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Abstract  

 

In this research work I analyzed the instrumental seismicity of Southern Italy in the area 

including the Lucanian Apennines and Bradano foredeep, making use of the most recent 

seismological database available so far. I examined the seismicity occurred during the period 

between 2001 and 2006, considering 514 events with magnitudes M ≥ 2.0. In the first part of 

the work, P- and S-wave arrival times, recorded by the Italian National Seismic Network 

(RSNC) operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were re-

picked along with those of the SAPTEX temporary array (2001–2004). For some events 

located in the Upper Val d'Agri, I also used data from the Eni-Agip oil company seismic 

network. I computed the VP/VS ratio obtaining a value of 1.83 and I carried out an analysis for 

the one-dimensional (1D) velocity model that approximates the seismic structure of the study 

area. After this preliminary analysis, making use of the records obtained in the SeSCAL 

experiment, I incremented the database by handpicking new arrival times. My final dataset 

consists of 15,666 P- and 9228 S-arrival times associated to 1047 earthquakes with magnitude 

ML ≥ 1.5. I computed 162 fault-plane solutions and composite focal mechanisms for closely 

located events. I investigated stress field orientation inverting focal mechanism belonging to 

the Lucanian Apennine and the Pollino Range, both areas characterized by more concentrated 

background seismicity. Moreover, I applied the double difference technique (DD) to improve 

the earthquake locations. Considering these results and different datasets available in the 

literature, I carried out a detailed analysis of single sub-areas and of a swarm (November 

2008) recorded by SeSCAL array. The relocated seismicity appears more concentrated within 

the upper crust and it is mostly clustered along the Lucanian Apennine chain. In particular, 

two well-defined clusters were located in the Potentino and in the Abriola-Pietrapertosa sector 

(central Lucanian region). Their hypocentral depths are slightly deeper than those observed 

beneath the chain. I suggest that these two seismic features are representative of the transition 

from the inner portion of the chain with NE-SW extension to the external margin 
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characterized by dextral strike-slip kinematics. In the easternmost part of the study area, 

below the Bradano foredeep and the Apulia foreland, the seismicity is generally deeper and 

more scattered and is associated to the Murge uplift and to the small structures present in the 

area. I also observed a small structure NE-SW oriented in the Abriola-Pietrapertosa area 

(activated with a swarm in November 2008) that could be considered to act as a barrier to the 

propagation of a potential rupture of an active NW-SE striking faults system. Focal 

mechanisms computed in this study are in large part normal and strike-slip solutions and their 

tensional axes (T-axes) have a generalized NE-SW orientation. 

Thanks to denser  coverage of seismic stations and the detailed analysis, this study is a further 

contribution to the comprehension of the seismogenesis and state of stress of the Southern 

Apennines region, giving important contributions to seismotectonic zoning and seismic 

hazard assessment.  
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Introduct ion 

 

Several studies on the seismicity of the Lucanian Apennines and surrounding areas have 

identified regions with different crustal domains, characterized by different spatial 

distribution, magnitude and mechanisms of local seismicity (Cucci et al., 2004; Chiarabba et 

al., 2005; Frepoli et al., 2005). Of particular importance is the result indicating an increase of 

hypocentral depth for the events below Bradanic Foredeep with respect to those located below 

the Apenninic chain. This deepening of the seismogenic layer in the SW-NE direction has 

also been reported in studies of seismic tomography and geothermal gradient, and it has 

significant implications on the brittle/ductile transition, tectonics and more generally, on the 

complex geodynamics of the lithosphere-asthenosphere system in the Southern Apennines  

(Scrocca et al., 2005). 

The SeSCAL project was launched in the context described above and born from a scientific 

collaboration between the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome 

and the Centro di Geomorfologia Integrata per l’Area del Mediterraneo (CGIAM) in Potenza. 

The principal aim of this project was to increase the knowledge about the complex crustal 

structure beneath the area of the southern range of Basilicata, Campania and Puglia, through 

the exploitation of multidisciplinary studies based on the acquisition and interpretation of 

seismic data and potential fields.  

The work carried out in the present research thesis deals with the analysis and interpretation 

of seismological data recorded by a temporary array implemented during this project 

described in Chapter 3.  

The manuscript includes an introductory part where the geodynamic and tectonic settings are 

described in order to give an overview of the complexity of the analyzed area (Chapter 1), 

along with the main methodologies (Chapter 2) and the observational data used in this study 

(Chapter 3). The data processing has been divided into four main steps: the computation of 

the SP VV  ratio and a reference P-wave one dimensional (1D) velocity model close to the 

true Earth model together with station corrections important to obtain accurate locations 

(Chapter 4); I made a seismotectonic analysis using classical approaches (Chapter 5); the 
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application of a recent methodology called double difference technique (DD) to further 

improve the earthquake locations and to carry out a detailed analysis of single groups of 

events using the composite focal mechanisms technique (Chapter 6). Finally, a detailed study 

of a significant swarm recorded in the Abriola-Pietrapertosa area during November 2008 

applying the waveform cross-correlation technique has been described(Chapter 7). 
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Chapter 1  

Geodynamics  and  Se i smotec ton ics  o f  Southern  

I ta ly  

The Southern Apennines belong to the complex geodynamic setting characterizing the Central 

Mediterranean region, which is dominated by the NNW–SSE convergence between the 

European and African plates. This mountain chain was hit by several destructive historical 

earthquakes and is characterized by a background seismicity (scattered events and 

earthquakes with ML ≤ 3) concentrated along the belt. 

 In this chapter I shortly describe the geodynamics, the tectonic evolution, the historical and 

the instrumental seismicity of the Lucanian Apennines and surrounding areas to understand 

the complexity and the importance to improve our knowledge of this zone. This general 

setting is important for the comprehension of difficulties met and results gained by this study.   

1.1  Geodynamic and tectonic evolution 

The axial zone of the Southern Apenninic belt constitutes the backbone of the southern part of 

the Italian peninsula. Since the Early Pleistocene (Fig.1.1), active extension produced a broad 

and complex system of normal faults within the Apenninic chain. The area was previously 

affected by compression (Middle-Late Miocene) and characterized by an eastward migration 

of the Apenninic compressional front (Patacca et al., 1990; Hippolyte et al., 1994; Doglioni et 

al., 1996). The eastward migration of the extension–compression system of the Apenninic belt 

is related with the subduction process of old oceanic lithosphere beneath the Southern 

Apennines and Calabrian Arc and with the Tortonian opening and oceanisation of the 

Tyrrhenian basin (Patacca et al., 1990; Doglioni et al., 1996; Barberi et al., 2004). The 

Apenninic orogen is bordered to the east and northeast by the thick continental Apulian 
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platform which is clearly distinct, from a tectonic point of view, from the remaining of the 

peninsula. It represents an emerged portion of the relatively more rigid structure named 

Adriatic microplate, a promontory of Africa towards Eurasia, which is extending beneath the 

Adriatic Sea (Channell et al., 1979; Anderson and Jackson, 1987).  

Figure 1.1: Geological time scale; millions of years (Ma) (from 

Stoffer, 2006). 
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The Adriatic microplate is bordered by an almost continuous belt of orogenic chains 

(Apennines, Alps, Dinarides, Hellenides) and plays the role of foreland for the more 

deformable bordering regions. In fact, these areas are affected by a diffuse seismic activity 

correlated to a general counter-clockwise motion of the microplate itself (Meletti et al., 2000). 

The east-southeastward migration of the Tyrrhenian-Apennine subduction system 

(Malinverno and Ryan, 1986; Royden et al., 1987; Gueguen et al., 1998; Rosenbaum and 

Lister, 2004), followed by the asthenospheric wedging at the retreating subduction hinge 

beneath the Southern Apennines and the southern Tyrrhenian Sea (Doglioni et al., 1996), 

appears to have slowed and buckled during the Late Pleistocene after the collision with the 

thick continental lithosphere of the Apulia foreland at the front of the belt (Doglioni et al., 

1994). Three different types of extensional environments may be observed in a section E-W 

of the subduction system (see Fig. 1.2): 

• Type 1: the extension generated by horizontal stretching during back-arc opening with 

the basal decollement at stretched lithosphere-asthenosphere boundary.  

• Type 2: the extension coeval with the uplift that may be interpreted as due to the 

bending of the subducted lithosphere and to the upward push generated by the 

asthenospheric wedging at the subduction hinge.  

• Type 3: the Apulia foreland extension generated by bending of the subducting 

lithosphere. It has normal faults terminating in the neutral crustal zone of folding 

where flexural slip may form (Doglioni, 1996). 

Deep structures beneath the Southern Apennines can be generally explained with a thick-

skinned tectonic model (Menardi Noguera and Rea, 2000). These Plio-Pleistocene 

contractional structures, related to a basement-involved thrust tectonics (Apulian Platform 

deformation), are evident from structural profiles. A further evidence of this basement-

involved thrust tectonics is given by the Monte Alpi structure which actually represents 

remnants of a mélange zone originally interposed between the Apulian Platform carbonates 

and the overlying far-travelled detachment sheet (Corrado et al., 2002). The complex 

geodynamic setting of this area is dominated by the NNW–SSE convergence between the 

African and the Eurasian plates, which are currently converging at a rate of 10 mm/year 

(Argus et al., 1989; De Mets et al., 1990). Geodetic observations, together with seismological 

studies, reveal that the Apenninic chain is undergoing a NE-trending extension, with seismic 
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deformation rates higher in the southern portion (Di Luccio et al., 2005; D’Agostino et al., 

2008). 

 

 
Figure 1.2: Representation of subduction system in Southern Italy (W-E section) and of the three different types 

of extensional environments (modified from Doglioni, 1996). 

 

1.2  Historical and instrumental seismicity 

Southern Apennines is one of the main seismically active regions of Italy (Fig. 1.3).The 

historical seismic catalogue shows a completeness for the Italian highly energetic events 

occurred in the last four centuries (CPTI Working Group, 2004). Among the strongest 

earthquakes of the southern Apenninic belt, the 1694 Irpinia (Me = 6.9; Serva, 1985) and the 

1857 Basilicata events (Me = 6.9; Branno et al., 1983; Branno et al., 1985) recorded both an 

epicentral intensity of XI degree on the Mercalli-Cancani-Sieberg (MCS) scale. 
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Figure 1.3: Map of historical and instrumental seismicity in Southern Italy (CPTI Working Group, 2004; 

Seismicity map of Italy, 2000–2007, INGV-CNT, Roma, Castello et al., 2008). Active faults from Galadini et al. 

(2000), Maschio et al. (2005) and Papanikolaou and Roberts (2007). Lucanian Apennine active faults: UF, Ufita 

fault; MAF, Mount Mattinata–Atella fault; VF, Volturara fault; IrF, Irpinia fault; AnIrF, Antithetic Irpinia fault; 

SGF, San Gregorio fault; ALF, Alburni fault; VDF, Vallo di Diano fault; VAF, Val d’Agri fault; MMFS, Monti 

della Maddalena fault system; MALF, Monte Alpi fault; MAF, Maratea fault; MeF, Mercure fault; PF, Pollino 

fault; CaF, Castrovillari fault; CiF, Civita fault (from Frepoli et al., 2011). 

 

 The September 8, 1694 earthquake affected a wide area between Campania and Basilicata, 

producing serious damage in 120 municipalities distributed among the Irpinia and Salerno 

district and the Basilicata (6,000 people died). The seismic sequence was characterized by a 

mainshock, followed immediately after by a second quake and then by a suite of strong 

aftershocks, which lasted until the first days of January 1695. The macroseismic surface 

faulting of this shock is of 38 km length (Serva et al., 1997) and is approximately 

superimposed on the macroseismical area of maximum intensity of the 1980 Irpinia event  

(Fracassi and Valensise, 2007). Moreover, it did not cause slip on the fault responsible of the 

1980 earthquakes but it was located in the proximity of the antithetic fault (not observed on 

the surface) of the 1980 Irpinia event. 
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The November 23, 1980 Irpinia mainshock had a X MCS macroseismic intensity (Ms = 6.9). 

It is the largest earthquake that occur in Italy in the last 90 years, and it provides the first well-

documented example of surface faulting related with certainty to the coseismic displacement 

(Pantosti and Valensise, 1990). Westaway (1993) suggested the following fault ruptures 

sequence (see Fig.1.4): 

1. The initial fault rupture nucleated at or near the SE end of the Carpineta fault and 

propagated to the NW. 

2. Rupture continued apparently without interruption onto the adjoining Marzano fault. 

3. Rupture then paused for ∼0.5 s, before continuing to the NW along the Picentini fault. 

4. ∼14 s after the mainshock, this sequence started a SE-propagating rupture on the San 

Gregorio fault. Each of these ruptures was associated with surface faulting and intense 

aftershock activity. 

5. The existence of another aftershock cluster NW of the Picentini scarp suggest a fifth 

fault rupture at Castelfranci. Faulting at this locality began ∼12 s after the initial 

rupture. 

6. ∼20 s after the mainshock a subevent started on the surface dipping NE at ∼20°, at the 

base of the brittle upper crust beneath the steep antithetic fault (see Fig.1.5). 

7. ∼40 s after the initial rupture an additional rupture started on a fault with different 

orientation. This subevent involved a steep normal fault that dips at ∼70° and reaches 

the surface  at ∼11km to the NE of the Marzano fault (antithetic fault). 
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Figure 1.4: Summary map of the epicentral area of the Irpinia 1980 event. Numbered arrows indicate the 

nucleation points and rupture directions for the four or five subevents that ruptured the steep NE-dipping faults 

(from Westaway, 1993).  

 

 
Figure 1.5: Schematic cross-section across the Marzano fault and the associated antithetic fault at 11 km NE 

obtained by Westaway, 1993 for the 1980 Irpinia earthquakes. 
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The Potentino area (Basilicata) was hit by the two seismic sequences occurred 10–11 years 

(1990–1991) after the devastating 1980 Irpinia event. They were approximately located 40 

km SE of the 1980 earthquake. The May 05, 1990 mainshock (Mw=5.7) (Ekstrom, 1994) 

damaged the town of Potenza and surrounding villages (Io=VII MCS). On May 26, 1991 

another earthquake (Mw=5.2) struck the same area causing additional damage. The depth of 

the 1990–1991 seismicity is concentrated mostly between 15 and 23 km. Both mainshocks of 

these sequences are characterized by a right-lateral strike slip tectonics considering the E-W 

nodal plain of the two fault plain solutions. This tectonics is similar, in hypocentral depth and 

mechanical behaviour, to that of Molise 2002 and it is unusual with respect to those 

characterizing the overall seismicity of Southern Apennines within the chain (Di Luccio et al., 

2005). This depth range corresponds to the upper part of the middle crust underlying the 

Apulian sedimentary cover, within the footwall of the easternmost Apennine thrust system. 

Moreover, these seismic sequences can be interpreted to be produced by a crustal E–W fault 

zone within the Apulian crust (Boncio et al., 2007). 

It is noteworthy to mention the 1561 complex seismic sequence located to the north of the 

Vallo di Diano, which is reappraised by Castelli et al. 2008.  This sequence was characterized 

by two large earthquakes occurred within 20 days (31 July and 19 August) with maximum 

intensities of X MCS (Me= 6.4).  

One of the strongest historical earthquake of the Italian seismic history is the December 16, 

1857 (MW 7.0) earthquake killing over 11,000 people. It struck a large portion of the Southern 

Apennines about 150 km to the SE of Naples. This earthquake caused extensive damage over 

an exceptionally large area with intensity of X and larger (MSC scale). Most of damages were 

suffered in the Upper Val d’Agri. This event was thoroughly investigated by the Irish engineer 

Robert Mallet, who wrote an extensive report that is still regarded as a landmark in 

observational seismology. For the 1857 earthquake there is no evidence of surface faulting  as 

for the 1980 Irpinia earthquake.  



 

Geodynamics and Seismotectonics of Southern Italy 

 

 

23 

 

 
Figure 1.6: Map of intensities available for the  December 16, 1857 earthquake (MCS scale) (Boschi et al., 

2000), plotted over the Melandro–Pergola valley (MPV) (to the NW) and the Upper Val d’Agri (HAV). 

Seismogenic sources are from the DISS database (DISS Working Group, 2009). White dashed line contours are 

intensities X and higher. Black rectangles are the macroseismic sources derived from the analysis of  the 

intensity data distribution (Gasperini et al., 1999). The stars numbered 1 and 2 show the epicenters proposed by 

Mallet and obtained by automatic analysis (Gasperini et al., 1999; Boschi et al., 2000), respectively. 

Sant’Arcangelo basin (SAB); Vallo di Diano (VD). Caggiano  (CA); Grumento Nova (GN); Marsico Nuovo 

(MN); Montemurro (MO); Polla (PO) (from Burrato &Valensise, 2008). 

 

Numerous studies concerning this area suggest that the earthquake was caused by normal 

fault NW-SE oriented with a rupture length of ∼50 km (Burrato and Valensise, 2007). A 

recent study of Burrato and Valensise, (2008) contends that this earthquake involved two 

adjacent and relatively well known faults. This finding may indeed have significant 

implications for the local seismic hazard (Fig. 1.6):  

1. The smaller Melandro-Pergola valley faults (MPV) where there was a shock of 

magnitude 6.0 or greater 2-3 minutes before the mainshock. This area was commonly 

believed as a seismic gap between the 1857 fault and the 1980 Irpinia earthquakes.  

2. The larger Upper Val d’Agri fault (HAV) where was located the stronger shock. 
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If the MPV and HAV faults both ruptured in 1857, the MPV fault should no longer be 

considered a seismic gap, suggesting that a ∼100 km long section of the Apennines 

seismogenic backbone has ruptured entirely over the past 150 years. 

Moving further to the south along the Apenninic chain, we find a complex region 

characterized by two important borders: 

1. One on the surface: the boundary between the Apenninic Chain and the Calabrian Arc. 

2. And one in depth: the border between the Adriatic and the African plates. 

This area was hit by the September 9, 1998 Mercure earthquake (MW=5.6) and the associated 

aftershocks (lasted about 14 months) that caused some damage in several towns and villages 

located within a mesoseismal area attaining a maximum intensity of VII MCS (Guerra et al., 

2005). A singularity of this event was that no seismic activity was observed in the 

surrounding area in the two previous months before the mainshock. The mainshock occurred 

at the NW edge of the seismic sequence at a depth of 10.5 ± 1.5 km. Its peculiarity consisted 

in a sudden change of the seismic activity from a series of normal NW-SE faults and to strike 

slip faults with NE-SW and E-W trend. This complex behaviour and the different orientations 

suggest that the area acts as a hinge between the NW-SE trending Southern Apennines and 

the locally N-S trending Calabrian Arc (Guerra et al., 2005). Brozzetti et al. (2009) identified 

the structure responsible of the 1998 earthquake (CSPT fault in Figure 1.7). Based on field 

data, they have defined for this fault a maximum extent of 18 km, and using the hypocentral 

information of the Mercure sequence, they have reconstructed the depth geometry. The CSPT 

fault is characterized  by an along-strike length about 19 km and a down-dip width of about 

12 km respectively. It fits well with the mainshock and the aftershocks hypocentral locations 

and with the distribution of the damages (see Fig. 1.7). The CSPT plane dips SSW-ward with 

an average dip of 60°. Considering this reconstruction, they have evaluated that the 1998 

mainshock would have only activated a small portion of such a plane (∼55 km2) presupposing 

that the entire plane might have undergone with a seismogenic rupture in the course of a 

single event. In such a case a magnitude 6.3 would be attended. In conclusion, this setting 

suggests that the Mercure area must be considered comparable, in terms of seismic hazard, to 

the neighbouring Pollino-Castrovillari areas where there is knowledge of strong 

paleoseismological events associated with the Castrovillari fault (Cinti at al., 1997).  
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Figure 1.7: Map of  the faults refers to the CSPT fault, the Madonna del Soccorso F. (MSF), the Gallizzi F. 

