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FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Dottorato di ricerca in matematica

XXIII ciclo

Settore Scientifico-Disciplinare: MAT/03

Estimating Persistent Betti Numbers

For Discrete Shape Analysis

Tesi di Dottorato

di
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Introduction

Persistent Topology is an innovative way of matching topology and geom-

etry, and it proves to be an effective mathematical tool in Pattern Recognition

[3, 24, 5]. This new research area is experiencing a period of intense theoreti-

cal progress, particularly in the form of the multidimensional persistent Betti

numbers (PBNs; also called rank invariant in [6]). In order to express its full

potential for applications, it has to interface with the typical environment of

Computer Science: It must be possible to deal with a finite sampling of the

object of interest, and with combinatorial representations of it.

A predecessor of the PBNs, the size function (i.e. PBNs at degree zero)

already enjoys such a connection, in that it is possible to estimate it from

a finite, sufficiently dense sampling [21], and it is possible to simplify the

computation by processing a related graph [14]. Moreover, strict inequalities

hold only in “blind strips”, i.e. in the ω-neighbourhood of the discontinuity

lines, where ω is the modulus of continuity of the measuring (filtering) func-

tion. Out of the blind strips, the values of the size function of the original

object, of a ball covering of it, and of the related graph coincide.

The main purpose of this Thesis is to extend the previous result to the

PBNs of any degree; to obtain that we have divided the work into three parts,

corresponding to the three chapters. In the first one we shall introduce the

preliminary results about persistent homology theory and the different tools

that we shall need in the proof of the Blind Strips Theorem (Th. 2.2.1).

Moreover we shall present, in Section 1.2, a further extension of a result

concerning pseudo-critical points (see [9] for the original statements).
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ii INTRODUCTION

In the second chapter we shall provide the main results (Th. 2.2.1 and

Th. 2.3.2), in which we merge the consequence of a proposition (Prop. 1.3.2)

by P. Niyogi, S. Smale, and S. Weinberger in [27] and a special construction

given in Lemma 2.1.3. Thanks to that, we shall be able to prove a double

inequality that relates the PBNs of a compact Riemanniann submanifold X

of Rm with a ball covering generated by the points of a suitable sampling of

the object X itself. Such a result will allow us to re-introduce the idea of

blind strips and, this time, extend it to any homology degree.

Following the previous concepts, in the last chapter we shall propose

an alternative construction, with respect to chapter two; thanks to that we

shall be able to decrease the error that we commit during all the process of

approximation and association of the PBNs. To be more precise, we shall

introduce a new way (see Th. 3.2.4) to relate the PBNs of our object of

interest X (we consider only 1-submanifold in this case) and a simplicial

complex Sε generated by the points of the sampling [16]; the basic idea is

that, now, we can use a more flexible approximation which allows us to

decrease the number of points of the sampling or to reduce the error in the

construction. As a result we obtain that the width of the blind strips is, in

the first case, a half of the previous one and, in the second alternative, only

a quarter.

To better clarify the meaning of the results presented in the last two

chapters, in each of them an entire section, dedicated to examples, is present.
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Chapter 1

Preliminary Results

Before starting with the preliminary results, we think that it is appropri-

ate to recall the most significant steps of the evolution of persistent homology

theory. The first step, maybe the most important, was performed by P.

Frosini in his PhD thesis [20]; in that work a method was introduced, to

study an object not only as an entity itself, but as an entity endowed with a

function that describes it. The main idea was to understand that the impor-

tant item to study is not only the object itself, but the object seen through

the eyes of an observer; in other words we have to focus our attention on

what we want to analyze of the object, as e.g. colour or height. In order

to do that, we need to define suitable functions, called measuring functions,

that can encode the features of our analysis. At the beginning of the theory,

the functions were built ad hoc, but soon the theory was generalized to any

continuous functions with values in R. The second passage was to build a

method to numerically analyze the pair (object, function), the so called size

pair (X,φ) (where, typically, X is a topological space and φ is a continuous

function from X to R). The method is based on the use of the lower level

sets of φ (〈φ ≤ v〉 = {p ∈ X|φ(p) ≤ v}); in this way it is possible to filtrate

the object X in portions of itself such that each portion is contained in the

following one (according to the increasing values of the measuring function).

Thanks to this construction it is possible to define a function ρ : R2 → N,

1



2 1. Preliminary Results

called size function, that counts the number of path-connected components

of the lower level set generated by v that contain at least one point in the

lower level set generated by u, where u, v ∈ R2 and u ≤ v. In this way all

the topological information, related to the path-connected components, is

encoded in a plane diagram. Moreover it was possible to prove that each di-

agram can be fully described by some particular points, called corner points.

In other words all the information relative to a size pair (X,φ) is contained

in a set of points of the plane.

Since path-connected components are also represented by the 0-degree ho-

mology, the second significant step in the theory was to generalize the result

to all homology degrees. This passage has been introduced by E. Edelsbrun-

ner in [13], [18] and this theory was named persistent homology. The main

idea at the basis of this work is that, if you work with coefficients in a field

K, all the homology modules are vector spaces (in particular they have no

torsion). This means that it is again possible to associate a number to each

relation between lower level sets; in particular the theory studies the mor-

phisms induced in homology by the inclusion of the associated lower level

sets. Since all the homology modules are vector spaces, it is easy to compute

the rank of these morphisms and, once again, we can fully describe our size

pair with a set of points of the plane.

The first two steps take into account only functions with values in R, but it

is quite natural to analyze a feature of the object that is multidimensional,

meaning that the feature is described by multiple values as, e.g. the RGB

color (Red, Green, Blue). This idea has been developed by the team in

Bologna in [3], but only in the case of size functions (0-degree homology).

The final step has been taken by the same team with [4]; this paper provides

the final generalization that uses functions with values in Rn and analyzes

all the homology degrees.

This chapter is divided into three sections. In the first one we shall state some

definitions that are at the basis of persistent homology theory. In Section 1.2

we shall present a generalization of a result, introduced by P. Frosini in [9]
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that concerns the study of the so called pseudo-critical points. And, finally,

in Section 1.3 we shall report some topological properties of the compact

Riemannian submanifolds of Rm.

Remark 1.0.1. To be more precise, it is important to underline the different

types of functions used in the different steps. The theory of size functions

(step 1) works with continuous functions. The theory of persistent homology

(step 2) uses tame functions as in [13]. The theory of multidimensional size

functions (step 3) operates again with continuous functions. The theory

of multidimensional persistent homology (step 4) takes into account tame

functions as described in [4], but a recent result [8] states that it is possible to

extend to continuous functions in both one-dimensional and multidimensional

persistent homology.

1.1 Persistent Betti Numbers

In this section, as the title suggests, we shall introduce and define the

concept of persistent Betti numbers; after that, we shall define a function

that counts these numbers (called persistent Betti numbers function) and we

shall show some properties and methods to analyze it.

As already said in the introduction of the chapter, to avoid problems with

torsion, we shall always work with coefficients in a field K, so that all homol-

ogy modules are vector spaces.

First we define the following partial relation ≺ (resp. �) in Rn: if ~u =

(u1, . . . , un) and ~v = (v1, . . . , vn), we write ~u ≺ ~v (resp. ~u � ~v) if and only if

uj < vj (resp. uj ≤ vj) for j = 1, . . . , n. We also define ∆+ as the open set

{(~u,~v) ∈ Rn × Rn | ~u ≺ ~v}.
As usual, a topological space X is triangulable if there is a finite simplicial

complex, whose underlying space is homeomorphic to X; for a submanifold

of a Euclidean space, it will mean that its triangulation can be extended to

a domain containing it.

Studying the morphisms between homology modules induced by the inclusion
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of the relative lower level sets, can also be seen as the study of the change

in homology of the lower level sets relative to the increasing values of the

measuring function. In other words we are interested in the changing of the

values of the Betti numbers of the lower level sets through the inclusion of

one in another. In fact it is exactly this change that tells us how the object

X evolves with respect to the chosen function. In order to keep track of these

changes, we need to introduce the following definition

Definition 1.1 (Persistent Betti Numbers). Let X be a triangulable space

and ~f = (f1, . . . , fn) : X → Rn be a continuous function. We denote by

X〈~f � ~u〉 the lower level subset {p ∈ X | fj(p) ≤ uj, j = 1, . . . , n}. Then,

for each i ∈ Z, the i-th persistent Betti number function of (X, ~f) is β(X,~f,i) :

∆+ → N defined as β(X,~f,i)(~u,~v) = dim(Imf~v~u), with

f~v~u : Ȟi(X〈~f � ~u〉)→ Ȟi(X〈~f � ~v〉),

the homomorphism induced by the inclusion map of lower level sets

X〈~f � ~u〉 ⊆ X〈~f � ~v〉.

Here Ȟi denotes the i-th Čech homology module. We use Čech homology

because it guarantees some useful continuity properties at the limit [8].

For the sake of notation, from now on, we shall refer to persistent Betti

numbers as PBNs, and to the persistent Betti numbers function as PBNF

(PBNFs for the plural). Since we mostly work with a multidimensional

setting (in the sense that the measuring functions are with values in Rn) the

PBNs and PBNFs are considered multidimensional. When we shall refer to

the one-dimensional (or mono-dimensional) case we shall use 1d-PBNs and

1d-PBNFs respectively.

Remark 1.1.1. When the PBNFs were defined in terms of filtering functions

in [13], these were so taken as to be tame (as said in Remark 1.0.1), but in

our case, since we need continuous maps, we refer to ([Sect. 2.1][8]) for the

relevant extension.
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PBNs give us a way to analyze triangulable spaces through their homo-

logical properties. Then it is natural to introduce a distance for compar-

ing them. As we shall show in Subsection 1.1.1 and 1.1.2, this has been

done, and through this distance it has been possible to prove stability of

the 1d-PBNFs and PBNFs under variations of the measuring function in the

one-dimensional [13] and multidimensional case [8].

1.1.1 Stability Theorem

First we shall define the proper corner points and corner points at infinity,

that are the root of the construction of the 1d-PBNFs representation and

then we shall present the Representation Theorem (Th. 1.1.3) which allows

to express the 1d-PBNFs in a compact way.

Next, we shall define the one-dimensional matching distance (or bottleneck

distance in [13]); the choice of this distance has been done because, among

all the other, this is the one that appears to be the best lower bound for

the natural pseudo-distance. The natural pseudo-distance, introduced by the

team in Bologna in [15], is a distance that arises when we try to compare two

homeomorphic spaces in a direct way; in other words it comes out naturally

when we take into account all possible homeomorphism between the two

spaces and then we check which one minimizes the displacement of points

(in relation to the measuring functions on each space). To be more precise, if

(X, ~f) and (Y, ~f ′) are two size pairs with X and Y homeomorphic, then the

natural pseudo-distance is defined as d((X, ~f), (Y, ~f ′)) = inf ~f maxp∈X ||~f(p)−
~f ′(φ(p))||∞, where φ varies among all the possible homeomorphisms between

X and Y . The only problem in applications is that we need to look at all

the possible homeomorphisms and that is computationally impossible; for

this reason we use the matching distance that is easier to compute. For a

complete dissertation we refer to [15].

After the definition, we shall continue showing how this distance can be used

to state the one-dimensional Stability Theorem (Th. 1.1.5); the result of

this theorem is extremely important for what concerns applications. In fact
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the basic idea is that, even if we change a bit the values of the measuring

functions (because e.g. there is some noise), also the distance between the

1d-PBNFs will change only a bit.

Definition 1.2 (Proper Corner Point). For every point d = (u, v) ∈ ∆+ we

define the number µi(d) as:

lim
ε→0

β(X,f,i)(u+ε, v−ε)−β(X,f,i)(u−ε, v−ε)−β(X,f,i)(u+ε, v+ε)+β(X,f,i)(u−ε, v+ε).

The number µi(d) is called the multiplicity of d. Also if µi(d) > 0 we call d

a proper corner point of β(X,f,i).

Definition 1.3 (Corner Point At Infinity). For every point of the form

(u,∞) ∈ ∆+ we associate to them the line r of equation u = u, u ∈ R,

and we define µi(r) as:

lim
ε→0

β(X,f,i)

(
ū+ ε,

1

ε

)
− β(X,f,i)

(
ū− ε, 1

ε

)
.

The number µi(r) will be called the multiplicity of r for β(X,f,i). When this

finite number is strictly positive, we call r a corner point at infinity for β(X,f,i).

Remark 1.1.2. The multiset of all proper corner points and corner points

at infinity for β(X,f,i), counted with their multiplicity, union the points of ∆

(where ∆ is the diagonal ∆ = {(u, v) ∈ R2|u = v}), counted with infinite

multiplicity, is the set of points of the persistent diagram Di(X, f). The

complete description of persistence diagrams Di(X, f) can be found in [13];

in plain words they are the encoder of the information generated by the 1d-

PBNFs (in the one-dimensional case they are exactly defined as a simple

collection of points of R2 counted with multiplicity).

Using the idea of proper corner points and corner points at infinity it is

possible to state a Representation Theorem, claiming that the value of the

i-th 1d-PBNF can be fully determined by the set of these points and their

multiplicity.

