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Abstract

Galaxy clusters occupy a special position in the cosmic hierarchy as they are the

largest bound structures in the Universe. There is now general agreement on a

hierarchical picture for the formation of cosmic structures, in which galaxy clusters

are supposed to form by accretion of matter and merging between smaller units.

During merger events, shocks are driven by the gravity of the dark matter in the

diffuse barionic component, which is heated up to the observed temperature.

Radio and hard-X ray observations have discovered non-thermal components

mixed with the thermal Intra Cluster Medium (ICM) and this is of great importance

as it calls for a “revision” of the physics of the ICM. The bulk of present information

comes from the radio observations which discovered an increasing number of Mpc-

sized emissions from the ICM, Radio Halos (at the cluster center) and Radio Relics

(at the cluster periphery). These sources are due to synchrotron emission from

ultra relativistic electrons diffusing through µG turbulent magnetic fields. Radio

Halos are the most spectacular evidence of non-thermal components in the ICM

and understanding the origin and evolution of these sources represents one of the

most challenging goal of the theory of the ICM.

Cluster mergers are the most energetic events in the Universe and a fraction of

the energy dissipated during these mergers could be channelled into the amplification

of the magnetic fields and into the acceleration of high energy particles via

shocks and turbulence driven by these mergers. Present observations of Radio

Halos (and possibly of hard X-rays) can be best interpreted in terms of the re-

acceleration scenario in which MHD turbulence injected during these cluster mergers

re-accelerates high energy particles in the ICM. The physics involved in this scenario

is very complex and model details are difficult to test, however this model clearly

predicts some simple properties of Radio Halos (and resulting IC emission in the hard

X-ray band) which are almost independent of the details of the adopted physics. In

1
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particular in the re-acceleration scenario MHD turbulence is injected and dissipated

during cluster mergers and thus Radio Halos (and also the resulting hard X-ray

IC emission) should be transient phenomena (with a typical lifetime <∼ 1 Gyr)

associated with dynamically disturbed clusters. The physics of the re-acceleration

scenario should produce an unavoidable cut-off in the spectrum of the re-accelerated

electrons, which is due to the balance between turbulent acceleration and radiative

losses. The energy at which this cut-off occurs, and thus the maximum frequency

at which synchrotron radiation is produced, depends essentially on the efficiency of

the acceleration mechanism so that observations at high frequencies are expected

to catch only the most efficient phenomena while, in principle, low frequency radio

surveys may found these phenomena much common in the Universe.

These basic properties should leave an important imprint in the statistical

properties of Radio Halos (and of non-thermal phenomena in general) which,

however, have not been addressed yet by present modellings.

The main focus of this PhD thesis is to calculate, for the first time, the expected

statistics of Radio Halos in the context of the re-acceleration scenario. In particular,

we shall address the following main questions:

• Is it possible to model “self-consistently” the evolution of these sources together

with that of the parent clusters?

• How the occurrence of Radio Halos is expected to change with cluster mass

and to evolve with redshift? How the efficiency to catch Radio Halos in galaxy

clusters changes with the observing radio frequency?

• How many Radio Halos are expected to form in the Universe? At which redshift

is expected the bulk of these sources?

• Is it possible to reproduce in the re-acceleration scenario the observed

occurrence and number of Radio Halos in the Universe and the observed

correlations between thermal and non-thermal properties of galaxy clusters?

• Is it possible to constrain the magnetic field intensity and profile in galaxy

clusters and the energetic of turbulence in the ICM from the comparison

between model expectations and observations?
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Several astrophysical ingredients are necessary to model the evolution and

statistical properties of Radio Halos in the context of re-acceleration model and

to address the points given above. For these reason we deserve some space in this

PhD thesis to review the important aspects of the physics of the ICM which are of

interest to catch our goals. In Chapt. 1 we discuss the physics of galaxy clusters,

and in particular, the clusters formation process; in Chapt. 2 we review the main

observational properties of non-thermal components in the ICM; and in Chapt. 3 we

focus on the physics of magnetic field and of particle acceleration in galaxy clusters.

As a relevant application, the theory of Alfvénic particle acceleration is applied

in Chapt. 4 where we report the most important results from calculations we have

done in the framework of the re-acceleration scenario. In this Chapter we show that

a fraction of the energy of fluid turbulence driven in the ICM by the cluster mergers

can be channelled into the injection of Alfvén waves at small scales and that these

waves can efficiently re-accelerate particles and trigger Radio Halos and hard X-ray

emission.

The main part of this PhD work, the calculation of the statistical properties

of Radio Halos and non-thermal phenomena as expected in the context of the

re-acceleration model and their comparison with observations, is presented in

Chapts.5, 6, 7 and 8.

In Chapt.5 we present a first approach to semi-analytical calculations of

statistical properties of giant Radio Halos. The main goal of this Chapter is to model

cluster formation, the injection of turbulence in the ICM and the resulting particle

acceleration process. We adopt the semi–analytic extended Press & Schechter (PS)

theory to follow the formation of a large synthetic population of galaxy clusters and

assume that during a merger a fraction of the PdV work done by the infalling

subclusters in passing through the most massive one is injected in the form of

magnetosonic waves. Then the processes of stochastic acceleration of the relativistic

electrons by these waves and the properties of the ensuing synchrotron (Radio Halos)

and inverse Compton (IC, hard X-ray) emission of merging clusters are computed

under the assumption of a constant rms average magnetic field strength in emitting

volume. The main finding of these calculations is that giant Radio Halos are

naturally expected only in the more massive clusters, and that the expected fraction

of clusters with Radio Halos is consistent with the observed one.
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In Chapt. 6 we extend the previous calculations by including a scaling of the

magnetic field strength with cluster mass. The inclusion of this scaling allows us to

derive the expected correlations between the synchrotron radio power of Radio Halos

and the X-ray properties (T , LX) and mass of the hosting clusters. For the first

time, we show that these correlations, calculated in the context of the re-acceleration

model, are consistent with the observed ones for typical µG strengths of the average

B intensity in massive clusters. The calculations presented in this Chapter allow

us to derive the evolution of the probability to form Radio Halos as a function of

the cluster mass and redshift. The most relevant finding presented in this Chapter

is that the luminosity functions of giant Radio Halos at 1.4 GHz are expected to

peak around a radio power ∼ 1024 W/Hz and to flatten (or cut-off) at lower radio

powers because of the decrease of the electron re-acceleration efficiency in smaller

galaxy clusters. In Chapt. 6 we also derive the expected number counts of Radio

Halos and compare them with available observations: we claim that ∼ 100 Radio

Halos in the Universe can be observed at 1.4 GHz with deep surveys, while more

than 1000 Radio Halos are expected to be discovered in the next future by LOFAR

at 150 MHz. This is the first (and so far unique) model expectation for the number

counts of Radio Halos at lower frequency and allows to design future radio surveys.

Based on the results of Chapt. 6, in Chapt.7 we present a work in progress on

a “revision” of the occurrence of Radio Halos. We combine past results from the

NVSS radio survey (z ∼ 0.05− 0.2) with our ongoing GMRT Radio Halos Pointed

Observations of 50 X-ray luminous galaxy clusters (at z ∼ 0.2−0.4) and discuss the

possibility to test our model expectations with the number counts of Radio Halos

at z ∼ 0.05− 0.4.

The most relevant limitation in the calculations presented in Chapt. 5 and 6 is

the assumption of an “averaged” size of Radio Halos independently of their radio

luminosity and of the mass of the parent clusters. This assumption cannot be

released in the context of the PS formalism used to describe the formation process

of clusters, while a more detailed analysis of the physics of cluster mergers and of

the injection process of turbulence in the ICM would require an approach based on

numerical (possible MHD) simulations of a very large volume of the Universe which

is however well beyond the aim of this PhD thesis.

On the other hand, in Chapt.8 we report our discovery of novel correlations between
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the size (RH) of Radio Halos and their radio power and between RH and the cluster

mass within the Radio Halo region, MH . In particular this last “geometrical”

MH − RH correlation allows us to “observationally” overcome the limitation of

the “average” size of Radio Halos. Thus in this Chapter, by making use of this

“geometrical” correlation and of a simplified form of the re-acceleration model based

on the results of Chapt. 5 and 6 we are able to discuss expected correlations

between the synchrotron power and the thermal cluster quantities relative to the

radio emitting region. This is a new powerful tool of investigation and we show that

all the observed correlations (PR − RH , PR − MH , PR − T , PR − LX , . . . ) now

become well understood in the context of the re-acceleration model. In addition, we

find that observationally the size of Radio Halos scales non-linearly with the virial

radius of the parent cluster, and this immediately means that the fraction of the

cluster volume which is radio emitting increases with cluster mass and thus that the

non-thermal component in clusters is not self-similar.
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Chapter 1

Clusters of Galaxies

In this Chapter we give a brief description of the main properties of galaxy clusters

and focus on the theory of structure formation which is extensively used during this

PhD work.

1.1 Introduction

Galaxy clusters are the largest concentrations of matter in our Universe. They

form through the gravitational collapse of rare high peaks of primordial density

perturbations in the hierarchical clustering scenario for the formation of cosmic

structures (e.g., Peebles 1993; Coles & Lucchin 1995; Peacock 1999). They extend

over 1-3 Mpc regions and are characterized by a total mass of ∼ 1014 − 1015 M¯.

They contain large concentrations of galaxies, so that they were first identified in

the optical band (e.g., Abell 1958; Zwicky et al. 1966; Abell 1989). The optical

observations showed that galaxy clusters are associated with deep gravitational

potential wells in which galaxies are moving with velocities dispersion of the order

of σv ∼ 1000 km/s. The crossing time for a cluster of size R can be estimated as:

tcr = R/σv '
(

R

1Mpc

)(
103km/s

σv

)
Gyr (1.1)

Therefore, in a Hubble time, tH ' 10h−1 Gyr, such a system, at least in its central

∼ 1 Mpc, has enough time to dynamically relax, a condition that cannot be achieved

in the surrounding, ∼ 10 Mpc, environment. Assuming virial equilibrium, the typical

cluster mass results:

M ' Rσ2
v

G
'

(
R

1Mpc

)(
σv

103km/s

)2

1015M¯ (1.2)

7



8 CHAPTER 1. CLUSTERS OF GALAXIES

First optical studies using Eq.1.2 noticed that the mass implied by the motion of

galaxies in the clusters was largely exceeding (about a factor of ∼ 10) the sum of

the mass of all visible galaxies and this was the first evidence of the presence of dark

matter (Zwicky 1933, 1937; Smith 1936). Indeed, the total mass of galaxy clusters

is contributed by 10% of galaxies, by 15-20% of hot diffuse gas and by 70% of dark

matter.

If the hot diffuse gas, permeating the cluster potential well, shares the same

dynamics as member galaxies, then it is expected to have a typical temperature:

KBT ' µmpσ
2
v ' 6

(
σv

103km/s

)2

keV (1.3)

where mp is the proton mass and µ is the mean molecular weight (µ = 0.6 for

a primordial composition with a 76% fraction contributed by hydrogen). X-ray

observation of clusters actually are in agreement with this relation, although with

some scatter, indicating that the idealized picture of clusters as relaxed structures

in which both gas and galaxies feel the same dynamics is a reasonable description.

1.2 Intracluster Gas

X-ray observation of clusters show that they are bright X-ray sources (in the 0.1-10

keV band), with luminosities of ∼ 1043−1045ergs/s. The X-ray continuum emission

from a hot (∼ 108K) and low density (ne ∼ 10−3 − 10−4 cm−3) plasma, such as the

ICM, is due primarily to thermal bremsstrahlung. The emissivity for this process

at frequency ν scales as:

εν ∝ nenig(ν, T )T 1/2exp(−hν/kBT ) (1.4)

where ne and ni are the number density of electrons and ions, respectively, and

g(ν, T ) ∝ ln(kBT/hν) is the Gaunt factor. For systems with T > 3 keV the pure

bremsstrahlung emissivity is a good approximation, while for lower temperature line

emission (bound-bound transitions) become more important. The spectral shape of

the emissivity εν(r) provides a measure of T (r), while its normalization gives a

measure of ne(r).
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1.2.1 Cooling flows

The X-rays emitted from clusters of galaxies via thermal bremsstrahlung represent

the main energy losses for the ICM. The cooling time scale for this process can be

defined as tcool ≡ (d ln T/dt)−1. If the gas cools isobarically, the cooling time is

(e.g., Sarazin 1986):

tcool ' 8.5× 1010
[

np

10−3 cm

]−1[ T

108 K

]1/2

(1.5)

which is longer than a Hubble time. However, the thermal bremsstrahlung depends

on the square of the gas density (Eq.1.4), which rises towards the cluster centre (see

Sec.1.2.2 and Eq.1.16), thus in some clusters of galaxies it can happen that the gas

density within the central 100 kpc or so is high enough that the radiative cooling

time of the gas becomes less than 1010 yr. The cooling time drops further at smaller

radii, and in the absence of any balancing heating of the gas much of the gas in the

central regions should cooling out of the hot ICM. As the gas begins to cool, it is

compressed by the surrounding atmosphere and this increases its X-ray emissivity.

In order to maintain the pressure required to support the weight of the overlying

gas, a slow, subsonic inflow known as “cooling flow” should develop.

The final result is that the gas within the cooling radius, rc, radiates the

thermal energy plus the PdV work done on it as it enters the cooling region (see

Fabian 1994, for a review). Sharply peaked X-ray surface brightness distribution

observed in several clusters of galaxies were the primary evidence for cooling flow.

Observationally, the fraction of clusters with high central surface brightnesses which

imply tcool < 1010yr at the cluster center, is as large as ∼ 70 − 80%, which means

that cooling flow must be common and long-lived (e.g., Fabian 1994).

X-ray observations made before Chandra and XMM-Newton were roughly

consistent with the standard cooling flow picture. The situation of cooling flows

has been modified thanks to the high spatial resolution imaging of Chandra and the

high spectral resolution of XMM-Newton spectrometer.

As a matter of fact, there is a clear evidence that in the central 100 kpc the

gas temperature drops by a factor of 3 or more, down to 2-3 keV but not to

lower temperatures (e.g., Peterson et al. 2003), and what really happens is not

obvious, since the gas does not appear to be piling up at the lower temperature but

it seems that the gas temperature profile is ‘frozen’ and has been so for some Gyrs
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(e.g., Bauer et al. 2005).

The profile of tcool is similar in many clusters with a common central minimum

value for tcool of about 200 Myr. This strongly suggests that heating is continuous,

at least on timescales of 108 yr or more and is spatially distributed. Moreover, no

shock waves have been found in these regions so any mechanical energy injection

must be subsonic.

Some mechanisms of heating may balance radiative cooling but the source of

heating remains unsolved, although several good candidates have been proposed:

supernovae (e.g., Silk et al. 1986; Domainko et al. 2004), active galactic nuclei

(e.g., Bailey 1982; Tucker & Rosner 1983; Binney & Tabor 1995; Fabian et al. 2002;

B̂ırzan et al. 2004), thermal conduction (e.g., Rosner & Tucker 1989; Voigt et al.

2002; Cho et al. 2003).

ROSAT HRI and Chandra data clearly showed that the central radio sources of

several clusters are strongly interacting with the ICM (e.g., Böhringer et al. 1993;

Fabian et al. 2005). In particular holes in the X-ray surface brightness coincident

with radio lobes are commonly seen and generally referred to as radio bubbles. They

are interpreted as bubbles of relativistic gas blown by the AGN into the thermal

ICM. Bubbles are expected to detach from the core and rise up buoyantly trough the

cluster, e.g., Perseus (Churazov et al. 2000). These evidences have been considered

in favour of heating mechanism driven by the dissipation of energy propagating

through the ICM from a central radio source. However, difficulties and doubts

remain in this regard and future studies are needed in order to better understand

the heating/cooling balance. We refer the reader to the recent works by Peterson &

Fabian (2006) and Dunn & Fabian (2006).

1.2.2 Hydrostatic equilibrium model

The sound speed in galaxy clusters is given by:

cs =

√
∂P

∂ρ
=

√
5KBT

3µmp

∼ 1470

√
T

108K
km/s (1.6)

and the sound crossing time is:

ts ' 0.67

√
108K

T
·
(

R

1Mpc

)
Gyr (1.7)
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Therefore, given that the sound crossing time is ¿ than the cluster lifetime (∼ the

Hubble time), as a first approximation the gas in galaxy clusters can be treated as

a collisional fluid in hydrostatic equilibrium (the last assumption is valid as long as

the cluster is stationary, i.e., the gravitational potential does not change on a sound

crossing time). Under these circumstances, the gas obeys the hydrostatic equation

and from the variations of pressure and density one can determine the total mass.

The equation of the hydrostatic equilibrium, which is based on spherical symmetry,

static gravitational potential and isotropy velocity field, is:

dPgas

dr
= −ρgas

dΦ(r)

dr
= −ρgas

GM(r)

r2
(1.8)

where P = ρgasKBTgas/µmp is the gas pressure, ρ is the gas density, Φ(r) is the

gravitational potential of the cluster, r is the distance from the cluster centre and

M(r) is the total cluster mass inside r. From Eq.1.8 one has the total mass M(r)

interior to r:

Mtot(< r) = −KBTr

µmpG

[
dlnρgas

dlnr
+

dlnT

dlnr

]
, (1.9)

It is important to note that the mass depends only weakly on density, but strongly

on the temperature distribution, T (r), which is not easy to derive. One approach is

to assume a simple “polytropic” equation of state connecting the temperature and

density T ∝ nγ−1
e , where γ = 1 means that the gas is isothermal. The assumption

that the gas is isothermal leads to a particularly simple density distribution for the

gas; from Eq.1.8 one has:

d ln ρgas

dr
= − µmp

KBT

dΦ(r)

dr
(1.10)

In order to derive the expression for the gas density profiles in galaxy clusters it

is necessary to get the gravitational potential Φ of the cluster. By considering the

cluster as a self-gravitating system of collisionless particles (essentially galaxies and

dark matter) with a density profile ρ(r) and isotropic velocity dispersion σ2
r , it is:

d ln ρ

dr
= − 1

σ2
r

dΦ(r)

dr
(1.11)

which may be integrated and solved for ρ(r) as:
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ρ(r) = ρo exp
[
Φ(r)

σ2
r

]
(1.12)

Combining this equation with the Poisson equation

∇2Φ(r) = 4πGρ(r) (1.13)

one obtains ρ(r) and Φ(r). Although Eq.1.12 and Eq.1.13 do not give a trivial

solution, King (1962) derived an approximate solution for ρ(r) and Φ(r) in the

form:

Φ(r) = −4πGρo(r)r2
c

ln[r/rc + (1 + (r/rc)
2)1/2]

r/rc

(1.14)

ρ(r) = ρo

[
1 +

(
r

rc

)2]−3/2

(1.15)

where ρo is the central density and rc is a characteristic radius. These two expressions

satisfy the Poisson equation (Eq.1.13) exactly, while they satisfy approximately the

equation hydrostatic equilibrium (Eq.1.11). As the hot gas and the collisionless

“particles” must obey the same gravitational potential Φ(r), combining Eq.1.11 and

Eq.1.10, one has ρgas = ρβ, with β ≡ µmpσ
2
r/KBT , and thus the isothermal gas

distribution is given by:

ρgas(r) = ρgas,o

[
1 +

(
r

rc

)2]−3β/2

(1.16)

which is commonly referred to as the β-model (Cavaliere & Fusco-Femiano 1976).

This can be regarded as a realistic gas density profile under the conditions that the

cluster potential can be approximated with a King model (Eq.1.14 and Eq.1.15) and

that the intracluster gas is essentially isothermal. The β parameter indicates the

ratio between specific kinetic energy of the “particles” responsable of the cluster

potential and the specific thermal energy of the gas particles. When all the

constituent components of the cluster have the same energy for unit mass, we expect

β = 1. In many clusters of galaxies the β-model with β ' 0.5−1 gives a fairly good

approximation of the observed X-ray surface brightness.

This model has the advantage that the resulting gas distribution and all the

integral to compare the model to the observations are analytic (for example, the total

cluster mass and the X-ray brightness distribution), although the basic assumptions
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that both galaxy and gas are in hydrostatic equilibrium and isothermal, and that the

mass profile of galaxies is representative of the total mass profile are not in general

fully motivated.

By combining Eq.1.16 and Eq.1.9, and assuming the gas to be isothermal yields:

Mtot(< r) =
3KBTr3β

µmpG

(
1

r2 + r2
c

)
, (1.17)

The X-ray mass determination method usually gives good results in relaxed

clusters, although, the temperature in real clusters decreases with increasing radius

and this may cause an overestimation of the cluster mass of about 30% at about six

core radii (Markevitch et al. 1998).

Eq.1.17 may fail in the case of dynamically disturbed clusters as merging clusters,

because the merger may cause substantial deviation from hydrostic equilibrium and

spherical symmetry (e.g., Evrard, Metzler & Navarro 1996; Röttiger, Burns &

Loken 1996; Schindler 1996). Several numerical simulation studies have been

undertaken in order to determinate whether the above assumptions introduce

significant uncertainties in the mass estimates. Generally, these simulations indicate

that in the case of merging clusters the hydrostatic equilibrium method can lead to

errors up to 40% of the true mass (e.g., Evrard, Metzler & Navarro 1996; Röttiger,

Burns & Loken 1996; Schindler 1996; Rasia et al. 2006). In particular, the

masses in merging clusters can be either overestimated in the presence of shocks, or

underestimated since substructures tend to flatten the average density profile (see

Schindler 2002).

1.3 Dark Matter, galaxies and mass determination

In a galaxy cluster with N galaxies the short-range gravitational effects are

marginally effective. Indeed the two-body relaxation time for such a system can

be estimated as (e.g., Binney & Tremaine 1987):

trelax ∼ N

ln N
tcr (1.18)

Thus, taking N ∼ 102 and tcr ∼ 1 Gyr, trelax is somewhat larger than the Hubble

time and galaxies in clusters are a collisionless system under the influence of the mean
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potential. Also the dark matter component, which dominates the gravitational field

of galaxy clusters, can be described as a collisionless system.

In fact, galaxy clusters are expected to reach the condition of dynamical

equilibrium under the effect of a process know as violent relaxation (Lynden-Bell

1967), essentially under the action of rapid changes in the gravitational potential

during the collapse of the structure. The dynamical equilibrium of a collisionless

system is described by the Jeans equation and for a static and spherical system it

is (e.g., Binney & Tremaine 1987):

Mtot(< r) = −σ2
r(r)r

G

[
dlnρ(r)

dlnr
+

dlnσ2
r(r)

dlnr
+ 2βa(r)

]
, (1.19)

where ρ(r), σr and βa refer to any distribution of tracers (e.g., galaxies) in dynamical

equilibrium within the global potential. βa ≡ 1 − σ2
t

σ2
r

is the anisotropy parameter

and σr and σt are the radial and tangential velocity dispersion respectively. Usually,

in measuring the cluster mass from Eq.1.19, it is customary to assume isotropy of

the velocity field and derive ρgal deprojecting the observed 2d density of galaxies.

Eq.1.19 with βa = 0 is the equivalent of Eq.1.9 where the tracer of the gravitational

potential is the gas and it can also be shown that Eq.1.19 in the case of βa = 0 and

dσ2
r/dr = 0 is equivalent to the the virial theorem:〈v2〉 = GMtot/r. The dynamical

mass of a cluster obtained from the virial theorem is larger than the sum of the

masses of the galaxies and emitting gas, and this was first known as the missing

mass problem and was the first evidence of the existence of dark matter (DM) in

galaxy clusters (Zwicky 1933, from optical observations).

Several candidates for this DM are being discussed. While, for instance,

observations of the large scale clustering of galaxies rule out neutrinos (candidates

for Hot Dark Matter, HDM) as forming the main component of the dark matter

(e.g., White et al. 1983), the recent strong evidence that neutrinos with finite

rest mass do exist (e.g., Fukuda et al. 1998) leaves the possibility that at least

part of the missing mass is provided by neutrinos. One of the frequently invoked

possible Cold Dark Matter (CDM) particles are the axions (e.g., Overduin & Wesson

1993); also the contribution of the heavier neutralino and gravitino is often discussed

(e.g., Overduin & Wesson 1997).

The CDM paradigm has been extremely successful in explaining observations of

the universe on large scale at various epochs. Tanks to N-body simulations, which
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are now able to resolve structures on highly nonlinear scales, the properties of DM

halos can be modeled. A central prediction arising from CDM simulations is that

the density profiles of DM halos is universal as it does not depend on their mass,

on the power spectrum of initial fluctuations, and on the cosmological parameters

Ωo and Λ (e.g., Navarro, Frenk & White 1995, 1997). It appears that mergers

and collisions during halo formation act as a “relaxation” mechanism to produce

an equilibrium largely independent of initial conditions. This profile is referred to

Navarro-Frenk-White (NFW) profile:

ρNFW (r) =
ρcδc

(r/rs)(1 + r/rs)2
(1.20)

where rs = r200/c is the “scale” radius where the profile changes shape; ρc =

3H2/8πG is the critical density (H is the current value of Hubble’s constant); δc and

c are two dimensionless parameters, they are called respectively the characteristic

overdensity of the halo and its concentration. δc and c are linked by the requirement

that the mean density of the halo within r200 should be 200× ρc, this leads to:

δc =
200

3

c3

(ln(1 + c)− c/(1 + c))
(1.21)

The asymptotical behavior of the NFW profile is:

ρNFW (r) ∝
{

r−1 for r << rs

r−3 for r >> rs

thus the NFW profile is singular, i.e., it diverges like r−1 near the center (although

the mass and potential converge near the center). It has been found, both

observationally and with numerical simulations (see Dolag et al. 2004; Biviano

2006), that smaller mass halos are more concentrated (have large values of c) than

the higher mass halos, this is because lower mass systems have higher formation

redshift than the larger mass systems. A consistent view has now emerged in which

a real dispersion among the values of the inner slopes for individual cluster halos

is expected, where typical values for the inner slopes lie in the range ∼ 1.1 ± 0.4

(Moore et al. 1999; Navarro et al. 2004; Diemand et al. 2004, 2005).

An advantage of the NFW profile is that the total DM mass within r, MNFW (<

r) (which is the 70-80% of the total cluster mass, DM+gas+galaxies) is given by a

simple analytical formula:
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MNFW (< r) = 4πρcδcr
3
s

[
ln(1 + r/rs) + (1/(1 + r/rs))− 1

]
, (1.22)

So far we have presented two techniques to determine the total cluster mass:

the first based on the X-ray measurements of intracluster gas (Eq.1.9) and its

combination with the β-model (Eq.1.17), and the second based on the optical

measurements of distribution and velocity dispersion of cluster galaxies (Eq.1.19). A

third independent method is based on strong and weak gravitational lensing, i.e., on

the images of distant galaxies behind clusters which result distorted by the cluster

gravity. In principle, strong gravitational lensing furnishes a simple yet efficient way

to measure the projected cluster mass along the line of sight. A simple spherical

lensing model provides a good estimate of the projected cluster mass within the

position (rarc) of the arc-like image, as (e.g., Bartelmann 2003):

Mlens(< rarc) ≈ πr2
arcΣcrit (1.23)

where Σcrit = (c2/4πG)(Ds/DdDds) is the critical surface mass density and Dd,ds,s

are three characteristic distances of the lens system: from the observer to the

lens, from the lens to the source and from the observer to the source, respectively.

Observations of week lensing by galaxy clusters aim at reconstructing the cluster

mass distribution from the appearance of arclet, i.e. weakly distorted images of

faint background galaxies. This thechnique uses ellipticities of sources but since the

sources are not intrinsically circular week-lensing needs several source images to be

averaged under the assumption of random orientation of these sources. In principle,

the week lensing techniques allow the surface density distribution of clusters to be

mapped with angular resolution determined by the number density of background

galaxies (see Bartelmann 2003, for a review).

While the traditional cluster mass estimators using optical/X-ray observations of

galaxies/gas in clusters rely strongly upon the assumption of hydrostatic equilibrium,

the strong and week gravitational lensing methods are not based on any assumption

about the dynamical equilibrium of the cluster. It turns out that there is a good

agreement between the gravitational lensing, X-ray and optically determined cluster

masses on scales larger than the X-ray core radii, within which the X-ray method

is likely to underestimate cluster masses by a factor of 2-4 (e.g., Wu 1994;

Allen 1998; Wu et al. 1998). A number of resons have been proposed to explain
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this mass discrepancy, but a satisfactory explanation has not yet been achieved.

Oversimplification of strong lensing models for the central mass distribution of

clusters or the non general validity of the hydrostatic equilibrium hypothesis in the

central region of clusters are among the generally quoted arguments (e.g., Hicks

2002; Wu 2000).

1.4 Hierarchical Formation of Galaxy Clusters

Galaxy clusters occupy a special position in the hierarchy of cosmic structures being

the largest bound structure in the Universe. In the framework of the hierarchical

model for the formation of cosmic structures, galaxy clusters are supposed to form

by accretion of smaller units (galaxies, groups, etc). In the paradigm of structure

formation the universe is composed mainly by non-baryonic DM (the baryons are

only Ωb ∼ 0.023 − 0.032h−2). Cosmic structures form by gravitational instability

driven by the gravity of the DM component and thus the first non-linear system to

form, by gravitational collapse, are dark matter halos. Galaxies and other luminous

objects are assumed to form by cooling and condensation of baryons within the

gravitational potential well created by the DM halos (White & Rees 1978).

Recent observations, based on the relative orientation of substructures within

clusters (West et al. 1995) and on the relation between their dynamical status and

the large scale environment (Plionis & Basilakos 2002), do support the hierarchical

scenario. In the last decades, due to the increased spatial resolution in X-ray imaging

(ROSAT/PSPC & HRI) and to the availability of wide-field cameras, many of the

previous thought “regular” clusters have shown to be clumpy to some level and this

is even more so in the Chandra and XMM era. The physical properties of galaxy

clusters, such as the fraction of dynamically young clusters, the luminosity and

temperature functions, the radial structure of both dark and baryonic components,

constitute a challenging test for our current understanding of how these objects grow

from primordial density fluctuations.

There are different ways to model the cosmic structure formation: analytic,

semi-analytic and numerical techniques. The analytic techniques, first developed in

the ’70 years, pose the basis of the present models of the galaxy formation (White

& Rees 1978; Fall & Efstathiou 1980). The numerical techniques, from pure N-

body simulations (Davis et al. 1985) to the more recent N-body plus hydrodynamic
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simulations (Steinmetz & Muller 1995; Katz et al. 1996), allow a detailed study

of the relevant physical process, but also these techniques are subject to different

approximations or ad hoc assumptions. The semi-analytic techniques consider the

overall processes leading to the galaxies and galaxy clusters formations, but these

processes are simplified in order to have a general parametric model, justified by

analytic models and calibrated on results of numerical simulations. These models

(Cole 1991; White & Frenk 1991; Kauffmann et al. 1993; Cole et al. 1994) are based

on the model of the gravitational clustering by Press & Schechter (1974, hereafter

PS74) and its extensions (Bower 1991; Bond et al. 1991; Lacey & Cole 1993, ;

hereafter LC93). This formalism is extensively used to build up, via Montecarlo

techniques, synthetic populations of dark matter halos which evolve in time due

to mergers and hierarchical clustering. These techniques have been also extensively

developed in order to study the evolution and formation of galaxies (e.g., Kauffmann

et al. 1993, 1999; Menci et al. 2004).

In the following we will discuss in some detail the Extended Press & Schechter

(EPS) theory (LC93) for structure formations and some of its basis as the spherical

collapse model. Finally we will briefly discuss the main numerical techniques. We

will focus on the case of galaxy clusters which will be of interest in this Thesis.

1.4.1 Linear theory for structure formation

Observations of the Cosmic Microwave Background (CMB) radiation (e.g., Bennett

et al. 1996) show that the universe at recombination was extremely uniform, but with

spatial fluctuations in the energy density and gravitational potential of roughly one

part in 105. Such small fluctuations, generated in the early universe, grow over time

due to gravitational instability, and eventually lead to the formation of galaxies

and the large scale structure observed in the present universe. The gravitational

instability is based on the following demonstration: starting from an homogeneous

and isotropic “mean” fluid, small fluctuations in the density, δρ, and in the velocity

, δv, can grow with time if the self-gravitating force overcome the pressure force.

This occurs if the typical lenghtscale of the fluctuation is greater than the Jeans

length scale, λJ , for the fluid.

There are two different regimes of growth of the perturbations: linear and non-

linear. The two regimes can be distinguished defining the density fluctuation, or the
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overdensity:

δ =
ρ− ρ

ρ
=

δρ

ρ
(1.24)

where ρ is the density of the universe at a given position (for simplicity of notation

we neglect the coordinate dependence) and ρ is the mean unperturbed density of

the universe. The linear regime acts as long as δ << 1. The fluid is described

by the continuity, the Euler, the Poisson and the entropy conservation equations

(e.g., Peebles 1993; Coles & Lucchin 1995):

∂ρ

∂t
+
−→∇ · (ρ−→v ) = 0 (1.25)

∂−→v
∂t

+ (−→v · −→∇)−→v +
1

ρ

−→∇p +
−→∇φ = 0 (1.26)

∇2φ− 4πGρ = 0 (1.27)
∂s

∂t
+−→v · −→∇s = 0 (1.28)

These equations, expanded in coomoving coordinates for the perturbed quantities

(ρ+ δρ, v + δv, and so on) and linearized to search for solutions in the form of plane

waves, give:

δ̈ + 2
ȧ

a
δ̇ +

[
c2
s

k2

a2
− 4πGρ

]
δ = 0 (1.29)

where k is the wave number, cs = (∂p/∂ρ)1/2 is the sound speed and a is the scale

factor of the Universe. The solution for δ depends on the quantity in bracket which

represent the combined contribution of pressure and gravity. The Jeans length scale

can be defined as:

λJ ≡ cs

√
π

Gρ
(1.30)

Perturbations with λ >> λJ (or (csk/a)2 << 4πGρ) are unstable and their growth

will depend on the geometry of the universe:

δ̈ + 2
ȧ

a
δ̇ − 4πGρδ = 0 (1.31)

which yields a growing and the decaying mode. For a Einstein-de Sitter universe

one has:
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Figure 1.1: The redshift dependence of the linear growth factor of perturbation for an
EdS model,Ωm = 1 (black solid curve) and for a flat model, Ωm = 0.3, with cosmological
constant (red dashed curve).

