in the CsI scintillator (see Fig. 2.12). Very good identification

starting from protons, deuterons, tritons up to the oxygen isotopes clearly appears from

the figure.
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Figure 2.12: scatter plot of the Si energy loss vs. the CsI residual energy for32S+64 Ni

reaction for a strip atθlab = 9.8◦, summed over the entire experiment. The zoom in the

left panel shows the resolution for Z=1 and Z=2 isotopes.

2.3.5 Improvements of the apparatus

To improve the granularity of the RCO and to have better performances we have:

1. replaced the 16 CsI(Tl) scintillators (two behind each silicon wafer) with 48

crystals (six behind each wafer). Indeed the granularity increases and the relative

angle determination results more precise, greatly improving the measure of the

relative momentum between isotopically identified fragments;

2. reverse mounted the silicon detectors. This would allow to exploit pulse shape

analysis on GARFIELD’s DSP-capable digital electronics [21].

In Fig. 2.13 a picture of the improved apparatus is shown.

The Ring Counter has been used for a series of measurements atthe Tandem-ALPI

complex of Legnaro Laboratories, aimed at checking the performances of the new

combination of detectors of the Ring Counter.

The Z identification of particles stopped in Silicon was up tonow performed via

∆E-E with analog signals from the IC and the Silicon detector.Since we have only one
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Figure 2.13: Picture of the new RCo. The Ionization Chamber (IC) and three sectors

of the eight silicon detectors have been removed to show the new CsI(Tl) scintillators

(six for each sector).

IC per sector the simultaneous Z identification by two methods will allow to recover

double hits in the IC of fragments impinging in different strips. Moreover one has the

hope of getting information not only on charges, but also on masses. The IC, mainly

devoted to the detection of heavy residues and low-energy fragments, is still needed in

order to keep the thresholds as low as possible.

Signals from RCo detector preamplifiers are now digitized and treated by the on-board

DSPs of the custom electronics developed in the framework ofNUCL-EX collabo-

ration [23]. As already implemented for GARFIELD CsI(Tl) scintillators, the DSP

extracts the energy information [23, 21] and other parameters of interest. In particular,

CFD timing information is extracted for all signals, signalrise time and energy are

calculated for Si detectors to perform pulse shape analysison stopped ions, different

filters are applied to CsI(Tl) signals to identify light charged particles.

Thanks to this feature, two new identification methods are now accessible, which were

not possible with GARFIELD former electronics. The first is charge identification of

particles stopped in the silicon detectors,exploiting therisetime vs. energy correlation

(see fig. 2.14). The charge resolution is very good in the whole range, and mass can

be extracted up to Z= 5÷6.
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Figure 2.14: Energy-risetime plot for particles stopped inthe silicon detector. Be, B

and C isotopes can be disentangled.

The second is light charged particles identification from fast-slow correlations in

the CsI(Tl) crystals, as shown in fig. 2.15: light products are clearly separated.In this

way the thresholds of mass identification are lowered with respect to analog electron-

ics.
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Figure 2.15: Pulse shape discrimination of light charged particles in CsI(Tl) performed

by the on-board DSPs.

To the information obtained through the∆E-E IC-Si or Si-CsI correlations, one can

add charge and/or mass of the detected ions, exploiting the fast-slow correlation for

CsI(Tl) and the risetime-energy correlation for the ions stopped in the silicon detector.

2.4 Analog electronic of GARFIELD apparatus

The analog electronic scheme of the Garfield apparatus can beexplained referring

to the sector modularity (Fig. 2.16). The 8 signals, 4 from the microstrips and 4 from

the CsI, are processed by the pre-amplifiers placed inside the gas volume, very close

to each detector. The pre-amplifiers work inside the drift chamber and therefore they

have been designed to minimize the hot dissipation. A watercooling system to keep

the temperature under control has been provided around the GARFIELD chambers.
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The amplifier modules (CAEN N568B) are placed out of the scattering chamber, con-

nected to the vacuum flange through 6 m of coaxial cables. Theywere opportunely

designed for this apparatus.

Each module can have 16 channels, so it can analyze the signals coming from 4 sectors

of CsI(Tl) crystals or 4 microstrips. Each entrance channelof the module is correlated

to 3 output signals: one is fast and negative, the other two are slow and positive and dif-

ferent only for a gain factor. The two positive signals are the linear energy signals and

they are fed into an ADC (Analogical-Digital Converter) andregistered in the stored

data.

The choice to have two different gains is due to the fact that the energetic range of

particles detected in GARFIELD is quite large. The High Gainfactor in the case of∆E

signal has been selected to better amplify signals of the light particles (Z= 1, 2) that

loose a small quantity of energy in the gas.

The fast and negative signal from the amplifier is fed into a Constant Fraction Dis-

criminator (CAEN C208). The CFD, which has 16 input channels, has got two ECL

signals for every input. Besides that, an OR signal per module plus a sum signal are

present. The sum signal can be chained in several CFD modules, so to obtain the final

multiplicity signal. Different multiplicity trigger signals can be obtained by sending

the multiplicity signal in a discriminator whose thresholdcan be set opportunely.

The fast signal of a CsI(Tl) crystal after being processed through the CFD is sent to

form an OR with all the other CsI(Tl) signals so to have the main trigger of GARFIELD.

The fast signal of a microstrip detector is fed into some delay modules and then sent

to the TDC to give the STOP signal. This signal is used for drift time measurement

purposes. The START of the TDC is given by the main trigger, which is made by the

general OR of all the trigger signals present in the experiment. To get the real time

of reference, the START signal will be then corrected event by event through the Ra-

diofrequency (RF) pulse, which has been registered event byevent.
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Figure 2.16: analog electronic scheme for GARFIELD apparatus.

2.5 Digital electronics

The identification of particles emitted in nuclear reactions in a wide range of kinetic

energy, charge and, possibly, mass is an important feature requested to heavy ion ex-

periments. The research in this field is mainly divided in twobranches, not necessarily

separated, one devoted to the development of new detectors,and the other concerning

new methods of analysis.

Modern electronic sampling techniques (for example pipelining) have made it possible

to design commercial high resolution fast sampling analog to digital converters (ADC)

which permit to retain the high precision of the standard analog methods (for instance

for the energy measurement), while the detailed information achievable with signal
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sampling can be used in newly designed pulse shape discrimination applications.

This may lead not only to better identification performances, but can also reduce the

complexity of the electronics in high granularity 4π experiments like GARFIELD ap-

paratus.

2.5.1 General description of the system and the algorithm struc-

ture

Fig. 2.17 shows a block diagram of a digitizing channel. Fivesections can be

identified: the analog input stage (programmable-gain amplifier and anti-aliasing fil-

ter), the digitizing section (ADC), the temporary storage section (FIFO memory), the

processing section (DSP), the trigger section (programmable comparators and trigger

logic).

The digitizing section exploits a 12-bit ADC operating at 125 MSamples/s and hav-

Figure 2.17: Digitizing channel block diagram.

ing an effective number of bits (ENOB) of about 10.7 [23]. In experimental tests we

achieved satisfactory resolutions both in timing measurements and also featured good
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particle identification capabilities over a wide dynamic range.

Typical characteristics of the digitizing channels, in this first version, are:

• 12-bit sampling at 125 MSamples/s.

• For channels with programmable input gain (like those employed at GARFIELD)

9.7ENOB are typical.

The ADC output values are continuously written to a First-In-First-Out (FIFO)

memory which stores up to 8192 samples.

In many applications a good estimate of the signal baseline is mandatory [21]. In order

to get this information, a suitable portion of the baseline preceding the particle signal

must be sampled and collected. In our design, the first FIFO locations act as a circular

buffer. They are continuously re-written while the channel is waiting for a trigger.

When a trigger signal is received, the trigger logic (see Fig. 2.17) enables the FIFO

memory to be filled up so that the first samples of the stored signal will always corre-

spond to a time interval preceding the trigger and can be usedto calculate the current

signal baseline.

The DSP reads sampled data from its I/O port, connected to the FIFO, and stores them

in its internal data memory. The acquisition system loads the DSP program in DSP

internal memory and starts the program execution through the DSP IDMA interface.

The DSP controls the channel hardware, handles the validation logic of the event, per-

forms signal analysis and prepares readout data in its internal memory. The acquisition

system can read/write data from/to the DSP internal memory asynchronously through

the DSP IDMA interface during program execution, for instance to read event data or

to instruct the DSP to change gain, thresholds, etc.

The acquisition system can check the status of the digitizing channel (idle, analyzing,

waiting for readout) by accessing the mother-board local bus and polling a few logic

signals controlled by the DSP.

Signal storing in the FIFO and signal processing by the DSP are started by a trigger
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signal coming either from an external device or from one of the two on-board compara-

tors. The comparators thresholds are controlled by the DSP by means of a dedicated

programmable digital-to-analog converter. The analog input signal is shaped by a CR-

RC filter (t≈200 ns) before being sent to the comparators, as shown in Fig.2.17.

The general structure of a DSP algorithm is shown in Fig. 2.18.

Figure 2.18: Flow chart of a DSP algorithm.

The DSP switches to an idle state after an initialization phase, performed once and

for all at bootstrap time, where the DSP sets up its internal registers, channel gain and

comparator thresholds, etc.

Upon receiving a signal trigger the DSP jumps to an interruptservice routine which

spends a few microseconds reading samples from the FIFO, then checks a validation
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signal.

In case of no validation, the DSP rearms the channel for a new trigger and returns to

its idle state, otherwise it reads the remaining samples from the FIFO and restarts the

circular buffer. The signal analysis phase follows. Since signal analysis lasts much

longer than the buffer length expressed in ms, the buffer has been filled completely

before a new trigger can be accepted.

After the analysis step, the DSP prepares the output data in its internal memory for

readout and returns to its idle state. Readout takes place through the IDMA interface

with no DSP intervention.

After all relevant data have been read, the acquisition system drives the DSP IRQ1

interrupt signal (one of the local bus signals on the mother-board) thus instructing the

DSP to rearm the channel for a new trigger, as shown on the leftside of Fig. 2.18.

Hardware settings and algorithm parameters can be accessedusing a dedicated “slow

control” interrupt routine associated to the IRQE interrupt signal.

2.5.2 Pulse Shape Discrimination in CsI(Tl)

The pulse shape discrimination algorithm mimics a wellknown analog method,

sketched in the left part of Fig. 2.19. The detector signal isfed in parallel to two filters

of different time constants, a ”fast” shaper and a ”slow” shaper. The analog chain at

the left of Fig. 2.19 is replaced in our case by the much simpler chain sketched in the

right half of the figure and the two filters are calculated by the DSP.

The calculated ”fast” shaper is a semi-Gaussian filter with t≈700 ns, the calculated

”slow” shaper is a filter with t≈2000 ns. The amplitudes of the filtered signals (Af and

As) are stored for the off-line analysis. A fast-slow correlation-actually Af vs.As− f Ȧf

where f≈4 is shown in Fig. 2.20. Hydrogen and helium isotopes are clearly resolved.
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Figure 2.19: A typical analog chain for pulse shape discrimination (left) compared to

the set-up described in this paper (right).

2.6 The acquisition system

The GARFIELD apparatus is complex: both the number of parameters that have to

be recorded and the acquisition rate can be large, so the acquisition system has to be

really powerful and flexible.

The system, based on FAIR front-end (Fast Advanced Interface Read-out) developed

by the I.N.F.N. section of Napoli, is an ECL bus dedicated to the fast read-out of

electronic acquisitions modules.

The velocity transmission of data on the bus is 1.25 Gbits/s and the architecture of

the system is on two levels (Fig. 2.21):

• at low level, the single electronic modules (ADC e TDC) are grouped in seg-

ments. Every group is controlled by its own Segment Controller (SEGC). In the

present experiment 4 segments have been used.

• at high level , every Segment Controller can communicate with the System Con-

troller.

Due to the performances of the Segment Controller, it is possible to have an event

by event identification of the trigger pattern. In fact, the main trigger is composed

by an OR logical condition of several trigger signals, like it will be described in the
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Figure 2.20: Pulse shape discrimination of light charged particles in CsI(Tl) performed

by the on-board DSP.

following chapter.

Through the acquisition system it is possible to modify remotely the ADC and TDC

set up (thresholds, ranges, etc..). We will explain better all these possibilities in the

fourth chapter, where the present experiment will be discussed in detail.

In conclusion, this acquisition system can work up to 107 parameters, with 32 bit for

each. All the operations needed are done without any software protocol, using an auto-

configuration procedure, which is able to recognize directly the kind of module (ADC,

TDC, delay etc.) and assign to each module a virtual station number (VSN) to make it

recognizable in the off-line analysis.

The final data are written on the disks of a Personal Computer used like a storage.

It is also possible to monitor the experimental spectra witha graphic interface of the

acquisition system.
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Figure 2.21:





Chapter 3

The experiment

The goal of the experiment analyzed in this thesis is the study of the de-exitaction

properties of CN formed in collisions between32S and two different stable Ni isotopes

at incident energies around 13 AMeV. The experiment is part of a wider study on

dynamical and thermodynamical properties of the nuclear matter, undertaken by the

NUCL-EX group [24].

3.1 Reaction

The experiment was performed at the INFN National Laboratory of Legnaro (LNL)

using a beam from the Tandem XTU and the LINAC ALPI accelerators (Fig. 3.1).

The ion beam time structure is pulsed. Each ion burst has, as afirst approximation, a

gaussian distribution with a Full Width Half Maximum (FWHM)of ∼3 ns.