(GF), and The Castelluccio F. (CaF). Moreover, the 1998 Mercure sequence epicentral distribution relocated by 

Brozzetti et al., 2009: 1= epicentres; 2= epicenter of the Mercure main event (Mw 5.6) ; 3= foreshocks.  

4=Mercure 1998 instrumental epicenter in the other literature (a=CSI epicenter in Castello et al., 2006; b=Euro-

Med bulletin epicenter; c= epicenter relocated by Guerra et al., 2005); 5=macroseismic epicenters of major 

historical events occurred in the Mercure area: the 1998 and 1894 epicenters are from the CPTI04 catalogue. 

Figure modified from Brozzetti et al., 2009.  

 

The northern part of Apulia (Gargano, Tavoliere and Ofanto Graben) is a remarkably 

seismogenic area (Piccardi, 2005; Tondi et al., 2005; Del Gaudio et al., 2005, 2007). Highly 

energetic events are historically documented as the 1627 earthquakes (Me = 6.8; X degree 

MCS) that hit the northern Foggia province (Molin and Margottini, 1985). In the Ofanto 

Graben, the quite well-documented 1560 earthquake (Me=5.7) which hit the Barletta and 

Bisceglie towns (macroseismic intensity differently estimated between VII-VIII and IX MCS, 

according to different catalogues), has been often considered an over-estimated event because 

of site amplification (Del Gaudio et al., 2005). On March 20, 1731, an earthquake (Me=5.2), 
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with macroseismic intensity estimated between IX and X MCS, hit the southern part of the 

Foggia province, followed by several strong aftershocks (Molin, 1985). Another important 

seismic sequence, occurred on August 14, 1851. It had its focus in the area of the extinct 

Vulture volcanic apparatus, located directly to the East of the front of the Apenninic chain 

front. The mainshock (Me = 6.3; X MCS) was followed by numerous aftershocks, some of 

which appear to have felt more strongly in Apulia at Canosa (Magri and Molin, 1979; Del 

Gaudio et al., 2005). The Bradano foredeep and Apulia foreland areas, both to the South of 

the Ofanto river, do not show considerable historical seismicity, with the exception of the 

1743 Salento earthquakes (Me=7.1) whose epicentral area was probably located offshore 

within the Otranto Channel (Margottini, 1981; Mastronuzzi et al., 2007). This event induced 

high amplification mainly in the villages of Nardò and Francavilla Fontana (IX-X MCS) 

founded on thin Pleistocene basins filled with soft sediments (Galli and Naso, 2008). It is also 

interesting to note the seismic activity characterized by sequences of moderate magnitude 

(strongest event with ML=5.1) occurred in the years 1974, 1977 and 1991 in the offshore 

foreland region southeast of the Salento peninsula (D’Ingeo et al., 1980; Favali et al., 1990; 

Argnani et al., 2001). 
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Chapter 2  

Descr ip t ion  o f  methodolog ies  used  

Our knowledge of the velocity structure of the Earth and of the seismic hypocenters is the 

result of interpreting seismograms. One of the most important tasks in observational 

seismology is locating seismic sources. This involves determining both the hypocentral 

coordinates and the source origin time. Generally, determining the source location requires 

identification of seismic phases and measuring their arrival times, as well as knowing the 

velocity structure between the hypocenter and the seismic station. Given the location of a 

seismic source, one can be compute the travel-time for any particular phase to a seismic 

station anywhere in an arbitrarily complex velocity model (Lay and Wallace, 1995). 

This chapter describes synthetically the methodologies used in our analysis to compute 

PS VV  (necessary to calculate the SV  velocity model by an initial computed  PV  model) and 

to locate earthquakes.  

2.1  Wadati modified method 

This method is used to compute an average PS VV ratio for the studied area. The modified 

Wadati method (Chatelain, 1978) is shortly described below. The PS VV ratio is useful for 

improving the accuracy of hypocentral depths in the location algorithm. 

If we consider an event k that is recorded by two stations (i, j) at hypocentral distances xi and 

xj, the time difference between phases Pi−Pj and Si− Sj can be expressed as: 

 

( )
P

ji

ji
V

xx
PP

−
=−                                                                     (2.1) 

and 
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( )
S

ji

ji
V

xx
SS

−
=−                              (2.2) 

where VP and VS are the P- and S-wave velocity values, respectively. 

Dividing (2.2) by (2.1) we obtain: 

S

P

ji

ji

P

S

V

V

PP

SS

DT

DT
=

−

−
=                          (2.3) 

Fitting DTS versus DTP for all available pairs of stations gives the value of the slope VP/VS. 

2.2  Earthquake location 

Location of earthquakes is one of the most important tasks in observational seismology. 

Generally, a 1D velocity model, of plain and parallel layers with a constant velocity in each 

layer, is used to simplify the calculations for regional distance ( km1400≤∆ ). 

If we know the location of a seismic source, we can compute the travel-time for any particular 

phase at a seismic station anywhere considering an arbitrary complex velocity model. This is 

known as a forward problem: arrival times are computed based on parameterized model. 

Moreover, an inverse problem consists in finding the earthquake location, where we know the 

observation data (arrival times) but the problem must be solved for a source location and 

origin time that are consistent with the data (Lay and Wallace, 1995).  

2.2.1 Single event location 

When we find a forward problem that closely approximates the observations, we declare that 

the model sufficiently describes the earthquake location for given model assumptions. We 

regard an earthquake with hypocentral location ),,( zyx=x and origin time t unknown. If we 

have i stations located in the point ),,( iii zyx , at which we have actually measured arrival time

'
id , we can write: 

),('
ii Ttd xx+=                           (2.4) 

where ),( ixxT  is the travel-time equation. 

If we know the velocity structure we can solve the direct problem: 

( )=d A m or )( ji mAd =                     (2.5) 
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 j=1,…,4 indicate the hypocentral parameters and ),,,( tzyx=m is the model vector with the 

hypocentral coordinates and the origin time t.  

Generally, to solve an inverse problem (earthquake location), we guess a solution for the 

model ),,,( 0000
0

tzyxm =  for which the predicted times, )( 00 mAd = , can be calculated and 

investigate the behaviour of 0
d  in the neighbourhood of 0

m . We approximate changes in 0
m  

with a Taylor series approximation: 

jjj mmm δ+= 0                                  (2.6) 

where 0
jmδ is an incremental variation of the jth model parameter that moves the model 

toward a better fit to the data. The corresponding change in the predicted data vector can be 

found by expanding of (2.5) in a Taylor series about 00
mm δ+ : 

00

0

j

m
j j

i
ii m

m

d
dd δ∑

∂

∂
+≈                     (2.7) 

then 

000

0

j

m
j j

i
iii m

m

d
ddd δ∑

∂

∂
=−=∆           (2.8) 

Equation (2.8) shows that the difference in the observed and predicted travel times (right-

hand) is now linearly related to changes in the model parameters. We look for changes in the 

hypocentral coordinates to make the model better predict the data. Using only the first term of 

a truncated Taylor series provides the linearization, but this also precludes the perturbations 

from immediately converging to the true m. We can write la (2.8) in vector form: 

∆ = ∆d G m                                          (2.9) 

where 
j

i
ij

m

d
G

∂

∂
= . 

If there are four observed arrival times, we have four equations and can solve the system by 

Gaussian elimination, giving either no solution or an exact result for i

jmδ .  

Any errors in the data will lead to an incorrect solution, or inconsistent equations.  

The matrix G will result square, then we can calculate the inverse matrix 1−G , multiplying 

both sides of the (2.9) for this matrix and by definition 1− =G G I  we obtain:            

1 1− −∆ = ∆G d G G m  from which 1−∆ = ∆m G d                                     (2.10) 
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Once ),,,( tzyx δδδδ=∆m are calculated, we can “correct” the source parameter guesses: 

,001 xxx δ+= , ,001 yyy δ+= , ,001 zzz δ+=  and ,001 ttt δ+=                 (2.11) 

This new values are now used to repeat the entire process. This interactive process is 

continued until d∆  becomes acceptably small (Geiger’s method). Eq. (2.10) assumes that we 

can perfectly predict the data. In case of travel-times, this means that we must know the 

velocity structure between hypocenter and station extremely well. Unfortunately, the rate at 

which it converges depends strongly on the accuracy of the starting model. Further, this 

process does not guarantee convergence.  

In general, most hypocenter location problems are overdetermined (there are more 

observations than the four source parameters) and the solution is the best model fit to an 

“average” of the data. Together there is no unique solution of the system that identically 

satisfies all the equations. This is related to the inevitable experimental errors in the arrival 

times readings and even with the imperfections that regulate the laws of travel times. The 

velocity model simplifies a complex reality, there is no exact model that perfectly describes 

the data. The best fit is usually defined as the model with the smallest residual, or difference 

between observed and predicted data.  

Considering the Eq. (2.9), we can write an equation that describes the misfit of the model: 

[ ]= −E d Gm                             (2.12) 

The inverse problem is designed to find a model that minimizes E using the minimum square 

error method: 

2

1

2 ∑ ∑
=











−=

n

i

m

j

jiji mGdE               (2.13) 

and force 2
E  to be a minimum computing the derivative of the Eq. (2.13) with respect to the 

model parameters: 

022
1 1

2

=




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−−=
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E
   (2.14) 

if we rewrite this equation in matrix form, we obtain: 

 

T T∆ = ∆G d G G m                              (2.15) 
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We observe that TG G  is a square matrix that we can invert even if we have an 

overdetermined problem. 

The solution of the inverse problem will be: 

1( T T g)− −∆ = ∆ = ∆m G G G d G d         (2.16) 

where 1g T T( )− −=G G G G is the generalized inverse matrix. 

Moreover, we solve TG G in terms of eigenvector matrices V: 

         T T=G G VΛV                            (2.17) 

The matrix V contains the eigenvectors of TG G  andΛ is a diagonal matrix with eigenvalues 

along the principal diagonal and all other values equal to zero. 

If we suppose that the eigenvectors are orthonormal that is: 

T T= =VV V V I  and 1T −=V V          (2.18) 

we obtain  

1 1 1( ) ( )T T T− − −= =G G VΛV VΛ V         (2.19) 

TGG can be written: 

T T=GG UΛU                                       (2.20) 

where U is the eigenvector matrix of TGG .  

By (2.17) and (2.20) the eigenvector matrix with eigenvalues different from zero 
P

V and pU  

is obtained using the Lanczos decomposition: 

T
p

T

p
= =G UΛV U ΛV                           (2.21) 

1 1 T

p p p p

− −=G V Λ U                                    (2.22) 

1
p p

−=m G d  (singular value decomposition SVD) (2.23) 

the (2.22) is important because allows to solve the inverse problem also when G is a singular 

matrix. We can write the model derived from (2.22 and 2.23) 

1 1 T T T

p p p p p p p p p p

− −= = =m G Gm V Λ U U Λ V m V V m     (2.24) 

The resolution matrix T

p p
=R V V indicates how much the true model is smeared into the 

various parameters of inversion model. Calculation of this matrix is important for assessing an 

inversion result.  

We make another definition:  the covariance matrix: 
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2 T

p p p
c −= V Λ V                                                           (2.25) 

where the element of 2−

pΛ are ( )22
2

2
1 1...,,1,1 pλλλ . We observe that small singular values 

cause a greater variance in the solution. Thus small eigenvalues lower the stability of the 

inverse and the resolution decreases. 

Finally, the arrival time data used to locate earthquakes have errors that produce uncertainties 

in the resulting locations. It is usually assumed that the errors associated with the data at the 

ith station, id  are random values with a Gaussian distribution with mean id  and standard 

deviation iσ .  For a large number of measurements from this distribution, the mean is the 

average: 

∑
=

∞→
=

K

K

k

i
K

i d
K

d
1

)(1
lim                                                 (2.26) 

and the “spread” of the measurements is given by the variance: 

( )( )







−−= ∑

=
∞→

K
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j
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k
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d dddd
K 1

)()(2 1
limσ                 (2.27) 

therefore, a given data point id has a 95% probability of falling within iσ2± of the true value.  

The covariance of the model parameters in terms of those for the data are: 

( )( )∑
=

∞→
−−=

K

K

i

k

ij

k

j
K

m mmmm
K 1

)()(2 1
limσ                  (2.28) 

We often assume that the data errors are uncorrelated and equal, so that the data variance-

matrix is a constant times identity matrix (Stein and Wysession, 2003). By means of equations 

(2.23) and (2.27) we can write: 

( )2 1 2 1 T

m dσ − −= G σ G                                                (2.29) 

 

2.2.2 Joint-Hypocenter-Determination (JHD) 

The hypocenter determination requires the use of an Earth model that approximates the 

seismic structure of the study area. So, errors are introduced into the earthquake location 

process. In general we divide the errors into three groups: 

1) Deviations from the velocity structure near the source; 
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2) Deviations near the station; 

3) Deviations along the deep travel path. 

For a single event-station pair it is not possible to isolate the effects of these errors. However, 

if a group of earthquakes with approximately the same location (cluster) occur, we can 

determine something about the errors in the used model. Exactly, we can compute a “station 

correction” that accounts for the inaccuracies of the model structure along the travel path and 

beneath the station. In this case we can recast the problem determining n station corrections 

and m hypocenter locations. We can rewrite equation (2.7) with: 

,ijjjjij ds
s

t
dz

z

t
dy

y

t
dx

x

t
dTr

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
+=

          (2.30) 

where ijr is the residual or error, at the ith station for the jth earthquake. Moreover, 
ijijij ttr −= ˆ

, where 
ijt̂ is the observed arrival time and ijt  is the computed travel time and station 

correction. jdT is the perturbation of the origin time for the jth event. In matrix form: 

j j j jA d S d= +r x s                                                          (2.31) 

where jr  is the data change vector, jS  are station corrections that contain the travel–times 

bias as well as the station effect, and xd  and sd  are separate model change vectors. The 

solution of this system of equations is known as joint hypocentral determination (JHD) and 

was first proposed by Douglas (1967). The relative locations obtained by JHD are better than 

those computed by inversion of more complete and complex velocity models (Lay and 

Wallace, 1995).  

 

2.2.3 Double-Difference method 

The double-difference (DD) algorithm minimizes errors due to unmodelled velocity structure 

without the use of station corrections (Waldhauser and Ellsworth, 2000). The effects of errors 

in structure can also be effectively minimized by using relative earthquake location methods. 

If the hypocentral separation between two earthquakes is small compared to the event-station 

distance and to the scale length of the velocity heterogeneity, then the ray paths between the 

source region and a common station are similar along almost the entire ray path. In this case, 

the difference in travel times for two events observed at one station can be attributed to the 
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spatial offset between the events with high accuracy. This is because the absolute errors are of 

common origin except in the small region where the ray paths differ at the sources. This 

technique carries out a simultaneous relocation of events with large distance from stations. It 

is possible to further improve the location precision using waveform cross-correlation 

methods. Two earthquakes produce similar waveforms at a common station if their source 

mechanisms are virtually identical and their sources are co-located so that the signal scattering 

due to velocity heterogeneities along the ray paths is small.  

If we consider the arrival time T, for an i earthquake recorded by k seismic station, it is 

defined by: 

∫+=
k

i

ii

k udsT τ                           (2.32) 

where τ is the origin time of event i, u(s) is the slowness field ( )(1)( svsu = , v(s) is wave 

velocity) and ds is an element of path length. Eq. (2.32) is not a linear equation. A truncated 

Taylor series expansion is generally used to linearize this equation. The resulting problem 

then is one in which the travel-time residuals, r, for an event i are linearly related to 

perturbations, m∆ , to the four current hypocentral parameters for each observation k: 

i

k

i
i

k r
t

=∆
∂

∂
m

m
                            (2.33) 

where i

k

calobsi

k ttr )( −= , obs
t and cal

t are the observed and theoretical travel time, respectively, 

and ),,,( iiii

i
zyx τ∆∆∆∆=∆m  (see Fig. 2.1). 



 

Description of methodologies used 

 

 

35 

 

 
Figure 2.1: DD earthquake relocation algorithm illustration. Black and white circles show trial hypocenters that 

are linked to neighboring events by cross-correlation (solid line) or catalogue (dashed line) data. The black 

triangles are the k and l stations that record the i and j events (from Waldhauser and Ellsworth, 2000). 

 

If we consider travel-time differences between two events i and j, ( )obsj

k

i

k tt − , an equation for 

the relative hypocentral parameters between this events, considering Eq. (2.33), is: 

ijij
ij

k d
t

rm
m

=∆
∂

∂
                                    (2.34) 

where ( )ijijijijij ddzdydx τ∆∆∆∆=∆ ,,,m is the change in the relative hypocentral parameters 

between the two events, and the partial derivatives of t with respect to m are the components 

of the slowness vector of the ray connecting the source and receiver measured at the source. 

In Eq. (2.34) the source is the centroid of the two hypocenters, assuming a constant slowness 

vector for the two events. ij

kdr is the residual between observed and calculated differential 

travel time between the two events defined by: 

( ) ( )calj

k

i

k

obsj

k

i

k

ij

k ttttdr −−−=                (2.35) 

Applying the Eq. (2.33) to each event and subtracting the two equations we obtain: 
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k

j
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k dr
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                  (2.36) 
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or written out in full: 
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,,, zyx ∆∆∆ and τ∆ are the changes required in the hypocentral parameters to make the model 

better fit the data. 

We combine equation (2.37) for all hypocentral pairs for a station, and for all stations to form 

a system of linear equations of the form: 

=WGm Wd                          (2.38) 

where G defines a matrix of size NM 4× (M, number of double-difference observations; N, 

number of events) containing the partial derivatives, d is the data vector containing the 

double-differences (2.34), m is a vector of length 4N, [ ]TTzyx ∆∆∆∆ ,,. , containing the 

changes in hypocentral parameters we wish to determine, and W is a diagonal matrix to 

weight each equation. The DD residuals for pairs of earthquakes at each station are minimized 

by weighted lest squares using the SVD method (see section 2.2.1 Eq.2.23) or the conjugate 

gradients method (LSQR, Paige and Saunders, 1982). The SVD method is useful for 

examining the behaviour of small systems (about 100 events depending on available 

computing capacity). The LSQR method takes advantage of the sparseness of the system of 

DD-equations and is able solve a large system efficiently. LSQR solves the damped least-

squares problem: 

2

0
λ

   
− =   
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G d
W m W

I 0
      (2.39) 
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Chapter 3  

Data  co l l ec t ion  

The area of the Lucanian Apennines is one of the main seismically active regions of Southern 

Italy. The recent improvement of the station coverage and the increased number of three-

component broad band sensors of the Italian seismic network, together with two temporary 

seismic arrays (SAPTEX and SeSCAL) deployed in Southern Apennines in the last decade, 

allow us to achieve more accurate seismotectonic information about this area. To do this, I 

created a high quality database.  

In a first time, I picked the arrival times of events recorded by the Italian permanent network 

(RSNC) and those recorded by the SAPTEX temporary array. The ENI-AGIP network data 

were used only for some events located in the Upper Val d’Agri and neighbouring areas. I 

used this data to perform the first analysis described in Chapter 4 and 5. After, with the end of 

SeSCAL experiment I incremented the database handpicking new records. Final dataset 

consists of 15,666 P- and 9228 S-arrival times associated to 1047 earthquakes with magnitude 

ML ≥ 1.5. I assigned a weighting factor based on the uncertainty estimates to each arrival 

time. I used weight 1, 2, 3, and 4, respectively, for a picking accuracy of 0.05, 0.10, 0.25 and 

0.50 s. Table 3.1 shows the comparison between my final and the initial dataset in order to 

quantify the improvement achieved in the last two years of the observation period (2007–

2008) thanks to the SeSCAL passive experiment. I  located also events recorded only by the 

SeSCAL temporary experiment. As shown in Table 3.1, the number of P- and S-waves arrival 

times is almost doubled. 

