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1. Introduction 
 

1.1 Biomass and Global Warming 

Human activities, in particular the use of fossil fuels, are changing the composition of the 

atmosphere and its properties; one of the major and important effects is the increasing of 

Greenhouse Gases (GHGs) from 280 ppm of pre-industrial level to the current CO2eq concentration 

of 430 ppm (CO2 and other GHGs).1  The total emission of GHGs deriving from human activities in 

2004 was 49 GtCO2eq of which 77% was CO2,14% methane, 8% nitrous oxide and 1% other GHGs 

(e.g. perfluorocarbon and sulphur hexafluoride).2  

 

Figure 1.1.1:scheme of major net carbon fluxes and sinks (the data on Carbon pool are adapted 

from Lal, 20073 and the data on fluxes are from IPCC, 2001. 2 
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Focusing on carbon cycle (Figure 1.1.1), out of the 9.3 Gt y-1 of carbon that human activity converts 

into CO2 each year (30 Gt), 7.7 Gt y-1 come from fossil-fuel emissions and 1.6 Gt y-1 from land use 

change, mainly in the tropical regions. On average, 2.3 Gt y-1 are stored in the oceans and 2.8 Gt y-1 

are sucked up by land-based carbon sinks (mainly growing temperate forests and other unknown 

                                                 
1 http://www.esrl.noaa.gov/gmd/obop/mlo/programs/search_pages/search_ccgg.html  
2 IPCC 2007: 4th Assessment Report:Climate Change 2007:  Synthesis Report. 
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm  
3 R. Lal. Carbon Sequestration. Phil. Trans. R. Soc. B 363 (2008) 815–830.  
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sinks), and 4.1 Gt y-1 remain in the atmosphere causing an increase of the GHGs concentration with 

an annual rate of 3-4 ppm y-1, as CO2eq.4 

There are compelling evidences that the increasing in Green House Gases (GHGs) emissions could 

have an effect on climate and determine an increase of global temperatures. 

The latest predictions indicate that if GHGs emissions will remain at the current level, their 

concentration would triplicate the pre-industrial level within 2100, causing a warming of 1.1-6.4°C,  

In fact, a warming of 5°C on a global scale would be far outside the experience of human 

civilization and comparable to the temperature difference between last ice age and today. 

Although different previsions have been claimed and there is a large uncertainy of the expected 

warming, there are evidences that the temperature increasing and the consequential climate change 

effects (e.g. change in surface runoff or increase of coastal areas vulnerability) will have an adverse 

effect on human economy and on biodiversity. 

In order to reduce the risk of global warming, at least 3.2 Gt of CO2eq y-1 have to be removed from 

the atmosphere, and this could be done following different approaches, such as the reduction of CO2 

emissions, obtainable by reducing energy consumption and raising of energetic efficiency, the 

decreasing of the  emissions due to concrete building5, and the substitution of fossil fuel energy 

with renewable GHGs neutral energy. 

Among the available options for  GHGs saving, a possibility is to exploit the chemical energy 

captured into biomass, to substitute fossil carbon, energy and fuels by combustion or other 

conversion techniques.  

Biomass fixation represents a huge carbon flow (net primary production, NPP) which consists in 

about 57 Gt y-1 and 50 Gt y-1 in terrestrial and oceanic ecosystems, respectively.6   

A portion of the global NPP can be diverted from its natural fate (e.g. decomposition and feeding of 

natural trophic webs), to produce renewable energy or, more in general, to obtain some GHGs 

offsets. 

Before the beginning of the industrial revolution, biomass energy was the dominant energy source 

worldwide. 7 Nowadays, it is still important, accounting for 14% of world primary energy 

consumption,or roughly one-third of the energy from renewable resources.8 

                                                 
4 IPCC 2001 Climate change 2001: the scientific basis. Intergovernment panel on climate change. Cambridge, UK: 
Cambridge University Press. 
5 L. Gustavsson, K. Pinguod, R. Sathre. Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and 
Wood-Framed Buildings. Mitigation and Adaptation Strategies for Global Change 11(2006)  667-691. 
6 M. J. Behrenfeld1, J.T. Randerson, C.R. McClain, G.C. Feldman, S.O. Los, C.J. Tucker, P.G. Falkowski,  C.B. Field, 
R. Frouin, W.E. Esaias, D.D. Kolber, N. H. Pollack. Biospheric primary production during an ENSO transition. Science 
291 (2001) 2594–2597. 
7S. D. Fernandes, N.M. Trautmann, D. G. Streets, C.A. Roden,T.C. Bond.  Global biofuel use, Global Biogeochem. 
Cycles 21 (2007) 1850-2000. 
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Beyond the actual biomass use, a larger and more effective biomass use is currently proposed as 

one of the solutions for substantial cutting the excess CO2 released. These solutions comprised the 

use of biodiesel from oleaginous crops (e.g. rapeseed or oil palm) and ethanol based fuels produced 

from corn or sugarcane.   

 

Figure 1.1.2: percentage of human appropriated NPP (Ch/CNPP) from (a) land use change and (b) 

biomass withdrawal (HANPP), with permission from Haberl et al.10 

 

 

Nevertheless, it should be noticed that human appropriation of terrestrial NPP is estimated to be 

already in the range of 23–40% of the total, due to the harvest (12% of terrestrial NPP), the decrease 

in NPP resulting from replacement of natural ecosystems by human-modified ecosystems, and the 

shift of NPP from natural pathways to human-mediated loss pathways, including deforestation and 

wildfire.9,10,11 Moreover, as shown in figure 1.1.2, this NPP appropriation rate is geographically 

heterogenous and approaches 80% in most densely populated areas (e.g. Po valley in Italy). 

                                                                                                                                                                  
8 M. Parikka. Global biomass fuel resources. Biomass and Bioenergy 27  (2004) 613-620. 
9 C. B. Field, J. E. Campbell, D.B. Lobell. Biomass energy: the scale of the potential resource Trends in Ecology and 
Evolution 23 (2007) 65-72. 
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These numbers and facts, especially for terrestrial resources, highlight how a further potential 

sustainable exploiting of biomass could be seriously limited. 

A key point for sustainable biomass utilization could be an increase of crops yields or oceanic NNP. 

This approach (e.g. farming improvement, genetic engineering, production of microalgal biomass) 

acts in the direction of “artificially” raising up the overall NPP. By this way it is possible to growth 

and harvest more biomass for energetic use without reducing the nature owned NPP, and therefore 

without demaging bio-diversity and ecosystem functionalities. Another option is to produce 

renewable energy from agricultural residues (ARs)  already owned by human activities and 

consisting in about 2-3 Gt of carbon,12 that under the current situation are mainly buried in soil and 

open burnt. ARs represent an enormous carbon flow relatively easy to manage12 avoiding any 

further NPP withdrawal or competition with food. The current management does not guarantee any 

significative carbon offset under warm and wet climates (due to a too fast decomposition of humic 

carbon formed from ARs degradation) and allows only a little carbon offset in temperate and cold 

climates (10-20% CHUM/CAR effectiveness due to accumulation of humus into soil as relativey 

stable sink ).13  

Despite ARs are often characterized by high ash, water and nitrogen content in comparison to 

standard fuel wood,  by using a large array of thermochemical or biological conversions it is 

technically possible to convert a large range of materials into renewable energy, and then it is 

possible to gain a significant fossil fuel substitution. 

For these reasons, ARs are one of most interesting photosynthesis by-products for carbon neutral 

bio-energy production and alternative geo-engineering options.14 Nevertheless, the removal of ARs 

from soil is a debated option from an environmental point of view, mainly due to the risk of soil 

carbon decrease and consequential fertility loss.15 

These facts lead to the so-called climate, food and soil “trilemma”, 16 that stresses the importance of 

a fine tuning of the quantities and the qualities of biomass withdrawal together with the 

                                                                                                                                                                  
10H. Haberl, K.H. Erb, F. Krausmann, V. Gaube, A. Bondeau, C. Plutzar, S. Gingrich, W. Lucht, M. Fischer-Kowalski. 
Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. 
Natl. Acad. Sci. U. S. A. 104 (2007) 12942–12947. 
11P.M. Vitousek, PR Ehrlich, AH Ehrlich, P.A. Manson, Human appropriation of the proudcts of 
photosynthesis. Bioscience 36 (1986) 368–373. 
12J.S. Gregg, S.J. Smith. Global and regional potential for bioenergy from agricultural and forestry residue biomass.  
Mitig. Adapt. Strateg Glob Change 15 (2010)  241-262. 
13J.S. Jenkinson.  The turnover of organic carbon and nitrogen in soil: Quantitative Theory in Soil Productivity and 
Environmental Pollution, Philosophical Transactions: Biological Sciences  329 (1990) 361-368. 
14S.E. Strand, G.B. Benford. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep 
sediments. Environ. Sci. Technol. 43  (2009) 1000-1007. 
15D.L. Karlen, R. Lal, R.F. Follett, J.M. Kimble, J.L. Hatfield, J.M. Miranowski, C.A. Cambardella, A. Manale, R.P. 
Anex, C.W. Rice. Crops Residues: the rest of the story. Environ. Sci. Technol. 43 (2009) 8011-8015. 
16D. Tilman,  R. Socolow, J.A. Foley, J. Hill, E. Larson, L. Lynd, S. Pacala, J. Reilly, T. Searchinger, C. Somerville, R. 
Williams. Beneficial Biofuels—The Food, Energy, and Environment Trilemma. Science 325 (2009) 270-271 
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improvement of environmentally friendly solutions (e.g. bio-char systems)17 and the increasing in 

efficiency of conversion technologies.  

 

1.2 Pyrolysis of Biomass 

 

1.2.1 Liquid energy carrier from pyrolysis of biomass 

In order to obtain renewable energy from relatively dry biomass, one of the simplest ways is to 

subject the feestock to thermochemical treatments: basically  they consist in the application of heat 

under controlled conditions, with the final result of converting the biomass into desired materials 

and energy. This can be done by following different strategies, each one able to provide different 

conversion effectiveness to energy (heat or electricity), energetic products (fuels) and materials 

(char or chemicals). 

• by direct combustion to provide heat for use in domestic heating, for steam production and 

hence electricity generation. 

• by gasification to provide a fuel gas that can be burnt for energy or converted to syngas by 

steam reforming (in turn convertible into a large array of fuels and chemical products). 

• by fast pyrolysis to provide a liquid fuel (bio-oil), a substitute for heavy fuel oil in static 

heating or electricity generation.  

 

Among all the different thermochemical conversion processes, pyrolysis of biomass consists in 

heating under a stream of inert gas. This process degrades biomass polymers in partially volatile 

fragments, rapidly swept off to cold collectors and separated into a condensed phase and a gas 

phase. During this process, a variable amount of char (consisting of carbonaceous matter) is formed. 

The basic aim of pyrolysis is to transform a solid ash-rich feedstock into an ash-poor liquid product, 

called bio-oil.  

Nowadays the biomass-to-bio-oil route is the biomass-to-liquid process with the highest processing 

efficiency (mainly thanks to relatively low operating temperature), and bio-oil is widely considered 

the cheapest liquid fuel obtainable from waste ligno-cellulosic biomass. 18 The liquid form of fuels 

                                                 
17J. Lehmann. A Handful of Carbon. Nature 447 (12007)  43-144. 
18R. P. Anex, A. Aden, F. K. Kazi, J. Fortman, R. M. Swanson, M. M. Wright, J. A. Satrio, R.C. Brown, D.E. Daugaard, 
A. Platon, G. Kothandaraman, D. D. Hsu, A. Dutta.  Techno-economic comparison of biomass-to-transportation fuels 
via pyrolysis, gasification, and biochemical pathways. Fuel 89 (2010) S29-S35. 
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offers some advantages with respect to solid feedstock, because it can be readily stored and 

transported and (when economically viable) possibly used for production of chemicals. 

Bio-oil, also known as pyrolysis oil, pyrolysis liquid and others, is usually a dark brown, free-

flowing liquid with a distinctive smoky smell. The physical properties of bio-oils have been 

described in several publications.19,20,21,22 These properties derive from the chemical composition of 

the oils themselves which are significantly different from petroleum-based oils. Bio-oils are 

multicomponent mixtures of different size molecules primarily deriving from thermal induced 

depolymerization and fragmentation reactions of key biomass building blocks:  cellulose, 

hemicellulose, lignin and, in some case, lipids, extractives and proteins.23  

A large range of pyrolysis process (e.g. Figure 1.2.1 shows the well known dynamotive™ pyrolysis 

process) based on different feedstocks have been patented. Different equipments are characterized 

by different heat and mass transfer rates as well as different actual reaction temperatures. 

Several reactor configurations have been studied to ensure acceptable quality of liquid and to 

achieve yields of liquid product as high as 70−80% based on the starting dry biomass weight.24 

They include bubbling fluid beds,25,26,2,3 circulating and transported beds,27,28 cyclonic reactors,29,30 

and ablative reactors31. In the 1990s, several fast pyrolysis technologies have reached near-

commercial status. 

                                                 
19D.C. Elliott, Analysis and Comparison of Biomass Pyrolysis/Gasification Condesates − Final Report. PNL-5943, 
Contract DE-AC06-76RLO 1830, 1986. 
20G.V.C. Peacocke, P. A. Russel, J. D. Jenkins, A.V. Bridgwater. Physical Properties of Flash Pyrolysis Liquids, 
Biomass Bioenergy 7 (1994)169-178. 
21L. Fagernäs. Chemical and Physical Characterisation of Biomass-based Pyrolysis Oils. Literature Review. Espoo 
1995, Technical Research Centre of Finland. 
22A. Oasmaa, Y. Solantausta, V. Arpiainen, E. Kuoppala, K. Sipila. Fast Pyrolysis Bio-Oils from Wood and 
Agricultural Residues, Energy Fuels, 24 (2010) 1380-1388. 
23S. Czernik , A.V. Bridgwater. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 18 (2004) 590-
598. 
24A.V.Bridgwater, G.V.C.  Peacocke. Fast pyrolysis processes for biomass. Sustainable and Renewable Energy 
Reviews, 4 (1999) 1-73. 
25D. S. Scott, J. Piskorz, D. Radlein. Liquid Products from the Continuous Flash Pyrolysis of Biomass. Ind. Eng. Chem. 
Process Des. Dev.,24 (1985) 581-586. 
26A. Robson. 25 tpd Border Biofuels/Dynamotive Plant in the UK. PyNe Newsletter 11, May 2001, Aston University, 
UK, 1-2. 
27R.G. Graham, B.A. Freel, M.A Bergougnou. The Production of Pyrolysis Liquids, Gas, and Char from Wood and 
Cellulose by Fast Pyrolysis. In Research in Thermochemical Biomass Conversion; Bridgwater, A. V., Kuester, J. L., 
Eds.; Elsevier Applied Science: London 1988; pp 629-641. 
28 B. M. Wagenaar, R. H. Vanderbosch, J. Carrasco, R. Strenziok, Scaling-up of the Rotating Cone Technology for 
Biomass Fast Pyrolysis. In 1st World Conference and Exhibition on Biomass for Energy and Industry, Seville, Spain, 
June 2000. 
29 S. Czernik, J. Scahill, J. Diebold, The Production of Liquid Fuel by Fast Pyrolysis of Biomass. J. Sol. Energy. Eng. 
117 (1995)  2-6. 
30 G.V.C. Peacocke, A. V. Bridgwater. Ablative fast pyrolysis of biomass for liquids: results and analyses. In Bio-oil 
production and utilisation; Bridgwater, A. V., Hogan, E. H., Eds. CPL Press: Newbury, UK, 1996; pp 35−48. 
31 J. Diebold, J. Scahill, Production of Primary Pyrolysis Oils in a Vortex Reactor. In Pyrolysis Oils from Biomass: 
Producing, Analyzing, and Upgrading; Soltes, E. J., Milne, T. A., Eds.; ACS Symposium Series 376, ACS, Washington, 
DC (1988) 31-40. 
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Figure 1.2.1: example of fast pyrolysis process from Dynamotive™.32 

 

In all the reactor configuration, from a chemical point of view, flash pyrolysis could be 

conceptually considered as a rapid auto-catalyzed reaction.33 Biomass constituents, subjected to 

heating, start to break and produce a significant amount of polar compounds, which impregnate the 

feedstock and catalyze a prompt increase of reaction rate. At this time, biomass foams out pyrolysis 

products, that carry on (as aerosol droplets) polymers, melted lignin and some ash.  

 

1.2.2 Bio-oil as energy carrier  

The liquid fraction resulting from fast pyrolysis is a complex matrix, usually biphasic, that consists 

of many including (as major categories): hydroxyaldehydes,  hydroxyketones,  sugars, 

anhydrosugars, sugar oligomers and polymers, carboxylic acids, monomeric phenolic compounds 

and pyrolitic lignin. 

Bio-oil can be considered a microemulsion in which the continuous phase is an aqueous solution of 

holocellulose decomposition products and small molecules from lignin decomposition. The 

continuous liquid phase stabilizes a discontinuous phase that is largely composed of pyrolytic lignin 

                                                 
32 http://www.dynamotive.com/technology/fast_pyrolysis/  
33 V. Mamleev, S.Bourbigot , M. Le Bras, J. Yvon. The facts and hypotheses relating to the phenomenological model of 
cellulose pyrolysis Interdependence of the steps.  Journal of Analytical and Applied Pyrolysis. 84 (2009 )1 -17. 
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macromolecules (consisting in large lignin fragments of 650-1300 dalton).34,35 Microemulsion 

stabilization is achieved by hydrogen bonding and nanomicelle and micromicelle formation.  

Bio-oil, from some points of view, could be considered as a renewable substitute to heavy fuel oil 

(HFO), usually used for electricity generation and as source of heat in cement kilns.  

 

Table 1.2.1: propreties of wood derived  bio-oil  and heavy fuel oil.23  

physicalproperty Wood Bio-oil  Heavy fuel oil 

moisturecontent % 15−30  

pH 2.5 - 

specificgravity 1.2 0.94 

elemental composition ~  ~CH1.2O0.6N0.001 ~CH1.6O0.15N0.05 

ash 0-0.2 0.1 

HHV, MJ/kg 16-19 40  

viscosity (at50°C),cP 40-100 180 

solids,wt% 0.2-1 1 

distillationresidue, wt% <50  1 

 

Nevertheless two fuels exhibit marked chemicophysical differences, that are examined in table 

1.2.1. In fact bio-oil  is a relatively corrosive liquid characterized by  a pH around 2.5. Acidity 

becomes really problematic in high temperature zones of engines or turbines, with fast deterioration 

of materials commonly used in energy generation systems.36,37 Moreover  elemental composition 

(bio-oil is enriched in oxygen and sometimes in nitrogen) of bio-oil determines a lower (16-19 

MJ/kg)  higher heating value (HHV), when compared to HFO. Last but not the least, bio-oil is a 

reactive liquid (mainly due to co-presence of aldehydes and phenols)  that polymerize and carbonize 

when heated, with the consequence that pyrolysis oil is not distillable (distillation residue is up to 

50% by weight) and then not easily vaporizable.    

These properties have  important impacts on the behavior of bio-oil during combustion and 

consequently on the applications for energy production in standard equipments. Bio-oil is 

combustible but not flammable (because of the low content of volatile components), this implies 

                                                 
34B. Scholze, C. Hanser, D. Meier. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic 
lignin) Part II. GPC, carbonyl goups, and 13C-NMR. Journal of Analytical and Applied Pyrolysis 
58-59 (2001) 387-400. 
35J.Piskorz, D. S. Scott, D.Radlien. Composition of oils obtained by fast pyrolysis of different woods. In Pyrolysis Oils 
from Biomass: Producing Analyzing and Upgrading; American Chemical Society: Washington, DC, 1988; pp 167−178. 
36S. Gros. Pyrolysis oil as diesel fuel. In: Power production from biomass II. VTT Symposium 164, Espoo, 1996. 
37J. Leech. Running a dual fuel engine on pyrolysis oil. In Biomass gasification and pyrolysis: state of the art and future 
prospects. M. Kaltschmitt, A.V. Bridgwater, Eds.  CPL Press, Newbury, UK, (1996) 175–85. 
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that  it requires significant energy for ignition, but once ignited, it burns with a stable self-sustaining 

flame.   

Despite large differences in fuel properties and combustion mechanisms, the burning times of bio-

oils were comparable to those of  No. 2 fuel oil under the same conditions. 38,39 

Concerning real equipment tests, combustion behavior of bio-oil was evaluated using different scale 

boilers and internal combustion engines, gas-turbine injectors and systems  and pyrolysis liquid 

could be burnt efficiently in standard or modifieds stationary equipments for electrical energy 

generation. 40   

Concerning the use of bio-oil as transportation fuel, the largest drawnback came out from acidity of 

the bio-oil that determines the corrosion of engines alloys. Anyway, it was demonstrated that the 

problem can be partially solved  by admixing bio-oil, by means of microemulsion technique, with 

hydrocarbon (or bio-diesel) fuels, minimizing the effective surface interaction between corrosive 

fuel and metallic components.41,42,43  

 

1.2.3 Bio-oil as sorce of advanced transportation fuels and chemicals 

Beyond the direct fuel application of pyrolysis oil, another option is to use bio-oil as feedstock for 

the synthesis of upgraded transportation fuels or as source of chemical intermediates.  

Three routes that produce “chemicals commodities” or current transportation fuel could be 

envisaged: 

• Steam reforming or gasification of bio-oil (or bio-oil and char slurry) 44,45,46 into syngas (as 

coal derived syngas substitute) and optional catalytic conversion of syngas to Fischer-

                                                 
38 M. Wornat, G. Bradley, N. Yang. Single Droplet Combustion of Biomass Pyrolysis Oils. Energy Fuels 8 (1994) 
1131−1142. 
39 R. Shaddix, S. Huey. Combustion characteristics of fast pyrolysis oils derived from hybrid poplar. In Developments 
in Thermochemical Biomass Conversion. A. V. Bridgwater, D.G.B. Boocock, Eds.; Blackie Academic & Professional:  
London (1997) 465−480. 
40 D. Chiaramonti, A. Oasmaa, Y. Solantausta. Power generation using fast pyrolysis liquids from biomass. Renewable 
and Sustainable Energy Reviews. 11 (2007) 1056–1086 
41M. Ikura, M. Stanciulescu,  E. Hogan,  Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass and 
Bioenergy 24 (2003) 221-232. 
21Ikura et al. US patents 
43 R. Calabria, F. Chiariello, P. Massoli Combustion fundamentals of pyrolysis oil based fuels. Experimental Thermal 
and Fluid. Science 31 (2007) 413–420 
44 D. Wang, S. Czernik, D. Montane, M. Mann, E. Chornet. Biomass to Hydrogen via Fast Pyrolysis and Catalytic 
Steam Reforming of the Pyrolysis Oil or Its Fractions. Ind. Eng. Chem. Res. 36 (1997) 1507-1518 
45 G. van Rossum, S. R. A. Kersten, and W. P. M. van Swaaij. Catalytic and Noncatalytic Gasification of Pyrolysis Oil. 
Ind. Eng. Chem. Res. 46 (2007) 3959-3967 
46 S. Czernik, R. Evans, R. French. Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. 
Catalysis Today 129 (2007) 265–268. 
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Tropsch diesel, 47 syn-methane, 48,49 ethanol50,51 or methanol52,53 (usable as automotive fuel 

after conversion to dimethyl-ether).54,55 

• Hydrogenation of bio-oil and catalytic cracking of hydrogenated bio-oil over shape selective 

zeolites (e.g. H-ZSM-5) with the production of aromatic and alkyl aromatic compounds, 

usable in chemical synthesis or blended with standard gasoline.56,57,58 

• Fermentation of bio-oil obtained from low ash biomass (e.g. pre-treated cellulosic biomass) 

for ethanol (or other biogenic alcohol) and chemical production, in thermochemical-biologic 

hybrid systems.59,60 

 

Figure 1.1.2 (a) (b) (c) shows a simplified scheme of the three thermochemical Biomass-to-fuel 

routes and an integrated thermo-biochemical biomass-to-fuel scheme. 

Gasification (figure 1.1.2a) route is a well established commercial process (mainly on coal and raw 

biomass) representing more than half century of strategical researches for the obtainement of 

automotive liquid fuels form coal.61 On the contrary, other two routes feseabilities were tested only 

in pilot or in lab scale. 

                                                 
47R.W.R. Zwar, H. Boerringter, A. van der Drift. The impact of biomass pretreatment on the feasibility of overseas 
biomass conversion to Fisher-Tropsch products, Energy and Fuels 20 (2006) 2192-2197. 
48 M. Seemann, S. Biollaz, S. Stucki, M. Schaub, C. Aichernig, R. Rauch. Methanation of biosyngas and simultaneous 
low-temperature reforming: first results of long duration tests at the FICFB Gasifier in Güssing. In: 14th European 
biomass conference & exhibition. Biomass for Energy Industry and Climate Protection, 17–21 October 2005, Paris, 
France. 
49 S. Biollaz, S. Stucki. Synthetic natural gas/biogas (Bio-SNG) from wood as transportation fuel—a comparison with 
FT liquids. In: Second world conference on biomass for energy, industry and climate protection, 10–14 May 2004, 
Rome, Italy. 
50 J.J. Spivey, A. Egbebi. Heterogeneous catalytic synthesis of ethanol from biomass derived syngas, Chemical Society 
Reviews, 36 (2007)1514-1528. 
51 X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao. Enhanced ethanol production inside carbon-nanotube reactors 
containing catalytic particles. Nature Materials 6 (2007) 507-511. 
52 K.Kumabe, S. Fujimoto, T. Yanagida, M. Ogata, T. Fukuda, A. Yabe, T. Minowa. Enviornmental and economic 
analysis of methanol production process via biomass gasification. Fuel 87 (2008) 1422-1427. 
53 C.N. Hamelinck, A.P.C. Faaij. Future prospects for production of methanol and hydrogen from biomass. Journal of 
Power Sources 111 (2002) 1-22. 
54 M. Xu, J. H. Lunsford, D. W. Goodman, A. Bhattacharyya. Synthesis of dimethyl ether (DME) from methanol over 
solid-acid catalysts. Applied Catalysis A: General 149 (1997) 289-301 
55 T. A. Semelsberger, R. L. Borup, H. L. Greene. Dimethyl ether (DME) as an alternative fuel. Journal of Power 
Sources 156 (2006) 497-511. 
56 M. C. Samolada, W. Baldauf, I. A. Vasalos. Production of a bio-gasoline by upgrading biomass flash pyrolysis 
liquids via hydrogen processing and catalytic cracking. Fuel 77  (1998) 1667-1675. 
57 A. Corma, G.W. Huber, L. Sauvanaud, P. O. Connor. Processing biomass-derived oxygenates in the oil refinery: 
Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis 247 (2007) 307–327. 
58 T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G.W. Huber. Renewable Chemical Commodity Feedstocks from 
Integrated Catalytic Processing of Pyrolysis Oils. Science 26 (2010) 1222-1227. 
59 R.C. Brown. Hybrid Thermochemical/Biological Processing Putting the Cart Before the Horse? Applied 
Biochemistry and Biotecnology 137-140 (2007) 947-956. 
60 J. Lian, S. Chen, S. Zhou, Z. Wang, J. O’Fallon, C-Z Li, M. Garcia-Perez. Separation, hydrolysis and fermentation of 
pyrolytic sugars to produce ethanol and lipids. Bioresource Technology 101 (2010) 9688–9699. 
61 M.E. Dry. The Fischer–Tropsch process: 1950–2000. Catalysis Today 71 (2002) 227-241. 
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In the first scheme steam reforming or gasification are performed, then the overall reaction 

comprises thermic decomposition of bio-oil (steam reforming can be considered 

CH2O+H2O�CO2+2H2, where gasification can be conceptually considered as CH2O� CO + 

H2)and then eventual gas-water shift (if needed by subsequent process stoichiometry), followed by 

synthesis of methanol or Fischer-Tropsch process.  

 

Figure 1.2.2: Pyrolysis based conversion processes for the obtainement of liquid fuels and 

materials through (a) pyrolysis-gasification (b)pyrolysis-catalytic de-oxygenation (c) hybrid 

thermo-bio-chemical route. 
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The main advantages of fast-pyrolysis/gasification systems on direct gasification of biomass are due 

to the liquid nature of feedstock (easier pressurized injection and easier feedstock storage)47 and to 

the relative low amount of ash in the pyrolysis oil, both crucial factors  in the case of ARs treatment 

(ARs have usually high content of “slagging ashes”). 

Since the gasification plant has to be large in scale,62 whereas pyrolysis is a relatively smaller 

process, the overall scheme allows the de-centralization of bio-oil production (small diffused 

pyrolysers), but it mantains  the centralized gasification plant scale required for economics of 

process.  

The second scheme (figure 1.1.2b) involves the pyrolysis oil processing in standard refineries 

equipment (e.g. fluid catalytic cracking units) equipped with shape selective catalysts (e.g. ZSM-5 

zeolite), able to convert pyrolysis oil into small fragments addictable to gasoline-like compounds 

(mainly benzenes alkylbenzenes and naphtalenes). During cracking, a large amount of coke is 

usually formed, and the amount of coke dramatically increases by using reactive bio-oils (bio-oils 

high in aldehydes and lignin derivatives) and raw bio-oil with a larger oxygen content with respect 

to stechiometric ratio. In order to overcome these phenomena, preliminary hydrogenation58 of bio-

oil together with methanol or hydrocarbons co-cracking has been proposed.63,64  

An interesting recent proposal was that to couple a thermochemical treatment with a biological up-

grading. The basic idea is to use fast pyrolysis as a de-polymerizing procedure for recalcitrant 

fibrous biomass (cellulose and lignin). 

Since it has been proven that bio-oil obtained from de-ashed biomass (as well as hydrolyzed 

biomass) is substantially a mixture of water soluble carbohydrates (e.g. levoglucosan and 

oligosaccharides) and lignin pyrolysis products,65 then these two fractions can be splitted by the 

addition of water to pyrolysis oil or by organic solvent extraction.66 According to its composition, 

the water soluble fraction can be used for chemical synthesis67 or (after detoxification) as feedstock 

for the fermentative production of ethanol or methane.68,69,70,71,72,73,74 

                                                 
62 AV Bridgwater. The technical and economic feasibility of biomass gasification for power generation. Fuel. 74  
(1995) 631-653. 
63 P.A. Horne, N.Nugranad, P.T. Williams. Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol. 
Journal of Analytical and Applied Pyroylsis 34 (1995) 87-108 
64 G.W. Huber, A. Corma. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. 
Angew. Chem. Int. Ed. 46 (2007) 7184 – 7201 
65 D. S. Scott, L. Paterson, J. Piskorz, D. Radlein, Pretreatment of poplar wood for fast pyrolysis: rate of cation removal, 
Journal of Analytical and Applied Pyrolysis 57 (2000)169–176. 
66 A. Oasmaa, E. Kuoppala. Solvent fractionation method with brix for rapid characterization of wood fast pyrolysis 
liquids. Energy Fuels 22 (2008) 4245-8. 
67 F.W Lichtenthaler, S. Petersa. Carbohydrates as green raw materials for the chemical industry. Comptes Rendus 
Chimie 7 (2004) 65-90. 
68 F. Shafizadeh, T.T. Stevenson. Saccharification of douglas-fir wood by a combination of prehydrolysis and pyrolysis. 
Journal of Applied Polymer Science 27 (1982) 4577–4585. 
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The remaining non-sugar like fraction (or organic solvent extractable) is composed by in a variable 

amount of phenols or other special chemicals (like di and trianhydrosugars) that, if isolation of 

single compounds would be relatively cheap, could be considered as high added value by-products 

of the process.67,75,76 The main drawback of this process is the need of energy costly wet pre-

treatment, and then a subsequent need of biomass drying. Moreover, the process produces a 

significant amount of wastewater that has to be treated and eventually used as ferti-irrigating 

liquid.77 

 

1.2.3 Bio-oil chemical characterization 

 

Figure 1.2.3: Example of compound families (classes) analyzable by different analytical tools 

 

 

                                                                                                                                                                  
69 N.M. Bennett, S.S. Helle, S.J.B. Duff. Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresource 
Technology 100 (2009) 6059–6063. 
70 E. M. Prosen, D. Radlein, J. Piskorz, D. S. Scott, R.L. Legge. Microbial utilization of levoglucosan in wood 
pyrolysate as a carbon and energy source. Biotechnology and Bioengineering. 42 (1993) 538–541. 
71 J.K.S. Chan, S.J.B. Duff. Methods for mitigation of bio-oil extract toxicity. Bioresource Technology 101 (2010) 
3755–3759. 
72 M.A. Khiyami, A.L. Pometto III, RC. Brown. Detoxification of Corn Stover and Corn Starch Pyrolysis Liquors by 
Pseudomonas putida and Streptomyces setonii Suspended Cells and Plastic Compost Support Biofilms. J. Agric. Food 
Chem. 53 (2005) 2978-2987 
73 V. Andreoni, P. Bonfanti, D. Daffonchio, C. Sorlini, M. Villa. Anaerobic digestion of wastes containing pyrolignitic 
acids. Biological Wastes 34 (1990) 203-214. 
74 T. Willner, P. Scherer, D. Meier, W. Vanselow. Vergärung von Flash-Pyrolyseöl aus Holz zu Biogas. Chemie 
Ingenieur Technik 76 (2004) 838–842. 
75 A. Effendi, H. Gerhauser, A.V. Bridgwater. Production of renewable phenolic resins by thermochemical conversion 
of biomass: A review. Renewable and Sustainable Energy Reviews 12 (2008) 2092–2116 
76C. Amen-Chen, H. Pakdel, C. Roy. Production of monomeric phenols by thermochemical conversion of biomass: a 
review. Bioresource Technology 79 (2001) 277-299. 
77 G.J. Sheehan, P. F. Greenfield. Utilisation, treatment and disposal of distillery wastewater. Water Research 
14  (1980) 257-277. 
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A complete molecular characterization of bio-oil is a difficult task. In fact, bio-oil contains higher-

molecular-weight species, including degradation products of pentoses, hexoses, lignin and other 

biomass constituents.  

Figure 1.2.3 depicts some typical constituents of bio-oil in a polarity vs. molecular weight plot. The 

main analytical problem of bio-oil, if compared with fossil fuels, is the co-presence of substances 

with molecular weight (and then with different volatility) and polarity largely different.  

For this reason, the obtainement of a global picture of bio-oil chemical nature might be gathered by 

means of various analytical techiques. Figure 1.2.4 depicts a typical distribution of the analytical 

class amounts typically found in bio-oil, which indicate the analytical complexity of the chemical 

characterization. Therefore, fast and cheap methods for bio-oil chemical characterization is 

nowadays lacking. 

 

Figure 1.2.4: abundance of different analytical classes in wood bio-oil78 

 

 

Only a portion of the bio-oil can be detected via GC, even using robust columns and high-

temperature programs. In the basic research field, information on the chemical nature of pyrolysis 

liquids can be analyzed by combining a large array of techniques: GC-MS (volatile compounds), 

HPLC and HPLC/electrospray MS (nonvolatile compounds), 78 Fourier transform infrared (FTIR) 

spectroscopy (functional groups), gel permeation chromatography (GPC) (molecular weight 

distributions),79 size esclusion chromatography (SEC), 80,81 nuclear magnetic resonance (NMR) 

                                                 
78 D. Mohan, C. U. Pittman, Jr. P.H. Steele, Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review, Energy & Fuels 
20 (2006) 848-889. 
79 C. Gerdes,M. Simon,T. Ollesch,D. Meier,W. Kaminsky. Design, Construction and Operation of Fast pyrolysis Plant 
for biomass. Eng. Life Sci. (2002) 167-174. 
80 R. Bayerbach, V. Dy Nguyen, U. Schurr, D. Meier. Characterization of the water-insoluble fraction from fast 
pyrolysis liquids (pyrolytic lignin): Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and 
Py-FIMS. Journal of Analytical and Applied Pyrolysis 77 (2006) 95-101. 
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(types of hydrogens or carbons in specific structural groups, bonds, area integrations)34 or by 

fragmentation to MS detectable compounds (with Py-GC or MALDI-TOF).82,80,83,84 

Nonetheless, the understanding of a large number of bio-oils obtainable from different reactor 

configurations, different feedstock or from catalytical pyrolysis, requires fast and cheap methods for 

bio-oil molecular characterization. In this field, micro-scale systems, based on analytical pyrolysis, 

can be envisaged as powerful techniques, which will be dealt with in section 3.  

 

1.2.4 Bio-char for environmental management 

As examed in the previous section, the destination of ARs as energy source (in place of ARs 

mulching), even though some advantages on the use of biomass from dedicated crops, can lead to 

soil carbon impoverishment. Therefore, management of agricultural wastes use should be carefully 

planned, to avoid the adverse consequence of soil carbon loss (erosion and reduction of fertily).  

Soil carbon depletion is main concern in modern agricultural practice, and it is one of most relevant 

positive feedback of global warming. For this reason, no-till management or mulching are usually 

proposed for both climate mitigation and long term fertility enanchement. 

Nonetheless, soil carbon incorporation is relately uneffective (in term of GHGs offset) in tropical 

and temperate climates, due to the fast decomposition of humus (warm and wet climates) and an 

uneffective residue conversion to humus (sandy loamy soils). In most of the cases, even mulching 

of ARs or no till management is not satisfactory and some other solutions are needed, since food 

production can not be reduced, 

An interesting idea came out from studies on archaeological soils in the tropical area of “terra preta” 

near Manaus (Brazil). Basically, amazon civilizations (around 200 B.C and 1500 A.D) successifully 

practiced sedentary agriculture (usually impossible in tropical amazonic climate) by changing the 

soil composition through charcoal addition.85 This traditional practice allowed to increase the soil 

carbon to astonishing high livels, 86 with significant increase (in comparison to adjacent untreated 

                                                                                                                                                                  
81 E. Hoekstra, S.R.A. Kersten, A. Tudos, D. Meierc, K.J.A. Hogendoorn. Possibilities and pitfalls in analyzing 
(upgraded) pyrolysis oil by Size Exclusion Chromatography (SEC). J. Anal. Appl. Pyrolysis Article in press (2011).  
82 B. Scholze, D. Meier. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. 
PY–GC/MS, FTIR, and functional groups Journal of Analytical and Applied Pyrolysis 60 (2001) 41-54. 
83 R. Bayerbach, V. Dy Nguyen, U. Schurr, D. Meier. Characterization of the water-insoluble fraction from fast 
pyrolysis liquids (pyrolytic lignin): Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS, and 
Py-FIMS. Journal of Analytical and Applied Pyrolysis 77 (2006) 95-101. 
84 R. Bayerbach, D. Meier. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). 
Part IV: Structure elucidation of oligomeric molecules). J. Anal. Appl. Pyrolysis 85 (2009) 98-107. 
85 H. N. Lima, C.E.R. Schaefer, J.W.V. Mello, R.J. Gilkes, J.C. Ker. Pedogenesis and pre-Colombian land use of 
‘‘Terra Preta Anthrosols’’ (‘‘Indian black earth’’) of Western Amazonia. Geoderma 110 (2002) 1-17. 
86 B. Glaser, E. Balashov, L. Haumaier, G. Guggenberger, W. Zech. Black carbon in density fractions of anthropogenic 
soilsof the Brazilian Amazon region. Organic Geochemistry 31 (2000) 669-678. 
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soils) of crop yields. 87, 88 In the case of terra preta, Amazon climate was extreme and organic 

carbon input relatively high (due to traditional agriculture practice), 89 but the same idea can be also 

applied to other tropical (e.g. desertification threatened) areas90 and in temperate climates with low 

organic carbon input (as modern soils subjected to intensive farming).91 

Figure 1.1.4: scheme of pyrolysis driven soil carbon sequestration. 
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The basic idea is to integrate fast pyrolysis with “biochar” soil management: pyrolysis converts 

forestry branches, grasses or crop residues into carbon rich bio-char and energy (or energy carrier 

like bio-oil)92. Biochar rapidly locks up decomposing carbon into plant biomass in a much more 

durable form, and then it “artificially” stabilizes organic matter into soil.93 

                                                 
87 B. Glaser, L. Haumaier, G. Guggenberger, W. Zech. The ‘Terra Preta’ phenomenon: a model for sustainable 
agriculture in the humid tropics. Naturwissenschaften 88 (2001) 37-41. 
88 B. Glaser, J. Lehmann, W. Zech. Ameliorating physical and chemical properties of highly weathered soils in the 
tropics with charcoal – a review. Biol Fertil Soils 35 (2002) 219-230. 
89C. Steiner, W.G. Teixeira, J. Lehmann, T. Nehls, J. Luis, V. de Macêdo, W.E.H. Blum, W. Zech. Long term effects of 
manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian 
upland soil. Plant and Soil 291 (2007) 275-290. 
90 T. Whitman, J. Lehmann. Biochar—One way forward for soil carbon in offset mechanisms in Africa?. Environmental 
Science & policy 12 ( 2009) 1024-1027. 
91 C. J. Atkinson, J. D. Fitzgerald, N. A. Hipps. Potential mechanisms for achieving agricultural benefits 
from biochar application to temperate soils: a review. Plant and Soil 337 (2010) 1–18. 
92 J.A. Mathews. Carbon-negative biofuels. Energy Policy 36 (2008) 940–945. 
93 J. Lehmann, J.O. Skjemstad, S. Sohi, J. Carter, M. Barson, P. Falloon, K. Coleman, P. Woodbury, E. Krull. 
Australian climate-carbon cylce feedback reduced by soil black carbon. Nature Gescience 1 (2008) 832-835. 
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As shown above, char represents the most important byproduct of fast pyrolysis. This byproduct is 

usually burnt to produce the heat required for the pyrolysis reaction (usually endothermic).34 For 

high quality woody biomass characterized by low ash content, this option maximizes liquid yield 

and energy output of the pyrolysis plant, as no external fossil fuel or produced bio-oil are burnt for 

obtaining the heat required. Nonetheless, biochar represents a problematic fuel, especially for ash 

containing feedstock (ARs), since the combustion of a fuel rich in low melting point ash (as the 

major part of annual crops ARs) could determine slagging in the burner94 and a large production of 

not easily disposable wastes. 95 

Given these considerations, for the major part of ARs biochar is rich in carbon but poor as fuel, thus 

it can be advantageus to lose a portion of energy and to store more carbon in the form of biochar 

applicable on soils. This operational change is similar to the substitution of coal with natural gas in 

electrity production96 and,despite a decrease in pyrolysis process economics, can be justified by 

additional benefits obtainable from agronomic biochar application. 97 

A large number of studies propose the application of char on soil (bio-char strategy, figure 1.2.4) 

for increasing the soil organic carbon;98 According to the major part of them, the use of char as bio-

char could be an alternative fate for a large range of solid residue products, offering a lower-risk 

strategy than other sequestration options,17 in which stored carbon can be released by forest fires, by 

converting no-tillage back to conventional tillage, or by leaks from geological carbon storage. 

On  local or field scale, biochar can usefully enhance the existing sequestration approaches. It can 

be mixed with manures or fertilizers and included in no-tillage methods, without the need for 

additional equipment. Biochar enhances the retention99 and therefore the efficiency of fertilizers and 

it decreases fertilizer run-off by the same mechanism. 100 Finally, especially for staple grain crops 

and acidic and highly whetheared soils, a significative increase of crop yields could be obtained.101 

                                                 
94 S.Xiong, J.Burvall, H. Örberg, G. Kalen, M. Thyrel, M. Ohman, D. Bostro.  Slagging Characteristics during 
Combustion of Corn Stovers with and without Kaolin and Calcite. Energy & Fuels 22 (2008) 3465-3470. 
95 L. Reijnders. Disposal, uses and treatments of combustion ashes: a review. Resources, Conservation and Recycling 
43 (2005) 313-336. 
96 K. Hayhoe, H. S. Kheshgi, A. K. Jain and D. J. Wuebbles.  Substitution of Natural Gas for Coal: Climatic Effects of 
Utility Sector Emissions. Climatic Change 54 (2002) 107-139. 
97 B.A. McCarl, C. Peacocke, R. Chrisman, C-C Kung, R.D. Sands. Economics of Biochar Production, Utilization and 
Greenhouse Gas Offsets. Biochar for Environmental management. Johannes lehmann. Stephen Joseph edt. London  
2009. 
98 J. Lehmann, J. Gaunt, M. Rondon. Bio-char sequestration in terrestrial Ecosystems-a Review. Mitigation and 
Adaptation Strategies for Global Change 11 (2006) 403–427 
99 B. Liang,J. Lehmann, D. Salomon,J. Kinyangi, J. Grossman, B. O’Neill, J. Skjemstad, J.O. Thies, F.J. Luzão, J. 
Petersen, E.G. Neves. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70 (2006) 1719-
1730. 
100 Y. Ding, Y-X Liu, W-X Wu, D-Z Shi, M. Yang, Z-K Zhong. Evaluation of Biochar Effects on Nitrogen Retention 
and Leaching in Multi-Layered Soil Columns. Water Air Soil Pollut. 213 (2010) 47-55. 
101 S.P.Sohi, E. Krull, E. Lopez-Capel, R. Bol. A Review of Biochar and Its Use and Function in Soil. Advances in 
Agronomy 105 (2010) 47-82. 
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According to recent studies, emission reductions can be 12–84% greater if biochar is put back into 

the soil instead of being burned to offset fossil-fuel use. 102  

Basically, biochar sequestration offers the chance to turn bioenergy into a real carbon-neutral (and 

in some cases carbon-negative) industry. Nonetheless, several doubts remain on the table as the 

pollutant content of modern synthetic biochars, the actual stability of bio-char and the 

environmental effects of bio-char application in non tropical climates. 