The beam arriving on the target is synchronized with the ion accelerating electric

field radiofrequency (RF). The RF signal can be therefore used as reference for time

measurement. The main beam characteristics are reported intab.3.1. The analyzed

reactions are reported in tab. 3.2.

The beam energy (∼14.5 AMeV) is chosen following the criteria of reducing the

preequilibrium effects and having sufficient recoil energy for nuclear charge identifi-

cation of residues.

47
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Figure 3.1: Scheme of the the Tandem XTU and the LINAC ALPI accelerators

Beam I(pps) EbeamAMeV νRF(MHz)
32S .... 14.5 .....

At this incident energy complete and incomplete fusion reaction mechanisms are both

present. Recoil energy criteria should allow to determine whether the observed reac-

tions are mostly complete or incomplete fusion ones.

The target thickness of ...µg/cm2, leading to a mean energy loss of about∼...AMeV

for the considered residue, had been chosen as compromise between a large enough

number of events and a still sufficient residue velocity for identification.
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Beam Ebeam Target dx (µg/cm2)
32S 14.5 58Ni 150
32S 14.5 64Ni 150

3.2 Trigger configurations

The choice of the logic of the trigger is a crucial problem forevery experiment

because it is strictly connected to the selection of the reaction mechanism that you are

going to study. Normally, more then one processes are of interest inside an experiment.

Therefore, the main trigger is pratically obtained by performing logical condition of

chosen signals coming from the different detectors.

This leads to a selection of events with a relevant meaning from the point of view of

the physics. In the case of our experiment, the main process to select was the Com-

pound Nucleus formation, which is the fusion of the projectile with the target into an

equilibrated hot and thermalized system. During the following decay of this CN, we

have a production of light particles and IMF that we want to study.

The main trigger is then obtained from the AND of different trigger signals of interest.

In particular, we got the OR-GARFIELD (OR of all CsI(Tl)), which gives the “inclu-

sive“ trigger for light charged particles and fragments, the OR-RCO which gives the

”inclusive” trigger of residue, fragments and light particles emitted in forward direc-

tion. When used alone, these trigger signals were opportunely reduced to diminish the

counting rates.

The most important trigger for the experiment were coming from the coincidence be-

tween OR-GARFIELD with OR-RCO, without any reduction.

In Fig 3.2., one can see a scheme of the main trigger. The last two signals of Fig. 3.2.

inserted in the main trigger were used only for particular tasks and were not switched

on during the real data taking.

In particular, the pulser trigger is used to make routinely inside the experiment some

control runs where the signals of electronics come from controlled and known pulser
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input signals.

The use of a standard input source, like a pulser, is crucial in this experiment because

it makes possible to check the stability of the electronics during the measurement and

especially to compare experiment performed in different periods.

Figure 3.2: Scheme of the main trigger of the experiment

The last trigger is from plastic scintillator that were positioned all around the beam

line at small angles. In this way, they could collect the elastic scattering and produce a

time spectra from which it was possible to determine and keepunder control the time

resolution of the beam.

From time to time, a pure elastic scattering measurement (using a gold target) was per-

formed to have a clear time of flight spectrum to control the beam time structure. A

continuous monitoring was anyway performed during the whole measurement to take

under control possible deterioration of the pulsed beam.
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3.3 Online checks: GARFIELD monitor program

The monitor program provides a simple way for defining and thus visualizing an

arbitrary number of 1D and 2D histograms, filled either with raw experimental data or

with preprocessed variables (simple combinations of two ormore experimental param-

eters, linear calibrations).

Histograms are displayed grouped into “pages”. At the time of this writing∼ 3000 his-

tograms and∼ 250 pages are routinely used. Since such a number of histograms may

not fit into a single computer memory, histograms are organized also in “categories”.

1D histograms can also be declared as “pedestal” histograms, i.e. histograms that can

be used for a pedestal evaluation of standard ADC/QDC modules. During pedestal

runs, the monitor program can recompute all pedestals on-demand and the result can

be further manually adjusted using the GUI. Finally the pedestals are loaded by the

acquisition system. In Fig. 3.3 a screenshot of the main window is shown.

Figure 3.3: Screenshot of the main window of the monitor program. In the top part of

the window some information about the analysis is given, whereas various functions

can be accessed by using the buttons at the bottom.
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By using the GUI it is possible to navigate thought the different pages and in-

spect the various histograms. An expanded view of each histogram can be obtained by

double-clicking the corresponding window.

Any arbitrary selection of histograms can be exported into various formats (ROOT,

ZEBRA, binary, text) for later replay with the user’s favorite software.

The acquisition system stores data on a dedicated machine where a data dispatcher

daemon is running. Clients can connect from any host and ask for a given run set, that

is transmitted thought a TCP connection.

3.3.1 Dead time check

The dead time is the time interval during which the acquisition system acquires the

measured parameters. During this time window the system is inhibited and all new

events are lost.

The dead time is an important parameter to check during the experiment because it

limits the counting rate. The dead time percentage has been monitored during the

experiment and kept around 30% by adjusting the beam intensity.

3.3.2 Pressure controls

During all the measurements the gas pressure stability in the ionization chambers

has been monitored, since a pressure variation requires a new energy calibration of the

ionization chambers. The gas pressure in GARFIELD ionization chambers has been

set in order to obtain a good charge resolution in∆E − E spectra. Increasing the gas

pressure, the resolution gets better, but simultaneously the energy threshold for particle

punching through the ionization chamber increases.

3.4 Calibration runs

During the experiment several calibration runs have been performed:
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Pulser runs: a pulser signal is sent to GARFIELD and RCO in order to get the

mV/ch calibration factor.

Time calibrator runs: Time calibrator signals, with a knownperiod, are sent to all the

TDC used in the electronic chains. It allows to determine thens/ch calibration factor

for each TDC.





Chapter 4

Data reconstruction and Identification

methods

4.1 Data reconstruction

A ”raw” event is a list of acquisition data parameters characterized by the same

event number. The events reconstruction consists in the analysis of the acquired pa-

rameters in order to reconstruct physical particles, transforming list of hit detectors into

list of particles. A reconstructed event is characterized by the event number and the

particles multiplicity, while each particle is characterized by the identification number

of the hit telescope and by the energy of each fired detector. The GARFIELD detec-

tor uses different techniques to measure energy and velocity of the detected particles

and to identify them in charge and/or mass [25]. The, up to now, employed detection

techniques are summarized in the following:

• The∆E-E technique, using the signals coming from two layers of detection (es.

Silicon and CsI(Tl) detectors), is employed for charge and mass identification:

1. for GARFIELD apparatus the∆E-E technique, using the signals coming

from microstrip electrodes and scintillator (only charge identification);Fig.4.1.

55
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2. for RCO detector there are two∆E-E stage: the first step uses the signals

coming from IC (∆E) and silicon (E) detector (only charge identification),

the second step use the signals coming from silicon (∆E) and scintilla-

tor (E) detectors (charge and mass identification up to projectile-like nu-

clei);Fig.4.2.

• The Pulse Shape Discrimination technique, using the fast and slow component

of CsI(Tl) signals, is used to identify the light charged particles; this method

allows isotopic separation for particles with Z≤4 stopped in the CsI(Tl) scintil-

lator;Fig.4.1.

• The Pulse Shape Discrimination technique in silicon detector, using energy and

risetime signals, is used to identify the light charged particles anf IMF fragments

stopped in silicon; this method allows isotopic separationfor particles with Z≤14

stopped in the Si detector;Fig.4.2.

0 500 1000 1500 2000 2500 3000 3500 40000

500

1000

1500

2000

2500

3000

3500

4000

1

10

10

10

h68

Figure 4.1:∆E-E and Pulse Shape Discrimination technique for GARFIELD.
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Figure 4.2:∆E-E and Pulse Shape Discrimination technique for RCO.

4.2 ∆E-E method

The study of the N/Z dependence of level density parameter requires fragment and

light particle mass and charge identifications over a wide energy range. GARFIELD

multidetector, thanks to its structure constituted by telescopes, i.e. different detection

layers, allows to perform the identification in mass A and charge Z of the detected

particles through∆E-E technique.

The∆E-E method requires that the incident particle punches through at least the first

detection layer.

The specific energy loss (−dE/dx) for charged particles in a given absorber, with den-

sity ρ and charge and mass respectively ZT and AT , is described by the Bethe formula
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[26]:
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wherere =
e2

4πǫ0mec2 is the classical electron radii andme the electron rest mass. The

parameter I represents the average excitation and ionization potential of the absorber.

Z andβ are the charge state and velocity of the incident ion, respectively. Eq.4.1 takes

into account interactions between the incident ion and the electrons of the absorber,

neglecting the interactions with the nuclei of the absorber, which are significant just at

the end of the particle’s track.

It is generally valid for different types of charged particles provided their velocity re-

mains large compared with the velocity of the orbital electrons in the absorbing atoms.

In non-relativistic limit (β→ 0), eq.4.1 becomes:
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and, neglecting the logarithmicβ dependence,

−
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≈

Z2

β2
∝

Z2

f (E/A)
(4.3)

where E is the incident particle kinetic energy and A its mass. The specific energy loss,

for a given incident energy E, presents a relevant dependence from the incident particle

charge Z and a lesser one from its mass A. Therefore a∆E-E correlation presents the

typical Z edges as shown in fig. 4.3, and, if the∆E energy resolution is sufficiently

good, also the A dependence can be pointed out.

4.2.1 Particle identification method for∆E-E matrix

The necessary step before the data analysis is the calibration of the measured

signals. However, due to the fact that different detectors (ionization chambers, mi-

crostrips, semiconductors, scintillators) can be used, due to the rich variety of nuclear
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species produced in the reaction in a wide energy range and tothe large number of tele-

scopes covering the laboratory solid angle, this preliminary step is quite man-power

and time consuming.

A fast and reliable method to assign the mass and charge of thedetected ions is there-

fore highly desirable.

Analytical reductions [27] of expression 4.3 lead to

∆E +
[

Eµ+1 + (µ + 1) Z2Aµ∆X
]1/(µ+1)

− E (4.4)

in the case of particles detected in a∆E-E telescope.∆X is the thickness of the first

detector, where the ion deposits an energy∆E. In the second detector the ion is stopped

and releases an energy E. To obtain Eq.4.4 from Eq.4.3 the hypothesis thatf (E/A) is

a power-lawf (E/A) = (E/A)µ with exponentµ ≈ 1 has been made. Eq.4.4 is the basic

formula to build particle identification functions (p.i.f.) for charge identification.

For instance, if we aim to identify the charge Z of a detected particle/fragment from

the measured∆E; E signals, we can calculate a not calibrated measure of Z (p.i.f.),

which includes some unknown constants

p.i. f . =
[

(∆E + E)µ+1 − Eµ+1
]1/(µ+2)

(4.5)

with the assumption A=2Z: However, it is experimentally well known that it is quite

difficult, by managing the only parameterµ; to find a unique p.i.f. able to linearize the

∆E-E correlation of each used telescope, in the whole range ofresidual energies and

for a wide range of charges, as usually observed in heavy-ionreactions.

Modifications to Eq. 4.4 are therefore needed, since data deviate from the expected

behaviour for several reasons:

• when the residual energy becomes low, the atomic charge is nolonger equal to

Z;

• in experiments where the ion is stopped in a scintillator, the residual energy

signal is not linear with the released energy;
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• when∆E is measured with a Silicon detector, the pulse height defect influences

the Silicon detector response for high Z-values.

This formula performs a decoupling of the∆E-E correlation at low, intermediate and

high energies, by introducing some free parameters and a phenomenological term.

∆E =
[

gEµ+ν+1 +
(

λZαAβ
)µ+ν+1

+ ξZ2Aµ (gE)ν
]1/(µ+ν+1)

− gE (4.6)

whereλ, α, β, µ, ν andξare free parameters, related to the characteristics and non-linear

effects of the∆E and E detectors, g accounts for the ratio of the electronic gains of the

DE and E signals.

4.2.2 Identification procedure

The used identification procedure [28], consists of two steps:

• We sample on the∆E-E scatter plot several points on the lines of well defined

isotopes (He, Li, Be and B). In experiments, some isotopes can be easily recog-

nized, due to their abundance (4He; 7Li; 11B) or separation from other masses

(7Be; 9Be);Fig.4.3.

The charge, mass,∆E and E signals of the sampled points are put in a table. A

minimization routine determines the parametersg, λ, α, β, µ, ν andξ; giving the

best agreement between the whole sample and the correlationprovided for each

A and Z by Eq. 4.6.

The sum of the squared distances between the sampled and calculated values is

minimized. This procedure is performed for each used telescope and a map is

built containing the identification number of the telescopeand its characteristic

parametersg, λ, α, β, µ, ν andξ

• We perform the event by event identification. In each event, each detected parti-

cle/ion is identified in mass and charge by a two-step process, by minimizing the

distance of the measured∆E and E signals with respect to the values provided
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Figure 4.3: The sampled points used for the fitting procedure.

by Eq. 4.6 with the parametersg, λ, α, β, µ, ν andξ read from the map built in

the previous step. The two-dimensional vector (∆E; E) is then replaced by the

fourdimensional vector (∆E;E;Z;A) for subsequent analyses.

To identify mass and charge of the detected charged productsa two-step process

is needed, since Eq. 4.6 is not analytically solvable. The first step is to find

the charge Z (simply assuming A=2Z), by looking for the value of Z giving the

shortest distance between the experimental∆E and the energy loss given by Eq.

