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Abstract 

Constraints are widely present in the flight control problems: actuators saturations or  flight 

envelope limitations are only some examples of that. The ability of Model Predictive 

Control (MPC) of dealing with the constraints joined with the increased computational 

power of modern  calculators makes this approach attractive also for fast dynamics 

systems such as agile air vehicles.  

This PhD thesis presents the results, achieved at the Aerospace Engineering Department 

of the University of Bologna in collaboration with the Dutch National Aerospace 

Laboratories (NLR), concerning the development of a model predictive control system for 

small scale rotorcraft UAS. 

Several different predictive architectures have been evaluated and tested by means of 

simulation, as a result of this analysis the most promising one has been used to implement 

three different control systems: a Stability and Control Augmentation System, a trajectory 

tracking and a path following system.  

The systems have been compared with a corresponding baseline controller and showed 

several advantages in terms of performance, stability and robustness. 
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1 Introduction 

 

Unmanned Aerial Systems (UAS) has been widely used in the military field in the past 

decade. Several mission profiles such as surveillance, reconnaissance and, more recently, 

attack have been committed to these systems obtaining numerous advantages in terms of 

human safety, cost reduction and work rate efficiency. 

The same advantages could be exploited in the civil market where UAS can be employed 

into a even wider range of tasks such as: 

 

− law enforcement 

− traffic control 

− weather monitoring 

− aerial photography 

− >.. 

 

The great potential of UAS for the civil market and the interest demonstrated by industry 

induced, in 2001, the European Community to sponsor the UAS development program 

CAPECON1, to attempt to kick-start a civil UAS industry in Europe and try to fill the gap 

with the United States. Its main goal was to provide European industry with detailed design 

and manufacture know-how on safe cost effective and commercially viable civil UAS. 

                                            

1
 Civil uav APplications & Economic effectivity of potential CONfiguration solutions 
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After a survey on industrial needs and the development of formal requirements five fixed 

wing and two rotary wing architectures were defined in order to cover all the possible 

mission requirements. 

As part of this effort the University of Bologna focused its research on the conventional 

helicopter configuration and developed the UniBo Rotorcraft Unmanned Aerial System 

(RUAS). The aim was building a technological demonstrator for the national industries 

potentially interested in the unmanned systems and to be used inside the university as 

platform for research in innovative navigation and control laws or for Human Machine 

Interface studies. 

 

 

 

figure 1.1: UniBo RUAS 

 

The system, shown in figure 1.1, is built around a modified Hirobo Eagle II 60 hobby 

helicopter which was modified to accommodate the avionics hardware, equipped with a 

more powerful engine, longer fiberglass blades, both for the main and the tail rotor, and a 

longer tail boom. The new main rotor is a 2 blades see-saw type rotor with a diameter of 

1.84 m. The rotorcraft is equipped with Bell-Hiller stabilizer bar, which augments servo 

torque with aerodynamic moment to change the blades cyclic pitch and adds lagged rate 

feedback to improve the helicopter handling qualities. The helicopter total mass is about 

11.2 kg and the engine has a maximum output power of 3hp. 

The avionics box has been accommodated in the undercarriage and contains: 

 

− a National Instruments CompactRIO system which performs both the task of 

Autopilot and Flight Management System (FMS).  
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− a crossbow NAV420 GPS-aided Attitude and Heading Reference System 

(AHRS) to provide the position, speed and attitude of the rotorcraft 

 

− an ultrasonic sensor used to measure the altitude above the ground of the 

vehicle 

 

− a data link system to transmit and receive information from the ground 

station.  

The system architecture has been validated by means of hardware in the loop testing, 

flight testing and the development of a baseline nested loop PID automatic controller. For 

more details on the evolution of the project refer to [1], [2], [3]. 

  

In the frame of this project this thesis has the aim of presenting the results achieved by the 

author in the field of the Flight Control Systems (FCS) for small scale rotorcraft UAS. In 

particular the development of an innovative FCS based on the Model Predictive Control 

(MPC) theory is presented.  

The development of a control algorithm for helicopters is a rather challenging task due to 

the instability of the system dynamics and the strong cross-coupling between all the axis. 

Moreover, as for the fixed wing aircrafts, several constraints have to be taken into account  

designing the control laws; actuator saturations, maximum attitude angles, limit load 

factors and speed constraints are only few examples of it. 

In the last decade several different control approaches have been used to tackle the 

helicopter flight control problem, from simple PID nested loop controllers [4]  to more 

complex and elaborate architectures based on optimal [5] robust [6] and non linear 

techniques  [7]. As normally done in the majority of industrial applications the respect of 

constraints is addressed only during the calibration phase together with the other 

performance requirements introducing three main disadvantages: 

 

− the result of the calibration is always a compromise between different 

requirements in particular when aggressive manoeuvring is required, 

 

− the calibration process is complicated and time demanding, 
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− there is no guarantee that the constraints will be respected and that stability 

maintained. 

 

Conversely model predictive control offers the possibility of explicitly introduce the 

presence of constraints into the controller formulation and guarantees that them will be 

respected for all the possible states configuration. This has the advantage of simplifying 

the calibration of the system since the respect of constraints has been already taken care 

of. Moreover stability of the constrained closed loop system can be mathematically 

demonstrated and, as will be shown in the thesis, this characteristic is maintained also in 

presence of significative  uncertainties. 

The thesis is organized as follows, in section 2 the models of the UniBO RUAS used in this 

thesis will be analyzed, in particular a fully non-linear model of the helicopter built into the 

FlightLab environment will be presented together with the continuous and discrete time  

models used for the control synthesis. Also the choice of model uncertainties use for 

robustness assessment will be shown in this section. 

Section 3 will give a short introduction to the model predictive theory explaining the work 

principle of this class of controllers together with the stability and feasibility problems. 

Section 4 shows different model predictive architectures giving the mathematical details of 

each formulation and analysing, with the help of simulations, the advantages and 

disadvantages of each of them. As result of this analysis the best control formulation has 

been chosen and adopted to build three different flight control systems presented in the 

following sections. 

In section 5 a Stability and Control Augmentation System (SCAS) whose aim is to control 

the body frame speeds and the heading of the helicopter is presented. A comparison with 

a baseline LQR controller is shown by means of simulation, moreover the influence of 

model uncertainties is shown using a set of Monte Carlo simulations. 

The same has been done for a trajectory tracking and a path following system respectively 

presented in sections 6 and 7. Finally, section 8 will draw the conclusions and offer further 

research recommendations.    
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2 Helicopter models 

 

 

For the purposes of this work three different kind of models of the UniBo RUAS have been 

developed. Section 2.1 describes the assumptions made to build a fully non-linear model 

of the helicopter in the FlightLab environment; starting from this a series of linear models 

used for both simulation and control purposes have been derived by means of an 

identification procedure described in section 2.2. Finally, uncertainties have been added to 

the principal physical parameters of the model in order to evaluate the robustness 

characteristics of control system, this uncertain model is described in section 2.5. 

2.1 Non-linear model 

In order to better validate the control architectures developed in this thesis a non-linear 

model of the helicopter has been built into the FlightLab environment (a tool specifically 

intended to build rotorcraft models and provide analysis and simulation instruments).  