For the sake of simplicity, each line of equation u = a will be identified

to a point at infinity with coordinates (a,∞).
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Theorem 1.1.3 (Representation Theorem). For every ū < v̄ <∞, it holds

that

β(X,f,i)(ū, v̄) =
∑
u≤ū

v̄<v≤∞

µi((u, v)).

The previous theorem claims that the value of β(X,f,i)(ū, v̄) equals the

number of corner points lying above and on the left of (ū, v̄). Thanks to

that, we are able to compactly represent the i-th 1d-PBNF as formal series

of corner points and corner lines.

For a detailed proof of the Theorem 1.1.3 we refer to [19][k-Triangle Lemma].

We are now ready to state the definition of the Matching Distance

Definition 1.4 (Matching Distance). Let X and Y be homotopically equiv-

alent triangulable spaces, endowed with continuous functions f : X → R and

f ′ : Y → R. The matching distance dmatch between β(X,f,i) and β(Y,f ′,i) is

equal to the bottleneck distance between the persistence diagrams Di(X, f)

and Di(Y, f
′) i.e.

dmatch
(
β(X,f,i), β(Y,f ′,i)

)
= inf

γ
max

q∈Di(X,f)
‖q − γ(q)‖∞̃,

where γ ranges over all multi-bijections between Di(X, f) and Di(Y, f
′),

and for every q = (u, v), q′ = (u′, v′) in ∆∗,

‖q − q′‖∞̃ = min

{
max {|u− u′|, |v − v′|} ,max

{
v − u

2
,
v′ − u′

2

}}
,

with the convention about points at infinity that ∞− y = y −∞ =∞ when

y 6=∞,∞−∞ = 0, ∞
2

=∞, |∞| =∞, min{c,∞} = c and max{c,∞} =∞.

Remark 1.1.4. The classical matching distance dmatch is defined only for the

1d-PBNFs associated with the same space. The use of β(X,f,i) and β(Y,f ′,i)

is a quite new theoretical approach. The idea under this definition (also

introduced in [11], but with a totally different setting) is that if the two

spaces X and Y are homotopically equivalent, then the associated persis-

tence diagrams can be totally compared. In other words, the homotopically
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equivalence guarantees that the number of points at infinity is the same in

the two spaces, for all homology degrees. On the other hand, if the two

spaces are not homotopically equivalent the matching distance becomes an

extended distance with values in R ∪∞.

Using the previous definition, we can recall a result introduced in [8],

that states the stability of the 1d-PBNFs with respect to perturbation of the

measuring functions. The one-dimensional version is the following.

Theorem 1.1.5 (Stability Theorem). Let X be a triangulable space and

f, f ′ : X → R two continuous functions. Then, for every i ∈ Z, we have that

dmatch
(
β(X,f,i), β(X,f ′,i)

)
≤ max

p∈X
abs(f(p)− f ′(p)).

As said in the introduction of this subsection, this result implies an im-

portant stability property that is essential in the applications; in fact the

theorem shows that the values encoded by the 1d-PBNFs are robust against

small perturbations, thus the comparison with slightly noisy measuring func-

tions can be done also in the worst case.

The previous dissertation is based on the one-dimensional setting, in the sense

that all the measuring functions take values in R; in the next subsection we

shall extend to functions with values in Rn.

1.1.2 Mono-dimensional Reduction

As has been briefly hinted in the introduction of the chapter, the multi-

dimensional setting offers a wider opportunity in the choice of the measuring

functions, this because we can now choose a function with values in Rn and

that implies that we can describe more features at the same time.

On the other hand the multidimensional setting brings out new problems:

e.g. there is not a direct description of the PBNFs into sets of points or

a distance that gives a stability result. Nevertheless it is still possible to

build a special construction that allows us to use the information generated
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by the multidimensional setting, as shown by the team in Bologna in [10].

The main idea of this theory is to foliate the domain ∆+ of the PBNFs with

half-planes and then to compute the 1d-PBNFs on these half-planes. Since

the half-planes are ∆+ domains in R2, this method gives a way to reduce the

computation of the multidimensional case to the computation of the one-

dimensional one on each single leaf of the foliation (as stated in Theorem

(Th. 1.1.6)). Moreover, with this construction, it is possible to define a mul-

tidimensional distance (Def. 1.6), based on the values of the one-dimensional

distance on each leaf. Then, with this distance, we can state a stability result

that guarantees the stability of the PBNFs respect to small changes of the

multidimensional measuring functions (Multidimensional Stability Theorem

(Th. 1.1.8)). It is also important to underline that it can be proved that the

multidimensional matching distance is a better lower bound for the natural

pseudo-distance, compared to the one-dimensional one. Thus the use of the

multidimensional setting guarantees a better (or equal) discrimination power

in our analysis.

To precisely define the multidimensional matching distance Dmatch, we need

to technically define the concept of foliation and admissible pair. We also

remember that all the following part has been introduced in [10], [3] and [8].

We start by recalling that the following parametrised family of half-planes

in Rn × Rn is a foliation of ∆+.

Definition 1.5 (Admissible Pairs). For every unit vector ~l = (l1, . . . , ln) of

Rn such that lj > 0 for j = 1, . . . , n, and for every vector ~b = (b1, . . . , bn)

of Rn such that
∑n

j=1 bj = 0, we shall say that the pair (~l,~b) is admissible.

We shall denote the set of all admissible pairs in Rn × Rn by Admn. Given

an admissible pair (~l,~b), we define the half-plane π(~l,~b) of Rn × Rn by the

following parametric equations:{
~u = s~l +~b

~v = t~l +~b

for s, t ∈ R, with s < t.
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The key property of this foliation is that the restriction of β(X,~f,i) to each

leaf can be seen as a particular 1d-PBNF, as the following theorem states.

Theorem 1.1.6 (Reduction Theorem). Let (~l,~b) be an admissible pair, and

F
~f

(~l,~b)
: X → R be defined by setting

F
~f

(~l,~b)
(p) = max

j=1,...,n

{
fj(p)− bj

lj

}
.

Then, for every (~u,~v) = (s~l+~b, t~l+~b) ∈ π(~l,~b) the following equality holds:

β(X,~f,i)(~u,~v) = β
(X,F

~f

(~l,~b)
,i)

(s, t) .

As a consequence of the Reduction Theorem 1.1.6, we observe that the

identity β(X,~f,i) ≡ β(X,~f ′,i) holds if and only if dmatch(β(X,F
~f

(~l,~b)
,i)
, β

(X,F
~f ′

(~l,~b)
,i)

) =

0, for every admissible pair (~l,~b).

Since we are working with a continuous foliation, it is normal to analyze

what happens when we change leaf; luckily the next theorem gives a stability

result respect to each leaf of the foliation, in the sense that a small change

of the leaf implies a small change in the reduced 1d-PBNF.

Theorem 1.1.7 (Leaf Stability). If (X, ~f) is a size pair, (~l,~b) ∈ Admn and

ε is a real number with 0 ≤ ε < mini=1,...,n li, then for every admissible pair

(~l′,~b′) with ||(~l,~b)− (~l′,~b′)||∞ ≤ ε, it hold that

dmatch(β(X,F
~f

(~l,~b)
,i)
, β

(X,F
~f

(~l′,~b′)
,i)

) ≤ maxp∈X ||~f ||∞ + ||~l||∞ + ||~b||∞
mini=1,...,n(li(li − ε))

So, once again, we are guaranteed that our result is independent from the

noise and that implies that the theory is compatible with the applications.

Finally we are ready to define the multidimensional matching distance Dmatch

and then state the Multidimensional Stability Theorem.

Definition 1.6 (Multidimensional Matching Distance). Let ~f, ~f ′ : X → Rn

be continuous functions and β(X,~f,i), β(X,~f ′,i) be the corresponding PBNFs.
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Then:

Dmatch(β(X,~f,i), β(X,~f ′,i)) = sup
(~l,~b)∈Admn

min
j
lj · dmatch(β(X,F

~f

(~l,~b)
,i)
, β

(X,F
~f ′

(~l,~b)
,i)

).

Dmatch is a distance on {β(X,~f,i) | ~f : X → Rn continuous}.

Theorem 1.1.8 (Multidimensional Stability Theorem). Let X be a trian-

gulable space. For every i ∈ Z, there exists a distance Dmatch on the set

{β(X,~f,i) | ~f : X → Rn continuous} such that

Dmatch

(
β(X,~f,i), β(X,~f ′,i)

)
≤ max

p∈X
‖~f(p)− ~f ′(p)‖∞.

Remark 1.1.9. Unfortunately in the multidimensional case it is not possible

to obtain a full description, in terms of sets of points, for the PBNFs, but only

an evaluation point by point. In our approach this is not a major problem; in

fact we are interested in the shape comparison, not in the shape description.

Thus, in this setting, we only need to compare the values of the PBNFs in

a sufficiently large number of points, to obtain a suitable distance between

the two objects.

For what concerns the shape description problem, the previous method gives

only a theoretical way to get all the information, because we should compute

the values of the PBNF in an infinite number of points relative to the leaves

of the foliation.

1.2 Pseudo-critical Points

In this section we shall define what the pseudo-critical points of a C1

function ~f are and we shall relate them to the discontinuities of the PBNF

associated to ~f . This construction will allow us to better understand the

structure of the PBNFs and also will give us important information for the

choice of the measuring functions in the applications.

The entire section is based on a theory, introduced by the team in Bologna

in [9], that studies what happens in the one-dimensional setting. Thanks to
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new results in the multidimensional theory, we are now able to present a gen-

eralization of that theory in the multidimensional setting. The generalization

arises quite naturally from the original work; in fact the whole structure is

basically the same and every proof is only adapted to the multidimensional

setting; but the main ideas remain exactly the same.

The section is divided into two Subsections 1.2.1 and 1.2.2; in the first one

we shall show some basic and well-known properties of the 1d-PBNFs; in the

second one we shall state the main core of the theory. To better understand

the construction of the theory we shall briefly resume the fundamental steps

of Subsection 1.2.2: first of all we shall give the definition of pseudo-critical

point (Def. 1.7) in relation to a particular leaf of the foliation as in Def.

1.5, thus we shall use the idea of the one-dimensional reduction (Subsection

1.1.2) and the Reduction Theorem 1.1.6. After that we shall relate the corner

points of Def. 1.2 of the reduced PBNF (the PBNF generated by the function

reduced according to the Reduction Theorem) to the pseudo-critical values

of ~f . The third step is to show an ”if and only if” relation between the dis-

continuities of the PBNF of ~f and the discontinuities of the reduced PBNF,

using the parametrisation values (s, t) of the foliation in Def. 1.5. Finally,

using the two previous results we shall point out the relation between the

discontinuities of the PBNF of ~f and the pseudo-critical values of ~f itself.

In the last part of the Subsection 1.2.2 we shall introduce a new definition of

pseudo-critical point (Def. 1.8), that does not depend on the foliation. And

thanks to that we shall state the main theorem (Th. 1.2.12) of the section,

that encodes the general setting of the previous results.

From now on, let X be a triangulable space and let f : X → R be, at

least, a continuous function.

1.2.1 Monodimensional Case

In this subsection we shall report some definitions and propositions re-

lated to the 1d-PBNFs. The original statements have been introduced in [23]

and then also in [8]. First of all we recall the definitions of proper corner
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point as in Def. 1.2 and proper corner point at infinity as in Def. 1.3 and the

Representation Theorem 1.1.3 of the previous section. Then, thanks to two

corollaries (Cor. 1.2.1, Cor. 1.2.3) and a theorem (Th. 1.2.2), we shall be

able to describe the connection between the discontinuities of the 1d-PBNFs

and the proper corner points just recalled.

Before starting we underline that it is exactly the idea of the Representation

Theorem 1.1.3 that leads to the following corollary, which gives us informa-

tion about the structure of the discontinuities of the 1d-PBNFs. In particular

it is easy to see that the following result implies that the representation of the

1d-PBNFs on the R2 domain consists of right triangles in which every dis-

continuity point is a point of a side and the hypotenuse is along the diagonal

of R2.

Corollary 1.2.1. Each discontinuity point (ū, v̄) for β(X,f,i) is such that ei-

ther ū is a discontinuity point for β(X,f,i)(·, v̄), or v̄ is a discontinuity point

for β(X,f,i)(ū, ·), or both these conditions hold.

Furthermore, when we are in presence of a proper corner point we get

additional information.

Theorem 1.2.2. Let X be a closed C1 Riemannian manifold, and let f :

X → R be a C1 function. Then if (ū, v̄) is a proper corner point for β(X,f,i),

it follows that both ū and v̄ are critical values of f . If (ū,∞) is a corner

point at infinity for β(X,f,i), it follows that ū is a critical value of f .

Proof. We confine ourselves to prove the former statement, since the proof

of the latter is analogous.