In this chapter I shortly describe the RSNC, the SAPTEX and our SeSCAL temporary array. 
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Dataset 

Recording 

arrays 

 P-

picks 

 S-

picks  

 Relocated 

events 

Quality 

A 

Quality 

B  

Quality 

C 

Quality 

D 

 Focal 

mechanisms 

A 

RSNC, 

SAPTEX 7570 4956 359 226 69 31 33 58 

B 

RSNC, 

SAPTEX, 

SeSCAL 15666 9228 566 319 155 92 111 102 

 

Table 3.1: Local earthquake datasets examined by (A) Maggi et al. (2009) and (B) Frepoli et al. (2011). 

 

3.1  The Italian national seismic network (RSNC) 

The RSNC monitors the entire Italian territory through a network of sensors that are 

connected in real time to the data acquisition system in Rome. It provides the data regarding 

the location and magnitude of earthquakes to the agencies of civil protection. In addition to 

monitoring of italian seismicity, the INGV observes the seismicity of the Mediterranean 

countries through the MedNet network. Moreover, thanks to the connections and data 

exchange with networks and analysis centers around the world, the staff on duty supervise the 

seismic activity of the entire earth globe. 

Until 1984, data were recorded only on thermal paper in analogical mode. But since 1984 

they are recorded both in analogical and digital form. In the latter years the RSNC has 

achieved a significant increase (305 seismic stations). Given the shape of the Italian peninsula 

and the distribution of seismicity, INGV has recently worked for the extension of the seismic 

network offshore with a group of OBS / H (Ocean Bottom Seismometer with Hydrophone) 

that have been installed on the seabed (D'Anna et al., 2009). Moreover, during the observation 

period, the permanent RSNC network improved significantly in Southern Italy, increasing 

both the station coverage and the number of three component extended band (Lennartz 5 s) or 

broad band (Trillum 40 s) sensors, which replaced the Kinemetrics S-13 short period sensors.  
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3.2  SAPTEX temporary array 

The SAPTEX array was planned with the main goal to better resolve the crustal and upper 

mantle structure beneath Southern Italy. In this region the paucity of permanent seismic 

stations is still remarkable, thus preventing high-resolution tomographic studies, precise 

hypocentral determination, and detailed definition of the lithosphere-asthenosphere structure. 

Focusing on these objectives a passive tomographic experiment was carried out from 2001 to 

2004. Figure 3.1 shows the distribution of the recording sites occupied by the SAPTEX array 

(circles) and the National Centralized Seismic Network (RSNC, squares) in Southern Italy. 

The deployment of the portable digital seismographs started at the end of June 2001. The first 

ten temporary stations (the 2001 array) were placed mostly in the Apulia and Basilicata 

regions, with the aim of reducing the large spacing (< 70 km) among the permanent existing 

stations. During 2002, nine new recording sites were added to increase the station coverage. 

Two stations of the 2002 array, SX15 and SX18, were in the Aeolian volcanic archipelago, on 

the Stromboli and Alicudi Island, respectively. These locations (Table 3.2), although quite 

noisy, were chosen to better constrain the hypocentral determination of the intermediate and 

deep seismicity characterizing the Tyrrhenian slab (Frepoli et al., 1996). The geometry of the 

passive array has been notably improved by the 2003 and 2004 field programs that included 

eleven subsequent recording sites mainly located in Calabria, Aeolian Islands, and in the 

southern part of Apulia (Fig. 3.1). For each station was installed a 24 bit RefTek 72A07 

digitizer, a three-components Lennartz 3D-5 s sensor (LE-3D/5s) (Cimini et al., 2006). To 

avoid losing important seismic data, the stations were set to operate in continuous mode 

recording. In particular, the SAPTEX data were acquired at 50 sps. 
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       Figure 3.1: The figure reports the station distribution for the SAPTEX temporary array. 

 

Table 3.2: Description of the SAPTEX sites by Cimini et al. (2006). 
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3.3  SeSCAL temporary array 

The SeSCAL project was planned specifically for my study of background seismicity 

(scattered events and earthquakes with ML ≤ 3) and crustal structure of the Lucanian 

Apennines and surrounding areas. The ten temporary stations (Fig. 3.2) have operated in the 

period between December 2007 and December 2008. They were placed mostly in the Apulia 

and Basilicata regions, where the RSNC was not very dense (Table 3.3). The RT07 station 

located in Filiano Atella was later moved to Lagopesole and renamed RT12. Alike the RT05 

station located in Marsico Vetere was moved to nearby area and renamed RT11. The ten 

portable seismographs, installed in this project, were all equipped with high-dynamic 

digitizers (REFTEK RT130) and three-component extended band sensors (Lennartz 3D/5s). 

In particular, to avoid losing important seismic data, the stations were set to operate in 

continuous mode recording with a sampling frequency of 100 Hz to better record low-

magnitude, high-frequency local earthquakes. Figure 3.3 shows a seismogram recorded by the 

SeSCAL stations.  

Figure 3.2: SeSCAL temporary array distribution (magenta triangles), SAPTEX temporary stations 

(green circles) and Italian National Network (white squares). 
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Station code Site Latitude (N) Longitude (E) Elevetion (m) 

RT01 San Severino Lucano 39.9415 16.1812 1090 

RT02 Uggiano Motefusco 40.3868 17.5975 139 

RT03 Picerno 40.6292 15.6685 771 

RT04 Gallicchio 40.3024 16.1365 801 

RT05 Marsico Vetere 40.36 15.8267 694 

RT06 San Giovanni a Piro 40.0412 15.4575 545 

RT07 Filiano Atella 40.8352 15.68 482 

RT08 Massafra 40.649 17.1108 423 

RT09 Pietragalla 40.736 15.9815 826 

RT10 Irsina 40.7498 16.2348 608 

RT11  Marsico Vetere 40.379 15.807 722 

RT12  Lagopesole 40.8062 15.7317 481 

 

Table 3.3: Description of the SeSCAL sites.   

 

 
Figure 3.3: Examples of seismograms recorded by the temporary array. 
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Figure 3.3: (continued). 
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Chapter 4  

1D ve loc i ty  mode l  for  Southern  Apennines  

A detailed seismicity pattern is very important to obtain a real image of earthquakes 

distribution essential to reveal or confirm seismogenic structures in the study area. However, 

this aim is hard because it is related to network geometry, picking accuracy, number of phases 

and velocity model for P-and S-waves. Moreover, a 1D-velocity model for P-wave and a 

SP VV ratio were used as input to compute 1D velocity model for S-wave to locate 

earthquakes. This chapter describes initial analysis important to obtain accurate locations. A 

SP VV ratio and a reference P-wave one dimensional (1D) velocity model close to the true 

earth model together with station corrections (Kissling, 1988) were computed. The latter 

mitigates the effects of the deviations from the simple, laterally homogeneous model and of 

the structure close to the receiver. These results were the first step necessary to improve the 

hypocentral determinations of the background (scattered events and earthquakes with ML ≤ 3) 

and higher seismicity for the Lucanian Apennines and surrounding area. In this first step I 

used the initial database. It was created by re-picked arrival times of earthquakes recorded by 

the RSNC seismic network, by the temporary SAPTEX network (between June 2001 and 

December 2006) and the ENI-AGIP network only for few events located in the Upper Val-

d’Agri and surrounding areas (see Chapter 3). This database was increased in the later time 

with the SeSCAL experiment data and used for other analysis described in the Chapter 5, 6 

and 7. 

4.1 VP/VS ratio 

 I used a modified Wadati method (Chatelain, 1978) to compute an average SP VV  ratio 

shortly described in the Chapter 2. 
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Fitting SDT  versus PDT  for all available pairs of stations gives the value of the slope
S

P

V
V . 

Weights are defined for pairs of jiP , and jiS , as the highest weight of the four P and S weights.  

I assigned a weight (W) to each P or S arrival on the basis of picking accuracy (see Chapter 

3). Plotting only weights of 0, 1 or 2 (Pontoise and Monfret, 2004), I obtained a 
S

P

V
V ratio of 

1.83 with 95% prediction bounds (1.828, 1.829), root mean square error (rms) of 0.025 and 

linear correlation coefficient (R) of 0.98 (Fig. 4.1). 

 

Figure 4.1: 
S

P

V
V

 ratio for the Lucanian Apennines considering the weights (W). Linear fit of  sDT  versus 

PDT  using the Linear Least Squares Method. The root mean squared error (rms) is 0.025, and the linear 

correlation coefficient (R) is 0.98. 
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4.2     1D velocity model   

I used the VELEST algorithm (Kissling et al., 1995) to perform an analysis of the data for the 

best P-wave one-dimensional (1D) velocity model of the study area and station corrections 

(for more details see Appendix A). Previous studies do not show a 1D model calculated in the 

restricted area of the Lucanian Apennines. Through VELEST I searched a 1D velocity model 

that minimizes the least square solution to the coupled hypocentral–velocity model parameter 

solution. As this procedure does not invert for changes in layer thickness, I started from 

several initial models with varying thickness. In this way, I introduced some layers with 

thickness of 3 or 4 km, up to 30 km depth, and of 5 km for greater depths. To account for the 

station elevations, I included an approximate additional layer with thickness of 2 km over the 

sea level and PV =5 km/s. 

I used three different starting models: the first two were taken directly from the seismological 

literature as Chiarabba and Frepoli (1997) and Chiarabba et al. (2005), respectively. The latter 

is obtained using data of some Lucanian Apennine seismic studies (Merlini and Cippitelli, 

2001; Cassinis et al., 2003; Barberi et al., 2004; Tiberti et al., 2005). In a first step the 514 

earthquakes were located using the HYPOELLIPSE code (Lahr, 1989, Appendix B). I used 

mainly the direct P-wave arrivals, recorded by stations with a maximum epicentral distance 

around 300 km. I selected appropriate control parameters as described in Appendix A. 

The first starting model was computed by Chiarabba and Frepoli (1997) for Southern Italy, 

and it is made of seven layers with a linear increase of velocity with depth. For this model, I 

increased the number of layers (Model1). I performed two tests: the first with the possibility 

to find low velocity layers and the second without it. However, I didn’t observe a low velocity 

layer. Adjacent layers not resolved by the data are merged into a single layer during VELEST 

iterations. In this way, I used 308 selected events of my  dataset. I chose all well located 

events with root main square error rms < 1 s, minimal number of 6 P-phases. Initially, I put 

the maximum iteration number ITTMAX=30 to plot the rms function (Fig. 4.2). I observed 

that the rms value is stabilized at iteration number 14 and I put this value as ITTMAX to 

computed 1D- velocity model.  
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Figure 4.3: a) Starting P-wave velocity model for the Italian region computed by Chiarabba and Frepoli (1997). 

We increased the number of layers: thickness of 3 or 4 km for each layer, up to 30 km depth, and of 5 km below 

30 km depth. I named this model Model1. Vel_9 is the final velocity model obtained with VELEST. b) 

Hypocentral distribution versus depth for the model Vel_9 (modified from Maggi et al., 2009). 
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Figure 4.5: (continued). 

 

The third starting model, called Test, is obtained from some seismic studies in the Lucanian 

Apennines (Tiberti et al., 2005; Barberi et al., 2004; Cassinis et al., 2003; Merlini and 

Cippitelli, 2001). It is made of six layers with an increase of velocity with depth. The 

correspondent increased layer model is called Teststra. I didn’t observe low velocity layers 

and the rms is stabilized at ITTMAX=15 (see Fig. 4.6). With VELEST iterations I merged 

adjacent layers not resolved by the data and computed the final model Test_8 (Fig. 4.7a) using 

the 307 selected events. The Moho depth is at 35 km and the final average rms is 0.34 s 

whereas initial value is 0.66 s. Fig. 4.7b shows a large amount of earthquake hypocenters 

within the 11–23 km depth range. 

Since the studied area is characterized by few deep events, I cannot well constrain the velocity 

model beneath the Moho. As shown in Fig. 4.8, the velocity of the three final models is 

similar especially where there is a larger amount of earthquakes and of number of rays that 

better constrains the model (see Table 4.1). Topmost layers are mostly subvertically and 

bottom layers are mostly subhorizontally penetrated. Therefore, the resolution in these layers 

is generally lower than in the central layers that contain the hypocenters (Kissling, 1995). 
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Figure 4.7: (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, models Vel_8 and Test_8 do not show evident velocity changes within the 

shallowest layer. The Moho depth (40 km) obtained in the model Vel_9 is larger than the 

value estimated by previous studies. The wide-angle reflection–refraction seismic exploration 

method (DSS) (Tiberti et al., 2005; Cassinis et al., 2003; Merlini and Cippitelli, 2001; 

 
Figure 4.8: P-wave velocity final models obtained by VELEST. Vel_8 is the model derived from 

Model2, Vel_9 from Model1 and Test_8 from Teststra (from Maggi et al., 2009). 
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Morelli, 1997) and the global model Crust2.0 (Bassin et al., 2000) finds a Moho generally 

around 30–35 km depth. 

 

Layers (km) Vel_9 NHIT Layers (km) Vel_8 NHIT Layers (km) Test_8 NHIT 

-2...0 0 -2…0 0 -2…0 0 

0…3 64 0…3 71 0…2 22 

3…14 123 3…13 109 2…11 95 

14…26 85 13…34 120 11…23 139 

26…40 27 34…50 12 23…35 37 

40…45 1 50… 3 35…45 6 

45…50 5   45… 8 

50… 3     
 

 

Table 4.1: Number of rays passed thru a layer (NHIT) for the three final models. 

 

Moreover, the crust beneath the Apenninic chain is characterized by a doubling of the Moho 

depth: the Tyrrhenian Moho depth increases from 15 to 25 km moving from the Tyrrhenian 

Sea to the ENE, while the Adriatic Moho deepens from 24 km under the Gargano promontory 

to 50 km under the Eastern margin of Tyrrhenian Sea (Ventura et al., 2007). The two models 

named Vel_8 and Test_8 show a Moho depth more consistent with that obtained from other 

studies (34 and 35 km of depth, respectively). The final 1D velocity model computed with 

VELEST code is strongly depends on the initial model and initial hypocenter locations 

(Kissling, 1995, see Appendix A). For this reason, in the further steps of  this work, I used 

these models for earthquakes relocation.  

Using the database with the seismicity recorded in the period between 2001 and 2006 I 

relocated all the 514 events of my  dataset with the HYPOELLIPSE code using the two models 

Vel_8 and Test_8. I took into account earthquakes with azimuthal gap < 180° and root mean 

square of the travel-time residuals rms < 1.0 s. In this way I relocated 337 events using model 

Vel_8, with an average rms=0.29 s and 359 earthquakes using model Test_8, with an average 

rms=0.30 s. Using the model Vel_8 I obtained 61.1% of events with quality A and 20.2% with 

quality B computed by HYPOELLIPSE code (see Table 4.2).  
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Table 4.2: Quality based on the value of the horizontal error SEH (68% confidence limit), and vertical error SEZ 

(68% confidence limit) (modified from Maggi et al., 2009). 

 

Whereas considering the second model (Test_8) I had 63.0% of earthquakes with quality A 

and 19.2% with quality B.  Model Test_8 is also consistent with the results of DSS studies 

(Cassinis et al., 2003) and with the recent European Crustal model (EuCRUST-07) (Tesauro 

et al., 2008), which indicate lower crust VP velocity around 6.5 km/s and Moho depth of ca 35 

km beneath the Apennines. Following these results, I choose the model Test_8 (Table 4.3) 

with station corrections shown in Figure 4.9. 

Top of layer 

(km) 

Velocity of 

model Test8 

(km/s) 

0 4.27 

-2 5.52 

-11 6.1 

-23 6.5 

-35 7.31 

-45 7.9 
 

 

Table 4.3: Velocity values of the best model Test_8 for Lucanian Apennines computed with 

VELEST code. 

 

Quality 
Larger 

of SEH 

and 

SEZ 

 Model Test_8    Model Vel_8 

  

Number 

of 

events  

% 

number 

of 

events  

Number 

of 

events  

% 

number 

of 

events  

A ≤ 1.34 226 63% 206 61.1% 

B ≤  2.67 69 19.2% 68 20.2% 

C ≤  5.35 31 8.6% 40 11,9% 

D > 5.35 33 9.2% 23 6.8% 
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4.3 Discussion  

The main aim of this first analysis was to compute
S

P

V
V , to obtain a model that approximates 

the real structure within the crust and station corrections for the area of Lucanian Apennines 

and surrounding zones to better constrain hypocentral locations. The computed value of   

S

P

V
V ratio is quite similar to that obtained by other studies in the same region (

S

P

V
V =1.82, 

Frepoli et al., 2005). I found a relatively high value probably due at the presence of highly 

fractured zones related to the main faulting pattern in the study area (Gentile et al., 2000).   

The regional gravity anomaly maps and DSS study outlined the existence of a doubling of the 

Moho beneath the Lucanian Apennines (Morelli, 2000; Tiberti et al., 2005). This area is 

characterized by a relative gravity low surrounded by areas with gravity high. This is likely 

related to the overlap of the Tyrrhenian and Adriatic Moho (Speranza and Chiappini, 2002; 

 
Figure 4.9: Plot of station corrections values obtained by VELEST using the initial model Test. The red 

and yellow rhombus are associated to the stations placed along the Apenninic chain peri-Tyrrhenian area 

and along the Adriatic area respectively. 
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Tiberti et al., 2005) beneath the Apenninic chain that would be associated to the subduction 

process. Through these analysis, I obtained a model in which the average Moho is set at 35 

km depth, in agreement with the average depth defined for the Southern Apennines in 

previous works (Locardi and Nicolich, 1988; Cassinis et al., 2003). The average P-wave 

velocity (VP=7.31 km/s) observed at the Moho discontinuity in these analysis is slightly lower 

than the average value (VP=7.56 km/s) computed by Chiarabba and Frepoli (1997) for the 

Southern Italian region. Tomographic and geothermal gradient studies point out a brittle–

ductile transition at 28–30 km beneath the foredeep and foreland compared with the 15–18 

km of depth of the same limit beneath the chain (Harabaglia et al., 1997; Chiarabba and 

Amato, 1996). I computed an average limit brittle-ductile transition at 23 km. These data, 

together with positive Bouger anomalies, are consistent with the presence of an uprising 

asthenospheric material in the upper mantle below the Tyrrhenian margin of the chain and the 

adjacent Tyrrhenian Sea (Scrocca et al., 2005). Moreover, the doubling of the Moho beneath 

the Lucanian Apennines is interpreted as a “soft” asthenospheric wedge intruding between the 

down going Adriatic plate and the overriding plate (Ventura et al., 2007). 

The station corrections computed in this work are positive along the Apennine belt indicating 

low velocities respect to reference model, while the negative values in the Adriatic area reflect 

high velocities related to carbonate platform.  
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Chapter 5  

 Se i smotec ton ic  s tudy  o f  Southern  Apennines  

The area of the Lucanian Apennines is one of the main seismically active regions of Southern 

Italy. The main goal of the analysis described in this thesis is to provide new insights on the 

seismotectonic in this portion of the Apenninic chain through a careful analysis of 

background seismicity and active stress field information retrieved from fault plane solution 

inversion. Present-day stress field data are important for the seismotectonic zonation, a basic 

tool for seismic hazard evaluation, and are helpful to know the behaviour of seismogenic 

faults. In this chapter, I show how I pursued these aims using standard methodologies. 

