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Abstract

Medical ultrasound is nowadays commonly
employed in the clinical practice for assessing possi-
ble abnormalities in several parts of the human body.

Due to the simple image formation process, ultrasound systems
are reduced size reasonably priced machines, easily a�ordable
even for small low budget ambulatories widespread distributed
on the territory. Besides that ultrasound is a non ionizing radi-
ation and practically harmless to the patient. Despite these de-
sirable features, ultrasound scans have a considerably low image
quality as compared to that of other popular techniques as X-ray,
Magnetic Resonance Imaging and Computed Tomography, and,
as a consequence, their interpretation is o�en subjective and un-
clear, and their diagnostic reliability low. In this context, the de-
velopment of so�ware tools providing the physician with assis-
tance in the image reading and analysis process is a continuous
challenge for many researchers working in the �eld.

Due to the noisy nature of ultrasound frames, successful tech-
niques cannot be directly borrowed from the densely populated
literature on the processing of natural images, but rather tailored
to the ultrasound very peculiar nature. In particular, applica-
tions relying on speckle noise statistics as the driving criterion
have led to e�ective solutions for a wide range of problems.

In this thesis two major topics encountered in medical ul-
trasound are addressed i.e. the problems of image restoration
and segmentation. For both, original author contributions will
be discussed and their performance compared to the state of the
art. In the former case, a novel deconvolution technique will be
presented, expressively designed for an improved tissue charac-
terization. Phantom studies will show a relevant increase in clas-
si�cation accuracy, along with the superiority of the proposed
algorithm over standard ones. �e problem of myocardium de-
tection from 2D echocardiography will be then considered and
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an original active contour based solution proposed. �e result-
ing algorithm will be validated on a set of clinical ultrasound
sequences. Results will show the proposed method on realistic
clinical data to be feasible and accurate.



Sommario

Esami ecografici sono comunemente prescritti nella prat-
ica clinica per la diagnosi di possibili patologie di di-
versi organi del corpo umano. La semplicità del pro-

cesso di formazione dell’immagine fa sì che le apparecchiature
ecogra�che siano macchinari di dimensioni relativamente pic-
cole e a basso costo, facilmente annoverabili nel parcomacchine
di piccoli ambulatori a basso budget capillarmente distribuiti
nel territorio. A ciò si aggiunga che l’ecogra�a è innocua per
il paziente, essendo gli ultrasuoni onde non ionizzanti. Mal-
grado questi vantaggi, le immagini ecogra�che hanno una qual-
ità considerevolmente inferiore rispetto a quella ottenuta con
altre tecniche di imaging, quali raggi X, risonanza magnetica
e tomogra�a computerizzata, il che ne rende la lettura spesso
soggettiva e non chiara, e la validità diagnostica assai limitata. In
quest’ottica la comunità scienti�ca ha proposto numerosi so�-
ware per supportare il medico nella lettura e l’analisi delle im-
magini ecogra�che.

Sfortunatamente, l’elevata rumorosità delle immagini eco pre-
clude l’adozione di algoritmi proposti per l’elaborazione di im-
magini naturali, sui quali esiste un’ampia letteratura, e impone
invece lo sviluppo di tecniche ad hoc. In particolare, le appli-
cazioni più e�caci si basano sull’utilizzo della distribuzione sta-
tistica del rumore. In questo contesto si inserisce il presente
manoscritto, nel quale vengono a�rontano due problematiche
relative all’elaborazione di immagini ecogra�che, nella fattispecie
la loro deconvoluzione e segmentazione. Per entrambe verranno
descritte soluzioni originali proposte dall’autore, le prestazioni
delle quali saranno confrontate con lo stato dell’arte.

Nel primo caso, verrà descritta una nuova tecnica di decon-
voluzione in grado di migliorare la caratterizzazione di tessuti
tramite ultrasuoni. Da risultati ottenuti su fantoccio verràmesso
in luce come l’algoritmo proposto sia in grado di determinare
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viii Sommario

una riduzione sostanziale dell’errore di classi�cazione e insieme
superare le performance ottenute tramite tecniche standard.

Verrà quindi presentato un nuovo algoritmo per la segmen-
tazione del miocardio da immagini eco bidimensionali, basato
sulla tecnica dei contorni attivi. Una valutazione dell’algoritmo
su sequenze ecocardiogra�che rivelerà le sue potenzialità come
strumento utile di supporto in ambito clinico.



Introduction

Since the early 1950s, ultrasound use in medicine has been
the basis for several procedures that are widespread in to-
day’s clinical practice. �e principal application is in the

�eld of medical imaging. Medical ultrasound imaging relies on
the same principles as sonar or radar units: the ultrasound probe
produces a (pulsed) acoustic pressure �eld; the �eld propagates
through the tissue and is partially re�ected and scattered due to
the inherent inhomogeneity of most tissues. �e backscattered
signal is received by the same probe and converted into a gray
scale image of the organ.

Medical ultrasound has several advantages over other popu-
lar imaging modalities as Magnetic Resonance Imaging (MRI),
X-ray and Computed Tomography (CT). At �rst, unlike X-ray
and CT, ultrasound is a non ionizing radiation and hence prac-
tically harmless to the human body. Moreover, the simple phe-
nomena involved in the signal generation and acquisition pro-
cess along with the little computation needed for the image cre-
ation (fundamentally an amplitude to gray scale conversion), al-
low ultrasound systems to work at extremely high frame rates,
easily of the order of 100 frames/sec. �is makes ultrasound the
standard tool for diagnosis of disease based on organs dynam-
ics, as it is in echocardiography. Further advantages connected
with ultrasound systems are the their cost e�ectiveness and re-
duced size, making their availability possible even in small local
low budget ambulatories. �is is instead not the case for X-ray,
CT andMRI, whose installation, besides relevant costs, requires
extendeddedicated areas. In Figure 1 a standard ultrasound ima-
ging system is illustrated.

Unfortunately, all these advantages come at a price. i.e. the
reduced image quality as compared to that of X-ray, CT orMRI.
�is is principally due to the low spatial resolution, directly con-
nected with the �nite bandwidth of the transducer and the non-

ix



x Introduction

Figure 1: External parts of an ultrasound imaging system. Image
from [1, pp. 298].

negligible width of the acoustic beam, along with the character-
istic granular texture referred as speckle noise. All these factors
make sometimes the interpretation of ultrasound frames highly
ambiguous and subjective, even for expert physicians, thereby
limiting their diagnostic reliability. In Figure 2 a short axis slice
of the le� ventricle is represented from 2D echocariography and
cardiacMRI: it is evident how image reading is fairly less straight-
forward in the ultrasound case.

Improving the quality and diagnostic reliability of medical
ultrasound has always represented a continuous challenge for
many scientists working in the �eld. �e e�orts aremainly spent
in two directions: on one side improving the acquisition mod-
ality itself, by designing new transducers, more sophisticated
beam-forming, compounding or apodization schemes; on the
other, acting on the acquired image at a post processing stepwith
suitable signal and image processing tools. In particular, in this
thesis the second approach is considered.

Unfortunately, the noisy nature of ultrasound images
degrades the performance of standard algorithms developed for
natural scenes and implies the design of ad hoc techniques. �ey
usually rely on considering the speckle not as a noise term to be
eliminated, but rather as a precious source of information. It is
indeed well established that speckle distribution is strictly cor-
related with the micro-structure of the underlying tissue. �is
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(a) (b)

Figure 2: Short axis view of the le� ventricle from 2D
echocardiography (a) and cardiac MRI (b).

principle is exploited in awide range of applications as classi�ca-
tion, segmentation, deconvolution and tracking, to make some
examples. In this context, this manuscript addresses two major
problems encountered in medical ultrasound, both tackled with
statistically inspired approaches: the problem of image decon-
volution and segmentation.

Deconvolution in medical imaging is commonly employed
in the purpose of a visual quality improvement, so to provide the
physician with better contrasted and resolved data, suitable for
easier interpretation. �is is done by removing to the maximum
extent possible the blurring e�ect associated with the non-ideal
Point Spread Function of the ultrasound system and restoring an
estimate of the tissue response, also called re�ectivity. �is prob-
lem has been di�usively addressed in literature, the most suc-
cessful solutions being based on Wiener �ltering and l 1-norm
optimization.

Conversely, this manuscript describes a conceptually novel
application of deconvolution: from the observation that the re-
�ectivity of a tissue carries cleaner information on its structure
than the raw echo signal does, the possibility of exploiting de-
convolutionnotmerely as an image enhancement tool, but rather
as a pre-processing step for easing ultrasonic tissue characteriza-
tion is investigated. In this perspective, standard deconvolution
algorithms reveal strong limitations, principally ascribed to the
simpli�ed tissue models they make use of. Indeed, though these
are su�cient for producing appreciable image quality improve-
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ment, they otherwise induce a statistical bias in the statistics of
the restored re�ectivity, making it unusable for characterization
purposes.

Hereto, a novel deconvolution method for ultrasound im-
ages has been developed and will be described in this thesis.
�e algorithm is derived on the base of a non-standard statistical
model for the tissue response, de�ned by the Generalized Gaus-
sian Distribution. By means of two distinct parameters, called
scale and shape parameter, this distribution allows sequences of
arbitrary energy and sparsity to be generated, and is therefore
adequate for providing an accurate description to the most gen-
eral tissue structures. Deconvolution is then tackled as a maxi-
mum a posteriori estimate, in which tissue re�ectivity is restored
alongwith an estimate of the associated scale and shape parame-
ter. An ExpectationMaximization framework is designed to ad-
dress this task. An evaluation of performance will be presented
on experimental data from several tissue-mimicking phantoms
having a well-de�ned particle concentration. �ese studies will
show improvements in classi�cation accuracy of up to the 20%
and the superiority of the proposed algorithmover standard ones.

�e second problem considered is myocardium segmenta-
tion from 2D echocardiography. Echocardiography is one of the
leading applications of ultrasound in medicine, indeed this is
the standard technique to examine myocardial function in pa-
tients with known or suspected heart disease. In clinical prac-
tice, the analysis mainly relies on visual inspection and manual
segmentation by experienced cardiologists. �is approach, be-
sides being tedious and time consuming, su�ers from a subjec-
tive bias, due to the inherent low signal-to-noise ratio (SNR) of
ultrasound scans. An automated procedure is therefore desir-
able both to reduce intra- and inter-observer variability in bor-
der detection and to speed up the segmentation process.

While great attention has been given to the segmentation of
the endocardium (the innermost layer of tissue surrounding the
ventricular cavity), very limited literature addresses the detec-
tion of the epicardium (the outer layer). �is is due to the fact
that signal dropouts and complex interactions between the ul-
trasonic pulse and the tissue make the epicardial contour ap-
pear highly heterogeneous and discontinuous. Nevertheless, a
trustful detection of both structures would have a high clinical
relevance, as it wouldmake the computation of fundamental pa-
rameters possible.

Hereto, an original segmentation algorithm based on level
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sets, speci�cally designed for the detection of the wholemyocar-
dium, has been developed and is described in this thesis. �e
segmentation �ow proceeds by seeking the maximum statisti-
cal separation between target, i.e. the myocardium, and back-
ground. In order to deal with low-contrast or missing bound-
aries, a localized version of standard region-based methods is
adopted. Moreover, shape prior information is e�ciently em-
bedded in the evolution equation, forcing the active contour to
be approximately annular. �is prevents the detection of unde-
sired small structures, like papillary muscles. With the resulting
formalism the detection of both endo- and epicardium is ad-
dressed e�ciently with a single level-set function. A validation
will be presented from a set of 59 images acquired from 5 pa-
tients. �ese results will show that the proposed method on re-
alistic clinical data is feasible and accurate.

] ] ]

�e manuscript is organized as follows. Some background
material will be presented in Part I. Ultrasound imaging systems
will be brie�y described in Chapter 1 and their main features
examined. �e focus will then move to the description of the
ultrasound echo signal. In particular modeling the echo acqui-
sition as a linear time variant system will be discussed in Chap-
ter 2, which will be essential in the formulation of the restor-
ation problem. Statistical inspired algorithms typically rely on
modeling the ultrasound echo amplitude by means of paramet-
ric probability density functions. Hereto, some popular models
will be reviewed in Chapter 3. �ey will be exploited both in
image restoration and segmentation.

�eproblemof image restorationwill be addressed inPart II.
�e problem will be formulated in Chapter 4 where most com-
mon solutions, as Wiener �lter and l 1-norm optimization, will
be presented as well. �e original restoration scheme will be �-
nally derived and evaluated in Chapter 5.

Myocardium segmentation will be discussed in Part III. In
Chapter 6 all the theoretical elements needed for a full under-
standing of the algorithm will be given. �en Chapter 7 will il-
lustrate the main aspects of heart morphology and functioning
and address the clinical validity of the segmentation phase. �e
proposed segmentation framework will be �nally presented and
evaluated in Chapter 8.





I - Background on Medical Ultrasound





Summary

Ultrasound, because of its e�cacy, low cost, real-time
capability and safety, is o�en the preferredmedical ima-
ging modality and �nds a number of applications for

di�erent parts of the human body. In obstetrics it is commonly
employed for 2D or, more recently, 3D in vivo imaging of the fe-
tus. Female (usually) breast ultrasound is primarily used for de-
termining the nature of breast abnormality or as a breast cancer
screening test supplemental to mammography. Cardiac ultra-
sound is employed for early diagnosis and of heart disease and
prevention of stroke. Vascular and cardiovascular ultrasound is
used for monitoring blood �ux through veins and arteries. Be-
sides, the possibility of real time visualization is exploited in ul-
trasound guided biopsy and catheter placement. As an example
of ultrasound di�usion, 5 millions exams were estimated to be
given weekly worldwide in 2000 [1]. Figure A illustrates the in-
cidence of ultrasound on the overall medical imaging exams.

When compared to other imaging modalities, ultrasound
presents several advantages and shortcomings. �ese aspects
will be examined in Chapter 1, where main features of ultra-
sound systems will be reviewed and put in relation with those
of alternative available techniques. �e principal limitation as-
sociated to ultrasound imaging is a reduced image quality. In
order to compensate this lack of image information many com-
puter tools have been and are currently presented to the scien-
ti�c community. �ese algorithms commonly rely on models of
the acquisition process as well as of the image content. In this
context, in Chapter 2 a time-variant linear model of the image
formation process will be derived. It will be obtained from de-
terministically solving the acoustic waves equation for the case
of so� tissues. Conversely, in Chapter 3 several parametric sta-
tistical models of the echo signal amplitude distribution will be
reviewed.
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4 Introduction

Figure A: Estimated number of imaging exams in 2000. Image
from [1, pp. 22].



Chapter 1
Ultrasound imaging systems

In this chapter general aspects of medical ultrasound ima-
ging are reviewed. In §1.1 an overview is presented on the
main properties of ultrasound imaging systems, with an at-

tention to resolution, penetration and safety. In §1.2 the archi-
tecture of an ultrasound imaging system in explained through a
simpli�ed block diagram. In §1.3 some concluding remarks are
addressed.

1.1 Overview

�epresent clinical ultrasound scanners process signals in aman-
ner similar to that of sonar or radar units. To interrogate a tissue,
the ultrasound probe produces a (pulsed) acoustic pressure �eld.
�e �eld propagates through the tissue and is partially re�ected
and scattered due to the inherent inhomogeneity ofmost tissues.
�e backscattered signal is received usually by the same probe,
supplying useful information about the locations of tissue inho-
mogeneities and their relative strengths.

Echo amplitude is proportional to the re�ection coe�cient
of those tissue-tissue interfaces encountered along the propa-
gation path. Values of the re�ection coe�cient for some com-
mon interfaces encountered in the medical �eld are reported
in Table 1.1. A high re�ection coe�cient halts the pulse prop-
agation and makes underneath structures invisible. �is fact
makes ultrasound unusable in certain situations, e.g. it is not
an ideal imaging technique for the bowel or organs obscured by
the bowel (CT scanning and MRI are the methods of choice in
this setting); for the same reason ultrasound can only see the

5



6 Ultrasound imaging systems

Interface Reflection [0,1]

so� tissue - air 0.99

so� tissue - lung 0.52

so� tissue - bone 0.43

vitreous humor - eye lens 0.01

fat - liver 0.79

so� tissue - fat 0.0069

so� tissue - muscle 0.0004

water - lucote 0.13

oil - so� tissue 0.0043

Table 1.1: Re�ection coe�cient for common interfaces [2].

outer surface of bony structures and not what lies within (MRI
is typically preferred here). In cardiac ultrasound, the major ap-
plication of ultrasound in medicine, the physician is expected
obtain clean views of the heart by suitably orientating the trans-
ducer through the small acoustic windows o�ered by the rib cage.
A big expertise is requested here because of the number of ac-
cess windows, the di�erences in anatomy, and themany possible
planes of view. Experience is required besides to �nd relevant
planes and targets of diagnostic signi�cance and to optimize in-
strumentation, as well as to recognize, interpret, and measure
images for diagnosis. Such an operation dependency is a �rst
limitation of medical ultrasound.

1.1.1 Resolution

Axial spatial resolution of ultrasound systems is typically chosen
equal to 2 wavelength:

λax(mm) = 2c

fc
(1.1)

where fc is the transducer center frequency and c is the sound
velocity. Sound speed is highly medium dependent, cf. Table 1.2
and [3]. A mean value commonly agreed for so� tissues is cav
= 1540 m/s. For typical frequencies in use ranging from 1 to 15
MHz axial resolution roughly varies from 0.3 to 3 mm. Con-
versely, lateral spatial resolution is highly depth variant princi-
pally due to the beamforming. In particular, this resolution is
best at the focal length distance and widens away from this dis-
tance in a nonuniform way because of di�raction e�ects caused
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Interface sound velocity (m/s) Density (Kg/m3)

Muscles 1580 1070

Liver 1550 1060

Fat 1459 920

Brain 1560 1028

Kidney 1560 1040

Spleen 1570 1059

Blood 1575 1060

Bones 4080 1620

Eye 1670 1135

Lungs 650 430

Table 1.2: Speed of sound and acoustic impedance in some
common tissues.

Figure 1.1: Spatial resolution of the acoustic pulse in the lateral and
elevation dimensions. Acoustic pressure amplitude contours are -6

dB relative to the peak amplitude within each slice of the
point-spread function (PSF) as it propagates. Image from [4, pp. 6]

by apertures on the order of a few to tens of wavelengths. �is
fact is illustrated in Figure 1.1.

Another factor in determining resolution is attenuation. At-
tenuation steals energy from the ultrasound �eld as it propagates
and e�ectively lowers the center frequency of the remaining sig-
nals. From (1.1) this implies that axial resolution decreases with
the distance from the emitting aperture.

Finally, ultrasound image quality is highly degraded by the
presence of granular texture patterns normally referred as speckle
noise. Speckle is generated by the constructive and destructive
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Modality Ultrasound X-ray CT MRI

Principle mechanical
properties

mean
tissue ab-
sorption

tissue ab-
sorption

biochemistry

Resolution frequency
and spatially
dependent
0.3–3 mm

∼1 mm ∼1 mm ∼1 mm

Penetration frequency
dependent
3–25 cm

Excellent Excellent Excellent

Safety very good ionizing
radiation

ionizing
radiation

very good

Speed 100 frames/s minutes 1⁄2 to 1 min 10 frames/s

Cost $ $ $$$$ $$$$$$$$

Portability excellent good poor poor

Table 1.3: Comparison of imaging modalities [1, pp. 23].

interference of waves di�used by collections of sub-resolvable
scatterers. Where the term di�usive refers to scattering cen-
ters of size much smaller than the signal wavelength and sub-
resolvable means contained inside one resolution cell of the sys-
tem. Several speckle models will be presented in Chapter 3.

1.1.2 Penetration

Penetration is de�ned as the maximum distance reached by the
ultrasonic beam inside the tissue. �is is fundamentally deter-
mined by tissue attenuation, indeed attenuation increases with
higher center frequencies; therefore, penetration decreases cor-
respondingly so that �ne resolution is di�cult to achieve at
deeper depths. Depending on the frequency penetration can
vary between 3 and 25 cm. Reducedpenetration capabilitymakes
large patients more di�cult to image by ultrasound. In certain
cases, this limitation can be o�set by specialized probes such as
transesophageal (down the throat) and intracardiac (inside the
heart) that provide access to regions inside the body.

1.1.3 Frame rate

In a typical brightnessmode (B-mode) acquisitionmodality, the
image is build as a collection of adjacent scan lines acquired in
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Figure 1.2: Block diagram of an ultrasound imaging system.

sequence. Assuming a number N of scan lines, a maximum
depth D and a sound speed c, the frame rate FR is:

RF = c

2DN
(1.2)

For an image 15 cm deep and 50 scan lines the frame rate is ap-
proximately 100 frames/sec, i.e. a real time visualization of the
organ is allowed.

1.1.4 Safety

As acoustic waves are employed, diagnostic ultrasound does not
have any cumulative side e�ects. For very particular ultrasound
applications as hyperthermia, lithotripsy or HIFU, high power
regime is involved which is proved to induce bioe�ects. Nev-
ertheless these cases will not be discussed here. �e interested
reader is otherwise addressed to [1, chap. 15]. Besides, diagnos-
tic ultrasound is also generally non invasive, excluding of course
“trans” and “intra” families of transducers.

All the features reviewed in this section are compared to the
one of other popular medical imaging modalities in Table 1.3.

1.2 Ultrasound system architecture

In this section B-mode imaging will be considered only. Other
modes exists, as A-mode and M-mode, sometimes employed in
the diagnostic practice, for which the reader is addressed to [1,
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Figure 1.3: Conceptual diagram of phased array beamforming.

chap. 10]. A simpli�ed block diagram of a B-mode ultrasound
imaging system is illustrated in Figure 1.2.

�e controller sets the excitation sequence of the transducer
elements for the beam steering. �is process is illustrated in Fig-
ure 1.3 where themost common case of phased array beamform-
ing is considered. By planar sweeping the ultrasound beamwith
a certain increment within a prede�ned plane, a set of RF-lines
are collected and, subsequently, used for visualization of the tis-
sue. �eRF signal demodulated is called IQ signal. �e envelope
is then computed as the absolute value of the IQ signal and log-
arithmic compression is applied. �e compressed signal is o�en
referred as brightness mode (B-mode) signal.

�e set of scan lines are normally collected into a matrix. As
each scan line is the result of an angular rotation of the ultra-
sound beam, pixel coordinates in the matrix are related to the
true position in the body by a polar toCartesian scan conversion,
allowing the typical B-mode sector image to be displayed on
screen. A gray scale color map is commonly adopted: stronger
echoes have anhigher brightness asweak echoes appear as darker.

As mentioned, tissue absorption induces a depth dependent
attenuation, which is compensated at a post processing step
through the Time Gain Compensation (TCG) block, to be suit-
ably tuned by the user by moving slides placed on the control
panel of the ultrasound system.
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1.3 Conclusion

Principal features of ultrasound imaging systems have been re-
viewed and compared to those of other popular imagingmodal-
ities. Major advantages of ultrasound are portability, cost e�ec-
tiveness, safety and real-time capability. Main limitations are
low depth-dependent resolution, limited penetration, high user
dependency and low image quality due to speckle.





Chapter 2

Deterministic description of ultrasound

The solution of the acoustic wave equations for pulse-
echo ultrasound leads to complex integral expressions
requiring cumbersome computation. Fortunately, as

long as weak scattering is concerned, several simpli�cations can
be reasonably made in the calculation of the received pressure
�eld, letting thewhole acquisition process to be accounted for by
a simple linear shi�-variant model. As the linear model is con-
sistent with the majority of diagnostic situations in which so�
tissues are imaged, it is otherwise largely violated in some others
as in contrast agents imaging or harmonic imaging [1]. Never-
theless these techniques will not be considered in this work.

In this chapter the linearmodel for the echo image formation
will be derived. Such a representation will be largely exploited
when image restoration will be discussed. �e derivation pre-
sented in this chapter closely follows the one proposed in [5],
which is at the base of the popular FieldII simulation so�ware
[6]. �e chapter proceeds as follows. In §2.1 the wave equation
for the acoustic pressure �eld is derived. In §2.2 the expression
for the scattered �eld is presented and the Born expansion is in-
troduced. In §2.3 the incident �eld is calculated. In §2.4 the lin-
ear representation of the received echo signal is presented, which
represents the fundamental core of the chapter. �e terms re-
�ectivity function and Point Spread Function (PSF) will be there
formally de�ned. In §2.5 the principal properties of the PSF of
a medical ultrasound device will be illustrated. In §2.6 the main
conclusions will be drawn.

13
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2.1 Wave equation

Lat’s assume apropagatingmediumstate is perturbed by an acous-
tic pressure �eld and let’s call Pins(r, t) and ρins(r, t) the instan-
taneous pressure and densitymeasured in r at time t. We assume
the following to hold:

Pins(r, t) = P + p1(r, t)
ρ(r, t)ins = ρ(r) + ρ1(r, t) (2.1)

where p1 and ρ1 are small �rst order variations due to the prop-
agation of the ultrasound wave. If the transformation is adi-
abatic (invariant entropy), then the wave equation can be ob-
tained from coupling the dynamic equation with the equation
of continuity:

∇2p1 − 1

c2
∂2p1
∂t2
= 1

ρ
∇ρ ⋅ ∇p1 (2.2)

where c is the sound speed of the considered medium. If the
perturbation is small, then one can expect c and ρ to vary little
from their average value c0 and ρ0, so that:

c(r) = c0 + ∆c(r)
ρ(r) = ρ0 + ∆ρ(r). (2.3)

By substituting (2.3) into (2.2) and neglecting second order ef-
fects, the �nal equation for the pressure can be derived:

∇2p1 −
1

c20

∂2p1
∂t2
= −2∆c

c30

∂2p1
∂t2
+

1

ρ0
∇(∆ρ) ⋅ ∇p1 (2.4)

where the right end side represents the source of the scattered
�eld.