First of all, let us remark that there exists a closed C∞ Riemannian

manifold X̃ that is C1-diffeomorphic to X through a C1-diffeomorphism h :

X̃ → X ([25, Th. 2.9]). Set f̃ = f ◦ h. Obviously, the i-th 1d-PBNF

associated with the pairs (X̃, f̃) and (X, f) coincide. Therefore, (ū, v̄) is also

a corner point for β(X̃,f̃ ,i).

We observe that the claim of our theorem holds for a closed C∞ Rieman-

nian manifold endowed with a Morse function ([22, Th. 2.2]). Now, for every
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real value ε > 0 it is possible to find a Morse function fε : X̃ → R such that

maxQ∈X̃ |f̃(Q) − fε(Q)| ≤ ε and maxQ∈X̃

∥∥∥∇f̃(Q)−∇fε(Q)
∥∥∥ ≤ ε: We can

obtain fε by considering first the smooth function given by the convolution

of f̃ with a suitable “regularizing” function, and then a Morse function fε

approximating in C1(X̃,R) the previous function ([26, Cor. 6.8]). Therefore,

from the Stability Theorem 1.1.5 it follows that for every ε > 0 we can find a

corner point (ūε, v̄ε) for the i-th 1d-PBNF β(X̃,fε,i)
with ‖(ū, v̄)− (ūε, v̄ε)‖∞ ≤

ε and ūε, v̄ε as critical values for fε. Passing to the limit for ε→ 0 we obtain

that both ū and v̄ are critical values for f̃ . The claim follows by observing

that, since f̃ and f have the same critical values, both ū and v̄ are also

critical values for f .

From the Representation Theorem 1.1.3 and Theorem 1.2.2 we can obtain

the following corollary, refining Corollary 1.2.1 in the C1 case (we skip the

easy proof):

Corollary 1.2.3. Let X be a closed C1 Riemannian manifold, and let f :

X → R be a C1 function. Let also (ū, v̄) be a discontinuity point for β(X,f,i).

Then at least one of the following statements holds:

(i) ū is a discontinuity point for β(X,f,i)(·, v̄) and ū is a critical value for f ;

(ii) v̄ is a discontinuity point for β(X,f,i)(ū, ·) and v̄ is a critical value for f .

1.2.2 Discontinuities of PBNFs

In this subsection, as hinted in the introduction of the section, we are

going to prove some new results about the discontinuities of β(X,~f,i) and a

way to connect them to a particular class of points, the so called pseudo-

critical points. In order to do that, we shall follow three steps and then we

shall state the general result; the description of each single passage will be

given along the subsection.

Since we want to get information on how the PBNFs are represented in

the multidimensional domain Rn×Rn, we start by analyzing how they change
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when the values of ~u and ~v change. The next lemma, that is a generaliza-

tion of the one-dimensional case, shows a basic monotonicity property of the

PBNFs.

We also recall that we need to work with a C1 function ~f and a triangulable

space X.

Lemma 1.2.4 (Monotonicity Lemma). β(X,~f,i)(~u,~v) is non-decreasing in the

variable ~u and non-increasing in the variable ~v.

Proof. If ~u′ ≺ ~u ≺ ~v we have that H(X〈~f � ~u′〉) ↪→ H(X〈~f � ~u〉) ↪→
H(X〈~f � ~v〉). Now if a cycle is born before ~u′ and still alive till ~v, it is also

alive in ~u. On the other hand, a cycle could born before ~u but after ~u′, thus

the associated PBNF cannot be decreasing.

If ~u ≺ ~v ≺ ~v′ we have that H(X〈~f � ~u〉) ↪→ H(X〈~f � ~v〉) ↪→ H(X〈~f � ~v′〉).
If a cycle is still alive at ~v′ then it is also alive at ~v, but a cycle could die

after ~v and before ~v′, thus the PBNF is non increasing.

Before stating the next Definition we want to recall the Reduction Theo-

rem 1.1.6. This is because we shall use the idea of the foliation with relative

(~l,~b)-half-planes and also the reduced function g (for sake of notation we use

g instead of F
~f

(~l,~b)
). Now with all these tools we can finally define pseudo-

critical points.

Definition 1.7 (Pseudocritical Points). For every Q ∈ X,

set IQ =
{
j ∈ {1, . . . , n} :

fj(Q)−bj
lj

= g(Q)
}

. We shall say that Q is an (~l,~b)-

pseudo-critical point for ~f if the convex hull of the gradients ∇fj(Q), j ∈ IQ,

contains the null vector, i.e. for every j ∈ IQ there exists a real value λj such

that
∑

j∈IQ λj∇fj(Q) = 0, with 0 ≤ λj ≤ 1 and
∑

j∈IQ λj = 1. If Q is an

(~l,~b)-pseudo-critical point for ~f , the value g(Q) will be said an (~l,~b)-pseudo-

critical value for ~f .

Remark 1.2.5. The concept of (~l,~b)-pseudo-critical point is strongly con-

nected, via the function g introduced in Def. 1.7, with the notion of gen-

eralized gradient introduced by F. H. Clarke [12]. For a point Q ∈ X, the
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condition of being (~l,~b)-pseudo-critical for ~f corresponds to the one of being

“critical” for the generalized gradient of g ([12, Prop. 2.3.12]). However, in

this context we prefer to adopt a terminology highlighting the dependence

on the considered half-plane.

With this definition we can state the following theorem, that is the first

step to relate the discontinuities of the measuring function ~f to its (~l,~b)-

pseudo-critical values. More precisely we start claiming the existence of a

connection between the proper corner points of the reduced PBNF and the

(~l,~b)-pseudo-critical value relative to ~f .

Theorem 1.2.6. Let (u, v) be a proper corner point of β(X,g,i), then both u

and v are (~l,~b)-pseudo-critical value for ~f . If (u,∞) is a corner point at

infinity of β(X,g,i), then u is a (~l,~b)-pseudo-critical value for ~f .

Proof. The main idea of the proof is to show that the thesis holds for a C1

function approximating the function g : X → R in C0, and prove that the

property passes to the limit.

First of all we need to fix the degree i, then let’s set Φj(Q) =
fj(Q)−bj

lj

and choose c ∈ R such that minQ∈X Φj(Q) > −c, for every j = 1, . . . , n.

Consider the function sequence (gp), p ∈ N+ = N \ {0}, where gp : X → R

and gp(Q) =
(∑n

j=1(Φj(Q) + c)p
) 1
p−c: Such a sequence converges uniformly

to the function g. Indeed, for every Q ∈ X and for every index p we have

that

|g(Q)− gp(Q)| =

∣∣∣∣∣∣max
j

Φj(Q)−

( n∑
j=1

(Φj(Q) + c)p

) 1
p

− c

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣max
j
{Φj(Q) + c} −

(
n∑
j=1

(Φj(Q) + c)p

) 1
p

∣∣∣∣∣∣ =

=

(
n∑
j=1

(Φj(Q) + c)p

) 1
p

−max
j
{Φj(Q) + c} ≤

≤ max
j
{Φj(Q) + c} · (n

1
p − 1).
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If we consider a proper corner point C̄ of β(X,g,i), by the Stability Theorem

1.1.5 it follows that it is possible to find a large enough p and a proper corner

point Cp of β(X,gp,i), such that Cp is arbitrarily close to C̄. Since Cp is a proper

corner point of β(X,gp,i), it follows from Corollary 1.2.3 that its coordinates

are critical values of the C1 function gp. If we look at the abscissa of Cp

(analogous considerations hold for the ordinate of Cp) it follows that there

exists Qp ∈ X with x(Cp) = gp(Qp) and (with respect to local coordinates

x1, . . . , xm of the m-manifold X)

0 =
∂gp
∂x1

(Qp) =

(
n∑
j=1

(Φj(Qp) + c)p

) 1−p
p

·

(
n∑
j=1

(Φj(Qp) + c)p−1 · ∂Φj

∂x1

(Qp)

)
...

0 =
∂gp
∂xm

(Qp) =

(
n∑
j=1

(Φj(Qp) + c)p

) 1−p
p

·

(
n∑
j=1

(Φj(Qp) + c)p−1 · ∂Φj

∂xm
(Qp)

)
.

Hence we have

n∑
j=1

(Φj(Qp) + c)p−1 · ∂Φj

∂x1

(Qp) = 0

...
n∑
j=1

(Φj(Qp) + c)p−1 · ∂Φj

∂xm
(Qp) = 0 .

Therefore, if we set

vp = (v1
p, . . . , v

n
p ) =

(
(Φ1(Qp) + c)p−1, . . . , (Φn(Qp) + c)p−1

)
,

we can write tJ(Qp) ·tvp = 0, where J(Qp) is the Jacobian matrix of ~Φ =

(Φ1, . . . ,Φn) computed at the point Qp. Thanks to the compactness of X, we

can assume (possibly by extracting a subsequence) that (Qp) converges to a

point Q̄. We can define up = vp
‖vp‖∞

. By compactness (recall that ‖up‖∞ = 1)

we can also assume (possibly by considering a subsequence) that the sequence
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(up) converges to a vector ū = (ū1, . . . , ūn), where ūj = limp→∞
vjp

‖vp‖∞
and

‖ū‖∞ = 1. Obviously tJ(Qp) ·tup = 0 and hence we have

tJ(Q̄) ·tū = 0. (1.1)

Since for every index p and for every j = 1, . . . , n the relation 0 < ujp ≤ 1

holds, for each j = 1, . . . , n the condition 0 ≤ ūj = limp→∞ u
j
p ≤ 1 is satisfied.

We can now recall that g(Q̄) = maxj Φj(Q̄), by definition, and consider the

set IQ̄ = {j ∈ {1, . . . , n} : Φj(Q̄) = g(Q̄)} = {j1, . . . , jh}. For every r 6∈ IQ̄
the component ūr is equal to 0, since 0 ≤ urp =

(
Φr(Qp)+c

maxj{Φj(Qp)+c}

)p−1

and

limp→∞
Φr(Qp)+c

maxj{Φj(Qp)+c} =
Φr(Q̄)+c

g(Q̄)+c
, which is strictly less than 1 for Φr(Q̄) <

g(Q̄). Hence we have ū = ūj1 · ej1 + · · ·+ ūjh · ejh , where ej is the jth vector

of the standard basis of Rn. Thus, from equality (1.1) we have
∑h

w=1 ū
jw ·

∂Φjw
∂x1

(Q̄) = 0, . . . ,
∑h

w=1 ū
jw · ∂Φjw

∂xm
(Q̄) = 0, that is

∑h
w=1

ūjw

ljw
· ∂fjw
∂x1

(Q̄) =

0, . . . ,
∑h

w=1
ūjw

ljw
· ∂fjw
∂xm

(Q̄) = 0, since Φj =
fj−bj
lj

. Hence,
∑h

w=1
ūjw

ljw
∇fjw(Q̄) =

0. By recalling that ūjw ≥ 0, ljw > 0 and ū is a non–vanishing vector, it

follows immediately that
∑h

w=1
ūjw

ljw
> 0 and therefore the convex hull of the

gradients ∇fj1(Q̄), . . . ,∇fjh(Q̄) contains the null vector. Thus, Q̄ is an (~l,~b)-

pseudo-critical point for ~f and hence g(Q̄) is an (~l,~b)-pseudo-critical value

for ~f . Moreover, from the uniform convergence of the sequence (gp) to g and

from the continuity of the function g, we have (recall that C̄ = limp→∞Cp)

x(C̄) = lim
p→∞

x(Cp) = lim
p→∞

gp(Qp) = g(Q̄).

In other words, the abscissa x(C̄) of a proper corner point of the persistent

diagram Di(X, g) is the image of an (~l,~b)-pseudo-critical point Q̄ through g,

i.e. an (~l,~b)-pseudo-critical value for ~f . An analogous reasoning holds for

the ordinate y(C̄) of a persistent corner point.

The next lemma points out another property of the 1d-PBNFs, which

will be used in the proof of Proposition (Prop.1.2.8).
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Lemma 1.2.7. Assume that (X, f), (X, f ′) are two size pairs, with f, f ′ :

X → R. If dmatch
(
β(X,f,i), β(X,f ′,i)

)
≤ 2ε, then it holds that

β(X,f,i)(u− ε, v + ε) ≤ β(X,f ′,i)(u+ ε, v − ε),

for every (u, v) with u+ ε < v − ε.

Proof. Let ∆∗ be the set given by ∆+ ∪ {(a,∞) : a ∈ R}. For every (u, v)

with u < v, let us define the set L(u,v) = {(σ, τ) ∈ ∆∗ : σ ≤ u, τ > v}. By

the Representation Theorem 1.1.3 we have that β(X,f,i)(u − ε, v + ε) equals

the number of proper corner points and corner points at infinity for β(X,f,i)

belonging to the set L(u−ε,v+ε). Since dmatch
(
β(X,f,i), β(X,f ′,i)

)
≤ 2ε, the num-

ber of proper corner points and corner points at infinity for β(X,f ′,i) in the set

L(u+ε,v−ε) is not less than β(X,f,i)(u− ε, v+ ε). The reason is that the change

from f to f ′ does not move the corner points more than 2ε, with respect

to the max-norm, because of the Stability Theorem 1.1.5. By applying the

Representation Theorem 1.1.3 once again to β(X,f ′,i), we get our thesis.