ρ =
1

6πGt2
(1.32)

a = a0(
t

t0
)2/3 (1.33)

ȧ

a
=

2

3t
(1.34)

and Eq.1.31 has two trial solutions: δ+ ∝ t2/3 ∝ a and δ− ∝ t−1 ∝ a−2/3 for the

growing and decaying mode, respectively.

It is helpful to introduce the linear growth factor D(z) which gives the growth of

fluctuations (normalized to the present epoch) as a function of redshift z. In the case

of a EdS universe D(z) = 1/(1 + z) = (t/t0)
2/3 ∝ a. In a model with Ωm 6= 1 and

with a cosmological constant ΩΛ 6= 0 (a ΛCDM model) a remarkable approximation

formula for D(z) is given by (e.g., Carroll et al. 1992) :

D(z) =
1

(1 + z)

g(z)

g(z = 0)
(1.35)

where g(z) is given by:
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g(z) =
5

2
Ωm(z)

[
Ωm(z)4/7 − Ωλ(z) + (1 +

Ωm(z)

2
)(1 +

ΩΛ(z)

70
)
]−1

(1.36)

In Fig.1.1 we report D(z) for an EdS model and for a ΛCDM model (Ωm = 0.3

and ΩΛ = 0.7). It is evident that the EdS has the faster evolution (i.e., D(z) is

steeper), while in a ΛCDM model the evolution is less rapid due to the fact that at

some point the cosmic expansion takes place at a quicker rate than the gravitational

instability, and this freezes the perturbation growth.

The density fluctuations in a given region obeys these simple relations until the

perturbation δ becomes of order of unity, at which point non-linear effects become

important, and the linear theory cannot be applied.

1.4.2 Spherical collapse model

In the strongly non-linear regime, δ >> 1 (a cluster of galaxies, for example,

corresponds to δ of order of several hundred), it is necessary to develop techniques

for studying the non-linear evolution of perturbations.

The spherical collapse model follows the evolution of a spherically symmetric

perturbation with constant density. At the initial time, ti ' trec (trec being the

recombination time), the perturbation has an amplitude 0 < |δi| << 1 and is taken

to be expanding with the background universe in such a way that the initial peculiar

velocity, Vi, is zero. At the beginning of its evolution the perturbation can still be

described by the quasi-linear theory which in the case of an EdS Universe gives:

δ = δ+(ti)(
t

ti
)2/3 + δ−(ti)(

t

ti
)−1 (1.37)

V =
i

kiti

[
2

3
δ+(ti)(

t

ti
)1/3 − δ−(ti)(

t

ti
)−4/3

]
(1.38)

where i is the imaginary unit. The condition Vi = 0 implies δ+(ti) = 3δi/5. After a

short time, the decaying mode δ− will become negligible and the perturbation will

grow. The spherical symmetry of the perturbation implies that it can be treated as

a separate universe and, if pressure gradients are negligible, the perturbation evolves

like a Friedmann model whose initial density parameter is given by:
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Ωp(ti) =
ρ(ti)(1 + δi)

ρc(ti)
= Ω(ti)(1 + δi) (1.39)

where the suffix p denotes quantities relative to the perturbation, while ρ(ti) and

Ω(ti) refer to the unperturbed underground universe (Ω(ti) = 1 in a EdS model).

Structures will be formed if, at some time tm, the spherical region ceases to expand

with the background universe and begins to collapse and this will happen to any

perturbation with Ωp(ti) > 1. This implies the condition for the initial collapse:

δ+(ti) >
3

5

1− Ω

Ω(1 + zi)
(1.40)

where Ω is the present value of the density parameter. Obviously, in a EdS (Ω = 1)

universe any δi > 0 will collapse, while in the case Ω < 1, the initial perturbation

must exceed some critical value.

The evolution of the perturbation with Ωp > 1 is described by a Friedmann

model with Ωp > 1:

(
ȧ

a
)2 = H2

i

[
Ωp(ti)

ai

a
+ 1− Ωp(ti)

]
(1.41)

where Hi is the initial value of the Hubble expansion parameter. At time tm the

perturbation will reach the maximum expansion (e.g., Coles & Lucchin 1995):

tm =
π

2Hi

Ωp(ti)

(Ωp(ti)− 1)3/2
(1.42)

am ≡ a(tm) = ai
Ωp(ti)

Ωp(ti)− 1
(1.43)

which correspond to a minimal density (ρ ∝ a−3):

ρp(tm) = ρp(ti)
(

Ωp(ti)− 1

Ωp(ti)

)3

= ρc(ti)Ωp(ti)
(

Ωp(ti)− 1

Ωp(ti)

)3

(1.44)

and, using Eq.1.44 and taking ρc(ti) = 3Hi/8πG, one also finds:

tm =
π

2Hi

[
ρc(ti)

ρp(tm)

]1/2

=
[

3π

32Gρp(tm)

]1/2

(1.45)

In a EdS universe the matter density evolves with time according to Eq.1.32 and

(from Eq.1.45 and Eq.1.32) it is:
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ρp(tm)

ρ(tm)
= χ = (

3π

4
)2 ' 5.6 (1.46)

which correspond to a perturbation δ+(tm) = χ − 1 ' 4.6. We notice that the

extrapolation of the linear growth law would have yielded:

δ+(tm) = δ+(ti)(
tm
ti

)2/3 ' 3

5
(
3π

4
)2/3 ' 1.07 (1.47)

corresponding to ρp(tm)/ρ(tm) ' 1 + δ+(tm) ' 2.07.

The perturbation at t > tm will subsequently collapse and formally reach an

infinite density at the center in a time tc ' 2tm. However, when the density becomes

high, slight departure from this symmetry will results in formation of shocks and

pressure gradients which convert some of the kinetic energy of the collapse into heat

yielding a final virial-equilibrium state at tv ≈ tc with radius Rv and mass M . From

the virial theorem the total energy of the fluctuation is:

Ev =
U

2
= −1

2

3GM2

5Rv

(1.48)

and, if the system is closed (mass and energy conservation), at time tm, when the

perturbation is at its maximum size, Rm, the energy is given by:

Em = U = −3

5

GM2

Rm

(1.49)

and from Eq.1.48 and Eq.1.49 one has the simple relation between the virial and

maximum radius of the perturbation, Rm = 2Rv, which allows to compute the

overdensity at the collapse-virial time, tv:

ρp(tv)

ρ(tv)
= (

Rm

Rv

)3(
tv
tm

)2χ = 8 · 22 · (3π

4
)2 = 18π2 ' 178 (1.50)

Thus DM halos with an overdensity of ∼ 200 are usually considered to have reached

the condition of virial equilibrium. We notice that an extrapolation of linear

perturbation theory would have given:

δ+(tv) = δ+(tm)(
tv
tm

)2/3 =
3(12π)2/3

20
' 1.69 (1.51)

which is an important number that will be used in next Section in order to

characterize the mass function of virialized halos. While the above derivation holds
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for an EdS Universe, for Ωm < 1 the increased expansion rate of the universe causes

a faster dilution of the cosmic density from tm to tv and, as a consequence, a larger

value of the overdensity is obtained at the virialization epoch. In the following we

will indicate with ∆v the overdensity at virial equilibrium, computed with respect

to the background density. According to this definition the masses and radii of a

virialized clusters are related as:

Rv =

[
3Mv

4π∆v(z)ρm(z)

]1/3

(1.52)

where ρm(z) = 2.78× 1011 Ωm (1 + z)3 h2 M¯Mpc−3 is the mean mass density of the

universe at redshift z. The quantity ∆v(z) depends on the cosmological model. For

an EdS model ∆v(z) = 18π2 ' 178 (Eq.1.50), while in the ΛCDM cosmology ∆v(z)

depends on z and is given by Kitayama & Suto (1996):

∆v(z) = 18π2(1 + 0.4093ω(z)0.9052), (1.53)

where ω(z) ≡ Ωf (z)−1 − 1 and:

Ωf (z) =
Ωm,0(1 + z)3

Ωm,0(1 + z)3 + ΩΛ

, (1.54)

in this case the value of ∆v at redshift zero is ∼ 330.

1.4.3 Excursion set and the mass function of collapsed halos

What we have discussed so far is useful only to estimate the scale of the formation

of non-linear structures and the properties of the objects which undergo a spherical

collapse. To follow the hierarchical evolution of a population of dark matter halos

it is necessary to adopt a theory and, with semi-analytic techniques, this is only

possible by making use of the quasi linear theory. Here we will present the EPS

theory (e.g., Bond et al. 1991; Lacey & Cole 1993) which will be extensively used

in this PhD thesis.

At the begininning of this evolution, when the amplitude of the density

perturbations is small, δ << 1, these perturbations grow according to the linear

theory (see Sec.1.4.1) and δ(x, t) = δ(x, t0) · D(t)/D(t0) (x being the comoving

coordinate). As discussed in the previous sections, the evolution of δ can be
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Figure 1.2: Realization of one-dimensional Gaussian random density field filtered on a
scale ks; in abscissa there is the position x; in depth the filtering radius (small k ahead);
in ordinate the amplitude of the field δ(x,R) (Bond et al. 1991).

described by the linear theory until δ(x, t) approach unity, at which point non-

linear effects become important and the region ceases to expand, turns around, and

collapses to form a virialized halo. At this point the density contrast estimated by

the linear theory will have reached a critical value δc, estimated from the evolution

of an isolated spherical overdense region (see Sec.1.4.2, Eq.1.51; here we will use

the suffix c instead of v for ‘critical’), while mass and virial radius of the collapsed

halos can be estimated by Eq.1.52 with ∆c given by Eq.1.50 and Eq.1.53 in a EdS

a ΛCDM cosmology respectively.

A useful way of viewing this evolution is to simply consider the linear density

field δ(x) ≡ δ(x, to) at to, the present time, and a critical threshold δc(t) = δc · D(to)
D(t)

that is progressively lowered with increasing cosmic time allowing to collapse first

the perturbations on small scales and then the perturbations on scales larger and

larger (see Fig.1.2). More accurately in a EdS universe one can identify the regions

which will have collapsed to form virialized halos at time t as those region in the

linear density field for which δ is larger than:

δc(t) = δc · D(t0)

D(t)
=

3(12π)2/3

20
(
t0
t

)2/3 (1.55)

while in the case of a ΛCDM universe it is (Kitayama & Suto 1996):

δc(t) = δc · D(t0)

D(t)
=

D(t0)

D(t)

(
1 + 0.0123logΩm(z)

)
(1.56)

where Ωm(z) is given by:
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Ωm(z) =
Ωm(0)(1 + z)3

Ωm(0)(1 + z)3 + ΩΛ(0)
(1.57)

and the linear growth factor in Eq.(1.56) is given by Eqs.1.35 and Eq.1.36.

In order to follow the collapse of the evolving perturbations in terms of halo masses

it is necessary to introduce a smoothing scale and a mass of a halo: the infinitesimal

mass element in x will be part of a halo of mass ≥ M at time t if the linear density

field δ(x; R), centred in x and smoothed (averaged) on a sphere of radius R ∝ M1/3,

exceeds the threshold for collapse at time t, δc(t). Thus, in order to obtain the mass

of the collapsed halos at time t one considers the largest M for which δ(M) ≥ δc(t).

This idea was first proposed by PS74, and subsequently developed by Bond et al.

(1991) and LC93 for a semi-analytic description of the merging and appears to be in

good agreement with the hierarchical mergers synthesized in cosmological N-body

simulations.

The density field smoothed on a scale R, δ(x, R), is the convolution of the density

field in x, δ(x), with a window function WM(r) of typical extent R. It is costumary

to consider the Fourier decomposition of the linear density field:

δ(x) =
∑

k

δk exp(ik · x) (1.58)

Applying the convolution to the Fourier series, the smoothed field can be expressed

as:

δ(x, R) =
∫

WM(|x− y|)δ(y)d3y =
∑

k

δkŴM(k) exp(ik · x) (1.59)

where ŴM(k) is the Fourier transform of the spatial window function WM(r). At

a fixed x Eq.1.59 gives δ(M). The simplest form of WM(r) is the top-hat filtering

which is constant inside a sphere and zero outside; correspondingly, ŴM(k) is a step

function in k-space:

ŴM(k) =





1 for k << ks

0 for k >> ks

(1.60)

where ks ∝ 1/R is the wave number corresponding to the filtering radius R; thus

the perturbations that contribute to δ(R) will only be those with λ ∼ k−1 > R, the

others will delete each other. The problem of reconstructing the mass function of
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the evolving perturbations is complex since it depends on x and on the spectrum of

the perturbations P (k) = |δk|2. It is necessary to define a new variable, the mass

variance of the linear density field smoothed with the window function of size R,

S(M):

S(M) = σ2(M) = 〈|δ(M,x)|2〉 = Σk〈|δk|2〉Ŵ 2
M(k) (1.61)

In the cases of interest S is a monotonically decreasing function of M and, if the

smoothing mass scale is sufficiently large, S (and thus δ(S,x)) will tend to zero. It

can be noted that the mass variance does not depend on the coordinates and thus

it does not give us information about the spatial distribution of the perturbations,

but given that the perturbations evolve with time, the mass variance depends on

time and gives us information on the amplitude of the dishomogeneities.

In standard models, the inflation produces a primordial power-law spectrum

P (k) ∝ 〈|δk|2〉 ∝ kn, the variance as a function of mass is simply σ2(M) ≡ 〈|δk|2〉 ∼
∫

P (k)k2dk ∼ kn+3 ∼ M−n+3
3 (e.g., Coles & Lucchin 1995). In this case the mass

variance assumes large values on small scales, and thus the first structures to form

are those on small scale, then these structures merge to form halos of larger mass (see

also Fig.1.2); this is what happen in a hierarchical model of structures formation.

For a given realization of the density field, i.e. a given set of δk, S(M) and

δ(x,M) at different locations x are determined. It is customary to fix the location x

and to obtain different realizations of δk so that S(M) and δ(x,M) can be considered

as random. For a given realization of δk, δ(S) = 0 at S = 0, corresponding to a null

fluctuation at an infinite radius, and then δ(S) stochastically changes as S increases.

It can be shown that, in the case in which WM(r) is a step function in the Fourier

space (Eq.1.60), the variations δ(M)-S(M) can be considered as a Brownian random

walk in the bidimensional space (S, δ(S)) where S is the “time” equivalent variable

and δ(S) is the “space”. This “motion” can be described by a simple diffusion

equation (e.g., Lacey & Cole 1993):

∂Q

∂S
=

1

2

∂2Q

∂δ2
(1.62)

where Q(δ, S) is the probability distribution of “trajectories” at S in the interval

δ to δ + dδ. In the case of a Brownian motion, the solution is a simple Gaussian

probability distribution:
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Q(δ, S) =
1√
2πS

exp−(
δ2

2S
) (1.63)

The use of the Brownian walks in the space (S, δ) is a fundamental point as this

allows to formulate the model of the excursion sets, first proposed by Bond et al.

(1991). The basic idea of this model is the following: the “trajectories” that, starting

from the origin (S = 0), touch for the first time at S the ordinate δ = δc(t) are fluid

elements which at the time t belong to halos of mass M(S). In other words: each

time t determinates a threshold, or barrier, δc(t) which will be crossed for the first

time in a point corresponding to an abscissa S. Thus, at the time t the mass element

associated to this “trajectory” will become part of a halo of mass M(S).

It is important to note that the request that the “trajectory” touches the

threshold δc(t) for the first time corresponds to selecting the minimum value of S and

thus the maximum filtering radius R = Rmax for which the sphere of radius R at time

t has an overdensity δ(M) ≥ δc(t). To compute the mass function of the virialized

structures at the time t it is necessary to consider the fraction of “trajectories” that

are above the threshold δc(t) at some mass scale M but are below this threshold for

all largeer values of M . The solution of Eq.1.62 is (Chandrasekhar, 1943):

Q(δ, S, δc(t)) =
1√
2πS

[
exp

(
− δ2

2S

)
− exp

(
− (δ − 2δc(t))

2

2S

)]
(1.64)

and this gives the fraction of the “trajectories” that are above the threshold δc(t) at

some mass M but are below this threshold for all large values of M (or small values

of S).

The probability that at time t a fluid element belongs to a halo of mass around

M is the probability that a particular “trajectory” will be absorbed by the barrier

at time t around S and this is equal to the reduction in the number of “trajectories”

surviving below the barrier (LC93):

fS(S, δc(t)) = − ∂

∂S

∫ δc(t)

−∞
Qdδ = −

[
1

2

∂Q

∂δ

]δc(t)

−∞
=

δc(t)√
2πS3

exp [− δc(t)
2

2S
] (1.65)

where the second equality follow from Eq.1.62 and the third equality is obtained from

Eq.1.64. The comoving number density of halos of mass M at time t is obtained

from Eq. 1.65 in the form:
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Figure 1.3: A “trajectory” δ(S) and the corresponding halo merger history. The solid
line shows the “trajectory” for the overdensity δ as the smoothing scale is varied. The
dotted line shows the “trajectory” for the halo mass, represented by a function S(ω) with
ω = δc(t). Where δ is increasing with S, the dotted line coincides with the solid line (by
Lacey & Cole 1993).



30 CHAPTER 1. CLUSTERS OF GALAXIES

dn

dM
(M, t)dM =

ρ(t)

M
fS(S, δc(t))

∣∣∣∣
dS

dM

∣∣∣∣dM =

=
(

2

π

)1/2ρ(t)

M2

δc(t)

σ(M)

∣∣∣∣
d ln σ

d ln M

∣∣∣∣ exp
[
− δc(t)

2

2σ2(M)

]
dM (1.66)

where ρ(t) is the mean mass density of the universe at the time t. This expression

for the mass function was originally proposed by PS74.

1.4.4 Extended Press-Schechter model and merger trees

The excursion set theory is also useful to describe the properties of the merging

history of dark halos. These results are often referred to as Extended Press-Schechter

model developed by LC93. Each “trajectory” δ(S) describes the merging history for

a given particle: the hierarchical merging process, in the normal temporal sequence

of increasing mass M as t increases, corresponds to the process of starting from

large value of S and δc(t) and following the track down and to the left in Fig.1.3.

The solid line in Fig.1.3 gives an example of “trajectory” δ(S), while the dotted line

shows the merging history S(δc(t)) for that “trajectory”: at a given time (and thus

δc(t)) the fluid element associated to the “trajectory” is part of a halo with a mass

M which corresponds to the smaller value of S in which the “trajectory” crosses the

threshold δc(t).

With increasing time, from early epoch to the present time, δc(t) decreases and

the minimum value of S at which the “trajectory” crosses the barrier gradually

diminishes giving the mass grow process of halos (“accretion”). However when a

new peak of the “trajectory” crosses the barrier at smaller values of S, the evolution

of S makes horizontal jumps (as represented in Fig.1.3) and these correspond to

sudden jumps in the mass of the halos (“merger” events).

The conditional probability that a “parent” cluster of mass M1 at a time t1 had

a progenitor of mass in the range M2 → M2 + dM2 at some earlier time t2, with

M1 > M2 and t1 > t2 can be obtained from Eq.1.65 but with the starting point of

“trajectories” not in the origin (S = 0, δ(S) = 0) but in the point (S1, δc(t1)). This

is given by (e.g., LC93, Randall, Sarazin & Ricker 2002):

P(M2, t2|M1, t1)dM1 =
1√
2π

M1

M2

δc2 − δc1

(σ2
2 − σ2

1)3/2

∣∣∣∣∣
dσ2

2

dM2

∣∣∣∣∣×
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exp

[
−(δc2 − δc1)

2

2(σ2
2 − σ2

1)

]
dM2 , (1.67)

δc1 ≡ δc(t = t1) and σ1 ≡ σ(M1), with similar definitions for δc2 and σ2. δc(z) is given

by Eq.1.55 and Eq.1.56 for an EdS and a ΛCDM model respectively; σ(M) = S1/2

is the rms density fluctuation within a sphere of mean mass M .

Over the range of scales of interest for cluster studies it can be sufficient

to consider a power-law spectrum of the density perturbation given by (Randall,

Sarazin & Ricker 2002):

σ(M) = σ8

(
M

M8

)−α

, (1.68)

where σ8 is the present epoch rms density fluctuation on a scale of 8 h−1 Mpc,

M8 = (4π/3)(8 h−1 Mpc)3ρ̄ is the mass contained in a sphere of radius 8 h−1 Mpc (ρ

is the present epoch mean density of the Universe), α = (n + 3)/6 (Bahcall & Fan

1998) and σ8 = 0.514 for the EdS models (Randall, Sarazin & Ricker 2002).

It is convenient (LC93) to replace the mass M and time t (or redshift z) with the

suitable variables S ≡ σ2(M) and x ≡ δc(t) (S decreases as the mass M increases,

and x decreases with increase cosmic time t).

So that Eq.1.67 is written in the form:

K(∆S, ∆x)d∆S =
1√
2π

∆x

(∆S)3/2
exp

[
−(∆x)2

2∆S

]
d∆S (1.69)

where ∆S = σ2
2 − σ2

1 and ∆x = δc2 − δc1. This expression will be used in Cap.5 to

construct merger trees via Monte Carlo techniques.

1.4.5 Numerical simulations of cluster formation

While the initial, linear growth rate of density perturbations can be calculated

analytically, and the Extended Press & Schechter theory can provide a reference

frame to study the merging rate and history of clusters, the details of the collapse

of fluctuations and the hierarchical build-up of structures requires an extensive use

of numerical simulations. This simulations are indeed the main theoretical tool for

studying this nonlinear phase and for testing theory of the early universe against

observational data. The resulting matter distribution in the simulated universe has

a complex topology, often described as a “cosmic web”, which is clearly visible in

Fig.1.4, a slice through the dark matter density field at redshift z = 0 taken from the
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Figure 1.4: A slice of thickness 15h−1 Mpc through the dark matter density field of the
Millennium Simulation at redshift z = 0 (Springel et al. 2005).

Millennium Simulation (by Springel et al. 2005). A tight network of cold dark matter

clusters and filaments of characteristic size ∼ 100 h−1 Mpc is visible, while on large

scales there is little discernible structure and the distribution appears homogeneous

and isotropic.

Dark matter in numerical simulations is assumed to be cold and made of

elementary particles (N-body) that currently interact only gravitationally. This

approach proved powerful enough to reject the idea that the dark matter consists

of massive neutrinos and to establish the viability of the alternative hypothesis that

the dark matter is made up of cold collisionless particles (see Ostriker & Steinhardt

2003, for a review). N-body simulations are now well understood and the validity

of analytic approximations is often gauged by reference to simulation results.

Gasdynamical simulations are based on a particle representation of Lagrangian

gas elements using the smoothed particle hydrodynamics (SPH) techniques (Lucy

1977; Gingold & Monaghan 1977; Evrard 1988), or are based on fixed-mesh Eulerian

methods (Cen et al. 1990; Cen 1992), or on Eulerian methods with submeshing

(Bryan & Norman 1995).

SPH algorithms use particles to approximate the behavior of the gas, treating
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gas particles as moving interpolation centers for quantities such as the gas pressure.

Typically SPH codes, tanks to their Lagrangian nature, allow a locally changing

resolution that “automatically” follows the local mass density, in this way they

achieved spatial resolution in high-density regions but handle shocks and low-density

regions poorly. Examples of cosmological hydrodynamics codes based on SPH

include those of Evrard (1988), Hernquist & Katz (1989), Navarro & White (1993),

Couchman et al. (1995), Steinmetz (1996) and Springel et al. (2001) (Gadget-1),

Springel (2005) (Gadget-2). Grid-based methods suffer from more limited resolution,

but they handle high-density and low-density regions equally well, and they also

handle shocks extremely well. Example of grid-based cosmological hydrodynamics

codes are that of Cen (1992), the TVD code of Ryu et al. (1993), Bryan & Norman

(1995), Gheller et al. (1998). Afterward, the code of Bryan & Norman (1995) has

been extended to include adaptive mesh refinement (AMR) (ENZO, Norman &

Bryan 1999).

A comparison of various cosmological particle- and grid-based codes have been

performed, “The Santa Barbara cluster comparison project” in Frenk et al. (1999).

The properties of the cluster dark matter were found to be gratifyingly similar in

all the models, with a total mass and velocity dispersion agreement better than

5%, while less agreement was observed for the gas properties of the cluster with the

largest discrepancies occurring in the predicted cluster X-ray luminosities of clusters

(best agreement was within a factor of ∼ 2).

The numerical cosmological simulations are important tools to study the

observed scaling relations for galaxy clusters (the Lx − T , M − T , M − Lx, and

so on), and the comparison between the simulated and observed clusters properties

can allow to better constrain the physics to be included in simulations (e.g., Borgani

et al. 2004). Usually the predicted scaling relations reproduce observational data

reasonably well for massive clusters, where the effects of additional physical processes

are expected to play a minor role (e.g., Rosati et al. 2002).

Another important point of interest in this PhD thesis is the comparison between

the properties of statistical quantities as the halo mass functions expected in

numerical simulations and from PS thequineques. It is found that the PS mass

function (Eq.1.66), while qualitatively correct, shows some deviation from the exact

numerical results, specifically the PS formula overestimates abundance of halos in
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Figure 1.5: Non-linear halo mass function of the Millennium Simulation Millennium
simulation at different times, (Springel et al. 2005). The number of dark matter halos
above a given mass threshold, shown at three different times. The blue line is an analytic
fitting function by Sheth & Tormen, while the dashed line is the Press & Schechter mass
function. The vertical dotted line marks the halo resolution limit of the simulation.

the lower-mass tail and underestimates the number of clusters in the high-mass tail

(e.g., Efstathiou & Rees 1988; Lacey & Cole 1994; Eke et al. 1996). Such deviations

are usually interpreted in terms of inaccuracy of the PS approach. Evolutions of

the PS approach which incorporate the effect of a non-spherical collapse (Sheth &

Tormen 1999, ;ST) provide a better agreement with N-body simulations. In Fig.1.5

we report a comparison from the Millennium simulation between different mass

functions. It is important to note that the agreement between the PS mass function

and the numerical mass function is satisfactory towards low redshifts and for masses

typical of galaxy clusters 1014 − 1015 h−1M¯. This is the range of z and masses in

which the present PhD work focuses on and thus we will use the PS massfuction in

the next part of this work.

1.5 Physics of cluster mergers

Observations of cluster mergers

For many years clusters were thought to be dynamically relaxed systems evolving

slowly after an initial, short-lived episode of violent relaxation. Many papers in the
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1980’s, exploited the imaging of the Einstein Observatory and showed the rich and

complex structure of present epoch galaxy clusters (e.g., Jones et al. 1979; Jones &

Forman 1984; Mohr et al. 1993, 1995). Along with the X-ray observations, optical

surveys delineated the large scale structure and elucidated the filamentary structure

of the Universe (e.g., de Lapparent et al. 1986). ROSAT and ASCA provided a

detailed view of rich physics of cluster mergers (e.g., Briel et al. 1991; Böhringer et

al. 1994; Markevitch et al. 1999; Henriksen et al. 2000). These observations reveal

that many clusters may grow from accretion of relatively small mass concentrations

along filamentary structures (van Haarlem & van de Weygaert 1993) and other may

undergo major mergers of two nearly equal components. Major cluster mergers are

energetic events in which clusters collide at velocities of ∼ 2000 km/s, releasing

binding gravitational energies of >∼ 1064 ergs. During merger shocks are driven in

the ICM and, in the case of major merger, they dissipate energies of ∼ 3 · 1063 ergs

which are mainly converted in the heating of the X-ray emitting gas.

Chandra’s high angular resolution has provided further insight of the merging

process and of the complexity of the ICM, revealing for the first time the unequivocal

signature of a few shocks fronts (Markevitch 2006; Markevitch et al. 2005).

Also “cold” fronts, sharp gas density discontinuities between a dense cold cloud,

associated with a merging subcluster, and the hot cluster gas (e.g., Vikhlinin et al.

2001) are evidences of mergers as they are interpreted as the low-entropy remnants

of recently merged substructures (Markevitch et al. 2000).

Basic kinematics of cluster mergers

There are some simple analytical arguments which can be used to estimate the

kinematics of an individual binary merger collision. The picture is that of two

subclusters with mass Mmax and Mmin that merge at some time tm and which have

fallen together from a large distance d0 with nonzero angular momentum. It can be

assumed that the two subclusters are point masses initially expanding away from

one another in the Hubble flow and that their radial velocity was zero at their largest

separation d0. The collapse can be treated as the orbit of two point masses, and

their largest separation will be given by the Kepler’s third Law as:

d0 '
(

2G(Mmax + Mmin)

)1/3(
tm
π

)2/3

(1.70)
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The exact value of d0 does not significantly affect the collision velocity as long as d0

is large and the infall velocity approaches free-fall from infinity. At the separation

d0 the orbital angular momentum and energy are:

Jorbit ≈ mv0 d0

Eorbit ≈ 1

2
mv2

0 −
GMmaxMmin

d0

(1.71)

where m = MmaxMmin/(Mmax + Mmin) is the reduced mass and v0 is the initial

relative transverse velocity. At a distance (between the centers) of the order of the

virial radius of the most massive cluster, Rmax, the relative impact velocity vi and

the impact parameter b are given by:

Jorbit ≈ mvi b

Eorbit ≈ 1

2
mv2

i −
GMmaxMmin

Rmax

(1.72)

Conserving angular momentum and energy, and eliminating v0 one finds (e.g.,

Sarazin 2002):

vi ' (2G(Mmax + Mmin))1/2
(

1

Rmax

− 1

d0

)1/2[
1− (

b

d0

)2
]−1/2

. (1.73)

and in the simplest case of central collision (b = 0):

vi '
(

2G
(Mmax + Mmin)

Rmax

(
1− 1

ηv

))1/2

(1.74)

where ηv = d0/Rmax ' 4(Mmax+Mmin

Mmax
)1/3 and the masses and virial radii of clusters

can be taken from the spherical collapse model according to Eq.1.52; Eq.1.74 will

be used to calculate the impact velocity between clusters in Chap.5.

Shocks

The virial theorem implies that the square of the thermal velocity (sound speed)

of the ICM scales with the gravitational potential. During a merger, the infall

velocity of the subclusters are thus comparable to the escape velocity which is a

factor of 1.5− 2 the sound speed. This implies that the motions in cluster mergers

are expected to be moderately supersonic.
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Shocks are thus important imprints of cluster mergers and their study is of great

importance. Semi-analytic calculations of merger related shocks in the hierarchical

picture of structure formation showed that the bulk of the shocks in galaxy clusters

should have a Mach number (M ≡ vs/cs) M ∼ 1.5 Gabici & Balsi (2003). Recent

cosmological simulations (Ryu et al. 2003; Pfrommer et al. 2006) confirmed this but

also allow to study the higher Mach-number tail of shocks. Stronger shocks may

indeed occur under some circumstance, such us in the outer part of the clusters

where gas is not virialized. These external shocks are crucial for understanding the

role of cosmic rays in large scale structure, because most cosmic rays accelerated

in the outskirts are then advected in the central parts, were they get confined for

cosmological times (Völk et al. 1996; Berezinsky et al. 1997).
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Chapter 2

Non-thermal Phenomena in
Galaxy Clusters: Observations

There is now firm evidence that the ICM is a mixture of hot gas, magnetic fields

and relativistic particles.

The most important evidence for relativistic electrons in clusters of galaxies

comes from the diffuse synchrotron radio emission observed in a growing number of

massive clusters. The diffuse emissions are referred to as radio halos and/or radio

mini–halos when they appear confined to the center of the cluster, while they are

called relics when they are found in the cluster periphery (e.g., Feretti 2003).

Diffuse radio emission is not the only evidence of non-thermal activity in the

ICM. Additional evidence comes from the detection of hard X-ray (HXR) excess

emission discovered in few galaxy clusters (Fusco-Femiano et al. 1999, 2000, 2003,

2004; Rephaeli et al. 1999; Rephaeli & Gruber 2002, 2003) which may be explained in

terms of IC scattering of relativistic electrons off the photons of the cosmic microwave

background (CMB)

The presence of high energy hadrons is not yet proven, but in principle, due to

confinement of cosmic rays over cosmological time scales (e.g., Völk et al. 1996;

Berezinsky et al. 1997, Chapt. 3), the hadron content of the intracluster medium

might be appreciable and may be constrained by future gamma–ray observations

(e.g., Blasi 2003; Blasi et al. 2007; Miniati 2003).

In this Chapter we will discuss the main properties of the non-thermal emission

and magnetic fields in galaxy clusters from an observational point of view.

39
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Figure 2.1: The cluster A2163: radio contours at 1.4 GHz overlaid on the ROSAT X-ray
emission (Feretti 2001).

2.1 Diffuse Radio emission in galaxy clusters

2.1.1 Giant Radio Halos, Relics and mini-halos

According to definitions given in literature, radio halos (RH hereafter) are large

diffuse non-thermal radio source permeating the cluster centers which are not

associated with any single active galaxy but rather with the diffuse ICM. Large-

scale RH show a generally regular shape, low surface brightness (∼ µJy/arcsec2 at

1.4 GHz), with typical luminosity of ∼ 5 · 1023 − 5 · 1025 h−2
70 Watt/Hz at 1.4 GHz,

and typical size of >∼ 1 Mpc. They have a steep radio spectrum and show low or

negligible polarized emission (< 10%)1. One of the most impressive, powerful and

extended RH is found in the galaxy cluster A2163 (see Fig.2.1; Feretti et al. 2001,

2004).