4.6 at the residual energy E. After the charge Z has been identified, the procedure

is repeated, by solving Eq. 4.6 with respect to A (Fig.4.4.).
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Figure 4.4: Experimental isotopic distributions obtainedfor charges 3-8.

4.3 LCP identification

CsI(Tl) scintillators are widely used to perfom Light Charged Particles (LCP) iden-

tification, as they emit light pulses whose shape varies as a function of the type of

incident radiation. In fact, the CsI(Tl) crystal,when excited by an incident particle,

produces light mainly in two different types of physical processes, resulting in two dis-

tinct light components (Fig.4.5 ),commonly named ’fast’ and ’slow’, reflecting energy

deposited by the particle in the crystal, and also the particles species.

The light output of CsI(Tl) can be schematically described of two exponential compo-

nents with different time constant:

L(t) = L1exp[
−t
τ f

] + L2[
−t
τs

] (4.7)

where:
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• L(t) the light pulse amplitude at time t;

• L1, L2 the light amplitude for the fast and slow components;

• τ f , τs denote the decay time constant of the fast and slow components of the light

pulse, respectively.

Figure 4.5: Pulse shape of charged particles in CsI(Tl)

This property of the CsI crystal is the basis of the pulse shape analysis. Knowing the

combination of the two yield contained in the ’fast’ and ’slow’ components allows one

to infer the species and the energy of the impimping particle.

Unfortunately, these yields cannot be measured directly, as the components in question

overlap to a significant degree. However, their magnitudes can be reconstructed in

a unique fashion, based on measured partial yields contained in characteristic ’time

slices’ of the scintillator signal. The identification scatter plot is then achieved by

plotting the fast versus the slow component as shown in Fig.4.6.

4.3.1 Procedure

We recall hereafter the scheme of the usually employed procedures to identify

(A,Z) isotopes, which do not rely on the brute force, even more time-consuming, ap-
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Figure 4.6: Pulse shape discrimination of light charged particles in CsI(Tl)

proach like graphical cuts. Two steps are normally necessary for each detector used in

the experiment (for instance when the (A,Z) identification is performed through Fast-

Slow [29] or via∆E-E residual[28]):

• In a bidimensional scatter plot several points are by hand sampled on the ridges

of well defined isotopes. Some isotopes can be easily identified by simple in-

spection, either due to their abundance (4He) or their separation from other

masses (1,2,3H). Charge, mass and coordinates of the sampled points are orga-

nized in a table.

• The parameters characterizing the detector response to thecharge (Z) and mass

(A) are determined by fitting the coordinates of the previously sampled points.

If an analytical[28], even empirical [22] function, describing one of the two vari-

ables as a function of the other does not exist, the set of points for a given iso-

tope (A,Z) are fitted one by one via polynomial functions. Thefit parameters are
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stored in a table.

Clearly, in the case of a large number of detectors/telescopes, the most time consuming

step of the identification procedure is the first one, becauseof the accurate sampling of

a huge number of points on each isotope branch needed to obtain in the second step a

reliable set of parameters. However, even the efforts to analytically link the employed

variables are of great importance, to make it possible to identify isotopes which cannot

be sampled, because of their low statistics (e.g. in backward-angle detectors). We

show in Fig.4.7. the Fast-Slow bidimensional plots for one of the 24 azimuthal sectors

of GARFIELD, as shown on-line by the Garfield data monitor [30].

Figure 4.7: Fast-Slow bidimensional plots of a GARFIELD sector for the reaction
32S +58 Ni 16.5 AMeV incident energy.
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In Fig.4.8 the 2-dimensional Fast-Slow histogram is show, lines visible in the his-

togram correspond to particles with different A and Z values. The ridge sequence ofγ,

p, d, 3H, 3He andα-particles can be easily distinguished, while other, more dispersed,

ridges need to be more carefully studied.

The left-most, significantly wide correlations at small Slow values are due to the su-

perpositions of heavy fragments, induced by the decrease ofthe decay time of the Fast

signal [31].

With dedicated measurements of Li and C elastically scattered beams on Au target

(superimposed as contours in the zoomed region) we have established that, in our en-

ergy regime, Li fragments, not isotopically resolved, are still distinguishable from the

”cloud”.

The ridge of Fig.4.8 betweenα-particles and Li fragments can be attributed to 2α-

particles impinging on the same detector.

Figure 4.8: Fast-Slow 2d-histogram of a GARFIELD crystal placed atθ= 35◦. In the

right panel an expanded view is shown, corresponding to the rectangle of left panel.



4.3 LCP identification 67

A new “semi-automatic“ procedure have been therefore studied in order to make

the identification of particles faster. The first step of procedure is the determina-

tion, within the ROOT environment, of representative sample points along the various

ridges. Due to the structure of isotope ridges, which can be interpreted as successive

monodimensional Gaussian distributions, very close to each other. Therefore we used

the ROOT method Projection and the TSpectrum Class, to perform the peak search

firstly along the X (Fig.4.9.) axis, then along the Y axis.

Figure 4.9: Fast-Slow bidimensional plot (left) and its Y-projection on Fast component

(right) for the narrow channel window shown in the left panel.

Finally a peak observed on the Y projection is validated onlyif a peak in the X pro-

jection falls in the same cell of the bidimensional plot. This gives a series of coincident

peaks, lying on the isotope ridges (Fig.4.10.).

At this stage coincident peaks falling on the isotope ridgesneed to be connected.

A (A,Z) label has also to be assigned to each collection of connected peaks, from now

on called a cluster. To do this, a tracking method has been used which automatically

connects the peaks along each (A, Z) ridge. Tracking is essentially a local method of

pattern recognition[32], here split in three components:
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1. a method to generate track seeds (Fig.2 right panel), which are the starting points

for the propagation procedure. The nature (A,Z) of these points is es- tablished

at this step,

2. a parametric track model, which connects points of an isotopic ridge with a set

of track parameters; in this case it is assumed a local linearequation between

each pair of points along the ridge,

3. a quality criterion, which allows to distinguish good track candidates from ghosts.

When several points are possible candidates to propagate a trajec- tory, the

method selects the point giving the minimum change of the angular coefficient

of the straight line connecting the previous two points belonging to the ridge.

This procedure is continued until the end of the tracking area has been reached, or no

further suitable points can be found. Seeds are automatically chosen as the leftmost

coincident peaks, allowing to connect all the other coincident peaks of a given isotope

through the parametric track model.

To build an empirical, but analytical, function, we startedfrom the consideration

that a power law relation can been employed [34] for the totallight output of a crystal as

a function of the energy. In our case, due to the almost linearcorrelation between Fast

and Long, we expect a power-law behaviour for both the Fast and the Slow variables

as a function of the energy. This also implies a power-law relationship between the

Fast and the Slow.

S low(Fast,A,Z) = a1Fasta
2
(a1, a2 ≥ 0) (4.8)

To reach our goal of obtaining only one analytical function for all the observed

isotopic species, we incorporated in Eq. 1 the exponential behaviors of a1 and a2:

a1 = [d1 + d2 exp(−d3Ze f f)]exp(−d4Ze f f)

a2 = [d5 − d6 exp(−d7Ze f f)](di ≥ 0, i = 1, 7) (4.9)

with Ze f f = (AZ2)1/3 , which represents the most effective way, within our approach,

to take into account the charge and the mass of the analyzed isotope ridges.
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Figure 4.10: Left: Points along the various ridges, determined through the Projec- tion

and TSpectrum procedure. Right: Seeds for protons, deuteron’s,α-particles and IMFs

(triangle, star, circle, square, respectively).

The last step of the analysis is the event by event identification procedure. By using

the table of fit parameters of all the crystals, for each detected LCP the program esti-

mates the distance of the experimental point (Slow,Fast) from the curve Slow(Fast,A,

Z) of Eq. 1 for all the possible (A,Z) values. The shortest distance between the

(Slow,Fast) point and each curve determines the appropriate assignment of Z (inte-

ger) and A (real) (Fig.4.12.).

The advantages obtained with the automatic calibration procedure may be summa-

rized in the following points.
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Figure 4.11: fit

Figure 4.12: mass distribution

• The time dedicated to offline calibration is greatly reduced.

• The use of an analytical form of the Fast-Slow correlation Eq. 4.8 makes it pos-

sible the extrapolation to A-regions where graphical cuts are not easy to make,

due to low statistics.
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4.3.2 LCP energy calibration

The analytical function used to fit the sampled tracks has been derived starting from

a power law relation suggested in Ref.[27] for the total light output as a function of the

energy.

This is shown in Fig.4.13. where the signals obtained in a previous measurement for

a ”reference crystal” [22] are plotted as a function of the energy for ions identified

through a∆E-E technique, exploiting a silicon detector in front of thecrystal as∆E.

Fig. 4.13 shows also the elastically scattered7Li and 12C on Au targets.

Figure 4.13: Light output as a function of the energy for p, d,4He, 7Li and 12C iso-

topes of a reference crystal The center of the squares correspond to elastically scattered

beams of7Li and 12C on Au targets, measured with the GARFIELD crystal of these

measurements.
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The behavior is well described as a power law, though some deviations are present

at low energies. It is easy to show that also the slow component can be assumed as

dependent on the fast through a power law and this is verified in Fig.4.13 where the

slow component is plotted against the fast in a double logarithm scale.

We have therefore used the energy calibration obtained as a consequence of the fit of

the light output to get energy distribution of light particles emitted in a32S + 58Ni

measurement at 16.4 AMeV.

The results are shown in Fig. 4.14 and the obtained distributions are typical of a statis-

tical decay (so called maxwellians).

Figure 4.14: Energy distributions for Z= 2 isotopes (top panel) and Z= 1 isotopes

(bottom panel).
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4.4 Global Experimental Observables

A basic global variable is the event charged particle multiplicity (Nc). The multi-

plicity represents the number of particles emitted in each event and could be related to

the violence of the collision (centrality of the collision). From the experimental point o

view the total detected multiplicity depends on the angularcoverage of the apparatus.

Another global variable that characterizes the events is the charge distribution of the

reaction products i.e. the relative yield of the different charges emitted in the reaction.

The charge distribution can give qualitative information on the reaction mechanism.

An important quantity, related to the charge of the fragments, is the sum of the detected

charges (Ztot), which gives information on the efficiency of the apparatus. In fact, as

the sum of the charges in the entrance channel is known (Ztot = ZPro jectile + ZTarget),

it is interesting to study the response of the apparatus withrespect to the collection

of the emitted charged particles, i.e. to the reconstruction of the event. In general,

global variables reflect the efficiency of the apparatus so that particles with an energy

lower than the detector thresholds or emitted in an angular polar range not in the ap-

paratus geometrical acceptance, cannot be included in the considered global variables

(multiplicity, total charge, etc). Another particle multiplicity can be constructed taking

into account only the intermediate mass fragments (IMF), i.e. fragments with a charge

Z ≥ 3. A further global variable that can be built in order to get information on the

centrality of the collision is the transverse energy. This is defined as the kinetic energy

calculated considering only the component of the velocity perpendicular to the beam

axis. The sharing of the incident kinetic energy of the projectiles in a perpendicular

direction is frequently interpreted as an indication of thecentrality, or dissipation, of

the collision. In fact, the more central is the collision, the higher the transverse en-

ergy, inducing to define the transverse energy as an indicator of the loss of the entrance

channel memory. In addition, for low values, the transverseenergy can be considered

a linear function of the impact parameter, thus allowing an impact parameter selection.
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The total transverse energy is thus defined as

Etrans = sumNtot
i=1

(−→pi ·
−→
ki )2

2mi
=

Ntot
∑

i=1

Ei sin2θi (4.10)

where pi, mi, Ei represent respectively the momentum, the mass and the kinetic

energy of a reaction product,θi the emission polar angle andki the beam direction.

The sum is extended to all products emitted in each event.

The total impulse along the beam axis (qz) and the velocity ofthe biggest fragments

(VZbig) are other observables that are correlated with the impact parameter. For example

qz, in the central collisions, has values around the velocity of the center of mass of the

system, while for peripheral collisions qz is approximately close the velocity of the

beam.

To sort the measured events as a function of the centrality, we adopted the method

of the “shape analysis” [36], common to other intermediate and high energy experi-

ments performed with≃ 4π detectors [37, 38].

To investigate the fragment emission patterns one has to build the momentum

tensor[36]:

Ti j = Σ
p(n)

i · p
(n)
j

p(n)
(i, j = 1, 2, 3) (4.11)

wherep(n)
i , p

(n)
j are thei − th and j − th Cartesian projections of the momentum~p(n)

of the n − th fragment in the center of mass frame. The sum runs over the number

of charged products with (Z ≥ 2) detected in each event. The diagonalization of this

tensor gives three eigen-valuesλi and three eigen-vectors~ei. The event shape is an

oriented ellipsoid with the principal axes parallel to the eigen-vectors.

The flow angleθ f low is defined as the angle between the eigenvector~e1 for the

largest eigenvalueλ1 and the beam axis ˆu3:

cos(θ f low) = ~e1 · û3 (4.12)

In order to perform the shape analysis it is necessary to select events where a con-

siderable amount of the incoming momentum has been detected. Then the inspection
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of the correlation between the total detected charge and theflow angle will allow to

separate central and peripheral events. The flow angle is indeed a variable sensitive

to the the dynamics of the fragmentation process. Specifically, the emission of frag-

ments from a unique source should be on the average isotropicin momentum space

and the flow angle should have a flat distribution. Converselyin peripheral reactions

the forward-backward emission of fragments from the spectator-like sources should

lead to an event shape elongated along the beam axis and a flow angle peaked in the

forward direction.