The rotorcraft has been conceptually divided into its main physical components, namely: 

 

− Main rotor 

− Bell-Hiller bar 

− Tail Rotor 

− Control Chain (actuators, rods, etc.) 
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− Fuselage             

− Engine 

 

In the following each component model is described into the details justifying the choices 

made during the modelling phase 

2.1.1 Main rotor 

This component has been modelled as a 2-blade teetering rotor with a constant speed of 

1100 rpm. The blades have been considered rigid with a uniform density distribution. The 

blade section profile has been kept constant along the entire span and has been 

approximated by the TsAgi 14% shape; the aerodynamic data has been estimated by 

using the CFD software package JavaFoil. The Peters-He three state dynamic inflow 

model has been adopted to calculate the inflow field and the aerodynamic interference 

between the main rotor wake and the fuselage has been considered.  

 

 
figure 2.1: Main rotor and Hiller bar hub 

 

2.1.2 Hiller bar 

The stabilizer bar (figure 2.2) has the function to provide a feedback action that improves 

the flying qualities of the rotorcraft, moreover the system provides a portion of the torque 

needed to control the main rotor blades pitch reducing the power needed by the actuators. 

This components models only the rotor dynamics while the connection between the Bell-

Hiller stabilizer, the control servos and the main rotor will be described in the next sections. 

The stabilizer is located directly above the main rotor and has been modelled as a second 

teetering rotor. As the main rotor it has been considered rigid with the same constant 
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speed of 1100 rpm. The inertia distribution has been calculated summing the contributions 

of the plastic paddles, the supporting rod and the calibration brass masses. 

 

 

 

 
figure 2.2: Hiller bar 

 

The paddles are built using a NACA0015 profile and no aerodynamic interference with the 

remaining components has been considered since the stabilizer paddles are considerably 

smaller than the main rotor blades. 

2.1.3 Tail rotor 

The tail rotor has been modelled as a simple Bailey2 rotor since only the collective pitch 

control is applied. The blades have been considered rigid and uniform, a NACA 0010 

airfoil has been used to model the aerodynamic characteristics. 

 

2.1.4 Control chain 

 

In the real helicopter the servo actuators are connected, via a complex mechanical gear 

system, to a couple of swashplates. One is located on the tail rotor and controls the 

corresponding blades, the second controls the pitch of the stabilizer paddles and, via a 

mechanical mixer, the pitch of the main rotor blades. This mixer sums the contribute given 

from the swashplate to another which is proportional to the stabilizer flapping angle. The 

servos are controlled using a Pulse Width Modulated (PWM) electric signal where the 

displacement of the actuator is proportional to the duty cycle of the input. This complex 

system can be modelled by the following relationships: 

 

ψβψβψθ sin)(cos)()( 212111 cbhblongsbhalatcc KXKKXKXK ++++=  2.1 

                                            

2
  A Baley rotor is a rotor in which only the coning angle is considered while the longitudinal and lateral flapping are not considered; this is the 

typical configuration of tail rotors. 

Paddles 

Calibration mass Supporting rod 
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ψψψθ sincos)( 222 blongalat XKXK +=  2.2 

  

pped XK=)(3 ψθ  2.3 

 

Where 321 ,, θθθ  are the blade pitch of the main rotor, the stabilizer and the tail rotor 

respectively, pcba XXXX ,,,  are the servo control inputs and cs 22 ,ββ  are the lateral and 

longitudinal flapping angles of the Bell-Hiller rotor. The following observations can be 

done: 

 

− the main rotor cyclic pitches are a linear function of the cyclic controls and 

the Bell-Hiller stabilizer flapping angles; 

− the stabilizer paddles do not have any collective pitch; 

− the tail rotor cyclic pitches are forced to be 0 according to the Bailey rotor 

model used 

 

All the gains K present in the equations have been obtained measuring the pitch of each 

blade varying manually the control inputs on fixed azimuth positions (0 and 90 degrees), 

figure 2.3 shows the result of the experiment. 

 

 

 
figure 2.3: PWM to pitch data 

 

The equations 2.1, 2.2, 2.3 have been implemented using the Control System Graphic 

Editor (CSGE, a module of FlightLab) and connected to each single rotor. 
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2.1.5 Fuselage 

This component models all the inertial and gravitational actions due to the entire UAS and 

the aerodynamic effects introduced by the fuselage body. In this model the fuselage has 

been considered as a rigid body; the mass and inertia variations due to the fuel 

consumption have been neglected. The centre of gravity position and the inertia tensor 

have been measured directly on the model trough dedicated experiments.  

 

Several experimental and CFD methods have been considered in order to calculate the 

aerodynamic coefficients of the fuselage. All the approaches revealed to be too complex 

and time demanding in relation with the accuracy needed in this application. In the model, 

data from full-scale helicopters given in [1] has been used (see figure 2.4) 

      

 

 
figure 2.4: fuselage aerodynamic data 

      

2.1.6 Engine 

 

Flight test data show that the rotor speed variation during typical manoeuvres is about 50 

rpm that has a negligible effect on the dynamic behaviour. For this reason in this model no 

engine dynamics have been added, the rotor speed has been kept constant at a nominal 

value of 1100 rpm. 

2.1.7 Validation 

In order to have some indication about the quality of the model some comparison with the 

real data can be made.  Table 2.1 resumes some comparisons made with real flight data 
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 Model Flight Data 

Collective pitch [deg] 7 6.5-7 

Roll attitude [deg] 2.3 ~3 

Power required [hp] 0.97  
 

Table 2.1: model and real data comparison 

 

Moreover the lock number of the main rotor and the Hiller bar have been calculated from 

the model linearization and resulted in 44.3≅fγ  and 59.0≅sγ  respectively, which 

corresponds to the literature data available for the same class of machines [9], [10].  

A detailed validation with flight data has not been possible since, after a major accident, 

the rotorcraft has been repaired and modified. No flight data has been recorded yet in the 

new configuration. 

 

2.2 Linearized models 

 

In the formulation of the flight control systems used in this work a linear model of the 

rotorcraft dynamics is necessary, for this reason the FlightLab model described in the 

previous section has been linearized around several trim conditions. In the following the 

structure of the model and the linearization procedure used to obtain it will be described. 

Finally, the validity of such models will be demonstrated by comparing the response of the 

linear and the non-linear models subject to the same inputs. 

 

2.2.1 Model structure 

 

For the purpose of this work the classic state space linear model has been used 

 

BuAxx +=&  2.4 

 

where x and u are respectively the state and input vectors of the model and A and B the 

stability and control matrices. In order to obtain a good linear approximation of the plant is 

important not only to get the correct values for the stability and the control matrices but 

also to include all the significative states in the relative vector.  
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In full-scale helicopters the rotor flapping dynamics is significantly faster than the body 

motion and the related states can be neglected using a quasi-static flapping 

approximation. In small-scale model helicopters instead, the main rotor dynamics (slowed 

by the introduction of the stabilizer bar) and the body dynamics (very fast due to the small 

scale) have comparable time constants and the rotor flapping dynamics have to be 

included in the linear model.  

The state and input vectors become then respectively: 

 

Twvurqpdcbax ],,,,,,,,,,,,[ ψϑϕ=  

 
T

pcba xxxxu ],,,[=  

2.5 

   

where: 

− a, b, c, d are the longitudinal and lateral flapping angles of respectively the 

main and stabilizer rotors; 

− p, q, r, the body frame angular rates; 

− u, v, w the body frame linear speeds; 

− ψϑϕ ,,   the helicopter Euler angles; 

− pcba xxxx ,,,  the lateral and longitudinal cyclic pitch, the collective pitch and 

the tail rotor pitch respectively. 