2.2 Scattered field

�escattered �eld generated fromadistributed region of volume
V , measured at r2, is obtained by integrating all the spherical
waves originating from V :

ps(r2 , t) = ∫
V
∫
T
[ − 2∆c(r1)

c30

∂2p1(r1 , t1)
∂t21

+

+
1

ρ0
∇(∆ρ(r1)) ⋅ ∇p1(r1 , t1)]G(r1 , t1∣r2 , t2)dt1dr31

(2.5)
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where

G(r1 , t1∣r2 , t2) = δ(t − t1 − ∣r2 − r1∣/c0)
4π∣r2 − r1∣

(2.6)

is the free space Green function.
In general, the overall acoustic �eld p1 in the scattering re-

gion is given by the sum of the incident and the scattered pres-
sure �elds, denoted by p i and ps respectively:

p1(r, t) = p i(r, t) + ps(r, t) (2.7)

It is evident that with this general expression (2.5) cannot be
solved for ps . Hereto it is useful here to apply theBorn-Neumann
expansion:

ps(r2 , t) = [G iFop] p i(r1 , t1)+

[G iFop]
2
p i(r1 , t1)+

[G iFop]
3
p i(r1 , t1) +⋯

[G iFop]
N
p i(r1 , t1)

(2.8)

where G i is the Green operator over r1 and t1 while:

Fop = −2∆c(r1)
c30

∂2p1(r1 , t1)
∂t21

+
1

ρ0
∇(∆ρ(r1)) ⋅∇p1(r1 , t1) (2.9)

in such a way (2.5) can be rewritten as ps = G iFopp1. Now, the
terms of (2.8) involving [●]N , whereN > 1, refer tomultiple scat-
tering of order N . In the weak scattering approximation, mul-
tiple scattering events can be neglected and the �rst order Born
approximation holds, so that p1 in (2.5) can be in practice re-
placed by p i :

ps(r2 , t) = ∫
V
∫
T
[ − 2∆c(r1)

c30

∂2p i(r1 , t1)
∂t21

+

+
1

ρ0
∇(∆ρ(r1)) ⋅ ∇p i(r1 , t1)]G(r1 , t1∣r2 , t2)dt1dr31

(2.10)

2.3 Incident field

�e incident �eld is generated from the ultrasonic transducer.
�e coordinate system to be used for this calculation is repre-
sented in Figure 2.1, where r3 is the transducer position, r4 de-
notes a point on the transducer surface in the local coordinate
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Figure 2.1: Coordinate system for calculation of the incident �eld.
Image taken from [5, pp. 23].

system centered in r3 and r1 denotes a point in the scattering
volume.

�e incident �eld can be written as:

p i(r, t) = ρ0 ∂Ψ(r, t)
∂t

(2.11)

where Ψ is the velocity potential, satisfying the homogeneous
wave equation:

∇2Ψ −
1

c20

∂2Ψ

∂t2
= 0. (2.12)

By calling ν the particle velocity normal to the transducer sur-
face, and assuming an uniform velocity distribution on the sur-
face itself, then it is:

Ψ(r1 , r3 , t) = ∫
T
ν(t3)∫

S
g(r1 , t∣r1 + r4 , t3)dr24dt3 (2.13)

where g is the bounded Green function

g(r1 , t∣r1 + r4 , t3) = δ(t − t3 − ∣r1 − r3 − r4∣/c0)
2π∣r1 − r3 − r4∣ (2.14)

By substituting (2.13) into (2.11), the following expression for the
incident pressure �eld can be derived:

p i(r1 , r3 , t) = ρ0 dν
dt
∗
t
h(r1 , r3 , t) (2.15)
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Figure 2.2: Coordinate system for calculation of the received �eld.
Image taken from [5, pp. 24].

where h is the spatial impulse response, depending exclusively
on the geometry of the radiating aperture:

h(r1 , r3 , t) = ∫
S

δ(t − ∣r1 − r3 − r4∣/c0)
2π∣r1 − r3 − r4∣ dr24 (2.16)

2.4 RF echo signal

�e received echo signal is the scattered pressure �eld integrated
over the transducer surface, convolved with the transducer elec-
tromechanical impulse response:

pr(r5 , t) = Em(t) ∗
t
∫
S
ps(r6 + r5 , t)dr26 (2.17)

where the coordinate system used for this calculation is illus-
trated in Figure 2.2. �e �nal expression for pr is then obtained
by substituting ps in (2.10) and p i expressed in (2.15). As the in-
terest is here only to present the equations for the linear model
of the echo generation process, the �nal expression is directly
presented, addressing the interested reader to [5, pp. 24–26] for
a complete description of all steps.

�e �nal expression for the received pressure �eld is:

pr(r5 , t) = νpe(t) ∗
t
fm(r1) ∗

r
hpe(r1 , r5 , t) (2.18)

Note that the output voltage trace produced by the transducer is
exactly equal (2.18), a part of a multiplication by a constant fac-
tor determined by the piezoelectric crystals gain. �e term fm



18 Deterministic description of ultrasound

is commonly referred as re�ectivity function and represents the
tissue signature contained in the echo signal. In particular it ac-
counts for the inhomogeneities in the tissue due to density and
propagation velocity perturbations which give rise to the scat-
tered �eld. �e term hpe is the modi�ed pulse-echo spatial im-
pulse response and is exclusively dependent on the geometry of
the problem: it relates the transducer geometry to the spatial ex-
tent of the scattered �eld. Finally, the term νpe represents electro
mechanical stimulation modality of the transducer elements.

Explicitly written out these terms are:

νpe(t) = ρ0
2c20

Em(t) ∗
t

d3ν(t)
dt3

(2.19)

fm(r1) = ∆ρ(r1)
ρ0

−
2∆c(r1)

c0
(2.20)

hpe(r1 , r5 , t) = h(r1 , r5 , t) ∗
t
h(r5 , r1 , t) (2.21)

It is common to rewrite (2.18) by separating tissue and trans-
ducer dependent e�ects in two separate terms as:

pr(r5 , t) = H(r1 , r5 , t) ∗
r
fm(r1) (2.22)

H = νpe(t) ∗
t
hpe(r1 , r5 , t) (2.23)

whereH is the transducer Point Spread FunctionEquation (PSF)
and represents the echo signal acquired from a single ideal point
scatterer. Equation (2.22) shows that, in the weak scattering as-
sumption, which is typically satis�ed in the case of so� tissues,
the echo image formation process can be approximated as a lin-
ear �ltering operation. �is approximation will be largely ex-
ploited in the rest of the manuscript, in particular when the de-
convolution problem will be discussed.

2.4.1 IQ echo signal

Equation (2.22) represents the linear model for the RF echo sig-
nal. For computational reasons it is sometimes useful to work on
the baseband equivalent rather then on the RF directly. Fortu-
nately, it can be shown that, due to the linearity of the demodula-
tion process, an expression completely analogous to (2.22) exists
for the complex envelope as well [7].

Given a real valued signal x with center frequency 2πω0, the
in phase/quadrature signal xIQ is computed as:

xIQ = [x − jH(x)] e− jω0 t (2.24)
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Figure 2.3: PSF shape at di�erent depths corresponding do
di�erent focusing and apodization schemes. Images obtained with

the Field II so�ware.

where H(⋅) is the Hilbert transform and xAN = [x − jH(x)] is
the analytic signal [8]. xIQ is sometimes referred as complex en-
velope and itsmagnitude is the envelope of x. With this notation
it can be shown that [7]:

pr ,IQ = HIQ ∗
r
f̃m (2.25)

where f̃m = fme
−2 jk0z , z is the axis of axial propagation and k0 =

ω0/c0 is the wavenumber.

2.5 Point Spread Function

It is important to examine here the main factors which deter-
mine the shape of the ultrasonic PSF (H), since they must be
taken into account in the derivation of an accurate deconvolu-
tion framework. In this sense the peculiar property of an ul-
trasound PSF is its spatial variability. We will see later in the
manuscript how dealing with spatially variant blurring kernels
involves relevant computational issues in the implementation of
a restoration algorithm, while in this section our interest is to
brie�y examine the phenomena at the origin of this variability.
�ese factors are both system and medium dependent.
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Figure 2.4: Changes in pressure-pulse shape of an initially
Gaussian pulse propagating in a medium with a 1dB/MHz1.5-cm
absorption coe�cient for three di�erent increasing propagation

distances (z). Image taken from [1, pp. 76]

�emain systemdependent factor is beamforming. Asmen-
tioned, beamforming consists in suitably delaying the piezoelec-
tric crystals excitation in order to have an acoustic �eld of min-
imum width in correspondence with the region of interest. �e
most common beamforming technique is represented by static
single focus beamforming, in which the acoustic beam is the
narrowest at the focus and widens progressively before and a�er
that spot, cf. Figure 2.3(a). In this context, more complicated
dynamic focusing schemes or apodization techniques have be
designed in order to have the most uniform PSFs on the imaged
plane, but they are not the norm on commercial scanners, and
neither completely prevent spatial variations.

Tissue dependent e�ects are instead connected with tissue
attenuation. Indeed real data indicate that absorption and dis-
persion of the ultrasonic beam due to the presence of the propa-
gatingmediumhave a power lawdependency. As a result, acous-
tic pulses not only become smaller in amplitude as they propa-
gate, but they also change shape, cf. Figure 2.4. Tissue dependent
e�ects can be embedded in the PSF expression by introducing a
modi�ed spatial impulse response of the kind:

hatt(t, r) = ∫
T
∫
S
a(t− τ, ∣r+ r1 ∣)δ(t − ∣r + r1∣/c)∣r + r1∣ dSdτ (2.26)
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where a denotes the attenuation term, and is o�en de�ned
through its Fourier Transform A( f , ∣r∣). A simpli�ed model for
A is given by:

A( f , ∣r∣) = exp(−α∣r∣) exp(−β( f − f0)∣r∣) (2.27)

where f0 is the transducer center frequency. For more compli-
cated models see [5, pp. 26–29] and references therein.

One have to note that these tissue dependent e�ects cannot
be a priori known. As a consequence, every estimate of the PSF
deriving frommodeling ormeasurements will be necessarily in-
accurate and, hence, the PSF is an unknown term in the acquisi-
tion equation. Wewill explore in the next part of thismanuscript
how this issue further complicates the problem of restoration of
medical ultrasound images.

2.6 Conclusion

�e acoustic wave equations have been solved for the calcula-
tion of the echo signal backscattered to the transducer from an
inhomogeneous region. Under weak scattering assumption the
acquisition process is modeled as a linear shi�-variant system.
Re�ectivity function and Point Spread Function have been here
introduced and formally de�ned. �ese termswill be extensively
used throughout the rest of themanuscript. �ePSF spatial vari-
ability has been discussed and the mechanism at its origin illus-
trated.

While the echo signal has beenhere derived by formally solv-
ing the acoustic wave equations, the next chapter is instead ded-
icated to the description of the echo generation as a statistical
process.





Chapter 3
Statistical description of ultrasound

Ultrasound images exhibit characteristic speckle
patterns. Speckle is a granular texture generated by the
constructive and destructive interference of waves dif-

fused by collections of sub-resolvable scatterers, where the term
di�usive refers to scattering centers much smaller than the sig-
nal wavelength and sub-resolvable means contained inside one
resolution cell of the ultrasound equipment.

Despite its noise like resemblance, speckle patterns are not
random but deterministic, as they can be exactly reproduced if
the transducer is returned in the same position. �is feature of
speckle is used to track movements and displacements of im-
aged organs, which could have a fundamental clinical relevance
in certain circumstances, like in the study of heart dynamics
from echocardiography. Besides, speckle has been shown to be
strictly correlated with tissue structure. �is is exploited for dis-
criminating among di�erent tissues on US images (segmenta-
tion) and is otherwise at the base of Ultrasonic Tissue Charac-
terization (UTC).

As seen, if speckle may be considered a noise source in some
particular cases, for which ad hoc despeckling techniques have
been designed, it is otherwise common to consider the speckle
itself a fundamental source of information, to be not only pre-
served, but exploited for driving certain applications. �is is in-
deed the case for image segmentation, deconvolution and clas-
si�cation, to be discussed next. In this context, the common
paradigm is to describe speckle statistical distribution through
suitable parametric probability density functions.

Anumber of di�erent distributions have beenproposed such

23
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Figure 3.1: Random walk. In red the �nal phasors sum.

as Rician [9, pp.50–52], K [10], Homodyne-K [11], andNakagami
[12]. When the RF signal is considered instead, Krf distribution
[13] and Generalized Gaussian distribution (GGD) [14] are the
most appropriate. An exhaustive description of all these distri-
butions is beyond the scope of this work, rather, in this chapter
the emphasis will be put on the only statistical models exploited
in the applications to be discussed next: these are Rayleigh and
Nakagami distribution for the envelope signal (§3.1 and §3.2) and
Generalized Gaussian for the RF (§3.3). For all these distribu-
tions a parameters estimate techniquewill be presented. Insights
on the goodness of �t of these parametric distributions will be
given in §3.4.

3.1 Rayleigh distribution

�eRayleigh distribution is derived here for the �rst order statis-
tic of the ultrasound envelope signal. �e envelope is computed
as the magnitude of the analytic signal of the RF echo, as dis-
cussed in §2.4.1. Here we refer the RF echo as y, the analytic
signal as a and the real envelope of y as ρ = ∣a∣ .

In this section we will closely follow the derivation of the
Rayleigh distribution presented in [9, chap. 2]. �e analytic echo
signal a returned from a collection of N unresolvable di�usive
scatterers, can be expressed by the random phasors sum:

a = N∑
k=1

ak ; with a = ρ ⋅ e jθ , ak = 1√
N
⋅ ρk ⋅ e jθ k (3.1)
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where the e�ect of each scatter is taken into account as a devi-
ation of the incident wave along a random direction. �is pro-
cess is represented in Figure 3.1. �e following assumptions are
made:

• amplitude ρk and phase θk of each elementary phasor ak
are statistically independent;

• each phase θk is uniformly distributed in the interval[−π, π];
• all amplitudes ρk are identically distributed, with mean
value < ρ > and second moment < ρ2 >.

If the number of scatterers N per resolution cell is high, then
the Central Limit �eorem holds and the joint probability den-
sity function (pdf) of r ≜R{a} and i ≜ I{a} becomes:

pRI(r, i) = 1

2πσ 2
exp{− r2 + i2

2σ 2
} , σ 2 = < ρ2 >

2
(3.2)

�e distribution of ρ and θ in (3.1) can be derived from (3.2)
a�er the variable substitution:

r = ρ cos θ
i = ρ sin θ (3.3)

so that

pρ(ρ) = ρ

σ 2
exp{− ρ2

2σ 2
} , (3.4)

while θ is uniformly distributed on [−π, π]. �e modulus ρ =√
r2 + i2 represents the envelope signal and (3.4) de�nes the

Rayleigh distribution.
�e principal assumptions employed in the derivation of the

Rayleigh distribution are that scatterers within the resolution
cell must have random location and must be in a big number.
�e �rst hypothesis precludes the Rayleigh pdf from modeling
tissues exhibiting regularity patterns, as for instance skin, while
the second makes the modeling of low scatterers density impos-
sible. More speci�cally, the condition of high N values is re-
ferred as fully developed speckle condition. Although fully devel-
oped speckle well represents the response of certain tissues as
blood [15], in the most general case scatter distribution may de-
viate substantially from the fully developed model making the
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Rayleigh distribution highly inaccurate [10]. �is can be intu-
itively justi�ed from the fact that the Rayleigh pdf posses a sin-
gle parameters, directly related to the signal energy. As a conse-
quence, if scatterers strength can be suitablymodeled, that is not
the case for other features which may characterize the scatterer
distribution, as their concentrations, or the pattern of their lo-
cation. For these situations more complicated multi-parametric
distributions have been proposed, as we will discuss later in this
chapter.

3.1.1 Rayleigh parameter estimate

As these parametric distributions are used for �tting the echo
signal histogram, their parameters have to be set so to obtain
the best �t. In this case it is common to adopt Maximum Like-
lihood (ML) parameters estimators which can be shown to be
asymptotically unbiased and minimum variance [16].

Given {x i}Ni=1 a set independent identically distributed (i.i.d.)
samples obeying a Rayleigh distribution, the ML estimate σ̂ 2 of
the Rayleigh parameter σ 2 is:

σ̂ = 1

2N

N∑
i=1

x2i . (3.5)

A explicit derivation can be found in [17].

3.2 Nakagami distribution

As mentioned before and largely documented in literature [18,
9, 19], Rayleigh model is not adequate for modeling the most
general tissue scattering conditions. In this context a wide range
of distributions have been proposed, among which Nakagami
is the most commonly adopted. Indeed, as stated in [12], this
model can describe the statistics of the envelope of the backscat-
tered echo from an ensemble of scatterers with varying number
densities, varying cross sections, and the presence or absence of
regularly spaced scatterers.

Nakagami pdf writes as:

p(ρ) = 2mmρ2m−1

Γ(m)Ωm
exp(−m

Ω
ρ2) (3.6)

where m is the Nakagami parameter and Ω is the scale param-
eter. See Figure 3.2 for an illustration of the Nakagami pdf rel-
ative to di�erent values of m. Note that for m = 1 one obtains
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Figure 3.2: Nalagami pdf for di�erent values of m

the Rayleigh pdf. Values of m smaller or bigger than one cor-
respond to scattering conditions referred as pre-Rayleigh and
post-Rayleigh [12]. While Ω is connected with signal energy,
m accounts for other tissue properties. Due to this �exibility,
Nakagami distribution has been widely exploited for ultrasonic
tissue characterization [18].

3.2.1 Parameter estimation

Maximum likelihood parameter estimation does not have a
closed for solution. As a consequence simpler moment match-
ing based estimates are o�en preferred:

m̂ = [E(ρ2)]2
E[ρ2 − E(ρ2)]2

Ω̂ = E(ρ2) (3.7)

where the statistical expectation E{●} is clearly implemented as
samples average when a realization of (3.6) is available.

3.3 Generalized gaussian distribution

As the RF is not an easily accessed output on commercial ultra-
sound equipments, limited attention has been paid onmodeling
its distribution. In this sense the simplest model is given by the
Gaussian distribution. In particular, Rayleigh distribution for
the envelope directly derives from the Gaussian model for the



28 Statistical description of ultrasound

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

ξ = 0.5

ξ = 1

ξ = 2

Figure 3.3: GGD pdf for di�erent values of ξ

RF, as expressed in (3.2). As a consequence Gaussian shares the
same limitations associated with the Rayleigh model.

Most sophisticated models in this sense are given by the Krf
[13] and Generalized Gaussian Distribution (GGD) [14]. In par-
ticular the latter has been shown to be superior in terms of ac-
curacy and feasibility [14]. �e GGD pdf writes as:

pY(y) = a exp( − ∣ y
b
∣ξ) (3.8)

where a = ξ/(2bΓ(1/ξ)), b = σ√Γ(1/ξ)/Γ(3/ξ) is the scale pa-
rameter, σ is the standard deviation, ξ is the shape parameter and
Γ(⋅) is the Gamma function [20]. As σ explains signal energy, ξ
is directly connected to signal sparsity and scatterer concentra-
tion. In this sense it plays the same role as m for the Nakagami
pdf. Examples of a GGD distribution for di�erent values of ξ are
given in Figure 3.3. Note that Gaussian and Laplacian distribu-
tion are both special cases of the GGD.

In the following of this manuscript we will show how GGD,
besides being a valuable model for the RF signal, it can realisti-
cally describe tissue re�ectivity as well.

3.3.1 GGD parameter estimate

No closed form solution exists for GGD shape parameter esti-
mate, neither based on ML nor moments matching. �e ML
estimator is presented here since, as will see later, it will allow
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Figure 3.4: Selected regions of interest: (a) blood pool internal to
the ventricle, (b) portion of the cardiac muscle.

us to design a deconvolution framework consistent with the Ex-
pectation Maximization framework.

�e ML ξ̂ estimate of ξ is obtained from solving:

N

ξ
+
NΨ(1/ξ)

ξ2
−

N∑
k=1

(∣xk ∣
b
)ξ log( ∣xk ∣

b
) = 0 (3.9)

and then

b̂ = ( ξ

N

N∑
k=1

∣xk ∣ξ)
1/ξ

. (3.10)

�e Newton method in [21] can be used to solve (3.9).

3.4 Comparison

We present here an example of the �tting capability of the dis-
tributions described in this chapter for the case of cardiac ultra-
sound data. In particular, data from two regions are considered,
corresponding to the blood pool inside the le� ventricle and the
cardiac muscle, see Figure 3.4. �ese two kind of tissues exhibit
di�erent scattering properties, in particular blood regions are
close to the fully developed model, while muscle areas are pre-
Rayleigh. From this information one can anticipate that Gaus-
sian and Rayleigh distributions will provide accurate �ts for the
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Figure 3.5: Goodness of �t of di�erent parametric models when
applied to a blood region ((a)–(b)) or a muscle region ((c)–(d)).
Images (a) and (c) are relative to the RF signal, (b) and (d) to the

envelope.

former region, while GGD and Nakagami will be more precise
for the latter. �is guess is indeed con�rmed experimentally, cf.
Figure 3.5.

In Figure 3.5 the goodness of �t has been measured by the
rootmean square error (RMSE) between the data histogram and
the parametric model. Parameters have been estimated as de-
scribed in this chapter.

3.5 Conclusion

In this chapter some popular parametric distribution formodel-
ing the statistics of ultrasound signals have been reviewed. Tech-
niques for parameters estimation have been presented for each
distribution. Wewill show how thesemodels can be exploited in
the design of ultrasound speci�c image processing applications.
In particular Rayleigh speckle model will be used for driving the
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evolution of an active contour addressing the recognition ofmy-
ocardial boundaries from echocardiography; GeneralizedGaus-
sian distribution will be used as prior distribution for modeling
the tissue re�ectivity in the derivation of a Maximum a Posteri-
ori deconvolution framework; Nakagami parameters will be ad-
opted, along with GGD ones, for characterizing di�erent scat-
terer concentrations from tissue mimicking phantoms.





II - Restoration of Ultrasound Images





Summary

It has been shown that, at least in the weak scattering ap-
proximation, the ultrasound image can be expressed as the
linear convolution of the tissue response with the system

PSF.�e non-negligible spatially-variant extent of the PSF is one
of the main causes to the limited quality of ultrasound frames,
whichmakes sometimes opt formore onerous potentially harm-
ful but more reliable imagingmodalities. In this context, decon-
volution is commonly proposed in literature as a post processing
tool for improving resolution and contrast of ultrasound images
by removing to the maximum extent possible the blurring ef-
fect associated with the PSF. �e problem is o�en tackled as an
l 2-norm or l 1-norm constrained optimization task.

In this part of the thesis, an alternative application of decon-
volution is considered instead, i.e. its use as a pre-processing step
for potentiating ultrasonic tissue characterization. �is proce-
dure relies on the quantitative analysis of the echo signal to infer
information about the tissue structure. �e feasibility of these
approaches for discriminating healthy tissues against cancerous
ones from breast and prostate ultrasound has been largely doc-
umented. From the observation that the re�ectivity of a tissue
carries cleaner information on its structure than the raw echo
signal does, the possibility of exploiting the deconvolved image
rather then the unprocessed one for tissue characterization is in-
vestigated. From this perspective, standard deconvolution algo-
rithms reveal strong limitations, principally ascribed to the sim-
pli�ed tissue models they make use of. Indeed, though these
are su�cient for producing appreciable image quality improve-
ment, they otherwise induce a statistical bias in the statistics of
the restored re�ectivity, making it unusable for characterization
purposes.

Hereto, a novel deconvolution method for ultrasound im-
ages has been developed and is described. �e algorithm is de-
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rived on the base of a non-standard statistical model for the tis-
sue response, de�ned by the Generalized Gaussian Distribution.
By means of two distinct parameters, called scale and shape pa-
rameter, this distribution allows sequences of arbitrary energy
and sparsity to be generated, and is therefore adequate for pro-
viding an accurate description to the most general tissue struc-
tures. Deconvolution is then tackled as a Maximum a Posteriori
estimate, in which tissue re�ectivity is restored along with an
estimate of the associated scale and shape parameter. An Ex-
pectation Maximization framework is designed to address this
task. An evaluation of performance will be presented on exper-
imental data from several tissue-mimicking phantoms having a
well-de�ned particle concentration. �ese studies will show im-
provements in classi�cation accuracy of up to the 20% and the
superiority of the proposed algorithm over standard ones.

�is thesis part proceeds as follows. �edeconvolution prob-
lem is formulated in Chapter 4 where most common solutions,
as Wiener �lter and l 1-norm optimization, are presented. �e
original restoration scheme will be �nally derived and evaluated
in Chapter 5.



Chapter 4
Deconvolution problem

Connaturatedwith every imaging technique is a discrep-
ancy between the true scene and the imaged one. �e
entity of these errors is dependent on the features of the

sensing devices as well as on the physical phenomena underly-
ing the image formation process. Many of these elements can be
reasonably accounted for by linear models. Although not rigor-
ous, they represent a commonly accepted approximation for the
largest majority of applications. Under this assumption of lin-
earity, the observed image can be expressed as the linear convolu-
tion of the true image with a linear blurring kernel. �e problem
of image deconvolution, or, equivalently, restoration or deblur-
ring, naturally arises from this scenario, and has its goal in the
enhancement of image resolution and contrast by the restora-
tion of an estimate of the true image. Image restoration is a very
common problem in image processing, encountered in a wide
variety of technical areas as astronomy, seismology, microscopy
and medical imaging. See [22, chap. 1] for a review.

In this chapter the problem of medical ultrasound restora-
tion is addressed. In §4.1 the problem is de�ned and some ma-
jor issues implied by the peculiar nature of ultrasound are dis-
cussed. In §4.2 the simple predictive deconvolution scheme is
presented alongwith itsmain limitations. In §4.3 it is shownhow
deconvolution can be formalized as a Bayesian inference prob-
lem and themost popular related solutions (Wiener �ltering and
l 1-norm deconvolution) are presented. As predictive deconvo-
lution is a completely blind technique, Bayesian techniques re-
quire the availability of an estimated PSF instead. Hereto in §4.4
several techniques for estimating ultrasound PSFs from the
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backscattered echo are discussed. �e chapter concludes in §4.5.