Chapter 5

Data selection and HIPSE event

generator

One of the most difficult issues in the study of the heavy ions collisions around the

Fermi energy domain is related to the fact that this energy region is a transition region.

Indeed one has to deal with a mean-field dominated dynamics (much below the Fermi

energy) and a high-energy regime where individual nucleonic degrees of freedom and

associated two-body effects become predominant [12].

This competition between mean-field effects and in-medium nucleon-nucleon interac-

tions is a long-standing problem in heavy ion reactions around the Fermi energy and

has led to two classes of models. The first one starts from the mean field and extends

this latter to account perturbatively for the residual two-body interaction, while in the

second class of models, the two body interaction is treated exactly and mean-field ef-

fects play a secondary role.

Intra-nuclear collision and molecular dynamics models arethe prototypes of this sec-

ond class. For heavy-ion collisions, it has been shown that the transition between

mean-field and nucleon nucleon degrees of freedom is smooth and both should be

accounted for at the same time to properly reproduce experimental data. Special atten-

tion should thus be paid to the interplay between preequilibrium and postequilibrium

77



78 data selection and HIPSE event generator

effects.

5.1 Heavy-Ion Phase-Space Exploration model

The Heavy-Ion Phase-Space Exploration model is a dynamicalmodel to account

for light as well as massive cluster emission during the reaction. This model naturally

accounts for the transition between nucleonic and mean-field effects. It properly con-

nects the preequilibrium stage with the deexcitation phase, introducing the important

notion of phase-space exploration during the reaction.

Let us take multifragmentation, defined as the emission in a very short time scale of

several species of atomic number larger than 2 [39] as compared to other decay mech-

anisms such as the formation of heavy residues or fission. Such a phenomenon is

expected to be the ideal tool to study the transition from a liquid-like state (nuclei at

normal density) toward a gas-like state associated with thevaporization of the system.

The quest for the signals of a nuclear phase transition of theliquid-gas type has led to

rather sophisticated analyses.

The experimental analysis based on nuclear calorimetry hasclaimed evidence for a

liquid-gas phase transition through the study of various signals. Some of the analyses

make extensive use of the thermal multifragmentation statistical models to prove the

existence of thermal equilibrium. There are however some uncertainties in using sta-

tistical models. This is due to the lack of knowledge of dynamical effects, in particular,

of the fast early processes which could lead to the formationof equilibrated systems.

In particular, the phase space explored during the collision is expected to be sensitive

to the initial conditions of the reaction. Such a point is addressed in microscopic trans-

port models.

These models provide a suitable framework for the description of nuclear collisions

at intermediate energies and are able to describe dynamicaleffects. Unfortunately, al-

though nucleon nucleon collisions are included, one can notdetermine if the system

has reached a complete thermal equilibrium.
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Moreover, there is not a direct link in such approaches between the outputs of the

simulations and the thermodynamical properties of the excited species produced in

the reaction. As a consequence, these models do not give unambiguously important

quantities required for statistical model calculations. For instance, internal excitation

energies of the created fragments cannot be easily obtainedin current microscopic cal-

culations.

The HIPSE model [40] has been developed to find a link between the two extreme

approaches, described above, namely the statistical approach based on the reduction of

the reaction to a few important parameters and the microscopic approach based on the

transport theory.

5.1.1 Main characteristics of the HIPSE model

This model consists in three main steps. In the first step, namely approaching

phase, the two partners (Projectile and Target) of the reactions are at maximum over-

lap. This phase is considered by solving the classical equation of motion of the two

partners in their mutual interaction potential.

The difficulty met in microscopic theories is that the potential partof the energy does

not separate from the possible internal excitation or from the kinetic part in the collec-

tive space. The difficulty can be removed in two limiting approximations:

• in the frozen density approximation, it is supposed that thecollision is suffi-

ciently fast so that the internal degrees of freedom do not have time to “reorga-

nize“ themselves. In that case, the concept of di-nuclear system persists even in

the limit of overlapping target and projectile densities. It thus neglects the Pauli

principle as well as the saturation properties.

• the adiabatic approximation limit assumes in an opposite way that internal de-

grees of freedom reorganize much faster than the collectivedegrees of freedom.
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In that case, the notion of two separate densities looses itsmeaning and one

should treat instead a single entity that undergoes a transition from large defor-

mation toward a compact shape.

For a given beam energyEB, a classical two-body dynamics during the phase of ap-

proach of the collision is assumed. NotingVAT AP (r = |rT − rP|) the interaction potential

between the target and the projectile, we consider the evolution associated with the

HamiltonianE0 = p2/2µ + VAT AP(r),whereE0 = [AT/(AT + AP)]EB is the available

energy in the center of mass whilep is the relative momentum andµ = mTmP/M is the

reduced mass withmT andmP the target and projectile mass, respectively. The concept

of nuclear potential is rather unambiguously defined when the two nuclei are well sep-

arated. When the relevant observable is reduced to the minimal geometric information

on the two nuclei in interaction (i.e. their nuclear radius only), the proximity potential

is used

The energy dependence of potential can be understood by considering the two limiting

approximations used to describe the nucleus-nucleus potential in fusion reactions: the

adiabatic and the sudden approximations (see [41]).

At very high relative energy, neglecting the influence of two-body collisions, the inter-

nal degrees of freedom have no time to reorganize and the system has a strong memory

of the initial conditions. As the beam energy increases, theinternal degrees of freedom

have less time to reorganize and the potential is expected tobe sharper. The possi-

ble energy dependence of the potential has been included in aphenomenological way.

Hipse model use a simple approximation for the constructionof the potential. First, it

is assumed thatVAT AP depends onr uniquely even for small relative distances. In order

to obtain the potential forr < RT +RP , we interpolate the potential betweenr = 0 and

r = RT − RP using a third-order polynomial and assuming continuity of the derivative

of the potential at each point. The value retained at r= 0 is conveniently expressed as

V(r = 0) = αaV
Froz
AT AP

(r = 0) (5.1)
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whereαa is a parameter to be fixed by comparison with experimental data.

VFroz
AT AP

is the energy of the system assuming that the two densities ofthe system overlap

completely in the frozen density approximation.

The second step in the model is the partition formation phasewhich corresponds to

the rearrangement of the nucleons into several clusters andlight particles (this rear-

rangements is hereafter called the partition) according tothe impact parameter of the

reaction. The partition is built following coalescence rules in momentum and position

spaces.

The main consequence of this approximation is that the characteristics of the species

produced in highly fragmented collisions will exhibit kinetic energy and angular dis-

tributions keeping a strong memory of the entrance channel.

The last phase is the exit channel and after-burner phase up to the detectors: the parti-

tion is propagated taking into account explicitly reaggregation effects due to the strong

nuclear and Coulomb interactions among the various speciesof the partition. Since

these latter are produced in excited states, secondary decays are taken into account by

means of an evaporation code.

5.2 Comparison with experimental data

The model described above is now compared with experimentaldata taken by NU-

CLEX Collaboration at the LNL facility (see chapter 2.3).

In order to test the model is necessary to perform a first data selection. To sort the

measured events as a function of the centrality, we adopted the method of the “shape

analysis” [36], common to other intermediate and high energy experiments performed

with ≃ 4π detectors [37, 38].

To do this it is necessary to select events where a considerable amount of the incoming

charge and momentum has been detected (most complete events).

A first selection of events is presented in Fig. 5.1. Asking that at least 50% of
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50

Figure 5.1: Total detected charge as a function of the total longitudinal momentum

normalized to the projectile momentum for32S +58 Ni (upper part) and32S +64 Ni

(lower part).

the total incoming parallel momentum is collected (dashed lines) allows to keep events

with two distinct values of the total detected charge: the higher bump corresponds to an

average detected charge about 80% of the total charge, the lower one corresponds to the

detection of the quasi projectile (Z = 16), being the quasi-target and its products non

detected because of the energy thresholds. On the left of thedashed line corresponding

to our first selection, lie events poorly detected from the point of view of the total

detected charge and total detected linear momentum. In the following we analyze

events under the conditionPz ≥ 0.5 · Pbeam.

A convenient observable to address the kinematics and the topology of the reaction

is the bidimensional correlation between the atomic numberand the parallel velocity of
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all emitted fragments as displayed in Fig. 5.2. The general trends of the experimental

data are reproduced by the simulation.

Fragments with atomic numbers close to the projectile exhibit velocities close to the

beam velocity as expected.
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Figure 5.2: Three-dimensional plots (in log scale)v//−Z. Left panel is for experimental

data while right panel is for simulated data. Only fragmentswith atomic numbers

larger than or equal to three are included in the figure

By examining now the behaviour of the total detected charge as a function of the

“flow angle” (see section 4.4), corresponding to different sphericity of the events, we

observe [ panel a) of Fig. 5.3] that peripheral events keep a strong memory of the

entrance channel and are therefore restricted to low valuesof the flow angle and a total

detected charge close to the projectile charge. The averagecalorimetric energy for

these events is 1.5 AMeV.

Higher values of the total charge are distributed over the whole range ofθ f low with

nearly constant statistics, which implies a nearly flat distribution of cos(θ f low), as ex-

pected for spherical events.

Hereafter we will define ”‘central”’ events with the condition of a total detected

chargeZtot ≥ 70%· ZS+Ni, and ”‘peripheral”’ events byZtot ≤ 25 andθ f low ≤ 40o.
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Figure 5.3: Total detected charge and charge of the largest fragment as a function of

the cosinus of the flow angle for32S +64 Ni under the condition:Pz/Pbeam≥ 0.5.

Upper part (panels a), b)): all events. Lower part (panels c),d)): events with at least

three detected IMF’s.

A first glimpse on the topology of the events can be inferred from panel b) of

Fig. 5.3, which displays the correlation between the flow angle and the heaviest cluster

measured in each event. We can see that forθ f low ≤ 30o the largest cluster has a charge

close to the total charge, as expected from an evaporation residue. For increasingθ f low,

we observe a decrease of the size of the largest fragment.
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The lower part of Fig. 5.3 shows that the evaporation phenomenon coexists with

multifragmentation for the most dissipative collisions characterized by values of the

“flow angle” larger than about 60o [37]: a non-negligible fraction of well measured

events corresponds to nearly equal-size 3-fragments (Z ≥ 3) events. The average

calorimetric excitation energy for the events withθ f low ≥ 60o is 3 A MeV, very close

to the total centre of mass available energy. Calculations performed for our reactions

with the dynamical code Hipse[40] confirm (Fig. 5.4) that thesorting of events in

intervals ofθ f low correspond to a classification in terms of impact parameter,due to the

monotonic relationship between these two quantities.

Figure 5.4: Simulated data. Total detected charge and charge of the largest fragment

as a function of the cosinus of the flow angle for32S +64 Ni.

Some three fragment events are also associated to peripheral binary collisions,

where the deposited energy does not allow to overcome the multifragmentation thresh-

old. The fact that the distribution of the largest fragment is not sensitively affected

by the IMF multiplicity indicates that fragments emitted bythe target, possibly in a

dynamical neck-like rupture, are detected sometimes together with the quasi-projectile

source[42].





Chapter 6

Data analysis

6.1 Charge distribution and odd-even effects

In the previous chapter we have divided the events into two classes: central and

pheripheral events. In the first case the evaporation phenomenon coexists with mul-

tifragmentation for the most dissipative collisions; the average calorimetric excitation

energy for the events withθ f low ≤ 60 ◦ (see section 4.4) is 3 A MeV.

The peripheral events keep a strong memory of the entrance channel and are therefore

restricted to low value of theθ f low angle and a total detected charge close to the projec-

tile charge. The average calorimetric energy for these events is 1.5 A MeV.

Figure 6.1 shows the charge distributions measured for the two reactions in periph-

eral (right part) and central (left part) events. The superposition of the two peripheral

data sets corresponding to the different targets58Ni and 64Ni shows that our selection

on peripheral events is effective in isolating the contribution of the quasi-projectile; a

different behavior is observed in central collision, where the charge distribution does

not scale with the size of the system and a clear isospin effect can be seen: the source

with the higher N/Z ratio (open symbols) leads to a more prominent U-shape charge

distribution. This can be intuitively understood considering that a high N/Z ratio of the

87
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Figure 6.1: Elemental fragment (Z>2) distribution for32S +58 Ni (full symbols) and
32S+ 64Ni (open symbols). Left: all central events, without selection on the multiplic-

ity. Middle: central events with at least three IMF (Z>2) detected. Right: peripheral

collisions.

source favors the production of large clusters, since such clusters are in average more

neutron rich. Therefore partitions consisting of a large heavy residue dominate. When

the N/Z ratio is low (full symbols), the probability for a large cluster to survive is small

and the system can decay into IMFs, which are typically symmetric in N/Z.

6.1.1 Staggering

Odd-even effects have been studied since a long time and never quantitatively un-

derstood. The odd-even anomaly was reported in the literature [45, 43] to be more

pronounced in reactions involving Ni projectile and targets, in particular in n-poor sys-
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tems, while in experiments involving Ca projectile and targets it was not observed up

to the advent of experimental devices with very good accuracy of Z-identification [44].