Actually, the exact duration of biochar's storage time is under debate, with opinions ranging from 

millennial (as suggested by some dating of naturally occurring biochar) to centennial timescales (as 

indicated by some field and laboratory trials). 103 Whether biochar remains in soils for hundreds or 

thousands of years, it would be considered a long-term sink for the purposes of reducing carbon 

dioxide emissions. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
102 K.G. Roberts, B. A. Gloy, S. Joseph S., N.R. Scott, J. Lehmann. Life Cycle Assessment of Biochar Systems: 
Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol. 44 (2010) 827–833. 
103 J. Lehmann, C. Czimczik, D.A. Laird . Stability of biochar in soil. In Biochar for environmental management 
Biochar for Environmental management. Johannes lehmann. Stephen Joseph Eds. London  2009. 
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2. Aim of the Thesis 

2.1 Development of improved analytical pyrolysis te chniques. 

As shown above, different biomass-to-liquid and biomass-to-chemicals routes need a deep 

knowledge of bio-oil and bio-char composition. This information is especially important for process 

optimization and environmental risk assessment. 

 

Figure 2.1.1: overall characterization scheme used for pyrolysis products. 
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Since pyrolysis could be proposed as a method to distributed generation of liquid fuels, bio-oil from 

different feedstocks should be adequately characterized from an health safety point of view because 

the contacts with the end-users could be frequent. For this reason this thesis was focused on the 

development and application of fast and realiable analytical tools to the evaluation of bio-oil and 

biochar chemical nature. 

In order to meet this target, analytical pyrolysis techniques (Py, on milligram scale) were selected, 

mainly thanks to the large diffusion and low cost/information obtainable through an advanced use 

of this instrument. In order to overcome the main limitations  of this equipment (volatility and 

stability of analytes), the strategy was to interpose sample preparation steps (SPME or SPE with 
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derivatization) and to combine different detectors (MIP-AED and EI-MS). Figure 2.1.1 shows the 

global characterization scheme used.  

For quantification of single identificable compounds GC, analysis and calibration with internal 

standard were used. Minor compounds, which are not identified but detectable and GC amenable, 

were quantified by means of a “structure insensitive” detector like MIP-AED (that allow to obtain 

the minor compounds carbon yields).  

 

2.2 Applied pyrolysis for fuels and chemicals synth esis. 

The methods developed in the first part of the thesis was firstly tested on four representative 

terrestrial biomass (poplar, switchgrass, corn stover and sweet shorgum) selected among most 

productive short rotation energy crops. Afterwards, the thesis was focused to the study of  different 

“pyrolysis based” routes (Figure 2.2.1), in order to figure out the overall potential of biomass 

exploiting for: fuel,chemicals and environmental services (e.g. soil improvement through bio-

charring).     

 

Figure 2.2.1: Two pyrolysis routes and related research aspects (depicted in red) envisaged in this 
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In one approach, the study was focused on the conversion of raw biomass into compounds and fuels 

similar to that derived by fossil fuels, with production of renewable transportation fuels and 

chemical commodities like benzene and alkylbenzenes. In this case, two feedstock were tested: 

conventional lignocellulosic biomass and a microalgae residue. 

In a different approach, biomass was processed as a source of chiral chemicals with  potential 

higher value added applications. Since the raw biomass is unable to produce significant amount of 

single target compounds (due to catalytic effect of biomass alkaline ash), the selectivity of the 

process has to be enhanced by means of pre-treatment and catalysis. Different pre-treatment of 

cellulosic biomass were tested and catalytic pyrolysis with various mesoporous catalyst was focused 

on the obtainment of specific chiral chemicals. 
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3. Development of analytical methods for the 

study of biomass pyrolysis. 
 

3.1. Comparative Analysis of Pyrolysate from Herbac eous and Woody 

Energy Crops by micro-scale analytical pyrolysis te chniques 

 

3.1.1. Introduction  

Bio-oil is a very complex mixture containing a large assembly  of organic compounds which are 

formed by the thermal degradation of the main plant constituents (cellulose, hemicellulose, lignin) 

and other biomolecules originally present in feedstock (e.g. extractives). These compounds may 

affect fuel characteristics and eco-toxicological properties of the bio-oil. For instance, acidic 

components (e.g acetic acid, formic acids, phenols) are mainly responsible of corrosion, 

polyhydroxylated compounds (e.g. levoglucosan and oligosaccharides) decrease solubility in 

conventional fuels, reactive aldehydes (e.g. hydroxyacetaldehyde) affect long-term stability and 

aging of the pyrolysis liquid. Pyrolysis of different crops has been widely investigated over the last 

decades. A significant dataset on the chemical composition of the resulting bio-oils was gathered 

through bench scale flash pyrolysis followed by chemical analysis that enabled a detailed 

knowledge on the effects of feedstock characteristics and experimental conditions on oil 

quality.104,105,106,107,108,109 

Nonetheless, an efficient data comparison to evaluate the effect of different feedstock, separately 

from operational conditions, can be difficult to perform due to different reactor configurations and 

application of several bio-oil characterization methods. Analytical pyrolysis combined with on-line 

GC separation (Py-GC) is a simple and reliable micro-scale model of the fast pyrolysis process 

capable to provide preliminary chemical information on the pyrolysis product yield and 
                                                 
104 D.S. Scott, J. Piskorz. The flash pyrolysis of aspen-poplar wood. The Canadian journal of chemical engineering  60 
(1982) 666-674. 
105 A. Oasmaa, Y. Solantausta, V. Arpiainen, E. Kuoppala, K. Sipilä. Fast Pyrolysis Bio-Oils from Wood and 
Agricultural Residues. Energ. Fuels 24 (2010) 1380-1388. 
106 A.A. Boateng, D.E. Daugaard, N.M. Goldberg, K.B. Hicks. Bench-Scale Fluidized-Bed Pyrolysis of Switchgrass for 
Bio-oil Production. Ind. Eng. Chem. Res. 46 (2007) 1891-1897. 
107 R. Fahmi, A.V. Bridgwater, I. Donnison, N. Yates, J.M. Jones. The effect of lignin and inorganic species in biomass 
on pyrolysis oil yields, quality and stability. Fuel 87 (2008) 1230-1240. 
108 O. Ioannidou, A. Zabaniotou, E.V. Antonakou, K.M. Papazisi, A.A. Lappas, C. Athanassiou. Investigating the 
potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and 
catalytic pyrolysis in two reactor configurations. Renewable and Sustainable Energy Reviews 13 (2009) 750-762. 
109 J. Piskorz, P. Majerski, D. Radlein, D.S. Scott, A.V. Bridgewater. Fast pyrolysis of sweet sorghum and sweet 
sorghum bagasse. J. Anal. Appl. Pyrol. 46 (1998) 15-29. 
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composition It is well recognised to gather insights and preliminary information on potential 

compounds derived from bio-oil and thus enables a rapid comparison on the beahviour of different 

feedstocks, reaction conditions and so forth. 

Mass spectrometry under electron ionisation (EI-MS) is the most common detection tool and 

enables the chemical characterisation of pyrolysate at a molecular level. Py-GC-MS has been 

utilised to study the effect of such different factors as particle size of herbaceous biomass,110 

physiological maturity in switchgrass pyrolysate,111 genetic modification poplar clones,112 chemical 

pretreatment of corn fibers utilised to ethanol conversion.  

However, absolute quantitation (e.g. mass yields) has been seldom conducted and accurate 

quantitation of all GC detectable compounds is limited by the large number of overlapping 

constituents with different response factors and the practical impossibility to apply the proper 

surrogate to each analyte. The precision of different approaches in internal standardisation with Py-

GC-MS of lignocellulosic samples has been investigated.113  

The problem of detection response encountered in MS analysis is less pronounced by utilising 

carbon atom response, in microwave induced plasma coupled to atomic emission detection (MIP-

AED, thereafter named AED), reducing time consuming internal standardisation. Py-GC-AED has 

been applied to study the pyrolytic behaviour of pine sawdust and the effects of catalysis by metal 

oxides on pyrolysis product. In these studies pyrolysis products were distinguished by volatility.114 

It is worthwhile to stress that complementary information can be gathered from MS and AED: the 

former technique is selective towards structural identification of single components, but needs 

laborious internal standardization for accurate quantitation; the latter technique is better suited to 

provide a “bulk picture” of elemental carbon distribution with a simpler calibration approach. 

However, when interfaced to a GC system, both AED and MS analysis are limited to the detection 

of gas and semi/volatile compounds. An important fraction of pyrolysate ending up into bio-oil is 

precluded to GC analysis due to the low volatility of its constituents, such as pyrolytic lignin and 

oligosaccharides. Nevertheless, the yield of this non-volatile matter (NVM) could be roughly 

                                                 
110 T.G. Bridgeman , L.I. Darvell , J.M. Jones , P.T. Williams , R. Fahmi , A.V. Bridgwater , T. Barraclough , I. Shield , 
N. Yates , S.C. Thain , I.S. Donnison. Influence of particle size on the analytical and chemical properties of two energy 
crops. Fuel 86 (2007) 60-72. 
111 A.A. Boateng, K.B. Hicks, K.P. Vogel. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of 
maturity. J. Anal. Appl. Pyrolysis 75 (2006) 55–64. 
112 D. Meier, I. Fortmann, J. Odermatt, O. Faix. Discrimination of genetically modified poplar clones by analytical 
pyrolysis–gas chromatography and principal component analysis. J. Anal. Appl. Pyrolysis 74 (2005) 129. 
113 J. Odermatt , D. Meier, K. Leicht, R. Meyer, T. Runge. Thermal behavior of corn fibers and corn fiber gums 
prepared in fiber processing to ethanol. J. Anal. Appl. Pyrolysis 85 (2009) 11-18. 
114M.I. Nokkosmäki, A.O.I. Krause, E.A. Leppämäki, E. T. Kuoppala. A novel test method for catalysts in the treatment 
of biomass pyrolysis oil. Catalysis Today 45(1998) 405-409. 
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estimated in concomitance with Py-GC-AED from the weight determination of the residue left after 

pyrolysis.114 

The aim of this study was to evaluate the ability of quantitative Py-GC-MS and Py-GC-AED to 

predict the main chemical characteristics of bio-oil derivable from different biomass types. Selected 

feedstock was representative of woody biomass (poplar), agroresidue (corn stover) and dedicated 

herbaceous energy crops (sweet sorghum and switchgrass). 

 

3.1.2. Materials and methods  

3.1.2.1 Biomass samples 

All biomass but poplar were grown at the experimental station of the University of Bologna. Poplar 

chips were purchased from Alasia Franco Vivai. All plants were grown in the Po Valley. For all 

crops, 300 g samples of three independent replications were collected, dried at 60 °C for 48 h and 

then grounded in a hammer mill to pass a 1 mm screen before chemical analysis. Biomass were 

characterized for major constituent (Table 3.1.1) and elemental composition (Table 3.1.2).  

 

Table 3.1.1: main characteristics of the tested biomasses, major constituent are reported as % 

mi/msample. 

Biomass Cytotype Water Soluble 

matter 

Hemi-

cellulose 

Cellulose 

 

Lignin 

 

Ash 

 

Switchgrass Alamo 4.8 3.5 37.1 42.5 8.5 3.8 

Sweet 

Sorghum 

H133 hybrid 8.3 24.2 27.4 29.9 5.6 4.6 

Corn stover PR33A46 6.6 12.2 27.8 41.4 5.0 7.1 

Poplar - 8.4 0.3 20.0 54.1 15.1 2.1 

 

The water content was obtained by weight loss during drying biomass at 105°C to constant mass. 

Ash content was determined by burning at 550°C of 1 g of dried (60°C) and ground (size 1 mm) 

sample. The weight amount of soluble sugars (e.g. free sugars starch and pectins), lignin, cellulose 

and hemicellulose was determined following a published procedure.115 Briefly, the sequential 

analysis involved refluxing in neutral detergent (using α-amylase for removal of soluble polymeric 

components like starch and pectins), refluxing in acid detergent, hydrolysis with 72% aqueous 

                                                 
115 S. Mambelli, S. Grandi. Yield and quality of kenaf (Hibiscus cannabinus L.) stem as affected by harvest date and 
irrigation. Industrial Crops and Products 4  (1995) 97-104. 
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H2SO4. The fibre fractions were estimated from the loss of dry matter following each step of the 

analysis.  

Table 3.1.2 shows the elemental composition of tested biomass. Carbon, hydrogen, and nitrogen 

content analysis was performed using a microelemental analyzer (LECO CHN-600), oxygen 

content of samples was calculated by difference between 100% and sum of carbon, hydrogen, 

nitrogen and ash.  

 

Table 3.1.2: elemental composition ( mass %) of tested biomass by CHN elemental analysis of 
sample. 

 C H O  N 
Switchgrass  46.5 6.0 43.4 0.3 
Sweet sorghum 43.6 5.7 45.1 1.0 
Corn stover 45.0 5.9 41.3 0.7 
Poplar 47.8 6.1 43.5 0.5 

 

3.1.2.2 Py-GC-MS  

The pyrolysis unit was a CDS Pyroprobe 1000 pyrolyser connected to a Varian 3400 gas 

chromatograph equipped with a Varian Saturn 2000 mass spectrometer.  

A weighed amount of biomass sample (2-3 mg) was introduced into the quartz tube, and held by 

quartz wool at the middle portion of the tube. The tube was then placed in the platinum filament 

coil on the probe. Quartz wool that hold the sample was spiked with 0.1 µg ( 5 µl  at 200 ng µl -1 

solution in diethyl ether) of o-eugenol (internal standard).  The probe was inserted into the Py-GC 

interface, then the interface was pressurized, fluxed with 100 ml min-1 helium and then warmed up 

to 300 °C . When the interface reached the set temperature, the platinum coil was immediately 

heated at the maximum heating rate to pyrolysis temperature (500 °C); 1/200 split ratio and injector 

temperature of 280°C were used.  

Analytes were separated on a HP-5MS fused-silica capillary column (stationary phase 

polydimethylsiloxane, 30 m, 0.25 mm i.d., 0.25 mm film thickness) using helium as carrier gas. The 

following thermal program was used: 35°C for 2.5 minutes, then 10 °C/min until 300 °C. 

Quantitation was performed in the MS mode using the most abundant ion of each compound. 

Amount (mi) of each  analyzed compound was calculated using internal calibration performed by 

injecting 5 µl of calibration solution containing known concentrations of representative analytes 

(e.g. acetic acid, hydroxyacetone, 2-cyclopentanedione, furaldehyde, furfuryl alcohol, 5-methyl-2-

furaldehyde, phenol, syringol) and internal standard dissolved in acetonitrile under the same 

conditions used for pyrolysis.   
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Mass yields of each analyzed compound was calculated as mi/msample, where mi is the compound 

amount produced by pyrolysis and msample the mass of pyrolysed sample. 

Carbon yield for single GC-MS analyzed compounds was obtained as (mi/msample)·( 

[C]compound/[C]biomass), where [C]compound is the carbon mass fraction of the compound (obtained from 

chemical structure)  and [C]biomass carbon mass fraction from elemental composition of biomass 

(Table 3.1.2). 

 

3.1.2.3 Off-line pyrolysis/GC-MS 

The apparatus employed for off-line pyrolysis experiments was described in detail elsewhere116 

Shortly, it consisted of a glass tube (pyrolysis chamber) designed for the probe of a CDS 1000 

pyroprobe equipped with a resistive heated platinum filament. CDS 1000 pyroprobe is inserted in 

the glass, the exit was connected through a Tygon® tube to a cartridge for air monitoring containing 

a XAD-2 resin as adsorbent (ORBO-43® purchased from Supelco). The pyrolysis probe was re-

calibrated with a termocouple (in order to correct the thermal deficit due do absence of heated Py-

GC interface), and the sample was pyrolysed exactly with the same conditions used in on-line Py-

GC. For analysis of all compound but hydroxyacetaldehyde, after pyrolysis, the pyrolysis chamber 

was filled with 5 ml of acetonitrile allowing the solution to pass slowly through the cartridge. The 

obtained solution was spiked with 0.1 ml of 500 mg l-1 methyl-L-β-arabinopyranoside solution 

(internal standard). An aliquot of the acetonitrile solution (0.1 ml) was spiked with, 50 µl of bis-

trimethylsilyltrifluoroacetamide with 1% tetramethylchlorosilane (sigma-aldrich) and 10 µl of 

pyridine, then heated at 60°C for 0.5 h and injected in GC-MS. 

For hydroxyacetaldehyde the following method was performed: the chamber and the cartridge were 

eluted twice with 2 ml methanol, the resulting 4 ml solution was placed in a vial containing 200 mg 

of amberlyst® acidic resin. Then the vial was sealed and heated at 60°C for 0.3 h and 

hydroxyacetaldehyde was quantitated as dimethyl-acetal derivative by GC-MS. 

Quantitation of dimethylacetal derivative of hydroxyacetaldehyde was performed using a external 

calibration plot, obtained by submitting solutions of hydroxyacetaldehyde dimer of known 

concentration to the dimethyl-acetalization procedure as shown above. 

GC-MS analysis were performed in splitless mode using the same conditions used for Py-GC-MS. 

The following thermal program was used: 50°C for five minutes, then 10°C/min until 300°C 

followed by a column cleaning at 310°C for 3 min. 

 

                                                 
116 D. Fabbri, I. Vassura. Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by 
analytical pyrolysis. J. Anal. Appl. Pyrol.75 (2006) 150-158. 
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3.1.2.4 Py-GC-AED 

The pyrolysis unit was a CDS Pyroprobe 1000 pyrolyser connected to an HP 5890 Series II gas 

chromatograph, and detection was carried out with an HP 5921A atomic emission detector. 

Figure 3.1.1 summarises the analytical procedure used for on line Py-GC-AED. The apparatus 

employed for Py-GC-AED experiments was described in detail elsewhere114. 

 

Figure 3.1.1: Scheme of the Py-GC-AED pyrolysis procedure.  

 

 

A weighed amount of sample (2-3 mg) was introduced into the quartz tube, and held by quartz wool 

at the middle portion of the tube. The probe was inserted into the Py-GC interface, then the 

interface was pressurized, fluxed with helium (100 ml min-1) and then warmed up to 300 °C. When 

the interface reached the set temperature, the platinum coil was immediately heated at maximum 

heating rate to pyrolysis temperature (500 °C);  1/100 split ratio and injector temperature of 280°C 

were used. 

GC analysis were performed as for Py-GC-MS, and AED spectra for C was recorded at 193.090 

nm. Carbon amounts of GC detectable compounds were calculated using external calibration 

performed by injecting known volumes of 60 g l-1 isopropanol solution in methanol under the same 

conditions used for pyrolysis. 

The results were summarized by distinguishing pyrolysis products on the base of their volatility. 

Retention time was used as reference to discriminate between gaseous (first large peak at 2.6 min), 

and sum of condensable GC detectable compounds, reported as semi-volatile fraction (obtained 

integrating all peaks after large first peak of gases). Char amount was  evaluated after GC analysis 

in the following way: the interface was cooled down, the quartz tube was removed from the probe 

and weighed. Then, the sample was placed in muffle oven at 550 °C for 5 h and re-weighed. The 

char amount was calculated from the difference in sample weight before and after burning the char 

into the muffle. The char was assumed to be composed of nearly pure carbon.  

Non volatile matter  

CNVM= Csample - (Cgas+Cchar+CSV) 

r.t.< 2.6 min  Cgas = Gas 

r.t.>2.6 min  CSV = 

Semivolatile 
 

Cbio-oil  

GC-AED 

Cchar= W1-W2 

Calcination 

 
  

On line 

sample 

Char + ash 

Weight1 

Ash  

Weight2 
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Carbon yield of each fraction was calculated as Ci/Csample, where Ci carbon amount of each fraction  

obtained from GC-AED data and gravimetric data (char). Carbon amount of sample (Csample) was 

calculated as Csample=[C]biomass· msample, where [C]biomass is carbon mass fraction of the biomass, 

obtained from Table 3.1.2 (shown above in paragraph 3.1.2.1). 

Carbon amount of NVM ( non volatile matter), here considered the sum of pyrolytic lignin and 

water soluble non volatile matter was calculated by difference between Csample and sum of carbon 

amounts of bio-oil, carbon residue and gas. 

3. Results 

3.1.3.1 Py-GC-MS 

Typical chromatograms obtained from the analysis of the four biomass types are shown in Figure 

3.1.2 with peak identification reported in Table 3.1.3.  

 

Figure 3.1.2: Chromatograms obtained from Py-GC-MS of four tested biomass samples. 

 

 

Quantitation of main compounds (see Table 3.1.3) was accomplished by comparison with internal 

standard. Internal standardisation in analytical pyrolysis of complex heterogeneous biomass 

samples is not an easy task and we have followed one of the approaches investigated by Odermatt et 

al.113 An internal standard structurally similar to lignin pyrolysis products, namely o-isoeugenol (# 

27) was selected. Besides lignin monomers, the same compound was used for the quantitation of 

pyrolysis products of polysaccharides utilising the response factors of representative compounds 

(see experimental).  
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Table 3.1.3: Mass yield (% mi/msample) of main pyrolysis products obtained from Py-GC-MS of 

four tested biomass.  

 
# 

Compound Switchgrass Sweet 
sorghum 

Corn 
Stover 

Poplar 

1 methanol 0.11 0.01 0.10 0.13 
2 methyl glyoxal 0.59 0.92 0.53 0.82 
3 3-pentanone 0.46 0.44 0.39 0.71 
4 acetic acid 2.4 2.7 2.6 3.1 
5 hydroxyacetone 2.1 2.3 1.7 2.0 
6 acetoxy acetaldehyde 0.35 0.69 0.68 1.48 
7 butanedial 0.71 0.62 0.65 1.95 
8 furfural 0.13 0.15 0.07 0.08 
9 furfurilic alcohol 0.03 0.06 0.03 0.05 
10 2-ciclopentanedione 0.52 0.49 0.40 0.84 
11 methyl furfural 0.01 0.01 0.00 0.01 
12 phenol 0.03 0.06 0.06 0.33 
13 4-hydroxy-5,6-dihydro-(2H)-pyranone 0.77 0.62 0.18 0.31 
14 2- hydroxy-3-methyl-2-cyclopentenone 0.18 0.20 0.29 0.30 
15 2-methoxyphenol 0.09 0.09 0.13 0.14 
16 3-methyl-2,4(3H,5H)-furan 0.10 0.07 0.05 0.09 
17 4-ethylphenol 0.02 0.03 0.03 - 
18 anhydro isosaccharino-δ-lactone 0.07 0.02 0.03 0.02 
19 4-methylguaiacol 0.06 0.03 0.03 0.08 
20 catechol 0.03 0.04 0.05 0.07 
21 1,4-3,6 -dianhydro-α-glucopyranose 0.10 0.12 0.09 0.08 
22 4-vinylphenol 0.47 0.50 0.62 0.01 
23 5-hydroxymethyl-2-furaldehyde 0.21 0.93 0.09 0.07 
24 4-ethylguaiacol 0.05 0.05 0.05 0.05 
25 ascopyrone-P 0.02 0.01 0.00 0.01 
26 4-vinylguaiacol 0.53 0.36 0.51 0.25 
27 o-eugenol (IS) - - - - 
28 syringol 0.13 0.13 0.25 0.67 
29 eugenol 0.01 0.01 0.01 0.03 
30 vanillin 0.03 0.02 0.02 0.03 
31 E-isoeugenol 0.01 0.01 0.00 0.02 
32 4-methylsyringol 0.04 0.02 0.03 0.27 
33 E-isoeugenol 0.06 0.04 0.03 0.18 
34 4-vinylsyringol 0.07 0.05 0.11 0.63 
35 Z-2-propenylsyringol 0.01 0.01 0.01 0.09 
36 E-2-propenylsyringol 0.01 0.01 0.01 0.05 
37 allylsyringol 0.06 0.05 0.06 0.41 
38 4-hydroxy-2-methoxy cinnamaldehyde 0.01 0.01 0.01 0.02 
39 acetosyringone 0.02 0.01 0.02 0.07 
 Sum Py-GC-MS (ΣΣΣΣmi/msample) 10.6 11.9 9.9 15.5 
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For almost all the compounds the RSD of yields were in the 13-35% range for switchgrass, poplar 

and corn (n=3). Higher RSD (35-70%) values were found for sweet sorghum pyrolysis, probably 

due to a higher heterogeneity of  biomass sample. Furthermore, quantitation of some polar 

compounds (acetoxyacetaldehdye, ascopyrone P and 1,4:3,6-dianhydroglucopyranose and hydroxy-

5,6-dihydro-(2H)-pyranone) showed a large variability (RSD 40-70%). It is known that the 

pyrolysate composition can be affected by several factors that become crucial when analyses are 

performed with small amount of sample. For instance, it has been shown that smaller biomass 

particles may contain higher amount of ash and lignocellulose products with respect to coarse size 

fraction.110  

By a glance at Figure 3.1.2, it is clear that largest differences occur between herbaceous and wood 

biomass. As shown by Ralph et al.,117 the chromatograms of herbaceous plants were characterised 

by vinylphenol (#22 ), as the main lignin derivative, with yields around 0.5%, in accordance to the 

lignin being of type HGS (hydroxyphenyl/guaiacyl/syringyl groups). Vinylguaiacol was an other 

typical lignin constituent detected at rather high levels in the pyrolysate of herbaceous biomass (0.4-

0.5% yield). Vinylphenol was a minor pyrolysis product evolved from poplar in accordance to GS 

type lignin characterising this plant. 

As far as the thermal degradation products of holocellulose is concerned, the main compound 

quantified by Py-GC-MS was acetic acid with 3.1%, 2.7%, 2.6% and 2.4 % yields obtained from 

pyrolysis of poplar, sweet sorghum, corn stover and switchgrass  respectively. Hydroxyacetone 

(acetol) is the second most abundant pyrolysis product. These data are consistent with preparative 

pyrolysis and those reported in a previous studies.104,106,109Although the same studies reported 

relatively high yields of  hydroxyacetaldehyde, this compound could not be detected with the Py-

GC-MS procedure adopted here. The pyrolysate of sweet sorghum is unique for the occurrence of a 

prominent peak of 5-hydroxymethyl-2-furaldehyde (HMF, #23), a typical pyrolysis product of 

reducing sugars.118 This is probably due to the high content of soluble sugars (24% from Table 

3.1.1) that characterize sweet sorghum. 

 

3.1.3.2 Off-line Py/GC-MS  

Besides the compounds that could be analyzed directly by Py-GC-MS, off-line Py/GC-MS with two 

derivatisation procedures (dimethyl-acetalization for reactive aldehydes and sylilation for highly 

polar compounds) was applied, in order to extend the range of detectable compounds to more polar 
                                                 
117 J. Ralph, R.D. Hatfield. Pyrolysis, Pyrolysis-GC-MS Characterization of Forage Materials. Journal of Agric. Food 
Chem. 39 (1991) 1426-1437. 
118 E.B. Sanders, A.I. Goldsmith, J.I. Seeman. A model that distinguishes the pyrolysis of D-glucose, D-fructose, and 
sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrol. 66 
(2003) 29-50. 
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species. The results from quantitative off-line pyrolysis are reported in Table 3.1.4. Yields of 

levoglucosan were rather low for all the tested biomass, with the highest value of 0.51% w/wsample 

from switchgrass pyrolysis. Other important oxygenated compounds revealed by sylilation were 

1,3-dihydroxy-propanone, D-ribofuranose, hydroxy acetic acid (0.05-0.26 % yield) and 

glyceraldehyde (0.11 % yield from switchgrass) (Table 3.1.4). Significant amount of 

trihydroxybenzenes and aromatic acids were also revealed by sylilation. 

Moreover, with all the samples, a variable but important  amount (0.5-0.2 % not shown in the table) 

of hydroxyacetaldehyde (HA) dimer was revealed by sylilation. This fact was surprising 

considering that GC peak attributable to monomer HA were not detected by Py-GC-MS.  

 HA is often reported as the largest abundant compound in bio-oil and  could be detected with polar  

chromatographic column119 however, HA is actually rarely reported in literature as predominant 

compound by Py-GC-MS of biomass.  

 

Table 3.1.4: Yield (% w/wsample) of main pyrolysis products obtained by off-line pyrolysis  
followed by methanolysis (reactive aldehydes) or silylation (other oxygenates) and GC-MS 
analysis. 
#  Switchgrass Sweet 

sorghum 
Corn 
stover 

Poplar 

1 hydroxyacetaldehydea 3.7 2.4 2.24 3.0 
2 glyoxala 0.1 0.1 0.1 0.2 
3 ethanediol 0.15 0.07 0.25 0.02 
4 lactic acid 0.06 0.07 0.04 0.01 
5 hydroxyacetic acid 0.26 0.15 0.07 0.05 
6 glyceraldehydes 0.11 0.03 0.02 0.01 
7 1,3-dihydroxypropanone 0.20 0.14 0.04 0.02 
8 ribofuranose 0.25 0.09 0.15 0.01 
9 4-hydroxybutanoic acid 0.05 0.00 0.04 0.00 
10 (1,3,4)-trihydroxybenzene 0.07 0.02 0.02 0.01 
11 (1,2,3)-trihydroxybenzene 0.08 0.02 0.02 0.01 
12 levoglucosan 0.51 0.33 0.22 0.27 
13 p-hydroxycinnamic acid 0.03 0.01 0.02 0.01 
 Sum off-line Py/GC-MS 5.64 3.40 3.21 3.61 
a derivatized through methanolysis and analyzed as dimethyl-acetal derivative. 
 

First tentative of quantifying HA by direct Py-GC-MS analysis, off-line pyrolysis or off-line 

pyrolysis coupled to sylilation was frustrating, mainly due to low molecular weight combined to the 

extraordinary reactivity of HA.  

                                                 
119 AA. Boateng , C.A. Mullen, C.M. McMahan, M.C. Whalen, K. Cornish. Guayule (Parthenium argentatum) pyrolysis 
and analysis by PY–GC/MS. J. Anal. Appl. Pyrolysis 87 (2010) 14-24. 
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In fact, HA can react easily with itself (forming a dimer clearly distinguishable in sylilation), with 

water or other hydroxyls, potentially giving a large number of chemical species . The difficulty to 

obtain HA in the monomeric form (the only pure commercial standard is obviously in dimer form) 

further complicates the direct analysis of this compound. 

In order to solve these analytical problems, a dimethyl-acetalization procedure was tested  by 

reaction with methanol over solid acid catalyst. After dimethyl-acetalyzation, HA was revealed in 

the form of dimethoxy-2-ethanol as the most abundant  GC detectable compound evolved from 

switchgrass (3.7% yield) and in relatively high yields  from the other biomass.  

 

3.1.3.3 Py-GC-AED 

In order to obtain of better mass balance, Py-GC-AED procedure was utilised to compare different 

biomass typologies. Each biomass was analysed in triplicate, and the resulting RSD associated to 

the  yield of gas and semivolatiles  were less than 5%, indicating a good precision of the method. 

The yields of these fractions are reported in Table 3.1.5.  

 

Table 3.1.5: Carbon yields of the fractions (% Ci/Csample)  from Py-GC-AED of four tested biomass.  
 Switchgrass Sweet sorghum Corn stover Poplar 
 % C/Csample

 %C/Csample %C/Csample %C/Csample 
Semivolatile  24 21 19 26 

NVMa 29 23 27 24 
Bio-oilb 53 44 46 50 
Gas  10 10 11 11 
Char  37 46 43 40 

a Calculated as: Csample-(Cgas+Cchar+Csemivolatile);
b calculated as: Csemivolatile +CNVM. 

 

Gas carbon yields were 10-11 % for all biomass samples. Considering that gas consist mainly of 

carbon monoxide and carbon dioxide, gas mass yields were in agreement with mass yields range 

reported in the literature (from lab scale pyrolysis tests under different conditions). For instance, 12-

26% for sorghum,109 7-13% switchgrass,111 14-63% corn stalk,108 9-17% poplar104.  

Poplar yielded the largest quantity of semi-volatile substances (26% carbon yield) followed by 

switchgrass (24%), sweet sorghum (21%) and corn stover (19%). 

The solid residue left after pyrolysis (char) was determined gravimetrically after pyrolysis and 

calcination. Char mass yields from corn stover, sweet sorghum, poplar and switchgrass were 21%, 

19%, 19% and 17% by weight. These value were slightly higher than char yields obtained with 

flash  bench scale pyrolysers.104,105,106,107,108,109 Nevertheless, this can be due to differences in mass 

transfers between different systems (this aspects was investigated in chapter 3.5). On carbon basis 
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(Table 3.1.5), obtained results showed that, in Py-GC systems, 37-46% of pyrolysed carbon is 

turned into carbonaceous residue. Corn stover and sweet sorghum gave the highest production of 

solid residue and were characterised by the highest levels of both ash and nitrogen. Interestingly, for 

all tested biomass, char yields showed the best correlation with nitrogen content (Table 3.1.2), with 

higher char yield from nitrogen richer materials.  

NVM was determined by difference from the amount of all the other fractions. Absolute carbon 

yields  of NVM were similar for all tested biomass with values in the 23-29% range, with slightly 

higher values for switchgrass and corn stover (29% and 27%).  

 

3.1.3.4 Prediction of bio-oil yields and composition from Py-GC-MS, off-line Py/GC-MS and -AED. 

The results coming out from Py-GC-MS and Py-GC-AED were integrated on a carbon basis in 

order to predict the composition of a “virtual bio-oil” derived from the four biomass samples under 

the same pyrolysis conditions. To this purpose mass yields from MS data were turned into yields on 

a carbon basis from the knowledge of the molecular mass of each individual compound.  

Percent carbon basis concentration in the bio-oil (%C/Cbio-oil) were calculated from the yields 

utilising the yields of bio-oil evaluated from Py-GC-AED summing up semivolatiles and NVM.  

The carbon yields of bio-oil, reported in Table 3.1.4, were highest for switchgrass (53%) and poplar 

(50%), where lower values where obtained for corn stover and sweet sorghum (46% and 44%). 

Figure 3.1.3 shows the bio-oil composition on carbon basis inferred from Py-GC-MS, Py/GC-MS 

and Py-GC-MS-AED. 

Py-GC-MS data accounted for a relatively minor fraction of pyrolysis oil constituents (23-35% 

C/Cbio-oil). These compounds consisted mainly of carbohydrate derivatives formed by thermal 

degradation of cellulose and hemicellulose (26-35% C/Cbio-oil revealed by both derivatization-GC-

MS and direct GC-MS) which included abundant single components, such as acetic acid, 

hydroxyacetaldehyde and acetol. The highest content of carbohydrate pyrolysis products was found 

in poplar bio-oil (33%) and sweet sorghum (35%), but for different reasons. Poplar wood was 

characterised by the highest content  of cellulose (54%, Table 3.1.1) and the lowest ash content, 

whereas sorghum by the highest content of soluble matter (24%) rich in reducing sugars as 

confirmed by the high levels of 5-hydroxy-2-methylfuraldehyde. 

The level of lignin monomers was the highest in poplar pyrolysate (9.8%) in accordance to 

abundance of lignin in the original biomass (54%). In the case of herbaceous biomass, the content 

of lignin monomer ranged from 5.7% (switchgrass) to 7.5% (corn stover) without a strong 

correlation with the lignin content, probably due to the effect of alkali metals on the thermal 

degradation of lignin.105 
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The remaining fraction of semivolatile compounds (16%-22%) could be globally determined by 

difference from Py-GC-AED data. This fraction is composed by the myriad of minor compounds 

that could not be identified by MS. The last fraction which accounted for about half the bio-oil 

carbon was formed by compounds not amenable to GC elution (NVM), such as pyrolitic lignin and 

poly/oligosaccharides. These substances evolved out the biomass sample following flash pyrolysis,  

but were trapped into the Py-GC interface due to low volatility and slow mass transfer. However, 

NVM presumably ends up into bio-oil under preparative pyrolysis conditions. The relative content 

of NVM, which is detrimental to bio-oil quality, was highest for corn stover (59%) and lowest for 

poplar (49%). Switchgrass and sorghum yielded intermediate quality products, with 55% and 53% 

CNVM/Cbio-oil, respectively. 

Considering all these aspects, poplar would provide the bio-oil with the best quality in terms of 

lower NVM concentration and higher level of lignin monomer. In addition, this woody feedstock is 

characterised by the lowest content of ash. Among herbaceous biomass, switchgrass is seemingly 

more promising in terms of higher bio-oil production with intermediate NVM and lignin 

concentration, and low ash and nitrogen content in the feedstock.  

 

Figure 3.1.3: Predicted “carbon based” composition (C/Cbio-oil) of bio-oil from Py-GC-MS (lignin 

monomers and carbohydrate derivatives), off line Py/GC-MS (polyhydroxylated phenols and polar 

cellulose derived compounds) and Py-GC-AED (NVM, other semivolatiles). 
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4. Conclusions 

Quantitative off-line and on-line analytical pyrolysis coupled with AED and MS detection provided 

a set of complementary data useful to perform a comparative evaluation of the organic pyrolysate 

from different biomass based on carbon yields. The Py-GC-AED method was more precise than Py-

GC-MS, probably  because the yields are susceptible to sample heterogeneity in the case of 

individual compounds more than  the overall fraction. 

The application of AED and MS detection to samples representative of woody biomass (poplar), 

sugar rich biomass (sweet sorghum), waste and ash-rich biomass (corn stover) and herbaceous 

energy crop (switchgrass) enabled a fruitful comparison . No large differences in the yield of main 

macroscopic fractions (gas, char and liquid) were observed despite the differences in the 

composition of original feedstock a result that favours pyrolysis as a versatile conversion process. 

The main differences in the chemical composition of pyrolysate were associated with type (HGS or 

GS) and quantity of lignin, and with soluble sugars in the feedstock. Ash content is notoriously an 

important parameter, but no definitive trends were observed with carbon yields. 

Finally, this work showed that non volatile matter eluding GC detection accounted for about half of 

the bio-oil components. For this reason, the knowledge of the chemical composition of this 

important fraction represents both a limitation as well as challenging objective of analytical 

pyrolysis. 
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3.2. Application of off-line pyrolysis with dynamic  solid-phase 

microextraction to the GC-MS analysis of volatile b iomass pyrolysis 

products 

 

3.2.1. Introduction 

As demonstrated in the previous chapter,  the coupling of off-line and on-line  pyrolysis with 

different detectors (MS and AED) and different derivatization   procedures (silylation and dimethyl-

acetalization) provide chemical information on a wide range of compound classes.  

Nevertheless, analysis of the most volatile compounds (e.g. methanol), and especially reactive 

volatiles (e.g. hydroxyacetaldehyde) in both on-line and off-line  represent a difficult  task for 

different reasons, such as peak overlapping, non instantaneous pyrolysis time  (for low temperature 

on-line pyrolysis),   solvent interference (in   off-line pyrolysis with adsorbent)  and strong 

reactivity of some compounds (e.g. hydroxy aldehydes in some pyrolysis equipments). Regarding 

the latter aspect, problems in the analysis of hydroxyacetaldehyde were discussed in previous 

section (chapter 3.1).  

The quantification of more volatile compounds could be accomplished by means of a cryogenic 

trap, 120 in order to avoid peak broadening caused by the intrinsic duration of the pyrolytic reaction 

(particularly longer with low temperature pyrolysis). As a cost-effective solution, solid-phase 

microextraction (SPME) could be used as a solvent free technique for sampling pyrolysis products, 

and then could be used for de-coupling of pyrolysis and analysis. Moldoveanu has recently 

investigated the use of SPME combined with pyrolysis.121 Pyrolysis was conducted with a heated 

coil pyrolyser inside a glass sampling vial that was closed to perform SPME (static SPME). This 

method provided qualitative information on the pyrolysis products avoiding the use of solvents in 

the off-line configuration and GC column deterioration typical of on-line pyrolysis-GC/MS. The 

main drawback was the necessity of long sampling time in order to detect heavier pyrolysis 

products. 

Sampling the gas flow in a open system could be an alternative approach of SPME yet to be 

investigated in analytical pyrolysis. This technique does not need the complete trapping of volatiles 

and eliminates some of the problems of static SPME, like matrix effects, interaction with inner 

                                                 
120 J.B. Paine III, J.B. Pithawalla, J.D. Naworal. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 2. The 
pyrolysis of D-glucose: General disconnective analysis and the formation of C1 and C2 carbonyl compounds by 
electrocyclic fragmentation mechanisms. J. Anal. Appl. Pyrolysis 82 (2008) 10-41.  
121 S.C. Moldoveanu. Pyrolysis GC-MS, Present and Future (Recent Past and Present Needs). J.Microcolumn 
Separations 13 (2001) 102-125. 
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surface of the vial and long exposure times. This method has been applied for qualitative analysis of 

products evolved from synthetic polymers pyrolysed with a bench scale pyrolyser.122 

In order to perform a quantitative analysis, both equilibrium SPME and dynamic SPME can be 

used. In the former case the partition equilibrium of the analyte between the fiber and the gas is 

reached. On the contrary, in dynamic SPME, equilibrium must be avoided as long as possible, and 

calibration is performed using Fick diffusion law. The basic assumption when using Fick law is that 

the amount of analyte on the fiber is negligible with respect to that expected at equilibrium, and this 

condition should be respected during all sampling time (“zero sink” hypothesis).123 

Equilibrium SPME was used for sampling the flue gas of a bench scale pyrolyser and different 

SPME fibers were tested with good results.124 The main problem of equilibrium SPME, when 

applied to analytical off-line system, is the short sampling time needed in a small and discontinue 

pyrolysis equipment. Dynamic SPME techniques, in spite of the “zero sink” hypothesis, need 

gas/fiber concentrations ratio as much as possible far from equilibrium conditions; for this reason it 

is potentially more appropriate for the off-line pyrolysis configuration. 

Following the detailed compositional study of the pyrolysate of different terrestrial biomass by 

analytical pyrolysis, this chapter was dedicated to the development of a system based on off-line 

pyrolysis coupled with SPME and GC-MS analysis (Py-SPME-GC-MS), with main the target of de-

couple, without the use of solvent, pyrolysis and GC analysis conditions. In particular the aim of 

this chapter was to extend the chemical characterisation to volatiles by exploiting SPME sampling. 

The performance of Py-SPME-GC-MS was evaluated for qualitative and quantitative analysis. 

Quantitative aspects  were focused on volatile C1-C4 compounds. 

 

3.2.2. Materials and methods 

3.2.2.1. Biomass samples and chemicals 

Biomass samples were already described in the previous chapter. All solvents, chemicals and 

standard were purchased from Sigma-Aldrich.  

 

3.2.2.2 Pyrolysis-SPME equipment 

                                                 
122 J.H. Bortoluzzi, E.A. Pinheiro, E. Carasek and V. Soldi. Solid phase microextraction to concentrate volatile products 
from thermal degradation of polymers. Polymer Degradation and Stability 89 (2005)  33-37. 
123 J. Koziel, I. Novak. Sampling and sample-preparation strategies based on solid-phase microextraction for analysis of 
indoor air. Trends in analytical chemistry  21 (2002)  840-850. 
124 G. Guéhenneux, P. Baussand, M. Brothier, C. Poletiko, G. Boissonnet. Energy production from biomass pyrolysis: a 
new coefficient of pyrolytic valorisation. Fuel 84 (2005) 733-739.  
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The apparatus employed for off-line pyrolysis with a CDS 1000 pyroprobe (platinum filament coil)  

was described in the previous chapter,125,126   In this study, SPME replaced the sorbent cartridge for 

trapping pyrolysis products. SPME fiber (Supelco) was placed at the exit of the pyrolysis chamber 

as illustrated in Figure 3.2.1. The following fibers were preliminary tested: 100 µm PDMS 

(polydimethylsiloxane), 85 µm polyacrylate fiber and 75 µm carboxen/PDMS (CAR/PDMS). 

 

Figure 3.2.1:  Scheme of off-line pyrolysis equipment with SPME sampling and related 

dimensional parameters (Z,A see experimental) 

 

3.2.2.3 Pyrolysis-SPME procedure 

A weighed amount of biomass sample (about 2-3 mg) was introduced into the quartz tube and held 

by sylanized quartz wool at the middle portion of the tube. The probe was inserted into the pyrolysis 

chamber and the apparatus was fluxed with a nitrogen stream at 100 cm3 min-1 for few seconds. 

Then the SPME fiber was placed at the exit of the pyrolysis chamber and the sample was pyrolysed 

at 700 °C (set temperature) for 100 s at the maximum heating rate (20 °C ms-1). At the end of 

pyrolysis the fiber was subjected to GC-MS analysis. After each pyrolysis, the pyrolysis chamber 

and the probe were cleaned with acetone and were dried accurately with a hot air stream at 150°C 

prior to analysis. 

 

3.2.2.4 GC-MS 

SPME desorption was performed at 280°C in splitless mode in the injection port of a 6850 Agilent 

HP gas chromatograph connected to a 5975 Agilent HP quadrupole mass spectrometer. Analytes 

were separated by a HP-5 fused-silica capillary column (stationary phase poly[5% diphenyl/95% 

                                                 
125 D. Fabbri, I. Vassura. Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by 
analytical pyrolysis. J.Anal.Appl.Pyrolysis 75 (2006) 150-158. 
126 D. Fabbri, C.Torri, V. Baravelli. Effect of zeolites and nanopowder metal oxides on the distribution of chiral 
anhydrosugars evolved from pyrolysis of cellulose: An analytical study. J.Anal.Appl.Pyrolysis 80 (2007) 24-29. 
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dimethyl]siloxane, 30 m, 0.25 mm i.d., 0.25 mm film thickness) using helium as carrier gas (at 

constant pressure, 33 cm s-1 linear velocity at 200°C). Mass spectra were recorded under electron 

ionization (70 eV) at a frequency of 1 scan s-1 within the 12–450 m/z range. 

The following thermal program was used: 35°C for five minutes, then 10°C/min until 300°C 

followed by a column cleaning at 310°C for 3 min. 

 

3.2.2.5 Calibration 

Calibrations for quantitative analysis of volatile compounds were performed using acetic acid as 

model reference compound. Calibration plots (see examples in Figure 3.2.2) were obtained by 

SPME sampling a constant mass flow of nitrogen gas  containing acetic acid. To this purpose, a 25 

cm3 double necked round flask (placed in an ice bath) was inserted between the flowmeter and the 

chamber in the N2 line. The flask was half-filled with pure acetic acid, connected to the pyrolysis 

chamber equipped with the probe and the SPME fiber and flowed with N2 at 100 cm3 min-1. The 

flask was periodically (every 20 min) withdrawn and weighed; acetic acid mass flow resulted to be 

on average 0.20 ± 0.05 mg min-1. Two SPME sampling replicates were performed at each sampling 

time (10, 30, 60, 100, 200 and 300 s). 

