Alma Mater Studiorum - University of Bologna

DEIS - DEPARTMENT OF ELECTRONICS, COMPUTER SCIENCE AND SYSTEMS

PhD Course in Electronics, Computer Science and Telecommunications

XXIII CYCLE — SCIENTIFIC-DISCIPLINARY SECTOR ING-INF/05

SEMANTIC COORDINATION THROUGH
PROGRAMMABLE TUPLE SPACES

Candidate: Supevisors:

Dott. Ing. ELENA NARDINI Chiar.mo Prof. Ing. ANDREA OMICINI
Tutor: Advisor:

Chiar.mo Prof. Ing. ANTONIO NATALI Prof. Ing. MIRKO VIROLI

PhD Course Coordinator:
Chiar.ma Prof. Ing. PAOLA MELLO

FINAL EXAMINATION YEAR 2011

il

Acknowledgement

I would like to thanks all the people that have supported my research activity during
the last three years. First of all my thanks go to my family: my father Carlo, my mother
Patrizia and my sisters Elisa and Eleonora. They have always trusted me, despite the
difficult moments. I also would like to thanks Enrico and Ambra. They are more friends
than colleagues. Then, thanks to Andrea, Mirko and Antonio, which have driven me
during this hard walk.

Finally, thanks to Andrea. Even if you arrived only one year ago, you have had a
fundamental role. . .

Contents

[Abstractl ix
1__Introductionl 1
(1.1 Background and Motivation| L. 1
(1.2 Contributionl. 3
(L3 Thesis Outhinel. 5

[2 Tuple Spaces| 7
[2.1 Basic of Tuple Spaces|. Lo 7
[2.2 Behaviour of Tuple Spaces| 0L 8
[2.3 Semantic in Tuple Spaces|. oL 10
2.4 Summary| 11

[3 Semantic Tuple Centres| 13
[3.1 Towards Semantic Tuple Centres 13
[3.2 Semantic Tuple Centre Model|, 15
3.3 Abstract Architecturel. oo 19
[3.4 Summary| 20

[4 Semantic Tuple Centres in TuCSoN| 23
4.1 _TuCSoN Infrastructuref. 23
[4.1.1 Behaviour in Tuple Centres| 24

[4.1.2 Organisation & Security| 25

[4.1.3 Online Engineering| 26

4.2 Designing Ingredients for ReSpecT Semantic Tuple Centres| 27
4.3 System Architecture| oL 32
[4.3.1 Supporting the Semantic Tuple Centre Languagel 33

4.3.2 Extending the ReSpecT Frameworkl 36

4.4 Bvaluation and Discussionlo Lo 38
4.5 Summary| e 41

[5

Coordination in e-Health Systems|

[>.1 EHR Systems Interoperability|
b.1.1 Towards Electronic Health Recordsl
[>.1.2 Existing Approachers: a Surveyl

(5.2 Exploiting Semantic TUCSON in e-Health|

[0.3 Summaryl

Fuzziness in Semantic Tuple Centres|

6.1 Towards Fuzzinessl
6.2 Fuzzytying Semantic Tuple Centres|
6.3 Fuzzyfying TUCSON|
[6.4 An Application Scenario|
(6.5 Summary|

Service Coordination in Pervasive Systems|

[7.1 Requirements for Self-Organising Pervasive Service Systems|
[7.2 Chemical-inspired Tuple Spaces tor Pervasive Services|
[7.3 The Coordination Model ot Chemical Tuple Spaces|
[[.3.1 Coordination Modell
[7.3.2 Examples
[7.4 Case study of long-term competition|
[7.4.1 Local competition|.
[7.4.2 Spatial competitionl
[7.5.1 Semantic Matching
[r.5.2 Chemical Reactions
[7.6 Summaryl

8 Conclusion|

(Bibliography|

[A° Prolog Theories for the Semantic [UCSON Implementation|

[A.1 The ASSERTION Prolog Theory|
[A.2 The QUERY Prolog Theory|

vi

43
43
43
45
48
51

53
23
95
29
65
67

69
69
71
72
72
4
7
7
79
80
81
81
84

87
87
88

89

[B.4 Workshop Proceedings|

vil

viii

Abstract

Two of the main features of today complex software systems like pervasive computing
systems and Internet-based applications are distribution and openness. Distribution re-
volves around three orthogonal dimensions: (i) distribution of control—systems are char-
acterised by several independent computational entities and devices, each representing an
autonomous and proactive locus of control; (i) spatial distribution—entities and devices
are physically distributed and connected in a global (such as the Internet) or local network;
and (iii) temporal distribution—interacting system components come and go over time,
and are not required to be available for interaction at the same time. Openness deals with
the heterogeneity and dynamism of system components: complex computational systems
are open to the integration of diverse components, heterogeneous in terms of architecture
and technology, and are dynamic since they allow components to be updated, added, or
removed while the system is running.

The engineering of open and distributed computational systems mandates for the
adoption of a software infrastructure whose underlying model and technology could pro-
vide the required level of uncoupling among system components. This is the main moti-
vation behind current research trends in the area of coordination middleware to exploit
tuple-based coordination models in the engineering of complex software systems, since they
intrinsically provide coordinated components with communication uncoupling.

An additional daunting challenge for tuple-based models comes from knowledge-intensive
application scenarios, namely, scenarios where most of the activities are based on knowl-
edge in some form—and where knowledge becomes the prominent means by which systems
get coordinated. Handling knowledge in tuple-based systems induces problems in terms
of syntax — e.g., two tuples containing the same data may not match due to differences in
the tuple structure — and (mostly) of semantics—e.g., two tuples representing the same in-
formation may not match based on a different syntax adopted. Till now, the problem has
been faced by exploiting tuple-based coordination within a middleware for knowledge in-
tensive environments: e.g., experiments with tuple-based coordination within a Semantic
Web middleware (surveys analogous approaches). However, they appear to be designed
to tackle the design of coordination for specific application contexts like Semantic Web
and Semantic Web Services, and they result in a rather involved extension of the tuple
space model.

The main goal of this thesis was to conceive a more general approach to semantic

ix

coordination. In particular, it was developed the model and technology of semantic tu-
ple centres. 1t is adopted the tuple centre model as main coordination abstraction to
manage system interactions. A tuple centre can be seen as a programmable tuple space,
i.e. an extension of a LINDA tuple space, where the behaviour of the tuple space can
be programmed so as to react to interaction events. By encapsulating coordination laws
within coordination media, tuple centres promote coordination uncoupling among coor-
dinated components. Then, the tuple centre model was semantically enriched: a main
design choice in this work was to try not to completely redesign the existing syntactic
tuple space model, but rather provide a smooth extension that — although supporting
semantic reasoning — keep the simplicity of tuple and tuple matching as easier as possible.
By encapsulating the semantic representation of the domain of discourse within coordi-
nation media, semantic tuple centres promote semantic uncoupling among coordinated
components.

The main contributions of the thesis are: (i) the design of the semantic tuple centre
model; (i) the implementation and evaluation of the model based on an existent coor-
dination infrastructure; (ii7) a view of the application scenarios in which semantic tuple
centres seem to be suitable as coordination media.

Chapter 1

Introduction

1.1 Background and Motivation

Software systems like pervasive computing systems and Internet-based applications are
mainly characterised by distribution and openness [L00]. Distribution revolves around
three orthogonal dimensions: distribution of control—systems are characterised by sev-
eral independent computational entities and devices, each representing an autonomous
and proactive locus of control; spatial distribution—entities and devices are physically
distributed and connected in a global (such as the Internet) or local network; and tem-
poral distribution—interacting system components come and go over time, and are not
required to be available for interaction at the same time. Openness deals with the hetero-
geneity and dynamism of system components: complex computational systems are open
to the integration of diverse components, heterogeneous in terms of architecture and tech-
nology, and are dynamic since they allow components to be updated, added, or removed
while the system is running.

The engineering of open and distributed computational systems mandates for the
adoption of a software infrastructure whose underlying model and technology could pro-
vide the required level of uncoupling among system components. This is the main moti-
vation behind current research trends in the area of coordination middleware to exploit
tuple-based coordination models in the engineering of complex software systems, since they
intrinsically provide coordinated components with communication uncoupling—the inter-
ested reader can find a historical perspective in [69], and further details in the references
therein.

Tuple spaces are information spaces structured as sets of tuples, which are structured
and ordered chunks of information. In tuple-based coordination models, system compo-
nents interact, communicate, synchronise and coordinate via tuple spaces by inserting,
reading and consuming tuples. According to the generative communication paradigm
[35], tuples are permanently written in a tuple space through the out primitive, then
made available to any process for reading/consuming through rd/in primitives, respec-

2 CHAPTER 1. INTRODUCTION

tively. Tuples are read and retrieved associatively: in order to either read or consume a
tuple, a tuple template — that is, a description of a tuple set — has to be specified. When
a tuple matching the template is found in the tuple space, it is returned as the result for
the tuple request. Generative communication and associative access make tuple-based
coordination models particularly interesting for the engineering of distributed, open and
knowledge-intensive systems. Generative communication promotes communication un-
coupling among system components: tuple producers and consumers can interact with
no prior knowledge about each other, thus leading to space, time and name uncoupling—
which fit well with open and distributed application scenarios. Associative access to
tuples along with synchronisation based on tuple availability in the tuple space promotes
knowledge-based coordination where system components coordinate based on tuple in-
formation content and structure—which fits well with knowledge-intensive application
scenarios.

After the original formulation within the LINDA model [35], a number of implemen-
tations and extensions have been developed and proposed in the literature. Among the
proposals aimed at providing effective technologies supporting the tuple-based coordina-
tion model, remarkable examples are Sun’s JavaSpaces [33] and GigaSpaces [37] Many
other proposals have instead focussed on extending the tuple-based coordination model
beyond its original limitations. Among the many different classes of extended tuple-based
models, two are notable for their impact on the engineering of complex computational
systems: those focussing on the programmability of the behaviour of the tuple-based co-
ordination abstraction, and those enhancing tuple-based communication with semantics.

The behaviour of the original LINDA tuple spaces — represented by their state tran-
sition in response to the invocation of the standard coordination primitives — is set once
and for all by the model, and cannot be tailored to the specific application needs [67]. As
a consequence, any coordination policy not directly supported by the standard behaviour
of the coordination abstraction — the tuple space — has to be charged upon system com-
ponents, which hence grow in complexity—thus hampering the effectiveness of the coor-
dination model especially in open scenarios [70]. In order to overcome such a limitation,
a number of tuple-based coordination models and languages have been proposed that
extend the original tuple-space model by allowing the behaviour of the tuple spaces to
be programmed so as to embed coordination policies within the coordination media. By
encapsulating coordination policies in the coordination media makes it possible to free
coordinated components from the burden of the shared, social aspects of coordination. So,
each component can be designed around its individual coordination concerns: as a result,
components of a coordinated system can more easily come and go, having no need to be
aware of the global coordination policies, which are charged upon the shared coordination
abstractions. In short, tuple-based models featuring behaviour programmability promote
coordination uncoupling between coordinables, which can be designed so as to coordinate
indepentendly of each other since global coordination is delegated to the coordination
media.

CHAPTER 1. INTRODUCTION 3

Associative access to tuples in LINDA tuple spaces is based on a tuple matching mecha-
nism which is purely syntactic. Although this might appear as a marginal aspect of tuple-
based coordination models, it however imposes to coordinated components a design-time
awareness of the structure and content of tuples: ultimately, components coordinated
through a tuple space should be designed altogether—thus clearly working against the
basic requirements for openness. In order to face this issue, current research in the area
of coordination models and languages has focussed on ontology languages to semantically
describe information in tuple spaces. The most relevant approaches aimed at augmenting
tuple spaces with semantics — going altogether under the name of semantic tuple space
computing — are presented in [64]. Semantically-enhanced tuple-based coordination mod-
els overcame the limitations of standard tuple spaces at least in two ways. On the one
hand, they have the potential to free coordinated components of the hassles of a rigidly
design-time defined syntactic communication, by charging the coordination abstractions
of the burden of semantic interpretation. On the other hand, they promote richer and
more expressive forms of communication and — mostly — coordination, where coordination
policies can be in principle specified also based on information-based criteria. In short,
tuple-based models featuring semantic support promote semantic uncoupling between
coordinables, since they allow communication and coordination while delegating the com-
mon representation of the domain elements and relationships to the shared coordination
media.

Behaviour programmability and semantic support in tuple spaces are both essential
requirements for open, distributed and knowledge-intensive systems. However, none of
the approaches provided by literature accounts for both. Moreover, as already shown by
Artificial Intelligence literature [99] 51], 83], real-world information is often imprecise and
vague, and should be handled as such. Although several works discuss how to represent
vague/fuzzy knowledge, we found only the work of Balzarotti et al. [4] exploiting fuzziness
to describe knowledge in tuple spaces—there, a tuple space framework called LighTS is
presented, where fuzzy templates can be built in terms of fuzzy fields. For example, the
template A(Temperature is Hot, Distance is Far) can be defined in order to obtain a
tuple A in which the field Temperature and Distance are considered respectively hot and
far by following a defined membership function associated to the fuzzy concepts Hot and
Far. However, LighTS does not support semantic matching. Accordingly, seen the im-
portance of the previously highlighted aspects, we aim at providing a new coordination
abstraction including the following key elements: (i) tuple-based coordination for com-
munication uncoupling, (i) behaviour programmability for coordination uncoupling, and
(#1i) semantic and fuzziness support for semantic uncoupling.

1.2 Contribution

The main contributions of the thesis are:

CHAPTER 1. INTRODUCTION

e The definition of the tuple space model. In particular, we show the model features
that are suitable for distributed and open contexts. Then, starting from the original
formulation of tuple spaces within the LINDA model, we describe the main extensions
of the original model classifying them in two categories that are notable for their
impact on the engineering of complex computational systems: models focussing
on the programmability of the behaviour of the tuple space and models enhancing
tuple-based communications with semantics.

e The definition of the semantic tuple centre model. In particular, we first show the
main objective of the work, that is the design of a new coordination abstraction gath-
ering the features characterising the two kinds of tuple space extensions: (i) tuple-
based coordination for communication uncoupling, (i) behaviour programmability
for coordination uncoupling and (7ii) semantic and fuzziness support for semantic
uncoupling. Then, we show how to reach this objective, first (i) starting from tu-
ple centres as our coordination model for ensuring communication and coordination
uncoupling and then (i) enriching with semantic and fuzziness the model in order
to provide a general-purpose and customisable semantic coordination media for se-
mantic uncoupling, thus obtaining the new coordination abstraction semantic tuple
centre. In particular, as shown in the following chapters, we choose tuple centres —
tuple spaces enhanced with a behaviour specification — as a starting point, because,
differently from other tuple-based coordination media provided in literature, they:
(i) provide behaviour specifications that can associate any event possibly occur-
ring in the tuple centre to a set of computational activities called reactions; (ii)
do not rely on the definition of new primitives to add new coordinative behaviours,
so they do not require any prior knowledge shared among coordinated components;
(#1i) provides a general-purpose coordination media that can be used to engineer the
whole interaction space of a software system; (iv) are conceived as runtime first-class
abstractions.

After a description of the tuple centre model, we will provide an abstract architecture
of the new coordination abstraction.

e Implementation of the semantic tuple centre model. Starting from the defined se-
mantic tuple centre model, will be described the implementation of the model based
on the TUCSON coordination infrastructure, which is the only infrastructure sup-
porting tuple centres. The implementation in TUCSON will be evaluate on its current
performance in order to understand its applicability in real application contexts.

e Extension of the tuple centre model with fuzziness. We show the important role of
the fuzziness in describing the knowledge stored in tuple centres in open context.
In particular, we show an extension of the semantic tuple centre model and of the
implementation of the new model in TuUCSON.

CHAPTER 1. INTRODUCTION 5

e Application Scenarios. We show two main important application scenarios in which
semantic tuple centres seems to represent a suitable coordination media. The first
application scenarios is in the context of e-Health, that is, Healthcare supported by
software systems. In particular we will focus on the interoperability of Electronic
Health Record (EHR) fragments — medical information that are stored in a digital
format over different healthcare institutions — belonging to an environment that
is distributed and open and where the security support represents a fundamental
requirement to protect the patient privacy. We will show how it is possible to extend
the solutions proposed in literature by tacking the semantic version of TUCSON as
inspiration model, in order to augment their effectiveness in building EHR services,
in particular as far as interoperability is concerned.

The second application scenario is in the context of the pervasive services. Address-
ing this scenario calls for finding infrastructures promoting a concept of pervasive
“eternality”, namely, changes in topology, device technology and continuous injec-
tion of new services have to be dynamically tolerated as much as possible, and in-
corporated with no significant re-engineering costs at the middleware level [101],[94].
As far as the coordination of such services is concerned, it will increasingly be re-
quired to tackle self-organisation (supporting situatedness, adaptivity and long-term
accommodation of diversity) as an inherent system property rather than a peculiar
aspect of the individual coordinated components. As typical in self-organising com-
putational mechanisms, a promising direction is to take inspiration from natural
systems (e.g. physical, chemical, biological, social [94]), where self-organisation is
intrinsic to the basic “rules of the game”. Focussing on chemical natural systems, we
will first shows the concept of chemical tuple spaces [91] — tuple spaces programmed
with coordination rules resembling chemical reactions — as suitable coordination
media for situated and adaptive pervasive computing [77, 17, [46], [56]. Then, we will
show how a distributed architecture for chemical tuple spaces [91] can be imple-
mented in TUCSON providing semantic ReSpecT tuple centres.

1.3 Thesis Outline

Accordingly, to the above discussions, the reminder of the thesis is organised as follows.
Chapter [2] will review the main background of this paper—mamely, tuple-based coor-
dination, the concept of tuple space programming, and existing semantic extensions to
tuple-based models . Chapter |3 introduces the proposed semantic tuple centre model and
its connections to the Description Logics. In particular, we first provide a description of
the new model and of its main ingredients. Then, we show an abstract architecture of the
coordination abstraction. Chapter 4 will show how to implement the semantic tuple centre
model in the TUCSoN infrastructure by extending the supported ReSpecT tuple centres
with semantic techniques. Moreover, the chapter will discusses the implementation and

6 CHAPTER 1. INTRODUCTION

evaluates its current performance. Chapter |5 will show a first application scenario in
which the TUCSoN infrastructure, semantically extended, it is suitable in order to coor-
dinate EHR fragments. Chapter [0] will provide an extension of the semantic tuple centre
model with fuzziness, showing a possible implementation in the TUCSON infrastructure.
Chapter [7| will show a first application scenario in which the TUCSON infrastructure,
semantically extended, it is suitable in order to coordinate pervasive services. Finally,
Chapter |8 will concludes the thesis work outlining directions for future works.

Chapter 2

Tuple Spaces

The engineering of open and distributed computational systems mandates for the adoption
of a software infrastructure whose underlying model and technology could provide the
required level of uncoupling among system components. This is the main motivation
behind current research trends in the area of coordination middleware to exploit tuple-
based coordination models in the engineering of complex software systems, since they
intrinsically provide coordinated components with communication uncoupling. Besides
the original formulation of the tuple space model in LINDA, a number of extensions were
proposed in literature in order to overcome the limit shown by the model. This chapter,
after a brief introduction of the basic elements describing the original tuple space model,
surveys the main extensions of the model that are in the direction of the programmability
of the behaviour of the tuple-based coordination abstraction, and of the enhancing tuple-
based communication with semantics.

2.1 Basic of Tuple Spaces

Tuple spaces are information spaces structured as sets of tuples, which are structured and
ordered chunks of information. In tuple-based coordination models, system components
interact, communicate, synchronise and coordinate via tuple spaces by inserting, reading
and consuming tuples. According to the generative communication paradigm [35], tuples
are permanently written in a tuple space through the out primitive, then made available
to any process for reading/consuming through rd/in primitives, respectively. As shown in
Figure [2.1] tuples are read and retrieved associatively: in order to either read or consume
a tuple, a tuple template — that is, a description of a tuple set — has to be specified. When
a tuple matching the template is found in the tuple space, it is returned as the result for
the tuple request.

Generative communication and associative access make tuple-based coordination mod-
els particularly interesting for the engineering of distributed, open and knowledge-intensive
systems. Generative communication promotes communication uncoupling among system

8 CHAPTER 2. TUPLE SPACES

Tuple

v

out({array,1,2,3)

\' / in(date,01,X,Y)
> T
{array,1,2,3) {date,01,02,2011) Template
C:) Tuple
T-::;:ne, ‘Pippo') [counter,0) C$t (counter,0)

rd(name, 'Pippo’) Primitive

Figure 2.1: The Tuple Space Model

components: tuple producers and consumers can interact with no prior knowledge about
each other, thus leading to space, time and name uncoupling—which fit well with open
and distributed application scenarios. Associative access to tuples along with synchronisa-
tion based on tuple availability in the tuple space promotes knowledge-based coordination
where system components coordinate based on tuple information content and structure—
which fits well with knowledge-intensive application scenarios.

After the original formulation within the LINDA model [35], a number of implemen-
tations and extensions have been developed and proposed in the literature. Among the
proposals aimed at providing effective technologies supporting the tuple-based coordina-
tion model, remarkable examples are Sun’s JavaSpaces [33] and GigaSpaces [37]

Many other proposals have instead focussed on extending the tuple-based coordina-
tion model beyond its original limitations. Among the many different classes of extended
tuple-based models, two are notable for their impact on the engineering of complex com-
putational systems: those focussing on the programmability of the behaviour of the tuple-
based coordination abstraction, and those enhancing tuple-based communication with
semantics.

2.2 Behaviour of Tuple Spaces

The behaviour of the original LINDA tuple spaces — represented by their state transition
in response to the invocation of the standard coordination primitives — is set once and for
all by the model, and cannot be tailored to the specific application needs [67]. As a conse-

CHAPTER 2. TUPLE SPACES 9

quence, any coordination policy not directly supported by the standard behaviour of the
coordination abstraction — the tuple space — has to be charged upon system components,
which hence grow in complexity—thus hampering the effectiveness of the coordination
model especially in open scenarios [70].

In order to overcome such a limitation, a number of tuple-based coordination models
and languages have been proposed that extend the original tuple-space model by allowing
the behaviour of the tuple spaces to be programmed so as to embed coordination policies
within the coordination media. The very notion of programmable coordination medium
was first explicitly expressed in [20], from where the concept of tuple centre was developed.
Tuple centres are tuple spaces whose behaviour can be determined through a specification
language defining how a tuple centre should react to incoming/outgoing communication
events [67]. Unlike tuple spaces, the behaviour of tuple centres can be programmed with
reactions so as to encapsulate coordination policies within the coordination medium.
ReSpecT is a logic-based language allowing the specification of a tuple centre behavior
through a set of first-order logic tuples [66]. Since ReSpecT is Turing-equivalent any
computable coordination policy required by the specific application scenario can be in
principle embedded within a ReSpecT tuple centre.

A number of similar approaches are rooted upon the Java distributed programming
framework. IBM’s T Spaces [96] are Java-based tuple spaces that can be re-programmed
in Java so as to provide coordinated components with the ability to define new com-
munication primitives and associate them to any T Space: thus, interacting entities are
supposed to share some knowledge about the syntax and the semantics of new coordi-
nation primitives. MARS [14] is a coordination middleware providing a single reactive
Java-based space, modelled by extending Sun’s JavaSpaces. Tuples in MARS are Java
objects, whereas reactions are built as standard Java methods.

Among the declarative approaches, law-governed Linda (LGL) [58] allows coordina-
tion media to be programmed through a logic-based language. LGL makes it possible
to redefine the effect of a communication primitive by associating local proxies to each
coordinated component, and making it possible to program them so as to change the se-
mantics of communication operations. On the other hand, EgoSpaces [47] is a middleware
built upon the context abstraction, allowing an individual component to limit the por-
tion of the environment it interacts with. EgoSpaces tuple spaces are then databases of
tuples representing context information. Similarly to LGL, EgoSpaces allows coordinated
components to be associated to local views by which they can access tuples stored in a
tuple space. Such views are built through a declarative specification making it possible
to program its reactive behaviour.

The LighTS framework [4] is designed to provide the minimal set of features imple-
menting a standard tuple space, while, at the same time, offering the building blocks
required for customising and extending its coordinative behaviour. In particular, LighTS
allows the tuple matching mechanism to be redefined so as to trigger reactions, specified
by the programmer, when a tuple matching a given template is manipulated through an

10 CHAPTER 2. TUPLE SPACES

operation. LIME [60] is an infrastructure retaining the original philosophy and goals of
LINDA while adapting them to the support of agent mobility through the reactive pro-
gramming of tuple spaces. A LIME reactive statement has the form T.reactsTo(s,p),
where s is a code fragment containing non-reactive statements to be executed when a tu-
ple matching the pattern p is found in tuple space T. Finally, TOTA [55] is a tuple-based
middleware supporting field-based coordination for pervasive-computing applications. In
TOTA, the tuple space behaviour can be programmed by associating to each tuple its
propagation rule over the network.

Since the behaviour of their coordination media can be programmed to encapsulate
coordination policies, the above coordination models make it possible to free coordinated
components from the burden of the shared, social aspects of coordination. So, each
component can be designed around its individual coordination concerns: as a result,
components of a coordinated system can more easily come and go, having no need to be
aware of the global coordination policies, which are charged upon the shared coordination
abstractions. In short, tuple-based models featuring behaviour programmability promote
coordination uncoupling between coordinables, which can be designed so as to coordinate
indepentendly of each other since global coordination is delegated to the coordination
media.

2.3 Semantic in Tuple Spaces

Associative access to tuples in standard tuple spaces is based on a tuple matching mecha-
nism which is purely syntactic. Although this might appear as a marginal aspect of tuple-
based coordination models, it however imposes to coordinated components a design-time
awareness of the structure and content of tuples: ultimately, components coordinated
through a tuple space should be designed altogether—thus clearly working against the
basic requirements for openness. In order to face this issue, current research in the area
of coordination models and languages has focussed on ontology languages to semantically
describe information in tuple spaces. The most relevant approaches aimed at augmenting
tuple spaces with semantics — going altogether under the name of semantic tuple space
computing — are presented in [64].

Among them, Triple Space Computing (TSC) [29] provides an extension of tuple-based
model with Semantic Web technology. In particular, TSC proposes an extension of the
classical flat data-model adopted for tuples, relying on RDF to extend the reach of tuple-
based coordination to the Semantic Web domain. In the TSC model, tuples are associated
with URIs, and can be interlinked so as to form graphs. Moreover, tuples are triples of
the form <subject predicate object>—as typical of the RDF approach. Among the others,
one of the main advantages of adopting Semantic Web technology is represented by the
possibility to provide tuple spaces with semantic matching algorithms.