As far as staggering is concerned, we can see that for both reactions a well pro-

nounced odd-even effect is seen in the charge distribution of peripheral collisions,

while almost no staggering is apparent neither in the IMF yield (coming mainly from

fusion-multifragmentation) nor in the residue region (coming from fusion-evaporation)

for central collisions, where only the extra-production ofCarbon fragments is evident.

This behavior has already been observed in many other reactions at low and inter-

mediate incident energies, for central collisions [46, 47,48, 49]. In almost all the

experiments quoted in Ref.s [45, 43] the experimental samples correspond mostly to

peripheral collisions or to fission-fragment charge distributions. To our knowledge, no

staggering has been directly observed in charge distributions for carefully selected cen-

tral collisions. Evidence of the staggering in central collisions comes out by looking

at the ratio of the charge distribution of the neutron-poor reaction by the neutron-rich

one [47]. In this way, however, the absolute value of the even-odd staggering for each

reaction is lost.

The difference between central and peripheral collisions indicates that the most

important variable governing the staggering is either the isotopic ratio of the evapo-

rating source, which is sensibly more neutron rich for the fused sources than for the

quasi-projectile, or the excitation energy, which corresponds to 3 A.MeV in average in

the central sample and less than half of this value for the peripheral sample, which can

produce fragments with a different mechanism. To clarify these ipotheses, we build the

fragment charge distribution for events out of the central sample, characterized by only

two detected fragments and a smallθ f low range (< 30o). In agreement with other exper-

imental results [50, 51] the even-odd staggering is apparent, slightly more pronounced

in the neutron-poor reaction (see Fig. 6.2). To deeply inspect the yield oscillations in

peripheral and central events, we calculated the ratio of the elemental charge distribu-
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Figure 6.2: Elemental fragment (Z ≥ 3) distribution of the lightest fragment for central

events with fragment multiplicity equal to 2.32S +58 Ni (left) and32S +64 Ni (right).

Lines are drawn to guide the eye.

tions by the smoothed ones, obtained by a parabolic smoothing of 5 consecutive points

of Fig. 6.1. By looking at Fig. 6.3 it is evident that the staggering is present also in

central collisions with amplitudes similar to the peripheral ones. Some differences are

apparent in this representation: the extra-production of the Carbon with respect to os-

cillations of neighboring charges is larger in central collisions and the amplitude of the

ratios decreases for increasing fragment charge, at difference with peripheral events,

where it remains almost constant.

In both cases the different isospin of the entrance channel plays a minor role, en-

forcing the idea that a different kind of decay is the origin of the observed fragments.

A possible way of discriminating between these two hypothesis would be to an-

alyze data in excitation energy bins, but the statistics of the present data-set is not

sufficient. However we will have insights on this issue from modelcalculations in the

next chapter.
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Figure 6.3: Top panels: Ratio of the elemental fragment (Z ≥ 3) distribution of Fig.6.1

for 32S +58 Ni (full symbols connected by dashed lines) and32S +64 Ni (open symbols

connected by full lines) by the smoothed distributions. Left: central events. Right:

peripheral collisions. Lines are drawn to guide the eye.

Before coming to more complex analyses, let us look at some preliminary observa-

tions on the behavior of staggering. The elemental distribution is displayed in different

isotopic chains in Fig. 6.4.

A clear odd-even effect is only apparent in the caseN = Z andN = Z − 1, where

some odd-even fluctuations appear superposed to a global trend which is largely de-

termined by the non-monotonic behavior of the inclusive mass distribution, as shown

in Fig. 6.1. To disentangle the two effects and better evidence the isotopic behavior,

it may be useful to normalize the measured yield of each isotope to the total detected

yield for the considered element. This normalized distribution, defined as:

P(A) =
Yield(A,Z)

∑

A Yield(A,Z)
(6.1)

is presented in the left panels of Fig. 6.5 for the two reactions.
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Figure 6.4: Elemental distribution of IMFs for32S +58 Ni (left) and32S +64 Ni (right)

for peripheral collisions corresponding to different isotopic chains.

The behavior of theN = Z yields is not modified by this procedure, while odd-

even effects appear more clearly for the other isotopic chains, thatcorrespond to lower

cross sections and are therefore more affected by the U-shape of the inclusive size

distribution.

As proposed by Ricciardi et al.[43], the observed trend is qualitatively compared

to the behavior of the lowest particle emission threshold, i.e. the lowest between the

proton and neutron separation energies of the final daughternucleus. In agreement

with FRS data, the behavior of the isotopic distributions isqualitatively similar to the

behavior of the lowest separation energy, suggesting that the last (neutron or proton)

evaporation step is indeed at the origin of the observed staggering. An exception is

given by theN = Z+ 2 isotopic chain, which shows an inverse staggering with respect

to the interpretation based on separation energies.

This interpretation moreover requires that the last evaporation step is completely
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Figure 6.5: Normalized distribution of IMFs for32S+58Ni (full symbols) and32S+64Ni

(open symbols) for peripheral collisions corresponding todifferent isotopic chains. For

each reaction, the panels on the right show the corresponding behavior of the fragment

lowest nucleon emission threshold (see text).

dominated by the competition between proton and neutron emission. This is clearly

not the case for the8Beyield, which has been reconstructed throughα−α correlations,

and the same may be true for other isotopes. To have a more global view of the issue,

Fig. 6.6 displays the Q-values for neutron, proton and alphadecay for the different

isotopic chains.

From this figure we can see that the lowest Q-value for theN = Z chain always

corresponds toα-decay (with the only exception of14N), and this quantity does not

show any oscillating trend as a function ofZ for all the other considered isotopes. The

position of the first particle-unstable excited level of theparent nucleus is also shown

in Fig. 6.6, and nicely coincides with the lowest Q-value.

Looking at the position of the first excited level forN = Z + 1 nuclei we can

formulate another interesting consideration: in this caseeven-Z nuclei in their first

excited level decay byn emission, and the corresponding daughter are even-Z N = Z

isotopes, while odd-Z nuclei decay mainly byα emission (with the exception of15N),
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Figure 6.6: Comparison of the energy of the lowest unstable state (thick lines) decaying

in a given daughter isotope, with the Q-value for alpha decay(open squares) and the

neutron (Sn) and proton (Sp) separation energies



6.1 Charge distribution and odd-even effects 95

corresponding to daughters with odd-Z and of the sameN = Z + 1 class. Moreover,

since the first excited level for even-Z nuclei lies at a lower energy with respect to the

first level of odd-Z ones, we could say that even-Z nuclei are produced in their excited

levels with a higher probability. Being the decay from this level decided in a quasi-

deterministic way by energy thresholds, the higher probability for the excitation of the

first level in 9Be, 13C and17O as parent nuclei translates into an increased yields for
8Be, 12C and16O daughter, which is seen in the data.

In the case ofN = Z + 2 parent nuclei the energy position of the first excited level

follows exactly the trend ofmin(S n; S p), and, with the exception of 18O, all the levels

are unstable against n-emission. This means that, considering parent nuclei of the type

N = Z+2, their daughters would be allN = Z+1 nuclei. Moreover, since the levels of

even-Z nuclei lie higher in energy with respect to the odd-Z ones, we expect an increase

in the yield of odd-ZN = Z + 1 nuclei, which is seen in the data. As far asN = Z + 2

daughter nuclei in the final yields are concerned, the interpretation of Fig. 6.6 is not

so straightforward. Nuclei of this kind could come for instance from the proton decay

of N = Z + 1 nuclei with excitation energies higher than the one corresponding to the

first excited state. In this case the proton separation energies for N = Z + 1 show an

oscillation coherent with the oscillation of the measuredN = Z + 2 yields, under the

hypothesis of a lower probability for an excitation at an higher energy. ButN = Z + 2

nuclei could also come from theα-decay of nuclei of the sameN = Z+ 2 class: in this

case no oscillating trend is observed for the Q-value forα-decay, but the alpha-decay

threshold for Z= 6 is higher than the one for the neighbouring nuclei, suggesting an

underproduction of Z= 6 nuclei of the classN = Z+2. The same holds if we consider

N = Z + 2 nuclei as daughter of the neutron decay ofN = Z + 3 parents.

Finally, the caseN = Z − 1 of Fig. 6.6 shows that the lowest Q-value for the first

particle-unstable excited level of parent nuclei corresponds toα-decay, with the excep-

tions of 13N and15O, which decay by emission of a proton and a daughter fragment

with N = Z, increasing the yield ofN = Z nuclei, observed in the data.

Concluding, the presence of staggering in the final measuredyields can be linked
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to the population of the parent nuclei at the previous steps of the decay chain and can

not be fully explained by the behavior of the lowest particleemission threshold of the

final daughter nuclei. This is the reason why we propose to study correlation functions

of isotopically resolved pairs, which allows us, at least insome selected cases, to re-

construct the primary yields of decaying nuclei.

To clarify the situation, it would be highly desirable to understand how during

the evaporation chain staggering effects are generated, and in particular if they are

already present at finite temperature, i.e. is at the last-but-one evaporation step. In

order to gather model independent experimental information on the relative isotopic

population at finite excitation energy, we will extract in the next section the excited

states population through correlation functions.

6.2 Particle Correlations

Intensity interferometry via particle correlations was first studied in astrophysics

[52]. This idea has later been generalized to correlations in nuclear physics involving

various types of particles. The early example such as proton-proton [53] correlations

involve identical fermions. These have been widely used forstudying the properties

of the sources of particles emitted in heavy ion reactions. Subsequently, non-identical

particle correlations such as d-alpha correlations and correlations involving heavier

fragments (up to Carbon) have also been studied; these studies have provided insight

regarding the freeze-out conditions for multifragmentation processes where the nuclear

interaction vanishes [54, 55] and have contributed to determine the populations of ex-

cited states of emitted fragments [56].

In this section we propose a back-tracing technique based oncorrelation functions of

the relative kinetic energy of isotope pairs, to address theproblem of quantitatively

understanding odd-even effects and hopefully gather information on pairing and sym-

metry properties of the nuclear level density.
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If we concentrate on light nuclei (IMF), their discrete spectrum is typically so much

extended that the last evaportion step takes place typically from a discrete resonance,

which can at least in principle be recognized as a peak in a relative kinetic energy

two-body correlation function. Because of the limited statistics, we analyze periph-

eral events as a whole, which corresponds to a distribution of sources in A and E*.

To really reconstruct the last-but-one evaporation step one should have measured also

n-IMF correlations functions, out this is not possible withpresent apparatus in this

energy range. Because of these problems, we cannot extract quantitative information

on the temperature dependence of the pairing. However one can experimentally assess

how much the yield of fragments which are dominated by a last porα evaporation step

is influenced by this last decay. This will give us important information on how much

important is this last step in the production of the odd-eveneffect.

The correlation functions are interpreted within the Koonin-Pratt formalism [53] and

within the assumption of thermal equilibrium.

6.2.1 Koonin-Pratt Formalism and Equilibrium Correlation Ap-

proximation

Experimentally the two particle correlation function may be defined as follows,
∑

Y12(
−→p1,
−→p2) = C(1+ R(q))

∑

[Y1(
−→p1)Y2(

−→p2)] (6.2)

whereY12 is the two particle coincidence yield of a given pair of particles with their

individual momenta−→p1 and−→p2, respectively, and theYi(
−→pi ) are the single particle yields

for the two particles not measured in the same event. The summations on both sides

of the equation run over pairs of momenta−→p1 and−→p2 corresponding to the same bin in

relative momentumq.

The correlation function describes how the correlation between coincidence particles

measured in the same event differs from the underlying correlation dictated largely by

phase space and modelled by mixing the single particle distributions of particles from

two different events (the so-called event-mixed yield). The correlation constant C is
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typically chosen to ensure thatR(q) = 0 at large relative energies where the correlations

due to final state interactions and quantum statistics can beneglected.

If the summation in Eq. 6.2 does not involve strong constraints on the emission angles

of particles 1 and 2, the appropriate comparison is to the angle-averaged Koonin-Pratt

equation [53]

C(q) ≡ 1+ R(q) = 1+ 4π
∫

drr2K(q, r)S(r) (6.3)

where the source function S(r) is defined as the probability distribution for emitting a

pair of particles with relative distance r at the time when the second particle is emitted.

The angle-averaged kernel, K(q, r), is obtained from the radial part of the antisym-

metrized two-proton relative wave function as follows [57],

K(q, r) = |Φq(r)|2 − 1 (6.4)

where the wave functionΦq(r) describes the propagation of the pair from a separation r

out to the detector at infinity, where relative momentum q is reached. Correlation func-

tions have been analyzed using Eq. 6.3 for a variety of correlations involving hydrogen

and helium isotopes [58]. One of the factors limiting the extension of the Koonin-Pratt

equation to heavier particles is the care needed to construct the Kernel K(q,r). Essen-

tially, one must search for a set of attractive nuclear potentials that can reproduce the

experimental phase shifts. Right now, we have only the necessary potentials for the

p-p and d-α correlation functions. To rapidly extend the correlation function to heavier

particles and to facilitate the comparison to statistical models, we use here a formalism

for calculating the correlation function within equilibrium theory [60].

