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Introduction

The history of our seismological knowledge probably starts

in 1760 when J. Michell (1724-1793) first associated earthquakes

with waves that travel through the Earth’s crust with a speed of at

least 20 miles per minute (Michell, 1760). His observation that

waves propagate through the Earth was explained after with the

theory of elasticity, developed in the 18th and 19th centuries. A. L.

Cauchy (1789-1857), S. D. Poisson (1781-1840), G. G. Stokes

(1819-1903) and many others studied the elastic wave equation: P

waves and S waves travelling with different velocities were

identified as possible solutions. H. F. Reid (1859-1944) concluded,

from his studies, that the earthquake source can be modelled by a

shear rupture propagation on the earth crust and is an effect of a

local and continuously tectonic deformation process. When the

maximum tectonic stress is reached, the stored elastic energy is

rapidly released causing a relative displacement of two adjacent

volumes, and generating, in this way, a discontinuity surface

between two blocs (fault plane). The rupture initiates quasi-

statically on a small nucleation zone and then, when the friction at

the rupture front drops from the static to the dynamic level, it

develops into an unstable phase over the fault surface. In the

framework of elastodynamics, the ground motion resulting from an

earthquake source is expressed numerically using a representation

theorem, which relates the observable motion with the dislocation

occurring along the fault plane, through a surface integral
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involving both the dislocation and the wave propagation in the

Earth. In a mathematical approach the fault is only a “plane”, but

geologically it is a complex structure with a finite thickness and

different types of rocks, so that geologists usually speak about

“fault zone”. Generally, the frequencies of seismological interest in

the strong motion data, correspond to wavelengths larger than the

typical thickness of a fault (around 100 m). We can therefore

consider the fault as a plane imbedded in a volume with constant

elastic properties. Direct observations are very rare, since most of

the ruptures take place at depth. For this reason, most of the

available information about the seismic source rupture process

come from the inversion of ground motion data.

Seismometry has seen huge advances in the past 30 years.

The dynamic range of typical seismometers has increased from less

than 5 orders of magnitude to more than 7. Moreover, the past 30

years have also seen the big development of digital data

communication, processing and storage, which has promoted the

installation of a large number of seismic networks, very close to

the principal fault system, since the earthquake source, generally,

is on pre-existing or newly created faults. A seismic network can

be national or regional. The most important nationwide strong-

motion network in Italy is the RAN (Rete Accelerometrica

Nazionale) managed by Civil Protection, while in Japan we can

find the K- and Kik- networks (Kinoshita, 1998; Aoi et al., 2004). As

an example of regional network, we recall the Southern Italy

network ISNet (Irpinia Seismic Network) equipped with

accelerometers and short-period/broadband seismic sensors,

operating around the fault that generated the 1980 earthquake. A
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dense distribution of data around the source is necessary to have a

considerable number of constraints for the inverse solution (Olson

et al., 1988).

Dynamic modeling of earthquake source provides a

description of the slip (dislocation on fault plane) evolution related

to constitutive  properties and requires the definition of the initial

values and boundary conditions for the stress necessary for the

nucleation and the propagation of the earthquake rupture. In

contrast, kinematic models of seismic source (e.g. Haskell, 1969)

describe the resulting motion (slip history) without investigating

the causes of the rupture process. This means that if the

displacement discontinuity across a fault is known as a time-

dependent function of position on the fault, then motions that

radiate from the source region, are completely determined (Aki and

Richards, 1980).

Kinematic rupture models are used to invert ground motion

waveforms, recorded at the seismic network, which provide a

detailed image of the slip history during the rupture process.

Historically, the first work that used the representation theorem

for the inversion of the slip on fault was made by Trifunac (1974),

who applied his method to five strong motion records of the 1971

San Fernando, California, earthquake. The author used a full-space

geometry and a simple trial and error approach to fit data. Efforts

to reveal the details of rupture processes started in the early 1980s.

Olson and Apsel (1982) provided the first study in which the

problem of the slip inversion was considered on a formal basis of

the linear inversion theory. Then, Hartzell and Heaton (1983)

parameterized the Imperial fault, California, by small subfaults to
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infer the kinematic history of a magnitude 6 event, in 1979. Their

approach or variants of it were used in many subsequent studies

(Fukuyama and Irikura, 1986; Takeo, 1987; Beroza and Spudich, 1988;

Yoshida and Koketsu, 1990; Wald and Heaton, 1994; Cotton and

Campillo, 1995; Yagi and Kikuchi, 2000; Bouchon et al., 2000; and

many others).

The rupture history is the solution of an inverse

geophysical problem, which is inherently non unique. This means

that many models may explain the data equally well (Monelli and

Mai, 2008) also if input seismograms are noise-free synthetics

(Blind Test; Mai et al. 2005, website: http://www.spice-rtn.org/

members/mai/BlindTest/index.html). Another cause of

complexity is that the real data include noise which affects the

information contained on the model.

Earthquake kinematic models are used as input data to

seismological applications aimed at understanding the dynamic

properties of the seismic source and they are used to estimate the

seismically radiated energy and to predict the ground motion

shaking scenarios for engineering design purposes. Consequently,

a robust kinematic inversion is important for the reliability of such

studies. The non-uniqueness of kinematic source inversion seems

to be the principal limiting factor and many authors have

addressed this topic and formulated some partial answers.

The present work aims at contributing to this discussion,

with the main. Our objective is to investigate the robustness of the

solutions, by studying in detail a particular slip parameterization.

We parameterized the slip distribution with 2D overlapping

Gaussian functions and we given the quantitative rules to correlate
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the characteristic of the new parameterization to the data

frequency.

In this thesis, we formulated a non linear technique to

invert strong motion records, with the aim of obtaining the final

slip and the rupture velocity distributions on the fault plane. We

used a two-step procedure in order to separate the computation of

the rupture velocity (non-linear problem) from the evaluation of

the slip distribution (linear problem). Moreover, we discussed the

of uncertainties on estimated parameters.

In the first chapter we will give a brief review of the seismic

source theory, starting from the elastodynamics and arriving to

the representation integral. Here, the forward problem, i.e. the

ground motion simulation, is solved evaluating the representation

integral in the frequency domain, as proposed by Burridge and

Knopoff in 1964.

In second chapter we will focus our attention to the

numerical computation of the representation integral. The

representation integral was computed through a finite elements

technique based on a Delaunay triangulation of the fault plane.

The Green’s tractions on the fault are computed using the discrete

wave-number integration technique (Bouchon, 1981; Coutant, 1989),

that provides the full wave-field for a 1D layered propagation

medium. The rupture velocity is defined on a coarser regular grid

and rupture times are computed by integration of the eikonal

equation. This methodology was implemented in a Fortran90 code,

called “STuDenT” (Simulation daTa with Delaunay Triangulation ).
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In the third chapter we will show a new parameterization

for the slip based on 2D overlapping Gaussian functions defined on

regular grid on the fault. The Gaussian functions are characterized

by an amplitude and a width. The width is related to the minimum

resolvable wavelength on the fault plane and, through is, to the

maximum analyzed frequency in the data.

In the fourth chapter we will present the inverse technique.

The inverse problem is solved by a two-steps procedure aimed at

separating the computation of the rupture velocity from the

evaluation of the slip distribution, the latter being a linear problem,

when the rupture velocity is fixed. The non-linear step is solved by

optimizing the L2 misfit function between synthetic and real

seismograms, and the solution is searched using the

Neighbourhood Algorithm. The non-negative least square

solution, instead, is used to solve the linear step.

In the fifth chapter we will apply the methodology to the

Mw 6.9, Iwate Nairiku Miyagi, Japan, earthquake that was

recorded by the K-net and Kik-net accelerometric networks. From

the inversion of strong motion data, we obtained the inverted slip

map and the rupture times. The estimated magnitude seismic

moment is 2.6326 dyne∙cm that corresponds to a moment

magnitude MW 6.9 while the mean the rupture velocity is 2.0

km/s. A large slip patch (maximum slip of 6.35 m) extends from

the hypocenter to the southern shallow part of the fault plane. A

second relatively large slip patch (maximum slip of 1.51 m) is

found in the northern shallow part.
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Finally in the sixth chapter we will afford the problem of

uncertainties on the estimated parameters. The uncertainties on

the parameters can be described by a multidimensional Gaussian

probability density. In our methodology we splitted the problem in

a linear and a non linear part; so we can use the classic theory for

the linear problems while we correlate the variance of the non-

linear solution with the curvature of the misfit function at its

minimum.
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1.Chapter 1
The seismic source: theoretical
background

1.1. Introduction

The study of seismic source is of great importance in

seismology, allowing us to understand the dynamics of

earthquakes. The parameters that characterize the seismic source

are based on the ground motion recorded by the seismic stations,

using the tools of inverse theory. The kernel of inverse theory is

the computation of the displacement on the Earth’s surface due to

an earthquake, called the direct problem. In such a problem, the

displacement is calculated by solving of the representation

integral, the governing equation that relates ground motion

displacement at the station to the motion on an extended fault.

Figure 1-1: Scheme of the seismic wave propagation and record at the
seismometers. The triangles represent seismic stations, which record the
ground motion generated by an extended fault (yellow rectangle).
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1.2. Elastodynamics

The description of fault mechanics is based on the solution of

the fundamental elastodynamic equation, derived from the classical

Newtonian representation. This fundamental equation relates the

forces in the medium to the measurable displacement. It is inferred

from the second law of dynamics for continuous media:

jijii fu ,  ( 1.1 )

where (1.1)  is the density of the solid body, iu is the time second

derivative of the displacement, that is related to the deformation of

the body, fi is the i-th component of the applied external body force

density acting per volume unit, and finally σij the the ij-component

of the stress tensor. By definition, a material is elastic if it returns

to its original condition after removing the applied load.

Experimentally Hooke observed that the extension of a spring

increases linearly with the applied load. This is the simplest

representation of an elastic constitutive law, which for a

continuous system corresponds to a linear relation between stress

and strain:

klijklij c   ( 1.2 )


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ij being the component of the strain tensor. The strain tensor is

the measure of the length deformation for the infinitesimal

deformations. The diagonal components of the tensor are the

deformations along the axes of reference frame (normal strain),

while the off diagonal components are related to the angles that

the normals to the faces of the deformed volume element form with

the original ones (shear strain). The strain tensor is symmetric by

definition. The fourth-order tensor c is called the “elastic

coefficient tensor”, since it is independent on the strain. c is

symmetric by all indices exchange, as it can be shown by invoking

the symmetry of the stress and strain tensors, so only 21 of its 81

components are really independent. For an isotropic medium, i.e., if

the elastic properties are independent of the orientation, the

number of independent components is reduced to 2 (Jeffreys and

Jeffreys, 1972)

 jkiljlikklijklijc   ( 1.3 )

In equation (1.3)  and  are the Lamé constants and ij is the

dimensionless Kronecker delta function0F

1.

Using the expression (1.3) and (1.2), we obtained:

ijijkkij ee  2 ( 1.4 )

1 Kronecker delta function: It is a function of two indices. It is 1 if the indices
are equal and 0 otherwise:









jif
jiif

ij 0
1


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It is the stress-strain relation for isotropic media.

1.3. The representation theorem

The representation theorem is a formula for the ground

displacement, at general point in space and time, in terms of the

quantities that originated the motion: these are body forces and/or

applied tractions over surface of the elastic body. Betti’s reciprocity

theorem relates a pair of forces applied in a certain volume with

their corresponding displacements. This theorem is then used in

order to have the displacement at the Earth’s surface caused by

an earthquake. The starting point of Betti’s theorem is to

assume two body forces in an elastic medium of volume V with

the corresponding displacements (solution of equations 1.1 and

1.2). Replacing one of the forces by a unit impulse force in space

and time, which is represented mathematically by a Dirac

delta function, its corresponding displacement is then called a

Green’s function and it represents the effect of the

propagation of elastic waves in the medium. Thus, after some

mathematical manipulation it is possible to write the follow

expression for an elastic displacement in a volume V produced

by a system of body forces, in the following form:
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   
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( 1.5 )

where fi is the body force, u i is the displacement in the volume

V, Ti is the i-th component of the traction1F

2, cijkl is a tensor of a

constant elastic, Gin are the Green’s functions, t is the time. The

vector nj is the normal vector to the surface S, 


is a local

coordinate system on a fault and x is the receiver position.

Figure 1-2: Sketch of the elastic displacement corresponding to a body
force f, and traction T in a medium with Green’s function G.

2 Traction: Traction is a vector, being the force acting per unit area across an
internal surface within continuum, and quantifies the contact force (per unit
area) with which particles on one side of the surface act upon particles on the
another surface (Aki and Richards, 2002).
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force f, and traction T in a medium with Green’s function G.