Born as an extension of TSC, Conceptual Spaces (CSpaces) [57] is an independent

10

CHAPTER 2. TUPLE SPACES 11

initiative targeted at studying the applicability of semantic tuple space computing in
scenarios other than the Web, such as Ubiquitous Computing, EAI, and so on. To this
end, CSpaces features a knowledge container, an organisational and a coordination model,
a model for semantic interoperability, a security and trust model, a knowledge visualisation
model, and an architecture model—for a thorough description, we forward the interested
reader to [64].

Semantic Web Spaces [85] has instead been devised as a middleware for the Semantic
Web, where clients can exploit Semantic Web data to access and manipulate knowledge,
so as to coordinate their activities. Originally conceived as an extension of XMLSpaces
[97], Semantic Web Spaces provides tuple spaces able to support the exchange of tuples
in the form of RDF triples, relying on RDF Schema reasoning capabilities as far as tuple
matching is concerned. As a consequence, the resulting middleware can be regarded as a
first step towards the adoption of tuple-based coordination in the Semantic Web.

Finally, sTuples [50] is targeted at pervasive computing settings. There, given the
heterogeneous and dynamic nature of pervasive environments, the combined adoption
of Semantic Web and tuple spaces have been recognised as a viable solution not only to
semantic interoperability issues, but also with respect to temporal and spatial uncoupling.
To this end, semantic tuples — based on JavaSpace object tuples — are provided that extend
data tuples, and tuple template matching is extended via a semantic matching mechanism
on top of object-based matching. In addition, sTuples features agents residing in the tuple
space with the goal of performing user-centric services, such as tuple recommendation.

In the overall, semantically-enhanced tuple-based coordination models overcame the
limitations of standard tuple spaces at least in two ways. On the one hand, they have the
potential to free coordinated components of the hassles of a rigidly design-time defined
syntactic communication, by charging the coordination abstractions of the burden of
semantic interpretation. On the other hand, they promote richer and more expressive
forms of communication and — mostly — coordination, where coordination policies can be in
principle specified also based on information-based criteria. In short, tuple-based models
featuring semantic support promote semantic uncoupling between coordinables, since they
allow communication and coordination while delegating the common representation of the
domain elements and relationships to the shared coordination media.

2.4 Summary

In this chapter we provided an overview of the tuple space models showing their pecu-
liarity in the context of complex software systems, which are mainly characterised by the
openness and distribution dimensions. In particular, we first shown the original model
provided by LINDA and its feature of providing communication uncoupling among coor-
dinables. Then, we put in evidence the two main limitations of the model: static behaviour
of the tuple space and syntactic matching between tuples and templates. Finally, we pro-

11

12 CHAPTER 2. TUPLE SPACES

vided an overview of the model extensions overcoming such limits adding coordination
and semantic uncoupling among system components.

12

Chapter 3

Semantic Tuple Centres

The previous chapter provided an overview of the tuple space model and of the several
model extensions towards behaviour programmability and semantic support. Starting from
such an overview, this chapter will put in evidence the lack of support of both the ex-
tensions and its importance in the context of distributed and open application scenarios.
Thus, it will be provided a new coordination abstraction based on the following key ele-
ments: tuple-based coordination, behaviour programmability and semantic support. Then,
after having compared the different tuple-space-based models provided by the literature,
it will be chosen the tuple centre model as starting point for the modelling of the new
coordination abstraction. In particular, it will be shown which are the ingredients needed
to extend the original tuple centre model in order to support the key elements and its
new abstract architecture supporting such ingredients.

3.1 Towards Semantic Tuple Centres

Behaviour programmability and semantic support in tuple spaces are both essential re-
quirements for open, distributed and knowledge-intensive systems—however, none of the
approaches reviewed in Section and Section accounts for both.

This is why in this work we aim at designing a new coordination abstraction including
the following key elements as shown in Figure (3.1

Tuple-based coordination — since it promotes communication uncoupling, that it is
suitable for distributed and open contexts.

Behaviour programmability — in order to encapsulate all coordination rules in coordi-
nation media and not in coordinables, guaranteeing coordination uncoupling among
them.

Semantic support — in order to semantically represent the knowledge stored in tuple
spaces supporting for semantic uncoupling. In particular, by introducing an ontol-

13

14 CHAPTER 3. SEMANTIC TUPLE CENTRES

A

Tuple-based coordination
€ -2 Communication uncoupling

L J

Behaviour programmability
< —>Coordination uncoupling

Semantic support
€ —»Semantic uncoupling p

v

Figure 3.1: Key Elements Composing the New Coordination Abstraction

ogy language [41l, 2] to specify a taxonomical knowledge would allow to face: (1)
heterogeneous problems concerning coordinables that refer to information that is
semantically equivalent but has a different syntactic representation, (ii) the prob-
lem of the communication processes between the software system and users that is
complicated by the various ways in which the information is represented, and (3ii)
system dynamic evolution that could be faced by dynamically acquiring, extending
and adapting the domain ontology.

Moreover, in order to face the needs of coordination in advanced scenarios like pervasive
computing ones [69], our new coordination abstraction should be provided as a runtime
first-class abstraction [74]. Runtime first-class abstractions are abstractions: (i) explic-
itly accounted in the meta-model of the system-engineering paradigm, (i) “kept alive”
through the whole software engineering process — from the analysis to the deployment
phase —, (iii) enabling both inspection and modification of their current state at run-
time, so as to allow for runtime system monitoring and evolution. Runtime first-class
abstractions enable software engineers to perform online engineering—the capability of
supporting system design, development and evolution while the system is running.
Among the several models enhancing tuple spaces with behaviour programmability —
as discussed in Section — tuple centres [67] seems to provide the best level of coordina-
tion uncoupling—in particular, in their TUCSON implementation [70]. A tuple centre is
a tuple space enhanced with a behaviour specification, defining a tuple centre behaviour
in response to communication events in terms of a reaction specification language. While
LighTS, LiME and TOTA tuple spaces only react when tuples stored in a space match
some patterns, a behaviour specification can associate any event possibly occurring in
the tuple centre to a set of computational activities called reactions. Each reaction can
in principle access and modify the current tuple centre state — like adding and remove

14

CHAPTER 3. SEMANTIC TUPLE CENTRES 15

tuples — and access all the information related to the triggering event—thus allowing for
coordination policies to be associated to any sort of event property. Unlike T Spaces,
then, tuple centres do not rely on the definition of new primitives to add new coordina-
tive behaviours, so they do not require any prior knowledge shared among coordinated
components. Also, the tuple centre model provides a general-purpose coordination media
that can be used to engineer the whole interaction space of a software system [61], whereas
models like LGL and EgoSpaces just focus on the local view of a coordinated component.
Finally, the MARS model [I4] is the most similar to the tuple centre model: however,
MARS tuple spaces are not conceived as runtime first-class abstractions. Furthermore,
no specific language for reactions is defined in MARS, which just relies on Java—whereas
tuple centres are provided with a general-purpose, logic-based language — ReSpecT —
specifically designed for handling any sort of event and tuple space behaviour [66]

As far as semantic support in tuple spaces is concerned, semantic tuple space com-
puting includes the most relevant approaches—as shown in Section Semantic tuple
space computing was introduced to cope with openness in the context of Semantic Web
and Semantic Web Services [64] adopting tuple-based coordination for communication
uncoupling, and extending it with semantically-enriched tuple spaces, in order to exploit
tuple spaces as repositories of semantic information. For instance, TSC and Semantic
Web Spaces provide tuple spaces storing RDF triples in form of tuples describing respec-
tively Web Services and Web resources. There, tuple spaces are exploited to coordinate
Web Services and Web resources with Web slients. Analogous considerations apply to
CSpaces and sTuples (see Section . However, the drawback of semantic tuple space
computing is that it focuses on quite a specific context: the Semantic Web (with Web
Services). Thus, the adopted solutions are context-dependent and strictly coupled with
technologies like RDF and XML, so they are not well suited to work as general-purpose
solutions for diverse scenarios like knowledge-intensive and pervasive computing systems.

Accordingly, in this work we aim at providing a general-purpose semantic tuple space
model with no assumptions about the application context, which would preserve its con-
ceptual coherence independently of the use of either semantic tuples or standard ones. In
particular, as shown in the following, (i) we start from tuple centres as our coordination
model for ensuring coordination uncoupling, then (%) we semantically enrich the model
in order to provide a general-purpose and customisable semantic coordination media for
semantic uncoupling.

3.2 Semantic Tuple Centre Model

From an information-oriented viewpoint, a tuple centre has a simple and natural inter-
pretation as a knowledge repository structured as a set of tuples, whose behaviour is
programmable through a set of reaction specifications. Tuples may be seen as represent-
ing objects of the application domain, whose meaning is described by an ontology—that

15

16 CHAPTER 3. SEMANTIC TUPLE CENTRES

is, in terms of concepts and of relations among them [3]. Accordingly, the ingredients of
semantic tuple centres are:

Domain ontology — an ontology describing domain concepts and relationships attached
to a tuple centre, allowing the tuples stored there to be semantically interpreted.

Semantic tuples — a tuple representing an individual that can be semantically inter-
preted by means of the domain ontology associated to the tuple centre.

Semantic tuple templates — tuple templates used to retrieve semantic tuples, consist-
ing in specifications of sets of domain individuals described by the domain ontology.

Semantic primitives — operations (in, rd and out) representing the language whereby
system components can read, consume and write tuples representing knowledge
described by means of a domain ontology.

Semantic reactions — sets of computational activities within a tuple centre defined
through a reaction specification language.

Semantic matching mechanism — algorithms checking the relationships between in-
dividuals and concepts described by tuples and tuple templates in the execution of
coordination primitives and reactions.

To formally define the tuple centre model, a family of knowledge representation formalisms
called Description Logics (DL) are used [3]. As formal logic languages with well defined
semantics, DL allow (i) ontologies — as well as information using vocabulary defined by
ontologies — to be shared and exchanged without disputes as to precise meaning, and (i)
automated reasoning techniques over ontologies that can be exploited to face the dynamic
evolution of the vocabulary used to describe the knowledge. In particular, the DL known
as SHOIN(D) represents a very expressive DL that is the theoretical counterpart of OWL
DL, that is, one of the three species of OWL [42]—the standard ontology description lan-
guage for Semantic Web and the standard de facto in many semantic applications. Being
a standard, OWL fits well the openness requirement: this is why we exploit SHOIN(D) to
enrich tuple centres with domain ontologies and objects. Accordingly, the following DL
components are used in the formal definition of the semantic tuple centre model: TBoz,
ABox and the reasoning service.

Domain ontology An application domain ontology can be formally defined through
a TBox, since the TBox includes the so-called terminological axioms: concept descrip-
tions, denoting meaningful sets of individuals of the domain; role descriptions, denoting
relationships among individuals; and the taxonomy description of concepts and roles. In
particular, in SHOIN(D) TBox concepts can be of the following kinds [3]: T is the set
of all objects, L is the void set, C'U D is union of concepts, C M D is intersection, =D is

16

CHAPTER 3. SEMANTIC TUPLE CENTRES 17

negation, {ii,...,i,} are nominals, that is a set of individuals, VR.C is the set of objects
that are in relation through role R with only objects belonging to concept C, 3R.C' is the
set of objects that are in relation through role R with at least one object belonging to
concept C; and < nR is the set of objects that are in relation through role R with no
more than n objects (and similarly for concepts > nR and = nR). DL formalism also
provides the constructs C and = for expressing respectively the concept or role inclusion
and equality, thus describing a taxonomy among concepts and roles [3]. For example, the
following SHOIN(D) assertions represent a part of the ontology describing the car domain
[12]:

(1) Maker C T

(2) Car C (=1 hasMaker)
(3) (=1 hasMaker) C Car
(4) T C VhasMaker.Maker
(5) CdCityCar C Car

The above axioms describe the concept Maker, the concept Car with the mandatory and
functional relation hasMaker with the concept Maker — i.e., each car has precisely one
maker — and the concept CityCar as a kind of Car.

Semantic tuples Semantic tuples can be formally defined through an ABox, since the
ABox defines axioms to assert specific domain objects and their properties: they can be of
kind C(a), declaring the individual a and the concept C it belongs to, and of kind R(a,b),
declaring that role R relates individual a with b. In the car domain example, the ABox
could include the following axioms:

(6) Car(f40) hasMaker (£f40, ferrari)
(7) CityCar(fiat500) hasMaker(fiat500,fiat)

Accordingly to the TBox axioms (1-5), the above ABox axioms define two individual
respectively named £40 and £500. The first belongs to the concept Car whereas the
second belongs to the concept CityCar. Both individuals are in relation with respectively
the individual ferrari and the individual fiat both belonging to the concept Maker. In
order to represent an individual in form of tuple through the ABox formalism — so that
it can be interpreted by means of a TBox-based ontology — a language is required that
could express the following information: the name of the individual, the concept to which
the individual belongs, and the set of relations in which the individual is involved.

Semantic tuple templates Since semantic templates are specifications of set of do-
main individuals described by a domain ontology, a semantic template becomes a de-
scription of the set of individuals one is interested in expressed in TBox formalism. For
instance, referring to the car domain example, if we are interested in the set of cars that

17

18 CHAPTER 3. SEMANTIC TUPLE CENTRES

have Ford as a maker, the tuple template should provide a concept description expressed
in SHOIN(D) like Car M (3hasMaker. ford) d. Thus, in order to describe an individual set
specification in form of a tuple template, a language is required with the same expressive
power of the TBox formalism.

Semantic primitives Semantic primitives represent the language whereby system com-
ponents can read, consume and write knowledge described by means of a domain ontology.
Extending the tuple centre model with semantic techniques also requires the semantic of
the out primitive to be suitable extended. In particular, since the knowledge stored in
the semantic tuple centre must be always consistent with the domain ontology, in face
of the writing primitive it is required to check — by exploiting the DL reasoner — the
consistency of the semantic tuple to be written in the tuple centre, with the domain
ontology—here intended as Abox plus TBox. This means that semantic tuple centres
also requires to revisit the behaviour of the basic tuple centre primitives. The first ex-
tension concerns all the primitives out, in and rd, and consists in checking whether the
roles and concepts associated to the individual and concept descriptions, respectively,
exist in the domain ontology. Thus, for example if we exploit the primitive out with the
semantic tuple fiat500: ‘CityCar’ (hasMaker : fiat), the existence of concept CityCar
and role hasMaker has to be checked. Moreover, while an out in a tuple centre always
succeeds, an out in a semantic tuple centre may fail. In particular, the out could fail
for two different reasons. First, since a semantic tuple represents an individual, and the
individual is unique in the ontology, an out of a tuple first requires to check whether the
individual represented by the tuple already exists in the knowledge base—in case, the
out fails. Then, since the knowledge stored in the semantic tuple centre should always
be consistent with the domain ontology, an out requires to check the consistency of the
semantic tuple with the knowledge base, by exploiting the DL reasoner.

Semantic reactions A reaction specification language [67] (i) enables the definition
of computations within a tuple centre, called reactions, and (i) makes it possible to
associate reactions to events occurring in a tuple centre. adding or reading / removing
tuples. Accordingly, a reaction specification describes an event specification F describing
the set of events Ev for which reaction R has to be executed. In particular, F has to
contain two sorts of information: the primitive (in, rd or out) to be intercepted, and
an individual set specification, describing either the possible concept descriptions in an
in/rd primitive, or the possible individuals in an out primitive. For example, taking
axioms (1-6), F could contain the concept description Car. If F refers to a primitive in
or rd, R will be executed if the concept description in the semantic tuple template is a
sub-kind of Car—as for the concept description CityCar M (JhasMaker.fiat). Whereas,
in case E refers to the primitive out, R will be executed if an individual of the kind Car
is inserted in the tuple centre—as for the individual fiat500. As far as reactions are
concerned, besides accessing all the information related to the triggering communication

18

CHAPTER 3. SEMANTIC TUPLE CENTRES 19

event, they can read, remove and write tuples from/to the tuple centre. Accordingly,
like coordinated components, reactions can contain coordination primitives to access and
modify the semantic knowledge stored in the tuple centre, through semantic tuples and
semantic tuple templates.

Semantic matching mechanism In case of tuple centre primitives, the semantic
matching mechanism represents the means by which to identify tuples matching tem-
plates. In a semantic tuple centre this means that the matching mechanism has to iden-
tify and retrieve the set of individuals specified by a concept description by means of the
domain ontology. In case of reactions, the semantic matching mechanism has a twofold
means. If £ describes a writing event, then the matching mechanisms between £ and
Fv consists in checking (i) if Ev is a writing event and (77) if the individual contained in
FEv belongs to the concept described in E. Instead, if E describes a consuming/reading
event, then the matching mechanisms between £ and Ev consists in checking (i) if Ev
is a consuming/reading event and (ii) if the concept description contained in Fv is a
sub-concept of the concept described in F.

In order to implement the matching mechanism above, the reasoner service used by
any DL-based system to execute reasoning tasks on ABox and TBox can be used. On
an ABox, one can execute instance checking — verifying whether a given individual is an
instance of a specified concept — and retrieval—finding the individuals in the knowledge
base that are instances of a given concept. Instance checking can be used in case of
reaction to an out. Instead, retrieval can be used for semantic matching between tuples
and templates. On a TBox, one can check the subsumption of two concepts C and D—
which can be used in the case of reactions to in/rd.

3.3 Abstract Architecture

After having defined the ingredients of a semantic tuple centre, it is now possible to outline
its the abstract architecture.

As shown in Figure besides the tuple space storing tuples, the reaction specifications
defining the tuple space behaviour and the reaction engine managing the tuple space
behaviour, the semantic engine is added to the tuple centre architecture in order to
provide the semantic support. In particular, the semantic engine should contain a DL
reasoner by which it is possible — through the domain ontology related to the semantic
tuple centre — to interpreter and reason about the semantic knowledge stored in the
tuple space and to interpreter and enact the semantic reaction specifications. Then, the
semantic engine interacts with both the tuple space and the reaction engine performing
the following tasks:

individual assertion — insert a new individual a in the ABox and checks if the ABox
is consistent with the new individual. The ABox can or not coincide with the tuple

19

20 CHAPTER 3. SEMANTIC TUPLE CENTRES

Domain
terminology

Tuple s g

uple spac - =

+ | —
o o 5

[

Reaction specifications

t

Reaction Semantic
: — ; &—
engine engine

Figure 3.2: Abstract Architecture of a Semantic Tuple Centre

space; it depends if we exploit an internal reasoner engineered specifically for the
tuple space or an external DL reasoner with its own ABox representation.

individual deletion — deletes individuals from the ABox.
instance checking — checks if an individual a belongs to a concept C.
instance retrieval — retrieves all the individuals belonging to a concept C.

subsumption checking — checks if a concept C subsumes a concept D.

Individual assertion and instance retrieval are exploited respectively in face of the prim-
itives out and in/rd towards the tuple space. In particular, in face of the primitive in,
besides the instance retrieval, the individual deletion is exploited in order to consume the
selected semantic tuple. Then, the instance and subsumption checking are exploited in
order to select semantic reactions to be activated (see the semantic matching mechanism

in Section .

3.4 Summary

In this chapter we provided the ingredients needed to model a new coordination abstrac-
tion based on the following key elements: tuple-based coordination, behaviour programma-
bility and semantic support. The new abstraction overcomes the lacks of support of both

20

CHAPTER 3. SEMANTIC TUPLE CENTRES 21

behaviour programmability and semantic support shown by the tuple-space-based models
provided in literature. Then, among such different models, the tuple centre model was
chosen as starting point for the modelling of the new coordination abstraction. In par-
ticular, it was shown the ingredients needed to extend the original tuple centre model
in order to support the key elements of the new coordination abstraction and its new
abstract architecture supporting such ingredients.

21

22

CHAPTER 3. SEMANTIC TUPLE CENTRES

22

Chapter 4

Semantic Tuple Centres in TuCSoN

The previous chapter provided a new coordination abstraction modelled as an extension
of the tuple centre model with the semantic support. Starting from the semantic tuple
centre model, this chapter aims at describing the implementation of the model based on
the TUCSON coordination infrastructure. TUCSON is the only infrastructure supporting
tuple centres; in particular the infrastructure exploits the ReSpecT tuple centres, that are
logic-based programmable tuple spaces. Thus, after having briefly described the TUCSON
infrastructure and the ReSpecT tuple centres, in this chapter it will be described the
implementation of semantic tuple centre in TUCSON by extending the ReSpecT tuple
centres towards the model described in the previous chapter. Then, the implementation
in TUCSoN will be evaluate on its current performance. Finally, in this chapter it will be
outlined the main research directions in order to improve the current implementation of
the semantic tuple centres.

4.1 TuCSoN Infrastructure

TuCSoN (Tuple Centres Spread over the Network) [70] is a java-based coordination in-
frastructure that manages the interaction space of a distributed software system by means
of tuple centres [67]. From the topology point of view, tuple centres are distributed and
hosted in TUCSON nodes, defining the TUCSON coordination space [I8]. In particular,
the topological model of TUCSON classifies nodes as places and gateways—as shown in
Figure [4.1] The former represent the nodes hosting tuple centres used for specific appli-
cations/systems need, from supporting coordination activities to hosting information or
simply enabling software components communication. The latter provide instead infor-
mation about a the set of places belonging to a single domain—thus avoiding a single and
centralised repository, which is unfeasible in complex and large environments. A domain
is the set of nodes composed by the gateway and the places for which it provides informa-
tion. A place can be part of different domains and a gateway can be a place in its turn.
The overall picture of the TUCSON topology is provided in Figure

23

24 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

L \‘\
Fale gateway .
5 Uy L
. e

rdomain 37

Figure 4.1: Topology of the TUCSON Coordination Space

Besides topology, the key features of the TUCSON architecture are: (i) a coordination
model based on programmable tuple spaces, that is tuple centres; (i) the use of the organ-
isation and RBAC models: the former is exploited to describe the system structures and
their relationships, the latter is exploited to model security aspects; and (i) the online
engineering approach used to support the corrective/adaptive/evolutive maintenance of
software systems.

4.1.1 Behaviour in Tuple Centres

The tuple centres behaviour can be determined through a behaviour specification, defining
how a tuple centre should react to incoming/outgoing coordination events [67]. The
behaviour specification can be expressed in terms of a reaction specification language that
associates any communication event possibly occurring in the tuple centre, to a set of
computational activities called reactions. Each reaction can access and modify the current
tuple centre state by adding or removing tuples and access all the information related
to the triggering communication event such as the performing software component, the
operation required and the tuple involved. So, differently from tuple spaces, tuple centres
represents general-purpose and customisable coordination media that can be programmed
with reactions tailored to the application needs.

TuCSoN exploits ReSpecT tuple centres [67, [66]. ReSpecT adopts a tuple language
based on first-order logic, where a tuple is a logic fact, any unitary clause is an admissible
tuple template, and unification is the tuple matching mechanism. ReSpecT reactions
are defined through logic tuples, too. A specification tuple is of kind reaction(E,G,R). It

24

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 25

associates a communication event described through E, to the reaction R. G represents a set
of conditions that has to be satisfied in order to execute a reaction R, if the incoming event
matches E. A reaction is defined as a transactional sequence of reaction goals, which may
access properties of the occurred communication event, perform simple term operations,
and manipulate tuples in the tuple centre. In order to implement logic tuple centres
ReSpecT exploits tuProlog [22], a light-weight Prolog system which is java-based.

ReSpecT tuple centres provides two main advantages. Since they are logic tuple
centres, they make it possible to spread intelligence through the system where needed, for
example by exploiting cognitive agents [95]. Also, ReSpecT is Turing-equivalent [21], so
any computable coordination law can be encapsulated into the coordination medium. In
[66], a complete example of use of reaction specification is discussed.

4.1.2 Organisation & Security

Jennings [45] refers to organisation as a tool helping software engineers managing complex-
ity of software system development. Organisation allows the interrelationships between
the various components of the system to be defined and managed, by specifying and en-
acting organisational relationships. In this way, engineers can group basic components
into higher-level unit of analysis, and suitably describe the high-level relationship between
the units themselves.

TuCSoN exploits an organisational model that is role-based [68]. Organisation and
coordination are strictly related and interdependent issues. Organisation mainly con-
cerns the structure and the structural relations of a system—i.e. the static issues of
the agent interaction space. Coordination mainly concerns the processes inside a sys-
tem — i.e. the dynamic issues of the agent interaction space —, often related to roles
that usually frame agents position in the structure of the system organisation. More-
over, coordination is strictly related to security, being both focused on the government
of interactions inside a system, however according to two different (dual) viewpoints:
normative for security, constructive for coordination [I8]. Whereas security focuses on
preventing undesired /incorrect system behaviours — which may result in problems like
denial of services or unauthorised access to resources — coordination is concerned with
enabling desirable/correct system behaviours, typically the meaningful, goal-directed in-
teraction between different system components. Due the relations among coordination,
organisation and security, TUCSON exploits an unique and coherent conceptual framework
to manage the complexity of modelling such three dimensions [68].

The TUCSoN conceptual framework is represented by an extended version of the Role-
Based Access Control (RBAC) model [79] — as shown in Figure [4.2| - called RBAC-MAS
[93]. The model interprets an organisation as a set of societies composed by software
components playing certain roles according to the organisation rules, where each role has
an associated set of policies. Organisation rules define two types of relationships among
roles: (i) component-role relationship, through which it is possible to specify whether

25

26 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

Role
hierarchy

Agent-role
assignement

Agent ACC
ACCs roles

Figure 4.2: Logical Levels in which the Coordination Middleware can be Structured

a specific component is allowed (or forbidden) to assume and then activate a specific
role inside the organisation; (i) role-role relationship, through which it is possible to
specify structural dependencies among roles, so as to further define constraints on dynamic
component role-activation.

A policy represents an admissible interaction protocol between the associated role
and the rest of the organisation. An ACC (Agent Coordination Context [65]) represents
an entity contracted by a component, on the basis of its identity, when it enters the
organisation. The ACC is then released to components and used from components in order
to interact with the resources (here, the tuple centres) belonging to a specific organisation.
The interaction is enabled and ruled by the ACC in accordance with the rules and policies
defined by the organisation.

From a topology point of view, an organisation is mapped onto a domain (including the
linked domains or sub-domains). The description of the structures and rules characterising
the organisation are stored and managed dynamically in a specific tuple centre, called
$ORG(0rgID) — where OrgID is the organisation identifier —, hosted in a gateway node of the
domain. The $0RG tuple centres host then information about societies, roles, components
and the related relationships defined for the domain, represented by the gateway and its
places.

4.1.3 Online Engineering

The openness of software systems calls for keeping the abstractions alive [74]. Alive
abstractions are defined in an explicit way in the meta-model of the system-engineering
paradigm. Moreover, they are “kept alive” through the whole engineering process of

26

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 27

a software system—from the analysis to the corrective/adaptive/evolutive maintenance
phase. Such abstractions enable the inspection of their current state at runtime, so as to
allow dynamic monitoring of system components that they model, and their creation and
modification, so as to allow a dynamic evolution of system components. By exploiting
such kind of abstractions, software engineers are enabled to perform online engineering
[74], that is, the capability of supporting system design, development and test, debugging
and evolution while the system is running.