 

2.2.2 Model linearization procedure 

The standard linearization tool provided by FlightLab gives to the user a list of states that 

can be selected and included in the state space and input vectors; the states available on 

this list depend on the particular choices made by the user when building the model. The 

linearization algorithm runs the non-linear model twice for each state included in the 

linearized vector; in each simulation a small disturbance is added or subtracted from one 

of the states while the others are kept fixed to the trim value; moreover all the states not 

included in the vector are left free to evolve. The stability derivatives are obtained by 

calculating the time derivatives of the states in these conditions once the free states have 

reached a steady state condition.  

Due to the structure of the model, the rotor flapping states are not available in the standard 

tool list; on the other hand, the time scale of the fuselage and the rotor dynamics are not 
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so much separated as happens for full scales rotorcrafts and the steady state assumption 

for the rotor dynamics can not be done. For this reason a different approach to obtain the 

linear models had to be taken. Since the model predictive control is fundamentally a time 

domain technique an identification procedure on the same domain has been adopted. The 

basic idea is to calculate the stability and control matrices by minimizing the difference 

between the response of the linear and the non-linear model subject to the same inputs.  

For each trim condition a set of simulations with the nonlinear model have been carried out 

recording the following data: 

 

1) the system inputs  u; 

2) all the model states x; 

3) the forces and moments introduced by each component   

 

The data sets have been obtained forcing each control and state (except the flapping 

angles) to follow a 3-2-1-1 or sine-sweep profiles while the remaining states were frozen in 

the trim condition. In this way it has been possible to isolate the contribution of each 

control and state in the stability derivatives independently. 

Analysing the frequency content of the obtained data makes it possible to identify two main 

contributions (see figure 2.5):  

1) a low-frequency contribution due to the fuselage and flapping dynamics (from 0 to ~ 5 

Hz); 

2) a sequence of higher harmonics corresponding to multiples of the main rotor speed (36 

and 73 Hz). 

 

Since the latter contributions are not interesting for this application the data has been cut 

off above 10Hz. 
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figure 2.5: Typical power spectral density of the non linear model outputs 

 

Given the classic linear model formulation 

 

BuAxx +=&  2.6 

 

The identification process has the objective to find the correct numerical values on the 

matrices A and B in order to keep the linear and the non-linear models response as similar 

as possible.  In order to minimize the number of variables that have to been identified at 

the same time each row of the model 2.6 has been calculated separately. The 

identification algorithm calculates the terms in the ith row of the matrices by minimizing the 

following cost function: 

 

∫ −=
T

lnl dtJ
0

2)( λλ  2.7 

 

Where λ is a variable associated to the row considered and the subscripts nl and l are 

referred to the non-linear and linear response respectively. The non-linear response is 

calculated directly using the FlightLab model while the linear approximation is calculated 

by: 

 

nlnll �uMx +=λ  2.8 
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The rotor dynamics stability and control coefficients have been calculated using as 

identification variable λ  the time derivatives of the flapping angles ( dcba &&&& ,,, ).  

The rigid body dynamics has been identified indirectly, the forces and moments of each 

model component have been used as identification variables. Once all the force and 

moments have been identified, the linear expression obtained have been substituted into 

the 6 d.o.f. rigid body equations 2.9 allowing to obtain the complete linear model by 

analytically linearizing the remaining parts. This choice has been made because facilitated 

the choice of the initial conditions for the identification algorithm and reduced again the 

number of variables to be identified.    
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2.2.3 Model validation 

 

In order to validate the results obtained both the linear and the non-linear model have 

been excited by a common input sequence (different from the ones used in the 

identification process) and the responses obtained have been compared. 

figure 2.6 shows an example of the comparisons, in this case a 3-2-1-1 input has been 

imposed in the collective control. As can be seen there is a good correspondence between 

the linear and the nonlinear model, especially to the direct contributions, the cross-

coupling effects are captured with lower accuracy (in this example the lateral dynamics). 

The typical frequencies of both the flapping and the body dynamics are well captured 

giving an adequate correspondence between the linear and the fully nonlinear models, 

moreover those frequencies are in the same range of what can be expected of this class of 

vehicles and reported in the known literature [10]  
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figure 2.6 Comparison between linear and nonlinear models 

2.3 Simulation models 

 

The direct implementation of the control systems in the FlightLab environment is too 

complicated and time demanding to be done in the first phase of the control architecture 

evaluation. For this reason the simulations needed to evaluate the characteristics of the 

control architectures have been carried in Simulink and a simplified model has been 

implemented as depicted in figure 2.7 

 

 

 

figure 2.7: Simulation model scheme 

 

The body frame dynamics has been represented by the linear state space model 

developed in this section where all the states are supposed to be measured and available. 

The position of the helicopter has been represented in the North-East-Down (NED) 
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reference frame and has been calculated rotating the body speeds with the full non-linear 

direction cosine matrix i

bT  and then integrating the rotated speeds. 
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2.4 Prediction model 

 

Model predictive control makes use of a plant of the model to calculate the control action. 

As will be explained later, in this work the prediction model is represented by a discrete 

time linear model, which has been obtained from the continuous time model as follows. 

Given a constant sampling time Ts the time derivative can be approximated by: 

 

sT

kxkx
x

)()1( −+
=&  2.11 

 

by substituting it into the continuous time formulation 2.6 we obtain: 

 

)()()1()1( kBuTkxATkx ss ++=+  2.12 

 

In order to maintain a simple notation the same symbols have been used for both discrete 

and the continuous time characteristic matrices, no confusion should be raised by this 

choice since the difference will be clear by the context. 

 

)()()1( kBukAxkx +=+  2.13 

 

 

2.5 Model uncertainties 

In order to evaluate the sensitivity of the control systems to the possible mismatches 

between the prediction model and the controlled plant a series of uncertainties have been 

artificially added to the simulation model using the robust control toolbox of Matlab. 
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The set of parameters to be modelled as uncertain has been chosen analysing the basic 

principles of the helicopter flight dynamics. As well known in these kinds of vehicles the 

main source of control forces and momentums is the main rotor which can be represented 

by a simple disk flapping around the hub. The flapping dynamics can be represented by 

the simplified equations: 
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and the following parameters have been chosen as uncertain: 

− the main and stabilizer rotor time constants: srmr ττ , , 

− the control gains: xbxaxaxb DCBA ,,,  

− the Bell-Hiller mixer gains dc BA ,  

With reference to figure 2.8 the roll and pitch dynamics can be expressed as: 
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and only the inertia parameters have been considered  uncertain. 
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figure 2.8: rotor momentums acting on the fuselage 

 

For what concerns the linear motion the longitudinal and lateral dynamics can be 

expressed as: 
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again only the mass parameter is sufficient to represent uncertainty. 

With the same considerations, also the following parameters have been considered 

uncertain: 

− z-axis principal momentum of inertia zzI  

− the collective and tail control gains. 

 

A detailed analysis on the uncertainty levels goes beyond the scope of this thesis; in order 

to have an indication of the robustness of the control system an error up to 25% on each 

uncertain parameter has been used.  
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3 Model predictive control  

Mayne at al. in [11] define Model Predictive Control (MPC) or Receding Horizon Control 

(RHC) as is called sometimes as a form of control in which the current control action is 

obtained by solving on-line, at each sampling instant, a finite horizon open-loop optimal 

control problem, using the current state of the plant as the initial state; the optimization 

yields an optimal control sequence and the first control in this sequence is applied to the 

plant. 