Once the calibration plot was established for acetic acid, a relative response factor Fr(i) was 

estimated for other substances as follows: 

i

AA

CA

CA
iFr

AA

i

⋅
⋅=)(  

where Ai and AAA are the GC-MS peak areas of analyte and acetic acid, respectively, obtained by 

GC-MS analysis (in 1/100 split mode) of a single-point calibration solution containing analyte and 

acetic acid at concentration Ci and CAA, respectively. The calibration solution consisted of an 

approximately equimolar mixture of acetic acid (reference compound) and the other analytes when 

available (formaldehyde, methanol, glyoxal, acetone, hydroxyacetone).  

For not available analytes (e.g. monomeric hydroxyacetaldehyde or acetoxy-acetaldehyde), Fr(i) 

was calculated as shown in the following equation: 

AA

i

RICSIM

RICSIM
iFr

)/(

)/(
)( =  

where SIM is the GC-MS peak in the selected ion mode and RIC is the GC-MS peak area calculated 

in total ion current mode chromatogram.  

 

3.2.2.6 Yield calculation 

The mass (mi) and the yield (Yi=mi/msample) of the analyte evolved upon pyrolysis was calculated 

from the following equation: 
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αAA stands for the initial slope of acetic acid calibration plot (count s mg-1). DAA and Di are the 

diffusion coefficients in nitrogen (m2 s-1) of acetic acid and analyte, respectively; Ai is the GC-MS 

peak area determined in the mass chromatogram mode. Based on the Fuller-Shatting-Giddings 

equation,127 DAA/Di ratio could be approximated by Mi
0.5/Mref 

0.5 . All the quantified analytes and all 

parameters used for quantification are shown in Table 3.2.1. 

 

Table 3.2.1: Volatile products evolved from off-line pyrolysis of biomass samples quantified after 

SPME sampling and GC-MS analysis.  

tr
a m/zb

  Structure Compound name Di/DAA
c
 sensitivityd

� 

1.32 30 O

 

formaldehyde 1.41 57 

1.38 31 OH

 

methanol 1.37 13 

1.38 44 O

 

acetaldehdye 1.17 38 

1.39 58 O

O  

glyoxal 1.02 14 

1.55 58 O

 

acetone 0.91 19 

1.56 72 O

O  

methylglyoxal 0.91 6 

1.86 31 O

OH  

hydroxyacetaldehdye 1.00 47 

2.16 60 O

HO  

acetic acid 1.00 18 

                                                 
127 E.N. Fuller, P.D. Shatting, J.C. Giddings. A new method for prediction of binary gas-phase diffusion coefficient. J. 
C. Ind. Eng Chem. 58 (1966) 19-27. 
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2.06 57 O

 

3-pentanone 0.84 35 

2.16 43 O

OH  

hydroxyacetone 0.90 37 

5.23 43 O

O

O  

acetoxy-acetaldehyde 0.77 74 

5.52 58 O

O  

butanedial 0.84 17 

aRetention time in minutes. b Quantitation ion. cRatio of molecular diffusion coefficient of analyte 

and acetic acid. d Sensitivity in Mcount s mg-1 is given by αAA (DAA/Fr(i) Di (see Experimental 

section). 

 

3.2.2.7. Theory 

The quantification of volatiles (C1-C4) was performed through an analytical method based on Fick 

law. Basic assumptions were complete homogenous gas flow, short sampling time and 

concentration on the fiber negligible with respect to concentration in the flowing gas. 

Being n the analyte amount onto the fiber (µg), the mass flow (dn/dt) of analyte that hit the fiber 

surface (µg s-1) can be expressed by equation 1: 

(1)
Z

CAD

dt

dn =  

Where C is concentration of the analyte in the flowing gas (µg m-3), D is the diffusion coefficient of 

the analyte (m2 s-1) in nitrogen, A is the diameter of the sampling surface (m2) and Z (m) is the 

distance between the surrounding environment and the sampling surface122. 

As shown in Figure 3.2.1, when the fiber is used in the retracted mode, A is a known technical 

parameter of the fiber and Z is the distance between the fiber and the inlet of metallic alloy (e.g. Z is 

5 mm and A= 0.126 mm2 for totally retracted CAR/PDMS used in this work). If fiber is used 
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exposed, A is the exposed area  of the sampling cylinder and Z is the thickness of stagnant gas layer 

on the fiber surface and could be evaluated experimentally.128,129 

In our Py-SPME system, the relationship between experimental conditions, fiber structure and 

capture effectiveness (µcapture) of the fiber is shown in equation (2), which was obtained by 

rearranging and integrating equation (1) as follows: 

dt
Z

CAD
dn=  

when Q is the inert gas flow (m3 s-1), then the mass flow (µg s-1) of analyte is q = C·Q, then: 

(2) dtqdtq
QZ

AD
dn ⋅=⋅⋅= ⋅captureµ  

The relationship between experimental conditions and capture effectiveness (equation (3)) was 

obtained by integrating equation (2) over the pyrolysis time, here coincident to sampling time (t): 

qdt
QZ

AD
dn

tt

∫∫ ⋅=
00

 

(3) totm
QZ

AD
n ⋅=  

where mtot is total mass of evolved analyte. Finally, when instrumental response depends linearly on 

analyte amount and Fr is the specific signal (count s µg-1) produced by the analyte, we have: 

 

αµ
areaarea MS)-(GCMS)-(GC =

⋅
=

capture

tot

Fr
m  

α is then obtainable as the initial slope of the calibration plot where abscissa is the flowed analyte 

and ordinate is the instrumental response (e.g Figure 3.2.2). 

 

3.2.3. Results and discussion 

3.2.3.1 Sampling set-up 

Preliminary Py-SPME experiments with biomass samples performed under similar conditions 

showed that GC-MS response of most volatile compounds was rather poor with PDMS and 

polyacrylate fibers in comparison to CAR/PDMS fibers. When retracted and exposed modes were 

compared,123 the exposed fiber (using mg amount of sample) was soon saturated by heavier 

                                                 
128 G. Oyang, J. Pawlzyn. Recent development in SPME for on-site analysis and monitoring, Trend in Analytical 
Chemistry. 25 (2006) 692-703. 
129 J. Koziel, M Jia, J. Pawliszyn. Air sampling with porous solid phase microextraction fibers. Anal. Chem.72 (2000) 
5178-5186 
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compounds with consequent mass discrimination and fiber deterioration. Eventually, for this work, 

the preferred mode was totally retracted CAR/PDMS fiber (Figure 3.2.1), in spite of less quantity of 

analyte accumulated onto the fiber. 

The influence of temperature on the saturation behaviour of the fiber was studied at room 

temperature and at conditions simulating pyrolysis (heating coil at 700 °C); acetic acid was used as 

model compound for its intermediate volatility and abundance in biomass pyrolysis vapours. 

Typical results are shown in Figure 3.2.2. Heating the gas flow, the amount of analyte onto the fiber 

decreased, but a trend similar to that at room temperature was established in the range between 

0.01-0.5 mg of acetic acid. A linear response was observed in this range (R2=0.998) which 

corresponded to 0.2%-20% product yields when applied to biomass pyrolysis experiments 

performed in this study (2-3 mg of sample). 

 

Figure 3.2.2: Saturation behaviour of the CAR/PDMS fiber in acetic acid spiked nitrogen flow (100 

ml min-1 with acetic acid concentration 2 µg ml-1) at room temperature (dotted line) and with 

heating coil at 700°C (full line). 

 

3.2.3.2. Qualitative aspects 

The analytical performance of the procedure was investigated in detail by employing four biomass 

types already tested in chapter 3.1: namely switchgrass, sweet sorghum, poplar and corn stalk. 

Figure 3.2.3 shows total ion chromatograms (TIC) obtained from Py-SPME of different biomass 

types among those of interest in fuel applications. The structural assignment of the main semi-

volatile products is reported in Table 3.2.2. Chromatograms obtained by Py-SPME of herbaceous 

species (switchgrass, sweet sorghum and corn stalk) were featured by cellulose pyrolysis products, 

with 4-hydroxy-5,6-dihydro-(2H)-pyranone (# 21) as the most intense peak. 
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Figure 3.2.3: Typical GC-MS profiles obtained by off-line pyrolysis at 700°C with SPME sampling 

of various biomass types. Peak numbers refer to compounds listed in Table 3.2.2.  

 

 

Table 3.2.2: Compounds tentatively identified by GC-MS after off-line py-SPME of tested 
biomass.  

# tr 
min 

Quantitation ion 
m/z 

Compound name 

1 1.32 30 formaldehyde 
2 1.38 31a methanol 
3 1.38 44 acetaldehdye 
4 1.39 58 glyoxal 
5 1.55 58 acetone 
6 1.56 72 methyl glyoxal 
7 1.86 31 hydroxyacetaldehdye 
8 2.16 60 acetic acid 
9 2.06 57 3-pentanone 

10 2.16 43 hydroxyacetone 
11 5.23 43 acetoxy-acetaldehyde 
12 5.52 58 butandial 
13 7.18 96 2-furaldehyde 
14 7.81 98 furfuryl alcohol 
15 8.20 44 dihydro-4-hydroxy-2(3H)-Furanone 
16 9.25 55 2-(5H)-furanone 
17 9.31 70 2-methylcyclopentanone 
18 9.44 98 ciclopentanedione 
19 10.10 73 1,3-dioxolane-2-methanol 
20 10.66 94 phenol 
21 10.94 114 4-hydroxy-5,6-diihydro-(2H)-pyranone 
22 11.50 112 2-hydroxy-3-methyl-2-cyclopenten-1-one 
23 12.13 128 2-(propan-2-one)-tetrahydrofuran 
24 12.01 108 2-methylphenol 
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25 12.14 85 tetrahydro-2H-Pyran-2-methanol 
26 12.36 107 4-methylphenol 
27 12.54 128 2,5-dimethyl-4-hydroxy-3(2H)-furanone 
28 12.61 109 guaiacol 
29 13.11 126 3-ethyl-2-hydroxy-2-cyclopenten-1-one 
30 13.19 114 3-methyl-2,4(3H,5H)-furandione 
31 13.83 107 4-ethylphenol 
32 14.20 43 anhydro isosaccharino-δ-lactone 
33 14.56 69 1,4-3,6-dianhydroglupyranose 
34 14.27 138 4-methylguaiacol 
35 14.40 110 1,2-benzenediol 
36 14.61 120 4-vinylphenol 
37 14.87 97 5-hydroxymethyl-2-furaldehyde 
38 15.33 140 3-methoxy-1,2-benzenediol 
39 15.53 137 4-ethylguaiacol 
40 15.92 144 ascopyrone P 
41 16.02 150 4-vinylguaiacol 
42 16.52 154 Syringol 
43 16.62 164 eugenol 
44 17.22 151 vanillin 
45 17.29 164 cis-isoeugenol 
46 17.77 168 4-methylsyringol 
47 17.82 164 trans-isoeugenol 
48 17.99 137 2-(4-hydroxy-3-methoxyphenyl)-ethanal 
49 18.33 151 methylguaiacylketone 
50 18.76 167 4-ethylsyringol 
51 18.86 137 1-(4-hydroxy-3-methoxyphenyl)-2-propanone 
52 19.23 180 4-vinylsyringol 
53 19.67 194 cis-methoxyisoeugenol 
54 20.23 194 trans-methoxyisoeugenol  
55 20.36 182 syringaldehyde 
56 20.78 194 methoxyeugenol 
57 21.17 181 4-hydroxy-3,5-methoxy acetophenone 
58 21.23 178 4-hydroxy-2-methoxycinnamaldehyde 
59 21.56 167 1-(4-hydroxy-3,5-dimethoxyphenyl)-2-propanone 

 
Interestingly, the pyrolysate of sweet sorghum was unique in being characterised by relatively high 

levels of 5-hydroxymethyl-2-furaldehyde (# 37). This finding could be explained by higher amount 

of reducing sugars that characterize this plant (see Table 3.2.1).130 

Peaks produced by lignin phenols were dominated by 4-vinylphenol (# 36), a typical marker of 

herbaceous biomass. Instead, Py-SPME of poplar, taken as representative of hardwood biomass, 

produced pyrograms characterised by the dominance of syringol (# 42) and its derivatives in 

                                                 
130 E.B. Sanders, A.I. Goldsmith, J.I. Seeman. A model that distinguishes the pyrolysis of D-glucose, D-fructose, and 
sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis  
66 (2003) 29-50. 
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comparison to herbaceous biomass. As expected, 4-vinylphenol was negligible, in accordance to 

lignin composition of hardwood.131 

Thus, on a qualitative base, the results pertaining to semi-volatiles compounds (>C4) were similar to 

those obtained by on-line Py-GC-MS (see chapter 3.1). In addition, sampling with SPME allowed 

the detection of volatile pyrolysis products, expanding the mass range of compounds analyzable by 

GC-MS in off-line pyrolysis, and allowing a good chromatographic separation also with low 

pyrolysis temperatures (with consequential large pyrolysis time). In fact, the early eluting region of 

chromatograms were characterized by a cluster of partially overlapped peaks produced by volatile 

compounds. These compounds were better evidenced by extracting the mass chromatograms of 

selected ions in their mass spectra, as shown in Figure 4.  

 

Figure 3.2.4: Early eluting region of GC-MS trace obtained from py-SPME of switchgrass 

(pyrolysis set at 700°C). Extracted ion currents at m/z characteristic of volatile pyrolysis products 

(see Table3.2.2).  

 

In all the tested samples, main volatile (C1-C4) compounds were identified through the analysis of 

pure compounds, namely hydroxyacetaldehyde, methylglyoxal, acetic acid, 3-pentanone, methanol, 

formaldehyde, acetaldehyde, carbon dioxide and butanedial. The attribution is largely in accordance 

with literature data 120,132. Acetoxyacetaldehyde, which is the condensation product of 

hydroxyacetaldehyde and acetic acid, was tentatively identified by its mass spectrum. 

                                                 
131 J. Ralph, R.D. Hatfield. Pyrolysis-GC-MS Characterization of Forage Materials. Journal of Agric. Food Chem. 39 
(1991) 1426-1437. 
132 J. Piskorz, D. Radlein, D.S. Scott , S. Czernik. Liquid products from the fast pyrolysis of wood and cellulose. In: 
Bridgwater AV, Kuester JL, Eds. Research in thermochemical biomass conversion. London, New York: Elsevier 
Applied Science (1988) 557–71. 
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3.2.4.3. Quantitative analysis of volatiles 

The performance of Py-SPME in the quantification of low boiling point pyrolysis products (C1-C4) 

evolved from biomass was evaluated. Pure cellulose was also subjected to the Py-SPME procedure 

for comparison. Mean quantitative yields and relative standard deviations (RSD as percentage) of 

the most abundant volatile pyrolysis products evolved from herbaceous and woody biomass 

samples, as well as from cellulose, are reported in Table 3.2.3.  

 

Table 3.2.3: Yields (mass %) of volatile pyrolysis products obtained obtained from off-line Py-

SPME of biomass samples. Mean values and % relative standard deviations (n=5).  

compound Switchgrass Sweet sorghum Corn stalk Poplar Cellulose 
 mean RSD mean RSD mean RSD mean RSD mean RSD 
Formaldehyde 1.0 47 0.57 46 0.5 50 0.8 62 1.6 24 
Methanol 0.66 36 0.46 40 0.8 49 1.3 51 0.22 35 
Acetaldehyde 0.50 44 0.35 15 0.4 33 0.40 9 0.43 41 
Glyoxal 5.8 74 2.2 47 3.2 86 2.7 61 5.1 5 
Acetone 0.35 51 0.3 50 0.42 56 0.26 79 0.48 24 
Methylglyoxal 5.0 52 3.8 71 5.1 74 2.7 45 2.8 25 
Hydroxyacetaldehyde 14 36 14 53 12 63 12 37 7.4 22 
Acetic acid 2.9 32 3.6 85 5.0 68 5.2 56 0.18 42 
3-pentanone 1.1 96 1.6 59 2.1 86 1.5 48 0.40 8 
Hydroxyacetone 2.1 60 2.2 83 3.7 86 2.4 88 0.20 33 
Acetoxyacetaldehyde 2.6 63 2.9 55 3.3 87 3.8 68 0.09 62 
Butandial 2.7 75 3.5 53 2.9 69 4.9 68 n.d.  
Sum 38 42 35 50 39 66 38 46 19 10 
 

Data relative to cellulose indicate that the precision of the Py-SPME method is comparable to that  

from off-line pyrolysis methods for semi-volatile products (around RSD 25% on average).126 As 

expected, the precision deteriorated when moving from pure cellulose to biomass samples, which 

displayed rather high RSD values, especially in the case of minor pyrolysis products (Table 3.2.3). 

The largest data dispersion was obtained with corn stalk (67 % mean RSD), while slightly lower 

RSD values (55% mean RSD) were observed for the other biomass types. The observed large RSD 

values could be partially explained by the strong heterogeneity of biomass samples, as reported, for 

instance, by Boateng et al. who found a large variability in the yields of semi volatile compounds 

(from pyrolysis alfalfa stems).133 For all the samples, hydroxyacetaldehyde was the main pyrolysis 

product, with yields up to 14±2% and 14±4% (mean ± confidence at α=0.05) from switchgrass and 

                                                 
133 A.A. Boateng, D.E. Daugaard, N.M. Goldberg, K.B. Hicks. Production of Pyro-oil from Alfalfa Stems by Fluidized-
Bed Fast Pyrolysis. Ind. Eng. Chem. Res. 47 (2008) 4115–4122. 
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sorghum, respectively. Other abundant pyrolysis products detected with SPME were acetic acid, 

butanedial, glyoxal, methyl-glyoxal and acetoxy-acetaldehyde, with yields in the 4-7 % range. 

Poplar produced the highest amount of methanol (2.7±0.3% yield), acetic acid (5.2 ±1% yield) and 

butanedial (4.9±2%), whereas switchgrass was characterized by the largest levels of formaldehyde, 

glyoxal and methylglyoxal production (1.0±0.2%, 5.8±2% and 5.0±3%, yields respectively). With 

the exception of formaldehyde (1.6±0.2% yield), the amount of volatiles produced by cellulose 

pyrolysis was lower in comparison with whole biomass. This is accordance with the absence of any 

catalytic effect by inorganic constituents, the non-catalytic depolymerisation of cellulose favouring 

the formation of anhydrosugars and formaldehyde.132 

 

Table 3.2.4 : Comparison  between yields, for acetic acid (AA) and hydroxyacetaldehyde (HA) 
obtained from this study and those reported in the literature.  Mean value± confidence interval 
(α=0.05 n=5). 
  Switchgrass  Sweet Sorghum  Corn Stalk  Poplar  Cellulose  
HA This study  14 ±2 14 ±4 12 ±4 12 ±2 7,38 ±0.2 

Lit.  11134a   7.2135  n.a.  10136  4.8137  
AA This study  2.9 ±0.5 3.6 ±1 5.0 ±2 5.2 ±1 0,18 ±0.04 

Lit.  2.8134a  2.4135  4135b  5.4136  Low137  
avalues were back calculated from bio-oil yields and published analyte concentrations in bio-oil. 

bvalues were back calculated from bio-oil yields and published total carboxylic acid concentration 

in bio-oil. 

 

In order to evaluate the ability of the micro-scale method here developed to work as a model system 

of large scale pyrolysis apparatus, the yields of acetic acid and hydroxyacetaldehyde measured with 

Py-SPME were compared to those reported in the literature from the analysis of pyrolytic liquids 

from similar biomass types. Such a comparison is illustrated in Table 3.2.4. 

Mean yields of acetic acid determined with Py-SPME were consistent to those resulting from 

pyrolysis reactors and pyro-oil analysis. For instance, switchgrass 2.9 and 2.8%, poplar 5.2% and 

5.4%, for micro-scale and macro-scale, respectively. In agreement with the origin of acetic acid 

from non-cellulosic components, the yield of acetic acid from cellulose was significantly low. As 

far as hydroxyacetaldehyde is concerned, Py-SPME provided similar mean values from all the 

                                                 
134 J. Piskorz, P. Majerski, D. Radlein, D.S. Scott, A.V. Bridgewater. Fast pyrolysis of sweet sorghum and sweet 
sorghum bagasse. J. Anal.Appl. Pyrol. 46 (1998) 15-29. 
135 O. Ioannidou, A. Zabaniotou, E.V. Antonakou, K.M. Papazisi, A.A. Lappas, C. Athanassiou, Investigating the 
potential for energy, fuel, materials and chemicals production from corn residues(cobs and stalks) by non-catalytic and 
catalytic pyrolysis in two reactor configurations, Renewable and Sustainable Energy Reviews 13 (2009) 750–762. 
136 Donald S. Scott, Lachlan Paterson, Jan Piskorz, Desmond Radlein, Pretreatment of poplar wood for fast pyrolysis: 
rate of cation removal, Journal of Analytical and Applied Pyrolysis 57 (2000) 169–176. 
137 Z. Luo, S. Wang, Y. Liao, K. Cen. Mechanism Study of Cellulose Rapid Pyrolysis. Ind. Eng. Chem. Res 43 (2004) 
5605-5610. 
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investigated biomass types (12-14%, Table 3.2.4), whereas data from literature fall in a lower and 

less uniform range (7-10%), but still not too far from analytical pyrolysis. At this purpose, it is 

worth pointing out that that the original concentration of hydroxyacetaldehyde in the bio-oil might 

be reduced by the chemical instability of this compound due to its tendency to react with other 

components and to give self-condensation products.138 Thus, the Py-SPME method is capable to 

provide a picture of the chemical composition of “native” pyrolysate as soon as it is formed and 

prior to its condensation into pyro-oil droplets and subsequent post-pyrolysis reactions, such as 

polymerization of reactive aldehydes.139 This feature may also explain the good agreement between 

analytical and applied pyrolysis found for acetic acid, which is known to be rather stable in pyro-

oil.139  

 

3.2.4. Conclusions 

Off-line Py-SPME-GC-MS provided GC-MS traces similar to those resulting from conventional 

Py-GC-MS discussed in the previous chapter, but with a clearer pattern of peaks in the first eluting 

region associated to volatile pyrolysis products (methanol, acetone, formaldehyde, glyoxal,etc.). 

Selected ion monitoring enabled the identification and a rough quantitative evaluation of these 

compounds. Py-SPME  combines the benefits of off-line pyrolysis in avoiding memory effects and 

GC column deterioration often observed in the on-line configuration, with those of SPME which is 

a rapid and solventless procedure enabling the qualitative analysis of volatiles along with semi-

volatile compounds.  

In spite of  severe assumptions (e.g. validity of Fick’s law ) and limitations (e.g. low precision), a 

preliminary assessment based on a dynamic model, retracted fiber mode, external calibration with 

acetic acid as reference compound and estimated diffusion coefficients, indicated that quantification 

of volatile compounds is feasible. 

The yields of acetic acid and hydroxyacetaldehyde resulted consistent with the composition of bio-

oil, suggesting a reliable application of Py-SPME in screening studies, such as testing catalyst 

activity, different biomass typologies, pyrolysis conditions. These factors are of much interest in 

developing the correct strategies to improve the characteristics of bio-oil as a feedstock for fuels 

and chemicals. 

 

 

                                                 
138 D. Leiseur, V. Castola, A. Bighelli. Quantification of hydroxyacetaldehyde in a biomass pyrolysis liquid using 13C 
NMR spectroscopy, Spettroscopy letters 40 (2007) 591-602. 
139 A. Oasmaa, E. Kuoppala. Fast Pyrolysis of Forestry Residue. 3. Storage Stability of Liquid Fuel. Energy Fuels 17 
(2003) 1075-1084. 
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3.3 Micro-scale GC-MS determination of polycyclic a romatic 

hydrocarbons (PAHs) evolved from pyrolysis of bioma ss 

 

3.3.1. Introduction 

In the previous two chapters, different techniques based on analytical pyrolysis were developed and 

applied to the chemical characterisation of pyrolysate arising from four terrestrial biomass. The 

procedures provided qualitative and quantitative information on the main evolved compounds that 

eventually end up into the bio-oil. The knowledge of the occurrence of principal constituents is 

important for the production, storage and delivery of bio-oil as they determine fuel properties as 

well as hazards (e.g. fires and explosions). Besides, main constituents, health hazards can be caused 

by the occurrence of trace but highly toxic constituents, such as polycyclic aromatic hydrocarbons. 

The actual understanding of the inherent hazards due to bio-oils should be a core issue in the 

sustainability assessment of bio-energy processes and it would be also consistent with the European 

REACH system,140 aimed at the improving of protection of human health and the environment 

through a better and earlier identification of the inherent properties of chemical substances. 

Considering that bio-oil have origin from high temperature depolymerisation,141 and since these 

substances are among the most powerful carcinogenic substances that compose pyrolysis oil,  PAHs 

, even if present at mg kg-1  level, could represent an important long term health hazard.  

Understanding the pyrolytic formation of PAHs is important for assessing technological problems, 

health hazards and environmental impacts related to the utilisation of vegetable biomass for 

energetic purposes, such as combustion and pyrolysis. In the case of pyrolysis, formed PAHs end 

up into bio-oil a candidate liquid biofuel for power plants and transportation, adversely affecting its 

toxicity with implications during storage, handling and transportation.142,143 Whereas there are 

plenty of studies regarding the analysis of PAHs emitted during biomass combustion due to the 

importance of this source in the global and local environment, fewer works have been published 

dealing with the quantitative determination PAHs in bio-oil.144,145,146,147,148 In these studies, GC-MS 

                                                 
140 European Union Regulations (CE) N. 1907/2006 European parliament, 18 december 2006. 
141 Y. Zhang, S. Tao.Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004.  
Atm Environ 43 (2008) 812-819. 
142 A. Oasmaa, D. Meier. Norms and standards for fast pyrolysis liquids: 1. Round robin test.  J Anal Appl. Pyrol. 73 
(2005) 323-334. 
143 Cirad, Aston University, BFH, An assessment of bio-oil toxicity for safe handling and transportation, Final 
Technical Report, Part I, 2003 (available on-line at www.pyne.co.uk). 
144 H. Pakdel, C. Roy. Hydrocarbon content of liquid products and tar from pyrolysis and gasifiation of wood.  Energ 
Fuel 5 (1991) 427-436. 
145 P.T. Williams, P.A. Horne. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. J. Anal. Appl. 
Pyrol. 31 (1995) 15-37. 
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was the technique of choice due to its selectivity and sensitivity. Fast screening methods can be 

usefully adopted to investigate the influence of such different factors as process conditions, biomass 

feedstock and the effect of catalysts preliminary to scale-up. Analytical and microscale pyrolysis 

combined with GC separation and/or MS detection where heating was induced by a platinum 

filament149,150 or a laser beam151 along with small reactors heated by furnace152,153,154 have been 

successfully applied to study the effect of various parameters on PAHs formation from biomass 

constituents. These studies have shown that PAH production tends to increase with increasing 

temperature and residence time152,153  and is generally highest for cellulose even at relatively low 

temperatures from the decomposition char, while lignin mostly degrades to benzene 

derivatives.151,152 In this study, analytical pyrolysis in the off-line configuration was evaluated as a 

tool to provide quantitative information on the production of PAHs from the pyrolysis of biomass. 

Two different techniques of sampling were tested, for the sake of simplicity abbreviated as Py-SPE 

(from solid phase extraction) and Py-SPME (from solid phase micro-extraction). In the former case, 

pyrolysis products were trapped onto a sorbent and subsequently solvent eluted, in the latter case 

pyrolysate was sampled by means of a SPME micro-fiber. White poplar was selected as 

representative woody biomass owing to its  importance as potential feedstock for renewable energy. 

 

3.3.2.Experimental  

3.3.2.1 Analytical pyrolysis 

The base apparatus employed in off-line pyrolysis was described in detail in previous chapters. A 

sample holder quartz tube containing an exactly weighed amount of milled poplar wood (about 8-10 

mg) or poplar wood mixed with H-ZSM-5 zeolite (15 mg, 1/20 weight ratio; zeolite from PQ 

corporation was pretreated at 550 °C for 6 hours) was introduced into the platinum coil and the 

                                                                                                                                                                  
146 P.A. Horne, P.T. Williams. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75 
(1996) 1051-1059. 
147 N. Padban, I.Odenbrand. Polynuclear aromatic hydrocarbons in fly ash from pressurized fluidized bed gasification of 
fuel blends. A discussion of the contribution of textile to PAHs. Energ. Fuel 13 (1999) 1067-1073. 
148 W.T. Tsai, H.H. Mi, Y.M. Chang, S.Y. Yang, J.H. Chang. Levels of polycyclic aromatic hydrocarbons in the bio-oils 
from induction-heating pyrolysis of food-processing sewage sludges. Bioresource Technol. 98 (2007) 1133-1137. 
149 D. Fabbri, I. Vassura. Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by 
analytical pyrolysis. J. Anal. Appl. Pyrol. 75 (2006) 150-158. 
150 D. Fabbri, V. Bevoni, M. Notari, F. Rivetti. Properties of a potential biofuel obtained from soybean oil by 
transmethylation with dimethyl carbonate. Fuel 86 (2007) 690-697. 
151 A.M. Herring, J.T. McKinnon, K.W. Gneshin, R. Pavelka, D.E. Petrick, B.D. McCloskey, J. Filley. Detection of 
reactive intermediates from and characterization of biomass char by laser pyrolysis molecular beam mass spectroscopy. 
Fuel 83 (2004) 1483-1494. 
152 R.K. Sharma, M.R. Hajaligol. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons 
(PAHs) from polyphenolic compounds. J. Anal. Appl. Pyrol. 66 (2003) 123-144. 
153 T.E. McGrath, W.E. Chan, M.R. Hajaligol. Effect of inorganics on the formation of PAHs during low temperature 
pyrolysis of cellulose.  J. Anal. Appl. Pyrol. 66 (2003) 51-70. 
154 A.N. Garcia, M.M. Esperanza, R. Font. Comparison between product yields in the pyrolysis and combustion of 
different refuse.  J. Anal. Appl. Pyrol. 68-69 (2003) 577-598. 
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probe was in turn inserted into the pyrolysis chamber. The apparatus was fluxed with a nitrogen 

stream at 200 ml min-1 prior to pyrolysis. Two sampling procedures were utilised: Py-SPE and Py-

SPME (Figure 3.3.1). 

 

Figure 3.3.1:Scheme of off-line Py-SPE and Py-SPME procedure.149,155 
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3.3.2.2 Py-SPE 

The exit of the pyrolysis chamber was connected to a glass tube containing 100 mg of silica gel, 

withdrawn from a DSC-Si SPE cartridge, packed with glass wool and conditioned with n-hexane. 

Samples were pyrolyzed at 625 °C set temperature (corresponding to a maximum temperature of 

500 °C as measured with a thermocouple) for 100 s at the maximum heating rate (20 °C ms-1). After 

pyrolysis, the apparatus was vertically positioned, spiked with 100 µl of surrogate PAH mix 

solution and rinsed with 6 ml of n-hexane. The solvent was left to flow through the silica cartridge 

into the collecting vial. The obtained solution was then blown down to 10-50 µl under nitrogen and 

analysed by GC-MS. Emission levels (µg PAH g-1 pyrolysed biomass) were determined by internal 

calibration.  

 



 55 

3.3.2.3 Py-SPME 

In the Py-SPME procedure a carboxen/polydimethylsiloxane (CAR/PDMS) 75 µm fiber (Supelco) 

was placed at the exit of the pyrolysis chamber as described in detail in a previous work.155 Samples 

were pyrolyzed at 700 °C set temperature for 100 s at the maximum heating rate of 20 °C m s-1. 

After pyrolysis, the fiber was immersed into 5 ml of  10 % ammonia aqueous solution under 

magnetic stirring for 15 minutes. The fiber was gently dried under nitrogen flow for few seconds 

and then subjected to GC-MS analysis. Peak areas of PAHs normalized to the amount of pyrolysed 

biomass exhibited a high variability (RSD 30-70% three replicates), therefore emission levels were 

not determined.  

 

3.3.2.4 GC-MS 

Analyses were performed in splitless mode at 280°C in the injection port of an Agilent 6850 

gascromatograph connected to an Agilent HP 5975 quadrupole mass spectrometer. Analytes were 

separated by a HP-5MS fused-silica capillary column (stationary phase poly[5% diphenyl/95% 

dimethyl] siloxane, 30 m, 0.25 mm i.d., 0.25 µm film thickness) using helium as carrier gas. GC 

conditions were 20 °C min-1 from 50 to 100 °C, 5 °C min-1 from 100 °C to 300 °C and then 300 °C 

for 7.5 minutes. Mass spectra were recorded under electron ionization (70 eV) within three m/z 

ranges: (1) m/z 127-241 from 0 to 35 minutes (10 scan/sec), (2) m/z 251-253 from 35 to 40 minutes 

(10 scan/sec). (3) m/z 276-278 from 40 to 50 minutes (15 scan/sec). A wider mass range was 

adopted in step (1) in order to identify alkylated PAHs. In the case of Py-SPME mass spectra were 

recorded in the m/z 35-450 interval. 

 

3.3.3. Results and discussion 

3.3.3.1 Py-SPE 

In a previous study devoted to the determination of emission levels by analytical pyrolysis in the 

off-line configuration, PAHs evolved from pyrolysis of organic materials were trapped onto a non-

polar sorbent (polystyrene/divinylbenzene XAD-2 resin) and eluted with dichloromethane.149 

However, the application of this procedure to biomass resulted inadequate due to the strong 

interference by lignin phenols. Therefore we have adopted the a Py-SPE procedure for the analysis 

of bio-oil: PAHs were trapped onto silica gel and eluted with n-hexane. The selected quantity of 

sorbent was sufficient to trap evolved PAHs quantitatively as determined by breakthrough 

experiments with a second layer of silica. 

                                                 
155 C. Torri, D. Fabbri. Application of off-line pyrolysis with dynamic solid-phase microextraction to the GC–MS 
analysis of biomass pyrolysis products. Microchem J. 93 (2009) 133-139. 
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Figure 3.3.2: GC-MS profiles obtained from Py-SPE of (A) poplar wood and (B) poplar wood with 

zeolite HZSM-5 (20/1) at 500 °C. In the inset extracted mass chromatograms at selected ions. Peak 

numbers refer to Table 3.3.1 (*) contaminants. 
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Table 3.3.1: Structural assignments of GC-MS peaks in Figs. 2-5 with the indication of 

characteristic ions in mass spectra (quantitation ions for priority PAHs). 

# Compound (m/z) # Compound (m/z) 

1 benzene (78) 33 4-ethylsyringol (167, 182) 

2 toluene (91, 92) 34 dibenzofuran (139, 168) 

3 furaldehyde (95, 96) 35 C3- naphthalenes (155, 170) 

4 ethylbenzene (91, 106) 36 2,3,6- trimethylnaphthalene (155, 170) 

5 m/p-xylenes (91, 106) 37 2,3,5- trimethylnaphthalene (155, 170) 

6 phenol (66, 94) 38 4-vinylsyringol (165, 180) 

7 trimethylbenzenes (105, 120) 39 Fluorene (166) 

8 benzofuran (90, 118) 40 Methyldibenzofurans (181, 182) 

9 m/p-phenols (107, 108) 41 4-E-propenylsyringol (179, 194) 

10 guaiacol (109, 124) 42 2-methylfluorene (165, 180) 

11 methylbenzofurans (131, 132) 43 1-methylfluorene (165,180) 
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The resulting chromatograms (an example in Figure 3.3.2a) were featured by peaks associated to 

polyaromatic compounds, principally benzofurans, indenes and naphthalenes, without significant 

amount of interferents. The pattern of alkylated naphthalene, fluorene and phenanthrene from Py-

SPE was also strongly similar to that found in bio-oil.156 

Emission levels of priority PAHs are reported in Table 3.3.2 The precision of the method was fairly 

satisfactory (13-45% RSD) considering that the intrinsic variability of the pyrolytic process  should 

be high when operating with a small quantity (< 10 mg) of a heterogeneous sample such as woody 

biomass. Emission levels determined by Py-SPE (6-0.05 µg g-1 range) were fairly comparable to 

those calculated from the analysis of bio-oil by gram scale analysis,156 with naphthalene and 

fluorene as the most abundant PAHs. The highest levels found in Py-SPE were probably determined 

                                                 
156 D. Fabbri, A. Adamiano, C.Torri. GC-MS determination of polycyclic aromatic hydrocarbons evolved from 
pyrolysis of biomass. Anal Bioanal Chem. 397 (2010) 309–317. 

12 methylindenes (129, 130) 44 Methylfluorenes (165,180) 

13 4-methylguaiacol (123, 138) 45 Phenanthrene-d10 (188) 

14 naphthalene (128) 46 Phenanthrene (178) 

15 dimethylbenzofurans (145, 146) 47 Anthracene (178) 

16 4-ethylguaiacol (137, 152) 48 3-methylphenanthrene (192) 

17 2-methylnaphthalene (141, 142) 49 2- methylphenanthrene (192) 

18 4-vinylguaiacol (135, 150) 50 9/4- methylphenanthrene (192) 

19 1-methylnapthalene (141, 142) 51 1-methylphenanthrene (192) 

20 trimethylbenzofurans (145, 160) 52 C2-phenanthrenes (206) 

21 syringol (139, 154) 53 fluoranthene (202) 

22 2-ethylnaphthalene (141, 156) 54 Pyrene (202) 

23 2,6/2,7-dimethylnaphthalene (141, 156) 55 Chrysene (228) 

24 1,3-dimethylnaphthalene (141, 156) 56 Chrysene-d12 (240) 

25 1,6/1,7-dimethylnaphthalene (141, 156) 57 benz[a]anthracene (228) 

26 2,3/1,4-dimethylnaphthalene (141, 156) 58 benzo[b]fluoranthene (252) 

27 1,2/1,5-dimethylnaphthalene (141, 156) 59 benzo[k]fluoranthene (252) 

28 1,8-dimethylnaphthalene (141, 156) 60 benzo[a]pyrene (252) 

29 E-isoeugenol (149, 164) 61 Indeno[1,2,3-cd]pyrene (276) 

30 acenaphthylene (152) 62 dibenz[a,h]anthracene (278) 

31 acenaphthene-d10(164) 63 benzo[ghi]perylene (276) 

32 acenaphthene (153)   
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by the different operating conditions between analytical and preparative pyrolysis (e.g. pyrolysis 

time, trapping of pyrolysis products, etc.).  

 

Table 3.3.2. Emission levels of PAHs from Py-SPE at 500 °C of poplar wood with and without 

zeolite HZMS-5 (mean values and RSD from 5 replicates). 

PAH 
Poplar 

µg g-1 

RSD 

% 

+ zeolite 

µg g-1 

RSD 

% 

naphthalene 6.3 13 2400 17 

acenaphthylene 0.62 29 27 0.2 

acenaphthene 0.98 45 21 28 

fluorene 3.4 23 82 21 

phenanthrene 0.88 20 197 12 

anthracene 0.79 28 213 12 

fluoranthene 0.26 36 2.8 6.6 

pyrene 0.37 19 22 51 

chrysene 0.12 40 45 13 

benz[a]anthracene 0.12 42 13 22 

benzo[b]fluoranthene 0.07 41 1.7 18 

benzo[k]fluoranthene 0.05 40 4.6 14 

benzo[a]pyrene 0.12 45 6.3 30 
 
As far as catalytic pyrolysis is concerned, zeolite ZSM-5 is probably the most tested catalyst to 

improve fuel properties of bio-oil145,157,158 and for this reason was selected in this study. It is known 

from analytical pyrolysis of biomass constituents that the presence of ZSM-5  increased noticeably 

the production of aromatic hydrocarbons, however PAHs were not quantified. 157,158 In accordance, 

GC-MS profiles of the aromatic fraction resulting from Py-SPE of poplar wood were profoundly 

modified in the presence of ZSM-5 (Figure 3.3.2b), naphthalenes became the dominant peaks and 

phenathrene and anthracene (# 46 and 47) could be clearly revealed. Quantitative data reported in 

Table 3.3.2 show that the emission levels of PAHs markedly increased in the presence of ZSM-5 

                                                 
157 T.R. Carlson, T.P. Vispute, G.W. Huber. Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived 
Compounds. ChemSusChem 1 (2008) 397-400. 
158 T.R. Carlson, G.A. Tompsett, W.C. Conner, G.W. Huber. Aromatic Production from Catalytic Fast Pyrolysis of 
Biomass-Derived Feedstocks. Top Catal. 52 (2009) 241-252. 
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(e.g. naphthalene from 6 to 2400 µg g-1, phenathrene from 0.9 to 200 µg g-1 and benzo[a]pyrene 

from 0.1 to 6 µg g-1).  

This finding is in agreement with studies based on the analysis of bio-oil obtained from preparative 

pyrolysis of wood.145 For instance, benzo[a]pyrene was reported to increase from undetectable 

levels in original bio-oil to 800 µg g-1 in HZSM-5 catalytically upgraded bio-oil . 145 In this respect, 

quantitative results from analytical pyrolysis with and without catalyst are consistent  with literature 

data. It is worth underlying that the concentration of PAHs expected in bio-oil from uncatalysed 

pyrolysis was comparable to that found in diesel150,159 and gasoline159,160 but may exceed 

conventional transport fuels in bio-oil derived from catalytic pyrolysis with zeolite. 

 

3.3.3.2 Py-SPME 

Chromatograms obtained from Py-SPME of poplar wood (an example is shown in Figure 3.3.3a) 

were characterised by peaks due to lignin phenols (# 10, 13, 16, 18, 21, 29, 33, 41) that could not be 

eliminated after washing the fiber with ammonia solution.  

 

Figure 3.3.3: GC-MS profiles obtained from Py-SPME of (A) poplar wood and (B) poplar wood 

with zeolite HZSM-5. Peak numbers refer to Table 3.3.2; (*) contaminants. 
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159 J.L. Perez Pavon, M. del Nogal Sanchez, M.E. Fernandez Laespada, B. Moreno Cordero. Determination of aromatic 
and polycyclic aromatic hydrocarbons in gasoline using programmed temperature vaporization-gas chromatography–
mass spectrometry. J Chromatogr A 1202 (2008) 196-202. 
160 L.C. Marr, T.W. Kirchstetter, R.A. Harley, A.H. Miguel, S.V. Hering, S.K. Hammond. Characterization of 
Polycyclic Aromatic Hydrocarbons in Motor Vehicle Fuels and Exhaust Emissions. Environ Sci Technol. 33 (1999) 
3091-3099. 
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Prominent PAHs could be detected in the extracted mass chromatograms allowing a rough estimate 

of emission levels by external calibration. However, precision was rather low (RSD in the 30-70% 

range) and PAHs heavier than pyrene could not be detected. Main pyrolysis products probably 

saturated the fiber operating in the exposed mode155 affecting the adsorption of PAHs.  

Although not suitable for PAH quantitation, Py-SPME could be proposed as a fast screening 

method to acquire a qualitative picture of the pyrolysate composition. As an example, the pattern of 

alkylated PAHs obtained by SPME sampling exhibited a strong resemblance with the distribution 

obtained from the analysis of by mean of Py-SPE. Likewise, the effect of zeolite on the pyrolysate 

composition determined Py-SPME was in line with Py-SPE, as evidenced by comparing Figure 

3.3.2 b and Figure 3.3.3b. In the presence of zeolite the production of aromatic hydrocarbons 

augmented considerably, and chromatograms were featured by intense peaks due to naphthalene 

and its methylated forms. The absence of solvent in the Py-SPME procedure enabled the detection 

of volatile organic compounds, among them BTEX (benzene, toluene, ethylbenzene and xylenes) 

produced the most intense peaks. 

 

3.3.4 Conclusions 

 Besides the analysis of main pyrolysis products of biomass, off-line analytical pyrolysis can be 

applied to the detection of PAHs, which are trace constituents in bio-oil. Py-SPE resulted more 

adequate for the quantitation of PAHs and the emission levels resulted comparable to those obtained 

from the analysis of bio-oil. From the qualitative point of view, the solventless and faster Py-SPME 

procedure provided a wider picture of the pyrolysate enabling the detection of volatile compounds, 

such as BTEX. Overall, analytical pyrolysis is suited as a screening technique on a quantitative base 

in those applications where significant rather than subtle variations of PAH emission have to be 

investigated. For instance, in the case of catalytic pyrolysis whereby the energetic value of bio-oil is 

improved by reducing the content of oxygen through the elimination of water or carbon dioxide 

from organic compounds through the action of active solids. Here, the activity of different catalysts 

towards the unwanted production of PAHs could be investigated by the Py-SPE procedure in order 

to predict the levels expected in biofuels. 
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3.4 Structural analysis of bio-char by Py-GC-MS. 

 

3.4.1. Introduction 

The solid residue formed upon biomass slow pyrolysis, charcoal, has historical applications dating 

back to the human civilization.161 Charcoal is still used as a solid fuel, a reductant in steel industry, 

and in the activated form as a sorbent material. Recently, agronomic (soil fertility, crop growth) and 

environmental (reducing CO2, CH4, N2O emission; adsorption of contaminants) applications are 

receiving growing interest in the literature and the term bio-char has become familiar to the 

scientific community.,162,163 The importance of bio-char as soil conditioner (in that also named as 

agri-char) or carbon sequestration agent and its impact to the environment require a full 

understanding of its properties164,165,166,167,168,169 and the mechanisms controlling its activity in 

soil.170,171 

The stability in soil is a paradigmatic attribute of bio-char when selecting its application in 

environmental (carbon sequestration) or agricultural (fertility increases) applications. 