Thanks to Lemma 1.2.7 we can state the following proposition, which rep-

resents another step in the direction of our final goal. In this particular case,

we claim that there is a double implication between being a discontinuity

point for the PBNF related to the original measuring function ~f and being

a discontinuity point of the the reduced PBNF. This property holds when it

is possible to express the chosen point (~u,~v) as a specific parametrisation of

the leaf generated by (s, t).

Proposition 1.2.8. A point (~u,~v) = (s~l+~b, t~l+~b) ∈ π(~l,~b ) is a discontinuity

point for β(X,~f,i) if and only if (s, t) is a discontinuity point for β(X,g,i).

Proof. Obviously, if (s, t) is a discontinuity point for β(X,g,i), then (~u,~v) =

(s~l + ~b, t~l + ~b) ∈ π(~l,~b ) is a discontinuity point for β(X,~f,i), because of the

Reduction Theorem 1.1.6. To prove the inverse implication, we shall verify

the contrapositive statement, i.e. if (s, t) is not a discontinuity point for

β(X,g,i), then (s~l+~b, t~l+~b) is not a discontinuity point for β(X,~f,i). Indeed, if
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(s, t) is not a discontinuity point for β(X,g,i), then β(X,g,i) is locally constant

at (s, t). So we can choose a real number η > 0 such that

β(X,g,i)(s− η, t+ η) = β(X,g,i)(s+ η, t− η). (1.2)

Thanks to the Leaf Stability Theorem 1.1.7, we can then consider a real

value ε = ε(η) with 0 < ε < minj=1,...,n lj such that for every admissible pair

(~l′,~b′) with
∥∥∥(~l,~b)− (~l′,~b′)

∥∥∥
∞
≤ ε, the relation d(β(X,g,i), β(X,g′,i)) ≤ η

2
holds,

where β(X,g′,i) is the 1d-PBNF corresponding to the half-plane π(~l′,~b′). By

applying Lemma 1.2.7 twice and the monotonicity Lemma 1.2.4 of β(X,g′,i) in

each variable, we have

β(X,g,i)(s− η, t+ η) ≤ β(X,g′,i)(s−
η

2
, t+

η

2
) ≤

≤ β(X,g′,i)(s+
η

2
, t− η

2
) ≤ β(X,g,i)(s+ η, t− η).(1.3)

Because of equality (1.2) we have that the inequalities (1.3) imply

β(X,g,i)(s− η, t+ η) = β(X,g′,i)(s−
η

2
, t+

η

2
) =

= β(X,g′,i)(s+
η

2
, t− η

2
) = β(X,g,i)(s+ η, t− η).(1.4)

Therefore, once again because of the monotonicity of β(X,g′,i) in each variable,

for every (s′, t′) with ‖(s, t)− (s′, t′)‖∞ ≤
η
2

and for every (~l′,~b′) with ‖(~l,~b)−
(~l′,~b′)‖∞ ≤ ε the equality β(X,g′,i)(s

′, t′) = β(X,g,i)(s, t) holds. By applying the

Reduction Theorem 1.1.6 we get β(X,~f,i)(s
′~l′+~b′, t′~l′+~b′) = β(X,~f,i)(s

~l+~b, t~l+~b).

In other words, β(X,~f,i) is locally constant at the point (~u,~v), and hence (~u,~v)

is not a discontinuity point for β(X,~f,i).

Remark 1.2.9. Let us observe that Proposition 1.2.8 holds under weaker hy-

potheses, i.e. in the case that X is a non-empty, compact and locally con-

nected Hausdorff space. However, for the sake of simplicity, we prefer here

to confine ourselves to the setting assumed at the beginning of the present

section.

The following theorem is the final step relative to the study of the (~l,~b)-

pseudo-critical points, and it associates the discontinuities of β(X,~f,i) to the

(~l,~b)-pseudo-critical values of ~f .
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Theorem 1.2.10. Let (~u,~v) ∈ ∆+ be a discontinuity point for β(X,~f,i), with

(~u,~v) = (s~l+~b, t~l+~b) ∈ π(~l,~b ). Then it follows that either ~u is a discontinuity

point for β(X,~f,i)(·, ~v) and s is an (~l,~b)-pseudo-critical value for ~f , or ~v is a

discontinuity point for β(X,~f,i)(~u, ·) and t is an (~l,~b)-pseudo-critical value for

~f , or both the previous conditions hold.

Proof. By Proposition 1.2.8 we have that (s, t) is a discontinuity point for

β(X,g,i), and from Proposition 1.2.1 it follows that either s is a discontinuity

point for β(X,g,i)(·, t) or t is a discontinuity point for β(X,g,i)(s, ·), or both

these conditions hold. Let us now suppose that s is a discontinuity point for

β(X,g,i)(·, t). Since β(X,g,i)(·, t) is monotonic, then there exists an arbitrarily

small real value ε > 0 such that β(X,g,i)(s− ε, t) 6= β(X,g,i)(s+ ε, t). Moreover,

the following equalities hold because of the Reduction Theorem 1.1.6:

β(X,g,i)(s− ε, t) = β(X,~f,i)((s− ε)~l +~b, t~l +~b) = β(X,~f,i)(~u− ε~l, ~v)

β(X,g,i)(s+ ε, t) = β(X,~f,i)((s+ ε)~l +~b, t~l +~b) = β(X,~f,i)(~u+ ε~l, ~v).

By setting ~ε = ε~l, we get β(X,~f,i)(~u − ~ε,~v) 6= β(X,~f,i)(~u + ~ε,~v). Therefore ~u

is a discontinuity point for β(X,~f,i)(·, ~v). Moreover, since s is a discontinuity

point for β(X,g,i)(·, t), from the Representation Theorem 1.1.6 it follows that s

is the abscissa of a corner point (possibly at infinity), and hence by Theorem

1.2.6 we have that s is an (~l,~b)-pseudo-critical value for ~f . Analogously we

can examine the case that t is a discontinuity point for β(X,g,i)(s, ·), and get

our statement.

In order to generalize the previous result to the case of pseudo-critical

points that do not depend on foliation, we need to give the following defini-

tion.

Definition 1.8. Let ~χ : X → Rn be a C1 function. A point P ∈ X is said

to be a pseudo-critical point for ~χ if the convex hull of the gradients ∇χi(P ),

j = 1, . . . , n, contains the null vector, i.e. there exist λ1, . . . , λn ∈ R such

that
∑n

j=i λj · ∇χj(P ) = 0, with 0 ≤ λj ≤ 1 and
∑n

j=1 λj = 1. If P is a

pseudo-critical point of ~χ, then ~χ(P ) will be called a pseudo-critical value for

~χ.
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Remark 1.2.11. Definition 1.8 corresponds to the Fritz John necessary con-

dition for optimality in Nonlinear Programming [2]. We shall use the term

“pseudo-critical” just for the sake of conciseness. For further references see

[28]. The concept of pseudo-critical point is strongly related also to the one

of Jacobi Set [17]. In literature, pseudo-critical points are also called Pareto

critical points.

In the following, we shall say that ϕ : Rm → Rn is a projection if there

exist n indexes j1, . . . , jn such that ϕ((x1, . . . , xm)) = (xi1 , . . . , xin), for every

~x = (x1, . . . , xm) ∈ Rm.

We are now ready to give the main result of this section.

Theorem 1.2.12. Let (~u,~v) ∈ ∆+ be a discontinuity point for β(X,~f,i). Then

at least one of the following statements holds:

(i) ~u is a discontinuity point for β(X,~f,i)(·, ~v) and a projection ϕ exists such

that ϕ(~u) is a pseudo-critical value for ϕ ◦ ~f ;

(ii) ~v is a discontinuity point for β(X,~f,i)(~u, ·) and a projection ϕ exists such

that ϕ(~v) is a pseudo-critical value for ϕ ◦ ~f .

Proof. By Theorem 1.2.10 we have that either ~u is a discontinuity point

for β(X,~f,i)(·, ~v), or ~v is a discontinuity point for β(X,~f,i)(~u, ·), or both these

conditions hold. Let us now confine ourselves the assumption that ~u is a

discontinuity point for β(X,~f,i)(·, ~v) and prove that a projection ϕ exists such

that ϕ(~u) is a pseudo-critical value for ϕ ◦ ~f . The proof in the case that

~v is a discontinuity point for β(X,~f,i)(~u, ·) proceeds in quite a similar way.

Consider the half-plane π(~l,~b) of the foliation containing the point (~u,~v), and

the pair (s, t) such that (~u,~v) = (s ·~l+~b, t ·~l+~b). Since ~u is a discontinuity

point for β(X,~f,i)(·, ~v), by applying once more Theorem 1.2.10 we obtain that

s is an (~l,~b)-pseudo-critical value for ~f . Therefore, by definition of g, there

exist a point P ∈ X and some indexes j1, . . . , jn with 1 ≤ n ≤ m, such

that s = g(P ) =
fj1 (P )−bj1

lj1
= · · · =

fjh (P )−bjh
ljh

and
∑n

w=1 λw · ∇~fjw(P ) = 0,

with 0 ≤ λw ≤ 1 for w = 1, . . . , n, and
∑n

w=1 λw = 1. Let us now consider
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the projection ϕ : Rm → Rn defined by setting ϕ(~u) = (uj1 , . . . , ujn). Since

(~u,~v) = (u1, . . . , um, v1, . . . , vm) = (s · l1 + b1, . . . , s · lm + bm, t · l1 + b1, . . . , t ·
lm + bm), we observe that ujw =

(
fjw (P )−bjw

ljw

)
· ljw + bjw = fjw(P ), for every

w = 1, . . . , n. Therefore it follows that ϕ(~u) is a pseudo-critical value for

ϕ ◦ ~f .

Remark 1.2.13. We stress that Theorem 1.2.12 restate the result obtained in

Theorem 1.2.10, providing a necessary condition for discontinuities of mul-

tidimensional size functions that does not depend on the foliation of the

domain ∆+.

1.3 Topological Properties of Riemannian Sub-

manifolds

As hinted in the introduction of the chapter, we are interested in getting

information on a submanifold of Rm. In particular we want to find relations

between our submanifold and a related ball covering generated by the points

of the sampling. For this purpose, we now state some properties of compact

Riemannian submanifolds of Rm, especially referred to such an approximat-

ing covering. Definition (Def. 1.9) and Proposition (Prop. 1.3.2) are due to

P. Niyogi, S. Smale, and S. Weinberger [27]. The main idea is that, under

suitable hypotheses, it is possible to get, from a sampling of a submanifold,

a b covering whose union retracts on it.

Before moving to the proposition we need to introduce the concept of open

normal bundle and condition number, this because they underlie the con-

struction of the covering and they also give important information about the

error of the approximation. Thus, by normal bundle Ns of radius s at a point

p ∈ X, we mean the collection of all vectors of length less than s anchored

at p and with direction normal to X (orthogonal to Tanp, the tangent space

of X in p).

The embedding of the open normal bundle Ns of radius s described above
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is a tubular neighbourhood of X in Rm, Tubs = {p + η ∈ Rm | p ∈ X, η ∈
Tan⊥p , ‖η‖ < s}, where Tan⊥p denotes the set of vectors normal to Tanp.

Tubs can also be seen as
⋃
p∈X(Tan⊥p ∩ B(p, s)), where B(p, s) is the ball of

radius s centred at p. For a detailed definition and discussion on it we refer

to [1].

A condition number 1
τ

is associated with a compact Riemannian subman-

ifold X of Rm.

Definition 1.9. τ is the largest number such that every open normal bundle

B about X of radius s is embedded in Rm for s < τ .

In plain words, the condition number tells when a submanifold is “bet-

ter” than another to be approximated: the bigger τ is, the better we can

approximate the submanifold, in the sense that we shall need less points to

sample it in an accurate way. On the other hand, if τ is small, it means that

the submanifold is badly conditioned and we shall need more points.

Remark 1.3.1. We notice that the number τ is directly correlated to both

the local and the global curvature aspects of the submanifold, to be more

precise τ controls the curvature of the submanifold at every point. Then, if

we are interested in analyzing the curvature through the second fundamental

form (as in [7]), we can take into account an important result shown in ([27,

Sect. 6]) ; this result states that the norm of the second fundamental form

is bounded by 1
τ
.

Moreover, the number τ is related to another important tool for the compu-

tational geometry that is the concept of medial axis (and the relative local

feature size). Now if we define G as the medial axis relative to X and for

every p ∈ X we define the local feature size σ(p) as the distance of p from G
(the distance is defined as d(p,G) = infg∈G ||p− g||), then we obtain that

τ = inf
p∈X

σ(p).

With τ as before, we can state the next proposition

Proposition 1.3.2. [27, Prop. 3.1]



1.3 Topological Properties of Riemannian Submanifolds 25

Let X be a compact Riemannian submanifold of Rm. Let L = {c1, . . . , ck}
be a collection of points of X, and let U =

⋃
j=1,...,k B(cj, δ) be the union of

balls of Rm with centre at the points of L and radius δ. Now, if L is such

that for every point p ∈ X there exists an cj ∈ L such that ‖p − cj‖ <
δ

2
,

then, for every δ <

√
3

5
τ , X is a deformation retract of U . So they have the

same homology.