In other words, the predictive approach obtains the input to be applied to the process by 

minimizing the difference between the future reference and the predicted outputs of the 

system, the latter are calculated by means of a proper model of the plant. MPC differs from 

other conventional approaches since it solves the optimal control problem on-line for the 

current state of the plant, rather than determining offline a feedback policy (that provides 

the optimal control for all states). 
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figure 3.1 MPC base structure 

 

As will be explained later the MPC formulation is very general and includes a wide class of 

algorithms, each of them has its own particular characteristics but shares the same base 

structure (see figure 3.1) and the principal components, namely: 

  

− the prediction model; 

− the objective function; 

− the optimization solver; 

− the constraints expression. 

 

The various MPC approaches owe their success, especially in the process industry, due to 

the ability of: 

 

− handling multivariable processes naturally; 

− taking into account for input and state constraints explicitly; 

− handling non minimum phase and unstable plants; 

− being easy to tune. 

 

On the other hand, the use of MPC has been limited: 

 

− due to the time domain nature of the approach which leads to partially lose 

the frequency domain information; 
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− to systems with relatively slow dynamics due to the heavy computational 

burden associated with the solution of the constrained optimal problem. 

 

The first applications of MPC can be found in the petro-chemical and process industry 

where economical considerations required operating points on the boundary of the 

admissible sets defined by the constraints. Examples of such early predictive algorithms 

are given by IDCOM (identification and command) proposed by Richalet et al in 1978 

which employed a finite horizon pulse response linear model, a quadratic cost function, 

and input and output constraints. Or by program quadratic dynamic matrix control (QDMC; 

Garcia& Morshedi, 1986) where quadratic programming is employed to solve exactly the 

constrained open-loop optimal control problem that results when the system is linear, the 

cost quadratic, and the control and state constraints are defined by linear inequalities. 

Similarly to other technical inventions MPC was implemented by industries long before the 

development of a well established theory, nevertheless a great research effort has been 

made by the academic community since the mid eighties and nowadays a strong 

conceptual and practical framework for both practitioners and theoreticians has been built. 

The basic concepts of both linear and non-linear MPC can be found respectively in [11] 

and [14]. 

In the following, the mathematical foundations of the predictive approach will be given 

together with the more important theoretical results regarding stability and feasibility 

problems. 

 

3.1 MPC basics 

 

figure 3.2 MPC optimization 
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In order to obtain a rigorous formulation of the model predictive approach we assume that 

the plant can be modelled, has usually happens in the MPC literature, by the difference 

equation: 
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where x is the state vector with n elements, u the input vector of dimension m, y the z-

dimensional output vector, f and h generic functions used to model the process. 

The control action is obtained by solving, at each sampling instant k, an open loop optimal 

problem defined by a cost index in the form  3.2 and the set of constraints 3.3. The result 

of the optimization is a sequence of future controls )](),....,1([ cHkuku ++=u  where only 

the first input u(k+1) is actually applied to the plant. 
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The cost index J is defined over a future time window, usually called prediction horizon, 

which starts at the actual sampling instant k and ends Hp steps later. Each step is long one 

sampling interval. The cost is given by the sum of two different contributes: the stage cost 

L which is function of the predicted states and inputs and the terminal cost F which is 

function only of the state at the end of the prediction horizon. 

The constraints are formulated by means of the sets U, X and fX . The first is a subset of 

mR  and gives the input constraints; the second is a subset of nR  and limits the admissible 

states while the terminal set n

f RX ⊂  involves only the last state of the prediction and is 

used for stability reasons as will be explained later.  

As depicted in figure 3.2 a control horizon is often introduced, in this case only the first Hc 

control moves are allowed while the remaining cp HH −  are obliged to assume a fixed 
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value; this is done in order to reduce the degrees of freedom of the optimization reducing 

its complexity; in the following when is not specified pc HH = . 

3.2 Stability  

 

The most important theoretical result in the MPC theory is given by the possibility of 

guaranteeing the stability of the closed loop system, by properly choosing the basic 

components of the optimization problem.  

In order to demonstrate this property a local control law )(xku f=  has to be introduced, 

this control action is applied only when the state x is inside the terminal constraint set Xf. 

On this premise is possible to demonstrate that the constrained closed loop system is 

stable if: 

 

S1. fff XXXX ∈⊂ 0 and closed is ,  (the state constraints are satisfied in the 

terminal set) 

 

S2. ff XxUxk ∈∀∈ ,)( (the input constraints are respected by the local control 

law) 

 

S3. fff XxXxkxf ∈∀∈))(,(  (Xf  is positively invariant subject to fk ) 

 

S4. fff XxxkxlxFxkxfF ∈∀≤+− ,0))(,()())(,((  

 

The detailed demonstration can be found in [1]. 

 

3.3 Feasibility 

 

The predictive control approach is based on the ability of finding a solution of the open 

loop optimization problem given by equations 3.2 and 3.3 for each possible condition of 

the plant. Even before trying to find the solution is worth to understand if such a solution 

exists or not, in other words we need to ask: is the open loop problem feasible? 
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figure 3.3 terminal set and feasibility 

 

 

Analyzing the constraints structure, see figure 3.3 which shows a bi-dimensional example, 

is possible to understand how the presence of the terminal constraint can be a source of 

unfeasibility. In fact, given an initial condition x(k) the terminal constraint requires to find a 

future control sequence in U, and a corresponding state trajectory in X, which drives the 

last state of the prediction inside the terminal set Xf  in less than one prediction horizon. 

Such a condition is quite restrictive and, in our knowledge, there are no general results 

giving conditions for the feasibility of the finite horizon problem.  

The solution of the feasibility problem is normally addressed at the implementation level, in 

other words when the choices of the prediction model, the cost function and the 

constraints expressions are made. 

The solutions investigated for the flight control system will be discussed in the next section 

together with the other implementation issues. 
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4 Controller implementation 

 

In order to successfully apply MPC to practical control problems the base concept 

described in section 3 has to be specialized to meet the specific needs of the particular 

application under exam. 

In this section the implementation issues addressed during the development of the flight 

control system will be described and the solutions obtained analyzed into the details, in 

particular: 

  

1. a fast optimization algorithm based on the solution of a quadratic programming 

problem has been implemented; 

 

2. the ability of following a given reference rather than regulate the plant towards the 

origin has been obtained by a proper coordinates transformation; 

 

3. the feasibility problem has been addressed using two different techniques: a virtual 

set-point and a infinite prediction horizon; 

 

4. zero steady state error has been obtained by using integral actions and state 

observer techniques. 
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4.1 Open loop optimal problem solution 

 

The MPC theory does not provide a way to calculate the solution of the optimization 

problem and, therefore, a suitable optimization algorithm has to be found. In the literature 

different classes of solvers such as interior point, fast gradient or explicit methods have 

been proposed each one with different characteristics and computational burdens. For the 

purposes of this work an interior point method especially developed for real time 

applications have been used. This optimizer is able to solve quadratic programming 

optimization problems in the form of eq. 4.1 
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Where ν  is the vector of optimization variables and for MPC problems corresponds to the 

future control sequence. 

 

In order to transform the optimization problem given by equations 3.2, 3.3 into a QP 

problem the stage and terminal cost functions have to be chosen in the quadratic form 4.2 

and the model has to be in the linear time invariant form 4.3. 
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the future state sequence [x(k+1),>,x(k+Hp)] can be obtained by recursively applying 

equation 4.3 to the previous state of the sequence as follows: 
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or, in a more compact notation 

  

ux ux SxS += 00  4.5 

 

where the bold character denotes a sequence of vectors, e.g. x=[x(k+1),>,x(k+Hp)],  and 

)](),([0 kukxx =  . 