4.1 Problem statement

As shown in Chapter 2, as long as imaging of so� tissues is con-
cerned, the �rst order Born approximation can be applied and
the radio-frequency (RF) image y can be expressed as:

y[n.m] = ∑
k , l

h[n, k;m, l]x[k, l] + ν[n,m] (4.1)

where x represents the tissue re�ectivity function, h is the trans-
ducer’s Point Spread Function (PSF) and ν is Gaussian measure-
ment noise. �e problem of image restoration is then de�ned as
producing an estimate of x from the observation y. In the se-
quel we will address some very important issues arising in the
case of ultrasound images, making the restoration problem for
this class of images particularly challenging.

At �rst we note that the model (4.1) is intrinsically non sta-
tionary, indeed h is allowed to vary its shape when measured
at di�erent locations. �is is indeed the case of medical ultra-
sound, where the system PSF may change considerably on the
imaged plane. �is spatial variability is principally connected
with the beamforming performed by the array in order to have
better resolved images, but is also due to the presence of the tis-
sue itself, whose attenuating and dispersive action on the acous-
tic �eld propagation is known to be highly frequency dependent.
�ese issues have been more exhaustively explained earlier in
§2.5 of this manuscript.

�ese considerations not only con�rm that a spatially vari-
ant PSF must be considered in a realistic signal model, but in-
troduce a further issue. �is consists in the fact that, although
spatial variations associatedwith systemdependent e�ects could
theoretically be a priori modeled given a perfect knowledge of
the acquisition modality, instead this is not the case for tissue
dependent ones. Indeed they are intrinsically depend on the
structural properties of the insoni�ed medium, which, exclud-
ing very controlled experimental setups, are completely unpre-
dictable. As a result, the blurring term h in (4.1) is also an un-
known of the problem. �e class of deconvolution problems in
which none or little information is available on the blurring ker-
nel is referred in literature as blind deconvolution [22, 23].

�eblinddeconvolution problemcanbe tackled in twoways.
�e�rst consists in estimating the tissue re�ectivity and the trans-
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ducer PSF simultaneously. �e second approach is instead to es-
timate the PSF �rst, followed by using such an estimate to solve
the deconvolution problem in a non-blind manner. We antici-
pate that this second solution is fairly themost common. Indeed,
as we will see, these methods are free from strong hypothesis on
the signal statistics implied by the former ones, and allow for
more realistic tissue models to be taken into account.

Among the completely blind deconvolution strategies pre-
dictive deconvolution represents a very popular alternative. �is
technique is described in the next section.

4.2 Predictive deconvolution

Predictive deconvolution was �rst introduced in [24] for decon-
volving seismograms obtained in re�ection seismology. Seis-
mology and medical ultrasound represent two techniques in-
spired by the same intent, that is to say to characterize a propa-
gating medium through the echo returned a�er an acoustic so-
licitation of the same. In the former case air guns are employed
as sources and the medium is the earth crust, in the latter piezo-
electric transducers are used to image biological tissues. �ese
similarities motivate the tentative to apply tools developed for
the processing of seismic signals to the treatment of medical
ones. In particular, predictive deconvolution for medical ultra-
sound has been investigated in fewworks, as [25, 26]. �e reader
is addressed to [27] for an extensive dissertation on the employ-
ment of predictive techniques, and adaptive �lters in general, for
medical ultrasound restoration.

Predictive deconvolution assumes an autoregressive (AR)
model for the echo signal y, i.e.

y[n] = P∑
k=1

a[k]y[n − k] + x[n] (4.2)

where y and x have the samemeaning as in (4.1). �e coe�cients
a[k] are called auto-regressive coe�cients of y, and P is the or-
der of the model. In this context x is also called excitation of the
autoregressive model, and must be white noise. Note that a one
dimensional formulation has been used. Indeed, in medical ul-
trasound, the common practice is to apply blind deconvolution
techniques of this kind only along the axial direction of propa-
gation [22, 25].
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Figure 4.1: Predictive deconvolution.

Note that (4.2) is equivalent to y[n] = (h ∗ x)[n] if:
H(z) = Y(z)

X(z) = 1

1 −∑p

k=1 a[k]z−k (4.3)

where H(z) = ∑n h[n]z−n is the Z-transform [8, chap. 3] of the
PSF h. �at is to say when h is an all-pole, minimum-phase �lter
[8, pp. 280–290].

�e scheme for predictive deconvolution is represented in
Figure 4.1. �e function of the predictive block is to produce a
guess ŷ[n] of y[n] given a set of its delayed samples. In practice
it is implemented as a linear �nite impulse response (FIR) �lter
with taps w = [w1 ,⋯,wM], so that:

ŷ[n] = M∑
k=1

w[k]y[n − k] (4.4)

�e values of the coe�cients is computed so to satisfy the opti-
mal prediction condition:

w∗ = argmin
w

{E(e2[n])} (4.5)

where e[n] = y[n] − ŷ[n] is the prediction error and E{⋅} rep-
resents the statistical expectation.

It is immediate to show that, when y is an autoregressive
process, the so obtained linear prediction coe�cients provide
in e�ect an estimate of the autoregressive parameters a. As a
consequence, the prediction error e[n] is an estimation of the
excitation process x, that is to say the deconvolved trace.

A common way to compute the prediction coe�cients in
(4.5) is by solving the associated Wiener-Hopf equations [28,
chap. 6]. �is solution is optimal provided that a consistent es-
timate of the autocorrelation function of the input trace y[n]
can be computed. �is implies that a stationary time realiza-
tion of su�cient duration is available. Unfortunately, medical
ultrasound signals cannot be considered stationary or, at least,
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stationarity hypothesis can bemade only on small segments. In-
deed, though the time invariant autoregressive model has been
introduced in (4.2) for conformity with the literature onAR pro-
cesses, a much more realistic model would instead take time-
variant coe�cients into account, i.e.

y[n] = P∑
k=1

a[n; k]y[n − k] + x[n] (4.6)

As a consequence not a �xed set of AR coe�cients must be esti-
mated from an entire ultrasonic scan line, otherwise they should
be adaptively updated so to second to the time-variant proper-
ties of the signal. A consolidated alternative for dealing with this
class of signals is represented by adaptive �ltering techniques.

4.2.1 RLS algorithm for linear prediction

Adaptive �lters are �lters in which taps are recursively updated
throughout all the acquisition process in order to compensate
for time varying changes of acquisition system or propagating
channel. �e literature on adaptive �lters is extremely wide, see
[28] for an exhaustive dissertation. �e most classical solutions
for the updating rule are the Least Mean Square (LMS) algo-
rithm [28, chap. 9] and the Recursive Least Squares (RLS) algo-
rithm [28, chap. 13]. In particular, the second is known to ensure
better performance both in terms of convergence and tracking
capabilities.

�e RLS algorithm relies on the following approximation of
the cost function E{e2[n]}:

Γ{e2[n]} = n∑
k=1

λn−k e2[n] (4.7)

where λ ∈ [0, 1] is called the forgetting factor and represents the
memory of the �lter. In particular, values of λ close to 1 cor-
respond to considering segments of higher duration: this im-
proves the coe�cients estimate when stationarity assumptions
can be made but limits the tracking capabilities for highly non
stationarity signals. Symmetrically, small values of λ improve
the dynamic behavior on one side, but make the approximation
given by Γ more dramatic on the other, so degrading the consis-
tency of the estimated coe�cients. As a consequence, λ has to
be carefully tuned in relation with the application at hand.
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Table 4.1: Summary of the RLS algorithm

Initialization: P[0] = δ−1 ⋅ I, ŵ[0] = 0,
For n= 1,2,..., compute:

k[n] = λ−1P[n − 1]u[n]
1 + λ−1uT[n]P[n − 1]u[n] ,

ξ[n] = y[n] − ŵT[n − 1]u[n],
ŵ[n] = ŵ[n − 1] + k[n]ξ[n],
P[n] = λ−1P[n − 1] − λ−1k[n]uT[n]P[n − 1],

Before going through the description of the algorithm it is
useful to introduce here the some variables. We de�ne

u[n] = [y[n − 1],⋯, y[n −M]]T (4.8)

the input to the predictor, so that ŷ[n] = wTu[n];
Φ[n] = n∑

i=1

λn−iu[i]uT[i] (4.9)

the estimate of the autocorrelation matrix and

z[n] = n∑
i=1

λn−iu[i]y[i] (4.10)

is the estimate of the crosscorrelation vector between the input
sequence u and y.

�e solutionw∗, that minimizes (4.7), is then obtained from
the relation

w∗(n) = Φ−1(n)z(n) (4.11)

In practice no matrix inversion is needed and the matrix in-
version lemma is used instead [28, pp. 565]. A summary of the
RLS algorithm is reported in Table 4.1. �e RLS algorithm is a
very consolidated framework in adaptive �lter theory, the inter-
ested reader may �nd an exhaustive derivation e.g. in [28].

4.2.2 Limitations of the approach

Several pros and cons go along with the predictive deconvolu-
tion technique when employed in the context of medical ultra-



4.2. Predictive deconvolution 43

sound. �ey have been mentioned throughout the text but it’s
useful to summarize them here. �e main advantages are:

• �e small computational complexity. In fact, they relies
on simple �ltering techniques for which several simple
hardware implementations could be thought or borrowed
from the telecommunications literature. Moreover each
scan line is typically processed independently from the
adjacent one, as a consequence this intrinsic parallelism
could be exploited for considerably reducing the total cost
associated to the deconvolution of the entire image. For
these reasons, adaptive �ltering deconvolution techniques
are with no doubts the most promising candidates as long
as real-time processing is pursued.

• �ey are completely blind. As a consequence no PSF es-
timation strategy is needed. We will see in the following
that several complications are associated with these esti-
mation techniques.

• �e intrinsic non-stationarity of the system is directly
taken into account as the model coe�cients are contin-
uously updated.

Limitations are mainly due to the assumptions at the base of
the predictive deconvolution scheme. Indeed, if they can be ad-
equate in re�ection seismology or in some telecommunication
application, they are instead too severe for medical ultrasound.
�ese are:

• �e PSF cannot be well represented by an all-pole system
as the one in (4.3). Indeed the AR model is useful for
modeling random signals that possess peaky power spec-
tral densities. When more complex situations with broad
peaks or sharp nulls exist, which is the case in medical
ultrasound, more general models should be alternatively
used, as autoregressive moving average (ARMA). �ese
concept is illustrated in Figure 4.2, where the inadequacy
of the AR model for representing the actual shape of the
spectrum of an experimental PSF is evident, along with
the better approximation o�ered by anARMAmodel. Un-
fortunately, several shortcomings accompany the employ-
ment of ARMA schemes, which limit their use as well.
At �rst much onerous model estimation procedures are
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Figure 4.2: (a) Experimental PSF obtained as the response of a
metal wire immerse in a water tank. (b) Power spectrum of the
experimental pulse. (c) Power spectrum of the AR estimate. (d)

Power spectrum of the ARMA estimate. For the AR the best �t has
been obtained for an �lter length of M=4. For the ARMA both

number of zeros and poles was equal to 5.

needed. Moreover, adaptive strategies cannot be formal-
ized [22, pp.185–190], which preclude the time variance of
the system from being correctly taken into account.

• Experimental PSFs are known to have a non-negligible
lateral extent, which makes the 1-D model highly inade-
quate. For this reason, modern deconvolution techniques
all exploit more realistic 2-D [29, 30, 31], when not 3-D
[32, 33], PSF models.

• Assuming the tissue re�ectivity to be a white Gaussian
process is an unacceptable simpli�cation for biological tis-
sues. At �rst, variations in the echogenicity pro�les are the
immediate consequence of the simultaneous presence of
di�erent biological structures encountered inside realistic
images, which make a white process a highly inadequate
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model. Moreover more realistic scattering conditions can
be accounted for by more �exible distributions than the
Gaussian, as detailed in Chapter 3. �ese concepts will be
further addresses in the next sections and more di�usely
in the next Chapter.

�e aforementioned limitations justify the fact that very few
authors spent big e�orts in the investigation of predictive de-
convolution schemes for medical ultrasound. �e most com-
mon strategy is instead to exploit di�erent approaches, relying
upon statistical estimation and convex-optimization theory. At
the same time we further stress that techniques based on adap-
tive �lters are instead the most promising alternative when on-
line processing is needed.

4.3 Maximum a posteriori deconvolution

Unlike predictive deconvolution, this kind of techniques address
the blind deconvolution problem in a two step scheme: the PSF
h is estimated �rst and subsequently the task is tackled in a non-
blind manner. In this section we describe the most common
techniques for the latter step. Possible ways for estimating the
PSF from the echo image are described later in this chapter.

4.3.1 Problem formulation

For compactness of notation, let’s rewrite the signal model in
(4.1) with the common matrix-vector notation [34]:

y = Hx + ν (4.12)

where y, x and ν are vectors obtained a�er lexicographical or-
dering from the corresponding images and H is the matrix as-
sociated to the blur [34, Appendix A]. Speci�cally, assuming a
generic N ×M RF-image, then y is the NM × 1 vector obtained
by stacking each column under the previous one and H is an
NM × NM matrix. With this formalism, deconvolution trans-
lates into providing a reasonable solution x̂ to (4.12).

We remark that PSF shape variation requires a spatially vari-
ant blur to be taken into account within an accurate deconvolu-
tion framework. �ough a pointwise variant kernel could theo-
retically be embedded in (4.12), this would require productsHx

andHTx to be computed explicitly, thereby making deconvolu-
tion computationally unfeasible. Hereto, the simplest approach
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is to assume a slowly varying PSF [31, 29, 35], and hence well ap-
proximated by a piecewise constant function. In this case, the
data image can be divided into a number of segments, whose
size is chosen to be small enough to guarantee that each of the
segments is formed by a stationary convolution with a di�erent
PSF.

With this model, the following expressions holds [36]:

H = K∑
k=1

DkHk , HT = K∑
k=1

HT
k Dk (4.13)

where Hk denotes the spatially invariant PSF associated to the
kth segment and Dk is the diagonal matrix determining the in-
terpolation between the kth region and the neighboring ones
(cf. Appendix B). Since each of the Hk is Block Toeplitz with
Toeplitz Blocks, then products of the type Hx and HTx can be
e�ciently implemented via Fast Fourier Transform [36]. Details
about structure ofH are given in Appendix B of this manuscript.

4.3.2 Bayesian framework

Image deconvolution is o�en tackled as a statistical inference
problem [37, 38, 35]. In this case, vectors y, x and ν of the model
in (4.12) are treated as single realizations of random processes,
to which a suitable probability density function (pdf) p(⋅) is as-
signed. In this context, the two most common estimation
paradigms areMaximumLikelihood (ML) andMaximumaPos-
teriori (MAP), respectively seeking the realization of xmaximiz-
ing the log-likelihood ln[p(y∣x)] and the log-posterior ln[p(x∣y)],
see [16].

If the noise is modeled as zero mean white Gaussian with
variance σ 2

n :

pν(ν) = 1(2πσ 2
n)N exp( − 1

2σ 2
n

∣∣ν∣∣22) (4.14)

then p(y∣x) = pν(y −Hx):
p(y∣x) = 1(2πσ 2

n)N exp( − 1

2σ 2
n

∣∣y −Hx∣∣22) (4.15)

where N is now the total number of samples in the image. From
(4.15) one can derive that ML estimate corresponds to the least
squares solution to (4.12), minimizing the error norm ∣∣y−Hx∣∣22.
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As known, this problem is directly solved by pre-multiplying y
with the pseudo-inverse of H, i.e. (HTH)−1HT . Unfortunately,
in medical ultrasounds, like in any other measurement tech-
nique, the system matrix H is necessarily ill-conditioned. �is
fact is directly connected to the band-limitedness of acquisition
system impulse response. Hence, inverse �ltering results in an
unacceptable ampli�cation of the out-of-bandnoise components.
In this context, MAP technique provides a way to cope with the
ill-posedness of the restoration problem by including further in-
formation in the estimation task. In particular, it requires a prior
model p(x) to be assigned to the desired solution. Using the
Bayes rule p(x∣y) ∝ p(y∣x)p(x), the MAP estimate of x then
writes as:

x̂MAP = argmin
x

{ 1

2σ 2
n

∣∣y −Hx∣∣22 − log p(x)} (4.16)

where p(x) re�ects the prior belief about x, acting as a regulariz-
ing constraint in the inversion of (4.12). In practice, re�ectivity
samples x i are modeled as independent identically distributed
random variables, so that p(x) = ∏ p(x i). �e two re�ectivity
models by far the most common in deconvolution literature, i.e.
Gaussian and Laplacian, are discussed in the next Section.

4.3.3 Gaussian model

If x obeys a multivariate Gaussian distribution with zero mean
and co-variance matrix E{xTx} = Σx:

px(x) = 1(2π)1/2∣Σx∣1/2 exp{
1

2
xTΣ−1x x} (4.17)

then the restoration problem maps into a (weighted) l 2-norm
optimization task:

log p(x∣y)∝ { 1

2σ 2
n

∣∣y −Hx∣∣22 + 1

2
xTΣ−1x x} (4.18)

�e solution∇x log p(x∣y) = 0 is given by:

x̂ = (HTH + σ 2
nΣ
−1
x )−1HTy =Wy (4.19)

whereW is the well known Wiener �lter [34, Ch.8]. Due to the
size of the problem thematrix inversion involved by (4.19) is not
feasible in a direct way. It is hereto common to adopt iterative
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Table 4.2: Conjugate Gradients Algorithm

Initialization: r0 = b −Ax, p0 = r0, k = 0
repeat

αk = r†krk/(r†kArk),
xk+1 = xk + αkxk ,

rk+1 = rk − αkArk ,

βk = r†k+1rk+1/(r†krk),
pk+1 = rk+1 + βkpk ,

k = k + 1
until: ∣∣rk ∣∣2 < τCG

linear system solvers as Conjugate Gradients [39]. A schematic
of this technique is reported in Table 4.2, where A = (σ 2

nΣ
−1
x +

HTH) and b = HTy.
Despite the multivariate pdf in (4.17) represents an accurate

model, allowing variations in echogenicity pro�les to be taken
into account, and has been explored in few works [35], it other-
wise involves some tedious issues as the estimate of Σx and its
inversion. In this context it is fairly more common to assume
white models for x so that Σx = σ 2

x I, where I is the identity ma-
trix. As a consequence (4.19) becomes:

x̂ = (HTH +
σ 2
n

σ 2
x

)−1HTy =Wy (4.20)

�is simpli�ed model was adopted in [31].
Moreover, as far as spatially-invariant PSFs are considered,

thenH can be immediately diagonalized by means of its Fourier
coe�cients and the restoration problem can e�ciently be solved
in the Fourier domain as:

X̂ = H∗∣H∣2 + σ 2
n/σ 2

x

(4.21)

where the transformed signals have been denoted by capital let-
ters. Equation (4.21) represents the most popular expression for
Wiener �ltering. �is DFT domain solution has been widely ex-
ploited in literature for its computational feasibility, mainly by
Taxt et al.[29, 30, 40, 32]. When (4.21) is adopted, the common
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way do deal with non stationarity of the PSF is to deconvolve
single sub-images and then to merge the results. Taking care of
avoiding block artifacts by suitably overlapping the image seg-
ments.

Despite the computational e�ciency, DFT-domain Wiener
�lter yields sub-optimal results because the complex exponen-
tials that comprise the basis of the DFT have poor spatial lo-
calization, so that modi�cations to individual DFT coe�cients
of x result in global changes to the entire image that are o�en
manifested as Gibbs ringing artifacts [41]. Moreover, as a lin-
ear �lter, Wiener solution is incapable of interpolating the out of
band information that was lost during the image formation pro-
cess, so producing oversmoothed solutions [31]. �e reader may
note that these shortcomings are shared with the predictive de-
convolution scheme described at the beginning of this Chapter.
Indeed, although derived in di�erent ways, these two techniques
have much in common: in both cases a Gaussian model for the
re�ectivity is assumed, which, as we will discuss later, in fairly
too simpli�ed for a real tissue, moreover, in both cases a linear
regularized approximation of inverse �lter is produced, which
goes along with the oversmoothing and the ringing phenomena.

�ese considerations motivate the need for alternative re-
�ectivitymodels. In this context Laplacian distribution has been
the most popular.

4.3.4 Laplacian model

If a Laplacian model is assumed for the re�ectivity:

p(x i) = 1√
2σ 2

x

exp( −√ 2

σ 2
x

∣x i ∣) (4.22)

then the restoration problem in (4.16) translates into an l 1-norm
optimization task [31]:

x̂ = argmin
x

{ 1

2σ 2
n

∣∣y −Hx∣∣22 + λ∣∣x∣∣1} (4.23)

where λ = √2/σx and ∣∣x∣∣1 = ∑ ∣x i ∣ denotes the l 1-norm. �e
optimization problem de�ned by (4.23) does not have a closed
form solution, and must be handled with iterative convex opti-
mization schemes [31, 42]. A possible solution to (4.23) will be
addressed in the next Chapter, where a general framework for
the solution of l p-norm problems will be described.
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Figure 4.3: Comparison between Gaussian and Laplacian pdfs.

�e literature on l 1-norm optimizations is wide, indeed it
is the standard procedure solving linear systems when the so-
lution is known to be sparse. In the context of medical ultra-
sound deconvolution, Laplacian prior was �rst introduced by
Michailovich et al.[31, 43]. It has to be noted that Laplacian pdf
possesses heavier tails than the Gaussian one and, hence, there
is a greater allowance for a few occasional large-amplitude sam-
ples to occur, cf. Figure 4.3. For this reason, such a model is bet-
ter suited for representing more realistic tissues with di�usive
scatterers superimposed with sparse specular re�ectors. A com-
parison betweenWiener and l 1-norm deconvolution is given in
Figure 4.4, where the increased sparsity associated to the Lapla-
cian prior is evident, along with the oversmooting e�ect caused
by Wiener �ltering.

4.3.5 Advantages and shortcomings

�esemaximumaposteriori techniques represent themost com-
mon restoration strategies for medical ultrasound. An overview
of the literature concerning ultrasound images restoration pro-
duced in the last 15 years is summarized in Table 4.3. �ose
methods are directly derived on the base of the optimization
tasks derived in the previous section, or on slight modi�cations.
From the second column of the Table is evident how in some
case working on the in-phase/quadrature (IQ) signal is preferred
than on the raw RF. �is is due to the fact that, a�er demodu-
lation, the IQ signal can be downsampled without introducing
aliasing e�ects. �e downasmpling factor is dependent on the
ratio between the transducer’s bandwidth and the sampling fre-
quency (factors of 4-5 are o�en feasible with standard acquisi-
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Figure 4.4: Comparison between wiener and laplacian
deconvolution relative to a prostate scan acquired with Trans

Rectal Ultrasound (TRUS).

tion setups). �is is highly desirable as standard deconvolution
algorithm as the one discussed above mostly have a computa-
tional complexity which raises with the square of the number of
samples.

Main advantages of MAP techniques include:

• Twodimensional [30] or even three dimensional [32] PSFs
can be accounted for.

• No assumption is made on the PSF, neither on the num-
ber of zeros or poles, neither on the position of the zeros
on the complex plane. In particular bothminimum phase
(all zeros and poles inside the unit circle) andmixed phase
[8] PSF can be considered. In this context we will see that
this second hypothesis is the more realistic for ultrasound
pulses, which involve several complications in the PSF es-
timation procedure.

• More advanced models than white Gaussian can be as-
sumed for the tissue re�ectivity. In particular a degree of
correlation among samples can be introduced, as in [35],
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Table 4.3: Literature Overview on Medical Ultrasound
Deconvolution

WORK METHOD

Signal PSF 1 Optimization

Abeyratne [44]
(1995)

1D-RF Estimated (HOS)
Wiener DFT
(4.21)

Taxt [40]
(1999)

1D-RF Estimated (H)
Wiener Block
(4.21)

Taxt [30]
(2001)

2D-IQ Estimated (H)
Wiener Block
(4.21)

Taxt [32]
(2001)

3D-RF Estimated (H)
Wiener Block
(4.21)

Michailovich [45]
(2003)

1D-RF Estimated (GH)
Wiener Block
(4.21)

Taxt [29]
(2004)

2D-IQ Estimated (H)
Wiener Block
(4.21)

Michailovich [31]
(2005)

2D-IQ Estimated (GH) l 1-norm (4.23),
Wiener (4.20)

Jiřík [46]
(2006)

2D-RF Estimated (H)
Wiener DFT
(4.21)

Ng [35]
(2007)

2D-IQ
Simulated:
FieldII [6]

Iterative Wiener
(4.19)

Michailovich [43]
(2007)

2D-IQ
Iterative
re�nement of GH
estimate

Hybrid.
l 1-norm.

1 When an estimated PSF is used, the following notation is adopted: HOS
for the cumulants-based estimate in §4.4.1, H for the cepstrum estimate
in §4.4.2, GH for the generalized homomorphic estimate in §4.4.3.

where piecewise-smooth echogenicity variations due to
the presence ofmultiple tissues in the image are taken into
account by considering a non-whitemultivariate distribu-
tion for the re�ectivity. Moreover, the hypothesis of Gaus-
sianity can be disregarded aswell. �is is done for instance
with the Laplacian model, but this concept will be further
expanded in the next Chapter.

Main limitations include:

• An increased computational cost, in particularwhenmore
complex scheme than Wiener are employed. As a conse-
quence, though considerable speed ups could be obtained
thanks to e�cient implementations on dedicated hard-
ware platforms or on GPUs, these tools are not promising
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candidate as long as real-time processing is the principal
goal.

• Although PSF estimation strategies have received a great
attention among several authors [29, 31, 45] this step still
remain tedious. In particular this ismotivated by the need
of phase unwrapping procedures when non-minimum
phase PSFs are considered. As long as ultrasounds are
considered this operation is particularly challenging due
to the high and rapid variations of the signal phase, which
make standard phase unwrapping algorithms developed
for other image modalities as MRI [47] of little use.

4.4 PSF estimation

As mentioned, deconvolution of ultrasound images is a blind
problem and MAP techniques cope with this fact by estimating
the PSF from the RF image, and then use the obtained estimate
within a non-blind setting. As the image formation is known to
be non stationary, the common solution is to partition the im-
age axially into segments small enough to consider the process
locally stationary and then to estimate a di�erent PSF on each
segment. �e global blurring operator is then to be built as in
(4.13).