I located the events with the HYPOELLIPSE code using the computed 1D-velocity model 

Test_8. I obtained a detailed seismicity distribution of earthquakes and I computed focal 

mechanisms and regional stress field. In the first time I performed these analyses with an 

initial dataset that is created by re-picked arrival times of earthquakes recorded by the RSNC 

seismic network, by the temporary SAPTEX network and the ENI-AGIP network only for 

few events located in the Upper Val-d’Agri and surrounding areas (see Chapter 3). Later, the 

database was considerately incremented with the SeSCAL passive experiment data (for more 

details see Chapter 3). I relocated new earthquakes, recomputed focal mechanisms and 

obtained a regional stress field.  

Despite the short time interval of observation, the seismicity examined in this work is 

representative of the seismic behaviour of the Lucanian Apennines and surrounding regions. 

In fact, the spatial distribution of the analyzed events closely follows the pattern delineated by 

the seismicity of the last two decades.  
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5.1 Earthquakes location (first dataset) 

The seismicity studied in this section occurred in the period between 2001 and 2006 and it is 

located within a ∼350×160 km NW–SE elongated region. 

Analyzing the hypocentral distribution obtained using the computed velocity model Test_8 

(Fig. 5.1a and b), I observe that most of the earthquakes are located beneath the Apenninic 

chain. The seismicity distribution enhances three main seismic active zones.  

 
Figure 5.1: a) Epicentral distribution of the 359 earthquakes located using the model Test_8. The width of cross-

sections AB, CD, EF, GH, and IL is 25 km. The width of cross-section MN is 200 km. b) Cross-sections with 

depth ≤ 50 km (from Maggi et al., 2009). 
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Figure 5.1: (continued). 
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The westernmost of these is characterized by an earthquake distribution centred mainly along 

the axis of the Lucanian Apennine with maximum hypocentral depths up to 20 km (see Fig. 

5.1b, sections AB, CD, EF and GH). Only few subcrustal events are present within this crustal 

domain. The second seismic zone is defined by a sparse and deeper seismicity (see Fig. 5.1a, 

b) located within the eastern and outer margin of the chain and in the foredeep with depths up 

to 30 km. Finally, the last seismic zone (see Fig. 5.1b, section IL and MN; cross-section MN 

has a 200 km width) is located within the Sila Range and the offshore northeastern Calabrian 

coast also characterized by a sparse seismicity and a maximum hypocentral depth around 30 

km. Considering section MN in Fig. 5.1b which includes all the relocated earthquakes, the 

seismicity reaches 40 km beneath the Southern Apennines with an increase of hypocentral 

depth in the middle portion of the section, beneath the Lucanian region. This section shows 

two large clusters of hypocenters: one located in the Irpinia–Potentino area, and the other 

beneath the Moliterno–Pollino area. A seismic gap between the Pollino and the Sila Ranges is 

clearly observable. Michetti et al. (1997) and Cinti et al. (1997) demonstrated that this area 

considered as a gap on the basis of historical and instrumental seismological data and hence 

evaluated of higher hazard. An isolated 88 km deep event belonging to the Southern 

Tyrrhenian subduction zone is located beneath the Castelluccio area. This earthquake belongs 

to the sparse seismicity that characterizes the northern edge of the subduction zone. Fig. 5.2 

shows the error ellipses with the 99% confidence limits of the relocated earthquakes. Events 

with D quality (Table 4.2) are excluded from this figure. Error ellipses are larger for events 

located where the angular distribution of the stations around the epicentre is sparse as in the 

Sila Range and in the Ionian Calabrian Coast. Locations are characterized by a large number 

of events with root main square (rms) included in the 0.10–0.40 s range. Most part of these 

hypocenters show maximum horizontal errors (Max_Err_H) smaller than 2.0 km and vertical 

errors (Err_Z) smaller than 3.0 km (Fig. 5.3). These results outline the high quality of my 

database. 
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Figure 5.2: Earthquake locations and error ellipses (99% confidence limit): events with quality A, B and C 

(from Maggi et al., 2009). 
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Figure 5.3: Distribution of: a) rms; b) maximum horizontal error (Max_Err_H) and c) vertical error (Err_Z) for 

relocated events. In b) and c) I considered only events with horizontal and vertical errors less than 10 km (from 

Maggi et al., 2009). 

5.2 Focal mechanisms and stress tensor inversion (first dataset) 

I computed 108 first-motion focal mechanisms, for the best located earthquakes (with quality 

A, B and C see Table 4.2) by using the P-waves first motion polarity method and the FPFIT 

code (Reasenberg and Oppenheimer, 1985) (for more details, see Appendix C). The dataset 

consists of  fault plain solutions with a minimum number of eight observations. From this 

database I selected 58 fault plane solutions using with the two output quality factors Qf and Qp 

ranging from A to C for decreasing quality (Table 5.1). 

 
 

Quality Qf Qp 

A Fj ≤ 0.025 ∆s, ∆d, ∆r ≤ 20° 

B 0.025 < Fj ≤ 0.1 20° to 40° 

C Fj> 0.1 > 40° 

 Table 5.1: Value of quality factor Qf and Qp for Fault-plane solution. Fj =0 

indicate a perfect fit to the data, while  Fj =1 is a perfect misfit. ∆s, ∆d and ∆r are 

ranges of perturbation of strike, dip and rake, respectively. 

 

Qf gives information about the solution misfit of the polarity data Fj, while Qp reflects the 

solution uniqueness in terms of 90% confidence region on strike, dip and rake. The selected 

focal mechanisms for which A-A, A-B, B-A and B-B quality factors were obtained are 

relatively well constrained (Table 5.1, Fig. 5.4a and b). The focal mechanisms with quality A-
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A are 31, and those with A-B and B-A are 27 (Table 5.2). All fault plane solutions with 

quality C for one of the two quality factors were rejected. The average number of polarities 

per event used in this study is 13. As shown from focal mechanisms of larger events, even 

from fault plane solutions of background seismicity I observe a widespread NE–SW extension 

in the Lucanian Apennine. The focal mechanisms computed in this work are in large part 

normal and strike-slip solutions and their tensional axes (T-axes) have a generalized NE–SW 

orientation. 

 
Figure 5.4: a, b. Location of the 58 selected fault plane solutions. Event numbers of Table 5.2 are shown close to 

each focal mechanism. Coloured lines encircle the crustal volume considered for the stress inversion: black line 

for the inversion with 49 fault plane solutions; grey lines for the two inversions of the Irpinia–Potentino area to 

the North (28 events) and the Moliterno-North-western Pollino area to the south (21 events) (from Maggi et al., 

2009). 
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Figure 5.4:  (continued) 
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Table 5.2: Selected Southern Italy fault plane solutions Date in format year-month-day; O.T=origin time (hour 

and minute); Latitude north and Longitude east; Depth in km; ML=local magnitude of events belonging to the 

2001–2002 period from the Italian Seismic Catalogue (CSI) and of 2003–2006 period from INGV Seismic 

Bulletin; rms=root mean square of residuals of locations; ERH and ERZ=horizontal and vertical location errors; 

strike, dip and rake of the first nodal plane; Qf and Qp=focal mechanism quality factors based on misfit and 

confidence regions; N.P.=polarities number; category=fault plane solution type (SS=strike-slip, NS=normal fault 

with small strike-slip component, NF=normal fault, U=undefined solution category); Area=geographical locality 

of event epicenter (from Maggi et al., 2009). 
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I applied the Gephart and Forsyth (1984) procedure, which was further implemented by 

Gephart (1990) (see Appendix D), to invert the focal mechanisms for the principal stress axes 

(σ1, σ2, σ3) and the dimensionless parameter R (defined in equation 5.1) that describes the 

relative magnitudes of the intermediate principal stresses and hence constrains the shape of 

the deviatoric part of the stress tensor. 

                                                  )(

)(

13

12

σσ

σσ

−

−
=R  

5.1 

The inverse method using focal mechanism data cannot determine the absolute magnitude of 

the deviatoric and isotropic stresses. It only can identify the best stress tensor model that most 

closely matches all the fault plane solutions of the source region. The method requires the 

basic assumptions that the stress is uniform in space and time in the investigated volume. The 

brittle shallow crust would include small pre-existing faults of any orientation that may have 

low frictional coefficients. Earthquakes are shear dislocations on these pre-existing faults and 

slip occurs in the direction of the resolved shear stress on the fault plane. Discrepancy 

between stress tensor orientation and an observation is defined by a misfit measure which is 

given by the angular difference between the observed slip direction on a fault plane and the 

shear stress on that fault plane derived from a given stress tensor. Misfit is computed through 

an angular rotation about an axis for both nodal planes of each focal mechanism on a grid 

search of stress tensors. The stress tensor orientation that provides the average minimum 

misfit is assumed to be the best stress tensor for a given population of focal mechanisms 

(Maggi et al., 2009). I excluded from the inversion procedure 9 focal mechanisms, out of the 

58 best selected fault plane solutions, which do not belong to the shallower crustal seismicity 

(depth smaller than 30 km) located within the Apenninic chain. This allows me to define the 

boundary of smaller crustal volumes approaching better the assumption of the uniform spatial 

stress field. I performed first an inversion with 49 focal mechanisms, all located inside the 

Apenninic chain from the northern Pollino Range to the northern Irpinia area. The minimum 

average misfit is 7.7°, corresponding to a stress tensor with a horizontal σ3 (plunge 4°) NE–

SW directed, an NW–SE oriented σ2 (plunge 43°) and a σ1 (plunge 47°) (Fig. 5.5a). The 95% 

confidence intervals of the principal stress axes do not overlap, suggesting that the three axes 

are well constrained by the data. The stress ratio R near the solution is 0.7 denoting that σ2 is 

slightly close in its absolute value to σ3. Notwithstanding the good results in agreement with 
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previous studies showing the general extension in a NE–SW direction of this part of the 

Apennine chain, large misfits suggest an inhomogeneous stress distribution within the 

considered crustal volume (Wyss et al., 1992). For this reason I performed two further 

inversions dividing the dataset into two sub-volumes (see Fig. 5.4a and b): one to the north, 

including the Irpinia and Potentino areas with 28 focal mechanisms, and the other to the 

South, including the Moliterno–Val d'Agri and the North-western Pollino Range with 21 fault 

plane solutions. In the Irpinia–Potentino the shape factor parameter R is between 0.4 and 0.5, 

while the misfit is 7.0°, suggesting a more homogenous stress field in this area. The minimum 

stress axis (σ3) is sub-horizontal (plunge 14°) and NE–SW oriented and σ1 is quite close to the 

vertical (75° of plunge) (Fig. 5.5b). The inversion results for the Moliterno–Val d'Agri area 

and the North-western Pollino range show a stress tensor with an orientation very similar to 

that obtained by using the whole dataset. The σ3 axis is NE–SW directed with 3° of plunge, 

while σ1 is sub-vertical (58° of plunge) and NW–SE oriented (Fig. 5.5c). Also here the R ratio 

is around 0.5, suggesting that the three principal stress axes are well separated in their 

absolute values. Moreover, the average misfit (6.0°) shows that the stress heterogeneities, 

inside the Southern sector, are smaller than in the previous area (Maggi et al., 2009). 
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Figure 5.5: Stress inversion results using: a) 49 solutions (Apenninic chain); b) 28 solutions (Irpinia–Potentino); 

c) 21 solutions (Moliterno–Pollino). For each inversion is shown the stereonet plot with the 95% confidence 

limits for σ1 (small crosses) and σ3 (small squares) and the histogram illustrating the uncertainty in the 

dimensionless parameter R . Plunge and trend for the three principal stress axes are shown below the stereonets 

(from Maggi et al., 2009). 
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5.3 Earthquakes relocation (incremented dataset) 

SeSCAL array has operated in the period between December 2007 and December 2008 and I 

incremented my database with these new data and RSNC data (see Chapter 3). Using this 

dataset and the 1D velocity model computed for the studied area, I relocated 677 events with 

the HYPOELLIPSE code. I selected 566 hypocentral solutions removing those with horizontal 

and vertical errors larger than 5.35 km (quality D; see Table 4.2 ), azimuthal gap > 180◦ and 

the rms of the solution travel-time residuals larger than 1.0 s. The average rms results equal to 

0.22 s. Most of the relocated earthquakes show rms values between 0.10 and 0.40 s, 

maximum horizontal errors smaller than 2.0 km and vertical errors smaller than 3.0 km (Fig. 

5.6). Figure 5.6d, e show the P and S residual histograms. P-phase residuals versus frequency 

are a Gaussian distribution centred on zero and are consistent with P-picking accuracy and the 

computed 1D velocity model. Instead, the plot of S-phase residuals versus frequency doesn’t 

show a Gaussian distribution centred on zero. Probably it is due to a low S-velocity used in 

the model, and therefore to a slightly high value of �� ���  ratio. 

 

Figure 5.6: Histograms showing the root mean square (rms) of the solution travel-time residuals (a), horizontal 

(b) and vertical (c) errors, P-phase (d) and S-phase (e) residuals versus frequency obtained from the location 

procedure. Number of events for different depth ranges (f) (from Frepoli et al., 2011). 

 

Fig. 5.7a shows the distribution of the background seismicity investigated in this study. 

Hypocentral depths range from 5.0 to 92 km, with the majority of solutions between 5 and 30 
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km (Fig. 5.7b, c).  Fig. 5.8 shows the error ellipses with the 99% confidence limits of the 

relocated earthquakes. I observed that the seismicity distribution is concentrated in the area of 

the Southern Apennine belt from the Irpinia region to the Pollino Range (Fig. 5.7a), with foci 

up to about 25 km depth. Within this region, the seismicity is concentrated in the Irpinia–

Potentino area, and, more to the South, in the Moliterno–Castelluccio–Lauria area. Moreover, 

I observe a rarefaction of events, with only a small cluster close to the locality of Upper Val 

d’Agri. Moving from the Lucanian Apennines toward the Bradano foredeep, I recognize two 

seismic clusters that appear elongated in a W–E direction. The first and smaller cluster (15–25 

km of hypocentral depth) is located in the Potentino sector at S-W of the two seismic 

sequences of 1990 and 1991 (Azzara et al., 1993; Alessio et al., 1995). The second one, in the 

named Abriola–Pietrapertosa sector, is located at Northern Upper Val D’Agri and elongated 

more to the east reaching the Bradano foredeep with hypocentral depths between 15 and 40 

km (Fig. 5.7b, cross-sections EF, GH). This result is very attractive as it shows a seismogenic 

layer which deepens to more than 30 km, following the flexure of the Adriatic subducting 

lithosphere. In the area at South of Pollino Range I observe a seismic gap, which separates the 

Lucanian Apennine seismogenic domain from the NE elongated seismic zone to the sparse 

seismicity of the Sila Plateau, Crati Valley and Taranto Gulf (Fig. 5.7a). The Taranto Gulf 

offshore seismicity is characterized by deeper foci (between 15 and 35 km) and appears 

clustered in the middle of the gulf (Fig. 5.7). The Bradano foredeep and the Apulia foreland 

are characterized by a more sparse seismicity which shows larger hypocentral depths (Fig. 

5.7a). To the north, beneath the Tavoliere, my relocations show hypocentral depths between 5 

and 20 km (Fig. 5.7b, cross-section AB; Fig. 5.7c, cross-section OP), as previously observed 

by Del Gaudio et al. (2007). It is interesting to note the few events with depth between 20 and 

35 km below the area hit by the 1560 Barletta-Bisceglie earthquake (Fig. 5.7b, cross-sections 

CD and OP). The Murge area seems to be aseismic with the exception of the central portion 

characterized by both shallow (around 5–10 km) and deep lower crust (20–40 km) 

earthquakes (Fig. 5.7b, cross-section GH; Fig. 5.7c, OP).  
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Fig. 5.7: (a) Map distribution of the 566 selected earthquakes (HYPOELLIPSE quality A, B and C); (b) cross-

sections AB, CD, EF, GH and IL; (c) cross-sections MN and OP. Width of cross-sections AB, CD, EF, and GH 

is 25 km, while for cross-sections IL, MN and OP is 30 km (from Frepoli et al., 2011). 
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Fig. 5.7 (Continued). 

 

 

Figure 5.8: Map distribution of the 566 selected events and error ellipses (99% confidence limit) (from Frepoli 

et al., 2011). 
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Some low-magnitude earthquakes are also recorded in the Murge Tarantine area with depth 

between 5 and 20km (Fig. 5.7b, cross-section IL; Fig. 5.7c, cross-section OP). The almost 

aseismic Salento peninsula shows only two deep crustal earthquakes located at 30 and 40 km, 

respectively (Fig. 5.7c, cross-section OP) (Frepoli et al., 2011). 

5.4 Focal mechanisms and stress tensor  inversion (incremented 

dataset) 

I computed focal mechanisms for the best located earthquakes using the FPFIT code (for 

more details, see Appendix C). The dataset consists of 162 fault-plane solutions with a 

minimum number of eight (8) observations. From this dataset, I selected 102 focal 

mechanisms with the two output quality factors Qf and Qp of the FPFIT code, ranging from A 

to C for decreasing quality (Table 5.1). 

All fault-plane solutions having Qf or Qp equal to C were rejected. The 102 selected focal 

mechanisms for which A–A, A–B, B–A and B–B quality factors are obtained, are relatively 

well constrained (Table 5.3, Fig. 5.9). 

 Focal mechanisms with quality A–A are 51, those with A–B and B–A are 48 and those with 

quality B–B are only 3. the average number of polarities per event used in this study is 13. By 

examining the plunge of the P- and T-axes I observe that around 57% of the focal solutions 

show normal faulting mechanisms whereas 28% are pure strike-slip. The other solutions show 

transtensional kinematics. T-axes for most of the solutions are sub-horizontal (plunge < 30◦) 

with an average anti-Apenninic trend (N45◦), whereas P-axes have an average plunge of 60–

70◦ and trend mainly between 120◦ and 150◦ (Fig. 5.10).  
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Figure 5.9: Focal mechanisms of 162 selected fault-plane solutions. Event numbers of Table 5.3 are 

shown close to each focal mechanism (from Frepoli et al. 2011). 
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Table 5.3: Selected fault-plane solutions. Date in format year-month-day; O.T. = origin time (hour and 

minute); latitude north and longitude east; depth in km; ML = local magnitude of events belonging to the 

2001–2002 period from the Italian Seismic Catalogue (CSI) and belonging to the 2003–2008 period from 

INGV Seismic Bulletin; r.m.s. = root mean square of residuals; ERH and ERZ = horizontal and vertical 

location errors; strike, dip and rake of the first nodal plane; Qf and Qp = focal mechanism quality factors 

based on misfit and confidence regions; N.P. = polarities number; category = fault-plane solution type (SS 

= strike-slip, NS = normal fault with small strike-slip component, NF = normal fault, U= undefined 

solution category); area = geographical locality of event epicenter (from Frepoli et al. 2011). 
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Table 5.3: (continued) 

 

 

 
Figure 5.10: Rose diagrams showing P- and T-axes plunge and azimuth distribution 

(modified from Frepoli et al. 2011). 
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I computed the stress tensor inversion of the 102 selected fault-plane solutions applying the 

inversion technique proposed by Gephart and Forsyth (1984) and further implemented by 

Gephart (1990) (see Appendix D).  