These sources are difficult to detect because of their low surface brightness and

large size: their detection is limited by the surface brightness sensitivity coupled with

the relatively high resolution needed to separate such sources from the embedded

discrete sources. Because of their steep spectrum they are better detected at

lower frequencies, thus future low-frequency radio instruments, such as LOFAR

1The only exception being the RH in A2255 which shows a filamentary structure strongly polarized
(Govoni et al. 2005).
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and LWA, will probably provides a step forward in the discovery of new RHs.

Despite the observational difficulties, several surveys were undertaken to detected

RHs and determine how common they are (e.g., Jaffe & Rudnick 1979; Cane et al.

1981; Hanish 1982). The general conclusion was that such sources are very rare

(e.g., Feretti & Giovannini 1996). With the aim to build a larger sample of halos and

relics Giovannini, Tordi & Feretti (1999, hereafter GTF99) undertook a search for

new halos and relic candidates using the NRAO VLA Sky Survey (NVSS, Condon

et al. 1998). As a parent cluster sample they used the X-ray-brightest Abell-type

clusters (XBACs, Ebeling et al. 1996). The cross correlation between the XBACs

and the radio survey NVSS provided a list of ∼ 29 candidates for diffuse cluster-wide

sources. Kempner & Sarazin (2001) made a search for radio halos and relics in all

Abell clusters present in the Westerbork Northern Sky Survey (WENSS, Rengelink

et al. 1997) at 327 MHz and they found 18 candidates, all showing evidence of a

recent or ongoing merger.

Several of the candidates selected from these surveys were subsequently

confirmed by radio follow-up. So far the number of well known radio halos is ∼ 20.

Apart Coma, they are: the powerful radio halos in the hottest known cluster 1E

0657-56 (the so called “bullet cluster”, Liang et al. 2000); A2163 (Feretti et al. 2001);

A2744, A520, A2254 and A773 (Govoni et al. 2001a); A2219, A1941, A545 and A754

(Bacchi et al. 2003); A665 and possible CL0016+16, at z ' 0.55 (Giovannini &

Feretti 2000); A2256, A2319, A1300 (Feretti 2000). Very recently radio halos have

been discovered in : RXCJ1314.4-2515 (Feretti et al. 2005; Venturi et al. 2007);

RXCJ2003.5-2323 (Venturi et al. 2007) and A209 (Giovannini et al. 2006; Venturi

et al. 2007).

The prototype of this class of sources and the best studied one is Coma C in the

Coma cluster, discovered 30 years ago (Willson 1970; Schlickeiser et al. 1987; Kim et

al. 1990; Giovannini et al. 1993; Deiss et al. 1997; Thierbach et al. 2003). The total

(integrated) radio spectrum of the Coma halo is a steep power law with α ∼ 1.2

at frequency below 1.4 GHz, while observations at higher frequencies reveal the

presence of a spectral steepening (Schlickeiser et al. 1987 at 2.7 GHz and Thierbach

et al. 2003 at 2.675 and 4.85 GHz; Fig.2.2) which can be interpreted due to the

presence of a break in the spectrum of the emitting electrons (see Chapt. 4). High

sensitivity radio images of the Coma halo exist at both 327 MHz (Venturi et al. 1990)
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Figure 2.2: Total radio spectrum of the radio halo Coma C (from Thierbach et al. 2003).

and at 1.38 GHz (Kim et al. 1990), by applying Gaussian fits, it has been found that

the 327-MHz FWHM (28× 20arcmin2) is significantly larger than that at 1.38 GHz

(18.7× 13.7arcmin2) and this implies a steepening of the synchrotron spectral index

with distance from the cluster centre. The spectral index distribution of Coma C

between 327-1380 MHz shows a central plateau with α ∼ 0.8, and an outer region

with a steeper spectrum, up to α ∼ 1.8 beyond a region of 10 arcmin (Giovannini

et al. 1993). The increasing of the size of Coma C at lower radio frequencies is

also consistent with the analysis of less recent images taken at 43 MHz and 150

Mhz (e.g., Hanisch & Erickson 1980 at 43 MHz; Cordey 1985 at 151 MHz) and the

steepening of the spectral index with radius has also been confirmed by 1.4 GHz

data from Effelsberg single-dish 100-m telescope (Deiss et al. 1997).

In addition, spectral index maps obtainded for some other RHs (Feretti et al.

2004; Orrù et al. 2007) indicate the existence of patches of different spectra. This

suggests a complex shape of the electron spectrum, as generally expected in the case

of particle re-acceleration.

It is not clear whether the complex spectral properties of the Coma C are

common among the class of RHs, yet these properties can be used to constrain

the origin of the emitting particles (Chap. 3).

Radio relics are similar to RHs in the low surface brightness, large size and
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lumiositis of ∼ 1023 − 1025 h−2
70 Watt/Hz at 1.4 GHz and steep spectrum, but are

generally elongated in shape. They are located in cluster peripheral region and are

generally linearly polarized at a livel of 10-30% at 1.4 Ghz (e.g., Giovannini & Feretti

2004).

It should be pointed out that while the class of giant RHs is a well defined

one, the classification of radio relics is more complicated because they are made of

different objects, which may have a different origin and this complicates any present

effort aimed to a statistical analysis of these sources. Govoni & Feretti (2004) divided

the known relic sources in different class according to their observational structure

and location, without relating them to physically different classes. Currently the

total number of the relic sources is ∼ 30 but, in addition to the classical peripheral

elongated radio sources, they include also objects like extended radio sources near the

central cD galaxy, but not clearly related to it; radio sources at the cluster periphery,

but with a mostly circular shape; and extended radio sources very distant from the

nearest cluster centre.

A prototype of the relic source class is the diffuse source, named 1253+275, in

the Coma cluster. This source is located at ∼ 2.7 h−1
50 Mpc from the cluster centre,

and has size and brightness similar to those of Coma C, but shows an elongated

shape, 30% polarization level at 1.4 GHz and its spectrum does not steepen at

higher frequencies.

A spectacular example of two almost symmetric relics in the same cluster can be

found in A3667 (Röttgering et al. 1997). Remarkably, in some clusters both radio

halos and relics have been detected, e.g., in Coma, A2255, A2256, A1300, A2744

and RXCJ1314.4-2515.

Mini-halos are diffuse extended radio sources of moderate sizes (500 h−1
50 kpc)

surrounding a dominant powerful radio galaxies at the cluster centre. Example of

this class are found in Perseus (Burns et al. 1992; Sijbring 1993) and Virgo (Owen et

al. 2000) clusters. Although these sources could be related to a central radio source,

it is worth noticing that these sources do not appear as extended lobes maintained by

an Active Galactic Nucleus (AGN), as in classical radio galaxies, therefore their radio

emission is indicative of the presence of diffuse relativistic particles and magnetic

fields in the ICM at the cluster center. Radio mini-halos, are only observed in

clusters with a cooling flow and their origin and connection with the cooling flow is
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still poorly understood.

2.1.2 Connection to cluster mergers and statistical properties of Giant
Radio Halos

The important results of the GTF99 work is that they found that only ∼ 5% of

clusters have a radio halo source and only ∼ 6% a peripherical relic source. They

also found that the detection rate of diffuse radio sources increases with the cluster

X-ray luminosity reaching ∼ 33% in clusters with X-ray luminosity larger than

1045 h−2
50 erg/s (luminoisity in the energy range 0.1-2.4 keV). Cluster hosting a RH

have X-ray luminosities significantly higher than clusters without a diffuse source

(Owen et al. 1999; Giovannini et al. 1999), implying that these clusters also have

higher temperature (KT >∼ 6 keV) and larger virial masses (Mv >∼ 1015 h−1
70 M¯).

How the increase of the occurrence of RHs with the X-ray luminosity is affected

by brightness detection limit of present surveys is still not completely clear. However,

Feretti (2005) and Clarke (2005), have already concluded that the typical brightness

of the powerful and giant RHs are well above the detection limit of the NVSS; on

the other hand, it is possible that low power RHs could be hosted by less luminous

X-ray clusters and in this sense future radio instruments (LOFAR, LWA and SKA)

will be crucial.

In many cases, radio structures of halos show close similarities to the X-

ray structures, suggesting a causal connection between the hot and relativistic

plasma (Deiss et al. 1997; Feretti 2000; Liang et al. 2000). This similarity was

quantitatively confirmed by Govoni et al. (2001b) by comparing the point-to-point

surface brightness of the radio and X-ray emission in four cluster of galaxies (Coma,

A2255, A2319 and A2744). This study leads to a correlation between the radio

and the X-ray brightness in all the analyzed clusters: a higher X-ray brightness

is associated with a higher radio brightness. A correlation seem to exist between

the largest radio size of diffuse sources and the cluster X-ray luminosity, with more

X-ray luminous clusters hosting larger radio diffuse sources (Feretti 2000).

Colafrancesco (1999) and Liang et al. (2000) found a correlation between the

radio power of radio halos and the cluster temperature in the form P1.4 ∝ T 6.25+6.25
−2.08 .

This correlation is consistent with the fact that the monochromatic radio power

at 1.4 GHz of halos increases with the bolometric X-ray luminosity of the parent

clusters (Liang et al. 2000; Feretti 2000, 2003; Enßlin and Röttgering 2002).
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Figure 2.3: From Buote (2001): Radio power (P1.4 - 1.4 GHz rest frame) of radio halos
versus dipole power ratio (P1/P0). The power ratios are computed within a 0.5 Mpc
aperture centered on the X-ray emission peak with estimated 1σ errors shown.

Since in clusters the X-ray luminosity and mass are correlated, as well as the

temperature and the mass (e.g., Neumann & Arnaud 1999, 2001), it follows

that radio halos power correlates with the cluster mass. By analyzing 6 radio

halo clusters, Govoni et al. (2001a) found P1.4 ∝ M2.2, where M was the total

gravitational mass inside the Abell radius (∼ 3 h−1
50 Mpc)

All clusters hosting halos and relics are characterized by dynamical activity

related to merging processes. These clusters indeed show: substructures and

distorsions in the X-ray brightness distribution (Schuecker et al. 2001); temperature

gradients (Markevitch et al. 1998; Govoni et al. 2004) and shocks and cold fronts

(Markevitch et al. 2002); absence of strong cooling flows (Edge et al. 1992; Feretti

2000); optical substructures (Boschin et al. 2004). Although there is evidence

for a connection between cluster merging and radio halos, it has been argued

(e.g., Giovannini & Feretti 2000; Liang et al. 2000; Feretti 2000) that merging

cannot be the solely responsible for the formation of radio halos because at least

50% of clusters show evidence for X-ray substructure (Jones & Forman 1999) whereas

only a small fraction possess radio halos. Unfortunately, it is difficult to interpret

the importance of merging without making use of a quantitative measure of the
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deviation of an individual cluster from a virialized state. A method to measure the

dynamical states of clusters from X-ray images quantifying the cluster morphology is

the “power ratio” method (Buote & Tsai 1995, 1996; Buote 1998). The power ratio

are constructed from the moments of the two-dimensional gravitational potential due

to matter interior to a circle of radius R centred on the peak of the X-ray emission. In

particular the power ratio P1/P0 provides structural information related to potential

fluctuations which are related to the dynamical status of the cluster. Buote (2001)

used power ratio to provide the first quantitative comparison of the dynamical

states of clusters possessing radio halos. A correlation between the 1.4 GHz power

(P1.4) of the radio halos and the magnitude of the dipole power ratio (P1/P0) was

discovered such that approximately P1.4 ∝ P1/P0 (see Fig.2.3) This correlation not

only confirmed previous circumstantial evidences relating the presence of radio halos

to mergers but established for the first time a quantitative relationship between the

“strength” of radio halos (P1.4) and the “strength” of mergers (P1/P0). The merger-

RH connection is a fundamental point in our present understanding of the origin of

RH and represents a major issue of the present PhD work (Chap. 5).

2.2 Cluster Magnetic Field: Observations

The existence of magnetic fields associated with the ICM in cluster of galaxies

is now well established through different methods of analysis which substantially

lead typical field strengths of order ≈ µG. In some locations, such as the cores

of “cooling flow” clusters, the magnetic fields reach levels of 10–40 µG and may

be dynamically important. Even though in most clusters magnetic fields are not

dynamically important, with magnetic pressures one to two orders of magnitude

below thermal gas pressures, in all clusters the magnetic fields have a significant

effect on energy transport in the ICM (Sarazin 1986; Tribble 1989) and significant

implications for the lifetimes of relativistic particles in the ICM. Moreover, the

magnetic suppression of thermal conductivity in the ICM, verified by the recent

discovery of “cold fronts” in galaxy clusters (Markevitch et al. 2000; Vikhlinin et

al. 2001), may play an important role in understanding the common occurrence of

“cooling flow” clusters.

Direct evidence of the presence of intra-cluster magnetic fields (ICMFs) is

provided by observations of extended radio halos in galaxy clusters. Their radiation
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can only be due to synchrotron emission of relativistic electrons in the ICM. The

strength of the ICMFs can be estimated from the intensity of the observed radio

emission, either assuming the minimum energy condition, giving 〈B〉 ∼ 0.1 − 1 µG

(Feretti 2000; Giovannini et al. 1993), or by an independent determination of the

density of relativistic electrons. The former is frequently used in the literature but it

has to be understood as an order of magnitude approach, as there is no compelling

physical reason why one should expect the magnetic field to be in equipartition. The

latter is made possible for a few clusters by the observation of hard X-ray (HXR)

emission that, if interpreted as the outcome of inverse Compton (IC) scattering of

relativistic electrons on CMB photons, implies an average magnetic field strength

within the emitting volume in the range of 0.2−0.4 µG (Fusco-Femiano et al. 1999;

Rephaeli et al. 1999).

Additionally Faraday rotation measurements (RMs) of polarized radio sources

placed within the cluster, or in the background, provide significant evidence for the

presence of stronger magnetic fields, in the range 1−10 µG in the core of non cooling-

flow clusters, and of even larger strength in cooling-flow clusters (e.g., Kim et al.

1991; Clarke et al. 2001; Taylor et al. 2001; Vogt & Enßlin 2003; Govoni 2006): still

these values come from the interpretation of RMs observations and are rather model

dependent (Newman et al. 2002). Investigations of RMs of elongated radio-sources

within galaxy clusters may also provide invaluable information on the geometrical

structure of magnetic fields, which cannot be provided by radio-halo observations

alone. The data on RMs are incompatible with uniformly oriented magnetic fields,

rather, a typical length-scale of ≈ 5 − 15 kpc has been inferred. Also, evidence

is accumulating that there is no unique length-scale for the ICMFs, and that a

successful interpretation of the RMs requires the adoption of a power-law spectrum,

even though the power law index (somewhere in the range -1.5 to -4) is so far only

very weakly constrained (Enßlin & Vogt 2003; Vogt & Enßlin 2003; Murgia et al.

2004).

Another crucial issue in the present context concerns the radial profile of ICMF

in the external regions of galaxy clusters. Recent work based on radio emission

(Brunetti et al. 2001a) as well as RMs (Dolag et al. 2001) indicates that the

intracluster magnetic field decline in strength with radius, with a radial profile that

appears to be similar to that of the gas density.
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2.3 Extreme Ultraviolet, Hard X-Ray and Gamma Ray
Emission

Additional spectral components of galaxy clusters, potentially of non-thermal origin

have been discovered in the soft X–rays (EUV excess) detected by EUVE (Lieu et

al. 1996a) and ROSAT (e.g., Bonamente et al. 2002), and in the hard X-rays (HXR

excess) detected by BeppoSAX (Fusco-Femiano et al. 1999) and RXTE (Rephaeli et

al. 1999). No detection of galaxy clusters has been obtained in gamma rays so far

(Reimer et al. 2003). In this Section we will briefly discuss the observational picture.

Upper limits in gamma rays could be extremely important for discreminating among

different scenarios for the origin of non-thermal components in galaxy clusters and

will be considered in Chap. 3.

2.3.1 EUV/Soft X-Ray Emission

Clusters of galaxies are strong emitters of X–rays, which originate from a diffuse and

hot phase of the ICM (see Sect.1.2). At the typical temperatures of T ∼ (1−10)×107

K, the bulk of the hot ICM radiation is detected at few keV, while Galactic

absorption could be responsible for a substantial reduction of the flux below ∼ 1

keV. The soft X–ray band around 0.25 keV and the EUV band offer a unique

windows to investigate the presence of other emitting/absorbing phases of the ICM.

With advent of more sensitive low-energy X-ray instrumentation (ROSAT-PSPC

and EUVE, Extreme Ultraviolet Explorer) it was found that some clusters contained

soft excess emission in excess from the extrapolation of the contribution from the

X-ray emitting ICM. Such a soft component has been seen first in the Virgo (Lieu

et al. 1996a; Bowyer et al. 1996) and Coma clusters of galaxies (Lieu et al. 1996b)

in both EUVE detector and ROSAT PSPC observations, and then found in other

clusters (e.g., Mittaz et al. 1998; Bowyer et al. 1998). In the most cases, at an

EUV excess is associated a soft X-ray excess seen in the ROSAT PSPC spectra of

the clusters.

The EUV-excess in rich clusters has luminosities of ∼ 1044 erg/s, and this have

spectral component declines rapidly in going from the EUV to the X-ray band. The

problem of its physical origin is still matter of debate.

The excess EUV emission can be interpreted as due to two principal different

mechanisms: thermal radiation from a warm (105 − 106K) gas, as first suggested
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by Lieu et al. (1996a), or IC emission of relativistic electrons on the CMB photons

(Hwang 1997; Ensslin & Biermann 1998; Sarazin & Lieu 1998).

The main concern with the “thermal” hypothesis is that at these temperature

the gas cooling is particulary efficient requiring a substantial energy input to sustain

the gas at these temperatures. On the other hand, non–thermal models (Sarazin &

Lieu 1998; Bowyer & Berghöfer 1998; Lieu et al. 1999; Enßlin et al. 1999; Atoyan

& Völk 2000; Brunetti et al. 2001b) are potentially able to account for the excess

EUV emission.

Due to the large amount of data, the Coma cluster represents the best case to

compare model predictions with observations. It was soon realized that, since the

EUV profiles was narrower than the radio one, it cannot be accounted for by IC

emission of the low energy tails of electrons producing radio halo with the CMB

photons (Bowyer & Berghöfer 1998). Low energy, γ ≈ 100 − 300, electrons in the

ICM are large living and could be injected in the ICM by supernovae, radio galaxies

or by intracluster shocks; these particles may IC scatter off CMB photons to the

soft X-rays (Sarazin & Lieu 1998; Brunetti et al. (2001b)

Another possibility is provided by the contribution from ‘warm-hot’ intergalactic

medium”, WHIM filaments with T ' 105 − 107 K projecting themselves onto the

galaxy clusters (e.g., Bonamente et al. 2002), however the details of the soft X-

ray emission from such filaments heavily depend on their temperature, density and

metal abundances, which at the moment can only be predicted within orders of

magnitude.

A step forward in this research has been made recently by the advent of XMM-

Newton which allows to study clusters of galaxies at low energy with moderate

spectral resolution (∼ 60eV ) and good sensitivity. A number of studies have been

performed using the XMM-Newton EPIC detector (e.g., Kaastra et al. 2003, 2004;

Nevalainen et al. 2003) which confirm the presence of the soft X-ray emission in

several clusters. The spectral analysis (Kaastra 2004) shows signature of thermal

emission in several cases (A1795, Sersic 159-03, A2052, MKW 3s and A2199) and

controversial results in other cases (Coma and A3112). The thermal signature is

present in form of line emission at 0.57 keV, identified with the (unresolved) triplet

of O VII, in addition to an unresolved soft-excess below an energy of 0.3 keV. This

warm gas (Kaastra et al. 2003, 2004; Finoguenov et al. 2003) typically extend on
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Figure 2.4: PDS combined spectrum of the Coma cluster obtained with the XAS package
(Fusco-Femiano et al. 2004). The continuous line represents the best fit with a thermal
component at the average cluster gas temperature of 8.11 keV (David et al. 1993). The
error bars are quoted at the 1σ level. The spectrum starts at 15 keV.

2-6 Mpc and has temperature of ∼ 2× 106 K.

Still due to the difficulty of the observations and data analysis, no general

consensus is achieved on the origin of this emission. In principle, if the above

discovery of O VII line emission in the outskirts of some clusters support the

contribution from WHIM, on the other hand the possibility of a non-thermal origin

cannot be excluded yet.

2.3.2 Hard X-Ray Emission

Non–thermal hard X–ray radiation (HXR) was predicted in 1970’s in galaxy clusters

showing extended radio emission, because of IC scattering of CMB photons by the

same radio synchrotron electrons (e.g., Rephaeli 1979).

The CMB photons give an IC-equivalent field Bcmb ∼ 3µG which is likely to

dominate the energy losses of relativistic electrons (Chap. 3) and thus most of

the energy of the relativistic electrons will be radiated via inverse Compton (IC)

scattering of the CMB photons, producing a broad hard X-ray spectral component

with a flux higher than that of radio radiation.

While the detectability of such spectral component would be easiest in the soft
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X-ray range, where very sensitive imaging instruments are available, in reality, in

this range, the prominent thermal bremsstrahlung emission completely mask this

component.

Recently HXR emission (in the 20 to 80 keV range) at significant levels above

that expected from the thermal gas was detected by instruments on board BeppoSAX

and Rossi X-ray Timing Explorer (RXTE) satellites from Coma, reported in Fig.2.4

(Fusco-Femiano et al. 1999; Rephaeli et al. 1999; Rephaeli & Gruber 2002; Fusco-

Femiano et al. 2004), Abell 2256 (Fusco-Femiano et al. 2000; Rephaeli & Gruber

2003; Fusco-Femiano et al. 2005), Abell 2319 (Gruber & Rephaeli 2002), and a

marginally (∼ 3σ) in Abell 754 (Fusco-Femiano et al. 2003) and in 1E0657-56

(Petrosian et al. 2006). BeppoSAX observed also A2163, A1367, A3667 (Fusco-

Femiano et al. 2001) and A119 (Fusco-Femiano et al. 2003) reporting only upper

limit to the non-thermal flux.

As stated above electrons of similar energies, γ ∼ 104, can be responsible for both

the IC−HXR and for the synchrotron−radio emission and the ratio of these fluxes

depends primarily on the ratio of the photon (CMB in this case) to magnetic field

energy densities. The luminosity of Coma in the 20-80 keV range is LHXR ∼ 4×1043

erg/s which is much larger than the radio synchrotron luminosity implying a volume

average magnetic field B ∼ 0.1 µG. On the other hand, Faraday rotation measure

are interpreted with line-of-sight average field of Bl ∼ 3 µG (e.g., Eilek 1999;

Giovannini et al. 1993; Kim et al. 1990; Clarke et al. 2001; Clarke 2003), and ∼ µG

fields in galaxy clusters are commonly derived from RM-tecniques (e.g., Govoni &

Feretti 2004). As explained in Chap.3, this discrepancy can be significally reduced

by more complex modelling of radio and IC emission from galaxy clusters.

An additional possibility to explain HXR-excess in clusters is via supra-thermal

bremmstralhung (Blasi 2000; Dogiel 2000) although these models are sfavored being

very inefficient and requiring a large (problematic) energy budjet (Petrosian 2001).

The issue of non–thermal radiation is clearly related to the problem of acceleration

of particles: we will discuss this important issue in Chapt.3.
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Chapter 3

Physics & Models of non-thermal
components in the ICM

As discussed in the previous Chapter the diffuse radio (synchrotron) emission from

halos and relics and the hard X-ray (inverse Compton) radiation (and eventually

EUV/Soft X-ray, inverse Compton, radiation) demonstrate that the ICM consist not

only of the hot gas emitting thermal X-rays, but also of non-thermal components,

i.e., relativistic particles and magnetic fields.

Understanding the energetics and physical properties of these “new” components

is important not only to get the picture of the non-thermal phenomena in galaxy

clusters but also to understand how these components may eventually affect the

physics of the thermal ICM.

In this Chapter we will discuss the basic physics of relativistic particles in the

ICM with particular attention to their evolution, energy losses, acceleration and

injection. Then we will give some basic information about our present knowledge of

the properties of the magnetic field in galaxy clusters. Finally, we will briefly discuss

the present models for the non-thermal emission from galaxy clusters; details on the

re-acceleration model are given in Sect. 3.4.

3.1 Relativistic particles in the ICM

3.1.1 Injection

Clusters of galaxies should host a large number of sources of cosmic rays. They

contain AGNs (radio loud and radio quite) which may produce and distribute

cosmic rays throughout the cluster volume. These AGNs indeed inject in the ICM

a considerable amount of energy in relativistic particles and also in magnetic fields,
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likely extracted from the accretion power of their central black hole (Ensslin et al.

1997).

Powerful Galactic Winds (GW) can inject relativistic particles and magnetic

fields in the ICM (Völk & Atoyan 1999). Although the present day level of starburst

activity is low and thus this mechanism is not expected to produce a significant

contribution, it is expected that these winds were more powerful during early

starburst activity. Some evidence that powerful GW were more frequent in the

past comes from the observed iron abundance in galaxy clusters (Völk et al. 1996).

In addition to galaxies and AGNs, cluster formation is also believed to provide

a contribution to the injection of cosmic rays in the ICM due to the formation of

shocks which may accelerate relativistic particles (Blasi 2001; Takizawa & Naito

2000; Miniati et al. 2001; Fujita & Sarazin 2001). The efficiency of this mechanism

is related to the Mach number of these shocks which is an issue still under debate.

Semi–analytical calculations based on PS-Monte Carlo techniques (Gabici & Balsi

2003; Berrington & Dermer 2003) find that the bulk of the shocks have Mach

numbers of order ∼ 1.4.

First cosmological numerical simulations found that the distribution of Mach

numbers of merger shocks peaked at M ∼ 5 (Miniati et al. 2000), and that the

bulk of the energy was dissipated at 4 ≤ M ≤ 10 shocks (Miniati 2002). On the

other hand, more recent numerical simulations mitigated the discrepancy between

semi-analytical approaches and numerical simulations, finding more weak shocks and

that the bulk of the energy dissipation (thermal energy and cosmic rays) at internal

shocks was associated with shocks with 2 ≤M ≤ 4 (Ryu et al. 2003). These results

have been confirmed by Pfrommer et al. (2006), where energy is found to be mostly

dissipated at shocks with moderate Mach number M' 2− 3.

In addition to mergers, structure formation proceeds also through accretion on

already formed objects. Accretion shocks form outside the virialized regions, where

the gas is much less dense and at lower temperatures. The low temperature of the

gas implies that accretion shocks are always rather strong, with Mach number that

may exceed ∼ 10.

In the context of the linear theory of shock acceleration the spectrum of the

accelerated particles is a power-law N(E) ∝ E−δ, with a slope which is determined

uniquely by the Mach number M of the shock, δ = 2M
2+1

M2−1
(e.g., Eilek & Hughes
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Figure 3.1: Instantaneous loss timescale (Eq.3.3) as a function of γ for electrons in a
cluster with an electron density of nth = 10−3cm−3, a magnetic field of B = 0.5µG at
redshift z=0 (solid curve); an electron density of nth = 10−4cm−3 (dot-dashed curve); a
magnetic field of B = 4µG (dashed curve) and a redshift z = 2 (dot curve).

1991). For shocks with M = 2− 4. the spectrum of the accelerated particles varies

between δ = 3.33− 2.27. For M = 1.4 where the peak of the merger related shocks

was found, the spectrum is as steep as N(E) ∝ E−6.2 and such shocks are irrelevant

for particle acceleration.

3.1.2 Energy losses

In this Section we briefly review the most important channels of energy losses for

electrons/positrons and protons.

Electrons

Relativistic electrons with momentum pe = mecγ in the ICM lose energy through

ionization losses and Coulomb collisions (Sarazin 1999):

(
dp

dt

)

c

= −3.3× 10−29nth

[
1 +

ln(γ/nth)

75

]
(3.1)

where nth is the number density of the thermal plasma.

Relativistic electrons also lose energy via synchrotron emission and inverse

Compton scattering off the CMB photons:
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(
dp

dt

)

rad

= −4.8× 10−4p2

[(
BµG

3.2

)2 sin2 θ

2/3
+ (1 + z)4

]
= −βradp

2

me c
(3.2)

where BµG is the magnetic field strength in µG and θ is the pitch angle of the

emitting electrons; in case of efficient isotropization of the electron momenta it is

possible to average over all possible pitch angles, so that < sin2 θ >= 2/3. It is

well known that in the typical conditions of the ICM radiation losses are the most

important for electrons with Lorentz factor γ À 100 while Coulomb losses dominate

at lower energies (Sarazin 1999; Brunetti 2002). The lifetime of relativistic electrons,

defined as τ ∼ γ/γ̇, can be easily estimated from Eqs.(3.1–3.2) as:

τe(Gyr) ∼ 4×
{1

3

( γ

300

) [(
BµG

3.2

)2 sin2 θ

2/3
+ (1 + z)4

]

+
( nth

10−3

)( γ

300

)−1
[
1.2 +

1

75
ln

( γ/300

nth/10−3

)] }−1
. (3.3)

We stress that Eq. 3.3 can be used to obtain the maximum life time of particles with

energy me c2 γ by taking B = 0; nth being measured by X-ray observations. As an

example in Fig.3.1 we report the lifetime of relativistic electrons for typical physical

conditions of ICM.

Protons

The main channel of energy losses for relativistic protons is represented by inelastic

proton-proton collisions, which is a threshold reaction that requires cosmic ray

protons with kinetic energy larger than ∼ 300 MeV. The timescale associated with

this process is :

τpp =
1

nthσppc
∼ 1018

( nth

10−3

)−1
. (3.4)

Inelastic pp scattering is weak enough to allow for the accumulation of protons over

cosmological times (Berezinsky et al. 1997).

Protons which are more energetic than the thermal electrons, namely protons with

velocity βp > βc = (3/2me/mp)1/2βe (βe here is the velocity of the thermal electrons,

βe ' 0.18(T/108K)1/2) lose energy due to Coulomb interactions. If we define

xm =
(

3
√

π
4

)1/3
βe, we can write (e.g., Schlickeiser 2002):
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dp

dt
' −1.7× 10−29

(
nth

10−3

)
βp

x3
m + β3

p

(3.5)

with the following asymptotic behavior:

dp

dt
∝

(
nth

10−3

)
×





Const. for p >> mc
p−2 for mcxm < p << mc
p for mcβc < p < mcxm

(3.6)

The timescale associated with Coulomb collisions (in the case mcxm < p ¿ mc) can

be therefore written as:

τC ∼ 2.5× τpp

( p

mpc

)3
. (3.7)

For trans-relativistic and sub-relativistic protons this channel can easily become the

main channel of energy losses in the ICM.

3.1.3 Confinement

In this Section we briefly discuss the CR confinement in galaxy clusters: for most of

the cosmic ray protons in the ICM both the timescales of energy losses (Sec.3.1.2)

and diffusion out of the cluster volume are larger than the Hubble time (Berezinsky

et al. 1997; Völk et al. 1996).

The minimum possible diffusion coefficient in a magnetized medium can be

estimated assuming that the mean free path of particles is comparable to the their

Larmor radius RL. This is known as Böhm diffusion, and the related diffusion

coefficient DB(E) for typical ICM conditions is given by (e.g., Blasi 2001):

DB(E) = 3.3 · 1022
(

B

1µG

)−1( E

1GeV

)
cm2s−1 (3.8)

If the power spectrum of the magnetic field irregularities is described by a

Kolmogorov law P (k) ∝ k−5/3, then the diffusion coefficient for typical ICM

conditions can be written as (e.g., Blasi 2001):

DK(E) = 2.3 · 1029
(

B

1µG

)−1/3( Lmax

20kpc

)2/3( E

1GeV

)1/3

cm2s−1 (3.9)

where Lmax is the maximum coherent scale of the magnetic field. Following

Berezinsky et al. (1997) one can use these expressions to estimate the escape time

scale, defined as τesc ∼ R2
v/6D(E), for a relativistic particle with energy E from a

Coma-like cluster with mass ∼ 1015 M¯ and virial radius Rv ∼ 3 Mpc:
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τesc(E) =





1.4 · 1010( Rv

3Mpc
)2( B

1µG
)( E

1GeV
)−1 Gyr Böhm

2.0 · 103( Rv

3Mpc
)2( B

1µG
)1/3(Lmax

20kpc
)−2/3( E

1GeV
)−1/3 Gyr Kolomogorov

All the particles having escape times longer than the cluster life time, which can

be assumed to be roughly equal to the Hubble time tH ∼ 13 Gyr, remain trapped

within the cluster volume. The maximum particle energy for which the confinement

is effective, is obtained making equal the escape times obtained above to tH . This

depends on the diffusion coefficient which is rather uncertain, still under ICM

conditions one finds that this maximum energy is ∼ 109 GeV for a Böhm diffusion

and ∼ 4 ·106 Gev for a Kolmogorov diffusion coefficient; and thus the bulk of cosmic

rays are expected to remain confined in the ICM for cosmological times. This

argument is important for protons, which are only marginally affected by energy

losses (Sect.3.1.2), and thus once injected in the ICM these protons should remain

confined and accumulate in the ICM during the cluster lifetime. This fact may have

important consequences for the expected non-thermal emission from clusters, as we

will discuss in Sec.3.3.1.