The starting point for this development is the consideration of elements needed for the

equilibrium description. First, one needs to have a compactmethod for incorporating

both the long range Coulomb and short range nuclear interactions. Second, one must

address the volume that is occupied by other particles. We choose to address the sec-

ond issue by invoking the excluded volume approximation. This essentially amounts

to counting as particles only those that are isolated, a procedure that is consistent with

most of the equilibrium multifragmentation approaches [59]. Equilibrium correlation
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function expressions are derived by considering how the twoparticle phase space is

modified by interactions. For simplicity, we consider the simplified geometry where

the center of mass of the pair of spinless particles with chargesZ1 andZ2 is at the cen-

ter of a volume V . To calculate how the phase space of relativemotion is modified by

the Coulomb interaction, we follow semi-classical theory which states that the phase

space density is given as a function of the relative spatial separation−→r and relative

momentum−→q by
dn

d3−→r d3−→q L

=
1
h3

(6.5)

where−→q L is the local momentum given in terms of q, the reduced massµ = M1M2/(M1+

M2) and the Coulomb potential by:

qL =

√

q2 − 2µZ1Z2e2

r
(6.6)

Re-expressing Eq. 6.5 in terms of the momentum−→q at large distances where the

Coulomb interaction can be neglected, we have

dn

d3−→r d3−→q L

|Coulomb=
dn

d3−→r d3−→q L

d3−→q L

d3−→q
=

1
h3

√

1−
2µZ1Z2e2

rq2
(6.7)

If the above equation is integrated over a volume V and divided by the corresponding

integral of the relative phase space density of two free particles,dn/d3−→q = V/h3, an

expression for the Coulomb correlation function 1+RCoul may be obtained as follows,

1+ RCoul(q) =
1
V

∫

V
d3r

√

1− 2µZ1Z2e2

rq2
(6.8)

One begins by imagining that two interacting particles are placed in a spherical con-

tainer centered about their common center of mass. The appropriate boundary condi-

tion assumes the wavefunction of relative motion vanishingat the container walls. In

the asymptotic region, the radial wavefunction is of the form

Ψ ∝
sin[qr/~ − ηln(2qr/~) − lπ/2+ δl(q)]

qr
Yλµ (6.9)
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The boundary condition therefore requiresqr/~−ηln(2qr/~)−lπ/2+δl(q) = mπ, where

η = Z1Z2e2/~v is the Coulomb parameter. Separating the phase shift into Coulombσl

and strong interactionδ
′

l components, the density of states is

dn
dq
= (2l + 1)

dm
dq
=

1
π

∑

(2l + 1)

{

R
~
+

d
dq

[ηln(2qR/~) + σl(q)]

}

+
1
π

∑

(2l + 1)











dδ
′

l

dq











(6.10)

In Eq. 6.10, the first term represents the density of states for the pure Coulomb problem

and the second term is the density of states due to the strong interaction. Since the first

term is difficult and unwieldy to use, one can use the semiclassical expression in Eq.

6.8 or some similar shape for the Coulomb density of states. We will use the second

term for the strong interaction effects. Taking the spin of the particles and resonances

into account, the two particle phase space of relative motion becomes

dn12

d3−→q
=

(2S1 + 1)(2S2 + 1)
h3

Vf

V

∫

V
d3−→r

√

1− 2µZ1Z2e2

rq2
+

1
4π2q2

∑

J,l

(2l+1)
dδ
′

Jl

dq
(6.11)

whereVf and V are the free (unoccupied) and total (including occupied) volumes of

the system, respectively. Given this relationship, the correlation function as a function

of relative momentum becomes

1+ R(q) = 1+ RCoul(q) + Rnucl(q) =
1
V

∫

V
d3−→r

√

1− 2µZ1Z2e2

rq2

+
h3

4π2q2Vf (̇2S1 + 1)(2S2 + 1)

∑

J,l

(2l + 1)
dδ
′

Jl

dq
(6.12)

and as a function of relative energyErel becomes

1+ R(Erel) = 1+ RCoul(Erel) + Rnucl(Erel) =
1
V

∫

V
d3−→r

√

1− Z1Z2e2

rErel

+
h3

4π2Vf (̇2S1 + 1)(2S2 + 1)µ
√

2µErel

∑

J,l

(2l + 1)
dδ
′

Jl

dErel
(6.13)

To extend correlation function analyses to heavier particles we can at the present time

only apply the equilibrium correlation approximation. This approximation is equiv-

alent in many respects to the Koonin-Pratt formalism. The integral of the first term
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in Eq. (6.12) over the distribution of relative separationsfor the two decay products

within the source displays a minimum at small relative energy, whose width depends

on the source size. The detailed distribution over the source volume may depend on

particle type. If these distributions are not at the focus ofinterest, it is more straight-

forward to parameterize this background contribution by anempirical expression

1+ RCoul = 1− exp[−(Erel/EC)α] (6.14)

which vanishes at zero relative energy and reaches unity at large relative energy. We

will use this expression in the following analysis. When thederivative of the nuclear

phase shift is given in a Breit-Wigner form

dδ
′

Jl

dq
≈ Γi/2

(Erel − E∗i )
2 + Γ2

i /4
(B.R.) (6.15)

the nuclear correlation function in Eq. 6.12 becomes

Rnucl(Erel) =
h3

4πVf (2S1 + 1)(2S2 + 1)µ
√

2µErel

e−Erel/Te f f ×

1
π

∑

i

(2Ji + 1)
Γi/2

(Erel − E∗i )
2 + Γ2

i /4
(B.R.) (6.16)

whereS1 andS2 are the spins of the considered particles,µ is their reduced mass,Vf is

the freeze-out volume of the system,Te f f is the effective temperature,Ji ,E∗i , Γi are the

spin, excitation energy, width of the leveli, B.R. is the branching ratio for decay to the

measured channel. Examples of typical correlation functions and resulting fits via Eq.

6.16 are shown in Figs. 6.7 and 6.8. In d-alpha correlation function, we can see clearly,

in the relative energy spectra, the peaks related to the resonance states of6Li: the 3+

state at 2.186 MeV (Erel+Qvalue) and the 2+ state at 4.31 MeV. Also shown by the solid

line in the figure is Coulomb correlation function calculated by Eq. 6.14. In the case of

the alpha-alpha correlation as shown in Figure 6.8, the ground state 0+ of 8Beand its

first excited state 2+ at 3.04 MeV are illustrated. In this example the identical particle

effect is observed. That is, the phase space of the two identicalparticles is reduced by

a factor 2 and consequently the resonance correlationRnuc becomes twice as large as

in Eq. 6.16.



102 data analysis

Figure 6.7: Relative kinetic energy correlation function (symbols) ofα− d pairs, mea-

sured in peripheral32S +58 Ni collisions and fit through Eq.6.16 (line).

Figure 6.8: Relative kinetic energy correlation function (symbols) ofα−pairs, mea-

sured in peripheral32S +58 Ni collisions and fit through Eq.6.16 (line).
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6.3 Efficiency of the apparatus for the measured corre-

lation functions

Since we would like to recover information on the yields of pre-fragments, we

have calculated the efficiency of the employed apparatus for the measured correlation

functions, following the procedure of Ref.s [56, 61]. The efficiency function of the ap-

paratus for the decay of ”‘warm”’ fragments in the observed channels was determined

by Monte Carlo calculations, taking into account the geometry of the detectors, the

energy resolution, energy thresholds and the granularity of the telescopes. The energy

spectra and the angular distribution of excited parents have the same shape as those

observed for stable fragments. For parent nuclei with particle unstable ground state

energy distribution of neighboring stable nuclei were usedto calculate the boost in the

laboratory frame for the produced pair of daughters.

The decay of parent nucleus is isotropic in its rest frame. Only the angular range cov-

ered by the forward detector (θ = 5.3o−17.5o), where detected particles and fragments

are isotopically resolved, was considered for efficiency calculations. The integral ef-

ficiency for each decay channel was defined [56] as the ratio between the yield of

detected pairs and the number of generated pairs for each binof relative energy.

For a generated flat distribution of excitation energy of theparent nucleus (flat dis-

tribution of relative energy of the daughter particles) theintegral efficiency shows an

increasing trend in the first MeV of relative energy, starting from 0 at 0 relative energy,

80% below 0.5 MeV. From about 1 MeV of relative energy it remains constant at about

90%, similarly to the case of other experimental devices with spherical arrangement

of the detectors [62] around the beam axis. The reduced efficiency at small relative

energies is due to the finite granularity and the rejection ofdouble hits in the same

telescope. At high relative energies the efficiency results smaller when pairs of light

particles or fragments are considered, as for instancep, d,3,4 He and 6,7Li, while the

kinematics favors an higher efficiency in the case one of the two partners is heavier, as

for instance aBe, B or C.
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Figure 6.9: Integral efficiency (top panel) and percentual deviation (bottom panel)

between the generated and detected relative energy as a function of the relative energy

of detected particles for all the measured correlation functions.

To give some specific examples, the integral efficiency factors are found to be 79%

and 95% for the8Beg.s. and the 3.04 MeV excited state, respectively. In the case of the

first excited state of6Li (2.186 MeV excitation energy) the integral efficiency resulted

88%.

The distortions of the widths of excited states, due to the finite opening angles of the

individual telescopes, to the limited granularity of the experimental device and to low

energy cuts in the relative kinetic energy distribution wasevaluated by comparing the

generated and filtered relative energy spectra. We show in the bottom panel of Fig.

6.9 the percent deviation between the relative energies before and after the filtering

procedure.

We have also considered specific cases and we have evaluated the modifications of the

rms of the relative energy distribution. For the 3.04 MeV excited state of8Beit resulted

a detected rms of 0.97 MeV to be compared with the rms of the generated distribution

of 0.75 MeV. Much larger is the deformation of the8Beg.s. emission, with a detected
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rms of 0.29 MeV instead of the generated 3· 10−4 MeV. In the case of the first excited

state of6Li the rms after the filter is 0.19 MeV instead of the unfiltered 0.01 MeV, again

similarly to other experimental devices [62].

Following this Monte-Carlo simulation, the tabulated level widths in Eq.(6.16) were

increased to account for the estimated efficiencies. The Coulomb background parame-

tersEC andα of Eq. 6.14 are free parameters of the fit. The same is true for the nuclear

parametersVf andTe f f of Eq. 6.16, which would represent a physical volume and a

physical temperature only in the idealized situation of a single decay step of a perfectly

equilibrated source in the absence of any collective flow norexperimental deformation.

6.4 Primary fragments

Examples of typical correlation functions and resulting fits via Eq. 6.16 are shown

in the top panels of Figs. 6.11, 6.10. We also show in Fig. 6.12the correlation

function for theα−α pairs, emitted by the unstable8Be. Primary yields are calculated

by multiplying the nuclear contributionRnuc (Eq. 6.16) of the correlation function

for the uncorrelated yieldΣY1( ~p1)Y2( ~p2) of Eq. 6.2. The experimentally reconstructed

primary population is shown with open symbols for some selected nuclei in the bottom

panels of Fig.s 6.11 and 6.12, together with the contributions from the different parent

excited levels entering in Eq. 6.16, shown as lines. The total primary population of a

given isotope at the last-but-one evaporation stepY(A,Z) is calculated by integrating

over the relative energy the primary yields given by the bottom part of Figs. 6.11 and

6.12.

The primary yields obtained through this procedure for the unstable8Behave been

already reported in Fig. 6.4. Interesting enough, some excited levels which energeti-

cally lie above the lowest threshold for particle emission in the daughter nucleus con-

tribute to the data. To give an example, most of the correlated yield associated to the

α+6 Li correlation function presented in Fig. 6.10 is associated to excited levels of10B

aroundE∗ = 6.6, lying about 300 keV above the threshold for the6Li decay in4He+ d
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Figure 6.10: Upper part: representative relative kinetic energy correlation functions

(symbols) of different isotopes measured in peripheral32S +58 Ni collisions and fit

through Eq.6.16 (line). The obtained background is also indicated together with its

uncertainty. Lower part: experimental population of primary parents (open symbols)

and their excited states (thin lines) together with their sum (thick line). From left to

right: d − α correlations and corresponding excited states of6Li, α −6 Li correlations

and corresponding excited states of10B.
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Figure 6.11: Upper part: representative relative kinetic energy correlation functions

(symbols) ofp−13 C pair measured in peripheral32S +58 Ni collisions and fit through

Eq.6.16 (line). The obtained background is also indicated together with its uncertainty.

Lower part: experimental population of primary parents (open symbols) and their ex-

cited states (thin lines) together with their sum (thick line).
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Figure 6.12: Upper part: relative kinetic energy correlation function (symbols) of

α−pairs, measured in peripheral32S +58 Ni collisions and fit through Eq.6.16 (line).

The obtained background is also indicated together with itsuncertainty. A more de-

tailed view of the correlation function around 3 MeV is shownin the insert. Lower

part: experimental population of the8Beparent (open symbols) and its excited states

(thin lines) together with their sum (thick line).
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and below the separation energy for the neutron emission forthis daughter nucleus,

which potentially can decay viad−α emission. Since the4He+d correlation function

(shown in Fig. 6.10) was measured, it should be interesting for this case to perform a

3-body decay correlationα+α+d to calculate the amount of primary fragments before

their last step of the decay.

However, due to the limited statistics associated to the peripheral sample, we can

not perform 3-body correlations nor show other cases of successive decays.

To show however that theα +6 Li is is not a single case of possible successive

decays, we analyzed the whole sample, obtained for the detected events without any

selection on the collision mechanism. In Fig. 6.13 we show the correlation function

p +13 C, already shown in Fig. 6.11 for peripheral events, just to show that an higher

statistics allows to explore an higher range of excitation energy of the parent nuclei.