On the other hand, the cost function can be written in the matrix form  
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In short 

 

uuxx
TT RQJ +=  4.7  

 

By substituting 4.5 in 4.7 we can obtain the following: 
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For what concerns the constraints usually are expressed in the polyhedral form 4.9 over 

the entire prediction horizon. 
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In order to transform this expression in the desired form is necessary to explicitly write the 

constraints over the future states and input sequences: 
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By substituting 4.5 in the future states expression, is possible to obtain the desired form. 
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Both the cost function expression in 4.8 and the constraints 4.11 are written in the desired 

QP form. It is important to notice that the linear term G and the constraints limits minν  and 

maxν  depend on the initial condition 0x which gives the closed loop behaviour to this control 

architecture. 
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Is also worth to point out that the conversion from the model predictive standard 

formulation to the quadratic programming one cannot be done completely offline, in fact 

both the cost function and the constraint formulation depend on the initial condition 0x  

which changes at every sampling instant and, hence, the passage from 4.8 and 4.11 to 4.1 

has to be done at each iteration. 

4.2 Reference tracking 

 

The open loop optimization problem described by equations 3.2 and 3.3 is written in the 

regulator form; in other words, the objective of the control system is to drive the state 

towards the origin. In this work, on the other hand, the objective is to drive the outputs of 

the system y(k) to follow a given reference vector r(k). 

In order to use the results obtained for the regulator formulation also for the tracking is 

sufficient to perform an axis translation given by: 
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where the steady state values ssx  and ssu  can be calculated by imposing: 
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In particular using a linear prediction model the new equilibrium point can be easily 

calculated by: 
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the cost function 4.2  can be then transformed in: 
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where the notation 
2

Q
x  denotes the quadratic form QxxT  and has been introduced in 

order to simplify notation.  

In order to transform 4.15 in to the QP formulation a sequence of future references r and 

steady state values 
ss
x ,

ss
u  are needed. There are two possible cases: 

 

− the future set-point is known and, therefore, is possible to select the window 

corresponding to prediction horizon used in the optimization; 

 

− only the actual reference vector r(k) is known and is kept constant over the entire 

horizon. 

 

The sequence of steady state values can be calculated from the reference in the two 

different cases respectively using equations 4.16 and 4.17 
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In the following equation 4.18 will be used for both cases 
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Again, the cost function can be written in the quadratic programming form obtaining: 
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which, besides the already mentioned dependence from 0x , depends from the future 

reference sequence allowing the system to take into account for the set-point. 

 

4.3 Feasibility guarantee 

 

In order to use the predictive approach for the flight control system the feasibility of the 

open loop optimal problem has to be guaranteed in any case. The main cause of 

unfeasibility is due to the presence of the terminal state combined with a finite prediction 

horizon. As explained in section 3.3 given an initial condition x(k) can happen that is 

impossible to reach the terminal set within the prediction horizon. In order to overcome this 

problem three different approaches can be adopted: 

 

− move the terminal set towards the initial condition shortening the path from 

the initial point  to it; 

 

− enlarge the terminal set obtaining the same effect as the previous method; 

 

−  increase the prediction horizon in order to give more time to the system to 

reach the terminal set. 

 

4.3.1 Virtual reference 

A terminal control law )(xku f=  has to be defined in order to guarantee the stability of the 

closed loop system. Since we are making use of linear state space models of the plant the 

more natural way to define it is by the classic linear feedback law 

 

�rKxuxxKu ssss +=+−= )(  4.20  
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 where K is obtained by the well-known linear quadratic regulator algorithm using the same 

weights used in the MPC cost function (Q and R) and xu KWW� −= . The stability 

conditions S1 and S2 are satisfied by defining the terminal set as: 

 

{ }maxmin| u�rKxuXxX f ≤+≤∈=  4.21  

 

which, among the rest, depends on the reference vector r. 

This method makes use of this characteristic to move the terminal set towards the initial 

state x(k) in order to guarantee feasibility. To do so the real reference r is substituted by a 

virtual reference z which is calculated together with the other optimization variables in 

order to minimize the cost function: 
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is worth to notice that the first part is similar to the standard cost function 4.15 besides the 

fact that the system is driven to follow the virtual reference rather than the actual one; the  

additional term  
2

T
rz −  has the function to keep the virtual and the real set-points as near 

as possible in a quadratic sense. 

The terminal cost can be calculated directly by imposing the stability condition S4 with 

strict equality: 
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As done before the optimization problem can be transformed into the quadratic 

programming formulation obtaining: 
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A final consideration has to be done on the computational burden associated to the 

solution of the optimal problem. Indicating with m the dimension of the input u and with v 

the dimension of r is possible to calculate the dimension of the optimization vector which 
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gives a measure of the complexity of the optimal problem. Considering the case where the 

reference is known over the entire prediction horizon and the virtual reference has to be 

calculated accordingly the dimension of the optimization vector becomes: 

 

pHvmh )( +=  4.25  

 

while considering the reference constant over the entire horizon the dimension reduces to: 

 

vmHh p +=  4.26  

 

posing m=4 and v=4, how is normal in the helicopter control problem, the computational 

burden in the second case is 45 to 50% lower than the first case depending on the 

prediction horizon chosen and, hence, only the second case has been implemented. 

In order to evaluate the performances of this architecture the speed control of the 

helicopter has been implemented. To do so is sufficient to introduce the model of the 

helicopter body dynamics as the plant model and select the body frame speeds u, v, w and 

the heading angle ψ as outputs of the system. 

 

 

 

figure 4.1: performances as function of prediction horizon 
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figure 4.2: virtual set-point as function of prediction horizon 

 

Besides the obvious variations due to the calibration of the weight matrices Q and R is 

interesting to notice the influence of the prediction time on the performances, figure 4.1 

shows the results obtained by changing the prediction horizon from 10 to 100 steps.  

As can be seen going from 10 to 50 steps the performances progressively improve 

decreasing the settling and rise times. This changing can be explained by looking at the 

virtual reference plots reported in figure 4.2, with longer prediction horizons the system can 

reach states further away from the initial condition and this allows to choose a virtual 

reference nearer the actual one. Conversely a short prediction horizon forces the optimizer 

to choose a reference near the initial condition rather than near the reference obtaining 

poor performances. 

By further increasing the prediction horizon, in the figure going from 50 to 100 steps, there 

is no gain in performances since the dynamics of the system are dominated by the 

constraints, in particular the constraint imposed on the attitude angles (± 25 degrees) limits 

the acceleration to a maximum which can not be violated even choosing higher values of 

reference. 

It is clear that such behavior is function not only of the prediction horizon but of the 

reference itself, moreover the best performances are obtained for longer horizons and, 

hence, with higher computation burdens. Such behavior is an heavy drawback for this 

method since relates the computational capabilities of the FCC with the performances of 

the control algorithm. 

 

4.3.2 Infinite horizon 

 

In order to guarantee feasibility of the open loop optimal problem a second method is to 

enlarge the prediction horizon; taking this concept to the limit this control architecture is 
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implemented considering an infinite horizon, is trivial to understand that with this choice is 

always possible to reach the terminal set however it is defined from every possible state. 

The stability conditions can be met by using: 
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on the other hand the standard formulation does not allow the system to be solved since 

an infinite number of unknown variables have to be found. In order to overcome a problem 

the control horizon is introduced, the first Hc control moves are allowed to change and are 

calculated by the optimization algorithm while the other inputs are obliged to be ssuu = . 