The previous proposition states exactly what we need to relate the sub-

manifold X to a ball covering U generated by the sampling L. Moreover, the

deformation retract property and the fact that they share the same homology

will be critical in the next chapter, in which we shall use those properties to

correlate the PBNF of the submanifold with the one of its covering. Since

the retraction will be an important tool too, in the next remark we shall try

to give a brief explanation of its construction, as stated in the proof of the

previous proposition.

Remark 1.3.3. The proof of Proposition 1.3.2 gives us a way to construct a

retraction π : U → X and a homotopy F : U × I → U such that F (q, 0) = q

and F (q, 1) = π(q) .

Let π0 : Tubτ → X be the canonical projection from the tubular neighbour-

hood of radius τ of X onto X. Then π is the restriction of π0 to U for which

it holds:

π(q) = arg min
p∈X
‖q − p‖.

Then the homotopy is given by

F (q, t) = (1− t)q + tπ(q).

It is also important to observe that the retraction π moves the points of

U less than δ; this is because the trajectory of π(q) always remains inside a

ball of U that contains q (q can be contained in the intersection of different

balls), for every q ∈ U . In fact π−1(q) = U ∩ Tan⊥q ∩B(q, τ) (for a complete

argument we refer to ([27, Sect. 4]).
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Besides the condition number τ , we need another tool to evaluate the error

in the approximation. Since we work with continuous measuring functions,

it could happen that the function that we chose changes suddenly; or, in

other words, that the variation of the function could be high. In this case

we need to take into account the fast variation and merge it with the error

of the approximation, namely the radius of the balls of the covering. To do

that we introduce the concept of modulus of continuity that encodes these

information.

Definition 1.10 (Modulus of Continuity). Let ~f : Rm → Rn be a continuous

function. Then, for ε ∈ R+, the modulus of continuity Ω(ε) of ~f is:

Ω(ε) = max
j=1,...,n

sup
{

abs(fj(~p)− fj(~p′)) | ~p, ~p′ ∈ Rm, ‖~p− ~p′‖ ≤ ε
}
.

In other words Ω(ε) is the maximum over all moduli of continuity of the

single components of ~f .

We shall conclude this section with an important remark, that underlines

the differences between the two spaces that we use in our setting.

Remark 1.3.4. First, we notice that the spaces Rm and Rn play two different

rôles in our arguments: the ambient space of our submanifolds (which will al-

ways be Rm) is endowed with the classical Euclidean norm and has no partial

order relation on it. On the other hand, the range of the measuring functions

(Rn throughout) is endowed with the max norm and with the partial order

relation �, as defined at the beginning of Section 1.1.



Chapter 2

Estimating Persistent Betti

Numbers

In this chapter we shall present the main results of this Thesis; these

results try to give a solution to a fundamental problem that arises in ap-

plications. That is, unluckily, that all the theories presented in Chapter 1

are based on the study of a topological space X (or worse of a submanifold

of Euclidean space); obviously in the real application cases the object of in-

terest does not meet those requirements. In fact, normally, we have access

only to a finite approximation of the object, as for example the pixels of a

photo or a 3D laser sampling. In order to remedy this situation we tried to

find a way to relate the topological properties analyzed by the PBNFs of the

original object (possibly unknown), with the ones of a particular covering

generated by the points of the approximation of the object itself. More pre-

cisely, the covering U is generated by the union of balls (of the ambient space

Rm) centred in the points of the sampling. This peculiar covering has the

property that the object X is a deformation retract of it and thus they share

the same homology (the proof can be found in Proposition 1.3.2). Luckily,

this kind of construction can be extended to the lower level sets of ~f (with

~f : X → Rn continuous) and consequently it can be used for the description

of the PBNFs.

27
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Thanks to these results we are able to approximate the PBNFs of X knowing

only the ones of U ; obviously, since we are working with a covering, our result

will not be valid in the whole domain of the PBNF of U . In fact, when we

are near to the discontinuity sets of the PBNF the theory does not give an

accurate result, but when we are far from these sets we obtain the exact value

of the PBNF of X, i.e. we are able to recover the topological information

of the object X taking into account only the approximation U . It is also

clear that the width (or dimension) of the areas of uncertainly depends on

the quality of the approximation.

A similar argument can be made also in the case in which we consider, as an

approximation, a particular finite simplicial complex built from the points of

the sampling.

The chapter is divided into three sections. In the first one we shall present

two lemmas that will be used in the proof of the main results. The second

one is the core of chapter and of the entire Thesis, inside this section we shall

state the main theorem (Th. 2.2.1) and we shall describe some examples.

In the last section we shall extend the result of the main theorem when we

consider the combinatorial nature of the problem.

2.1 Retracts

Aim of this section is to yield two rather general results, which will be

specialized to Theorem (Th. 2.2.1) and Lemma (Lem. 2.3.1). Throughout

this section, Y will be a compact triangulable submanifold of Rm and V will

be a compact, triangulable subspace of Rm such that Y is a deformation

retract of V , with retraction r and homotopy G : V × I → V from the

identity of V , 1V , to r. Moreover ∀y ∈ Y , ∀v ∈ r−1(y), ∀t ∈ I we assume

that (r ◦G)(v, t) = y.

Let also ~f : Rm → Rn be a continuous function, and ~fY and ~fV be the

restrictions of ~f to Y and V respectively.

Lemma 2.1.1. Y 〈~fY � ~x〉 is a deformation retract of V 〈~fY ◦ r � ~x〉.
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Proof. Let r~x : V 〈~fY ◦ r � ~x〉 → Y 〈~fY � ~x〉 be the restriction of r to

V 〈~fY ◦ r � ~x〉. It is well-defined since, by the definition of the two sets,

r~x(V 〈~fY ◦ r � ~x〉) ⊆ Y 〈~fY � ~x〉. We now set G~x : V 〈~fY ◦ r � ~x〉 × I →
V 〈~fY ◦ r � ~x〉 as the restriction of G to V 〈~fY ◦ r � ~x〉× I. This restriction is

well-defined, because the path from v to r~x(v) is all contained in V 〈~fY ◦r � ~x〉,
thanks to the assumptions on G and r. Moreover, it is continuous and for

every v ∈ V 〈~fY ◦ r � ~x〉, G~x(v, 0) = v and G~x(v, 1) = r~x(v). So it is the

searched for deformation retraction.

In simple terms, the previous lemma states that the lower level sets of Y ,

that in our specific case it can be identified with the original object, are a

deformation retract of the lower level sets of V, that in our setting can be

considered as the cover U ; this kind of relation can be obtained thanks to

the definition of the retraction and its properties.

Remark 2.1.2. Since the homotopy G is relative to Y (i.e. keeps the points

of Y fixed throughout), this is what is called a strong deformation retract in

[29].

Now let ε = maxv∈V ‖r(v)− v‖ and ~ω(ε) = (Ω(ε), . . . ,Ω(ε)) ∈ Rn, where

Ω is the modulus of continuity of ~f as in 1.10.

Lemma 2.1.3. If (~z, ~w) is a point of ∆+ and if ~z + ~ω(ε) ≺ ~w − ~ω(ε), then

β(V,~fV ,i)
(~z − ~ω(ε), ~w + ~ω(ε)) ≤ β(Y,~fY ,i)

(~z, ~w) ≤ β(V,~fV ,i)
(~z + ~ω(ε), ~w − ~ω(ε))

Proof. First, observe that there are inclusions

γ : Y 〈~fY � ~z〉 → Y 〈~fY � ~w〉
ϕ : Y 〈~fY � ~w〉 → V 〈~fV � ~w + ~ω(ε)〉

ψ : V 〈~fV � ~z − ~ω(ε)〉 → V 〈~fV � ~w + ~ω(ε)〉

The fact that r moves every point not more than ε (since ε =

maxv∈V ‖r(v)− v‖) implies that also the inclusions η : V 〈~fV � ~z − ~ω(ε)〉 →
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V 〈~fY ◦ r � ~z〉 and θ : V 〈~fY ◦ r � ~z〉 → V 〈~fV � ~w + ~ω(ε)〉 make sense. Let

further r̄ = r~z ◦ η, where r~z is as in the proof of Lemma 2.1.1 with ~x = ~z.

Now we have the following (not necessarily commutative) diagram:

V 〈~fV � ~z − ~ω(ε)〉 r̄−−−→ Y 〈~fY � ~z〉

ψ

y yγ
V 〈~fV � ~w + ~ω(ε)〉 ←−−−

ϕ
Y 〈~fY � ~w〉

The next step is to prove that ψ is homotopic to ϕ ◦ γ ◦ r̄.
Let Ḡ : V 〈~fV � ~z − ~ω(ε)〉 × I → V 〈~fV � ~w + ~ω(ε)〉 be the composition

Ḡ = θ ◦G~z ◦ (η × 1I), where G~z is as in the proof of Lemma 2.1.1. Now,

for every v ∈ V 〈~fV � ~z − ~ω(ε)〉, we have Ḡ(v, 0) = G(v, 0) = v = ψ(v) and

Ḡ(v, 1) = G(v, 1) = r(v) = r̄(v) = ϕ ◦ γ ◦ r̄(v).

Since homotopic maps induce the same homomorphisms in homology,

we have (setting ψ∗ = ψ
w+~ω(ε)
z−~ω(ε) and γ∗ = γ ~w~z , and ϕ∗, r̄∗ are the homology

homomorphisms induced by ϕ and r̄ respectively)

β(V,~fV ,i)
(~z − ~ω(ε), ~w + ~ω(ε)) = dim Im(ψ∗) = dim Im(ϕ∗ ◦ γ∗ ◦ r̄∗) ≤

≤ dim Im(γ∗) = β(Y,~fY ,i)
(~z, ~w)

concluding the first part of the proof.

For the second inequality we use the following commutative (as will be

proved) diagram, with analogous definitions of maps γ′, ψ′, ϕ′ and r̄′:

Y 〈~fY � ~z〉
ϕ′−−−→ V 〈~fV � ~z + ~ω(ε)〉

γ′

y yψ′
Y 〈~fY � ~w〉 ←−−−

r̄′
V 〈~fV � ~w − ~ω(ε)〉

Here ψ′ is well defined because we are assuming ~z + ~ω(ε) ≺ ~w − ~ω(ε).

Then, passing to homology, we have (with analogous settings for the
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starred symbols):

β(Y,~fY ,i)
(~z, ~w) = dim Im(γ′∗) = dim Im(r̄′∗ ◦ ψ′∗ ◦ ϕ′∗) ≤

≤ dim Im(ψ′∗) = β(V,~fV ,i)
(~z + ~ω(ε), ~w − ~ω(ε))

To prove the commutativity of the diagram, we observe that r̄′ is the identity

map on the points of Y . Since Y 〈~fY � ~z〉 ⊆ Y , we have that r̄′ ◦ ψ′ ◦ ϕ′ is

the canonical inclusion of Y 〈~fY � ~z〉 in Y 〈~fY � ~w〉.

The previous result shows how it can be possible to relate together, with

a double inequality, the PBNFs of two different spaces, bound together by

a particular retraction. The first part of the double inequality is proved

through the use of the result of Lemma 2.1.1 and the fact that the retraction

moves the points less than ε. The second part is proved in an analogous

way, but this time it exploits the fact that the space Y is contained inside V

(instead of the retraction we use the inclusion map).

This result will be included in the proof of the main theorem, where the

setting of our interest will be introduced.

2.2 Ball Coverings

Throughout this section, X will be a compact Riemannian (triangulable)

submanifold of Rm. As hinted in the introduction of the chapter, we want to

get information on X out of a finite set of points. First, the points will be

sampled on X itself, then even in a (narrow) neighbourhood. In both cases,

the idea is to consider a covering of X made of balls centred on the sampling

points.

What we get, is a double inequality which yields an estimate of the PBNFs

of X within a fixed distance from the discontinuity sets of the PBNFs (meant

as integer functions on ∆+) of the union U of the balls of the covering, but

even offers the exact value of it at points sufficiently far from the discontinuity

sets.
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When we foliate the domain ∆+ of the PBNFs as in [4, Sect. 2.1] or

[8, Sect. 3] — or simply when n = 1 — the discontinuity sets are (possibly

infinite) line segments, and the regions where only the inequality holds appear

as strips around them (which we colloquially call “blind strips”). The width

of such strips is a representation of the approximation error, in that it is

directly related to Ω(δ), where 1/δ represents the density of the sampling.

2.2.1 Points on X

Let δ <
√

3
5
τ and let L = {c1, . . . , ck} be a set of points of X such that

for every p ∈ X there exists an cj ∈ L for which ‖p − cj‖ <
δ

2
. Let U be

the union of the balls B(cj, δ) of radius δ centred at cj, j = 1, . . . , k. So all

conditions of Proposition 1.3.2 are satisfied.

For the remaining part of the chapter let ~f : Rm → Rn be a continuous

function and let ~fX and ~fU be the restriction of ~f to X and U respectively.