2 Traction: Traction is a vector, being the force acting per unit area across an
internal surface within continuum, and quantifies the contact force (per unit
area) with which particles on one side of the surface act upon particles on the
another surface (Aki and Richards, 2002).
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Let us now consider zero body forces in the interest region. The

integral over V is equal to zero, reducing equation (1.5) to:

     

    dStGnctu

tuTtGdtu

lknjijkli

iin
S

n

0,;,,

,,0,;,

. 









 




xx

nxx
( 1.6)

During an earthquake there is a rupture on the fault plane, so the

focal region, delimited by a surface  (fault), can be represented

by a fracture or a dislocation in an elastic medium. This

dislocation is usually defined by the slip vector u that is the

difference of the displacement between the two sides of a fault:

+ and -.

Figure 1-3: An elastic body with volume V and external surface S. The
fault plane has two side, labeled with + and -, and n is the normal to
the fault from + to -.

The boundary conditions across the fault are the continuity

of the stress (their integral is null) and the discontinuity of the
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displacement. Moreover, the Green’s functions are continuous

through the surface Σ. Plugging these conditions into

equation (1.6) yields at an equation for a kinematic model of

the source:

     dStGncudu lknjijklin 0,;,, . 


 






x ( 1.7)

The most widely used models to represent the seismic

source are those in which the earthquake results from of a

displacement discontinuity along a fault plane. This representation

defines a kinematic source model, in which the dislocations on the

Earth surface are derived from a given/known/assumed slip vector

that represents the inelastic displacement discontinuity with

respect to the two sides of a fault.

The kinematic approach is very useful to estimate the “source

parameters” and to interpret the observations. The parameters

generally used to describe the seismic source are: the seismic

moment, the fault dimension and orientation, the slip, the rise

time2F

3 and the rupture velocity distribution on the fault plane.

1.4. Green’s function

The computation and the knowledge of the Green’s

functions is not an easy problem since these are dependent on

3 Rise time: the rise time characterizes the time needed for the slip vector, at a
particular point on the fault, to reach its final value.
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the specific proprieties of propagation medium. A simple

approach is to consider an isotropic, homogeneous, infinite and

elastic medium. Under this condition it is possible to have an

analytical expression for the Green’s functions:

     
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where  is the unit vector from the source point  to the receiver

x, and r=|x- | is the distance between two points,  is the

density and  and  are P and S wave velocities of respectively.

Figure 1-4: System coordinate on fault surface.

Even in a homogeneous medium, the elastodynamic Green’s

functions include the P and S wave, and the near-field terms. These
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Even in a homogeneous medium, the elastodynamic Green’s

functions include the P and S wave, and the near-field terms. These
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terms are well-defined in the equation (1.8) but in a more realistic

model of the Earth it does not happen, and we also have to

consider the terms of direct, reflected, refracted, and surface waves.

The accuracy of the reconstructed Green’s function depends on the

amount of complexity of medium and data, and on the

methodology to retrieve the information by data.

In this thesis we used a layered medium model and compute

the synthetic Green’s function with a wave propagation code,

based on Bouchon’s theory (1981). Generally, it is also possible use

empirical Green’s function (EGF) such as aftershock records

(Fukuyama and Irikura, 1986) or very small records events around

the interest area, but there are two important limitations: the small

event must be near the mainshock and have a similar centroid

depth and focal mechanism, and there is a uniform EGF coverage

around the fault plane compared to the minimum wavelength

resolvable in the data.

1.5. Slip representation in frequency domain

In this thesis, the ground motion associated with displacement

on the fault plane was computed by considering the representation

integral in the frequency domain, according to the formulation of

Burridge and Knopoff (1964):

      


dTuu niin ,, x,x,  


( 1.9)
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Figure 1-5: Model geometry and parameters.

where un is the Fourier transform3F

4 of the n-th component of the

displacement at the position x and for the angular frequency .

The displacement is given by the integral on the fault surface of

the product between the Fourier transform of the displacement

discontinuity u across and the Fourier transform of the Green’s

tractions Tni. The Green’s traction includes the Green’s function

and the tensor of constant elastic. Finally, 


is the local

coordinate system on the fault plane (figure 1-5).

In the time domain we assume that the displacement

discontinuity across the fault can be factorized in the product of

4 Fourier transform: When we define the Fourier transform of a time
dependent function, we assume the sign convention for the exponent as
following






 dttitfftf )exp()()()( 

according with Aki and Richards ( 2002).
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the final slip amplitude A by the slip-velocity source-time function

S:

      


RtSAtui  ,, ( 1.10 )

in all point of the fault surface.

If we transform the equation 1.10 from the time-domain to

the frequency-domain, we get:

       


TRi
i eSAu  ,ˆ, ( 1.11 )

The earthquake starts at a point (the hypocenter) and a

dislocation front expands outward over the fault. The function

( )TR 


is the map of rupture times, i.e, the times at which the

dislocation reaches in 


point. Generally, the rupture front velocity

(vr


) is heterogeneous and depends on the proprieties of the

propagation medium. From the inversion of seismic data and

laboratory experiments, the rupture velocity, generally, is less than

the S-velocity and results vr  (0.7  0.9)  (Rosakis, 2002).

The S-function is the slip-velocity source-time function

(svSTF), and prescribes the slip velocity evolution during the

rupture propagation.

Several authors have proposed different functional forms

for the STF (Kukuyama and Irikura, 1986; Fukuyama and Mikumo,

1983; Cotton and Campillo, 1995) and have pointed out the

importance of the STF in kinematic source models for strong

motion prediction (Hisada, 2000, 2001; Guatteri et al. 2003).
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In this thesis we worked with two simplest svSTF functions: a

rectangle and a triangle. We give the analytical expressions for

these sv-STF in the frequency domain:

 Rectangle function: svSTFb

  












 2

2

2sin
,ˆ

ri

r

r

eS







( 1.12)

 Triangle function: svSTFt

  












 4
22

22

4

4sin
,ˆ

ri

r

r

eS





 ( 1.13 )

The two svSTFs are sinc functions4F

5 with a phase shift that

depends on the rise time. Generally, we are interested into the

kinematic inversion that works with low frequency data and in this

part of the spectra the shape is the same for two cases: a plateau at

low frequencies and a decay for frequency larger than cut-off

frequency.

5 Sinc function: It is defined as:
( )

.
It is a sine wave that decays in amplitude as 1/x.
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1.6. Our formulation for the representation integral

Using the equation (1.11) and a svSTFb (eq. 1.12), the

representation integral (eq. 1.9) can be rewritten as:

        





  

dTeAu ni

Ri

r

r

n
T

r

;,

2

2sin
2 xx,






 










 
( 1.14 )

In this thesis, we will use the previous formula to calculate the

synthetic seismograms used as the inversion kernel to retrieve the

source characteristics.
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2.Chapter 2
Numerical modeling of seismic
wave propagation

2.1. Introduction

One of the main objective of this thesis is the development and

validation of numerical code STuDenT (Simulation of daTa with a

Delaunay Triangulation ) for computing the representation integral

in the Burridge and Knopoff formulation (equation 1.14), as

presented in section 1.6. STuDenT is a numerical code for the

simulation of synthetic seismograms, based on the discretization of

the fault by a finite element approximation; in particular we have

adopted a decomposition of the fault plane into triangular

subfaults.

2.2. Seismic waveforms modeling

The essence of finite element method, as implemented in

STuDenT, can be synthesized in two steps:

a) Mesh design: the computational domain is decomposed into a

mesh of elements;
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b) Numerical integration: definition of a rule to compute the

representation integral.

2.2.1. Mesh design

The representation integral is computed numerically by

discretizing the fault  in N subfaults (Ωi) having the shape of non-

overlapping triangles 1
N
j j   .

Generally, the subfaults have the shape of square, and the size

(dξ, along one direction) of a single subfault depends on the ratio

between the local wave speed (generally the S-wave velocity) and

the maximum frequency we want to be represented in the

simulated records:

max

min

f
d   ( 2.1 )

If we use a uniform spacing, the size of the integration grid is then

associated with the smallest value of S-wave. In general, the

smallest values of the propagation velocity are in the shallow part

of the medium; consequently this space scale does not need to be

resolved for the deeper, faster regions of the fault plane, where the

grid size could be larger (the ratio between the coarse and fine grid

sizes can be as large as a factor two). The grid size may vary as a

function of frequency and depth, so that fewer sample points are

used at depth, because here the traction function is varying more

slowly as a function of position on the fault (Spudich and Archuleta,
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1987). Since the shear wavelength is inversely proportional to the

frequency and proportional to the local shear velocity, the sample

spacing can become denser with increasing frequency and

generally less dense with increasing depth. Hence, we are able to

reduce the computational cost in the evaluation of the

representation integral, by coarsening the computational grid as a

function of the S-wave velocity. Such approach could bring to

negligible improvements in computational time for a single

forward modeling computation, because most of the time is spent

in the evaluation of the Green tractions, but it really matters when

the forward problem is used as a kernel of an inversion problem,

where Green tractions are computed only once before running the

inversion. As a consequence, we allow the integration grid size to

depend on the local S wave speed and we manage the coarsening of

the computational grid using a finite element integration on a

Delaunay triangulation (figure 2-1).

Figure 2-1: Delaunay triangulation of the hypothetical fault plane.
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This triangulation was introduced by Boris Delaunay in 1934.

In mathematics and computational geometry, a Delaunay

triangulation DT(P) for a set P of points in the plane verifies the

condition that no point in P is inside the circumcircle of any

triangle in DT(P). Delaunay triangulations minimizes the

maximum angle of all possible triangulations and tend to avoid

skinny triangles. As compared to quadrangular finite element

solutions, which have also been applied for the evaluation of the

representation integral (Liu and Archuleta, 2004), a triangular mesh

automatically fits a set of space points well adapting to the

coarsening of a numerical grid. On the other side, conforming

quadrangulation requires the use of either ad-hoc manual

procedures or addition of grid points during the coarsening of the

grid (partition of triangles in four quadrangles of smaller size).

Our numerical method describes a phenomena evolving with

time, and it can propagate a real signal between each pair of nearby

grid points, if the propagation time is greater than the time step

t. This condition, assuming the causality if the method, can be

quantitatively defined through the Courant number:

min

max
0 d

Δt



c ( 2.2 )

which is required to be smaller than one. In the expression, max is

the maximum P wave velocity value in the medium, and dξmin is the

minimum distance between the nearest nodes of the mesh.
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Numerically it was proved that values of c0  0.5 warrant a

dispersion error lower 5 % (Komatitsch et al., 1998).

Another parameter important is the minimum wavelength min

resolvable on the fault plane. It is related to ξmin and fmax, the

"resolving frequency" of the finite element grid. It is the maximum

frequency at which we want the calculation to be accurate and it is

not the Nyquist frequency fN. It is related with t by:

t
f N 


2

1 ( 2.3)

The relationship between these parameters is:

max
min f

  ( 2.4 )

Usually a minimum of 5 to 10 points per wavelength is necessary

to limit the numerical dispersion:

105
min




( 2.5 )

Furthermore, the directivity effect5F

6 influences the

frequency content in the signal (Doppler effect6F

7). In particularly, it

6 Directivity effect: It is related to the mutual position of fault-.reciver. If a
seismic station is located along the direction of rupture propagation (directivity
direction), the signal has higher frequency content and larger amplitude, while if
the station is located such that the fault is rupturing away from it (anti-
directivity direction), the signal has lower amplitude and smaller frequency.
7 Doppler effect: It is the effect of the change in frequency of a wave for an
observer moving relatively to the source of the wave. The frequency is higher
(as compared to the emitted frequency) when the observer is approaching the
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influences the minimum wavelength min resolvable on the fault

plane. We formalized this influence whit a new parameter D :

D minmin' ( 2.6)

where


 cosv1 rD

( 2.7 )

where  is the angle from the fault and station (Lay and Wallace,

1995). If =0 the station is in directivity position, while for =π

the station is in anti-directivity position.

2.2.2. Numerical integration

Assume we defined a triangulation on the fault plane such as

1
N
j j   . The representation integral can be decomposed onto

the sum of the integrals referred to the single triangles Ωj

1
( , ) [ ( , )] ( , ; )

j

N

n i ni
j

u u T d     
 

 x x
  

( 2.8 )

source, it is identical at the instant of passing, and it is lower during the
removal.
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In which    ,


iu is another equivalent notation of the   ,


iu

and x and 


are the coordinates of receiver and source,

respectively (figure 1-4).

We performed a linear mapping, transforming a physical

triangle in a “reference” right-hand triangle having vertices in the

points (0,0), (1,0) and (0,1). If 1 2( , )  


is the variable in the 2D

reference domain Ωref , we can then define the shape functions

1 1 2

2 1

3 2

( ) 1
( )
( )

N
N
N

  
 
 

  








( 2.9 )

which allow for linearly mapping the reference domain into the

physical domain Ω:

3

1
( ) ( )j a aj

a
N   




  

( 2.10 )

where aj


represents the a-th vertices of the j-th triangle in the

physical domain Ω (figure 2-2)
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Figure 2-2: .Example of the transformation from the physical domain
(left) to the referee (right) domain, in which all triangles are right.