Tuple centres are modelled and built as alive abstractions. Accordingly, TUCSON
allows the runtime maintenance of both coordination laws and organisation structure and
rules. In particular, it is possible to maintain and evolve the coordination laws at runtime
by inspecting and creating tuple centres, and by modifying their state or behaviour.
Then, it is possible to maintain and evolve the organisation model since the organisation
structure and rules are reified as knowledge encapsulated in the tuple centre $ORG.

By means of its “alive abstractions”, TUCSoN allows in principle both humans and
(intelligent) software components to maintain and develop a software system. In order
to support humans, TUCSON provides the Inspector tool [23] enabling software engineers
to first design and then observe and act on system structures and processes at runtime,
working upon abstractions adopted and exploited for the design of a system. Besides,
TuCSoN also provides intelligent agents with the API needed to create, inspect and
modify tuple centres. In particular, since TUCSON exploits ReSpecT tuple centres —
which are logic tuple centres — it is possible to exploit agents capable of symbolic reasoning
in order to autonomously maintain the structures.

4.2 Designing Ingredients for ReSpecT Semantic Tu-
ple Centres

Domain Ontology Semantic tuple centres are formally defined through SHOIN(D),
a very expressive DL representing the theoretical counterpart of OWL DL [42]. Since
OWL is the W3C standard ontology description language for the Semantic Web, and the
standard de-facto for semantic applications in general, we adopt OWL as the ontology
language for the domain ontologies associated to ReSpecT semantic tuple centres in
TuCSoN. While for the details of OWL we forward interested readers to [42], we provide
an example of a mapping between SHOIN(D) and OWL DL by exploiting the following
example provided in Section about the car domain.

(1) Maker C T

(2) Car C (=1 hasMaker)
(3) (=1 hasMaker) C Car
(4) T C VhasMaker.Maker
(5) dCityCar C Car

27

28 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

There, SHOIN(D) assertion Maker C T, defining the concept (1), in OWL DL be-
comes:

<owl:Class rdf:ID="Maker"/>

where the construct Class allows an ontology concept to be defined. The concept Car
with the mandatory relation hasMaker with the concept Maker — as with the SHOIN(D)
assertions (2-5) —in OWL DL becomes:

<owl:Class rdf:ID="Car"/>
<owl:0ObjectProperty rdf:ID="hasMaker">
<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#FunctionalProperty" />
<rdfs:domain rdf:resource="#Car"/>
<rdfs:range rdf:resource="#Maker" />
</owl:0bjectProperty>

where the construct ObjectProperty represents the relation between concepts, and the
construct type describes the kind of relation—here, functional [3]. Finally, the SHOIN(D)
assertion (5) stating that concept CityCar is a sub-concept of Car would be written in
OWL DL using the construct subClass0f as follows:

<owl:Class rdf:ID="CityCar">
<rdfs:subClassOf rdf:resource="#Car"/>
</owl:Class>

Semantic Tuples In order to describe semantic tuples as domain individuals, a de-
scription language is needed to specify, in the form of a logic term, (i) the individual
name, (ii) the concept which the individual belongs to, and (7ii) the set of relations in-
volving the individual. For simplicity, the only sort of concept description supported here
is the concept name—so, excluding concept compositions [3]. Accordingly, the language
for tuples is defined as follows:

Individual ::= iname ‘:’ C

C ::= cname | cname ‘C’ R)’

R ::= rname ‘:’ V| rname ‘in’ ‘(’ Vset ‘)’ | R ‘,” R
Vset ::=V | V “,’ Vset

V ::= iname | string | int | float

where iname, cname, and rname represent respectively the individual name, concept name,
and role name—while string, int and float represent respectively the datatypes of kind
string, int and float. So, for instance, the tuple

28

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 29

£550 : ‘Car’ (hasMaker : ferrari, hasMaxSpeed : 285, €))
hasColour in (red, black))

would define an individual named £550 belonging to concept Car, involved in three rela-
tions: (i) hasMaker with the individual ferrari, (ii) hasMaxSpeed with the int value 165,
and (177) hasColour with strings red and black. The corresponding logic term using the
: and in operators in the tuProlog logic engine used by ReSpecT would look like

“:7(£550, ‘Car’(‘:’(hasMaker, ferrari), ‘:’(hasMaxSpeed, 285),
inChasColour, ‘,’(red, black))))

Semantic Templates In order to describe semantic templates as concept descriptions
we need a language that allows to express, in the form of a logic term, a tuple template
as a description in the SHOIN(D) TBox formalism. Moreover, since a tuple template in
ReSpecT can specify arguments as either input or output, the new language has to do
the same. The language for tuple template is as follows:

C ::= ‘Al1l’ | ‘None’ | cname | C ‘and’ C | C ‘or’ C| ‘not’ C| D
‘" [iname { *,” , dname }] ‘}’ | C‘C’'D)’ | ‘CC C)’ |
‘String’ | ‘Int’ | ‘Float’

D ::=F | ‘exists’ F| ‘only’ F | M

F::=R ‘in” C| R “:>I| R “:”I| R “:’ Msymb N
R ‘:’ ‘eq’ string | R

M ::= ‘# R Msymb N

R ::= rname | rname ‘/’ vname

Msymb ::= ‘gt’ | ‘1t’ | ‘geq’ | ‘leq’ | ‘eq’

where iname, cname, and rname represent respectively the individual name, concept name,
and role name. The expression rname ‘/’ vname, where vname represents a variable name,
associates role rname with an output argument.

By the grammar above, any SHOIN(D) DL description could be expressed: only the
inverse role [3] is not supported.
In particular, Figure shows the mapping between the main constructs of SHOIN(D)
and the constructs introduced by our grammar. Thus, for example, we can define the
following tuple template with only input arguments:

‘Car’ and (exists hasMaker : ford)

in order to obtain an individual of kind Car in relation of kind hasMaker with the individual
ford—which corresponds to Car M JhasMaker. ford in SHOIN (D) syntax. If we are not
interested in a particular Maker, like ford, but would like to know which is the Maker
associated with the individual selected through the template, we could use an output
argument with the expression rname ¢/’ vname as follows:

29

30 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

SHOIN(D) Language Expression
T All
1 None
cn D C and D
cu D Cor D
- C not C
vV R.C only R in C
dR.C exists R in C
>nR, <nR #R1ltn, #R leqgn
>nR, >nR #R gtn, # Rgegqn
=nR #R eqn
{ai,-..,an} {iname;,...,iname, }
concrete domains String, Int, Float
concrete domain operators | String: eq. Int, Float: eq, lt, leq, gt, geq.

Figure 4.3: Language Mapping
‘Car’ and (exists hasMaker / X in ‘Maker’) (€©))

Thus, besides an individual matching the given concept description, the related Maker is
retrieved. The corresponding logic term, once the operators defined in the grammar (e.g.
and and or) are added to the tuProlog engine, would look like

and(‘Car’, exists(‘:’(hasMaker, ford)))

Semantic Primitives Besides extending the semantic of the coordination primitives,
as discussed in Section [3.2], the primitive language should be extended to include in order
to (i) include both semantic and syntactic primitives, and (ii) to obtain an individual as
a result from a semantic template. So, for instance, the two primitives below represent
“semantic” versions of out and wn:

out(semantic fiat500: ‘CityCar’(hasMaker : fiat))
in(semantic Result matching (‘CityCar’ and (exists hasMaker : fiat)))

For all primitives (out, in and rd), the keyword semantic is used in order to discriminate
a semantic primitive from a syntactic one. Also, a variable — called Result in the example
—is used in in and rd primitives along with the matching keyword in order to unify the
variable with the individual resulting from the execution of the primitives in and rd.

30

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 31

Semantic Reactions From a semantic point of view, in a ReSpecT reaction reaction(E,
(G, R)), E represents a specification of a coordination primitive related to a concept de-

scription (in/rd) or related to a domain individual (out). Accordingly, besides the name

of the primitive invoked (out, in or rd), E should contain a concept description expressed

in terms of the semantic template language. For example, considering axioms (1-7), E

could contain the concept description Car, so for instance a reaction to the primitive in

could look like:

reaction(in(semantic ‘Car’), ..., ...)

The reaction could be triggered by a primitive in containing for example the concept
description CityCar M (JhasMaker.fiat), that is

in(semantic Result matching (‘CityCar’ and (exists hasMaker : fiat)))
Instead, the following reaction:
reaction(out(semantic ‘Car’ and (exists hasMaker : fiat)), ..., ...)

would be triggered when an individual of kind Car in relation hasMaker with the individual
fiat is inserted in the tuple centre, e.g., by the invocation:

out (semantic fiat500: ‘CityCar’(hasMaker : fiat))

inserting the individual £iat500 in the semantic tuple centre.

The reaction guard G represents a set of conditions to be satisfied in order to execute
a reaction R if the current event Ev matches E. Since G represents a set of constraints on Ev
and E, ReSpecT is extended so that the guard could contain a concept description in the
semantic template language—again denoted by the keyword semantic, as in the following
reaction:

reaction(out(semantic ‘CityCar’), semantic (exists hasMaker : fiat), ...)

Finally, also the ReSpecT reaction language needs to be extended, since it can read,
remove and write tuples from/to the tuple centre, now including semantic tuples. Thus,
R can now contain semantic primitives, as in the following example:

reaction(out(semantic ‘CityCar’), semantic (exists hasMaker : ford), (
rd (semantic ford matching ‘Maker’ and (exists hasCars / N in Int)),
N1 is N + 1,
out(semantic ford : ‘Maker’(hasCars : N1))))

There, if an incoming event matches with out(semantic ‘CityCar’), and the guard
(semantic (exists hasMaker : ford)) is satisfied, then the individual ford is updated
with a new value for the relation hasCars.

31

32 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

Fuzzy Matching Mechanism Here we only focus on In order to extend ReSpecT
with semantic techniques, a semantic matching mechanism needs to be integrated with
logic unification. According to the semantic tuple centre model, when a semantic read-
ing/consuming primitive is performed, the matching mechanism should allow an indi-
vidual matching the semantic template to be identified and retrieved. Instead, within
reactions the semantic matching mechanism should work in two ways. If E describes a
writing event, then matching E and Ev consists in checking (i) if Ev is a writing event,
and (4i) if the individual contained in Ev belongs to the concept described in E and in
G. Whereas, if E describes a consuming/reading event, then matching E and Ev consists
in checking (i) if Ev is a consuming/reading event, and (i) if the concept description
contained in Ev is a sub-concept of the concept described in E and in G.

Such a matching mechanism could be easily obtained, in principle, by exploiting the
reasoning services provided by any DL reasoner. In particular, we need (i) instance re-
trieval, finding the individuals in the knowledge base that are instances of a given concept,
(i) instance checking, verifying whether a given individual is an instance of a specified
concept, and (iii) subsumption checking between two concepts. Several reasoners are
available in the literature—the most popular being RACER [39], Pellet [82], FACT++
[86], KAON2 [59] and HermiT [81]. Pellet represents the most complete reasoner and
has competitive performance. In particular, Pellet is Java-based like TUCSON and Re-
SpecT, and as well as FACT++, KAON2 and HermiT, is free and open-source. Moreover,
like FACT++ and HermiT, it supports SHOIN(D), but unlike them it also support con-
junctive queries — an expressive formalism for querying DL knowledge bases — through
the SPARQL language [73], a W3C Candidate Recommendation as query language for
RDF-—so, suitable for querying OWL ontologies.

So, we choose Pellet as the reasoner for implementing the semantic matching mecha-
nism in ReSpecT semantic tuple centres. In particular, we exploit the conjunctive queries
through SPARQL in order to perform instance retrieval when serving in and rd primi-
tives, instance checking to trigger reactions to out primitive, and subsumption checking to
trigger reactions to in and rd primitives. As a consequence, the realisation of the seman-
tic matching mechanism in ReSpecT requires a generator that builds SPARQL queries
starting from semantic templates, event and guard descriptions.

4.3 System Architecture

In order to enable the semantic support in the TUCSON infrastructure, two main exten-
sions are needed to be apported: (i) the support of the new language used to interact
with semantic tuple centres and to specify the semantic tuple centre behaviour, as defined
in Section (1) an extended version of the ReSpecT framework, in order to provide
semantic tuple centres as modelled in Section |3.3]

32

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 33

4.3.1 Supporting the Semantic Tuple Centre Language

In TuCSoN and ReSpecT, tuples and templates are both modelled as logic terms through
the class LogicTuple (see Figure [£.4). From a semantic viewpoint there is a difference

<<Interface> > <<Interface>>
Tuple TupleTemplate

f

+getArity() : int

+getArg(arg : int) : TupleArgument
+getArg(arg : String) : TupleArgument
+getvarvalueivalue : 5tring) : TupleArgument
+getNamel) : String

+toTerm() : Term

+toString() : String

+match(tuple : Tuple) : boolean
+propagate(tuple : Tuple) : boolean
+parse(stringTuple : String) : LogicTuple

i i

LogicTuple

SemanticlogicTuple SemanticLogicTupleTemplate
-indDescr : IndividualDescription -queryData : AbstractQueryData
+getindividualDescription() : IndividualDescription +getQueryData() : AbstractQueryData
+setindividualDescription(indDescr : IndividualDes cription) +setQueryData(queryData : AbstractQueryData)
+parse(stringTuple : 5tring) : SemanticLogicTuple +match(tuple : SemanticLogicTuple, kb : ISemantickB) : boolean
+parse(stringTuple : String) : SemanticLogicTupleTemplate

Figure 4.4: Semantic Logic Tuples and Templates

between tuples and templates (see Section : a semantic tuple represents an indi-
vidual, whereas a semantic template represents a concept description. Thus, semantic
tuples and templates have to be represented by two different classes; in particular the
classes SemanticLogicTuple and SemanticLogicTemplate are exploited, which are both of
kind LogicTuple (see Figure . Then, semantic tuples and templates are expressed
through specific languages, as defined in Section [4.2] which are different from the lan-
guages exploited for syntactic tuples and templates. Thus, the parsing logic — reified
through the method parse in both SemanticLogicTuple and SemanticLogicTemplate —
of semantic tuples and templates has to be redefined. Figure shows the extended
parsing logic of tuples and templates. In particular, since tuples and templates are logic
terms (see Section , two different prolog theories are exploited in order to parse
semantic tuple and templates, respectively the theory ASSERTION and the theory QUERY.
The complete prolog code of ASSERTION and QUERY is shown in Appendix [A] Besides a
prolog representation of semantic tuples and templates, the parse method provides an
object representation of them: IndividualDescription in case of semantic tuples and
AbstractQueryData in case of semantic tuple templates. Those classes are exploited in
order to easily access the information about the individual described in a semantic tuple

33

34 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

Para ar Parsa as
SemanticLogicTuple SemanticLogicTupleTemplate Fame as LogicTuple

'

Load ASSERTION Prolag =
Lo=d GUERY
operator set (el

| Load empty operstor set

—
Farse as logic tuple
R —

PrologOperstar Sat

Farse as logic tuple (Parse as logc tuple

Tuple name == f

"zemantic"? < N no

Tuple name ==
>"sema1tic"‘?

ves

Farse as AZSERTION Parse a= QUERY
language express=on language expression
i
Error @ @ Error
N N
valid? walid? Tuple name ==
no e y }"semzntic"‘?
iF VEE
yes no
ves
W !

™

P
I_?eturn_ Return Feetum syrtactic tuple
Se malfﬂlCLDQICTUF—"E SemanticLogicTunleTemplate
instance instance /—/
\‘H

(5],

Figure 4.5: Parsing Logic

or about the concept described in a semantic tuple template, during the interaction with
the DL reasoner. In particular, IndividualDescription describes an individual in terms
of the individual name, the concept name and role set to which it belongs to (see Figure
. Whereas AbstractQueryData describes a concept modelled as a hierarchy of elements
of kind Concept, as described by the semantic template grammar shown in Section
The classes of kind Concept are shown in Figure 4.7, The hierarchy modelling a concept
is particularly exploited in the matching mechanism shown in Section 4.2l In particular,
conjunctive queries in SPARQL are exploited to perform instance retrieval when serving
wn and rd primitives, instance checking to trigger reactions to out primitive, and subsump-
tion checking to trigger reactions to in and rd primitives. The three operations require to
generate a SPARQL query starting from concept descriptions. For example, let is suppose
to have the following concept description expressed in a semantic template:

‘CityCar’, (exists hasMaker : ‘Maker’)

34

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 35

IndividualDescription
-name : String
-concept : String
~fillers : AbstractRoleFiller[]

Figure 4.6: Individual Description Related to a Semantic Tuple

Individual Role
Concept -name : String -name : String
&_‘H—" i
RoleWithBinding
-varName : String
ConcreteD onstraint
Ammlchn.(ep(Descnpuon ConceptN.ame Compound ConceptDescription s Indl\fl{.iuaISe.t_ —canstraintType : NumencRelationKind
-type - AtomicConceptEnum -name : String -individuals : List<ldividual> -value : String
-datatype : DatatypeEnum
<<enumeration> > RoleExpression
AtomicConceptEnum UnaryConceptDescription ErlR T Rol CardinalityRestriction
-TOP -concept : Concept igiler Concept ~constraintType : NumericRelationKind
BOTTOM -role : Role
Binary ConceptDe scription value : nt
<<enumeration> > -conceptl : Concept Ay
DatatypeEnum -concept? : Concept

-STRING
INTEGER
-FLOAT

Negation Intersection Union ExistentialQuantification ExistentialRestriction

< <enumeration >
NumericRelationKind
-EQ
-LESS
-LEQ
-GREATER
GEQ

Figure 4.7: Elements Describing the Concept Related to a Semantic Tuple Template

that is equivalent in DL to:
CityCar M (JhasMaker.Maker).

This concept can be expressed in SPARQL as shown in Figure In order to build a
SPARQL query starting form a concept description, the pattern Visitor [34] is exploited:
each object of kind Concept (see Figure modelling a concept description, can be
visited through the provided method accept (see Figure . Then, a wisitor of kind
StringBuildVisitor (shown in Figure implements the query building by wisiting
each object of kind Concept describing the concept.

Besides tuples and templates, also the tuple centre primitives and reactions has to
be extended as shown in Section In this implementation, primitives only retrieve
the individual read or written from/to the tuple centre. The retrieving of the other vari-
ables expressed in a semantic template is partially supported in the current implementa-
tion. The variable values are retrieved through the reasoner, but they are not retrieved
through the interface used from system components providing the tuple centre primitives.

35

36 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

SELECT *
WHERE
{
{ ?X rdf: type : CityCar . }
{
{
?X rdf : type _:b@ .
_:b@ rdf : type owl : Restriction .
_:b@ owl : onProperty : hasMaker .
_:b® owl : someValuesFrom : Maker .

Figure 4.8: SPARQL Query Equivalent to ‘CityCar’, (exists hasMaker: ‘Maker’)

Whereas, the semantic reactions are not supported in the current implementation. Those
extensions are left to the future works.

4.3.2 Extending the ReSpecT Framework

Each TuCSoN node provides tuple centres by the ReSpecT container, which represents
the life-cycle manager of the tuple centres and provides the API to access and use them.
Thus, the first main extension concerns the ReSpecT container, whereby should be pos-
sible to create, retrieve and use semantic tuple centres as modelled in Section (3.3 The
ReSpecT container is extended with the method createRespectTC allowing to create a
semantic tuple centre by passing an ontology (see Figure [4.11)). Then, the ReSpecT
container has the task to provide the API to access the tuple centres through different
interfaces called contexts. Each context provides a set of operations that are specific for a
particular objective. For example, the context NonBlockingContext provides the API to
perform the tuple centre primitives in a non blocking way (see Figure . In order to
exploit the semantic primitives the original contexts shown in Figure are exploited.
Naturally, in case of semantic tuples and templates, the right semantic — described in
Section — is enacted. Whereas, in order to interact with the ontology related to a
tuple centre, a new context called OntologyContext it is added and provided by the con-
tainer. The current implementation of the OntologyContext only allows to obtain the
ontology related to a particular tuple centre. However, it could be extended in order to
provide further operations, for instance to modify/adapt at run-time the ontology of a
tuple centre.

The ReSpecT container provides tuple centres as objects of kind RespectTC. Thus,
the second main extension to be performed in ReSpecT is also to provide RespectTC ob-

36

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 37

<<Interface>>
I1Concept
+acceptivisitor : StringBuildVisitor)
+accept(visitor : StringBuildVisitor, var : Var)

T

Concept

Figure 4.9: Concept as Object to be Visited

jects as semantic tuple centres. The extension of the class RespectTC is shown in Figure
[4.12] As shown in the figure, the main components characterising a ReSpecT semantic
tuple centre are the ontology represented by an object of kind IOntology, and an object
of kind SemanticKB, modelling the semantic knowledge base stored in a tuple centre so as
to be interpreted from a DL reasoner (see Figure [£.13)). SemanticKB subscribes the inter-
face ISemanticKB and implements it via the Pellet technology. In particular, the interface
ISemanticKB defines the following operations: (i) load ontology, which creates the ontology
composed by TBox and ABox and check if it is consistent; (ii) assert individual, which
inserts a new individual in the ABox and checks if the ABox with the new individual is con-
sistent; (iii) delete individual, which deletes an individual from the ABox; (iv) instance
checking, which checks if an individual a belongs to a concept C; (v) instance retrieval
— represented by the operations readIndividual, readIndividualWithExpectedResult,
removeIndividual and removeIndividualWithExpectedResult — which retrieves all the
individuals belonging to a concept C; (vi) subsumption checking, which checks if a con-
cept C subsumes a concept D. In order to implement such operations, SemanticKB exploits
three other components: Ontology, SparqlQueryGenerator and Reasoner. Ontology mod-
els a Pellet ontology composed by a TBox — created starting from a OWL file — and an
ABox, allowing the execution of load ontology, assert individual and delete individual.
SparqlQueryGenerator is exploited to create a SPARQL query starting from a concept
description for the execution of instance checking, instance retrieval and subsumption
checking. Finally, Reasoner models the Pellet reasoner executing SPARQL queries, the
subsumption checking between two concepts and checking the consistency of both the
ABox and the whole ontology. Besides the ReSpecT container, each semantic tuple cen-
tre can also access the SemanticKB component for implementing semantic primitives and
reactions. For instance, when an in request is received, the semantic tuple centre per-
forms the instance retrieval to obtain an individual described by the semantic template.
Then, the individual is deleted from the semantic KB (delete individual) and returned in

37

38 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

<<Interface>>

StringBuildVisitor
+visit(c : AtomicConceptDescription, v : Var) : String
+visitic : ConceptName, v : Var) : String
+visit(c : IndividualSet, v : Var) : String
+visit{c : ConcreteDomainConstraint, v : Var) : String
+visit(c : Negation, v : Var) : 5tring
+visit(c : Intersection, v : Var) : String
+visit(c : Union, v : Var) : 5tring
+visitic : ExistentialQuantification, v : Var) : String
+visit(c : ExistentialRestriction, v : Var) : String
+visit(c : CardinalityRestriction, v : Var) : String
+visit(c : AtormicConceptDescription) : String
+visit(c : ConceptName) : String
+visit(c : IndividualSet) : String
+visit(c : ConcreteDomainConstraint) : String
+visit(c : Negation) : 5tring
+visit(c : Intersection) : String
+visit(c : Union) : String
+visit(c : ExistentialQuantification) : String
+visitic : ExistentialRestriction) : String
+visit(c : CardinalityRestriction) : String

SPARQLStringBuildVisitor

Figure 4.10: The StringBuildVisitor class

response to the request, according to the semantic of in [35].

4.4 Evaluation and Discussion

In order to evaluate how much the use of semantic techniques affects the tuple centre
behaviour in terms of performance, we tested our implementation of semantic tuple centres
in ReSpecT with Pellet against two reference ontologies for DL reasoner benchmarks
[13]: the lumb and wine ontologies. The lumb ontology covers only part of the inference
supported by OWL Lite and OWL DL, while the wine ontology is more complex because
it supports OWL DL with nominals — that lead to performance decay — and contains much
more classes and roles. We performed three kinds of test: (i) the time to load an ontology
in a semantic tuple centre, (7i) the time required to perform a semantic out and (i) the
time required to perform a semantic in—which is more costly than the rd primitive. We

38

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 39

RespectTCContainer
+createRespectTC(id : TupleCentreld, q : Integer) : boolean
+createRespectTC(id : TupleCentreld, g : Integer, ontology : I0ntology) : boolean
+getBlockingContext(id : TupleCentreld) : IBlockingContext
+getNonBlockingContext(id : TupleCentreld) : INonBlockingContext
+getLinkContext(id : TupleCentreld) : ILinkContext
+getNonBlockingSpecContext(id : TupleCentreld) : INonBlockingSpecContext
+getBlockingSpecContext(id : TupleCentreld) : IBlockingSpecContext
+getManagementContext(id : TupleCentreld) : IManagementContext
+getOntologyContext(id : TupleCentreld) : 10ntologyContext

Figure 4.11: The ReSpecT container extended

RespectTC

-10ntology ontology
-boolean semanticTC
—I5emanticKB semKB

+RespectTC(tid : TupleCentreld, container : RespectTCContainer, gSize : int)

+RespectTC(tid : TupleCentreld, container : RespectTCContainer, gSize : int, ontology : IOntology)
+is5emanticTC() : boolean

+setOntology(ontology : |10ntology)

+getOntology() : I0ntology

+getSemKB(: ISemanticKB

Figure 4.12: The RespectTC class

omitted the test about the time required to interact with the semantic module when a
reaction is evaluated, because this is a simpler case of (7ii). Thus, the provided tests cover
all the points in which the ReSpecT tuple centre was extended in order to provide the
semantic support. The test was executed on an Mac Pro, with two processors Dual-Core
Intel Xeon with speed 2.66 GHz and 2 GB of RAM.

Figure [4.14] shows the results of the first test in ms, where the load time is composed
by: the time to read the ontology from an OWL file, the time to prepare — initial process
and caching — the ontology, and the time to check the ontology consistency. Total time is
slightly more than one second—which is not a problem, since this is a startup cost.