�e literature on PSF estimation techniques is wide. �ese
methods can be grouped into threemain classes, whichwebrie�y
resume in this section. �e reader is addressed to [22, chap. 5]
for a more complete review on the subject. In order to keep the
following discussion �uent let’s introduce here the variables to
be used throughout the rest of the section, see Table 4.4.

4.4.1 Higher-Order Statistic technique

�is method was �rst proposed in [44] for 1D signals. It re-
lies on the following hypotheses: the psf h is deterministic and
mixed-phase, the re�ectivity x is stationary zero-mean and non-
Gaussian, the noise ν is stationary white Gaussian. Under these
assumptions the bispectrum of y can be written as [48]:

Cy(ω1 ,ω2) = Cx(ω1 ,ω2)H(ω1)H(ω2)H∗(ω1+ω2)+Cν(ω1 ,ω2)
It can be shown that, if ν is white Gaussian then Cν = 0. More-
over, if x is white non-Gaussian then its bispectrum is simply a
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Table 4.4: List of Symbols for PSF Estimate1

symbol definition description

G[ω] F (g[n]) spectrum

G[ω1 ,ω2] F2D (g[n,m]) 2D spectrum

Ĝ[ω1 ,ω2] logG[ω1 ,ω2] log-spectrum

cg[τ1 , τ2] E{g[n]g[n + τ1]g[n + τ2]} 3-rd order
cumulant

Gg[ω1 ,ω2] F2D (cg[τ1 , τ2]) bispectrum

ĝ[n,m] F−12D (Ĝ[ω1 ,ω2]) complex
cepstrum

1 In this table F, F2D and F−12D represent Fourier transform, two-
dimensional Fourier transform and inverse two-dimensional Fourier
transform respectively. In practice, as long as discrete time series are con-
sidered, they are implemented by the Fast Fourier Transform (FFT) algo-
rithm.

constant. �erefore is evident how Cg is, a part of the multipli-
cation by a constant, exclusively determined by the spectrum of
h, which suggests how the blur can be estimated from the bis-
pectrum of the rf signal.

A strong limitation of this approach is that consistent esti-
mates of higher order statistics require long stationary time re-
alizations to be available. Otherwise all the desirable properties
described above may not hold and the resulting PSF estimate be
inaccurate. As mentioned, this condition is never satis�ed in a
real world setting, where the echo rapidly varies its properties.
Moreover 2D extension to these techniques is not straightfor-
ward and may become fairly too computation demanding. A
much more feasible and popular alternative is represented by
homomorphic techniques.

4.4.2 Homomorphic technique

Homomorphic deconvolution has been widely explored with a
certain success by Taxt et al., see Table 4.3. �e log-spectrum Ŷ
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of y is:

Ŷ(ω1 ,ω2) = log ∣X(ω1 ,ω2)∣ + log ∣H(ω1 ,ω2)∣+
+ j {∠H(ω1 ,ω2) +∠X(ω1 ,ω2)} (4.24)

It can be shown that, at least withing the transducer bandwidth,
both log ∣H∣ and∠H are reasonably smooth signals, while both
the power spectrum and the phase of x are spiky noise-like se-
quences [49]. As a consequence, the spectrum of H can be re-
trieved from Ŷ by �ltering both its real and imaginary parts.

Homomorphic techniques accomplish this separation in the
cepstrum domain [8]. In particular, from (4.24) it is straight-
forward to derive cy[n,m] = cx[n,m] + ch[n,m], where, for
the considerations above, ch is a fast converging sequences, with
its energy con�ned at the origin of the cepstrum domain, while
the energy of y is spread over the entire cepstrum domain due
to the non regularity of Ŷ . Although the two sequences ch and
cy may have a certain overlapping, this is usually neglected and
the cepstrum of the PSF ch is simply obtained by truncating the
cepstrum cy of the echo signal [50, 29, 51].

4.4.3 Generalized homomorphic technique

Generalized homomorphic technique [31] also exploits di�er-
ent smoothing properties of H and X in order to retrieve a PSF
estimate from (4.24). �e main di�erence is that smoothing is
not performed by truncation in the cepstrum domain, as in the
traditional homomorphic scheme, but by projection of both the
real and imaginary parts of (4.24) on a reduced resolution space.
�is is done bymeans ofwavelet �ltering, where the signal statis-
tics are taken into consideration in order to de�ne the optimal
basis and threshold. �is technique is documented to outper-
form the traditional one in [50] in terms of mean square recon-
struction error and will be adopted in the following Chapter.

We conclude this section by noting that a major complica-
tion goes along with homomorphic or generalized homomor-
phic techniques, represented by the need of unwrapping the
phase of Y before the PSF estimation procedure. As the phase
of ultrasound signals present very peculiar properties, making
standard unwrapping tools developed for alternative
imagingmodalities likeMRI of little or no use at all [47], several
ad hoc phase unwrapping algorithms have been proposed in lit-
erature. A discussion on phase unwrapping is beyond the scope
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of this manuscript. Major contributors in this context are Strand
and Taxt [52, 53] and Michailovich [49, 54]. Although good re-
sults are documented, details about their implementation are of-
ten le� quite obscure. In the following chapter, as a compromise
between feasibility of implementation and accuracy of results,
we adopt the phase unwrapping technique described in [55].

4.5 Conclusion

In this chapter the problem of deconvolution for medical ultra-
sound has been introduced. �e principal techniques for tack-
ling this task have been reviewed, with an emphasis on predic-
tive deconvolution and Maximum a Posteriori approaches. We
mentioned that predictive deconvolution, despite its computa-
tional e�ciency, introduces several simpli�cationswhich are too
severe formedical ultrasound and, for this reason, it has received
only a limited attention. In particular, we have obtained some in-
teresting results relative to the employment of predictive decon-
volution within a Trans Rectal Ultrasound (TRUS) based Com-
puter Aided Detection (CAD) tool for classi�cation of prostate
cancer [26, 56]. Otherwise, that project was marginal to the pri-
mary doctoral research activity and wont be further detailed in
this manuscript.

�e focus then dri�ed to Maximum a Posteriori restoration
techniques, which represent the state of the art in medical ul-
trasound and in image processing in general. Indeed, due to
their �exibility, they allow suitably modeling the majority of tis-
sue and system dependent e�ects involved in a real acquisition.
In particularmost commonWiener �lter and l 1-normoptimiza-
tion have been de�ned. �ose MAP techniques assume a priori
knowledge of the blurring kernel, i.e. the system PSF. As the
problem of deconvolution of medical ultrasound is blind, the
common solution is to use estimates of the PSF obtained from
the echo signal. Hereto the most classical estimation strategies
have been reviewed at the end of the chapter.

All the concepts here introducedwill be exploited in the next
chapter, where a novel algorithm for deconvolution of medical
ultrasound will be derived.



Chapter 5
Deconvolution and tissue characterization

Medical ultrasound represents a non-invasive
and cost-e�cient imagingmodality. Beyond that, ul-
trasound provides a precious tool for tissue charac-

terization since, from the analysis of the backscattered echo sig-
nal, relevant information on structural properties of the insoni-
�ed tissue can be inferred, otherwise unaccessible from simple
visual inspection.

�is principle is at the base of a consolidated research branch
referred as Ultrasonic Tissue Characterization (UTC). In par-
ticular, it has been e�ectively exploited in a clinical context in
the development of ultrasound-based Computer Aided Detec-
tion (CAD) schemes. �e purpose of CAD is to support the
physician in the interpretation of ultrasound images and to assist
him in the decision-making process when suspicious situations
are encountered. Signi�cant results have been documented on a
range of clinical applications, like prostate cancer recognition on
TRUS [57], detection of suspicious masses in breast ultrasounds
[58] and diagnosis of hepatic steatosis [59]. �e computer out-
put is derived from quantitative analysis of the echo signal. In
this context, a large amount of features of di�erent nature have
been proposed in literature, which can be subdivided according
to their contribution in highlighting speci�c tissue properties.

Tissue characterization based on the acoustic parameters such
as attenuation and backscattering coe�cients extracted from
radio-frequency (RF) echo signals has beenwidely studied. �ese
quantities are commonly estimated by using one-dimensional
[60] or two-dimensional [61] spectrum analysis of the RF sig-
nal. Spectral features have proven to provide useful outputs for

57
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diagnosis of diseases in various organs, like eye, prostate, breast
and liver; see [62] for a comprehensive review. Besides the RF-
spectrum analysis, many researchers have used texture features
extracted from ultrasound B-scan images for characterization
purposes. �e initiative is that the speckle pattern in the ul-
trasonic image can reveal structural information about the tis-
sue. Usefulness of textural features within clinical settings has
been largely documented, e.g. for prostate carcinoma diagnosis
[63, 26], evaluation of liver diseases like hepatoma and cirrho-
sis [64] and detection of atherosclerotic plaques in the carotid
artery [65].

A third class of features are derived from statistical model-
ing of the ultrasound echo distribution, allowing to bring infor-
mation on scatterer concentrations and distribution pattern. As
said in Chapter 3, many statistical models have been developed
in literature associated with di�erent scattering conditions. �e
most popular is represented by the Rayleigh distribution for the
envelope signal, which can be analytically derived when di�use
scattering occurs [9, pp.48–50],[15]. Nevertheless, di�use scat-
tering conditions are o�en violated in biological tissues, either
because the number of scatterers per resolution cell may not be
large enough, or because of the presence of regular patterns in
the scatterers location. In these cases Rayleigh model is inad-
equate and more complex models have to be adopted. In this
context, a variety of distributions have been used, such as Ri-
cian [9, pp.50–52], K [10], Homodyne-K [11], andNakagami [12].
In particular, Nakagami represents the most popular model for
�tting envelope amplitude histograms [12]: its two parameters,
called scale and shape parameter, are strictly correlated to scat-
terer strength and concentration, and are widely used for tissue
characterization purposes [18]. Besides, Nakagami parameters
have been shown to assess good discriminating performances on
B-mode, logarithmically compressed, data as well [66]. When
the RF signal is considered instead, Krf distribution [13] and
GeneralizedGaussian distribution (GGD) [14] have been shown
to provide a precise �t under the most general scattering condi-
tions.

Due to their computational feasibility and attested diagnos-
tic relevance [13, 18], statistical features are particularlywell suited
for those applications in which online assistance has to be pro-
vided, like for biopsy guidance. Besides, their ability of enhanc-
ing di�erent scatterer concentrationsmakes themaprecious sup-
port tool for those clinical situations in which healthy and dis-
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eased tissues are discriminated according to density, but exhibit
similar echogenicity, and result therefore invisible from visual
inspection.

�ese features are normally extracted on the echo signal. Nev-
ertheless, due to the blurring associated to the system Point
Spread Function (PSF), the backscattered echo is known to carry
degraded information on the tissue. �is fact suggests that a de-
convolution step could tentatively be employed in order to miti-
gate this e�ect and restore an estimate of the true tissue response,
and, correspondingly, features computed on deconvolved data
be exploited for an improved characterization. In this context,
we already obtained some interesting result in [26], where a sim-
ple predictive deconvolution scheme was employed and slight
improvement in classi�cation accuracy is documented for
prostate cancer detection. Due to the strong limitations related
to the predictive deconvolution scheme delineated in the pre-
vious chapter, we were motivated to further improve those re-
sults by designing a more sophisticated deconvolution frame-
work, which will be the subject of this chapter.

As mentioned, deconvolution in medical imaging is com-
monly employed in the only purpose of a visual quality improve-
ment, so to provide the physician with better contrasted and re-
solved data, suitable for easier interpretation. As long as an im-
age quality improvement is only concerned, standard deconvo-
lution schemes exploit simpli�ed models for the tissue re�ectiv-
ity, prevalently Gaussian or Laplacian, which are typically cho-
sen so to produce the most appealing images. �e statistics of
the restored solutions are hence badly biased by these prior as-
sumptions, and are not well suited for characterization.

In this context, a novel deconvolutionmethod for ultrasound
images is presented in this chapter, expressively designed for an
improved tissue characterization. �e algorithm is derived on
the base of a non-standard, more general statistical model for
the tissue response, de�ned by a GGD [45]. By means of two
distinct parameters, called scale and shape parameter, this dis-
tribution allows sequences of arbitrary energy and sparsity to be
generated, and is therefore adequate for providing an accurate
description to the most general tissue structures. Deconvolu-
tion is then tackled as a Maximum a Posteriori (MAP) estimate,
in which tissue re�ectivity is restored along with an estimate of
the associated scale and shape parameters. AnExpectationMax-
imization (EM) framework is designed to tackle the estimation
problem.
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�e remaining of the chapter is structured as follows. In §5.1
the proposed Generalized Gaussian model for the tissue re�ec-
tivity as well as the solution of the related optimization prob-
lem are introduced, and the substantial elements of di�erence
with respect to traditional models are explained. �e algorithm
was validated on phantoms containing identical scatterers at dif-
ferent concentration. Hereto §5.2 is dedicated to the descrip-
tion of the experimental setup and of the processing �ow: fea-
ture set, feature-extraction and classi�cation paradigms are dis-
cussed. �e obtained results are presented §5.3 and the superior-
ity of the proposed deconvolution scheme over traditional ones
is motivated. Conclusive considerations and hints on future re-
search directions are provided in §5.4.

5.1 Reflectivity model and optimization scheme

As stated, deconvolution is not employed here for a mere visual
enhancement, but rather to access higher quality information on
the tissue structure for characterization. In this sense, any prior
assumptions on the re�ectivity distribution could badly bias the
statistics of the restored signal, thereby degrading its informa-
tion content, and should therefore be avoided. To this purpose, a
more �exiblemodel for the tissue re�ectivity is needed, allowing
to accurately describe the most general scattering conditions. In
this sense, the GGD [45] is particularly well suited. By means of
two distinct parameters, called scale and shape parameter, this
distribution allows sequences of arbitrary energy and sparsity to
be generated. In particular, low values of shape parameter cor-
respond to sparser sequences while high values correspond to
dense ones (see Figure 5.1).

Since energy is directly connected to the scatterers average
strength and sparsity is intuitively related to their concentration,
any kind of tissues could theoretically be well modeled as aGGD
process. Moreover, the suitability of the GGD for providing ac-
curate �tting to the RF signal histograms, documented in [14],
further proves the adequacy of this model for describing tissue
re�ectivity as well. Indeed, the linear �ltering operations asso-
ciated to the acquisition process does not modify the qualitative
data distribution, a part of decreasing its sparsity [67]. �is fact
is qualitatively illustrated in Figure 5.2
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Figure 5.1: Examples of random sequences drawn from zero-mean
unit variance GGD, having unit variance and shape parameter ξ
equal to ξ = .5 (a), ξ = 1 (b) and ξ = 2 (c). Let’s note how for low
values of ξ tissues with isolated re�ectors are well modeled. For
values close to 2, instead, the model is well suited for describing

di�usive regions.

�e GGD pdf writes as:

p(x i) = a exp( − ∣x i
b
∣ξ) (5.1)

where a = ξ/(2bΓ(1/ξ)), b = σx√Γ(1/ξ)/Γ(3/ξ) is the scale pa-
rameter, σx is the standard deviation, ξ is the shape parameter
and Γ(⋅) is the Gamma function [20]. Note that Gaussian and
Laplacian distributions belong to the GGD family: in particu-
lar, they are obtained from (5.1) by substituting ξ = 2 and ξ = 1
respectively.

Under the GGD assumption, the log-posterior becomes:

L = − 1

2σ 2
n

∣∣y −Hx∣∣22 − λ∣∣x∣∣ξξ + N ⋅ a (5.2)
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Figure 5.2: Distribution of a synthetic re�ectivity generated as a
Generalized Gaussian process in (a), distribution of the

correspondent RF signal generated by �ltering the re�ectivity with
an experimental PSF in (b). In blue the histograms and in red the
GGD obtained from their �tting. Note that for both signals �tting
is accurate. �e shape parameter before and a�er �ltering is 0.3

and 1.6 respectively.

where λ = b−ξ , ∣∣x∣∣p = (∑ ∣x i ∣p)1/p denotes the l p-norm and N
is the total number of samples in the image.

It must be noted here that classical restoration techniques,
(4.18) and (4.23), are special cases of themaximization of (5.2), in
which the sparsity parameter ξ is a priori �xed to 2 and 1 respec-
tively. Otherwise, in the present work, any prior knowledge on
tissue sparsity is avoided, and correspondingly an EM scheme is
designed in which this information is jointly restored along with
the tissue response.

�e EM algorithm is an iterative procedure for the solution
of ML or MAP statistical estimation problems whose solution
is not analytically tractable [68]. Each iterations of the EM al-
gorithm consists in an Expectation step (E-step), in which the
expectation functionQ is de�ned, and aMaximization step (M-
step), in which the new estimate of the interesting quantity is
produced. It can be proved that EM algorithm monotonically
converges toward a local maximum of the log-likelihood or log-
posterior function.

In [38] an EM framework is derived for the solution of MAP
image restoration problems in which the prior distribution p(x)
can be expressed as a Gaussian Scale Mixture (GSM). Since the
GGD belongs to this family of distributions, that framework can
be adopted here to tackle the deconvolution task at hand. As-
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suming a shape parameter value ξ, the E-step and M-step write
respectively as:

e-step Q(x, x̂k) = − ∣∣y −Hx∣∣22
2σ 2

n

−
1

2
xTDkx, (5.3)

m-step x̂k+1 = argmax
x

{Q(x, x̂k)} = (σ 2
nDk +HTH)−1HTy

(5.4)

where Dk is a diagonal matrix of size N × N with entries[Dk]i i = λξ/∣x̂ki ∣2−ξ , and x̂ki denotes the ith sample of the vector
x̂k.

�e iterative scheme de�ned by (5.4) guarantees the max-
imization of the log-posterior L(x, ξ) de�ned in (5.2) with re-
spect to x, in such a way that L(x̂k+1 , ξ) > L(x̂k , ξ). As men-
tioned, in the present work, the shape parameter ξ is also a quan-
tity to be estimated, and therefore (5.2) must be optimized w.r.t.
x and ξ jointly. �e simplest solution is to introduce a parameter
update step a�er (5.4):

ξ̂k+1 = argmax
ξ

{L(x̂k+1 , ξ)} (5.5)

As known, (5.5) is solved by the ML estimate of the shape pa-
rameter ξ from the sequence x̂k+1. For a possible solution see
§3.3.1.

�e complete algorithm is reported in Table 5.1. It should be
noted here that, because of the ML parameter estimation step in
(5.5), the global framework is no longer rigorously an EM and
therefore convergence is not theoretically guaranteed. Never-

theless, (5.5) ensures that L(x, ξ̂k+1) > L(x, ξ̂k) and monotonic
growth of the log-posterior is preserved. Besides, convergence
is observed in all practical experimentations.

�e most time consuming step in the proposed framework
is the signal update step in (5.4), which is equivalent to solving
the linear system Ax = b, de�ned by A = (σ 2

nDk + HTH) and
b = Hy. Since the direct solution is computationally unfeasible,
an iterative scheme must be adopted; speci�cally the Conjugate
Gradients (CG) algorithm in Table 4.2 is here adopted. In this
context a very common strategy for improving the convergence
rate of the CG algorithm is preconditioning [39], which consists
in pre-multiplying the computed residuals for a suitable approx-
imation of the inverse P of the systemmatrixA. In particular, in
this work we adopt Jacobi pre-conditioning, cf. Appendix B.
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Table 5.1: MAP restoration under GGD prior

Initialization: x̂0 = y, k = 0
repeat

ξ̂k = argmaxξ L(x̂k , ξ),
dk
i = λξ̂k/∣x̂k

i ∣2− ξ̂k ,
Dk = diag(dk)1, dk = [dk

1 ,⋯, d
k
N]

x̂k+1 = (σ 2
nDk +HTH)−1Hy

R= ∣L(x̂k+1 , ξ̂k) − L(x̂k , ξ̂k)∣/∣L(x̂k , ξ̂k)∣
k = k + 1

until: R< τEM
1 diag(a) denotes the diagonal matrix with vector a as en-
tries.

In order to make (5.2) di�erentiable in the origin, a smooth-
convex approximation of ∣x∣ is o�en adopted [38, 31]. Possible
choices are e.g. η1(x) = {∣x/α∣ − log(1 + ∣x/α∣)} and η2(x) =√
x2 + α, with α ≪ 1 [43]. In this work, we adopt the approx-

imation de�ned by η2. Since the weight of the approximation
is clearly dependent on the variance of the signal, then we pro-
pose here to take α = γσ 2

x , with γ a small positive proportionality
constant.

In the remaining of this section other important issues are
addressed. In particular the slightmodi�cations implied by con-
sidering the complex envelope signal are described, togetherwith
the adopted techniques for the estimation of the systemPSF along
with signal and noise variances σ 2

x and σ 2
n .

5.1.1 IQ Signal

In thisworkwedonot process directly theRF signal, but its base-
band equivalent, i.e. the IQ signal, cf. §2.4.1. As seen, because
of the linearity of the demodulation process, the linear model
(4.12) is still satis�ed in the IQ domain [7], where y, x and ν rep-
resent now the IQ image, the complex re�ectivity and the com-
plex noise respectively, while H is the complex blurring matrix.
Let’s remark here that Hermitian transposeH† must replaceHT

as long as complex valued signals are concerned.
�e usefulness of working with the IQ signal is twofold: at
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�rst, since the RF signal is narrowband, then the IQ signal can
be subsampled without aliasing problems, which considerably
reduces the computational e�ort; moreover, the downsampled
signal has a wide relative bandwidth, which highly improves the
conditioning ofH.

In order to formalize the deconvolution framework for the
IQ image, the tissue prior p(x) has to be de�ned for complex
variables, hereto we introduce an extension to the GGD which
writes:

p(x i) = α exp⎛⎝− ∣x iβ ∣
ξ⎞⎠ (5.6)

where x i is the i-th sample of the complex re�ectivity and pa-
rameters α and β are de�ned in Appendix C. �anks to the new
model in (5.6), the deconvolution scheme inAlgorithm5.1 is pre-
served, with the only exception that parameters α and β must
now be used instead of a and b in the de�nition of L in (5.2).

5.1.2 PSF estimation

Asmentioned above and discussed in §4.4, deconvolution of ul-
trasound images is a blind problem. �e common way to deal
with it is to estimate a suitable PSF �rst, followed by using the
resultant estimate to solve the deconvolution problem in a non-
blind manner. Here we adopt the generalized homomorphic
technique presented in §4.4. Figure 5.3 provides an example of
PSF estimated from the phantom data used in the present study,
which will be described in §5.2; signals were acquired with a 30
MHz transducer and sampled at 500 MHz.

5.1.3 Estimation of σn and σx

In this work we adopted the wavelet based noise variance esti-
mator presented in [35]. It is based on the reasonable assumption
that the �nest-scale wavelet coe�cients of y are mainly associ-
ated to noise. By calling w these coe�cients the noise standard
deviation estimate is then:

σn = median(∣w∣)√
ln 4

. (5.7)

Concerning the estimate of the signal variance σ 2
x , this is

straightforward if we assume that all the PSFs have unit energy,
so that the variance ofHx is approximately equal to the variance
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Figure 5.3: Example of estimated PSF.

of x and then σ 2
x ≈ σ 2

y − σ
2
n , where σ

2
y = ∣∣y∣∣22/(2N). �e nor-

malization for 2N in the de�nition of σ 2
y is due to the fact that

complex variables are considered, in the real case a normaliza-
tion for N should be used.

5.2 Materials and methods

We tested the performance of the proposed deconvolution al-
gorithm on experimental data from several tissue-mimicking
phantoms having a particular scatterer concentration. �e aim
of the study was to evaluate the improvement of medium char-
acterization a�er deconvolution.

5.2.1 Experimental Setup

Ultra�ne polyamide particles (Orgasol, Arkema, France) of di-
ameter 10±2 µm (2001 EXDNAT 1) were used as scatterers. �e
tissue-mimicking phantoms were prepared by mixing a speci�c
concentration of Orgasol particles with distilled water and 1%
w/w ICI synperonic N surfactant in order to improve the parti-
cle wetting. �e Orgasol particles had a density of 1030 kg/m3

so that the �rst order Born approximation is acceptable and the
linear model is valid. Seven experiments were performed with
sevenmixtures havingOrgasol concentrations 0.25%, 0.5%, 0.75%,
1%, 6%, 12% and 24%. Low concentration ranging from 0.25% to
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Table 5.2: RMV-707B probe (Visualsonics Inc.)

PARAMETER VALUE

center frequency f0 30 MHz

transducer radius R 7 mm

focal distance D f 12.7 mm

axial resolution ry 55 µm

lateral resolution rx 115 µm

azimuthal resolution ry 115 µm

6% constituted random medium and the two other concentra-
tions (12% and 24%) mimicked dense medium in order to study
more packed distributions of particles, as performed in [69]. A
magnetic agitator was employed in order to preserve the solu-
tion homogeneous throughout the acquisition.

�eRF signalwas acquiredwith a high resolutionultrasound
scanner (Vevo 770, Visualsonics, Toronto, Canada), equipped
with the single element transducer RMV-707B, whose parame-
ters are reported inTable 5.2. Acquisitionswere performedusing
the US equipment available at the Animage platform (Cermep-
Lyon-France). Since the transducer had a focal depth of 12.7mm,
a 6 mm thick layer of agar gel (Prolabo) at 3% was interposed
between the probe and the phantom in order to place the probe
focus in correspondence with the region of interest. �e RF sig-
nal was suitably ampli�ed (Pulse/Receiver Sofranel Panametrics
5052pr) and acquired at a sampling frequency of 500 MHz with
8 bit resolution (Gagescope, model CS11G8-1, Acquisys, France).
For each phantom 3 acquisitions were made. Data was then pro-
cessed usingMATLAB (R2008b,�eMathWorks). A schematic
of the experimental setup is reported in Figure 5.4.