Theorem 2.2.1 (Blind Strips Theorem). If (~u,~v) is a point of ∆+ and if

~u+ ~ω(δ) ≺ ~v − ~ω(δ), where ~ω(δ) = (Ω(δ), . . . ,Ω(δ)) ∈ Rn , then

β(U,~fU ,i)
(~u− ~ω(δ), ~v + ~ω(δ)) ≤ β(X,~fX ,i)

(~u,~v) ≤ β(U,~fU ,i)
(~u+ ~ω(δ), ~v − ~ω(δ))

Proof. By Lemma 2.1.3, with Y = X (recalling that a compact Riemanniann

submanifold of Rm is triangulable), V = U .

Blind Strips Theorem 2.2.1 represents the main result of the whole Thesis;

therefore we think that it is appropriate to spend some words on it. The idea

of comparing topological properties of different spaces, of which one is the

approximation of the other, is not new. In fact a similar result can be found

in [21], in which however only the 0-degree homology case is considered. The

extension of such a result, that at the beginning, seemed to be natural and

direct, has proved to be very complex and deep. The main problem is the

one of working with an approximation that does not change the topological

properties of the object, both from the global point of view and from the

local one (but in a different way). This is because, if the local alteration is
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controlled, then the double inequality presented in the theorem can be man-

aged; otherwise if the global features are modified, every kind of connection

disappears.

Once we passed the first hurdle, thanks to Proposition 1.3.2; we started to

deal with the problem of transporting that kind of construction to the lower

level sets. This step has been solved with the introduction of Lemma 2.1.1

and 2.1.3, which allowed us to finally state the result of the main theorem.

The most important consequence (as we shall show in the examples) is that,

when both the extremes of the double inequality coincide, the value of all the

three PBNFs will be the same, regardless of their origins. In other words,

when we are far away from the discontinuity sets of the PBNF of the ap-

proximation we are able to express, with total exactness, the value of the

PBNF relative to X. Remembering that the object X can be unknown or

only virtually known (we know only some features), we underline that this

result allows to study the object using only its approximation. Thus, since

in the applications everything is an approximation, we can link this kind of

field with the continuous one of the geometric abstraction.

2.2.2 Points near X

So far we have approximated X by points picked up on X itself, but it

is also possible to choose the points near X, by respecting some constraints.

Once more, this is possible thanks to a result of P. Niyogi, S. Smale, and S.

Weinberger in [27].

Proposition 2.2.2. [27, Prop. 7.1] Let L = {c1, . . . , ck} be a set of points

in the tubular neighbourhood of radius s around X and U =
⋃
j=1,...,k B(cj, δ)

be the union of the balls of Rm centred at the points of L and with radius δ.

If for every point p ∈ X, there exists a point cj ∈ L such that ‖p− cj‖ < s,

then U is a deformation retract of X, for all s < (
√

9 −
√

8)τ and δ ∈(
(s+τ)−

√
s2+τ2−6sτ
2

, (s+τ)+
√
s2+τ2−6sτ
2

)
.

Then, as with Blind Strips Theorem 2.2.1, we have, with an analogous



34 2. Estimating Persistent Betti Numbers

proof:

Theorem 2.2.3. Under the hypotheses of Proposition 2.2.2, if (~u,~v) is a

point of ∆+ and if ~u + ~ω(δ + s) ≺ ~v − ~ω(δ + s), where ~ω(δ + s) = (Ω(δ +

s), . . . ,Ω(δ + s)) ∈ Rn , then

β(U,~fU ,i)
(~u− ~ω(δ + s), ~v + ~ω(δ + s)) ≤ β(X,~fX ,i)

(~u,~v) ≤

≤ β(U,~fU ,i)
(~u+ ~ω(δ + s), ~v − ~ω(δ + s)).

Since this result is the extension of the Blind Strips Theorem 2.2.1, we do

not think that it is necessary to repeat the qualitative discussion. Anyway,

it is important to underline that this result permits to work and to manage

errors due to the inaccuracy of the approximation. In other words, even if the

points of the sampling are not on the object X, but we know their maximum

distance from it, we can still build a double inequality that continues to give

us some important topological information.

2.2.3 Examples

The following examples show how Blind Strips Theorem 2.2.1 can be used

for applications. Let X be a circle of radius 4 in R2 (Fig. 2.1); we observe

that τ is exactly the radius of X, so τ = 4. In order to create a well defined

approximation we need that δ <
√

3
5
τ .

In the first example we have taken δ = 0.5. Now, to satisfy the hypothesis

of the Blind Strips Theorem 2.2.1 (that for every p ∈ X there exist an

cj ∈ L such that ‖p− cj‖ < δ
2
), we have chosen 64 points cj on X. Moreover

we have sampled X uniformly, so that there is a point every π
32

radians

Figure 2.2. We stick to the monodimensional case, choosing f : R2 → R,

with f(x, y) = abs(y). U is the resulting ball union.

Figures 2.3 and 2.4 represent the PBNF at degree zero of X and U re-

spectively. ∆+ is the half-plane above the diagonal line, and the numbers are

the values of the PBNFs in the triangular regions they are written in. In Fig-

ure 2.3 there is only a big triangle where the value 2 signals the two different
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Figure 2.1: The circle of radius 4, X.
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Figure 2.2: The ball union U .



36 2. Estimating Persistent Betti Numbers

0 2

1
v

u

6

4

2

2 4 6

-2

-2

Figure 2.3: The representation of β(X,fX ,0), the 0-PBNs of X.
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Figure 2.4: The representation of β(U,fU ,0), the 0-PBNs of the ball union U
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Figure 2.5: The blind strips of β(U,f,0).

connected components generated by fX . The two connected components col-

lapse to one at value 4. In Figure 2.4 there is also a big triangle representing

the two connected components, but they collapse at value 3.53106. Moreover

there are 4 other very small triangles near the diagonal, representing more

connected components generated by the boundary of the small circle of the

cover. In the last figure (Fig. 2.5) the blind strips around the discontinuity

lines of β(U,fU ,0) are shown. The width of these strips, since Ω(δ) = 0.5, is

equal to 2Ω(δ) = 1. This figure illustrates the idea underlying the Blind

Strips Theorem 2.2.1. Taken a point (u, v) outside the strips, the values of

the PBNFs of U at (u − Ω(δ), v + Ω(δ)) and (u + Ω(δ), v − Ω(δ)) are the

same. So also the value of the PBNFs of X at (u, v) is determined. Figures

2.6, 2.7, 2.8 depict, in analogous way, the (obviously much simpler) PBNFs

of degree 1.

For a second example we have chosen the points cj not necessarily on X.

We have satisfied the hypothesis of Proposition 2.2.2, choosing s = 0.25 and

δ = 0.55. Then, in order to cover X well, we have chosen a point every π
48
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Figure 2.6: The representation of β(X,fX ,1), the 1-PBNs of X.
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Figure 2.7: The representation of β(U,fU ,1), the 1-PBNs of the ball union U .
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Figure 2.8: The blind strips of β(U,f,1).

radians, for a total of 96 points. But this time the points are either 0 or 0.1

or 0.2 away from X. Figure 2.9 shows the resulting ball union U ′. As in

the previous case, in the representation of β(U ′,fU′ ,0) (Fig. 2.10) there is a big

triangle showing two connected components and this time they collapse at

value 3.40955. Compared to Figure 2.4, there are many more small triangles

generated by the asymmetry of the sampling. The width of the blind strips in

Figure 2.11 is 2Ω(δ+s) = 1.6, so there is still the central triangle. This means

that, although the error in the approximation is much bigger, the blind strips

do not cover the entire figure, leaving the topological information intact at

least in some small areas of ∆+.
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Figure 2.9: The ball union U ′.
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Figure 2.10: The representation of β(U ′,fU′ ,0), the 0-PBNs of the ball union

U ′.
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Figure 2.11: The blind strips of β(U ′,fU′ ,0).

2.3 A Combinatorial Representation

The ball unions of Section 2.2, although generated by finite sets, are still

continuous objects. It is desirable that the topological information on X,

up to a certain approximation, be condensed in a combinatorial object. For

size functions (i.e. for PBNFs of degree 0) it was a graph; here, it has to be

a simplicial complex. We shall build such a complex, by following [16], to

which we refer for all definitions not reported here. Please note that [16] uses

weighted Voronoi cells and diagrams, while we do not need to worry about

that, since all of our balls have the same radius; so the customary Euclidean

distance can be used instead of the power distance employed in that paper.

Let X, L = {c1, . . . , ck} and δ be as in Section 2.2.1 (the case of Section

2.2.2 is an immediate extension). Moreover, let the points of L be in general

position. For each cj ∈ L, let B(cj, δ) be the ball of radius δ, centred at cj.

The set B = {B(c1, δ), . . . , B(ck, δ)} is a ball covering of X; denote by U the

corresponding ball union. Let now Vj be the Voronoi cell of B(cj, δ), i.e. the
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set of points of Rm whose distance from cj is not greater than the distance

from any other cj′ .

The set V = {V1, . . . , Vk} is the Voronoi diagram of B. From V we get the

collection of cells Q = {Vj ∩B(cj, δ) | j = 1, . . . , k}, a decomposition of U .

The nerveN (V) of V is the abstract simplicial complex where vertices are the

elements of V and, for a subset T of {1, . . . , k}, the set of vertices {Vj | j ∈ T}
is a simplex if and only if

⋂
j∈T Vj 6= ∅.

For any T ⊆ {1, . . . , k}, T 6= ∅ we denote by σT the convex hull of {cj | j ∈ T}.
The dual complex of Q is K = {σT | {Vj ∩ B(cj, δ) | j ∈ T} ∈ N(Q)} and

S = |K|, union of the simplices of K, is the dual shape of U .

For a better understanding of the previous part we produce a toy example.

Let X be a quarter of circle of radius 4 and U be the union of nine balls of

radius 1, with centres near X (Fig. 2.12). The Voronoi Diagram V associated

to this ball covering B is depicted in Figure 2.13.

Figure 2.12: A quarter of circle of radius 4 covered by nine balls of radius 1.

Now the main idea is that we can associate the dual complex K with

the submanifold X. In fact, by [16, Thm. 3.2], its space S is homotopically

equivalent to U and, by transitivity, to X. Moreover, [16, Sect. 3] explicitly

builds a retraction r from U to S and a homotopy H from the identity of U ,

to p, such that ∀y ∈ S, ∀v ∈ p−1(y), ∀t ∈ I we have (p ◦ H)(v, t) = y. For
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Figure 2.13: The Voronoi Diagram V of B.

a complete description of the homotopy H and the retraction p we refer to

the original article.

S is shown in Figure 2.14 (we recall that in this example the dual complex

K graphically coincides with S).
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Figure 2.14: The dual shape S.
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2.3.1 Ball Union and Dual Shape

Since we are in an analogous situation of the Blind Strips Theorem 2.2.1

and since the hypothesis on the complex S and the retraction from U to S
are coherent with the hypothesis of the Lemma 2.1.3; then we can directly

apply it.

Let ~f : Rm → Rn be the continuous function as in Section 2.2.1 and let

~fS be the restriction of ~f to S.

Lemma 2.3.1. If (~u,~v) is a point of ∆+ and if ~u+ ~ω(δ) ≺ ~v − ~ω(δ), where

~ω(δ) = (Ω(δ), . . . ,Ω(δ)) ∈ Rn , then

β(U,~fU ,i)
(~u− ~ω(δ), ~v + ~ω(δ)) ≤ β(S, ~fS ,i)(~u,~v) ≤ β(U,~fU ,i)

(~u+ ~ω(δ), ~v − ~ω(δ)).

Proof. By Lemma 2.1.3, with Y = S, V = U .

Now we can get an estimate of the PBNFs of X from the ones of S.

The blind strips will be doubly wide, with respect to the ones previously

considered. Still, this can leave some regions of ∆+ where the computation

is exact.

Theorem 2.3.2. If (~u,~v) is a point of ∆+ and if ~u + 2~ω(δ) ≺ ~v − 2~ω(δ),

where ~ω(δ) = (Ω(δ), . . . ,Ω(δ)) ∈ Rn , then

β(S, ~fS ,i)(~u−2~ω(δ), ~v+2~ω(δ)) ≤ β(X,~fX ,i)
(~u,~v) ≤ β(S, ~fS ,i)(~u+2~ω(δ), ~v−2~ω(δ)).