We evaluated the j-th integral onto the “reference” triangle

, and we also assume that the restriction of the function is linear

in each triangle, as standard for triangular finite element

techniques. The representation of the function in the reference

domain becomes

3

1
[ ( ( ), )] ( ( ), ; ) | ( )[ ( ( ), )] ( ( ), ; )

ji in a i aj in aj
a

u T N u T            


x x
       

( 2.11 )

Finally, the representation integral is solved in the reference

domain as

3

1 1
( , ) ( )[ ( ( ), )] ( ( ), ; ) ( )

N

n a i aj in aj j
j a

u N u T J d         
 

 x x
     

(2.12)

where Jj is the jacobian of the mapping referred to the j-th triangle.

The Jacobian J of the mapping

 
 21

21

,
,






J ( 2.13 )

is used to define the relationship between a small surface element

d1 d2 and a surface d1 d2 in the reference triangle:
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2121  ddJdd  ( 2.14 )

For linear shape functions the integral can be analytically

solved

    jj dJ 



 3

321 
(2.15)

where  2 and 3 are the values of the function  at the

vertices of the physical domain and j is the area of j-th triangle.

It is worth to note that such a finite-element solution collapses

into the standard summation of subfault contributions if a regular

grid is used for the discretization of the subfault. As for standard

finite elements, instead of computing the representation integral

inside the single triangles and then sum-up all the contributions,

we can assemble the contribution of the areas of triangles sharing

the same grid points. Then, the result can be achieved as the dot

product of the field value at each point times the sum of the areas

of the triangles having such a point as a vertex.

If we included the slip amplitude, the svSTFb, and the traction

in the m-node (m=1,2,3), we obtained a analytical formula for the

m-function:
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2.3. Implementation of algorithm: STuDenT

This technique was implemented in a Fortran90 code,

STuDenT (Simulation of daTa with Delaunay Triangulation ). The

sequence of the different applications, is shown in the flowchart of

figure 2-3.

Figure 2-3: Flowchart of STuDenT code.
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figure 2-3.

Figure 2-3: Flowchart of STuDenT code.
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Let us introduce the standard terminology for describing fault

orientation and slip directions (figure 2-4).The fault orientation in

geographic coordinates is given by three parameter:

 Strike angle (s) of a fault: it is the angle between the

Northen direction and the trace intersection of the

discontinuity plane with a horizontal reference plane:0 ≤ s ≤ 2 .

 Dip angle () of a fault. It is the angle between the steepest

declination line discontinuity plane and the horizontal line:0 ≤ ≤ 2⁄ .

 The direction of the slip is given by the rake () measured

on the fault plane as the angle between the directions of

strike and slip.

Figure 2-4: Definition of conventional parameters used to indicate fault
orientation and slip direction.
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In the “Input file”, we defined different parameters related to the
earthquake that we want simulate, in particularly we have to
define:

 Hypocenter coordinates (Lat (°). Long (°), Depth (km));

 Number of stations;

 Station coordinates (km) in a right-handed coordinate

system with positive X pointing North and Y positive

pointing East, with the origin corresponding to the

epicenter of the earthquake;

 Length and width of the fault (km);

 Top of the fault (km);

 Velocity and density model as a function of the depth

(depth(km), P-wave velocity (km/s), S-wave velocity

(km/s), density (g/cm3));

 Qp 7F

8 and Qs 8F

9 factor;

 Time-duration of the seismograms;

 Minimum and maximum resolving frequencies;

 Number of frequencies to be computed;

 Values of the slip in the grid Ω;

 Values of the rise time in the grid Ω;

 Type of svSTF: boxcar or triangle;

 Rupture velocity: the rupture velocity is defined on a

regular grid and then its values are interpolated on a Ω

domain.

8 Qp: P-wave quality (for the attenuation) factor.

9 Qp: P-wave quality (for the attenuation) factor.
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 Focal mechanism (strike (°), dip (°), rake (°));

 Number of the sample points in strike and dip directions

(Ω-domain);

The code is partitioned into different routines which follow the

philosophy of the numerical evaluation of the representation

integral.

“Triangulation” reads the fault dimensions and the number of

the sample points along strike and dip directions, and generates

the computational grid. Then, this routine calculates the Ω,

computes the Delaunay triangulation of the fault plane and finally

evaluates the area of the triangles.

On Ω-domain “Traction” generates the Green’s tractions for

each station, and each frequency based on: number of frequencies

to be computed, minimum and maximum frequencies, velocity and

density models, and the focal mechanism as read in the input file.

The Green’s tractions are computed by using the discrete wave-

number integration technique (Bouchon, 1981; Coutant, 1989). This

technique assumes that the Earth structure is a 1D layered

medium and provides the complete wave field, so that all P and S

waves, surface waves, and near-field terms are included in the

synthetic seismograms. Moreover, the anelastic attenuation is

modeled by this application.

“Slip_map” reads slip and rise time map in the input file, and

sets the sv-STF functional form.
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“Rupture_time” computes the map of rupture times on a

regular grid and interpolate this map on Ω. The rupture map’s is

related to the rupture velocity distribution on the fault plane and it

can be computed by solving the eikonal equation9F

10. We used a

numerical integration of the eikonal equation by a finite-difference

algorithm (Podvin and Lecomte,1991) insuring both causality and

smoothness.

The “Displacement discontinuity” computes the displacement

discontinuity (1.11) in the frequency domain.

“Seismograms” evaluates the integral (eq. 1.9) by using the

displacement discontinuity, triangles area, Green’s traction for

each frequency and each stations. Moreover, “Seismograms”

computes the inverse Fast Fourier transform (FFT) to obtain the

seismograms in the time domain. The formula for discrete inverse

Fourier transform is:

 




N

n

Nikn
nk eH

tN
h

0:

/21  ( 2.17 )

in witch hk and Hn are the samples in time and frequency domain,

respectively, t is the time-step, N is the number of samples in the

time domain (it has to be a power of two). If we want to have the

displacement, we have to compute the integral in the time-domain

because in the frequency domain, the integration operation

corresponds to a division for 1/iω, and for ω equal zero the signal

10 Eikonal equation: (∇ ) = is the relation between the time migration
velocity and the seismic velocity c, the local P-wave speed or the local S-wave
speed
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goes to infinity; thus when the routine performs the FFT, the

seismograms are affected by a leveling of the waveform. Finally,

the routine writes the time velocity series in a file with three

columns: N-S (North-South), E-W (East-West), U-D (Up-Down,

positive in upward direction.

2.4. Validation

To validate the numerical code, synthetic seismograms were

compared with the ones generated by Compsyn sxv3.11 (Spudich

and Lisheng, 2002), a code based on a Discrete Wavenumber /

Finite Element (DWFE) approach. In this test, we examined the

two codes/methods associated with a forward-modelling for

extended-fault earthquake rupture models.

We considered two cases of study:

a) a rupture on a vertical strike-slip fault with purely right-

lateral motion;

b) a rupture on a dipping fault with purely thrust-faulting

motion.

In both cases, we used the same layered isotropic velocity-

density structure, simplified from the “generic” California rock-site

velocity model (figure 2-5) of Boore and Joyner, (1997).
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The quality factors QS and QP are assumed infinite

everywhere, because the Compsyn code does not account for the

anelastic attenuation.

Figure 2-5: Velocity-density model for extended-fault forward-modeling
simulation.

Full-wavefield forward simulation of the velocity time-series

has been performed from 0.05Hz up to 5.0Hz.

This validation test is based on exercises of the Source-

Inversion Validation (SIV, web site: ttp://the

siv.usc.edu/main/Home) a project, initiated and leaded by Martin

Mai (KAUST).
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2.4.1. Case: Strike-slip fault

In the first case-study, we generated the synthetic

seismograms for a strike-slip source having the characteristics

listed below:

 Dip = 90°, Strike 90°, rake 180°;

 Fault dimensions 13 km along-strike, 12 km down-dip;

 Discretization of rupture: node spacing is 0.5 km in each

fault-plane direction;

 Seismic moment10F

11: M0=1.658 ∙ 10 Nm (Moment

magnitude11F

12 Mw=6.11);

 Hypocenter depth:14 km;

 Rise time variable over the fault;

 Rupture velocity variable over the fault;

 An non uniform slip distribution of slip (as shown in figure

2-6).

11 Seismic Moment:The seismic moment M0 is defined as:M0=μ∙average slip∙fault area
where  is shear modulus 2  .

12 Moment Magnitude:It is a magnitude scale, introduced by Hanks and
Kanamori (1979) based on the seismic moment of an earthquake (Mw):logM0=1.5 Mw+ 16.1
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Figure 2-6: 3D-view of the rupture plane with an inhomogeneous slip
distribution, colored-coded according to the amount of the slip (in m).
The black star denotes the hypocenter.

The receivers configuration consists of three linear arrays:

one fault-parallel at the surface projection of the fault and two

inclined arrays at 30° and 60° from the fault parallel array (figure

2-7).
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Figure 2-7: Source-receiver geometry for a strike-slip fault case. The red
star shows the epicenter at X=0, Y=0 in a right-handed coordinates
system with positive X pointing East, positive Y pointing North. The
red line indicates the vertical projection of the updip-edge of an extend
fault plane at depth.

On the ground of these parameters, we simulated the

velocity seismograms with the STuDenT code and with Compsyn.

We show the three components of the time series in  figure

2-8, and the spectral amplitudes in figure 2-9. The seismograms

generated by STuDenT are in red, while the seismograms

generated by Compsyn are in black.
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Figure 2-8: Comparison between STuDenT and Compsyn for all ten
station, and for the three component (N-S: North-South; E-W: East-
West; U-D: Up-Down). The seismograms generated by STuDenT are in
red, while the seismograms generated by Compsyn are in black. Each
pair of theoretical seismograms is plotted with its amplitude scale (m/s).
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Figure 2-9: Comparison, in frequency domain, between STuDenT (red)
and Compsyn (black) for all ten stations, and for the three component
(N-S: North-South; E-W: East-West; U-D: Up-Down).
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The general match is good, and the small differences

between pairs of signals are due to the different interpolation

procedure of the slip, the rise-time and the rupture velocity map of

the two codes.

For a quantitative comparison between the seismograms,

we used a misfit criteria in time and frequency domains developed

by Kristekova et al. (2006), and based on the continuous wavelet

transform of the signals. The time frequency envelope misfit

(TFEM) and time frequency phase misfit (TFPM) are calculated

according to eq. A.5 and A.6 respectively (see Appendix A). TFEM

(t, f) characterizes the difference between the envelopes of the

signals, as a function of the time and frequency. In the same way,

the TFPM (t, f) characterizes the difference between the phases of

the signals, as a function of the time and frequency.

We performed this analysis for three stations: stz01, stz04,

stz10 (figures 2-10, 2-11, 2-12). Red color in the TFEM and the

TFPM images indicates a larger amplitude and a positive phase

shift in the STuDenT seismograms with respect to Compsyn

seismograms. Blue color represents the opposite case.

In figure 2-10 we show the analysis for the station 01.

From 5 to 10 seconds, the STuDenT amplitudes, for each

component, are overestimated: the envelope misfit value is 20%.

The differences in amplitudes are evident from 0.4 to 5.0 Hz. The

phase misfit is close to zero in the rest of the (t, f ) diagram.

We are not able to distinguish an evident phase shift in the

seismograms of station 04 (figure 2-11). In fact, the phase misfit is



Chapter 2 Numerical modeling of seismic wave propagation

-54-

close to zero. Generally, the N-S and U-P components are

overestimated and the envelope misfit has its maximum value:

(about of 20%) in a part of plane (t, f) from (5 s, 0.7 hz) to (8s, 5 hz).

In figure 2-12, we can see that the envelope misfit is about

zero all the duration, but the phase misfit is characterized by

negative values (around 10%): the STuDenT seismograms have a

negative phase shift respect to a Compsyn signals, as evidence in

the plots of the seismograms, in the top of the figure.
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Figure 2-10: Analysis for station 01. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms
(Middle) Time-frequency envelope misfit TFEM(t, f) and (Bottom)
time-frequency phase misfit TFPM(t, f) plots. Columns show E-W
(right), N-S (center), U-D components ( left), respectively. Red color
in the TFEM and the TFPM images indicates a greater amplitude
and a positive phase shift in the STuDenT seismograms with respect
to Compsyn seismograms. Blue color represents the opposite case.
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Figure 2-10: Analysis for station 01. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms
(Middle) Time-frequency envelope misfit TFEM(t, f) and (Bottom)
time-frequency phase misfit TFPM(t, f) plots. Columns show E-W
(right), N-S (center), U-D components ( left), respectively. Red color
in the TFEM and the TFPM images indicates a greater amplitude
and a positive phase shift in the STuDenT seismograms with respect
to Compsyn seismograms. Blue color represents the opposite case.
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Figure 2-11: Analysis for station 04. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms
(Middle) Time-frequency envelope misfit TFEM(t, f) and (Bottom)
time-frequency phase misfit TFPM(t, f) plots. The color scale have
the same interpretation of figure 2-10.