I performed the inversion by using only crustal seismicity (depth < 30 km) located and 

clustered beneath the Apenninic chain. For the surrounding areas (Bradano foredeep, Apulia 

foreland and peri-Tyrrhenian margin) I do not have a sufficient number of focal mechanisms 

to reliably apply the inversion method. This selection allows me  to define the boundary of 

two smaller crustal volumes approaching better the assumption of the uniform spatial stress 

field. I performed a first inversion with 58 focal mechanisms located within the Apenninic 

chain from the Irpinia–Potentino area, to the NW, to the Abriola–Pietrapertosa sector, to the 

SE. The minimum average misfit is 8.0◦, corresponding to a stress tensor with a horizontal σ3 

(plunge 11◦) NE–SW directed, an NW–SE oriented σ2 (plunge 12◦) and a σ1 (plunge 73◦) 

(Fig. 5.11). The large value of misfit suggests an inhomogeneous stress distribution within the 

considered crustal volume (Wyss et al., 1992). The 95% confidence intervals of the principal 

stress axes are small, suggesting that the three axes are well constrained by the data. Stress 

ratio R near the solution is 0.5. This result is in agreement with the fault slip data of active 

faults available for the study area (Pantosti and Valensise, 1990; Hippolyte et al., 1995; 

Papanikolaou and Roberts, 2007) and with the regional stress field obtained previously by 

using moderate magnitude earthquakes (Frepoli and Amato, 2000; Frepoli et al., 2005; Maggi 

et al., 2009) and borehole breakouts (Montone et al., 1999; Cucci et al., 2004). I performed 

the second inversion in the area located to the south of the seismic gap of the Vallo di Diano–

Upper Val d’Agri sector using the available 22 focal solutions of the Moliterno–Pollino 

Range sector. This inversion shows a dimensionless parameter R of 0.4 and a misfit value of 

6.2◦. The minimum stress axis (σ3) is sub-horizontal (plunge 5◦) and NE–SW oriented, σ1 is 

quite close to the vertical (71◦ of plunge) and σ2 is sub-horizontal (plunge 18◦) and NW–SE 

directed (Fig. 5.11). The two stress tensor inversions performed in this study show results 

very similar suggesting that the whole Southern Apennines, from Irpinia to the Pollino Range, 

is characterized by an almost horizontal and NE-trending σ3 and sub-vertical σ1 (Frepoli et al., 

2011). 
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Figure 5.11: Stress inversion results using (a) the 58 fault-plane solutions located in the Lucanian 

Apennines–Irpinia area (green line), and (b) the 22 focal mechanisms of the Moliterno–Pollino Range 

area (red line). For each solution the stereonet plot is shown with the 95% confidence limits for σ1 and 

σ3 and the histogram illustrating the uncertainty in the dimensionless parameter R. Plunge and trend for 

the three principal stress axes, stress ratio R, misfit and total number of fault-plane solutions are shown 

to the right of the histograms (from Frepoli et al. 2011).  

 

5.5 Discussion 

The background seismicity analyzed in this chapter closely follows the pattern delineated by 

the seismicity of the last three decades (Castello et al., 2005, 2008; Chiarabba et al., 2005). 

Thanks to the SeSCAL passive experiment operated in the period between 2007-2008 I 
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increased considerably the dataset and the data collected by Maggi et al. (2009) (Table 5.4). 

Moreover, the results obtained by two database are similar. 

Most of the events show hypocentral depths ranging between 5 and 25 km and are located in 

the Irpinia and Potentino areas, to the north, and in the Moliterno and north-western Pollino 

Range, to the South. 

 

Dataset 

Recording 

arrays 

 P-

picks 

 S-

picks  

 Relocated 

events 

Quality 

A 

Quality 

B  

Quality 

C 

Quality 

D 

 Focal 

mechanisms 

A 

RSNC, 

SAPTEX 7570 4956 359 226 69 31 33 58 

B 

RSNC, 

SAPTEX, 

SeSCAL 15666 9228 566 319 155 92 111 102 

 

Table 5.4: Local earthquake datasets examined by (A) Maggi et al.(2009) and (B) Frepoli et al. (2011). 

 

 The observed seismicity overlaps the area characterized by the most active normal faults of 

the Southern Apennines (DISS, 2006; Basili et al., 2008). Regional extension drives the 

activity of these major NW-trending seismogenic faults, either NE or SW-dipping (Pantosti et 

al., 1993; Benedetti et al., 1998; Cello et al., 2003; Maschio et al., 2005). This normal fault 

system crosscuts the pre-existing contractional structures and bound the large intermountain 

basins (Cinque et al., 1993). Large part of the studied microseismicity in the Southern 

Apennines could be explained with the post-seismic crustal deformation process (Reddy and 

Prajapati, 2009 and reference therein), which can last for several years or decades, related to 

the 1980 Irpinia, 1990–1991 Potentino and 1998 Castelluccio–Lauria sequences. Post-seismic 

relaxation process with stress transfer from the large 1980 Irpinia earthquake to the Potentino 

seismogenic zone was analyzed by Nostro et al. (1997). As observed even in previous studies 

(Frepoli et al., 2005; Maggi et al., 2009), the Vallo di Diano–Upper Val d’Agri sector, located 

along the main axis of the Lucanian Apennine, is characterized by a scarcity of seismicity 

with only a few low-magnitude events recorded during this surveys (Table 5.3). The 8-year 

long monitoring period of this study shows a clustered seismicity with depth ranging between 

5 and 20 km (Fig. 5.7a, b, cross-section GH). The shallower events of this swarm could be 

related with the fast water level changes in the Pertusillo reservoir as proposed by Valoroso et 



 

Seismotectonic study of Southern Apennines 

 

 

82 

 

al. (2009). Swarm-type activity is commonly observed in reservoir induced seismicity 

examples (Talwani, 1997 and reference therein). Following the macroseismic data (Branno et 

al., 1983, 1985; Alessio et al., 1995) and the most recent geological and geomorphological 

studies (Benedetti et al., 1998; Cello et al., 2003; Maschio et al., 2005), the active fault related 

to the destructive 1857 Basilicata earthquake (Me = 6.9; XI MCS) is hypothesized to be 

located within the Val d’Agri basin. Moreover, the background seismicity gap observed in the 

area is partially correlated in space with the epicentral zone of the complex seismic sequence 

occurred in 1561 (Me = 6.4; X MCS; Castelli et al., 2008). From a geological and a tectonical 

point of view the two strong events of 1561 and 1857 are located in an area characterized by 

the extensional basins of the Vallo di Diano and the Auletta. These major NW-trending 

normal faults should be considered as potential seismogenic sources in the seismic hazard 

valuation of this area (Amicucci et al., 2008). Within the transition zone between the 

Apenninic chain and the Bradano foredeep in the central Lucanian region I observe two 

seismic clusters E–W elongated. The first and smaller one, to the north, is located in the same 

area of the two Potentino sequences of 1990 and 1991, and shows hypocentral depths between 

15 and 25 km. Directly to the South, the second cluster extends from the Abriola–

Pietrapertosa sector to the Bradano foredeep, where some deep crustal events are recognized 

with foci between 30 and 40 km depth. I suggest that these two significant seismic features 

are representative of the transition from the inner portion of the chain, characterized by 

extension, to the external margin where dextral strike-slip kinematics is prevailing, as 

evidenced by the fault-plane solutions of the 1990 and 1991 Potentino seismic sequences 

(Azzara et al., 1993; Ekström, 1994) and, more to the north, of the 2002 Molise sequence (Di 

Luccio et al., 2005) and the Gargano seismicity (Del Gaudio et al., 2007). About the Molise 

and Gargano areas, it is important to note that the dextral strike-slip kinematics is related to 

the development of a lithospheric transfer zone produced by the differential retreat of two 

adjacent slab segments with the consequent segmentation of the thrust front (Scrocca, 2006). 

Scattered seismicity with larger hypocentral depth (generally between 20 and 40 km) is 

located beneath the Bradano foredeep, Apulia foreland and Taranto Gulf. The denser seismic 

station coverage reached in the last decade provides a more extensive low magnitude 

earthquake dataset. Hypocentral determinations within the Apulia foreland are improved. 

Background seismicity beneath the Tavoliere (northern Apulia foreland) is located between 
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the Mattinata fault (Gargano promontory) to the North and the Ofanto Graben to the South. 

This seismicity shows foci between 5 and 20 km depth. The only available focal mechanism 

for the area (#83 in Table 5.3; 9.8 km of depth) shows a pure strike-slip solution. Taking into 

account the main E–W oriented tectonic features of the Gargano area (Tondi et al., 2005; 

Piccardi, 2005; Argnani et al., 2009), this solution is consistent with the seismological 

observations reported by Del Gaudio et al. (2007) in which the northern Apulia foreland 

shows a regional stress combining NW compression and NE extension. The area hit by the 

1560 Barletta–Bisceglie earthquake in the Ofanto Graben is characterized by few events of 

low magnitude with depth between 20 and 35 km and shallower events with depth ranging 

from 5 to 20 km. The focal mechanism #28 (Table 5.3), located in the Barletta–Bisceglie area 

at 23 km of depth, displays a strike-slip solution with a large inverse component (P-axis NW 

oriented), denoting a quite similar regional stress in this sector with that observed to the north 

in the Gargano area (Del Gaudio et al., 2007). The central portion of the Apulia foreland 

seems to be aseismic with the exception of the Altamura–Gravina di Puglia–Matera area, 

where both shallow (around 5–10 km) and deep (20–40 km) earthquakes are recognized. Two 

focal mechanisms are available for this sector (#45 and #87 in Table 5.3) with hypocentral 

depth of 37 and 29 km, respectively. Both solutions display a P-axis NNW oriented but with 

different kinematics. The first one extensional while the second one with a large inverse 

component. New observations of such lower crust seismicity are needed in order to better 

understand the seismotectonics of this area and its relationship with the geodynamic evolution 

of the Adriatic microplate. Within the Salento peninsula, only the area to the north of the 

Taranto city (Murge Tarantine) shows background seismicity with hypocentral depth 

scattered between 5 and 20 km. The crust beneath the Salento peninsula tip and its central part 

seems to be aseismic (Frepoli et al., 2011). Two small earthquakes, with depth around 30 and 

40 km respectively, together with the deep Lucanian Apennine event (62 km of depth, ML = 

2.8), are representative of the flexure of the Adriatic lithosphere induced by the east-

southeasterward migration of the Apenninic chain-thrust front system (Doglioni et al., 1994; 

Pieri et al., 1997; Gueguen et al., 1998; Rosenbaum and Lister, 2004). Offshore area southeast 

of the Salento peninsula was hit by seismic sequences of moderate magnitude in the years 

1974, 1977 and 1991 (D’Ingeo et al., 1980; Favali et al., 1990; Argnani et al., 2001). Local 

stress accumulation due to the small radius of curvature of the Adriatic-Apulian plate under 
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the double load of the Hellenides and Apennines–Calabrian arc was proposed to be the main 

triggering factor (Argnani et al., 2001). The kinematics of the Lucanian and the southern 

Adriatic areas can be explained with the modern interpretation of the complex setting 

characterizing the central Mediterranean region dominated by the NNW–SSEEurasia–Nubia 

plate convergence (D’Agostino and Selvaggi, 2004). The westward flexural bending of the 

Adriatic continental lithosphere beneath the Lucanian region, associated with the increasing 

depth of the seismogenic layer (Chiarabba et al., 2005), is consistent with the presence of 

positive Bouger anomalies and very high heat flow values related to the uprising 

asthenospheric material in the upper mantle below the Tyrrhenian margin of the Apenninic 

chain and the adjacent Tyrrhenian Sea (Scrocca et al., 2005; Tiberti et al., 2005). The uplift 

and crustal thinning with the consequent active rifting process along the Apenninic belt are 

triggering the shallower seismicity (5–15 km of depth) within the chain. In addition to these 

observations, geothermal gradient and tomographic studies point out a brittle–ductile 

transition at 28–30 km beneath the foredeep and foreland compared with the 15–18 km of 

depth of the same boundary beneath the chain (Harabaglia et al., 1997; Chiarabba and Amato, 

1996). My results show a seismogenic layer with depth of about 20 km beneath the chain 

(Fig. 5.7b, cross-sections AB, CD and EF), increasing down to over 30 km below the foreland 

area (Fig. 5.7b, cross-section GH). Besides focal mechanisms of strong earthquakes, fault-

plane solutions of background seismicity are helpful in delineating the main seismotectonic 

provinces of a study area. The widespread NE extension observed in this chapter is consistent 

with previous studies concerning focal mechanisms of low to moderate magnitude events 

(Frepoli and Amato, 2000; Frepoli et al., 2005, 2011; Maggi et al., 2009). Taking into account 

the background seismicity gap located in the Vallo di Diano–Upper Val d’Agri sector, along 

the main axis of the Apenninic belt, fault-plane solution dataset is subdivided in two sub-

datasets, one to the north with the Irpinia and Potentino area (58 focal mechanisms) and the 

other to the south including the Moliterno area and Pollino Range (22 fault-plane solutions). 

Both stress inversions display a very similar stress tensor orientation. The average misfit in 

the northern and more extended sector is quite large (8◦) (Frepoli et al., 2011). Probably this 

inversion result suffers from the influence of the stress field change within the selected area, 

from pure extension beneath the chain to a transpressive stress regime in the outer margin, as 

observed with the focal mechanisms of the two Potentino sequences of 1990 and 1991 
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(Azzara et al., 1993; Ekström, 1994). Moreover, as observed before, this tectonic shear 

regime characterizing the outer margin is also well shown by the fault-plane solutions of the 

2002 Molise earthquake sequence (Di Luccio et al., 2005) and the focal mechanisms 

computed by Del Gaudio et al. (2007) for the Gargano area. However, the lack of pure reverse 

focal solutions in the southern foreland (Gargano and Apulia) suggests that accretion 

processes are not active at present. 

The buoyancy forces acting beneath the Southern Apennines and related to the westward 

subduction of the Adriatic continental lithosphere could be responsible for the observed 

widespread NE extension. 
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Chapter 6  

Deta i led  ana lys i s  o f  c lus te red  se i smic i ty  

A high resolution imaging of seismicity distribution is very important to detect potential 

seismic structures. These data, with the active tectonics and historical earthquake information, 

are a powerful tool to constrain the regional seismotectonic, geodynamic context and to 

evaluate the hazard. In this chapter, I used a recent methodology called double-difference 

technique (DD) to further improve the earthquake locations. Later, considering this results and 

different data kinds available in literature, I carried out a detailed analysis of single groups of 

events named Irpinia, Potentino, Pietrapertosa, Moliterno, Castelluccio and Bradano foredeep, 

respectively. I relocated these events with DD technique using singular value decomposition 

method (SVD). Beyond, I computed composite focal mechanisms for the closely located 

events (maximum inter-event distance of 2 km) and with few observed polarities to compute 

singular event focal mechanisms by superimposing data from the events rupturing the same 

fault segment (Sbar et al., 1972). For this task, the major assumption is that all events used 

have the same focal mechanism, i.e. have the same radiation pattern, as the reference event 

(earthquake put in the centre of the cluster). This is reasonable if earthquakes occur along the 

same fault of the reference event. However, in practice, this condition is not necessarily real. 

Some earthquakes may occur on faults of a much different orientation from the reference 

event. Hence, composite projections rarely show a perfect separation of compressional and 

dilatational first motions. I reported only the most reliable solutions. 
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6.1 HYPODD relocation 

I were able to relocate 474 events applying the double-difference (DD) earthquake location 

algorithm (Waldhauser and Ellsworth, 2000, Waldhauser, 2001) to the 566 events located 

with HYPOELLIPSE (see Chapter 5). The HYPODD algorithm can be used when the hypocentral 

distance between two earthquakes is small compared with the source-receiver distance and the 

velocity heterogeneity scale length (see Appendix E). Therefore, the ray paths between the 

events and common stations are similar and the difference in the travel-times for two events 

recorded by the same station can be attributed only to the spatial offset between the events 

(Fréchet, 1985; Got et al., 1994). I minimized the DD residuals for pairs of earthquakes at 

each station by weighted least squares using the conjugate gradients method (LSQR, Paige 

and Saunders, 1982) (see Chapter 2 section 2.2.3). The final solutions are found by iteratively 

adjusting the vector difference between the nearby earthquake pairs.  

The hypocenters located with this programme appear more clustered but the seismicity 

distribution is not very different from that obtained with the HYPOELLIPSE code because the  

DD method is able to solve small structures. Figure 6.1a shows the 474 earthquakes relocated 

with the HYPODD algorithm (blue dots) and HYPOELLIPSE code (red dots), and Figure 6.1b, c 

shows the cross sections. Figure 6.2 shows histograms with a location error and depth of 

events distribution. I outline that HYPOELLIPSE statistics are obtained by absolute locations 

while the HYPODD statistics refer only to relative hypocenter locations. Moreover, the 

seismicity located with HYPOELLIPSE in the Taranto gulf was rejected by HYPODD because it 

is scattered, i.e. the distance between events is large compared to the maximum distance 

between event pairs and station (MAXSEP) imposed. 
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Figure 6.1: a) Map of epicentral distributions of 474 best relocated events by HYPOELLIPSE (red dots) and 

HYPODD (blue dots). b) Anti-Apenninic and Apenninic cross-sections for HYPOELLIPSE and HYPODD 

relocations. 
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 Figure 6. 1: (continued). 
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Figure 6.2: Event relocation statistics. Histograms (a), (c),(e) and (g) show maximum horizontal error, vertical 

error, rms and depth distribution of the 474 studied earthquakes located with HYPOELLIPSE and the Test_8 

velocity model; Histograms (b), (d), (f) and (h) show the  relative error statistics for the same dataset  relocated 

with HYPODD.  
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6.2 Group 1: Irpinia  

This area was hit by a moment magnitude MW=6.9  earthquake on November 23, 1980 (for 

more details see Chapter 1 section 1.2). It was the first well-documented example of surface 

faulting related with certainty to coseismic displacement (Pantosti and Valensise, 1990). This 

area was hit by other two historical events. The September 8, 1694 earthquake (MW 6.9) 

damaged the same areas, and was characterized by the same region of maximum intensities  

of the 1980 event (Fracassi and Valensise, 2007). Moreover, it did not cause slip on the fault 

responsible for the 1980 earthquakes but was located in proximity of the antithetic fault (not 

observed on the surface). Another historical earthquake was that of April 09, 1853 with MW 

5.9, located to the East of the Picentini fault. 

 Figure 6.3: Map of HYPOELLIPSE location of 566 events. The different colors are used to indicate 

the events that form the six different groups analyzed with HYPODD. 
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The Irpinia group is located within an area ranging from 40.62º to 40.9º latitude N and from 

15.10º to 15.54º longitude E. Initially, it was composed by 102  events located with 

HYPOELLIPSE code (see Fig. 6.3, yellow dots) but the HYPODD program relocated 97 

earthquakes removing the isolated events. I observed a high concentration of hypocenters 

with depths between 10-18 km (Fig. 6.4 g, h). It is evident the improvement due to the DD 

method because the hypocenters are more clustered with respect to those obtained with the 

HYPOELLIPSE location (Fig. 6.5 a, b).  

 

Figure 6.4: a, b) Maximum Horizontal (MaxErr_H) and c, d) vertical (Err_Z) errors (kilometres), e, f) rms 

(seconds) and g, h) depth distribution of the 97 best earthquakes located using HYPOELLIPSE (a, c, e, g) and 

HYPODD code (b, d, f, h). 
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Analyzing the epicentral distribution I observe that the hypocenters are mainly located within 

well-known structures of Irpinia (Fig. 6.5a, b) in the area of strong historical and instrumental 

earthquakes. In particular, I observe a denser cluster in the restrict area of  the 1980 

earthquake mainshock at SW Carpineta fault (with 315°strike and ∼60° NE) (Fig. 6.5 b, d, f). 