Each image was demodulated, downsampled by a factor 8,
and deconvolved using Wiener �ltering, Laplacian prior, and
Generalized Gaussian prior. A�er deconvolution, data was then
modulated back to the transducer center frequency and upsam-
pled so to have an image size identical to the one of unprocessed
frames. Each imagewas then subdivided into 48non-overlapping
Regions of Interest (ROIs) of 405 pixels in the axial direction and
29 in the lateral one, corresponding roughly to 1×3 mm2. �is
size was equivalent to three times the extent of an estimated PSF
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Figure 5.4: Experimental setup used in the experiments.

in each direction, and the number of included samples was ver-
i�ed to be large enough to make biasing e�ects in the features
computation largely negligible.

Considering the 3 images per concentration, the total num-
ber of ROIs related to a single concentration was then equal to
144. Several features were extracted on each ROI of the decon-
volved andunprocessed data set and classi�cationwas performed
in the feature space.

5.2.2 Deconvolution

Each deconvolution algorithm was implemented with the Ex-
pectation Maximization framework of Table 5.1. In the Wiener
and Laplacian cases, a �xed value of shape parameter was adop-
ted and correspondingly theMLupdate step in (5.5)was skipped.
�e algorithm was then stopped when a relative decrease in the
log-likelihood τEM = 10−4 was reached. Such a threshold was
normally reached in about 20 iterations.

On sub-sampled data, whose size is 210×382 pixels, each iter-
ation was accomplished in roughly 6 seconds on a laptop
equipped with an Intel Core i5 2.27 GHz processor and 4 GB
of RAM.

5.2.3 Feature Set

A six-features approach was adopted, de�ned by the following
parameters: the two GGD parameters computed from the RF
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signal, the two Nakagami parameters computed from the en-
velope and the two Nakagami parameters computed from the
B-mode image.

5.2.4 Feature Extraction

�e six adopted features are basically associated with two phys-
ical properties, echogenicity and density, of the insoni�ed me-
dium. Although considering di�erent data representations (RF,
uncompressed envelope and B-mode) ensures a degree of com-
plementarity in the information, such a disparity may otherwise
lead to some correlation between features of the same kind.

In this context, feature extraction is a common technique
in Pattern Recognition, which combines observed data into a
reduced dimensionality space, in which redundancies are min-
imized and the informative content is preserved [70]. Besides,
dimensionality reduction is desirable for computational reasons
as well.

Standard solutions to the feature extraction problemare given
by Principal Component Analysis (PCA) [70, Ch.9, pp.319–329]
and Linear Discriminant Analysis (LDA) [70, Ch.4], which rep-
resent an un-supervised and a supervised approach respectively.
When a trustful ground-truth is given, like in the present case,
where the actual concentrations are known, the LDA algorithm
e�ectively embeds this knowledge and its performances are su-
perior to the ones of the PCA. �erefore, in this study, Linear
Discriminant Analysis (LDA)was adopted for feature extraction
and the number of extracted features was chosen equal to 2.

5.2.5 Classi�cation

Both linear and non-linear classi�cation schemes were evalu-
ated. Non linear methods were found to be largely preferable in
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terms of classi�cation errors and computation time, especially
for a number of classes higher than 2. In particular, a Support
Vector Machine (SVM) with Radial Basis Functions as kernels
was used [70, Ch.5].

Feature extraction and classi�cation partwas performedwith
the Statistical Pattern Recognition Toolbox developed for Mat-
lab [71]. A �ow chart of the whole processing scheme is reported
in Figure 5.5.

It is worth noting that the main scope of this study was ex-
pressively to evaluate the deconvolution contribution to a clas-
si�cation task and not to provide a standard �ow for medium
characterization through ultrasound. For this reason, the classi-
�cation scheme proposed in this section might be sub-optimal,
but it is nevertheless su�cient to give important and trustful in-
sights on the e�ect of a deconvolution step.

5.3 Results

5.3.1 Data classi�cation

Twokind of studiesweremade. In the �rst set of trials, four data-
sets were separately considered, consisting respectively in the
acquired images before and a�er deconvolution with the three
techniques, i.e. Wiener �ltering, Laplacian prior and the pro-
posed scheme. Each data set was then classi�ed with the pro-
cessing �ow previously described and themisclassi�cation error
measured.

For each classi�cation task, LDA and SVMwere trainedwith
50% of the ROIs, randomly picked from the entire data set. �e
remaining 50% was adopted as testing set. For any data type,
cross-validation was used to �nd the optimal kernel parameters,
which were then used in the SVM. In order to avoid biasing in
the results due to the speci�c choice of training and testing sets,
20 independent trials were made for each experiment.

In the ideal case, all the concentrations should be simulta-
neously discriminated, leading to a seven classes classi�cation
task. Since classi�cation becomes more challenging as the num-
ber of classes increases, several tasks were considered, starting
for the simplest binary case, to the most complicated and com-
plete case with 7 classes. �e misclassi�cation error was then
computed: the complete set of results is reported in Table 5.3.

From Table 5.3 several conclusions can be drawn:



5.3.
R
e
su
lt
s

71

Table 5.3: Classi�cation error on 20 independent trials (mean value
± standard deviation)

CLASSES CLASSIFICATION ERROR

# CONCENTRATIONS ORIGINAL WIENER LAPLACE GGD

2 [0.5%, 0.75%] 0.1 ± 0.04 0.17 ± 0.04 0.07 ± 0.02 0.001 ± 0.004

3 [0.25%, 6%, 24%] 0.07 ± 0.02 0.03 ± 0.01 0.02 ± 0.01 0.008 ± 0.01

4 [0.75%, 1%, 6%, 24%] 0.20 ± 0.04 0.22 ± 0.02 0.09 ± 0.02 0.02 ± 0.01

5 [0.25%, 0.75%, 1%, 12%, 24%] 0.32 ± 0.02 0.25 ± 0.03 0.08 ± 0.02 0.03 ± 0.01

6 [0.25%, 0.5%, 1%, 6%, 12%, 24%] 0.35 ± 0.02 0.44 ± 0.01 0.11 ± 0.02 0.08 ± 0.01

7 [0.25%, 0.5%, 0.75%, 1%, 6%, 12%, 24%] 0.42 ± 0.02 0.38 ± 0.02 0.19 ± 0.01 0.16 ± 0.01
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Figure 5.6: Scatter plot relative to the testing set before
((a),(c),(e),(g)) and a�er ((b),(d),(f),(h)) deconvolution with a

GGD prior. �e axes correspond to the two features extracted via
LDA. Each row corresponds to a particular number of classes,
speci�cally 2, 3, 4 and 5. �e black lines correspond to the

boundaries of the classes identi�ed by the SVM.
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• Wiener �ltering did not bring any contribution to the clas-
si�cation task. Sometimes, even worst results were ob-
served with respect to the unprocessed case. �is reveals
that Wiener �ltering, which is by far the most common
restoration technique, is not a relevant tool for improv-
ing characterization performances. �is fact is probably
connected to the widely documented over-smoothing as-
sociated to Wiener �ltering [45, 31], in particular when
low concentrations are considered, where �ltering of the
peaky signal components, due to the presence of isolated
scatterers, prevents an e�ective estimate of their concen-
tration.

• Di�erently, deconvolutionwith Laplacian priorwas found
to positively a�ect the classi�cation task. �is is particu-
larly evident for a high number of classes, where a classi-
�cation error reduction of up to 20% is associated to this
deconvolution procedure. Such a behavior is explained
by the fact that a Laplacian model is more e�ective than
Gaussian to provide realistic representations of general re-
�ectivity structures, in particular when isolated re�ectors
are superimposed to distributed di�usive scattering cen-
ters.

• Finally, the proposed deconvolution scheme was found to
ensure by far the best classi�cation performances. As in
the Laplacian case, the contribution becamemore incisive
as the number of classes increased. In particular, in the
4 classes case, the classi�cation error related to the pro-
posed framework was still at 2%, while it was four times
bigger for the Laplacian case and ten times for rough data.
Moreover, in the most challenging case, in which all con-
centrations were simultaneously considered, the classi�-
cation error was at the satisfactory rate of 16%, while it
reached an unacceptable 42% rate on unprocessed data.

In Figure 5.6 several scatter plots are displayed. Each point
represents the position of a single ROI of the testing set in the
extracted features space; a di�erent marker is associated to each
concentration. Black contours represent the inter-classes bound-
aries computed by the SVM classi�er. From the �gure it is evi-
dent that classes are better clustered and consequentlymore eas-
ily separable a�er deconvolution; a much faster and more accu-
rate classi�cation is therefore allowed.
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Figure 5.7: Generalized Gaussian shape parameter histograms
associated to four di�erent concentrations. In 5.7(a) the

unprocessed case is illustrated. Images 5.7(b), 5.7(c) and 5.7(d)
report the situation a�er deconvolution is applied, by using Wiener
�ltering, laplacian prior and the proposed method respectively.

As the proposed deconvolution algorithmwas derived in or-
der to adaptively restore an estimate of the true re�ectivity shape
parameter, it was interesting to examine howconcentrationswere
separated accordingly to this parameter only. �is is illustrated
in Figure 5.7, where a four classes case is observed. When the
unprocessed signal is considered, the system PSF e�ect implies
a mixing of single scatterers contributions, and correspondingly
the density information, explained by the shape parameter, re-
sults highly deteriorated. On the contrary, the proposed frame-
work allows to retrieve an improved estimate of this important
signature of the insoni�ed medium. Such a behavior is not en-
countered when traditional schemes are applied, which is a di-
rect consequence of the biasing e�ect associated to these meth-
ods.

Figure 5.75.7(d) shows clearly how the direct correlation ex-
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Figure 5.8: Boxplot representation of data in Figure 5.75.7(d). On
each box the central mark is the median and the edges are the 25th
and 75th percentiles, the whiskers are the 5th and 95th percentiles.

isting between scatterers concentration and shape parameter is
restored a�er deconvolution (see also Figure 5.8).

5.3.2 Feature ranking

Data deconvolved with the proposed algorithm were shown to
allow for a more precise characterization. A further study was
then made to evaluate the e�ective contribution to the classi�-
cation task of features computed before and a�er deconvolution.

To this purpose, a binary classi�cation task was considered,
de�ned by the two classes corresponding to 0.5% and 0.75% con-
centrations. �e 6 considered features were then computed on
unprocessed and deconvolved data separately, and collected into
an 12 elements feature set. Features were then ranked accord-
ing to a distance-based criterion. �e total number of classi�ed
samples in this study was equal to 576; this number derives from
counting 48 ROIs per image, 3 images per concentration, 2 con-
centrations and the fact that unprocessed and deconvolved data
are jointly considered.

In particular, Sequential Forward Selection (SFS) criterion
was used for the ranking [70, Ch.9, pp.315]. SFS is a bottom-
up search procedure that adds one feature at a time until the
complete set is reached. Speci�cally, the feature for which the
inter-classes distance J is maximized is added to the feature set
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Table 5.4: Features Ranking

Type Feature Name Signal J1D

D GGD shape RF 3.50

D Nakagami scale Bmode 1.62

D Nakagami shape Bmode 1.26

U Nakagami scale Bmode 0.27

D Nakagami scale envelope 0.95

U Nakagami scale envelope 0.42

U Nakagami shape envelope 0.18

D GGD scale RF 0.73

U GGD scale RF 0.41

U Nakagami shape Bmode 0.44

U GGD shape RF 0.28

D Nakagami shape envelope 0.70

obtained at the previous step, where J was de�ned in this study
as the Mahalanobis Distance:

J = (µ1 − µ2)T(Σ1 + Σ2)−1(µ1 − µ2) (5.8)

where µ i and Σ i (i ∈ {1, 2}) denote the intra class mean value
and covariance matrix respectively.

�e �nal ranking is reported in Table 5.4, where features are
sorted from the �rst classi�ed to the last. Features computed
a�er deconvolution are tagged with a “D” while a tag “U” is as-
sociated to unprocessed data. �e fourth column visualizes the
Mahalanobis Distance J1D, corresponding to the selection of a
single-attribute feature set.

From the ranking results provided in Table 5.4 several obser-
vations can be made:

• �e �rst positions in the ranking were occupied by fea-
tures computed on deconvolved data. �is proves that a
more characterizing information on the insoni�ed me-
dium can be restored thanks to the proposed deconvo-
lution framework. In particular, GGD shape parameter
placed �rst in the ranking, which con�rms the high sig-
ni�cance of this feature a�er deconvolution, cf. Figure 5.7
and Figure 5.8;

• If sorting by the value of J1D is made, the �rst half of the
ranking happens to be �lled by “D”-tagged features exclu-
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sively. �at’s to say all features improve their individual
discrimination capability a�er deconvolution.

In order to have more exhaustive evaluation of the decon-
volution e�ect, the same ranking procedure was applied to dif-
ferent binary classi�cation tasks. In all those cases, the �rst po-
sitions in the ranking were systematically occupied by features
deriving from deconvolved images, which proves the generality
of the latter considerations.

5.4 Conclusion

Ultrasound tissue characterization has become amajor research
subject. �is is motivated by the fact that from the backscattered
echo signal important structural information on the insoni�ed
tissue can be inferred, such as acoustic impedance, scatterer den-
sity and distribution pattern. As similar information can dis-
criminate between healthy and diseased tissue, this principle can
be exploited within a clinical setting.

As the ultrasound echo su�ers from the degradation e�ect
due to the system PSF, deconvolution could be e�ectively em-
ployed as a pre-processing step tomitigate this e�ect and restore
much representative information on the true tissue response. In
this context, this chapter presents a novel deconvolution tech-
nique for medical ultrasound, which contains a major concep-
tual element of novelty over the existing related literature. In-
deed, the goal here is not a mere visual quality improvement,
but rather the restoration of a more informative tissue represen-
tation, exploitable for an improved characterization.

�e performance of the algorithm was evaluated on tissue
mimicking phantom studies, which revealed remarkable improve-
ments in classi�cation accuracy associated to the implementa-
tion of a deconvolution pre-processing step, quanti�able in a
20%misclassi�cation error reductionwhenmultiple classeswere
considered. �e contribution of other popular deconvolution
schemes was also measured for comparison, and the superiority
of the proposed scheme was correspondingly attested.

When the GGD shape parameter was adopted as the only
feature, di�erent populations were observed to be clearly sorted
by concentration in the feature space (Figure 5.8). �is e�ect was
particularly evident a�er the proposeddeconvolution framework
was applied (Figure 5.7). �is interesting property could be ex-
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ploited for ultrasound based scatterer concentration sensing and
opens the way to further studies in that direction.

Obtained results encourage additional studies on the suit-
ability of the proposed algorithm on clinical data. In this sense,
few considerations have to be made. At �rst, the algorithm ex-
ploits a stationarymodel of tissue re�ectivity, represented by the
fact that constant shape parameter and variance are assumed on
the whole image. As a similar assumption is well satis�ed on
the homogeneous phantoms realized for the validation, other-
wise it is largely violated on images of biological tissues, where
multiple tissues with di�erent acoustical properties are simul-
taneously imaged. In order to deal with these general cases, a
parametric image of the shape parameter could tentatively be
considered instead of a constant value, to be iteratively updated
within the optimization �ow. Moreover, complementary studies
on homogeneous tissue-mimicking phantoms containing poly-
disperse suspension of scatterers could be done. �is will allow
to better mimic situations of clinical interest, like cellular size
variance during cell death [72], or the simultaneous presence of
glandular acini (100 µm diameter) and cell nuclei (14 µm diam-
eter) in breast tumor [73].

A second issue involves the computational complexity. In
the current, unoptimized Matlab implementation, every frame
is processed in roughly two minutes, which is clearly too much
for assistance during real-time intervention. In this context sub-
stantial speed-up could be achieved withmodern GPU comput-
ing techniques. In particular, the intrinsic parallelism of the al-
gorithm, established by the piecewise constant approximation of
the PSF, could be e�ciently handled within GPU architectures,
for a fastened execution.
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Summary

Cardiovasculardisease (CVD) is themain cause of long-
termdisability anddeath for both genderswithin indus-
trialized nations. According to theWorld Health Orga-

nization CVD causes over 4 million deaths in Europe and over 2
millions in the European Union (EU), corresponding to nearly
half of all deaths, cf. Figure B. Besides heavily human, CVD in-
volves major economic costs as well. In particular, the overall
economic cost of CVD has been estimated to be over 192 euro
billions in EU in 2006. �ese staggering numbers clearly mo-
tivate the intense research activity carried out worldwide dedi-
cated to the prevention, early diagnosis and cure of this class of
diseases.

Modern technology provides a number of tools to accessmy-
ocardial function. Echocardiography, in particular, has evolved
as awell-established imaging technique for the noninvasive eval-
uation of myocardium abnormalities. Besides the obvious as-
pects connected to safety, low cost and portability, echocardi-
ography alone o�ers the possibility of real time observation of
ventricular wall motion and deformation, which are fundamen-
tal for assessing the extent of possible myocardial ischemia and
infarction. In clinical practice, the analysis mainly relies on vi-
sual inspection or manual measurements, o� line performed by
experienced cardiologists. Manualmethods are tedious and time-
consuming, and visual assessment leads to qualitative and sub-
jective diagnoses that su�er from considerable inter and intra
observer variability.

�e main clinical application concerns the delineation (seg-
mentation) and tracking of the myocardium muscle from US
scans. Indeed from the position of themuscle boundaries through-
out the cardiac cycle several indexes of its function can be in-
ferred, as ejection fraction, ventricle volume and wall thickness.
For these reasons automating the segmentation of echocardio-
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Respiratory disease 7%

Other cancer 11%

Lung cancer 6%

Colo−rectal cancer 2%

Stomach cancer 2%

Other CVD 11%

Stroke 11%

Coronary heart disease 21%

All other causes 17%

Injuries and poisoning 12%

(a)

Respiratory disease 6%

Injuries and poisoning 5%

Other cancer 9%

Breast cancer 3%

Lung cancer 2%

Colo−rectal cancer 2%

Stomach cancer 1%

Other CVD 15%

Stroke 17%

Coronary heart disease 22%

All other causes 18%

(b)

Figure B: Deaths by cause for men (a) and women (b) in the last
available year in Europe. Data form [74].

graphy images is highly desirable but also challenging. Several
algorithms have been proposed in literature, documenting suc-
cessful results for the detection of the endocardium, i.e. the in-
nermost layer of tissue surrounding the ventricular cavity. Oth-
erwise, for what concerns epicardial contour, no satisfactory so-
lution has been provided yet, in particular when short-axis ac-
quisitions are considered. �e motivation is that in this kind of
acquisition epicardial �bers happen to be collinear with the ul-
trasonic beam, and correspondingly the echo returned by these
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regions is extremely week. �e immediate consequence is that
epicardial contours appear highly heterogeneous and discontin-
uous on ultrasound frames, which makes their automatic detec-
tion particularly challenging.

In this context, we developed a novel semi-automatic frame-
work for myocardium segmentation, designed for allowing an
e�cient detection of endo- and epicardial contours of the le�
ventricle in short-axis acquisitions. Level-set technique is adop-
ted. Statistics of the echo signal along with geometrical consid-
erations on the myocardium expected shape are originally ex-
ploited for constraining the curve motion towards anatomically
meaningful shapes. A localizing strategy recently proposed in
literature was adopted, ensuring robustness against low contrast
and missing contours.

�is project has been developed during a one year intern-
ship within the ultrasound equipe of the Centre de recherche en
imagerie médicale (CREATIS-LRMN) of Lyon - France, under
the supervision of Prof. Olivier Bernard and Prof. Olivier Bas-
set. �is work has resulted in 4 publications up to the present
time [75, 76, 77, 78]. Due to their general formulation, the de-
veloped tools have proved their suitability for amuchwider class
of images which exceeds medical ultrasound [76, 78].

�is part of the thesis is structured as follows: in Chapter 6
the reader is supplied with the necessary theoretical background
on level-set segmentation. Starting from standard region-based
approaches, general ways for including localization and shape
information are presented as well. In Chapter 7 the basics of
heart morphology and functioning are described. In Chapter 8
the proposed segmentation framework is described and a vali-
dation on clinical data is presented.





Chapter 6
Level-set segmentation

From the pioneering work of Kass et al.[79], variational
techniques have beenwidely exploited for image segmen-
tation purposes. Due to their extreme generality and�ex-

ibility, these methods can be suitably specialized in order to deal
with data of the most general nature: medical, biological and as-
tronomical are some examples. In synthesis, active contours seg-
mentation consists in the displacement of a curve on the image
plane. �is motion pursues the attachment to the boundaries of
the interesting target and is normally governed by theminimiza-
tion of an a priori de�ned cost functional. An elegant and e�-
cient formalization of active contours segmentation is provided
by level-sets [80, 81], which are the object of this chapter. �e in-
terested reader may �nd almost exhaustive reviews on level-sets
in [19, 82].

�e rest of the chapter is structured as follows. In §6.1 the
general level-set formalism is introduced. In §6.2 the standard
region-based approach is illustrated, while in §6.3 amore recent,
localized solution is discussed. In §6.4 and §6.5 it is shown how
statistical and geometrical information can be exploited in the
segmentation process. In §6.6 some concluding considerations
are made.

6.1 General

Let I ∶ Ω → R
m be a given image, where Ω ⊂ R

d and m is the
cardinality of the feature space in which the image exists. For
instance ism = 1 for gray-scale data and m = 3 for colored ones.
In the level-set formalism, the evolving interface Γ ⊂ Ω is rep-
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(a)

Ωin

Ωout

Γ

(b)

Figure 6.1: Example of level set function (a) and related partition of
the image space Ω (b)

resented as the zero level-set of a Lipschitz-continuous function
ϕ ∶ Ω → R, called level set function, that satis�es:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ < 0, ∀x ∈ Ωin

ϕ > 0, ∀x ∈ Ωout (6.1)

ϕ = 0, ∀x ∈ Γ
where x is a pixel coordinate and {Ωin , Ωout , Γ} is a partition of
Ω. An example of level set function is reported in Figure 6.1,
along with the partition of its domain.

�e classical problemof segmenting the target from the back-
ground is handled by the evolution of one level-set functiondriven
by the minimization of a speci�c energy criterion E; its steady
state partitions the image into two regions that delimit the bound-
aries of the object to be segmented:

ϕ̂ = arginf
ϕ

{E(ϕ)} (6.2)

�e Euler-Lagrange equation associated to (6.2) is:

∂E

∂ϕ
= 0 (6.3)

where ∂/∂ϕ represents the �rst variation of the functional Ewith
respect to the function ϕ, de�ned as:

∂E

∂ϕ
= lim

t→0

1

t
{E(ϕ + tψ) − E(ϕ)} (6.4)
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where ψ is a test function of the same type of ϕ.
With these de�nitions, the segmentation �ow associated to

(6.2) writes as:
∂ϕ

∂τ
= −∂E

∂ϕ
(6.5)

where the arti�cial time parameter τ has been introduced. In
level-set literature (6.5) is normally referred as the level set equa-
tion. Using �rst-order forward di�erencing for the numerical
computation of ∂/∂τ, the nth step of the segmentation �ow is in
practice implemented as:

ϕn+1 = ϕn + ∆τ ⋅
∂E

∂ϕ
∣
ϕn

(6.6)

where the time step ∆τ in�uences the curve displacement veloc-
ity, and is upper limited by the Courant-Friedrich-Levy (CFL)
condition, that ensures the stability of the evolution [80, pp.30–
31].

6.2 Region based level-sets

Many energy functionals have been proposed in literature, spe-
ci�cally designed for the particular application at hand. First
generation level sets were basically based on the detection of
edges [81]. �ese methods are intrinsically sensitive to the pres-
ence of noise and low image contrast, which can lead to poor
segmentation results. In this context, region-based criteria have
been shown to be a valuable alternative to edge-based ones. �ese
proceed by partitioning the image into regions which are homo-
geneous with respect to some de�ned criterion.

�e region based approachwas �rst proposed byZhu et al.[83]
and became a consolidate segmentation modality thanks to the
work of Chan and Vese [84]. �e region based energy func-
tional, in the most general form, can be written as:

E(ϕ) = µin ∫
Ωin

fin(ϕ, x)dx + µout ∫
Ωout

fout(ϕ, x)dx+
+ µc ∫

Γ
fc(ϕ, x)∣∣∇ϕ∣∣dx (6.7)

where the �rst two terms, referred ad region terms, represent en-
ergy criteria associated to the inside and outside of the evolving
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contour, while the third one, called contour term, is associated
to the interface Γ. By introducing the Heaviside step function

H(x) = ⎧⎪⎪⎨⎪⎪⎩
1, if x ≥ 0
0, if x < 0 . (6.8)

and the Dirac delta function δ(⋅), (6.7) becomes:

E(ϕ) = µin ∫
Ω
fin(ϕ, x)H(−ϕ)dx+

+ µout ∫
Ω
fout(ϕ, x)H(ϕ)dx+

+ µc ∫
Ω
fc(ϕ, x)∣∣∇ϕ∣∣δ(ϕ)dx.

(6.9)

Let’s note that, in order to compute the Euler-Lagrange equa-
tion, a regularized version of H and δ must be considered. A
possible choice is given by [17]:

Hτ(x) = 1

2
(1 + 2

π
arctan(x

τ
))

δτ(x) = d

dx
Hτ(x) = 1

π
⋅

R

τ2 + x2

(6.10)

where τ ≪ 1 is the regularizing constant.
It is common to adopt the contour force fc(⋅, ⋅) constantly

equal to 1 [84]. With this substitution, the related energy term
becomes ameasure of the curve length and imposes a constraint
on the regularity of its shape. �e �rst variation of the corre-
sponding contour term, referred as Ec, is expressed by:

∂Ec

∂ϕ
= δ(ϕ) ⋅ κ, κ = ∇ ⋅ ( ∇ϕ∣∇ϕ∣ ) (6.11)

where κ is the curvature of the interface [80, Chapter 1]. In stan-
dard level-set segmentation techniques this term is commonly
introduced to preserve the stability of the evolution, and the cor-
responding weight µc is tuned so to obtain a contour of the de-
sired smoothness.

6.2.1 Example: Chan-Vese functional

�e framework introduced by Chan and Vese [84] fairly repre-
sents the most commonly adopted level set strategy, at least at
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(a) (b)

Figure 6.2: Result of Chan-Vese algorithm on images with
homogeneous (a) and heterogeneous intensity pro�les (b).

a �rst attempt. �is popular criterion will be adopted in the se-
quel in order to illustrate the developed concepts and is brie�y
described in this section.