Chapter 2 Numerical modeling of seismic wave propagation

-56-

Figure 2-11: Analysis for station 04. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms
(Middle) Time-frequency envelope misfit TFEM(t, f) and (Bottom)
time-frequency phase misfit TFPM(t, f) plots. The color scale have
the same interpretation of figure 2-10.
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Figure 2-12: Analysis for station 10. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms
(Middle) Time-frequency envelope misfit TFEM(t, f) and (Bottom)
time-frequency phase misfit TFPM(t, f) plots. For the color scale
interpretation see the figure 2-10.
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Figure 2-12: Analysis for station 10. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms
(Middle) Time-frequency envelope misfit TFEM(t, f) and (Bottom)
time-frequency phase misfit TFPM(t, f) plots. For the color scale
interpretation see the figure 2-10.
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2.4.2. Case: Dip-slip fault

In the second case study, we generated the synthetic

seismograms for a dip-slip source, with the characteristic listed

below:

 = 40°, 270°, 90°;

 Fault dimensions: 13 km along-strike, 13 km down-dip;

 Discretization of rupture: node spacing is 0.5 km in each

fault-plane direction;

 Seismic moment: M0=1.824 ∙ 10 Nm (Mw=6.14);

 Hypocenter depth 9.785 km;

 Rise time and rupture velocities variable over the fault;

 A non uniform slip distribution as shown in figure 2-13.

The receivers configuration consists of three linear arrays:

one fault-parallel at 1 km from the surface projection of a

vertical fault and two inclined arrays at 30° and 60° from the

fault parallel array. These three arrays are then mirrored

across the X=0 surface-projection of the fault to capture both

hanning-wall and foot-wall sites (figure 2-14).
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Figure 2-13: 3D-view of the rupture plane with an inhomogeneous slip
distribution, colored-coded according to the amount of the slip (in m).
The black star denotes the hypocenter.

Figure 2-14: Source-receiver geometry. for a dip-slip fault case. The red
star shows the epicenter at X=0, Y=0 in a right-handed coordinates
system with positive X pointing East, positive Y pointing North. The
red line indicates the vertical projection of the updip-edge of an extend
fault plane at depth.
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On the ground of these parameters, we simulated the

velocity seismograms with the STuDenT and Compsyn codes.

Figure 2-15 shows the comparison between the three

components of the time series: the STuDenT seismograms are in

red while the seismograms generated by Compsyn are in black.

Figure 2-16 shows the comparison between spectral amplitudes of

the two synthetic seismograms, with the color convention

previously used. Finally, we compared the results with the time-

frequency misfit criteria (Appendix A), for stations 01, 10, 14, 18.
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Figure 2-15: Comparison between STuDenT and Compsyn for all 20
stations, and for the three component (N-S: North-South; E-W: East-
West; U-D: Up-Down). The seismograms generated by STuDenT are in
red, while the seismograms generated by Compsyn are in black. Each
pair theoretical seismograms are plotted with its amplitude scale (m/s).
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Figure 2-16: Comparison, in frequency domain, between STuDenT (red)
and Compsyn (black) for all 20 stations, and for the three component (N-
S: North-South; E-W: East-West; U-D: Up-Down).
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In figures 2-17 2-18 2-19 2-20, the TFEM and the TFPM

misfit for stations 01, 10, 14, 18 are respectively shown.

The E-W component of station 01 (figure 2-17), has large

differences between the two seismograms and we can see the

maximum envelope misfit, of about 10%, in correspondence of 3s

and 5s. For all three components, there is a phase shift, of about

15%, around 1s and 4 s: the STuDenT seismograms are anticipated

with respect to the Compsyn seismograms. The maximum

differences are in the part of the plane (t, f)=( [2, 6]s, [1.5, 5]hz).

For station 10, in figure 2-18, the comparison is good: the

envelope and phase misfit is minimum in a large part of the (f, t)

plane, with small differences localized around the peak amplitude

(from 4s to 5s).

The comparison for station 18, is shown in figure 2-20. The

E-W component has the envelope misfit larger (25%) than other

components, in a part of (t, f) plane from 0.3-5 Hz and 2-10s. In

this range for the time and frequency values, the STuDenT

seismograms have negative phase shifts, so the phase misfit is

negative (around 5%) in large part of the plane (t, f).

In general, the E-W component of the stations 01 and 18

shows heterogeneous envelope and phase misfit values and the

difference in amplitude and phase between the synthetic

seismograms computed by two codes increases at higher

frequency.
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Figure 2-17: Analysis for the station 01. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-frequency
phase misfit TFPM(t, f) plots. Columns show E-W (right), N-S (center),
U-D components ( left), respectively. Red color in the TFEM and the
TFPM images indicates a greater amplitude and a positive phase shift in
the STuDenT seismograms with respect to Compsyn seismograms. Blue
color represents the opposite case.
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Figure 2-17: Analysis for the station 01. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-frequency
phase misfit TFPM(t, f) plots. Columns show E-W (right), N-S (center),
U-D components ( left), respectively. Red color in the TFEM and the
TFPM images indicates a greater amplitude and a positive phase shift in
the STuDenT seismograms with respect to Compsyn seismograms. Blue
color represents the opposite case.
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Figure 2-18: Analysis for the station 10. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-
frequency phase misfit TFPM(t, f) plots. Columns show E-W (right),
N-S (center), U-D components ( left), respectively.
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Figure 2-18: Analysis for the station 10. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-
frequency phase misfit TFPM(t, f) plots. Columns show E-W (right),
N-S (center), U-D components ( left), respectively.
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Figure 2-19: Analysis for the station 14. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-frequency
phase misfit TFPM(t, f) plots- Columns show E-W (right), N-S (center),
U-D components ( left), respectively.
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Figure 2-19: Analysis for the station 14. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-frequency
phase misfit TFPM(t, f) plots- Columns show E-W (right), N-S (center),
U-D components ( left), respectively.
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Figure 2-20: Analysis for station the 18. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-frequency
phase misfit TFPM(t, f) plots- Columns show E-W (right), N-S (center),
U-D components ( left), respectively. Red color in the TFEM and the
TFPM images indicates a greater amplitude and a positive phase shift in
the STuDenT seismograms with respect to Compsyn seismograms. Blue
color represents the opposite case.
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Figure 2-20: Analysis for station the 18. (Top) Comparison between
STuDenT (red) and Compsyn (black) synthetic seismograms (Middle)
Time-frequency envelope misfit TFEM(t, f) and (Bottom) time-frequency
phase misfit TFPM(t, f) plots- Columns show E-W (right), N-S (center),
U-D components ( left), respectively. Red color in the TFEM and the
TFPM images indicates a greater amplitude and a positive phase shift in
the STuDenT seismograms with respect to Compsyn seismograms. Blue
color represents the opposite case.
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2.4.3. Conclusion

In this thesis we developed a new methodology to compute

synthetic seismograms using a finite element integration over

triangle. We reduced the representation integral to a simple

product of triangles area and the average of the function in the

three nodes of a grid of points referred to the single triangle. We

have constructed a representation theorem in which are well

separated the parties relating to the seismic source and the effect of

propagation. Generally, the computation of Green’s traction is

independent on the slip on fault plane, so for a given source-station

configuration we can generate a data-base of a Green’s traction to

be called when it is necessary.

The STuDenT code is computationally fairly fast compared

to other codes, because it works in frequency domain; in this way

the user can simulate ground motions from many hypothetical

rupture and slip models in a small time, also it is very friendly to

use.

In comparison with Compsyn, another method to simulate a

ground motion, we observed discrepancies in amplitude, time-

shifts and different frequency content, in particularly at high

frequency. Probably, it is given by different methodology to work

on the frequency maximum that we want have maximum

resolution and because in the Compsyn there are many parameters

that depend on the user and it comports different approximation

and possible error in the estimation of Green’s traction. The

differences in amplitude may be due to a different way to



Conclusion

-71-

interpolate the slip rupture velocity, and rise time input maps for

the two different methodologies.
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3.Chapter 3

Slip parameterization

3.1. Introduction

The original pioneering works on slip parameterization have

been proposed during the early 1980s. To this aim, a given fault

was usually divided into a number of subfaults (e.g., Olson and

Apsel, 1982; Hartzell and Heaton, 1983). These subfaults are then

used to construct a number of forward models which are finally

combined to produce an overall kinematic rupture model. In each

subfault the slip is constant, everywhere, positive and smooth in all

fault plane. The subfault dimensions are generally chosen to

accommodate the high-frequency content of the strong motion

synthetic records.

Recent improvements in analysis methods, computational

resources, and seismological and geological observations, enable us

to image earthquake sources in detail. The most detailed images of

such sources have been obtained using data recorded near to the

earthquake causative fault through inversion techniques. Results

revealed the source kinematic parameters of earthquake slip over

the fault plane. Concerning the slip in this chapter, we introduce an

innovative parameterization of the problem. Particularly, we
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assume a spatial slip distribution obtained combining overlapping

2D Gaussian functions defined on regular grid on the fault. At any

given point, temporal evolution of slip is described with an a priori

prescribed slip-velocity function, while rupture velocity and rise

time parameters are assumed as free parameters and the result of

the inversion is the amplitude of the on the fault plane.

3.2. Overlapping 2D Gaussian functions

The complexity of the distribution on the fault plane is here

represented through a superposition of overlapping 2D Gaussian

functions.

Let us assume a coordinate system on the fault plane having axes

parallel to the strike and dip directions. In this system each point

of the fault is represented by its coordinates


= (1, 2). For a

given set of points 1 2( , )i i i  


on the fault we represent a

function  as a linear combination of 2D Gaussians:
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Figure 3-1: An example of overlapping 2D Gaussian function.

where Ai and σi are amplitude and width of the i-th Gaussian,

respectively.

For any given point on the fault plane, the relative weight

of each bidimensional Gaussian function to  depends only on the

distance between the considered point and the Gaussian center,

normalized by the Gaussian width. The contribution of each

Gaussian can be considered negligible at distances larger than

three standard-deviations. If the Gaussian widths are smaller than

both the length and the width of the fault, such a representation is

indeed local on the fault plane.

Several advantages occur when using such a representation

for the slip function. First, the slip map is naturally smooth since it

is continuous, many times differentiable and tapered to zero at the
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boundaries of the fault plane. Moreover, Gaussian functions have

an almost flat amplitude spectrum up to a corner wavenumber that

is related to the inverse of the Gaussian width; then, the spectrum

decays exponentially beyond it. Finally, this parameterization is

expected to relate the slip map to the minimum resolvable

wavelength on the fault plane and, through it, to the maximum

analyzed frequency in the data, how we will discuss in the next

paragraph. Finally, the positivity constrain is naturally insured by

requiring positive coefficients in the Gaussian representation. On

the other hand, Gaussian functions, being positive defined, are not

orthogonal and then the possibility to represent any function

through a Gaussian representation needs to be investigated.

When using such a parameterization in the inversion of

strong-motion data for retrieving the slip distribution on the fault,

it is preferable not to jointly invert for the slip amplitude, the

location of the Gaussian centers and the Gaussian widths, because

the problem becomes strongly non-linear. In such a latter case, the

correlation between the different parameters needs to be overcome

by limiting the number of asperities on the fault to a very few

(Vallée and Bouchon, 2004). The aim here is rather to preserve the

linearity of the problem with respect to the slip at the cost of

increasing the number of free-parameters on the fault plane. We

indeed fix both the positions of the centers, which are chosen to be

equally spaced on the fault plane and the width, which is the same

for all the Gaussian functions.
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3.2.1. The overlapping parameter

Let us define as the distance between two close centers

and σ the Gaussian width: the only distance which matters in the

problem is the Euclidean distance normalized by the Gaussian

width. We define the amount of overlapping as:







( 3.2 )

As the overlapping goes to infinity ( 0  ), the representation

becomes the Gaussian filtered version of the dislocation

distribution, with cut-off wavelength at σFor a finite overlapping

the representation is the discrete version of the Gaussian filter. In

particular, if  is large, Gaussian functions are very close to each

other and the representation is influenced by any single Gaussian

function. On the contrary, if the overlapping parameter is small,

Gaussian functions could be very distant and asperities may be

retrieved only at the scale and at the location of the single

Gaussian functions. Hence, we expect that the quality of the

solutions degrades with the decreasing of the overlapping.