Figure [4.15 shows the results of the second test with out operations like:

out(semantic rossoColleSenesi : ‘Chianti’(locatedIn : italia))

As shown in Figure 4.16| the time required to insert a semantic tuple in the tuple centre is
composed by (i) the check of the individual uniqueness, (ii) the creation of the individual
in the ABox, (iii) the creation of the roles in which the individual is involved, and (iv)
the consistency check of the ABox with the new individual. The time required to parse
the tuple in order to execute (i), (i) and (%i1) is not considered since it is negligible. It is
worth noting that the most of the time is used in exploiting the Pellet reasoner. In fact,
the only operation not involving the reasoner is the check of the individual uniqueness.
Finally, Figure shows the results of the third test with in operations like:

39

40 CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

<<intefaes >
= |
cainteriaces > - Lol
ISemanticks #getBase] : String
fretZacel
+loadOntologylont: Dntology) : boolean 2 o i i
+instanceCheckituplelD : String, template : ICencept) : boolean 5 ““"‘"Ij:'d.;'lt'l?d Ind'f:du"l:jhgml' beslauh
+temovelndividualiname : String) : boolean
+describeftuplelD : Sring): Individ ualDescr i ity . z ot
A e +yetindividualDescriptioniame : String ¢ hdividua Deses
+deleteindividuzlitupleld : String} : boclean s =
+readindividualtemplate : IConcept) : ndividual Descr e o g
+removendividualitem plate | IConcept) : IndividualDescr 7
+addind ividualWithE xpectedRe sultitemplate © Concept, IndividualDescr ind) : Individ ual Descr
+remov e ndivi I'itt tedResul ale :IConcept, i |Descr indh i |Descr

+subsumptionCheckinglConcept concept1, IConcept concept2h: boolean 0f - SESliesy
_____ + checkConsistencytont © 10ntalegy) © boolean
+querylguery : Sparg lQuery 10niology : ont) : Resultse
-ont: 10ntology +subsumptionicenceptl : SparglQuery, conceptd : SpargiQuery sqd, ent: Ontology) : boolean
=spargl_gan : |5 parglQueryGenerator

~reasoner : IReasoner
+badOntolegylont . 10n1ology) . boolean
A i &) - PelletReasoner
+instanceCheckilupleD . String, template : IConcept) : boolean
+assertind vidualiideser - IndividualDescr) © boslean

+delztelndividualituplelD : String) : baolean

+readindividualtternp bite : [Concept) - Individual Descr

+ removelndividuslitem plats © ICancept) : IndividualDeer

+ readindividus (Wit e pectedR ssultitem plate 100 ncept, ind © IndividuslDeserd: IndividualDeser

IReasoner

SemantickB

= <lntefaces >
1SpargiQueryCanarator
+yenerateQuerpitzmplate [Concept, var Var, ani : [Ontelogy) : SpargQuery
+generateQue pltemplate : [Concept, var Var, ind ; IndividualDescr, ont : 10ntologyh: SperglQuery

s

i removelndividualWitix pected Recu bitermplate : IConcept, ind @ Individ ualDeser) : IndividualDecer
#subsumptionCheckinglConcept conceptl, IConcept concept?) : boolean
resolveBindings bindings « HashMap=String, String=, sal : QuenSalution)
chooseVarNamerbindings : HashMap<String, Strings=1: String ‘ Sparq/QueryGeneratorimpl

Figure 4.13: The SemanticKB class and its Components

Ontology Read Ontology | Prepare | Consistency Check
lumb 1221 2 94
wine 1345 1 103

Figure 4.14: Ontology load time in ms

in(semantic Result matching ‘Wine’ and exists locatedIn : italia)

As shown in Figure the time required to insert a semantic tuple in the tuple centre
is composed by: (i) the SPARQL query execution, (i7) some ReSpecT computation in
order to manage the interaction with the Pellet reasoner, (%ii) the interaction with the
Pellet reasoner in order to obtain the complete description of the individual retrieved
through the query. The time required to parse the template in order to build a SPARQL
query is not considered since it is negligible. Again, it is worth noting that the most of
the time is used in exploiting the Pellet reasoner, in particular in order to execute (7).

By analysing the test result, we can conclude that the scalability of a ReSpecT se-
mantic tuple centre is quite good in case of the out primitive, even if it is not optimal.
The results of the test with the in primitive are not so good, since a query of average
complexity takes more than two seconds with only 150 individuals. However, it should
be noted that the performance of the semantic extension of the tuple centre in a negli-
gible way depends on ReSpecT, but it mainly depends on the Pellet reasoner: so, any
improvement in the DL reasoner performance would largely improve the performance of
our implementation.

40

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON 41

N individuals Lumb | Wine
10 11 29
20 12 24
30 9 20
40 12 15
50 12 12
100 10 24
150 9 21

Figure 4.15: Semantic out in ms

lumb ontology wine ontology

B Uniqueness Check @ Unigueness Check

B Inidivual Creation W Inidivuzl Creation
| Property Fill B Property Fill

O Consistency Check O Consistency Check

Figure 4.16: Semantic out composition

4.5 Summary

In this chapter we discussed the model and implementation of semantic tuple centres—a
basic brick of coordination infrastructures for open, distributed and knowledge-intensive
systems like Web-based and pervasive computing applications. In particular, this model
supports the novel notion of programming the semantic coordination aspects of a complex
system, a key notion in the coordination of self-organising systems [69]. The model is
currently implemented as an extension of the TUCSON coordination infrastructure [?],
and is based on the well-known Pellet semantic reasoner [82]. Our analysis of performance
showed that, while tuple insertion is typically quite fast, tuple retrieval can be an heavy
operation especially when many tuples occur in the tuple space, which is basically due to
the latency of instance checking by the semantic reasoner.

41

42

CHAPTER 4. SEMANTIC TUPLE CENTRES IN TUCSON

N individuals Lumb | Wine
10 111 312
20 123 328
30 113 231
40 119 309
50 138 346
100 179 1058
150 192 2150

Figure 4.17: Semantic in in ms

lumb entology wine ontology

B Query Execution

O ReSpecT
Computation

B Inidivual Description

@ Query Execution

O ReSpecT
Computation

B Inidivual Description

Figure 4.18: Semantic in composition

42

Chapter 5

Coordination in e-Health Systems

This chapter aims at giving an overview of the e-Health — that is, Healthcare supported
by software systems — since it provides several application scenarios that are characterised
by the requirements distribution and openness. Among the several e-Health research ac-
tivities, research on Electronic Health Record (EHR) is particularly intensive. The main
challenge in the EHR domain is to ensure interoperability among EHR fragments — med-
ical information that are stored in a digital format over different healthcare institutions
— belonging to an environment that is distributed and open and where the security sup-
port represents a fundamental requirement to protect the patient privacy. Several efforts
have been made in the EHR domain in order to cope with such requirements, but the
approaches provided in literature seems to be not enough powerful to fully rich the EHR
domain challenge. Along this line, in this chapter it will be shown how it is possible to
extend the solutions proposed in literature by tacking the semantic version of TUCSoON
as inspiration model, in order to augment their effectiveness in building EHR services,
in particular as far as interoperability is concerned. Thus, in this chapter first it will
be provided a brief survey of the existing approaches supporting interoperability among
EHR fragments, of their benefits and drawbacks. Then, it will be shown how to exploit
the key-features of the TUCSON architecture supporting semantic tuple centres in order
to extend the solutions proposed in literature. The chapter will conclude providing the
future research directions of this work.

5.1 EHR Systems Interoperability

5.1.1 Towards Electronic Health Records

The healthcare domain has been evolving quickly over the past decades. Nevertheless,
advances are somewhat limited in several domain [6] and obstacles are still to be overcome
[24] [78]. Most of the administrative processes have adopted an e-Health solution so
as to become computerised. However, in some hospitals and for the large majority of

43

44 CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS

General Practitioners (GPs), medical data is still acquired and exchanged on paper.
The totally paperless hospital has yet a way to go [80]. Besides digital storage, the
computerised acquisition of medical data also makes data accessible for computerised
decision support [89] and has the potential to reduce the large number of adverse events,
particularly in hospitals [19, 49]. Alongside local advantages, communication of health
data is another important factor in computerised data acquisition to overcome limits of
paper-based information exchange, which is often slow [8§] and error prone [49]. e-Health
information exchange strategies and solutions have been developed on a local regional
or cross-institutional [52] and national [71, 28] level and some already have concrete
implementation in research projects [88].

Among the several e-Health research activities concerning the health information ex-
change, research on FElectronic Health Record (EHR) is particularly intensive [49] 90].
A Patient EHR-document refers to the medical record of a patient stored in a digital
format. The information stored in an EHR might include patient information such as
demographics, medical history, medication, allergy list, lab results or radiology. Medical
data belonging to an EHR are called fragments, and can be distributed over different EHR
systems. The introduction of EHR offers several benefits [54]:

Better patient safety — Storing and transferring patient information electronically al-
lows reducing clinical errors caused for example by illegible handwriting, documents
or images, as well as it allows clinicians to communicate more quickly and accurately
and to identify relevant information more easily.

Lower cost of health services — EHR technology can reduce administrative work to
manage medical data since it can increase medical-data search efficiency and reduce
medical-data duplication and waste.

Better audit and research — Behind improving medical assistance of patients, EHR
technologies are also useful for other purposes. In particular, electronic databases
of health information can be exploited for healthcare audit and research.

In order to keep the EHR benefits, EHR systems should ensure interoperability among
EHR fragments. Interoperability — that is, the ability for two or more heterogeneous
systems to communicate together — is of paramount importance in health information
communication [26]. In case of EHR systems, interoperability should satify the following
conditions [48]:

Distribution — EHR fragments should be easy to share even if the information is
widespread across multiple EHR systems.

Openness — EHR supporting servers at different caregivers could be heterogeneous and
change dynamically.

44

CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS 45

Security — It is necessary to support security mechanisms in order to avoid failures that
can cause injury to the patient and violations to privacy.

Accordingly, interoperability among EHR systems call for specialised middleware able to
deal with distribution, openness and security requirements in a coherent and transparent
way. In the next section, we discuss standards and solutions from the literature, which
propose design principles for middleware of such a sort.

5.1.2 Existing Approachers: a Survey

In order to cope with distribution, openness and security, the first approach to the issue
of interoperability is the definition of standards for EHR-fragment format and communi-
cation. The two most representative are [48]:

e Health Level Seven (HLT): a set of open standards for the exchange, management
and integration of EHR fragments [25]. In particular, HL7 provides Clinical Docu-
ment Architecture (CDA) — a standard for the representation and machine process-
ing of clinical documents — and Messaging standard—a standard covering EHR-
fragment messaging aspects.

e Digital Imaging and Communications in Medicine (DICOM): a standard for han-
dling and transmitting information in medical imaging. It includes a file format
definition and a network communication protocol [44].

Standards such as HL7 and DICOM are not enough to achieve interoperable health sys-
tems. In fact, the result is that EHR systems use different set of format and commu-
nication standards, often incompatible, incomplete or involving overlapping scopes, thus
breaking the interoperability requirement [40]. As a response to these problems — and as a
complementary step towards the requirements of interoperability among EHR fragments
— the following standards and initiatives were proposed:

e openEHR [27] and CEN EN 13606 [32]: standards aiming at facing interoperabil-
ity among EHR fragments. In particular they propose semantic approaches based
on Archetype Definition Language (ADL) [§] — a formal language for expressing
application-domain concepts — in order to describe semantically EHR fragments.
By exploiting such kind of semantic techniques it may be possible to support inter-
operability among EHR fragments with different syntactic structures depending on
the adopted standard.

e [Integrating the Healthcare Enterprise (IHE) [43]: a non-profit initiative founded
in 1998 led by professionals of the e-Health industry. The initiative goal is not
to develop standards as such, but to select and recommend an appropriate usage
of existing standards (e.g. HL7 and DICOM) in order to improve the sharing of
information among EHR systems.

45

46 CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS

In this context, openEHR, CEN EN 13606, and THE emphasise two important require-
ments. The first is to describe semantically EHR fragments in order to face heterogeneity
and dynamism of fragment formats. The second is to provide a coordination middle-
ware able to coordinate EHR systems and actors interacting with such systems, hiding
distributed-fragment management and security issues from entities to be coordinated. In
particular, XDS, ATNA and XUA are central profiles for building a coordination middle-
ware that connects EHR systems.

A further important contribute in this context is represented by Triple Space Com-
puting (TSC) [16], which provides a different solution based on the Linda tuple space
model [36]. Through the tuple space model, coordination among system entities occurs
by exchanging information in form of tuples, in a common shared space called tuple space.
System entities to be coordinated communicate with one another through out, rd and in
primitives to respectively put, read and consume associatively tuples to/from the shared
space. In particular, TSC shows the following interesting features:

e [t provides a general coordination model to manage all kinds of interactions among
system entities.

e Tuple space model is based on generative communication [30]: tuples generated by
a tuple producer have an independent existence in the tuple space leading to time,
space and name uncoupling. Uncoupling is a requirement to satisfy in order to cope
with openness. Entities belonging to an open environment can be heterogeneous and
can be added, removed or modified at runtime. For this reason, an entity cannot
make a-priori assumptions about other system entities.

e It is based on semantic tuple-space computing [64]: it adopts tuple spaces enriched
semantically thus allowing an exchange of data (tuples) semantically described by
means of an ontology.

e Like IHE, it provides a Web-service interface to tuple spaces which promotes inter-
operability.

TSC puts together the advantages of using openEHR, CEN EN 13606 and IHE. Moreover,
it improves the IHE approach by proposing a more general coordination model suitable for
open scenarios, and not only specialised on the storage and retrieval of EHR fragments. In
particular, through TSC it is possible to exploit a unique coordination model — the tuple
space model — to manage all the system interactions. This is useful in case it is needed
to extend e-Health systems with coordination functionalities concerning different kinds of
interactions. For example, interactions with patients, with scientific research systems or
with systems providing consumers with access to medical developments and research.
However, TSC exhibits some limits, too. The first one derives from the Linda tuple-
space model: the tuple space behaviour is set once and for all by the model and cannot
be tailored to the specific application needs [67]. Thus, any coordination law not directly

46

CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS 47

supported by the model has typically to be charged upon coordinated components, thus
obstructing the way to open systems. A further feature that should be supported by an
EHR coordination-middleware — and that it is not covered by either IHE or TSC — is the
ability to change its configuration at runtime in order to cope with application dynamism.
In fact, during the lifetime of an application, requirements could be changed, added or
removed. For example, new nodes could be added /removed to/from the network, or, coor-
dination algorithms could be changed in order to improve the efficiency and effectiveness
of the overall application. If the middleware does not allow for runtime changes, it might
be necessary to shut it down in order to update its configuration—which is definitely un-
desirable, especially in application scenarios like e-Health that require continuous service

availability.
% %é % Application % %é%

Data Providers LEYET Data Requesters
Coordination Service €= Security Service
{ Middleware
Coordination ______ | T —
Middleware S
Coordination
Infrastructure
[Data Store J | Network]

Figure 5.1: Logical Levels for a Coordination Middleware

As far as middleware for the health domain is concerned, the current state of the art
can be summarised as follows:

e [HE profiles, in particular XDS profile, do not provide a middleware model expres-
sive enough to manage interactions among EHR actors. In particular, XDS provides
a coordination middleware model not based on semantic techniques, and focused on
coordinating meta-data in order to store and retrieve EHR fragments. As a conse-
quence, it cannot be used for e-health applications going beyond the mere fragment
coordination.

47

48 CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS

e TSC provides a solution that overcomes part of the XDS profile drawbacks. In par-
ticular, it exploits the Linda tuple-space model enriched with semantic techniques
that exhibits features particularly useful for the realisation of an EHR middleware.
On the other hand, TSC has some limits due to the fixed behaviour of its coor-
dination abstractions, and to its inability to cope with middleware evolution over
time.

Accordingly, an EHR middleware should be a coordination middleware supporting in-
teractions among heterogeneous EHR-fragment providers and requesters—as in Figure
The middleware should be developed upon a coordination infrastructure giving the
support for distribution of heterogeneous EHR-fragment-stores and providers/requesters
of EHR fragments in a transparent way. Then, the infrastructure should provide the API
required to build a coordination and a security service. The coordination service has the
task to enable and rule interactions among system actors. It should exploit a general-
purpose coordination model based on the tuple-space model and on semantic techniques,
in order to cope with the openness requirement. In turn, the security service should
be able to guarantee privacy of patient EHR-fragments, taking into account the feder-
ated nature of the healthcare system. Finally, the coordination infrastructure should be
based on engineering approaches making it possible to build a coordination middleware
whose configuration is adaptable at runtime, in order to maintain a continuously-available
EHR-service in front of dynamic changes of the application requirements.

5.2 Exploiting Semantic TUCSON in e-Health

In the following, we show how the TUCSON approach can be adopted in order to ex-
tend the solutions proposed by TSC and IHE (see Section [5.1.2)): the overall goal is to
increase the effectiveness of TSC and IHE approaches in coordinating EHR fragments.
In particular, we discuss how such approaches can be integrated and extended with the
key features of TUCSON architecture, presented in Section 4.1 When dealing with THE,
we refer in particular to the following recommendations [43]: Cross-Enterprise Document
Sharing (XDS) — i.e. profile describing an infrastructure for storing and registering med-
ical documents —, Audit Trial and Node Authentication (ATNA) — i.e. profile describing
security procedures — and Cross-Enterprise User Assertion Profile (XUA)—i.e. profile
describing means to communicate claims about the identity of an authenticated principal
(user, application, system,...) in operations that cross healthcare-enterprise boundaries.

TuCSoN topology and XDS Affinity Domains The e-Health environment is feder-
ated, that is, each healthcare enterprise belongs to a domain with other healthcare enter-
prises, using a common set of policies ruling interactions with and within a domain, and
sharing common clinical documents. XDS calls each domain Affinity Domain. According
to Section [4.1] the hierarchical topology of TUCSON fits well with the sort of topology

48

CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS 49

required by the EHR scenario. In particular, an Affinity Domain could be mapped in
a TUCSON domain whose gateway maintains the information about the policies and the
structures associated to the domain itself. Then, each healthcare enterprise belongs to an
Affinity Domain can be mapped in a TUCSON place.

Patient Identity
Source

Patient ldentity Document
Feed
Consumer
k. 4 ; A
Decument Document |
Source Registry .
Registry
Register
Document Set

Pravide & Register — Ratrieve
Docurmnent Set lf Document] Document
'L Repository J

Figure 5.2: Actors for the IHE XDS Profile

TuCSoN semantic tuple centres as fragment coordination media XDS provides
a model to store and retrieve EHR fragments. Figure [5.2] shows the actor model defined
by XDS. In particular the model is composed by:

Document Source — A healthcare point of service where clinical data is collected.

Document Consumer — A service application where care is given and information is
requested.

Document Registry — A system storing eb XML descriptions of the clinical fragments
to rapidly find them back.

Document Repository — A system that stores documents and forwards the metadata
to the document registry.

Patient Identity Source — A system that manage patients and identifiers for an Affin-
ity Domain.

The XDS actor model has two main drawbacks. Document Registry is exploited to
store and search metadata describing EHR fragments whereby it is possible to retrieve the
related document from the Document Repository. In particular, XDS suggests to realise
the registry through the eb XML Registry standards.

49

50 CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS

However, the main limit of an ebXML Registry is that it describes metadata in XML,
and retrieves metadata in face of a query written in XML and SQL format. This kind
of knowledge representation and retrieval lacks the expressive power provided by seman-
tic approaches exploiting ontologies. In fact, unlike an ontology, an XML schema does
not allow the description of complex taxonomies among concepts like those exploiting
subsumption relationships. Also, XML tools does not perform powerful reasoning over
metadata like semantic reasoning, which is able instead to infer new knowledge that is
not declared in an explicit way. Thus, ontology-based approaches are more suitable for
engineering knowledge in open context where the knowledge structure can evolve and
where software components only have a partial awareness about the overall knowledge.

Another limit of the ebXML Registry is that it promotes a pre-defined behaviour only
able to store and retrieve metadata. As a consequence, in order to extend the behaviour
of the registry, a layer should be upon it that would enrich the operational semantic
behind its interface in order to implement the new desired behaviour. This, of course,
would definitely augment the complexity of the system. In order to cope with complexity,
instead, it would be desirable to be able to define new behaviours directly in the registry,
customising the registry with the policies associated to a particular healthcare domain.
For example, a policy would allow the registry to be distributed over different nodes
belonging to the domain, instead of having an unique registry per domain, as suggested
by XDS. By exploiting behaviour programmability of the coordination media, it would be
possible to coordinate a set of domain registries collaborating with one another in order
to search and distribute metadata within the domain, in a smart way.

This is why the tuple centre model looks like a good candidate to build a Document
Registry. On one hand, a semantic tuple centre supports the semantic representation of
the stored knowledge — like TSC —, but — unlike TSC — it also provides a tuple/template
language that is independent from the technology exploited to implement the semantic
support. Thus, each domain can choose to exploit a particular semantic technology guar-
anteeing interoperability with other domains. On the other hand, since the behaviour
of a tuple centre is programmable, it is possible to tailor the registry to specific applica-
tion needs. Moreover, by exploiting logic tuple centres like ReSpecT tuple centres, it is
possible to promote cognitive processes by exploiting rational agents.

Exploiting TUCSON RBAC model As shown in Section [4.1, TUCSON provides the
organisation abstraction to describe the structures and rules composing a system. In
particular, an organisation in an Affinity Domain could be mapped in the TUCSON $0RG
tuple centre managing the domain structures, like Document Registries and the domain
places where e-Health enterprises are hosted, and defining the set of roles that can interact
with the organisation along with a set of related policies to rule such interactions.

In the context of Affinity Domains, a role represents a class of identities that can
interact with EHR fragments, whereas policies represent the admissible interactions for
a specific role. Accordingly, the RBAC-MAS model [93] can be suitable integrated with

20

CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS 51

security recommendations defined in ATNA and XUA. Such recommendations in partic-
ular require: (i) an authentication service able to authenticate users, (i) access control
policies, (ii) a secure communication between system actors, and (iv) a security service
supporting cross-authentication among EHR domains. In order to satisfy such require-
ments, TUCSON can be integrated with two technologies suggested by THE: Kerberos
authentication service, and Web Services as interface to access to TUCSON organisations,
so as to promote the interoperability requirement.

Thus, Web Services can be used to access to TUCSON organisation in secure way
by exploiting WS-Security, that is, a secure communication protocol developed by the
OASIS-Open group. In particular, WS-Security includes both WS-SecureConversation —
which can be exploited to ensure secure conversations among system actors —, and WS-
Trust—which can be exploited to support cross-authentication among EHR domains.
Through WS-Trust it is possible to establish trust relations among domains that are ex-
ploitable to accept requests coming from different domains without having to authenticate
users again. Finally, by integrating the authentication service Kerberos with TUCSON,
user identities can be associated to roles and policies in the $ORG tuple centre, and be
authenticated.

Online engineering for continuos e-Health system interoperability As discussed
in Section 4.1, TUCSON exploits alive abstractions to model coordination, organisation
and security, thus promoting their online engineering. By exploiting semantic tuple
centres to model Document Registries and organisation to model the structures com-
posing an Affinity Domain, TUCSON makes it possible to support the runtime correc-
tive/adaptive/evolutive maintenance of an e-Health fragment system—that is, with no
need to stop the system. This is particularly useful whenever application requirements
are expected to change substantially over time. For instance, it may happen that new
places hosting e-Health enterprises need to be added by reconfiguring Affinity Domains
dynamically, or that roles and policies have to be added/removed/modified to cope with
dynamic organisation changes. This would require to change the behaviour of a Docu-
ment Registry to face the new application requirements. Through online engineering as
supported by the TUCSON architecture, the system could be evolved in a consistent way
at runtime, maintaining a continuos interoperability among EHR systems. We think this
is a crucial aspect to be considered in the engineering of e-Health applications, where
a continuos service availability is indeed fundamental-—and this is why we promote the
integration of IHE recommendations within the TUCSON architecture.

5.3 Summary

In this chapter we shown an e-Health application scenario represented the EHR fragment
coordination. The application scenario is interesting because it concerns a distributed

ol

52 CHAPTER 5. COORDINATION IN E-HEALTH SYSTEMS

and open environment in which: (i) EHR fragments could be distributed among different
healthcare systems, (i) healthcare systems can be heterogeneous and change dynami-
cally, and (%i1) security mechanisms play a fundamental role to ensure patient privacy
and safety. The chapter shown the main shortcomings of the several efforts provided by
the literature trying to cope with such requirements—like HL7, DICOM, CEN EN 13606,
openEHR, THE and TSC. First of all, they provide special-purpose models of coordina-
tion, which increase the complexity of building an EHR coordination middleware. This
limits system interoperability by making it difficult to integrate independent e-Health sys-
tems. Moreover, they do not support any form of online engineering. As a consequence,
the coordination middleware cannot be updated at runtime in order to cope with new
application requirements without stopping the system. Along this line, in this chapter it
is proposed a coordination model and technology that could integrate the solutions and
standards proposed in literature while addressing the aforementioned issues. In particu-
lar, it is proposed semantic TUCSON as a reference architecture for coordination in the
e-Health scenario since it provides a general-purpose model of coordination accounting for
distribution and security issues in the engineering of EHR systems, and promotes online
engineering for continuos service availability of e-Health applications.

52

Chapter 6

Fuzziness in Semantic Tuple Centres

[... under vagueness/fuzziness theory fall all those approaches in which statements (for
example, “the tomato is ripe”) are true to some degree, which is taken from a truth space.
That s, an interpretation maps a statement to a truth degree, since we are unable to
establish whether a statement is completely true or false due to the involvement of vague
concepts, such as “ripe”, which only have an imprecise definition. For example, we cannot
exactly say whether a tomato is ripe or not, but rather can only say that the tomato is
ripe to some degree... Vague statements are truth-functional, i.e., the degree of truth of a
statement can be calculated from the degrees of truth of its constituents... | [53].

Starting from the semantic tuple centre model shown in Chapter [4 this chapter aims
at describing an extension of the model towards fuzziness, in order to support coordina-
tion based on information exchange, which can be vague. Thus, after having discussed
fuzzy Description Logics, in particular fuzzy SHOIN(D), we list and describe the elements
required to extend the semantic tuple centre model in order to support fuzziness, and de-
tail a possible line of extension in semantic TUCSON. Then, we provide some examples
showing how fuzzy semantic tuple centres could be fruitfully exploited. Finally, it will be
outlined the main research directions in order to improve the current implementation of
the fuzzy semantic tuple centres.

6.1 Towards Fuzziness

In the last decades, research on Artificial Intelligence has paid a lot of attention on the
representation of vague/fuzzy knowledge, in order to extend existing knowledge repre-
sentation systems that are not suitable to cope with the imperfect nature of real world
information [99, 51, 83]. In particular, as stated by Zadeh in [99], /... More often than
not, the classes of objects encountered in the real physical world do not have a precisely
defined criteria of membership ...] and [... imprecisely defined “classes” — for example,
the “class of beautiful women” or the “class of tall men” — play an important role in human

93

54 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

thinking, particularly in the domains of pattern recognition, communication of informa-
tion, and abstraction ... |. As Description Logics [2] are limited to deal with crisp and
well defined concepts, individuals and queries, starting from the first work done by Yen
in [98] they were subject of several extensions toward fuzziness [53], 84], 10]. In particular,
drawing from the most incisive works in literature [53] 10, [84] it is possible here to show
a fuzzy generalisation of SHOIN(D). From the syntactic point of view, it is possible to
describe fuzzy SHOIN(D) in terms of fuzzy datatype theories, fuzzy modifiers and then
fuzzy knowledge bases and fuzzy axioms.