It is known that naturally occurring charcoal and black carbon (BC), in the wide sense including 

char, soot, graphite, all the form of carbonaceous matter produced by incomplete combustion of any 

organic material), as those preserved in soils from forest fires, exhibit different degrees of stability 

probably related to the depolymerisation and surface oxidation which in turn are related to chemical 

structure. Volatile content (VM) of fixed carbon (carbon which do not volatilize at 900°C, FC) was 

proposed to be the most convenient method to estimate bio-char stability for the purpose of carbon 

                                                 
161 M.J. Anatal, M. Gronli. The Art, Science, and Technology of Charcoal Production. Ind Eng Chem Res. 42 (2003) 
1619-1640. 
162 S.P. Sohi, E. Krull, E. Lopez-Capel, R. Bol. Chapter 2:A Review of Biochar and Its Use and Function in Soil. 
Advances in Agronomy 105 (2010) 47-82. 
163 K..A. Spokas, W.C. Koskinen, J.M. Baker, D.C. Reicosky. Impacts of woodchip biochar additions on greenhouse 
gas productionand sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77 (2009) 574-581. 
164 R.K. Sharma, M.R. Hajaligol. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons 
(PAHs) from polyphenolic compounds. J Anal Appl Pyrol. 66 (2003) 123-144. 
165 C. Branca, C. Di Blasi. Oxidation characteristics of chars generated from wood impregnated with (NH4)2HPO4 and 
(NH4)2SO4. Thermochim. Acta 456 ( 2007) 120-127. 
166 H. Abdullah, K.A. Mediaswanti, H. Wu. Biochar as a Fuel: 2. Significant Differences in Fuel Quality and Ash 
Properties of Biochars from Various Biomass Components of Mallee Trees. Energ.Fuel 24 (2010) 1972–1979. 
167 C.E. Brewer, K. Schmidt-Rohr, J. A. Satrio, R. C. Brown, Characterization of biochar from fast pyrolysis and 
gasification systems. Env.Progr.Sustain. Energ. 28 (2009) 386–396. 
168 M. Keiluweit, P. S. Nico, M. G. Johnson, M. Kleber. Dynamic Molecular Structure of Plant Biomass-Derived Black 
Carbon (Biochar). Environ.Sci.Technol. 44 (2010) 1247–1253. 
169 J.W. Lee, M. Kidder, B.R. Evans, S. Paik, A.C. Buchanan III, C. T. Garten,R.C. Brown. Characterization of 
Biochars Produced from Cornstovers for Soil Amendment. Environ.Sci.Technol. 44 (2010) 7970–7974. 
170 S.D. Joseph, M. Camps-Arbestain, Y. Lin, P. Munroe, C. H. Chia, J. Hook, L. van Zwieten, S. Kimber, A. Cowie, B. 
P. Singh, J. Lehmann, N. Foidl, R.J. Smernik, J.E. Amonette. An investigation into the reactions of biochar in soil. 
Australian Journal of Soil Research 48 (2010) 501–515. 
171 K..A. Spokas, J.M. Baker, D.C. Reicosky. Ethylene: potential key for biochar amendment impacts. Plant and Soil 
333 (2010) 443-452. 
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sequestration.172 Volatility was structurally associated to aliphatic regions which are more labile 

(remineralise faster) than aromatic regions and more abundant when pyrolysis is conducted at lower 

temperature. This hypothesis requires a detailed knowledge of the molecular structure of bio-char to 

be fully supported. Bio-char structure is described as being composed by amorphous structures, 

turbostratic crystallites characterized by unordered graphite-like layers and ordered graphene sheets. 

Graphene dominium, aromaticity and microporosity generally increase with increasing temperature. 

These domains are expected to behave differently when subjected to thermal stress, such as 

pyrolysis. Therefore, FC and VM evaluation can give an idea of the amount of graphene like 

material in the bio-char, that are considered most stable carbon structure in the soil environment. 

Beyond the fact that bio-char with highest FC values is probably most stable biochar, the type of 

VM evolved is especially important for the evaluation of medium-term stability of bio-char (e.g. 50 

y), which is also linked to the stability of non-graphitic and aliphatic structures. 

In these respect, analytical pyrolysis, and in particular Py-GC-MS, was suggested to be reliable 

method for molecular investigation of the bio-char volatilisable fraction. Py-GC-MS was largely 

applied to the characterization of charcoal and BC from natural setup spanning a period of over 

thousand years.173,174,175 Py-GC-MS was also applied to investigate synthetic black carbon 

materials176,177 and possible non-combustion interferents of BC.178 

In the case of natural BC, pyrograms above 600 °C were dominated by benzene, toluene, 

benzonitrile, naphthalene, diphenyl, benzofuran with a similar pattern in the 700-1200 °C interval. 

This set of pyrolysis products was selected as typical of BC by Kaal et al.179,174 However, 

compounds indicative of uncharred material, such as levoglucosan, could be still revealed at high 

pyrolysis temperature.  Although the presence of carboxylic acid groups could not be revealed by 

                                                 
172 A.R. Zimmerman. Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon (Biochar). 
Environ.Sci.Technol. 44 (2010) 1295-1301. 
173 J. Kaal, S. Brodowski, J.A. Baldock, K.G.J Nierop, A.M. Corzisas. Characterisation of aged black carbon using 
pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear 
magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Org.Geochem. 39 (2008) 
1415-1426. 
174 J. Kaal, A.M Cortizas, K.G.J. Nierop. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method 
optimised for black carbon. J.Anal.Appl.Pyrolysis 85 (2009) 408-416 
175 C. Nocentini, G. Certini, H. Knicker, O. Francioso, C. Rumpel. Nature and reactivity of charcoal produced and 
added to soil during wildfire are particle-size dependent. Org.Geochem. 41 (2010) 682-689. 
176 F.J. Gonzales-Vila, P. Tinoco, G. Almendros,F. Martin, Pyrolysis-GC-MS analysis of the formation and degradation 
stages of charred residues from lignocellulosic biomass. J Agric Food Chem 49 (2001) 1128-113. 
177 J.Z. Song, P. Peng, Characterisation of black carbon materials by pyrolysis–gas chromatography–mass spectrometry  
J.Anal.Appl.Pyrolysis, 87 (2010) 129-137. 
178 J. Marıa de la Rosa Arranz, F. J. Gonzalez-Vila, E.Lopez Capel, D.A.C. Manning, H. Knicke, J.A. Gonzalez-Perez. 
Structural properties of non-combustion-derived refractory organic matter which interfere with BC quantification. 
J.Anal.Appl.Pyrolysis 85 (2009) 399-407. 
179 J. Kaal, C Rumper. Can pyrolysis-GC/MS be used to estimate the degree of thermal alteration of black carbon? 
Org.Geochem 40 (2009)1179-1187. 
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Py-GC-MS, the occurrence benzenecarboxylic acid moieties in charcoal was definitively proved by 

pyrolysis in the presence of a methylating reagent.174 

Noteworthy, the differences in the pyrolysate composition was very small between species (oak, 

birch, legume) and relationships could be found between the proportion of black carbon products 

(aromatic hydrocarbons and benzofurans) and uncharred/weakly charred biomass (furans, pyrroles, 

aldehydes, ketones, alkanes/alkenes), the former products increasing with increasing age.  

The correspondence between the abundance of pyrolysis products indicative of charred and 

uncharred fraction was supported by a comparison with NMR analysis of natural (fires) charcoal.179 

In addition, it was suggested that the ratio of some alkylated and non-alkylated pyrolysis products 

could be indicative of charring intensity associated to dealkylation following thermal impact. Most 

of the research works on Py-GC-MS were conducted on natural charcoal and BC, less 

investigations were focused to synthetic char targeted to agricultural application (bio-char). 

uantitative approach was found useful to find relationships with complementary techniques such as 

NMR and chemical oxidation.179  

Therefore, in this chapter, Py-GC-MS was tested, together with thermogravimetric analysis (TGA) 

as fast method, in order to evaluate the structure of a large number of synthetic bio-chars, for 

agronomical application. Moreover The 1 years aging (in water) of one bio-char was studied, and 

Py-GC-MS was investigated as technique for the prediction of bio-char stability.  

 

3.4.2. Experimental 

3.4.2.1 Origin of bio-char samples 

The various bio-chars evaluated here were part of ongoing assessments into the impact of bio-char 

additions on greenhouse gas production potentials; research that is part of the USDA-ARS Bio-char 

and Pyrolysis Initiative.  The bio-char was acquired from various bio-char suppliers, entrepreneurs, 

and research laboratories (see Acknowledgements). One Bio-char (BC-0HR) was aged one year in 

water following published procedure.163 The chars had a range of 1 to 93% carbon; 1 to 89% ash; 

0.1 to 7.5% nitrogen; and a range of pyrolysis temperatures from 410 to 850 oC and residence times 

(seconds to hours). This group provides a cross-section of currently available bio-chars and ashes 

from biomass utilization. Bio-char will be used to describe these materials, even though 

fundamentally they are not all are bio-chars, but contain a mixture of ashes, charcoal, char and soot. 

 

3.2.2.2 Ultimate and proximate analysis  

Proximal (ASTM D3172) and ultimate analyses (ASTM D3176) were performed by Hazen 

Research (Golden, CO USA) and Brunauer-Emmett-Teller (BET) surface area (SA) analyses 
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(ASTM D6556) were performed by the USGS (D. Rutherford, Boulder, CO USA) and Material 

Synergy (Oxnard, CA USA). Ultimate and proximate analysis of Bio-chars were kindly provided by 

Dr. Kurt Spokas from United States Department of Agriculture. 

 

3.4.2.3 Py-GC-MS 

Py-GC-MS experiments were performed following the procedure described in chapter 3.1, with 

different split ratio (1/50 instead of 1/200). The repeatability of yields were evaluated by nine 

replicate analyses of sample BC-0HR and resulted in RSD of 23% for total yields.  

  

3.4.2.4 Structural evaluation of bio-char for prediction of medium-term degradation 

Figure 3.4.1 shows the conceptual scheme of bio-char characterization. Biochar was characterized 

by means of elemental analysis, then it was subjected to heating to 900°C and the carbonaceous 

(mass of residue minus the ash content) was referred to as fixed carbon. Volatile carbon was 

calculated by the difference between carbon content and fixed carbon. Assignment of different 

fractions of VM were performed by mean of GC detectable compounds identification. The same 

relative proportions observed for GC detectable pyrolysis products was assigned to the different 

fractions (holocellulose, charred VM, lignin and “black nitrogen” fraction) of VM evolved from 

bio-char.  

 

Figure 3.4.1: conceptual scheme used for bio-char characterization. 

 

3.4.2. Results and discussion 

3.4.3.1. Characteristics of bio-char samples 

Ultimate and proximate analyses of synthetic bio-char samples are listed in Tables 3.4.1 and 3.4.2 

along with BET surface areas (SA in Table 3.4.2). SA encompass a wide interval comparable to 
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literature data (RA Brown 2006) for synthetic chars. SA tends to increase with increasing pyrolysis 

temperature and char residence time.167,180 

 

Table 3.4.1:Biomass feedstock and  elemental composition of bio-char samples. (Id.: Sample 

identifiers).   

ID Feedstock C H N O S 
 BC-0HR Hardwood sawdust 1a 63.8 3.03 0.22 11.8 0.01 

BE1 Hardwood sawdust 2a 69.5 3.06 0.32 13.1 0.01 
BEW 1 year aged wet BC-0HR 62.9 2.80 0.32 11.8 0.01 
PB wood pellets 81 2.9 0.4 12 0.01 
PG wood pellets 81 3.1 0.3 13 0.02 

FGCE wood pellets 76 3.1 0.4 13 0.04 
CE1 waste wood scrap gasifier 27.4 0.33 0.29 <0.01 1.24 
CE3 wood pellets 77.6 2.96 0.39 11.3 0.05 
CE2 wood pellets 82.9 1.70 0.42 4.1 0.03 
A1 wood waste 81.5 2.42 0.36 7.7 0.01 
A2 wood waste 91.4 2.89 0.38 4.60 0.00 

BC-19 distillers grain 68.6 4.81 7.52 6.6 0.96 
BC-20 distillers grain 69.4 4.31 7.43 5.9 0.90 
BC-21 corn cob 78.8 4.31 0.67 13.2 0.01 
BC-22 corn cob 82.6 3.85 0.61 9.1 0.01 
BC-23 wood waste 79.8 3.73 0.83 11.9 0.01 
BC-24 wood waste 80.8 3.23 0.77 11.4 0.02 

M1 corn stover 45.0 1.66 0.50 1.0 0.04 
M2 pine wood chip 75.0 3.4 0.30 9.0 0.1 
M3 peanut hull 59.0 2.3 2.70 12.0 0.2 
M4 corn stover 25.0 1.1 0.60 5.0 0.04 
M6 Pine chip 

(mixed with compost after 
production) 

43.0 -- 2.20 11.0 -- 

M7 manure/woodchip 1.0 0.5 0.10 3.00 2.1 
M8 Hardwood  69.0 2.4 0.70 9.00 0.02 
M9 pine woodchip 71.0 3.3 0.20 11.0 0.1 
M10 peanut hull 60.0 1.1 0.90 10.0 0.1 
M11 corn stover 66.0 1.5 1.00 4.0 0.04 
M12 corn stover 51.0 0.9 1.00 0.00 0.04 
M13 cocunut shell 87.9 0.06 0.40 <0.01 0.65 

BC-16 Hardwood 56.9 2.77 0.41 10.5 0.41 
BC-17 Mixed wood chips/manure 71.1 3.44 0.11 20.6 0.01 
BC-18 macadamia nut shells 93.1 2.56 0.67 1.7 0.02 

atwo replicas of bio-char obtained from the same pyrolyser and feedstock  
 

However, total SA is not sufficiently indicative for thermal reactivity (e.g. gasification) as it 

includes SA from micropores which probably do not participate in reactions.181  

                                                 
180 R.A. Brown, A.K. Kercher, T.H. Nguyen, D.C. Nagle, W.P. Bal. Production and characterization of synthetic wood 
chars for use as surrogates for natural sorbents. Organic Geochemistry 37 (2006) 321–333. 
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Table 3.4.2: Surface area (SA, m2 g-1), water content (H2O, weight %),  volatile matter (VM, 
weight %), fixed carbon (FC, weight %) and ash (weight % on dry weight basis).   

# SA H2O VM FC Ash 
BC-0HR 0.98 8.06 26.1 53 21.1 

BE1  1.03 4.40 29.1 44 14.0 
BEW 10.4 36.0 24.5 50 22.1 
PB 92 5.12 29 67 3.9 
PG 1.7 5.10 19 68 2.0 

FGCE 0.3 5.00 30 63 7.5 
CE1 144 0.91 18.9 8.2 72.9 
CE3 3.08 4.83 27.7 65 7.66 
CE2 73.8 6.79 15.1 83 10.8 
A1 251 8.70 18.2 74 7.97 
A2 106 1.33 15.2 84 1.03 

BC-19 0.28 1.75 45.7 44 11.5 
BC-20 0.28 1.97 37.6 50 11.9 
BC-21 <0.10 2.93 33.2 64 2.92 
BC-22 <0.10 3.07 24.8 71 3.84 
BC-23 3.51 3.71 26.8 70 3.66 
BC-24 26.8 3.57 23.7 73 3.71 

M1 4.4 2.64   55.0 
M2 0.1 5.25   6.00 
M3 1 7.77   15.0 
M4 4.2 2.69   69.0 
M6 63.5   36 54.0 
M7 4.8 3.87  60 89.0 

M8 19.2 6.43    14.0 

M9 0.2 7.15   9.0 

M10 286 16.2   15.0 

M11 17.3 5.29  13 54.0 

M12 9.9 2.65  53 74.0 

M13 960 5.45 1.84 85.2 13.0 

BC-16 33.7 6.29 34.7 36.4 28.9 

BC-17 66.3 3.31 34.8 60.5 4.77 

BC-18 6.89 9.54 16.8 81.2 1.92 

 

Char thermal reactivity is influenced by morphological features (e.g. micro/macropores), in turn 

determined by the release of volatiles and hence feedstock compositiona and process conditions, 

                                                                                                                                                                  
181 C. Di Blasi. Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and 
Combustion Science 34 (2008) 47-90. 
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with micropores predominating over macropores in slow pyrolysis.181 Volatile matter (VM) ranged 

from 1.8 to 45% and fixed carbon ranged from 13 to 84%. 

 

3.4.3.2 Py-GC-MS. Total yields. 

 

Table 3.4.3. Pyrolysis products of bio-char and their predominant origin: C, charred biomass; H 

holocellulose; L, Lignin; P, proteins; S sulfur-containing compounds. 

r.t., 
min 

Structural attribution 
origi

n 
r.t., 
min 

Structural attribution 
origi

n 
1.15 methyl glyoxal H 10.07 Methylbenzofuran C 
1.53 3-pentanone H 10.56 3-methyl-2,4(3H,5H)-furan H 
1.79 acetic acid H 11.19 4-ethylphenol L 
1.94 benzene C 11.37 naftalene C 
2.5 2,5-dimethylfuran H 11.53 Benzotiophene S 
3.42 pyrrole P 11.54 4-methylguaiacol L 
3.52 toluene C 11.74 catechol L 
3.73 acetoxyacetaldehyde H 11.84 4-vinylphenol L 

3.77 2-methyl tiophene S 12.04 
3,6:1,4-dianhydro 

glucopyranose 
H 

3.79 3-methyl thiophene S 12.22 Hydroxymethyl furfural H 
3.92 butanedial H 12.89 4-ethylguaiacol L 
4.89 furaldehyde H 13.22 Indole P 
5.42 ethylbenzene C 13.31 4-vinylguaiacol L 
5.47 furfuryl alcohol H 13.38 ascopyrone-P H 
5.59 m,p-xylene C 14.00 Syringol L 
6.03 styrene C 14.04 eugenol L 
6.07 o-xylene C 14.25 biphenyl C 
6.9 2-ciclopentanedione H 14.6 Vanillin L 
7.44 benzaldeide L 14.76 cis-iso-eugenol L 
8.02 methylfufural H 15.28 4-methylsyringol L 
8.08 phenol L 15.33 trans-isoeugenol L 
8.13 benzofuran C 16.77 4-vinylsyringol L 

8.22 
4-hydroxy-5,6-diihydro-2-

pyranone 
H 17.30 4-allylsyringol L 

8.8 
3-hydroxy-2-methyl-

cyclopentenone 
H 17.90 4-(Z-propenyl) syringol L 

8.98 2-hydroxybenzaldehyde L 18.40 4-(E-propenyl) syringol L 
9.32 m-cresol L 18.92 4-hydroxy-2-methoxycinnam L 
9.71 o,p-cresol L 19.29 acetosyringone L 
9.76 guaiacol L 19.39 phenanthrene C 
9.9 methylbenzofuran C 19.50 anthracene C 
9.98 methylbenzofuran C    

 

As expected from their different origin, bio-char samples produced different pyrolysate pattern 

when subjected to Py-GC-MS. Typical programs are depicted in Figure 3.4.2. A set of 61 pyrolysis 
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products among the most abundant and representative of biological precursors was selected for the 

calculation of the yields (Table 3.4.3). 

 

Figure 3.4.2: Total ion chromatograms from Py-GC-MS of bio-char samples (a) BC-0HR , (b)M2, 

(c) M6. (i.s.: internal standard, 5-propenylguaiacol).  Peak attribution: 1, benzene; 2, pyrrole; 3, 

toluene; 4, furaldehyde; 5, methylpyrrole; 6, ethylbenzene; 7, m,p-xylene; 8, styrene; 9, phenol; 10, 

p-cresol; 11, guaiacol; 12, methlbenzofurans; 13, 4-ethylphenol; 14, naphthalene; 15, 4-

methylguaiacol; 16, indole; 17, methylnaphthalenes; 18, 4-vinylguaiacol; 19, 4-methylsyringol; 20, 

dibenzofuran; 21, vinylsyringol; 22, 4-propenylsyringol; 23, phenanthrene. 
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Py-GC-MS were run under the same operative conditions, several factors inherent to the sample 

might influence the pyrolytic behaviour of bio-char, such as the presence of inorganic constituents 
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and particle size. In the latter case, it was found that coarse charcoal particles  tend to be enriched in 

aromatic hydrocarbons, while fine particles contain more N- and O-sugar derived compounds.175 

The effect of ash might be important for samples M1, M4, M6, M7, M11 and  M12 characterized by 

a high ash content (> 50%). Chars M1, 4, 11, 12 were obtained from the pyrolysis of corn stover in 

accordance with literature data showing that chars from corn stover and  switchgrass are rich in ash 

composed principally by silica.167 

 Given the above, total yields are reported in Figure 3.4.3. Values spanned on a interval of three 

order of magnitude wide, from 31 ‰ (M9) down to 240 part per million (M7). The yields are 

correlated with volatile matter (VM), while there is no correlation with fixed carbon (FC) and other 

parameters (e.g. BET).  

 

Figure 3.4.3:Yields of pyrolysis products (µg / gbiochar) from Py-GC-MS of bio-char samples 

grouped by chemical families  and origin (see Table 3.4.2) 
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3.4.3.3 Py-GC-MS. Molecular distribution. 

Py-GC-MS provided information of the thermally degraded products at a molecular level and 

according to their possible origin as reported in Table 3.4.3. Yields for each molecular family  are 

depicted in Figure 3.4.3.  

Aliphatic hydrocarbons resulted minor products in all the samples and were not quantified. 

Aromatic hydrocarbons including PAHs were predominant in the pyrolysates of bio-char samples, 

M9 which exhibited higher levels of phenol derivatives. Lignin phenols resulted an important group 

of pyrolysis products owing to the origin from lignocellullosic feedstock. Pyrolysis products 

deriving from holocellulose were detected as well (e.g. furans and anhydrosugars). 
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An important factor in analytical pyrolysis is the selection of pyrolysis temperature. To this purpose 

Kaal et al.174 have investigated the effect of pyrolysis temperature on the chemical composition of 

sample pyrolysate.  In the case of peat, at 400 °C thermolabile fractions (e.g.  anhydrosugars and 

lignin phenols) predominate as glycosidic bonds of cellulose and ether-linkages between lignin 

monomers are easily cleaved. A more complete degradation of aliphatics and lignins occurred at 

500 °C. The production of aromatic hydrocarbons increased at 600-800 °C. Lignin phenols 

decarboxylate, demethoxylate and eventually dehydroxylate with increased production of aromatic 

hydrocarbons in concomitance with increasing charring, while polysaccharide rearrangements 

produces furans and probably naphthalenes. Kaal found the temperature of 700 °C as a good 

balance to separate the effect of artificial charring (during the analysis) to that of pre-existing 

charred material in the sample. A set temperature of 900 °C was selected in our study as 

compromise between the comparison with VM and artificial charring (depressed at lower 

temperature). The set value of 900 °C corresponded approximately to 750 °C inside the platinum 

filament as measured with a thermocouple. 

Analysis by 13C-NMR showed that synthetic char are highly aromatics (over 81%), with a larger 

aromaticity but with a lower degree of condensed cluster for slow pyrolysis than gasification, 

explained by the dominant influence of pyrolysis temperature, but also residence time, while 

partially charred biopolymers were not detected.167 

The content of nutrients conserved in bio-char from nutrient-rich feedstock (e.g. poultry litter) is an 

important aspect in relation to agronomic applications. The fate of nitrogen originally occurring in 

the biomass depends on several factors and can be completely lost by volatilization,182 although 

slow pyrolysis conditions tend to conserve nitrogen into the bio-char.183 Nitrogen containing 

compounds indicative of proteins (indole, pyrrole) and chlorophyll pigments (pyrrole and alkylated 

derivatives, these latter identified but not quantified) were revealed in relatively higher amount in 

the pyrolysates of samples B19, B20 and M6 which are characterized by a larger content of 

elemental nitrogen. Pyrroles from chlorophyll are rapidly destroyed,176 thus probably proteins are 

the main contributors. In the case of sample B19 and B20 the feedstock was dried distiller grain, 

which is the solid residue after ethanol production from corn grain. M6 was a composite pine chip 

bio-char + compost mixture.  Therefore, this mixture contained both charred and biomass materials, 

with corresponding higher nitrogen content. Nitrogen-containing compounds may play an important 

role in the degradability of charcoal as evidenced from the pyrolysis of proteins and are probably 

                                                 
182E.S. Krull, J.A. Baldock, J.O. Skjemstad, R.J. Smernik. Charateristic of biochar: Organo-chemical Properties. 
Biochat for environmental Management. Johannes lehmann. Stephen Joseph edt. London  2009. 
183 J. W. Gaskin, C. Steiner, K. Harris, K. C. Das, B. Bibens. Effect of Low-Temperature Pyrolysis Conditions on 
Biochar for Agricultural Use. Transactions of the ASABE. 51 (2008) 2061-2069. 
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less degradable than cellulose.184 However, pyrroles were probably prone to be degraded as these 

compounds were not found in the pyrolysates of ancient charcoal.173  

Interestingly, methyltiophenes were clearly revealed in sample CE1 despite the low total yields of 

pyrolysate. This is in accordance to the relatively high level of elemental sulfur. Methyltiophenes 

were revealed in samples B19 and B20 as well, while B24 was characterized by the presence of 

benzotiophene. This finding may suggest the occurrence of different form of sulfur in these 

samples. Although sulfur was considered a proxy of soot from fossil fuel,177 its occurrence could be 

significant in the pyrolysate of recent biomass. 

The yields of each compound class were loosely correlated with VM. Thus, samples with high VM 

tends to generate higher amount of pyrolysis products characteristic of both fresh (e.g. furans) or 

aged biomass (e.g. benzofurans). 

According to Kaal et al.173,174 benzene, toluene, benzonitrile, naphthalene, diphenyl, benzofurane 

are pyrolysis products that could be associated specifically to the charred fraction of charcoal. 

Furans and pyrroles could be attributed to the fraction which is only weakly charred. In our study, 

aliphatic compounds eluting in the first region of chromatogram  could be quantified, but these 

compounds were not described by Kaal et al.173,174,179 

Following Kaal et al.  indications, aromatic hydrocarbons (benzene, toluene, C2-benzenes, 

naphthalene, phenanthrene, diphenyl) and benzofurans were grouped into a single family of 

compounds representing the charred fraction of bio-char (Table 3.4.3). The relative contribution of 

the chemical group indicative of the charred fraction is presented in Figure 4 for each bio-char 

sample in a descending order. 

Bio-char with a high percentage of charred pyrolysis products (> 80%, A2, BEW, BC-22, BC-23, 

M1, M2, M3, M4, M11, M12, M13) could be catalogued as “high rank” charcoal, with pyrolytic 

pattern similar to soot characterised by the emission of aromatic hydrocarbons as most important 

chemical species. These hydrocarbons could be thermally releasable aromatic fragments linked to 

larger sheets or pyrosynthesised as secondary pyrolysis products from smaller molecules, such as 

acetylene, evolved during the thermal re-organization of immature sub-structures into turbostratic 

crystallites. 

Samples M6, M9, BC16, BC17, PG, FGCE with a lower contribution of charred pyrolysis products 

resemble “low rank” charcoal, as they contain a larger amount of oxygenated compounds, phenols 

and furan derivatives. Samples BC19, BC20, M6  released pyrolysates characterised by nitrogen-

containing pyrolysis products indicative of proteins in accordance to their origin and high N/C ratio. 

                                                 
184 H. Knicker, J.O. Skjemstad. Nature of organic carbon and nitrogen in physically protected organic matter of some 
Australian soils as revealed by solid-state 13C and 15N NMR spectroscopy. Australian Journal of Soil Research 38 
(2000) 113-128. 
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This finding could be an indication that nitrogen-containing moieties might be located in rather 

degradable regions of the bio-char structure. This is in agreement with the observation by Kincker 

2010 regarding a higher stability of char produced from cellulose than char produced by  proteins.  

According to Kaal and Rumple,179 the degree of de-alkylation might be a proxy of thermal 

alteration. Dealkylation can be estimated from Py-GC-MS from the ratio of parent/alkylated 

compound, such as benzene/toluene (B/T) ratio. B/T ratios were calculated from the pyrolysates of 

bio-char samples. The samples exhibited a large variability with high values (B/T > 6, sample M10) 

and low values (B/T < 0.5, samples BC-22). In general, the B/T ratio, i.e. dealkylation, tends to 

increase with decreasing overall yields and with increasing the relative abundance of pyrolysis 

products indicative of charring. 

Bio-char from corn stover (M4, M11, M12, M1) were obtained at different pyrolysis temperatures 

(410, 505, 515, 815 °C respectively). The yields of pyrolysis products tended to decrease with 

increasing temperature (12000, 6700, 1900, 2600 µg/g respectively), however the B/T ratio 

decreased whereas the % of black carbon pyrolysis products was similar and very high (> 90%).  

Bio-char A1 and A2 produced from wood waste at two different pyrolysis temperatures (475 and 

550 °C, respectively) gave pyrolysates with similar yields and B/T ratios, but a different percentage 

of black carbon products due to a higher amount of lignin phenols in A1.  

 

3.4.3.4 Py-GC-MS Study of reactivity of bio-char in soil 

Py-GC-MS was applied to investigate in detail the “degradation rate” of different fractions, by 

analysis of respective markers evolved by analytical pyrolysis. This can help to establish links 

between markers and corresponding fractions with different degradability.  

In order to establish the short term degradation rate of different fractions (which produce different 

pyrolytic markers) hardwood biochar obtained at  500°C (BC-0HR) was aged 1 year in the soil, and 

the pyrolitic pattern of sample  aged in soils (BEW) was compared with that obtained from fresh 

BC-0HR  Table 3.4.4 shows the mass yield of pyrolysis product evolved.  

As consequence of aging VM of sample decreased from 18% C/Csample to 15% C/Csample, 

corresponding to the 16% degradation of volatile matter in 1 y.  

A decrease similar to that observed for VM was found for overall Py-GC-MS detectable yields. 

Almost all absolute yields (with exception of phenol, cresols, hydroxyacetone, biphenyl and methyl 

glyoxal) are decreased in the sample obtained after 1 year soil incubation, in agreement with the 

progressive degradation of fractions that can produce GC detectable product (and then in agreement 

with VM degradation). Interestingly, increase of some aromatic oxygenated yield can be explained 

by  means of oxidation of charred bio-char and formation of hydroxyls on the surface. 
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Table 3.4.4: Change in Py-GC-MS yield of pyrolysis products (expressed as µg per gram of 

carbon) from fresh BC-0HR (hardwood sawdust bio-char obtained at 500°C) sample and from the 

same sample incubated for 1 year (BEW). (mean± confidence interval with α=0.05)  

markers 
 

BC-0HR  
T0 

µg gC-1 

BEW  
T1y 

µg gC-1 

Degradation 
Rate 
y-1 

Average 
lifetime 

y  

Charred 1896±577 1714±567 0.10 >10 
Lignin 1656±382 1081±347 0.35 3 
Pyrrole 4.5±1 3.9±1 0.13 8 

Holocellulose 187±53 96±4 0.49 2 
Σ Quantifyed 3709 2802   

 

Yields of compounds typical of carbohydrate pyrolysis, like  furfuryl alcohol and 2-

cyclopentanedione or hydroxymethylfurfural, were halved in the pyrolysis of 1 year old bio-char, 

indicating a relatively fast degradation of the cellulosic derived fraction, although slower than that 

observable for pure cellulose ( that is entirely degraded with a degradation rate of 0.98 y-1).185 Also 

lignin derived pyrolysis products from aged sample yield were lower than in fresh one (-35% on 

average), even if a short time span was considered. 

On the other hand, charred fragments (toluene or benzene) showed a little but significant decrease 

(10%) in the 1 year aged bio-char, confirming  that there is a large fraction of bio-char which are 

volatilizable and breakable by thermal degradation, but are relatively stable in environmental 

conditions. Finally, it is interesting to notice that pyrrole (representative of nitrogen containing 

moieties and residual proteins in the char) relative decrease in 1 y was 13%. This indicate that the 

nitrogen containg fractions of bio-char (a sort of “black nitrogen”) can contribute substantially to 

the short term stability of the material, but also suggests the potential application of bio-char based 

fertilizers with controlled release of the nutrients.  

Summarizing, on the basis of obtained on 1 year aging of bio-char, it is possible to confirm that 

lignin and cellulose like fractions of bio-char shows a short degradation rate similar  to typical 

biomass refractory macromolecules ( e.g. resistant plant material 0.3 y-1), whereas charred VM 

(substance that are thermal breakable but characterized by aromatic structures)and “black nitrogen” 

structures are relatively more refractory to the chemical and biological attacks. 

 

 

 
                                                 
185J.A. Baldock, R.J. Smernik. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) 
wood. Organic Geochemistry 33 (2002) 1093–1109 
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3.4.3.5 Prediction of long term stability. 

Evaluation of volatile matter (VM) and fixed carbon amount (FC) in biochar samples is usually 

proposed as the simplest method for the evaluation of bio-char stability.172 This method  gives an 

idea of the amount of graphene like material in the bio-char, that are considered among the most 

stable carbon structure in   soil environment. Beyond the fact that bio-char samples with higher FC 

values are the most stable biochar, the type of VM evolved is especially important for the 

evaluation of medium-term stability of bio-char (e.g. 50 y), which is also linked to the stability of 

non-graphitic and aliphatic structures. 

As shown  in previous paragraphs, Py-GC-MS can be envisaged as a method for the investigation of 

the  chemical nature of VM and then it can be used to predict VM environmental stability. 

For this reason, FC data and Py-GC-MS techniques  of some representative bio-chars were used for 

obtain a global picture of the chemical nature of each material. In fact, by coupling VM and FC 

data, elemental analysis and Py-GC-MS, bio-char can be rationalized as non volatile matter (non 

breakable at 900°C and considered ultra-stable fraction of bio-char), degradable matter (volatile 

matter with aliphatic character) and matter with intermediate stability (charred volatile matter). 

Figure 3.4.4 shows the semi-quantitative analysis of different fractions performed by coupling FC 

results and  quantitative evaluation of different type of VM by  means of semi-quantitative (relative 

abundances) analysis of pyrolysis products. 

 

Figure 3.4.4: Quantitative evaluation of fractions with different degradability, characterized by  

means of coupled Py-GC-MS, FC and elemental analysis data. 
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Different degradation rates were then assigned to each fraction. Degradation rate of ultra-stable 

fraction (FC content) can be considered equal to that observed for archaeological charcoals 

(Kd=0.002 y-1 in temperate climates),186 in which only in resistant fraction remained.  

In order to have an approximate idea of the stability, the degradation ratio observed for different 

VM markers in 1 year aging (paragraph 3.4.3.4) can be used to predict the mineralization rate of 

charred VM, lignin like material, holocellulose like material and “proteins derived” compounds 

(Kd= 0.1 y-1;0.35 y-1; 0.5 y-1; 0.12 y-1 respectively).187,188 

By  these assumptions, it is possible to attempt an  rough prediction of bio-char stability over mid-

term period (100 y). According to the chemical composition shown in Figure 3.4.4, on the 100 y 

time span, bio-char could retain around 80% of initial carbon. Stability calculated by inclusion of 

VM (identified  from Py-GC-MS) resulted significantly higher than that obtained using only FC 

evaluation, and this because this type of data interpretation take into account also non graphitized 

but stable material, that give a contribute to the bio-char stability over medium time span (first 50 

years), that is especially relevant for actual GHGs strategies. From the results obtained for most of 

the bio-char samples, about 70-90% ob bio-char carbon is stable, under environmental conditions, 

for more than 50 y. On this time span, most degradable bio-char were those rich in nitrogen 

(distiller grains) or deriving from wood waste with high ash content.  

 

3.4.4 Conclusions 

Py-GC-MS  was demonstrated to be a very useful tool for fast investigation of bio-char structural 

features. The knowledge  of the molecular structure deduced from the chemical composition of the 

pyrolysate can be applied for  inferring the bio-char stability. 

In particular, quantitative Py-GC-MS enabled a rough estimate of the degradation rate of different 

structural fractions . A comparison between  thermogravimetric data  (fixed carbon and volatile 

matter) and Py-GC-MS data suggested that the molecular structure, and then the degree of bio-char 

stability is largely influenced by the starting material. Therefore Py-GC-MS could be proposed as 

method to check the quality of bio-char before the soil application.   

 

 

                                                 
186  C-H. Cheng, J. Lehmann, M.H. Engelhard. Natural oxidation of black carbon in soils: Changes in molecular form 
and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72 (2008) 1598-1610. 
187 D.S. Jenkinson. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. B  329 (1990) 361-
368. 
188 A. Hilscher, H. Knicker. Carbon and nitrogen degradation on molecular scale of grass-derived pyrogenic organic 
material during 28 months of incubation in soil. Soil Biology & Biochemistry 43 (2011) 261-270 
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3.5. Direct in-situ  catalytic pyrolysis of biomass: catalyst screening  by 

Py-GC-AED. 

 

3.5.1. Introduction 

Raw biomass pyrolysis oil has low heating value, and high water, acids and solid content. Over 

time, reactivity of some components in the oil leads to the formation of higher amount of larger 

molecules that results in higher viscosity and in slower combustion.189 For these reasons, an in-situ 

or downstream upgrading process could be beneficial. 

In searching for a moderate improve of  stability, an alternative strategy consists to perform a slight 

chemical modification of the pyrolysis oil avoiding a large decrease in its yields. The target is to 

enable storage, transportation and use of pyrolysis oil as energy carriers for electricity and heat 

production. 

The following strategies could be envisaged to this purpose: 

• Decrease in viscosity, dis-homogeneity and coking behaviour (e.g. during combustion or up-

grading) of the liquid products: by fractional removal of bio-oil high boiling constituents or 

by cracking of larger molecular constituents (e.g. bio-oil HM fraction) to smaller and stable 

fragments. As  shown by Gayubo et al., removal of HM can be achieved by on line thermal 

fractionation, producing bio-oil formed by lighter compounds (in that case immediately 

upgraded to aromatics over ZSM-5) and pyrolytic lignin as by-product.190 On the other 

hand, whereas the aim is to maximize liquid yield, catalytic cracking could be a way for 

direct conversion of HM to lighter compounds. 

• Partial de-oxygenation of pyrolysis products by elimination of oxygen as carbon monoxide 

and carbon dioxide.191 Oxygen removal as carbon dioxide or carbon monoxide intrinsically 

de-functionalizes reactive acids and aldehydes, The elimination of oxygen as water could 

involve the formation of more reactive double bonded compounds and could form a less 

stable oil. Moreover, increased water production by dehydration reactions reduce 

homogeneity of bio-oil due to phase separation. 

                                                 
189A. Oasmaa, S. Czernik. Fuel Oil Quality of Biomass Pyrolysis Oils-State of the Art for the End Users. Energ.Fuel 13 
(1999) 914-921. 
190 A.G. Gayubo, B. Valle, A.T. Aguayo, M. Olazar, J. Bilbao. Pyrolytic lignin removal for the valorization of biomass 
pyrolysis crude bio-oil by catalytic transformation. J. Chem. Technol.  Biotech. 85 (2010) 132-144. 
191 Y. Lin, G. W. Huber. The critical role of heterogeneous catalysis in lignocellulosic biomass Conversion. Energy 
Environ. Sci. 2 (2009) 68-80. 
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• Increase in “solvent-like” compounds which reduce ageing, improve homogeneity, decrease 

the viscosity and density, and increase the heating value of pyrolysis liquids.192,193 The 

disadvantage is that an increase in low boiling point organics lower the flash point, with 

more handling problems. 

A large body of literature data on the catalytic performance of various active solids on bio-oil 

characteristics has been acquired by means of both analytical and bench scale 

reactors.194,195,196,197,198,199,200,201,202,203,204,205,206,207,208 Nevertheless, the results are difficult to 

compare because of the variety of adopted experimental conditions, such as different feedstock 

types, reactor configurations and bio-oil  methods used in bio-oil characterization.  

On-line pyrolysis, with the pyrolyzer directly interfaced to GC-MS systems, is a well assessed 

technique to investigate the effect of a large number of catalysts on the pyrolytic behaviour of 

biomass on a molecular basis.209,210 Nevertheless, as shown in chapter 3.1, is difficult to obtain good 

                                                 
192 A. Oasmaa, E. Kuoppala, J. F.  Selin, S. Gust,Y. Solantausta. Fast Pyrolysis of Forestry Residue and Pine. 4. 
Improvement of the Product Quality by Solvent Addition. Energ.Fuel 18 (2004) 1578-1583. 
193 J. P. Diebold, S. Czernik, Additives To Lower and Stabilize the Viscosity of Pyrolysis Oils during Storage, 
Energ.Fuel, 11 (1997) 1081-1091. 
194 J. Adam, M. Blazsó, E. Mészáros, M. Stöcker, M. H. Nilsen, A. Bouzga, J. E. Hustad, M. Grønli, G. Øye. Pyrolysis 
of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84 (2005) 1494-1502. 
195 M.H. Nielsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen, M. Stocker. Investigation of the effect of metal 
sites in Me–Al-MCM-41 (Me = Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass, 
Micropor. Mesopor. Mat. 105 (2007) 189-203. 
196 E. Antonakou, A. Lappas, Merete H. Nilsen , A. Bouzga, M. Stöcker. Evaluation of various types of Al-MCM-41 
materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 85 (2006) 2202-2212. 
197 F. Ates,  M. Işıkdağ, Influence of temperature and alumina catalyst on pyrolysis of corncob, Fuel 88 (2009) 1991-
1997. 
198 J. Chattopadhyay, C. Kim, R. Kim,  D. Pak. Thermogravimetric study on pyrolysis of biomass with Cu/Al2O3 
catalysts.  J. Ind. Eng. Chem. 15 (2009) 72-76 
199L. Qiang, L. Wen-zhi, Z. Dong, Z. Xi-feng, Analytical pyrolysis–gas chromatography/mass spectrometry (Py–
GC/MS) of sawdust with Al/SBA-15 catalysts, J. Anal. Appl. Pyrol. 84 (2009) 131. 
200 A. Khelfa, V. Sharypov, G. Finqueneisel, J. V. Weber. Catalytic pyrolysis and gasification of Miscanthus Giganteus: 
Haematite (Fe2O3) a versatile catalyst. J. Anal. Appl. Pyrol. 84 (2009) 84-88. 
201 A. Pattiya, J. O. Titiloye, A.V. Bridgwater. Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. 
Appl. Pyrol. 81 (2008) 72-79. 
202 D.J. Nowakowski, J. M. Jones, R. M. D. Brydson, A. B. Ross. Potassium catalysis in the pyrolysis behaviour of short 
rotation willow coppice, Fuel 86 (2007) 2389-2402. 
203 F. Ates, A. E. Putun, E. Putun. Fixed bed pyrolysis of Euphorbia rigida with different catalysts. Energ. Convers. and 
Manage. 46 (2005) 421-432. 
204 D. Gullu. Effect of catalyst on yield of liquid products from biomass via pyrolysis. Energy sources. 25 (2003) 753-
765. 
205 S. Yorgun, Y. E. Şimşek. Catalytic pyrolysis of Miscanthus giganteus over activated alumina, Bioresource Technol., 
99 (2008) 8095-8100. 
206 A. Pattiyaa, J. O. Titiloye, A.V. Bridgwater. Evaluation of catalytic pyrolysis of cassava rhizome by principal 
component analysis. Fuel  89 (2010) 244-253. 
207 B.B. Uzun, N. Sarioğlu. Rapid and catalytic pyrolysis of corn stalks. Fuel Process. Technol. 90 (2009) 705-716. 
208 J. Adam, E. Antonakou, A. Lappas, M. Stöcker, M.H. Nilsen, A. Bouzga, J.E. Hustad, G. Øye. In situ catalytic 
upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Micropor 
Mesopor, Mat.  96 (2006) 93-101. 
209 D. J. Nowakowski, J. M. Jones, R. M. D. Brydson, A.B. Ross. Potassium catalysis in the pyrolysis behaviour of short 
rotation willow coppice. Fuel 86 (2007) 2389-2402. 
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mass balance by using only GC-MS systems. On the contrary, GC-AED system allows 

quantification (in term of yield of analyzed elements) of a large number of compounds without time 

consuming calibration and for this reason it was used in study of biomass catalytic 

pyrolysis.211,212,213 

By means of GC-AED it is possible to obtain results on yields and elemental composition of 

pyrolysis oil with minimal work up. For this reason, it is a useful technique for comparing a large 

number of catalytically active materials. In previous works dealing with Py-GC-AED applied to 

catalytic pyrolysis, ZnO, MgO, dolomite and limestone were tested as secondary catalysts. No 

increase in GC products yields was observed. With the adopted experimental procedure it was not 

possible to distinguish between heavy un-detectable compounds and loss for coking onto catalyst 

(placed downstream in the GC inlet). Nevertheless, scale up with ZnO catalysis showed that it is 

possible to improve the stability of bio-oil also by mild catalysis over cheap materials.211,212,213,214 

The aim of the present work was to perform a systematic screening study on a large variety of 

catalysts by Py-GC-AED to assess their activity in catalytic pyrolysis of biomass. Among the 

various elements detectable by AED detection, the attention was focused on quantitative 

determination of elemental carbon in order to evaluate yields of main pyrolysis fractions . 

 

3.5.2. Materials and methods 

3.5.2.1 Biomass and catalysts  

Pine sawdust used for the experiments was the same used in VTT (technical research center of 

Finland)  20 kg h-1 process development unit (PDU) and VTT 1 kg h-1 pyrolyser (bench scale). For 

analytical pyrolysis, the pine sawdust sample was grinded and sieved to particle size of 0.105-0.125 

mm and analyzed for major elements. Its composition was: 52% carbon, 42% oxygen, 6.2% 

hydrogen, 0.1% nitrogen, and 0.3% ash. 

Catalysts used in this study are listed Table 3.5.1 along with  a short description of main properties. 

H-ZSM-5 was purchased form PQ corporation Valfor, Tin oxide, zirconium oxide and H-Mordenite 

catalysts from BDH (Poole, UK, BDH-29881), Co0/SiO2 from Harshaw Chemie BV, bulk metal 

oxides from Merck. 
                                                                                                                                                                  
210 F. Ates, A. E. Putun, E. Putun. Fixed bed pyrolysis of Euphorbia rigida with different catalysts. Energ. Convers. and 
Manage. 46 (2005) 421-432. 
211R. Aléna, P. Oesch, E. Kuoppala. Py-GC/AED studies on the thermochemical behavior of softwood.  J. Anal. Appl. 
Pyrol. 35 (1995) 259-265. 
212M. Nokkosmäki, A. Krause, E. Leppämäkim, E. Kuoppala. A novel test method for catalysts in the treatment of 
biomass pyrolysis oil, Catal. Today 45 (1998) 405-409. 
213 M. Nokkosmäki; E. Kuoppala, E. Leppämäki, A. Krause. A novel test method for cracking catalysts, J. Anal. Appl. 
Pyrol. 44 (1998) 193-204. 
214 M. Nokkosmäki; E. Kuoppala, E. Leppämäki, A. Krause. Catalytic conversion of biomass pyrolysis vapours with 
zinc oxide. J. Anal. Appl. Pyrol. 55 (2000) 119-131. 