�e proposed energy function writes as:

E = ∫
Ω
∣I(x) − cin∣2H(−ϕ)dx+

+∫
Ω
∣I(x) − cout ∣2H(ϕ)dx+

+ µ∫
Ω
∣∣∇ϕ∣∣δ(ϕ)dx

(6.12)

which leads to the evolution law:

∂ϕ

∂τ
= δ(ϕ) [−∣I(x) − cin∣2 + ∣I(x) − cout∣2 + µ∇ ⋅ ( ∇ϕ∣∇ϕ∣ )]

where cin and cout represent the mean values of pixel intensity
I(x) measured inside and outside of the evolving contour re-
spectively. Correspondingly, the functional in (6.12) partitions
the image into regions which are maximally homogeneous with
respect to the average intensity.

6.3 Localized level sets

Region-based approaches present several advantageswith respect
to edge-based ones, including robustness against initial curve
placement and insensitivity to noise. However, these techniques
are derived on the base of a strong hypothesis, consisting in the
fact that regions of interest can be di�erentiated in terms of their
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Ωin

Ωout

(a)

Ωout,x

Ωin,x

x

(b)

Figure 6.3: Di�erence between region-based and localized
approach. In the �rst case (a) the whole image content is used for
interface evolution, in the second case (b) a smaller sub-image is

considered instead.

global statistics. In many practical situations, the object to be
segmented may be occluded, or its intensity pro�les may be het-
erogeneous, for instance due to spatial variations in the illumi-
nation. In these situations traditional region based algorithms
may return erroneous segmentation results, see Figure 6.2.

To accurately segment these objects, a new class of active
contours energies has been presented in [85], which utilizes lo-
cal information instead of global one. �e initiative is that, if the
homogeneity hypothesis is not satis�ed globally, there’s a greater
probability for it to be satis�ed within smaller sub-regions. Cor-
respondingly, a variational formulation is derived, which gener-
alizes the region-based formalism by including such a localizing
principle. �is is realized by the binary mask:

W(x, y) = ⎧⎪⎪⎨⎪⎪⎩
1, if ∣x − y∣ < ρ
0, otherwise

(6.13)

selecting the local regions (spheres of radius ρ in this case) in
which the driving force is computed. In (6.13) x and y represent
the coordinates of two points in Ω. �e localized energy func-
tion, in its most general form, writes as:

E(ϕ) =∫
Ω
δ(ϕ(x)){∫

Ω
W(x, y)F(I(y), ϕ(y))dy} dx+

+ µ∫
Ω
δ(ϕ)∣∣∇ϕ∣∣dx

(6.14)
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(a) (b)

Figure 6.4: Standard region-based Chan-Vese (a), localized
Chan-Vese (b).

where F is a generic internal energy measure, used to represent
local adherence to a given model at each point along the con-
tour. A visual representation of the localizing approach is given
in Figure 6.3. Instead of considering the entire image, curve ve-
locity is computed in the local subsets Ωin,x and Ωout,x, de�ned
as:

Ωin,x = {x∣ϕ(x) < 0, x ∈ N(x)}
Ωout,x = {x∣ϕ(x) > 0, x ∈ N(x)} (6.15)

where N(x) = {y∣W(x, y) = 1}.
�e level set equation then is derived as:

∂ϕ

∂τ
=δ(ϕ(x))∫

Ω
W(x, y)∇ϕF(I(y), ϕ(y))dy+

+ µ∇ ⋅ ( ∇ϕ∣∇ϕ∣ )
(6.16)

Equation (6.16) provides a simple way to convert virtually
every region-based criterion to its localized equivalent. In Fig-
ure 6.4 a comparison is presented between the tradition Chan-
Vese scheme and its localized version. Due to the presence of an
heterogeneous illumination and poorly contrasted boundaries
the global approach does not succeed in producing a correct
segmentation, which is obtained when the localized version is
employed instead.

�is important capability provided by localized schemes will
be pro�tably exploited in the design of a le�-ventricle segmenta-
tion algorithm. Indeed, due to the complex interactions between
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the tissue and the ultrasonic beam, le� ventricle contours appear
highly discontinuous and heterogeneous in the image. Localized
level sets represent therefore a powerful candidate to deal with
these problematic image characteristics.

6.4 Statistical level sets

�e extremely general level sets formalism allows to embed sev-
eral sources of information in the segmentation process. Signal
statistics, textures, colors, expected target shape are examples,
see [86] for a review.

In the context of ultrasound images,methods based on speckle
statistics are commonly developed, indeed in such images the
high noise makes standard approaches based on intensity pro-
�les and edges unusable. Hereto, the focus of this section will be
on statistically inspired level-set segmentation. Two approaches
are reviewed, the �rst,more common,Maximum-likelihood (ML)
criterion by Sarti et al.[17], along with a more recent one, based
on the Bhattacharyya distance by Michailovich et al.[87].

6.4.1 Maximum Likelihood Segmentation

Let I be the image to be segmented and Γ the segmenting con-
tour, the ML criterion seeks the contour which maximizes the
a-posteriori probability P(I∣Γ) [88]. In a level set formalism this
is equivalent to �nding the level set function ϕ̂ maximizing:

E(ϕ) = P(I∣ϕ) = Pin(I∣ϕ) ⋅ Pout(I∣ϕ) (6.17)

where statistical independence between the regions de�ned by
Ωin and Ωout has been assumed. Assuming as well indepen-
dence of the pixels within each region, then it is:

Pin = ∏
x∈Ωin

pin(I(x)), Pout = ∏
x∈Ωout

pout(I(x)), (6.18)

where pin(⋅) and pout(⋅) represent the probability density func-
tion (pdf) associated to the pixel intensity I in the inside and
outside regions.

Due to the complexity related to the product operations, it
is common to maximize the logarithm of (6.17) instead of (6.17)
itself. Since the logarithm function is monotonically increasing
these two operations are indeed equivalent. By making use of
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the Heaviside step function, then the energy function becomes:

E(ϕ) =∫
Ω
log pin(I)H(−ϕ)dx+

∫
Ω
log pout(I)H(ϕ)dx. (6.19)

In [17] a ML framework is presented for the segmentation
of medical ultrasound images. In that work a standard Rayleigh
distribution is adopted for the uncompressed envelope signal.
Interesting results are reported in echocardiography and obstet-
rics.

6.4.2 Bhattacharyya Distance Segmentation

In [87] a level-set segmentation criterion is proposed based on
the notion of statistical distance. Speci�cally, it proceeds by par-
titioning the image into regionwhich aremaximally distant with
respect to the given metric. In particular the Bhattacharyya dis-
tance is there adopted. Given two pdfs pin and pout, this is de-
�ned as D = − logB, where:

B(pin∣pout) = ∫
R

√
pin(I)pout(I)dI (6.20)

is the Bhattacharyya coe�cient. In particular, the segmentation
�ow in [87] is driven by theminimization of B, which, due to the
to fact that the logarithm function is monotonically increasing,
is perfectly equivalentmaximization ofD. �is avoids computa-
tional issues associated to the evaluation of the logarithm func-
tion. Non parametric kernel-based estimates of the two pdfs are
used in [87], which makes the algorithm independent on any
prior assumption on the intensity distribution.

According to the authors, their framework presents compu-
tational advantages over the ML one. �is is motivated by the
fact that the logarithm function used in (6.19) is known to be
very sensitive to variations of its argument in vicinity of rela-
tively small values of the latter.

6.5 Shape prior constraints

It has been shown how level sets provide suitable tools for ad-
dressing extremely general segmentation tasks, allowing to eas-
ily embed several kind of image information, like intensity, edges,



94 Level-set segmentation

texture, color and many others. In many practical cases occlu-
sions, low contrast or low SNR make image data insu�cient for
producing meaningful results. In these cases higher-level prior
knowledge about the shape of the expected object, if available,
can be exploited in the segmentation process, see e.g. [89, 90, 91,
86, 92].

In level-set literature, the shape information is o�en taken
into account by considering the linear combination of two terms
[89, 90]. �e �rst one, referred as data attachment term, drives
the segmentation to particular image features. �e second, re-
ferred as shape prior term, preserves the similarity between the
moving interface and a reference shapemodel. �e choice of the
prior model is a fundamental issue: typically it is derived from
the statistical analysis of a set of training examples [89, 90, 93].
Since orientation and scale of the target are a priori unknown,
a transformation is performed at each iteration to align the seg-
mented contour with the prior shape. �is step is mainly ad-
dressed in a steepest descent framework [90, 89].

Let’s denote data attachment and shape prior terms as Edata

and Eshape respectively. Here Edata can be any of the energy cri-
terion previously introduced. �e global energy function then
writes as:

E(ϕ, λ) = Edata(ϕ) + α ⋅ Eshape(ϕ, λ) (6.21)

where α corresponds to a positive hyper-parameter that balances
the in�uence between the two terms, and λ represents the pa-
rameters of the adopted model (for instance, λ could denote
scale, position and orientation of the reference shape [90]). �e
shape prior term is commonly implemented as a distance mea-
sure between the active contour and the expected shape, and its
e�ect is to penalize those solutions which are not consistent with
the model itself.

Shape prior segmentation is then de�ned as:

(ϕ̂, λ̂) = argmin
ϕ ,λ
{E(ϕ, λ)} (6.22)

which can be solved iteratively with the two step scheme:

ϕn+1 = ϕn + ∆τ ⋅
∂E

∂ϕ
∣
(ϕn ,λn)

(6.23)

λ
n+1 = argmin

λ

{Eshape(ϕn+1 , λ)} (6.24)
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�e�rst operation corresponds to the displacement of the active
contour, while the second step seeks the a�ne transformation
mapping the prior shape onto the active contour itself. For arbi-
trary shapes Eshape must be computed numerically and the cor-
responding optimization (6.24)must be solved iteratively,mainly
with steepest descent schemes [90]. In these situations the com-
putational burden associated to the shape priormay become con-
siderable.

6.6 Conclusion

In this chapter the basic elements of level-set theory have been
provided. Traditional region based schemes have beendescribed
in §6.2, with some detail on the renown Chan-Vese functional,
which represents the pioneering work in this �eld. �e recent
framework by Lankton et al.has been presented in §6.3, which
improves robustness against heterogeneous or missing bound-
aries by introducing a localization concept. Since edges and in-
tensity pro�les are not a trustful source of information in highly
noisy situations, a common way to deal with these data is to ex-
ploit noise statistics within the segmentation �ow. Hereto, in
§6.4 two di�erent approaches have been reviewed, based on the
concepts of Maximum likelihood estimation and statistical dis-
tance. Finally, §6.5 has been dedicated to the formalization of the
shape prior segmentation framework. Guesses on the expected
shape of the desired target are extremely useful when image data
are not su�cient for an accurate segmentation, like in the case
of occlusions, low contrast or low SNR.





Chapter 7
Myocardium anatomy and functioning

The heart is one of the most vital organs in the human
body. It is located between the lungs in the middle of
the chest, behind and slightly to the le� of the breast-

bone (sternum). Its fundamental role consists in preserving the
activity of the circulatory systems by pumping blood through
the entire human body. In particular it cyclically receives de-
oxygenated blood and pumps it to the lungs to enrich it with
fresh oxygen.

In this chapter the basics of heart anatomy and functioning
are described in §7.1 and §7.2. In §7.3 an emphasis is put on the
le� ventricular chamber, which exploits the most onerous me-
chanical e�ort in the heart cycle and is the region maximally
subject to possible diseases. �e importance of le� ventricle seg-
mentation as a diagnostic tool to observe and quantify heart de-
�ciencies is then stressed in §7.4, where a literature overview of
le� ventricle segmentation algorithms is presented. In §7.5 some
conclusions are drawn.

7.1 Heart anatomy

�e heart is the muscular organ responsible for pumping oxy-
genated blood throughout the vessels by repeated, rhythmic con-
tractions. It is composed of an involuntary striated muscle tis-
sue, calledmyocardium. �e innermost and outermost layers of
tissues are called endocardium and epicardium respectively. �e
endocardium ismanlymade of epithelial and connective tissues.
It lines the inner cavities of the heart, covers heart valves and is
continuous with the inner lining of blood vessels, moreover it
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Figure 7.1: Anatomy and functioning of human heart muscle.
http://www.childrenshospital.org/az/Site509/Images/normal_large.gif

hosts the Purkinje �bers, which participate in the contraction
of the heart muscle. Di�erently, the epicardium is mainly con-
stituted of connective tissue and functions as a protective layer.
�e heart muscle is contained within a sac called pericardium,
which is attached to the central part of the diaphragm and the
back of the breastbone. �e pericardium is �lledwith pericardial
�uid, which acts as a lubricant to allow normal heart movement
within the chest.

�e heart is composed of four chambers: the two upper atria
(singular atrium) and the two lower ventricles. Le� ventricle is
separated from the right one by the ventricular septum, while le�
atrium is separated from the right one by the atrial septum. In
an healthy heart blood �ow is unidirectional, the actual path is
indicated in Figure 7.1 by means of white arrows. �is is made
possible by a system of valves. In particular, the right atrium
communicates with the right ventricle by means of the tricuspid
valve, while themitral valve links le� atrium to the le� ventricle.
�e aortic valve connects the le� ventricle to the aorta, the ma-
jor artery of the human circulatory system, while the pulmonary
valve connects the right ventricle to the pulmonary artery, cf.
Figure 7.1.

http://www.childrenshospital.org/az/Site509/Images/normal_large.gif
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7.2 Heart functioning

�e cardiac muscle acts fundamentally as a pump: blood is re-
ceived by the atria, moved to the ventricles, and then returned to
the circulatory system. Blood �ow within the heart is regulated
by coordinated contractions (systole) and relaxations (diastole)
of the four chambers. In particular both atria contract simulta-
neously as the ventricles are relaxed and vice versa. �is allows
blood to �ow from the atria into the ventricles, and then again
into the circulatory system. Re�uxes are prevented by the ac-
tion of the valves. Valves functioning is purely mechanical: they
open when gradient of blood pressure has a certain sign, and
close when the opposite situation happens.

A schematic of heart functioning is illustrated in Figure 7.1.
Oxygen-depleted blood is received in the right atrium from the
superior vena cava during atrial diastole. �en right atrium con-
tracts and blood �ows through the tricuspid into the right ven-
tricle. During ventricular systole the tricuspid closes and blood
in the right ventricle is pumped into the pulmonary artery and
then to the lungs, where it is oxygenated. Oxigenated blood
�ows into the le� half of the heart: form the le� atrium to the
le� ventricle, and then into the aorta. �e portion of the cir-
culatory system which starts in the aorta and ends in the vena
cava is called systemic circulation, and distributes oxygen and
nutrients to the entire body. �e portion which starts in the
pulmonary artery, passes through the lungs, and ends in the pul-
monary veins, is called pulmonary circulation, and is responsible
for blood re-oxygenation.

�is operation is repeated cyclically and is referred as car-
diac cycle. In an adult healthy heart, it repeats with a frequency
of roughly 72 beats per minute (bpm). �e sequence of contrac-
tions and relaxations is regulated by the propagation of electric
pulses, released periodically by the sinoatrial node, or peace-
maker, located in the right atrium.

7.3 Left ventricle

�e le� ventricle is the heart chamber to which the most in-
tense mechanical e�ort is demanded, indeed it is responsible for
pumping blood throughout the entire human body. For this rea-
son the large majority of cardiopathies a�ect this region.

E�ciency of the le� ventricle is mainly evaluated by mea-
suring its capability to feed the human physic with satisfactory
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Measure Value

End Diastolic Volume (EDV) 120 ml

End Systolic Volume (ESV) 50 ml

Stroke Volume (SV) 70 ml

Heart Rate (HR) 72 bpm

Cardiac Output (CO) 4.9 L/minute

Wall�ickness 1.1 mm

Table 7.1: Function indexes of an healthy heart. Note that these
values are subject to variations depending on age, gender and

physical activity.

quantities of blood. In this context ejection fraction and car-
diac output are the principal indexes, commonly adopted as pre-
dictors for prognosis. Ejection fraction is the fraction of blood
pumped out of le� ventricle with each heart beat. By introduc-
ing the end-diastolic (EDV ) and end-systolic (ESV ) volumes,
ejection fraction Ef is de�ned as:

Ef = EDV − ESV
EDV

= SV

EDV
(7.1)

where SV = EDV − ESV is the stroke volume. Damage to the
muscle of the myocardium, such as that sustained during my-
ocardial infarction or in cardiomyopathy, impairs the heart’s abil-
ity to eject blood and therefore reduces ejection fraction. �is
reduction in the ejection fraction can manifest itself clinically
as heart failure. Physiological values for these quantities for an
healthy adult male of 75 Kg are reported in Table 7.3, where the
cardiac output is indicated as well, de�ned as CO = SV ×HR.

Ejection fraction can be evaluated from echocardiographic
images. �is is done by tracing the endocardial contours at end-
diastole and end-systole followed by extrapolating estimates of
EDVandESV from these contours [94]. Ejection fraction is then
computed by means of (7.1).

Besides ejection fraction, le� ventricular hypertrophy (LVH)
is a further index of fundamental signi�cance. �is consists in
the muscle thickening and consequent increment of mass, and
can be connectedwith pathological situations implying amuscle
overload, which is the case of aortic stenosis, aortic insu�ciency,
and hypertension. LVH as well can be evaluated in echocardi-
ography by jointly tracing endo- and epicardial contours, and
evaluating the distance between the two.
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Figure 7.2: Parasternal Short Axis View.
http://www.yale.edu/imaging/echo_atlas/views/graphics/short_axis_lv.gif

In echocardiography, di�erent views of the heart can be priv-
ileged according to the particular condition to be investigated.
Parasternal Short Axis (SAx), Parasternal Long Axis, Apical 4
Chambers and Apical 2 Chambers are the four most common
ones. In particular the focus is put here on the short axis ac-
quisitions. In Figure 7.2 a typical short-axis ultrasound frame is
illustrated along with a drawing of the imaged slice. Short axis
views are mainly adopted for observing the contractile motion
of the myocardium and evaluating suspicious hypertrophies.

7.4 Left ventricle segmentation

As mentioned in the previous section, segmentation of the le�
ventricle is the standard procedure for assessing clinically rele-
vant measurements of heart function. Due to the intrinsic low
quality of ultrasound frames, this task may su�er from a subjec-
tive bias, besides being tedious and time consuming [95]. Hence,
an automated segmentation procedure is highly desirable both
to reduce inter and intra operator variability in borders detec-
tion and to speed up the segmentation process. An exhaustive
review on echocardiography and, more in general, ultrasound
image segmentation is given in Noble et al.[96].

In this context, a great attention has been given to the seg-
mentation of the endocardium [17, 96]. �is is indeed funda-
mental for retrieving an important index as the ejection-fraction.
Otherwise, very limited literature addresses the detection of the

http://www.yale.edu/imaging/echo_atlas/views/graphics/short_axis_lv.gif
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epicardium. �e motivation is that in this kind of acquisitions
epicardial �bers happen to be collinear with the ultrasonic beam
and the echo returned by these regions is extremely week, with
the immediate consequence that epicardial contours appear highly
heterogeneous and discontinuous on the resulting image, and
di�cult to be detected automatically. Nevertheless a trustful de-
tection of both boundaries has a high clinical relevance, since
it would allow the computation of fundamental parameters as
the ventricular mass, which has been proven to be an impor-
tant precursor for a variety of conditions such as cardiomyopa-
thy, hypertension and valvular disease [97]. Among the very few
works addressing the segmentation of the whole myocardium
from SAx acquisitions, the most popular ones are [98, 99, 100].

In [98] Dias et al.proposed an algorithm searching for endo
and epicardial contours along privileged radial directions start-
ing from a guess of myocardium center. �e estimation problem
was modeled in a Bayesian framework as a maximum a posteri-
ori estimation problem with Rayleigh statistics for the data term
and a spatio-temporal Markov Random Field for the regulariza-
tion term. An iterative multigrid dynamic programming algo-
rithm was used to solve the optimization problem.

In [99] Chalana et al.developed a multiple active contour
method for segmentation of 2D+T sequences. �ey used the
image intensity gradient as the attracting force and invoked tem-
poral continuity via an external energy term that constrained
themotion between consecutive frames. �e di�erent contribu-
tions to the curve evolution were balanced according to a set of
14 empirically set parameters. �e algorithmwas initializedwith
a manual delineation of the epicardium and the epicardium was
correspondingly searched in an automatic way. �e two con-
tours were then segmented in sequence throughout the entire
acquisition.

In [100] Setarehdan et al.developed a fuzzy multiscale edge
detection (FMED) method that uses a wavelet transform to de-
�ne the various levels of resolution of image content. In this
work, an edge was de�ned as a point with maximal member-
ship of the edge fuzzy set. Temporal information was included
in edge detection by de�ning a moving edge fuzzy membership
function, as well as an edge fuzzy membership function. �e
combined edge andmotionmembership functionwas thenmax-
imized to de�ne edge points.

In this scenario we propose a novel algorithm for combined
segmentation of endo and epicardium from SAx acquisitions
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which is believed to overcome several shortcomings associated
with existing methods. In particular:

• Results of [99] rely on empirically tuning a set of 14 pa-
rameters, which highly reduces the clinical usability of the
segmentation tool. On the contrary, the proposed algo-
rithm requires 3 parameters only to be set, all with a very
speci�cmeaning. As a consequence they can be intuitively
adjusted by the user in order to obtain the best results.

• In [99] and [100] image gradient is adopted as edge indi-
cator employed for location of endo and epicardium. It
is well established that image gradient alone is not a reli-
able source of information for heavily speckle corrupted
images as ultrasound ones are. For similar data, to em-
ploy speckle statistics as driving criterion has become the
consolidated practice instead. In particular, in the pro-
posed algorithm a Rayleigh distribution is assumed for
the speckle and myocardium is segmented by �nding the
maximum statistical separation from the background.

• �e work in [98] formalizes the segmentation problem as
the optimization of a non convex cost function, which is
solved by a computationally cumbersome and hardly im-
plementable multigrid dynamic programming algorithm.
Since the advent of level sets, they became one of themost
popular alternatives for formalizing segmentation prob-
lems, indeed they allow both simple and e�cient imple-
mentation. For this reasonwe formalize our segmentation
problem on the base of the level set theory.

A complete description of the proposed algorithm will be
addressed in the next chapter.

7.5 Conclusion

In this chapter the basis of heart morphology and functioning
have been provided and several indexes of cardiac function have
been presented. �e importance of le� ventricle segmentation
for assessing those performance metrics has been justi�ed and
several algorithms addressing this task in an automatic or semi-
automatic way have been brie�y reviewed. In such a scenario
the proposed myocardium segmentation tool has been contex-
tualized. �is will be the subject of the next chapter, where an
evaluation on clinical data will be presented.





Chapter 8
Myocardium segmentation

In this chapterwe present an original semi-automatic tool
for combined segmentation of endo- and epicardium in 2D
echocardiography. �e algorithm is based on the level set

theory and exploits all the concepts of localization, statistical
segmentation and shape priors introduced in Chapter 6.

�e rest of the chapter is structured as follows. In §8.1 we
recall the general form of the shape prior level-set framework,
describe our shape prior term and derive the minimization of
the corresponding energy functional. A strategy for preventing
collisions between the two contours is described as well. In §8.2,
implementation issues are addressed. We explain in particular
how the level-set is initialized for each experiment. �e exper-
imental setup and the adopted performance metrics are illus-
trated in §8.3 and §8.4 respectively. In §8.5 we then provide an
evaluation of the method on cardiac images. �ough the main
emphasis will be put on US images a validation on natural im-
ages andMRI will be presented as well in §8.6, showing the �ex-
ibility of the framework. �e main conclusions of this work are
given in §8.7.

8.1 Proposed segmentation framework

Many energy functionals have been proposed in literature to in-
corporate shape priors into level-set formulation. As in [93, 89,
86] we adopt the general expression for the energy function of
(6.21), reported here for the sake of completeness:

E(ϕ, λ) = Edata(ϕ) + α ⋅ Eshape(ϕ, λ) (8.1)

105
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Figure 8.1: Example of level set function used in the presented
algorithm. �e zero level set Γ is made out of two disjoint

connected components, representing endo- and epicardium.

where Edata represents the chosendata attachment termand Eshape

embeds the shape prior. �e weight α corresponds to a positive
hyper-parameter that balances the in�uence between the two
terms. �e expression for the two energy terms adopted for the
segmentation task at hand is derived in the following, alongwith
the variational framework to address the optimization problem.

In order to detect simultaneously endo- and epicardial con-
tours, a level set function with a disjoint zero-level-set is adop-
ted, as the one represented in Figure 8.1.

8.1.1 Data attachment term

As mentioned, the peculiar nature of ultrasound frames makes
standard image processing techniques, developed for natural im-
ages, ine�ective [101]. �is is mainly due to the presence of the
characteristic speckle noise. Hereto, the standard approach is
to adopt speckle statistics as the driving criterion to address the
segmentation task [96].

In particular, the standardRayleighmodel is assumed for the
�rst-order statistics of the uncompressed envelope signal. Al-
though this distribution is known to be ine�ectivewhen non dif-
fusive scattering conditions are encountered, it has been widely
used for segmentation purposes with satisfactory results [17].
�is is further motivated by the fact that its analytical simplicity
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allows the closed form solution for the integrals involved in the
segmentation �ow, which is desirable for a fast computation.