Fuzzy datatypes. Fuzzy SHOIN(D) makes it possible to reason with datatypes, such
as strings and integers, using the so-called concrete domains [2]. As showed by Straccia
n [84], fuzzy concrete domains and thus datatypes are based on fuzzy sets. For ex-
ample, the datatype predicate <;g is a unary crisp predicate over the natural numbers
denoting the set of integers smaller or equal to 18. Functions for specifying fuzzy-set-
membership degrees, are used. For example we can define the datatype predicate High as
High(x) = rs(x; 80,250), where rs is the right-shoulder function that is shown in Figure
6. 1]

Fuzzy modifiers. Fuzzy SHOIN(D) also supports fuzzy modifiers like very, more_or_less,
and slightly, applied to fuzzy sets so as to change their membership function. As shown
in [84], a fuzzy modifier m represents a function f,,:[0,1] — [0,1]. For example, we
may define fyery(7) = 2% and the datatype predicate High and use very(High) to define
the semantic of the fuzzy concept very high.

Fuzzy knowledge bases and fuzzy axioms. In the following we let variable o range
in interval [0,1], denoting so-called degrees. As defined in [53], a fuzzy knowledge base
K=(R;T;A) consists of a fuzzy RBox R, a fuzzy TBox T and a fuzzy ABox A. Omitting the
fuzzy RBox that is not of interest for this work, a fuzzy TBox T is a finite set of fuzzy
concept equality and inclusion axioms. Concerning the formalism for the concept defini-
tion in the TBox [2], besides fuzzy datatypes and modifiers, Bobillo et al. [10] introduced
fuzzy nominals {a1/01, . . ., am/on}, where {«;} represents the degree by which
the individual {o;} belongs to the concept represented by the nominals. For example,
we can define the nominals {1/germany, 1/austria, 0.67/switzerland} to represent the
concept of country where German is a widely-spoken language. Then, new interesting

A
1 /_
x

T
0 El b

Figure 6.1: Right-shoulder function rs(x; a,b)

54

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 55

concept constructs were introduced by Bobillo and Straccia in [12]: weighted concepts (a
Q), weighted sum concepts (anC1 + ... + ayCy), and threshold concepts (C[> a]) and
(CL< al). A weighted concept represents a concept such that for any individual a, the
degree of it being an instance of (a Q) is given by « times the degree of being an instance
of C. Then, a weighted sum concept represents a concept which is the weighted sum of
the concepts C;, i.e. (a3 *Cy; + ... + ay*Cy), where it is assumed a; + ... + ay=1.
Finally, threshold concepts are such that, for example, the degree by which a is instance
of ([>a]l O is 0if ais an instance of C to a degree less than > «, otherwise the degree is
C(a). The case of ([<a] Q) is dual. Then, a fuzzy TBox is a finite set of fuzzy concept
inclusion axioms 7 > «a, 7 < a, 7 > «, and 7 < a, where 7 is a concept inclusion axiom
in SHOIN(D). For example, SportCar C Car > 1 is a fuzzy axiom stating SportCar is a
Car with degree > 1—mnamely, with degree =1

A fuzzy ABox A consists of a finite set of equality and inequality axioms a = b and a #
b, respectively, and of fuzzy concept and fuzzy role membership axioms of the form 7 > a,
7 <a,7>aand 7 < «a, where 7 is a concept or role membership axiom in SHOIN(D).
For example, SportsCar(audi tt) > 0.92 is a fuzzy axiom stating the individual audi_tt
is a SportCar with degree > 0.92.

From a semantic point of view, concepts and roles are interpreted as fuzzy subsets
of an interpretation domain. Therefore, axioms in fuzzy SHOIN(D), rather than being
satisfied or unsatisfied in an interpretation, are associated with a degree of truth in [0, 1].
Accordingly, fuzzy interpretation functions .1 are introduced in [53 10, [84], associating a
degree in [0,1] to each fuzzy concept construct. For instance, the concept constructs M
and U have the following fuzzy interpretation functions in [53]:

(€ NI =/ @ Gl
(U@ =G @ '

where the operators ® and @ are interpreted according to one of the following logics:
Lukasiewicz Logic, Godel Logic, Product Logic and Zadeh Logic. For example, Godel
Logic defines a &¢ 3 such as max{«, 3} whereas Lukasiewicz Logic defines o @y, 3 such as
min{a+3,1} — see [53] for more details.

6.2 Fuzzyfying Semantic Tuple Centres

In the previous section it was observed that real-world information are often imprecise
and vague. For example, in applications involving sensors, reading measurements usu-
ally comes with degrees of evidence; in applications like multimedia processing, object
recognition might come with degrees of truth [53]. Moreover, in open contexts it may
not have the knowledge required to formulate precise queries [4]. For instance, a user
may request to find a cinema that is close to her, without bothering about a real distance
range. Indeed, people commonly describe an object property using words like close, far
or cheap.

95

56 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

Although several works discuss how to represent vague/fuzzy knowledge (see Sec-
tion [6.1)), we found only the work of Balzarotti et al. [4] exploiting fuzziness to describe
knowledge in tuple spaces—there, a tuple space framework called LighTS is presented,
where fuzzy templates can be built in terms of fuzzy fields. For example, the template
A(Temperature is Hot, Distance is Far) can be defined in order to obtain a tuple A
in which the field Temperature and Distance are considered respectively hot and far by
following a defined membership function associated to the fuzzy concepts Hot and Far.
However, LighTS does not support semantic matching, that how it is shown in Chapter
2], it is required in the engineering of distributed and open systems. Thus, in this work we
aim at extending the tuple centre model in order to support fuzzy and semantic knowl-
edge description with the objective to support coordination in open contexts where the
knowledge about the application domain is often not complete and precise. In particular,
following our definition of semantic tuple centres described in Chapter [3], the ingredients
required to extend semantic tuple centres toward fuzziness are: fuzzy ontology, fuzzy tu-
ples, fuzzy templates, fuzzy primitives, fuzzy reactions and fuzzy semantic matching.

Fuzzy Ontology. The domain ontology associated to a semantic tuple centre is formally
described through SHOIN(D) (see Section [3.2)). According to Section we can formally
describe a fuzzy domain ontology associated to a tuple centre through fuzzy SHOIN(D) in
the form of a fuzzy TBox. Unlike crisp SHOIN(D), fuzzy SHOIN(D) allows us to use fuzzy
datatypes, fuzzy modifiers, fuzzy nominals, weighted concepts, weighted sum concepts and
treshold concepts for the concept definition, and fuzzy concept inclusions for the taxonomy
definition. Hence, we can for instance define the following assertions:

(1) High = rs(86,250)
(2) SportsCar = Car M JhasSpeed.very(High)

in order to describe (i) the fuzzy datatype High by exploiting the right-shoulder function,
and (ii) the concept SportCar as a Car characterised by a very high speed. In order to
define the concept very high, the modifier very(High) is exploited.

Fuzzy Tuples. Semantic tuples are formally described as SHOIN(D) individuals belong-
ing to an ABox (see Section [3.2)). Fuzzy SHOIN(D) makes it possible to represent a fuzzy
ABox by associating a degree of truth to each concept and role membership axiom (see
Section . For example, the following assertions can be defined

(3) SportsCar(audi_tt) > 0.92
(4) hasMaker(audi_tt, audi) > 1

in order to describe (i) the individual audi tt belonging to the concept SportCar with

degree 0.92, and (i) the role hasMaker in which the individual audi_tt is involved with
the individual audi with degree 1. Hence, in order to describe a fuzzy semantic tuple, a

o6

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 57

language is needed that, besides describing the name, the concept and the set of roles as-
sociated to an individual as for crisp semantic tuples (see Section |3.2)), could also describe
the degree of truth related to concept and role memberships.

Fuzzy Templates. Semantic tuple templates are formally described as SHOIN(D) con-
cept descriptions by exploiting the TBox formalism (see Section [3.2)). Fuzzy SHOIN(D)
allows fuzzy concepts to be represented using the fuzzy TBox formalism (see Section [6.1]).
As a consequence, in order to define fuzzy templates, a language needs to be defined that
support such a formalism. Hence, if we are interested in a semantic tuple describing indi-
viduals belonging to the concept SportCar with degree > 0.8, the fuzzy template should
provide a concept description like [> 0.8] SportCar (see Section .

Fuzzy Primitives. Semantic tuple centre primitives — in, rd and out — represent the
coordination language whereby system components can read, consume and write knowl-
edge described by means of a domain ontology [63]. Extending the semantic tuple centre
model with fuzziness also requires the semantic of the primitives in and rd to be suitably
extended. The first extension consists, in face of a fuzzy template, to return a fuzzy tuple
along with the degree by which it satisfies the template, since this could be different from
1. Then, one has to decide which individual to retrieve, possibly based on such a degree.
A first alternative is to retrieve the first individual found without bothering about the
degree. A less efficient but more effective alternative is to retrieve the individual with
highest degree. However, in this case the original model of tuple-based coordination where
the retrieved tuple is chosen in a non-deterministic way would somehow be violated. An-
other alternative is to choose the individual on the basis of a probability distribution
depending on the degree. Among the different alternatives, there is not a best solution:
the best approach depends on the requirements of the application scenario in which the
fuzzy semantic tuple centres have to be used. Hence supporting all those alternatives
seems the more appropriate choice.

Fuzzy Reactions. A semantic reaction specification, as defined in Section [3.2] consists
in an event E describing the set of events Ev for which reaction R has to be executed.
In particular, E contains two sorts of information: the primitive (in, rd or out) to be
intercepted and an individual set specication, describing either the possible concept de-
scriptions in an in/rd primitive, or the possible individuals in an out primitive. As
individual set specification, it is possible to exploit the language of fuzzy TBox which
is also exploited for fuzzy semantic templates. Thus, for example E could contain the
concept description [> 0.8] Car. If F refers to a primitive in or rd, R will be executed if
the concept description in the semantic tuple template is a subkind of [> 0.8] Car—as
for the concept description CityCar M (JhasMaker.fiat). Whereas, in case F refers to
the primitive out, R will be executed if an individual of the kind [> 0.8] Car is inserted
in the tuple centre—as for the individual audi_tt defined in axioms (3-4). As far as

57

58 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

reactions are concerned, besides accessing all the information related to the triggering
communication event, they can read, remove and write tuples from/to the tuple centre.
Accordingly, like coordinated components, reactions can contain coordination primitives
to access and modify the semantic knowledge stored in the tuple centre, through fuzzy
tuples and fuzzy tuple templates.

Fuzzy Matching Mechanism. As seen in Section [3.2] the semantic tuple matching
mechanism requires to execute the instance checking — verifying whether a given individual
is an instance of a specified concept —, the instance retrieval — finding the individuals in
the knowledge — and the subsumption checking of two concepts C and D—which can be
used in the case of reactions to in/rd. Accordingly, there are two ways to support the
fuzzy matching mechanism. The first is to exploit an existing fuzzy SHOIN(D) reasoner.
To the best of our knowledge, the only reasoner supporting fuzzy SHOIN(D) is DeLorean
[11]. The advantage in using DeLorean is that it represents fuzzy SHOIN(D) using crisp
SHOIN(D), thus reducing the reasoning within fuzzy SHOIN(D) to reasoning within crisp
SHOIN(D). As a consequence, it would be possible to translate fuzzy SHOIN(D) into a
crisp ontology language like OWL DL and to use currently available SHOIN(D) reasoners
like Pellet. However, the implementation is not yet available, and the solution has still
performance problems. An alternative to this solution is to simplify the problem by
omitting fuzzy domain ontology and to develop a module — that we call (de)fuzzificator —
in charge of bridging between the tuple centre interface and a crisp SHOIN(D) reasoner. In
particular, the task of the (de)fuzzificator is to transform a fuzzy individual description
in a crisp one when the corresponding tuple is inserted in the tuple centre. The crisp
individual is stored in the crisp SHOIN(D) reasoner whereas the corresponding fuzzy
individual is stored in the tuple centre. Then, in face of a reading or consuming operation,
the task of the (de)fuzzificator is to interpret the fuzzy semantic tuple template as a crisp
semantic tuple template, to query the crisp reasoner through the instance retrieval, and
finally to retrieve an individual with the degree with which it matches the template. In
order to calculate such a degree, the fuzzy individual version stored in the tuple centre
needs to be used. Whereas, concerning reactions, in case of a reaction to an out it is
possible to exploit the instance checking function of the crisp reasoner in order to know if
the individual belongs to the particular concept. If so, again in order to obtain the degree
to which the individual belongs to the concept, the fuzzy individual version stored in the
tuple centre needs to be used. Then, in case of a reaction to an in or rd, it is possible
the exploit the subsumption checking function of the crisp reasoner in order to know if
the concept C defined in E, subsumes the concept D defined in the primitive. Moreover,
it is also needed to check the conditions in [...] associated to C and D. In particular, it
is needed to check if the conditions in [...] do not invalidate the subsumption between C
and D.

o8

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 59

6.3 Fuzzyfying TuCSoN

In the following we show how semantic tuple centres provided by the coordination infras-
tructure TUCSON could be extended with fuzziness.

Fuzzy Domain Ontology. As sketched in Section [6.2] an ontology language following
fuzzy-SHOIN(D) approach is needed to associate a fuzzy domain ontology to a semantic
tuple centre. In [63], OWL DL was chosen as the ontology language, since it is a W3C
standard. In literature, fuzzy extensions to OWL are proposed, however, the drawback
of those solutions is that they are not standard—and one cannot reuse existing reasoners,
for they do not deal with fuzziness. Thus, in the following we assume that the domain
ontology is only crisp and that the ontology language is OWL DL.

Fuzzy Tuples. As described in Section [6.2] a fuzzy tuple has to describe an individual
in terms of the individual name, and the concept and role membership with associated
degree of truth. Accordingly, the language for semantic tuples defined for TUCSON and
sketched in Section .2l becomes as follows:

Individual ::= iname ‘:’ C

C ::= cname [—a] | cname ‘CC R [—a])’

R ::= rname ‘:’ V| rname ‘in’ ‘(C’ Vset ‘)’ | R “,” R
Vset ::=V [—a] | V [—a] ‘,’ Vset

V ::= iname | number | string

The extensions to the language are highlighted in grey. In particular, by considering the
generic membership axiom 7 and the degree «, the tuple language is extended with the
possibility of constraining the degree of 7 to be a. For the sake of simplicity, the relation
between 7 and « can only be of kind >. Moreover, as described by the language grammar,
the definition of the degree is not required. If a degree is not defined, it defaults to 1. By
supposing we already defined the car domain ontology, with such a grammar we could
obtain the following tuples:

ca: ‘CityCar’ (hasMaker: ford, hasMaxSpeed:130,
hasColour in (red — 0.7 , black — 0.3))

audiTT: ‘SportCar’ — 0.8 (hasMaker:audi, hasMaxSpeed : 260,
hasColour : black)

The first tuple asserts that ca is a CityCar with degree 1, is hasMaker-related to ford with
degree 1, is hasMaxSpeed-related to 130 with degree 1, and is hasColour-related to red and
black, respectively with degree 0.7 and 0.3. Then, the second tuple asserts that audiTT
is a SportCar with degree 0.8, is hasMaker-related to audi with degree 1, is hasMaxSpeed-
related to 20 with degree 1, and is hasColour-related to black with degree 1.

29

60 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

Fuzzy Templates. According to Section [6.2] a fuzzy semantic template is a fuzzy spec-
ification of a set of domain individuals. As such, a fuzzy template is a description of
a concept in the fuzzy TBox formalism. In order to describe a semantic template as
a fuzzy concept as described in Section [6.2] support for fuzzy datatypes dt, fuzzy mod-
ifiers m(C), fuzzy nominals {a1/01,..., am/om}, weighted concepts (o ©), weighted sum
concepts (a1C1 + ... + anyCy), and threshold concepts (C[> a]) and (C[< a]) is re-
quired. In particular, for fuzzy datatypes and fuzzy modifiers we adopt the functions
defined by Straccia et al. in [53]: crisp(a,b), L(a,b), R(a,b), triangular(a,b,c) and
trapezoidal(a,b,c,d). Accordingly, the language for semantic templates defined for TuC-
SoN and sketched in Section [3.2] becomes as follows (extensions highlighted in gray):

C ::= ‘$ALL’ | ‘$NONE’ | cname | C “,’ C |
C ‘s’ C| “$not’ C| D |
‘{" [iname [—a] { ¢,” , iname [—a] } 1 ‘}’ |

C ‘(’ D ‘)5 ’ s(! C ‘)’ ‘
CW| C‘[’EO[‘]’ ‘ C‘['Sa‘]' |
DT‘ M ‘(! C 5)1

CW ::=C—a |CW + CW
DT ::= crisp‘(C’N‘,’N‘)’ | 1¢C’N‘,’N)’
rl(!N"’Nl)! | M

M ::= triangular‘(C’N‘,’N‘,’N)’
trapezoidal ‘(’N‘,’N‘,’N‘,’N*)’

D ::=F | ‘Sexists’ F |‘$all’ F | M

F::=R ‘in” C| R “:” I | R “:” Msymb N
R ‘:=’ string | R

M ::= ‘# R Msymb N

R ::= rname \ rname ‘/’ vname

Msymb s n>1 ‘ ‘<! ’ ‘Z’ ‘ lS) ‘ i:!

Referring to the car domain, with such a grammar we could obtain e.g. the following
fuzzy semantic templates:

‘Car’, ((hasMaxSpeed:280— 0.6) +
(hasMaker: ferrari— 0.4))

60

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 61

[>0.8] ‘SportCar’

‘Car’, ($exists hasSpeed in linear(0.8) (r(80,250)))

The first tuple defines a concept describing a set of individuals represented of concept
Car and possibly hasMaxSpeed equal to 180 and hasMaker equal to ferrari. The second
concept describes a set of individuals represented by SportCar with degree equal to or
greater than 0.8. Then, the third concept describes a set of individuals represented by
Car with speed very high, where the concept high is represented by r(80,250) whereas the
concept very(z) is represented by the modifier linear(0.8) (x).

Fuzzy Primitives. According to Section the primitive out for inserting a semantic
tuple in a tuple centre remains unchanged. Thus, taking the syntax of out primitive
shown in [63], we can write:

out(semantic audiTT : ‘SportCar’— 0.8ChasMaker : audi,
hasMaxSpeed : 260,
hasColour : black))

in order to insert a fuzzy tuple in a tuple centre. For the primitives in and rd, the degree
of matching has to be retrieved together with the selected fuzzy tuple. Thus, the syntax
of in and rd primitives [63] is extended to make it possible to write:

in(semantic (X degree Y matching ([> 0.8] ‘SportCar’)))

The above operation unifies X with the fuzzy tuple matching the template [>0.8] ‘SportCar’,
and Y with the matching degree. As far as the in and rd primitives are concerned, it has to

be decided which tuple to retrieve on the basis of the matching degree with the template.
Since TUCSON provides general purpose coordination media, along with coordination con-
texts to provide coordinable with different coordination models, the best solution is to
provide all the three alternatives proposed in Section In particular, we define the
following primitives:

in(semantic (X degree Y matching ([> 0.8]‘SportCar’)))
in_max(semantic (X degree Y matching ([> 0.8]‘SportCar’)))
in_prob(semantic (X degree Y matching ([> 0.8]‘SportCar’)))

retrieving respectively the first tuple matching with the template with a degree > 0, the
tuple with the best degree and a tuple chosen on the basis of a probability distribution
depending on the matching degree. In particular, the probability of retrieving a tuple is
its degree divided by the sum of the degrees of all the matching tuples.

Moreover, thanks to the programmability of the tuple centres exploited in TUCSON,
it is also possible to implement more complex operations by exploiting the specification
language ReSpecT. For example, a set of interesting operations could be devised as
follows:

61

62 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

e if the operations in and rd retrieve the tuple with the highest resulting degree, one
could define the operations in_min and rd_min retrieving the tuple with the lowest
resulting degree;

e moreover, one could define the operations in_all and rd_all retrieving the entire set
of tuple with the resulting degree, sorted in ascending way. Also, one could allow the
specification of the max cardinality of the resulting set in order to avoid obtaining
a too huge set of tuples as the result;

e dually, one could define the operations in_all_min and rd_all_min retrieving the set
of tuples with the resulting degree, sorted in descending way.

Fuzzy Reactions. As described in Section from a semantic point of view, in a
ReSpecT reaction reaction(E, (G, R)), E represents a specification of a coordination
primitive related to a concept description (in/rd) or related to a domain individual (out).
Accordingly, besides the name of the primitive invoked (out, in or rd), E should contain a
concept description expressed in terms of the semantic template language. For example,
E could contain the concept description [> 0.8] Car, so for instance a reaction to the
primitive in could look like:

reaction(in(semantic ([>0.8] ‘Car’)), ..., ...)

The reaction could be triggered by a primitive in containing for example the concept
description CityCar M (JhasMaker.fiat), that is

in(semantic (X degree Y matching (‘CityCar’ and (exists hasMaker : fiat))))

since 1, implicitly defined for the concept CityCar M (JhasMaker.fiat), is greater than
0.8 defined for Car. Instead, the following reaction:

reaction(out(semantic ([>0.8] ‘Car’)), ..., ...)

would be triggered when an individual of kind Car with degree greater or equal to 0.8, is
inserted in the tuple centre, e.g., by the invocation:

out(semantic audiTT : ‘SportCar’— 0.8ChasMaker : audi,
hasMaxSpeed : 260,
hasColour : black))

inserting the individual audiTT in the semantic tuple centre.

The reaction guard G represents a set of conditions to be satisfied in order to execute
a reaction R if the current event Ev matches E. Since G represents a set of constraints on
Ev and E, ReSpecT is extended so that the guard could contain a concept description in
the fuzzy template language, as in the following reaction:

62

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 63

reaction(out(semantic([> 0.8] ‘Car’)),semantic(exists hasMaker : audi), ...)

Finally, also the ReSpecT reaction language needs to be extended, since it can read,
remove and write tuples from/to the tuple centre, now including semantic tuples. Thus,
R can now contain fuzzy primitives, as in the following example:

reaction(out(semantic([> 0.8] ‘Car’)),semantic(exists hasMaker : audi), (
rd (semantic (audi degree Y matching ‘Maker’
and (exists hasCars / N in Int))),
N1 is N + 1,
out(semantic audi : ‘Maker’ChasCars : N1))))

There, if an incoming event matches with out(semantic [> 0.8]‘Car’), and the guard
(semantic (exists hasMaker : audi)) is satisfied, then the individual audi is updated
with a new value for the relation hasCars.

Fuzzy Matching Mechanism. Here, we only focus on fuzzy primitives, omitting the
fuzzy matching mechanism exploited in reactions. In case a fuzzy SHOIN(D) reasoner
is not available, according to Section [6.2] in order to support matching between fuzzy
semantic tuples and templates, a (de)fuzzificator needs to be added, bridge the tuple
centre interface and the adopted DL reasoner. In particular, when a new tuple is inserted
in the tuple centre, the (de)fuzzificator should separate the degrees associated to the tuple
in order to obtain a non-fuzzy individual-assertion description in the DL language of the
specific DL reasoner adopted. The degrees remains stored only in the tuple inserted in
the tuple centre. Then, in order to understand what happens when a tuple template is
provided to a tuple centre, it is important to highlight that:

e A template is a composition of concept descriptions obtained by exploiting the op-
erators defined by the grammar language sketched in Section [£.2]

e FEach operator has its own priority. So, for example, in order to interpreter the
template ‘Car’, (exists hasMaker : ford) we can represent it through the tree
shown in Figure [6.2}

e Concerning the template grammar extended here, after not, the operators with the
highest priority are —, [< ... 1 and [> ... 1, then the operator + used
for the weighted sum concept (a1Cy + ... + anCy) and the set crisp, 1, r,
triangular and trapezoidal.

e The semantic of the SHOIN(D) operators (M, U, =, V, 3, <, and >) changes: they

became fuzzy operators. In particular, we adopt the fuzzy operators defined by
Straccia et al. in [12].

63

64 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

Car

‘ hasMaker ford

Figure 6.2: Syntax Tree Representing a Semantic Template

Said that, in face of a fuzzy tuple template, the template syntax tree has to be visited
from bottom to top (e.g. in post-order). In leafs, the (de)fuzzificator should:

e query the DL reasoner in order to obtain the set of individuals belonging to the
concept in current node;

e recover from the tuple centre the degrees related to each obtained individual;

e return the set of individuals, each along the degree resulting from the application
of the fuzzy operators.

In other nodes, which correspond to fuzzy operators, the set of individuals has to be
properly combined, and degrees are to be re-computed. For example, taking the fuzzy
tuple template ‘SportCar’—0.8; (hasMaker:audi)—0.2 and the related tree shown in

Figure [6.3] the (de)defuzzificator:

e queries the DL reasoner for individuals belonging to the concept SportCar;

e calculates for each of them its degree as the product of 0.8 by the degree as specified
in the tuple centre;

e queries the DL reasoner for individuals belonging to the concept hasMaker:audi by
querying the DL reasoner;

e calculates for each of them its degree as the product of 0.2 by the degree as specified
in the tuple centre;

64

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 65

e cxecutes the fuzzy operator ; (the counterpart of SHOIN(D) operator L) over
the two above sets of individuals. By using e.g. the implementation based on
Lukasiewicz t-conorm, we join the two sets and update degrees of each tuple by for-
mula min{a+(3,1}), where o and 3 are the two originatind degrees—0 if the tuple
was not in the set.

Accordingly, supposing to have the following tuples:

audiTT : ‘SportCar’— 0.8(ChasMaker : audi, hasMaxSpeed : 260,
hasColour : black)

£380 : ‘SportCar’— 0.9(ChasMaker : ferrari, hasMaxSpeed : 320,
hasColour : red)

Then matching the fuzzy tuple template ‘SportCar’—0.8; (hasMaker:audi)—®0.2 returns
tuple audiTT with degree 0.84 and £380 with degree 0.72.

6.4 An Application Scenario

In this section we aim at providing an example of how fuzzy semantic tuple centres could
be fruitfully used. So, we exploit fuzzyfied TUCSON within an application environment
where tuple centres provide a suitable coordination media, and show how adding semantic
and fuzziness to tuple centres results in a more powerful coordination model.

A Virtual Enterprise (VE) [76] is a temporary aggregation of autonomous and possibly
heterogeneous enterprises, meant to provide the flexibility and adaptability to frequent
changes that characterise the openness of business scenarios. As shown in [75], TuUCSoN
infrastructure addresses in a good way the requirements of the VE application scenario
represented by (i) the integration of selected heterogeneous resources provided by single
participants and (7i) the integration and coordination of distributed business activities.

i SportCar ; 0.2

hasMaker ‘ ‘ audi |

Figure 6.3: Syntax Tree Representing a Fuzzy Semantic-Template

65

66 CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

However, the original model of TUCSON tuple centres is based on a syntactic matching.
As a consequence, it does not fit very well requirements like openness — heterogeneity
and dynamism — of the information exchanged among different enterprises. In particular,
the information exchanged by each participant could have a different syntactic structure
even if it is semantically equivalent. Then, enterprises could be not able to have a prior:
knowledge about all possible information belonging to the application scenario. Tuple
centres enhanced with both semantics and fuzziness allow in principle to overcome such
limitations.