 79 

 

Table 3.5.1: Catalysts characterization. 

 Description BET AREA (m2 g-1) 
Al 3+/SiO2   MCM-41 970 
Sn4+/SiO2  MCM-41 390 
Fe3+/SiO2  MCM-41 770 
Mo6+/SiO2  MCM-41 810 
Co3+/SiO2  MCM-41 1200 
Ti4+/SiO2  MCM-41 450 
Zn+/SiO2  Amorphous 450 
Cu2+/SiO2  Amorphous 500 
Zr4+/SiO2 MCM-41 650 
SiO2  MCM-41 640 
Co3+/Al 2O3 10% Co3+, acidic Al2O3 160 
Co/SiO2 30% Co0 110 
ZrO2 Commercial catalyst 220 
SnO2 Commercial catalyst 9 
CaO bulk CaCO3 Calcined at 900°C 70 
ZnO bulk Bulk Metal oxide n.ab 
Fe2O3 bulk Bulk Metal oxide n.ab 
CuO bulk Bulk Metal oxide n.ab 
MoO3 bulk Bulk Metal oxide n.ab 
TiO2 bulk Bulk Metal oxide n.ab 
WO3 bulk Bulk Metal oxide n.ab 
MgO  Bulk Metal oxide n.ab 
Hydrotalcite Calcined clay 170 [215]a 

Montmorillonite Calcined clay 67 [216]a 

H-ZSM-5 Commercial catalyst 
Si/Al 150 

420 

H-Mordenite Commercial catalyst 460 
MS-1 Cu/Zn/Zr on Al2O3 

16/15/5.9 % Cu,Zn,Zr content 

94 

MS-2 Fe/Zn/Cu mixed oxides 
64/5.1/1.2 % Fe,Zn,Cu content 

130 

MS-3 Fe/Cu/Al/Zn mixed oxides 
45/1.5/5.7/4.5 % Fe,Cu,Al,Zn content 

300 

MS-4 Co on ZrO2; 30 % Co 10 
MS-5 Cu on ZrO2;30 % Cu 10 

adata from literature reference bpure commercial (form Merck) metal oxide, used as purchased  
 

3.5.2.2 Synthesis of catalysts(MS-n and MCM-41) 

Co3+/Al 2O3 was prepared by incipient wetness impregnation of puralox support (from Condea), 

dried under vacuum and impregnated with a Co(NO3)2 solution. The catalyst was dried in a 

rotavapor under vacuum at 40-50°C and thereafter calcined in air flow at 300°C . 

Cu-ZnO-ZrO2/Al 2O3 catalyst denoted as MS-1 was prepared by impregnating the active 

components onto a high surface area Al2O3. Alumina support was dried in vacuum at 80°C and 

impregnated at 80°C with a solution of zirconium nitrate. The impregnated support was dried in 

                                                 
215 M. B. de Carvalho, J. Pires, A.P. Carvalho. Characterisation of clays and aluminium pillared clays by adsorption of 
probe molecules. Microporous Mater. 6 (1996) 65-77. 
216J. Shen, M. Tu, C. Hu. Structural and Surface Acid/Base Properties of Hydrotalcite-Derived MgAlO Oxides Calcined 
at Varying Temperatures. J. Solid State Chem. 137 (1998) 295-301. 
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vacuum at 80oC for 3 hours, in air at 120oC overnight and then calcined in air at 700oC for 2 hours. 

This modified support was co-impregnated three times with a hot 80°C solution of Cu and Zn 

nitrates. The catalyst was dried and calcined at 350°C between the repeated impregnations carried 

out as described above.  

Fe-Zn-Cu and Fe-Cu-Zn-Al catalyst denoted as MS-2 and MS-3 were prepared following the 

preparation procedure of Li et al.217. Solutions  with mixed metal of metal nitrates were co-

precipitated at 80oC at pH of 7 using ammonium hydrogen carbonate. The precipitate was filtered, 

washed with water and ethanol, and dried at 110oC for 12 hours. Finally, the material was calcined 

in air at 400oC (with 1oC min-1 heating rate) for 4 hours.  

Co/ZrO2 and Cu/ZrO2 catalysts denoted as MS-4 and MS-5 were prepared by re-precipitation 

following the guidelines by Saito et al. 218. A mixed solution of Cu and Zr nitrates (total metal 

concentration 1 M) and an aqueous solution of Na2CO3, NaOH, NH4HCO3 or NH3 (1,1 M) were 

added dropwise to distilled water at 80oC at pH of 7. The precipitate was aged 0.5 h, cooled down to 

room temperature, filtered and washed with distilled water. The precipitates were dried in air at 

120oC overnight and calcined in air at 350oC for 2 hours.  

The synthesis of SiO2 high surface mesoporous materials (MCM-41) was  described in detail 

elsewhere219. In a typical procedure, a weighed amount of metal salt (4.4 mMol of metal) was added 

into 120 ml of an aqueous solution of hexadecyltrimethylammonium bromide (2.4 g) until complete 

dissolution.  The solution was magnetically stirred for 2 hours and then 10 ml of tetraethoxysilane 

(44 mMol Si)  were added under mixing avoiding any stratification of the monomer over the 

solution. Hence, 8 ml of 30% NH3 solution were added dropwise to the reaction mixture under 

vigorous magnetic stirring. As soon as the addition of ammonia terminated, the reaction vessel was 

transferred into a IKA KS 260 basic oscillator and polycondensation was conducted for 72 hours 

under horizontal laminar shaking at 50 rpm. The gel initially formed from the reaction mixture 

turned into a white solid that was filtered and thoroughly washed with de-ionized water. The solid 

was dried overnight under vacuum at 100 °C, crushed with a mortar and heated for 1 hour at 500° C 

under nitrogen flow (1.5 l min-1) by means of a 800 ml quartz reactor. Finally the grey solid 

obtained was calcined at 550°C for 5 h. The resulting solid was subjected to characterization and 

pyrolysis experiments. 

 

                                                 
217 S. Li, S. Krishnamoorhy, A. Li, G.D. Meitzner, E. Inglesia. Promoted Iron-Based Catalysts for the Fischer–Tropsch 
Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties. J. Catal. 206 (2002) 202-217. 
218M. Saito, T. Fujitani, M. Takeuchi, T. Watanabe. Development of copper/zinc oxide-based multicomponent catalysts 
for methanol synthesis from carbon dioxide and hydrogen. Appl. Catal. A: General 138 (1996) 311-318. 
219 C. Torri, I.G. Lesci and D. Fabbri. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-
41 mesoporous materials. J. Anal. Appl. Pyrol. 85 (2009) 192-196. 
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3.5.2.3 Characterisation of catalysts 

In order to establish the MCM-41 structure, the powder X-ray patterns of silica based materials 

were recorded using a Philips XCelerator diffractometer with Cu Kα radiation (λ = 1.5418 Å) and a 

Ni filter. The samples were scanned for 2 ϑ angles between 1˚ and 15˚, with a resolution of 0.02˚. 

The lattice and the peak profile parameters were evaluated using Highscore software. The N2 

adsorption-desorption isotherm of the SiO2 materials was collected on Carlo Erba Sorpty 1750 at 77 

K. Prior to the measurement, the calcined samples were degassed at 120°C until a stable vacuum of 

about 5 mTorr was reached. The specific surface area was assessed using the Brunauer Emmett 

Teller (BET) method from adsorption data. All catalysts but Co0/SiO2 and CaO were activated in air 

at 600°C over night, and all catalysts were stored in desiccator prior to use. 

 

3.5.2.4 Py-GC-AED 

Figure 3.5.1 shows the analytical procedure used for on line Py-GC-AED. The apparatus employed 

for Py-GC-AED experiments was described in detail in chapter 3.1 and elsewhere.211,212,213 

The pyrolysis unit was a CDS Pyroprobe 1000 pyrolyser connected to a HP 5890 Series II gas 

chromatograph, and detection was carried out with an HP 5921A inductively coupled plasma-

atomic emission detector (MIP-AED).  

 

Figure 3.5.1: Graphical scheme of the analytical procedure used in the determination of carbon 

distribution among pyrolysis fractions.  

 

Py-GC-AED analytical procedure was explained in detail in chapter 3.1. The results were 

summarized by distinguishing pyrolysis products according to their volatility. Retention time was 

used as reference  to discriminate gaseous (first peak at 2.6 min), volatile (4 min>RT>2.6 min), and 

others semi-volatile GC detectable compounds (RT>4 min). The yield of the solid residue  was 

evaluated at the end of the complete run in the following way: the interface was cooled down, the 

CSR���� Solid residue 

CHM= Csample -(CSR+Cgas+ CV+CSV) 

Non volatile 

Cgas����Gas 

CSV ����Semi-volatile  

Pyrolysis  

 

 

GC-ICP-AED:  

 CV   ����Volatile    

 

Cbio-oil  
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quartz tube was removed from the probe and weighed. Then, the sample was treated  in muffle oven 

at  550 °C for 5 h and re-weighed. The weight difference before and after burning in the muffle 

gave the mass yield of the solid residue that corresponded to the yield on a carbon basis (i.e. solid 

residue was assumed to be composed of nearly pure carbon). Carbon yield of HM ( accounting for 

pyrolytic lignin and WSHM) was calculated by difference between 100% and sum of carbon yield 

of gas, volatile, semi-volatile and solid residue. When copper containing catalysts were used, 

carbothermal reduction of CuO (as well as oxidation of copper in the muffle) was considered in the 

calculations and complete reduction of copper oxide in pyrolysis conditions was assumed. When 

Co0/SiO2 commercial catalyst was used complete oxidation of cobalt during the burning of solid 

residue in the oven was considered for calculations. 

 

3.5.2.5 Bench scale pyrolysis and characterization of liquid product 

VTT bench scale fluidized bed pyrolysis equipment (1 kg h-1) was used to produce bio-oil from pine 

sawdust. The results from the bench scale system were compared with the results obtained with the 

Py-GC-MIP-AED system. Pine sawdust samples (same used for analytical equipment) with particle 

size of 550 – 920 µm were used. The experiment was performed at 525 °C with a vapor residence 

time of 0.8 s. Nitrogen was used as the fluidizing gas and aluminum oxide as inert fluidizing agent.  

Char formed during pyrolysis was removed from the hot outgoing flow by two cyclones. 

Afterwards the cyclones the vapors were cooled and bio-oil was collected in two liquid condensers 

and an electrostatic precipitator.  

After the experiments the amount of char and liquid products were measured by weighing. 

Pyrolysis gases (CO, CO2, H2, C1-C5-hydrocarbons) were collected in gas sampling bottles during 

the experiment and the composition of the gases was measured after the experiment by GC analysis. 

The chemical composition  of the liquid product was determined with the solvent fractionation 

scheme of bio-oil, described more in detail elsewhere220. Carbon yields were obtained for the gas, 

char, GC detectable bio-oil (volatile and semi-volatile compounds) and heavy bio-oil (WSHM and 

pyrolytic lignin). The carbon yield for gas was back calculated from the molecular composition 

measured by GC analysis. Carbon yield of GC detectable bio-oil compounds was obtained by GC-

MIP-AED analysis of pure bio-oil, performed by injecting 1µl of pure bio-oil (homogenized before 

the sampling) in the Py-GC interface in the same condition used for analytical pyrolysis. The carbon 

yield for char, WSHM and pyrolytic lignin was determined by analyzing the carbon content of each 

fraction.  

                                                 
220 A. Oasmaa, E. Kuoppala. Solvent Fractionation Method with Brix for Rapid Characterization of Wood Fast 
Pyrolysis Liquids. Energ.Fuel 22 (2008) 4245-4248 
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3.5.3. Results and discussion 

3.5.3.1 Comparison of micro-scale system pyrolysis with bench scale reactor 

In order to confirm the validity of Py-GC-AED for screening oriented studies, a comparison 

between results obtained with micro-scale equipment and bench scale pyrolysis apparatus was 

undertaken. The precision of the Py-GC-AED method was good, and relative standard deviation 

(RSD) over 10 tests on pine sawdust was 5%. Figure 3.5.2 shows the qualitative comparison of GC-

AED chromatograms obtained by injecting 1 µl of pyrolysis oil from pine sawdust in the Py-GC 

interface and by performing analytical pyrolysis on the same feedstock.  

 

Figure 3.5.2: Comparison of the GC-MIP-AED chromatograms obtained by injection of pyrolysis 

oil (obtained by non-catalytic pyrolysis of pine sawdust) and by analytical pyrolysis pine sawdust 

without any catalyst. 

 

Chromatograms were similar, characterized by the most volatile bio-oil constituents (e.g. 

hydroxyacetaldehyde, acetic acid and hydroxyacetone) in the early plot after gas  peaks and then a 

great number of partially overlapped peaks in the 7-13 min retention time range, mainly formed by 

pyrolysis products from cellulose, together with typical phenolics produced from lignin 

degradation. 

In order to compare the two systems from a quantitative point of view, it was assumed that the non-

volatile pyrolysis products (HM) obtained from microscale Py-GC-AED system consisted of 

pyrolytic lignin and heavy water-soluble fraction (WSHM) of bio-oil. Furthermore, both solvent 
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fractionation data and relative atomic compositions of fractions were used for obtaining carbon 

yields from bench scale reactors. Figure 3.5.3 shows comparison of carbon yields obtained for gas, 

GC bio-oil (volatile and semi-volatile GC-eluted compounds), HM (not GC detectable matter) and 

solid residue, here considered char carbon yield of bench scale reactor and total solid residue 

retained in quartz tube for Py-GC-AED system. 

 

Figure 3.5.3: Comparison between the results obtained by the Py-GC-MIP-AED procedure and by 

bench scale pyrolysis. 

 

Carbon yields of GC detectable matter and gas obtained by analytical (25% and 12%) and bench 

scale pyrolysis (26% and 11%) were similar. However, large differences were observed in solid 

residue and HM carbon yields. 

Results of comparison could be rationalized by assuming that pyrolytic process, at 500°C, was 

similar for both bench and analytical scale equipments resulting in similar product yields, but mass 

flows were markedly different. Analytical Py-GC-AED was characterized by higher vapour 

residence time (≈10 s) than bench scale reactor (0.8 s). In particular, a minimal fraction of helium 

gas flow purge the inner volume of quartz tube filled with biomass, hampering the fast  removal of 

high boiling point substances. Moreover, due to slower heat transfer in fixed bed than in fluidized 

bed, actual sample temperature should be lower in the Py-GC system than in the bench scale 

pyrolysis. For these reasons, in analytical pyrolysis, a higher fraction of HM is expected to be 

retained into the quartz tube, and subsequently coked. This coked HM was clearly observable as a 

black ring near the quartz tube opening at the end of pyrolysis. In the experimental procedure used 

there, coked HM ended up in the solid residue. 
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In conclusion, overestimation of solid residue and underestimation of HM have to be considered    

when extrapolating data to systems with better heat transfer. Nevertheless, the established Py-GC-

AED procedure was adequate to provide a reliable comparison of catalyst activity on a relative 

scale, for the purpose of screening and relative comparison among different catalysts.  

 

3.5.3.2 Catalytic pyrolysis of pine sawdust: qualitative aspects 

Effect of catalyst on the yields of different pyrolysis products was screened at 500°C for 34 catalyst 

selected among silica supported metal oxides, metal oxide catalyst, bulk metal oxides, calcined 

clays, fischer-tropsch catalysts (Co/Al2O3, Co/SiO2) and catalyst for methanol synthesis from 

syngas (MS-n).  

 

Figure 3.5.4: examples of py-GC-AED chromatogram obtained by non catalytic pyrolysis, 

catalytical pyrolysis with Al-MCM-41 with 1-1 biomass-catalyst ratio (qualitatively similar activity 

to other tested catalyst), H-ZSM-5 with 1-20  biomass-catalyst ratio, and CaO with 1-1 biomass-

catalyst ratio. 

 

 

The catalyst to biomass ratio used was 1-1, and for comparison pyrolysis with large excess of H-

ZSM-5 catalyst (1-20 ratio) was undertaken for comparison. Among catalytic pyrolysis performed 

with 1-1 catalyst-biomass ratio, the typical effect of all tested catalyst but calcium oxide on the the 

GC detectable pyrolysis product consist in a decrease in high molecular weight product and increase 
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of product of sugars dehydration like furfural or hydroxymethyilfurfural or smaller fragments 

originated from carbon-carbon bond rupture. Figure 3.5.4 shows, for example, the effect of Al-

MCM, with increase of dehydration product already observed by Adam et al. with a similar 

system.194 In this case, poor or no effect were observed on lignin pyrolysis product.  

H-ZSM-5 used in large excess transformed the bio-oil into aromatic products. Calcium oxide 

caused  a deep change in GC detectable product, consisting in an elimination of acetic acid peak and 

a large increase in ketones (mainly acetone) yield, probably originated from base catalyzed ketonic 

condensation of acetic acid.  

 

4.2.3.3 Catalytic pyrolysis of pine sawdust: quantitative analysis 

A suite of catalysts belonging to different families were evaluated by analytical pyrolysis at 500°C. 

Catalysts and pine sawdust were mechanically admixed in 1:1 biomass to catalyst mass ratio and 

triplicate tests were performed for each catalyst. Yields were determined on a elemental carbon 

basis and mean values were reported in table 3.5.2.  Mean RSD for catalytic pyrolysis was 10%. 

Concentration of HM in bio-oil (see below) was reported as well on a mass carbon basis. 

As shown  in figure 3.5.1, pyrolysis products were divided into different categories on the basis of 

their volatility: gas, GC detectable (further divided into a volatile and semi-volatile fraction), non-

volatile fraction (here called heavy matter or HM) solid residue, consisting in the sum of char and 

coked material (on catalyst on quartz tube). Volatile, semi-volatile and non-volatile products (HM) 

collectively made up the bio-oil. 

Pyrolysis of pine sawdust without catalyst produced 12% yield of gas, 1.6% yield of volatile 

compounds and 23% of semi-volatile compounds. Bio-oil yield obtained by analytical pyrolysis 

was 47%, and HM content of the bio-oil was 47%. 

Among silica based high surface materials, SiO2, Al3+/SiO2, Fe3+/SiO2 and Zr4+/SiO2 caused a large 

decrease of both bio-oil yields (from 47% to 19%, 22%, 19% and 22%, respectively) and a 

concurrent lower HM concentration in bio-oil. It is worth noting that despite some obvious 

differences among the experimental systems, yields of major products obtained using SiO2 and 

Al 3+/SiO2 mesoporous catalysts were similar to those observed by Adam et al. in fixed bed bench 

scale reactor with spruce wood and similar biomass:catalyst ratio208. This could indicate that, when 

HM yields approach to zero (as in fixed bed catalytic pyrolysis with high specific surface catalysts), 

mass transfer differences become less critical so that analytical and bench scale systems tend to 

provide similar results.  
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Table 3.5.2: Carbon yields (% C/Csample, average value from triplicate analyses) of different 
fractions obtained by pyrolysis in presence of different catalysts (MS-n stands for methanol 
synthesis catalyst).  

 Gas 
C/Csample  

Volatile 
C/Csample  

SV 

C/Csample  
S. Residue a 

C/Csample  
HM 

C/Csample  
Bio-oil 

C/Csample  

HM 
C/Cbio -oil  

- 12 1.6 23 41 22 47 47 
Al 3+/SiO2   15 4.0 12 63 5.5 22 25 
Sn4+/SiO2  11 2.6 9.0 51 27 38 70 
Fe3+/SiO2  18 3.6 8.7 63 6.7 19 35 
Mo6+/SiO2  15 3.2 18 58 5.4 27 20 
Co3+/SiO2  14 3.0 12 59 11 26 43 
Ti4+/SiO2  16 3.3 17 47 17 37 46 
Zn+/SiO2  13 2.8 19 61 4.9 26 19 
Cu2+/SiO2  15 2.4 12 56 15 29 51 
Zr4+/SiO2 16 4.0 14 62 3.8 22 18 
SiO2  19 2.4 17 62 0 19 0 
Co3+/Al 2O3 14 3.3 24 59 0 27 0 
Co/SiO2 14 2.0 16 57 11 29 37 
ZrO2 15 2.9 25 50 7 35 20 
SnO2 14 2.8 24 54 5 32 16 
CaO bulk  3.6 2.2 11 83 0.0 13 0 
ZnO bulk  11 1.9 31 42 15 47 31 
Fe2O3 bulk  13 2.2 31 42 11 44 25 
CuO bulk  23g 

(8.1)h 
3.0 30 27g  

(43)h 
16 49 33 

MoO3 bulk  9.3 2.0 22 33 34 58 59 
TiO2 bulk  10 1.8 18 34 37 57 65 
WO3 bulk  11 3.6 21 32 32 57 57 
MgO  18 2.9 13 65 0.0 16 0 
Montomorillonite  10 1.7 25 45 18 45 41 
Hydrotalcite  12 2.0 21 56 8.0 31 26 
H-ZSM-5 13 3.2 24 37 22 50 45 
H-ZSM-5i 30 1.0 13 56 0 14 0 
H-Mord enite  8.7 1.9 22 59 8.7 33 27 
MS-1 21 2.5 20 55 1.8 25 7 
MS-2 17 2.8 26 47 6.8 36 19 
MS-3 17 1.8 23 47 10 35 29 
MS-4 19 2.4 27 49 2.7 32 8 
MS-5 14 2.2 26 47 12 39 29 

sS.Residue: sum of char, coke and coked HM;  bGas: First large peak at 2.6 min; cVolatile: eluted 

after gas and before 4 min; dSV (semi-volatile): all semi-volatile GC detectable compounds eluted 

after 4 min; eBio-oil: calculated as Csample- (Cgas+Cchar); 
fHM (heavy matter): calculated as Cbio-oil - 

(Cv+Csv); 
gRaw data obtained; hYield if effect of carbothermal reduction of the catalyst and 

oxidation of char (with production of gas) was considered; i1:20 biomass to catalyst ratio, aromatic 

hydrocarbons as main semi-volatile pyrolysis products. 

 

Moreover, all silica based high surface materials increased volatile fraction yields. The highest 

effect was obtained  with Fe3+/SiO2, Al3+/SiO2 and Zr4+/SiO2  producing volatile fraction yields of 

4.0%, 4.0% and 3.6%, respectively. Sn4+/SiO2 caused a small decrease in bio-oil yield (from 47% to 
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38%) and slight increase in HM yield (from 22% to 27%). Catalytic pyrolysis in the presence of 

Co3+/SiO2, Ti4+/SiO2 and Cu2+/SiO2 showed an intermediate behaviour with a marked decrease of 

both HM and bio-oil yields. Mo6+/SiO2 and Zn2+/SiO2 induced a large decrease in both HM yield 

(from 22% to 5.4% and 4.9 respectively) and a marked decrease in bio-oil yields (from 47% to 27% 

and 26% respectively), without any increase of GC detectable matter. 

Among bulk metal oxides, MoO3, TiO2 and WO3 led to a slight raise of both bio-oil and HM yield. 

WO3 also markedly raised volatile yield (from 1.6% to 3.6%); ZnO did not affect the bio-oil yield 

and lowered HM yield (from 22% to 15%). 

CuO slightly increased bio-oil yield (from 47% to 49%), mainly through a raise of semi-volatile 

fraction (from 23% to 30% yield), and markedly lowered HM yield (from 22% to 16%). This effect 

could be explained by the partial oxidation of HM macromolecules onto the CuO surface, with 

release of additional semi-volatile fragments and (through the evolved heat) speeding up the 

pyrolysis process. The observed catalytic activity of CuO is well known and has been largely 

exploited in determination of lignin moieties in environmental samples221,222. 

With strong alkaline catalysts, like CaO and MgO, GC detectable bio-oil yield dropped to 13% and 

16%, probably with large coking, not evaluated here owing to possible carbonation of the catalyst. 

The effect obtained with MgO and CaO admixed to biomass was similar to that observed for similar 

catalysts placed as downstream catalyst bed in the same system, which resulted in lower production 

of bio-oil212. 

Among clays, calcined montmorillonite caused only a small effect with 45% bio-oil yield and 18% 

HM yield. HM yields were diminished from 22% to 8% by calcined hydrotalcite, with a 

concomitant slight reduction of bio-oil yields (from 47% to 31%). 

As far as zeolites are concerned, H-mordenite and H-ZSM-5 were tested, the latter with a high 

catalyst:biomass ratio (20:1), in addition to the 1/1 adopted in this study. With low catalyst/biomass 

ratio, H-ZSM-5 did not affect bio-oil nor HM yields, whereas H-mordenite decreased bio-oil yield 

to 33% and HM yield to 9%. With the high catalyst/biomass ratio, H-ZSM-5 yielded predominantly 

solid residue (56% yield) and gas (30% yield), while the remaining fraction (14% yield) was 

composed essentially by aromatic hydrocarbons. This behaviour is analogous to that reported by 

                                                 
221 J.I Hedges, J.R. Ertel. Characterization of lignin by capillary gas chromatography of cupric oxide oxidation products, 
Anal. Chem. 54 (1982) 174-178. 
222 P.G. Hatcher, M. A. Nanny, R. D. Minard, S.D. Dible, D.M. Carson. Comparison of two thermochemolytic methods 
for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of 
thermochemolysis with tetramethylammonium hydroxide (TMAH). Org. Geochem. 23 (1995) 881-888 
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Carlson et al. for model compounds with the same Py-GC apparatus but interfaced to MS 

detector223.  

Regarding Fischer-Tropsch catalysts (Co3+/Al 2O3, Co0/SiO2), remarkably HM was not revealed 

with Co3+/Al 2O3 , so that this catalyst yielded a 27% bio-oil consisting predominantly of semi-

volatile products. When cobalt occurred as Co0/SiO2  the resulting bio-oil (29% yield as with 

Co3+/Al 2O3) contained 37% HM. The activity of ZrO2 was similar to that of SnO2 with a slight 

decrease of bio-oil (from 47% to 35% and 32% yields, respectively) as well as HM yield (from 22% 

to 7% and 5%, respectively).  

Finally, several catalysts utilised in the synthesis of methanol from syngas (MS-n) were tested for 

the first time in the pyrolysis of biomass. MS-1 virtually eliminated HM (only 2%yield), but with a 

concomitant strong decrease in yield of bio-oil (from 47% to 25%). MS-2 and MS-4 lowered HM 

from 22% to 7% and 3%, but with a minor drop in bio-oil yields (to 36% and 32%). MS-3 and MS-

5 showed less pronounced activity, with still a relatively high HM yield (10% and 12%) and a 

minor decrease in bio-oil yield (from 47% to 35% and 39%). 

Summarizing the results, it can be noticed that most of the catalysts decomposed HM and heaviest 

semi-volatile matter, leading to coking  rather than to the formation of GC-detectable products. 

Mesoporous materials characterised by high surface area, with exception of pure silica, failed in 

cracking activity of HM into GC detectable compounds, and this could be caused by a too high 

adsorption and coking rate in comparison to cracking activity. 

Only few catalysts among the variety tested in this study were able to break down HM into GC 

detectable products, with a significant increase of gas, volatile and semi-volatile products. 

In particular, some pure metal oxides and mixed metal oxides, in particular copper and cobalt 

containing metal oxides, showed a minor propensity to yield coke in comparison with other 

catalysts. For these catalysts, the effectiveness of the HM degradation into GC detectable carbon is 

illustrated in Figure 3.5.5. Here the percentage reduction of HM yield in comparison to non-

catalytic pyrolysis (x-axis) was plotted vs. the effectiveness of conversion of HM to GC detectable 

(y-axis), obtained from ratio between absolute increase in GC detectable and absolute decrease in 

HM yield (both in comparison with non-catalytic pyrolysis). Shadowed area indicated graphically 

the overall trend and was built up by including all catalysts that raised significantly the GC 

detectable products yield. 

 

                                                 
223 T.R. Carlson, T.P. Vispute, G.W. Huber. Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived 
Compounds. ChemSusChem. 1 (2008) 397-400. 



 90 

Figure 3.5.5: Percentage reduction of HM yield (X axis) versus effectiveness of conversion of HM 

to GC detectable (Y axis); Only catalyst that increased GC detectable pyrolysis products are shown. 
aH-ZSM-5 used in 1:20 biomass:catalyst ratio. 

 

As expected, the most active catalysts in HM cracking (namely ZSM-5 used in 1:20 ratio, 

mesoporous SiO2, MS-1 and Co3+/Al2O3) were generally characterized by higher coking rate and 

lowest conversion of HM into GC detectable products. On the other hand “mildest” catalysts (like 

ZnO, CuO and Fe2O3 bulk metal oxides) cracked only a small amount of HM into GC detectable 

products, but with carbon effectiveness approaching to 100% and low coking rate. Moreover, for 

similar HM reduction rate, chemically different catalysts played a role in determining different 

increase in GC detectable products, conceptually represented by the vertical width of the shadowed 

area in figure 3.5.5 (constructed by comprising all data obtained). From this point of view, the best 

catalysts were those near the upper edge of the grey area in Figure 3.5.5 (e.g. ZnO, Fe2O3, MS-4). 

3.5.4 Conclusions 

The selection of proper catalyst is a fundamental step in developing catalytic pyrolysis as an 

effective process to convert biomass into a valuable liquid biofuel. A simple procedure based on 

elemental carbon determination by Py-GC-AED, weight determination and reasonable assumptions 

allowed to conduct a systematic study on the catalytic activity of large array of active solids 

belonging to different chemical families and industrial applications. Quantitative data were 

rationalised in terms of carbon yields representative of gas, bio-oil and solid residue. Bio-oil was 

further characterized in terms of GC detectable products and a non-volatile heavy fraction, this 

latter associated to some detrimental aspects in fuel application (high viscosity, phase separation 

and more difficult combustion). 

With all the tested catalysts the yields of bio-oil ranged from 14 to 58%, with large differences in 

the concentration of the heavy fraction (0-70%). However, for most of the catalysts reduction of 
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heavy matter was accompanied by a significant diminution of bio-oil yields with respect to un-

catalysed pyrolysis of biomass. Thus, few catalysts were able to counteract the drop in bio-oil yields 

by an increase in the amount of gas, volatile and semi-volatile compounds. At this regard, the most 

interesting catalysts resulted to be CuO which exhibited the highest yields in semi-volatile 

compounds, mixed metal oxide catalysts (Fe2O3, and mixed metal oxides containing copper and 

cobalt) and ZnO which reduced the proportion of heavy fraction in the bio-oil with a limited 

decrease in its yield.  
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4. Applied pyrolysis for carbon-neutral fuels and 

chemicals 
 

4.1. Upgrading of Bio-oil by hydrogenation and cata lytic cracking over 

H-ZSM-5 

 

4.1.1 Introduction 

Main problems concerning the use of bio-oil as fuel, are the low volatility, high viscosity, the 

formation of coke, and corrosiveness. 224 One of the possible effective strategy for the upgrading of 

biomass pyrolysis oils involves complete de-functionalization of the oils, through deoxygenation 

with production aromatic hydrocarbons, by processing pyrolysis vapours onto H-ZSM-5, H-Y 

zeolite, H-mordenite, silicalite, silica-alumina or fluid catalytic cracking catalyst (FCC), with best 

results obtained with H-ZSM-5.225,226,227,228,229,230,231,232,233,234,235,236,237,238 This approach has the 

advantage to directly produce an automotive fuel similar to gasoline, but it has important 

drawnbacks, as the loss of energetic efficiency and the fast catalyst deactivation due to water and 

                                                 
224 S. Czernik, A.V.  Bridgwater. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18 (2004) 590-
598. 
225 E. Furimsky. Catalytic hydrodeoxygenation. Appl Catal. A 199 (2000)147-190. 
226 D.C. Elliott, D. Beckman, A.V. Bridgwater, J.P. Diebold, S.B. Gevert, Y. Solantausta. Developments in direct 
thermochemical liquefaction of biomass: 1983-1990. Energy Fuels. 5 (1991) 399-410. 
227 L. Petrus, M.A. Noordermeer. Biomass to biofuels, a chemical perspective. Green Chem. 8 (2006) 861-7. 
228 J.D. Adjaye, N.N. Bakhshi. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: 
Conversion over various catalysts, Fuel Process. Technol. 45 (1995) 161-183. 
229 J.D. Adjaye and N.N. Bakhshi, Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: 
Comparative catalyst performance and reaction pathways, Fuel Process. Technol., 45 (1995) 185-202. 
230 J.D. Adjaye, S.P.R. Katikaneni and N.N. Bakhshi. Catalytic conversion of a biofuel to hydrocarbons: effect of 
mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Process. Technol. 48 (1996) 115-143. 
231 R.K. Sharma, N.N. Bakhshi. Catalytic upgrading of pyrolysis oil. Energ.Fuel. 7 (1993) 306-314. 
232 S.T. Srinivas, A.K. Dalai, N.N. Bakhshi. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction 
system. Can. J. Chem. Eng. 78 (2000) 343-354. 
233 H.J. Park, J.I. Dong , J.K. Jeon, K.S Yoo, J.H Yim, J.M Sohn and Y.K. Park. Conversion of the pyrolytic vapor of 
radiata pine over zeolites. J. Ind. Eng. Chem. 13 (2007) 182-189. 
234 T.R. Carlson, G.A. Tompsett, W.C. Conner, G.W. Huber. Aromatic Production from Catalytic Fast Pyrolysis of 
Biomass-Derived Feedstocks. Top-Catal. 52 (2009) 241-251. 
235 H.I. Lee, H.J. Park, Y.K. Park, J.Y. Hur, J.K Jeon, J.M. Kim. Synthesis of highly stable mesoporous aluminosilicates 
from commercially available zeolites and their application to the pyrolysis of woody biomass. Catal. Today. 132 (2008) 
68-74. 
236 O. Onay. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor. Fuel 86 (2007) 1452-
1460. 
237  A. Atutxa, R. Aguado, A. G. Gayubo, M. Olazar, J. Bilbao. Kinetic Description of the Catalytic Pyrolysis of 
Biomass in a Conical Spouted Bed Reactor. Energ.Fuel. 19 (2005) 765-774. 
238S. Vitolo, M. Seggiani, P. Frediani, G. Ambrosini, L. Politi. Catalytic upgrading of pyrolytic oils to fuel over 
different zeolites. Fuel 78 (1999) 1147-1159. 
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extensive coking (in comparison with that from hydrocarbon processing) over the 

catalyst.239,240,241,242,243,244  

Basically, the upgrading of fast pyrolysis bio-oil is challenging task, due to the reactivity of the 

condensed bio-oil recovered from fast pyrolysis. One of the most important features of raw bio-oil 

is the co-presence of phenols and aldehydes, that can form polymeric substances and finally coke  if 

subjected to heat. This determines the bio-oil poor quality as fuel and, more specifically, it 

determines a loss in effectiveness during any downstream processing.  For this reason, 

Hydrogenation of aldehydes into alcohols and , possibly, partial deoxygenation  and reduction of 

reactive double bonds can be beneficial for bio-oil quality and it can facilitates further de-

oxygenation steps. 

Most of petroleum industry hydrotreating procedures requires high temperature and pressure 

conditions that, if the treatment is applied to a raw bio-oil, usually determines an unacceptable 

increase in coke formation and decreases the selectivity of overall process. 245 The first attempts  to 

perform high temperature hydro-deoxygenation, aimed at obtaining a petroleum like material, in a 

single step formed a heavy, cokelike semi-solid product.246 

Although it is widely accepted that direct application of  petroleum hydrotreating technology is not 

affordable to fast pyrolysis bio-oil,224 a significant increase in effectiveness were obtained by 

Catalytic hydrotreatment at temperatures below 300 °C with either Ni or sulfided  cobalt 

molybdenum (CoMo) catalysts. These catalysts  were effective in producing a stabilized oil 

product, able to be entirely distilled without significant coke formation.247 This product was 

successfully used  as feedstock for gasoline range fuel synthesis in a second high 

temperature/pressure hydrocracking stage on sulfided  CoMo catalyst at conditions of 

                                                 
239 A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado and J. Bilbao. Transformation of Oxygenate Components of 
Biomass Pyrolysis Oil on a HZSM-5 Zeolite. I. Alcohols and Phenols. Ind. Eng. Chem. Res. 43 (2004) 2610-2618. 
240A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Aguado, M. Olazar and J. Bilbao. Transformation of Oxygenate 
Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids. Ind. Eng. Chem. Res., 
43 (2004) 2619-2626. 
241 A.G. Gayubo, A.T. Aguayo, A. Atutxa, B. Valle, J. Bilbao. Undesired components in the transformation of biomass 
pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst. J. Chem. Technol. Biotechnol. 80 (2005) 1244-1251. 
242 P.A. Horne, P.T. Williams. The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-
derived pyrolysis vapours Journal of Analytical and Applied Pyrolysis. J. Anal. Appl. Pyrol. 34 (1995) 65-85. 
243 A. G. Gayubo, A. T. Aguayo, A. Atutxa, R. Prieto, J. Bilbao. Deactivation of a HZSM-5 Zeolite Catalyst in the 
Transformation of the Aqueous Fraction of Biomass Pyrolysis Oil into Hydrocarbons. Energy & Fuels 18 (2004) 1640-
1647. 
244 S. Vitolo, B. Bresci, M. Seggiani,  M.G. Gallo. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour 
of the catalyst when used in repeated upgrading–regenerating cycles. Fuel 80 (2001) 17-26. 
245 D.C. Elliott. Historical Developments in Hydroprocessing Bio-oils. Energy & Fuels 21 (2007) 1792-1815. 
246 D.C. Elliott, E.G. Baker. Biomass Liquefaction Product Analysis and Upgrading. Comptes Rendus de l’Atelier de 
TraVail sur la Liquéfaction de la Biomasse; report 23130, NRCC: Sherbrooke, Quebec, Canada, September 29-30 
(1983) 176-183. 
247 D.C. Elliott, E.G. Baker. Process For Upgrading Biomass Pyrolyzates. U.S. Patent Number 4,795,841, January 3, 
1989. 
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approximately 350 °C and 13.8 MPa.248  Similarly, Vitolo et. al studied the thermogravimetric 

behavior of raw and hydrogenated bio-oil, and demonstrated that hydrogenated bio-oil is 

characterized by improved volatility and a reduced coking behavior.249  

These pioneering studies demonstrated the feasibility of the process under high temperature and 

pressure and were taken as a guide for a general up-grading scheme, recently proposed by some 

authors as a solution for the synthesis of commodity chemicals from biomass.250 

Moreover, mild hydrogenation could be foreseen as a method for directly improving the quality of 

bio-oil. Xu et al. recently demonstrated that hydrogenation over an acid catalyst and removal of 

water can also reduce the corrosiveness of the liquid, by means of esterification of carboxylic acids 

with large amount of alcohols functionality created by the mild hydrogenation.251,252 The reduction 

of bio-oil reactivity allows an easier removal (by distillation or similar techniques) of water and 

some light compounds that could deteriorate the equipments for further bio-oil processing. 

In conclusions, even if simple hydrogenation of reactive double bonds could be seen as a key step to 

overcome the intrinsic limitations of biomass derived pyrolysis oils, only few works studied even 

milder conditions and most of studies regards model compounds. 253,254 Further improvements are 

expected in this field, where the ultimate goal is the development of an effective homogeneous 

catalyst for mild temperature hydrotreatment of pyrolysis oil. Moreover, although the 

hydrogenation process was studied from the point of view of physicochemical proprieties of the 

liquid product,  a detail molecular description of the real matrix behavior during hydrogenation is 

lacking. For this reason, this chapter was advocated to study in detail the chemical changes 

following hydrogenation of poplar bio-oil. 

For model hydrogenation strategy, an accurate screening255,256  of the possibilities indicated the 

bimetallic ruthenium Shvo catalyst257,258 as a very good candidate for our scope. Indeed, this robust 

                                                 
248 D.C. Elliott, E.G. Baker. Hydrotreating Biomass Liquids to Produce Hydrocarbon Fuels. Energy from Biomass & 
Wastes X; IGT: Chicago, (1986) 765-784. 
249S. Vitolo, P. Ghetti. Physical and combustion characterization of pyrolysis oil derived from biomass material 
upgraded by catalytic hydrogenation. Fuel 73 (1994)1810-1812.  
250T.P. Vispute, H.Zhang,A. Sanna,R. Xiao, G.W. Huber. Renewable Chemical Commodity Feedstocks from Integrated 
Catalytic Processing of Pyrolysis Oils. Science 330 (2010) 1222-1227.  
251Y. Xu, T. Wang, L. Ma, Q. Zhang, W. Liang. Upgrading of the liquid fuel from fast pyrolysis of biomass over 
MoNi/c-Al2O3 catalysts. Applied Energy 87 (2010) 2886–2891. 
252Y. Tang, W. Yu, L. Mo, H. Lou, X. Zheng. One-Step Hydrogenation-Esterification of Aldehyde and Acid to Ester 
over Bifunctional Pt Catalysts: A Model Reaction as Novel Route for Catalytic Upgrading of Fast Pyrolysis Bio-Oil. 
Energy & Fuels 22 (2008) 3484–3488. 
253 F.H. Mahfud, S. Bussemaker, B.J. Kooi, G.H. Ten Brink, H.J. Heeres. The application of water-soluble ruthenium 
catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model 
compounds in a two phase aqueous-organic system. J Mol. Catal. A Chem. 277 (2007):127-36. 
254 F.H. Mahfud, F. Ghijsen, H.J. Heeres. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase 
aqueous organic system using homogeneous ruthenium catalysts. J Mol. Catal. A Chem. 264 (2007) 227-236. 
255 R.M. Bullock. Catalytic ionic hydrogenations. Chem. Eur. J 10 (2004):2366-2374. 
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ruthenium complex is water-, temperature- and acid- resistant. Discovered in the 1985259 it has been 

matter of several mechanistic studies and it has been applied as a versatile catalyst, particularly in 

hydrogenation of polar double bonds.260,261,262,263,264 In the present chapter, this catalyst was tested 

on bio-oil samples obtained from bench scale pyrolysis of white poplar. Raw bio-oil and 

hydrogenated bio-oil were analyzed by an array of analytical techniques and complete 

deoxygenation (by thermal cracking on H-ZSM-5 zeolite ) of both raw and hydrogenated bio-oil 

was studied. Py-GC-MS was used as model system to simulate a catalytic cracking process, as 

shown by recent publications and in chapter 3.5,265 and Py-SPE-GC-MS technique was applied for 

the monitoring of PAHs formation (demonstrated high when H-ZSM-5 is used on raw biomass in 

chapter 3.3) during the catalytic cracking process. 

 

4.1.2. Experimental 

4.1.2.1 Pyrolysis of Poplar chips 

Bio-oil was obtained by consecutive batch pyrolysis of white poplar wood chips (same sample of 

chapters 3.1 and 3.3) with a fixed bed tubular quartz reactor (the apparatus was described in details 

elsewhere).266 Each batch was conducted by pyrolysing 5-10 g sample at 500 °C under nitrogen flux 

with 30 s residence time. Bio-oil was collected downstream by means of two sequential trapping 

systems: a cold trap equipped with a glass demister immersed into brine followed by a bubbler 

filled with diethyl ether. In total, 100 g of white poplar chips yielded 55 g of bio-oil (27 g and 28 g 

                                                                                                                                                                  
256 S.E. Clapham, A. Hadzovic, R.H. Morris. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar 
bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248 (2004) 2201-2237. 
257 R. Karvembu, R. Prabhakaran, N. Natarajan. Shvo's diruthenium complex: a robust catalyst. Coord Chem Rev 249 
(2005) 911-918. 
258 Y. Shvo, D. Czarkie, Y. Rahamim, D.F. Chodosh. A new group of ruthenium complexes: structure and catalysis. J 
Am Chem Soc. 108 (1986) 7400-7402. 
259 Y. Blum, D. Czarkie, Y. Rahamim, Y. Shvo. (Cyclopentadienone) ruthenium carbonyl complexes-a new class of 
homogeneous hydrogenation catalysts. Organometallics. 4 (1985) 1459-1461. 
260 B.L. Conley, M.K. Pennington-Boggio, T.J. Boz E, T.J. Williams. Discovery, applications, and catalytic mechanisms 
of Shvo’s catalyst. Chem Rev.110 (2010) 2294-2312. 
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J Organomet. Chem. 514 (1996) 97-102. 
262 Y. Shvo, I. Goldberg, D. Czerkie, D. Reshef, Z. Stein. New ruthenium complexes in the catalytic hydrogenation of 
alkynes. Study of structure and mechanism. Organometallics16 (1997) 133-138. 
263 J.S.M. Samec, A.H. Ell, J.B. Aberg, T. Privalov, L. Eriksson, J.E. Backvall. Mechanistic study of hydrogen transfer 
to imines from a hydroxycyclopentadienyl ruthenium hydride. Experimental support for a mechanism involving 
coordination of imine to ruthenium prior to hydrogen transfer. J Am Chem Soc. 128 (2006) 14293-14305. 
264 A.H. Ell, J.B. Johnson, J.E. Backvall. Mechanism of ruthenium-catalyzed hydrogen transfer reactions. Evidence for 
a stepwise transfer of CH and NH hydrogens from an amine to a (cyclopentadienone)ruthenium complex. Chem Comm. 
14 (2003) 1652-1653. 
265 T.R. Carlson, T. P. Vispute, G.W. Huber. Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived 
Compounds. ChemSusChem. 1 (2008) 397–400. 
266 D. Fabbri, C. Torri,I. Mancini. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and 
characterisation of a chiral hydroxylactone and its role as building block. Green Chem. 9 (2007) 1374-1379. 
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from the cold and solvent trap, respectively) and 28 g of charcoal. Bio-oil collected from the cold 

trap was selected as real matrix for hydrotreating experiments. 