3.1.4 Evolution

In this Section we introduce the formalism used to describe particle evolution in the

presence of energy losses and acceleration (stochastic acceleration) mechanisms. In

order to consider the evolution of the particle spectrum a kinetic theory approach is

suitable (e.g., Blandford 1986; Eilek & Hughes 1991). Let f(p) be the distribution

function (with implicit time dependence) so that f(p)dp is the number of particles in

the element dp of the momentum space. The evolution of this distribution function

is described by the Boltzmann equation:

df(p)

dt
=

(
∂f

∂t

)

coll

+

(
∂f

∂t

)

diff

(3.10)

where f may be a function of momentum p, position r and time t, and thus the

total time derivative is to be interpreted according to (e.g., Eilek & Hughes 1991):

d

dt
→ ∂

∂t
+ v · ∂

∂r
+ F · ∂

∂p
(3.11)
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where v = dr/dt is the particle velocity, and F = dp/dt the force acting on the

particles.

The diffusion term in Eq.(3.10) describes spatial diffusion, while the collision

term accounts for all the physics of collisions and scattering (e.g., radiative losses,

interaction with waves and shocks, Coulomb collisions). A stochastic acceleration

process may be thought of as a diffusion in momentum space, characterized by a

diffusion coefficient Dpp, so that

(
∂f

∂t

)

coll

=
∂

∂p

(
Dpp · ∂f(p)

∂p

)
(3.12)

the diffusion coefficient contains the detail of the wave spectrum and the wave-

particle interactions. Under the assumption of isotropy one has f(p)dp =

4πp2f(p)dp. If one adds a radiative loss term, so that the losses for one particle

are dp/dt = −b(p), and an isotropic phase-space particle source term qs(p), in the

case that only collision contribute to ∂f/∂t the Boltzmann equation is:

∂f(p)

∂t
=

1

p2

∂

∂p

(
p2Dpp(p)

∂f(p)

∂p
+ p2b(p)f(p)

)
+ qs(p) (3.13)

which is colled “Fokker-Planck” equation (e.g., Tsytovich 1966; Borovsky & Eilek

1986). Eq.3.13 can be transformed from a diffusion equation in the particle phase-

space density, f(p), into an equation in the particle number density, N(p). For an

isotropic distribution of the particle momenta, the number density N(p) is related

to the phase-space density by N(p)dp = f(p)dp = 4πp2f(p)dp, and the source term

becomes Qs(p) = 4πp2qs(p); using these relations Eq.3.13 becomes:

∂N(p)

∂t
=

∂

∂p

[
N(p)

(
b(p)− 2

p
Dpp(p)

)]
+

∂

∂p

[
Dpp(p)

∂N(p)

∂p

]
+ Qs(p) (3.14)

This basic equation describes the evolution of a distribution of highly relativistic

particles subject to particular acceleration processes (accounted for by Dpp(p)) and

loss processes (accounted for by b(p)).

In the case of of relativistic electrons Eq.3.14 is:

∂N(p, t)

∂t
=

∂

∂p

[
N(p, t)

(
|dp

dt
|
rad

+ |dp

dt
|
c
− 2

p
Dpp

)]
+

∂

∂p

[
Dpp

∂N(p, t)

∂p

]
+

Qe(p, t) (3.15)
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where Dpp is the electron diffusion coefficient in the momentum space, dp/dti and

dp/dtrad are the terms due to ionization and radiative losses given by Eq.3.1 and

Eq.3.2 respectively, and Qe is an isotropic electron source term.

In the case of relativistic protons Eq.3.14 is:

∂N(p, t)

∂t
=

∂

∂p

[
N(p, t)

(
|dp

dt
|
i
− 2

p
Dpp

)]
+

∂

∂p

[
Dpp

∂N(p, t)

∂p

]
+ Qp(p, t) (3.16)

where (dp/dt)i is given by Eq.3.5.

3.2 Magnetic fields in the ICM

3.2.1 Origin of magnetic fields in galaxy clusters

The existence of µG magnetic fields associated with the ICM in cluster of galaxies is

now well established (see Sec. 2.2), but the origin of the intra-cluster magnetic fields

(ICMFs) is still poorly understood. The combination of relatively “high”, µG level,

field and the fact that RM suggest a complex topology of ICMF up to large scales,

requires a non-linear amplification of the ICMFs which probably happens during the

process of cluster formation. The complex dynamics of the gas during the accretion

of matter and cluster mergers can indeed provides a non-linear amplification of

the field in the ICM. Still a seed magnetic field to be amplified is required in galaxy

clusters and we can distinguish three main classes of models that have been proposed

to explain the origin of this seed field.

In the first, extragalactic magnetic fields are assumed to be produced ‘locally’

and at relatively low redshift (z ∼ 2 − 3) by the ejecta of galaxies (e.g., Völk &

Atoyan 2000) or AGNs (e.g., Furlanetto & Loeb 2001). One of the main arguments

in favor of these models is that the high metallicity observed in the ICM suggests

that a significant enrichment driven by galactic winds or AGN must have taken place

in the past, together with a possibly magnetic pollution. While it was shown that

winds from ordinary galaxies give rise to magnetic fields which are far weaker than

those observed in galaxy clusters, magnetic fields in the ICM produced by the ejecta

of starburst galaxies can be as large as 0.1 µG. Clearly, this class of models predicts

that extragalactic magnetic fields are mainly concentrated in galaxy clusters. These

fields will be amplified by both the adiabatic compression of the proto-cluster region
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and by shear flows, turbulent motions, and merging events during the formation of

the galaxy clusters.

In the second class of models, the seeds of extragalactic magnetic fields

are assumed to be produced at higher redshift, before galaxy clusters form as

gravitationally bound systems. Although the strength of the seed fields is expected

to be considerably smaller than in the previous scenario, the adiabatic compression

of the gas and the shear flows driven by the accretion of structures may still give

rise to a considerable amplification of the magnetic field up to the observed value.

Several mechanisms have been proposed to explain the origin of magnetic seed fields

at high redshift. Some of these models are similar to those discussed above, differing

only in the time at which the magnetic pollution is assumed to take place. In some

models the magnetic field seeds are supposed to be expelled by an early population

of dwarf starburst galaxies or by AGNs at a high redshift between 4 and 6 (Kronberg

et al. 1999), allowing them to magnetize a large fraction of the volume. Other models

invoke processes which took place in the early universe (see Grasso & Rubinstein

2001, for a review). Indeed, the ubiquity of magnetic fields in the universe suggests

that they may have a cosmological origin. In general, all ‘high-z models’ predict

magnetic field seeds that fill the entire volume of the Universe. Another (speculative)

possibility is that the seed field was produced during inflation.

The third scenario assumes that the seeds of ICM magnetic field were produced

by the so-called Biermann battery (Kulsrud et al. 1997; Ryu et al. 1998) effect. The

idea here is that merger shocks produced by the hierarchical structure formation

process give rise to small thermionic electric currents which, in turn, may generate

magnetic fields. The battery process has the attractive feature to be independent of

unknown physics at high redshift. Its drawback is that, due to the large conductivity

of the intergalactic medium, it can give rise to at most very tiny magnetic field,

of order 10−21 G. One therefore needs to invoke a subsequent turbulent dynamo

to boost the field strength to the observed level. But, lacking a theoretical

understanding of the turbulent amplification, it is therefore not straightforward to

relate the very week seed fields produced by the battery process with the magnetic

fields observed today.
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3.2.2 Magnetic fields amplification and simulations

As discussed above, a magnetic seed field generated at higher redshift is expected to

be amplified during the formation of galaxy clusters due to the complex dynamics

of the gas in which the magnetic field is frozen in. This complex process has been

simulated in different works (Röttiger et al. 1999; Dolag et al. 1999, 2002, 2004;

Brüggen et al. 2005).

These studies have shown that magnetic field amplification takes place due to

both adiabatic compression and magnetic induction, with the latter being driven by

shear flows (Birk et al. 1999) that are ultimately powered by anisotropic accretion

and merger events. The fact that the anisotropy of the collapse of galaxy clusters

gives rise to additional amplification of magnetic fields has also been demonstrated

with analytic models (Bruni et al. 2003).

By using synthetic (“simulated”) RM maps obtained from simulations, Dolag et

al. (2001) found a nearly linear correlation between the X-ray flux of the simulated

clusters and RMs, which was nicely confirmed by observations, together with the

predicted radial profiles of RMs. The strength of the uniform seed field required to

reach this agreement was (1 − 5) × 10−9 G at redshift z∗ ' 20 which is within the

range of values expected from the models for magnetic seed field injection that we

have discussed in the previous section.

It is important to note that due to the chaotic nature of the process of matter

accretion process on clusters, no memory of the initial field configuration is expected

(Dolag et al. 2002). Also, since most of the magnetic field amplification takes place

at low redshift (z <∼ 3), the result of the simulations does not crucially depend on

the precise cosmological epoch at which the seed field is injected, provided it is

generated before the first significant major merger events.

Predicted MF scalings in galaxy clusters

An important expectation of MHD simulations is that the magnetic field decreases

with increasing cluster-centric distance. In Fig. 3.2 (Dolag et al. 2005b, taken from),

it is reported the radial profiles of the mass-weighted averages of the gas density,

of the magnetic field strength and of the temperature. The median density profile

is compatible with the canonical β-model (Eq.1.16). Depending on the cluster and

its dynamical state, the slope of the magnetic profile in the outer parts and in the
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Figure 3.2: Spherically averaged profiles of gas density (left panel), magnetic field strength
(middle panel) and temperature (right panel, mass-weighted) for the 16 most massive
clusters extracted from the simulation. The profiles are scaled to Rvir and normalized to
have the same mean value within 0.1×Rvir.

cluster cores scatters. On average, however, the magnetic field profiles follow the

density profiles of clusters in their outer parts, whereas in the central regions the

magnetic field profiles flatten. This flattening is presumably a direct consequence of

the lower gas velocities in the cluster cores, and of the increase of the Alfvénvelocity

in these regions, which make magnetic induction less effective.

As discussed in the previous section, the amplification of the magnetic field

within these simulations is not only due to the adiabatic compression of the gas

but this is dominated by the magnetic induction driven by shear flows. Thus a

clear expectation of this scenario is that the final value of the magnetic field in

galaxy clusters should depend on their merging history. In particular, more massive

clusters, which undergo more numerous and more energetic merger events, should

have a higher magnetic field in their cores than less massive ones (Dolag et al. 1999,

2005b).

Figure 3.3 (taken by Dolag et al. 2005) reports the mass-averaged magnetic

field calculated within 0.1 × Rvir as a function of the gas temperature in the cores

of simulated clusters: a strong dependence of 〈B〉 on temperature is expected. This

scaling is fitted by a power-law, 〈B〉 ∝ T α with α ≈ 2 (Dolag et al. 2002, 2005b).

3.3 Models for the non-thermal emission of ICM

Here we will give a brief description of the theoretical scenarios proposed to explain

the observed non-thermal broad band spectrum of galaxy clusters. We treat this

argument by describing the modeling of selected phenomena (RH, relics, mini-halos,
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Figure 3.3: Magnetic field strength versus temperature for the most massive clusters of
the simulation by Dolag et al. (2005b). The labels refer to halos that are identified with
actual clusters. The magnetic field has been mass-averaged within 0.1×Rvir, resulting in
mean values representative for the cluster cores.

HXR tails and so on) still, as it will become clear to the reader, in same cases

different phenomena may be consequence of a single scenario (p−p collisions in the

ICM, merger-driven particle acceleration, etc . . . ).

3.3.1 Radio Halos

The radio emission observed in a growing number of galaxy clusters in the form

of RHs (Sect. 2.1.1) is certainly the most importante evidence for the existence of

relativistic electrons diffused on cluster scales and thus our present understanding

of the non-thermal activity in the ICM is mostly based on the modelling of this

component. The main difficulty in explaining the extended radio halos arises from

the combination of their ∼ Mpc size, and the relatively short radiative lifetime of the

radio emitting electrons (Fig. 3.1). Indeed, the diffusion time necessary for the radio

electrons to cover such distances is orders of magnitude larger than their radiative

lifetime. Indeed radio emission at ∼ 1 GHz is typically due to electrons with energy

of ≈ 10B
−1/2
µG GeV, which have a radiative lifetime of ∼ 108 yrs (Sec.3.1.2) and can

diffuse only for some tens of kpc during this time-scale. This diffusion distance is
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several order of magnitude smaller than the typical size of RHs and this argument

lead to the requirement that electrons should be generated or accelerated everywhere

in the cluster (Jaffe 1977). Two main possibilities have been discussed for the origin

of the emitting electrons: either the radiating electrons have a secondary origin,

being produced by pp scattering (Dennison 1980; Blasi & Colafrancesco 1999), or

they are continuously re-accelerated in situ through Fermi-like processes associated

with merger events (Schlickeiser et al. 1987; Tribble 1993; Brunetti et al. 2001a;

Petrosian 2001). More recently Brunetti & Blasi (2005) have developed Hybrid

Models calculations, which include, in a self-consistent way, secondary electrons,

MHD waves and primary electrons and protons.

In the following we will discuss the case of secondary models, while the case of

the re-acceleration model, which is the leading scenario adopted in this PhD work,

will be discussed in more detail in Sect. 3.4.

Secondary Models

As discussed in Sec.3.1.3 relativistic protons injected in the ICM during the whole

cluster life remain confined and accumulate there, due to their negligible energy

losses. Due to this confinement the probability of having inelastic proton-proton

scattering in enhanced. The process is efficient enough to the continuous production

of neutral and charged pions, which in turn decay into gamma rays, electrons and

positrons (“secondary”) through the decay chain (Blasi & Colafrancesco 1999):

p + p → π0 + π+ + π− + anything

π0 → γγ

π± → µ + νµ µ± → e±νµνe.

The spectrum of secondary electrons and positrons with energy Ee is given by the

convolution of the spectra of protons, N(Ep), with the spectrum of pions, Fπ(Eπ, Ep),

produced in a single cosmic ray interaction at energy Ep, and with the distribution

of leptons from the pion decay, F±
e (Ee, Eπ), (e.g., Moskalenko & Strong 1998):

Q±
e [p, t; Np] = np

thc
∫

Etr

dEpβpN(Ep)σ±π (Ep)
∫

dEπFπ(Eπ, Ep)F±
e (Ee, Eπ), (3.17)
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where σ±(Ep) is the inclusive cross section for pion production, Etr is the threshold

energy for the process to occur and the distribution of electrons and positrons is

given by :

F±
e (Ee, Eπ±) =

∫
dEµF

±
e (Ee, Eµ, Eπ), (3.18)

where F±
e (Ee, Eµ, Eπ) is the spectrum of electrons/positrons from the decay of a

muon of energy Eµ produced in the decay of a pion with energy Eπ. For the detail

on the expressions of the distribution functions of different particle species we refer

the reeder to the specific papers (e.g., Blasi & Colafrancesco 1999; Brunetti & Blasi

2005; Kelner et al. 2006).

Secondary electron models were first proposed by Dennison (1980) to explain

RHs and considered in detail by Blasi & Colafrancesco (1999). More recently

these models have been revived by many authors in the framework of numerical

simulations (Dolag & Enßlin 2000; Miniati et al. 2001) where they can be easily

implemented. There is general agreement on the fact that although the general

features of the observed RHs could be reproduced by secondary electron models,

some of the spectral, morphological and statistical properties of RHs are hard to be

explained by these models.

Within the cluster there are many potential sources of cosmic ray protons which

eventually would injected secondary e± in the ICM (Berezinsky et al. 1997): normal

galaxies, active galaxies and shock waves associated with cluster formation (the last

two are expected to be the dominant sources of cosmic rays in clusters). In all these

cases the maximum energies of the accelerated protons are expected to be large

enough (>> 100 GeV) On the other hand the presence of a synchrotron break in

the integrated spectrum of a few RHs (e.g., Coma Schlickeiser et al. 1987, Thierbach

et al. 2003 and A 3562 Giacintucci et al. 2005) and the evidence for a radial spectral

steepening and/or patchiness which come from maps of synchrotron spectral index

of a few RHs (Giovannini et al. 1993; Feretti et al. 2004; Orrù et al. 2007) can only

be explained under the hypothesis of a break at ≈ GeV energy in the spectrum of the

emitting electrons (e.g., Brunetti 2001a; Blasi 2004). Also the broad synchrotron

profiles of some giant RHs (e.g., Abell 2163) are challenging for secondary models: in

order to reproduce this very broad radio-profile with an energy budget of relativistic

hadrons significantly below that of the thermal pool the strength of the magnetic
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field in the ICM should be almost constant on scales comparable to the cluster size

(Brunetti 2003, 2004; Marchegiani et al. 2007), which contrasts with the scenario of

the amplification of magnetic field in galaxy clusters (see Sec.2.2, Fig. 3.2).

Finally, there is an increasing evidence that RHs are associated to ongoing cluster

mergers, the secondary electron models have the problem that the radio emission

would be dominated at any time by the pile up of cosmic ray protons during the

merger history of the cluster, rather than by the last merger event, and in this case

no correlations with cluster merger is expected. In particular, present radio data

allow to conclude that the typical life–time of RHs should be of the order of 1 Gyr

(Kuo et al. 2004), in contrast with a secondary origin of the emitting electrons which

would produce very long living RHs.

The importance of all the above points deserve additional observations to better

understand the spectral and morphological properties of RHs and to test the radio

halos–cluster merger connection, still in this PhD work we will focus on the re-

acceleration scenario which potentially does not suffer of these challenges (Sect. 3.4).

3.3.2 Radio Mini-Halos

Theoretically it is not clear whether radio mini-halos (RMH) are a different class of

sources or whether they are simply smaller RHs, or RHs at an early stage of their

evolution. Clearly classical RMH are always found in cooling-flow clusters with a

dominant central radio sources while RHs are found in merging clusters without

cooling-flow. Because a “diffusion-problem” similar to that of RHs also holds in the

case of the classical RMHs (e.g., Perseus RMH), two scenarios have been proposed

to explain their origin. RMHs may originate due to particle acceleration by MHD

turbulence in the cooling-flow region (Gitti et al. 2002) or they may be due to

synchrotron emission from secondary e± injected during p−p collisions in the dense

cooling-flow region (Pfrommer & Enßlin 2004).

3.3.3 Radio Relics

Radio Relics are usually interpreted in terms of the interaction of shocks with

thermal or ghost plasma in the ICM. As discussed in Sec.1.5 mergers occur at

supersonic relative speed, therefore implying the formation of shock waves. If a

fraction of this energy can be converted at the shocks into non-thermal particles
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through a first order Fermi process, then the ICM may be populated with a large

amount of non-thermal particles. Shocks cannot be the responsible for the formation

of RHs as the resulting non-thermal emission should have a filamentary structure

tracing the position of the shock (Miniati et al. 2001), rather then the regular,

symmetric structure observed in RHs. This is because, as discussed above, electrons

cannot diffuse away from the re-acceleration site, due to their short cooling time.

Two competing physical mechanisms to accelerate the radio-emitting electrons have

been proposed: diffusive shock acceleration (Fermi I) (Ensslin et al. 1998; Röttiger

et al. 1999) and adiabatic compression of fossil radio plasma by merger shock waves

(Enßlin & Gopal-Krishna 2001; Enßlin & Brüggen 2002).

3.3.4 Hard X-ray emission

The origin of the hard X-ray (HXR) excess is still debated. As already anticipated

in Sec.2.3.2 the HXR photons may be generated by IC scattering of relativistic

electrons off the CMB photons (Rephaeli et al. 1999; Rephaeli & Gruber 2003;

Fusco-Femiano et al. 1999, 2000, 2004; Völk & Atoyan 1999; Brunetti et al. 2001a;

Petrosian 2001; Fujita & Sarazin 2001). Because electrons of similar energies are also

responsible for the synchrotron−radio emission, by assuming that the synchrotron

and IC emission are co-spatial, from the ratio of the HXR and radio flux it is

possible to estimate the ICM magnetic field (see also Sec.2.3.2). The strength of the

magnetic field inferred from the IC method are much smaller than those inferred

from the interpretation of RMs. This discrepancy can be mitigated in the presence

of a break in the spectrum of the emitting electrons and by considering a profile of

the magnetic field strength which decreases with distance from the cluster center:

in this case the bulk of the radio emission comes from the cluster central regions

while that of the IC emission comes from the external regions (Brunetti et al. 2001a;

Brunetti 2003, 2004; Petrosian 2001; Colafrancesco et al. 2005). The uncertainties

in the IC modelling and those in the interpretation of the RM data (Newman et al.

2002) leave the magnetic field discrepancy still an open issue.

IC emission in the hard X-rays has been discussed in the framework of the

re-acceleration model in which case present radio and hard X-ray data may be

successfully reproduced (Sect. 3.4). On the other hand, at least for the Coma

cluster, in the case of a secondary origin of the emitting electrons it is not possible
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to reproduce at the same time the radio flux of the RH (in terms of synchrotron

emission) and the HXR data (in terms of IC emission) without exceeding the

EGRET gamma ray upper limit (Blasi & Colafrancesco 1999) and thus the HXR

excess cannot be of IC origin.

Alternative explanations of the HXR excess have also been proposed. One

possibility is non-thermal bremsstrahlung radiation (Enßlin et al. 1999; Blasi 2000;

Dogiel 2000; Sarazin & Kempner 2000). However, this is an extremely inefficient

process and would require an input in energy which will approximately double the

ICM temperature every ≈ 108 yr so that it can apply only in the case that the HXR

emission is short living, < 3× 107 yr (Petrosian 2001).

An additional proposed explanation is related to the possibility that Ultra High

Energy (UHE) protons (E ∼ 1018−1019 eV) are accelerated in the clusters by strong

accretion shocks. Such protons interact with the CMB photons and can produce

very high energy electron-positron pairs, which then radiate synchrotron and IC

emission, with the synchrotron radiation peaking at hard X-rays (Inoue et al. 2005).

The emission should spatially trace the morphology of the accretion shock. This

model predicts the bulk of the radiation at TeV energy, and thus may eventually be

tested by future Cherenkov telescopes.

3.3.5 Gamma ray emission

At present no cluster of galaxies has been detected in gamma rays (Reimer et al.

2003). However, as already discussed, it is expected that the bulk of cosmic rays

accelerated within the cluster volume would be confined there for cosmological times

(e.g., Berezinsky et al. 1997; see also Sec.3.1.3), thereby enhancing the possibility of

inelastic proton-proton collisions and consequent gamma ray production through the

decay of neutral pions (e.g., Enßlin et al. 1997; Blasi & Colafrancesco 1999; Blasi

1999; Atoyan & Völk 2000; Pfrommer & Enßlin 2004; Miniati 2003, Blasi et al.

2007). In such a case radio emission at some level should be produced by secondary

electrons and this, under the assumption that the observed RH are not of secondary

origin, can be used to impose limits on the amount of hadronic cosmic rays in the

ICM, and therefore on the flux of gamma rays due to π0 decay that may be expected

(Reimer et al. 2004). Current EGRET-limits on gamma rays suggest that not more

than ∼ 10÷30% of the cluster thermal energy may be in form of relativistic particles
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(Colafrancesco & Blasi 1998; Reimer et al. 2004; Pfrommer & Enßlin 2004), while

future observations with GLAST will put more stringent limits (or detect a number

of clusters) in the energy range 100 MeV–10 GeV. In addition, in Loeb & Waxman

(2000) it was recognized that large scale shocks associated with structure formation,

merger and accretion shocks, may accelerate electrons to TeV energies, implying

that high energy emission would occur due IC scattering of these electrons off the

CMB photons. In this case the detectability of the gamma ray signal depends on

the strength of the shocks, only strong shocks can accelerate particles with spectra

hard enough to result in an appreciable gamma ray emission. For instance Gabici &

Blasi (2004) assumed a constant efficiency of electron acceleration of 5% and found

that ∼ 50 galaxy clusters should be detected by GLAST. It is worth stressing that

the electrons accelerated according to this recipe provide a negligible contribution

to radio and HXR emissions.

Another channel for the production of gamma rays in the ICM is related to

the possibility that the UHE protons (E > 1018 eV) may be injected in the ICM

by cluster accretion shocks, and, as discussed for the HXR emission, these could

interact with the CMB photons, producing electron-positron pairs which produce

TeV gamma ray emission via IC scattering with the CMB photons (Inoue et al.

2005). However the resulting gamma ray flux is extremely uncertain due also to the

absence of an efficient confinement of cosmic rays up to such high energies.

3.4 The re-acceleration scenario

It is believed by several authors that the bulk of present-day radio data requires the

presence of particle turbulent-acceleration in the ICM (see reviews by Brunetti 2003,

2004; Petrosian 2003; Blasi 2004; Hwang 2004; Feretti 2005; Dolag et al. 2005b).

This PhD work is based on the re-acceleration scenario. According to this

scenario a fraction of the energy dissipated during cluster-cluster mergers is

channeled into MHD turbulence and this turbulence may re-accelerate a relic

population of relativistic particles (e.g., Brunetti et al. 2001a; Petrosian 2001)

or secondary particles (Brunetti & Blasi 2005). The synchrotron and IC emission

from the re-accelerated electrons give rise to the RH and HXR, respectively, whereas

in the framework of this scenario gamma ray emission may also be produced by π0-

decay and IC emission from the secondary e± produced during p−p collisions of
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high energy CR protons with thermal protons (Brunetti & Blasi 2005).

Although the physics of particle acceleration is a challenging problem and the

model details are difficult to test, it should be stressed that the re-acceleration model

clearly predicts simple properties of RHs which are almost independent of the details

of the adopted physics:

• in these models, the accelerated electrons have a maximum Lorentz factor

γmax below a few times 104, and this produces a high frequency cut-off in the

synchrotron spectral distribution (Schlickeiser et al. 1987; Brunetti et al. 2001a;

Petrosian 2001) which provides a unique possibility to explain the steepening

of the integrated synchrotron spectrum claimed in several RHs (e.g., Thierbach

et al. 2003; Feretti 2005) and the complex behavior observed in the spectral

index maps of RHs (Feretti et al. 2004; Orrù et al. 2007);

• the maximum energy of the radiating electrons is determined by the balance

between the energy gains (re–acceleration processes) and synchrotron and

inverse Compton losses and accordingly, the detection of a RHs critically

depends on cut–off frequency which should be sufficiently larger than the

observing frequency. As a consequence, there is a threshold in the efficiency

which should be overcome by the re–acceleration processes in order to

accelerate the electrons at the energies necessary to produce radio emission

at the observed frequency in the clusters’ magnetic fields.

• a relatively thigh connection of RHs with cluster mergers is a very “natural”

expectation of these models as turbulence is assumed to be injected during

cluster mergers in Mpc3 regions (e.g., Tribble 1993; Röttiger et al. 1997,

Ricker & Sarazin 2001). As a matter of fact RHs are preferentially found in

dynamically disturbed systems (e.g., Buote 2001; Govoni et al. 2004).

• most importantly, RHs should be transient phenomena in dynamically

disturbed clusters. The time scale of the RH phenomena comes from the

combination of the time necessary for the cascading of the turbulence from

cluster scales to the smaller scales relevant for particle acceleration, of the

time–scale for dissipation of the turbulence and of the cluster–cluster crossing

time. As a matter of fact, present observations suggest that indeed RHs are

short living (≤ 1 Gyr; e.g., Kuo et al. 2004).
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In this Section we will discuss in some detail the physics of electron re-

acceleration model. We will start illustrating the basic properties of the ICM

turbulence and then we will explain the main channels of interaction of that

turbulence with the relativistic particles in the ICM.

3.4.1 Turbulence in the ICM

Cluster mergers and accretion of matter at the virial radius may induce large–

scale motions with VL ∼ 1000 km s−1 in massive clusters. Numerical simulations

suggest that turbulence may store an appreciable fraction, 5–30%, of the thermal

energy of the ICM (e.g., Sunyaev et 2003; Dolag et al. 2005b; Vazza et al. 2006).

Simulations of merging clusters provide an insight into the gas dynamics during a

merger event (e.g., Röttiger, Burns & Loken 1996; Röttiger et al. 1997; ?): sub–

clusters generate laminar bulk flows through the swept volume of the main clusters

which inject turbulence via e.g. Kelvin–Helmholtz instabilities at the interface of

the bulk flows and the primary cluster gas. The largest turbulent eddies decay into

smaller and turbulent velocity fields and eventually develop a turbulent cascade.

Merger-turbulence in the ICM is expected to be a transient phenomena being

mostly injected during the most massive mergers. However, since more frequent,

minor mergers may also contribute to the injection of such turbulence, some

minimum level of turbulence should be rather ubiquitous in the ICM (Cassano &

Brunetti 2005, Chapt.5).

In spite of obvious observational challenges, indications of some level (≈ 10–20%

of the thermal energy) of turbulence in the ICM comes from gas–pressure maps in

the X–rays (Schuecker et al. 2004), and also from the lack of resonant scattering

from X–ray spectra (Churazov et al. 2004; Gastaldello & Molendi 2004).

Interestingly enough, also upper limits to the turbulent–energy content in the ICM

were obtained in a few nearby galaxy clusters from kinematical arguments related

to the properties of Hα and X–ray filaments (e.g., Fabian et al. 2003; Crawford et

al. 2005; Sun et al. 2006). Assuming that turbulence is driven at hundred–kpc scales

the above upper limits actually can be used to place upper limits on the intensity

of strong turbulence in the ICM (supersonic or trans–sonic turbulence).

Theoretically, a fluid becomes turbulent when the rate of viscous dissipation at

the injection scale, Lo, is much smaller than the energy transfer rate, i.e. when the
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Reynolds number is Re = VLLo/νK À 1, where VL is the injection velocity and νK

is the kinetic fluid viscosity. Without considering the effect of magnetic fields the

viscosity is given by νK ∼ lmfpvi/3 ( vi and lmfp being the velocity of thermal ions

and the ion–ion mean free path, respectively) and the Reynolds number in the ICM

is given by (e.g., Braginskii 1965):

Re ∼ 52
( VL

1000 km/s

)( Lo

300 kpc

)( nth

10−3cm−3

)( T

8 keV

)−5/2
(

ln Λ

40

)
(3.19)

where ln Λ is the Coulomb logarithm. This value for the Reynolds number would be

formally just sufficient for initiating the developing of turbulence. However, the ICM

is magnetized and in the presence of a magnetic field the Reynolds number may get

extremely high (e.g., Braginskii 1965). Turbulence injected in the ICM by merger

events is super-Alfvénic turbulence (i.e., the injection velocity VL ' 1000 − 1500

km/s is greater than the Alfvén one vA = B/
√

4πρ ∼ 50 − 80 km/s) and in this

case the magnetic field lines are easily bended by the motion of turbulent eddies.

Under these circumstances ion diffusion is driven by the bending of the field lines

and the viscosity is expected to be suppressed implying that the effective Reynolds

number in the ICM is much larger than that estimated in the unmagnetized case

(Brunetti & Lazarian 2007). Additional mechanisms may affect the value of the

particle mean free path in the ICM, for example plasma instabilities may reduce the

effective mean free path and this should further increase the value of the Reynolds

number (e.g., Schekochihin et al. 2005, Lazarian & Beresnyak 2006).

It is believed that the magnetic field suppression of the viscosity in the ICM

would allow turbulence cascade to reach the collisionless regime without being

significantly dissipated by viscosity (e.g., Brunetti & Lazarian 2007). When the

frequency of the turbulent modes is larger then the ion–ion collision frequency starts

the collisionless regime and the main source of turbulent dissipation is collisionless

damping with particles in the ICM, i.e., particle acceleration. In this case the time

evolution of waves in the wavenumber space, Wk(t), is given by a kinetic equation

which in the quasi linear regime reads (e.g., Eilek 1979):

∂Wk(t)

∂t
=

∂

∂k

(
Dkk

∂Wk(t)

∂k

)
−

n∑

i=1

Γi(k)Wk(t) + Ik(t) (3.20)
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The first term on the right hand describes the wave–wave interaction (here we take

a one-dimensional form of the wave-wave coefficient; see Miller et al. 1996; Brunetti

& Lazarian 2007), with diffusion coefficient Dkk = k2/τs (with τs the spectral

energy transfer time). The second term in Eq.(3.20) describes the damping with the

relativistic and thermal particles in the ICM, while Ik(t) accounts for the turbulent

injection term.

3.4.2 Stochastic particle acceleration

Re–acceleration models are basically models of second order Fermi acceleration, in

which charged particles are accelerated stochastically due to random interaction of

the particles with the perturbations (waves) in the structure of the magnetic field.

The scenarios of particle acceleration are based on particle interaction with either

large scale compressible (magnetosonic) modes or small scale Alfv́en modes.

Alfv́en waves

Alfvén waves are circular polarized, transverse waves which propagate along or at an

angle to the magnetic field. They look like transverse oscillation of the field lines.

In the MHD approach the dispersion relation for Alfvén waves with a frequency

ω and wavenumber projected along the magnetic field k‖ is :ω ' |k‖|vA, where

vA = B/(4πρ)1/2 is the Alfvén speed.

Alfvén waves efficiently accelerate relativistic particles via resonant interaction.

The condition for resonance between a wave of frequency ω and wavenumber

projected along the magnetic field k‖, and a particle of type α with energy Eα

and projected velocity v‖ = vµ is (Melrose 1968; Eilek 1979):

ω − n
Ωα

γ
− k‖v‖ = 0 (3.21)

where Ωα/γ is the relativistic gyrofrequency. The most important resonance for

electron interaction with Alfvén waves is the n = −1 resonance, while for protons

n = +1 is the most important (Melrose 1968). Combining the dispersion relation

of the waves with the resonant condition, Eq. (3.21), one can derive the resonant

wavenumber, kres, for a given momentum (p = mvγ) and pitch angle cosine (µ) of

the particles:
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kres ∼ |k‖| =
Ωm

p

1(
µ± vA

v

) , (3.22)

where the upper and lower signs refer to protons and electrons respectively.