�e Bhattacharyya coe�cient (6.20) is adopted as data at-
tachment term Edata. By embedding the Rayleighmodel the two
discriminating distributions write as:

pin(I) = I

σ 2
in

exp{− 1

2σ 2
in

}, pout(I) = I

σ 2
out

exp{− 1

2σ 2
out

}
(8.2)

where σin and σout represent the Rayleigh parameter estimated
inside and outside of the moving interface. In the context of
level-sets, this parameter can be estimated in a ML sense inside
and outside the evolving interface from the following two ex-
pressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
in(ϕ) = 1

2
⋅ ∫Ω I2(x)H(−ϕ(x))dx
∫ΩH(−ϕ(x))dx

σ 2
out(ϕ) = 1

2
⋅ ∫Ω I2(x)H(ϕ(x))dx
∫ΩH(ϕ(x))dx

(8.3)

By substituting the Rayleighmodel into the expression of the
Bhattacharyya coe�cient, it becomes:

BR(ϕ) = 2 ⋅ σin(ϕ) ⋅ σout(ϕ)
σ 2
in(ϕ) + σ 2

out(ϕ) (8.4)

with σin and σout de�ned as in (8.3).
While region-based active contours have been successfully

used for endocardium segmentation [17], they result otherwise
ine�ective in providing meaningful segmentations of the epi-
cardium. �is is due to the fact that, when a short axis acquisi-
tion is made, myocardial �bers and the ultrasonic beam happen
to be collinear at the epicardium. Correspondingly, it returns an
extremely weak echo and its boundaries appear poorly de�ned
in the image and are therefore di�cult to be located in an auto-
matic way. It was shown in the Chapter 6 that a localizing ap-
proach can be exploited in order to deal with similar problematic
image features. Hereto a localized version of the Bhattacharyya
distance is adopted.

�e localized energy then writes as [75]:

BR ,x(ϕ) = 2 ⋅ σin,x(ϕ) ⋅ σout,x(ϕ)
σ 2
in,x(ϕ) + σ 2

out,x(ϕ) (8.5)
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Figure 8.2: Comparison between local and global approach. In red
the global method in [17] and in yellow the local one in [75]. In

green the manual reference by the physician.

where σin,x and σout,x correspond to the ML estimates of the
Rayleigh parameters computed on the two localized sets Ωin,x

and Ωout,x, de�ned in (6.15). Using the general framework of
(6.16), the level set equation can be derived:

∂ϕ

∂τ
(x) = δ(ϕ(x)) f (x) (8.6)

where

f (x) = ∫
Ω y

{W(x, y)δ(ϕ(y))BR ,x

2
[σ 2

out,x − σ
2
in,x

σ 2
in,x + σ

2
out,x

]×
×[ 1

Aout,x
( I2(x)
2σ 2

out,x

− 1) + 1

Ain,x
( I2(x)
2σ 2

in,x

− 1)]}dy+
+λκδ(ϕ(x))

(8.7)

where Ain,x and Aout,x represent the areas of the two sets Ωin,x

and Ωout,x. �e derivation of (8.7) is addressed in Appendix A.
A visual evaluation of the contribution due to the localized

approach is given in Figure 8.2, where a comparison with the
standard region-basedmethod in [17] is shown. It is evident how
the global approach completely fails in locating the epicardial
contours, so producing nonsense results. Di�erently the local
approach manages to retrieve meaningful contours, showing a
good correspondence with the manual reference by the cardiol-
ogist. �ese preliminary results have been published in [75].
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Although good performances are observed, the algorithm
still su�ers from undesired irregularities in the �nal solution,
due to the attachment of the active contour to small structures,
like papillary muscles, and speckle noise. In order to deal with
these e�ects, an higher level knowledge is embedded in the seg-
mentation framework, consisting in the assumption of a prior
model of myocardium shape. Such a model is described in the
next section, along with an e�ective way to deal with it.

8.1.2 Shape Prior Term

It is assumed that the myocardial shape to be segmented may
be approximated by two ellipses, an inner and an outer one (for
brevity sake, we will refer in the sequel to the shape comprised
between these two elliptic contours as annular). �is assump-
tion is indeed well supported by observation when SAx acquisi-
tions are considered [102].

Inspired by the framework proposed in [90], we introduce
an annular shape constraint into our level-set framework bymin-
imizing the following energy criterion:

Eshape = ∫
Ω
Ψ2(x, λ)∣∣∇ϕ(x)∣∣δ(ϕ(x)) (8.8)

where Ψ(x, λ) is the implicit function representing the distance
of a point x to the annular shape de�ned by the parameters λ.
Equation (8.8) reads as a measure of the distance between the
active contour and the prior shape, and therefore imposes a sim-
ilarity between the segmentation result and the prior itself. �e
following parametric expression for Ψ is proposed:

Ψ(x, λ) =max{E(x, λout),−E(x, λin)} (8.9)

where λin and λout represent the parameters of the inner and
outer ellipses, and E is the algebraic distance of a point x = (x , y)
to the ellipse, represented by the standard quadratic equation for
conic sections:

E(x, λ) = λ i ,5x2 + λ i ,4xy + λ i ,3 y2 + λ i ,2x + λ i ,1 y + λ i ,0
with λ2i ,4 − 4λ i ,5λ i ,3 < 0 (8.10)

with i ∈ {in, out}. Consider that, although six parameters ap-
pear in (8.10), the inequality constraint reduces by one the num-
ber of degrees of freedom, which, for an ellipse, are indeed 5. An
example of Ψ function is given in Figure 8.3.
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Figure 8.3: Example of Ψ function (a) along with a slice (b).

We note here that another, more trivial, choice for Ψ could
be adopted, consisting in the pointwise product between the two
ellipse distance functions. However, that choicewould no longer
represent a distance function [103] and, further, it would not al-
low an optimized solution to the least-squares �tting problem, as
the one we are presenting in the sequel. It is also to be noted that
(8.10) corresponds to a representation of the ellipse through the
algebraic distance. While the Euclidean distance could also be
used, the algebraic distance has the advantages of yielding an an-
alytical evaluation of (8.8) and allowing the use of the fast elliptic
�tting algorithm of [104], as described in the next section. On
the opposite, the Euclidean distance implies numerically evalu-
ation of (8.8) and thus heavier iterative techniques [105, 106].

�eminimization of energy (8.8) leads to �nding a geodesic
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zero level-set (in our case two contours) in a Riemannian space
derived from the shape prior content. As compared to the ini-
tial work of [107] and derived approaches [90], the arc length
function of (8.8) is no longer weighted by an image based infor-
mation but only by our shape prior term. From the observation
that the minimum of this expression is reached when the zero
level of ϕ perfectly �ts the zero level of the parametric implicit
function Ψ, one can anticipate that the minimization of this en-
ergy criterion will make the level-set evolve toward an annular
shape. �e numerical minimization of (8.8) is addressed using
a two phase scheme [84, 90]. Speci�cally, keeping λ �xed, the
minimization of Eshape with respect to ϕ leads to the following
equation:

∂ϕ

∂τ
= δ(ϕ(x))g(x, λ) (8.11)

where

g(x, λ) = {2Ψ∇Ψ ⋅ ∇ϕ∣∣∇ϕ∣∣ +Ψ2div( ∇ϕ∣∣∇ϕ∣∣ )} (8.12)

where the dependence of ϕ and Ψ on x has been omitted for
compactness of notation. �en, keeping ϕ �xed, λ is updated
according to the following least-squares �tting problem:

λ = argmin
λ′
∮
Γ
Ψ2(s, λ′)ds = argmin

λ′
∑
x i∈Γ

Ψ2(xi , λ′) (8.13)

By noting that ∣∣∇ϕ∣∣ = 1 because of the signed distance prop-
erty [80], then (8.13) corresponds to the exact minimization of
(8.8) w.r.t. λ. �e rightmost of (8.13) is justi�ed by the fact that
the image space is in practice discrete. To the best of author’s
knowledge, nomethod for the �tting of annular shapes has been
proposed yet. We derive such a solution in the following.

Least-squares �tting of annular shapes

Considering (8.9), the sum in (8.13) can be rewritten as:

J(x, λ) = ∑
x∈ΓA

E 2(x, λout) + ∑
x∈ΓB

E 2(x, λin) (8.14)

where the partition Γ = {ΓA , ΓB} has been introduced

ΓA(λin , λout) = {x ∈ Γ∣E(x, λout) ≥ −E(x, λin)}
ΓB(λin , λout) = {x ∈ Γ∣E(x, λout) < −E(x, λin)} (8.15)
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Input data: λ̂
(0)

in , λ̂
(0)

out , k = 1, tol = 1e-2

Initialization:

E(0) = J[λ̂(0)in , λ̂
(0)

out];
Γ(0)A = ΓA[λ̂(0)in , λ̂

(0)

out]; Γ(0)B = ΓB[λ̂(0)in , λ̂
(0)

out];
while e > tol do:

λ̂
(k)

in = �tLS[Γ(k−1)B ]; λ̂
(k)

out = �tLS[Γ(k−1)A ];
Γ(k)A = ΓA[λ̂(k)in , λ̂

(k)

out ]; Γ(k)B = ΓB[λ̂(k)in , λ̂
(k)

out ];
E(k) = J[λ̂(k)in , λ̂

(k)

out ];
e = ∣∣E(k) − E(k−1)∣∣/∣∣E(k−1)∣∣; k = k + 1;

end while

Table 8.1: Least Squares Fitting Algorithm

From this formulation, we observe that (8.14) can be min-
imized by �tting two separate ellipses on ΓA and ΓB, for which
fast direct solvers exist. Consequently we propose to minimize
J by alternatively �tting the two ellipses and updating ΓA and
ΓB according to (8.15). �e resulting algorithm is summarized
in Table 8.1. By doing so, the energy J is ensured to decrease at
each step. In Table 8.1 we call �tLS the function performing the
direct least-squares ellipse �tting described in [104].

In Figure 8.4, two examples are reported. In both cases, the

two initial ellipses de�ned by λ̂
(0)

in and λ̂
(0)

out are coincident. We
adopt at �rst three di�erent initializations from the same dataset
(blue contours in Figure 8.4(a)). In each case, the algorithm con-
verges to the same results a�er only 3 iterations, as shown in
Figure 8.4(b). �is shows the robustness of our method with re-
spect to the initialization. We then tested our �tting algorithm
on a more challenging case, where some of the points that de-
scribe both the inner and outer contours are superimposed (Fig-
ure 8.4(c)). Figure 8.4(d) shows the good behavior of our al-
gorithm in such situation. In this case, convergence has been
reached a�er only 4 iterations.

�e computational complexity of Table 8.1 is dominated by
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(a) (b)

(c) (d)

Figure 8.4: Illustration of the use of annular least square �tting. In
both cases, the two initial ellipses are coincident. First row:

illustration on a simple case. a) Initialization: the three ellipses
corresponds to three di�erent initializations. b) Results obtained at
convergence: the �nal annular contours are identical. Second row:
illustration on a more challenging case. c) Initialization. d) Results

obtained at convergence a�er only 4 iterations.

the few single ellipse least-squares �tting operations involved,
indicated by the function �tLS. As shown in [104], such a prob-
lem is equivalent to an eigenvalue problem for a 6×6 matrix,
which can be e�ciently solved with O(n3) �oating point oper-
ations [108]. As an example, the solution of Table 8.4 is obtained
in 13 ms in a MATLAB (R2010b,�e Math Works) implementa-
tion of the algorithm, executed on a 2.27GHz Intel Core i5 laptop
equipped with 4 GB of RAM and running Windows 7 64-bit.

As detailed in the sequel, the segmentation method consists
in a two stage procedure, i.e.alternating the �t of the annular
shape to the level-set described in Table 8.1 and the constrained
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evolution of the level-set through (8.6). It is then to be noted that
the �tting stage can be made very fast by initializing the algo-
rithm inTable 8.1 with the �tting result computed at the previous
iteration. In practice, the experiments showed that this strategy
allows performing the �tting stage in one single iteration

As a further remark, it should be noted that, although the
frameworkhas been specialized for annular shapes, the proposed
formalism is general. In particular it can be extended to geomet-
ric primitives for which an e�cient solution to the least squares
�tting problem can be individuated, to be used in place of FitLS
in Table 8.1. In this context, an extension of the algorithm to ar-
bitrary views of the heart based on hyperquadrics is currently
under our investigation [109].

We conclude this section by pointing out that the penalty
term in (8.8) is not new in literature: Chen et al. introduced
an analogous one in [90], in order to embed a shape constraint
in the geodesic active contour �ow [107]. Nevertheless, the dif-
ference between the presented framework and the one in [90]
is substantial: in [90] Ψ represents the distance, computed nu-
merically, of a point to an arbitrary shape, and consequently a
similarity transformation between the segmenting contour and
the prior shape has to be searched in a steepest descent scheme.
In our work, we develop an analytic representation for Ψ, ex-
pressed by (8.9), allowing thereby to express the parameters up-
date step as a direct least squares �tting. As a consequence, this
stage of the algorithm avoids slow steepest descent iterative pro-
cedures. �ese aspects will be further stressed in the results sec-
tion, where a comparison of the proposed algorithm with the
one by Chen is presented, both in terms of segmentation accu-
racy and execution time.

8.1.3 Collision preventing term

Up to this point the two contours are let to move independently
one from the other. For this reason there’s the risk for them to
collide by merging into a single contour. It could happen for in-
stance in the case the structures of interest are close to each other.
�is fact would preclude a meaningful segmentation result.

We stress that this situation was never encountered as long
as ultrasound images were considered. �is was due to the fact
that image size was high enough to preserve a su�cient distance
between endo and epicardium. As a consequence, the term we
are describing in this section was not considered when dealing
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with ultrasound images. Anyway, when testing our algorithmon
images of di�erent nature, in particular on cardiac MRI, where
endo and epicardium were only few pixels distant, we experi-
enced several collision events.

To avoid these situations, an energy term Ecollision , referred
as collision preventing term, can be added to the total energy
function. �is strategy is not new in literature, where Ecollision

typically implements an incompressibility constraint [110], im-
posing the area (or volume) enclosed by the two contours to be
similar to a certain reference value, obtained on the base of a
training process. Besides that this learning phase highly lim-
its the generality such an approach, we note that this criterion,
due to its global nature, does not really prevent the two con-
tours from touching. In this sense, an alternative would be to
introduce a constraint based on the minimum distance between
the two contours. Unfortunately, this solution is not compatible
with our formalism, as the two contours are de�ned by a single
level set function and indistinguishable one from the other.

In this context, we developed anoriginal Ecollision termwhich
exploits the advantages of both these approaches by remaining
consistent with the adopted formalism. Speci�cally, as the �rst
solution, it makes use of area information, which can be imme-
diately deduced from the sign of ϕ, while, as the second, it looks
locally, instead of globally, for collision warning situations.

�e rationale behind the proposed term is illustrated in Fig.8.5.
�e example is relative to a cardiac MRI image. �e basic idea is
that, when looking within a surrounding BR of a contour pixel
x, if the two contours are close in that point, then BR will be
crossed by a thin strip of pixels of Ωin and will be prevalently
�lled by pixels of Ωout (cf. Figure 8.5(e)). Instead, the two pop-
ulations will be approximately equal if the two contours are dis-
tant enough (cf. Figure 8.5(d)). �e warning distance is deter-
mined by the extent of BR .

Following the above considerations and inspired by the lo-
calized framework in [85], the proposed energy criterion writes
as:

Ecollision = ∫
Ω
δ(ϕ(x))∫

Ω
BR(x, y)Fcollision(ϕ(y))dxdy

(8.16)
where BR(x, y) is the disk of radius R analogous to (6.13), repre-
sented as a white circle in Figure 8.5 and.

Fcollision = (Ain,x − Aout,x)2 (8.17)
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(a) (b) (c)

(d) (e)

Figure 8.5: In (a) the two contours soon before the collision. Two
regions, corresponding to a safe distant-contours situation and a
warning close-contours situation are represented as white disks. In
(b) the active contour a�er the collision. In (c) the result obtained
thanks to the collision preventing term. In (d) and (e) a zoom of
the two regions corresponding to distant and close contours
respectively. �e image is taken from a cardiac MRI exam.

where Ain,x and Aout,x represent the areas of the two sets Ωin,x

and Ωout,x in Figure 8.5, and can be expressed as:

Ain,x = ∫
Ω
BR(x, y)H(−ϕ(y))dy,

Aout,x = ∫
Ω
BR(x, y)H(ϕ(y))dy. (8.18)

�e e�ect of (8.16) to keep the two areas Ain,x and Aout,x similar,
so preventing the close contours situations of Figure 8.5(e). Us-
ing the general framework in [85] the minimization of Ecollision

with respect to ϕ leads to:

∂ϕ

∂τ
= h(x)δ(ϕ(x)) (8.19)

where
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h(x) = 2∫
Ω
δ(ϕ(y))BR(x, y)(Ain,x − Aout,x). (8.20)

An example of the e�ect of this term is illustrated in Fig-
ure 8.5(c). Note that no collision happens thanks to the proposed
term and ameaningful result is obtained. �e value of ρ has been
�xed equal to 5 pixels in that case.

We conclude this section with a remark. �e term in (8.17)
does not distinguish between close contours and peaky corners,
indeed in this second circumstance as well the number of inside-
pixelsmay be substantially smaller than the outside-ones. �ough
this factmay represent a shortcoming in general, since it hinders
the detection of high curvature details, otherwise this is not the
case for the application at hand, in which the interesting patters
can be represented by ellipses and therefore present an intrinsic
smoothness.

8.2 Implementation issues

Level-set evolution equation is implemented using a standard �-
nite di�erence scheme [80], where the implicit function ϕ is rep-
resented by a signed distance function. In order to improve e�-
ciency, values of ϕ are only computed in a narrow band around
the zero level set. Consequently, ϕ is re initialized every few iter-
ations using a fast marching scheme [80]. �e �nal, shape-prior
level set equation, writes as:

∂ϕ

∂τ
(x) = δ(ϕ(x)) [ f (x) + α ⋅ g(x, λ)] (8.21)

where f and g are de�ned as in (8.6) and (8.12) respectively. �e
choice of the weight term α is dependent on the speci�c appli-
cation. For instance, when the quality of the image is poor, it
is recommended to use higher value of α in order to put more
importance on the shape prior term. When presenting results
in the experiments section, we will adopt the α value which pro-
duces the best segmentation result. In particular a value α =1.2
was found to produce the best result on available images.

Concerning the initialization, let us note the localized frame-
work of [85] requires that this is made not too far from the de-
sired solution. Indeed while such a local data attachment term
allowsmaking the algorithmmore robust to the variation of im-
age properties, it makes it more sensitive to initialization. In the
experiments described in the next sections, the following sim-
ple procedure is thus considered. �e user is asked to position
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six points, as this is the minimum number of points needed to
de�ne 2 concentric ellipses. �e �ve �rst points are used to set
an ellipse (one ellipse being uniquely de�ned by 5 points) and
the last point is used to obtain the second concentric ellipse. For
each experiments, the initial points used to achieve the given
results are displayed in green. Finally, the localizing approach is
implemented by assuming as mask W a disk whose radius was
experimentally set to 10 pixels.

8.3 Materials and methods

�e algorithm was validated on a set of 59 B-mode images ac-
quired on 5 di�erent patients. Datawere acquired using aToshiba
Powervision 6000 (Toshiba Medical Systems Europe, Zoeter-
meer, the Netherlands) equipped with a 3.75 MHz-probe. Image
size was equal to 249×168 pixels2. �e algorithm was initialized
by a non-expert user as described in the previous section. Man-
ual segmentation drawn by an expert cardiologists was used as
reference.

8.4 Performance metrics

Performance of the algorithm was assessed by measuring Root
Mean Square Distance (RMSD), Hausdor� Distance (HD) and
Dice coe�cient (D) between automatic and reference contours.
�esemetrics are standardly adopted for evaluatingmedical im-
ages segmentation algorithms [111].

Considering two contours C1 and C2, the MAD between the
two is de�ned as:

RMSD(C1 , C2) = 1

2
{
¿ÁÁÀ 1

L(C1) ∫x∈C1 [infy d(x, y)]2 dx+
+

¿ÁÁÀ 1

L(C2) ∫y∈C2 [infx d(x, y)]2 dy}
(8.22)

where d(x, y) is the Euclidean distance between x and y, while
L(C) denotes the length of C. �e HD is instead de�ned as:

HD(C1 , C2) =max{ sup
bx∈C1

inf
y∈C2

d(x, y), sup
y∈C2

inf
x∈C1

d(x, y)}. (8.23)
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Dice HD RMSD

with shape prior 0.89±0.02 5.57±1.18 2.22±0.46

without shape prior 0.87±0.03 7.78±2.12 2.55±0.49

Table 8.2: Performance metrics value (mean ± standard
deviation) for the proposed algorithm on 59 echocardiographic

images, respectively with (α=1.2) and without (α=0) shape
information.

Finally, de�ning Ω1 and Ω2 as the sets of pixels enclosed by
the closed contours C1 and C2, the Dice coe�cient writes as:

D(Ω1 , Ω2) = 2 #(ΩS⋂ΩR)
#(Ω1) + #(Ω2) (8.24)

where #(⋅) extracts the set cardinality.
�e RMSD measures the average distance between the two

contours, and is thus suited for evaluating the global performance
of the algorithm. On the opposite, the Haussdorf metric repre-
sents themaximumdistance between the contours, and is there-
fore a local index of performance [112]. More speci�cally, the
HD keeps trace of the localized discrepancies which are largely
hidden in the average operation involved in the RMSD compu-
tation. While RMSD andHDdepend on the image size, theDice
coe�cient returns instead an intrinsic index of performance, since
it measures the superposition in percentage between the two en-
closed areas. �ese three metrics are adopted to provide an ex-
haustive evaluation of the behavior of the proposed algorithm.

8.5 Results

8.5.1 Evaluation of shape prior contribution

In order to evaluate the e�ect of the shape prior information
we ran our algorithm with and without using the shape prior
term. When the shape information was taken into account a
value α=1.2 was used. �e complete set of results is reported in
Table 8.2. �is table clearly shows that the introduction of the
shape prior yields an improvement of the segmentation, yield-
ing a slightly higher Dice and smaller HD and RMSD.

Figure 8.6 provides segmentation examples allowing a �ner
interpretation of these results. It may be observed that the shape
prior allows to avoid the local irregularities, linked to the attrac-
tion of the active contours to small scale noisy structures. �is
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(a) (b)

Figure 8.6: Manual reference and segmentation result as a thin and
continuous line respectively. Note how the shape constraint
prevents the contour from adhering to irregularities in the

endocardium (white arrow in (a)), principally ascribable to the
presence of the papillary muscles. In general much regular results
are obtained with the shape prior approach, with an augmented
correspondence with the cardiologist reference. Error metrics for
those images are: (a) HD=14.3, RMSD=5.35, D=0.83; (b) HD=5.83,

RMSD=2.52, D=0.89.

explains in particular the large decrease of HD associated with
the shape information.

8.5.2 Comparison with Chen algorithm

We compare in this section the performance of our algorithm
with the approach described in [90]. �e basic equations for
Chen algorithm are reported in Appendix D. �e use of Chen’s
approach implies the learning of the shape prior through a train-
ing phase performed on a set of manually segmented contours.
In this experiment, the prior contourwas obtained for eachmod-
ality from a training image set, built by randomly selecting ref-
erence contours. Speci�cally, 10 images out of 59 were used. �e
prior contour was obtained by averaging the reference contours
drawn by the physician. Due to potential misalignment among
the references, a registration stepmust precede the averaging op-
eration, as detailed in [90]. �e so obtained prior contour is il-
lustrated in Figure 8.7(b). From this �gure it can also be clearly
seen that ellipses represent a reliable approximation of myocar-
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Figure 8.7: Prior contour computation for (a) MRI and (b)
ultrasound images. �e cluster of reference curves is represented as
thin contours and the corresponding average shape as a bold red

contour.

Dice HD RMSD

proposed algorithm 0.89±0.02 5.57±1.18 2.22±0.46

chen’s algorithm 0.86±0.03 8.05±1.55 2.50±0.72

Table 8.3: Performance metrics value (mean ± standard
deviation) for the proposed algorithm and Chen’s one for US

images. �e training images are eliminated from the data set before
evaluation. �e total number of testing images is the equal to 49.

dial contours.
�e complete set of results is reported in Table 8.3. �ese

results clearly show that the proposed algorithm outperforms
Chen’s approach for the present application. Let us note that
the di�erence in performance is particularly pronounced for the
Hausdor� distance. �is behavior is linked to the fact that in
Chen’s approach, the only non-rigid degree of freedom applied
to the shape prior in the course of the segmentation is a uniform
scaling. On the opposite, our approach performs a complete �t
of the prior at each iteration, thus yielding a better adjustment
to the myocardial shape variations.

Another important issue concerns the computational speed.
�e average cpu time needed for segmenting one image was 13.5
seconds for our method and 36.7 seconds for Chen’s method.
�is speed-up is a consequence of the availability of a paramet-
ric representation for the prior, combined with the existence of
a fast �tting procedure for such a geometry. In particular, the
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most costly step in Chen’s algorithm is the initial alignment of
the prior shape onto the initial contour (cf. AppendixD). For the
considered images, this step can take up to several thousands of
iterations. On the opposite, in our approach the initial registra-
tion corresponds to �t the initial contour with an annular shape,
which is typically done in few iterations.

8.6 Beyond ultrasound

Due to its extreme�exibility, the shape prior segmentation frame-
work described in this chapter, can be suitably applied to every
kind of image containing annular-like patterns. Indeed similar
patterns are recurrent in images from several �elds: medicine,
biology and astronomy are some examples. In this section we
present some results obtained on various natural images and on
cardiac MRI.

As all those images are less challenging thanUS, the sophisti-
cated statistical framework described in §8.1.1 is no longer nec-
essary and the standard Chan-Vese framework, in its localized
version, has been proved to be largely su�cient.

8.6.1 Segmentation of natural images

Figure 8.8 illustrates the application of the proposed method for
the segmentation of the pupil and iris in human eye, of the zona
pellucida in human embryo, and the rings of Saturn. We used
for these experiments the same α value equal to 0.8. We ob-
serve that in all those situations gray scale information alone is
not su�cient for obtaining correct results. In the eye image (Fig-
ure 8.8(a)), the eyelash hinders a correct iris detection,moreover
the variations in the iris color make pupil segmentation impre-
cise. A similar e�ect can be observed in the embryo image (Fig-
ure 8.8(b)) where the segmentation is inaccurate due to low con-
trast pro�les and to proximity of the cell to the internal bound-
ary of the zona pellucida. In the Saturn image, the ring portion
hidden by the planet body cannot be followed without a shape
prior approach (Fig.8.8(c)).