To give an evidence of such an assertion, let us take an example of VE application
scenarios: a wirtual bookshop [75]. The virtual bookshop is a VE aggregating several
companies of different sorts to sell books through the Internet. There, four basic roles
could be identified: the bookseller (providing the books), the carrier (delivering books
from sellers to customers), the interbank service (executing payment transactions) and
the Internet service provider (the Web portal of the customer). For the sake of simplicity,
here we only consider the problem of knowledge representation about the book domain,
that is, the knowledge mainly exchanged among booksellers and Internet service providers
in order to coordinate them with one another.

In this context, the first problem to be faced concerns the different syntactic struc-
ture of information. For example, when a Web portal receives a request for a book of
genre fantasy, whereas sellers only have books of genre classic fantasy and contemporary
fantasy, a syntactic approach could not match the genres. Moreover, a communication
based on concepts rather than on “instances” of concepts is more flexible: often VE
participants do not mean to refer to particular instances but rather to their (partial) de-
scriptions. Thus, for instance, a request from a Web portal may not identify exactly the
title of a specific book — maybe because the requesting user does not know the precise
title —, but might concern books of genre classic fantasy authored by a specific writer.
As shown in [63], such limitations could be overcome by exploiting semantic tuple cen-
tres where knowledge is represented in terms of a domain ontology. Thus, supposing
information about books is stored in TUCSON semantic tuple centres associated to an
opportune book ontology, it would be possible to exploit the primitive in in this way:
in(semantic (X matching (‘Fantasy’))). Through such a primitive, it would be possi-
ble to obtain fantasy books, including classic and contemporary ones.

A second problem to be faced is the management of vague/imprecise information. For
example, in the book domain there could be vague/imprecise information like books for
kids or books for adults. Then, books could belong to a category with a given degree—for
example a book could be fantasy with degree 0.7. Finally, participants of VE application
may be not interested only in knowledge perfectly matching their requests. For example,
in the virtual bookshop context, a user could submit her preferences through a Web portal
aiming at obtaining a ranked list of books matching with her preferences. In order to
face all those requirements, fuzziness in TUCSON tuple centres is clearly of help. First, it
is possible to define fuzzy concepts like linear(0.8) (1(80,250)) (see Section to rep-

66

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES 67

resent the concept kids and the concept ($exists forAge in linear(0.8) (r(80,250)))
to describe the set of books for kids. Then, those concepts could be exploited as a part
of a tuple template in order to obtain book information through the primitive in or rd.
Moreover, in order to describe books belonging to categories with a degree one could
exploit tuples like bookl: ‘Fantasy’— 0.7 describing a book of kind fantasy with degree
0.7. Finally, in order to obtain a ranked list of books matching a Web provider request
one could exploit the primitive in_all or rd_all described in Section

6.5 Summary

In this chapter we extended the model of semantic tuple centres with fuzziness as a
fundamental aspect of coordination to face vagueness and imprecision characterising real-
world information. After discussing fuzzy SHOIN(D), we presented the elements required
to support fuzziness in semantic tuple centres. Then, we shown how to apply the new
model in the semantic TUCSON. However, in this chapter we only provided a model of
semantic tuple centres supporting fuzziness. We did not provide a real implementation
of this kind of tuple centres and an evaluation of it. Thus, among the future direction of
this work, we aim at experiment the model of TUCSON semantic tuple centre extended
with fuzziness in order to evaluate the pros and cons of our approach. Then, we aim at
experiment the implementation with a specific case study as shown in Section

67

68

CHAPTER 6. FUZZINESS IN SEMANTIC TUPLE CENTRES

68

Chapter 7

Service Coordination in Pervasive
Systems

The Information and Communication Technology (ICT) landscape — yet notably changed
by the advent of ubiquitous wireless connectivity — will further re-shape due to the in-
creasing deployment of computing technologies like pervasive services and social networks.
Addressing this scenario calls for finding infrastructures promoting a concept of pervasive
“eternality”, namely, changes in topology, device technology and continuous injection of
new services have to be dynamically tolerated as much as possible, and incorporated with
no significant re-engineering costs at the middleware level [101,[94]. As far as the coordina-
tion of such services is concerned, it will increasingly be required to tackle self-organisation
(supporting situatedness, adaptivity and long-term accommodation of diversity) as an in-
herent system property rather than a peculiar aspect of the individual coordinated com-
ponents. As typical in self-organising computational mechanisms, a promising direction is
to take inspiration from natural systems (e.g. physical, chemical, biological, social [94]),
where self-organisation is intrinsic to the basic “rules of the game”.

Focussing on chemical natural systems, this chapter first shows the concept of chemical
tuple spaces [01] — tuple spaces programmed with coordination rules resembling chemical
reactions — as suitable coordination media for situated and adaptive pervasive computing
[77, [17,146| [56]. Then, it is shown how a distributed architecture for chemical tuple spaces
[91] can be implemented in TUCSON providing semantic ReSpecT tuple centres.

7.1 Requirements for Self-Organising Pervasive Ser-
vice Systems
In order to better explain the motivation behind the model presented in this chapter, we

rely on a case study, which we believe well represents a large class of pervasive computing
applications in the near future.

69

70 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

We consider a pervasive display infrastructure, used to surround our environments
with digital displays, from those in our wearable devices and domestic hardware, to wide
wall-mounted screens that already pervade urban and working environments [30]. How-
ever, instead of considering displays as static information servers as usual nowadays (i.e.
showing information in a manually configured manner), we envision a truly general, open,
and adaptable information service infrastructure. As a reference domain, we consider an
airport terminal filled with wide screens mounted in the terminal area, i.e in the shops,
in the corridors and in the gates, down to tiny screens installed in each seat of the gate
areas or directly on passengers’ PDAs.

Situatedness We first notice that information should be generally displayed based on the
current state of the surrounding physical and social environment. For instance, by
exploiting information coming from surrounding temperature sensors and passenger
profiles/preferences, an advertiser could decide to have ice tea commercials — instead
of liquor ones — displayed on a warm day and in a location populated by teenagers.

Thus, a general requirement for pervasive services is situatedness. Namely, pervasive
services deal with spatially and socially situated users’ activities, hence, they should
be able to interact with the surrounding physical and social world, accordingly
adapting their behaviour. As a consequence, the infrastructure itself should act
based on spatial concepts and data.

Adaptivity Secondly, and complementary to the above, the display infrastructure, and
the services within it, should be able to automatically adapt to changes and con-
tingencies in an automatic way. For instance, when a great deal of new information
to be possibly displayed emerges, the displayed information should overall sponta-
neously re-distribute and re-shape across the set of existing local displays, possibly
discharging obsolete visualisation services.

Accordingly, another requirement is adaptivity. Pervasive services and infrastruc-
tures should inherently exhibit self-adaptation and self-management properties, so
as to survive contingencies without any human intervention and at limited manage-
ment costs.

Diversity Finally, the display infrastructure should be not only intrinsically open to any
kind of visualisation services that may be added to the system, but also able to
allow users — other than display owners — to upload information to displays so as to
enrich the information offer or adapt it to their own needs. For instance, a passenger
could watch private content uploaded from her/his PDA to a wider screen close to
her/his seat, and may be willing also to share it with people nearby. Put simply,
users should act as “prosumers”—i.e. as both consumers and producers of devices,
data, and services.

Another general requirement is hence diversity. Namely, the infrastructure should
tolerate open models of service production and usage without limiting the number

70

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 71

and classes of services potentially provided, but rather taking advantage of the in-
jection of new services by exploiting them to improve and integrate existing services
whenever possible.

7.2 Chemical-inspired Tuple Spaces for Pervasive Ser-
vices

In many proposals for pervasive computing environments and middleware infrastructures,
situatedness and adaptiveness are promoted by the adoption of shared virtual spaces for
services and component interaction [77, 17, 46, 56, O1]. In these approaches, tuple spaces
are disseminated in the pervasive environment, one in each network location, and reify the
local situation in terms of tuples (structured information items). Depending on the specific
proposal, such tuples can represent the occurrence of people nearby, the availability of
devices, the state of pervasive services, knowledge, contextual information, signals spread
in the network, and so on. Relying on such shared virtual spaces has a main implication:
system coordination can be achieved by a rather simple set of rules for managing tuples,
acting locally to each space and providing for the “laws” by which such tuples evolve,
diffuse, and possibly combine so as to support adaptivity [50].

Among the various tuple space models proposed in literature, we adopt the chemical
tuple space model [91], in which tuples — containing information about the “individuals”
to be coordinated (services, devices, data) — evolve in a stochastic and spatial way through
coordination laws resembling chemical reactions. We observe that this model can properly
tackle the requirements sought for adaptive pervasive services.

Concerning situatedness, the current situation in a system locality is represented by
the tuples existing in the tuple space. Some of them can act as catalysts for specific chem-
ical reactions, thus making system evolution intrinsically context-dependent. Moreover,
mechanisms resembling chemical diffusion can be designed to make a node influencing
neighbouring ones.

Concerning adaptivity, it is known from biology that some complex chemical sys-
tems are auto-catalytic (i.e. they produce their own catalyst), providing positive-negative
feedbacks that induce self-organisation [I5] and lead to the spontaneous toleration of en-
vironment perturbations. Such systems can be modelled by simple idealised chemical
reactions, e.g. prey-predator systems, Brussellator, and Oregonator [38]. Regarded as
a set of coordination laws for pervasive services, this kind of chemical reactions has the
potential to intrinsically support adaptivity.

Finally, considering diversity, we note that chemical reactions follow a simple pattern:
they have some reactants (typically 1 or 2) which combine, resulting in a set of products,
through a propensity (or rate) dictating the likelihood for this combination to actually
happen. In natural chemistry, this generates a plethora of specific chemical reactions that
take into account the diversity of chemical species, and the possibility of creating complex

71

72 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

molecular structures. In our framework, general reactions will be designed that can be
instantiated for the specific and unforeseen services that will be injected in the system
over time—using semantic matching to fill the gap.

Though key requirements seem to be supported in principle, designing the proper
set of chemical reactions to regulate system behaviour is crucial. Without excluding the
appropriateness of other solutions, in this chapter we mostly rely on chemical reactions
resembling laws of population dynamics as, e.g. the prey-predator system [38, [9]. This
kind of idealised chemical reactions has been successfully used to model auto-catalytic
systems manifesting self-organisation properties: but moreover, they can also nicely fit
the “ecological” metaphor that is often envisioned for pervasive computing systems [7,
87, 1, 94, 10I]—mamely, seeing pervasive services as spatially situated entities living in an
ecosystem of other services and devices.

7.3 The Coordination Model of Chemical Tuple Spaces

In this section, first we informally introduce the coordination model of chemical tuples
spaces (Section [7.3.1]), then describe some example applications in the context of compet-

itive pervasive services (Section [7.3.2)).

7.3.1 Coordination Model

The chemical tuple space model is an extension of standard LINDA settings with multiple
tuple spaces [35]. A LINDA tuple space is simply described as a repository of tuples
(structured data chunks like records) for the coordination of external “agents”, providing
primitives used respectively to insert, read, and remove a tuple. Tuples are retrieved by
specifying a tuple template—a tuple with wildcards in place of some of its arguments.
The proposed model enhances this basic schema with the following ingredients.

Tuple Concentration and Chemical reactions

We attach an integer value called “concentration” to each tuple, measuring the perti-
nence/activity value of the tuple in the given tuple space: the higher such a concentration,
the more likely and frequently the tuple will be retrieved and selected by the coordina-
tion laws to influence system behaviour. Tuple concentration is dynamic, as typically
the pertinence of system activities is. In particular, tuple concentration “spontaneously”
evolves similarly to what happens in chemical behaviour, namely, a tuple with concentra-
tion N is handled pretty much in the same way as if it were a chemical substance made
of N molecules of the same species. This is achieved by coordination rules in the form
of chemical reactions—the only difference with respect to standard chemical reactions
is that they now specify tuple templates instead of molecules. For example, a reaction

“X +Y 25 X + X7 would mean that tuples z and y matching X and Y are to be selected,

72

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 73

get combined, and as a result one concentration item of y turns into z—concentration of
y decreases by one, concentration of x increases by one. According to [38], this transition
is modelled as a Poisson event with average rate (i.e. frequency) 0.1 X #x X #y (#x is the
concentration of x). In the general case, such a rate is obtained by multiplying reaction
rate by a coefficient depending scontributeolely on the concentration of reactants in the
solution: in particular, the contribution of each reactant in the product is (:’Z), where m
is the concentration of the reactant in the solution, and n is the number of such reactants
existing in the chemical reaction (typically, n = 1 or n = 2). This model makes a tuple
space running as a sort of exact chemical simulator, picking reactions probabilistically:
external agents observing the evolution of tuples would perceive something equivalent to
the corresponding natural/artificial chemical system described by those reactions.

Semantic Matching

It is easy to observe that standard syntactic matching for tuple spaces can hardly deal
with the openness requirement of pervasive services, in the same way as syntactic match-
making has been criticised for Web services [72]. This is because we want to express
general reactions that apply to specific tuples independently of their syntactic structure,
which cannot be clearly foreseen at design time. Accordingly, semantic matching can be
considered as a proper matching criterion for our coordination infrastructure [72, [5, 12].

It should be noted that matching details are orthogonal to our model, since the appli-
cation at hand may require a specific implementation of them—e.g. it strongly depends on
the description of application domain. As far as the model is concerned, we only assume
that matching is fuzzy [12], i.e. matching a tuple with a template returns a “vagueness”
value between 0 and 1, called match degree. Vagueness affects the actual application rate
of chemical reactions: given a chemical reaction with rate r, and assume reactants match
some tuples with degree 0.5, then the reaction can be applied to those tuples with an ac-
tual rate of 0.5%r, implying a lower match likelyhood—since match is not perfect. Namely,
the role of semantic matching in our framework is to allow for coding general chemical
laws that can uniformly apply to specific cases—appropriateness influences probability of
selection.

Tuple Transfer

We add a mechanism by which a (unit of concentration of a) tuple can be allowed to
move towards the tuple space of a neighbouring node, thus generating a computational
field, namely, a data structure distributed through the whole network of tuple spaces.
Accordingly, we introduce the notion of “firing” tuple (denoted), which is a tuple
(produced by a reaction) scheduled for being sent to a neighbouring tuple space—any will

be selected non-deterministically. For instance, the simple reaction “X OL X~ is used
to transfer items of concentration of any tuple matching X out from the current tuple

73

74 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

space.

7.3.2 Examples

We now discuss some examples of chemical reactions enacting general coordination pat-
terns of interest for pervasive service systems. We proceed incrementally, first providing
basic laws for service matching and competition, which will be then extended towards a
distributed setting.

Local competition

We initially consider a scenario in which a single tuple space mediates the interactions
between pervasive services and their users in an open and dynamic system. In the per-
vasive display infrastructure, this example is meant to model the basic case where, given
the node where a display is installed, visualisation services are to be selected based on
the profile of users nearby the display. We aim at enacting the following behaviour: (i)
services that do not attract users fade until eventually disappearing from the system, (ii)
successful services attract new users more and more, and accordingly, (7ii) overlapping
services compete one another for survival, so that some/most of them eventually come to
extinction.

An example protocol for service providers can be as follows. A tuple service is first
inserted in the space to model publication, specifying service identifier and (semantic)
description of the service content. Dually, a client inserts a specific request as a tuple
request—insertion is the (possibly implicit) act of publishing user preferences. The
tuple space is charged with the role of matching a request with a reply, creating a tuple
toserve(service,request), combining a request and a reply semantically matching.
Such tuples are read by the service provider, which collects information about the request,
serves it, and eventually produces a result emitted in the space with a tuple reply, which
will be retrieved by the client. The abstract rules we use to enact the described behaviour
are as follows:

(USE) SERV + REQ wu SERV 4 SERV + toserve(SERV,REQ)
(DECAY) SERV d 0

On the left side (reactants), SERV is a template meant to match any service tuple, REQ a
template matching any request tuple; on the right side (products), toserve (SERV,REQ)
will create a tuple having in the two arguments the service and request tuples selected,
while ® means there will be no product. Rule (USE) has a twofold role: (3) it first selects
a service and a request, it semantically matches them and accordingly creates a toserve
tuple, and dynamically removes the request; and (7i) it increases service concentration,
so as to provide a positive feedback—resembling the prey-predator system described by
Lotka-Volterra equations [9, [38]. We refer to use rate of a couple service/request as u

74

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 75

6000 5500
S — S —
- 5000 | g
5000 4500
4000
5 4000 & 3500
£ 3000 E =000
= =]
; é 2500
8 2000 § 2000
1500
1000 1000
500
0 0
0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400
time units time units

Figure 7.1: Service s exploited by matching requests r (left); and competition between
services sl and s2 (right).

multiplied by the match degree of those reactants when applying (USE) law, as described
in the previous section: as a result, it can be noted that the higher the match degree,
the more likely a service and a request are combined. On the other hand, rule (DECAY)
makes any concentration item of the service tuple disappear at rate d, contrasting the
positive feedback of (USE): here, the overall decay rate of a service is d multiplied by the
match degree—with no match, we would have no decay at all.

In Figure (left) we consider a scenario in which requests r are injected at average
rate 50, and a matching service s exists in the system with initial concentration 1,000: we
additionally have decay rate 0.01 and use rate 0.05. We can observe that after an initial
growth, the number of requests which are not served stabilises to few hundreds, while the
concentration of s grows to about 5,000. The behaviour of service concentration can be
understood in terms of the positive-negative feedback loop of rules (USE) and (DECAY).
It can be shown that service concentration increases while stabilising to about p/d, where
p is the rate of injection of requests (pumping rate) and d is the service decay rate (decay
rate d).

We now consider a similar scenario but with two services sl and s2 initially having
concentration 2,000 and 3, 000 respectively, and matching the same requests, though with
different use rate: 0.04 for s1, and 0.06 for s2. This models the situation in which two
different services exist to handle requests, one leading to a better match. The result is
that s1 and s2 engage a competition: this is lost by s1 which starts fading until completely
vanishing (i.e. being disposed) even though it has an initially higher concentration, as
shown in Figure (right). In fact, the sum of the concentration of sl and s2 still
stabilises to 5,000, but the contribution of s1 and s2 changes depending on the number of
requests they can serve. Hence, matching degree is key when more services are concerned
and the shape and dynamics of user requests is unknown, as it is responsible of the
rate at which a service is selected each time, and ultimately, of the evolution of service
concentration, i.e. of its competition/survival /extinction dynamics.

75

76 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

5000

4000

sl

3000

Concentration

|]
I 15 - 2000
[V 410
w
L 15 1000
0

| I — L L
0 5 10 15 20 25

Figure 7.2: Spatial competition: after an initial pointwise injection, service s2 (down)
globally overcomes s1 (top).

Spatial competition

This example can be extended to a network of tuple spaces, so as to emphasise the
spatial and context-dependent character of competing services. Suppose each space is
programmed with (USE,DECAY) reactions plus a simple diffusion law for service tuples:

(DIFFUSE) SERV m SERV™

The resulting system can be used to coordinate a pervasive service scenario in which a
service is injected into a node of the network (e.g. the node where service is more urgently
needed, or where the producer resides), and accordingly starts diffusing around on a step-
by-step basis until possibly covering the whole network—hence becoming a global service.
This situation is typical in the pervasive display infrastructure, since a frequent policy for
visualisation services would be to show them on any display of the network—although
more specific policies might be enacted to make certain services only locally diffuse.

In this system, we can observe the dynamics by which the injection of a new and
improved service may eventually result in a complete replacement of previous versions—
spatially speaking, the region where the new service is active is expected to enlarge until
covering the whole system, while the old service diminishes. In the context of visualisation
services, for instance, this would amount to the situation where an existing advertisement
service is established, but a new one targeted to the same users is injected that happens
to have greater use rate, namely, it is more appropriate for the average profile of users: we
might expect this new service to overcome the old one, which accordingly extinguishes.

For the sake of explanation, we start from an abstract case, with a reference “random
grid” of 30 x 20 nodes (i.e., locations). We call a random grid a lattice-like network
in which locations are placed as nodes of a square grid (each non-boundary location

76

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 77

has in its proximity 8 nodes, 4 in the horizontal /vertical direction and 4 in the diagonal
direction), but connection between a location and a neighbouring one is randomly set (with
probability 50%). This choice is motivated by the fact that very often computing devices
are placed more or less uniformly over the “space” formed by the buildings, corridors,
or rooms of the pervasive computing systems of interest, though randomness is useful to
tackle heterogeneity of the environment at hand, failures, and so on.

In the case we consider, in every node requests for using a service are supposed to
arrive at a fixed rate for simplicity, and a service called s1 is the only available to match
the requests (we use the following parameters: use rate u = 0.01, decay rate d = 0.01,
request injection rate p = 50, moving rate m = 0.01). In particular, in every node, the
system stabilises approximately to a concentration of 5,000 s1 (p/d as usual), in spite of
diffusion.

Another service s2 is at some point developed that can serve the same requests, now
with use rate 0.1 instead of 0.05, namely, it is a service developed to more effectively serve
requests—it matches requests twice as much as s1 does. This service is injected into a
randomly chosen node of the network, with an initial very low concentration (10 in our
experiment). Figure shows in each column a different snapshot (from left to right),
reporting concentration of sl on top and s2 on bottom: we can observe that s2 starts
diffusing where it is injected, until completely overcoming service s1 after about 3,000
time units.

7.4 Case study of long-term competition

To better ground the discussion, and emphasise the adaptive and diversity-accommodation
character of our model, we consider some application case for the airport display infras-
tructure, showing how the proposed reactions would work in a more concrete setting.

7.4.1 Local competition

We first analyse the behaviour of a single display, located near a gate where passengers wait
for the departure of their flight. As soon as a passenger gets nearby, her/his preferences
are sensed, and become tuples representing requests for a visualisation service—such a
sensing might be due to either the passenger’s PDA or the passenger’s data which are
stored in an RFID (or alike) placed on the boarding pass. Visualisation services are
continuously injected in the system (in the long-term, they could be many): they are
meant to tackle passengers’ preferences (e.g. sport, food, tourism, cars) and accordingly
compete with one another, since the display is meant to probabilistically select the best
service/passenger match.

Figure [7.3| shows all the parameters of the considered simulation scenario, in which
100 visualisation services are injected during a year. Parameters r_req and t_stay are

7

78 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

Parameter| Value Description

r.req 141/137 min ' preference injection rate, as passengers
per flight over interval between two flights

t_stay 50 min passenger time nearby the display

r_ads 100 year™1 advertisement service injection rate

t_show 30 sec showing time for an advertisement service

c_ad 1,000 maximum expected concentration of an
advertisement service

r_match 1,000 sec™' | match rate

Figure 7.3: Airport scenario: competition of services in one display. Simulation parame-
ters.

inferred from Heathrow statistics in 2008{1_-]. Match rate is the rate at which a single match
can be performed: note this is negligible with respect to the time between arrival of
two passengers’ preferences (namely, about 1 minute due to r_req). For the simulation,
we used decay rate d = 1/30,000 sec™! = 1/(c_ad x t_show), since the final service
concentration c_ad has been shown to be p/d, and the pumping rate for services p is
1/t_show (service concentration increases by 1 each 30 seconds).

This simulation scenario is relative to a class of advertisement services (e.g., concerning
cars), which can match 5 different “marketing targets” (e.g. sport cars, luxury cars, city
cars, vans, crossovers). Each passenger is associated to a single marketing target, while
each advertisement can cover many marketing targets (e.g. a Ferrari is both a sport and
luxury car). Accordingly, each time an advertisement service is created, we randomly
draw its match degree with respect to the 5 different marketing targets (a number in
between 0 and 1 each), though we keep the sum of such degrees less than the “overlap
factor” 1.5 (OF)—to avoid the unrealistic case in which some advertisement perfectly fits
all marketing targets (which could happen if OF = 5).

Figure[7.4]shows a simulation over a whole year. We note that: (i) only few services are
actually active at a given time (i.e., they have non-negligible concentration), for the others
get extinguished throughout system evolution, and (i) some new service can overcome an
existing and established one, causing its extinction (e.g. s51 enters the system at day 290,
and makes s89 extinguishing at day 350)—results of a larger number of simulations show
that the average number of active services in the system is about 3.25. At the end of the
year, only the following three services are active (reported with their matching degrees):

s91[0.52,0.11,0.84,0,0], s20[0.62,0.84,0,0,0], s51[0,0,0,0.75,0.70]

Namely, s91 is mainly tackling the fourth marketing target (and a good deal of the
first), s20 is mainly tackling the second marketing target (and a good deal of the first

"http://www.caa.co.uk/.

78

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 79

as well), while s51 mainly tackles the fourth and fifth targets. Of course, in practice
such match factors will be computed from semantic matching module, which ranks the
extent to which a newly introduced advertisement deals with the 5 marketing targets.
By increasing the number of marketing targets and their overlap factor we can deal with
more involved situations; for instance, analogous simulations with 20 marketing targets
and OF = 3 give an average number of 7 visualisation services for the specific class
considered. In general, it is predictable that the services that best tackle one ore more
marketing targets will survive, while most of the others will end up extinguishing without
unnecessarily overloading the system, and with no human intervention. This sort of
“ecological” behaviour is typical of today socially situated domains like social networks,
and will be likely to play a key role in future pervasive computing systems [1I, 87, [T01].

7.4.2 Spatial competition

We now analyse a more concrete example, extending the airport scenario studied in pre-
vious section to show the spatial character of our framework. Instead of a single display
we now consider an airport terminal with 5 gates in a row, and 25 displays near each gate
disseminated in the corridor and gate areas. This is modelled as a 25 x 5 random grid
(gates are at coordinates (3,3), (8,3), (13,3), (18,3), (23,3)).

Advertisement services are now injected from a random node of the network (taken
from 8 nodes in the perimeter of the grid considered as entry point nodes), using same
dynamics of previous case. Such services diffuse using (DIFFUSE) reaction.

In a scenario in which passenger preferences are uniformly distributed in space and
time, we would expect a behaviour similar to that of Figure [7.2] where winning services
diffuse in the whole network reaching an uniform value. But in a real-life situation pref-
erences are not uniform but context-dependent, and this influences the actual region in
which certain services can actually win competition. As an example, we consider a class
of services containing news about specific locations in the world, and each passenger’s
profile — e.g. automatically extracted from the RFID in the boarding pass — is associated
to the preference for just one continent, namely, the one where she/he is flying to. As in
the previous case, the overlap factor is 1.5 (in that some news service might span more
continents). Now assume each gate hosts flights towards a given continent: this means
that each gate is a context where passengers will more likely be interested in news on
the corresponding continent. This is obtained by making the injection rate of preferences
dependent on the distance from the gate: the higher the distance, the smaller the rate
(and still r_req in the node of the gate, as in previous section).