The cost function then becomes: 
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the second term is still impossible to be calculated numerically but, if the system is stable, 

converges to: 
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where P is the solution of the discrete Lyapunov matrix equation: 

 

0=+− QPPAAT  4.30  

 

Since the helicopter is unstable relation 4.29 cannot be applied directly but the system has 

to be stabilized first. To do so an inner control loop has been added as depicted in figure 

4.3 
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figure 4.3: inner stabilizer loop 

 

again, a linear feedback law has been used but in this architecture the weight matrices 

used are not the same of the MPC cost function but are calibrated in order to satisfy this 

linearity condition: 

 

],[ maxminmaxmin xxxuKxu ∈∀≤−≤  4.31  

 

In this way is possible to guarantee that the plant seen by the MPC system is stable for 

every possible state of the system.  

At this point the model used to calculate the steady state condition and to predict the future 

response becomes: 

 

)()()()1( kBukxBKAkx +−=+  4.32  

 

where the inputs are the reference for the stabilizer rather than the helicopter controls. The 

input constraints have to be modified as follows: 

 

maxmin uKxuu ≤−≤  4.33  
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figure 4.4: infinite horizon performances 

 

This architecture has been tested in the same framework used in the previous one and the 

results are shown in figure 4.4. As can be seen the prediction horizon has little influence 

on the performances, all the signals are similar going from 10 to 50 prediction steps. 

Moreover is possible to notice that the response is similar to the best performances 

obtained with the previous architecture. 

 

Is worth to notice that the same architecture can be obtained enlarging the terminal set. If 

we choose XX f = , which obviously guarantees feasibility for every Xx∈ , and a linear 

terminal control law Kxk f −=  the stability condition S2 corresponds to 4.31 and the 

terminal cost calculated by 4.30 or by 4.23 are equivalent. 

 

4.3.3 Soft constraints 

  

The input constraints correspond to the physical limitation of the actuators and cannot be 

exceeded in any case. On the other hand the state constraints are imposed by the 

designer for several different reasons but do not correspond to any physical limitation of 

the helicopter. An example of this is the attitude angle, in the previous examples has been 

limited to be less than 25 degrees, but the helicopter can reach also higher values.  
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Modelling errors or disturbances, such as wind gusts, can drive the system outside the 

limits imposed by the state constraints, when this happens the optimization problem could 

become unfeasible. This happens when, given all the constraints the first states in the 

predicted sequence cannot be driven back into the admissible state subspace X. 

Since is very likely that this condition will occur during real flights a way to restore 

feasibility is needed, two approaches can be used in this case: 

 

a. detect the situation and use a different controller, 

 

b. formulate the MPC architecture in order to be robust to such a 

situation. 

 

The first approach is more complicated since requires a way to detect unfeasibility and 

needs a second control system capable of dealing with the situation, conversely the 

second approach is more attractive even though implies a modification of the optimal 

control problem. 

The solution adopted distinct two different classes of constraints: 

 

− hard constraints which can not be exceeded under any circumstances (like 

the input constraints) 

 

− soft constraints that can be exceeded only if feasibility can not be obtained 

otherwise. 

 

The first class has been applied to the input constraints since those have to be respected 

anyway while the state constraints have been softened in order to enable the system to 

restore feasibility. To do so a set of slack variables ε has been introduced in the state 

constraints formulation: 

 

maxmin xxx ≤−≤ ε  4.34  

 

  by means of these variables the admissible state subspace can be moved in every 

direction as necessary to restore feasibility. In order to use such possibility only when 

necessary the vector of slack variables is weighted in the cost function transforming it into: 
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figure 4.5 shows the comparison between two different controllers, both have been 

implemented using the infinite horizon architecture but one uses all hard constraints while 

the second implements the soft constraint architecture described above. 

 

 

figure 4.5: comparison between soft and hard state constraints 

 

In the first case the problem becomes unfeasible after 11.2 seconds from the begging of 

the simulation, the input is set to the steady state value and the system is controlled only 

by the inner stabilization loop. As can be seen the unfeasibility starts as soon as the 

attitude exceeds the limit value and no control is given by the MPC algorithm until the inner 

stabilizer drives back the system into the feasible region; is worth to point out that once the 

MPC stops working the stability of the closed loop is not guaranteed anymore especially 

when controlling the non linear plant. 

Conversely when the state constraints are softened the unfeasibility does not occur even if 

the attitude reaches values higher than the 25 degrees limit. At this point the MPC keeps 

controlling the system and all the stability guarantees are valid. 
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4.4 Offset-free control 

 

One of the more common requirements for a control system is to avoid errors at regime. 

The presence of mismatches between the real behavior and the predicted dynamics, due 

to modeling errors and external disturbances, is the cause of such errors in the predictive 

approach. Once again is possible to modify the control system architecture in order to 

avoid this behavior. One possible approach is quite classic and consists into adding the 

integral of the tracking error into the state vector and penalize it into the cost function. A 

less obvious approach makes use of a particular formulation of the plant model where the 

inputs are moved into the state vector; an observer estimates them by using only the 

information on the system outputs coming from the sensors. 

4.4.1 Integral action 

The idea of compensate for steady state errors using an integral action is based on the 

classic PID architecture. In order to implement this feature into the MPC control the first 

step is to obtain a prediction model where the integral of the tracking error e is calculated. 

To do so is sufficient to expand the linear model as follows: 
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the future state becomes function of two different inputs: the actual inputs u which have to 

be optimized and the reference r  that has to be treated as a parameter by the optimization 

algorithm. 

In order to obtain the future control sequence is possible to use the same procedure seen 

before and obtain: 
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which can be included into the cost function in order to obtain the QP formulation: 
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The control scheme is then modified in order to include the feedback of the integral error 

as depicted in figure 4.6 

 

 

 

figure 4.6: Integral action architecture scheme 

 

In figure 4.7 the comparison between two different controllers is shown. The infinite 

horizon control developed in section 4.3.2 and the same controller augmented with the 

integral action. 

 

 

figure 4.7: effects of the integral action 

 

A small disturbance has been introduced at the second 20, as can be seen the baseline 

controller, indicated in red, presents a constant tracking error. Conversely the introduction 

of the integral action allows the system to cancel this error. 
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On the other hand a significative overshoot can be noticed on the step response of the 

system when the integral action is introduced. This is caused by the interaction between 

the constraints and the integral called wind-up. As can be seen the lateral acceleration of 

the helicopter his limited by the attitude constraint, when this limit it reached the integral of 

the error keeps increasing without any further effect on the performances. When the set-

point is reached the contribute of the integral is higher than the necessary and the system 

keeps accelerating. At this point the error is inverted and the integral error decreases 

reaching the correct value. 

In the control literature several anti wind-up schemes can be found, all rely on the same 

basic concept: when the saturation is reached the integration action is freezed at the 

reached value. The same concept has been applied here by using the following relations: 
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where the subscript i identifies the single component of the error vector and are reported in  

Table 4.1. 

 

i  
ii yr ,  

ix  ixmin,  ixmax,  

1 uu sp ,  ϑ  minϑ  maxϑ  

2 vvsp ,  ϕ  
minϕ  maxϕ  

3 wwsp ,  
cx  

mincx  maxcx  

4 ψψ ,sp  r  minr  maxr  

 

Table 4.1: anti wind-up limit variables 

 

The anti wind-up scheme adopted adds a non linearity on the controlled plant and, 

therefore, is not possible to include this feature on the prediction model. This leads to a 

mismatch between the predicted integral error and the one actually calculated but this 

error has no consequences on the practical application of this control architecture. 
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figure 4.8: effect of the anti wind-up system 

 

In figure 4.8 the effect of the anti wind-up system is clearly shown: the ability of canceling 

the steady state error has been maintained without variations while the overshoot caused 

by the integral wind-up has been eliminated obtaining lot better tracking performances. 