�e results obtained using the shape prior term are given in
the second row. In the 3 cases, they are in good agreement with
the expected shapes. �ey illustrate the usefulness of the pro-
posed annular shape prior for such images. Regarding the com-
putational cost, Table 8.4 provides the cpu times corresponding
to the segmentations performed with our approach and shown
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(a) (b) (c)

(d) (e) (f)

Figure 8.8: Segmentation results obtained on natural scene images.
�e green points correspond to the initialization. Images (a) to (c)
show the result obtained when the proposed approach is applied
without the shape constraint. Images (d) to (f) show the result

obtained when the shape prior is applied.

Eye image Embryo image Saturn image

(Fig.8.8(d)) (Fig.8.8(d)) (Fig.8.8(f))

Overall 8.31 17.93 13.86

shape fitting 0.12 0.33 0.36

Table 8.4: Cpu time (s) corresponding to the segmentation with the
proposed approach on natural images.

in Figure 8.8(d) to Figure 8.8(f). Note that the 3 images share
the same size 200x200 pixels. In order to give an insight on the
impact of the shape prior termon the overall computational bur-
den, Table 8.4 also gives the cpu time corresponding to the �t-
ting step of the algorithm in §8.1.2. �ese results con�rm that the
improvements in segmentation accuracy ascribable to the shape
prior term come at a substantially negligible price in terms of
computational complexity.
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Dice HD RMSD

with shape prior 0.82±0.05 3.63±0.73 1.46±0.21

without shape prior 0.80±0.05 4.62±0.82 1.72±0.27

Table 8.5: Performance metrics value (mean ± standard
deviation) for the proposed algorithm on 56 cardiac MRI images,
respectively with (α=0.8) and without (α=0) shape information.

8.6.2 Segmentation of cardiac MRI

�e algorithm has been evaluated on a set of 52 cardiacMRI im-
ages. A value α =0.8 was used to balance the shape prior in-
�uence. We note that this is smaller than the one adopted for
ultrasound as MRI has an intrinsically higher image quality. As
mentioned, due to the reduced size of MRI images, endo and
epicardium happened to be too close to prevent collision be-
tween the two contours. Consequently the collision preventing
energy term presented in §8.1.3 was added to the energy func-
tion, weighted by an opportune hyper parameter β. A value
β=0.4 was experimentally found to avoid collision events on all
the available images. A value R=4 pixels was adopted for the cor-
responding collision indicator BR . �e same set of experiments
performed for US were made for MRI and are reported in this
section.

From the evaluation of the shape prior contribution we ob-
tained the results reported in Table 8.5. Note that both HD and
RMSDhave smaller values forMRI than forUSdue to the smaller
size of the former. A visual comparison between the shape prior
and the shape free approach is reported in Figure 8.9.

A comparison with Chen algorithm is presented as well. In
this case the prior shape was built from a training set composed
of 10 out of the 56 images. �e so obtained reference contour is
illustrated in Figure 8.7(a). �e obtained results are reported in
Table 8.6. An example image is illustrated in Figure 8.10.

8.6.3 Dependence on the initialization

As previously mentioned, the adoption of the localized frame-
work of [85] imposes a good initialization in order to guarantee
adequate results. In practice, this implies that the distance be-
tween the initial contour and the object to be detected should be
on the order of the extent of the maskW(⋅). In this section, we
thus propose to study the in�uence of initialization by applying a
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(a) (b)

Figure 8.9: Segmentation results on cardiac MRI. Manual reference
and segmentation result as a dashed and continuous line

respectively. Note how the shape constraint prevents the contour
from adhering to the right ventricle (upper arrow in (a)) and

allows to cope with the low contrast of the endocardium (lower
arrow in (a)). Error metrics for those images are: (a) HD=5,
RMSD=1.52, D=0.83; (c) HD=2.23, RMSD=0.99, D=0.89;(b)

HD=2.23, RMSD=0.99, D=0.89.

Dice HD RMDS

proposed algorithm 0.82±0.05 3.63±0.73 1.46±0.21

chen’s algorithm 0.76±0.18 4.89±1.06 1.74±0.45

Table 8.6: Performance metrics value (mean ± standard
deviation) for the proposed algorithm and Chen’s one for MRI

images. �e training images are eliminated from the data set before
evaluation. �e total number of testing images is the equal to 46.

random variation to the location of the 6 points used in our ini-
tialization procedure. Although the study is presented here for
MRI images only, the considerations that follow are absolutely
general.

�is experiment is illustrated in Figure 8.11 and is done as
follows. We delineate from a speci�c MRI image six regions in
which initial points are randomly positioned (red disk in Fig-
ure 8.11(a)). Each region corresponds to a disk with a radius of
3 pixels. �is dimension has been chosen to simulate the un-
certainty in the positioning of the points by the user. In or-
der to show the in�uence of such random scheme in the initial-
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Figure 8.10: Comparison between the proposed (a) and Chen (b)
algorithm applied to an MRI image. �e prior for Chen algorithm
is not appropriate for this particular frame and compensates for
the lack of data information in a way which is not consistent with
the real heart morphology, as shown by the arrows in (b) and (c).
Di�erently, the adopted parametric formulation easily allows to

second myocardial shape. Error measures are: (a) D=0.87,
HD=3.60 and RMSD=1.42; (b) D=0.76, HD=5.88 and RMSD=2.09.

ization, we display in Figure 8.11(a) two particular initial con-
tours obtained from the proposed random initializations and
Figure 8.11(b) shows the �nal contours obtained from 10 di�er-
ent initializations. In order to evaluate the variability of the re-
sulting segmentations, we compute the similarity measures by
considering all the possible combinations of two �nal contours.
Weobtainedmean values ofD=0.98,HD=1.1 pixels andRMSD=0.3
pixels. �ese values illustrate the robustness of the proposed
method with respect to the initialization phase.

As a conclusion, although the local data attachment term im-
plies an initialization close to the desired contour, within this
limit, this initialization thus needs not to be very accurate.

8.7 Conclusion

in this chapter a novel framework based on level-sets has been
introduced and described. �e algorithm contains several ele-
ments of novelty over the related literature, speci�cally:

• a parametric implicit function de�ning the distance from
two ellipses is introduced;

• an e�cient solution to the least- squares �tting problem
of annular shapes is developed;
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(a) (b)

Figure 8.11: Evaluation of the in�uence of the initialization points.
a) Regions where the initial points are randomly positioned with
two particular derived contours. b) Segmentation results obtained

from 10 di�erent initializations.

• thanks to its parametric representation, the shape prior
may be adjusted to the evolving contour through an ef-
�cient least square strategy. Correspondingly, the com-
putational cost associated to the introduction of the prior
shape information is made essentially negligible.

�is framework provides two additional bene�ts. First, since
a parametric representation is adopted, a training phase formodel
selection is avoided, for which the availability of training sam-
ples and their number are di�cult issues. Secondly, the detec-
tion of both contours is addressed with a single level-set func-
tion, which is desirable in terms of memory consumption and
computation.

�e algorithm was evaluated on a set of clinical data where
good performance were observed. �ese promising results en-
courage further e�orts in order to make the algorithm usable in
a realistic clinical setting. In particular, we believe they must go
in two main directions:

• Reduce user interaction. �is required the proposal of a
less demanding initialization procedure;

• Reduce computation time. �e biggest computation here
is requested by the data attachment term, in which all lo-
calized region must be processed in sequence. �is step
might be made substantially lighter with the employment
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of GPU programming techniques, which would allow to
exploit the parallelism o�ered by modern GPUs architec-
tures.



Chapter 9
Conclusion

This manuscript described the research activity carried
out by the author between January 2008 and December
2010 in the context of his PhD at the Advanced Research

Center on Electronic Systems and Information Technology of
the University of Bologna, Italy. Part of the work was made dur-
ing a one year internship within the ultrasound team of the the
Centre de Recherche et d’Applications en Traitement de l’Image
et du Signal (CREATIS) in Lyon, France.

Two major topics inherent with medical ultrasound images
were addressed during the PhD research. �e�rst project had its
principal goal in the development of an e�ective pre-processing
tool for reducing system dependencies in the performance of
ultrasound based tissue characterization algorithms. �is was
made possible thanks to the proposal of an original deconvolu-
tion framework allowing to restore statistically consistent max-
imum a posteriori estimates of the tissue re�ectivity. A perfor-
mance evaluation was documented in the thesis, obtained from
phantom data mimicking biological tissues with di�erent par-
ticle concentrations. �e results showed a relevant decrease in
themisclassi�cation error when processed data were considered
instead of the raw signal, along with the superiority of the pro-
posed paradigmover standard deconvolution tools. Futurework
must include the validation of the proposed scheme on clinical
data. In this sense the main interest relies in the detection of
potentially cancerous areas on trans rectal ultrasound images of
the prostate for guiding biopsy procedures.

�e second activity stemmed instead from the purpose to
provide the cardiology communitywith so�ware tools for easing

129
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the reading and analysis of echocardiographic sequences. In this
context a semi-automatic segmentation tool for joint detection
of endo- and epicardial contours from short axis acquisition was
designed. �e algorithm was derived on the base of the level-
set formalism and e�ectively incorporated information on sig-
nal statistics andmyocardium expected geometry for constrain-
ing the results to anatomically meaningful shapes. �e obtained
results have shown that the proposed algorithm can reduce the
high inter- and intra-operator variability and is feasible and ac-
curate even for realistic clinical data. A natural continuation of
this activity includes the generalization of the proposed frame-
work to the case of arbitrary probe orientations, in this sense
some preliminary results have been recently obtained [P1][P6],
and the use of the detected contours for the calculation of pa-
rameters commonly adopted in the clinical routine for the diag-
nosis of heart disease as ejection fraction and wall thickening.



Appendix A
Derivation of the Bhattacharyya level-set
function

�e Bathhacharyya distance for two Rayleigh pdfs is given by
(8.4):

BR(ϕ) = 2 ⋅ σin(ϕ) ⋅ σout(ϕ)
σ 2
in(ϕ) + σ 2

out(ϕ) (A.1)

where the two Rayleigh parameters are de�ned as (8.3):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
in(ϕ) = 1

2
⋅ ∫Ω I2(x)H(−ϕ(x))dx
∫ΩH(−ϕ(x))dx

σ 2
out(ϕ) = 1

2
⋅ ∫Ω I2(x)H(ϕ(x))dx
∫ΩH(ϕ(x))dx

(A.2)

A�er some algebra the �rst variation of BR w.r.t. ϕ can bewritten
as:

∂BR

∂ϕ
= 2 σ 2

in − σ
2
out(σ 2

in + σ
2
out)2 {σin

∂σout
∂ϕ
− σout

∂σin
∂ϕ
} (A.3)

where the terms ∂σin,out/∂ϕ have to be computed. It is useful to
use:

∂σin
∂ϕ
= 1

2σin

∂σ 2
in

∂ϕ
,

∂σout
∂ϕ
= 1

2σout

∂σ 2
out

∂ϕ
(A.4)

and then compute the �rst variation of the two variances instead
of the standard deviations. Let’s introduce:⎧⎪⎪⎨⎪⎪⎩

Imin = ∫Ω I2H(−ϕ)dx
Imout = ∫Ω I2H(ϕ)dx

⎧⎪⎪⎨⎪⎪⎩
Ain = ∫ΩH(−ϕ)dx
Aout = ∫ΩH(ϕ)dx (A.5)
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where the dependency of I and ϕ on x has been omitted. �ese
allow to write:

∂σ 2
in

∂ϕ
= 1

A2
in

{∂Imin
∂ϕ

Ain −
∂Ain

∂ϕ
Imin} (A.6)

By using the theory of variations, it is:

∂Imin
∂ϕ
= −I2δ(ϕ), ∂Ain

∂ϕ
= −δ(ϕ) (A.7)

and, a�er some calculation:

∂σin
∂ϕ
= σin
Ain
{ − I2

2σ 2
in

+ 1}δ(ϕ). (A.8)

Analogously one can derive the same expression for σout:

∂σout
∂ϕ
= σout
Aout
{ I2

2σ 2
out

− 1}δ(ϕ). (A.9)

By substituting (A.8) and (A.9) into (A.3), the �nal expression
can be obtained:

∂BR

∂ϕ
= BR

2
[σ 2

out − σ
2
in

σ 2
in + σ

2
out

][ 1

Aout
( I2(x)
2σ 2

out

− 1)+
+

1

Ain
( I2(x)
2σ 2

in

− 1)]δ(ϕ).
(A.10)



Appendix B

Computation of spatially-variant blurring
operators

B.1 Spatially invariant PSF

Consider the image formation process:

Y = P ∗ X (B.1)

where X ∈MN×M is the real data and Y ∈MN×M is the obser-
vation, obtained with the kernel P ∈Mn×m .

It’s common to represent the observation process in matrix
vector notation:

y = Hx

where x and y are the column vectors obtained via lexicographi-
cal ordering of X andY . Herewewant to showhowH ∈MNM×NM

looks like for case N = 9, M = 5, n = 3, m = 3.
Whenperforming the convolution operation, boundary con-

ditions for X have to be speci�ed. Speci�cally, this is done by
padding of n − 1 elements in the axial direction, and m − 1 in
the lateral one. For computational reasons we will consider here
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circular padding. �e padded matrix becomes:

Xp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x8,4 x8,5 x8,1 x8,2 x8,3 x8,4 x8,5

x9,4 x9,5 x9,1 x9,2 x9,3 x9,4 x9,5

x1,4 x1,5 x1,1 x1,2 x1,3 x1,4 x1,5

x2,4 x2,5 x2,1 x2,2 x2,3 x2,4 x2,5

x3,4 x3,5 x3,1 x3,2 x3,3 x3,4 x3,5

x4,4 x4,5 x4,1 x4,2 x4,3 x4,4 x4,5

x5,4 x5,5 x5,1 x5,2 x5,3 x5,4 x5,5

x6,4 x6,5 x6,1 x6,2 x6,3 x6,4 x6,5

x7,4 x7,5 x7,1 x7,2 x7,3 x7,4 x7,5

x8,4 x8,5 x8,1 x8,2 x8,3 x8,4 x8,5

x9,4 x9,5 x9,1 x9,2 x9,3 x9,4 x9,5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where padded elements are includedwithin boxes for clarity pur-
poses.

Let’s call pij the generic element of P and introduce the Cir-
culant matrix Pk ∈MN×N

Pk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p1k 0 0 0 0 0 0 p2k p3k
p2k p1k 0 0 0 0 0 0 p3k
p3k p2k p1k 0 0 0 0 0 0
0 p3k p2k p1k 0 0 0 0 0
0 0 p3k p2k p1k 0 0 0 0
0 0 0 p3k p2k p1k 0 0 0
0 0 0 0 p3k p2k p1k 0 0
0 0 0 0 0 p3k p2k p1k 0
0 0 0 0 0 0 p3k p2k p1k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.2)

Let’s note that the matrix corresponds to the 1D convolution of
the k − th column of P with a vector of N entries.

�e H matrix then writes as

H =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 ◯ ◯ P3 P2

P2 P1 ◯ ◯ P3

P3 P2 P1 ◯ ◯
◯ P3 P2 P1 ◯
◯ ◯ P3 P2 P1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.3)

where◯ is a N × N matrix with all entries equal to 0. Matrix
H is so made out of M ×M blocks of N × N circular matrices,
and is therefore referred as block circulant with circulant blocks
(BCCB). �is property is desirable since it makes H diagonaliz-
able via 2D Fourier transform, i.e.:

Y = ifft2D(fft2D(P) ⋅ fft2D(X)) (B.4)

If zero padding is chosen instead then Y can be obtained from:

Ypadded = ifft2D(fft2D(P)fft2D(Xpadded)) (B.5)



B.2. Spatially variant PSF 135

a�er discarding rows and columns corresponding to the padded
elements.

B.2 Spatially variant PSF

Suppose now that X is blurred with di�erent kernels at di�erent
depths. We represent these regions with di�erent capital letters
A, B and C and represent an entry of X belonging to one of these
regions with a convenient apex.

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xA
11 xA

12 xA
13 xA

14 xA
15

xA
21 xA

22 xA
23 xA

24 xA
25

xA
31 xA

32 xA
33 xA

34 xA
35

xB11 xB12 xB13 xB14 xB15

xB21 xB22 xB23 xB24 xB25

xB31 xB32 xB33 xB34 xB35

xC11 xC12 xC13 xC14 xC15

xC21 xC22 xC23 xC24 xC25

xC31 xC32 xC33 xC34 xC35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣

XA

XB

XC

⎤⎥⎥⎥⎥⎥⎥⎦
(B.6)

We introduce the three blurring operators corresponding to
the three regions as:

PL =
⎡⎢⎢⎢⎢⎢⎢⎣

pL11 pL12 pL13

pL21 pL22 pL23

pL31 pL32 pL33

⎤⎥⎥⎥⎥⎥⎥⎦
(B.7)

with L ∈ {A, B,C}. If we assume a piecewise constant inter-
polation between the di�erent kernels, then the global blurring
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matrix equivalent to (B.2) becomes:

Pk =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pA1k 0 0 0 0 0 0 0 0

pA2k pA1k 0 0 0 0 0 0 0

pA3k pA2k pA1k 0 0 0 0 0 0

0 pB3k pB2k pB1k 0 0 0 0 0

0 0 pB3k pB2k pB1k 0 0 0 0

0 0 0 pB3k pB2k pB1k 0 0 0

0 0 0 0 pC3k pC2k pC1k 0 0

0 0 0 0 0 pC3k pC2k pC1k 0

0 0 0 0 0 0 pC3k pC2k pC1k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.8)

where the sub-matrices corresponding to the single, space in-
variant kernels have been enclosed with black contours. �e as-
sociated H is then build as:

H =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 ◯ ◯ ◯ ◯
P2 P1 ◯ ◯ ◯
P3 P2 P1 ◯ ◯
◯ P3 P2 P1 ◯
◯ ◯ P3 P2 P1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.9)

Note that linear convolution is considered instead of circular
one. As noticed, this does not prevent fast computation since it
just needs a padding operation on the input. By introducing the
matrices corresponding to the single kernels:

P
L
k =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pL1k 0 0 0 0 0 0 0 0
pL2k pL1k 0 0 0 0 0 0 0
pL3k pL2k pL1k 0 0 0 0 0 0
0 pL3k pL2k pL1k 0 0 0 0 0
0 0 pL3k pL2k pL1k 0 0 0 0
0 0 0 pL3k pL2k pL1k 0 0 0
0 0 0 0 pL3k pL2k pL1k 0 0
0 0 0 0 0 pL3k pL2k pL1k 0
0 0 0 0 0 0 pL3k pL2k pL1k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.10)

and the correspondingHL built as in (B.3), then the interpo-
lated H can be written as

H = ∑
L

DL ⋅HL (B.11)

Where the diagonal matrices DL have their entry ( j, j) equal to
one if the j− th pixel in x belongs to the region L, otherwise this
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is null. Wenote that the productDL ⋅HL corresponds to selecting
the entries of P in (B.8) denoted by an apex L and discarding the
others.

�e above discussions can be generalized to an arbitrary num-
ber of regions NR as:

H = NR∑
i=1

D iH i (B.12)

where H i is the BTTB matrix corresponding to the blurring i-
th kernel and D i is the diagonal interpolation matrix. Consider
that other type of interpolation could be considered a part of lin-
ear. �eymaybe useful to smooth border e�ects due to substan-
tial changes in the blurring kernel. In these cases the Dmatrices
are still diagonal but have no longer binary entries, cf. [36].

B.3 Preconditioning of spatially variant kernels

In several applications as image restoration it is useful to �nd
suitable preconditioners of the matrix HTH. A preconditioner
P of a matrix A is a matrix for which the condition number of
the product P ⋅ A is smaller than the one of A. A prerequisite
of a suitable preconditioner is that matrix vector products of the
kind Px are more easily computable than products Ax.

�e simplest preconditioner is calleddiagonal preconditioner,
or Jacobi preconditioner, and consists in the diagonalmatrixwhose
entries are equal to the inverse of the diagonal entries of A [42].
Since the exact form of the Jacobi preconditioner associated to
H involves complex products between the di�erent kernels en-
tries which is di�cult to formalize and implement, we introduce
here a simpli�ed expression of the same. �is is derived on the
base of the considerations in [113].

Consider the approximation matrix H̃ of H built as:

H̃ = ∑
L

DLHLDL (B.13)

It can be shown that, a�er appropriately reordering of the en-
tries so to make pixels of the same regions contiguous a�er lex-
icographical ordering, H can be rewritten as:

H̃ =
⎡⎢⎢⎢⎢⎢⎣

H̃A ◯ ◯
◯ H̃B ◯
◯ ◯ H̃C

⎤⎥⎥⎥⎥⎥⎦
(B.14)
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where each H̃L is an (3M) × (3M) BTTB matrix built as:

H̃L =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃L
1 ◯ ◯ ◯ ◯

P̃L
2 P̃L

1 ◯ ◯ ◯
P̃L
3 P̃L

2 P̃L
1 ◯ ◯

◯ P̃L
3 P̃L

2 P̃L
1 ◯

◯ ◯ P̃L
3 P̃L

2 P̃L
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.15)

and

P̃L
k =
⎡⎢⎢⎢⎢⎢⎣

pL1k 0 0
pL2k pL1k 0
pL3k pL2k pL1k

⎤⎥⎥⎥⎥⎥⎦
(B.16)

By consider the BCCB approximation CL of each BTTB matrix
H̃L as:

CL =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃L
1 ◯ ◯ P̃L

3 P̃L
2

P̃L
2 P̃L

1 ◯ ◯ P̃L
3

P̃L
3 P̃L

2 P̃L
1 ◯ ◯

◯ P̃L
3 P̃L

2 P̃L
1 ◯

◯ ◯ P̃L
3 P̃L

2 P̃L
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.17)

then the circulant approximation of H̃ can be built as:

C =
⎡⎢⎢⎢⎢⎢⎣

C̃A ◯ ◯
◯ C̃B ◯
◯ ◯ C̃C

⎤⎥⎥⎥⎥⎥⎦
(B.18)

Matrix HTH is then approximated by CTC

CTC =
⎡⎢⎢⎢⎢⎢⎣
(C̃A)T C̃A ◯ ◯
◯ (C̃B)T C̃B ◯
◯ ◯ (C̃C)T C̃C

⎤⎥⎥⎥⎥⎥⎦
(B.19)

It is then straightforward to verify from (B.17) and (B.16) that
diagonal entries of (B.19) coincide with the energy of the blur
of the corresponding region. �is is indeed the way the Jacobi
preconditioner is implemented in our algorithm.



Appendix C
Complex Generalized Gaussian
Distribution

Consider the complex random variable z = xr + jx i , where both
xr and x i obey a GGD with zero mean, variance σ 2 and shape
parameter ξ. Assuming mutual independence of xr and x i , then
p(z) = p(xr)p(x i) [16], where p(xr) and p(x i) are de�ned as
in (5.1). Hence it is:

p(z) = a2 exp( − ∣xr
b
∣ξ − ∣x i

b
∣ξ) (C.1)

and correspondingly ln p(z) ∝ (∣xr ∣ξ + ∣x i ∣ξ), which, unless
ξ = 2, is di�erent from ∣z∣ξ . �is fact prevents the restoration
problem to be formalized as an l p-norm optimization task.

Hereto, in order to preserve the desired formalism, we de�ne
here a variation of the GGD for complex variables, which writes
as:

p(z) = a2 exp( − ∣ z
d
∣ξ) (C.2)

where d is determined so to satisfy the normalization condition

∫ ∫ p(z)dx idxr = 1, which leads to

d = b ⋅
√
2/ξ ⋅ Γ(2/ξ)√
Γ(2/ξ) ⋅√π

(C.3)

�e requested integral can be easily computed by substituting
z = ρ exp( jθ), so that dxrdx i = ρdρdθ.

Let’s note that in (C.2) the real and imaginary part of z are
no longer independent. In particular, the pdf (C.3) is an approx-
imation of the one in (C.1), so that the phase0 z is uniformly
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Figure C.1: In (a) the pdf in (C.1) is displayed, while in (b) the pdf
(C.2). �e two pdfs are displayed for unit variance and p = 1.

distributed in the [0, 2π] interval (cfr. Figure C.1). Note other-
wise that the two pdfs coincide when p = 2.



Appendix D
Chen algorithm

�e basic of Chen’s algorithm are here reported. �e interested
reader is addressed to the original paper [90] for a detailed ex-
planation. �e segmentation process is de�ned by:

min
ϕ ,µ ,R ,T

∫
Ω
δ(ϕ(x)){e(∣∇I∣) + λ

2
Ψ2(µR(θ)x + T)}∣∇ϕ(x)∣x

(D.1)
where Ψ is the distance from a reference shape, obtained

from a training phase, e(⋅) is an edge indicator function, while
µ, θ and T represent scale, rotation and translation for the opti-
mal registration of the prior shape onto the active contour. R is
the rotationmatrix associated to the angle θ. Ψ can be computed
with numerical methods as fast marching. �e optimization is
handled using the gradient descent method:

∂ϕ

∂τ
=δ(ϕ)div{(e(∣∇I∣) + λ

2
Ψ2) ∇ϕ∣∇ϕ∣} (D.2)

∂µ

∂τ
= − λ∫

Ω
δ(ϕ)Ψ∇Ψ(x)∣∇ϕ∣dx (D.3)

∂θ

∂τ
= − λ∫

Ω
δ(ϕ)µΨ∇Ψ(dR

dθ
x)∣∇ϕ∣dx (D.4)

∂T

∂τ
= − λ∫

Ω
δ(ϕ)Ψ∇Ψ∣∇ϕ∣dx (D.5)

where Ψ must be evaluated at µRx + T .
Since at time zero the reference shape and the initial con-

tour may be substantially misaligned, a registration step must
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precede the segmentation �ow. �is is implemented by iterating
equations (D.3) thru (D.5) until Ψ2 reaches a minimum bound.

Weobserve that image gradient, exploited for edges location,
is not a reliable indicator in low SNR situations, as in ultrasound
images. For this reason, and for comparison purpose, we use in
all the experiments the localized framework described in Sec-
tion 8.1.1 as data attachment term. �is implies that the le� hand
side of (D.2) is in practice replaced by equation (8.7).
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