A simulation result is shown in Figure [7.5] which emphasises again the adaptive char-
acter of our framework, now also taking into account spatial aspects. Only 4 services are
active at the end of the simulation, which are those actually charted. At day 60, s51
already established at 2"¢ gate (from left). At day 167, s51 is also establishing on 1%
gate, while s38 established on gate 4" and 5. At day 274, s9 is appearing on 3"¢ gate

79

80 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

and s82 is taking over 1% gate winning competition against s51. At the end of simulation,
both 59 and s82 completely established.

Note that in this model, service tuples act as a reification of the spatial service
state as enacted by the coordination infrastructure: the resulting system features situat-
edness (success of a service in a location depends on requests and existing services there),
adaptivity (the best service actually wins, and unused services fade and get garbage-
collected), and accommodation of diversity (the arrival of new services is not foreseen at
design time, but automatically managed). In spite the discussed set of chemical reactions
appears suitable for the application at hand and its requirements, we believe that differ-
ent contexts can call for different reactions, without harming the general validity of the
proposed model/architecture.

7.5 An architecture based on the TUCSoN infrastruc-
ture

In this section we show that an infrastructure for the chemical tuple space model does not
have to be necessarily built from scratch, but can be implemented on top of an existing
tuple space middleware, such as TUCSON. In particular, as discussed in [92], TUCSoON
supports features that are key for implementing self-organising systems, some of which
are here recapped that are useful for implementing the chemical tuple space model:

Topology and Locality Tuple centres can be created locally to a specific node, and the
gateway tuple centre can be programmed to keep track of which tuple centres reside
in the neighbourhood—accessible either by agents or by tuple centres in current
node.

On-line character and Time TuCSoN supports the so called “on-line coordination
services”, executed by reactions that are fired in the background of normal agent
interactions, through timed reactions—reactions whose event E is of kind time(T).
When the tuple centre time (expressed as Java milliseconds) reaches T, the cor-
responding reaction is fired. Moreover, a reaction goal can be of the kind out_s
(reaction(time(T),G,R)), which inserts tuple reaction(time(T),G,R) in the
space, thus triggering a new reaction. As a simple example, the following reactions
are used to insert a tuple tick in the space each second:

reaction(time(T), endo, (out(tick))).
reaction(out(tick), endo, (currentTime(T), NewT is T+1000,

out_s(reaction(time(NewT), endo, out(tick))))).

Probability Probability is a key feature of self-organisation, which is necessary to ab-
stractly deal with the unpredictability of contingencies in pervasive computing. In

80

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 81

TuCSoN this is supported by drawing random numbers and using them to drive the
reaction firing process, that is, making tuple transformation be intrinsically proba-
bilistic. For instance, the following reaction inserts either tuple head or tail in the
space (with 50% probability):

reaction(out(draw), from-agent, (X > 0.5, outChead)) ; out(tail))).

In the following, it will be described how the two basic additional ingredients of the
proposed model can be supported on top of TUCSON: semantic matching (Section [7.5.1)

and chemical engine (Section [7.5.2)).

7.5.1 Semantic Matching

As shown in Chapter [4, in order to enable semantic support in TUCSON, a tuple centre
has to be related to an ontology, to which semantic tuples refer to. In order to encapsulate
an ontology, tuple centres exploit the aforementioned Pellet reasoner [82]—an open-source
DL reasoner based on OWL and written in Java likewise TUCSON. In particular, Pellet
can load an OWL TBox and an ABox, and provides the Jena-API in order to add and
remove individuals by its own ABox. Hence, each semantic tuple is carried not only in the
tuple space likewise syntactic tuples, but also in the ontology ABox, in order to support
reasoning. The reasoner is internally called each time we are checking for a semantic
match: the semantic template is converted into a SPARQL query (the language used by
Jena-API) and the results obtained by the reasoner (the name of individuals) are used
to retrieve the actual tuples in the tuple space. This behaviour is embedded in the tuple
centre, such that each time a semantic template is specified into a retrieval operation, any
semantic tuple can actually be returned—mnamely, the standard behaviour is still non-
deterministic. Additionally, in order to support probabilistic retrieval, such as in the case
of our chemical model, it is possible to exploit fuzzy matching as shown in Section
In particular, this is achieved via predicate the fuzzy primitive in like in(semantic (X
degree Y matching (‘CityCar’ and (exists hasMaker : fiat))))), taking the seman-
tic template as an input, providing as an output a matching semantic tuple and the
corresponding match degree (a number in between 0 and 1).

7.5.2 Chemical Reactions

We now describe how a TUCSON tuple centre can be specialised to act as a chemical-like
system where semantic tuples play the role of reactants, which combine and transform
over time as occurring in chemistry.

81

82 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

Coding reactants and laws

Tuples modelling reactant individuals are kept in the tuple space in the form reactant (X,N),
where X is a semantic tuple representing the reactant and N is a natural number denot-
ing concentration. Laws modelling chemical reactions are expressed by tuples of the
form law(InputList,Rate,OutputlList), where InputList denotes the list of the re-
acting individuals, and Rate is a float value specifying the constant rate of the reac-

tion. As a reference example, consider the chemical laws resembling (USE,DECAY)

rules in previous section: S+ R 299, s+ 5 and S5 0, where S and R represent se-

mantic templates for services and requests. Such laws can be expressed in TuCSoN
by tuples law([S,R],10,[S,S]) and law([S],10,[]). On the other hand, tuples
reactant(sa, 1000), reactant(sb,1000) and reactant(r,1000) represent reactants
for two semantic tuples (sa and sb) matching S, and one (ra) matching R. The set
of enabled laws at a given time is conceptually obtained by instantiating the semantic
templates in reactions with all the available semantic tuples. In the above case they
would be law([sa,r],rla,[sa,sa]), law([sb,r],rlb, [sb,sb]), law([sa],r2a,[])
and law([sb],r2b, [1). The rate of each enabled reaction (usually referred to as global
rate) is obtained as the product of chemical rate and match degree as described in Section
For instance, rate rla can be calculated as 10.0 X #sa X #r x u(S+R,sa+r), where
1 is the function returning the match factor between the list of semantic reactants and
the list of actual tuples.

As an additional kind of chemical law, it is also possible to specify a transfer of
molecules towards other tuple centres by a law of the kind law([X], 10, [firing(X)]).

ReSpecT engine

The actual chemical engine is defined in terms of ReSpecT reactions, which can be classi-
fied according to the provided functionality. As such, there are reactions for (i) managing
chemical laws and reactants, i.e. ruling the dynamic insertion/removal of reactants and
laws, (ii) controlling engine start and stop, (74) choosing the next chemical law to be
executed, and (iv) executing chemical laws. For the sake of conciseness we only describe
part (iii), which is the one that focusses on Gillespie’s algorithm for chemical simulations
[38].

This computes the choice of the next chemical law to be executed, based on the
following ReSpecT reaction, triggered by operation out(engine_trigger) which starts
the engine.

reaction(out(engine_trigger), endo, (
in(engine_trigger),
chooseLaw(law(IL,_,OL),Rtot),
rand_float(Tau), Dt is round((log(l.0/Tau)/Rtot)*1000),
event_time(Time), Time2 is Time + Dt,

82

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 83

out_s(reaction(time(Time2), endo, out(engine_trigger))),
out (execution(law(IL,_,OL),Time))
).

First of all, a new law is chosen by the chooseLaw predicate, which returns Rtot, the
global rate of all the enabled chemical laws, and a term law(IL,_,0L)—IL and OL are
bound respectively to the list of reactants and products in the chosen law, after templates
are instantiated to tuples as described above. Then, according to Gillespie algorithm,
time interval Dt — denoting the overall duration of the chemical reaction — is stochas-
tically calculated (in milliseconds) as log(1/Tau)/Rtot, where Tau is a value randomly
chosen between 0 and 1 [38]. A new timed reaction is accordingly added to the ReSpecT
specification and will be scheduled for execution Dt milliseconds later with respect to Time,
which is the time at which out(engine _trigger) occurred: the corresponding reaction
execution will result in a new out(engine_trigger) operation that keeps the chemical
engine running. Finally, a new tuple execution(law(IL,_,0L),Time) is inserted so that
the set of reactions devoted to chemical-law execution can be activated.

The actual implementation of the Gillespie’s algorithm regarding the choice of the
chemical law to be executed is embedded in the chooseLaw predicate, whose implemen-
tation is as follows:

chooseLaw(Law,Rtot): -
rd(laws(LL)),
semanticMatchAll (LL,NL,Rtot), not(Rtot==0),
sortLaws(NL,SL),
rand_float(Tau),
chooseGillespie(SL,Rtot,Tau,Law).

After retrieving the list LL of the chemical laws defined for the tuple centre, semanticMatchAll
returns the list NL of enabled chemical laws and the corresponding overall rate Rtot,
computed as the sum of the global rate of every enabled law. To this end, predicate
semanticMatchAll relies on predicate retrieve(+SemanticTemplatelist, -Semantic
TupleList,-MatchFactor) already described (properly extended to deal with lists of se-
mantic tuples and templates).

The chemical law to be executed is actually chosen via the chooseGillespie predicate
if Rtot > 0, i.e. if there are enabled chemical laws. This choice is driven by a probabilistic
process: given n chemical laws and their global rates rq,...,r,, the probability for law ¢
to be chosen is defined as r;/R, where R =) . r;. Consequently, law selection is simply
driven by drawing a random number between 0 and 1 and choosing a law according to
the probability distribution of the enabled laws.

83

84 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

7.6 Summary

In this chapter we described research and development challenges in the implementation
of the chemical tuple space model in semantic TUCSON. These are routed in two basic
dimensions, which are mostly — but not entirely — orthogonal. On the one hand, the basic
tuple centre model is to be extended to handle semantic matching, which we support by
the following ingredients: (i) an OWL ontology (a set of definitions of concepts) stored
into a tuple centre which grounds semantic matching; (i) tuples (other than syntactic as
usual) can be semantic, describing an individual of the application domain (along with the
concept it belongs to and the individuals it is linked to through roles); and (7ii) a matching
function implemented so as to check whether a tuple is the instance of a concept, returning
the corresponding match factor. On the other hand, the coordination specification for the
tuple centre should act as a sort of “online chemical simulator”, evolving the concentration
of tuples over time using the same stochastic model of chemistry [38], so as to reuse
existing natural and artificial chemical systems (like prey-predator equations); at each
step of the process: (i) the reaction rates of all the chemical laws are computed, (i) one
is probabilistically selected and then executed, (7ii) the next step of the process is triggered
after an exponentially distributed time interval, according to the Markov property. The
path towards a fully featured and working infrastructure has been paved, but further
research and development is required to tune several aspects:

Match degree Implementing fuzzy matching techniques as shown in Section [6.3]

Performance The problem of performance was not considered yet, but will be subject
of our future investigation. Possible bottlenecks include the chemical model and its
implementation as a ReSpecT program, but also semantic retrieval, which is seem-
ingly slower than standard syntactic one. We still observe that in many scenarios of
pervasive computing — like those considered in Section — this is not a key issue.

Chemical language Developing a suitable language for semantic chemical laws is a
rather challenging issue. The design described in this paper supports limited forms
of service interactions that will likely be extended in the future. For instance, a
general law X+Y — Z is meant to combine two individuals into a new one, hence the
chemical language should be able to express into Z how the semantic templates X
and Y should combine—aggregation, contextualisation, and other related patterns
of self-organising pervasive systems are to be handled at this level.

Application cases The model, and correspondingly the implementation of the infras-
tructure, are necessarily to be tuned after evaluation of selected use cases can be
performed. Accordingly, the current version of the infrastructure is meant to be a
prototype over which initial sperimentation can be performed. A main application
scenario we will considered for actual implementation is a general purpose pervasive
display infrastructure.

84

CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS 85

]] 1 1 1 1
w0 [503 I
[— i [1 1 1 1
i] 1 1 1 1 1
600 |- ! ! i i 1 i .
L e i i i i :
i i h :
200 |- o | ' ! h :
et i : i e
w000 [~ g 29 i H ;
3 | | :
600 | ! H ; 1 ; :
T I e et N R N
200 [~ P : : i ‘“‘\ i i :
A e P —
1000 - g 91 i : ' ' '
B | X : i i i :
600 [i '

T : i : T
200 |- f ..'W‘J":'“\Mw-_,w"?*”*fﬂ\rmﬁm N T’M«.ﬂ""“ *"“'w-*lr”"""" ;
i i i —

-} 'l . |-
] 1 1
1000 | s 20 : : 1
—) ' ' ' '
| ' ' 1 | 1
s00 I” | ' : : : :
- : : : : : : :
i | ' ' ‘\MM-’N\,
200 | | ! ! ! fiAuPL]HI N ' w
I : i : P
T T T ' 1 - —
1000 - 5 51} : : : : : :
[l 1] 1]]
L]]] 1] 1
]]) 1 L}]
]]) 1 L}]
600 [~ ! i i : :
:] : : : J_ﬂ-:..ul""\.
i] 1 1 1 o 1
200 |- | i H H i H M
| ' ' 1 1 1 '
-l » . ! e e "
I i T T T T T
1000 s 89 | : i : i :
i 1 1] 1 1 1 1
- i 1 1 1 1 1
] 1 L] 1 1 L} 1
] 1 L] 1 1 L} 1
600 | w i ' ! ! ! :
B | | L] e | H
] 1 L] L} 1 L} 1
200 | ! : : : : : :
i i 'Time (days) N H ~ L
4] 50 100 150 200 250 300 350

Figure 7.4: Airport scenario: competition of services in one display. Charting concentra-
tion of the 6 services active throughout the simulation.

85

86 CHAPTER 7. SERVICE COORDINATION IN PERVASIVE SYSTEMS

[72]
350
@ 300
® 5 250
s
f = 200
o 3
% 5 150
0
100
o
o]
» 50

t=60 days t=167 days =274 days t=365 days

Figure 7.5: Airport scenario: competition of services in the terminal. Showing spatial
concentration of the 4 surviving services, in 4 snapshots.

86

Chapter 8

Conclusion

This chapter summarises the work presented in the thesis, highlighting the corresponding
contributions and then tracing feasible future works.

8.1 Summary of the Contributions

The work of the thesis aimed to model and implement semantic tuple centres—a basic
brick of coordination infrastructures for open, distributed and knowledge-intensive sys-
tems like Web-based and pervasive computing applications. In particular, this model
supports the novel notion of programming the semantic coordination aspects of a com-
plex system, a key notion in the coordination of self-organising systems [69]. The thesis
started with a detailed analysis of related works concerning tuple-space-based models.
Then, the thesis provided a deeper description of the semantic tuple centres providing its
abstract architecture. It was described an implementation of the model based on the TuC-
SoN coordination infrastructure and it was evaluated on its current performance showing
its applicability in real application contexts. In particular, our analysis of performance
showed that, while tuple insertion is typically quite fast, tuple retrieval can be an heavy
operation especially when many tuples occur in the tuple space, which is basically due to
the latency of instance checking by the semantic reasoner. Additionally, it was shown the
important role of the fuzziness in describing the knowledge stored in tuple centres in open
context and an extension of the semantic tuple centre model and of the implementation of
the new model in TUCSON. Finally, it was shown two main important application scenar-
ios in which semantic tuple centres seems to represent a suitable coordination media. The
first application scenarios is in the context of e-Health, that is, Healthcare supported by
software systems. In particular we will focus on the interoperability of Electronic Health
Record (EHR) fragments — medical information that are stored in a digital format over
different healthcare institutions — belonging to an environment that is distributed and
open and where the security support represents a fundamental requirement to protect
the patient privacy. We will show how it is possible to extend the solutions proposed in

87

88 CHAPTER 8. CONCLUSION

literature by tacking the semantic version of TUCSON as inspiration model, in order to
augment their effectiveness in building EHR services, in particular as far as interoperabil-
ity is concerned.

The second application scenario is in the context of the pervasive services. Addressing
this scenario calls for finding infrastructures promoting a concept of pervasive “eternality”,
namely, changes in topology, device technology and continuous injection of new services
have to be dynamically tolerated as much as possible, and incorporated with no significant
re-engineering costs at the middleware level [101), ©4]. As far as the coordination of such
services is concerned, it will increasingly be required to tackle self-organisation (support-
ing situatedness, adaptivity and long-term accommodation of diversity) as an inherent
system property rather than a peculiar aspect of the individual coordinated components.
As typical in self-organising computational mechanisms, a promising direction is to take
inspiration from natural systems (e.g. physical, chemical, biological, social [94]), where
self-organisation is intrinsic to the basic “rules of the game”. Focussing on chemical nat-
ural systems, we will first shows the concept of chemical tuple spaces [91] — tuple spaces
programmed with coordination rules resembling chemical reactions — as suitable coordina-
tion media for situated and adaptive pervasive computing [77, [17, [46], 56]. Then, we will
show how a distributed architecture for chemical tuple spaces [91] can be implemented in
TuCSoN providing semantic ReSpecT tuple centres.

8.2 Future Directions

Starting from the work done so far, a first direction for future investigations is hence
on the optimisation side, evaluating other semantic approaches (or reasoners) that can
trade-off speed for expressiveness. From the model viewpoint, a basic extension we are
evaluating concerns the introduction of fuzzyness, relying on approaches like fuzzyDL [12],
which would allow us to rank the degree by which a tuple matches a given template—
a feature that is particularly useful in open knowledge-intensive systems. Finally, the
model is particularly suitable for complex application scenarios like self-organising per-
vasive computing domains — like e.g. pervasive and wearable displays [31] — where the
coordination rules regulating component interactions are required to semantically apply
to proper annotations (i.e. tuples) capturing the occurrence and state of components in
the shared space formed by pervasive devices [62].

38

Bibliography

1]
2]

Gul Agha. Computing in pervasive cyberspace. Commun. ACM, 51(1):68-70, 2008.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 3rd edition, 2010.

Davide Balzarotti, Paolo Costa, and Gian Pietro Picco. The LighTS tuple space framework
and its customization for context-aware applications. Web intelligence and Agent Systems,
5(2):215-231, 2007.

Ayomi Bandara, Terry R. Payne, David De Roure, Nicholas Gibbins, and Tim Lewis.
A pragmatic approach for the semantic description and matching of pervasive resources.
In Advances in Grid and Pervasive Computing, volume 5036 of LNCS, pages 434—446.
Springer, 2008.

G.O. Barnett and H.J. Sukenik. Hospital Information Systems. In J.F. Dickson and J.H.U.
Brown, editors, Future Goals of Engineering in Biology and Medicine. Academic Press,
1969.

Alistair P. Barros and Marlon Dumas. The rise of web service ecosystems. IT Professional,
8(5):31-37, 2006.

T. Beale. 2001.

Alan A. Berryman. The origins and evolution of predator-prey theory. Ecology, 73(5):1530—
1535, October 1992.

Fernando Bobillo, Miguel Delgado, and Juan Gémez-Romero. A crisp representation for
fuzzy SHOIN with fuzzy nominals and general concept inclusions. In Paulo Cesar G.
da Costa, Claudia d’Amato, Nicola Fanizzi, Kathryn B. Laskey, Kenneth J. Laskey,
Thomas Lukasiewicz, Matthias Nickles, and Michael Pool, editors, Uncertainty Reasoning
for the Semantic Web I, volume 5327 of LNCS, pages 174-178. Springer, 2008.

89

90

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[18]

Fernando Bobillo, Miguel Delgado, and Juan Gomez-Romero. Delorean: A reasoner for
fuzzy OWL 1.1. In Fernando Bobillo, Paulo Cesar G. da Costa, Claudia d’Amato, Nicola
Fanizzi, Kathryn B. Laskey, Kenneth J. Laskey, Thomas Lukasiewicz, Trevor P. Martin,
Matthias Nickles, Michael Pool, and Pavel Smrz, editors, 4th International Workshop
on Uncertainty Reasoning for the Semantic Web (URSW 2008), volume 423 of CEUR
Workshop Proceedings, Karlsruhe, Germany, October 2008. Sun SITE Central Europe,
RWTH Aachen University.

Fernando Bobillo and Umberto Straccia. FuzzyDL: An expressive fuzzy description logic
reasoner. In 2008 International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pages
923-930. IEEE CS, 2008.

Jrgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking OWL reasoners.
In Frank van Harmelen, Andreas Herzig, Pascal Hitzler, Zuoquan Lin, Ruzica Piskac,
and Guilin Qi, editors, Workshop on Advancing Reasoning on the Web: Scalability and
Commonsense (ARea2008), volume 350 of CEUR Workshop Proceedings, ESWC 2008,
Tenerife, Spain, 2 June 2008.

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. MARS: A programmable coordi-
nation architecture for mobile agents. IEEFE Internet Computing, 4(4):26-35, July /August
2000.

Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd, Guy Theraulaz,
and Eric Bonabeau. Self-Organization in Biological Systems. Princeton Studies in Com-
plexity. Princeton University Press, Princeton, NJ, USA, 2001.

D. Cerizza, E. Della Valle, D. Foxvog, R. Krummenacher, and M. Murth. Towards Euro-
pean Patient Summaries based on Triple Space Computing. In ECEH 2006, 2006.

Patricia Dockhorn Costa, Giancarlo Guizzardi, Joao Paulo A. Almeida, Luis Ferreira Pires,
and Marten van Sinderen. Situations in conceptual modeling of context. In Tenth IEEE
International Enterprise Distributed Object Computing Conference (EDOC 2006), 16-20
October 2006, Hong Kong, China, Workshops, page 6. IEEE Computer Society, 2006.

Marco Cremonini, Andrea Omicini, and Franco Zambonelli. Multi-agent systems on the
Internet: Extending the scope of coordination towards security and topology. In Fran-
cisco J. Garijo and Magnus Boman, editors, Multi-Agent Systems Engineering, volume
1647 of LNAI, pages 77-88. Springer, 1999.

J. Denny, D. Giuse, and J. Jirjis. The Vanderbilt Experience with Electronic Health
Records. Seminars in Colon and Rectal Surgery, 12:59-68, 2005.

Enrico Denti, Antonio Natali, and Andrea Omicini. Programmable coordination media.
In David Garlan and Daniel Le Métayer, editors, Coordination Languages and Models,
volume 1282 of LNCS, pages 274-288. Springer-Verlag, 1997. 2nd International Conference
(COORDINATION’97), Berlin, Germany, 1-3 September 1997. Proceedings.

90

BIBLIOGRAPHY 91

[21]

[22]

23]

[24]

Enrico Denti, Antonio Natali, and Andrea Omicini. On the expressive power of a language
for programming coordination media. In 1998 ACM Symposium on Applied Computing
(SAC’98), pages 169-177, Atlanta, GA, USA, 27 February — 1 March 1998. ACM. Special
Track on Coordination Models, Languages and Applications.

Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuProlog: A light-weight Prolog
for Internet applications and infrastructures. In I.V. Ramakrishnan, editor, Practical
Aspects of Declarative Languages, volume 1990 of LNCS, pages 184-198. Springer, 2001.
3rd International Symposium (PADL 2001), Las Vegas, NV, USA, 11-12 March 2001.
Proceedings.

Enrico Denti, Andrea Omicini, and Alessandro Ricci. Coordination tools for MAS
development and deployment. Applied Artificial Intelligence, 16(9/10):721-752, Octo-
ber/December 2002.

R.S. Dick and E.B. Steens. The Computer-Based Patient Record: An Essential Technology
for Health Care. Institute of Medicine, National Academic Press, 1991.

R.H. Dolin, L. Alschuler, S. Boyer, and C. Beebe. HL7 Clinical Document Architecture,
Release 2.0. 2004.

Y. Ducq, D. Chen, and B. Vallespir. Interoperability in enterprise modelling: Requirements
and roadmap. Advanced Engineering Informatics, 18:193-203, 2004.

Ltd. eHealth Media. OpenEHR Foundation launches international standard.

B. S. Elgera, J. lavindrasana, L. Lo Iacono, H. Miiller, N. Roduit, Paul Summers, and
J. Wright. Strategies for health data exchange for secondary, cross-institutional clinical
research. Computer Methods and Programs in Biomedicine, 99:230-251, 2010.

Dieter Fensel. Triple-space computing: Semantic web services based on persistent publi-
cation of information. In Finn Arve Aagesen, Chutiporn Anutariya, and Vilas Wuwongse,
editors, Intelligence in Communication Systems, volume 3283 of LNCS, pages 4353, 2004.
IFIP International Conference (INTELLCOMM 2004), Bangkok, Thailand, 23-26 Novem-
ber 2004. Proceedings.

Alois Ferscha, Andreas Riener, Manfred Hechinger, and Heinrich Schmitzberger. Building
pervasive display landscapes with stick-on interfaces. In CHI Workshop on Information
Visualization and Interaction Techniques, April 2006.

Alois Ferscha and Simon Vogl. Wearable displays — for everyone! IEEE Pervasive Com-
puting, 9(1):7-10, January/March 2010.

European Committee for Standardization. Health informatics Electronic health record

communication Part 1: Reference model Draft European Standard for CEN Enquiry prEN
13606-1. 2004.

91

92

BIBLIOGRAPHY

33]

Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Principles, Patterns, and
Practice: Principles, Patterns and Practices. The Jini Technology Series. Addison-Wesley
Longman, June 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ab-
straction and reuse of object-oriented design, pages 701-717. Springer-Verlag New York,
Inc., New York, NY, USA, 2002.

David Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80-112, January 1985.

David Gelernter and Nicholas Carriero. Coordination languages and their significance.
Communications of the ACM, 35(2):97-107, 1992.

GigaSpaces. Home page.

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal
of Physical Chemistry, 81(25):2340-2361, 1977.

Volker Haarslev and Ralf Méller. RACER system description. In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, st International Joint Conference on Automated
Reasoning (IJCAR °01), volume 2083 of LNCS, pages 701-705. Springer, Siena, Italy,
18-23 June 2001.

W. Hasselbring and S. Pedersen. Metamodelling of Domain-Specific Standards for Se-
mantic Interoperability. In J.F. Dickson and J.H.U. Brown, editors, WM 2005. Academic
Press, 2005.

Tan Horrocks, Peter F. Patel-Schneider, and Frank Van Harmelen. From shiq and rdf to
owl: The making of a web ontology language. Journal of Web Semantics, 1, 2003.

Tan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF
to OWL: The making of a Web ontology language. Web Semantics: Science, Services and
Agents on the World Wide Web, 1(1):7-26, December 2003.

IHE International. Integration Profiles: THE IT Infrastructure Technical Framework.
20009.

M.D. James and D. Thomas. Thomas The DICOM image formatting standard: What
it means for echocardiographers. Journal of the American Society of FEchocardiography,
8:319-327, 1995.