We show also thep+7 Li correlation function, corresponding to the decay of8Be∗.

The excitation energy of the parent8Be∗ overcomes of about 2 MeV, with non neg-

ligible yield, the threshold forα + T-emission of7Li∗, which is below the separation

energy for neutron emission. Also the correlation functionfor T + α is measurable,

and it is shown in Fig.s 6.13,6.14.

These examples show that the emission is not necessarily associated to the lowest

threshold, but it depends in a more complicated way on the history of the evaporation

chain.

Coming back to peripheral collisions, the different primary nuclei reconstructed via

Eq. 6.16, their probability and average excitation energy are shown in Fig. 6.15. The

probability of ”‘warm”’ fragments of chargeZ has been defined as:

P(Zc.n.) =
∑

A Y(A,Z)
∑

A Y12(A,Z)
(6.17)

whereY(A,Z) represents the yield of a primary fragment (A,Z) as extracted from cor-

relation functions and Eq. 6.16. The denominator of Eq. 6.17is given by the sum of

the correlated yields of Eq. 6.2 over all the isotope pairs with sum of charges equal to

Z.
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Figure 6.13: Upper part: relative kinetic energy correlation functions (symbols) of dif-

ferent isotopes measured in the whole sample of32S +58 Ni collisions and fit through

Eq. 6.16 (line). The obtained background is also indicated together with its uncer-

tainty. Lower part: extracted population of the different parent excited states (thin

lines) together with their sum (thick line). From left to right: p−13 C correlations and

corresponding excited states of14N, p −7 Li correlations and corresponding excited

states of8Be.
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Figure 6.14: Upper part: relative kinetic energy correlation functions (symbols) of

T − α pairs measured in the whole sample of32S +58 Ni collisions and fit through Eq.

6.16 (line). The obtained background is also indicated together with its uncertainty.

Lower part: extracted population of the parent (7Be) excited states (thin lines) together

with their sum (thick line).
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Figure 6.15: Upper part: isotopes reconstructed (in at least one of their lowest lying

particle unstable excited states) by the correlation function technique in the two data

sets. Lower part: extracted population of the different primary fragments (left) and

their average excitation energy (right) for the peripheral32S +58 Ni (full symbols) and
32S +64 Ni (circles) data set.
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The reconstructed ”warm” yields keep on showing the staggering, meaning that the

evaporation chain plays a role, at least for the light fragments examined. Particularly

striking is the fact that this staggering shows an opposite trend with respect to the

experimental asymptotic distributions shown in Figs. 6.1,6.2 and 6.3.

Dashed (32S +58 Ni) and continuous (32S +64 Ni) lines of Fig. 6.15 represent the

yields given from tabulated levels, shown in the bottom panels of Fig. 6.11. The dis-

tance between symbols and lines, for each reaction, can be interpreted as a measure of

the background present in the data. In Fig. 6.11 indeed some measured yields at the

highest values of the relative energy do not correspond to tabulated levels and therefore

they can not be fitted by Eq. 6.16.

In Fig. 6.16 we show the reconstructed ”warm” yields before (top panel) and after

(bottom panel) the integral efficiency correction for the measured correlation functions.

Since the integral efficiency resulted quite high, as shown in Fig. 6.9, these corrections

do not change the oscillating behavior observed in the left-bottom panel of Fig. 6.15.

A limitation of our analysis is the systematic absence of neutron-decaying states in

our reconstruction of excited levels, due to the lack of neutron detection. One may then

wonder if this systematic lack may be at the origin of the inverse staggering displayed

in Fig. 6.15. To answer this question, from the same tables used to fit the measured

correlation functions (Ref.s [63, 64]), we define the elemental yield for discrete levels

decaying only by neutron emission (open symbols and dashed line of Fig. 6.17) and

for levels decaying either by charged particle or neutron emission (stars, dotted line).

f (Z) =
Z+2
∑

N=Z−1

∑

i

(2Ji + 1) exp(−E∗i /Te f f) (6.18)

The first sum of eq. 6.18 covers the isotopic range corresponding to a non negligible

measured yield for the givenZ in the IMF range 3≤ Z ≤ 8; the second sum runs

over the known discrete levels of the given isotope of energyE∗i and spinJi which

decay only by neutron emission or also by charged particle emission.Te f f is a temper-

ature parameter which we have taken asTe f f = 2.5 MeV, coherent with the measured

excitation energy of the peripheral sample, assuming a level density parameter about
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Figure 6.16: Upper part: population of the different primary fragments (already shown

in the left-bottom panel of Fig. 6.15). Lower part: population of the different primary

fragments corrected for the integral efficiency of each correlation function. Data for

peripheral data for32S+58 Ni reaction are drawn as full symbols, connected by dashed

lines. Data for peripheral32S +64 Ni reaction are drawn as circles, connected by full

lines.
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a = A/6 and in agreement with the average temperature measured from excited states

thermometers for this same sample. In both calculations shown in Fig. 6.17, for all

Figure 6.17: (Color online) Elemental yields (eq. 6.18) from discrete levels decay-

ing only by neutron emission (open symbols, dashed line) or by charged particle and

neutron emission (stars,dotted line).

values of the charge of the warm parent nucleus, the same staggering observed for

reconstructed primary fragments (Fig. 6.15) is present, again opposite to the trend of

measured cold isotopes of Fig. 6.5.

In addition a smaller contribution of neutron decaying levels for even parents with

respect to the odd ones is apparent in Fig. 6.17, indicating that the trend of the experi-

mental distribution at the last-but-one evaporation step of Fig. 6.15 is not qualitatively

deformed by the lack of neutron detection.

We conclude that the origin of the staggering has to be searched for in the evapo-

ration chain, and cannot be attributed to the pairing effect of nuclear masses alone.





Chapter 7

Data comparison with GEMINI model

Further insights on odd-even effects might be gained from statistical model calcu-

lations. Because of the limited excitation energy, our peripheral sample can be rea-

sonably described as a standard Hauser-Feshbach or Weisskopf evaporation from an

excited source of mass and charge close to the projectile (inthis case we can use GEM-

INI model for simulate our data). GEMINI [65] is a Monte Carlocode which follows

the decay of a compound nucleus by a series of sequential binary decays, therefore the

model cannot well reproduce a simultaneous fragmentation of compound nucleus.

7.1 GEMINI

The first version of the statistical-model code GEMINI was written in 1986 to

address complex-fragment emission in fusion reactions. Itdiffered from most other

statistical-modes codes at the time since it allowed not only light-particle evapora-

tion and symmetric fission, but all possible binary-decay modes. GEMINI is a Monte

Carlo code which follows the decay of a compound nucleus by a series of sequential

binary decays until such decays are impossible due to energyconservation. As GEM-

INI was written to compare data from heavy-ion induced fusion reactions, the effects

of large angular momenta were explicitly treated. For this reason the dichotomy be-

tween light-particle evaporation and other binary decays was still maintained. The best
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way of treating light-particle evaporation at high angularmomentum is via the Hauser-

Feshbach formalism [66] . For heavy systems, GEMINI simulations generally over-

predict the width of the fission mass and charge distributions. Although this may be

a failure of the asymmetric fission barriers used in the calculations, it probably means

a failure of the underlying model. Indeed the used formalism[67] predicts the mass-

asymmetry distributions along the ridge of conditional saddle points. However, the

final mass of the fission fragments is not frozen until the scission point is reached. For

light nuclei, the saddle and scission points are almost degenerate so substantial modifi-

cation during the saddle-to-scission motion is expected tobe small. On the other hand

for heavy systems, the saddle and scission configurations are quite different. Specifi-

cally for very heavy systems, the saddle point can no longer be approximated by two

nascent fragments connected by a neck. The neck disappears and the saddle point is

a deformed mononucleus making impossible to even define an asymmetry degree of

freedom. In such cases, the mass asymmetry develops during the transition from saddle

to scission. Therefore, the failure of GEMINI for these heavier systems was not unex-

pected. Due to these deficiencies of the original code for heavy nuclei, a new version

of the code GEMINI has been written to address these problems. In this new version,

extensive comparisons with heavy-ion induced fusion data have been used to optimize

the default parameters of the model. Such data are useful forconstraining statistical-

model codes and the excitation energy and spin distributions of the compound nuclei

can be well defined.

7.1.1 Evaporation formalism

In the Hauser-Feshbach formalism [66], the partial decay width of a compound

nucleus of excitation energyE∗ and spinJCN for the evaporation of particle i is

Γi(E
∗, JCN) =

1
2πρCN(E∗, JCN)

∫

dε
∞
∑

Jd=0

JCN+Jd
∑

J=|JCN−Jd |

×
J+si
∑

l=|J−si |

Tl(ε)ρd(E
∗−Bi−ε, Jd) (7.1)

whereJd is the spin of the daughter nucleus,Si, J, andl, are the spin, total and

orbital angular momenta of the evaporated particle,ε andBi are is its kinetic and sep-
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aration energies;Tl is its transmission coefficient or barrier penetration factor;ρd and

ρCN are the level densities of the daughter and the compound nucleus, respectively.

The summations include all angular momenta couplings between the initial and final

states. Evaporation channels includen, p, d, t,3 He, α,6 He,6−8 Li, and7−10Befragments.

The nuclear level density is often approximated by the Fermi-gas form [34] derived

for a spherical nucleus in the independent-particle model with constant single-particle

level densities,

ρFG(E∗, JCN) =
(2J + 1)

24
√

2a
1
4 U

5
4σ3

exp(S),S = 2
√

aU, (7.2)

where S is the nuclear entropy and the level-density parameter is

a =
π2

6

[

gn(εn
F) + gp(εp

F)
]

. (7.3)

Heregn(εn
F) andgp(εp

F) are the neutron and proton single-particle level densities at their

respective Fermi energies and

U = E∗ − Erot(J),Erot +
J(J + 1)~2

2Irig
, σ2 = IrigT. (7.4)

The quantityIrig is the moment of inertia of a rigid body with the same density

distribution as the nucleus and T is the nuclear temperature:

1
T
=

dS
dU
. (7.5)

The quantity U can be interpreted as a thermal excitation, after the rotational en-

ergy of the nucleus is removed. At large angular momenta, macroscopic models of

the nucleus such as the rotating liquid-drop model (RLDM) [68] and Sierk’s Yukawa-

plus-exponential finite-range calculations [69] predict that the nuclear shape distorts to

accommodate the centrifugal forces.

Many implementations of the statistical model, including GEMINI, generalize Eq. 7.4

by the replacingErot(J), the rotational energy of a spherical nucleus of fixed moment

of inertia, with Eyrast(J), the deformation plus-rotational energy predicted by these
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macroscopic models where the deformation increased with spin. In GEMINI, the Sierk

predictions ofEyrast(J) are used for all but the lightest compound nuclei.

7.1.2 fission and complex fragment decay

Fission was first incorporated into the statistical model byBohr and Wheeler using

the transition-state formalism first introduced to calculate chemical reaction rates.

The Bohr-Wheeler transition-state decay width for symmetric fission [70] is:

ΓBW =
1

2πρCN(E∗,SCN)

∫

dε
[

E∗ − Bf (SCN − ε)
]

(7.6)

whereρsad is the level-density at the saddle-point,B f(SCN) is the spin-dependent

saddle-point energy (fission barrier+ ground-state rotational energy) andε is the ki-

netic energy in the fission degree of freedom. The 2-dimension extension of this by

ref. [67] is:

Γydy=
1

2πρCN(E∗,SCN)

∫ ∫

dydpy

h
dερsad













E∗ − B(y,SCN) −
p2

y

2my
ε













(7.7)

where y is the mass asymmetry (y = A1−A2/A1+A2), py is its conjugate momentum,

my is the inertia associated with motion in the y coordinate, and B(y,SCN) are the

energies of the condition saddle-points. The barriers are conditional in the sense they

represent a saddle-point configuration when the specified mass asymmetry is imposed.

In the potential-energy surface, these conditional saddlepoints represent a ridge which

must be crossed in order to get to the scission configuration.Simplification to this

formula can be made from the expansion

ρ(E∗ − x) � ρ(E∗)exp(− x
T

) (7.8)

where the nuclear temperature is determined as

1
T
=

dlnρ(E∗)
dE∗

(7.9)
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With this expansion, the above equation can be reduced to:

Γydy=
1

2πρCN(E∗,SCN)

√

2πTmy

h

∫

dερsad
[

E∗ − B(y,SCN) − ε
]

(7.10)

With this formalism, in addition to the conditional barriers, one also requires knowl-

edge of the inertiamy. Later in Ref. [67] has been suggested

ΓZ =
1

2πρCN(E∗,SCN)

∫

dερsad[E∗ − BZ(SCN) − ε] (7.11)

where Z is the proton number of one of the nascent fragments. Basically the term
√

2πTmy

h
has been eliminated and the problem has been discretized. InGEMINI this

was further extended by allowing for distinct mass and charge splits:

ΓZ,A =
1

2πρCN(E∗,SCN)

∫

dερsad
[

E∗ − BZ,A(SCN) − ε
]

(7.12)

The conditional barriers now have both the mass and charge asymmetries imposed and

are estimated as

BZ,A(SCN) = BS ierk
A (SCN) + ∆M + ∆ECoul − δW− δP (7.13)

whereδW andδP are the ground-state shell and paring corrections to the liquid drop

barrier.The quantityBS ierk
A is the interpolated Sierk barrier for the specified mass asym-

metry. In the Sierk’s Finite-Range calculations, the two nascent fragments have the

same Z/A ratio. The correction∆M now accounts for the different Z/A values of the

two fragments, i.e.