In Fig. 6.5 f I observe that the seismicity contouring the hypothetical fault profiles. Moreover, 

the earthquakes distribution is very similar to that of the 1980 aftershocks, including the few 

sub-events that involved a low-angle rupture (dip ∼20° NE) at the base of the brittle layer 

upper crust and started 20 s after the mainshock (Fig. 6.5, 6.6). Considering the increase of 

earthquakes depths moving from NW to SE and the hypothetical fault profiles, I supposed 

that the Carpineta-Marzano faults (dip ∼60°NE) and antithetic fault (dip ∼70° SW) are 

adjoined at 12 km depth on the SE end of Carpineta fault and at a smaller depth out of 

Marzaro fault (Fig. 6.5  c, d, e, f). Another result is the lack of seismicity associated at a gap 

of 6 km in surface faulting separating the Cervialto scarp (Picentini fault) from the Marzano-

Valle scarp (Pantosti and Valensise, 1990) in the Valle del Sele area (easily erodible 

sediments). It is characterized by a strong low-velocity anomaly in the upper ∼7 km 

suggesting that this area represents a creeping section of the Irpinia main fault, probably 

associated with a lithological and rheological discontinuity (Amato and Selvaggi, 1993). The 

discussed results are clearly visible in the hypocentral space distribution of earthquakes in the 

animation (irpinia.avi file). 
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Figure 6.5: Map view of hypocentral distribution and sections WE of 97 events located with HYPOELLIPSE (a, c) 

and HYPODD code (b, d). Plot 3D of these events located with the DD method (e anti-apenninic, f apenninic 

observation directions respectively). The red dotted line traces an approximation of the seismogenic base. The 

brown line shows the active structure observed in this area (DISS Working Group, 2009). Blue stars represent 

epicentres of historical earthquakes (Fracassi and Valensise, 2007) and green star hypocenter of instrumental 

seismicity (Westaway, 1993). The bordered black areas show a hypothetical Marzaro-Carpineta structure and its 

associate antithetic fault (see Figure 6.7).  
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Figure 6.6: Schematic cross-section across the Marzano fault and the associated antithetic fault at 11km NE 

obtained by Westaway, 1993 for the 1980 Irpinia earthquakes. 

6.3 Group 2: Potentino  

The second group is located in the Potentino area (15.42-15.88 E, 40.5-40.9 N), which was hit 

by two moderate and minor seismic sequences occurred in 1990 (MW 5.7) and 1991 (MW 5.1) 

in the Potenza area at only 40-50 km ESE of the Irpinia 1980 zone (for more details see 

Chapter 1 section 1.2). This group consists of 89 events located with HYPOELLIPSE (Fig. 6.3 

red dots). Relocating 84 earthquakes with HYPODD code I obtained denser clusters. In this 

way I could observe that most of earthquakes have foci within the 7-20 km depth range (Fig. 

6.7 g, h). Moreover, hypocentral locations improved with the DD method. Analyzing the 

epicentral distribution it is possible to remark that the earthquakes are mainly located to the 

SW of the two Potentino sequences on  November 9, 1990 (MW 5.7) and May 26, 1991 (MW 

5.2) (Fig. 6.8 a, b). However the hypocentre depths are concentrated between ∼8-20 km in the 

Savoia di Lucania area, while they were deeper (∼13-28 km) in the 1990-1991 seismic 

sequence zone. A 
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small seismic sequence, started with the event of April 18, 2002 (local magnitude ML 4.1, 

Frepoli et al., 2005), is located at 12.4 km of depth beneath Savoia di Lucania (Fig. 6.8 a, b). 

Hypocentral depths of this sequence is ranging between 8 and 13 km (Fig. 6.8 c, d) and 

slightly elongated in a NW-SE direction (Fig. 6.8 f). 

 

Figure 6.7: Rms residuals (seconds), horizontal and vertical errors (kilometres) and depth distribution of the 84 

earthquakes located using HYPOELLIPSE (a, c, e, g) and HYPODD code (b, d, f, h). 
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Figure 6.8: Map view of hypocentral distribution and W-E cross-sections of the 84 events located with 

HYPOELLIPSE (a, c) and HYPODD code (b, d). 3D plots of events relocated with DD method (e anti-apenninic, f 

apenninic observation directions respectively). Green stars hypocentre of instrumental earthquakes (Azzarra et 

al., 1993; Di Luccio et al., 2005). Red dotted line trace variation in seismogenic base. Yellow circle outlines the 

Savoia di Lucania cluster. Numbers indicate  clusters used to compute composite focal mechanisms in Figure 

6.9.    
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Analyzing the earthquake distribution and computing composite focal mechanisms I 

distinguish two different zones. The first zone is located along the Apenninic chain in the 

upper crust (Inner Apulian carbonate platform) with a seismicity distribution observed along a 

NE-SW direction. It is characterized by normal fault plain solutions (Fig. 6.9 Potentino 1, 2) 

with NE-SW extension as the Southern Apennine chain earthquakes. While in the second 

area, where the Apennine units overthrust the Apulian crust, I observe a strike-slip seismicity 

elongated EW and characterized by a right-lateral strike-slip nodal plain as the 1990-1991 

Potenza sequences (see Fig. 6.9, Potentino 3, 4). The different tectonic and the deeper depths 

of the events located in the eastern of Apenninic chain might be explained by rheological 

stratification of the crust which consists of a strong brittle layer at middle crustal depths 

between two plastic horizons associated to the E-W faults affecting the foreland region of 

Apennine ( Fig. 6.10). These faults propagate up to 25 km of depth and the earthquakes of this 

area reflect the reactivation, during Middle-Late Pleistocene, of a deep pre-existing fault 

system (Di Luccio et al., 2005) which probably resulted from the SE displacement of the 

Calabrian Arc (Bonini et al., 2011). These shear zones are in good agreement with the 

deformation field affecting the Gargano area and the Apulia foreland.  

 

 Figure 6.9: Composite focal mechanisms computed for 

four clusters located in the Potentino area (see Fig. 6.8b, d 

1,2,3,4). 
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The discussed features are clearly visible in the hypocentral space distribution of earthquakes 

through the animation of  the potentino.avi file. 

 

 

 
 

Figure 6.10: a) Map of Southern Italy with 1981–2002 seismicity from CSI catalogue (Castello et al., 2006), 

location of the 1980 Irpinia, 1990–1991 Potenza aftershock sequences and the ours HYPODD relocations (red 

dots) for the Potentino area. b) Seismotectonic section across southern Italy with projection of the 1990–1991, 

1980 earthquake sequences, ours potentino relocations (red dots) and the geologic section (figure modified from 

Boncio et al., 2007). AP pl.=Apennine carbonate platform; IA pl.=Inner Apulian carbonate platform; OA 

pl.=Outer Apulian carbonate platform; Lu.-EF c.=Lagonegro units and External Flysch complex; Mo-Sa 

u.=Molise and Sannio units; Ap. u.=Apennine units; BF=Bradanic foredeep. 
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6.4 Group 3: Pietrapertosa 

This area is characterized by scarce seismicity and is located between the maximum intensity 

areas of two of the most destructive earthquakes reported in the Italian seismic catalogue: the 

Val d’Agri earthquake (1857) and the Irpinia earthquake (1980). It is not associated with 

known historical events and for this reason is currently object of investigation as a potential 

seismic gap. In fact the probability of future ruptures is higher than in surrounding regions, 

also for the static stress increase caused by the two above mentioned earthquakes (Lucente et 

al., 2005). This group is located in the area between 40.44°-40.57°N of latitude and 15.50°-

16.00°E of longitude named Abriola-Pietrapertosa and consists of 67 earthquakes (Fig. 6.3 

brown). I relocated 64 events with the DD method improving the hypocentral locations (Fig. 

6.11, see pietrapertosa.avi). The background seismicity of this area was characterized by 

isolated events and a superimposed a swarm. The increased number of seismic stations in the 

study area, with the temporary array of the  passive experiment SeSCAL, allowed me  to 

record and relocate these events with good accuracy. Most of earthquakes show hypocentral 

depths between 10 and 18 km (Fig. 6.11 g, h). These relocated events are elongated in a E-W 

direction. A new result in this work is given by the observation of the swarm of  November 

2008, which consists of 33 events (1.0 ≤ ML ≤ 2.9) with a hypocentral distribution that depicts 

a sub-vertical plane (Fig. 6.12). This cluster is oriented along a NW-SE direction (Fig. 6.12 a, 

b) to the east of Apenninic chain and shows a depth range of 10-17 km and a length of ∼2 km 

(Fig. 6.12 c, d). I will analyze in detail this swarm using the cross-correlation method and 

computing composed focal mechanisms in Chapter 7. 
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Figure 6.11: Rms residuals (seconds), maximum horizontal (MaxErr_H) and vertical (Err_Z) errors (kilometres) 

and depth distribution of the 64 earthquakes located with HYPOELLIPSE (a, c, e, g) and HYPODD code (b, d, f, h). 
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Figure 6.12: Map view of the hypocentral distribution and W-E cross-sections of the 64 events located with 

HYPOELLIPSE (a, c) and HYPODD code (b, d). 3D plots of events relocated with DD method (e anti-apenninic, f 

apenninic observation directions respectively). Red dotted line trace variation in seismogenic base. Yellow circle 

outlines the cluster of the Abriola-Pietrapertosa swarm.  
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6.5 Group 4: Moliterno 

The Moliterno zone includes the area of Auletta Basin, Vallo di Diano and Val d’Agri 

(40.10°-40.43° N of latitude and 15.62°-16.10°E of longitude) (Fig. 6.3 green dots). This area 

with the northern Irpinia boundary, is characterized by scarce seismicity in my period of 

observation. Within the Val d’Agri basin a destructive event occurred in 1857 (Mw 7.0, 

Boschi et al., 2000) (for more details see Chapter 1 section 1.2) characterized by a normal 

fault NW-trending and NE-dipping (Monti della Maddalena Fault System MMFS) similar to 

the 1980 Irpinia earthquake. This seismicity distribution consists of 78 earthquakes (Fig. 6.3 

green dots) but I relocated 74 events with the DD method improving hypocentral locations 

(Fig. 6.14, see moliterno.avi). Events are mainly located within the 9-15 km depth range (Fig. 

6.13 g, h). Hypocenters appear more clustered by using the HYPODD code, mainly, the 

Moliterno cluster located at SW of Pertusillo lake to the SE of the Upper Val d’Agri active 

faults in an area of 3.4 km × 4.5 km (Fig. 6.14 yellow circle). It includes events of a 

significant swarm named Moliterno studied by Frepoli et al., 2005 (February-December 

2002). They analyzed this seismicity and observed that in the first period few events had a MD 

≤ 2.8; then, during June-September, there was a quiescence period. Later on starting  from 

October 2002, the seismicity increased again. The relocated events of the Moliterno swarm 

show hypocenter depths between 6 and 11 km and these could be regarded as a reservoir 

induced seismicity associated with the initial impoundment and/or with great and rapid water 

level changes in the reservoir. It results from an instantaneous effect of loading (or unloading) 

and delayed effect due to pore pressure diffusion (Gupta et al., 1972 Talwani et al., 1997). 

The Pertusillo lake level shows an evident change with an annual cycle: it rapidly rises from 

November to March, and slowly lowers from June-October (Valoroso et al., 2009). Moreover, 

the occurrence of seismicity increase with the growth of water level and decrease with 

reduction of this. The composite focal mechanisms of this cluster is a normal solution with 

strike parallel to the lake (Fig. 6.15 Moliterno 1). 

To the east and the NE of the Moliterno swarm the microseismicity is rather sporadic. In 

particular I located two clusters: the first to the SE of the eastern Agri Fault System (EAFS) 

and the second to the south characterized by a normal mechanism trending NW-SE with a 

SW-dipping following the main seismogenic structure EAFS (Fig. 6.15 Moliterno 2, 3).  
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Figure 6.13: Rms residuals (seconds), horizontal and vertical errors (kilometres) and depth distribution of the 74 

earthquakes located using HYPOELLIPSE (a, c, e, g) and HYPODD code (b, d, f, h). 
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Figure 6.14: Map view of the hypocentral distribution and W-E cross-sections of the 74 events located with 

HYPOELLIPSE (a, c) and HYPODD code (b, d). 3D plots of events relocated with DD method (e anti-apenninic, f 

apenninic observation directions respectively). Red dotted line trace variation in seismogenic base. Brown lines 

show the active structures observed and Quaternary fault in this area (DISS Working Group, 2009, Maschio et 

al. 2005). Blue star: epicentre of historical earthquake (Pantosti and Valensise, 2007). Yellow circle outlines 

cluster of  the Moliterno sequence. Numbers indicate  clusters used to compute composite focal mechanisms 

(Fig. 6.16). Monti della Maddalena Fault System (MMFS). Eastern Agri Fault System (EAFS).  
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Figure 6.15: Composite focal mechanisms computed for three clusters 

located in the Moliterno area (see Fig. 6.14 b,d 1,2 and 3). 

 

 

 

 

 

 

6.6 Group 5: Castelluccio 

Southern Italy is divided in two regions: the southern-most one is called Calabrian Arc, where 

the Ionian lithosphere still subducts beneath the Tyrrhenian Sea. The second region located to 

the north of the Calabrian Arc, is called Southern Apennines and constitutes the accretionary 

prism of the Adriatic plate subduction. These two geodinamically separated regions meet in 

the Pollino Chain.  I studied the region surrounding this Chain (Fig. 6.3, magenta dots). 

The seismicity of this group is concentrated between 39.62°-40.14° N latitude and 15.65°-

16.36° E longitude in the area of the Mercure Valley (Castellucio area) and the South of the 

Pollino Range, which, initially, consisted of 54 earthquakes. The microseismicity of this 

group is located in the same area of the small 1998 seismic sequence of  Castelluccio 

(mainshock MW 5.6) (for more details see Chapter 1 section 1.2). I relocated 50 events with 

the DD method improving hypocentral locations (Fig. 6.17, see castelluccio.avi). Hypocenters 

are more concentrated in the 10-15 km depth range following the Castello Seluci to Piana 

Perretti and Timpa della Manca fault (CSPT) (Fig. 6.16g, h) observed for the first time by 

Brozzetti et al., 2009. This seismicity, as the 1998 sequence, involves the sedimentary cover 

of the region where two important contacts exist: the boundary between the Apenninic Chain 

and the Calabrian Arc (at the surface) and the limit between the Adriatic and the African plate 

(in depth). These contacts are not yet well understood either at subduction on crustal levels 

(Guerra et al., 2005). The CSPT fault was the individual source associated to the 1998 

Mercure events that fits well the mainshock and the aftershocks hypocentral locations and the 

distribution of the damages at surface. 
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Figure 6.16: Rms residuals (seconds), maximum horizontal (MaxErr_H) and vertical (Err_Z) errors (kilometres) 

and depth distribution of the 50 earthquakes located using HYPOELLIPSE (a, c, e, g) and HYPODD code (b, d, f, 

h). 

 

 Its maximum extent was 18 km (field data) and its plane dips SSW-ward with an average dip 

of 60° and a down-dip length of nearly 12 km in agreement with my seismicity distribution 

and composite focal mechanism (Fig. 6.17, 6.18).  
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Figure 6.17: Map view of the hypocentral distribution and W-E cross-sections of the 50 events located with 

HYPOELLIPSE (a, c) and HYPODD code (b, d). 3D plot of the events located with DD method (e anti-apenninic, f 

apenninic observation directions respectively). Red dotted line trace variation in seismogenic base. Grey line: 

coastline. Yellow star: epicentres of  historical earthquake. Numbers indicate  clusters used to compute 

composite focal mechanisms.  Brown lines refers, from the eastern, to Castello Seluci Piana Perretti Timpa della 

Manica Fault (CSPT), the Madonna del Soccorso F. (MSF), the Gallizzi F. (GF), the Castelluccio F. (CaF) 

(Brozzetti et al., 2009), Castrovillari F. (CF) and Pollino F. (PF) (Cinti et al., 1997). 
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This seismicity gap in the Pollino region is bounded to the north by Agri Valley historical 

earthquake and to the south by seismicity in the Crati Valley. The simplest interpretation for 

seismicity gaps is that they represent zones where the active deformation occurs aseismically 

because of unique local geological conditions even if they contain seismogenic faults. 

Geomorphic and paleoseismological investigations in this region show that the Castrovillari 

fault (CF)  is a major seismogenic source (normal fault with NE-SW to E-W trending) 

(Brozzetti et al., 2009; Cinti et al., 1997) that could potentially fill the southern part of this 

gap. Moreover,  Cinti et al., 1997 suggested that the fault might be ready to produce a large 

earthquake considering the minimum recurrence time expected for surface-faulting 

earthquakes (≈ 1200 years) and dated back three paleoearthquakes in the CF fault. Finally,  

few events, located to the SW of the Pollino Range, are deeper than 30 km and this seismicity 

is or could be related with the Southern Tyrrhenian subduction zone. 

 

Figure 6.18: Composite focal mechanism computed for one cluster located in the 

Castelluccio area (see Fig. 6.18 b, d). 

 

 

 

6.7 Group 6: Bradano foredeep 

The seismicity of this group is located in the area of the Bradano Foredeep and the Apulian 

Foreland (40.40°-40.90° N of latitude, 16.00°-16.88°E of longitude). The Apulian is an 

emerged portion of the Adriatic microplate (Adria), representing the foreland-foredeep area of 

the stretch of the Apennine chain in Southern Italy. The interaction between the relatively 

rigid microplate and the contiguous more deformable domains is responsible for the intense 

seismicity affecting the chain area. The microplate plays the role of foreland for the more 

deformable bordering regions. Compared with the seismically active Apenninic belt, the 

internal part of Adria shows a much lower rate of seismic activity which is not negligible. 

This activity has been interpreted as intra-plate seismicity or as an effect of structural 

discontinuities (Favali et al., 1993; Renner and Slejko, 1994).  
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Figure 6.19: Rms residuals (seconds), horizontal and vertical errors (kilometres) and depth distribution of the 54 

earthquakes located with HYPOELLIPSE (a, c, e, g) and HYPODD code (b, d, f, h). 
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 In this area, I located 56 earthquakes (Fig. 6.3, blue dots) characterized by a more sparse 

seismicity. From historical records I know that this area was not hit by strong earthquakes. I 

relocated 54 events with the DD method improving the hypocentral locations (Fig. 6.20, see 

bradano.avi). Most of the microseismicity is located in the Bradano foredeep area. To the 

West, close to the eastern margin of the chain, the seismicity shows hypocentral depths 

between 9 and 30 km, while in the eastern part of the Bradano foredeep, it is characterized by 

deeper events (9-40 km depth range) (Fig. 6.20). However, the seismicity increases its depth 

in the southern part of the studied area and where it approaches the Apulian foreland (see Fig. 

6.20 e, f). Other studies, based on different kinds of data, show this heterogeneity pointing out 

the presence of a lithosphere thickening in the Southern part of the Adria (Calcagnile and 

Panza, 1980; Doglioni et al., 1994);  the crust-mantle transition is quite sharp to the north and 

gradual to the south (Venisti et al., 2005) and a belt of seismic activity crosses the Adriatic 

sea (Console et al., 1989). The deep crustal seismicity in the Bradano Foredeep and the 

Apulia Foreland area indicates the westward flexure of the Adria plate beneath the Apenninic 

belt related to the geodynamic process of Southern Italy and described  in detail in the 

Chapter 1.  

Another result is the cluster of  shallow events (around 5-10 km of depth)  to the east of 

Matera city: an area characterized by few events probably associated to small structures 

present in the area (Pieri et al., 1997). 

 



 

Detailed analysis of clustered seismicity 

 

 

113 

 

 

 
Figure 6.20: Map view of hypocentral distribution and W-E cross-sections of the 50 events located with 

HYPOELLIPSE (a, c) and HYPODD code (b, d). 3D plots of the events relocated with the DD method (e anti-

apenninic, f apenninic observation directions respectively). Red dotted line trace variation in seismogenic base. 