Nicholas R. Jennings. An agent-based approach for building complex software systems.
Commun. ACM, 44(4):35-41, 2001.

Christine Julien and Gruia-Catalin Roman. Egospaces: Facilitating rapid development of
context-aware mobile applications. IEEE Trans. Software Eng., 32(5):281-298, 2006.

92

BIBLIOGRAPHY 93

[47]

Christine Julien and Gruia-Catalin Roman. EgoSpaces: Facilitating rapid develop-
ment of context-aware mobile applications. IEEFE Transactions on Software Engineering,
32(5):281-298, May 2006.

D. Kalra. Electronic health record standards. IMIA Yearbook of Medical Informatics,
pages 150-161, 2006.

L.T. Khon, J.M. Corrigan, and M.S Donaldson. To Err is Human: building a safer health
system. National Academy Press, 2000.

Deepali Khushraj, Ora Lassila, and Timothy W. Finin. sTuples: Semantic tuple spaces. In
Timothy W. Finin, Chiara Ghidini, Tom La Porta, and Chiara Petrioli, editors, st Annual
International Conference on Mobile and Ubiquitous Systems: Networking and Services
(MobiQuitous’04), pages 268-277, Boston, MA, USA, 22-26 August 2004.

G.J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall,
Inc., 1994.

C. Lovis, S. Spahni, C. Cassoni, and A. Geissbuhler. Comprehensive management of the
access to the electronic patient record: towards trans-institutional network. International
Journal of Medical Informatics, 76:466-470, 2006.

Thomas Lukasiewicz and Umberto Straccia. Managing uncertainty and vagueness in De-
scription Logics for the Semantic Web. Web Semantics: Science, Services and Agents on
the World Wide Web, 6(4):291-308, October 2008.

K. Malloch. The electronic health record: An essential tool for advancing patient safety.
Nursing Outlook, 55:150-161, 2007.

Marco Mamei and Franco Zambonelli. Programming pervasive and mobile computing
applications with the TOTA middleware. In Pervasive Computing and Communications,
pages 263-273, 2004. 2nd IEEE Annual Conference (PerCom 2004), Orlando, FL, USA,
14-17 March 2004. Proceedings.

Marco Mamei and Franco Zambonelli. Programming pervasive and mobile computing
applications: the TOTA approach. ACM Trans. Software Engineering and Methodology,
18(4), 2009.

Francisco Martin-Recuerda. Towards Cspaces: A new perspective for the Semantic Web.
In Max Bramer and Vagan Terziyan, editors, Industrial Applications of Semantic Web,
volume 188, pages 113-139. Springer, 2005. 1st IFIP WG12.5 Working Conference on
Industrial Applications of Semantic Web, 25-27 August 2005, Jyvéskyld, Finland. Pro-
ceedings.

Naftaly H. Minsky and Jerrold Leichter. Law-Governed Linda as a coordination model. In
Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors, Object-based Models
and Languages for Concurrent Systems, volume 924 of LNCS, pages 125-146. Springer,
1995.

93

94

BIBLIOGRAPHY

[59]

[64]

[65]

[66]

[67]

Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying large
Description Logic ABoxes. In Andrei Hermann and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 4246 of LNCS, pages 227—
241. Springer, 2006. 13th International Conference (LPAR 2006), Phnom Penh, Cambodia,
13-17 November, 2006. Proceedings.

Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. LIME: A coordination
model and middleware supporting mobility of hosts and agents. ACM Transactions on
Software Engineering and Methodology, 15(3):279-328, July 2006.

FElena Nardini, Andrea Omicini, and Mirko Viroli. General-purpose coordination ab-
stractions for managing interaction in MAS. In The WI-IAT 2009 Workshops Proceed-
ings, pages 501-506, Milano, Italy, 15-18 September 2009. IEEE Computer Society. 2nd
Workshop on Logics for Intelligent Agents and Multi-Agent Systems (WLIAMAS 2009),
2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT’09).

Elena Nardini, Mirko Viroli, Matteo Casadei, and Andrea Omicini. A self-organising
infrastructure for chemical-semantic coordination: Experiments in TUCSON. In Andrea
Omicini and Mirko Viroli, editors, WOA 2010 — Dagli oggetti agli agenti. Modelli e tecnolo-
gie per sistemi complessi: context-dependent, knowledge-intensive, nature-inspired e self-*,
volume 621 of CEUR Workshop Proceedings, pages 117-125, Rimini, Italy, 5-7 September
2010.

FElena Nardini, Mirko Viroli, and Emanuele Panzavolta. Coordination in open and dynamic
environments with TUCSON semantic tuple centres. In Sung Y. Shin, Sascha Ossowski,
Michael Schumacher, Mathew Palakal, Chih-Cheng Hung, and Dongwan Shin, editors,
25th Annual ACM Symposium on Applied Computing (SAC 2010), volume III, pages
2037-2044, Sierre, Switzerland, 22—-26 March 2010. ACM.

Lyndon J. B. Nixon, Elena Simperl, Reto Krummenacher, and Francisco Martin-Recuerda.
Tuplespace-based computing for the Semantic Web: A survey of the state-of-the-art. The
Knowledge Engineering Review, 23(2):181-212, 2008.

Andrea Omicini. Towards a notion of agent coordination context. In Dan C. Marinescu
and Craig Lee, editors, Process Coordination and Ubiquitous Computing, chapter 12, pages
187-200. CRC Press, Boca Raton, FL, USA, October 2002.

Andrea Omicini. Formal ReSpecT in the A&A perspective. Electronic Notes in Theoretical
Computer Sciences, 175(2):97-117, June 2007. 5th International Workshop on Foundations
of Coordination Languages and Software Architectures (FOCLASA’06), CONCUR’06,
Bonn, Germany, 31 August 2006. Post-proceedings.

Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres. Science of Computer
Programming, 41(3):277-294, November 2001.

94

BIBLIOGRAPHY 95

[68]

Andrea Omicini and Alessandro Ricci. MAS organisation within a coordination infras-
tructure: Experiments in TUCSON. In Andrea Omicini, Paolo Petta, and Jeremy Pitt,
editors, Engineering Societies in the Agents World IV, volume 3071 of LNAI pages 200—
217. Springer-Verlag, June 2004. 4th International Workshop (ESAW 2003), London, UK,
29-31 October 2003. Revised Selected and Invited Papers.

Andrea Omicini and Mirko Viroli. Coordination models and languages: From parallel
computing to self-organisation. The Knowledge Engineering Review, 26(1):53-59, March
2011. Special issue for the 25th Years of the Knowledge Engineering Review.

Andrea Omicini and Franco Zambonelli. Coordination for Internet application devel-
opment. Autonomous Agents and Multi-Agent Systems, 2(3):251-269, September 1999.
Special issue: Coordination Mechanisms for Web Agents.

J. M. Overhage, L. Evans, and J. Marchibroda. Journal of the American Medical Infor-
matics Association, 12:107-112, 2005.

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. Semantic
matching of web services capabilities. In International Semantic Web Conference, volume
2342 of LNCS, pages 333-347. Springer, 2002.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
SPARQL. ACM Transactions on Database Systems, 34(3):16:1-16:45, September 2009.

Alessandro Ricci and Andrea Omicini. Supporting coordination in open computational
systems with TUCSoON. In IEEFE 12th International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE 2003), pages 365-370, 1st Inter-
national Workshop “Theory and Practice of Open Computational Systems” (TAPOCS
2003), Linz, Austria, 9-11 June 2003. IEEE CS. Proceedings.

Alessandro Ricci, Andrea Omicini, and Enrico Denti. Virtual enterprises and workflow
management as agent coordination issues. International Journal of Cooperative Informa-
tion Systems, 11(3/4):355-379, September/December 2002.

Ana Paula Rocha and Eugenio Oliveira. An electronic market architecture for the forma-
tion of virtual enterprises. In IFIP TC5 WG5.8 / PRODNET Working Conference on
Infrastructures for Virtual Enterprises: Networking Industrial Enterprises, volume 153 of
IFIP Conference Proceedings, pages 421-432. Kluwer, B.V., 1999.

Manuel Roméan, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H.
Campbell, and Klara Nahrstedt. Gaia: a middleware platform for active spaces. Mobile

Computing and Communications Review, 6(4):65—67, 2002.

C. Safran, D.Z. Sands, and D.M. Rind. Online medical records: a decade of experience.
Methods Inf Med, 38:308-312, 2000.

95

96

BIBLIOGRAPHY

[79]

[30]

[81]

[82]

[36]

[87]

[88]

[89]

[90]

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control
models. Computer, 29(2):38-47, Feb 1996.

D.Z. Sands, D.M. Rind, C. Vieira, and C. Safran. Can a large institution go paperless?
In MEDINFO, 1998.

Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A highly-efficient OWL reasoner. In
Catherine Dolbear, Alan Ruttenberg, and Uli Sattler, editors, 5th International Workshop
“OWL: Experiences and Directions” (OWLED 2008), volume 432 of CEUR Workshop
Proceedings, ISWC 2008, Karlsruhe, Germany, 26—27 October 2008.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz.
Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on
the World Wide Web, 5(2):51-53, June 2007.

Umberto Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14(1):137-166, January 2001.

Umberto Straccia. Description logics with fuzzy concrete domains. In Fahiem Bachus
and Tommi Jaakkola, editors, 21st Conference on Uncertainty in Artificial Intelligence
(UAI-05), pages 559-567, Edinburgh, Scotland, 2005. AUAI Press.

Robert Tolksdorf, Lyndon J. B. Nixon, and Elena Simperl. Towards a tuplespace-based
middleware for the Semantic Web. Web Intelligence and Agent Systems, 6(3):235-251,
2008.

Dmitry Tsarkov and Tan Horrocks. FaCT++ description logic reasoner: System description.
In Ulrich Furbach and Natarajan Shankar, editors, 3rd International Joint Conference
on Automated Reasoning (IJCAR ’06), volume 4130 of LNCS, pages 292-297. Springer,
Seattle, WA, USA, 17-20 august edition, 2006.

Mihaela Ulieru and Steve Grobbelaar. Engineering industrial ecosystems in a networked
world. In 5th IEEE International Conference on Industrial Informatics, pages 1-7. IEEE
Press, June 2007.

W.J. van der Kam, P. W. Moormanb, and M.J. Koppejan-Mulder. Effects of electronic
communication in general practice. International Journal of Medical Informatics, 60:59—
70, 2000.

J. Van der Lei, M.A. Musen, E. van der Does, A. Main in’t Veld, and J.H. van Bemmel.
Review of physician decision making using data from computer-stored medical records.

The Lancet, 338:1504-1508, 1991.

U. Varshney. Pervasive Healthcare Computing. Springer, 2009.

96

BIBLIOGRAPHY 97

[91]

Mirko Viroli and Matteo Casadei. Biochemical tuple spaces for self-organising coordi-
nation. In John Field and Vasco T. Vasconcelos, editors, Coordination Languages and
Models, volume 5521 of LNCS, pages 143-162. Springer-Verlag, June 2009. 11th Interna-
tional Conference (COORDINATION 2009), Lisbon, Portugal, June 2009. Proceedings.

Mirko Viroli, Matteo Casadei, and Andrea Omicini. A framework for modelling and
implementing self-organising coordination. In 24th Annual ACM Symposium on Applied
Computing (SAC 2009), volume III, pages 1353-1360. ACM, 8-12 March 2009.

Mirko Viroli, Andrea Omicini, and Alessandro Ricci. Infrastructure for RBAC-MAS: An
approach based on Agent Coordination Contexts. Applied Artificial Intelligence, 21(4—
5):443-467, April 2007. Special Issue: State of Applications in Al Research from AT*TA
2005.

Mirko Viroli and Franco Zambonelli. A biochemical approach to adaptive service ecosys-
tems. Information Sciences, 180(10):1876-1892, 2010.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10(2):115-152, June 1995.

Peter Wyckoff, Stephen W. McLaughry, Tobin J. Lehman, and Daniel A. Ford. T Spaces.
IBM Systems Journal, 37(3):454-474, 1998.

XMLSpaces. Home page.

John Yen. Generalizing term subsumption languages to fuzzy logic. In 12th International
Joint Conference on Artificial Intelligence (IJCAI’91), pages 472-477, San Francisco, CA,
USA, 1991. Morgan Kaufmann Publishers Inc.

Lotfy A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.

Franco Zambonelli and H. Van Dyke Parunak. Towards a paradigm change in com-
puter science and software engineering: A synthesis. The Knowledge Engineering Review,
18(4):329-342, December 2003.

Franco Zambonelli and Mirko Viroli. Architecture and metaphors for eternally adaptive
service ecosystems. In IDC’08, volume 162/2008 of Studies in Computational Intelligence,
pages 23-32. Springer Berlin / Heidelberg, September 2008.

97

98

BIBLIOGRAPHY

98

Appendix A

Prolog Theories for the Semantic
TuCSoN Implementation

A.1 The ASSERTION Prolog Theory

XXX EXE grammar operator HEEEXXEEXELR

r-op(188, fx, "semantic’).
c-op(BB,xfy, "',
r-op(8@,xfy, "in').

parseAssertiomithPrefix(semantic I, Out) :- parseAssertion(I,Qut).

parseAssertion{Iname : Idescr, individualCname(Iname),classCX),pvlist(¥))) :- parseDescr(Idescr,X,Y).
parsebescr({Class,Class,[1) :- atom{Class),!.

parsebDescr{Descr,Class,Pv) :- Descr =.. [Class|PropertyValueslList],parsePvList({PropertyValuesList,Pv).

parsePvlist([PvIT], [ElemIL]) :- parsePv(Pv,Elem),parsePvList(T,L).
parsePvlist([Pv], [Elem])} :- parsePv(Pv,Elem).

parsePv((Pname : Pwvalue},pv(Pname,Pvalue)) :- I.
parsePv((Pname in Vset),pw(Pname,Pvalue)) :- parseVset(Vset,Pvalue).

parseVset((V , T3,IVIL]Y) :- !,parseVset(T,L).
parseVset(V, [V]).

A.2 The QUERY Prolog Theory

99

APPENDIX A. PROLOG THEORIES FOR THE SEMANTIC TUCSON
100 IMPLEMENTATION

HREXEXXRREXE grammar operator HEEERXEEXXENE

c-op(18@, fx, "semantic’).
t-op(98,xfy, 'matching’J.
1-op(95,xfy, 'and").
1-op(95,xfy, ‘or’).
t-op(9Z,xfy, "%).

c=op (98, fx, 'not').
c-op(85,fx, "exists").
1-op(85,fx, 'only').
r-op(80,xfy, "1 "],
t-op(8@,xfy, 'in").
-op(78,fx, "#').
i-op(¥5,fx,'gt').
t-op(75,fx, 'geq’).
—op(75,Fx, "1t).
c=op(75,fx,"leq’).
-op(75,fx, "eq’).
—op(Pl,xfy, "/).

parseQueryWithPrefix{semantic Result matching Template, match{var(Result),template(Qut))) :-
var{Result),parseTemplateTemplate,Out),!.

parseQueryiWithPrefix{semantic Result matching Template, match{Outl,template(Out2))} :-
parseAssertion(Result,Qutl),parseTemplateTemplate,Dut2).

parseTemplate(Templ,0ut) :- parseC(Templ,Out).
HHHEERHNREIEE assertion ERENEHHRIEN

parsefssertionCOutl, individual{name{Outl))) - I,
HHEEEINNIAER rule C SHSMXINNMHEN

®C ::= all

parseC('all’ ,atomicConceptDescription('top’)) :-

*C ::= none
parseC('none’ ,atomicConceptDescription('bottom™}) - 1.

% ::=Cand C
parseCC(Cl and CZ2) ,intersection(Outl,0utZ)) :- parseC(Cl,0utl),parseC{CZ,0utz),!.

% :=Cor C
parseCCCCl or CZ2) ,unionCOutl,Out2)) :- parseC(Cl,0utl),parseC(CZ,0utZ),!.

HC ::=not C
parseC{not C ,negation(Out)) :- parseC(C,0ut),!.

*#C ::= R
parseCCR ,0ut) :- parseRCR,0ut),!.

¥ ::={ Iset }
parseC({ Iset } ,individualSet(Out)) :- parselset(Iset,0ut),!.

#C ::= cname(R)
parseC(C ,intersection(Outl,0QutZ)) :- C =.. [Cnhame,R], Outl = conceptName(Cname), parseR(R,0utZ),!.

100

APPENDIX A. PROLOG THEORIES FOR THE SEMANTIC TUCSON
IMPLEMENTATION

101

% =L C)

FparseCC C 3 ,0ut) :- parseC{C,0ut),!.

%C ::= cname

parseC{Cname, conceptMame Cname)) :- atom{Cname).

EREXEAXXREXE rule R HEEEIXXEREDX

¥R :=F
parseR{F,intersection{existentialQuantification{Out),existentialRestriction{Outl)))
#R ::= exists F

parseR{exists F,existentialQuantification{Outl)) :- parseF(F,0ut),!.

#R ::= only F
parseR{only F,existentialRestriction{Out)) :- parseF(F,0ut),!.

R =M
parseR{M,0ut) :- parseM(M,0ut).

AR EAEY rule FAiteEREERY

%F ::=P1in C
parseF(F in C, roleExpr(Qutl,Qut?)) :- parseP(P,0utl),parseC{C,0ut2),!.

®F = P
parsefF(F : I, roleExpr(Outl,individualSet(QutZ))) :- parseP(PF,0utl),parseI(I,0ut),

%F ::=P : D
parsefF(F : D, roleExpr(Outl,0Out2)) :- parseP(PF,0utl),parseD(D,0utZ),!.
HRERMIEEE rule M EXEMERNNXEE

M ::= & eq PosInt : P

parseM(# eq PosInt : P, cardinalityRestriction{Qutl,relationKind('="),value(Out2))) :

parseP(P,0utl),parsePosInt{PosInt,Jutd).

#M ::= # 1t PosInt : P

parseM(# 1t PosInt : P, cardinalityRestriction{Outl,relationKind('<"),value{Dut2))) :

parseP(P,0utl),parsePosInt{PosInt,0ut?).

M ::= # gt PosInt : P

parseM(# gt PosInt : P, cardinalityRestriction{Outl,relationKind('="),value(OutZ))) :

parseP(P,0utl),parsePosInt{PosInt,ut).

M ::= & leq PosInt : P

i= parseF(F,0ut),!.

parseM(# leg PosInt : P, cardinalityRestrictien(Outl,relationKind(<="),valueCOutd)l)) :-

parseP{P,0utl),parsePosInt{PosInt,Jutd).

#M ::= # geq PosInt : P

parseM(# geq PosInt : P, cardinalityRestriction(Outl,relationKind('>="),value(Qut2))) -

parseP(P,0utl),parsePosInt{PosInt,0ut?).

EXREXEXXXREXE rule P HREXEIXXERERX

P ::= pname

parseP({Pname, property(Pname)) :- atom{Pname),!.

#P ::= pname S wname

parseP{Pname / Vname, propertyWithBinding(Pname,Vname)) :- atom{Pname),var{Vname).

101

APPENDIX A. PROLOG THEORIES FOR THE SEMANTIC TUCSON
102 IMPLEMENTATION

HEEEAANEAEXR rule Iset MEMMEMEXMXEE

¥Iset ::=1 , Iset
parselset((I , Iset) ,[HIT]) :- parseI(I,H),parselset(Iset,T),!.

¥lset 1:=1
parselset(I , [Out]l) :- parseI{I,0ut].

FREREXXRXEEXE rule D HEEEIXNIERE

D :=egq N
parseb{eg N, concreteDomainConstraint(relationKind('="),value(Out))} :- parseN{N,0ut).

¥ ::= 1t N
parseD{1lt N, concreteDomainConstraint(relationKind('<"),value(Out))) :- parseN{N,0ut).

%D :=gt N

parseD{gt M, concretebomainConstraint(relationKind('="),value(Outl]) :- parseNCN,0Out).
%D ::= leq N

parseD{leq N, concreteDomainConstraint(relaticonkKind(' <=="),value(Jut})) :- parseN(N,Qut).
%D ti= geg N

parseb{geq N, concreteDomainConstraint{relationKind(’'=="),value(Qutl)) :- parseN(M,0ut).
¥ := 5

parseb{eqg 5, concretelomainConstraint(relationkKind('="2),value(5))) :- atom(5).

HERRNENIHEE rule T SRIENXEX
parsel(I,I) :- atom(I).

SERREHEREEEE rule N EXREMRMHNE
parseNCN,N) - number{N).
HRRXRXXXRHAXE rule PosInt HXEEAXXXEAXN

¥parsePosInt(N,N> :- integer(N),N >=B.
parsePosInt(N,NJ :- integer(NJ).

102

Appendix B

List of Pubblications

B.1 Journals

Elena Nardini, Andrea Omicini, Mirko Viroli, Michael Ignaz Schumacher. Coordinating e-
Health Systems with TuCSoN Semantic Tuple Centres. ACM Applied Computing Review.
2(11), 43-52, 2011.

Elena Nardini, Andrea Omicini, Mirko Viroli. Semantic Tuple Centres. Science of
Computer Programming. Submitted.

B.2 Edited Volumes

Maria Cristina Matteucci, Andrea Omicini, Elena Nardini, Pietro Gaffuri. Knowledge
Construction in E-learning Context: CSCL, ODL, ICT and SNA in Education. CEUR
Workshop Proceedings 398, 1-2 September 2008.

B.3 Conference Proceedings

Elena Nardini, Ambra Molesini, Andrea Omicini, Enrico Denti. SPEM on Test: the
SODA Case Study. 23th ACM Symposium on Applied Computing (SAC 2008),16-20
March 2008.

Elena Nardini, Andrea Omicini, Maria Cristina Matteucci. Toward a Framework for
Collaborative Learning based on Agent-based Technologies. The 2008 International Ed-
ucation, Technology and Development Conference (INTED 2008),3-5 March 2008.

Elena Nardini, Matteo Casadei, Andrea Omicini, Pietro Gaffuri. A Conceptual Frame-
work for Collaborative Learning Systems Based on Agent Technologies. The 2008 In-
ternational Conference on the Interactive Computer Aided Learning (ICL 2008), 24-26
September 2008.

103

104 APPENDIX B. LIST OF PUBBLICATIONS

Ambra Molesini, Elena Nardini, Enrico Denti, Andrea Omicini. Situated Process En-
gineering for Integrating Processes from Methodologies to Infrastructures. 24th Annual
ACM Symposium on Applied Computing (SAC 2009), 8-12 March 2009.

Ambra Molesini, Marco Prandini, Elena Nardini, Enrico Denti. Risk Analysis and De-
ployment Security Issues in a Multi-Agent System. The 2nd International Conference on
Agents and Artificial Intelligence (ICAART 2010), 2010, 22-24 January 2010.

Elena Nardini, Mirko Viroli, Emanuele Panzavolta. Coordination in Open and Dynamic
Environments with TuCSoN Semantic Tuple Centres. The 25th Annual ACM Symposium
on Applied Computing (SAC 2010), 22-26 March 2010. The paper was selected as a
best paper.

Mirko Viroli, Matteo Casadei, Elena Nardini, Andrea Omicini. Towards a Chemical-
Inspired Infrastructure for Self-* Pervasive Applications Self-Organizing Architectures,
Lecture Notes in Computer Science 6090, July 2010.

Elena Nardini, Andrea Omicini, Mirko Viroli. Description Spaces with Fuzziness. The
26th Annual ACM Symposium on Applied Computing (SAC 2011), 21-25 March 2011. In
press.

Elena Nardini, Mirko Viroli, Gabriella Castelli, Marco Mamei, Franco Zambonelli. A
Coordination Approach to Spatially-Situated Pervasive Service Ecosystem. The 13th
International Conference COORDINATION’11, 6-9 June 2011. Submitted.

B.4 Workshop Proceedings

Elena Nardini, Andrea Omicini. Agent-Based Collaboration Systems: A Case Study.
Knowledge Construction in E-learning Context: CSCL, ODL, ICT and SNA in Education,
CEUR Workshop Proceedings 398, October 2008.

Ambra Molesini, Elena Nardini, Enrico Denti, Andrea Omicini. Advancing Object-
Oriented Standards Toward Agent-Oriented Methodologies: SPEM 2.0 on SODA. 9th
Workshop 7From Objects to Agents” (WOA 2008) FEvolution of Agent Development:
Methodologies, Tools, Platforms and Languages, November 2008.

Elena Nardini, Andrea Omicini, Mirko Viroli. General-Purpose Coordination Abstrac-
tions for Managing Interaction in MAS. The WI-IAT 2009 Workshops Proceedings, 15-18
September 2009.

Elena Nardini, Mirko Viroli, Matteo Casadei, Andrea Omicini. A Self-Organising Infras-
tructure for Chemical-Semantic Coordination: Experiments in TuCSoN. WOA 2010—
Dagli oggetti agli agenti. Modelli e tecnologie per sistemi complessi: context-dependent,
knowledge-intensive, nature-inspired e self-*, CEUR Workshop Proceedings 621, 5-7 Septem-
ber 2010.

104

	Abstract
	Introduction
	Background and Motivation
	Contribution
	Thesis Outline

	Tuple Spaces
	Basic of Tuple Spaces
	Behaviour of Tuple Spaces
	Semantic in Tuple Spaces
	Summary

	Semantic Tuple Centres
	Towards Semantic Tuple Centres
	Semantic Tuple Centre Model
	Abstract Architecture
	Summary

	Semantic Tuple Centres in TuCSoN
	TuCSoN Infrastructure
	Behaviour in Tuple Centres
	Organisation & Security
	Online Engineering

	Designing Ingredients for ReSpecT Semantic Tuple Centres
	System Architecture
	Supporting the Semantic Tuple Centre Language
	Extending the ReSpecT Framework

	Evaluation and Discussion
	Summary

	Coordination in e-Health Systems
	EHR Systems Interoperability
	Towards Electronic Health Records
	Existing Approachers: a Survey

	Exploiting Semantic TuCSoN in e-Health
	Summary

	Fuzziness in Semantic Tuple Centres
	Towards Fuzziness
	Fuzzyfying Semantic Tuple Centres
	Fuzzyfying TuCSoN
	An Application Scenario
	Summary

	Service Coordination in Pervasive Systems
	Requirements for Self-Organising Pervasive Service Systems
	Chemical-inspired Tuple Spaces for Pervasive Services
	The Coordination Model of Chemical Tuple Spaces
	Coordination Model
	Examples

	Case study of long-term competition
	Local competition
	Spatial competition

	An architecture based on the TuCSoN infrastructure
	Semantic Matching
	Chemical Reactions

	Summary

	Conclusion
	Summary of the Contributions
	Future Directions

	Bibliography
	Prolog Theories for the Semantic TuCSoN Implementation
	The ASSERTION Prolog Theory
	The QUERY Prolog Theory

	List of Pubblications
	Journals
	Edited Volumes
	Conference Proceedings
	Workshop Proceedings