∆M = M(Z,A) + M(ZCN − Z,ACN − A) − M

(

ZCN
A

ACN
,A

)

− M

(

ZCN
ACN − A

ACN

)

(7.14)

where M(Z,A) is the spherical Finite-Range Model mass. In addition there is a Coulomb

correction

∆ECoul = ECoul(Z,A,ZCN − Z,ACN − A) − ECoul(ZCN
A

ACN
,A,ZCN

ACN − A
ACN

,ACN − A)

(7.15)

whereECoul(Z1,A1,Z2,A2) is the Coulomb energy between two fragments (Z1,A1) and

(Z2,A2) estimated as two spheres separated by 2 fm with a radius parameterr0 of 1.225
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fm. The total width requires summations over both the Z and A values of the lightest

fragment. In GEMINI, for both light systems and for asymmetric divisions of heavy

systems, the formalism of Ref. [67] is kept. All binary divisions are included having

asymmetries greater than the value at which the conditionalbarrier is a minimum,

which is spin dependent. For the more symmetric divisions inheavy nuclei, the Bohr-

Wheeler formalism is used to predict the total symmetric fission yield in GEMINI. The

fission barrier is taken from Sierk’s Finite-Range Model value after correcting for the

ground-state shell and pairing correction, i.e.,

Bf = BS ierk
f (S) − δW− δP. (7.16)

Once the saddle-point is crossed, the system loses excitation energy due to light-

particle evaporation during the slow saddle-to-scission motion. To estimate the mag-

nitude of this effect, the time required for this motion was assumed to bet = η(Bsad−
Bsciss) where Bsad and Bsciss are the symmetric saddle and scissionpoint energies and

η is the friction. The scission point energy is determined asBsciss= Ektot − Qf where

Ektot is the total kinetic energy released in fission andQf is fission Q value. In the

transition from saddle to scission, excitation energy increases due to dissipation and at

the same decreases due to evaporation. The total change in potential between saddle

and scissionBsad− Bsciss is assumed to be dissipated into excitation energy at the scis-

sion point. As Bsciss is spin independent, the Weisskopf-Ewing formalism is used for

evaporation at this stage to calculate the decay widths.

7.2 Simulation and data

In our peripheral sample, the emitting source is not well defined in the experimental

data because different impact parameters are summed up, neutrons are not measured

and the statistics is too poor to make precise selections in the source characteristics.

This means that data have to be seen as a superposition of different masses, isospins,

angular momenta and excitation energies. Because of this limitation we have not tried
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a quantitative comparison between model and data. The purpose of the calculation

being simply to enlighten the physical mechanism leading tothe presence (absence)

of odd-even effects in the different thermodynamic conditions, we have simply fixed

in the GEMINI [65] evaporation model a source with Gaussian distributed parameters

centered on< E∗ >=1 A MeV,< Z >=16,< A >= 32, and have considered a triangular

distribution of angular momentum betweenJmin = 0~ andJmax = 16~, as given by the

systematics of fusion cross-section. Increasing (decreasing) the value ofJmax has the

only affect of increasing (decreasing) the overall yield of IMF betweenZ = 3 and

Z = 9 without affecting the behavior of the isotopic chains.

The results for the different isotopic chains as well as the inclusive distributions are

reported in Fig. 7.1. We can see that the overall shape of the theoretical distribution

is in relatively good agreement with the experimental data,confirming the statistical

character of the collisions.

Clear staggering effects are seen in the residue region,especially in the N=Z iso-

topic chain, where unfortunately we do not have isotopic discrimination in the experi-

ment.

Since in the model calculation N=Z+1 nuclei are the most abundant isotopes in

the residue region and their distribution is essentially smooth, the inclusive theoretical

distribution does not show any noticeable odd-even effects in this region, contrary to

the experimental evidence. Concerning the IMF region, where the isotopic informa-

tion is accessible experimentally, a good qualitative agreement is observed for N=Z-1

and N=Z but deviations can be seen for N=Z+1, which again is essentially flat in the

calculation. In conclusion, our peripheral events appear consistent with the evaporative

decay of an excited source close to the initial projectile nucleus. The staggering of the

elemental distribution is qualitatively reproduced by thecalculation, even if differences

appear when the behavior is analyzed in different isotopic chain. A more quantitative

comparison would need a better characterization of the experimental source character-

istics needed as inputs of the GEMINI model, and the availability in the model of the

information on the population of all the observed excited particle unstable states.
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Figure 7.1: Elemental asymptotic distribution from the decay of an excited source

with < A >= 32, < Z >= 16, < E∗ >= 1A MeVand a triangular distribution of angular

momentum betweenJ = 0~ and J = 16~, within the GEMINI evaporation model.

left panel: inclusive charge distribution . right panel: distribution for different isotopic

chains.
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Figure 7.2: Elemental asymptotic distribution from the decay of an excited source

with < A >= 81, < Z >= 40, < E∗ >= 3A MeV, (full symbols,dashed lines) and

< A >= 87, < Z >= 40, < E∗ >= 3A MeV, (open symbols, full lines) within the

GEMINI evaporation model. For both sources the angular momentum ranges from

J = 0~ to J = Jmax with a triangular distribution. Left:Jmax= 56~; right: Jmax= 40~

Now let us turn to the analysis of the central collisions. Since the experimental

sample does not correspond to complete fusion of projectileand target, fluctuations

arise from the mixing of event with different masses and energy transfer. For this

reason, similarly to the case of binary collisions, we have not tried a quantitative com-

parison to experiment but considered the statistical decayof a Gaussian-distributed

source, as predicted by the Hipse dynamical event generator[40], with average charge

< Z >= 40 and two different masses 81 and 87 for the two reactions with excitation

energy< E∗ >= 3 A MeV. Since the angular momentum is not constrained by the data,

we run Gemini code with the maximum value ofL allowed for this source, i.e. 56~,

with a triangular distribution.

Fig. 7.2 displays the inclusive charge distributions obtained from the GEMINI

model for the two values of the mass of the source, to be compared with the data

shown in Fig. 6.1.

As in the case of our central sample the source with the higherN/Z ratio (open

symbols) leads to a heavier residue with respect to a n-poor source (full symbols). The
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IMF production in the model is modified by the isospin of the source as in the data,

being the two distributions different by a factor 2 in the range of charges 8-15, both

in the model and in the data. Clear staggering effects can be seen in the calculation,

similar to the case of the peripheral source. This confirms the expectation [43] that, in

an evaporation based picture, odd-even effects do not depend on the excitation energy

and are essentially determined by the last evaporation step(s). At a more quantitative

level, these effects appear much more important than in the experimental sample. As

we have discussed before, this may be due to the different shape of the distribution,

since the theoretical predictions are more flat in the IMF region than the measured

ones.

Moreover, the experimental fragment production (Fig. 6.1), for the same range of

IMF charge, is about a factor 4 less than in the model distributions. We can recover the

experimental IMF production, by limiting the maximum angular momentum in Gem-

ini at 40~, as it shown in Fig. 7.2 (right panel). The variation of the angular momentum

however does not change the overall shape of the distribution, nor the importance of

the odd-even effects.

As we have already discussed, the intermediate mass fragment region in the experi-

mental sample is also populated by multifragmentation-like events where at least three

fragments are emitted in each collision events. These events are characterized by large

values of the “flow angle” (see Figs. 5.3), suggesting a negligible angular momentum

and they represent a fraction of about 5% of well measured central events.

This specific event class is compared in Fig. 7.3 to the GEMINIcalculations. The

average asymmetry between the three coincident fragments is qualitatively reproduced,

but the percentage of three-fragment events is about 2% in the calculation, more than

a factor 2 too small with respect to the lowest experimental estimate based on data

uncorrected for efficiency.

If we perform calculations with a maximum angular momentum 40~, which re-
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Figure 7.3: Charge distributions of events corresponding to at least three fragments

(Z ≥ 3), normalized to the total number of central events. The distribution of the largest

fragment, second largest and third largest are reported as red, green, blue histograms

respectively. Left: Measured central events for the reaction32S+58Ni. Center: Gemini

events for an excited source with< A >= 81, < Z >= 40, < E∗ >= 3A MeV and

J = 0− 56~ Right: same as center, butJmax= 40~.

produces the experimental IMF production in the range of charges 8-15, the fraction

of three IMF events decreases down to 0.5%, an order of magnitude too small with

respect to the uncorrected data.

Further insights in the decay mechanism can be obtained by looking at kinematics

observables. As an example, Fig. 7.4 gives the distributionof the cosinus of the

relative angle formed by the two largest fragments (cos(θ12), for events corresponding

to at least three fragments (Z ≥ 3).

In both cases the higher probability is atcos(θ12) = −1, which corresponds to two

fragments back to back emitted, conserving the centre of mass momentum, accompa-

nied by a third fragment with small mass and momentum. However, the experimental

distribution slowly decreases towardscos(θ12) = 1, while for Gemini events the de-

crease is much steeper, and this difference is preserved if GEMINI events are filtered

through a software replica of the apparatus. This means thatin the data, different

charge (and momentum) partitions are present, not accounted for by binary decays.

These discrepancies may be understood from the opening of the simultaneous mul-

tifragmentation channel, which is not accounted for in the GEMINI model.



128 Data comparison with GEMINI model

Figure 7.4: Experimental (dashed line) and Gemini (solid line) distribution of the cos-

inus of the angle formed by the centre of mass momenta of the two largest fragments,

for events corresponding to at least three fragments (Z ≥ 3). Both distributions have

been normalized to unit area. For Gemini calculations the same events shown in Fig.7.3

(right panel) have been used.
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However, the existing multifragmentation models[71, 72] very successful in repro-

ducing detailately static as well as dynamic characteristics of fragment production for

excited sources with excitation energies comparable to thepresent sample[73], treat

nuclear clusters as liquid drops without any shell or pairing effect in their mass, nor

contain the discrete particle unstable spectrum in all stages of the compound nucleus

decay, the justification being that these models are supposed to be realistic only above

the multifragmentation threshold, where structure effects are washed out. As a con-

sequence, model distributions are smooth by construction and no insight about the

presence/absence of odd-even effects can be gained out of these calculations.

In any case the failure of the standard evaporation picture at the threshold of mul-

tifragmentation suggests that the emission mechanism plays an important role for the

light fragment yield, and/or that their decay is not governed by Q-values only. This is

consistent with the experimental results from the correlation functions in the previous

chapter, which showed that particle-unstable resonances play an important role in the

light nuclei decay.





Conclusions

In this thesis we have reported on an experimental study of staggering in32S+58Ni

and32S+64Ni collisions at 14.5 MeV/u, performed with the TANDEM-ALPI acceler-

ation system at the Legnaro National Laboratory. The data collection was assured by

the GARFIELD apparatus coupled to a high resolution annulardetector for correlation

measurements, the Ring Counter. Thanks to the important angular coverage and the

low detection thresholds, we have been able to select two main classes of dissipative

events for each reaction, corresponding to the statisticaldecay of an excited quasi-

projectile, and of an incomplete fusion source respectively. Important odd-even effects

are seen in the intermediate mass fragments yields as well asin the residue yields pro-

duced in the peripheral collisions, while these effects appear much less important in

the central collision sample.

This different behavior indicates that several ingredients contribute to produce such

effects, and there is no unique simple explanation. In particular, we have both ex-

perimental and theoretical indications that odd-even staggerings depend on the whole

evaporation chain and not only on the energy balance of the last evaporation step.

As a consequence, the quantitative understanding of staggering can potentially give

information on pairing and symmetry effects in the level density. To confirm (or infirm)

this statement, a detailed comparison with statistical models will be needed. To this

aim, an improvement of existing evaporation codes is important concerning the treat-

ment of the discrete particle unstable spectrum. Our analysis shows that these states

have to be included because they dominate the last evaporation step of light fragments.

Another necessary improvement concerns the coupling between multifragmentation
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and the subsequent evaporation of excited primary fragments, where a consistent and

realistic treatment of the fragment energy functional should be employed, including

pairing effects, realistic level densities and the discrete particle unstable spectrum in

both stages of the compound nucleus decay.

On the experimental side, we have proposed in this work a model-independent

technique to reconstruct the fragment yield at finite excitation energy corresponding

to the last-but-one evaporation step. Because of different detection limitations, this

reconstruction is however only partial. In order to allow with this technique to finally

assess the origin of staggering in the different de-excitation mechanisms in a model-

independent way, different improvements are in order.

A better granularity is needed to resolve the different resonance states in the corre-

lation functions; experimental upgrades of the detection apparatus are in progress.

An increased statistics is needed to make a complete correlation function analysis

for a data set where the source (Z,E∗) is reconstructed precisely; this in turn demands

an impact parameter selection and good statistics for each impact parameter. In prin-

ciple neutron detection would also be highly desirable to precisely trigger on theN/Z

of the source. Alternatively this information can be deduced from the models if these

latter are sufficiently constrained.

Since the branching ratios of the different decays for particle unstable levels of light

fragments are typically known, a sufficiently complete measurement of a given isotope

through correlation functions will allow to get also some quantitative information on

the population of n-decaying levels. This will in the long run not only allow us to

understand the origin of odd-even effects, but also to reconstruct primary fragment and

thus access the thermodynamic information at the time of fragment formation, which

is of particular interest in the multifragmentation regime.
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