To understand the role of the overlapping, we briefly

analyze the simple case of two overlapping Gaussian functions in

one dimension. We assume that they have the same width but

different amplitudes:



The overlapping parameter

-77-

2 2

2 2
( )

2 2
1 2( ) A e A e

  
 


 

   ( 3.3)

where A1 and A2 are the amplitudes and  is the position of the

center of the second Gaussian function, with respect to the origin

where the first one is centered. The Fourier transform in space

domain of equation (3.3) is given by
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where k is the wavenumber, and the resulting squared amplitude

spectrum is
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If we define the normalized wavenumber as kk 1ˆ  , the above

expression simplifies to
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Figure 3-2: Addition of two overlapping Gaussian functions in one
dimension. In the top panels we plot two overlapping functions (dashed
lines) and their sum (solid line). The ratio between the peak amplitudes is
two. In the left figure, the overlapping is large and the sum is still
peaked, with a width larger than the width of the initial Gaussian
functions. On the right, instead, the overlapping is small and the sum
shows two isolated peaks. In the bottom panels, we represent the square
amplitude of the Fourier spectra of the sum function, plotted in the above
panels. When the overlapping is large the spectrum decays as a standard
Gaussian filter, with a cutoff wavenumber comparable with 1/σ. In the
right panel, the influence of the distant Gaussian functions results in an
oscillating spectrum, for wavenumbers smaller than σ.

The amplitude spectrum is the product of the single amplitude

Gaussian spectrum, times a cosine type function, which can

introduce some oscillations. In top panels of figure 3-2, we

represent the effect of the overlapping on the final sum in the space

domain. We analyze two cases: on the left we have a large
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overlapping ( 1  ), on the right a smaller one ( 0 .1 2 5  ). We

also set the ratio between the two Gaussian function amplitudes

1 2/ 2A A  . We note that, when the overlapping is large, the sum

of the Gaussian functions has still a peaked shape and a width

slightly larger than σ. On the other hand, when the overlapping is

small (top-right panel), the sum reflects the shape of the single

Gaussian functions showing two isolated peaks. On the bottom

panels, we plot the squared amplitude spectrum of the sum. While

in the left figure the spectrum is flat up to a cutoff wavenumber, in

the right panel, the spectrum oscillates, indicating that, when the

overlapping is small, the wavelengths ranging between  and σ

are poorly represented. The influence of the cosine function

depends on the ratio 1 2/A A and is maximum when A1=A2. In such

a case the spectrum can go to zero and the holes become more

pronounced. For this simple case, we can hence derive a minimum

condition for the overlapping:

1


 ( 3.7 )

This property allows to push the zeroes of the cosine function

beyond the cutoff wavenumber of the Gaussian function.

We can easily extend this simple analysis to the case of the

sum of several 1D Gaussian functions, equally spaced along the x

axis. In such a case, additional cosine-type functions are summed-

up in the amplitude spectrum, with relation to the interference

between the Gaussian functions, whose centers are at 2,
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…, nAs a consequence, their effect appears in the spectrum at

wavelengths of the order of 2, .., n, but their weight

decreases as n increases.

For 2D applications, we note that the Gaussian representation may

be factorized in a tensional product of 1D Gaussian functions12F

13,

having the same σ in a strike and dip direction (figure 3-3):

Figure 3-3: Example of 2D Gaussian function.
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where sk̂ and dk̂ are the normalized wavenumbers in strike and dip

directions, respectively. Hence, we have the same behavior along

the strike and dip axes.

Now we consider the case of four 2D Gaussian functions, having

the same σ and the same distance of the centers in two directions

13 Linear separability property of Fourier transform: The Fourier transform
in higher dimensions is given by

  




 dydxvyuxiyxfvuFyxf 2exp),(),(),(

If the f(x,y) function is separable f(x,y)=f(x)f(y), the Fourier transform of a
separable function is also separable: F(u,v)=F(u)F(v).
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(figure 3-4). We can factorize the problem in the two, strike and

dip, directions:

Figure 3-4: Four 2D Gaussian function, having the same σ and the same
distance between centers.
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The behavior of the spectra, for the 1-2 and 3-4 Gaussian

functions, is the same of the previous case: the first three terms

describe the different contribution along strike and dip separately.

The last two terms combine the 1-4 and 3-2 Gaussian functions, in

a mixed way.

Since the distance between the centers increases in the 45°

direction, the space resolution decreases along this direction.

However, a lower resolution at 45° is common to all
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The behavior of the spectra, for the 1-2 and 3-4 Gaussian

functions, is the same of the previous case: the first three terms

describe the different contribution along strike and dip separately.

The last two terms combine the 1-4 and 3-2 Gaussian functions, in

a mixed way.

Since the distance between the centers increases in the 45°

direction, the space resolution decreases along this direction.

However, a lower resolution at 45° is common to all
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parameterizations defined on regular grids oriented along the

strike and dip directions.

Finally, the effect of fixing the location of centers of the

Gaussian functions may introduce an aliasing effect: the “true” slip

map, at the resolved wavelength, could be translated of / 2  ,

with respect to the inverted one.

3.3. Relationship between the Gaussian width and the
minimum resolvable wavelength

We investigate the relationship between the Gaussian width

and the minimum resolvable wavelength, studying the spectrum as

a function of the width and overlapping, for different slip maps.

3.3.1. The projection of slip map onto Gaussian
representation: the method

To the purpose, we project several heterogeneous k-square slip

distributions13F

14 (Gallovič and Brokesova, 2004) by different Gaussian

representations via an L2 minimization.

14 k-square model: The 2D slip distribution D( k


), where k


= (kx, kz), for a
rectangular fault of length L and width W is described by its spatial Fourier
spectrum:
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The problem of obtaining the static slip distribution on a

fault plane is resolved using a technique analogous to the time-

reverse method that is typically used in the seismic tomography

studies (Tromp et al., 2005). In such methods, the gradient of the

misfit with respect to the model parameters pi is analytically

derived as







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parnum

i
i

i

p
p

_

1

( 3.10 )

and then used in minimization procedure based on conjugate

gradient technique (Press et al., 1992).

We define the misfit as the L2 norm between synthetic, stheo,

and observed, sobs, slip, the latter assumed as reference slip map:
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where sgau is given by:
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where u denotes the mean slip and  is an optional parameter allowing to
consider generalized corner wave numbers /L and /W. The phase spectrum 
is considered random at any wave number, except for circle 2=(1/L)2+(1/W)2

for which the phase is chosen to obtain the final slip concentrated in the centre
of the fault.
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where Ai is the amplitude of i-th Gaussian function centered in (xi,

yi) and having width σi. In this analysis, we fix the position of all

Gaussian functions and inverted only for their amplitude, so pi= Ai.

Realizing that the misfit  is a function of model parameters, we

can write the Frèchet differential  as:

  dxdyyxsyxsyxs gaugauref ),(),(),(   ( 3.13 )
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by substituing:

iii AAA ln ( 3.15 )

we introduce the constraint of positivity on the solution to obtain

physically positive dislocation on the fault.

The equation (3.13) becomes
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Equation (3.16) can be finally written as
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In order to obtain a simpler numerical implementation we rewrite

the (3.17) as:

ii
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 ( 3.19 )

where Ai are the amplitudes of the Gaussian functions and Ki

represents the corresponding gradient of the misfit function in the

model-space parameter.

3.3.2. The projection of slip map onto Gaussian
configuration: an example

To test of the methodology we generate the ‘observed’ slip

map as a superposition of a Gaussian function with pre-established

amplitude Aobs, and then we use, in the inversion, the same

configuration for obtaining the synthetic slip map.

In figure 3-5, we show the ‘observed’ (a) and ‘inverted’ (b) maps.

The two maps are identical and the normalized variance:
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Figure 3-5: The figure (a) represents the  ‘observed’ (a) map while the
figure b represents the map obtained by the inversion whit the
methodology discussed in the paragraph 3.3.1.

Although the problem is non linear (eq 3.15), our

methodology converge at the best solution and we obtained the

same input map.

We show a second example. As an input map we used a

reference map (figure 3-6) according to the k-square models, and

we performed several inversion, in terms of Gaussian amplitudes,

for different Gaussian configurations (figure 3-7).

In each configuration the sample spacing along strike ()

and dip () direction, is the same ():

  ( 3.20 )

that corresponds to the condition:
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Where (L, 
gN ) and (W, 

gN ) are the dimension of the fault and

the number of Gaussian along strike and dip directions,

respectively.

The total number of Gaussian functions is:


ggg NNN   (

3.22 )

Moreover, the σ of the Gaussian function is related to the :

  222 ( 3.23 )

As a convention, we define the number of Gaussian function

configuration (Mod=Mod-01, Mod= Mod-02 etc, figure 3-7):


gNMod  ( 3.24)

So if Mod=Mod-01, it results 
gN =1 and one Gaussian function

along the dip direction, if Mod=Mod-02 we have two Gaussian

functions along the dip ect.
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Figure 3-6: Reference map based on k-square model for a fault 35x15
km2, along strike and dip respectively.

Figure 3-7: The figure shows the results of inversion for 15 different
configurations of the Gaussian parameterization (Mod-01 to Mod-15).
The configurations differ from each other for the Gaussian number that
increases moving from the Mod-01 to the Mod-15. The fit is better for
the configurations with larger number of Gaussian functions.
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Figure 3-8: Spectra of k-square model are shown in blue, while the
spectra of the Gaussian configuration are shown in red.

In figure 3-8, we can see the comparison between the spectra of k-

square model (blue line) and the spectra of Gaussian configuration

(red). The two trends are similar for low wavenumbers, and they

become different at higher wavenumbers.

So we study the misfit
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( 3.25 )

in witch the S in the 2D Fourier Spectra of the slip map. For any

value of sigma and overlapping, we select the maximum

wavenumber for which the misfit function between the reference

map and the correspondent Gaussian representation is smaller
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than a given tolerance. This maximum wavenumber is greater

with increasing of number of Gaussian, Ng , in the configuration.

We repeated this analysis for different k-square models,

configurations and overlapping values, which correspond to

different values of σ (σ, σ/2, σ/4).

The results are show in the figure 3-9, in which we plot the

σ value versus min, minimum resolvable wavelength on the fault

plane. The trend is linear in all three cases.

Now, we attempt to answerthe following question: “if we

had a signal with maximum frequency fmax, how many Gaussian

functions should we use in the inversion procedure?”.

We should remember that there is a relationship between fmax

and min, the minimum wavelength, and now we have a

relationship between min and σ, this last linked to the number of

Gaussian functions (figure 3-10).

The best choice is related to the compromise between the

resolution on the fault plane and the burden of the inversion in

terms of number of Gaussian functions. The Gaussian amplitudes

will are parameters of the inversion. For example, if min=4.5 km,

the green curve wants a σ=0.5 km that corresponds to many

Gaussian functions; while for the red curve σ=2 but the

overlapping is great so we need many Gaussian functions. The best

choice is the green line.
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Figure 3-9: Relationship between σ and the minimum resolvable
wavelength, in three case: σ (red-line), σ/2 (green-line), σ/4 (blue-line).

Figure 3-10: Flowchart of the relationship between the maximum signal
frequency and the configuration of the Gaussian functions on the fault
plane.
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plane.
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4.Chapter 4

Inversion Strategy: two steps

procedure

4.1. Introduction

Inversion of seismic data for obtaining the distribution of the

slip on finite fault has become a popular tool for the reconstruction

of faulting processes during large earthquakes.

Historically, the first attempt to apply the representation

theorem to the inversion for slip on finite faults was made by

Trifunac (1974), who used five strong-motion records from the

1971 San Fernando, California, earthquake. The author used a full-

space geometry and a simple trial-and-error approach to fit the

available data-set.

The first study, in which the problem of the slip determination

was considered on the formal basis of the linear inverse theory,

was published by Olson and Apsel (1982). The theory was based on

a matrix version of the representation integral and two methods of

solution of the inversion problem were presented: the least-square

method, which minimizes the squared differences between



The misfit function

-93-

simulated and observed data, and the constrained least-squares

method, which simultaneously includes a set of linear inequalities.

Thanks to contemporary computational tools, most

seismologists are facing the finite-fault inversion in its full non-

linear formulation, rather than in a linearized form. The global

optimization techniques have the ability to escape local minima of

the cost function in the parameter space and to converge to the

optimal model.

4.2. The misfit function

The choice of the cost function to be used in the inversion

procedure is a crucial point. This aspect of the finite-fault inversion

problem, and its implications on the resulting source model, were

studied by Hartzell (1991) who performed a quantitative

comparison between L1 and L2 norms.

The L2-norm minimizes the sum of squares of the differences

between the real and synthetic data. This norm assumes that the

errors in the data have a Gaussian distribution.

The L1-norm minimizes the sum of the absolute value of the

difference between the data and synthetics data. For this norm, the

errors in the data have a exponential distribution (Menke, 1984).