We can see that there is a correspondence between the particle energy and the

wavelength with which it can resonate. The particles does not “see” all turbulent

wavenumber, but only those above:

kmin =
Ωm

p

1(
1± vA

v

) (3.23)

and below kmax, which is given by the largest wavenumber of the Alfvén waves,

limited by the fact that the frequency of the waves cannot exceed the proton

cyclotron frequency, namely ω < Ωp. It follows that kmax ∼ Ωp/vA or kmax ∼ Ωp/vM ,

vM being the magnetosonic velocity. We stress that these waves coupled with

relativistic electrons (and protons) at very small scales l ∼ 2πp/(Ωm) and thus the

cascading process should be very efficient if the turbulence injection process happens

at large scales, or these waves should be injected at these small resonant scales.

In an isotropic distribution of waves and particles, the particle diffusion

coefficient in momentum space is given by (Eilek & Henriksen 1984):

Dpp(p, t) =
2π2e2v2

A

c3

∫ kmax

kmin

Wk(t)

k

[
1−

(vA

c
∓ Ωm

pk

)2]
dk, (3.24)

In Chapt.4 we will present an application of particle acceleration by Alfvén waves

in galaxy clusters.

Magnetosonic waves

Magnetosonic (MS) waves are compressive waves which propagate across or at an

angle to the magnetic field. The MHD dispersion relation of these modes is given by

ω = vMk, where the phase velocity vM is given by (e.g., Krall & Trivelpiece 1973) :

v2
M =

c2
s + v2

A

2





1±
√√√√1− 4

(
k‖
k

)2
c2
sv

2
A

(c2
s + v2

A)2





(3.25)

The fast MS waves are those with higher frequency, corresponding to the (+)

expression in Eq.3.25, while the slow mode are those corresponding to the (−)
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expression in Eq.3.25. In the ICM where cs >> vA the phase velocity of fast modes is

the sound speed, while slow modes have the dispersion relation of the Alfvén modes.

Large scale MS waves can interact with particle through the n = 0 resonance

(Melrose 1968; Eilek 1979), ω − k‖v‖ = 0 which is called transit-time damping

(TTD; e.g., Eilek 1979; Schlickeiser & Miller 1998). This resonance depends only

on pitch-angle, so that all wavenumbers can interact with a given particle energy.

An important aspect of this interaction is that it is effective only in the case of

isotropization of particle momenta during the acceleration. This is because the rate

of energy gain for a given particle depend on the component of the momentum

perpendicular to the magnetic field, but the energy gain goes all to the component

parallel to the field (Achterberg 1981). This would cause an increasing degree of

anisotropy of the particle distribution and thus the deriving acceleration would

become less and less efficient with time. However, in general, there are several

processes in the ICM which can provide particle-pitch angle scattering.

In this PhD thesis we will widely use the compressible modes (fast modes in

the MHD regime) (see Sec.3.4.2), which do not require an injection process at small

spatial scales of the modes (as in the case of Alfvén modes), since it is expected that

a significant fraction of the ICM turbulence (given the high β plasma of the ICM)

is in the form of large scale compressible isotropic modes (e.g., Brunetti & Lazarian

2007).



Chapter 4

Alfv́enic re-acceleration of
relativistic particles in galaxy
clusters

As discussed in the previous Chapter, re–acceleration of a population of relic

electrons by turbulence powered by major mergers is suitable to explain the very

large scale of the observed radio emission and is also a promising possibility to

account for the fine radio structure of the diffuse emission (Brunetti et al. 2001a;

Petrosian 2001; Brunetti 2004). Alfvén waves are likely to be able to transfer most

of their energy into relativistic particles and they have received much attention in

the last few years. In this framework for instance Ohno et al. (2002) developed a

time-independent model for the acceleration of the relativistic electrons expected

in radio halos through magnetic turbulence. The authors studied the acceleration

of continuously injected relativistic electrons by Alfvén waves with a power law

spectrum and applied this model to the case of the radio halo in the Coma cluster.

More recently, Fujita et al. (2003) studied the effect of Alfvénic acceleration of

relativistic electrons in clusters of galaxies. These authors invoked the Lighthill

theory to establish a connection between the large scale fluid turbulence and the

radiated MHD waves. The electron and MHD-wave spectra adopted by Fujita et

al.(2003) are obtained via a self-similar approach by requiring that the spectra are

described by two power laws. These approaches have two intrinsic limitations: the

first one is in the assumption that all spectra are time-independent and that the

turbulence spectrum is a power law. The second is that they neglect, the effect

of relativistic hadrons in the ICM: it is well known that the interaction of the

Alfvén waves with relativistic particles is, in general, more effective for protons

77
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than for electrons (e.g., Eilek 1979). It is also well known that the presence of a

significant energy budget in the form of relativistic particles can significantly affect

the spectrum of the Alfvén waves through damping. In fact, this damping occurs

even on the thermal protons in the ICM, another effect which was never included in

previous calculations.

The news about the calculations presented in this Chapter is that Alfvénic

acceleration is studied in the most general situation in which relativistic electrons

and positrons, thermal and relativistic protons exist in the ICM. In these calculations

the interaction of all components with the waves, as well as the turbulent cascading

and damping process of Alfvén waves, will be treated in a fully time-dependent way

in order to calculate the spectra of electrons, positrons, protons and waves at any

fixed time. These calculations are published in Brunetti, Blasi, Cassano & Gabici

(2004) and in this Chapter we report the main results from this paper.

4.1 Preliminary consideration on cosmic ray electrons and
protons in the ICM

The first ingredient in our calculations is given by cosmic ray (CR) electrons and

protons. In this Section we report some preliminary considerations on the properties

of these CR before the re-acceleration process in the ICM is started.

4.1.1 The need for seed relativistic electrons

As seen in Sec.3.4.2, Alfvén waves may accelerate particles via resonance interection.

In Sec.3.4.2 we give the resonance condition (Eq.3.21) and the expression for the

diffusion coefficient in momentum space Dpp(p, t) (Eq.3.24).

The momentum of electrons and protons which can resonate with waves of a

given wavenumber k depends on the pitch angle cosine µ (see Eq.3.22). This resonant

momentum can be written as:

p =
Ωeme

k

1

µ− vA

v

. (4.1)

The minimum momentum of the electrons for which resonance with waves of a given

wavenumber k can occur is obtained from Eq.4.1 substituting v = P/me and taking

µ ∼ 1:
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pmin =
me

k

(
Ωe + vAk

)
, (4.2)

Since the wavenumber of Alfvén waves in a plasma is limited by ω < Ωp, from Eq.

(4.2), one has that the minimum momentum of the electrons which can resonate

with Alfvén waves is:

pmin = pth
vA

vth

(mp

me

+ 1
)
, (4.3)

which, in general, gives pmin >> pth, pth = mevth being the momentum of the

thermal electrons. It follows the well known result that thermal electrons cannot

resonate with Alfvén waves (Hamilton & Petrosian 1992, and references therein).

This important limitation of Alfvén waves as particle accelerators forces us to

consider the situation in which a relic population of relativistic electrons exists in

the ICM.

The situation is different for protons. In fact, in this case, the minimum

momentum of the protons which may resonate with waves of wavenumber k is given

by:

pmin = pth
vA

vth

(Ωp

ω
− 1

)
. (4.4)

Since ω < Ωp, this basically means that thermal protons can efficiently resonate

with Alfvén waves (Hamilton & Petrosian 1992).

4.1.2 On the initial spectrum of seed relativistic electrons and protons

After having pointed out that a population of seed relativistic electrons is necessary

to have efficient Alfvénic re-acceleration in the ICM, in this Section we briefly

discuss the shape of the spectrum of the relic population and of the CR protons

accumulated in the ICM. As shown in the previous Chapter several mechanisms can

inject electrons and protons in the ICM, and the injection spectrum from a single

mechanism can be assumed to be a power-law in momentum, Q(p) ∝ p−δ.

As seen in Sec.3.1.2, once injected the relativistic electrons lose energy via

Coulomb collisions, IC and synchrotron emission (Eq.3.1, 3.2 respectively). The

evolution of a population of relativistic electrons subject only to energy losses is

obtained by solving the so-called Fokker-Planck equation (Eq.3.15) neglecting the

acceleration terms. As an example in Fig.4.1 we report the spectra at z=0 of
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Figure 4.1: Electron spectrum at z = 0 injected as a single burst at zi =0.01, 0.1, 0.3,
0.5 (from right to left) adopting injection spectrum Q(p) ∝ p−2.5 and maximum Lorentz
factor γmax = 104. The calculations are carried out for nth = 10−3cm−3 and B = 1µG.

Figure 4.2: Present-epoch spectrum of the cosmic ray protons continuously injected (with
p > 0.1mpc) in the ICM starting from zi. The spectra are plotted for s =2.4 (dotted lines)
and 3.0 (solid lines) and for zi =0.1, 0.5, 1 (from bottom to top). Calculations are carried
out assuming nth = 10−3cm−3.
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electrons injected as a single burst at redshift z=0.5, 0.3, 0.1, 0.01 with an initial

power law momentum distribution p−2.5 and with maximum Lorentz factor γ = 104;

it is evident that most electrons injected at z >∼ 0.2 get thermalized.

As discussed in the previous Chapter, relativistic protons are confined for

cosmological times in the cluster volume and, given that the loss time due to inelastic

collisions with thermal protons is greater than the Hubble time, their spectrum is

unaffected by energy losses. On the contrary the spectrum at mildly and sub-

relativistic energies can be significantly modified by Coulomb interactions (Eq.3.5,

Sec.3.1.2). As for the relativistic electrons, the evolution of the proton spectra

can be calculated by solving the Fokker-Planck equation (Eq.3.16) neglecting the

acceleration terms. In Fig.4.2 we report the present day spectrum of protons if a

time independent continuous injection Q(p) ∝ p−s is assumed (for different values

of the slope s and of the redshift at which the injection starts); spectra show a large

modification at low energy due to Coulomb losses.

4.2 From fluid turbulence to Alfvén waves: the Lighthill
mechanism

In this Section we discuss the basic physics of the second main ingredient of our

calculations: the Alfvén waves.

4.2.1 Injection

We assume that fluid turbulence is present in the cluster volume with a power

spectrum

Wf(xf) = W o
f x−m

f (4.5)

in the range xmin
f < xf < xmax

f , where xmin
f is the wavenumber corresponding to the

maximum scale of injection of the turbulence and the maximum wavenumber is that

at which the effect of fluid viscosity starts to be important and it is of the order

of xmax
f ∼ xmin

f (Re)−3/4 (e.g., Landau & Lifshitz 1959), Re being the Reynolds’

number. Since most of the energy of fluid turbulence resides in the largest scale, the

total energy density of the fluid turbulence is given by Et ∼ ρv2
f , where ρ is the fluid

density and vf is the turbulent velocity of the largest scale ∼ 2π/xmin
f .

For Kolmogorov turbulence one has m = 5/3, while for Kraichnan turbulence

(Kraichnan 1965) one has m = 3/2.
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Here we investigate the connection between the fluid turbulence that we start

with and the MHD waves that we use as particle accelerators. Fluid turbulence can

radiate MHD modes (Kato 1968) via the Lighthill process. A fluid eddy may be

thought of as radiating MHD waves in the mode j at a wavenumber k = (vf(x)/vj)xf ,

where vj is the velocity of the j–mode wave. The MHD modes are expected to be

driven only for x > xT, xT being the wavenumber at which the transition from large–

scale ordered turbulence to small–scale disordered turbulence occurs. Following

previous works in the literature (Eilek & Henriksen 1984; Fujita et al. 2003), we

adopt the Taylor wavenumber as an estimate of this transition scale, namely:

lT =
2π

xT

∼
[

< v2
f,i > / <

(∂vf,i

∂xi

)2
>

]1/2 ∼ lo(15/Re)1/2, (4.6)

where the Reynolds number is given by Re = lovf/νK, and νK is the kinetic viscosity.

The energy rate radiated via the Lighthill mechanism into waves of mode j and

wavenumber k is given by (e.g., Eilek & Henriksen 1984):

Ij(k) = Ij,o

( k

xT

)−yj

, (4.7)

It can be shown that the injection rate of Alfvén waves is given by (see Brunetti et

al. 2004, for details):

Ik ' 2
∣∣∣3− 2m

3−m

∣∣∣ρv3
A

( v2
f

v2
AR

) 3
3−m k−3m−1

3−m . (4.8)

i.e., Ik ∝ k−3/2 for a Kolmogorov spectrum of fluid turbulence (m = 5/3) and

Ik ∝ k−1 for a Kraichnan spectrum (m = 3/2).

4.2.2 Evolution of Alfvénic turbulence

In our calculations we assume for simplicity that Alfvén waves propagate

isotropically in the cluster volume and thus k ' |k‖|. The spectrum of Alfvén waves

driven by the fluid turbulence evolves as a result of wave–wave and wave–particle

coupling. In particular, the wave–particle involves the thermal and relativistic

particles. The combination of these processes produces a modified, time–dependent

spectrum of Alfvén waves, Wk(t), which can be calculated by solving the continuity

equation (Eq.3.20) in which one consider the wave–wave interaction and the damping

with the relativistic and thermal particles in the ICM.
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Figure 4.3: Time evolution of the spectrum of Alfvén waves injected in a single burst
at a given scale. The spectra are plotted for 1014 (solid line), 5 × 1015 (dotted line),
3× 1016 (dashed line), and 3.2× 1016 s (dot-dashed line) after the injection event. In the
calculations, a Kolmogorov diffusion coefficient is adopted. The temperature of the gas,
the magnetic field and the gas density are T = 108K, B = 1µG, and nth = 10−4cm−3

respectively.

Turbulent cascade

The turbulent cascading process is described by the kinetic equation (Eq.3.20)

neglecting the terms which describe damping processes and wave injection. The

cascade timescale at a given wavelength is τkk ∼ k2/Dkk. By adopting the expression

for the diffusion coefficient, Dkk, in the Kolmogorov and Kraichnan regime (see

Brunetti et al. 2004), one has:

τkk(l) ' 2× 108yr

BµG

( l100

kpc

)( nth

10−3

) 1
2





√
2
(

δB>k

B

)−1

(Kolmogorov)

2
(

δB>k

B

)−2

(Kraichnan)

(4.9)

where we define δB>k ∼
√

8πkWk. It is worth noticing that the cascade timescale in

the Kolmogorov regime does not depend on the value of the magnetic field strength.

We also notice that τkk is smaller in low density regions. Most importantly, it can be

show that, for typical conditions of the ICM, the wave–wave time scale below 1 pc,

namely on the scale relevant for wave–particle interaction, is considerably shorter
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than 107yr.

As an example in Fig. 4.3 we plot the time evolution of the spectrum of

Alfvén waves injected at a given scale in the Kolmogorov phenomenology (see

caption for details); the broadening of the waves distribution at scales larger than

the injection scale is due to stochastic wave-wave diffusion.

Damping processes

In the case of nearly parallel wave propagation (k⊥ << mΩ/p, k ' |k‖|) and isotropic

distribution of particles of type α, the cyclotron damping rate for Alfvén waves is

given by (Melrose 1968):

Γα
k (t) = −4π3e2v2

A

kc2

∫ pmax

pmin

p2(1− µ2
α)

∂fα(p, t)

∂p
dp =

π2e2v2
A

kc2

∫ pmax

pmin

(1− µ2
α)

(
2
Nα(p, t)

p
− ∂Nα(p, t)

∂p

)
dp, (4.10)

where, for relativistic particles, one has :

µrel
α =

vA

c
± Ωαmα

pk
, (4.11)

while for sub–relativistic particles:

µth
α =

vAmα

p
± Ωαmα

pk
. (4.12)

Here the upper and lower signs are for negative and positive charged particles

respectively.

Alfvén waves can be damped in their interaction with thermal and relativistic

protons and relativistic electrons, so that the global damping time can be written

as the sum of three different contributions:

τd =
( 3∑

j=1

Γj
k

)−1
. (4.13)

We refer the reader to Brunetti et al. (2004) for the detailed expressions of the

damping terms obtained from Eq.4.10. For typical conditions in the ICM, the

damping time on the thermal proton gas is < 105sec (but the process is efficient

only for k/kmax > 0.1). The damping time on the relativistic component (especially

protons) is usually > 108sec.
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Figure 4.4: Comparison between cascade-time (solid straight line) and damping time-scales
on the thermal gas (dashed line), on relativistic electrons (dotted line), and on relativistic
protons (solid line). Calculations are carried out assuming a Kolmogorov diffusion
coefficient, and adopting T = 108K, nth = 10−3cm−3, and d(δB)2/dt = 3.3×10−15(µG)2/s.

Damping versus Cascading

When the damping time-scale is shorter than the cascading time-scale a break

is established in the spectrum of the waves and the cascade at smaller scales is

suppressed.

The time scale for the development of the wave-wave cascade depends on the

wave-wave diffusion coefficient, Dkk, and thus on the energy density of the waves.

Given a spectrum of injection of waves per unit time, Ik, one simple possibility to

estimate the cascade time scale, and thus to compare it with the time scale of the

damping processes, is to use the spectrum of the waves under stationary conditions

and without damping processes, namely

Wk ∼ 1

k





(
B2

4π

I2
k

v2
A

)1/3
, (Kolmogorov)

(
B2

4π
Ik

vA

)1/2
, (Kraichnan)

(4.14)

The wave-wave time scale is therefore given by :
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τs =
k2

Dkk

∼ 1

k





(
B2

4π

)1/3
/
(
v

2/3
A I

1/3
k

)
, (Kolmogorov)

(
B2

4π

)1/2
/
(
v

1/2
A I

1/2
k

)
, (Kraichnan)

(4.15)

A comparison between the time scales of the damping processes and of the wave-

wave cascade is given in Fig.4.4 for typical values of the parameters (see caption).

We assume that the energy in relativistic protons and electrons is respectively ∼ 1

and 0.1 per cent that of the total thermal energy. Protons are injected starting

from z = 1 with a spectrum s = 2.2. Fig.4.4 shows that the time scale due to

the damping with the thermal pool is considerably shorter than the cascade time

scale for k/kmax >> 0.1 so that a break or a cutoff in the spectrum of the waves

is expected at large wavenumbers. However, the most important result illustrated

in Fig.4.4 is that, if a relatively large number of relativistic protons is present in

the ICM, the resulting damping time scale can become comparable with or shorter

than the wave-wave cascade time scale. This means that, at the corresponding

wavenumbers, the spectrum of the waves is modified by the effect of the dampings

and therefore that a power law approximation for the spectrum of the MHD waves

cannot be achieved. We also note that the effect of the damping due to relativistic

protons is particularly evident at those wavenumbers that can exhibit a resonance

with the bulk of the relativistic electrons in the ICM (those with γ ∼ 200 − 1000)

and thus that this effect may have important consequences for the acceleration of

the relativistic electrons.

Thus the damping of the relativistic protons on the Alfvén waves modifies the

spectrum of the waves and therefore it may indirectly affect the acceleration of

electrons. The damping of the waves at a given wavenumber basically depends on

the number of protons with momentum that can resonate with such waves. At fixed

number of relativistic protons with supposedly a power law spectrum N(p) ∝ p−s,

the damping rate at wavenumbers corresponding to p >> plow (plow being the

minimum momentum in the proton spectrum) decreases with increasing s.

4.3 Quasi Stationary Solutions

Given the injection rate of the Alfvén waves in the ICM, the evolution of the spectra

of electrons, protons and waves can be calculated by coupling the relative Fokker-
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Figure 4.5: Temporal evolution of the spectrum of the Alfvén waves at times 2 × 1015,
5 × 1015, 8 × 1015, 1016, and 1.5 × 1016sec after the beginning of the acceleration
(from top to bottom). The calculations are carried out for a Kolmogorov spectrum of
the fluid turbulence (i.e., yj = 3/2), a Kolmogorov diffusion coefficient d(δB)2/dt =
3.3 × 10−15(µG)2/s, T = 108K, nth = 10−3cm−3, B = 0.5µG, Ee = 0.001 × Eth,
Ep = 0.005×Eth, s = 3.2, zi = 1.0 and pinj > 0.1mpc. The Taylor scale is at k ∼ 10−5kmax.

Planck and kinetic equations, Eqs. 3.15 (with Qe = 0), 3.16 and 3.20.

The spectra of electrons, protons and waves, as discussed above, result from

a coupling between all these components: the spectrum of the waves develops in

time due to the turbulent cascade until damping becomes efficient and particle

acceleration occurs. It is worth noticing that the time scales for the processes of

damping and cascading are quite different from those related to particle losses and

transport mechanisms. While the wave spectrum develops over ∼ 107 sec, particle

acceleration occurs on time scales of ≥ 1014sec, and we are interested in following the

particle evolution for a typical time of ≥ 1015sec. Based on these considerations we

shall use a quasi stationary approach, in which it is assumed that at each time-step

the spectrum of the waves approaches a stationary solution and that this solution

changes with time due to the evolution of the spectrum of the accelerated electrons

and protons.

Intermittent injection of turbulence in the ICM may occur on time–scales ≥
107−108 yrs which are much longer than the time–scales of damping and cascading,
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and thus the quasi–stationary approach discussed above remains applicable.

In the following we will consider the case in which the turbulent energy is always

smaller then the thermal energy and thus we can safely assume that the thermal

distribution of protons in the ICM is not appreciably affected by the interaction

with the waves.

4.3.1 The spectrum of Alfvén Waves

The shape of the spectrum of waves at any time is determined by the damping of

these waves, mainly on protons. The proton spectrum in turn changes because of

acceleration, and backreacts upon the spectrum of waves: this implies that even for a

time-independent rate of continuous injection of waves, the strength of the damping

rates and the spectrum of the MHD waves are expected to change with time.

In particular, we found that the damping rate increases with time, as a

consequence of the fact that most of the energy injected in MHD waves is channelled

into relativistic protons.

A relevant example of the time evolution of the spectrum of waves is illustrated

in Fig. 4.5: as expected, the energy associated with MHD waves which contribute

to the acceleration of the bulk of the relativistic electrons (k/kmax ∼ 10−3 − 10−1)

decreases with time. In addition, we note that the spectrum is not a simple power

law; the spectrum has a low-k cutoff due to the maximum injection scale, close

to the Taylor scale; it has also a high-k cutoff generated by the damping with the

thermal particles.

4.3.2 Electron acceleration

The initial stage of reacceleration of relic relativistic electrons (i.e. γ ∼ 100− 1000

electrons) is mainly affected by the competition between Coulomb losses and

acceleration due to the Alfvén waves, while later stages of further acceleration to

the highest allowed energies are limited by radiative losses.

We found that the time scale for electron acceleration depends on proton spectra

injected in the ICM. In particular, for steep proton spectra (with a fixed total

number of protons), the electron acceleration is more efficient because less energy

gets channelled into the proton component. In general, hard proton spectra make the

acceleration of electrons to Lorentz factors γ > 103 relatively difficult (see Fig.4.6).
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Figure 4.6: Acceleration time–scale (thin lines) and time–scale for energy losses (thick
lines) for relativistic electrons as a function of the Lorentz factor. From bottom to top,
the acceleration time–scales are calculated at 2 × 1015, 5 × 1015, 1016, and 2 × 1016sec
after the beginning of the acceleration. The following values of the parameters are
adopted: d(δB)2/dt = 3.3 × 10−15(µG)2/s, T = 108K, nth = 10−3cm−3, B = 0.5µG,
and Ee = 0.001× Eth. Left Panel: Ep = 0.2× Eth, s = 2.0 and zi = 1.0; Central Panel:
Ep = 0.025 × Eth, s = 3.0 and zi = 1.0; Right Panel: Ep = 0.002 × Eth, s = 4.0 and
zi = 1.0;

Figure 4.7: Time evolution of the spectrum of relativistic electrons as a function of p
obtained after 2× 1015, 5× 1015, 8× 1015, 1016, and 1.5× 1016 sec from the beginning of
the acceleration. The values of the parameters are as in Fig. 4.5.
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This is true in the initial stage of evolution of the system: after about∼ 0.5−0.7 Gyr,

relativistic protons have accumulated enough of the waves energy that the damping

of the waves becomes even more efficient and further acceleration of electrons is

prevented, independently of the injected proton spectra.

In fig.4.7 we report the evolution of the electrons spectra. It is clear that the bulk

of the relativistic electrons, initially at γ ∼ 102, can be energized up to γ > 104.

We also note that, with increasing time, the efficiency of electron acceleration is

lowered because of the damping of relativistic protons on the waves. The continuous

backreaction between waves and protons creates a sort of wave-proton boiler that in

a way is self-regulated.

If the injection of fluid turbulence is intermittent on time scales of the order of

the cooling time of electrons with Lorentz factors γ ∼ 103 − 104, then the effect of

the wave-proton boiler on the electron acceleration may be reduced. The reason for

this is that for a given reacceleration rate, the accumulation of energy in the form

of relativistic protons requires longer times and the electron acceleration remains

efficient for ∼ 1 Gyr.

4.3.3 Proton acceleration

We consider the case in which the energy injected in Alfvén waves is significantly

larger than that stored by the relativistic protons at the beginning of the acceleration

phase, in this case the spectrum of protons is expected to be considerably modified.

In Fig. 4.8 we report the evolution of the spectrum of the relativistic protons; it is

clear that the spectrum flattens and a bump develops.

The prominence of this bump increases with time as the energy absorbed by

relativistic protons also increases. Moreover, the bump moves toward larger

momenta of the particles during the acceleration time.

4.3.4 The Wave-Proton Boiler

One of the most important results of our investigation is the quantitative treatment

of the backreaction of the accelerated protons on the waves and in turn on the

electrons. Qualitatively, given typical conditions in the ICM, we can identify three

main temporal stages of the acceleration process:

1) Cascading stage:
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Figure 4.8: Time evolution of the spectrum of cosmic ray protons as a function of p. From
bottom to top, the curves are obtained at times 2 × 1015, 5 × 1015, 8 × 1015, 1016, and
1.5 × 1016 sec after the beginning of acceleration. The initial proton spectrum is plotted
as a dashed line. The values of the parameters are as in Fig. ??.

For a non negligible rate of energy injection in the form of Alfvén waves, the

cascade time is shorter than the damping time. This remains true up to some

critical wavenumber, which depends on energetics and spectrum of protons,

where damping starts to be relevant. If such a wavenumber is larger than

about 10−2kmax, then enough energy is left in the form of waves at the scales

which may resonate with relic relativistic electrons. In this case electrons are

effectively re-energized.

2) Stage of proton backreaction:

Once the Alfvén waves start to accelerate electrons and protons to higher

energies, the spectrum of protons and electrons becomes harder and the

fraction of the energy stored in non-thermal particles starts to be large

enough to make damping more severe. As a consequence, the rate of electron

acceleration is reduced.

3) End of acceleration:

At the beginning of the acceleration phase, the bulk of protons is located

at supra-thermal or trans-relativistic energies: however, it can be shown (see
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Fig.16 in Brunetti et al. 2004, for details) that in few 108 yrs these protons can

be energized to higher energies. After about 0.5−0.7 Gyr the acceleration time

scale of relativistic protons has increased by about one order of magnitude and

at this point the acceleration stage of protons and electrons can be considered

as concluded, unless the injection of turbulence occurs intermittently .

After the end of the third stage, the electrons cool due to radiative and

Coulomb losses, while the Alfvén acceleration is only able to prevent the

thermalization of these particles maintaining their Lorentz factor around

γ ∼ 100− 1000.

4.4 Non-thermal emission from galaxy clusters

In this Section we specifically apply the previous findings to the case of merger

driven turbulence in galaxy clusters and calculate the non-thermal spectrum.

4.4.1 Cluster mergers and turbulence

We assume that turbulence in the ICM is injected by cluster-cluster mergers. The

bulk of the turbulence is most likely injected on scales ≥ 100 kpc due to the motion

of the subclusters. Afterwards this turbulence eventually cascades toward smaller

scales. As discussed in Sect.4.2, when the turbulent cascade reaches scales close

to the Taylor scale, a fraction of the energy flux of the fluid turbulence can be

transferred to MHD waves which in turn can accelerate fast particles via gyro-

resonance.

For simplicity, we assume here that the bulk of the fluid turbulence in a given

point of the cluster volume is injected at the scale lo for a time τi of the order of the

time necessary for the subclump to cross the scale lo:

τi(Gyr) ∼ 0.3ξ
( lo

300

)( vc

103

)−1
, (4.16)

where vc is the velocity of the subclump in the host cluster and ξ is a parameter

of the order of a few. With these assumptions the injection rate of energy in the

form of fluid turbulence is given by :

Ff ∼ 2.3× 10−27

ξ

( nth

10−3

)( T

108

)( lo
300

)−1( vc

103

) Et

Eth

, (4.17)
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where Eth is the local energy density of the ICM in the form of thermal gas and Et is

that in the form of turbulence. The bulk of the fluid turbulence at the scale lo then

cascades toward smaller scales producing a spectrum of the fluid turbulence that we

write as Wf (x) ∝ x−m (Sect.4.2). Assuming a Kolmogorov phenomenology (this is

indeed appropiate for Alfvénic turbulence) for the wave-wave diffusion in k−space,

the time scale for the cascade can be estimated from Eq. (4.15) with Ixo ∼ x−1
o Ff :

τs(Gyr) ∼ 0.2
( lo

300

)(108

T

)1/3(103

vc

)1/3
ξ1/3

( 0.1

Et/Eth

)1/3
. (4.18)

In our simple approach, this is the time delay between the merger event and

the development of the turbulence at small scales (and thus the production of

MHD waves). The power injected in Alfvén waves in the case of a Kolmogorov

phenomenology is (from Eq.4.8):

PA =
∫

I(k)dk ' 1.5× 10−29B−1
µG

( nth

10−3

) 3
2
( lo

300

)−1( Re

1016

)−1/6( vf

400

)4
(4.19)

All the quantities involved in the calculation of Eq.4.19 can be relatively well

modelled, the only parameter, which is very difficult to estimate is the value of

the Reynolds number, Re, at these small scales. (see discussion in Brunetti et al.

2004).

4.4.2 Constraining the model parameters

One may obtain some constraints on the physical conditions in the ICM which are

necessary to have a reacceleration efficiency sufficient to explain the observed non–

thermal emission. Here we report the main results and refer the reader to Brunetti

et al. (2004) for the details of the calculations:

i) By balancing the energy losses and gains one may obtain the maximum

energy, γmax, of the accelerated electrons. It can be show that in order to obtain

γmax >> 1000, needed to explain the synchrotron emission at GHz frequency as

well as the IC hard X–ray photons, the energy density in relativistic protons should

be less than 3% the thermal energy density( Ep ≤ 3% Eth) for physical conditions

typical of the central cluster regions. Such a stringent limit is the consequence

of the effective damping of Alfvén waves upon the relativistic proton component,
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which inhibits the acceleration of electrons. In the periphery of the cluster, where the

magnetic field is expected to be lower, the conditions to obtain high energy electrons

are less stringent. It remains true however that no more than a few percent of the

thermal energy of the cluster can be in the form of relativistic protons if we want to

interpret the observed non-thermal phenomena as the result of radiative processes of

high energy electrons accelerated via Alfvén waves.

ii) Another crucial parameter in the modeling of the non–thermal phenomena in

galaxy clusters is the strength of the magnetic field in the ICM. There is still debate

on whether this field is of several µG or rather fractions of µG (see Sect.2.2). In order

to illustrate the effect of the magnetic field strength we evaluate the synchrotron

cut–off frequency as a function of the magnetic field strength. Given the shape of

the spectrum of the accelerated electrons, a synchrotron cut–off at ≥ 200−300 MHz

is required to account for the synchrotron radiation observed in the form of radio

halos. From one hand a low value of B implies that very high energy particles are

necessary to get the observed radio spectrum, on the other hand a value of B larger

than the equivalent magnetic field strength of the CMB, considerably affects the

strength of radiative losses and implies a large acceleration efficiency to mantain the

emitting electrons. Thus, for typical condition of the cluster cores, by requiring a

cut–off frequency ≥ 200−300 MHz, Alfvénic reacceleration of relic electrons cannot

be an efficient process for B À 4µG and for B ¿ 0.5µG. These constraints become

less stringent in the case of low density regions.

4.4.3 A simplified models for Radio Halos and Hard X–ray emission

In this section we apply the formalism described in previous sections in order to

show that for the conditions realized in the ICM, Alfvénic reacceleration of relic

electrons may generate the observed radiation, provided the energy content in the

form of relativistic protons is not too large.

Our simple model for the ICM assumes a β-model (Chap.1, Eq.1.16; Cavaliere &

Fusco-Femiano 1976) for the radial density profile of the thermal gas in the ICM,

with β = 0.8. The magnetic field is assumed to scale with density according with

flux conservation:

B(r) = B(r = 0)
( nth(r)

nth(r = 0)

)2/3
. (4.20)
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Figure 4.9: Temporal evolution of the accelerated electron spectra after 0, 1014, ..., 5×1015,
7×1015, 1016, and 1.2×1016sec from the beginning of the acceleration stage. The following
values of the parameters have been used: d(δB)2/dt = 1.6 × 10−15(µG)2/s, B = 0.5µG,
T = 108K, nth = 10−3cm−3, Ee = 0.001× Eth, Ep = 0.01× Eth, s = 2.2 and zi = 1.0.

Figure 4.10: Spectra of electrons accelerated for 1.2× 1016sec at different distances from
the cluster center: r =0.3, 0.6, 0.9, 1.2, 1.4, 2.1rc (from top of the diagram). The
central values assumed in the calculations are : nth(0) = 1.5× 10−3cm−3, B(0) = 1.5µG,
d(δB(0))2/dt = 2.2× 10−15(µG)2/s.
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Figure 4.11: Temporal evolution of the synchrotron (Left Panel) and ICS (Right Panel)
spectra from the cluster model given in Sect. 6.3 (integrating the emissivities up to 5×rc).
Spectra are shown at 5 × 1015, 1.2 × 1016 and 1.7 × 1016sec from the beginning of the
acceleration (from bottom to top). In the calculations Ee = 5×10−5Eth has been adopted.
Radio data are taken from Thierbach et al. (2003), EUV from Bowyer et al. (1999; here
reported as an upper limit, see text), XHR from Fusco–Femiano et al. (2004).