Brown lines refers to small structures (Pieri et al., 1997). Yellow circle outlines the cluster of  Matera. 
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6.8 Discussion  

In this chapter I observed the noteworthy improvement of earthquake location thanks to the 

DD method. This improvement is more evident for restrict areas, especially for the sequences 

of Savoia di Lucania (Fig. 6.8), Moliterno (Fig. 6.14) and 11/2008 swarm in the area named 

Abriola-Pietrapertosa (Fig. 6.12). The accurate earthquake relocations in this study allowed 

me  to retrieve a detailed picture of the microseismicity in the area of the Lucanian Apennine. 

Earthquakes are mostly located along the Apenninic chain and overlap the area characterized 

by the great active normal faults of the Southern Apennines. 

The Apennines orogeny starts in the middle Miocene when a strong compressional tectonic 

phase began. While the long-lasting compressional regime caused progressive thrusting of 

different tectonic units corresponding to the different paleogeographic domains with strong 

crustal shortening, the deformation axis migrated eastward, toward external domains (Azzarra 

et al., 1993). The piled tectonic units that formed the Apennines deformed belt were in turn 

thrust over the Apulo-Adriatic foreland (Merlini and Mostardini,1986). At the end of this 

Pliocene the Southern Apennines was a highly complex imbricated thrust belt with abundant 

lateral and vertical lithologic transitions, the original geometrical framework being 

completely dissected and hidden by orogenic transport (Pantosti and Valensise, 1990). 

Finally, during the Plio-Pleistocene, a neotectonic distensive phase caused the regional raising 

and fragmentation of the brittle limestone platform (Ogniben, 1975). The Apennine crust 

undergoing extension produced extensive volcanism on the Tyrrhenian margin of the Chain: 

the NW-SE trend of extension migrated toward the NE. Subsequently, the region was further 

fragmented into several isolated blocks identified by large stratigraphic throws or gaps. The 

new tectonic trends often follow older fault zones associated with the compressional phases. 

This characteristic plays an important role at all scales of observation in the central and 

Southern Apennines. The structure setting of the epicentral areas reflects the complex history 

of the Apennines that is dominated by thrusting of highly deformed nappes toward the NE 

and NNE and by widespread normal faulting. In this study I underline a correlation between 

the tectonic phases and the rheological stratification of the analyzed area, thanks to the 

seismicity distribution and the computed composite focal mechanisms. I observed that the still 

active NE-SW extension is responsible  for the formation of the NW-SE striking faults that 

dissect the inner sectors of the chain where the most energetic and majority of the events 



 

Detailed analysis of clustered seismicity 

 

 

115 

 

occurred in the Southern Apennines (Fig. 6.5, 6.8, 6.9  Potentino1 and Potentino2; Fig. 6.14, 

6.15 Moliterno 2, 3, and Fig. 6.17, 6.18). Moreover, the zone where the Apennine units 

overthrust the Apulian crust during the Late Pliocene-Middle Pleistocene is characterized by a 

deeper crustal seismicity due to E-W fault zones inherited from previous tectonic phases and 

reactivated by the present strike-slip tectonic regime,  but located at deep crustal levels 

(Boncio et al., 2007; Valensise et al., 2004, Barba et al., 2009). These structures are outlined 

by my results about the Potentino area (Fig. 6.8, 6.9 Potentino4, Potentino5). The eastern 

portion of this zone is characterized by relatively deeper events which appear anomalous 

compared to the adjacent Irpinia seismicity. It is  explained by crustal rheology which consists 

of a strong brittle layer at mid crustal depths sandwiched between two plastic horizons (Fig. 

6.11). The seismicity located in the Southern studied areas as Moliterno and Castelluccio is 

mainly associated to the NW-SE with SW-dipping of  EAFS and CSPT fault except the 

reservoir induced seismicity of  Moliterno cluster located to the SW of Pertusillo lake (see 

Fig. 6.14, Fig. 6.15 Moliterno1, Moliterno2, Fig. 6.17, 6.18).  The low-energy and scattered 

seismicity in the Bradano foredeep group can be associated to Quaternary uplift of the Murge 

that is growth of several normal and transestensional faults (Pieri et al., 1997).  

As regards the depth of the seismogenic layer, it is around 20 km beneath the Apenninic chain 

and between 30 and 40 km below the outer margin of the chain and the Apulia Foreland 

(deeper seismicity). This eastward deepening indicates a deeper boundary between the brittle 

and ductile crust beneath the external margin of the Lucanian Apennine and the foredeep, 

compared to that beneath the chain itself. This increasing depth of the seismogenic layer is 

associated with the westward flexural bending of the Adriatic continental lithosphere beneath 

the Apenninic chain during the Quaternary.  

Finally, the studied microseismicity beneath the Chain could be explained with the post-

seismic relaxation process related to the  strong earthquakes that hit the Southern Apennines. 

In particular, Azzara et al., 1990 proposed that the 1990 Potenza sequence is close to the SE 

of the Irpinia fault and this could be regarded as a possible evidence of the interaction 

between adjacent fault segments. Moreover, the scarce microseismicity observed in some 

sectors along the Apenninic chain could be related with active fault segments presently locked 

where possible large earthquakes might be expected in the future. Considering the “silent 

area”  of the Pollino range, where I observed a seismicity gap, a seismicity hazard assessment, 
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based only on the historical record, may be not completely reliable. In fact, Cucci et al., 1996 

recognized paleoearthquakes in this zone and estimate the expected minimum recurrence time 

≈ 1200 years deducing that the CF fault might be ready to produce a large earthquake. Also 

the Mercure area must be considered comparable, in term of seismic hazard, to the Pollino 

area where according to the Brozzetti et al., 2009 hypothesis, the 1998 Mercure earthquake 

would have only activated a small portion of such a plane of the CSPT fault.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Swarm of 11/2008 

 

 

117 

 

Chapter 7  

Swarm of  11/2008  

During November 2008 the seismic stations of SeSCAL experiment recorded a swarm in an 

area that I called Abriola–Pietrapertosa. The importance of this swarm is in the area that it hit 

(40.53-40.57 N and 15.82-15.88 E). It is situated between the maximum intensity areas of two 

of the most destructive earthquakes reported in the Italian seismic catalogue: the Val d’Agri 

earthquake (1857) and the Irpinia event (1980). This area is not associated with known 

historical events and for this reason is currently object of investigation as a potential seismic 

gap (Lucente et al., 2005). 

I carried out a detailed analysis using methodologies mentioned above and the waveform 

cross-correlation technique to better constrain the hypocentral locations. Thanks to the 

composite focal mechanisms analysis I obtained interesting information about the tectonics of 

this area. 

7.1  HYPOELLIPSE and HYPODD locations 

I analyzed in detail the November 2008 swarm shown in Fig. 7.1. Initially, this swarm was 

constituted by 41 events with 1.0 ≤ ML ≤ 2.9. I located 37 events using HYPODD code and 

obtaining a denser cluster and a better hypocenter distribution with respect to HYPOELLIPSE 

locations. I observe that the events: mapped in the detailed area of ∼ 2 km x 2 km in Fig. 7.1, 

have depths between 10-18 km and a subvertical distribution. Moreover, I observe a denser 

and deeper cluster that was analyzed computing the waveform cross-correlation to better 

constrained hypocenter locations. 
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where iX and iY  are the samples of the digital waveform segments and N is the number of 

samples of the correlation window. If R assumes the maximum value of 1 then the two 

seismograms are identical, while if they are different then they are associated with lower 

cross-correlation values. This program was built in a way to interactively select a window 

size. It is known that a small window is associated to a greater correlation because the 

similarity between wave-forms is easier. I selected a window size of 0.3 s surrounding the 

first arriving P-wave. I used a number of 300 steps starting 1 s before the first onset for all 

waveforms (see Fig. 7.2).  

 
Figure 7.2: An example of GLOBALLOCALIZER GUI program. In this window is shown a zoom of the waveform 

associated to the reference event 1700132 recorded by the RT04 SeSCAL station. Red line is the P-arrival time 

hand-picked and green lines represent window borders of 0.3 sec size. 
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Figure 7.4: Event relocation distributions. (a), (b) and (c) Epicentral distributions of the 22 events located with 

HYPOELLIPSE, HYPODD using solely catalogue data, and HYPODD with catalogue and cross-correlation data. (d), 

(e) and (f) Hypocentral distributions section E-W. (g), (h) and (i) Hypocentral distributions section N-S. (j), (k) 

and (l) Hypocentral distribution in the space with the observation point along anti-Apenninic direction. 



 

 

 

 

Figure 7.

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with 

statistics for the same data

Location error statistics of events relocated with the 

7.3

I computed c

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

different tectonics. One is identified by a green line in 

mechanism and a NW

re 7.5: Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with 

for the same data

Location error statistics of events relocated with the 

7.3  Composite focal mechanisms

computed composite focal mechanisms (see introduction to 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

different tectonics. One is identified by a green line in 

mechanism and a NW

Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with 

for the same dataset relocated with 

Location error statistics of events relocated with the 

Composite focal mechanisms

omposite focal mechanisms (see introduction to 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

different tectonics. One is identified by a green line in 

mechanism and a NW-SE strike. The second is related to a very small group of events located 

Swarm of 11/2008

Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with 

set relocated with HYPO

Location error statistics of events relocated with the 

Composite focal mechanisms

omposite focal mechanisms (see introduction to 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

different tectonics. One is identified by a green line in 

SE strike. The second is related to a very small group of events located 

Swarm of 11/2008

Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with 

YPODD using HYPOELLIPSE

Location error statistics of events relocated with the HYPODD code using catalogue and cross

Composite focal mechanisms 

omposite focal mechanisms (see introduction to 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

different tectonics. One is identified by a green line in 

SE strike. The second is related to a very small group of events located 

Swarm of 11/2008 

Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with 

YPOELLIPSE data (b), (e), (h) and (k). (c, f, i and l) 

code using catalogue and cross

 

omposite focal mechanisms (see introduction to Chapter 6

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

different tectonics. One is identified by a green line in Fig. 

SE strike. The second is related to a very small group of events located 

Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

(Err_Z), and (j) depth distribution of the 22 studied earthquakes located with HYPOELLIPSE

data (b), (e), (h) and (k). (c, f, i and l) 

code using catalogue and cross

Chapter 6) to better assess the 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

Fig. 7.6 with a normal focal 

SE strike. The second is related to a very small group of events located 

Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

YPOELLIPSE. Location err

data (b), (e), (h) and (k). (c, f, i and l) 

code using catalogue and cross-correlation data.

) to better assess the 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

with a normal focal 

SE strike. The second is related to a very small group of events located 

123 

 
Event relocation statistics. (a) rms, (d) maximum horizontal error (MaxErr_H), (g) vertical error 

. Location error 

data (b), (e), (h) and (k). (c, f, i and l) 

correlation data. 

) to better assess the 

tectonics of this swarm. After careful analysis, I distinguished two principal areas with 

with a normal focal 

SE strike. The second is related to a very small group of events located 



 

 

 

 

to the NW of this swarm (

normal focal mechanism with a NE

Figure 7.

magenta and green lines. Brown

7.4

Detailed analysis of the Swarm of 11/2008 is 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

reason it is currently su

I observe two different seismotectonic settings (

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

normal fault;

2. A larger group (~40.55N, 15.85

depth) to SW (~ 15 km depth) and a

to the NW of this swarm (

normal focal mechanism with a NE

Figure 7.6: Composite focal mechanisms obtained for the two tectonically different areas contourin

magenta and green lines. Brown

7.4  Discussion

Detailed analysis of the Swarm of 11/2008 is 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

reason it is currently su

observe two different seismotectonic settings (

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

normal fault; 

2. A larger group (~40.55N, 15.85

depth) to SW (~ 15 km depth) and a

to the NW of this swarm (Fig. 7.2

normal focal mechanism with a NE

Composite focal mechanisms obtained for the two tectonically different areas contourin

magenta and green lines. Brown dots are the hypocenters.

Discussion 

Detailed analysis of the Swarm of 11/2008 is 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

reason it is currently subject of investigation as a potential seismic gap. 

observe two different seismotectonic settings (

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

2. A larger group (~40.55N, 15.85

depth) to SW (~ 15 km depth) and a

Swarm of 11/2008

Fig. 7.2 c, d 40.56 N 15.85 E, 

normal focal mechanism with a NE-SW strike (see magenta line

Composite focal mechanisms obtained for the two tectonically different areas contourin

dots are the hypocenters.

Detailed analysis of the Swarm of 11/2008 is 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

bject of investigation as a potential seismic gap. 

observe two different seismotectonic settings (

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

2. A larger group (~40.55N, 15.85-15.87E) E

depth) to SW (~ 15 km depth) and a NE-SW composite focal mechanism.

Swarm of 11/2008

c, d 40.56 N 15.85 E, 

SW strike (see magenta line

Composite focal mechanisms obtained for the two tectonically different areas contourin

dots are the hypocenters. 

Detailed analysis of the Swarm of 11/2008 is very important for the comprehension of the 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

bject of investigation as a potential seismic gap. 

observe two different seismotectonic settings (Fig. 7.4, 7.6

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

5.87E) E-W elongated that deepen from NE (~ 13 km 

SW composite focal mechanism.

Swarm of 11/2008 

c, d 40.56 N 15.85 E, -14 km depth) and characterized by a 

SW strike (see magenta line in

Composite focal mechanisms obtained for the two tectonically different areas contourin

very important for the comprehension of the 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

bject of investigation as a potential seismic gap. 

Fig. 7.4, 7.6): 

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

W elongated that deepen from NE (~ 13 km 

SW composite focal mechanism.

14 km depth) and characterized by a 

in Fig. 7.6).

Composite focal mechanisms obtained for the two tectonically different areas contourin

very important for the comprehension of the 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south.

bject of investigation as a potential seismic gap.  

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a 

W elongated that deepen from NE (~ 13 km 

SW composite focal mechanism. 

14 km depth) and characterized by a 

). 

 
Composite focal mechanisms obtained for the two tectonically different areas contourin

very important for the comprehension of the 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

earthquakes: the Irpinia region to the north and the Val d’Agri area to the south. For this 

1.  Events located close to ~ 45.56 N, ~ 15.85 E and 14 km depth characterized by a NE

W elongated that deepen from NE (~ 13 km 

124 

14 km depth) and characterized by a 

Composite focal mechanisms obtained for the two tectonically different areas contouring by 

very important for the comprehension of the 

seismotectonics of this area. It is located between two areas hit by historical and disastrous 

For this 

NE-SW 

W elongated that deepen from NE (~ 13 km 



 

Swarm of 11/2008 

 

 

125 

 

The structural significance of the NE-SW faults, as that I observed, is poorly known. These 

faults type was generally interpreted by large scale geodynamic models (Oldow et al., 1993; 

Ferranti et al., 1996; Doglioni, 1996) whose activity mainly developed during pre-Quaternary 

times (∼1,8 million of years), as low-angle, normal faults related to the progressive 

longitudinal extension of the Apenninic chain axis. Finally, coherently with Milano et al. 

(2005), I underline that the studied Apennines sector is affected by heterogeneous 

deformation being characterized by both NE-SW (strong earthquakes) and NW-SE (low 

energy events as swarms) extensions. Moreover, the NE-SW elongated structures are 

generally considered to act as a barrier to the propagation of rupture of the active NW-SE 

striking faults system (Di Bucci et al., 2002). Another attractive hypothesis is that it might be 

a potential seismic gap area, where the probability of future ruptures is higher than in 

surrounding regions, also for the static stress increase caused by the two above mentioned 

earthquakes (Lucente et al., 2005). Therefore, the seismotectonic picture of this transition is 

more complex than that proposed up to now and cannot be interpreted in light of these few 

pieces of information.  
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Conclusions  

 

The new dataset of background seismicity examined in this study is a further contribution to 

the comprehension of the seismogenesis and state of stress of a tectonically complex region, 

such as the Southern Apennines, characterized by a very high seismic hazard. The significant 

improvement in the seismic monitoring of the area, reached using both the permanent Italian 

national network and two temporary arrays of three-component stations, allowed me to obtain 

a more detailed picture of the seismotectonics of the region, including the Southern 

Apennines foreland which had been generally considered substantially aseismic. As already 

emerged in previous studies, the background seismicity occurs mostly beneath the mountain 

belt where the main seismogenic structures are located (Maggi et al., 2009, Frepoli et al., 

2011). The research conducted in the present Thesis shows that this microseismic activity is 

substantially clustered at the borders of silent fault segments beneath the Apenninic chain. 

Here the transition brittle–ductile is inferred between 20 and 25 km from the bottom limit of 

the located seismicity. This brittle-ductile boundary is located at around 40 km beneath the 

foredeep and foreland areas. I also suggest that the scarce background seismicity observed in 

some sectors along the Apenninic chain could be related to fault segments presently locked 

(e.g. Castelluccio, Potentino and Abriola-Pietrapertosa area) or to the postseismic relaxation 

process (e.g. Irpinia area) where possible large earthquakes might be expected in the future. I 

also observed a structure NE-SW oriented in the Abriola-Pietrapertosa area (activated in the 

swarm occurred in November 2008) similar to that observed also in other areas of the 

Apenninic chain. The NE-SW elongated structural discontinuity could be considered to act as 

a barrier to the propagation of a possible rupture of an active NW-SE striking fault system. 

The events located in the area of Bradanic foredeep and Apulia foreland are associated to the 

Murge uplift and to the small structures present in the area. The results coming from the 

present-time stress field studies, as shown in this work, give important contributions to 
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seismotectonic zoning and seismic hazard assessment. A detailed earthquake distribution and 

the active stress map might suggest the mechanism by which faults are more likely to rupture 

in future events, especially in regions where active faults have no surface expression as in 

some areas of Southern Italy. In fact, many moderate, although hazardous, earthquakes occur 

on blind faults in the Italian region, with large repeat times of the order of thousands of years. 

For this reason it is important to integrate the stress field data with historical information and 

with seismicity patterns determined from instrumental monitoring in order to extend the 

capability of assessing seismic hazard (Frepoli et al., 2011).  

Some of the analysis techniques described in this thesis were also applied to the greater Rome 

area improving my understanding of those aspects that are useful for hazard analysis in an 

area of very dense population and rich of architectonic assets (Frepoli et al., 2010).
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                                       Appendix  A 

Program VELEST  

VELEST is a FORTRAN77 program that was used to compute 1D velocity models for 

earthquakes location and as initial reference models for seismic tomography (Kissling, 1998;  

Kissling et al. 1994).   

This program solves in “simultaneous mode” and in “single-event-mode”.  In the first mode it 

is used to define a 1D velocity model and station corrections and performs the Joint-

Hypocenter-Determination (JHD) described in Section 2.2.2. The second is used to locate 

single local earthquakes, blasts and shots.  In both modes the forward problem is solved by 

ray tracing from hypocenter to receiver. It computes the direct, refracted and eventually the 

reflected ray using 1D model.  

The solution is obtained iteratively and one iteration consists of solving the complete forward 

and inverse problem once, as described in the flow-chart of Fig. 1. 

The input files are: 

1. Control parameters (*.cmn). The computation of the 1D velocity model required multiple 

runs to select and test the appropriate values. 

2. station list (*.sta) 

3. initial 1D velocity model (*.mod) 

4. initial data location (*.cnv) 

The output file is a main print output (*.out) 
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Figure 1: VELEST procedure (modified from Kissling, 1995). 