 

4.1.2.2 Hydrogenation 

All the hydrogenation experiments were conducted in a 100 mL stainless steel batch autoclave Parr 

Instrument series 4560 (25-100 mL, Tmax = 300 °C, Pmax = 100 bar) equipped with an electrical 

heating mantle and a mechanical stirrer. Details on hydrogenation procedure, as well as 

hydrogenation set up were described in detail by Busetto et al (2010).267 

Briefly, the autoclave was charged with substrate and catalyst. Prior to hydrogen addition, the 

autoclave was flushed three times with nitrogen to remove oxygen. Subsequently, hydrogen was 

added until a pressure of 5 bar was reached. The reactor was heated to required temperature. 

Subsequently the hydrogen pressure inside the reaction was increased to 10 bar. Then the reaction 

was conducted at 145 °C under 10 atm H2  pressure for 1 h. 

 

4.1.2.3 Chemical characterization of bio-oil 

Original and hydrogenated bio-oils were subjected to the same environmental conditions prior to 

analysis (e.g. transportation, storing) so that any observed chemical modification could be ascribed 

to the hydrogenation process rather than handling or ageing. The analytical characterisation of the 

oil was based on the solvent fractionation procedure developed by Oasmaa et al., with slight 

modifications. 268,269 Pyrolytic lignin was determined by precipitation with tenfold excess water 

added to an aliquot of neat bio-oil. The formed precipitate was centrifuged and filtered, dried at 40 

°C under nitrogen flow overnight and weighed. The weight of this water insoluble residue minus 

the weight of extractives gave the mass contribution of pyrolytic lignin. Extractives were 

determined by extraction with n-hexane (1 hour under sonication with 1/10 w/v bio-oil/hexane 

ratio) and weighing the residue left after elimination of the solvent by vacuum distillation. 

The aqueous supernatant resulting from the filtration of pyrolytic lignin was extracted sequentially 

with diethyl ether and pentane. The organic fractions were collected and the residue weighted after 

elimination of the solvent giving an estimate of lignin monomers. The aqueous layer contained 

sugars (anhydro/mono and oligosaccharides) and other water soluble components. 

                                                 
267 L. Busetto, D. Fabbri, R. Mazzoni, M. Salmi, C. Torri, V. Zanotti. Application of the Shvo catalyst in homogeneous 
hydrogenation of bio-oil obtained from pyrolysis of white poplar: New mild upgrading conditions. Fuel 90 (2010) 1197-
1207. 
268 A. Oasmaa, E. Kuoppala, Y. Solantausta. Fast pyrolysis of forestry residue. 2. Physicochemical composition of 
product liquid. Energy Fuels 17 (2003) 433-443. 
269 A. Oasmaa, E. Kuoppala. Solvent fractionation method with brix for rapid characterization of wood fast pyrolysis 
liquids. Energy Fuels 22 (2008) 4245-4248. 
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Anhydro/oligosaccharides were hydrolysed by treating the aqueous solution over amberlyst at 100 

°C for 6 hours. Then, 100 µl of solution were evaporated under nitrogen at room temperature, the 

residue was dissolved in acetonitrile and subjected to the analysis of anhydro/monosaccharides as 

described below. The final concentration value of anhydro/oligosaccharides was obtained by 

subtracting the content of free anhydro/monosaccharides from the total  value of 

anhydro/monosaccharides obtained after hydrolysis. The concentration of “others water soluble” 

was roughly estimated by the difference from BRIX method value.268,269  

Anhydro/monosaccharides (e.g. glucose and levoglucosan) were determined by GC-MS after 

trimethylsilylation of the bio-oil dissolved in acetonitrile using methyl-β-L-arabinopyranoside as 

internal standard.270 In addition, this method allowed the quantification of C2-C4 polyols (e.g. 1,2-

ethandiol, 1,2-propanediol) and hydroxyacids (e.g. hydroxyacetic acid). 

Volatile organic compounds (e.g. methanol, ethanol, acetic acid) were evaluated by solid phase 

micro-extraction (SPME) followed by GC-MS analysis of bio-oil dissolved into glycerol. 

Quantification was performed by external calibration on pure compounds when available. 

Reactive aldehydes (acetaldehyde, hydroxyacetaldehyde, methylglyoxale and others tentatively 

identified in the mass chromatograms at m/z 75) were determined by GC-MS after derivatization 

into the corresponding dimethyl acetals by catalytic methanolysis. A solution of bio-oil in methanol 

(4 mL at 2.5% mass concentration) spiked with internal standard (100 µl of  a 1 mg mL-1 dodecanal 

solution) was treated at 60 °C for 4 hours with 100 mg of amberlyst® acidic resin. 

Finally, water content was determined by the Karl-Fischer method. 

GC-MS analyses were performed in splitless mode at 280 °C in the injection port of an Agilent 

6850 gascromatograph connected to an Agilent HP 5975 quadrupole mass spectrometer. Analytes 

were separated by a HP-5MS fused-silica capillary column using helium as carrier gas. Mass 

spectra were recorded under electron ionization (70 eV) in full scan acquisition scan within m/z 29-

450. 

 

4.1.2.4 Catalytic treatment of bio-oils over zeolites:Py-GC-MS  

Catalytic treatment was studied by means of analytical py-GC-MS system (see chapter 3.1 for more 

details). The sample (0.25 mg) was admixed with 20:1 ratio (4.25 mg) of H-ZSM-5 zeolite 

(previously calcined at 700°C for 5 hours) . Pyrolysis were performed at 600 °C (set temperature) as 

described in detail in chapter 3.1. Quantitation was performed by external calibration, by injecting a 

                                                 
270 C. Torri, I.G. Lesci, D. Fabbri. Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 
mesoporous materials. J Anal. Appl. Pyrolysis 85 (2009) 192-196. 
 



 98 

known amount of ethyl-acetate solution containing  2% of toluene into the same system used for 

pyrolysis.  

 

4.1.2.5 PAHs formation during catalytic treatment: Py-SPE-GC-MS 

The exit of the pyrolysis chamber was connected to a glass tube containing 100 mg of silica gel, 

withdrawn from a DSC-Si SPE cartridge, packed with glass wool and conditioned with n-hexane. 

The selected quantity of sorbent was sufficient to trap evolved PAHs quantitatively as determined 

by breakthrough experiments with a second layer of silica. Samples were pyrolyzed with the same 

conditions used for Py-GC-MS. After pyrolysis, the apparatus was vertically positioned, spiked 

with 100 µl of surrogate PAH mix solution and rinsed with 6 ml of n-hexane. The solvent was left 

to flow through the silica cartridge into the collecting vial. The obtained solution was then blown 

down to 10-50 µl under nitrogen and analysed by GC-MS. Emission levels (µg PAH g-1 pyrolysed 

biomass) were determined by internal calibration. 

 

4.1.3. Results and Discussion 

4.1.3.1 Hydrogenation of bio-oil from white poplar: reactivity of bio-oil 

Hydrogenation with the Shvo catalyst deeply modified the chemical composition of bio-oil, as 

indicated by comparison of the chemical composition reported in Table 4.1.1 and 4.1.2.  

 

Table 4.1.1 Chemical composition expressed as weight percent of bio-oil before and after 

hydrogenation with Shvo catalyst. 

Compound 
% 

Before hydrogenation 
% 

After hydrogenation 
% 

C 35 38 
H 4.3 5.5 
O 60 57 
N 0.1 0.1 

Extractives 0.1 0.9 
Pyrolytic Lignin 8.3 15 

Lignin monomers 6.1 6.8 
Aldehydes 8.2 0.17 

C2-C4 polyols and hydroxyacids 2.7 18 
Anhydro/monosaccharides 1.6 9.7 
Anhydro/oligosaccharides 13 3.0 

Other water soluble 0.9 0.5 
Volatile organics 8.9 8.4 

Water 35 28 
Mass balance (total quantified) 85 90 
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The most relevant changes were clearly associated with the activity of the catalyst towards the 

reduction of the CHO groups. In fact, aldehydes that accounted for about 8% by weight in the 

original bio-oil dropped to 0.2% after hydrogenation (Table 4.1.1). 

Conversely, the content of C2-C4 polyols and hydroxyacids increased from 2.7% to 18%. Examples 

of specific compounds responsible to the observed changes were reported in Table 4.1.2. Following 

hydrogenation, the concentrations of hydroxyacetaldehyde dropped from 4% to 0.01% and that of 

methylglyoxal from 0.7% to undetectable levels, while the concentration of 1,2-ethandiol, 1,2-

propanediol and hydroxyacetic acid increased significantly. 

A remarkable effect was found in the distribution of the so called sugars, comprising the ether 

insoluble fraction of water soluble products, and consisting mainly of anhydro/monosaccharides and 

oligosaccharides.268,269 Free anhydro/monosaccharides and their derivatives exhibited a significant 

increase from 1.6% to 9.7% and concomitantly the level of oligosaccharides decreased from 13% to 

3% upon hydrogenation. This finding suggests that the employed conditions favoured the hydrolytic 

scission of anhydro/oligosaccharides into monosaccharides and eventually levoglucosan (note in  

Table 4.1.2 that the level of levoglucosan was unaltered) and the partial reduction of the anomeric 

carbon (glucitol was identified in the hydrogenated bio-oil). 

The effect of hydrotreating was less pronounced on lignin derivatives. The content of lignin 

monomers remained constant, whereas that of heavier lignin phenols (e.g. pyrolytic lignin) slightly 

increased.  

 

Table 4.1.2 Mean concentration of specific compounds expressed as weight percent in original bio-

oil and bio-oil after hydrogenation with Shvo catalyst. 

Compound 
% 

Before hydrogenation 
% 

After hydrogenation 
% 

Acetaldehyde 0.7 Not detected 
Ethanol Not detected 0.1 

Acetic acid 2.2 2.6 
Hydroxyacetaldehyde 4.2 0.01 

1,2-ethanediol 0.1 7.2 
Methylglyoxal 0.7 Not detected 

Hydroxyacetone 0.7 0.8 
1,2-propanediol Not detected 7.0 
Glyoxalic acid 0.4 Not detected 

Hydroxyacetic acid 0.2 3.0 
Phenol 0.3 0.6 

Cathecol 0.5 0.9 
Levoglucosan 1.6 2.2 
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4.1.3.2 De-oxygenation of hydrogenated bio-oil by catalytic cracking 

Once hydrogenated, further upgrading of pyrolysis oil was studied by catalytic cracking over H-

ZSM-5, since it is known that this type of zeolite is able to transform carbohydrate derived fraction 

of bio-oil into aromatic hydrocarbons. 265 

 

Figure 4.1.1: Carbon yield of aromatic compounds (listed in table 4.1.3) obtained from catalytic 

pyrolysis of poplar, bio-oil, hydrogenated bio-oil and and long chain hydrocarbon. 

 

Figure 4.1.1 shows the overall carbon conversion obtained for poplar (7%±5% ), bio-oil (23±5% 

yield) and hydrogenated bio-oil (36±8% yield), compared with carbon conversion obtainable by 

hydrocarbon processing ( 90±10%).  

 

Figure 4.1.2: Example of different H-ZSM-5 catalyzed pathways proposed for raw bio-oil 

compound (hydroxyacetaldehyde) and corresponding hydrogenated substance (1,2-etanediol). 
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Table 4.1.3: composition (%w/wgasoline) of “gasoline” obtained by catalytic pyrolysis (with H-ZSM-

5) of bio-oil and hydrogenated bio-oil ((H)Bio-oil). Mean±standard deviation (n=4). 

 Bio-oil cracking 
% w/wgasoline 

(H)Bio-oil crackinga 

% w/wgasoline
 

propene 0.62 ±0.01 1.0 ±0.02 
butene 2.3 ±0.01 3.4 ±0.1 
benzene 11 ±0.08 6.8 ±0.3 
unknown  -  0.06 ±0.0 
toluene 29 ±0.4 24 ±1.0 
xilene (o) 2.8 ±0.12 3.5 ±0.2 
xilene(m) 14 ±0.4 18 ±0.8 
xilene(p) 2.9 ±0.02 3.1 ±0.1 
propyl-benzene 0.20 ±0.02 0.54 ±0.03 
1,2,3-trimethyl-benzene 3.2 ±0.2 6.3 ±0.4 
methylfurfural  0.08 ±0.02 -  
1,3,5-trimethyl-benzene 2.5 ±0.09 3.7 ±0.2 
benzofuran 1.2 ±0.08 0.70 ±0.03 
indane 3.3 ±0.2 2.5 ±0.2 
indene 2.3 ±0.09 1.1 ±0.03 
2-methyl-phenol 0.13 ±0.02 0.37 ±0.02 
4-methyl-phenol 0.08 ±0.02 0.1 ±0.01 
2,3-dihydro-4-methyl-1H-Indene  0.65 ±0.09 0.85 ±0.1 
7-methyl-benzofuran 0.35 ±0.02 0.25 ±0.02 
2-methyl-benzofuran 1.1 ±0.06 0.45 ±0.02 
1-Phenyl-1-butene 1.6 ±0.12 1.4 ±0.1 
3-methyl-(1H)-indene  1.4 ±0.09 1.0 ±0.1 
1-methyl-(1H)-indene  1.4 ±0.09 1.0 ±0.1 
2,3-dihydro-1-methyl-indene 1.0 ±0.07 0.67 ±0.1 
naphthalene 4.3 ±0.08 3.0 ±0.01 
1-methyl -1,2,3,4-(4H)-naphthalene 0.02 ±0.00 0.21 ±0.01 
2,3-dihydro-1,1-(1H)-Indene 0.12 ±0.02 -  
4,7-dimethyl-Benzofuran 0.51 ±0.04 0.28 ±0.02 
1,2-dihydro-n-methyl-naphtalene 0.09 ±0.02 0.09 ±0.02 
1,2-dihydro-n-methyl-naphtalene 0.48 ±0.05 0.40 ±0.05 
1,2-dihydro-n-methyl-naphtalene 0.45 ±0.05 0.28 ±0.01 
1,2-dihydro-n-methyl-naphtalene 0.22 ±0.01 0.26 ±0.01 
n-methyl-naphtalene 5.2 ±0.1 4.5 ±0.2 
n-methyl-naphtalene  1.1 ±0.08 1.2 ±0.1 
n-ethyl-naphthalene 0.50 ±0.03 0.41 ±0.1 
n-ethyl-naphthalene 2.2 ±0.10 2.4 ±0.2 
n-ethyl-naphthalene 0.64 ±0.00 1.0 ±0.01 
n-ethyl-naphthalene 0.64 ±0.00 0.90 ±0.04 
n-propyl-naphtalene 0.14 ±0.00 0.19 ±0.02 
4-methyl-Dibenzofuran 0.03 ±0.01 -  
others 0.57  3.8  
 

Hydrogenation doubled the carbon yield obtainable from cracking of raw poplar bio-oil. In absolute 

terms, the yield of aromatic products obtainable remained low, if compared with hydrocarbons, 
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probably due to ineffective conversion of lignin derived bio-oil. In fact it is known that these 

compounds form char/coke outside from the catalyst and eventually clog the pores.241 

Table 4.1.3 shows the composition of “gasoline” obtained through catalytic processing of bio-oil 

and hydrogenated bio-oil. The relative amount of different aromatic compounds was fairly 

reproducible, indicating that the source of error was mainly due to manual weighing and admixing 

procedure.  

Hydrogenated bio-oil  provided a gasoline richer in xilenes, trimethylbenzenes and with lesser 

amount of benzene, toluene and bicyclic aromatics (e.g. naphthalene or indene). 

From molecular point of view, since the hydrogenation (Table 4.1.1 and 4.1.2), under conditions 

selected in this study has the main effect of reducing reactive double bonds, the effect of 

hydrogenation could be related to the occurrence of less oxidized carbohydrate derivatives. 

As an example if we compare 1,2-ethanediol and hydroxyacetaldehyde  we can expect that over H-

ZSM-5, the former can form higher yield of alkylbenzenes and lower yield of coke(Figure 

4.1.2).271,272 

 

4.1.3.3 PAHs formation rate in catalytic pyrolysis of raw bio-oil and hydrogenation bio-oil. 

As demonstrated in chapter 3.3, an important feature of catalytic cracking of biomass feedstock is a 

relatively larger PAHs formation than that observed in non-catalytic pyrolysis.  

For this reason evaluation of priority PAHs formation from this feedstock was included in the 

study. Py-SPE-GC-MS technique was applied in order to evaluate the priority PAHs formation in 

an upgrading process on bio-oil and hydrogenated bio-oil.  

Three possibilities were compared: cracking of poplar pyrolysis oil, cracking of previously 

hydrogenated pyrolysis oil, co-cracking of pyrolysis oil and hydrocarbons in the same system and 

simply hydrocarbon cracking. The last option was evaluated as reference system and it can 

represent actual standard refinery cracking for gasoline production.  

As Table 3.3.4 shows, there are large differences in PAHs formation  during cracking of 

hydrocarbons and an oxygenated feedstock like bio-oil. Main difference is an markedly higher 

production of some PAHs (e.g. naphthalene, anthracene and benzo[a]pyrene). 

Using the toxic equivalency factor of each PAHs (TEFs) analyzed an overall carcinogenic 

compounds (TEQ expressed as mg kg-1 Benzo[a]pyrene equivalent, BAPeq) produced in the process 

                                                 
271 P.A. Horne, P.T. Williams, Reaction of oxygenated biomass pyrolysis model compounds over a ZSM-5 catalyst. 
Renewable energy, 7 (1996) 131-144. 
272 P.A. Horne, N. Nugranad, P.T. Williams. Catalytic coprocessing of biomass derived pyrolysis vapors and methanol. 
J Anal. Appl. Pyrol., 34 (1995) 87-108. 
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can be calculated.273  Cracking of raw Bio-oil over ZSM-5 creates four times more equivalents (56 

mg kg-1 BAPeq) of carcinogenic PAHs than hydrocarbon processing (13 mg kg-1 BAPeq), mainly 

due to larger yield of four and five rings PAHs. Also simulating a real co-processing (on 1-1) in 

actual fossil oil fuelled refineries, the specific PAHs production from raw bio-oil, although slightly 

reduced remain on the same value.  

 

Table 4.1.4: Rate of PAHs release (mean ± standard deviation) from catalytic cracking of  a linear 

hydrocarbon (C36H74), bio-oil  and hydrogenated bio-oil.a Calculated as Nisbet and LaGoy (1992)273  

 
µg g-1 

Bio-oil 
µg g-1 

(H)Bio-Oil 

µg g-1
bio-oil

 

Bio-Oil+C36H74
 

µg g-1 

C36H74
 

acenaphthylene 42 ±40 92 ±60 29±4 9±1 
acenaphthene 75 ±30 41 ±23 33±13 8±0.2 

fluorene 374 ±52 253±160 163±28 50±47 
phenanthrene 339 ±144 276±116 258±76 89±17 
anthracene (1.1±2.8)·103 (0.77 ±37) ·103 (0.63±17)·103 90±22 

fluoranthene 21 ±8 20 ±12 15±3 5±1 
pyrene 42 ±18 33 ±12 39±5 13±2 

chrysene 91 ±16 84 ±32 105±34 39±7 
benz[a]anthracene 27 ±4 27 ±12 26±5 15±2 

benzo[b]fluoranthene 2±1 2 ±1 2±1 1±0.3 
benzo[k]fluoranthene 8 ±2 10 ±5 17±14 2±1 

benzo[a]pyrene 32 ±15 26 ±8 45±14 3±3 
indeno[1,2,3-cd]pyrene 3 ±2 1 ±2 3±3 4±1 
dibenz[a,h]anthracene 3 ±1 4 ±3 <1 <1 

benzo[ghi]perylene 6 ±4 1 ±2 3±3 1±1 
BAPeqa 56±25 43±10 51±21 13±6 

 

On the other hand, if hydrogenated bio-oil is cracked, a more clear reduction in BAPeq production 

rate can be obtained (mainly due to lower Benzo[a]pyrene yield), with a final (in fact still high) 

value of 43 mg kg-1 of BAPeq. Since the lignin derived fraction of hydrogenated oil is similar to 

raw bio-oil one, this effect is probably due to the hydrogenation of carbohydrates derived pyrolysis 

products, in agreement with mechanism proposed above (Figure 4.1.2), and was previously 

observed by Horne and Williams in catalytic cracking of model compounds.271 

According to these results, if bio-oil would be co-processed with petroleum for gasoline synthesis, 

the final fuel should have drastically higher PAHs content than current gasoline fuel.  

Using data obtained by micro-scale PAHs analysis and  overall yields obtained by Py-GC-MS 

(paragraph 4.1.3.1)  is possible to obtain expected PAHs concentration in the final fuel obtained. 

Figure 4.4.3 shows the calculated content of carcinogenic PAHs (expressed as BAPeq) expected for 

                                                 
273 I.C.T. Nisbet, P.K. LaGoy. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). 
Regulatory Toxicology and Pharmacology 16 (1992) 290-300. 
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various fuels.  The final expected PAHs concentration from simple catalytic cracking of raw bio-oil 

is astonishing high (final concentration of 160-460 mg kg-1 BAPeq), whereas the expected PAHs 

content is markedly reduced to (100-180 mg kg-1 BAPeq) from catalytic cracking of pure 

hydrogenated oil and to relatively safe level (11-27 mg kg-1 BAPeq) if 1:5 hydrogenated bio-

oil:hydrocarbons is considered.  

 

Figure 4.1.3: Expected PAHs concentrations (as benzo[a]pyrene equivalents) in the final product of 

catalytic cracking with H-ZSM-5 of bio-oil, hydrogenated bio-oil ((H)Bio-oil), hydrocarbon (HC) 

and mix of these products. Bars correspond to confidence interval (α=0.05). 
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4. Conclusions 

Hydrogenation deeply changed the chemical nature of pyrolysis oil. Aldehydes, ketones and non-

aromatic double bonds were almost totally hydrogenated. In addition, the catalytic system promoted 

the hydrolysis of sugar oligomers into monomers. These transformations result in an improved 

stability of the bio-oil due to the reduction of polar double bonds (in particular reduction of reactive 

aldehydes), that are main causes of the ageing of pyrolytic oils. 

Hydrogenation determinated a twofold increase of final gasoline yield and a significant reduction of 

carcinogenic PAHs formation rate, nevertheless PAHs formation during processing of hydrogenated 

bio-oil remained drastically higher than that observed with hydrocarbons.  

In fact, PAHs content could represent the most problematic adverse characteristic of gasoline 

obtained by hypothetical hybrid petroleum/biomass fuelled refineries. For this reason, it is advisable 

that only small amounts (less than 20% of the feedstock) of hydrogenated bio-oil could be fed in 

actual refinery without impact the safety of final product. Alternatively, as proposed by some 

authors,250 a different non-retail application (e.g. source of chemicals or jet fuel) of biomass derived 

“gasoline” should be found. 
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4.2. Production of chiral chemicals from cellulosic  biomass pyrolysis: 

influence of pre-treatment and catalysis. 

 

4.2.1. Introduction 
Cellulose is the main component of vegetable biomass, so that it could be worth of investigation as 

source of renewable chiral building blocks. Herbaceous biomass and agricultural residues are 

largely composed of cellulose, that it is typically quite recalcitrant for hydrolysis and ethanol 

production. For this reason,  thermochemical processing of cellulose rich residue could be 

investigated as alternative valorisation of starch/hemicelluloses fermentation residues (usually 

lignin and cellulose). By coupling pyrolysis with hydrolysis (Figure 4.2.1), it would be possible to 

obtain a combined stream of chiral chemicals and energy. 

 

Figure 4.2.1: general scheme of integrate sugars and anhydrosugars production from cellulosic 

biomass. 

 

Regarding the production of fine chemicals, the pyrolysis of raw biomass, mainly due to ash 

catalysis,274 produces an high number of compounds at low concentration, and for this reason, the 

raw bio-oil obtained is not suitable as a source of chemicals. 

                                                 
274 P.R. Patwardhan, J.A. Satrio, R.C. Brown, B.H. Shanks. Influence of inorganic salts on the primary pyrolysis 
products of cellulose. Bioresource Technology 101 (2010) 4646-4655. 
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On the opposite, thermal degradation of  pure cellulose (or de-ashed cellulosic biomass) gives rise 

to interesting chiral multifunctional C6 monomers, such as levoglucosan (LGA), levoglucosenone 

(LGO), and the hydroxylactone LAC. 275 

Pyrolysis of cellulose can yield over 60% LGA, when performed under optimized conditions,276,277 

however, costs associated to its isolation from bio-oil is a factor limiting its industrial development 

as chemical intermediate. Less polar more dehydrated LGO and LAC might be simpler to isolate by 

distillation and solvent fractionation due to higher volatility and solubility in standard organic 

solvents. However, they are produced at lower yields and a catalyst is needed in combination with 

pyrolysis. Different catalysts, including phosphoric acid and its salts were employed to enhance 

LGO production from pyrolysis of cellulose.278,279,280 It was reported that up to 42% yields of LGO 

can be achieved by pyrolysing cellulose in sulfolane in presence of an acid catalyst.281 Recent works 

demonstrated that the pyrolytic production of LGO and LAC can be improved by using metal oxide 

nanoparticles, like nanopowder aluminium titanate.282,275 The latter catalyst enabled the isolation of 

LAC from the bio-oil of cellulose and its application as a monomer for the synthesis of a novel class 

of polyesters.283 

Zeolites have been widely studied as heterogeneous catalysts in biomass conversion,284,285,286287 but 

these materials are not fitted for the production of anhydrosugars due to their small pore size and 

                                                 
275 D.Fabbri, C.Torri, I.Mancini, Pyrolysis of cellulose catalysed by nanopowder metal oxides: production 
and characterisation of a chiral hydroxylactone and its role as building block  Green Chem. 9 (2007) 1374-1379 
276Z. Luo, S. Wang, Y. Liao, K. Cen, Mechanism Study of Cellulose Rapid Pyrolysis. Ind. Eng. Chem. Res. 43 (2004) 
5605-5610.  
277G.-J.Kwon, D-Y.Kim, S.Kimura, S.Kuga. Rapid-cooling, continuous-feed pyrolyzer for biomass processing 
Preparation of levoglucosan from cellulose and starch J. Anal. Appl. Pyrolysis 80 (2007) 1-5. 
278Y.Halpern, R.Riffer, A.Broido. Levoglucosenone (1, 6-anhydro-3, 4-dideoxy-D3-b-d-pyranosen-2-one). Major 
product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates. J Org Chem. 38 (1973) 204-208. 
279 F.Shafizadeh, R.H.Furneaux, T.T.Stevenson. Reactions of levoglucosenone. Carbohydr. Res. 71 (1979) 169-191. 
280 G. Dobele, T. Dizhbite, G. Rossinskaja, G. Telysheva, D.Meier, S. Radtke,O. Faix. Pre-treatment of biomass with 
phosphoric acid prior to fast pyrolysis: A promising method for obtaining 1, 6-anhydrosaccharides in high yields J. 
Anal. Appl. Pyrol. 68/69 (2003) 197-211 
281 H. Kawamoto, S. Saito, W. Hatanaka, S. Saka, H. Kawamoto, S. Saito, W. Hatanaka, S. Saka. Catalytic pyrolysis of 
cellulose in sulfolane with some acidic catalysts. J Wood Sci 53 (2007) 127-133. 
282 D.Fabbri, C.Torri, V.Baravelli, Effect of zeolites and nanopowder metal oxides on the distribution of 
chiral anhydrosugars evolved from pyrolysis of cellulose: An analytical study J. Anal. Appl. Pyrol., 80 (2007) 24-29 
283 P.Dobrzynski, D.Fabbri, C.Torri, J.Kasperczyk, B.Kaczmarczyk, M.Pastusiak, A novel hydroxy functionalized 
polyester obtained by ring opening copolymerization of L-lactide with a pyrolysis product of cellulose J.Polymer Sci. A 
Polymer Chem, 47 (2009) 247–257. 
284 A.V. Bridgwater. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal. Today 29 
(1996) 285-295. 
285 P.T.Williams, P.A.Horner. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. 
J.Anal.Appl.Pyrolysis 31 (1995) 39-61 
286 F.Ates, A.Putun, E.Putun, Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two 
different catalysts Fuel 85 (2006) 1851-1859. 
287 A. Pattiya, J. O. Titiloye, A.V. Bridgwater. Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. 
Appl. Pyrolysis 81 (2008) 72-79. 
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strong acidity that cause severe dehydration and coking of the cellulosic fraction.275,288 In searching 

for less dehydrating but still active molecular sieves, it is worth considering the class of mesoporous 

materials, especially the MCM-41 type, which are characterised by relatively larger pore size and 

milder acidity and usefully applied in the field of catalysis.289 The activity of these materials has 

been investigated in catalytic pyrolysis of different biomass types; since the pure silicate MCM-41 

(herein referred to as Si-MCM-41) lacks acid sites, the attention was directed towards MCM-41 

containing additional metals, in particular Al-MCM-41.290,291,292,293 The presence of Al-MCM-41 

during pyrolysis of biomass influenced the production and chemical composition of the resulting 

bio-oil, which was enriched in simple phenols derived from lignin.291,292 The incorporation of 

transition metals (Fe, Cu, Zn) into the Al-MCM-41 structure was found to change considerably the 

activity of the catalyst with respect to the parent material.290,292 

The influence of MCM-41 materials on the pyrolytic behaviour of cellulose, and in particular on the 

yields of di and tri-anhydrosugars has been less investigated, therefore this topic became the 

objective of the present study. Analytical pyrolysis is known to provide a valid contribution to the 

study of catalyst activity in biomass pyrolysis,280,287,288,292 and herein was applied in the off-line 

configuration to gather quantitative information on the yields of pyrolysis products.282 The interest 

was focused on the production of LAC given its potentiality as a chemical intermediate for fine 

chemicals and biodegradable polymers.275,283 To this purpose, the best performing catalyst emerging 

from analytical data was utilised in preparative pyrolysis experiments with a fixed bed reactor to 

investigate the yields of LAC in recycling tests. 

 

4.2.2. Experimental 

4.2.2.1 Materials 

Microgranular cellulose, ZrCl4, SnCl4 pentahydrate, tetraethyl orthosilicate (TEOS), 

hexadecyltrimethylammonium chloride (CTAB), nanopowder aluminium titanate were purchased 

                                                 
288 T.R. Carlson, T.P. Vispute, G.W. Huber. Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived 
Compounds. ChemSusChem 1 (2008) 397-400 
289 A.Corma, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 97 
(1997) 2373-2420. 
290 E.Antonakou, A.Lappas, M.H.Nilsen , A.Bouzga , M.Stöcker. Evaluation of various types of Al-MCM-41 materials 
as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 85 (2006) 2202-2212 
291 E.F.Iliopoulou, E.V.Antonakou, S.A.Karakoulia,  I.A.Vasalos, A.A.Lappas, K.S. Triantafyllidis, Catalytic 
conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 
catalysts. Chem.Eng.J. 134 (2007) 51. 
292 J. Adam, M. Blazsó, E. Mészáros, M. Stöcker, M. H. Nilsen, Aud Bouzga, Johan E. Hustad, Morten Grønli, G.Øye, 
Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel 84 (2005) 1494-1502. 
293 J.Adam, E.Antonakou, A.Lappas, M. Stöcker, M.H.Nilsen, A.Bouzga, J.E.Hustad, G.Øye. Investigation of the effect 
of metal sites in Me–Al-MCM-41 (Me = Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based 
biomass. Micropor.Macropor.Mater. 105 (2007) 189-203. 
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from Sigma-Aldrich, 30% NH3 solution from Carlo Erba reagenti, TiOSO4 x nH2O (minimum Ti 

assay 29% as TiO2), AlCl3 hexahydrate from Riedel-de Haën  and MgCl2 hexahydrate from Merck. 

Levoglucosan (LGA), 2-furaldehyde (FA), 2-hydroxy-1-methyl-cyclopenten-3-one (CYC), methyl-

L-β-arabinopyranoside, BSTFA+1% TMCS, pyridine and acetonitrile were purchased from Sigma-

Aldrich. LGO and LAC were produced from catalytic bench scale pyrolysis of cellulose admixed 

with 30% nanopowder aluminium titanate at 350°C and 500 °C, respectively, and purified by 

column chromatography.275 

 

4.2.2.2 Pre-treatment of biomass for anhydrosugars production 

Switchgrass was pre-treated by 4 h refluxing in 10:1 w/w (1 g of biomass was admixed with 5 ml of 

solution)  the reaction media (shown in Table 4.2.1) or by autoclaving at 150°C for 30 min.  

After the reaction, the resulting mixture was filtrated on glass filter, re-suspended in 1:10 distilled 

water (for acid removal) and then filtrated again. Finally, the wet powder/flasks were collected from 

the filter and residual water was eliminated by evaporation under vacuum at 90°C. Water “uptake” 

calculation was performed by difference in weight before and after the last step of evaporation. 

Soluble sugar yields were evaluated by analysis of wet torrefaction water output by Brix optical 

densimeter. 

 

Table 4.2.1: experimental conditions used for pre-treatment of switchgrass  

Name Amount of reaction media catalyst Time Temp  Solvent 

De-ashing 1:10 biomass:liquid 1% HNO3 4 h 100°C Water 

Organosolv 1:10 biomass:liquid 1% H2SO4 4 h 80°C Water:ethanol 4:6 

Hydrolysis  1:10 biomass:liquid 1% H2SO4 4 h 100°C Water 

Wet torrefaction 1:10 biomass:liquid - 0.5 h 150°C Water 

 

4.2.2.3 Synthesis of Me-MCM-41 catalysts 

The synthesis and characterization of Me-MCM-41 mesoporous materials was described in chapter 

3.5.294  Data of Table 4.2.1 show a general increase of BET surface area as a consequence of metal 

substitution. Only Sn-MCM-41 exhibited a lower value with respect to undoped Si-MCM-41 that, 

consistently to XRD results, could be attributed to small amounts of SnO2 highly dispersed onto the 

pore walls. The highest BET areas were found for Mg-MCM-41 and Al-MCM-41(1300 and 977 m2 

                                                 
294 D.Fabbri, F.Fabbri, G.Falini, V.Baravelli, A.Magnani, C.Torri, H.Maskrot, Y.Leconte. The activity of nanopowder 
and mesoporous titanium catalysts for the analysis of fatty acids in triglycerides by pyrolysis methylation with dimethyl 
carbonate. J.Anal.Appl.Pyrolysis 82 (2008) 248-254. 
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g-1, respectively), while in the case of Zr-MCM-41 the metal effect may have induced a partial 

collapsing of the mesopores, leading to lower surface areas (697 m2 g-1). 

 

Table 4.2.2: Characteristics of calcined Me-MCM-41 catalysts. 

 BET surface area 

m2 g-1 

Metal content 

% wt 

Al-MCM-41 977 8.1 

Sn-MCM-41 450 8.7 

Zr-MCM-41 697 7.7 

Ti-MCM-41 820 13 

Mg-MCM-41 1300 2.3 

Si-MCM-41  663 - 

 

4.2.2.4 Off-line py/GC-MS 

Off-line pyrolysis procedure is detailed described in detail in chapter 3.1. Samples (typically 5 mg 

cellulose mixed with 1.5 mg catalyst) were pyrolysed at 500°C (set temperature) for 100 s at the 

maximum heating rate (20 °C ms-1) under nitrogen flux. Molar yields were calculated from the 

quantity of cellulose subjected to pyrolysis and the quantity of evolved product, this latter 

calculated from the peak areas in the total ion chromatogram.282 Quantitation was performed by 

internal calibration, with 2-bromonaphtalene as internal standard, using the response factor of FA 

(also for FO and MF), CYC (for PYR), LGO and LAC (also for DGP). The quantitation of LGA 

was performed on the persilylated derivative using the persilylated 5-methyl-L-arabinopyranoside 

as internal standard. All the experiments were performed at least in duplicate. Percentage RSD of 

yields ranged in the 3.3%-48% interval for FO, 0.2-4% (FA), 0.1-11% (MF), 8-30% (PYR), 2-37% 

(LGO), 2-9% (LAC), 30-50% (LGA). 

 

4.2.2.5 Preparative pyrolysis 

The configuration of the fixed bed reactor set up for preparative pyrolysis was similar to that 

described elsewhere,275 consisting of a tubular quartz reactor (length: 650 mm, internal diameter: 37 

mm) placed coaxially within a furnace refractory (Carbolite, Italy), equipped with a thermocouple, 

connected to the nitrogen inlet by means of pressure valve and a flow meter and connected 

downstream to an ice trap and a solvent trap (acetonitrile) for trapping condensable compounds. 

The sample (3.0 g cellulose alone or mixed with 1.0 g of catalyst) was uniformly placed onto a 

sliding quartz boat, the nitrogen flow was set at 1500 cm3 min-1 and the oven was turned on. As 
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soon as the temperature inside the reactor reached the established value (500°C), the sample was 

positioned into the central part of the oven for 5 minutes, then retrieved upstream in the colder part 

of the reactor. The bio-oil recovered in the cold trap was dissolved into acetonitrile and an aliquot 

subjected to GC-MS analysis; the solution was dried at 80°C under reduced pressure and weighed 

(tar). Solid residue (catalyst + char) was heated in air in a muffle furnace for 6 h at 550°C to 

regenerate the catalyst (weight loss provided char yield). LAC was isolated from the tar with 90% 

GC purity by column chromatography over silica gel and elution with pentane/dichloromethane.275 

 

4.2.3. Results and discussion 

4.2.3.1 Pre-treatment of biomass for anhydrosugars production 

Switchgrass was selected as hemicellulose/cellulose rich material for tests. Anhydrosugar yield 

from raw biomass resulted too low for any application. For this reason, in order to enhance 

anhydrosugar yield, 4 pre-treatments were tested: 1:10 (w/w) acid reflux washes (1% nitric acid or 

1% sulphuric acid for de-ashing and  hemicellulose hydrolysis respectively) organosolv pre-

treatment ( acidified alcohol/water extraction) and “wet torrefaction” (WT) at 150°C in 1:10 

distilled water (see Table 4.2.1). 

 

Figure 4.2.3: yield of levoglucosan from pyrolysis of switchgrass pretreated in different way , pure 

cellulose and raw biomass. 

 

 

De-ashing partially removed soluble ashes (mainly K and Na, checked by analysis of the liquid) and 

leaved hemicelluloses largely intact. Both hydrolysis and organosolv processes dissolve 

hemicellulose almost completely, and organosolv removed lignin almost totally. Wet 150°C 

torrefaction acted similarly to hydrolysis, but without the use of any acid (acid are formed in the 

thermal reaction).  
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The pre-treated materials, composed of cellulose and, in some case, lignin were pyrolyzed in order 

to see the effect of pre-treatment of anhydrosugars (mainly levoglucosan) yield.  Both de-ashing 

and hydrolysis were able to raise LG yield to value similar to that observed for pure cellulose 

(Figure 4.2.2) (23±7%), where organosolv process is less effective (15±4% yield). Most interesting 

effects were observed with WT that, without any mineral acid use, produced a material which 

yielded an higher anhydrosugars yield ( a variable 65-15% yield) than that observed for pure 

cellulose (15-30% yield). 

  

Table 4.2.3: water uptake and soluble sugars yield by wet treatment of different cellulosic 

substrates.WT: wet torrefaction. 

Biomass type Soluble sugar yield 

% wSS/wbiomass 

Final water content 

% w/wfiltrated biomass 

Switchgrass pre-hydrolysis  26 75 

Switchgrass WT 21 28 

Pine WT 20 22 

Poplar WT 23 25 

Kenaf WT 20 61 

Sunflowers stalks WT 30 53 

 

Considering the results obtained, WT could be an easy way for the obtaining of anhydrosugars from 

a large range of raw biomass, without the use of any strong acids, and then without any 

neutralization of the process output stream. 

Moreover torrefaction resulted in brittle hydrophobic particles that were readily separated from the 

water. On the contrary, all other examinated processes (de-ashing, organosolv and hydrolysis ) 

involved a large hydric uptake. In order to study the increase in hydrophobicity induced by the 

torrefaction process, different cellulosic materials were subjected to the same wet torrefaction 

treatment. Table 4.2.3 shows the water uptake (which is a concern for subsequential pyrolysis) 

caused by the wet pre-treatment method. It interesting to notice that, especially for lignin rich 

biomass (poplar or pine), the water uptake can be considered acceptable. 

 

4.2.3.2 Catalytic  pyrolysis of cellulose: screening by analytical pyrolysis  

Typical examples of the GC-MS traces obtained from off-line pyrolysis of cellulose mixed with 

30% mesoporous materials undoped (Si-MCM-41) and doped with different metals (Me-MCM-41) 

are presented in Figure 4.2.3.  
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Figure 4.2.3. GC-MS traces obtained from off-line pyrolysis of cellulose with 30% a) Si-MCM-41, 

b) Al-MCM-41, c) Mg-MCM-41, d) Sn-MCM-41, e) Ti-MCM-41, f) Zr-MCM-41. Peak 

identification: (2H)-furan-3-one (FO), 2-furaldehyde (FA), 5-methyl-2-furaldehyde (MF), 4-

hydroxy-5,6-dihydro-pyran-2-one (PYR), levoglucosenone (LGO), 1-hydroxy-3,6-

dioxabicyclo[3.2.1]octan-2-one (LAC), 1,4:3,6-dianhydro-α-D-glucose (DGP) and levoglucosan 

(LGA). i.s. internal standard 2-bromonaphthalene. 

 

 

The principal peaks were identified as FO, FA, MFA, PYR, LGO, LAC and DGP and were 

quantified, while CYC was barely detected. Levoglucosan (LGA) gave a broad peak under these 

conditions, therefore it was analysed after conversion into its trimethylsilyl derivative. The yields of 

these compounds are reported in Table 4.2.3. All the examined mesophases acted as to decrease the 

yields of LGA with respect to neat cellulose, and to increase the pyrolytic production of both LAC 

and LGO. The effect was similar to that reported for nanopowder oxides containing Ti and Al. 
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282,275 A higher formation of LAC accompanied by a lower production of LGA was also found in 

the thermal analysis of cellulose treated with Zn (II) ions.295  

 

Table 4.2.4: Mean molar yields of selected compounds released from off-line pyrolysis of cellulose 

mixed with 30% catalyst. 

 FO FA MFA PYR LGO LAC DGP LGA 
Sn-MCM-41 0.23 1.1 0.66 0.42 6.4 5.6 1.7 1.6 
Zr-MCM-41 0.29 1.3 0.65 0.41 4.3 5.6 1.1 1.7 
Ti-MCM-41 0.20 1.0 0.66 0.56 2.6 4.9 1.8 2.7 
Al-MCM-41 0.49 1.5 0.69 0.46 5.1 3.5 1.3 1.1 
Mg-MCM-41 0.21 1.1 0.70 0.47 2.4 5.1 2.0 2.3 
Si-MCM-41 0.22 0.83 n.d. n.d. 1.9 2.4 2.9 3.9 
no catalyst 0.19 0.60 0.81 0.61 0.80 0.58 2.2 12 
 

Regarding LGA, the observed effect of the Me-MCM-41 catalysts was in agreement with pyrolysis 

data on vegetable biomass with Al-MCM-41 that showed a depression of LGA production.292 

Instead, the yields of furans (probably with the exception of FA), PYR and DGP were not much 

affected by the presence of the MCM-41 catalysts, at least considering the low yield and relative 

precision. 

In general, the effect of the investigated catalysts is that to produce a more dehydrated/de-

oxygenated pyrolysate, as both LGO and LAC are virtually formed from the dehydration of LGA 

and contain less oxygen and hydroxyl groups. On this basis, all the metal containing Me-MCM-41 

solids were more active catalysts than the siliceous Si-MCM-41. The higher activity of doped 

mesostructured materials could be attributed to the formation of acidic sites when the metal is 

incorporated into the siliceous framework of MCM-41. The addition of the metal generally 

increases the acidic character of the solid with respect to the siliceous mesophase. For instance, Al-

MCM-41 have higher acidic sites and catalyse dehydration reactions with a higher production of 

carbonyl compounds relative to Si-MCM-41 when applied to biomass pyrolysis.291 The 

incorporation of Sn (IV)296 and Zr (IV)297 deficiently coordinated on the surface adds Lewis acid 

sites that may explain the highest yields of LAC observed with Sn-MCM-41 and Zr-MCM-41. 

However, relatively high LAC yields were found with Mg-MCM-41, probably due to the large 

surface area of this solid (Table 4.2.2). Nevertheless, the different yields of LGO and LAC observed 

                                                 
295 E. Jakab, E. Mészáros, J. Borsa. Effect of Slight Chemical Modification on the Pyrolysis Behavior of Cellulose 
Fibers. J.Anal.Appl.Pyrol. 87 (2010) 117-123. 
296 I.Nowak, A.Feliczak, I.Nekoksova, J.Čejka. Exploring the catalytic activity of regular and ultralarge-pore Nb,Sn-
SBA-15 mesoporous molecular sieves. Studies in Surface Science and Catalysis 170(2007) 1432-1437 
297 D. Fuentes-Perujo, J. Santamaria-Gonzales, J. Mérida-Robles, E. Rodriguez-Castellon, A. Jiemez-Lopez, P. 
Maireles-Torres, R. Moreno-Tost, R. Mariscal. Evaluation of the acid properties of porous zirconium-doped and 
undoped silica materials. J.Solid State Chem.179 (2006) 2182-2189. 
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with the various metals are not easily interpretable because the catalytic activity of the mesophases 

is affected by a multitude of factors. These include the type of acidic sites (Bronsted or Lewis) and 

their strength as well as site accessibility to the reactants since the metal can be located onto the 

surface or buried into the inner part of the pore walls. 

Although characterised by lowest specific surface area and the limited low range order (section 

4.2.2.3), Sn-MCM-41 was among the most active Me-MCM41 catalysts, giving the highest yields 

of both LGO and LAC, while the yields of LGA were rather low. Therefore Sn-MCM-41 was 

selected for further experiments with a bench scale pyrolyser. 