Based on the constraints given in the previous Section we adopt B(r = 0) ∼
0.5 − 4µG. Finally, we assume that the ratio between the energy density of the

relic relativistic particles (at the beginning of the acceleration phase) and that of

the thermal plasma is constant in the cluster volume; that the maximum injection

scale of the turbulence, the Reynolds number and the velocity of the turbulent eddies

are independent of the location within the cluster volume.

Using the scaling relationship for the magnetic field, Eq. 4.20, and the expression

for the injection power in the form of Alfvén waves, Eq. 4.19, we obtain:

PA(r) = PA(r = 0)
( nth(r)

nth(r = 0)

)5/6
. (4.21)

The time evolution of the re-accelerated spectrum of the relativistic electrons in the

core region is plotted in Fig.4.9. We can see that the bulk of relativistic electrons,

initially at γ ∼ 102, can be energized up to γ ∼ 104 for a relatively long time.

Eq.4.21 indicates that, in our simple approach, the power injected in the form of

Alfvén waves decreases with increasing distance from the cluster center. Since radio

halos have a considerable size, it is needed to check that our model provides enough



4.5. CONCLUSIONS 97

energy in the outskirts of clusters. In Fig. 4.10 we plot the electron spectra at

different distances from the cluster center (see caption). At large distances the effect

of acceleration is even stronger than in the central region and the electron spectra

peak at slightly higher energies than in the core. This is due to the fact that in the

outskirts the damping rate is reduced more than the rate of injection of turbulence.

The corresponding synchrotron and IC spectra integrated over the cluster

volume are plotted in Fig.4.11 at different times, for a central magnetic field

B(r = 0) ' 1µG. The spectra are compared with that observed for the radio

halo in the Coma cluster : an initial energy density in the relic relativistic electrons

of the order of 5× 10−5Eth is required to account for the data. In Fig. 4.11 we also

report the luminosity of the EUV excess in the Coma cluster as an upper limit (as

the origin of the EUV excess is not directly related to the same electron population

responsible for the radio and possibly for the HXR emission; Bowyer & Berghöfer

1998; Ensslin et al. 1999; Atoyan & Völk 2000; Brunetti et al. 2001b; Tsay et

al. 2002). Here we stress that Fig.4.11 is just a comparison between data and

time evolution of the emitted spectra resulting from the very simple scaling of the

parameters described above. On the other hand, it should also be stressed that the

time evolution of the synchrotron and IC spectra reported in Fig.4.11 is generated

via the first fully self-consistent calculation of particle acceleration in galaxy clusters.

Thus, provided that the energy of relativistic protons in galaxy clusters is not larger

than a few percent of the thermal energy, Fig.4.11 proves, the possibility to obtain

the observed magnitude of the non–thermal emission in these objects via Alfvénic

acceleration.

4.5 Conclusions

In this Chapter we have presented a full account of the time-dependent injection of

fluid turbulence, its cascade to smaller scales, the injection of Alfvén waves through

the Lighthill mechanism, the resonant interaction of these waves with electrons and

protons (namely their acceleration) and the backreaction of the accelerated particles

on the waves. The solution of the coupled evolution equations for the electrons,

protons and waves has revealed several new interesting effects resulting from the

interaction among all these components:
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i) Alfvén waves are injected by the fluid turbulence through the Lighthill

mechanism. This allows us to establish a direct connection between the fluid

turbulence likely to be excited during cluster mergers, and the MHD turbulence

that may resonate with particles in the ICM.

ii) Previous calculations looked for self-similar solutions for the spectra of

electrons and MHD waves in the form of power laws. The solutions obtained in the

present Chapter show that in Nature these self-similar solutions are not necessarily

achieved. In general the system evolves toward complex spectra of electrons and

MHD waves with a bump in the electron spectrum, that moves in time toward an

increasingly large particle momentum.

iii) The main damping of Alfvén waves occurs on relativistic protons, if there

are enough of them. The spectrum of the waves is cutoff at small scales due to the

damping of these waves. The damping moves energy from the waves to the particles,

determining their acceleration/heating.

iv) The importance of the presence of the relativistic protons for the acceleration

of electrons is one of the most relevant new results of this Chapter. A large fraction

of the thermal energy in the form of relativistic protons enhances the damping rates

of Alfvén waves, suppressing the possibility of resonant interaction of these waves

with electrons. Since electrons are the particles that radiate the most, a too large

fraction of relativistic protons suppresses non-thermal phenomena directly related

to electron reacceleration via Alfvén resonance. Our results show that no more

than a few percent of the thermal energy density of the cluster can be in the form of

relativistic protons if we want to interpret the diffuse radio and hard X-ray emissions

as the result of synchrotron and IC radiation of relic electrons re-accelerated through

Alfvén waves. This appears as a stringent constraint on the combination of proton

number and spectrum since the accumulation of large number of protons in the

ICM (see also Sec.3.1.3) is predicted by both analytical calculations (Berezinsky

et al. 1997) and numerical simulations (Ryu et al. 2003). Both the energy and

spectrum of the cosmic rays stored in the ICM affect the temporal evolution of

Alfvén waves and their ability to re-accelerate relic electrons.

If future observations will unveil the presence of a population of relativistic

protons in the ICM with > 5−10% of the thermal energy, then Alfvénic reacceleration

of relativistic electrons in galaxy clusters will be discarded as a possible explanation
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of non-thermal phenomena in the ICM. On the other hand, similar reacceleration

phenomena can be driven by MHD waves other than Alfvén waves, for which the

energy transfer does not occur preferentially toward protons (see Chapt. 5). In

this case, the bounds presented here on the allowed energy density in the form of

relativistic protons in the ICM could be substantially relaxed.

v) By assuming that protons have a relatively flat spectrum (s ∼ 2.2) and

that they contain up to a few percent of the thermal energy, we used a simple but

phenomenologically well motivated model for the density and magnetic field in a

cluster of galaxies in order to calculate the expected non-thermal radio and hard

X-ray activity of the cluster as a function of time. For the first time we performed a

fully self consistent calculation and showed that the reacceleration of relic electrons

through resonant interaction with Alfvén waves can explain very well the observed

phenomena, including the extended diffuse appearance of this emission. In passing,

without considering the case of the HXR emission, we also showed that a magnetic

field strength in the range 0.5− 4µG in the cluster cores allow electron acceleration

efficient enough to produce GHz synchrotron emission. These conditions are less

stringent in the outermost regions of the clusters.

vi) In our calculations we adopted a constant injection rate of turbulence during

particle acceleration. In this case, even assuming Ep < 0.1×Eth, we find that after a

few 108yrs of acceleration the backreaction of protons on MHD waves can suppress

the acceleration of energetic electrons : this provides a limit on the duration of the

non-thermal phenomena in galaxy clusters. It is possible to extend the duration of

non-thermal activity assuming that injection of turbulence occurs in relatively short

bursts of duration comparable with the life–time of electrons. On the other hand,

independently on the assumptions, our results show that if particle acceleration is

mainly due to Alfvén waves, then the existence of radio halos and HXR tails in

massive clusters should be limited to achieve periods of < 10% of the Hubble time.

vii) The temporal duration of the process of turbulent cascade and the

acceleration time scale of electrons are estimated to be about one order of magnitude

shorter than the dynamical time-scale of a merger event. This implies that a

temporal correlation is still expected between merging processes and the rise of

the non-thermal phenomena in galaxy clusters.
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Chapter 5

A first approach to the calculation
of the statistical properties of RHs

Although the physics of particle acceleration due to turbulence generated in merging

clusters has been investigated in some detail (e.g., Schlickeiser et al. 1987; Petrosian

2001; Fujita et al. 2003; Brunetti et al. 2004; Brunetti & Blasi 2005; Brunetti &

Lazarian 2007) and the model expectations for the origin of RHs seem to reproduce

the observed radio morphologies and spectral features, and possibly also the hard

X–rays (e.g., Brunetti et al. 2001a; Kuo et al. 2003; Brunetti 2004; Hwang 2004),

a theoretical investigation of the statistical properties of the Mpc diffuse emission in

galaxy clusters in the framework of the re-acceleration model has not been carried out

extensively as yet. In particular, the fact that giant radio halos are always associated

to massive galaxy clusters and the presence of a trend between their radio power and

the mass (temperature, X-ray luminosity) of the parent clusters may be powerful

tools to test and constrain present models.

So far two works have modeled the statistics of the formation of radio halos.

Enßlin & Röttgering (2002) calculated the radio luminosity function of cluster

radio halos (RHLF). These calculations can be considered as an extrapolation of

present radio data toward clusters with smaller mass and different z. In a first

modelling, they obtained RHLF by combining the X-ray cluster luminosity function

with the radio–halo luminosity – X–ray luminosity correlation, assuming that a

fraction, frh ' 1
3
, of galaxy cluster have radio halos; this fraction being calibrated

with observational findings of massive clusters. Then, in a slightly more accurate

modelling, frh was assumed to be equal to the fraction of clusters that have recently

undergone a strong mass increase and the radio halo luminosity of a cluster was

101
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assumed to scale with (1 + z)−4 (due to the increasing IC-losses).

In a more recent paper, Kuo et al. (2004) calculated the formation rate and the

comoving number density of radio halos in the hierarchical clustering scheme. The

model was based on two morphological criteria to define the conditions necessary to

the formation of radio halos : 1) the cluster mass must be greater than or equal to

a threshold mass adjusted to observations (Giovannini et al. 1999); 2) the merger

process must be violent enough to disrupt the cluster core, and thus the relative

mass increase was required to be ∆m ≡ (∆M/M)th = 0.6 according to numerical

simulations (Salvador-Sole et al. 1998). Given the above criteria and making use of

the PS formalism these authors found that a duration of the radio halo phenomenon

of the order of 1 Gyr would result to be in good agreement with the observed

occurrence of radio halos.

As already pointed out, all these approaches are based on assumptions in defining

the conditions of formations of radio halos based on observational correlations

and/or mass thresholds. On the other hand, no effort has been done so far to

model the formation of radio halos and HXR tails in a self-consistent approach,

i.e., an approach which should model, at the same time, the evolution of the thermal

properties of the ICM of the host galaxy clusters and the generation and evolution

of the non-thermal phenomena.

As mentioned above, one of the ideas that is producing the most promising

results for the interpretation of non-thermal phenomena in galaxy clusters consists

in the turbulent re-acceleration of relic relativistic electrons leftover of the past

activity occurred within the ICM.

In this Chapter we describe the formalism and relative calculations of the

statistical properties of giant RHs and HXR tails in the framework of this electron

re-acceleration scenario.

In order to have a straightforward comparison with published observational

constraints, in this Chapter we focus on a Einstein de Sitter (EdS) cosmology

(Ho = 50 km s−1Mpc−1, qo = 0.5) and discuss the case of the ΛCDM model at

the end of the Chapter.

The results presented in this Chapter are published in: Cassano & Brunetti

(2005; CB05) and Vazza et al. 2006.
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5.1 Focus & Main Questions

In this Chapter we will assume the re-acceleration scenario and address the following

points:

• Is it possible to model “self-consistently” the evolution of non-thermal radio

(and HXR) emission and the hierarchical process of formation of the clusters?

• Which are the physical requirements in terms of density of relativistic electrons

and of turbulence to reproduce the basic observed properties of RHs and HXR

tails?

• Is it possible, in the framework of the re-acceleration model, to reproduce in a

natural and straightforward way the increase of the fraction of probability to

find RHs in galaxy clusters with increasing the cluster mass?

Addressing, for the first time, these points will be crucial to test the viability of the

re-acceleration model, and to a first quantitative understanding of the merger–non-

thermal emission connection.

5.2 The Model: Outline

In this Section we outline the formalism and procedures used to develop our

statistical calculations. The major steps can be sketched as follows :

i) Cluster formation: The evolution and formation of galaxy clusters is computed

making use of the extended Press & Schechter (1974, hearafter PS; Lacey &

Cole 1993) semi-analytic procedure based on the hierarchical theory of cluster

formation (Sec.1.4). Given a present day mass and temperature of the parent

clusters, the cosmological evolution (back in time) of the cluster properties

(merger trees) are obtained making use of Monte Carlo simulations. A suitable

large number of trees allows us to describe the statistical cosmological evolution

of galaxy clusters.

ii) Turbulence in Galaxy Clusters: The turbulence in galaxy clusters is supposed

to be injected during cluster mergers and dissipated in a time-scale of the order

of the cluster-cluster crossing time.
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The energetics of the turbulence injected in the ICM is “calibrated” with the

PdV work done by the infalling subclusters in passing through the volume

of the most massive one; it basically depends on the density of the ICM and

on the velocity between the two colliding subclusters. The sweeped volume

in which turbulence is injected is estimated from the Ram Pressure Stripping

(e.g., Sarazin 2002, ; and ref. therein). We assume that a relatively large

fraction of the turbulence developed during these mergers is in the form of fast

magneto–acoustic waves (MS waves). We use these waves since their damping

rate and time evolution basically depend on the properties of the thermal

plasma which are provided by our merger trees for each simulated cluster.

The shape of the spectrum of the MS waves depends on many unknown

quantities thus we adopt two extreme scenarios: the first one assumes a

broad band injection of MHD waves (Sec.5.4.2), the second one assumes

that turbulence is injected at a single scale (Sect.5.9.1). In both cases the

spectrum of MS waves is calculated solving a turbulent-diffusion equation in the

wavenumber assuming that the turbulence, injected in the cluster volume for

each merger event, is injected for- and thus dissipated in a dynamical crossing

time.

iii) Particle Acceleration: We focus on the electron component only because the

major damping of MS waves (which determines the spectrum of these waves

and thus the efficiency of the particle acceleration), is due to thermal electrons

and thus hadrons cannot significantly affect the electron–acceleration process

1. We assume a continuous injection of relativistic electrons in the ICM due to

AGNs and/or Galactic Winds; this injection is necessary to provide the pool

of supra-thermal electrons to be re-accelerated. At each time step, given the

spectrum of MS waves and the physical conditions in the ICM, we compute

the time evolution of relativistic electrons by solving a Fokker-Planck equation

including the effect of electron acceleration due to the coupling between MS

waves and particles, and the relevant energy losses.

Given a population of galaxy clusters by combining i)-iii) we are thus able to

follow in a statistical way the cosmological evolution of the spectrum of the relativistic

1This is different from the case of Alfvén waves whose damping may be indeed dominated by the
presence of relativistic hadrons (Brunetti et al. 2004); Sec. ??).
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Figure 5.1: Cumulative probability distribution P(< ∆S, ∆x) as a function of log(∆S).

electrons in the volume of these clusters and the properties of the thermal ICM.

5.3 Monte Carlo Technique and Merger Trees

Based on the extended PS formalism (see Sec.1.4.4) and following a relatively

standard procedure adopted in the literature (e.g., Randall et al. 2002; Gabici &

Balsi 2003), we employ a Monte Carlo technique to construct merger trees. Each tree

starts at the present time with a cluster of mass M and temperature T . Following

Sec.1.4.4 we replace the mass M and time t (or redshift z) with the suitable variables

S ≡ σ2(M) and x ≡ δc(t). We step each simulated cluster back in time, using a

small but finite time step corresponding to a positive increase ∆x. The step size

determines the value of the minimum mass increment of the cluster, ∆Mc, which is

due essentially to a single merger event (Lacey & Cole 1993) :

(∆x)2 <∼
∣∣∣∣∣
d ln σ2

d ln M

∣∣∣∣∣
(

∆Mc

M

)
S , (5.1)

where M is the mass of the cluster at the current time step. The value ∆Mc gives

the mass of the smallest merging subcluster we can resolve individually in our trees;

we choose ∆Mc ' 1012h−1M¯. Thus mass increments smaller than this value are

considered to be part of the continuous mass accretion process in galaxy clusters.
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Figure 5.2: Example of Merger Trees obtained from Monte Carlo simulation in a EdS
universe for clusters with present day mass M0 = 2.5 × 1015M¯: a) Log(M) − z; b)
M/M0 − t/t0 with t cosmic time; t0 present time.
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In order to follow the probability that a merger with a given ∆S (i.e. ∆M)

occurs at a given time we make use of the cumulative probability distribution of

subcluster masses:

P(< ∆S, ∆x) =
∫ ∆S

0
K(∆S ′, ∆x) d∆S ′ = erfc

(
∆x√
2∆S

)
(5.2)

where erfc() is the complementary error function and K(∆S ′, ∆x) d∆S ′ is given

in Eq.1.69. The cumulative probability distribution (Fig. 5.1) is defined such that

P(< ∆S, ∆x) → 1 for ∆S →∞.

The Monte Carlo procedure selects a uniformly-distributed random number, r, in

the range 0–1, then it determines the corresponding value of ∆S solving numerically

the equation P(< ∆S, ∆x) = r (Fig. 5.1). The value of S2 of the progenitor is given

by S2 = S1+∆S. The mass of one of the subclusters is given by solving σ2(M2) = S2,

where σ(M2) is given by Eq.(1.68), whereas the mass of the other subcluster is

∆M = M1−M2. We define Mmin ≡ min(M2, ∆M) and Mmax ≡ max(M2, ∆M). In

order to speed up the computational procedures, without significantly affecting the

results, we consider two cases :

i) If Mmin < 1 × 1013M¯ the event is considered a very minor merger and its

contribution to the injection of cluster turbulence (Sec. 5.4.1) is neglected 2.

The mass of the parent cluster is simply reduced to M2 = M1 −Mmin and the

next back in time-step in the merger tree starts from M2.

ii) if Mmin > 1× 1013M¯ then the event is treated as a merger and we calculate

all the physical quantities useful for the computation of the energy of the

turbulence generated during this event (Sec. 5.4.1). In this case, if Mmin is

also greater than a given value of interest we follow back in time the evolution

of both the subclusters (i.e., Mmin and Mmax) constructing the merger tree for

each subcluster.

This procedure is thus iterated until either the mass of the larger cluster drops

below ∆Mc or a maximum redshift of interest zmax is reached. An example of a

merger tree obtained from our procedure (tracing the evolution of the Mmax clusters

only) is shown in Fig. 5.2 as a function of both look back time and redshift.

2Note that we are interested in describing mergers of typically > 5× 1014M¯, Sec. 5.7.
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Figure 5.3: Cartoon of the assumed geometry for the binary cluster mergers.

Our procedure is basically a Binary Merger Tree Method which does not allow

to describe multiple nearly simultaneous mergers. This simple procedure, however,

is sufficient for our purposes since multiple mergers mainly affect the evolution of

low mass halos at relatively high redshift which are not interesting for the study of

the non-thermal phenomena. The implementation of more complicated N-Branch

Tree Methods can be found in Somerville & Kolatt (1999).

5.4 Ram Pressure Stripping, turbulence and MHD waves

5.4.1 Turbulence injection rate

The passage of the infalling subhalos through the main cluster during mergers

induces large–scale bulk flows with velocities of the order of ∼ 1000 km s−1 or larger.

Numerical simulations of merging clusters (e.g., Röttiger et al. 1997; Ricker &

Sarazin 2001; Tormen et al. 2004) provide a detailed description of the gasdynamics

during a merger event. It has been found that subclusters generate laminar bulk

flows through the swept volume of the main clusters which inject eddies via Kelvin–

Helmholtz instabilities at the interface of the bulk flows and the primary cluster gas.

Finally these eddies redistribute their energy through the cluster volume in a few

Gyrs by injecting random and turbulent velocity fields.
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The impact velocity between the subclusters increases at the beginning of

the merger and then it saturates when the subclusters interpenetrate each other.

Depending on the initial conditions and on the mass ratio of the two subclusters,

during the merging process the infalling halos may be efficiently stripped due to the

ram–pressure. However, the numerical simulations show that the efficiency of the

ram pressure stripping is reduced by the formation of a bow shock on the leading

age of the subcluster. This bow shock forms an oblique boundary layer which slows

the gas flow and redirects it around the core of the subcluster so that, at least in the

case of mergers with mass ratios < 10, a significant amount of the subcluster gas is

found to be still self–bounded after the first passage through the central regions of

the main cluster (Röttiger et al. 1997; Tormen et al. 2004).

Due to the complicated physics involved in these events, the details of the

injection and evolution of turbulent motions in galaxy clusters during merging

processes are still unexplored. However, turbulence should be basically driven by

the PdV work done by the infalling halos through the volume of the primary cluster

and the turbulent motions should be initially injected within the volume swept by

the passage of the subhalos (e.g., Fujita et al. 2003). Following this simple scenario,

in this Section we estimate the rate of turbulence injected during a merger event. As

a necessary approximation (due to the PS formalism) in the calculations, we assume

that subclusters undergo only central collisions (See Fig.5.3 for an illustrative picture

of the merger geometry).

The relative impact velocity of two subclusters with mass Mmax and Mmin which

collide (at a distance Rmax between the centers) starting from an initial distance do

with zero velocity is given by Eq.1.74 in Sect.1.5 (e.g., Sarazin 2002).

While the smaller subcluster crosses the larger one, it is stripped due to the

effect of the ram–pressure. The stripping is efficient outside a radius rs (stripping

radius) at which equipartition between static and ram–pressure is established, i.e. :

ρmaxv
2
i =

ρmin(rs)KBTmin

µmp

(5.3)

where, as an approximation, ρmax is fixed at the average density of the ICM of the

larger subcluster :

ρmax =
(

Mmax
4
3
πR3

max

)
× fb , (5.4)
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Figure 5.4: Panel a): Ratio between the energy injected in form of turbulence and the
thermal energy of the system as a function of the mass ratio of the two subclusters.
Thermal energy is calculated for both the sum of the two subclusters (lower lines) and for
the main cluster alone (upper lines). We stress that in the case of a mass ratio ≤ 1.5 our
approach is quite inadequate because essentially no primary cluster exists, however these
mergers are very rare events and do not dominate the injection of turbulence in our model.
Panel b): Ratio between the stripping radius and the radius of the radio halos (assuming
RH = 500h−1

50 kpc) reported as a function of the mass ratio of the two subclusters. In
both panels calculations are obtained following the recipes given in Sect. 4.1 for a M = 5,
(solid lines), 2 (dotted lines), and 1× 1015M¯ (dashed lines) clusters.

with fb = 0.25 ( h
0.5

)−3/2 the observed barion fraction of clusters (Ettori & Fabian

1999, Arnaud & Evrard 1999). We solve Eq.(5.3) numerically at each merger event

assuming that the density profile of the ICM of the smaller cluster, ρmin, is described

by a β-model (Cavaliere & Fusco-Femiano, 1976), Eq.1.16, and the normalization is

given by:

ρmin(0) =
fbMmin

4π

{ ∫ R
Mmin
v

0
drr2

[
1 + (

r

rc

)2
]−3βx/2

}−1

(5.5)

a core radius rc = 0.1 Rmin and βx ' 0.8 are assumed. The temperature of the

smaller cluster, Tmin, in Eq.(5.3) is estimated by making use of the observed M-T

relationship (e.g., Nevalainen et al. 2000). As a general remark we stress that the

value of the stripping radius obtained above would give the mean value of rs during

a merger and it is not the minimum rs. In qualitatively agreement with numerical

simulations, this approach yields rs → 0 in the case of mergers with large mass

ratios between the two colliding subclusters.

The motion of the smaller cluster through the ICM of the main one generates fluid

turbulence. Following Fujita et al. (2003) we assume that turbulence is initially
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injected in the swept volume, Vt ∼ πr2
sRmax, with a maximum turbulence length

scale of the order of ≈ 2× rs (see Fig. 5.3). The total energy injected in turbulence

during a merger event is thus Et ' ρmax,s v2
i Vt, where ρmax,s is the ICM density of

the main cluster averaged on the swept cylinder. We assume that the duration of

the injection is of the order of a crossing time, τcros ' Rmax/vi, then the turbulence

is dissipated in a relatively short time.

The use of the averaged density of the ICM of the primary cluster, ρmax, of the initial

impact velocity between the subclusters, vi, and of the density of the main cluster

averaged on the swept cylinder, ρmax,s in the calculations of the injected turbulence is

a necessary simplification which however guarantees a basic estimate of the averaged

injected turbulence in the ICM and which does not depend on essentially unknown

details. For seek of completeness, in Fig. 5.4a we report the typical ratio between

turbulent energy injected by a merger event and the thermal energy of the system

as a function of the mass ratio between the two colliding subclusters; it is found

that major mergers may channel about 10-15 % of the thermal energy in the form of

large scale turbulence. In Fig. 5.4b we also report the value of the stripping radius

as a function of the mass ratio of the two colliding subclusters. It is found that

rs (i.e., the mean value of rs during a merger event) is typically larger than the

radius of the radio halos, RH , for the merger events which mainly contribute to the

injection of cluster turbulence in our model. If the swept volume is smaller than

that of the radio halo, we assume that the injected turbulence is diffused over the

volume of the radio halo, VH = 4
3
πR3

H , which is basically equivalent to assume that

the integral cross section of the ensemble of minor mergers which occur in a time

interval of ∼Gyr is comparable to RH .

Under these hypothesis, the injection rate per unit volume of turbulence is given

by :

Et

τcros × VH

' ρmax,s

Rmax

v3
i

(
Vt

VH

)
(5.6)

As a relevant example, in Fig. 5.5a we report the cosmological evolution of the

thermal energy of galaxy clusters with different masses, together with the total

energy injected up to that z in form of turbulence in the ICM. The energy in

turbulence is calculated by integrating the contributions from all the merger events.

The thermal energy of the considered clusters, calculated assuming the observed M-
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Figure 5.5: a) Evolution of the thermal energy (solid lines) and of the energy injected
in fluid turbulence (dashed lines) integrated during cluster life (at redshift z) in typical
galaxy clusters. b) Evolution of the differential turbulent energy (turbulent energy present
at the redshift z) as a function of z for the same two clusters in panel a). In both panels
the thin lines are for a cluster with present time M0 = 1015M¯ and the thick lines are for
a cluster with present time M0 = 5× 1014M¯.

T relation (e.g., Nevalainen et al. 2000), increases from about 1062erg at z ∼ 1 to a

few 1064erg at the present epoch depending on the mass of the cluster. As it should

be, we note that the energy budget injected in turbulence during cluster formation

is well below the thermal energy; this indicates the consistency of our calculations.

While in Fig.5.5a we report the cumulative contributions to the injection of

turbulent energy from all merger events experienced from the formation of the

cluster up to redshift z, in Fig. 5.5b we report for the same clusters of Fig.5.5a

the differential turbulent energy, i.e., the energy present in the form of turbulence

at a given z, and this is associated with recent merging processes. We would to

point out that since turbulence is assumed to dissipate in a typical crossing time

(Sec.5.2 ii)), turbulence due to cluster-cluster mergers is a transient phenomena

(with a tipical time scale of the order of the cluster-cluster crossing time) which is

intrinsically related to the merger history of the cluster.

From Fig. 5.5a we note that the turbulent energy is found to be ∼ 15% that of

the thermal energy in agreement with recent numerical simulations (Sunyaev et al.

2003) and with very recent observational claims (Schuecker et al. 2004). Finally, as

reasonably expected, the energy injected in turbulence calculated with our approach

is found to roughly scale with the thermal energy of the clusters. Indeed, since the
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Figure 5.6: Comparison between the thermal and turbulent scaling at zero redshift, for
12 “relaxed” (i.e. ξ < 0.5) galaxy clusters, 9 “perturbed” (i.e. ξ ≥ 0.5) clusters and semi-
analytical average data with 1σ errors. The black line shows the thermal scaling of the
whole simulated sample, while the orange band encloses, within 1σ errors, the scaling of
the “relaxed” sample alone and the scaling with the 9 “perturbed” object added (Vazza
et al. 2006).

infalling sub-clusters are driven by the gravitational potential, the velocity of the

infall should be ∼ 1.5−2 times the sound speed of the main cluster amd consequently

the energy density of the turbulence injected during the cluster–crossing should be

proportional to the thermal energy density of the main cluster. In addition, the

fraction of the volume of the main cluster in which turbulence is injected (the volume

swept by the infalling subclusters) depends only on the mass ratio of the two merging

clusters. Thus, provided that the distribution of the accreted mass–fraction does

not strongly depend on the cluster mass (Lacey & Cole 1993), the combination of

the above two items yields a self–similarity in the injection of turbulence in the

ICM: the energy of such turbulence should scale with the cluster thermal energy,

and thus, in the case of a self similar scaling M ∝ T 3/2, the turbulent energy should

scale with virial mass with a slope ' 5/3 ' 1.67.

The issue of the injected budget of energy in the form of turbulence in galaxy

clusters during cluster formation is an important issue and our simplified approach

may require a test with numerical simulations. A first test of our expected scaling

between thermal and turbulent energy in galaxy clusters has been done in a recent
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work (Vazza et al. 2006) where we present a study of the turbulent velocity fields

in the ICM of a sample of 21 galaxy clusters. The cluster sample consists of 9

resimulations with 21 galaxy clusters and groups simulated with the tree N-body–

SPH code Gadget2 (Springel et al. 2005). The cluster regions were extracted from a

dark matter only simulation with box of 479 h−1Mpc on a side and in the context of a

ΛCDM model with Ω0 = 0.3, h = 0.7, σ8 = 0.9 and Ωb = 0.04 (Yoshida et al. 2001).

Adopting the ‘Zoomed Initial Conditions’ technique (Tormen et al. 1997) the regions

were re–simulated in order to achieve higher mass and force resolution. The sample

is a non-radiative SPH subset where an improved recipe for the numerical viscosity

of gas–particles is used (for a more detailed discussion about this method we address

the reader to Dolag et al. (2005a). The turbulent motions in the ICM of simulated

clusters are detected with a novel method devised to better disentangle laminar bulk

motions from chaotic ones. We focus on the scaling law between the turbulent energy

content of the gas particles and the total mass, and confirm that the energy in the

form of turbulence scales approximatively with the thermal energy of clusters. This

is reported in Fig.5.6 where we show the integral of the turbulent energy (injected

in the ICM up to the present time) versus the cluster mass, as estimated with

semi-analytical calculations with 360 merging trees of massive galaxy clusters in a

ΛCDM cosmology and the measures obtained for the simulated clusters. The two

approaches are complementary, since semi–analytical calculations can follow the

properties of > 1015M¯ clusters which are rare in numerical simulations due to the

limited simulated cosmic volume; thus when plotted together the data of the two

independent methods prove the scaling over more than two order of magnitude in

mass. In addition, semi-analytical calculations give a simple physical explanation of

the scaling laws in term of the PdV work done by the infalling subclusters through

the main ones, and strengthen the physical nature, in terms of gravitational driven,

of the turbulent velocity fields found in simulations.

5.4.2 Spectrum of the magnetosonic waves

As already discussed cluster mergers are likely to generate turbulence, the fraction

(ηt) of the turbulent energy which goes in magnetosonic (MS) waves and the

spectrum of these waves depend on the details of the turbulent driving at large

scales, and this clearly requires future detailed studies.
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In the conservative case of solenoidal forcing (and beta of plasma >> 1) this fraction

is expected to scale with M2
s Re (with Ms < 1, the turbulent Mach number) for

M2
s Re < 10 and with a flatter slope for larger values (Bertoglio et al. 2001).

Assuming a Reynolds number (at the injection scale, i.e., hundreds of Kpc) in

hot and magnetized galaxy clusters Re >∼ 103 (see discussion in Lazarian 2006;

Brunetti 2006; Brunetti & Lazarian 2007) and a turbulent energy of the order of ∼
20% of the thermal energy (as reported in Sec.5.4.1), from Fig. 8 in Bertoglio et al.

(2001) one finds a reference value ηt ∼ 0.1 which may be even larger in the case of

compressible driving; this value sholud be taken as a viable reference value in what

follows.

As a reasonable attempt we assume that a fraction, ηt, of the energy of the

turbulence is in the form of MS waves. We shall consider two extreme scenarios:

i) in the first one we assume that MS waves are driven by the plasma instabilities

(e.g., Eilek 1979, and ref. therein) which develop in the turbulent field

generated during cluster mergers. In this case MS waves may be injected

over a broad range of scales. Here, we shall adopt a simple power law injection

spectrum of these waves: I(k) = Iok
−a for k > kmin ∼ π/rs;

ii) in the second one, we assume that MS waves are basically injected at a single

scale, k = kmin ∼ π/rs, from which a MHD turbulence cascade is originated.

In both cases the decay time of the MHD turbulence at the maximum/injection

scale, Linj ∼ 2rs, can be estimated as (e.g., Sect.5.9.1) τkk(Linj) ∼ rs

ηtvi
, one has :

τkk(Gyr) ∼ 1× (
vi

2 · 103km/s
)−1(

rs

500kpc
)(

ηt

0.25
)−1 (5.7)

which is of the order of a crossing time and thus allows the MHD turbulence to

diffuse filling a volume of the order of that of radio halos (or larger) with a fairly

uniform intensity.

In the following we focus on the first scenario, while in Sect. 5.9.1 we consider the

second picture. Sect. 5.9.1 demonstrates that these two extreme scenarios lead to

very similar results and thus that, in our model, the details of the injection process

of the MS waves do not appreciably change the conclusions.

In the case in which a power law spectrum of MS waves is injected in the ICM,

one has :
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∫ kmax

kmin

Iok
−adk = ηt

Et

τcros × VH

(5.8)

with kmin ∼ π/rs and kmax = Ωp/vM Ωp being the proton cyclotron frequency and

vM the magnetosonic velocity (Eq. ??). From Eq. (5.8) we find:

Io =





EMS

τcros
× (a−1)

VH
k
−(1−a)
min (rs ≤ RH)

EMS

τcros
× (a−1)

VH
k
−(1−a)
min × (RH

rs
)2 (rs > RH)

(5.9)

Thus, the injection of the MS waves is obtained by combining Eqs.(5.6) and

(5.9). ηt is the first free parameter of our model, in order to have a self–consistent

modelling it should be ηt < 1.