Finally a robustness analysis has been performed by means of Monte Carlo simulations, 

the controlled plant has been substituted by the uncertain model described in section 2.5 

and the uncertainties have been randomly chosen at each simulation.  

In figure 4.9 a representative set of the simulations has been reported, is worth to notice 

that all the constraints have been respected and the tracking error at regime has been 

cancelled by the presence of the integral action.  
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figure 4.9: Monte Carlo simulation 

4.4.2  State observer 

In order to obtain offset-free control with MPC a different approach has been proposed in 

[17], the prediction model is augmented by using the delta-u formulation reported in 

equation 4.40 and an observer estimates  both the states x and inputs u in order to 

minimize the mismatches between the predicted and the real outputs. 
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These estimates are calculated as follows: 
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and are used by the MPC algorithm as initial states of the optimization. The overall control 

scheme is reported in figure 4.10. 

 

 

 

figure 4.10: state observer control architecture 

 

In this scheme the offset free control is achieved since the mismatches between the 

predicted outputs and the  actual ones are lumped into the estimates of the unmeasured 

variables and the inputs. 

In figure 4.11 the results of a Monte Carlo simulation performed with the state observer 

control architecture are shown. Zero steady state error has been obtained but the attitude 

constraints has not been respected, this is caused by the fact that the real and the 

estimated values are different and the actions taken by the MPC control to respect the 

constraints do not obtain the desired result on the real plant. 
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figure 4.11: Monte Carlo simulation 
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5 Stability and Control Augmentation 

System 

 

One of the more diffused ways to control the motion of the UAS is trough remote piloting; 

the operator directly controls the air vehicle from the ground station using an Human 

Machine Interface (HMI) really similar to those used in manned aircrafts. 

As already mentioned helicopters are unstable and heavily coupled systems and are really 

difficult to pilot, the SCAS system has the aim of stabilize and decouple all the controlled 

axis of the helicopter in order to simplify the task of the operator; moreover the same 

system could be also used as an inner control loop of more complex Guidance, Navigation 

and Control (GNC) systems.  

In the following sections the control system architecture will be described in depth and a 

set of simulations will be shown in order to demonstrate its performances.  

5.1 SCAS control structure 

 

The aim of the SCAS is to control the body speeds and the heading of the helicopter, since 

these variables are included in the standard linear approximation of the plant (see eq.2.5) 

this can be directly used into the control system definition. Given the analysis presented in 

section 4 the following base architectures have been joined together: 
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− the infinite prediction horizon control, 

− the integral error action with the antiwind-up correction 

− the soft constraints formulation.  

 

For clarity in the following the complete controller formulation is reported. The inner 

stabilizer loop has been obtained by the classic LQR control procedure imposing the 

weight matrices as: 

 

IRIQ 1000   , ==  5.1  

 

and the prediction model has been set as follows: 
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The cost function to be minimized is 
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where the subscript a indicates the state and inputs of the augmented model 5.2. The 

weight matrices Q and R are different from the ones used to calibrate the inner stabilizer 

and have been tuned in order to avoid response overshoot for low and medium aggressive 

manoeuvres while maximizing performances. 
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Finally, the input and state constraints are reported in Table 5.1 

 

Variables Symbol Limits 

Inputs u  trtr uu −÷− 100  

Flapping angles dcba ,,,  deg1515 ÷−  

Angular speeds rqp ,,  srad /22 ÷−  

Long and lateral speeds vu,  sm /1010 ÷−  

Vertical speed w  sm /55 ÷−  

Long and lat. attitude angles φϑ,  deg3535÷−  

Yaw angle ψ  deg360360 ÷−  

Table 5.1: SCAS constraints 

 

In order to point out the advantages given by the use of the model predictive approach, in 

particular the ability of enforcing constraints and use of the information about future set 

points, an LQR control system has been developed and calibrated for comparison 

purposes. This control approach has been chosen since maintains the same basic 

structure of the MPC, in particular handles multiple input multiple output systems and 

makes use of a cost function similar to the one used in the predictive controllers. 

Moreover in the SCAS also the integral action has been included by using the following 

augmented system as plant model 
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The baseline controller has been calibrated in order to have similar performance with 

respect to the MPC system for low and medium aggressive manoeuvres. 

  

5.2 Simulation results 

 

Two different sets of simulations have been carried on in order to evaluate the controller 

characteristics. In the first set the SCAS has been applied to a linear model of the 

helicopter identical to the one used in the prediction model, in the second set model 
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uncertainties have been applied to simulation model and a Monte Carlo simulation have 

been carried on to evaluate the robustness characteristics of the system. 

 

Figures 5.1 and 5.2 show the results obtained in two separate simulations where a series 

of acceleration manoeuvres where performed on respectively the longitudinal and lateral 

axis. The speed set-point has been designed in order to obtain manoeuvres with 

increasing aggressiveness in order to evaluate the response of both the systems. 

 

 

 

figure 5.1: longitudinal accelerations 
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figure 5.2: lateral accelerations 

 

As expected during the low and medium aggressive maneuvers the response of input, 

attitude and speed variables is quite similar comparing the MPC and the LQR controllers. 

A significative difference can be noticed when the system is asked to perform really 

aggressive maneuvering, in this case the MPC controller has the ability of stabilizing the 

system and perform the maneuvers with a smooth behavior. Moreover both the input and 

attitude constraints are respected. 

On the contrary the baseline SCAS does not have the information about input constraints 

and, when the calculated input is significatively larger than the saturations, the system 

loses the ability of stabilizing and controlling the helicopter. 

 

In order to evaluate the robustness characteristics of controller a Monte Carlo simulation 

has been performed using the uncertain model shown in section 2.5. In figure 5.3 a 

reduced number of simulations have been reported, as can be seen both the input and 

attitude constraints are still respected by the control system while offset free tracking is 

achieved. 
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figure 5.3: Monte Carlo Simulation 
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6 Trajectory Tracking System 

 

In order to increase the level of autonomy of the system and reduce the work load of the 

human operator, the position control of the rotorcraft can be automatically executed by the 

FCS. The motion control of air vehicles can be roughly divided in two different classes: 

trajectory tracking, where the UAS is required to track a time parameterized reference, and 

path following, where the vehicle is required to converge and follow a given path without 

any time specification.  

In this section the first approach is presented, the trajectory is constituted by a sequence 

of three-dimensional positions, expressed in the North-East-Down (NED) reference frame, 

and a target heading angle to be reached at a specific time. 

Differently from the classic approach, which divides the vehicle guidance and the control 

problem into an inner and an outer loop, the system presented here has been built using 

an integrated approach an both the navigation and control problems are solved 

simultaneously. 

 

As done for the SCAS first the system architecture will be presented and explained into the 

details, afterwards a set of simulations will be shown to demonstrate the system 

capabilities. 
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6.1 System architecture 

 

Normally the position of the helicopter is expressed into an earth fixed reference frame, 

typically the NED frame; on the other hand the helicopter dynamics is expressed into the 

body frame. In order to calculate the actual position of the helicopter is necessary to rotate 

the body speed from one frame to the other using the actual Euler angles; since this 

operation is non-linear it can not be directly included in the prediction model for the MPC 

architecture used here. 