 

3.3. Preparative pyrolysis of cellulose. Catalyst recycling 

Preparative pyrolysis was conducted with a fixed bed quartz reactor on neat cellulose and cellulose 

admixed with 30% Sn-MCM-41 under the same conditions used for analytical pyrolyis. Results 

relative to the production of char and tar (herein referred to as the oil left after the elimination of 

water and other volatiles by vacuum distillation) along with the yields of selected pyrolysis are 

presented in Table 4.2.5. 

 

Table 4.2.5: Yields of tar, char and individual products from preparative pyrolysis at 500 °C of 3.0 

g cellulose without and with Sn-MCM-41 (30%). Mean of two replicates. 

 No catalyst 
% wt 

Sn-MCM-41 
% wt 

Char 14 ± 3 15 ± 1 
Tar 33 ± 5 47 ± 4 
FA 1.3 ± 0.5 1.0 ± 0.3 
MF 0.10 ±  0.05 0.5 ± 0.1  
PYR 0.10 ± 0.08 0.6 ± 0.4 
LGO n.d.  0.2 ± 0.1 
LAC 1.2 ± 0.2 5.9 ± 0.3 
DGP 1.6 ± 0.1 2.5 ± 0.6 
LGA 14 ± 2 4 ± 1 

 

The formation of the solid residue from the pyrolysis of cellulose in the presence of the catalyst (15 

%) was similar to that observed in its absence (14 %), indicating a low coking activity of Sn-MCM-

41 with respect of pure cellulose pyrolysis. This is partially in contrast with 20% coke increase in 

chapter 3.5 regarding Sn-MCM-41 catalysis on raw pine biomass, and can be explained by the 

different reactivity of cellulose (which form anhydrosugars) than raw biomass, which produce large 

lignin monomer and large amount of small hydroxyaldehydes. 
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The yields of the tar from the pyrolysis of pure cellulose was 33%, but increased markedly to 44%  

when pyrolysis was conducted in the presence of Sn-MCM-41. These results underlines the 

performance of MCM-41 catalysts in improving the production of liquid without excessive coking. 

The slight reduction in volatile compounds ( from 53% to 38%) is in accordance to that observed in 

chapter 3.5 for Sn-MCM-41 catalysis on raw pine biomass pyrolysis.  

The yields of the evolved products from catalysed and uncatalysed pyrolysis were markedly 

different (Table 4.2.5). LGA, was the major compound analysed by GC-MS in the oil from 

uncatalysed cellulose, with an overall yield of 14%. The concentration of LGA in the tar obtained 

after catalytic pyrolysis was lower with a 4% yield, and LAC became a major component with 5.9% 

yield. The effect of the catalyst on the yields of LAC and LGA reflected the trend observed with 

analytical pyrolysis, confirming the reliability of this technique for screening the activity of 

catalysts. However, the similarity of the results between analytical and preparative pyrolysis was 

not as satisfactory for the more volatile products. In particular, the yields of LGO were much lower 

in the preparative pyrolysis, even though higher values were found with Sn-MCM-41 in accordance 

with analytical pyrolysis. These differences between analytical and preparative pyrolysis were 

probably caused by different heating rate in two systems. 

The reusability of the catalyst is an important feature to be assessed considering that a relatively 

large quantity is employed with dry mixing. In fact, thermal treatments of MCM-41 during 

pyrolysis and regeneration cycles may cause a reduction in surface area, number of acidic sites and 

pore size that affect negatively the performance of the catalyst.291 

 

Table 4.2.6: Recycling tests. isolated yields (mass %) of LAC from catalytic pyrolysis of cellulose 

with regenerated Sn-MCM-41 and nanopowder aluminium titanate (NP Al Ti). 

Pyrolysis run Sn-MCM-41 

Test  1 

% LAC 

Sn-MCM-41 

Test 2 

% LAC 

NP Al Ti 

 

% LAC 

I 5.9 5.7 6.2 

II 5.3 n.d. 5.5 

III 5.2 5.1 5.3 

IV 5.8 5.8 3.6 

V 5.3 5.6 3.6 

VI 5.2 5.3 4.5 
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In order to evaluate whether Sn-MCM-41 could be reused after pyrolysis, two recycling tests were 

performed each consisting of six runs of catalytic pyrolysis with cellulose at 500 °C followed by 

regeneration of the  catalyst at 550 °C under air. A comparison was made with catalytic pyrolysis of 

cellulose in the presence of nanopowder aluminium titanate under the same conditions. The results 

are shown in Table 4.2.6.  

The quantity of LAC recovered from the bio-oil was not significantly reduced after repeated 

pyrolysis/regeneration steps of Sn-MCM-41. The initial LAC yields obtained with fresh Sn-MCM-

41 (5.7% and 5.9%) remained almost constant after six recycling steps. LAC yields with 

regenerated nanopowder aluminium titanate were reduced from 6.2% to lower values (3.6-4.5%). 

 

4.2.4 Conclusions 

Cellulose, as well as pre-treated biomass, could be used as a source of anhydrosugars. Besides 

levoglucosan, uncatalyzed pyrolysis product of cellulose, obtainable with 10-20% yield, other 

functionalized anhydrosugars can be obtained by using metal containing mesoporous catalysts.  

Analytical pyrolysis confirmed its reliability as a rapid tool for screening the performance of active 

solids to be employed in catalytic pyrolysis. The experiments performed with cellulose indicated 

that mesoporous materials with relatively high surface areas favour acid catalysed reactions 

promoting the formation of LGO and LAC, valuable multifunctional C6 monomers. In particular, 

LAC yields around 5% comparable to those observed with nanopowder metal oxides were obtained 

using MCM-41 catalysts doped with Mg, Ti, Sn or Zr. 

The results relative to LAC and LGA obtained with analytical pyrolysis were confirmed in the case 

of Sn-MCM-41 by preparative pyrolysis experiments. In fact, a pyrolytic oil depleted in LGA and 

enriched in LAC was formed with this catalyst. Moreover, these experiments showed that Sn-

MCM-41 can be reused up to six times without significant loss of activity as measured by the 

quantity of LAC recovered from the oil. The performance in terms of LAC production was similar 

or even better to that with nanopowder aluminium titanate, but without the problems related to 

handling dry nanoparticles. 
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4.3. Carbon-negative bio-hydrogen and bio-fuels pro duction through 

pyrolysis of Chlamydomonas reinhardtii  by-product.  

 

4.3.1 Introduction 

The exploitation of algal biomass by means of  photosynthesis for energy-related purposes is a 

promising field of research. The great interest in algal biomass arises from the greater light use 

efficiency (about 5%, vs. 1.5% of terrestrial biomass), the possibility of using marginal areas (e.g. 

desert and coastal regions), the possibility of combining algal cultivation with other processes (e.g. 

wastewater treatment, CO2 sequestration), the availability of a larger number of species, and an 

easier genetic manipulation for modifying algal chemical composition or metabolism.298 

Chlamydomonas reinhardtii is a widely investigated microalga for hydrogen 

photoproduction.299,300,301 Recent developments, mainly in the field of genetic manipulation, have 

made it possible to increase both hydrogen output and its production rate, but further advances are 

expected in the next future.301,302,303 

In addition to hydrogen, the process also involves the production of a variable amount of algal 

biomass by-products.304 At the current state of the technology, the valorization of side-products 

could be a key point in the maximization of the energetic yield of the process and in reducing the 

price of photo-biogenic hydrogen.305 To obtain further energy output, biomass can be processed by 

means of the extraction and transesterification of algal lipids to produce biodiesel, leaving a lipid-

free extraction residue which can be used as animal feed or be anaerobically digested into bio-

gas.306 Moreover, pyrolysis of the extraction residue could possibly represent another (alternative) 

way to further recover energy and material.307 Pyrolysis of microalgae as well as pyrolysis of 

                                                 
298J.N. Rosenberg, G.A. Oyler, L. Wilkinson, M.J Betenbaugh. A green light for engineered algae: redirecting 
metabolism to fuel a biotechnology revolution. Curr. Opin. Biotech. 19 (2008) 430-436. 
299S. Kosourov, A. Tsygankov, M. Seibert, M.L. Ghirardi. Sustained hydrogen photoproduction by Chlamydomonas 
reinhardtii: effects of culture parameters. Biotechnol. Bioeng. 78 (2002) 731-740. 
300S. Kosourov, A. Tsygankov, , M. Seibert, M.L. Ghirardi. Hydrogen photoproduction under continuous illumination 
by sulfur deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydrogen Energ. 27 (2002) 1239-1244. 
301G.Torzillo, A. Scoma, C.Faraloni, A. Ena, U. Johanningmeier. Increased hydrogen photoproduction by means of a 
sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int.. J. Hydrogen Energ. 34 (2009) 4529-4536. 
302C. Faraloni, G. Torzillo. Phenotypic characterization and hydrogen production in  Chlamydomonas reinhardtii QB 
binding D1 protein mutants under sulfur starvation: changes in chlorophyll fluorescence and pigment composition, J. 
Phycol. 46 (2010) 788-799. 
303J.B McKinlay, C.S Harwood. Photobiological production of hydrogen gas as a biofuel. Curr. Opin. Biotech. 21 
(2010) 244–251. 
304O. Kruse, B. Hankamer. Microalgal hydrogen production. Curr. Opin. Biotech. 21 (2010) 238–243. 
305W.A. Amos. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii 
Green Algae. Milestone Completion Report, National Renewable Energy Laboratory, Colorado, USA (2004). 
306B. Sialve, N. Bernet, O. Bernard, Anaerobic digestion of microalgae as necessary step to make microalgal biodiesel 
sustainable. Biotechnology Adv. 27 (2009) 409–416. 
307D. Mohan , C.U. Pittman Jr., P.H. Steele, Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energ. Fuel. 20 
(2006) 848-889. 
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microalgal extraction residue, can produce a bio-oil with a quality that is between petroleum tar and 

bio-oil from lignocellulosic biomass.308,309 Moreover a large part of ashes and nitrogen can be 

retained into bio-char, which could be used to improve the quality and productivity of soils, thus 

contributing to the abatement of greenhouse gases and making it possible to convert carbon-neutral 

energy into carbon-negative bio-energy.310,304  

Therefore this chapter focuses on a study of the yields and composition of biodiesel, bio-oil and 

bio-char, which are obtainable from C. reinhardtii biomass collected after the production of bio-

hydrogen, by means of solvent extraction and low-temperature pyrolysis of the extraction residue. 

Different analytical techniques were applied for characterizing bio-oil and for understanding the 

bio-oil composition and the potential up-grading features (analytical Py-GC-MS) of the liquid fuel 

obtained.  

 

4.3.2 Materials and methods 

4.3.2.1 Chemicals 

All solvents and chemicals used in this study were obtained from Sigma-Aldrich, and were used 

without purification. The Amberlyst® acidic resin used for the methanolysis reaction was washed 

twice with methanol (ratio 6:1 by weight) before use. 

 

4.3.2.2 Microorganism and culture conditions 

Chlamydomonas reinhardtii growth has been previously described in detail by Torzillo et al..301 

The strain L159I-N230Y of C.  reinhardtii is a D1 protein mutant that carries a double amino acid 

substitution, with leucine residue L159 replaced by isoleucine, and the asparagines N230 replaced 

by tyrosine.311 The cells were grown in a Tris-Acetate-Phosphate (TAP) medium in Pyrex Roux 

bottles (Bibby Scientific, Milan, Italy) at 28°C, and were exposed to a light intensity of 70 µmol 

photons m-2 s-1, supplied on both sides of the photobioreactor  (400 ml glass columns with 5-cm 

i.d). Cultures were bubbled with a mixture of air-CO2 (v/v, 97/3). Cells were grown up to 1.35 g L-1 

of dry weight, and then harvested by means of centrifugation (Beckman Coulter, model Avanti J-26 

XP Centrifuge, USA). In order to remove sulfur, the cells were washed five times with a sulfur-free 

medium (TAP-S). 

                                                 
308X. Miao, O. Wu, C. Yang. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrol. 71 (2004) 
855-863. 
309P. Pan , C. Hu , W. Yang, Y. Li , L. Dong , L. Zhu , D. Tong , R. Qing , Y. Fan. The direct pyrolysis and catalytic 
pyrolysis of Nannochloropsis sp. Residue for renewable bio-oils. Bioresource Technol. 101 (2010) 4593–4599. 
310J. Lehmann, S. Joseph. Bio-Char for Environmental management, science and technology. Earthscan, UK (2009).  
311U. Johanningmeier, S.Heiss. Construction of a Chlamydomonas reinhardtii mutant with an intronless psbA gene,  
Plant Mol. Biol. 22 (1993) 91-99. 
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The sulfur-depleted cultures were placed in a flat glass photobioreactor (5-cm light path, 1.1 L 

culture volume). The algal cells were exposed to a light intensity of 70 µmol photons m-2 s-1, on 

both sides of the reactor (Daylight, Dulux L, Osram). Experiments were carried out at 28°C. Mixing 

of the cultures was provided by a magnetic bar placed at the bottom of the photobioreactor. The 

hydrogen produced by the cells was measured according to literature.312 After the collection of 

hydrogen, the spent biomass was harvested by means of centrifugation and was then lyophilized. 

The light conversion efficiency of the cultures was calculated as previously reported by Giannelli et 

al. (2009).313  

 

4.3.2.3 Lipid extraction and analysis  

About 4 g of dried algal biomass was treated with chloroform/methanol 2/1 (ratio 1:10 biomass to 

solvent, g mL-1) for 4 h under reflux conditions and stirring. The algal biomass was then filtered out 

and the solvent was evaporated under vacuum to provide the algal oil. An aliquot of this oil  (100 

mg) was fractionated using column chromatography with silica gel (60 mesh), and was then eluted 

with 250 mL of chloroform, followed by 250 mL of chloroform/acetone 4/1 and by 250 mL of 

chloroform/methanol 1/1 in order to separate non polar , polar and highly polar lipids, respectively. 

The lipids isolated in each eluate were weighed after the evaporation of the solvent.  

The amount of free fatty acids (FFA) in each fraction was determined by means of silylation and 

GC-MS analysis. An aliquot of algal oil (about 5 mg) was spiked with an internal standard solution 

of tridecanoic acid (0.1 mg, 0.1 mL at 1 mg mL-1 in ethyl acetate), 200 µL of bis-

trimethylsilyltrifluoroacetamide containing 1% of trimethylchlorosilane and 10 µL of pyridine. The 

total amount of fatty acids (TFA) in each fraction (the sum of the FFA and the acylglycerols) was 

determined by following the procedure reported by Fabbri et al. (2005): about 5 mg of oil were 

refluxed for 10 min with 4 mL methanolic NaOH 0.5 M. Then, 5 mL of methanolic BF3 were 

added, and the mixture refluxed for 2 min followed by the addition of 10 mL of n-hexane. After 

cooling, a saturated NaCl aqueous solution was added under stirring; the hexane layer containing 

fatty acid methyl esters (FAMEs) was then separated, and was dried over anhydrous sodium sulfate. 

Tridecanoic acid was utilized as an internal standard for quantification of FAMEs. The relative 

response factors used for the quantitation were obtained by injecting solutions of known amounts of 

                                                 
312S. Kosourov, M. Seibert, M.L. Ghirardi. Effects of extracellular pH on the metabolic pathways in sulfur deprived, H2 
producing Chlamydomonas reinhardtii cultures. Plant Cell. Physiol. 44 (2003) 146-55. 
313L.Giannelli, A. Scoma, G. Torzillo. Interplay between light intensity, chlorophyll concentration and culture mixing 
on the hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures grown in laboratory 
photobioreactors. Biotechnol. Bioeng. 104 (2009) 76-90. 
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tridecanoic acid methyl ester and commercial FAMEs mix. The quantitation of FAMEs was 

performed on total ion current (TIC) peak areas.  

All extraction and analysis procedures were performed in triplicate. Triacylglycerols were 

calculated on the basis of the difference between TFA and FFA.  

 

4.3.2.4 Pyrolysis of algal residue after lipid extraction 

The algal residue remaining after solvent extraction was subjected to a bench scale pyrolysis, using 

an apparatus described in detail in a previous work.314 It consisted of a sliding sample carrier in a 

heated quartz tube connected to ice traps and a settling chamber. The quartz tube was  heated by a 

cylindrical co-axial furnace and purged by 1.5 L min-1 nitrogen flow. Samples were moved in the 

heated zone of the quartz tube and were heated at the pyrolysis temperature. 

Duplicate bench scale pyrolyses  were performed on 3 g of sample, at 350°C (temperature of the 

reactor walls) for 20 min. This process produced a highly viscous liquid that was firstly dissolved 

into 10 mL of acetone and then recovered by evaporation of the solvent under vacuum at 40°C. 

 

4.3.2.5 Characterization of pyrolysis oil 

The water content of the pyrolysis oil was determined by means of Karl-Fischer titration. The 

analytical characterization of the organic fraction was based on the solvent fractionation procedure 

developed by Oasmaa et al. (2008).315 The water-insoluble fraction (which is called “pyrolytic 

lignin” in the case of bio-oil from terrestrial plants) was determined by means of precipitation with 

ten-fold excess water added to an aliquot of neat bio-oil. The precipitate was then centrifuged and 

filtered, dried overnight at 40°C under nitrogen flow, and finally weighed.  

The aqueous layer contained sugars (anhydrosugars, polysaccharides and oligosaccharides), as well 

as other water-soluble components.  

The procedure for determining oligo- and polysaccharides has been described by Busetto et al. 

(2010).316 Briefly, polysaccharides and oligosaccharides were methanolyzed by stirring 2 mL of 3% 

methanolic bio-oil solution over Amberlyst® (0.5 g) at 64°C for 24 h. Then, 100 µL of the 

methanol solution were evaporated under nitrogen at room temperature, and the residue was 

dissolved into acetonitrile prior to analysis. Anhydrosugars and methyl-O-glycosides were 

                                                 
314 D. Fabbri, C. Torri, I. Mancini. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and 
characteriation of a chiral hydroxylactone and its role as building block. Green Chem. 9 (2007)1374-1379. 
315 A. Oasmaa, E. Kuoppala. Solvent Fractionation Method with Brix for Rapid Characterization of Wood Fast 
Pyrolysis Liquids. Energ. Fuel 22 (2008) 4245-4248. 
316L. Busetto, D. Fabbri, R. Mazzoni, M. Salmi, C. Torri, V. Zanotti. Application of the Shvo catalyst in homogeneous 
hydrogenation of bio-oil obtained from pyrolysis of white poplar: New mild upgrading conditions. Fuel 90 (2010) 1197-
1207. 
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determined by GC-MS after trimethylsilylation of the bio-oil dissolved in acetonitrile, using 

methyl-β-l-arabinopyranoside as the internal standard. The final amount of oligosaccharides was 

determined by subtracting the content of free anhydrosugars from the total value of methyl-O-

glycosides obtained after hydrolysis. 

 

4.3.2.6 Elemental analysis, higher heating values and SEM 

The elemental composition of dry spent biomass residue (sampled at the end of the hydrogen 

production), extraction residue, bio-oil and bio-char was determined using an elemental analyzer 

(Carlo Erba Instruments, NA 1500, Series 2), by means of the flash combustion technique. 

Ash content was obtained after 6 hours calcinations at 550°C. The elemental composition of 

pyrolysis gas was back-calculated from the mass balance of each element, according to the 

following formula:  

 

%Xgas= (%Xextraction-residue - (%Xbio-oil·Yieldbio-oil + %Xbio-char·Yieldbio-char))·Yieldgas
-1 

 

where %Xgas, %Xextraction-residue, %Xbio-oil, and %Xbio-char are the mass percentages of the element in 

gas, extraction residue, bio-oil and bio-char, respectively; Yieldbio-oil, Yieldbio-char and Yieldgas, are 

the mass yields (w/wsample) of bio-oil, bio-char and gas, respectively.  

The higher heating value (HHV) of each pyrolysis product was calculated from its elemental 

composition by means of the following equation: 317 

HHV=0.3491C+1.1783H+0.1005S−0.1034O−0.0151N−0.0211A (MJ kg-1) 

 

This formula is valid in the following intervals: 0% ≤ C ≤ 92%, 0.43% ≤ H ≤ 25%, 0% ≤ O ≤ 50%, 

0% ≤ N ≤ 5.6%, 0%≤ S ≤ 94%, 0% ≤ A ≤ 71%, 4.7MJ kg-1≤ HHV ≤ 55.3 MJ kg-1 where C, H, O, 

N, S and A represent the carbon, hydrogen, oxygen, nitrogen, sulfur and ash content of the material, 

expressed as mass percentage on a dry basis.  

SEM pictures of the bio-char sample were obtained by using a Philips XL20 or a JEOL JSM-6300F 

FEG instrument after gold coating. 

 

4.3.2.7 Py-GC-MS test of catalytic upgrading of pyrolysis oil 

The pyrolysis unit was a CDS Pyroprobe 1000 pyrolyser connected to a Varian 3400 gas 

chromatograph equipped with a Varian Saturn 2000 mass spectrometer.  

                                                 
317 S.A. Channiwala, P.P. Parikh. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81 
(2002) 1051-1063. 
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A weighed amount of sample  (250 µg of sample 4750 µg of H-ZSM-5 zeolite) was introduced into 

the quartz tube, and held by quartz wool at the middle portion of the tube. Analytical pyrolysis were 

conducted as shown in previous chapters. 

Calibration were performed by external calibration, obtained by injection of toluene solution in 

ethyl acetate in the same system used for pyrolysis. Carbon yields were calculated by mean of 

knowing the elemental composition of analytes and of feedstock tested in the Py-GC-MS 

comparison. 

 

4.3.3. Results and discussion 

4.3.3.1 Hydrogen production 

Data on the hydrogen production achieved with the L159-I230Y strain are summarized in Table 

4.3.1.  

 

Table 4.3.1: H2 production attained with C. reinhardtii mutant strain L159I-N230Y under standard 

conditions (12 mg L-1 chl, 70 µmol photons m-1 s-1, supplied on both sides of the reactor). 

Parameters Units Values 
Total H2 output ml L-1 504±22 
Length of H2 production phase h 100±15 
Mean H2 production rate ml L-1 h-1 5.04±0.35 
H2 maximum production rate ml L-1 h-1 10.5±1.47 
Light conversion efficiency  % 2.66±0.11 

 

The mean hydrogen output was 504±22 mL L-1 (mean ± standard deviation), and  was obtained 

within 100 hours of production. Similar amounts of hydrogen were also obtained by Kruse et al. 

(2005) with an engineered C. reinhardtii strain, but  over a much longer production period (10-15 

days). The hydrogen output achieved with our mutant strain was about 6 times greater than what is 

usually reported with the CC-124 strain, which is extensively used worldwide for experiments in 

hydrogen production.299,300,318. Light conversion efficiency achieved with this mutant was 2.66% of 

PAR (photosynthetically active radiation), and was found to be  considerably higher than the one 

reported by Fouchard et al. (2008).319 However, it must be pointed out that the hydrogen 

performance of the C. reinhardtii  mutant strains could  be further improved, since theoretically 

achievable light conversion efficiency is considered to be about 10% of solar light. The spent 

                                                 
318 A. Tsygankov, S. Kosourov, M. Seibert, M.L. Ghirardi. Hydrogen photoproduction under continuous illumination by 
sulphur-deprived, synchronous Chlamydomonas reinhardtii cultures. Int. J. Hydrogen Energ. 27 (2002) 1239-1244. 
319 S. Fouchard, J. Pruvost, B. Degrenne, J. Legrand. Investigation of H2 production using the green microalga 
Chlamydomonas reinhardtii in a fully controlled photobioreactor fitted with on-line gas analysis. Int. J. Hydrogen 
Energ. 33 (2008) 3302–3310. 
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biomass collected was 0.54±0.01 g L-1. This means that about 12 g of spent biomass were produced 

for each gram of bio-hydrogen (about 11 mL at standard conditions for temperature and pressure, 

STP).  

 

4.3.3.2 Lipid yields and composition  

The total lipid content of the C. reinhardtii D1 mutant after photo-biological production was 15±2% 

on a dry weight basis. The fractionation of the oil using a chromatographic column made it possible 

to separate non polar lipids (e.g. triacylglycerols) from more polar lipids (e.g. glycolipids, 

phospholipids and ceramides). GC-MS analysis after silylation provided information on the amount 

of FFA in each fraction, whereas GC-MS analysis after transesterification gave TFA (Table 4.3.2).  

 

Table 4.3.2: Composition of C. reinhardtii oil, obtained by solvent extraction of biomass collected 

after hydrogen production. 

Eluting solvent Compound class Conc. (%) 
%w/woil 

TFAa 

%w/wfraction 

FFAb 

%w/wfraction 
Hexane Phytols 3.3 - - 
CHCl3 Triglycerides 21 95 - 
CHCl3/Acetone Polar lipids 39 63 26 
CHCl3/Methanol Highly polar lipids 37 39 - 

a obtained by transesterification and GC-MS; b obtained by silylation and GC-MS. 

 

Oil extract was composed of 3.3% w/woil of phytols, 21% w/woil of triglycerides, 39% of   polar 

lipids and 37% w/woil of highly polar lipids. This last fraction, which was eluted with a mixture 1/1 

of chloroform/methanol, contained only 39% of TFA, and for this reason should be considered 

barely “lipidic”. This finding revealed a relatively large amount of high-polarity lipids in the 

extract, as compared with typical biodiesel feedstock (e.g. edible oils mainly consisting of 

triglycerides). The FFA content in the algal oil (10% w/woil) made this feedstock unsuitable for 

transesterification into biodiesel using  conventional alkali-catalyzed procedures. In this work, 

therefore, a methanolic NaOH followed by methanolic BF3 procedure was used for the 

transesterification of both FFA and bounded FA. The final biodiesel yield was 8.7±1% w/wbiomass. 

The biodiesel consisted  of  41% saturated fatty esters, 53% mono unsaturated fatty esters, and 7.2% 

polyunsaturated fatty esters (mainly linoleic acid). This meant that the methyl esters mix could be 

considered suitable for biodiesel in accordance with  EU standard EN 14214. 
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The amount and type of lipids obtained in this work were almost similar to those of data in the 

literature relative to this algal species after hydrogen production.320 This indicates that, despite some 

mass loss (cell disruption) during the transfer of microalgae to a sulfur-depleted medium and during 

the hydrogen production phase, the composition of lipids remains the same. 

 

4.3.3.3 Pyrolysis of extraction residue 

 For the conversion of extracted biomass into bio-char, bio-oil and pyro-gas, low temperature 

pyrolysis (350°C) was performed, mainly with the aim of enhancing the ash and nitrogen partition 

into bio-char, as well as to avoid an extensive formation of hydrogen cyanide during the 

process.321,310 

 

Figure 4.3.1: SEM micrographs of bio-char obtained by pyrolysis of C. reinhardtii extraction 

residue at 350°C. 

  

 

 

The mass yields of bio-char, bio-oil and gas (incondensable compounds, lighter compounds, and 

part of the water lost in solvent evaporation, calculated as difference) were 44±1%, 28±2% and 

28±1%, respectively. The ash content in the bio-char, which was obtained by means of combustion 

at 700°C, was 45±5% on weight basis. On an ash-free basis, the mass yields of bio-char, bio-oil and 

gas were 24±5%, 38±9% and 36±1%, respectively. The 38% bio-oil yield was lower than the one 

obtained from pure cellulose (46±1%) using the same reactor,314 but it was in agreement with 

                                                 
320 H. Tatsuzawa, E. Takizawa. Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J. 
Phycol. 32 (1996) 598-601. 
321 J. Giuntoli, W. De Jong, S. Arvelakis, H. Spliethoff, A.H.M. Verkooijen. Quantitative and kinetic TG-FTIR study of 
biomass residue pyrolysis: Dry distiller’s grains with solubles (DDGS) and chicken manure. J. Anal. Appl. Pyrol. 85 
(2009) 301-312. 
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Grierson et al.,322 who reported a bio-oil yield from high nitrogen content microalgae that was lower 

than those obtained from lignocellulosic biomass. 

Bio-char was the principal pyrolysis fraction; it consisted of large aggregates about 10-100 µm in 

size and with a 1-µm irregular porosity, and with  no record of the original physical structure 

observable. These features are different from those of bio-char from lignocellulosic biomasses, 

which maintains the original ordered structure (e.g. wood vessels) under conditions of low-

temperature pyrolysis.310 

 

4.3.3.4 Elemental analysis of extraction residue and pyrolysis fractions   

Table 4.3.3 shows the elemental composition of the algal residue after solvent extraction and of 

each pyrolysis fraction produced. 

 
Table 4.3.3: Elemental composition of feedstock and pyrolysis fractions. 

 C O N H S ash HHVa 
(MJ/kg) 

Extracted residue 35±0.2 35±0.6 5.1±0.2 5.7±0.2 0.19±0.01 20±4 15±0.4 
Char 40±0.1 9.3±0.2 5.3±0.1 1.4±0.1 <0.1 45±9 13±0.2 
Bio-oil 54±1 33±2 5.4±0.9 6.7±0.1 0.53±0.02 <0.1 23±0.6 
Gasb 9±0.3 74±8 4.5±1 12±1 0.19±0.02 <0.1 10±0.6 

a expected HHV calculated from elemental composition.b The gas elemental composition and HHV 

were calculated on the basis of difference as described in Material and Methods. 

 

As expected, C. reinhardtii residue showed a higher nitrogen content (4.4 ±0.2%) than that of most 

terrestrial lignocellulosic biomasses (e.g. corn stover 0.7%, poplar 0.5%, sweet sorghum 1%, and 

switchgrass 0.3%) tested in chapter 3.1. Solvent extraction residue was found to be even more 

enriched in nitrogen (5.1±2%) than the parent material. The elemental composition of bio-oil (54% 

carbon, 33% oxygen, 5.4% nitrogen, 6.7% hydrogen, 0.53% sulfur, expressed as w/wbio-oil) and the 

HHV(23±0.6 MJ kg-1) were similar to those obtained by Pan et al. (2010) by means of  400°C 

pyrolysis on Nannochloropsis sp. extraction residue.309 

Bio-char was found to be heavily enriched with ash and carbon, whereas volatile products (bio-oil 

and gas) showed a large oxygen and sulfur content. Moreover, from the elemental analysis, gas was 

especially enriched in oxygen (75±8% w/wbio-oil), while nitrogen showed a similar concentration in 

both bio-char and volatile fractions (around 4-5% by weight for each product). It is interesting to 

note that, from an agronomical point of view, bio-char from microalgae is enriched in nitrogen, and 

                                                 
322 S. Grierson, V.Strezov, G. Ellem, R. Mcgregor, J. Herbertson. Thermal characterization of microalgae under slow 
pyrolysis conditions. J. Anal. Appl. Pyrol. 85 (2009) 118-123. 
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could be exploited as a slow nitrogen-releasing source to the soil. 

By combining the data relative to the elemental concentration and yield of pyrolysis fractions, it is 

possible to establish the “flow” of elements caused by pyrolysis towards the three pyrolysis 

fractions (bio-char, bio-oil and gas) (Figure 4.3.2). 

Under the conditions selected in this study (350°C pyrolysis), all ash content was retained within 

bio-char. More than half of the carbon in the feedstock was partitioned into bio-char, whereas less 

than 8% of the carbon ended up in gas. Bio-char carbon yield was higher than that observed (on an 

analytical scale) for the low temperature pyrolysis of terrestrial biomass of chapter 3.1, which also 

had a relatively low nitrogen content (0.3-1% w/wbiomass) and a moderate ash content (2-5% 

w/wbiomass). This could confirm the positive correlation between nitrogen content and bio-char  yield 

that was observed for terrestrial biomasses in the study shown in chapter 3.1. 

 

Figure 4.3.2: Partitioning of feedstock (C. reinhardtii extraction residue) volatile elements and ash 

into bio-char, bio-oil and pyro-gas produced through pyrolysis; bars represent  standard deviation 

(n=2). 

 

Bio-char, gas and bio-oil stored, respectively, about 46±0.3%, 26±1% and 28±1% of pyrolyzed 

nitrogen. Oxygen and sulfur behaved in a similar way: they were mainly (oxygen) or almost totally 

(sulfur) partitioned into bio-oil and gases.  

In conclusion, the elemental balance indicated that low temperature pyrolysis is a suitable technique 

for producing  nitrogen-enriched bio-char for soil conditioning and carbon storage, as well as an 

ash-free liquid with improved HHV. 
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4.3.3.5 Pyrolysis oil chemical characterization  

Algal bio-oil was subjected to further investigation. The results obtained from the chemical 

characterization are shown in Table 4.3.4. The liquid product (containing 13±2% of water) was 

fractionated into a water-soluble fraction (60±7% w/wbio-oil), water-insoluble fraction (26±8% 

w/wbio-oil), and insoluble solids (insoluble both in chloroform and in water, 0.4±0.2% w/wbio-oil).  

 

Table 4.3.4: Concentration of the major constituents of the bio-oil obtained after pyrolysis at 350°C 

of C. reinhardtii extraction residue. 

Bio-oil Fractions % 
w/wbio-oil 

water 13±2 
water-soluble  60±7 
water-insoluble 26±8 
insoluble solids 0.4±0.2 
  
Quantified compounds % 

w/wbio-oil 
Σ sugar oligomers and polymersa 18±0.5 
1,6-anhydro-ß-glucopyranose 7.1±0.2 
other anhydrosugars 1.7±1.1 
1,6-anhydro-ß-glucofuranoside 0.9±0.2 
1,4:3,6-dianhydro-α-glucopyranose  3.9±2.8 
levoglucosenone 1.5±1 
furfural 0.7±0.4 
glycerol 1.6±0.2 
lactic acid 0.21±0.1 
2-furancarboxylic acid 0.18±0.1 
imidazole 0.20±0.1 
3-hydroxy pyridine 0.26±0.1 
2-methyl-5-hydroxypyridine 0.27±0.1 
pentadecanenitrile 0.34±0.1 
Σ 2,5-diketopiperazines 4.1±2 
p-methylphenol 0.13±0.01 
1,2,3-trihydroxybenzene 0.12±0.01 
Σ phytols 0.55±0.01 
Σ free and bounded fatty acids 4.8±2 
Σ GC detectable unknowns 12±5 
Total identified compounds c  71 

a Sum of sugar polymers and oligomers susceptible to methanolysis, obtained by difference between 

methyl-O-glycosides detectable after methanolysis and silylation of the oil, and anhydrosugars 

detectable by silylation of the oil; c comprising all quantified compounds and water. 

 

From a molecular point of view, bio-oil was mainly formed of carbohydrates produced by pyrolysis, 

such as anhydrosugars, oligo- and polysaccharides (detectable as additional methyl-glycosides after 
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methanolysis and silylation), and a relatively small amount of nitrogen-containing GC-detectable 

pyrolysis products from proteins, mainly 2,5-diketopiperazines (4.1±2 % w/wbio-oil) and aromatic 

heterocycles (about 2% w/wbio-oil). Alkylnitriles, phenols, and fatty acids were also detected. It is 

interesting to note that the elemental nitrogen content of bio-oil (5.4±0.9%) was greater than that 

expected from the contribution of nitrogen containing compounds detected by GC-MS (about 1-

2%). This finding suggests that there is an important fraction of the total nitrogen retained by high 

molecular weight compounds (not detectable, even if silylated, by GC-MS) or by unidentified 

compounds. 

Several compounds detected by means of different derivatization techniques (silylation or 

methanolysis followed by silylation) were water-soluble (e.g. levoglucosan, glycerol, 

oligosaccharides, imidazole), whereas only very few of them were water-insoluble (e.g. free and 

bounded fatty acids, phytols and alkylnitriles).  

The presence of a large amount of non GC detectable water-insoluble matter was rather surprising. 

In the case of terrestrial plants, this fraction is accounted for lignin degradation products and 

hydrophobic compounds (e.g. extractives). In our case the chemical nature of this fraction is 

unknown. Lipids, in fact, were solvent-extracted prior to pyrolysis  while lignin is notoriously 

absent in microalgae.  

Due to its chemical composition, the bio-oil obtained from extracted residue pyrolysis is not 

suitable as fuel; however, according to the literature, it could be easily cracked into aromatic 

hydrocarbons over zeolites (with the removal of oxygen and nitrogen), since the elemental ratio 

(C+H)/(O+N) of bio-oil is relatively high and the water content is relatively low.323,309 The absence 

of high concentrations of phenols and lignin derivatives, typical of terrestrial biomass , is also 

advantageous, since the most effective catalyst  in bio-oil upgrading (zeolite H-ZSM-5) is highly 

sensitive to lignin-derived compounds, which clog the pores and thus reduce the effectiveness of the 

conversion.324 For this reason the Chlamydomonas reinhardtii was testes as feedstock using 

analytical pyrolysis and comparing with other feedstock. Interestingly, from this analysis an entirely 

aromatic GC-detectable product, with almost total elimination of nitrogen fuel were obtained. 

Absolute carbon yield of aromatics (figure 4.3.3) were less than that obtainable by pyrolysis of 

hydrocarbons feedstock (C36H74 ), but similar to those obtained by pyrolysis of hydrogenated bio-

oil or pure cellulose, indicating a relatively high quality of this feedstock. 

 

                                                 
323 T.A. Milne, R.J. Evans, N. Nagle. Catalytic conversion of microalgae and vegetable oils to Premium Gasoline, with 
Shape-Selective Zeolites, Biomass 21 (1990) 219-232. 
324A.G. Gayubo, A.T.Aguayo, A. Atutxa, B.Valle, J. Bilbao. Undesired components in the transformation of biomass 
pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst. J. Chem. Tech. Biot. 80 (2005) 1244–1251. 
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Figure 4.3.3: carbon yield (Caromatic/Cfeedstock) of aromatic compounds obtained by catalytic cracking 

of Chlamydomonas reinhardtii bio-oil  (C.R. bio-oil, red bar), poplar bio-oil, hydrogenated poplar 

bio-oil ((H)Bio-oil) on ZSM-5 (bars shows standard deviation, n=5). 

 

4.3.3.7  Evaluation of output of photobiological hydrogen production integrated with solvent 

extraction and pyrolysis.  

An overall balance of the combined biological, chemical and thermochemical processes can be 

calculated from the hydrogen and residue yields, as well as from the yields and compositions of 

extracted material and fractions from pyrolysis. Figure 4.3.4 shows the percentage mass, energy, 

and carbon output of the bio-photolysis process combined with lipid extraction and pyrolysis.  

Hydrogen production represents a lesser amount in terms of mass (only 8±0.3% of the total), but a 

relatively large amount of energy (40±2.5% of total), mainly thanks to the high energy content of 

hydrogen. In any case, it is clear that, after photobiological hydrogen production, spent biomass 

retains a large amount of both mass and energy (92±1% of mass and 58±0.6% of energy). Part of 

this mass and energy could be recovered in the form of conventional bio-fuel by means of solvent 

extraction followed by biodiesel production (8.5±1% on a mass basis and 12±2% on an energy 

basis), but another large part (extraction residue is 83±2% on a mass basis and 48±2% on an energy 

basis) could be valorized by means of pyrolysis. Bio-char is the largest system product on a mass 

basis, whereas the bio-oil and pyro-gas energy contents produced are comparable to that of 

hydrogen. According to these data, bio-char used as soil conditioner (instead of using it as fuel) 

involves a loss of 20±1% of the maximum energy output; however (see Section 3.3), this would 

make it possible to temporarily store (e.g. in soils) more than 44±2% of the carbon incorporated 

during algae growth (Figure 4.3.4).  
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Figure 4.3.4:  Percent distribution of mass, energy and carbon output among different final 

products of the system; bars represent standard deviation (n=2). 

 

Moreover, if bio-oil and bio-diesel are used as starting material for chemical synthesis (e.g. for 

aromatic chemicals synthesis), a further carbon loop can be created, with enhancement of carbon 

negative character of the hydrogen produced by the process. 

 

4.3.4 Conclusions 

Despite the limitations of the equipment used in this work (fixed bed reactor), solvent extraction 

followed by low-temperature pyrolysis demonstrated that the partial separation of carbon and 

energy is feasible by means of the production of biodiesel, ash-free bio-oil with improved 

characteristics (HHV and a composition compatible with upgrading), and carbon-rich bio-char, 

which retains all feedstock ash. This means that, if bio-char from freshwater microalgae can be used 

as a carbon storage material, pyrolysis could be combined with bio-hydrogen production in order to 

obtain a set of potential carbon-negative bio-fuels and chemicals.  
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4.4. Evaluation of Pyrolysis coupled to soil carbon  sequestration as 

GHGs saving strategy in the Ravenna province (Italy ) 

 
4.4.1 Introduction  

Agricultural residues (ARs) represent an enormous carbon flow relatively easy to manage325 and 

interesting for bio-energy and different geo-engineering options.326 Nevertheless, the removal of 

ARs from soil it is a debated option, mainly due to the risk of soil carbon decrease and 

consequential fertility loss.327 The loss of soil carbon is a global issue that particularly affects the 

Mediterranean area, exerting a potentially positive feedback on global warming by higher 

decomposition of soil organic carbon.328 According to the European Environment Agency329 the 

areas with a very low organic carbon content (between 0–1 %) are mostly in the southern part  of 

Europe and correspond to areas with high soil erosion rates and warmer climates, classified as 

sensitive area to desertification.330 Even if the current estimates of changes in soil carbon stocks are 

characterized by high uncertainty, at the European scale soil carbon storage can produce a relevant 

net yearly accumulation of carbon in soils,in the range of 1 to 100 million tons,331 acting as a sink 

for carbon. Thus, soil management practices in agriculture are an important tool to affect the carbon 

stocks. In particular according to the European Commission,331 soil carbon stocks can be increased 

on cropland by: (i) agronomic measures that increase the return of biomass to the soil, (ii) no tillage 

and residue management, (iii) water management and (iv) agro-forestry.  

Beyond the well known practices, pyrolysis allows to transform agricultural residues (ARs) into 

bio-oil or syngas and high recalcitrant carbonaceous matter (bio-char) that can be added to soil. Due 

to the high stability of bio-char, the final effect of its addition to soils is an artificial increase of soil 

                                                 
325J.S Gregg, S.J. Smith. Global and regional potential for bioenergy from agricultural and forestry residue biomass.  
Mitig. Adapt. Strateg glob change. 15 (2010) 241-262. 
326S.E. Strand, G.B. Benford. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep 
sediments, Environ. Sci. Technol. 43 (2009) 1000-1007. 
327D.L. Karlen, R. Lal, R.F. Follett, J.M. Kimble, J.L. Hatfield, J.M. Miranowski, C.A. Cambardella, A. Manale, R.P. 
Anex, C.W. Rice. Crops Residues: the rest of the story. Environ. Sci. Technol. 43 (2009) 8011-8015.  
328P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Torrerdell. Acceleration of global warming due to carbon-cycle 
feedbacks in a coupled climate model. Nature 408 (2000) 184-187. 
329Integration of environment into EU agriculture policy — the IRENA indicator-based assessment report;  2006  EEA 
Report No 2/2006; European Environment Agency; Copenhagen, Danmark, 2006; ISSN 1725-9177, 
http://www.eea.europa.eu/publications/eea_report_2006_2/at_download/file 
330 Mapping sensitivity to desertification (DISMED), Final report; European Environment Agency: European Topic 
center: Terrestrial environment; Barcelona, Spain, 2008, http://www.eea.europa.eu/data-and-maps/data/desertification-
in-the-mediterranean-region. 
331Review of existing information on the interrelations between soil and climate change. CLIMSOIL final report to the 
European Commission; European Commission (EC): Bruxelles, Belgium, 2009, 
http://ec.europa.eu/environment/soil/pdf/climsoil_report_dec_2008.pdf. 
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organic carbon faster than by mulching and no-till management.332,333 For this reason, converting 

ARs into bio-char and bio-fuels could be a solution for the “food, energy and environment 

trilemma”, by stopping the carbon loss of soils and, at the same time, accomplishing food and 

renewable energy production in the form of 2nd generation bio-fuels. 

Therefore, aim of this paper is the evaluation of three different ARs management strategies ((i) 

open-burning (OB), (ii) mulching (MU) and (iii) bio-charring (BC)  through a simulation of soil 

carbon evolution both for total (TC) and humic (HUM) soil carbon content and through a 

Greenhouse Gases (GHGs) balance over 100 years. In order to obtain data with adequate spatial 

resolution, the study was focused on  the Italian province of Ravenna, a relative small 

administrative area (185.000 ha coast-to-hill area ) that could be used as an example for similar 

regions throughout southern Europe.  

 

4.4.2 Materials and methods  

4.4.2.1 Study area 

The Province of Ravenna is located in the northern part of Italy, in the river Po plain. The area is 

bounded on the east by the Adriatic Sea, on the south-west by the Apennines mountains and by the 

Lamone river on the northern side. The 26% of the area is located on low hills and the remaining 

74% is a mainly flat area dominated by agriculture; croplands and fruit farming areas represent, 

respectively, the 50% and the 20% of the district land use.  

 

4.4.2.2 Agricultural residues availability and management strategies 

The availability of ARs within the Ravenna district has been assessed through the use of local data, 

334 national census335 and land use map.336 The collected information have been condensed through 

the use of ArcGis 9.2 ESRI® software, producing a spatial database on agricultural residues, that 

contains average annual ARs yields and average moisture for both biomasses. The biomasses 

chosen as representative of the different types of cultivations was “corn stover and similar” for the 

cropping areas and “orchard pruning” (woody material), for fruit farming areas and vineyards. 

  

                                                 
332 J. Lehmann, J. Gaunt, M. Rondon. Biochar sequetration in terrestrial ecosystems- a review. Mitigation and 
Adaptation Strategies for Global Change 11( 2006) 403-427. 
333 J. Lehmann. A handful of carbon. Nature 447 (2007) 143–144. 
334 A. Buscaroli, A. Gagliardi. Censimento delle biomasse della provincia di Ravenna. Internal report. Centro 
Interdipartimentale di Ricerca per le Scienze Ambientali, Università di Bologna, Ravenna, Italy, 2006. 
335 V° Censimento dell’Agricoltura; Istituto Statistico Nazionale (ISTAT): Roma, Italy, 2001, 
http://www.census.istat.it/index_agricoltura.htm 
336 Carta dell'uso del suolo 2003: Coperture vettoriali 1:25000; Regione Emilia Romagna-Servizio Sistemi informativi 
geografici, Regione Emilia Romagna: Bologna, Italy, 2006, 
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Table 4.4.1: Overview of  biomass resources available. 