In general, the spectrum of MHD waves injected in the ICM evolves due to wave–

wave and wave–particle coupling. The combination of these processes produces a

modified spectrum of the waves, Wk(t). As discussed in Sec.3.4.1, in the quasi linear

regime the spectrum of the waves can be calculated solving a continuity equation

in the wavenumber space (see Eq.3.20 in Sec.3.4.1) that here we report for seek of

clarity:

∂Wk(t)

∂t

∂

∂k

(
Dkk

∂Wk(t)

∂k

)
−

n∑

i=1

Γi(k)Wk(t) + Ik(t)

In the following, we shall neglect the term due to the wave–wave interaction,

Dkk = 0, this is justified provided that the time–scale of the dampings, Γ, are smaller

than that of the wave–wave cascade (or comparable), at least for the range of scales

which contribute to the acceleration process. Under physical conditions typical of

the ICM the most important damping in the collisionless regime is that with the

thermal electrons (e.g., Eilek 1979). An estimate of this damping rate via TTD

(see Sec.3.4.2) (for vA < vM as in the ICM) is given by Eilek (1979); a relatively

simple formula that we obtain, consistent whitin a 10% with the Eilek’s results 3, is:

Γth,e =
√

32π3 nth (meKBT )1/2(
vM

B
)2WB

k

Wk

I(x) k (5.10)

3Brunetti (2006) and Brunetti & Lazarian (2007) recently derive the exact equation for the damping
rate via TTD collisionless resonance which is consistent within a factor of ≈ 2 with this equation
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where nth is the number density of the thermal electrons, WB
k is the turbulent

magnetic energy density, WB
k = Wk × (1 + 8πP/B2)−1, with P ' 2nthKBT the

thermal pressure, B the plasma magnetic field (e.g., Barnes & Scargle 1973) and

I(x) is a numerical value given by :

I(x) = 2
∫ +∞

1
dx

(1

x
− 1

x3

)
e
−[x2(

vM
vth

)2]
(5.11)

where x =
p‖

mevM
, with p‖ the component of the momentum of the thermal

electrons along the magnetic field lines and vth = (2 KB T/me)
1/2.

Since for each merger event we are interested in the evolution of the spectrum of

the injected waves on a time scale of ∼ 1 Gyr, which is orders of magnitude longer

than the typical time scales of the damping processes, the spectrum of the waves

is expected to approach a stationary solution (∂Wk/∂t = 0). From Eq. (3.20) this

solution is given by :

Wk ' I(k)

Γth,e(k)
=

I(k)

f(T ) k
(5.12)

In Sect. 5.5 we will derive the efficiency of electron acceleration due to the MS waves.

Here we would just point out that the acceleration time, τacc, depends on:

τ−1
acc ∝

∫ kmax

kmin

kWkdk (5.13)

which leads (making use of Eqs. 5.9 and 5.12) to the nice result that the

acceleration time in our model, and under our assumptions, does not depend on the

slope of the injection spectrum of MS waves (which depends on basically–unknown

details of the injection mechanism) and on the value of kmin.

5.4.3 Spectrum of MS waves during cluster formation

In this Section we estimate the spectrum of MS waves resulting from the combination

of the contributions of several mergers during the process of cluster formation. For

a given galaxy cluster, we define zj
i to be the redshift at which the jth merger event

starts. For an Einstein-De Sitter model, the corresponding time, tji , is :

tji =
2

3Ho

1

(1 + zj
i )3/2

(5.14)
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In our simple modelling we assume that the duration time of a merger is of the order

of a crossing time, ∆t = tjcros, and that turbulence is injected during this time interval

and then suddenly dissipated via damping processes 4. Thus the turbulence injected

during the jth merger is dissipated at time tjf = tji + tjcross and the corresponding

redshift is given by :

zj
f = (

2

3Hot
j
f

)2/3 − 1 (5.15)

We describe the spectrum of the MS–waves established during the jth merger event

as :

W j
k (z) = W j

k (zj
i )× Sj(z) (5.16)

were Sj(z) is a step function defined as :

Sj(z) =





1 (zj
f < z < zj

i )

0 (otherwise)
(5.17)

According to the hierarchical scenario adopted in this paper, clusters undergo

several merger events which contribute to the injection of turbulence yielding a

combined spectrum of MS–waves. Since under stationary conditions and neglecting

the wave–wave interaction term, the equation that describe the evolution of MS

waves (Eq. 3.20) is a linear differential equation, and the spectrum of the MS–waves

resulting from the combination of the different merger events is given by the sum of

all the contributions (Eq.5.16), i.e., :

Wk(z) =
∑

j

W j
k (zj

i )× Sj(z) (5.18)

5.5 Particle Evolution and Acceleration

As discussed in Sec.3.1.3 the diffusion of relativistic particles in the ICM is negligible,

so that we can safely assume that electrons injected by some mechanism in the ICM

simply follow the thermal plasma and magnetic field. Under this condition, the time

4Note that if the injection time is slightly longer than tcros then the probability to combine the effect
of several mergers increases and the efficiency of the model would slightly increase (see above, Eq.5.18).
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evolution of relativistic electrons with isotropic momentum distribution is provided

by a Fokker-Planck equation for the electron number density, Eq.3.15, that here we

report for sake of clarity:

∂N(p, t)

∂t
=

∂

∂p

[
N(p, t)

(
|dp

dt
|
rad

+ |dp

dt
|
c
− 2

p
Dpp

)]
+

∂

∂p

[
Dpp

∂N(p, t)

∂p

]
+ Qe(p, t)

Here we consider the case of the MS waves, thus the term due to statistic

energization of particles, Dpp, in Eq.3.15 is the electron diffusion coefficient in the

momentum space due to the interaction with the MS waves, the terms dp/dti and

dp/dtrad are the terms due to ionization and radiative losses (see Sec.3.1.2), and Qe

is an isotropic electron source term.

Independently from the specific scenario adopted for the injection of relativistic

particles (see Sec.3.1.1), a power law spectrum for the injection rate of relativistic

electrons up to a maximum momentum, pmax, can be reasonably assumed in the

form:

Qe(p, t) = Ke(t)p
−s (5.19)

This injection is necessary to merely provide a reservoir of supra-thermal electrons

to be re-accelerated. We parameterize the injection rate by assuming that the total

energy injected in cosmic ray electrons (for p > pmin) during the cluster life up to

the present epoch, is a fraction, ηe, of the total thermal energy of the cluster at

z = 0, i.e., :

ηe =
c

Eth

∫ t=t(0)

t=t(z)
dτ

∫ pmax

pmin

Qe(p, τ) p dp (5.20)

where Eth is the present day thermal energy density of the ICM. The injection

rate should depend on the number and energetics of AGNs and GWs in galaxy

clusters which are expected to be considerably larger at high redshifts. However,

since electrons injected at relatively high redshifts cool very rapidly because of the

combination of high energy losses and low efficiency of the particle acceleration

mechsnism (Fig. 5.7), only the electrons injected at relatively low redshifts can be

re-accelerated and therefore contribute to the non-thermal emission observed at low

redshift (z < 0.2) which is the focus of this Chapter. As a simplification, we adopt
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a constant injection rate of electrons so that (for s > 2) the normalization of the

spectrum of the injection rate is simply given by :

Ke ∼ s− 2

c
ηeEthp

s−2
minτ−1

H (5.21)

where τH is the Hubble time. ηe is the second free parameter in our model. In the

following we use s = 2.5, pmin/mc = 60, and pmax/mc = 104; as we will discussed

in Sect. 5.8 the basic results of our model do not depend on the values adopted for

these parameters.

In a isotropic distribution of waves and particle momenta the diffusion coefficient

in the momentum space, for vA < vM , is given by Eilek (1979). This can be expressed

as5:

Dpp(p, t) ' 4.45 π2 v2
M

c

p2

B2

∫ kmax

kmin

kWB
k (t)dk (5.22)

Where WB
k = Wk × (1 + 8πP/B2)−1 with Wk given by Eq. 5.18. The acceleration

time scale, which in this case does not depend of the particle energy, is given by :

τ−1
acc = χ ' 4

Dpp

p2
(5.23)

and thus the systematic energy gain of particles interacting with MS waves is given

by :

(
dp

dt

)sys

acc

= χ p (5.24)

In our calculations we focus on the population of relativistic electrons, do not

consider proton acceleration, and neglect the effect of these particles on the efficiency

of the electron acceleration. The resonance condition vMk = k‖v‖ implies that only

a very small fraction of MS waves (those making an angle ∼89–91 degrees with the

local B-field) cannot be damped by the thermal electrons, but only by the relativistic

particles (protons and electrons), while outside this narrow cone the damping due

to the thermal electrons should be the strongest one (e.g., Eilek 1979, see also

Brunetti & Lazarian 2007 for a detailed discussion). As a consequence, since in

our calculations we assume a continuous pitch angle isotropization (e.g., Miller et

5Most recently Brunetti & Lazarian (2007) calculated the exact expression for Dpp due to TTD
collisionless resonance. In the typical physical conditions of the ICM their derivation is equivalent for
physical dependences with Eq.5.22 and is also consistent within a factor of ≈ 2 in normalization.
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al. 1996) and an isotropic distribution of MS waves which propagate in a complex

geometry of the field lines, the damping of MS waves should be dominated by the

effect due to the thermal electrons in the ICM.

As an example, we assume that MS waves are injected in the central ∼1 Mpc3 of

a massive cluster for 0.5–1 Gyr with a total energy budget of the order of that of

the thermal ICM within the same region. We calculate particle acceleration and

find that about ∼ 4 − 10% of the energy flux of these waves is channelled into

the acceleration of relativistic protons (assuming an initial energy density of these

particles of the order of few % of the thermal energy density and Np(p) ∝ p−2.2): this

corresponds to ≤ 1% of the total thermal energy of the cluster. At the same time, we

find that only ∼ 0.1% of the energy flux of the MS waves should be channelled into

the acceleration of relativistic electrons to produce an HXR luminosity of ∼ 1043erg

s−1 from the same volume (ηe ∼ 0.003, Fig.5.8). Consequently the 90− 95% of the

energy flux of the MS waves is channelled into the thermal electrons and thus the

resulting spectrum of these waves may be estimated with good approximation by

Eq.(5.12).

Detailed time dependent calculations which include electron and proton

acceleration due to MS waves and a comparison with the case of Alfvén waves

can be found in Brunetti & Lazarian (2007).

5.6 Radio Halos and HXR tails

5.6.1 Cluster evolution and electron spectrum

In this Section we combine the formalism developed for the evolution of the

turbulence (Sects. 5.3 & 5.4) with the recipes for particle acceleration and evolution

(Sec. 5.5) to model the cosmological evolution of the spectrum of the relativistic

electrons in galaxy clusters.

The electron–acceleration coefficient, due to the effect of MS waves at redshift

z, is obtained by combining Eq. (5.23) with Eqs. (5.22, 5.9, 5.12, 5.18):

χ(z) ' 2.23× 10−16ηt

(RH/500kpc)3

∑

j

[(Mmax + Mmin

2× 1015M¯

2.6Mpc

Rmax

)3/2

× (rs/500kpc)2

(kT/7keV)1/2

]

j

×




1 if rs ≤ RH

(RH/rs)
2 if rs > RH





j

(5.25)
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where only mergers which contribute to the turbulence spectrum at redshift z

(Sect. 5.4.3, Eq.5.18) are considered. The evolution of the electron spectrum is

thus obtained from the numerical solution of the Fokker-Planck equation (Eq. 3.15)

by adopting the values of the coefficient Dpp (Eq. 5.23 and Eq. 5.25) and of the

energy loss terms (Eqs. 3.1–3.2) at each redshift.

In Fig. 5.7 we report an example of the time evolution of the electron–

acceleration coefficient obtained for a typical massive cluster (top panel) and the

corresponding spectra of the electrons at different relevant times (bottom panel): an

increase of the acceleration coefficient produces an increase of the maximum energy

of the electrons. The reported results indicate that cluster–merger activity at low

redshift can generate an increse of the cluster turbulence which may be sufficient to

accelerate electrons up to γ >> 103, necessary to produce synchrotron radiation in

the radio band. It should be noticed that electrons are accelerated (and cool) with

a delay time (of the order of the corresponding electron–acceleration time ∼ χ−1)

with respect to the abrupt increases (decreases) of the values of the acceleration

coefficient. We also noticed that the electron number density at γ ≥ 103 during

the re-acceleration period is boosted by 2-3 order of magnitude with respect to the

injection case without re-acceleration (z = 0.01 or z = 0.02 versus z = 0.45 in

Fig.5.7).

In Fig.(5.8) we show the broad band non–thermal emission (synchrotron and IC)

from the galaxy cluster reported in Fig. 5.7 assuming ηe = 0.003 and B = 0.5µ G.

The aim of this Figure is to show that synchrotron (and IC) luminosities of the order

of those of the most luminous radio halos can be reasonably obtained (see Sec.5.8).

On the other hand, it should be stressed that the synchrotron spectrum reported

in Fig.(5.8) is obtained assuming a constant value of B through the cluster volume.

More reasonable calculations should assume a radial gradient of the magnetic field

strength which causes a stretching in frequencies of the synchrotron spectral shape

with respect to that of Fig.(5.8) (e.g., Brunetti et al. 2001a; Kuo et al. 2003).

The synchrotron emitted power from radio halos is expected to increase with

increasing the mass of the parent clusters. Indeed the bolometric synchrotron power

roughly scales as PR ∝ B2γ2
bneR

3
H , where γb = χ/β is the maximum energy of the

accelerated electrons (β is the total energy–loss coefficient, Eq. 3.2) and ne is the

number density of relativistic electrons in the cluster emitting volume. During major
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Figure 5.7: Top panel: evolution with redshift of the electron-acceleration coefficient due
to MS waves as obtained from Eq.5.25 for a cluster of M0 = 1×1015M¯ at the present time.
Bottom panel: electrons spectra (in arbitrary units) calculated at different redshifts (also
marked in the top panel) for the same cluster. Calculations are performed for s = 2.5,
B = 0.5µG, and ηt = 0.26.
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Figure 5.8: Broad band synchrotron (SYN) and Inverse Compton (IC) spectra calculated
for the case reported in Fig.5.7 and for ηe = 0.003, RH = 500 kpc, and B = 0.5µG.
Horizontal bars give the radio (used for radio halos) and HXR observational range of
frequencies.

mergers, from Eq.(5.25, with T ∝ MΓ, Γ ∼ 0.56− 0.67) one has :

PR ∝ neM
2−Γ
v B2

(B2 + B2
cmb)2

g(rs, RH) (5.26)

where g(rs, RH) (g = r4
s/R

3
H for rs ≤ RH and g = RH for rs > RH) is a

slightly increasing function of cluster mass. We will further investigate the expected

correlations for giant RHs in the framework of the re-acceleration model in the next

Chapter.

5.6.2 Basic constraints on the required values of ηt and ηe

As stressed in Sec.5.1 it is important to understand which are the physical

requirements in the model in order to match the basic properties of RHs & HXR

tails. In this Section we derive the range of values of the two free parameters of our

model, ηt and ηe, which provide a reasonable agreement with the general properties

of radio halos. In order to check the reliability of the obtained values, these are then

compared with independent findings and general expectations from both analytical

and numerical calculations.
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The first free parameter is ηt which is defined as the fraction of the fluid

turbulence in MS waves. The value of ηt drives the efficiency of the electron

acceleration and thus the resulting maximum energy of electrons, γb = χ
β
, (β is

the total energy–loss coefficient, Eq. 3.2), and the maximum synchrotron emitted

frequency νb = 3
4π

eB
mec

γ2
b . Under the assumption that the losses of the electrons are

dominated by the IC mechanism, the acceleration coefficient is thus related to the

break frequency by :

χ ' 6.3× 10−21ν
1/2
b B

−1/2
µG (1 + z)4 (5.27)

The values of ηt are constrained by requiring that the accelerated electrons can

produce synchrotron radiation in the radio band with the spectral shape observed

in the case of radio halos, i.e., with spectral index α = 1.1 − 1.5 between 327

and 1400 MHz (e.g., Kempner & Sarazin 2001). The synchrotron spectral index

between two fixed frequencies depends on the value of νb and also on the shape of

the spectrum of the emitting electrons. Given the typical shape of the spectrum

of the emitting electrons accelerated during cluster mergers in our calculations, we

are able to estimate the minimum typical value of νb necessary to account for the

spectral indices of the observed radio halos: νb > 200 MHz is obtained. From

Eq. (5.27), this limit translates into a limit on χ (given in Eq.5.25) :

χ(ηt) >∼ χmin = 7.4× 10−17(1 + z)4
(

BµG

0.5

)−1/2

s−1 (5.28)

Radio halos have a typical radius RH ∼500 Kpc and they are found in massive

galaxy clusters (M >∼ 1015M¯). Thus we derive the value of χ for these typical

clusters in our synthetic population and find that ηt = 0.2 − 0.3 is required to

satisfy the condition of Eq. (5.28) during major mergers (at z < 0.2; B ∼ 0.5µG

is adopted). This is the first important result of our modelling since it basically

proves that if a fraction of the kinetic energy of cluster mergers is channelled into

MS waves then this is sufficient to power particle acceleration in the ICM with the

efficiency requested in the case of radio halos. Although there are no numerical

studies which are aimed at a detailed investigation of the cluster turbulence injected

during merging processes, a general finding of high resolution numerical simulations

5νb > 200 MHz gives α1400
327 ∼ 1.5 for a typical re-accelerated electron spectrum.
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is that a relevant fraction (10-30 %) of the thermal energy in galaxy clusters is in the

form of compressible plasma turbulence (e.g., Sunyaev et al. 2003 and ref. therein).

The second free parameter in our model is ηe which gives the ratio between the

energy injected in relativistic electrons during the cluster life and the present day

thermal energy of the ICM. The values of ηe can be constrained by requiring that

the model reproduces the typical radio (LR) and hard-X ray (LHX) luminosities

observed in galaxy clusters: LR = 1040 − 1041ergs−1 (Feretti 2003) and LHX =

1043 − 1044ergs−1 (Fusco-Femiano et al. 2003). We derive the requested values for

typical massive galaxy clusters in our synthetic population during the time intervals

in which the condition of Eq. (5.28) is satisfied; we find that ηe = 10−4 − 10−3 is

sufficient to match the observed luminosities at z < 0.2 (B ∼ 0.5µG is assumed).

The above ηe–values are very reasonable for massive clusters (e.g., Sect.3.1.1) and

they are also much smaller than those assumed in other modellings of non–thermal

emission from galaxy clusters (e.g., ηe ' 0.1, Sarazin 1999). This is mainly because

in our model the resulting spectrum of the emitting electrons during an efficient

acceleration period is not a simple power law, but it is peaked at the energies required

to emit the synchrotron and IC radiation (e.g., Fig. 5.8) and this strongly increases

the emitting efficiency (see also Sec.5.8) at a given frequency.

5.7 Statistics and Comparison with Observations

As discussed in Sec.5.1 it is important to compare the results based on the re-

acceleration model with the observed occurrence of RHs. In Sec. 5.6.2 we have

essentially derived a criterion for radio halo formation: clusters may have radio

halos if χ(ηt) ≥ χmin. With the observing frequency fixed at ≈ 1 GHz smaller

values of χ will generate RHs with a spectrum too steep (essentially above a cut-off)

and they cannot be detected in present surveys. By making use of this criterion,

the goal of this Section is to calculate the formation probability of radio halos with

cluster mass and to compare expectations with observational constraints.

In order to have a prompt comparison with observations we calculate the

formation probability in the redshift bin z=0–0.2 for three mass bins of the parent

clusters ∆M : < 9× 1014M¯, 9× 1014 < M < 1.8× 1015M¯, and 1.8× 1015 < M <

3.6 × 1015M¯, which are consistent with the luminosity bins adopted to draw the

observed statistics (Giovannini et al. 1999; Giovannini & Feretti 2002, ; Sect.).



5.7. STATISTICS AND COMPARISON WITH OBSERVATIONS 127

Figure 5.9: Expected formation probability of radio halos (RH ' 500 kpc, B ∼ 0.5µG)
in a EdS cosmology as a function of parameter ηt in two different mass bins (solid lines
with error bars): binA= [1.8 − 3.6] 1015M¯ and binB= [0.9 − 1.8] 1015M¯. The two
bottom dashed lines mark the observed probabilities for radio halos in the mass binB
while the two top dashed lines mark the observed probabilities in the mass binA. The two
reported observational ranges account for 1σ errors. The theoretical errors are estimated
by extracting sub-samples of galaxy clusters from the synthetic population with a Monte
Carlo procedure.

First we run a large number, N , of trees for different cluster masses at z = 0,

ranging from ∼ 1014M¯ to ∼ 1016M¯. Thus, for each M , we estimate the formation

probability of radio halos in the mass bin ∆M as :

f∆M, ∆z
M =

∑N
j=1 tju∑N

j=1(t
j
u + tjd)

(5.29)

where tu is the time that the cluster spends at z < 0.2 in the mass bin ∆M with

χ ≥ χmin
6 and td is the time that the same cluster spends in ∆M with χ < χmin.

Thus the total probability of halo formation in the mass bin ∆M is obtained

by combining all the contributions (Eq. 5.29) weighted with the present day mass

function of clusters.

We consider two possible cluster mass functions: the PS mass function (Eq.1.66)

and the Sheth & Tormen (1999, ST) mass function, which is obtained from a fit to

numerical simulations and which predicts smaller and larger values of the cluster

number density for small and large masses, respectively (see also Sec. 1.4.5). We

6Since clusters in our synthetic population never have χ >> χmin, the condition χ ≥ χmin guarantees
a synchrotron spectral index compatible with that of radio halos.
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checked that the probability to have a radio halo obtained by making use of the PS

and ST mass functions are consistent within few percent for the considered mass

bins.

In Fig. 5.9 we plot the occurrence of radio halos with a typical radius RH ∼ 500

kpc as a function of ηt compared with the observated statistics (see caption). We

find that the relatively high occurence of radio halos observed in massive clusters

can be well reproduced by our modelling under very reasonable conditions, i.e. that

a fraction of 20-30% of the energy of the turbulent motions (about few percent of the

thermal energy) is in the form of compressible MS waves. In addition, we find that

there is a range of values of the parameter ηt (0.2 ≤ ηt ≤ 0.26, for B ∼ 0.5µG) for

which the theoretical expectations are in agreement with the observed statistics in

both the considered mass bins: ∼ 30% and ∼ 4% in the high and medium mass bins

considered, respectively. Finally, we find that the expected probability to form giant

radio halos in smaller clusters (not reported in Fig. 5.9) is negligible, in agreement

with present observations.

5.7.1 The case of a ΛCDM cosmology

We compare the model results obtained with a EdS cosmology with those obtained

assuming a ΛCDM cosmology. In particular we use Ωm(0) = 0.3, ΩΛ(0) = 0.7,

σ8 = 0.9 and h0 = 0.7 and discuss the differences with the EdS case.

In the ΛCDM cosmology the critical overdensity as a function of the cosmic time

which enter in the equation for the computation of the merger trees (in Eq.1.67 in

Sect.1.4.4) is given by Eq.1.56 and the ratio of the average density of the cluster to

the mean density of the universe at a given z, ∆c(z) (in Eq.(1.52)), in the ΛCDM

model is given by Eq.1.53.

Following the procedures adopted in the case of the EdS cosmology, we compute

merger trees (Sect. 5.3), turbulence injection rate and spectrum of the MS waves

(Sect. 5.4), particle evolution (Sect. 5.5) and non-thermal emission (Sect. 5.6) from

galaxy clusters and thus the expected formation probability of radio halos for z < 0.2

(Sect. 5.7). In Fig.5.10, we report the comparison between the probability to form

radio halos obtained in the two cosmologies. The comparison is derived by converting

the virial mass of the clusters from a EdS into a ΛCDM model:
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Figure 5.10: Expected formation probability of RHs (RH ' 500h−1
50 kpc, B ∼ 0.5µG)

as a function of parameter ηt in a EdS cosmology (solid lines with error bars) and
in a ΛCDM cosmology (dotted lines) in the mass bins: binA=[1.8 − 3.6] 1015M¯ h−1

50

and binB=[0.9 − 1.8] 1015M¯ h−1
50 for EdS case and binA=[1.9 − 3.8] · 1015 M¯h−1

70 and
binB=[0.945−1.9] ·1015 M¯h−1

70 for the ΛCDM model. The two bottom dashed lines mark
the observed probabilities for radio halos in the mass binB while the two top dashed lines
mark the observed probabilities in the mass binA; observational regions account for 1σ
errors.

MΛ
v = MEdS

v ×
(

[∆c(t)ρm(t)]EdS

[∆c(t)ρm(t)]Λ

)1/2

(5.30)

where ρm is the mean mass density of the Universe. Thus the calculations with

a ΛCDM model are performed for the mass bins [0.945 − 1.9] · 1015 M¯h−1
70 and

[1.9− 3.8] · 1015 M¯h−1
70 .

As expected, we find that at z < 0.2 the results are relatively independent from

the considered cosmology, with the ΛCDM model being only slightly less efficient. In

particular, as in the EdS case we note that it is possible to find a unique interval in

ηt in which the model reproduces the observed halo formation probability for both

the cluster-mass bins.

In the ΛCDM Universe the structures start to grow at early time with respect

to the EdS case (see also Sec.1.4.1), the merging rate at z < 0.2 is consequently

reduced, and thus particle acceleration is less efficient. However, this is roughly

compensated by the fact that in a ΛCDM Universe (Ho = 70 km s−1Mpc−1)

the observed radio halos are “smaller” and “less luminous” than in our EdS case

(Ho = 50 km s−1Mpc−1).
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5.8 Summary and Discussion

Crucial constraints on the origin of radio halos are provided by statistical studies

which show a connection between the formation of these sources and cluster mergers,

and also find an abrupt increase of the occurence of radio halos with the mass of

the parent clusters.

- The first goal of the this Chapter was to check if cluster turbulence generated

during mergers may be able to drive efficient particle acceleration processes in the

ICM.

- The second goal, in the framework of the turbulent-acceleration hypothesis, was

to investigate if the hierarchical formation process of galaxy clusters can naturally

account for the increase of the radio halos’ occurrence with cluster mass.

To achieve these goals we have developed a statistical method based on the

following steps :

i) Extensive merger trees of galaxy clusters with different present day masses are

obtained. The trees are calculated making use of a procedure of Binary Merger

Tree Method which is based on the extended PS formalism (Sec. 1.4.4). The

temperature of the ICM is estimated at each redshift from the observed M-T

relationships.

ii) Cluster turbulence is assumed to be injected during cluster mergers by the

crossing of the infalling subclusters into the larger ones. To be conservative,

turbulence is assumed to be injected in the major subcluster only within the

volume sweeped by the minor subcluster (Sec. 5.4). The injection rate of MS

waves is assumed to be a fraction, ηt, of the turbulence injection rate. Although

cluster-cluster mergers are the best candidates to the injection of turbulence on

large scales, it should be noticed that additional events (e.g., AGN, galaxies;

Deiss & Just (1996)) might inject an additional turbulent component, thus our

scenario should be considered as “conservative”.

The injection spectrum of MS waves is assumed to be a simple power law

which extends over a broad range of scales (Sec. 5.4), or a delta–function

from which turbulent cascade is originated (Sect.5.9.1). In both cases the

maximum/injection scale is fixed at Linj ∼ 2rs. The resulting spectrum of MS

waves is then calculated assuming stationary conditions within a crossing time
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for each merger and by taking into account the relevant damping processes (or

cascading processes) in the ICM (Sec. 5.4). The evolution of the spectrum of

MS waves during cluster formation is calculated by combining the effect of all

mergers.

iii) The evolution of relativistic electrons in galaxy clusters is calculated

considering the acceleration by MS waves and the energy losses. Relativistic

electrons are assumed to be continuously injected in the ICM by shocks, AGNs

and star forming galaxies in the clusters during their life, and this provide the

necessary budget of supra-thermal electrons to be re-accelerated. The total

energy injected in the relativistic electrons during the cluster life up to z = 0

is assumed to be a fraction, ηe, of the thermal energy of the clusters at the

present epoch. We do not follow the evolution of the relativistic hadronic

component since the most important damping of MS waves is with thermal

electrons (Sec. 3.4.2) and thus the relativistic hadrons do not affect significantly

the electron-acceleration process.

To match the redshift range spanned by observational studies we calculate the

model expectations for z < 0.2. The comparison between model and observations

is performed in two main steps :

i) First we consider the case of a typical massive cluster of our synthetic

population and calculate the expected synchrotron and inverse Compton

emission as a function of ηt and ηe. We find that the typical radio luminosity

of radio halos and the HXR luminosities can be obtained by our model provided

that a fraction of the cluster turbulence, ηt ∼ [0.2 − 0.3] (BµG/0.5)−1/2 (BµG

being the volume averaged field strength within RH in units of µG), is

channeled into MS waves during major mergers and that the energy injected

into relativistic electrons is 10−3−10−4 times the present energy of the thermal

pool (Sec.5.6.2, see also the discussion below).

ii) Then, we compute the occurence of radio halos with the mass of the parent

clusters. More specifically, we estimate a threshold for the particle acceleration

coefficient, χmin, which is required to efficiently boost the accelerated electron

population and produce radio emission with the spectral slope typical of

radio halos. We thus identify the galaxy clusters containing a radio halo as
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those clusters in our synthetic population for which χ ≥ χmin (see Sec. 5.7

for details). The radio halos’ occurrence is calculated in three mass bins

consistent with those adopted in observational studies (< 9 · 1014M¯h−1
50 ,

9 · 1014 − 1.8 · 1015M¯h−1
50 , and 1.8 · 1015 − 3.6 · 1015M¯h−1

50 ). We find that

for a single range of values of ηt it is possible to account for the observed

probabilities in all the three mass bins: about ∼ 30% and ∼ 4% in the larger

and medium mass bins, respectively, while the probability to find a radio halo

in a cluster with mass < 9 · 1014M¯h−1
50 is found to be negligible.

As a general conclusion we find that the model expectations are in good agreement

with the observational constraints for viable values of the two free model parameters:

ηt, ηe.

We also find that given these parameters and the physical conditions in the

ICM, the cascade time of the largest eddies of the MHD turbulence is of the order

of ∼1 Gyr. Consequently the diffusion and transport of these large scale eddies and

waves may give a fairly uniform turbulent intensity within a relatively large volume

(≥ RH). Finally, we find that the two extreme scenarios considered in our model,

i.e. an injection of the MS waves with a power law spectrum, or with a single scale

delta–function, provides very similar results since the process of particle acceleration

basically depends on the energy flux injected into MS waves (which is dissipated at

collisionless scales) and on the physical conditions in the ICM (Sect. 5.9.1).

Thus, although the necessary approximations adopted in our formalism, we

have shown that particle acceleration processes, which are invoked to explain the

morphological and spectral properties of RHs, can also account “self-consistently”

for the statistical properties of this class of objects.

The following important items need some further discussion:

• Why the occurrence of RHs increases with cluster mass?

An important finding of our calculations is that only massive clusters can host giant

radio halos (RH ≥ 500 kpc) and that the probabilty to form these diffuse radio

sources presents an abrupt increase for clusters with about M ≥ 2× 1015M¯.

Fig. 5.3and Fig. 5.5a show that the energy of the turbulence injected in galaxy

clusters is expected to roughly scale with the thermal energy of the clusters. This

seems a reasonable finding which immediately implies that the energy density of the

turbulence is an increasing function of the mass of the clusters, Et ∝ T ∝ Ma. In
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addition, in the case of clusters with mass M < 1015M¯ the infall of subclusters

through the main one injects turbulence in a volume Vt smaller than that of giant

radio halos, VH , and thus the efficiency of the mechanism is reduced by about a

factor of Vt/VH (Sect. 5.4.1). On the other hand, major mergers between massive

subclusters are expected to inject turbulence on larger volumes, of the order of VH

(or larger, e.g., Fig. 5.4b), and thus the efficiency of the generation of radio halos is

not reduced.

More quantitatively, focussing for simplicity on what happens during a single

merger event, the efficiency of the particle acceleration in the fixed volume VH =

4πR3
H/3 can be derived from Eq.(5.25) : χ ∝ g(rs, RH)(M/R)3/2/

√
T , where the

term T−1/2 is due to the stronger damping of MS waves on thermal electrons with

increasing the temperature of the ICM (Eq. 5.10). Thus the acceleration efficiency

within VH is found to scale about with χ ∝ M1−a/2g(rs, RH) ∝ M0.75−1.25 (0.75 for

M ≥ 3 ·1015M¯, 1.25 for M < 1015M¯) and is thus an increasing function of cluster

mass.

Future radio studies (with LOFAR, LWA and SKA) will be crucial to constrain

the occurrence and evolution of the observed non–thermal diffuse emission in galaxy

clusters expecially in the case of less massive clusters, and thus to perform a more

stringent comparison between observations and model expectations.

• Turbulence on scale larger than RH and HXR tails.

Several mechanisms can provide injection of turbulence in the ICM during cluster

mergers. We have just followed a simple approach which allows us to estimate the

injection of turbulence during the crossing of smaller clusters through the more

massive ones. It should be reminded that in the calculations we have adopted a

typical radius of a radio halo, RH ∼ 500 kpc, and assumed that turbulence injected

in a smaller volume is diffused on the scales of the radio halo, while the effect

of the turbulence injected outside RH is not considered. However, the stripping

radius, in the case of major mergers between very massive subclusters, can be larger

than RH ∼ 500 kpc and thus the turbulence injected by these massive mergers

can power particle acceleration also on larger scales. The relativistic electrons

accelerated at these scales can significantly contribute to the IC spectrum and thus

the IC luminosities given in this Chapter (e.g., Fig. 5.8) may be underestimated.