A linear approximation of the helicopter kinematics can be obtained by expressing the 

position into the body frame axis at the beginning of the horizon and use it trough all the 

prediction horizon. If the change of attitude over the horizon is small the position dynamics 

can be approximated as: 

 

 

 

 

where s is the position of the helicopter expressed in the new frame. 

The full linear model used to predict the future state of the helicopter can be expressed as 

 

 

 

 

 

where L is a matrix, which selects the body speeds from the state vector xb.  

At this point is sufficient to rotate both the actual position and the future reference from the 

NED to the actual body frame to close the loop. 
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figure 6.1: Trajectory tracking system architecture 

 

Finally, regarding the MPC architectures proposed in section 4 an infinite prediction 

horizon has been used together with a soft state constraints formulation, in this case the 

integral action is not needed as simulations will demonstrate. 

The baseline controller has been built around the same linear approximation of the 

helicopter kinematics used for the MPC, the system 6.2 has been used as a plant and the 

following control law has been implemented. 

  

 

 

where 

 

 

 

6.2 Simulation results 

 

As done for the SCAS the first set of simulations presented shows the results obtained by 

the system when the helicopter dynamics and the model used in the prediction are 

identical. Is worth to notice that, in this case, a difference between the prediction model 

and the controlled plant is still present due to the linear approximation of the helicopter 

kinematics shown in the previous section. 

Figures 6.2 and 6.3 show again two different simulation where a reposition manoeuvre has 

been performed on the longitudinal and lateral axis respectively. As for the SCAS, the 

Kx�ru −=  6.3 

xu KWW� +=  6.4 
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performances of the MPC and the baseline controller are the same for low and medium 

aggressive manoeuvres. Is important to notice that for the medium and high aggressive 

manoeuvres the LQR controller does not respect the attitude constraints, in particular for 

the aggressive repositions the attitude angles exceed the 90 degrees which clearly 

unfeasible on the real helicopter.  

 

 

 

figure 6.2: longitudinal reposition 
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figure 6.3: Lateral reposition maneuvers 

 

Another advantage given by the predictive control formulation is the ability of taking into 

account information about the future set-point when this is available. The control of the 

position of an UAS is the typical case where this happens since the desired flight plan is 

normally delivered before starting the mission. 

In order to evaluate the change of performances given by such ability the previous control 

formulation has been modified in order to use a future sequence reference.    

Figures 6.4, 6.5, 6.6,6.7 show respectively the position, speed, attitude and controls of the 

helicopter performing the lateral reposition maneuvers under the control of the standard 

and modified MPC systems. 

Observing the lateral axis variables, namely the East position, the lateral speed and the 

roll angle is possible to see how the information about the future set-point allows the 

system to anticipate the maneuver reducing significantly the tracking error. 

Moreover the modified system starts the maneuvers in a smoother way which is reflected 

on the other axis response where the error is significantly reduced.  
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figure 6.4: Constant vs. known reference, NED position 

 

 

figure 6.5: Constant vs. known reference, body speeds 
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figure 6.6: constant vs. known reference, attitude angles 

 

 

figure 6.7: constant vs. known reference, controls displacement  

 

The robustness test has been carried on the predictive architecture, as observed for the 

SCAS controller the predictive architecture is able of maintaining stability and the ability of 
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enforcing all the constraints. Moreover, as anticipated, zero steady state error is achieved 

without the need of an integral action. 

  

 

 

figure 6.8: Monte Carlo simulation 

 

Finally a measure of the computational burden associated to the control has been 

evaluated measuring the time needed to solve the online part of the control algorithm, in 

order to obtain real time performances this time as to be less than one sample interval, in 

the specific case 50ms. 

The tests have been carried on a laptop computer equipped with an Intel Centrino Duo 

processor whose computational capability has been measured using a benchmarking 

software and obtaining a capacity of 15 GFLOPS (Giga Floating point Operations per 

second).  A standard embedded controller for aerospace applications has a more limited 

capability of about 2 GFLOPS [23], in order to understand if such a controller is capable of 

real time performances the times obtained in simulation have been increased 

proportionally to the computational capabilities and the results reported in  
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figure 6.9: Time to obtain the control action 

 

As can be seen the control algorithm is fast enough to be implemented on a standard 

control system. 
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7 Path Following System 

In this section the path following approach is used for controlling the helicopter’s position. 

As explained previously the aim of such system is to converge on and follow a given path 

with no time specification. In other words the control action has to be function only on the 

actual position and not of the time at which the position is reached. 

Conversely, the predictive approach is a time domain technique and cannot be directly 

applied to solve the path following problem but can be used transforming the latter in a 

sequence of trajectory tracking problems. 

At each sampling instant the system calculates a future reference trajectory as function of 

the desired path and the current position then, by means of the system developed in the 

section 6, the control actions needed to follow the trajectory are calculated maintaining the 

MPC advantages. 

To calculate the current reference trajectory the system simply finds the point on the path 

nearer the helicopter, this point becomes the starting point of the future trajectory. Then 

the desired position is propagated in the future by a simple linear interpolation between the 

waypoints. 
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figure 7.1: Path following principle 

 

As usual the performances of the path following system will be compared with the ones of 

the trajectory tracking system with known reference while executing a series of 

manoeuvres. The first test shown reports the results following a path with different angles 

turn that has to be performed keeping the heading fixed to the north. 

 

 

figure 7.2: path following vs. trajectory tracking 

 

In figure 7.2 the trajectory followed by the two systems is shown, as can be seen the 

performances are quite similar. The difference can be noticed examining the time histories 

of the speeds, figure 7.3, and attitude, figure 7.4. While the trajectory tracking system 

needs to compensate for the non instantaneous accelerations with a speed overshoot the 
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path following system reaches the target speed without this problem, this is also reflected 

in a smoother maneuvering and a lower demand in attitude angles. 

 

 

figure 7.3: speed time plot 

 

figure 7.4: attitude time plot 
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8 Conclusion and outlook 

In this thesis the latest results achieved at the Bologna University regarding the UniBo 

RUAS project have been presented. In particular a series of flight control systems based 

on the model predictive control theory have been illustrated, its performances have been 

assessed and compared with a baseline linear quadratic regulator.  

 

First, a set of base architectures has been shown and compared each other in order to 

gain a better understanding of the advantages and disadvantages introduced by each one.  

As result of this analysis the most promising architectures have been joined together and 

used to solve the problem of flight control of a small scale helicopter. 

The MPC theory has been applied to three different control systems: a SCAS, a trajectory 

tracking and a path following system. A comparison with a baseline LQR controller has 

been carried on and, for all the three configurations, the predictive control showed several 

advantages: 

− constraints on both the input and states of the controlled plant can be 

explicitly introduced in the flight control system formulation and have been 

used to take into account for control saturations and flight envelope 

protection, 

− the presence of constraints ensures stability of the system also performing 

high aggressive manoeuvres where the baseline controller fails, 
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− the predictive approach has the ability of using all the information about the 

future reference, when this is available, and uses it to enhance the control 

performances. 

 

On the other hand the computational burden associated with the MPC approach is a lot 

heavier than the classic control techniques, nevertheless thank to the capabilities of 

modern processors and new optimization algorithms applied in this thesis real time 

performances can be achieved by state of the art microcontrollers. 

 

Further development of this work will include the implementation of the proposed 

architectures in the actual flight control computer and validation trough hardware in the 

loop simulation and actual fight testing. 

Moreover, a further investigation on the coupling between model predictive control and 

state observers has to be done in order to better asses the effects on control and 

constraints introduced by state estimation errors. 
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