 

INPUT: 

parameters and data 

nitt=0 

Solve forward problem (ray tracing) 

Establish matrix 
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Another 
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STOP 
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Computation of 1D-velocity model (simultaneous mode) 

This is a coupled hypocenter-velocity model problem and consists of the hypocenters, the 

velocity model, and station corrections. The differences between calculated and measured 

travel-times are called the misfit (or residuals) of the solution. Consider any possible 

combination of hypocenters, velocity model, and station corrections be rated by its RMS 

misfit two situations are possible:  

1) A well-posed problem that would only have one solution with minimal RMS 

(Figure 2a); 

2) Several local RMS minima occur (case of the coupled problem with local 

earthquake data Figure 2b). In such situations the solution obtained by any iterative 

algorithm strongly depends on the initial model and initial hypocenter locations. 

 You do not a priori know the RMS function and, therefore, you must search for different 

solutions with minimal misfit (RMS) by varying initial models and hypocenter locations 

within reasonable but large bounds. Thus, the calculation of a Minimum 1-D model amounts 

to a TRIAL-AND-ERROR process (for different initial models). Since VELEST does not 

automatically adjust layer thickness, the appropriate layering of the model must be found by a 

trial-and-error process.   

 
Figure 2: Quality estimate of solutions to the coupled problem. a) Simple case with unique "best fit" 

solution. b) Normal case with several local minima of RMS misfit (Kissling, 1995). 
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Thus the calculation of a Minimum 1-D model normally starts with: 

 

Finding an appropriate model layering. 

Introduce layers according to refraction models or literature models. Put the trial layer 

thickness at 2 km for shallow crustal levels and increase layer thickness with increasing depth 

to about 4 to 5 km at Moho depth.  

 

Setting appropriate control parameters  

Begin without low velocity layers (LOWVELOCLAY=0) since they have strong effects on 

the ray paths and, thus, they increase the non-linearity of the problem. Set damping of 

velocity-model VTHET=1.0, damping of station-corrections STATHET=0.1, and the 

hypocentral damping parameters to 0.01.  

Set INVERTRATIO1 to 1 and allow between 5 and 9 iterations. Save this data for later testing 

(see below).  

 

Initial values and first inversions 

 Set velocity damping parameters (VDAMP) in Model File (*.mod) all equal to 1.0. 

INITIAL HYPOCENTERS: Use the locations of best routine location procedure. If your trial 

velocity model is largely different from the one used to obtain initial hypocenter locations you 

might want to try two VELEST runs, one with INVERTRATIO=1 and one with 

INVERTRATIO=2 and  do not vary any other parameter. You may then use these final 

hypocenter locations and station corrections as initial parameters for the next run of VELEST 

where you let the model float again.  

INITIAL STATION CORRECTIONS: Set all of them to zero. 

Probing the solution space 

Normally, you have a fairly good idea about the probable average crustal velocity and about 

the Moho depth. Try several initial velocity models. To probe the dependence of the solution 

on the initial model one should try at least three different initial velocity models for any 

model geometry (layer thickness): one with extremely low crustal velocities, one with 

                                                 
1 In simultaneous mode VELEST may either invert for all hypocenters and model (with station corrections) parameters [type A] 

or invert only for all hypocenters [type B]. If INVERTRATIO is set to 1, every iteration is of type A. If it is set to 2, every second 

iteration is an inversion type A. 
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extremely high and one with intermediate crustal velocities. You will also see if the problem 

is reasonably well determined by the data. You may then decide on the best model layering 

based on the results of the previous VELEST runs and based on the depth distribution of the 

earthquakes. Choose a simple model by combining layers where velocities are very similar, 

unless you want to mimic a gradient. 

Note: The superficial layers are mostly subvertically and bottom layers are mostly 

subhorizontally penetrated. Therefore, the resolution in these layers is generally lower than in 

the central layers that contain the hypocenters. 
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Appendix  B 

Program HYPOELL IP SE  

HYPOELLIPSE (Lahr, 1989) is a code for determining the hypocenters of earthquakes and the 

ellipsoid that encloses the 68% confidence volume. Travel times are determined from a initial 

layered-velocity model or from a previously generated travel-time table. Arrival times for the 

first arrival of P- and S-waves can be used in the solutions. Each arrival can be weighted 

according to the reading clarity, the epicentral distance to the station, and the deviation of its 

residual from the mean. The hypocenter is found using Geiger’s method described in Chapter 

2 section 2.2.1to minimize the root-mean-square (RMS) of the travel-time residuals.  

In the my case I used a stratified velocity model with a constant velocity in each layer. The 

three variables to be specified are: the P-wave velocity (km/s), the depth to top of layer (km), 

and the �� ��� ratio (Table I). 

Velocity real  real  real 

Table I: Format of velocity model. 

The �� ���  ratio can be specified for each layer or defined in the input control file containing 

the options selected for the location process (Table II). 

The input files essential to run the program are: 

• velocity model (Table I); 

• first arrival of P- and S-waves; 

• station list; 

• options select (Table II); 

• options record.  
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Table II: Options select. Options that it is possible to change (from Lahr, 1989). 
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Table II: (continued) 
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Table II: (continued) 
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The default weights and its relative standard errors corresponding to each weight-code are 

reported in Table III. It is possible to change the default values using the WHEIGHT 

OPTION. 

 

WEIGHT 

CODE 

STANDARD 

ERROR (S) 

STAND. ERROR RELATIVE TO 

READINGS WITH WEIGHT CODE 

ZERO 

COMPUTED 

WEIGHT 

0 0.1 1.0 1.0 

1 0.5 5.0 1/25 

2 1.0 10.0 1/100 

3 2.0 20.0 1/400 

4 INFINITE INFINITE 0.0 

 

Table III: Table with default HYPOELLIPSE weights. 

 

The root-mean-square (RMS) is computed using this equation: 

��� = 
∑ �
�
���∑ �
��
�

� ��
 

For i phases, with i=1,..., N; �
 is the observed minus computed time of the ��� phase and �
 
is the computed weight of ��� phase. 

This program computed for any earthquake location a quality factor based on the values of 

SEH (the horizontal 68% confidence limit in the least well-constrained direction) and SEZ 

(the 68% confidence limit for depth) see Table IV.  

 

Quality Larger of SEH and SEZ (km) 

A ≤ 1.34 

B ≤ 2.67 

C ≤ 5.35 

D > 5.35 

 

Table IV: Quality based on the value of the horizontal error SEH (68% confidence limit), and vertical error SEZ 

(68% confidence limit). 
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Appendix  C 

Program FPFIT ,  FPPLOT and  FPPAGE 

Program FPFIT (Reasenberg and Oppenheimer, 1985) finds only the double couple fault 

plane solution (source model) that best fits a given set of observed first motion polarities for 

an earthquake. FPFIT formally computes the uncertainty in the model parameters (strike, dip, 

rake) for each double couple source model obtained. The inversion is carried out through a 

two stage 3D grid search procedure that finds the source model. The first stage uses 20° 

increments in each of the three parameters strike, dip, and rake including all possible gridded 

values of rake and dip. However, only half the range of possible values of strike (from 0 to 

160 degrees) is searched to avoid computing source models for both the fault plane and its 

associated auxiliary plane. For any earthquake, Ej, and any source model, M
i, the program 

computes the one-norm misfit function, Fi,j
 defined: 

�
,� = ∑ �����,���� ,��!��,�!� ,�"�
∑ �!��,�!� ,�"�

                    (1) 

Where k indicate the k-th station, #$�,% and #�
,% represent  the observed and hypothetical first-

motion polarity, respectively (0.5 for compression, -0.5 for dilatation). Finally, �$�,%is the 

observation weight that must be assigned to the phases and ��
,%is defined: 

��
,% = &'(�, )*+� ��                         (2) 

Is the square root of the normalized theoretical P-wave radiation amplitude, '(�, )*, 

associated at k-th station for source model. This weighting scheme down-weights 

observations near nodal planes, minimizing the effect of inconsistencies near nodal planes, 

such as those caused by unmodeled refractions. 

The course search identifies the solution corresponding to the minimum misfit, Fmin, and, if 

exist  multiple solutions considers  relative minima in misfit. These are detected in the range 
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search up to a level of misfit F ≤ Fmin + DFITC (input parameter). Each of these solutions is 

then taken as the centre of a second stage (fine) search using grid point spacing of 5° for strike 

and dip, and 10° for rake and parameter ranges relative to the central value of ±45° in strike 

and dip and ±30° in rake. The final solutions are identified and the solution parameter 

uncertainties are estimated. The multiple solutions are distinguished by an asterisk in the 

output files. 

These values are used in the display program FPPLOT to graphically define the range of 

P-axis and T-axis orientation consistent with the data.  

For each fault-plane solution, FPFIT calculates these uncertainties: 

1. Fj = minimum [Fi,j] or a relative minimum of Fi,j. (Fj = 0.0 perfect fit to the data, while 

Fj = 1.0 perfect misfit). 

2. NOBS = number of observations used in the solution. 

3. The mean data weight used in the solution (AVWT); it is an rough measure of the 

quality of the data used in the solution. AVWT ranges from 0.0 to 30.0, larger values 

reflecting solutions computed from higher quality data. 

4. The station distribution ratio (0.0 ≤ STDR ≤ 1.0). This quantity is sensitive to the 

distribution of the data on the focal sphere, relative to the radiation pattern. When this ratio 

has a low value (STDR < 0.5), then a relatively large number of the data lie near nodal planes 

in the solution. Such a solution is less robust than one for which STDR > 0.5. 

FPFIT summarizes the quality of the adopted fault-plane solution with two letter codes. The 

first letter code, Qf, summarizes the value of Fi. The second quality code, Qp, summarizes the 

three parameter uncertainties ∆STR, ∆DIP, and ∆RAK, see Table I: 

Quality Qf Qp 

A Fj ≤ 0.025 ∆s, ∆d, ∆r ≤ 20° 

B 0.025 < Fj ≤ 0.1 20° to 40° 

C Fj > 0.1 > 40° 

 

Table I: Values of quality factor Qf and Qp for Fault-plane solution. Fj =0 indicate a perfect fit to the data, while  

Fj =1 is a perfect misfit. ∆s, ∆d and ∆r are ranges of perturbation of strike, dip and rake, respectively. 
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Moreover, strike is measured clockwise from north; dip is measured down from horizontal; 

rake of 0 = left lateral, 90 = reverse, +180 = right lateral, -90 = normal. 

Input File: FPFIT reads the print output file from programs: HYP071 (Lee and Lahr, 1975), 

HYPOINVERSE (Klein, 2002) and HYPOELLIPSE (Lahr, 1989). This file contains the hypocenter 

summary card, followed by (for each P-wave observation) the station to epicenter distance 

and azimuth, P-remark, angle of incidence, and flag denoting phase data discarded due to 

Jeffrey's weighting. 

FPPLOT 

FPPLOT is an interactive plotting program for displaying fault plane solutions calculated by 

FPFIT using as input file the "RAY" output file produced by FPFIT. FPPLOT produces one 

frame of graphic output for each solution found by FPFIT. 

FPPAGE  

FPPAGE is an interactive plotting program for displaying on a single page up to 42 fault 

plane solutions calculated by FPFIT using as input file the "RAY" output file produced by 

FPFIT. Each fault plane solution is represented by a lower hemisphere equal area projection. 

An asterisk (*) indicate multiple solutions. Compressional rays are depicted as solid circles; 

dilatational rays as open circles. Finally the P- and T-axes of the solution  are plotted. 
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Appendix  D 

Program FMSI  

FMSI (Gephart and Forsyth, 1984; Gephart, 1990) is a FORTRAN program for inverting fault 

and earthquake focal mechanism data to compute the regional stress tensor. 

This program calculate only the three principal stress directions (σ1, σ2, σ3) and one measure 

of stress magnitudes, � = (,-�,.*
(,/�,.* (0 ≤ � ≤ 1) that describes the relative magnitudes of the 

principal stresses and hence constrains the shape of the deviatoric part of the stress tensor. 

Values of R close to 0.0 indicate that σ1  is similar to σ2 (oblate stress ellipsoid) while values 

close to 1.0 indicate that σ2 is similar to σ3 (prolate stress ellipsoid) (Mandal, 2008). The 

method requires the basic assumption that the stress is uniform in space and time in the 

investigated volume. It inverts the populations of fault data to determine the best-fitting 

values of four stress parameters minimizing the rotation differences between given 

observations and any ones which are consistent with the model. Moreover, FMSI compare the 

geometry indicated by each nodal plane independently to any stress model, acknowledging 

that only one actually can be the fault (the true fault plane is the one with the smaller 

deviation from any fault geometry consistent with the model).  

The FMSI input file contain focal mechanisms or fault datum indicating the azimuth and slip 

of the two nodal planes (degrees) and a sense of slip/weight index.  

In this program, the user may select from among three measures of rotation misfit: 

1. The Exact method that determines the minimum rotation between an observation 

and model (most realistic but also most time-consuming).  

2. The Pole Rotation method, which computed the minimum rotation about the pole to 

the fault plane needed to match an observed slip (faster).  
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3. The Approximate method, which identifies the smallest of the three rotations offers 

a significant improvement in quality of solutions compared to the Pole Rotation method 

with similar computational demands.  

Later, it is devised a scheme for inspecting a range of possible stresses. At the start, it is 

selected 3�or 34 as the primary principal stress, and the other as the secondary principal 

stress. A preliminary estimate of principal stress orientations is made from inspection of fault 

geometries, perhaps based on the distribution of the P and T axes. User inserts input 

parameters (plunge, azimuth, variance) for the primary principal stress in the program prompt 

for constructing the grid. The grid search is implemented by selecting sequentially a number 

of specific primary stress directions.  
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Appendix  E 

Program HYPODD 

HYPODD is a Fortran computer code package for relocating earthquakes using the double-

difference technique (DD) of Waldhauser and Ellsworth (2000). This package is constituted 

by two programs to compute DD hypocenter locations: PH2DT and HYPODD.  

PH2DT searches catalogue P- and S-phase data for event pairs with travel time information at 

common stations and subsamples these data in order to optimize the quality of the phase pairs 

and the connectivity between events. It establishes such a network by building links from 

each event to a maximum number of neighbours per event (MAXNGH) within a search radius 

defined by maximum hypocentral separation between event pairs (MAXSEP). To reach the 

maximum number of neighbours with less than minimum number of links to define a 

neighbour (MINLNK) phase pairs are considered. Generally a strong link are defined by eight 

or more observations (one for each degree of freedom).  

If we consider a large number of events (∼10,000) we might consider only strongly connected 

earthquakes pairs setting minimum number of links per pair saved (MINOBS) equal to 

MINLNK. For a small number of events we might select all phase pairs available by setting: 

MINOBS=1, maximum number of links per pair saved (MAXOBS) equal to the number of 

stations, and MAXNGH equal to the number of events. Another parameter it is MINWGHT 

that is defined as minimum pick weight [0 - 1(best)]. Exactly, picks with a pick weight 

smaller than MINWGHT but larger than 0 are ignored and links of event pairs that have less 

than MINOBS observations are discarded. 

PH2DT removes outliers identified as delay times that are larger than the maximum expected 

delay time for a given event pair. The maximum expected delay time is the time for P-/S-

waves to travel between two events calculated considering initial event locations and a P- and 
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S-velocity of 4 and 2.3 km/s, to it is added 0.5 s to the cuttoff to account for uncertainty in the 

initial locations. The output value of the average distance between strongly linked events 

indicates the density of the hypocenter distribution and indicate the value of maximum event 

separation distance for input catalogue data (WDCT) parameter used in HYPODD.  

The value for minimum number of catalogue links per event pair to form a continuous cluster 

(OBSCT) in HYPODD should be equal to or less than the value for MINLNK in PH2DT. 

Moreover, it is possible to choice two methods to solve the system of DD equations: 

• The singular value decomposition (SVD) described in the Chapter 2 section 2.2.1. It is 

used for examining the behaviour of small systems (∼100 events). 

• The conjugate gradients method (LSQR) (Chapter 2 section 2.2.3) for systems of a 

large number of events. It takes the advantage of the sparseness of the system of DD-

equations. Errors reported are grossly under estimated (Waldhauser, 2001).   

In Table I and II are described the parameters for the input file of PH2DT and HYPODD 

respectively. 

MINWGHT Minimum pick weight [0-1(best)] 

MAXDIST Maximum distance (km) between event pair and station 

MAXSEP Max. hypocenter separation between event pairs (km) 

MAXNGH Max. number of neighbours per event 

MINLNK Min. number of links required to define a neighbour 

MINOBS Min. number of links per pair saved 

MAXOBS Max. number of links per pairs saved  

 

Table V: Parameter description for the PH2DT input file. 

 

Input files: 

• Input control file for PH2Dt (ph2dt.inp) 
•  File with station coordinates 
• File with event locations and phase data. 
• Input file for HYPODD (*.inp)   
• Output of PH2DT program event locations (*.sel) 
• Output of  phase difference times of PH2DT program (*.dt) 
• Cross correlation difference times if is used (*.cc). 
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IDAT 1=cross-correlation data only; 2= absolute (catalogue) data 

only; 3=cross-corr and catalogue data 

IPHA 1=P-wave; 2=S-wave; 3=P- and S- wave 

DIST Max. distance between centroid of the event cluster and 

stations 

OBSCC, OBSCT Min. number of cross-corr, catalogue links per event pair to 

form a continuous cluster 

ISTART Initial location: 1= start from cluster centroid, 2= start from 

catalogue locations  

ISOLV 1=SVD; 2= LSQR 

NSET Number of iteration sets  

NITER Number of iteration for the set  

WTCCP, WTCCS Weight for cross-corr P- and S-wave data. -9=data not used 

WTCTP, WRCT Weight for catalogue P- and S-wave data. -9=data not use 

WRCC, WRCT Cutoff threshold for outliers located on the tails of the cross-

corr, catalogue data. -9= no outlier removed 

WDCC, WDCT Max. event separation distance (km) for cross-corr and 

catalogue data respectively. -9= data not activated 

DAMP Damping (only for ISOLV=2) 

NLAY Number of model layers (max 12) 

RATIO Vp/Vs ratio (constant for all layers) 

TOP Depths of top of layer (km) 

VEL Layers velocity (km/s) 

CID Index of cluster to be relocated (0=all) 

ID ID of events to be relocated. Blank for all events 

 

Table VI: Parameter description of input file of HYPODD. 
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Appendix  F  

Program  GLOBALLOCALIZER  

This program was developed by Pignatelli et al, 2008 for searching of small aftershocks 

subsequent to an underground explosion. The algorithm is a computer code on a MATLAB 

platform, and has a very simple Graphical User Interface (GUI). This interactive GUI allows 

results to be rapidly processed and immediately visualized.  

Steps of the program: 

1. Computing waveform cross-correlation only for P-waves 

2. Earthquake relocation using a  Joint Hypocentral Determination (JHD) method to the 

time differences between the seismograms of two events described by Console and 

Giuntini, (2006). This is developed only for teleseismic earthquakes with a spherical 

velocity model. 

The cross-correlation procedure consist of select an event and a station waveform of 

reference. If it is necessary, it is possible to  carry out an interactive filter using a windows put 

on down-left side of the reference window. Setting: the window size, the “advance time” 

(Advance is the instant at which calculation of cross-correlation begins) and the “number of 

steps” (Step is interpolated sampling interval), the program computed waveform cross-

correlation between waveform of the reference station and the others waveforms of the same 

station for the others events using the equation (Taylor, 1982): 
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where iX and iY  are the samples of the digital waveform segments and N is the number of 

samples of the correlation window. If R assumes the maximum value of 1 then the two 
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seismograms are identical, while if they are different then they are associated with lower 

cross-correlation values. The program allows to interactively move the absolute maximum 

value of R function to a relative maximum one by button “Interactive Maxima”. The analysis 

can be saved in a file that can be used successively.  

 Input files: 

• Waveform folder (with the waveform files *.ascii) 

• Arrival time folder (with the locations and arrival times files of earthquakes *.ascii) 

• File events (containing a list of events *.dat) 

• File with station coordinates (*.dat). 
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