Biomass Source Area (kha)  ARs yield(t dry/ha) ARs(kt dry) 
Corn stover and 
similar 

86.4 3.70±1.49 320±129 

Orchard pruning 46.7 1.94±0.86 90±40 
Total 133.2  410 

 
Non managed natural productivity (NP) of agricultural system (e.g leafs, roots, inter-row grassland 

etc.) were included in the model. NP productivity was extrapolated by manageable residue 

productivity using literature coefficients.337 

Considered ARs management strategies (Figure 4.4.1) were: 

i) Open-burning (OB) 

ii)  Mulching (MU) 

iii)  Bio-charring (BC); 

 

Figure 4.4.1: General scheme of the three management options considered by this study (arrows 

indicate a material or energy flow). BC: bio-charring, MU: mulching, OB: open-burning.  
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The first strategy consists on the direct on field open-burning of ARs, a common  strategy for 

orchard pruning management, and was used as reference scenario for the work. This strategy was 

assumed to determine a complete transformation of biomass C  into CO2 without any use of fossil 

                                                 
337 W. Faqi,L. Haib, S.Baosheng, W. Jian,W.J. Gale. Net primary production and nutrient cycling in an apple orchard–
annual crop system in the Loess Plateau, China: a comparison of Qinguan apple, Fuji apple, corn and millet production 
subsystems.  Nutrient Cycling in Agroecosystems 81 (2008) 95-105. 
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energy (eradicated biomass are simply burnt without processing). In the MU strategy ARs are 

chipped and leaved on the field, and a surplus N fertilizer was applied in order to maintain the C/N 

ratio around 30 (as local best agronomic/composting practice suggests ).338 The BC strategy consists 

on ARs collecting, chipping, drying and pyrolysis in order to produce bio-oil (used as energy 

source) and bio-char.  Subsequently the bio-char is applied to the same field that produced the ARs 

and the fuels are burnt in order to replace fossil fuels for producing heat. All the strategies assume 

that the same management of ARs  is carried out, for the considered period, on all agricultural area 

of the Ravenna Province. 

 

4.2.2.3. Soil modeling 

The soil components have been modeled starting from the present condition (soil carbon content) 

and assuming the application of the products (mulch or bio-char) on the same fields of harvesting. 

For calculation, total carbon (t ha-1) at time zero was obtained from organic carbon concentrations 

assuming an organic layer depth of 0.3 m and an average soil density of 1.45 t m-3.  

The model used for simulating the soil carbon evolution in soils has been built on the basis of the 

RothC carbon model,339 using Matlab software. Main modifications of the original algorithm, 

described in detail below, were: 

• Inclusion of two bio-char compartments (degradable and resistant bio-char), with specific 

degradation proprieties, as a source of organic matter. 

• Interaction between bio-char and natural organic matter, and then a small effect on 

developed CO2/(BIO+HUM) RothC ratio.340,341 

• Modification of temperature and rainfall regime over years due to global climate change. 

 

4.4.2.4 Data requirement and main assumptions 

The data required to run the model are reported in table 4.4.2. The following main assumption on 

data input were used: 

• soil layer depth: all samples to be equal to 30 cm; 

• average soil density of 1.45  t m-3;  

                                                 
338 G.F.Huang; J.W.C. Wong, Q.T. Wu, B.B. Nagar. Effect of C/N on composting of pig manure with sawdust. Waste 
Management 24 (2004) 805–813. 
339 D.S. Jenkinson. The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. Lond. B 329 (1990) 361-
368. 
340 G.N. Kasozi, A.R. Zimmerman, P. Nkedi-Kizza, B. Gao. Catechol and Humic Acid Sorption onto a Range of 
Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 44 (2010) 6189-6195. 
341 H. Jin, J.Lehmann, J.H. Thies. Soil microbial community response to amending maize soil with maize stover 
charcoal, Proceeding of 2008 international bio-char initiative 8-10 september 2008, Newcastle, UK. 
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• initial humic carbon content was considered to be equal to the total soil carbon measured by 

RER (2004); this according to the fact that the soil carbon content is decreasing, and this 

imply that major part of soil carbon consist in humus. 

• he ratio between stable and fresh biochar (BCstable/BCfresh ), was assumed to be equal to 0.75, 

according to other authors350 and to the mean value predicted by py-GC-MS method 

application of biochar in chapter 3.4 of this thesis. Because of the high importance of 

understanding the role of this parameter within the mechanism, this value has been 

considered to vary uniformly between 1 and 0.5 in the uncertainty analysis. 

 

Table 4.4.2: Parameters used in the model 

CATEGORY PARAMETER UM 
DATA SOURCE 

or REFERENCE 

Climate and soil - Average monthly mean air 
temperature 

°C 342 

- Monthly rainfall  mm month-1 342 

- Monthly open pan 
evaporation   

mm month-1 343 

- Clay content of the soil  %, mass 

fraction 

344 

- Total Carbon content of soil  mg g-1 344 

- Humic Carbon content of soil mg g-1 100% soilC 

hypothesis 

- Depth of soil layer sampled cm 344 

- 100 y average temperature 
change  

°C/ year 3.32°C/100 y 345 

- Long term average water 
runoff change  

%/ year -13.2%/80 y 346 

Cultivation and biomass - DPM/RPM ratio   339 

- Monthly input of non- t C ha-1 347,337 

                                                 
342Regional Environment Agency of Emilia Romagna (ARPA-ER). DEXTER database (2006). 
343A. Minchio, Evapo-transpiration in the “Quintobacino”, Internal report (2009) Centro Interdipartimentale di Ricerca 
per le Scienze Ambientali, Università di Bologna, Ravenna, Italy, 2006. 
344Emilia Romagna Region (RER) Geological department, Soils of Emilia Romagna database (2007). 
345Intergovernamental Panael on Climate Change: Climate change 2001: synthesis Report, Contribution  of working 
groups I,II,III to the third assessment report of the intergovernamental Panell on climate change. IPCC, Cambridge, 
Cambrige Univeristy Press. UK.  
346R. Warren, N. Arnell, R. Nicholls, P. Levy, J. Price. Understanding the regional impacts of climate change: research 
report prepared for the Stern review on the economics of climate change. Tyndall Centre, Norwich, UK (2006). 
347 A. Buscaroli, A. Gagliardi, Censimento delle biomasse della provincia di Ravenna. Internal report. Centro 
Interdipartimentale di Ricerca per le Scienze Ambientali, Università di Bologna, Ravenna, Italy, (2006). 
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manageable plant residues   
- Monthly input of manageable 

plant residues  
t C ha-1 347347 

- Soil cover – coverage of the 
soil in the month. 

 Agronomical 

pratice  

Pyrolisis and biochar - Biochar carbon yield  
Cbiochar/Cfeedstock  

 348,349 

- BCstable/BCfresh  ratio  350,348 

- Degradable Bio-Char (DBC) 
degradation rate and dBCfresh 

 351 

- Resistent Bio-Char (RBC) 
degradation rate 

 352 

- BCstable/BCfresh  ratio  Chapter 3.4 this 

thesis 

 

4.4.2.5  Identification of reference elements 

In order to produce more realistic forecasts, the area was divided into 113 polygons, through 

overlay of vectorial maps, within a GIS environment. Due to the fact that the modelling 

assumptions are insensitive to the dimension of single elements, this classification has been 

performed through the identification of elements that are characterized by similar environmental 

parameters (T, P, Clay%, C0) and meaningful administrative boundaries (boundaries of 

municipalities). 

 

4.4.2.6  Model algorithm structure. 

The soil components have been modelled starting from the present condition (soil carbon content) 

and assuming the application of the products (mulch or bio-char) on the same fields of harvesting.   

The model used for simulating the soil carbon evolution in soils has been strictly built on the basis 

of the RothC carbon model339, using Matlab™ software. Main modifications were: the inclusion of 

                                                 
348 K.G. Roberts, B.A. Gloy, S. Joseph, N. R. Scott, J. Lehmann, Life Cycle Assessment of Biochar Systems: 
Estimating the Energetic, Economic, and Climate Change Potential. Environ. Sci. Technol., 44 (2010) 827–833. 
349 C.Torri, A. Adamiano, D.Fabbri, C. Lindfors, A. Monti, A. Oasmaa. Comparative analysis of pyrolysate from 
herbaceous and woody energy crops by Py-GC with atomic emission and mass spectrometric detection. Journal of 
Analytical and Applied Pyrolysis 88 (2010) 175-180. 
350 P.A.Brownsort, O. Mašek. Pyrolysis Biochar Systems: Comparison of Climate Change Mitigation Effects of Slow, 
Intermediate and Fast Pyrolysis Processes, 18th European biomass conference and exhibition, Lyon 3-7 may 2010, 956 – 
960. 
351 U. Hamer, B. Marschner, S. Brodowskib, W. Amelung. Interactive priming of black carbon and glucose 
mineralisation; Organic Geochemistry 35 (2004) 823-830. 
352 C-H Cheng, J. Lehmann, M.H. Engelhard. Natural oxidation of black carbon in soils: Changes in molecular form and 
surface charge along a climosequence. Geochimica et Cosmochimica Acta 72 (2008) 1598-1610. 
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the bio-char compartment as a source of organic matter, and the modification of temperature and 

rainfall due to climate change.  

 

Figure 4.2.2: Basic modified RothC model scheme. 
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The RothC model assumes a monthly input of plant residues to soils; in this work, the plant material 

input is considered to be composed by two categories: the non-manageable residues and the 

manageable residues, representing respectively, the incoming plant material due to roots and leaves 

that directly goes into soils and the residues that can be treated and added or not to the soil (in form 

of mulch or biochar) according to the defined strategy.  

In order to model the soil carbon turnover, in this work it was assumed that there are six major 

carbon compartments in soils, arising from the input of plant materials: degradable bio-char (DBC), 

resistant bio-char (RBC), degradable plant matter (DPM), resistant plant matter (RPM), microbial 

biomass (BIO) and humus (HUM). As in the original RothC algorithm, all carbon compartments 

degrade by a specific degradation rate with a monthly time step, producing CO2, humic material 

(HUM) and microbial biomass (BIO) (Figure 4.2.2).  

The BIO/HUM ratio from DBC and RBC (Figure 4.2.2) has been assumed to be equal to the RothC 

model assumption (46% microbial biomass and 54% humus). On the contrary, the soil respiration 

ratio (Eq. 1) (Figure 4.4.2) was developed on the basis of an empirical relationship, taking into 

account  the physical-chemical effect of biochar on the organic matter. This relationship is built by 

assuming an effect of bio-char on the soil respiration ratio similar to the effect of clay (stabilization 

of natural organic matter exerted by adsorption and reduction of bio-avalability of substances), but 
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considering a scaling factor derived from the effect on soil respiration exerted by biochar to mineral 

soil.353,354 

( )
)0744.00786.0(2 67.209.3 Bce

BIOHUM

CO ⋅−⋅−⋅+=
+

                   (Eq.1) 

Where c is the mass percentage of clay in the soil;B  is the amount of bio-char carbon expressed as 

ton ha-1 .  

In basic alghoritm iteration, the soil organic carbon of the i-compartment at time t+1 (monthly time 

step), is described in Eq. 2: 

)()()1( titiijti PSOCMSOC +⋅=+        (Eq. 2) 

SOCi is the soil organic carbon of the i-compartment (DPM, RPM, BIO, HUM, RBC, DBC); 

M ij is the transition matrix of the i-compartment; Pi(t) is the organic matter input at time t.  

 

4.4.2.7 Decomposition of compartments. 

If an active compartment contains Y t C ha-1, this declines to Y e-a(i)bck(i)t t C ha-1 at the end of the 

month. t is 1 / 12, since k is based on a yearly decomposition rate. 

So Y ( 1 - e-a(i)bck(i)t) is the amount of the material in a compartment that decomposes in a particular 

month, where: 

a(i) is the rate modifying factor for temperature for that compartment (Table 4.4.3); 

b is the rate modifying factor for moisture, assumed the same for each compartment; 

c is the soil cover rate modifying factor, assuming the same for each compartment; 

k (i) is the decomposition rate constant for that compartment (Table 4.4.4).   

 

Table 4.4.3: Decomposition rate used for each compartment  

Compartment  Rate modifying factor function 
for temperature (ai) 

DBC a(i)=0.3144·e(0.12179·T)   

RBC a(i)=0.3144·e(0.12179·T) 

DPM a(i)=47.9/(1-e(106/(T+18.3)) 

RPM a(i)=47.9/(1-e(106/(T+18.3)) 

BIO a(i)=47.9/(1-e(106/(T+18.3)) 

HUM a(i)=47.9/(1-e(106/(T+18.3)) 

  

                                                 
353G.N. Kasozi, A.R. Zimmerman, P. Nkedi-Kizza, B. Gao. Catechol and Humic Acid Sorption onto a Range of 
Laboratory-Produced Black Carbons (Biochars). Environ. Sci. Technol. 44 (2010) 6189-6195. 
354H. Jin, J. Lehmann, J.H. Thies. Soil microbial community response to amending maize soil with maize stover 
charcoal, Proceeding of 2008 international bio-char initiative 8-10 september 2008, Newcalste, UK. 
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Table 4.4.4: Base decomposition rate used for each compartment  

Compartment  Base decomposition rate (ki) 

DBC 0.07 

RBC 7.5 ·10-4 

DPM 10 

RPM 0.3 

BIO 0.66 

HUM 0.02 
 
The RothC factors for temperature effect were used for all the components but biochar. The effect 

of temperature on the biochar degradation rate was modelled according to Eq. 3, on the basis of the 

results of Cheng et al.355 

)12179.0(3144.0 T
biochar ea ⋅⋅=                  (Eq. 3) 

Where: abiochar represents the temperature-related factor, for the biochar degradation ratio; T is the 

average daily temperature. Considering the decomposition rates for all the compartments, for a 

given month, it is possible to define a base degradation vector, as: (δDBC; δRBC; δDPM; δRPM; 

δBIO; δHUM). In the modelling procedure, the equations for the δDPM, δRPM, δBIO, δHUM were 

taken directly from the RothC model, the decomposition rate of DBC compartment was calculated 

according to Eq..4 and the decomposition rate of δRBC was directly taken from Cheng et al. 

(2008).355  

fresh

stable

fresh

BC

BC

BC
DBC

−
∂

=∂
1

                (Eq. 4) 

Where: BCfresh represents the fresh component of biochar;BCstable represents the stable component 

of biochar. As estimated in chapter 3.1, the BCstable/BCfresh   was assumed to be equal to  0.75 on 

average, varying uniformly between 1 and 0.5 in the uncertainty analysis. 

 

4.4.2.8 Data requirement and spatial zonation 

The model input (climate maps, soil maps and residues maps) has been developed on the base of 

existing data on temperature, rainfall, evaporation, clay concentration, soil organic carbon content 

and available ARs. In all the cases other than the ARs map, the kriging 356,357 method for 

                                                 
355 C-H. Cheng, J. Lehmann, M.H. Engelhard. Natural oxidation of black carbon in soils: Changes in molecular form 
and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72 (2008) 1598-1610. 
356T. Hengl, G.B.M Heuvelink, A.A. Stein. generic framework for spatial prediction of soil variables based on 
regression-kriging. Geoderma 120 (2004) 75-93. 
357DEXTER database of Regional Environment Agency of Emilia Romagna (ARPA-ER), 
http://www.arpa.emr.it/sim/?osservazioni_e_dati/dexter 
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interpolating data has been used in order to produce maps from point data, through the use of 

Spatial Analyst, within the ArcGis environment. 

In order to identify meaningful areas with similar parameters values, an intersection between the 

parameters maps and the administrative boundaries of municipalities of Ravenna Province has been 

carried out. As a result, 113 different elements have been identified. 

 
4.4.2.9 Green House Gases balance 

The greenhouse gases emissions for each of the considered strategies have been calculated 

summing the emissions related to the energy productions/consumptions activities and  the CO2 

emissions linked to depletion or enrichment of soil carbon pool. The efficiency of “ARs carbon 

capture” was evaluated by dividing the CO2eq balance at a time by the CO2 captured in ARs until 

that time. 

In particular, the “non carbon storage” effects due to the BC strategy, have been evaluated through 

the Biochar Energy, Greenhouse Gases and Economic (BEGGE) life cycle assessment inventory 

analysis method.348 In order to be consistent with the data inventory proposed by the authors in the 

BEGGE method, the same hypothesis on field operations, thermochemical processes efficiency and 

dimension of the collection and application basin area, have been assumed.  

According to the Roberts et. al348 the net effect of the application of bio-char produced from ARs is 

carbon negative and it is due to: the effect of the reduction of fertilizers needed, the use of the 

syngas/bio-oil for heating purposes and the stocking of carbon into soils, in the form of bio-char. In 

order to allow the evaluation of the effect on time of GHGs emission reduction potential, the 

method proposed by Roberts et al.348 has been modified through the decay algorithm for the “stable 

carbon” component (from soil carbon modeling). 

The GHGs balance of the MU strategy was quantified considering the following processes and 

sources: the biomass chipping (with energy consumption), the application to soil, the supplemental 

nitrogen fertilizers application aimed at creating an optimal C/N ratio into agricultural soils and a 

slight increase of N2O emission from soil, as reported by Larsson et al..358   

In order to quantify the net benefit of carbon sequestration due to BC and MU, a comparison with 

the reference scenario (OB strategy) was performed. 

The equation used for quantifying the relative GHGs emission reduction for each strategy at time t, 

when compared to the reference condition (OB strategy) is reported in Eq. 5:  

 

∆GHGsN,i-OB, t = GHGsN,I,t - GHGsOB,t  (Eq. 5) 
                                                 
358L. Larsson, M. Ferm, Å. Kasimir-Klemedtsson, L.Klemedtsson. Ammonia and nitrous oxide emission from grass and 
alfalfa mulches. Nutrient Cycling in Agrosystems 51 (1998) 41-46. 
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Where 

∆GHGsN,i-OB,t  represents relative net effect on GHGs emission reduction for the i-strategy, when 

compared to the OB strategy;GHGsN,i,t represents the net effect on GHGs for the i-strategy; 

GHGsOB,t represents the net effect on GHGs for the OB strategy. 

The general equation used for quantifying the net effect on GHGs emission or reduction is the 

following: 

 

GHGsN,i,t = - GHGsE,i,t + GHGsS,i,t + GHGsA,i,t    (Eq. 6) 

 

Where: GHGsN,i,t represents the net effect on GHGs for the i-strategy; GHGsE,i,t represents the 

GHGs EMISSIONS due to the processes that are included in each of the i-strategies; GHGsS,i,t represents 

the effect of GHGs STORAGE (carbon storage) due to soil carbon dynamic involved in the i-strategy 

and the direct emission of N2O from soils; GHGsA,i,t represents the effect of GHGs AVOIDING, due to 

the substitution between conventional fuels and electricity production and energy from pyrolysis 

and the avoiding of N2O emissions due to the reduction in use of fertilizers (BC strategy). 

Then, using Eq. 7, 8, 9 it is possible to derive Eq. 10:. 

 

GHGsE,i,t = GHGsE-FUELS,i,t  (Eq. 7) 

 

GHGsS,i,t = GHGsS-C,i,t + GHGsS-N2O,i,t  (Eq. 8) 

 

GHGsA,i,t = GHGsA-FUELS,i,t + GHGsA-N2O,i,t  (Eq. 9) 

 

Where: 

GHGsE-FUELS,i,t represents the GHGs EMISSIONS due to use of fuels;GHGsS-C,i,t  represents the effect of 

GHGs STORAGE (carbon storage) due to soil carbon dynamic involved in the i-strategy; GHGsS-N2O,i,t 

represents the direct emission of N2O from soils; GHGsA-FUELS,i,t represents the GHGs AVOIDING due 

to use of syngas/bio-oil as fuels; GHGsA-N2O,i,t  represents the GHGs AVOIDING  of N2O emissions due 

to the reduction in use of fertilizers (BC strategy). 

 

GHGsN,i,t = GHGs∆FUELS,i,t + GHGs∆N2O,i,t + GHGsS-C,i,t                   (Eq. 10) 

 

In Table 4.4.5 are reported the coefficients used as inputs for Eq. 10  For all the strategies the soil 

carbon modelling was the base for evaluating the GHGs emission/storage in soil.  
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Table 4.4.5: Data on GHGs emissions, by source and strategy, as input for Eq. 6 
Strategy Biomass to 

soil  
yield 

C/Cresidue  

GHGs∆FUELS 
(∆ use of fossil 

fuelsa) 
kgCO2eq ton-1  

GHGs∆N2O,i,t 
(∆ soil N2O 
emissions) 

kgCO2eq ton-1  

GHGsS-C,i,t 
(Soil Carbon 

storage benefits) 

Open-burning (OB) 0 0 0 Soil carbon 
balance 

(modeling) 
 

Mulching (MU) 100% Corn & similar:  
-31.6a 

Pruning residues: 
-44.6a 

Corn & similar:  
-5.2b 

Pruning residues:  
-5.6b 

Soil carbon 
balance 

(modeling) 
 

Bio-charring (BC) 42% Corn & similar: 
215.3 
Pruning residues: 
215.3 

Corn & similar:  
59.8c 

Pruning residues: 
59.8c 

Soil carbon 
balance 

(modeling) 
 

a kgCOeq emission due to process energy input (negative value) or output (positive value) of a ton 

of dried residue; b kgCO2eq emission due to variation in N2O production from soil due to mulching; 
c negative value correspond to the  reduction in  N2O emission from soil due to application of 

biochar obtained from 1 dry ton of corn stover. 

 

Data on processes emission factors, renewable energy production and reduced N2O soil emission 

due to biochar application were mainly taken from the BEGGE spreadsheet, proposed by Roberts et 

al.348 and integrated with data on processes (pruning residues chipping), using the energy 

consumption coefficients for tree chipping operations from Caserini et al.359 

According to Eq. 10, the GHGs emissions relative to the MU strategy are composed by three main 

sources: energy consumed in processing operations (assumed to substitute energy produced from 

natural gas), increase/decrease of non-CO2 GHGs emissions (N2O) and carbon storage in soils. For 

this strategy, an addition of nitrogen-based fertilizer to croplands was assumed for maintaining high 

productivity on agricultural fields. Then, the C/N ratio of mulch was reduced from high values (see 

table 4.4.6) to 30, through addition of nitrogen-based fertilizer, as the best composting practices 

suggest. 360 Then, literature on N2O emission for Low N-grass (1.15% N and C/N ratio of 36.1) was 

used361 for evaluating the emission of N2O.  This value resulted to be equal to 0.00115 kg N2O/kg 

                                                 
359S. Caserini, S. Livio, M. Giugliano, M. Grosso, L. Rigamonti. LCA of domestic and centralized biomass combustion: 
The case of Lombardy (Italy). Biomass and bioenergy 34 (2010) 474-482. 
360 G.F. Huang, J.W.C.Wong, Q.T. Wu, B.B. Nagar. Effect of C/N on composting of pig manure with sawdust. Waste 
Management 24 (2004) 805-813 
361 L. Larsson, M. Ferm, Å. Kasimir-Klemedtsson, L. Klemedtsson. Ammonia and nitrous oxide emission from grass 
and alfalfa mulches. Nutrient Cycling in Agrosystems 51 (1998) 41-46.  
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N,  leading to a net emission of  0.343 kg CO2eq/kg N (100y GWP) that can be used for calculating 

the N2O emission caused by mulching of a ton of residue (table 4.4.5). 

 
Table 4.4.6: Data on fertilizer addition within the MU strategy and relative GHGs emissions. 
  
feedstock CO2eq 

produced in 
chipping 
operations 
kgCO2/tonmulch  

 

N content  
% 

C content 
 % 

N 
required 
for  C/N 

=30 
% 

CO2eq from 
required 
fertilizer 

production 
CO2eq/tonmulch 

CO2eq from  
N2O 

emission 
CO2eq/tonmulch 

Corn 
stover and 
similar 

2.4 kg, 32 MJ 0.7 45 0.8 24.0 kg 5.15 

Pruning 
residues 

5.3 kg , 72 MJ  0.5 48 1.1 33.7 kg 5.55 

 

4.4.2.10 Uncertainty and sensitivity analysis 

Understanding the magnitude and the sources of the uncertainty that characterizes the modeling 

assumptions can be relevant for scientific understanding and decision making, both uncertainty and 

a sensitivity analysis were performed on the GHGs balance of BC and MU strategy, compared to 

OB. The analysis has been carried out through the use of the SIMLAB 2.2 software.362 The 

distribution of each model input variables was generated starting form average values and 

uncertainty of the source data. 

In order to perform the analysis, a Montecarlo approach-based uncertain analysis and variance-

based sensitivity analysis techniques (Sobol’s) have been applied.363 The factors that have been 

considered and the relative random distribution used, are reported in Table 4.4.7. The factors have 

been used as multiplying factors for the data input matrix, creating a set of 640 similar matrices on 

which the uncertainty and sensitivity analysis have been performed. 

 

Table 4.4.7: Factors considered in the sensitivity analysis *for non normal distribution. **triangular 

distribution was used in order to avoid occurring of negative values 

 Distribution  σ or interval* criterion 
Monthly avg. Temperature Normal 0.15 Standard deviation of T 

distribution on  all study area  
Monthly tot. Rainfall Normal 0.2 Standard deviation of P 

distribution on  all study area  

                                                 
362 A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto. Sensitivity analysis in practice: A guide to assessing scientific 
models; Wiley: New York, NY, 2004. 
363 M. Saisana, A. Saltelli, S. Tarantola. Uncertainty and sensitivity analysis techniques as tools for the quality 
assessment of composite indicators. Journal of the Royal Statistical Society. Series A 168 (2005) 307-323. 
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Monthly Evaporation Uniform 0.5-1.5 Only one data available on the 
area (conservative choice) 

Agr. Residues Yield Triangular 0.57-1.43 Maximum an minimum from 
interviews.** 

Non manageable residues Normal 0.1 Standard deviaton for non-

manageable residue data337 

RPM/(Incoming plant matter) Normal 0.1 Standard deviation of lignin 
content among same type of 
agricultural residues (e.g. 
among crops or among 
pruning residues) 

BCstable/BCfresh Uniform 0.75-1.25 Arbitrarly selected according 
to Roberts et al.348 

Clay % Normal 0.27 Standard deviation of clay % 
distribution on  all study area  

Initial soil Carbon (C0) Normal 0.23 Standard deviation of C0  
distribution on  all study area  

Climate change (DT) Uniform 0-2 Comprise “no climate change 
hypotesis” to double expected 
effect from climate change. 

Climate change (D(P-E)) Uniform 0-2 Comprise “no climate change 
hypotesis” to double expected 
effect from climate change. 

 

4.4.3. Results and discussion 

4.4.3.1 Agricultural residues yields and main characteristics of study area 

The total amount of ARs within the Ravenna Province is equal to 4.10 ·105 tons per year (table III). 

Residues from annual cropping activities (corn and similar) are equal to the 78% of the value, 

where the remaining part are residues from orchard pruning and orchard renovation (eradication and 

replanting). Stover is commonly sold as animal feed and orchard residues are burned on the field. 

Both these practices imply a reduction of carbon inputs to soils, determining an average low 

concentration of soil organic carbon in all area (Figure 4.4.3). Among different climatic, 

pedological and agronomic conditions, soil carbon concentrations varies between 54 t ha-1  (orchard 

soil with high clay content) and 29 t ha-1 (annual crop on sandy soils). 

 

4.4.3.2 Total carbon evolution and humic carbon evolution  

The century trend of different soil carbon fractions (DBC, RBC, DPM, RPM, BIO, HUM) was 

modeled on all the agricultural areas of the Ravenna district. Figure 4.4.3 shows the maps of soil 

carbon evolution within the study area. Spatial differences are due to the different ARs yields (that 

are higher for croplands and lower for fruit farming areas) and climatic and pedologic differences 

inside the study area. Figures 4.4.4 (a, b) represent the average soil total carbon evolution (TC) and 
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soil humic carbon (HUM) evolution over 100 years, for two different areas of the Ravenna Province 

(Fusignano and Brisighella) that could be considered as representative of the two typical trends 

(orchards and annual crops) that occur within the study area.  

 

Figure 4.4.3: Spatial distribution of 2010 carbon concentration in the study area, by simulation of 

different management strategies for 100 years;  (OB) open-burning, (MU) mulching, (BC) bio-

charring. 

 

In both croplands (Brisighella) and orchards (Fusignano) it is possible to note that the OB would 

determine a slight decrease of both TC and HUM content for the first 50 years followed by a 

stabilization at ~31 tC/ha and ~37  tC/ha respectively. It is notable that, according to the simulation,  

the current cropland situation is almost in equilibrium with a removal strategy. On the contrary, in 

orchards soils (e.g. Fusignano district) the open-burning practice (currently the most frequent habit) 

will determine a monotone ~20% reduction of soil organic carbon content over a century.  

The MU strategy showed a better performance with a moderate increase of soil carbon content in 

two “waves”, one starting immediately and one after 50 years. In the first time span resistant plant 

material input drives the carbon increase, after 50 years, the humus formed during years starts to 

have a more important contribution.  



 146 

 

Figure 4.4.4: Total soil carbon evolution (a) and humic carbon evolution (b) over 100 years for two 

reference sites, Brisighella (annual crops, continuous lines)  and Fusignano (orchard, dashed lines) . 

 
BC determines a grossly linear increase of soil carbon content by 0.5 ton ha-1 y-1. It is possible to 

notice that the BC strategy is able to increase the soil total carbon  twice faster than the MU 

strategy, with a soil carbon level of 80-90 t/ha after 100 years. Nevertheless, considering a very 

short time perspective (<10 y) it is interesting to note that mulching raises organic carbon faster 

than bio-charring, mainly due to RPM and BIO accumulation in the soil.  

In order to establish the effect on fertility loss and erosion trend, that are extremely relevant in the 

hilly part of the study area, the attention was focused on the humus component. Among the three 

strategies, only mulching can stop the humus loss in carbon rich orchard soils or determine a slight 

increase (~20% raise) for relatively carbon poor croplands soils. The effect of mulching is notable 

on the natural HUM component of the TC. In fact this strategy can significantly avoid large soil 

natural HUM loss with a relative stabilization of the soil carbon content and, on a very long term 

perspective, is able (using only AR locally produced) to solve the problem of relative low organic 
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carbon content typical of the study area soils. 

On the contrary, for the first 100 years both BC and OB (or removal) of ARs cause almost the same 

adverse effects on humus concentration, with a reduction of humic carbon by one third. 

Bio-charring strategy allows a higher humus concentration only on long time scale, when the 

carbonaceous material starts to decompose significantly. This effect is negligible within the time 

period examined in this work, but could be considered a very long term benefit of the bio-charring 

practice.  

In conclusion, bio-charring can act as a net substitution between natural humic carbon and  an 

higher amount of a sort of “synthetic soil carbon”. From the point of view of total soil carbon, the 

BC management strategy of ARs, could be a successful choice due to the net gain of organic 

material of soil compared to both open burning and mulching strategies. Nevertheless from an 

agronomic point of view, bio-char and HUM are not totally equivalent, and then bio-char 

application as “stand alone” strategy has to be carefully evaluated. 

 
4.4.3.3  Green House Gases balance 

The potential GHGs emission reduction at the Ravenna Province scale are represented on Figures 

4.4.5a and 4.4.5b. A positive value means a net effect of reduction of the emission, whereas a 

negative value means a net emission, and the error bar corresponds to standard deviation of the 

distribution obtained by uncertainty analysis. 

According to the results (α: 0.05), if manageable residues are burnt without energy recovery, 

Ravenna croplands will produce 1.09Mt CO2eq in 20 years (relative standard deviation RSD: 

144%) and 3.72 Mt CO2eq (RSD: 120%) over the century. By pyrolysis and bio-char application to 

soil, the same system will determine a reduction/ avoiding of emissions equal to 6.47 Mt  CO2eq 

(RSD: 36%) in first 20 years and 30.1(RSD: 32%) Mt CO2eq in 100 y. Also the mulching strategy 

leads to a relevant reduction equal to 2.74 Mt CO2eq (RSD: 87%) in 20 years and 5.75 Mt CO2eq 

(RSD: 122%) in 100 years. All but BC strategy results are characterized by high uncertainty, due to 

the partial knowledge on initial parameters value. Despite of the large variability of the absolute 

values, BC and MU strategies seems to be, on average, both effective in terms of GHGs emission 

reduction and, according to the results, both strategies determine a significant reduction in GHGs 

emissions with respect to open-burning (Figure 4.4.5b).  

In order to evaluate the relative effect of the choice, both the differences between BC and OB and 

between MU and OB are shown in figure 4.4.5b. In this case the uncertainty is strongly reduced, 

mainly thanks to the elimination of  the variability due to non-management sensitive data (e.g. 

amount of non manageable residues and initial soil carbon content). The comparison between BC 

and MU clearly shows that the biochar strategy represents the best option for GHGs sequestration 
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on medium and long term perspective (t >7 y), but, on very short term (t < 7 y), the two strategies 

are not statistically different (∆GHGs(BC-MU) < 0 , α: 0.05). 

 

Figure 4.4.5: a) GHGs reduction/emission in different AR management strategies, b) relative 

GHGs reduction/emission due to difference between intervention and open-burning removal 

strategy (bars show confidence intervals with α: 0.05) 

 

 

The difference on GHGs emission/avoiding between BC and OB, evaluated as average over 100 

years, was equal to 12% of the yearly GHGs emission  produced by the energy consumption within 

the Ravenna province (2.94 Mt of CO2eq) 364. Moreover it is noticeable that also a relatively 

“traditional” management like mulching would be able to save 3-10% of overall emissions for 20 

years, with other benefits (e.g. protection against erosion). In general, these values of GHGs savings 

                                                 
364Piano energetico provinciale; Provincia di Ravenna: Ravenna, Italy, 2009, 
http://www.provincia.ra.it/Argomenti/Ambiente/Energia-ed-elettromagnetismo/Il-Piano-Energetico-Provinciale 
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are not negligible, considering that a large fraction of the ARs are actually burnt on field. 

The sensitivity analysis was performed on the cumulative GHGs emission reduction resulting from 

the adoption of BC and MU strategies with respect to the OB strategy.  

 

Figure 4.4.6:  Sensitivity analysis of the relative GHGs reduction between: a) BC and OB, b) MU 

and OB. 

  

 

Figures 4.4.6a and 4.4.6b show the results obtained by sensitivity analysis on the model following 

different scenarios. The results show that  the uncertainty related to the CO2 reduction potential 

determined by bio-charring adoption, is mainly due to the partial knowledge about the amount of 

manageable residues. This can be considered as the most important factor, because it is able to 

explain more than the 50% of the total variance of the results. With time, the relevance of other 

factors increases, in particular  the amount of labile matter in bio-char, temperature ( uncertainty 

due to meteorological data resolution) and, in lesser extent, the uncertainty regarding change in 

rainfalls due to global warming model uncertainties. On the other hand, the uncertainties related to 

temperature increase (due to global warming) and clay concentration (typically involved in HUM 

formation) seem to be less important. 

Looking at the uncertainty related to the potential CO2 eq emission avoiding due to the MU 

strategy, other factors become relevant. As for the BC strategy the amount of manageable residues 

can be considered as the most important factor, at least in the short period, but the relevance of the 

other factors changes significantly. In this case degradability of ARs and climate become important 

factors in the first 50 years and the uncertainty related to climate change effects (∆T and ∆P) 

become crucial factors on the long period..  

Comparing the two strategies and their respective sources of uncertainty, BC seems to be a more 

GHGs safe management, in the sense that its uncertainty is mainly depending on ARs yields and not 

by other factors and for this reason the process seems to be much more insensitive to other factors if 

compared to MU. On the contrary, a large portion of uncertainty regarding MU effects on GHGs 
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emissions ( 50% in the long term model predictions) it is due to the lack of knowledge on global 

warming parameters, and then are difficult to eliminate. 

 

4.4.3.4 Carbon capture and storage (CSS) efficiency: comparison with other technologies 

The BC and MU strategies were compared to other technological ARs management options, in 

terms of carbon offset efficiency over two defined time span (20 and 100 years). The considered 

alternative ARs management options were: energy recovery from direct burning of forestry residues 

in Italy for two different technologies (pellet stove heating without gas cleaning, combined heat and 

power (CHP) 100 MW plant365 and 2nd generation ethanol production.326 

 

Figure 4.4.7: Comparison between the CCS efficiency of different ARs management options, 

expressed as the percentage of ARs carbon that it is sequestered or that avoid fossil fuel carbon 

emissions. ∆Soil N2O emissions: avoided emission of N2O due to the biocharring. 

 

Results are shown in Figure 4.4.7. When a 20 years time span is considered, it is possible to see that 

BC can act as very effective “emergency solution”, because the average efficiency over the period 

is equal to 55%, a carbon sequestration ratio similar than other biomass fueled energy conversion 

processes (61% and 52% respectively from and pellet stove and CHP 100 MW plant). On this time 

scale, also MU shows an efficiency comparable to second generation ethanol. It has to be noticed 

that this value is twice than what was proposed by Strand and Bedford, 6 mainly due to the 

accounting of the entire mulched material carbon cycle (conversion to BIO and HUM).  

                                                 
365 S. Caserini, S. Livio, M.Giugliano, M. Grosso, L. Rigamonti. LCA of domestic and centralized biomass combustion: 
The case of Lombardy (Italy). Biomass and bioenergy 34 (2004) 474-482. 
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In a long term  perspective (100 years), the off-set efficiency of BC slightly decreases becoming 

equal to 50%, where the mulching carbon capture and storage efficiency drops to 16% a reduction 

due to the reaching of the equilibrium for resistant plant material component. 

Looking  at the MU strategy as CCS method, a large effect of carbon storage could be attained  in 

the first 20 years and a non-negligible CCS value on the long period, simply through burial of the 

residues. This is to stress that, considering other non quantified benefits (e.g. reduced erosion) of 

HUM conservation obtainable by mulching, this approach could be the best choice in high hydro-

geological risk areas or in colder climates (where HUM could act as longer term C stock). 

In order to correctly understand the results it is important to consider that the efficiency of CCS for 

BC and MU depends from the environmental parameters that characterize the reference area, so the 

presented result is specific for the territory of Ravenna Province, but it can be reasonably exported 

to similar regions. The avoiding of GHGs due to the substitution in the use of fuels, is also a local 

parameter, that strictly depends on the characteristics of the fuel categories that are supposed to be 

substituted with syngas or bio-oil from pyrolysis. 

When comparing the CCS efficiency of BC and MU to other alternatives, it is important to consider 

that if a ARs management strategy is modified (e.g. from biocharring to open-burning) the carbon 

stored into soils becomes a potential source of GHGs, depending on the degradation rate of the 

already provided inputs (bio-char or mulch) and depending on the future land uses (agricultural or 

not) of the considered croplands. In this sense, the storage of carbon into soils through BC or MU, 

even if it shows a comparable efficiency with other technologies in the short term, it is sensitive to 

changes in land uses and agricultural practices that can, on the long period, reduce the sequestered 

CO2eq. 

 

4.4.4 Conclusions  

In order to compare the effects of different management strategies of ARs in terms of soil carbon 

evolution and GHGs emissions, a modified version of RothC model was developed. Although 

applicable on larger scale, the model was tested on a relatively small region using detailed 

environmental data. 

The bio-charring and the mulching strategies have been evaluated by taking into consideration only 

local agricultural residues and by an in-deep modeling of soil carbon balance. Intrinsic limitations 

of the method were mainly linked to the partial knowledge about actual biomass amounts, long term 

climate values and bio-char properties as indicated by the sensitivity analysis. Anyway, according 

to the model, 0.21-0.47 Mt CO2eq y-1, (16% to 7% of the GHGs in the study area) could be avoided 

over 100 years by bio-charring and a 20 years 0.09-0.30 Mt  CO2eq y-1  emission reduction could be 
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obtained by mulching.  

These results are obtainable by using only agricultural residues, without land competition with food 

crops and, for bio-charring, with co-production of energy, but assuming that all the area is managed 

according to the same strategy, over all the considered period. This confirms, in the mild climates, 

the large theoretical potential of bio-charring strategy for long term climate change mitigation and 

reveals mulching as a valuable practice for medium term. By the way, the potential reversibility on 

the long period of the stored carbon on soils to GHGs due to land use changes, has to be considered 

for policy decisions. 
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5. Conclusions 
In this dissertation, pyrolytic conversion of biomass into potentially useful products (chemicals, 

fuels) was investigated from the analytical point of view.The study was focused on the liquid (bio-

oil) and solid (char) fractions obtainable from biomass pyrolysis. 

Analytical pyrolysis combined with GC-MS (Py-GC-MS) has been historically applied to provide 

valuable information on the thermal behavior of biomass at a molecular level and the effect of 

catalysts. The pattern of pyrograms obtained from Py-GC-MS reflects the chemical composition of 

bio-oil obtainable from reactors and larger scale apparatus. Nonetheless, most of the studies were 

qualitative and the family of pyrolysis products often limited by GC needs (e.g. volatility, thermal 

stability). One of the aim of this study was that to extend the capability of analytical pyrolysis 

investigating novel procedures. 

A quantitative approach in Py-GC-MS based on internal standardization with o-isoeugenol enabled 

an estimation of the yields of pyrolysis products evolved from four biomass. The selected biomass 

were poplar, switchgrass, corn stover and sweet shorgum. These biomass were representative of 

woody biomass (poplar and pine), herbaceous biomass from dedicated cultivation (switchgrass), a 

representative agricultural residue (corn stover) and results in term of yields and composition were 

comparable to that of literature from the analysis of bio-oil. 

The same procedure was applied to the chemical characterization of syntethtic biochar. Yields of 

evolved products were then used to obtain structural features of a large number of commercial 

biochars, subsequently used for estimating the stability of bio-char in the environment.   

Limitations of this procedure are mainly linked to polar substances (e.g. levoglucosan), reactive 

volatiles (e.g. hydroxyacetaldehyde), minor compounds (they are not identificable nor quantifyable 

with accuracy) and non GC amenable substances (e.g. oligomers and pyrolitic lignin). 

The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical 

configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with 

derivatization procedures). 

Expoliting a commercial pyrolyser the accuracy of the pyrolytic process was preserved. The main 

modifications were in detection and in sampling/trapping procedures of evoled pyrolysis products 

prior to subsequent analytical steps. For the de-coupling, two sampling techniques were 

investigated: Py-SPME-GC-MS and Py-SPE-GC-MS with derivatization procedures. Py-SPE 

consinsted in trapping the evolved products onto a resin followed by their elution with a solvent. 

This approach was named as solid phase extraction for the sake of brevity (Py-SPE). The eluted 

products could be directly analysed by GC-MS or derivatised with a silylating reagent prior to GC-
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MS analysis, The second sampling method was based on solid phase-microextraction (SPME), and 

the procedure was named as Py-SPME. 

The application of different techniques allowed a satisfactory comparative analysis of pyrolysis 

product of different biomass and was applied in a high troughput screening on effect of catalysts on 

biomass pyrolysis. As results of the screening most interesting catalysts were catalysts containing 

copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) 

and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). 

In order to establish the noxious compounds content of the liquid product, a clean-up step was 

included in the Py-SPE procedure. This allowed to investigate pollutant (in particular PAHs) 

generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic 

pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-

oil up-grading determined an astonishing high production of PAHs (if compared to that observed in 

alkanes cracking), indicating an important concern of the substitution fossil fuel with bio-oil derived 

from biomass.  

The analytical procedures developed in this thesis were directly applied for the detailed study of 

most useful process scheme and up-grading route to chemicals intermediate (anhydrosugars), 

transportation fuels or commodity chemicals (aromatic hydrocarbons).  

Looking at chemicals and transportation fuels affordable from biomass, raw biomass bio-oil is 

formed by a plethora of compounds that can not be used as chemical intermediates (mainly due to 

problems of isolation) and determines a large instability of the oil. For this reason, raw bio-oil can 

be seen mainly as a chemical energy carrier.  

On the contrary, pyrolytical pathways from cellulose and de-ashed biomass resulted very interesting 

for the production of targeted functionalized compounds (anhydrosugars), usable as chemical 

intermediates without any competition with the price of fossil fuels. 

For the Greenhouse Gases balance, the use of carbon residue (char) as bio-char (soil conditioners) 

showed to be equivalent to the combustion of char for energy production, and soil modeling 

(chapter 4.4) suggested that the bio-char strategy in strongly advised in order to avoid a large 

carbon impoverishement of temperate soils.  

At the best of our knowledge of available literature, and according to additional data provided in 

this Thesis, two alternative pathways can be hypothized: one that, by means of preatreatment (wet 

torrefaction) enables the conversion of biomass into a new class of chiral intermediates, and other 

involving  the introduction of biomass derived liquids, as “optional” carbon flow, into existing 

fossil fuelled refineries (e.g. equipped with H-ZSM-5 shape selective catalyst).  
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The first strategy probably represents the most interesting and promising option from research point 

of view, mainly because it exploits the intrinsic characteristics that distinguish biomass from fossil 

sources, but nonetheless it will require a large research effort for developing a completely 

alternative chemical platforms.  

On the other hand,the second strategy could be considered an already feasible option. In order to 

transform this materials into commodity chemicals and fuels, hydrogenation followed by drastic 

catalytic conversion (e.g. over ZSM-5) is mandatory and cellulosic biomass yielded more aromatics 

than lignin rich biomass. This conversion scheme allows to obtain final aromatic hydrocarbon 

yields (on carbon basis) comparable to that obtainable from actual commercial different biomass-to-

fuel routes (anaerobic digestion or fermentation). Additionally, this scheme is fully compatible with 

existing refinery equipments and, if (as example) a integrate hydrogen produciong microalgae 

system is used, can be feeded by fully renewable resources. 
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