An exponential distribution with the same mean and variance as a

Gaussian distribution has a much longer tail, so the probability of

having a few outlying points is much higher. In conclusion the L1



Chapter 4 Inversion Strategy: two steps procedure

-94-

minimisation is able to handle a few bad data points then assigning

then lower weights.

Where good data-sets are available, in case of a large

earthquake, it is preferable to use the L2-norm.
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In this form, the misfit function includes the contribution of

the stations (Ns: number of the stations), of the ground motion

components (Nc=3, east, north, vertical), and all samples in the

time domain (Nt).

Since in the approach described in the chapter 1 the forward

problem is solved in frequency domain, recorded and synthetic

seismograms are compared in this domain. Using the Parseval’s

theorem14F

15, the final formula for the misfit used in our methodology

is:
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 ( 4.2 )

here Nω is the number of frequencies.

Generally, the orders of magnitude are:

15 Parseval’s Theorem: Parseval’s theorem is written as:

   








 dffXdttx 22
, where X(f) represents the continuous transform

of x(t). This means that the total energy contained in a waveform x(t) summed
along time t is equal to the total energy of the waveform’s Fourier transform
X(f) along its frequency components f.
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


N
N t ( 4.3 )

Hence the algorithm is faster in frequency domain than in the time

domain.

4.3. The two-steps procedure

The ground motion recorded at a seismic station non linearly

depends on the kinematic rupture history, in terms of slip and

rupture velocity. However, for fixed rupture velocity, the

representation integral is linear with respect to the slip and if the

rupture velocity were known, slip could be retrieved by a

regularized linear inversion of strong-motion data. Although the

rupture velocity is unlikely to be known a-priori, we can still take

advantage from the linearity by separating the inverse problem

into two nested problems. Let us assume Vr and [U] a rupture

velocity and slip parameterizations respectively. The forward

problem of eq. 1.14 with 2.16, can be simplified to

( ,[ ])rKu V U ( 4.4)

where also u is the discrete representation of the displacement.

The operator K accounts for the product by the Green’s tractions

and integration on the fault plane. It is non linear because the

rupture velocity influences the phase shift related to the delay
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required by the rupture to go from the hypocenter to each point of

the fault. Instead the operator 0( ;[ ])r rK V V U is linear with

respect to the slip. As a misfit criterion, we chose to minimize the

square L2 norm

2( ,[ ])rKu V U ( 4.5 )

The inverse problem is solved by a two step procedure

aimed at separating the computation of the rupture velocity, which

is intrinsically a non linear problem, from the evaluation of the slip

distribution, a linear problem, when the rupture velocity is fixed

(figure 4-1).

During the first step, we fix a vr map (for example at

constant value), and the linear problem is solve with a Non

Negative Least Square algorithm. For the slip map retrieved, we

solved the non-linear problem to search the vr map, using the

global search, Neighbourhood algorithm, which minimizes the

misfit function. Then we re-fix the vr map to the distribution

obtained on correspondence of a minimum and the procedure is

restarted. The procedure stops when the misfit value is below a

given threshold.
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Figure 4-1: Flowchart of the two-steps procedure to inversion.

4.3.1. Non negative least square solution

We use the Lawson-Heaton (Lawson and Heaton, 1974;

1995) algorithm for non-negative least square solution15F

16 (NNLS)

to determine the amplitudes Gaussian. Such an algorithm

automatically constrain the slip to be non-negative.

We can rewrite the representation problem in matrix

formulation:

16 Non negative least square solution: The NNLS solves the least square

problem
2

min bAx  with the constraint 0x .
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  Ar
synth mvGu  ( 4.6 )

where m is the vector of Gaussian amplitudes and G(vr) is the

operator that accounts for the product by Green’s traction and

integration on the fault plane, for a fixed vr. In other words, we

want to solve the problem:

  2
min Ar

obs mvGu  ( 4.7 )

where uobs is the vector of real data. Since the forward modeling is

fast for computing waveform spectra, records and seismograms are

compared in the frequency domain, using both real and imaginary

parts of the signal’s spectra.

4.3.2. The Neighbourhood algorithm

The non-linear step uses the neighbourhood algorithm (

NA, Sambridge, 1999; 2001), a non-linear derivative-free technique

employing simple geometrical concepts to guide a direct search in

the parameter space. At each stage, the entire parameter space is

partitioned into a set of Voronoi cells (nearest neighbour regions,

as defined by a suitable norm), one associated with each previously

sampled model. A Voronoi cells of a particular model is a polygon

whose interior consists of all points in the parameter space which

are closer to this particular model than to any other model.

Between consecutive iterations, the new sample is recalculated in

only the Voronoi cells of the previous models having the smallest
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misfit, becoming thus less computationally expensive than, for

example, the Montecarlo technique16F

17. The NA uses only two

control parameters (the sample size at each iteration ns , and the

number of cells nr in which a new samples is searched), as

compared to the genetic algorithm 17F

18 and simulated annealing18F

19.

To summarize the whole inversion technique: at the first

iteration, a random set of the models is generated (ns) and the

forward simulation is run for each of these models. At the second

iteration, ns new models are pseudo-randomly generated in nr

Voronoi cells corresponding to the nr previous best models with

the lowest misfit (figure 4-2).

17 Montecarlo technique: Monte Carlo methods provide approximate solutions
to a variety of mathematical problems by performing statistical sampling
experiments. They can be loosely defined as statistical simulation methods,
where statistical simulation is defined in quite general terms to be any method
that utilizes sequences of random numbers to perform simulation. Thus Monte
Carlo methods are a collection of different methods that all basically perform the
same process. This process involves performing many simulations using random
numbers and probability to get an approximation of the answer to the problem.
The defining characteristic of Monte Carlo methods is its use of random
numbers in its simulations.

18 Genetic algorithm: Genetic algorithms were formally introduced in the
United States in the 1970s by John Holland at University of Michigan. To use a
genetic algorithm, you must represent a solution to your problem as a genome
(or chromosome). The genetic algorithm then creates a population of solutions
and applies genetic operators such as mutation and crossover to evolve the
solutions in order to find the best one(s).

19 Simulated annealing: It is a probabilistic method for finding the global
minimum of a coast function that may have several local minima. It works by
emulating the physical process whereby a solid is slowly cooled so that when
eventually its structure is “frozen”, this happens at a minimum energy
configuration.
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Figure 4-2: The figure shows the result for two parameters problem.
The upper-left panel shows 10 samples and the corresponds Voronoi
cells; the upper-right panel shows 100 samples. The lower-left panel
similar to upper-right panel but with 10000 samples. Here the algorithm
concentrates on four distinct region corresponding to the minimum of
the misfit. The lower-right panel shows the contours of the misfit
function in grey scale.
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5.Chapter 5
Application of inverse
technique to the Iwate-Miyagi-
Nairiku earthquake

5.1. Case study

The our methodology was applied to the Iwate-Miyagi Nairiku

earthquake. It was a MJMA19F

20=7.2 (M=6.9, Global CMT20F

21) inverse-

fault 21F

22earthquake that occurred in the eastern side of the Ou

mountain range, northeast Honshu Island, Japan, on June 14, 2008,

at 8:43 Japanese standard time. The aftershock distribution derived

by the National Research Institute for the earth Science and

Disaster Prevention using mainly Hi-net data, (High sensitivity

seismograph network Japan; Obara et al., 2005), indicated that the

source area of the earthquake extended bilaterally from the

hypocenter to the north-northeast (NNE) and to south-southwest

(SSE) directions near the border between Iwate and Miyagi

prefectures. The hypocenter is located at the 39.027N, 140.78E, at

the depth of 8.0 km. The location was obtained by Shiomi et al.

20 MJMA: Magnitude provided by Japan Meteorological Agency
21 Global CMT: Global Centroid-Moment-Tensor.
22 Inverse fault: This kind of fault is originated typically by compressive forces
and it can be also called a thrust fault. It is a dip-slip fault with rake angle equal
to 90° (the hanging wall moves upward).
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(2009) using the double-differences method (Waldhauser and

Ellsworth, 2000).

We assumed a planar fault model that extends 40 km in strike

(N207°E) direction and 20 km in the dip (37°) direction (figure 5-

1).

Figure 5-1: Fault-plane geometry and focal mechanism.

The earthquake was recorded by the two nationwide

strong-motion networks, K-net22F

23 and Kik-net23F

24 (Kinoshita, 1998;

Aoi et al., 2004), which provided a dense distribution of data around

the source (Olson et al., 1988). We used three-component velocity

23 K-net: Kyoshin Net (k-net), http://www.k-net.bosai.go.jp/.
24 Kik-net: http://www.kik.bosai.go.jp/.
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records at eleven near-source stations having epicentral distances

ranging from 12km to 50 km, as shown in figure 5-2. Stations

names and coordinates are listed in table 5-1.

Figure 5-2: Distribution of the strong motion stations (triangles) and
fault plane model (rectangle) used for the inversion. The red star
indicates the epicenter. The moment tensor solution is shown at upper-
left of the figure.

Name Lat. (°) Long. (°) Dist. (km)
AKTH04 39.17 140.72 21.70
AKTH05 39.07 140.32 48.82
AKTH05 38.98 140.50 33.70
IWT009 39.02 141.40 45.31
IWT012 39.32 141.14 39.42
IWTH04 39.18 141.39 47.39
IWTH050 38.86 141.35 44.69
IWTH22 39.33 141.30 49.84
IWTH26 38.97 141.00 12.40
MYG003 38.73 141.31 49.55
MYGH02 38.85 140.65 27.29

Table 5-1: Names, coordinated (latitude and longitude), and distance
from epicenter of the stations used in inversion.
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We assumed the same vertically layered velocity structure

model for each station in order to calculate the Green’s tractions

(table 4-2).

d

(km)



(km/s)



(km/s)



(g/cm3)

0.0 5.5 3.2 2.6

1.9 6.0 3.5 2.7

16.0 6.6 3.8 2.8

38.0 8.0 4.6 2.9

Table 5-2: 1D velocity structure model used to calculate Green’s
function. d is the depth of the upper interface,  and  are P and S
velocities of wave respectively and  is density of the medium.

5.2. The synthetic test: Gaussian amplitude inversion.

In order to validate the inverse methodology, we present a

synthetic test: we generated and inverted a set of synthetic data

associated at a hypothetical earthquake whit all known

characteristics.

The hypothetical earthquake has the same characteristics of the

Iwate earthquake: fault dimension 40 x20 km2, strike 207°, dip 37°,

rake 93°. We generated a synthetic data-set for all station listed in

table 5.1 and from 0.05 to 0.5 Hz, and with three different noise

level: noiseless, 10% and 30% of the signal. For the dislocation, we

generated the seismograms for two different maps: the first (case

A) with one circular anomaly and the second (case B) whit three
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circular anomaly. We assumed the rupture velocity constant on

fault plane (equal to 3 km/s) and we inverted for the Gaussian

amplitude (Ng=36).

5.2.1. Case A: one circular anomaly

The slip distribution for case A is shown in figure 5-3, it

consists of a uniform final dislocation (slip equal to 2 cm) with one

circular anomaly with radius 5 km and slip equal to 30 cm.

Figure 5-3: Slip distribution with one patch used for the synthetic
seismograms generation.

In figures 5-4, 5-5, 5-6 are shown the slip map inverted form the

three studied cases: no noise, 10 and 30 % respectively. The

comparison between “real” and theoretical data are shown in the

figure 5-7, 5-8, 5-9. In table 5-3 we summarize the results of the

inversion in terms of best value misfit and slip max.
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Figure 5-4: Slip maps inverted in the no noise case.

Figure 5-5: Slip map inverted with "real" data contaminated with 10 %
of noise.

Figure 5-6: Slip map inverted with "real" data contaminated with 30 %
of noise.
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Figure 5-7: Comparison between “real” with no noise (black) and
synthetic (red) data.
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Figure 5-8: Comparison between “real” with 10 % noise (black) and
synthetic (red) data.
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Figure 5-9: Comparison between “real” with 30 % noise (black) and
synthetic (red) data.
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Noise (%) Best misfit (cm ) Slip max (cm)

none 8.22 35.9

10 8.24 35.98

30 8.31 36.10

Table 5-3: Summary of the results of the inversion – Case A.

In all three cases, the largest slip patch is well resolved in terms of

position and dimension. The maximum slip value is overestimated

of 0.9 cm for the case with no noise data and of 1.1 cm in the case

of noise equal to 30%. Generally the results of inversion are

sufficiently accurate.

In order to analyze in detail a comparison between “real” and

inverted data we show the time frequency envelope misfit (TFEM)

and the time frequency phase misfit (TFPM) spectrogram (figures

5-10, 5-11, 5-12) for the station MYGH02.
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Figure 5-10: Spectrogram for the station MYGH02, whit no –noise
“real” data. Red color in the TFEM and the TFPM images indicates a
greater amplitude and a positive phase shift. Blue color represents the
opposite case.