Proof. By the Blind Strips Theorem 2.2.1,

β(U,~fU ,i)
(~u− ~ω(δ), ~v + ~ω(δ)) ≤ β(X,~fX ,i)

(~u,~v) ≤ β(U,~fU ,i)
(~u+ ~ω(δ), ~v − ~ω(δ))

Then we have

β(U,~fU ,i)
(~u+ ~ω(δ), ~v − ~ω(δ)) ≤ β(S, ~fS ,i)(~u+ 2~ω(δ), ~v − 2~ω(δ))

by Lemma 2.3.1 by substituting (~u,~v) with (~u+ 2ω(δ), ~v − 2ω(δ)), and

β(S, ~fS ,i)(~u− 2~ω(δ), ~v + 2~ω(δ)) ≤ β(U,~fU ,i)
(~u− ~ω(δ), ~v + ~ω(δ))

by Lemma 2.3.1 by substituting (~u,~v) with (~u− 2~ω(δ), ~v + 2~ω(δ)).
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This result is probably the closest one to the application field, because it

allows us to take as an input a structure that is purely combinatorial, thus

very easy to compute directly. Obviously this possibility requires a cost of

2ω(δ), because the approximation is applied twice; nevertheless this does not

affect the value of the result.
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Chapter 3

Narrowing the Blind Strips in

R2

The theorems of Chapter 2 opened a new possible way of research, in

fact the proposed results can be analyzed and studied to make them more

suitable for the application needs. A natural question is, when could it be

possible to decrease the error and consequently to lessen the width of the

blind strips. Therefore in this chapter we shall try to understand when there

is a solution to that kind of problem.

The first step, as we shall see in Section 3.1, is to look for new relations

between the well-known elements of the proof, as the ball covering or the

tubular neighbourhood. Unluckily that kind of approach has not brought

the desired result, but only an abstract one (Prop. 3.1.3). Nevertheless,

since we are working with 1-submanifolds of R2, we were able, at least, to

use some properties of the complex (Lem. 3.2.1); thanks to them we discov-

ered a new relation between the original object X and the complex itself.

With this new relation we stated the theorem (Th. 3.2.4) that represents the

main result of this chapter.

Similarly to Theorem 2.3.2, this kind of result states a double inequality

between the complex generated by the sampling points and the original ob-

ject. The advantage is that, in this formulation, the error is a quarter of

47
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the previous one, thanks to a particular construction that frees us from the

use of Proposition 1.3.2 in which a more restrictive density in the sampling

points is required. Moreover this freedom manifests itself in the possibility

of managing the choice of the sampling points in a different manner, making

this result more flexible for applications.

This chapter, in detail, is divided into three sections. In the first one

some results are presented that contributed to the analysis of the problem.

In the second one we shall present the main theorem and finally in the third

one we shall illustrate some comparative examples related to the results of

Chapter 2.

3.1 Deformation Retract

In this section we shall introduce a particular construction that will allow

us to prove that, if X is a 1-submanifold of R2, the covering generated by the

balls centred in the sampling points with radius ε is a deformation retract of

the normal bundle of the same radius ε.

We start with some observations in the general case; let X be a compact

Riemannian submanifold of Rm as before and let L = {c1, . . . , cn} be a finite

collection of points on X. We also request that for every point p ∈ X there

exist a cj ∈ L such that ||p − cj||Rm < ε, where ε < τ and it shall represent

the radius of the balls of the covering. Then we take the condition number τ

as in chapter 1, definition1.9 and moreover we assume that τ > 0 to prevent

infinitely many oscillations in the neighbourhood of any point. With this

setting we can state that

Lemma 3.1.1. For every ε < τ X is a deformation retract of Nε, where Nε

is the open normal bundle around X of radius ε.

Proof. This holds by definition, using the retraction along the normal direc-

tions.
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It is important to underline that the retraction moves the points at most

ε.

Remark 3.1.2. From now on we shall confuse throughout Nε with its image

Tubε, the tubular neighbourhood of radius ε.

First of all we know that, by definition of normal bundle, for every point

cj of L there exists a normal subspace at X (of dimension m) that intersects

the boundary of Nε in an (m− 1)-dimensional sphere (in dimension one we

have two points). Along this intersection the boundary of the ball centred in

cj is tangent (they have the same tangent space in each of these points) to

the boundary of the normal bundle. Moreover, if we define Uε as the union of

the balls B(cj, ε) centred in the points of L of radius ε, we can prove that the

intersection of the boundary of Nε with the boundary of Uε is a finite union

of submanifolds of Rm+1 of dimension (m − 2) (in R2 we have just a finite

collection of points). From now on we shall limit ourselves to work with X

ci
cj ck

Figure 3.1: The 1-submanifold X, the ball covering Uε and the tubular neigh-

bourhood Nε.

as a 1-dimensional submanifold of R2 (Fig. 3.1). Then

Proposition 3.1.3. Uε is a deformation retract of Nε by a retraction that

moves the points at most ε

To prove the proposition we need to introduce a special construction

relating Uε and Nε, in order to obtain the directions of the retraction. In

our notation we shall call the two points of intersection of the boundary
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Figure 3.2: The intersection points of Uε and Nε.
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oij1 ojk1

ojk2
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Figure 3.3: The description of all the elements involved.
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of the ball B(cj, ε) with the boundary of Nε aj1 and aj2 (Fig. 3.2). Now

for every intersection of B(cj, ε) with other balls we construct the segment

segjk between the two centres cj and ck, after that we build the orthogonal

line ortjk to the previous segment, through its middle point midjk. We call

ojk1 and ojk2 the two intersection points of ortjk with the boundary of Nε

as in Figure 3.3 (it could happen that the line ortjk intersects the normal

bundle in other points, but far from midjk. So we consider only the first two

intersections of the line starting from midjk and following the two opposite

directions).

In this way we obtain that all the normal bundle is divided into zones

generated by three segments aj1 to cj, cj to midjk, midjk to ojk1 (also for aj2

and ojk2) and the boundary of Nε between aj1 and ojk1 (also for aj2 and ak2),

see Figure 3.4. The idea is to create a continuous foliation of the previous

ci
cj ck

ai1
aj1 ak1

ak2aj2ai2

midij midjk
oij1 ojk1

ojk2
oij2

Figure 3.4: The zones of the tubular neighbourhood.

zones generated by the continuous transformation of the segment aj1, aj2 into

the segment ojk1, ojk2. In this way we can obtain a continuous retraction from
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the normal bundle to the union of balls, that moves the points at most ε as

shown in Figure 3.5. To proceed in our construction, we shall show how to

ai1ai2

aj1aj2

ak1ak2oij1 oij2

ojk1ojk2

Figure 3.5: The segments of the continuous transformation.

ak1
bb'

aj1

nor j nor k

ckcj

Figure 3.6: The construction for the choice of the balls.

choose the balls B(cj, ε) and B(ck, ε), that will be used in the next lemma, in

relation with the point b ∈ Nε. If the point b lies on Uε then we do not need

to find any balls because the retraction does not move this point. On the

other hand, if the point lies on Nε \Uε we need to define a little construction.
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Let b ∈ Nε \ Uε be the chosen point, we define b′ as the closest intersection

point of the normal line at X passing through b with the boundary of Nε.

Now we proceed along the two different directions of the boundary from b′,

until we find the intersection of a normal line norh of some ch ∈ L with the

boundary in both directions. After that we call cj and ck these two points

along the two different directions, so that norj and nork are the two normal

lines that generate the searched for intersections, that we call aj1 and ak1

(Fig. 3.6). Before giving the proof of Proposition 3.1.3, we need to introduce

the following lemma (an example of the construction can be found in Figure

3.7).

Lemma 3.1.4. The intersection point intj, if it exists, of the line norj and

ortjk is distant more than ε from cj (d(intj, cj) > ε, where d(, ) is the Eu-

clidean distance in R2).

Proof. Supposing that the intersection point intj lies inside the normal bun-

dle, we search for an absurd. We know that intj ∈ norj and intj ∈ Nε,

thus d(intj, cj) = ρ < ε. Moreover we get that intj ∈ B(cj, ε) and since

intj ∈ ortjk then intj ∈ B(cj, ε) ∩ B(ck, ε). Now we define ñ the point of

norj at distance exactly ε from cj in the direction of intj. By definition of

normal bundle, this point has to belong to the boundary of Nε, but this is

absurd because this point lies inside B(ck, ε) and that concludes the claim.

In the limit case in which the intersection point is exactly one of the intersec-

tion points k1, k2 of the two balls B(cj, ε) and B(ck, ε) , we obtain a different

absurd. In fact we know that the function that associates the submanifold

X to the boundary of the normal bundle is a diffeomorphism (this is true by

construction of the normal bundle). Thus, if intj = k1 (or k2), there will be

two points cj and ck with distance exactly ε from intj and this is absurd (we

also recall that, by definition of normal bundle, each ball B(ch, ε) intersects

the boundary of Nε in two opposite points along the normal line passing

through the centre ch).
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Figure 3.7: The construction related to Lemma 3.1.4.
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Remark 3.1.5. It is important to underline that, thanks to Lemma 3.1.4 and

the previous construction, the point ojk1 lies between the points aj1 and

ak1 with respect to the boundary of the normal bundle (Fig. 3.4). This

positioning of the points guarantees that the construction of the retraction

in the next proof is well defined.

Finally we can state the proof of Proposition 3.1.3, using the notation of

the previous lemma.

Proof of Proposition 3.1.3. Our goal is to find a homotopy between the iden-

tity of Nε and a retraction of Nε on Uε; for this purpose we need a continuous

retraction rε(b) : Nε → Uε. During the construction of this function we can

encounter two different cases. In the first one the line norj is parallel to the

line ortjk, in the second one the two lines intersect in the point intj.

In the first case the retraction will follow the direction parallel to norj, re-

tracting in this way the zone bounded by aj1, cj,midjk, ojk1 and the relative

boundary of Nε. In the second case the retraction will follow the radial di-

rection from the point intj, retracting the same zone as in the first case. We

need to divide the normal bundle into zones so small, because it could hap-

pen that the retraction is defined in different ways in each zone depending

on the choice of the balls B(cj, ε), B(ck, ε).

To be more precise:

Case one: for each point b in the zone bounded by aj1, cj,midjk, ojk1 and

the relative boundary of Nε, we can define the line nb going through b and

parallel to norj. After that we shall call intbn the first intersection point of

nb with the boundary of Uε starting from b and with direction that minimizes

the distance to the segment segjk. Now rε is defined as rε(b) = intbn.

Case two: for every point b in the zone bounded by aj1, cj,midjk, ojk1 and

the relative boundary of Nε we can define the line radb going through b and

intj. We shall call intbr the first intersection point of radb with the boundary

of Uε starting from b and with direction that minimizes the distance to the

segment segjk, thus the retraction is defined as rε(b) = intbr. For a graphical

description we refer to Figure 3.8. Now we prove that the retraction built in
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Figure 3.8: The graphical description of the retraction.
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this way is continuous. Thanks to the way in which we define the retraction

for each point b ∈ Nε \ Uε and more precisely with respect to the choice of

the balls, we can divide the domain of the retraction into small zones. After

that we shall prove that the retraction is continuous in these zones and in

the points of intersection of them. When we choose a point b in Nε \ Uε the

relative zone Zj1 of type one is defined as the portion of Nε delimited by

the segment midjk, ojk1, the boundary of Nε between ojk1 and aj1 and the

boundary of Uε from k1 (or k2) and aj1. The adjacent zone Zk1 is generated

by substituting j with k, so they share the segment midjk, ojk1 (Fig. 3.9).

Thus we can divide the domain of the retraction into a union of pairs of

the previous zones Zj1 and Zk1; moreover this pair of zones intersects with

two analogous ones at point aj1, respectively at point ak1. In each zone Zj1,

k1

ckcj

midjk

zj1
ojk1

zk1 ak1
aj1

Figure 3.9: The zones of Nε.

the retraction rε can be seen as a perspective transformation (from either a

proper or an improper point), so it is continuous. These perspective transfor-

mations agree on the intersection of any two adjacent zones, so rε is globally

continuous by the “gluing Lemma”.



58 3. Narrowing the Blind Strips in R2

Finally we can define the homotopyHε(b, t) : Nε×[0, 1]→ Nε asHε(b, t) =

b(1 − t) + rε(b)t and in this way conclude the proof. Moreover it is easy to

check that the retraction moves the points of Nε at most ε.

Remark 3.1.6. In the case that there is only one point in L and so only one

ball in Uε, the proof of the lemma is trivial.

As hinted in the introduction of the chapter, we are interested in decreas-

ing the error generated by the approximation and in this way decreasing the

width of the blind strips. Our first idea was to use the previous result to

relate the object X to the covering Uε and to the simplicial complex Sε gen-

erated by the points of the sampling as in the previous chapter, Section 3.

And then we used, once again, the idea of Lemma 2.3.1, thus we got that Sε
is a deformation retract of Uε.

Next step was to glue together all the three retractions and to define a new

double inequality similar to Theorem 2.3.2, but with this setting the error

that we committed was of the order of 3Ω(ε) and the strips were 6Ω(ε)-wide.

This means that the the strips were wider than in the previous case, but at

least in the construction we did not need to use the result of Proposition 1.3.2

with the consequence of having more freedom in the choice of the sampling

points. Since this was not the searched for result, we continued in a different

way and the core idea is developed in the next section.

3.2 Decreasing the Error

This is the main section of the chapter, in which we shall show the main

results; the basic idea is to exploit a property of the simplicial complex, that

rises in the particular setting of the one-dimension submanifolds of R2. In

fact in this case, as the next lemma states, the simplicial complex is only

made of simplices of dimension 0 (the vertices) and dimension 1 (the edges).