Chapter 5: Application of inverse procedure to the Iwata-Miyagy
Nairiku earthquake

-112-

Figure 5-11: Spectrogram for the station MYGH02, whit 10% of noise.

Figure 5-12: Spectrogram for the station MYGH02, whit 30% of noise.
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The phase shift is the same for the three cases; as for the

amplitude, some differences are evident. In all time duration the

variation are the same in the three cases but in frequency at low

frequency (from 0.05 to 0.2 Hz) a change can be noticed, and in

generally the amplitude is underestimated.

5.2.2. Case B: three circular anomaly

The slip distribution for the case B is shown in figure 5-13.

It consists of a uniform final dislocation (slip equal to 2 cm) with

three circular anomalies: the orange, azure and blue have 50 cm,

30cm, 5 cm slip maximum and radius 7cm, 5cm, 3cm respectively.

Figure 5-13: Slip distribution with three patch use for the synthetic
seismograms generation.

In figures 5-14, 5-15, 5-16 are shown the slip map inverted form

the three case of study. The comparison between “real” and

theoretical data are shown in figures 5-17, 5-18, 5-19. In table 5-4
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we summarize the results of the inversion in terms of best value

misfit and slip max.

Figure 5-14: Slip map inverted in the no noise case.

Figure 5-15: Slip map inverted with "real" data contaminated with 10 %
of noise.

Figure 5-16: Slip map inverted with "real" data contaminated with  30 %
of noise.
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Figure 5-17: Comparison between “real” with no noise (black) and
synthetic (red) data.
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Figure 5-18: Comparison between “real” with 10 % noise (black) and
synthetic (red) data.
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Figure 5-19: Comparison between “real” with 30 % noise (black) and
synthetic (red) data.
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Noise (%) Best misfit (cm ) Slip max (cm)

none 13.01 69.19

10 13.04 69.16

30 13.14 69.09

Table 5-4: Summary of the results of the inversion - Case B.

In all three cases, the two largest slip patches are well resolved in

terms of position and dimension, while the smallest patch is not

identified. Therefore, the maximum slip value is overestimated of

around 10 cm for the three cases. Generally the results of inversion

are sufficiently accurate.

Even for the case B, we show the TFEM and the TFPM,

spectrogram for the station MYGH02.

Figure 5-20: TFEM and the TFPM for the station MYGH02, in the no-
noise real “data”.
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Figure 5-21: TFEM and the TFPM for the station MYGH02, with 10%
of noise in the “real” data.

Figure 5-22: TFEM and the TFPM for the station MYGH02, with 30%
of noise in the “real” data.
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There are differences in phase an amplitude in the three cases, and

the U-D component is underestimated.

5.3. The synthetic test: two steps procedure.

In order to validate the two steps procedure, we generated a set

of  free-noise synthetic data with the slip map in figure 5-13, and a

rupture velocity map variable on a fault plane and mean value 1.98

km/s. Figure 5-23 shows the slip and rupture time map.

Figure 5-23: Slip and rupture time map.

We inverted the eleven seismograms, and used 36 gaussian

functions; for the rupture velocity we use 4x4 control point grid,

and we limit the variation range between 1.5 km/s and 3.5 km/s.
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In figure 5-24 we show a comparison between forward (red)

and inverted (black) velocigrams, while in figure 5-25 we show the

TFEM and the TFPM, spectrogram for the station MYGH02.
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Figure 5-24: Comparison between “real” (black) and synthetic (red)
data.
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Figure 5-25: TFEM and the TFPM for the station MYGH02. Red color
in the TFEM and the TFPM images indicates a greater amplitude and a
positive phase shift in the “inverted” seismograms with respect to “real”
seismograms. Blue color represents the opposite case.

The slip and rupture map inverted are show in figure 5-26.

Figure 5-26: Slip and rupture time: results of the inversion.
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In this test for the  inversion , we are able to resolved the patch

with larger slip, but we can not obtain the slip with slip equal to 5

cm. The rupture velocity estimated is 2.3 km/s; it is greater than

1.98 km/s so the inverted seismograms have a positive value for

TFPM  (red in the color scale in figure 5-26).

5.4. The synthetic test: Conclusion

We performed two synthetic tests: one considering rupture

velocity constant and inverting only the slip and another with slip

and rupture velocity as parameters of the inversion. The first aims

at testing the linear step and the second at validating the complete

procedure. The results are good in terms of map and rupture time.

So we have built a procedure that works and can be apply to the

real.

5.5. Real data inversion

After the synthetic test, we applied the methodology at the real

data-set of the Iwate -Miyagi Nairiku earthquake, with the aim of

obtaining the slip distribution on the fault plane and the map of

rupture velocity map.
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5.5.1. Source and fault parameterization

For the selected frequency range [0.05-0.3] Hz, the maximum

resolvable wavelength on the fault plane is 5-10 km, leading to a

Gaussian width of 4-5 km. We used a regular distribution of

Gaussian functions along the strike and along the dip (the total

number is: Ng=36). The sample spacing in strike (1) and in dip

(2) direction is 500m (81 sample along strike and 41 along dip).

An addition condition is required (Emolo, 2001):

rt max ( 5.1 )

in which tmax is the maximum propagation time in the subfault and

r the rise time. Since the subfault is a triangle, tmax is the

propagation time along a diagonal:

r

dd
t

v

2
2

2
1

max
 

 ( 5.2 )

Considering a rupture velocity vr = 2.0 km/s, and d1 =d2 =

500m, tmax=0.35s we can use a rise time r= 1s, around the 10%

(Heaton, 1990) of the total rupture time.

We used a rectangle slip velocity source time function (eq.

1-12).
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For the rupture velocity we used 4x4 control point grid, and

we limited the variation range between 1.5 km/s and 3.5 km/s.

The total length of the synthetic data is 81.92s , the frequency

step is 0.0122 Hz, and 25 frequencies are used in the inversion.

The accelerograms are band-pass filtered between 0.05 Hz

and 0.3 Hz then are integrated to obtained the velocity. The

synthetic and real displacements are obtained from the synthetic

and the real velocities by integration in the frequency domain

(Cotton et al., 1995).

5.5.2. The results of inversion: slip map and rupture
time map

We computed a total of 25*104 iterations in the inversion. Figure

5-27 shows the smallest misfit per iteration throughout the

inversion, demonstrating a relatively slow convergence due to the

strong nonlinearity of the problem, for the first 104 iterations and

then an asymptotic trend around the minimum.
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Figure 5-27: Smallest misfit per iteration between synthetics and observations
as a function of number of iterations.

The result of inversion, for the best model, is shown in figures
5-24 and 5-26.

The slip distribution on the fault plane (figure 5-28) shows

three high slip zones: a major slip patch extends from the

hypocenter to the southern sallow part of the fault plane (around 5

km and 10 km with respect to hypocenter); a relatively small slip

patch extends in the southern deep part. Finally there is another

large slips patch extending in the northern shallow part that gives

a contribution to the amplitudes of the stations in the north

direction. Moreover the slip map shows a bilateral propagation and

high slip zones are located in the shallow part of the fault (around

12 km). The maximum slip value is 6m. The total moment of the

best model 2.6 1026 dyne∙cm, and the moment magnitude Mw 6.9

The results of inversion: slip map and rupture time map

-127-

Figure 5-27: Smallest misfit per iteration between synthetics and observations
as a function of number of iterations.

The result of inversion, for the best model, is shown in figures
5-24 and 5-26.

The slip distribution on the fault plane (figure 5-28) shows

three high slip zones: a major slip patch extends from the

hypocenter to the southern sallow part of the fault plane (around 5

km and 10 km with respect to hypocenter); a relatively small slip

patch extends in the southern deep part. Finally there is another

large slips patch extending in the northern shallow part that gives

a contribution to the amplitudes of the stations in the north

direction. Moreover the slip map shows a bilateral propagation and

high slip zones are located in the shallow part of the fault (around

12 km). The maximum slip value is 6m. The total moment of the

best model 2.6 1026 dyne∙cm, and the moment magnitude Mw 6.9



Chapter 5: Application of inverse procedure to the Iwata-Miyagy
Nairiku earthquake

-128-

are in good agreement with other estimates (Suzuki et al., 2010,

Takada et al., 2009).

Figure 5-28: Retrieved slip map with two-step procedure inversion.
Three high slip zones are present. The red star indicates the hypocenter.

Suzuki .et al. (2010) found one major slip patch extending from 5

to 10 km (figure 5-29), according with our results.
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Figure 5-29 : Slip map, as obtained by Suzuki (2010).

Regarding rupture times (figure 5-30), we can observe that rupture

accelerates southward but there is a symmetry in up-dip direction.

Rupture front reaches the boundary in 10 seconds, whit an

estimate average rupture velocity of 1.98 km/s (0.6 vs), according

with Suzuki (2010).

Figure 5-30: Rupture time in correspondence of the slip map.
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5.6. The results of inversion: synthetic and real data
comparison

A comparison of the observed and synthetic ground velocities

(cm/s) is given in figure 5-31, for the all three components N-S

(North-South), E-W (East- West) and U-D (Up- Down). Each

seismogram, synthetic (red line) and real (blue line), is plot with its

amplitude scale.

Generally the fits are very good, for two of the three

components. Stations in southward position have a better fit than

the stations in north position. In the inversion, we use a L2 norm

that privileges the waveform with large amplitude. The waveforms

for the stations in the South, feel the contribution of the largest

patch of the slip, so they have larger amplitude than the stations in

the North position. For example, the amplitudes range for the

station IW012 is [-3, 3]cm/s, while the range for the MYGH02 is

[-7, -9]cm/s.

At the station IWTH26, the amplitudes range is even larger (

[-13, 15]cm/s), indicating an up-dip directivity effect of the

rupture.

In figure 5-31, we show the variance reduction defined as:

 
 

 
 2obs

2obssynth

u
uu

1var
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Where usynth and uobs are the synthetic and real data, respectively.

The variance reduction was performed for each stations and

components. The variance reduction is great for the component

that has a good fit (in the case of U-D component of IWTH05, E-

W component of IWT009), while it is small for the component

with bad comparison (in case of U-d component of IWT012).
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Figure 5-31: Comparison of observed (black) and synthetic (red) data.
The seismograms are velocigrams (cm/s). Each pair of data and
theoretical seismograms is plotted with its amplitude scale, and with the
variance reduction24F shown to the right of each pair. Station names are
indicated on the left.
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Figure 5-32: Spectra amplitude comparison of the observed (black) and
synthetic (red) data. Station names are indicated on the left.
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6.Chapter 6
Quality of solution: Analysis
of Error and Resolution

6.1. Introduction

The main drawback of the global methodology, for non linear

inversion problem, is the difficulty of assessing error and

resolution to the results of the inversion. Actually this problem has

not been solved yet, and many authors afforded it in different ways:

for example Emolo and Zollo (2005) estimated the uncertainty on

the source parameters through the analysis of the cross-correlation

of the misfit function in the neighborhood of the best-fit rupture

model; Peyrat and Olsen (2004) computed the standard deviation

from nineteen models with smallest misfit.

In this thesis we sugget a quantitative value for data covariance

matrix; our methodology splits the problem in a linear and a non

linear part, and we use different approaches for the two problems.

6.2. Data covariance matrix

The goal of inverse theory in Geophysics is to have

quantitative information about the Earth from indirect observation
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of the phenomenon. Since the observations are finite in number

and subject to uncertainty, this information is intrinsically

probabilistic. This requires the estimation of the uncertainties in

the data recorded and in the modelling with the forward theory.

We assume that all uncertainties can be described by

multidimensional Gaussian probability densities (Tarantola, 1987):

      obsobs d-md-mm GGp d
T 1exp   ( 6.1 )

in which m is the vector of parameters, d the observed

displacement at given set of receivers and g (kernel of inversion ) is

the non linearity operator that include Green’s traction,

distribution of Gaussian functions, and the slip velocity source

time function. In our case m = (mA, mv), where mA is amplitude of

Gaussian functions and mv is rupture velocity. Finally, σd is data

covariance matrix. Our assumption is compatible with the use a L2

norm in the inversion.

The data covariance matrix σd defines the uncertainties,

both observed and synthetic data. It is possible to show (Tarantola,

1987) that, assuming Gaussian uncertainties, σd consists of the sum

of the covariance matrix associated with the single uncertainties:

 obsd CC  mod ( 6.2 )

where Cobs (Real data covariance matrix) incorporates the ambient

and instrumental noise, and Cmod (Synthetic data covariance

matrix) is the covariance due to the theoretical error (error in

velocity model, discretization error, etc.).
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6.2.1. Real data covariance matrix

Uncertainties in real data come from the enviroment and

instrumental noise, which makes the observations dirty. It is

reasonable to assume that noise contributions on the different data

ate uncorrelated. As an example, we considered the seismograms

for the station IWTH22. We processed the data in a standard way:

we removed the mean value and the trend, we applied a band pass

filter, and we integrated the signals twice. Than we applied the

standard Discrete Fourier transform. We performed it for the first

14 seconds before the P wave arrival, and for all the duration

(figure 6-1). We estimated then the ratio between noise (N) and

signal (S), as a function of the frequency.

Figure 6-1: Top of figure shows the processed signal for the station
IWTH22.  In the bottom, we shown the discrete Fourier transform for
the noise (left) and complete signal (right).
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We founded that in the band of interest (low frequencies), the

maximum value is:

%1.0
S
NCobs

( 6.3 )

hence the quality of real data is very good, and the noise does not

significantly contributes to the uncertainties. We can ignore its

contribution so that: 0obsC

6.2.2. Synthetic data covariance matrix

We quantify the synthetic data covariance matrix using a

measure of the variance reduction between the theoretic, obtained

in correspondence of the best model, and recorded seismograms,

which are not affected by error ( 0obsC ). The variance reduction

(var_red) is computed for all the data (d), for each frequency, and

station component.

The variance reduction estimated is:

%75_  redVard (6.4 )

Finally, we have a estimate of Cmod:

51.0mod 
d

C d ( 6.5 )
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6.3. Errors analysis

The covariance of the model parameters (amplitude of

Gaussian functions, and rupture velocity) depends on the

covariance of the data and the way in which errors are mapped

from data to model space. The mapping is a function of the kernel

of the inversion (G), and changes depending on the linearity or

non-linearity of the problem. In our methodology we split the

problem in a linear and a non linear part, so we can use two

different approaches for the two problems.

Furthermore, we assumed that the data are uncorrelated, so
they have equal variance σd2.

6.3.1. Linear problem

The classic least squares theory suggests that the

covariance matrix of the model parameters, is related to the data

covariance matrix by (Menke, 1989):

    1
Amcov 
 GGT

d ( 6.6 )

The NNLS algorithm searches the solution only for positive

parameters, and if it founds a negative value, this is set to zero.

The number of parameters effectively resolved is less than the

number of Gaussian functions used in the inversion. In this case,

we deleted the column of G, that corresponds to zero value of the

amplitude of the Gaussian functions.
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6.3.2. Non linear problem

The NA algorithm searches for minimum of the misfit

function. This minimum is, generally, very sharp in the vicinity of

the estimated solution, and we can approximate the misfit forma to

a parabola. Since the curvature of a function is a measure of the

sharpness of its minimum, we expect that the variance of the

solution is related to the curvature of the misfit function at its

minimum, given by the second derivative (Menke, 1989):

 
1

v

2
2

v
22

1cov


















best
vv mm

d m
misfitm  ( 6.7 )

Figure 6-2: An example of different parabola: if the parameter is well
resolved, the curvature is small (blue line), while the curvature is large
(green line) for a bad resolved parameter.
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6.4. Results

In figure 6-3, we represented the relative error AA / ,

expressed in percentage, associated with three largest slip patches.

Figure 6-3: Relative error expressed in percentage for the three largest
asperities.

As we can see the smallest (5%) relative errors is associated at

the main asperity, and the greatest (17%) value at the smaller

asperity in the dipped part of the fault. In the other areas of the

fault, we do not have a good resolution, and we are not confident of

the results.

Now, we consider a rupture velocity and compute equation 6-7

by perturbing the value of the parameter around the best-final

value once set the other parameter at their final best value. We

focus the attention on two parameters, in control node A (at 8km
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in strike direction and 4km dip direction) and B ( at 14km in strike

and 16km in dip direction):

km/s13.0
km/s77.5

B
v

A
v





 ( 6.8 )

The rupture velocities and the associated error are:

km/s)13.086.1(v
km/s)77.514.3(v

B

A




We are not confident of the error in node A, in fact it is in a

part of the fault in which there is not resolution for the slip, while

the node B is in a zone of the fault in which there is a largest

asperity.

We also computed the marginal probability distribution

function (pdf), for this two parameters (rupture velocity in node A

and B):

 

 
 






















r
d

r

d

r

r

dvvmisfit

vmisfit

vpdf

2

2

2

2

2
exp

2
exp

)(





( 6.9 )

and show the result in figure 6-4.
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Figure 6-4: The red line is pdf for node B, while the pdf for node A is
colored black.

The pdf of node B is picked around the best value, while the pdf of

node A is white; this means that all value of rupture velocity are

possible for this node.
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Conclusion

The aim of this thesis is the definition of a strategy for a

robust inversion of strong motion data, starting from a kinematic

description of the rupture.

We recalled the fundamental concepts of elastodynamics

with the aim of search the relationship between the rupture on a

fault plane and the strong motion recorded at the stations on the

Earth surface. This relationship is the representation theorem

which links the kinematic rupture process on a fault and the

propagation terms, called Green’s traction. We rewrite the

Burridge and Knopoff theorem and obtained a formula, in

frequency domain, in which the terms of slip velocity source time

function, rupture and Green’s tractions are well separated.

One of the main objectives of this thesis is the development and

validation of the numerical code STuDenT (Simulation of daTa

with a Delaunay Triangulation ) for computing the representation

integral. STuDenT is a numerical code for the simulation of

synthetic seismograms, based on the discretization of the fault by a

finite element approximation. In particular we adopted a

decomposition of the fault plane into triangular subfaults and

worked in a reference domain in which all triangles are right. The

representation theorem is reduced in a product between triangles

areas and the mean value of the function in the three nodes of

triangles. This is the kernel for the inversion procedure with the
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aim of obtaining the final slip and the rupture velocity distribution

on the fault plane.

The second goal of this thesis is the study of a new

parameterization of the slip, based on 2D overlapping Gaussian

functions. Several advantages occur when using such a

representation for the slip function. First, the slip map is naturally

smooth since it is continuous, many times differentiable and

tapered to zero at the boundaries of the fault plane. Moreover,

Gaussian functions have an almost flat amplitude spectrum up to a

corner wavenumber that is related to the inverse of the Gaussian

width; then, the spectrum decays exponentially beyond it.

Moreover, this parameterization is expected to relate the slip map

to the minimum resolvable wavelength on the fault plane and,

through it, to the maximum analyzed frequency in the data.

Finally, the positivity constrain is naturally insured by requiring

positive coefficients in the Gaussian representation.

In conclusion, we have an efficient tool for the simulate wave

propagation inside the Earth and the rules to correlate the

frequencies in the data to the characteristic on the fault.

As a final effort of this work, we provided a simple technique

for retrieval of the kinematic history on the fault. In particular, we

splitted the problem in two steps aimed at separating the

computation of the rupture velocity, which is intrinsically a non

linear problem, from the evaluation of the slip distribution, a linear

problem, when the rupture velocity is fixed. We performed two

different synthetic tests in order to validate the procedure. Finally,
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we applied our procedure to the real case of Mw 6.9 Iwate Nairiku

Miyagi Japan earthquake. We inverted eleven three components

records, filtered in the band 0.05 - 0.3 Hz. The maximum

resolvable wavelength on fault plane is 5-10 km, leading to a

Gaussian width of 4-5 km. We used a regular distribution of

Gaussian functions along the strike and along the dip (the total

number is: Ng=36) and for the rupture velocity we used 4x4

control points grid. The retrieved slip distribution inverted shows

three high slip zones: a major slip patch extends from the

hypocenter to the southern shallow part of the fault plane, a

relatively small slip patch extends in the southern deep part.

Finally there is another large slip patch extending in the northern

part. Moreover the rupture shows a bilateral propagation and high

slip zones are located in the shallow part of the fault  The

maximum slip value is 6m. The total moment of the best model is

2.6 1026 dyne∙cm, and the moment magnitude Mw 6.9. Regarding

rupture times, the rupture accelerates southward but there is a

symmetry in up-dip direction. The average rupture velocity 1.98

km/s (0.6 vs), according with Suzuki (2010).

In the last chapter we gave a quantitative estimation of errors

associates with the parameters. Using our methodology that splits

the problem in a linear and a non linear part, we are able to use

two different approaches to search for the errors. For the Gaussian

amplitudes we use the classical linear theory and we obtained an

error of 5% for the amplitude of the largest patch slip, while for the

smallest slip patch we founded an error of 17%. As for the values of

rupture velocities, we approximated the misfit functon to a
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parabola. Since the curvature of a function is a measure of the

sharpness of its minimum, we have that the variance of the solution

is related to the curvature of the misfit function at its minimum.

We founded large errors for the control node located in part of the

fault in which the slip is very low, while we are confident of the

values in the high slip patch.
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Appendix A: Time-Frequency
misfit criteria

The simple visual comparison of two seismograms, real

synthetic data, cannot provide a proper quantification and

characterization of difference between the signals, and it is clear

that some characteristic of the signal may be more evident and

understandable in the time domain, some in the frequency domain.

So, the most complete and informative characterization of a signal

can be obtained by its decomposition in the time-frequency

domain, that is, by its Time-Frequency Representation (TFR).

The misfit criteria (Kristekova et al., 2006) are based on the

time-frequency representation of the seismograms obtained as the

continuous wavelet transform with the analyzing Morelet wavelet.

The continuous wavelet transform (CWT) of the signal s(t)

is defined by

    










 

 dt
a

btts
a

tsCWT ba *1
),(  ( A. 1)

where t is time, a is the scale parameter, b is the translational

parameter, and  is the analyzing wavelet. The scale parameter a

is inversely proportional to the frequency:
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= ( A. 2 )

The Morelet wavelet is given by:

   2expexp)(
2

0
41 ttit    ( A. 3)

The TFR of the signal s(t) can be defined as

  tbf
oatsCWTftW ba  ,2;)(),( ),( 

 ( A. 4 )

Let WREF(t, f) be the TFR of the reference signal SREF(t), W(t, f)

the TFR of the signal s(t), and NT and NF the numbers of the time

and frequency samples in the time-frequency (TF), plane

respectively.

So we can define the time-frequency envelope misfit (TFEM):

     
  ftW

ftWftW
ftTFEM

REFft

REF

,max
,,

,
,


 ( A. 5)

and the time-frequency phase misfit (TFPM) as

         
  ftW

ftWArgftWArgftW
ftTFPM

REFft

REFREF

,max
,,,

,
,





( A. 6 )

TFEM (t, f) characterizes the difference between the envelopes of

the signals, as a function of the time and frequency. In the same

way, the TFPM (t, f) characterizes the difference between the

phases of the signals, as a function of the time and frequency. Both
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differences are normalized with respect to the maximum absolute

TFR value of the reference signal.
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Symbols

Symbols Name Units

 P-wave velocity km/s

 S-wave velocity km/s

cijkl Moduli tensor of

elastic deformation

Cmod Synthetic data

covariance matrix

Cobs Real data covariance

matrix

CWT Continuous wavelet

transform

ij Kronecker delta

function

 Dip angle °

 Sample spacing along

dip direction

km

 Sample spacing along

dip direction

km

fmax Resolving frequency

of the finite element

grid

s1

fN Nyquist frequency s-1

k Wavenumber Km-1
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L Length of fault plane Km

 Lamè constant

 Rake angle °

min Minimum wavelength

resolvable on the fault

plane

Km

 Lamè constant

m Vector of parameters

mA Vector of Gaussian

amplitude parameters

cm

mV Vector of rupture

velocity parameters

km/s

M0 Seismic moment N∙m or dyne∙cm

Mod Number of Gaussian

functions

configuration

Mw Moment magnitude

MJMA Magnitude of Japan

Meteorological

Agency

N Noise

Na Neighbourhood

Algorithm

Ng Number of Gaussian

functions in the

configuration

gN Number of Gaussian
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functions along  dip

direction

gN Number of Gaussian

functions along strike

direction

nr Number of cells in

which a new samples

is searched

Nt Number of samples in

time domain

Nω Number of samples in

frequency domain

ns Sample space at each

iteration

NNE North-northeast

direction

 Strike angle °

pdf Probability

distribution function

P-wave Primary wave

Qp P-wave quality factor

QS S-wave quality factor

RT Rupture time s

 Density g/cm3

S Signal

S-wave Secondary wave

SSE South-southwest

direction
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svSTF Slip velocity source

time function

svSTFr STF for a rectangle

function

svSTFt STF for a triangle

function

σd Data covariance

matrix

 Surface of fault plane km2

TFEM Time-frequency

envelope misfit

TFPM Time-frequency phase

misfit

TFR Time-frequency

representation

tmax Maximum

propagation time in a

triangle

s

r Rise time s

usynth Synthetic data km/s

uobs Real data km/s

vR Rupture velocity km/s

W Width of fault plane km

 Overlapping

parameter

ω Angular frequency s-1
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