Thanks to that we can create a special construction, in which we shall define

a new subspace called W . More precisely, W is a subspace of R2 generated by
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the union of some portions of the tubular neighbourhood Tubε; this subspace

will play a fundamental role in the proof of the theorem (Th. 3.2.4) ensuring

the continuity of the retractions.

The structure of the section contains three lemmas that will allow us to state

the main theorem; the first one is the following.

Lemma 3.2.1. The simplicial complex K generated from X as in section 2.3

is mono-dimensional.

Proof. The main idea is to find an absurd in the construction of the simplicial

complex. Thus let us suppose that there exists a 2-dimensional simplex (a

triangle), generated by three balls B(c1, ε), B(c2, ε) and B(c3, ε) (for simplic-

ity we shall call them only B1, B2 and B3). Without loss of generality we can

assume that the curve X passes through the centre of the balls in increasing

order (c1, c2 and c3). Thanks to the properties of the Voronoi diagram, we

know that the three cells generated by the balls meet in one point and also

that this point lies inside B2. This in turn implies that the normal segments

at X in the centres cj (i.e. the leaf of the tubular neighbourhood in that

point) cannot pass through the boundary of the cells, because otherwise an

end-point of the segment would be in the interior of a ball and this is not

allowed.

As Figure 3.10 shows, let Vi (i = 1, 2, 3) be the intersection of the Voronoi

cell relative to ci with the ball Bi. Let then A = V1 ∩ V2 and C = V3 ∩ V2.

Now the segment normal to X based at c2 cannot cross A and C. We recall

that the union of the balls B1 and B3 has to leave, at least, half of the ball B2

not covered (at least one segment relative to a diameter must be preserved);

if not the segment normal to X at c2 would have, at least, an end point inside

the union of the two balls and this is absurd. Then if we consider the line L

generated by the segment at c2 normal to X, L divides the plane into two

half planes (H1, H2). It is easy to see that A and C lie in the same half-plane

(H1 say) and moreover, since the joining segments c2c1, c2c3 are the axes of

A and C respectively, also c1 and c3 lie in H1.

Since the curve lies locally (inside the three balls) in H1, when it reaches the
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point c2 the line L is tangent to X, but this is absurd because L is instead

normal to it.

c1

c2

c3

V2

V1 V3

A C

L

Figure 3.10: The three balls and the relative construction.

To proceed in our discussion we need to introduce a new construction

based on the idea of normal bundle. First of all we generate the dual complex

K from X as in section 2.3, then we consider the dual shape S = |K|.
Since S is mono-dimensional, thanks to Lemma 3.2.1, we obtain that the

intersection of S with X can be of two types: either a finite set of points Q,

or a union of a finite set of points and a finite set of segmentsQ∪Seg. We shall

analyze the second case, because it is more general. Now for every segment

in Seg we consider only the two end points consecutive, in a fixed circular

ordering induced by X and we add these points to the set Q (maintaining

the ordering). In this way we obtain a new finite set of points QS, then

for every two consecutive points (in the fixed circular ordering induced by
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X) q, q′ of QS it is possible to construct the relative open normal bundle of

radius ε (N q′
q ). This relative open normal bundle is divided into two parts by

the curve X; we now define W q′
q the part of N q′

q which contains the segment

qq′ (in the case in which the two consecutive points are the end-points of a

segment of Seg we define W q′
q = N q′

q ). Finally we define W as the union of

all the W q′
q with q, q′ ∈ QS consecutive (Fig. 3.11).

c q

W

1

c2

c3

c4

c5

c1
c2 Wc2

q

Wq
c3

Wc3
c4

Wc4
c5

Figure 3.11: The representation of W .

With these new definitions we can state the two remaining lemmas:

Lemma 3.2.2. X is a deformation retract of W and the retraction moves

the points at most ε.

Proof. By definition of normal bundle and using the retraction (rX : W → X)

along the normal directions. (as in [27])

Lemma 3.2.3. S is a deformation retract of W and the retraction moves

the points at most ε.

Proof. We need to prove that there exists a continuous retraction from W to

S that moves the points less than ε. To do that we define rS : W → S as the

retraction along the normal direction (as r : Nε → X). First of all we shall

prove that the segments of the normal directions intersect each simplex only

one time; one intersection is guaranteed by the construction of Tubε and by

Jordan’s Curve Theorem. Note that if the two segments met in more than
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one point the intersection would be a whole segment. We shall show that

this is not possible analyzing two cases for an intersection point x. In the

first case x lies inside the simplex, in the second one x is a vertex.

In case one we observe that the maximum distance between two vertices is

less than 2ε and the length of a normal segment is exactly 2ε; this means

that the normal segment through x touches at least one vertex of the simplex

and this is absurd by construction.

In case two if the other vertex is closer than ε we obtain the same absurd as

in case one. If not we get that the simplex touches the boundary of Nε, but

this is absurd because S ⊂ intUε ⊆ Nε.

Thus the retraction is well-defined and also continuous. Moreover it is easy

to check that the length of the segments of the retraction is at most ε so the

retraction moves the points less than ε.

Finally we can define the homotopy HS : W×I → W as HS(w, t) = rS(w)t+

w(1 − t) which, for every w ∈ W follows exactly the segment along the

direction normal toX, thus is well-defined and is the searched for deformation

retraction.

Since this kind of construction passes to the lower level sets, we can state

a new double inequality concerning the PBNFs of X and the ones of S.

Theorem 3.2.4. Let ~f : W → Rn be a continuous function and let fX ,

fS be the restriction to X, S respectively. If (~u, ~w) is a point of ∆+ and if

~u+ ~ω(ε) ≺ ~w − ~ω(ε), then

β(S, ~fS ,i)(~u− ~ω(ε), ~w + ~ω(ε)) ≤ β(X,~fX ,i)
(~u, ~w) ≤ β(S, ~fS ,i)(~u+ ~ω(ε), ~w − ~ω(ε)).

Proof. To prove this theorem we shall follow the idea of Lemma 2.1.3 con-

structing two functions, one from X to S and the other from S to X. These

two functions will be the respective restriction of the retractions of the two

previous lemmas. We define rXS : X → S as the restriction of rS : W → S
and rSX : S → X as the restriction of rX : W → X. It is easy to see that

rXS ◦ rSX = idS and also rSX ◦ rXS = idX , because both the functions follow
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the directions normal to X.

First, observe that there are inclusions

γ : X〈~fX � ~u〉 → X〈~fX � ~w〉
ψ : S〈~fS � ~u− ~ω(ε)〉 → S〈~fS � ~w + ~ω(ε)〉

The fact that rXS and rSX move every point not more than ε (by the

previous lemmas) implies that also the maps rXS : X〈~fX � ~w〉 → S〈~fS �
~w + ~ω(ε)〉 and rSX : S〈~fS � ~u− ~ω(ε)〉 → X〈~fX � ~u〉 make sense. Now we

have the following commutative diagram (as will be proved):

S〈~fS � ~u− ~ω(ε)〉 rSX−−−→ X〈~fX � ~u〉

ψ

y yγ
S〈~fS � ~w + ~ω(ε)〉 ←−−−

rXS
X〈~fX � ~w〉

Then, passing to homology and setting ψ∗ = ψ
w+~ω(ε)
u−~ω(ε) and γ∗ = γ ~w~u , and

r∗XS , r∗SX as the homology homomorphisms induced by rXS and rSX respec-

tively, we have

β(S, ~fS ,i)(~u− ~ω(ε), ~w + ~ω(ε)) = dim Im(ψ∗) = dim Im(r∗XS ◦ γ∗ ◦ r∗SX) ≤
≤ dim Im(γ∗) = β(X,~fX ,i)

(~u, ~w)

To prove the commutativity of the diagram, we observe that rXS ◦ rSX is

the identity map on the points of S. Thus we have that rSX ◦ ψ ◦ rXS is the

canonical inclusion of S〈~fS � ~u− ω(ε)〉 in S〈~fS � ~w+ ω(ε)〉, concluding the

first part of the proof.

For the second inequality we use the following commutative (as will be

proved) diagram, with analogous definitions of maps γ′, ψ′, rXS and rSX :

X〈~fX � ~u〉
rXS−−−→ S〈~fS � ~u+ ~ω(ε)〉

γ′

y yψ′
X〈~fX � ~w〉 ←−−−

rSX
S〈~fS � ~w − ~ω(ε)〉

Here ψ′ is well defined because we are assuming ~u+ ~ω(ε) ≺ ~w − ~ω(ε).
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Then, passing to homology, we have (with analogous settings for the

starred symbols):

β(X,~fX ,i)
(~u, ~w) = dim Im(γ′∗) = dim Im(r∗SX ◦ ψ′∗ ◦ r∗XS) ≤

≤ dim Im(ψ′∗) = β(S, ~fS ,i)(~u+ ~ω(ε), ~w − ~ω(ε)).

To prove the commutativity of the diagram, we observe that rSX ◦ rXS is the

identity map on the points of X. Thus we have that rXS ◦ ψ′ ◦ rSX is the

canonical inclusion of X〈~fX � ~u〉 in X〈~fX � ~w〉.

The previous proof follows the basic steps of the proof of Lemma 2.1.3,

in fact the main idea is to obtain two functions one from X to S and the

other from S to X such that they move the points less than ε. In this way it

is possible to use the properties of the lower level sets and the monotonicity

of the PBNFs to create the two commutative diagrams and then pass to the

homology level to obtain the searched double inequality.

The two functions can be generated thanks to the special construction of W ,

that, in some way, works as a bigger space in which we can easily move and

create our connection. As a last thing it is important to underline that all

that is possible thanks to the fact that the simplicial complex S appears to

be one-dimensional.

3.3 Examples

In this section we shall show how the previous results can decrease the

error. In Figure 3.12 we have a circle of radius 4 covered by 64 balls of radius

δ = 0.5 as in the example of Section 2.2.3; we recall that the choice of the

radius and the density of the sampling are conditioned by the hypothesis

of Proposition 1.3.2. Since the construction of Theorem 3.2.4 gives us more

freedom in the building of the sampling, we have decided to consider only 32

points for our sampling (Fig. 3.13).
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Figure 3.12: The ball union Uδ.
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Figure 3.13: The ball union Uε with 32 balls.
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We notice that the width of the blind strips remains the same, because

the radius of the balls is, in both cases, equal to 0.5; nevertheless we underline

two important things: first of all the number of the sampling points is halved,

in the sense that the second approximation is less accurate. Second, we are

comparing, in Figure 3.14, the blind strips relative to the union of the balls

Uδ and in Figure 3.15 the blind strips relative to Sε; this, in plain words,

means that we are working, in the second case, with a combinatorial object

that is much easier to handle. We also recall that, if we want to directly

compare Sδ with the correspondent Sε, the blind strips of the first one would

be doubled with respect to the ones in Figure 3.14.

6

4

2

2 4 6

-2

-2

v

u

0 2

1

6
6
6
4

Figure 3.14: The blind strips of β(Uδ,fUδ ,0).

As a last example, we shall show the case in which we maintain the

same number of points in the sampling, 64 points namely, but we reduce the

radius of the balls from 0.5 to only 0.25 (the value is halved); now Figure

3.16 represents the new approximation.

Finally, it is easy to see the difference between the blind strips around

the representation of β(Uδ,f,0) in Figure 3.14 and the blind strips around the
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Figure 3.15: The blind strips of β(Sε,fSε ,0) with 32 balls.

-2

2

2

-2

Figure 3.16: The ball union Uε with 64 balls.
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representation of β(Sε,f,0) in Figure 3.17. We obtain that the width of the

blind strips is exactly halved in the second case and this means that, with

the same number of sampling points, we can halve the error. A similar remark

on Sδ is true also in this example; then, in this case, the error is reduced to

a quarter.
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Figure 3.17: The blind strips of β(Sε,fSε ,0) with 64 balls.



Conclusion and Future Work

In this Thesis we have shown how it is possible to directly use a topo-

logical and geometrical tool, as the PBNs, to deal with a discrete problem

concerning the shape analysis. More precisely, we have presented a way to

link together the PBNs of a compact Riemanniann submanifold X of Rm

with the PBNs of one of its approximations; in particular when the approx-

imation is represented by a ball covering or even a combinatorial structure.

In other words we have introduced a way to relate the continuous aspect of

the original object X to the discrete one typical of applications, thanks to

the use of a suitable point sampling.

Moreover we have shown that it is possible to find , in the limited setting of

1-submanifolds, a more accurate relation between the different PBNs; this

new construction is more flexible for what concerns applications.

Other theoretical results deserve further investigation:

The first of them is the possibility to extend the result of chapter three to

every m-submanifold with m > 1; creating, in this way, a complete study of

the relation simplicial complex – submanifold.

Since we are working with combinatorial objects, a tool to reduce their com-

plexity would be really helpful; maintaining, at the same time, all the topo-

logical properties.

Also a theoretical result that introduces a method to reduce the computation

complexity of the PBNFs, when we are dealing with a simplicial complex,

would be most welcome.

69
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