On the other hand, the volume integrated synchrotron spectra should be mainly
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contributed by the emission produced within RH due to the expected decrease of

the magnetic field strength with radius. Thus our results, which are essentially based

on the synchrotron properties of radio halos, should not be affected by the presence

of non–thermal emission from very large scales.

• How many energy in relativistic electrons is really necessary?

An important result of this work is that the energy which should be injected in

relativistic electrons in the volume of galaxy clusters is of the order of a few

10−4 × (BµG/0.5)−2 of the present day thermal energy of the ICM. This value

basically depends on the balance between the electrons’ energy losses and the

turbulent–acceleration efficiency which is experienced by the relativistic electrons

injected in the ICM during the last few Gyrs. Since our calculations are performed

by assuming the physical conditions of the ICM as averaged over the cluster volume,

the required injected energy in relativistic electrons may be substantially higher in

the central regions of the clusters where the high density of the thermal plasma

causes stronger Coulomb losses. We notice that the required values of ηe can be

easily provided by considering the injection of relativistic electrons in the ICM from

AGNs, galactic winds, and large scale shocks (e.g., Biermann et al. 2003 for a

review).

The requested values of the energy injected in relativistic electrons in the ICM

are calculated thorugh the paper by assuming s = 2.5 and pmin/mc = 60. The

results however should not be very sensitive to these assumptions, and they would

be only sensitive to the total number of relativistic electrons injected in the ICM

during the cluster life. Indeed, the turbulence experienced in the ICM basically

increases the cooling time of the injected electrons which are then mantained at the

peak of their cooling–time curve (i.e., at γ ∼ 100 − 200, e.g., Sarazin 1999) and

thus boosted at higher energies during an efficient re–acceleration period. In order

to test the poor dependence of our results on the assumptions on s and pmin, we

re–calculate the value of ηe by assuming s = 2.2 − 3.0 and pmin/mc = 20 − 100.

We find that different assumptions require values of ηe within a factor of ∼ 3 to

reproduce a given synchrotron power. In particular we find that ηe decreases with

increasing s (or with decreasing pmin).

It should be stressed that the amount of injection of relativistic electrons required

by our model is orders of magnitude smaller than that needed by models which
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assume a simple continuous injection of a power law energy distribution of the

emitting electrons in the ICM (e.g., Sarazin 1999). This is mainly because during

an efficient acceleration period the spectrum of the relativistic electrons is not a

steep power law in which the bulk of the electrons is at low energies. During this

period the bulk of the electrons, accumulated at γ ∼ 100− 300, is boosted at higher

energies and essentially piled up in the energy range responsible for the synchrotron

emission in the radio band.

• Comments on the magnetic field

Since the present work is not aimed at reproducing in detail the properties of radio

halos, in our calculations we assume that the magnetic field strength (within RH)

is roughly constant (B ∼ 0.5µG is assumed to constrain ηt and ηe). Larger values

of B (but still under the conditions in which the radiative cooling of electrons is

dominated by IC emission, i.e. B < 3µG) would allow to radiate the synchrotron

photons at higher frequencies (Eq. 5.28) and this would imply that lower values of

ηt (ηt ∝ B−1/2, Sec. 5.6.2) are required to form radio halos. On the other hand,

the discovery of HXR tails in galaxy clusters has revealed that the non–thermal

spectra of these objects are dominated by the IC component which has a luminosity

∼ 103 times larger than the synchrotron component. These observations indicate

that the volume–averaged magnetic field strength should be < 0.5µG (e.g., Fusco–

Femiano et al., 2003). However, as discussed above, a relevant contribution to the IC

spectrum of galaxy clusters can be provided by electrons accelerated by turbulence

injected in the outer regions (≥ RH) and thus values B >∼ 1µG in the synchrotron

emitting volume may be still compatible with the observed IC components. A

detailed investigations of the dependence of the ratio between synchrotron and IC

power can be found in Brunetti et al. (2001a), Brunetti (2003), Kuo et al. (2003),

Colafrancesco et al. (2005).

• Size of RHs versus cluster mass

As already stated in the model calculations we have assumed a typical mean radius

of the radio halos and a value of the magnetic field strength B which are independent

from the mass of the parent clusters. If radio halos in more massive clusters are larger

than those in smaller ones (see Sec.??), then this approach should underproduce the

expected probability to find radio halos in the smaller clusters with respect to the

larger ones. The fact that the values of ηt required to match observations in the
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intermediate mass bin are found to be slightly larger than those in the more massive

bin (Figs.5.9 and 5.10) may reflect this effect. On the other hand, if B increases

with the mass of the parent clusters (with B ≤ 3µG) then the synchrotron emission

would be boosted at higher frequencies and the expected probability to find radio

halos in the case of larger clusters would be slightly increased with respect to our

present expectations. In the next Chapter we will model the more complex case of

a B which scale with cluster mass.

• Cosmology

Finally, the model results obtained with a EdS cosmology have been compared with

those obtained assuming a ΛCDM cosmology. We find that the possibility to explain

the observations in the redshift bin 0−0.2 does not depend critically on the adopted

cosmology. In particular, although the model is found to be slightly less efficient in

a ΛCDM cosmology, also in this case the occurence of radio halos can be matched

for viable values of the parameters, and a single range of ηt is found to be able to

explain observations in all the mass bins. In the next Chapter all the calculations

will be given in a “concordance” ΛCDM model.

5.9 Appendix

5.9.1 Turbulence injection at a single scale

In this Appendix we adopt the scenario in which MHD turbulence is injected in the

ICM at a large single–scale, kmin ∼ π/rs, from which the MHD turbulence cascade

is originated.

The mean free path, Lmfp, in the ICM marks the boundary between the

collisionless regime (k > 2π/Lmfp) and the collisional regime (k < 2π/Lmfp). It

is given by (e.g., Braginskii 1965):

Lmfp(kpc) ∼ 300
( T

108K

)2( nth

10−4cm−3

)−1
(5.31)

which, for the typical values of the cluster temperatures and of the mean thermal

density within VH , is of the order of 100 kpc.

Once MS waves are injected at kmin, the process of wave–wave coupling generates

a turbulence cascade. The cascade time of fast MS waves at the wavenumber k is

given by (e.g., Yan & Lazarian 2004):
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τkk(k) ∼ vM

kv2
k

∼ vMρ

k2Wk

(5.32)

so that the diffusion coefficient in Eq.(3.20) is given by :

Dkk ∼ k2

τkk

∼ v2
A

vM

k4Wk

2WB

(5.33)

In the quasi linear regime and at scales where the diffusion processe is more efficient

than the damping process, the spectrum of the waves due to the cascading process

can be calculated solving Eq.(3.20) and neglecting the contribution due to the

damping terms :

∂Wk(t)

∂t
=

∂

∂k

(
Dkk

∂Wk(t)

∂k

)
+ Ik (5.34)

with Ik = Ioδ(k−kmin) and Io ' ηtv
3
i ρ(πr2

s/VH) (Sect. 4.1). The stady state solution

of Eq.(5.34) is a Kraichnan–like spectrum :

Wk '
(

2ρIovM

3

)1/2

k−3/2 (5.35)

This spectrum extends down to a truncation scale at which the cascading time,

τkk ∝ k−1/2, becomes substantially larger (i.e., ξ times, ξ ∼ 1−3) than the damping

time scale, τd ∼ Γ−1
th,e ∝ k−1 (Eq. 5.10). In the collisionless regime, this truncation

scale, Ltr ∼ 2π/ktr, is obtained from Eqs.(5.10), (5.33), and (5.35), one has :

Ltr ' 0.23

ξ2ηt

(
T

108
)3/2(

vi

103km/s
)−3

(
4

3

R3
H

r2
s

)
(5.36)

which typically falls in the range 10–30 kpc for our synthetic clusters (note that

such scale is smaller than or comparable to the ion-ion mean fre path, Lmfp, and

thus the estimate can be done under the assumption of a collisionless regime), i.e. a

factor of 30–100 smaller than the value of the typical turbulence injection scale.

The picture of the model in this Appendix is thus that the injection of MHD

turbulence occurs at a maximum scale of the order of 1 Mpc which is larger but

relatively close to the scales typical of the collisionless regime. The wave-wave

coupling then leads to a power-law inertial range with a Kraichnan spectrum which

is approximatively mantained down to ∼ 10− 30 kpc. At these scales the damping
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time with the thermal electrons becomes considerably shorter than the cascading

time–scale and the turbulence cascade is broken 7.

Under these conditions the acceleration time of relativistic electrons, τacc, is

dominated by the contribution from the spectrum of the waves at the truncation

scale and it can be obtained from Eqs.(5.22) and (5.23) :

τ−1
acc = χ ∝ v2

MWk(k = ktr)k
2
tr (5.37)

An important point is to check if the scenario adopted in Sect. 5.4.2 and

that adopted in this Appendix give consistent results. In the scenario adopted

in Sect. 5.4.2, the spectrum of the MS waves is approximately given by :

Wk ∼ Ikτd(k) (5.38)

and thus, since Io =
∫

Ikdk and the damping time scale is τd(k) ∼ Γ−1
e,th ∝ k−1, one

has :

Dpp ∼ cpp

∫
Wkkdk ∼ Ioτd(ktr)ktr (5.39)

where cpp does not depend on the turbulence spectrum and energy (Eq. 5.22). On

the other hand, in the scenario adopted in this Appendix the spectrum of the MS

waves is approximately given by :

Wk ∼ Io

k
τkk (5.40)

and thus, since the cascading time scale is τkk ∝ k−1/2, one has :

Dpp ∼ cpp

∫
Wkkdk ∼ 2 Ioτkk(k = ktr)ktr (5.41)

as a consequence, since ktr is the scale at which the damping time scale and the

cascading time scale are comparable, we expect that the two scenarios would provide

a similar acceleration efficiency.

More specifically, we can calculate the electron acceleration coefficient due to a

single merger event (with rs ≥ RH) in the framework of the scenario adopted in this

Appendix. From Eqs.(5.35), (5.36), (5.37), (1.74), and the expression for Io given

in this Appendix, one finds :

7A detailed analysis of cascading turbulence in the ICM in the presence of the most important physical
mechanism, including viscosity, can be found in Brunetti & Lazarian (2007).
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χ ∼ 2× 10−16ξηt

(
M

2× 1015M¯

)3/2 (
kT

7 keV

)−1/2 [
(rs/500kpc)2

(R3
H/500kpc)

]
(5.42)

which is close to the value given in Eq.(5.25), and thus proves the important point

that the main results of our model do not crucially depend on the assumptions on

the specific injection process (and spectrum) of the MS waves.
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Chapter 6

Magnetic fieds, correlations,
luminosity functions and number
counts of giant RH

6.1 Introduction

In the Chapter 5 we have modelled the statistical properties of giant RHs in the

framework of the merger–induced in situ particle re-acceleration scenario. By

adopting the semi–analytic PS theory to follow the cosmic evolution and formation

of a large synthetic population of galaxy clusters, it was assumed that the energy

injected in the form of magnetosonic waves during merging events in clusters is a

fraction, ηt, of the PdV work done by the infalling subclusters in passing through the

most massive one. Then the processes of stochastic acceleration of the relativistic

electrons by these waves, and the ensuing synchrotron emission properties, have been

worked out under the assumption that the magnetic field intensities have constant

volume averaged values (within 1 Mpc3). The main findings of these calculations was

that giant RHs were naturally expected only in the more massive clusters, and that

the expected fraction of clusters with RHs (at redshifts z <∼ 0.2) can be reconciled

with the observed one under viable assumptions (ηt ' 0.24 − 0.34 ). The increase

of the probability with the cluster mass in the calculation in Chapt. 5 is essentially

due to the increase of both the energy density of turbulence and of the turbulence

injection volume with cluster mass (see Sec.5.8).

141



142 CHAPTER 6. CALCULATIONS OF THE STATISTICS OF RH: STEP II

6.2 Main Questions and Aims

The present Chapter is a natual extension of the previous one, the most important

difference being that here we adopt a scaling law between the rms magnetic field

strength (averaged in the synchrotron emitting volume) and the virial mass of the

parent clusters, B ∝ M b
v . Having in hand an extension of the Chapt. 5 the main

questions of this Chapter are:

• Is it possible to reproduce the correlation between the radio power and

the thermal properties of galaxy clusters found for giant RHs with the re-

acceleration model?

• Is it possible to obtain viable constraints on the B − Mv scaling from these

correlations?

The main goals of this Chapter are:

• To obtain a complete description in terms of cosmological epochs of the

occurrence of RH in galaxy clusters at different observing frequencies.

• To calculate the luminosity functions and number counts of RH at different

observing frequencies.

6.3 Outline

In Sec. 6.4 we collect radio and X-ray data for well known giant RHs from the

literature and derive radio–X-ray correlations.

In Sec. 6.5 we investigate the possibility to match the observed radio–X-ray

correlations for giant RHs with electron acceleration models. This comparison

provides stringent constraints on the physical parameters in the ICM, in particular

for the magnetic field in galaxy clusters.

In Sec. 6.6 we derive the expected probability to form giant RHs as a function of Mv

and z. This is done by adopting the same values of the physical parameters which

allows to account for the observed radio–X-ray correlations.

In Sects.6.7–6.8 we finally calculate the expected luminosity functions and number

counts of giant RHs at 1.4 GHz.
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Table 6.1: Radio and X-ray properties of cluster with giant RHs (linear size ∼ 1h−1
50

Mpc) in a ΛCDM cosmology. In Col.(1): Cluster name. Col.(2): Cluster redshift. Col.(3):
Cluster temperature given in keV. Col.(4): X-ray luminosity in the energy range [0.1−2.4]
keV in unit of h−2

70 1044 erg/s. Col.(5): Bolometric X-ray luminosity in the energy range
[0.01 − 40] keV in unit of h−2

70 1044 erg/s. Col.(6): Radio power at 1.4 GHz in unit of
h−2

70 1024 Watt/Hz.

cluster’s z T LX Lbol P1.4

name [keV] [1044 erg/s ] [1044 erg/s ] [1024 Watt/Hz]
1E50657-558 0.299 13.59+0.71

−0.58(Z04) 23.32± 1.84(B04) 88.62± 7.00 28.21± 1.97(L00)
A2163 0.203 13.29+0.64

−0.64(W00) 23.44± 1.50(B04) 82.02± 5.24 18.44± 0.24(FF01)
A2744 0.308 8.65+0.43

−0.29(Z04) 13.06± 2.44(B04) 37.32± 6.97 17.16± 1.71(GFG01)
A2219 0.228 9.52+0.55

−0.40(W00) 12.73± 0.98(E98) 40.29± 4.34 12.23± 0.59(B03)
CL0016+16 0.554 9.13+0.24

−0.22(W00) 18.83± 1.88(T96) 51.63± 5.16 6.74± 0.67(GF00)
A1914 0.171 10.53+0.51

−0.50(W00) 10.71± 1.02(E96) 33.74± 3.21 5.21± 0.24(B03)
A665 0.182 8.40+1.0

−1.0(M96) 9.84± 0.98(E98) 25.13± 3.92 3.98± 0.39(GF00)
A520 0.201 7.84+0.52

−0.52(m) 8.83± 0.79(E98) 22.84± 5.14 3.91± 0.39(GFG01)
A2254 0.178 7.50+0.0

−0.0(e) 4.32± 0.26(E96) 11.08± 0.66 2.94± 0.29(GFG01)
A2256 0.058 6.90+0.11

−0.11(W00) 3.81± 0.16(E96) 9.54± 0.42 0.24± 0.02(F00)
A773 0.217 8.39+0.42

−0.42(m) 8.10± 0.65(E98) 21.73± 3.62 1.73± 0.17(GFG01)
A545 0.153 5.50+6.20

−1.10(D93) 5.73± 0.50(B04) 12.61± 1.10 1.48± 0.06(B03)
A2319 0.056 8.84+0.29

−0.24(M98) 7.40± 0.41(E96) 20.73± 1.14 1.12± 0.11(F00)
A1300 0.307 9.42+0.26

−0.25(m1) 14.11± 2.08(B04) 33.87± 4.98 6.09± 0.61(F00)
A1656 0.023 8.21+0.16

−0.16(H93) 3.77± 0.10(E96) 10.18± 0.26 0.72+0.07
−0.04 (m2)

A2255 0.081 6.87+0.20
−0.20(W00) 2.65± 0.12(E96) 6.61± 0.30 0.89± 0.05(G04)

A754 0.054 9.38+0.27
−0.27(W00) 4.31± 0.33(E96) 12.95± 0.98 1.08± 0.06(B03)

Note. — Ref. for the temperature data in brackets: (Z04) Zhang al. 2004 (XMM); (W00) White 2000
(ASCA); (M96) Markevitch 1996 (ASCA); (m) mean value between Mushotzky & Scharf 1997 (ASCA)
and Govoni et al. 2004 (Chandra); (e) Ebeling et al. 1996 (from Lx-T relation) ; (D93) David et al. 1993
(Einstein MPC+ Exosat + Ginga); (M98) Markevitch et al. 1998 (ASCA); (m1) mean value between Z04
and Pierre et al. 1999 (ASCA data); (H93) Hughes et al. 1993 (GINGA). Ref. for the X-ray luminosities
in brackets: (B04) Boehringer et al 2004, (E98) Ebeling et al 1998, (E96) Ebeling et al 1996, (T96) Tsuru
et al 1996, Ref. for the radio data in brackets: (L00) Liang et al. 2000 (ATCA) (F00) Feretti 2000, (B03)
Bacchi et al 2003, (GF00) Giovannini & Feretti 2000, (V03) Venturi et al 2003, (GFG01) Govoni et al.
2001a, (G05) Govoni et al. 2005, (FF03) Feretti et al. 2001, (m2) mean value between Kim et al. 1990
and Deiss et al. 1997

In Sect.6.9 we extend calculations to the case of 150 MHz which is a frequency of

interest for LOFAR.

As in Chapt. 5, we focus our attention on giant RHs only (linear size ∼1 h−1
50 Mpc).

Here, the adopted cosmology is: ΛCDM (Ho = 70 Km s−1 Mpc−1, Ωo,m = 0.3,

ΩΛ = 0.7, σ8 = 0.9).

Results reported in this Chapter are published in Cassano et al. (2006a) and Cassano

et al. (2006b).
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6.4 Observed Correlations

In this section we revise and discuss the observed correlations between the X-ray

and the radio properties of clusters hosting giant RHs.

We collect galaxy clusters with known giant RHs from the literature obtaining a

total sample of 17 clusters. In Tab. 6.1 we report the radio and X-ray properties

of this sample in a ΛCDM cosmology. In order to have the best estimate of the X-

ray temperatures we select results from XMM-Newton observations when available,

otherwise we use ASCA results or combine ASCA and Chandra information. We

investigate the correlations between the X-ray and the radio properties of the

selected clusters by making use of a linear regression fit in log-log space following

the procedures given in Akritas & Bershady (1996). This method allows for intrinsic

scatter and errors in both variables.

6.4.1 Radio Power–X-ray luminosity correlation

The presence of a correlation between the radio powers and the X-ray luminosities

is well known (Liang et al. 2000; Feretti 2000, 2003; Enßlin and Röttgering 2002).

In Fig.6.1 we report the correlation between the X-ray luminosity (in the 0.1-2.4

keV energy band) and the radio power at 1.4 GHz (P1.4) for our sample of giant

RHs. The fit has been performed by using the form:

log
( P1.4 GHz

3.16 · 1024 h−1
70

Watt
Hz

)
= Af + bf log

[
LX

1045 h−1
70

ergs
s

]
(6.1)

where the best fit parameters are: Af = 0.159± 0.060 and bf = 1.97± 0.25.

Our findings are consistent with those of Enßlin and Röttgering (2002) who used

14 clusters with radio halos and found a correlation of the form P1.4 GHz ∝ L1.94
X .

By using 16 clusters with giant RHs Feretti (2003) found a correlation between

the X-ray bolometric luminosity and the radio power at 1.4 GHz of the form

P1.4 GHz ∝ (Lbol
X )1.8±0.2. A consistent result is obtained with the data in Tab. 6.1,

P1.4 GHz ∝ (Lbol
X )1.74±0.21, which is shown in Fig.6.2.

6.4.2 Radio Power–ICM temperature correlation

We also investigate the correlation between the radio power at 1.4 GHz and the

X-ray ICM temperature. A P1.4−T correlation was first noted by Liang (1999) and
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Figure 6.1: Correlation between the radio power at 1.4 GHz and the X-ray luminosity
between [0.1-2.4] kev for the giant RHs.

Figure 6.2: Correlation between the radio power at 1.4 GHz and the X-ray bolometric
luminosity for the giant RHs.
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Figure 6.3: Panel a):correlation between the radio power at 1.4 GHz and the temperature
for the giant RHs; Panel b): correlation between the radio power at 1.4 GHz and the
X-ray temperature for a total sample of 24 cluster with a giant RHs or with a smaller size
(∼ 200− 700 kpc h−1

50 ).

Colafrancesco (1999); with a sample of only 8 radio halos the last author obtained

a steep trend of the form P1.4 ∝ T 6.25+6.25
−2.08 . In Fig. 6.3a we report the best fit for our

sample. The fit has been performed in the form:

log
[

P1.4 GHz

3.16 · 1024 h−1
70

Watt
Hz

]
= Af + bf log

( T

8 keV

)
(6.2)

and best fit parameters are: Af = −0.390 ± 0.139 and bf = 9.83 ± 4.92. We note

that the observed P1.4 − T correlation is very steep, it seems rather a ”wall” than

a correlation and it is dominated by the large errors of the cluster temperatures

avaiable to date. In order to test the strength of this correlation we included also 7

additional clusters with smaller (size ∼ 200− 700 kpc h−1
50 ) radio halos. (Fig. 6.3b)

and obtained a slope bf = 6.40± 1.64 which is consistent at the 1σ level with that

in Fig. 6.3a.

6.4.3 Radio Power – virial mass correlation

The most important correlation for our study is that between the virial mass (Mv)

of a cluster and the radio power at 1.4 GHz. This correlation is indeed extensively

used in the calculations of the RHLFs and number counts (Sects. 6.7 and 6.8) and

in constraining the values of the magnetic field in galaxy clusters to be used in our
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Figure 6.4: Correlation between the X-ray luminosity [0.1-2.4] keV and the virial cluster
mass: for the HIFLUGCS sample (black points) plus the 16 clusters with giant RHs (red
points, excluding A2254 for which no information on the β-model are available) (solid
line) and for the HIFLUGCS sample alone (dashed line).

calculations (Sect. 6.5). On the other hand, this is also the most difficult correlation

to derive since it is very difficult to measure the cluster masses. Govoni et al. (2001a)

first obtained a correlation between the radio power and cluster gravitational mass

(within 3 h−1
50 Mpc radius) estimated from the surface brightness profile of the X-ray

image using 6 radio halo clusters. This correlation was confirmed by Feretti (2003)

who extended the sample to 10 cluster radio halos and obtained a best fit of the

form P1.4 ∝ M2.3, where M is, again, the gravitational mass computed within 3

h−1
50 Mpc from the cluster center. However as discussed in Chap.1 while the X-ray

mass determination method gives good results in relaxed clusters, it may fail in the

case of merging clusters due to possible deviation from hydrostic equilibrium and

spherical symmetry.

The effect of the scattering produced by the mass uncertainties can hopefully

be reduced by making use of large cluster samples. Thus, we choose to obtain the

P1.4 GHz − Mv correlation by combining the Lx − Mv correlation, obtained for a

large statistical sample of galaxy clusters, with the P1.4 − Lx correlation previously

derived (Eq.6.1, Fig. 6.1). We use a complete sample of the X-ray–brightest clusters
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Table 6.2: Parameters of the β-fit and cluster mass estimated for the 16 galaxy clusters
with giant RHs for which β-fits are avaiable. Col.(1): Cluster name. Col.(2): β-
parameter value with 1σ error. Col.(3): Core radius in units of h−1

70 kpc and corresponding
uncertainty. Col.(4): Virial mass and is uncertainty in units of h−1

70 1015 M¯. Col.(5):
Virial radius in units of h−1

70 kpc. Col.(6): Mass estimated inside the core radius in units
of h−1

70 1013 M¯.
cluster’s β rc Mv Rv Mc

name [kpc h−1
70 ] [1015 M¯] [kpc h−1

70 ] [1013 M¯]
1E50657-558(a) 0.70± 0.07 179± 18 3.43± 0.38 3301 9.50± 1.40
A2163 (b) 0.80± 0.03 371± 21 4.32± 0.26 3766 22.00± 1.84
A2744 (c) 1.00± 0.08 458± 46 2.87± 0.26 3096 22.10± 2.96
A2219 (d) 0.79± 0.08 343± 34 2.52± 0.28 3104 14.40± 2.16
CL0016+16 (e) 0.68± 0.01 237± 80 1.47± 0.05 2166 8.27± 0.38
A1914 (b) 0.75± 0.02 165± 80 2.90± 0.15 3356 7.28± 0.51
A665 (f) 0.74± 0.07 350± 35 1.97± 0.30 2933 12.10± 2.20
A520 (c) 0.87± 0.08 382± 50 2.22± 0.25 3018 14.50± 2.51
A2256 (b) 0.91± 0.05 419± 28 2.23± 0.13 3281 14.70± 1.28
A773 (c) 0.63± 0.07 160± 27 1.52± 0.19 2636 4.72± 0.98
A545 (d) 0.82± 0.08 286± 29 1.25± 0.84 2562 7.20± 4.89
A2319 (b) 0.59± 0.01 204± 10 1.71± 0.07 3009 5.95± 0.38
A1300 (g) 0.64± 0.01 171± 80 1.71± 0.06 2609 5.76± 0.33
A1656 (b) 0.65± 0.02 246± 15 1.83± 0.07 3136 7.38± 0.53
A2255 (b) 0.80± 0.05 419± 28 1.76± 0.12 2996 12.80± 1.22
A754 (b) 0.70± 0.03 171± 12 2.42± 0.11 3379 6.25± 0.52

Note. — Ref. for the (data) source in brackets: (a) Markevitch et. al 2002 (Chandra); (b) RB02 (ROSAT
for β-fit and T as in table 1); (c) Govoni et al. 2001a (ROSAT); (d) Ettori & Fabian 1999 (ROSAT); (e)
Ettori et. al 2004 (Chandra); (f) Feretti 2004 (Einstein); (g) Lemonon et al. 1997 (ROSAT).
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(HIFLUGCS, the Highest X-ray FLUx Galaxy Cluster Sample) compiled by Reiprich

& Böhringer (2002) (hereafter RB02). We use this sample of luminous clusters

(Lx ∼ 1044− 1045erg s−1) since it is large and homogeneously studied. It consists of

63 bright clusters with galactic latitude |bII | > 20o, flux fX(0.1−2.4 keV ) ≥ 2×10−11

ergs s−1 cm−2 and it covers about 2/3 of the whole sky.

The clusters have been reanalyzed in detail by RB02 using mainly ROSAT PSPC

pointed observations. RB02 fitted the X-ray brightness profiles of the 63 galaxy

clusters by assuming a β−model profile (Sect. 1.2.2), and here we corrected the

relevant parameters, β and the core radius rc, for a ΛCDM cosmology. Then under

the assumption that the intracluster gas is in hydrostatic equilibrium and isothermal

(using the ideal gas equations), the gravitational cluster mass within the virial radius

Rv can be computed according to Eq.1.17 in Sect.1.2.2.

In addition to the HIFLUGCS clusters we have searched in the literature for

β-fit parameters and T of the clusters with giant RHs (ref. in Tab. 6.2) in order to

estimate Mv also for these clusters. Since some clusters of the HIFLUGCS sample

are also in our sample, we note that in the majority of these cases the fits to the mass

profile (and T ) given in RB02 leads to a virial mass which is consistent at 1σ level

with the mass derived by making use of the parameters obtained from more recent

observations in the literature (given in Tabs. 6.1, 6.2). The Lx − Mv distribution

of the combined sample is reported in Fig. 6.4. The presence of a relatively large

dispersion indicates the difficulty in estimating the virial masses of the single objects

and confirms the need of large samples in these studies. We note that the statistical

distribution of clusters with giant RHs is not different from that of the HIFLUGCS

sample. On the other hand, we note that clusters with known giant RHs span a

narrow range in mass which is comparable to the mass–dispersion in the HIFLUGCS

sample, this further strengthens the need of the approach followed in this Section,

since a Lx (or P1.4)–Mv fit based on giant RHs alone would be affected by large

uncertainties.

In order to better sample the region of higher X-ray luminosities and masses

(typical of clusters with giant RHs), we compute the Lx–Mv fit by combining the

HIFLUGCS with the radio–halo sample. The fit has been performed using the form:

log
[

LX

1044 h−1
70

ergs
s

]
= Af + bf log

( Mv

3.16× 1014 h−1
70 M¯

)
(6.3)
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The best fit values of the parameters are: Af = −0.229±0.051 and bf = 1.47±0.08

(bf = 1.41± 0.10 is obtained with HIFLUGCS sample only).

In order to derive the P1.4 GHz−Mv correlation for giant RHs, we combine Eqs 6.3

and 6.1 and find :

log
[ P1.4

3.16 · 1024 h−1
70

Watt
Hz

]
= (2.9± 0.4) log

[ Mv

1015 h−1
70 M¯

]
− (0.814± 0.147) (6.4)

Our P1.4 GHz −Mv correlation is slightly steeper than that obtained with 10 clusters

by Feretti (2003) (P1.4 GHz ∝ M2.3), which, however, was derived in an EdS

cosmology by considering the mass within 3 h−1
50 Mpc from the cluster centers, and

not the virial mass.

6.5 Expected correlations and magnetic field constraints

The main goal of this Section is to extract the values of the physical parameters, in

particular of B and its scaling with cluster mass B ∝ M b
v , to be used in the model

calculations of Sec. 6.6– 6.8. This is constrained by comparing the model expected

and observed trends of the synchrotron power of giant RHs with the mass (and

temperature) of the parent clusters.

6.5.1 Radio power–cluster mass correlation

In the previus Chapter (Sec.5.6) we derived an expected trend between the

bolometric radio power, PR, and the virial cluster’s mass and/or temperature. In

the case of the giant RHs, the mergers which mainly contribute to the injection of

turbulence in the ICM are those with rs ≥ RH , rs being the stripping radius of the

infalling sub–cluster. It can be shown that, as a first approximation and assuming

a fixed emitting volume, the expected scaling PR −Mv is given by:

PR ∝ M2−Γ
v B2 ne

(B2 + B2
cmb)

2
(6.5)

where B is the rms magnetic field strength in the radio halo volume (particle pitch

angle isotropitazion is assumed), Bcmb = 3.2(1 + z)2µG is the equivalent magnetic

field strength of the CMB and ne is the number density of relativistic electrons in

the volume of the giant RH. The parameter Γ is defined by T ∝ MΓ; we consider

Γ ' 2/3 (virial scaling) and Γ ' 0.56 (e.g., Nevalainen et al. 2000).
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Figure 6.5: Expected slope of the P1.4−Mv correlation as a function of the magnetic field
intensity in a cluster of mass < M >= 1.6 × 1015 M¯. The calculations are obtained for
b=0.5,0.6,0.7,0.8,0.9,1,1.2,1.3,1.5 and 1.7 (from bottom to top); M1 = 1.1× 1015 M¯ and
M2 = 2.5 × 1015 M¯ are adopted. The continuous lines are for Γ ' 0.67 and the dashed
lines are for Γ ' 0.56. The two horizontal lines mark the 1 σ value of the observed slope.

In this paper we release the assumption adopted in Chapt.5 of a magnetic field

independent of cluster mass and assume that the rms field in the emitting volume

scales as B = B<M>(M/ < M >)b, with b > 0 and B<M> the value of the rms

magnetic field associated to a cluster with mass equal to the mean mass < M > of

the clusters sample. A scaling of the magnetic field intensity with the cluster mass

is indeed found in numerical cosmological MHD simulations (e.g., Dolag et al. 2002,

2004). Dolag et al. (2002) found a scaling B ∝ T 2 that would mean B ∝ M1.33

assuming the virial scaling or B ∝ M1.12 for Γ ' 0.56.

We assume that the number density of the relativistic electrons in galaxy clusters,

ne, does not depend on cluster mass. This is because there is no straightforward

physical reason to believe that this value should scale systematically with Mv, and

since only a relatively fast scaling of ne with mass would significantly affect the

radio power – mass trend (Eq. 6.5). It is indeed more likely that ne may change

from cluster to cluster, but in this case the major effect would simply be to drive

some scattering on the PR −Mv trend (Eq. 6.5).
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Given these assumptions Eq. 6.5 becomes:

PR ∝ M2−Γ
v B2

<M> · (Mv/ < M >)2b

(B2
<M> · (Mv/ < M >)2 b + B2

cmb)
2

(6.6)

which has two asymptotic behaviors: PR ∝ M2−Γ+2b
v for B<M> << Bcmb and

PR ∝ M2−Γ−2b
v for B<M> >> Bcmb. The observed correlations derived in Sect. 2

involve the monochromatic radio power at 1.4 GHz. How this monochromatic radio

power can be scaled to PR depends on the spectrum of radio halos. In the context

of particle acceleration models (e.g., Brunetti et al. 2001a, Ohno et al. 2002, Kuo

et al. 2003) the spectrum of radio halos is given by the superposition of spectra

emitted from regions in the emitting volume with different magnetic field strenghts.

It is expected to reach a peack at νb and then gradually drop as a power-law which

should further steepen at higher frequencies. The peack frequency can be expressed

as a function of the cluster mass and of the rms field B in the emitting volume

(Chapt.5):

νb ∝ M2−Γ B η2
t

(B2 + B2
cmb)

2
(6.7)

If we adopt a power-law spectrum extending from the frequency of the peak to a few

GHz, P (ν) ∝ ν−a, PR and the monochromatic radio power at a fixed frequency νo

(νo ≥ νb) scale as P (νo)/PR ∝ ( νb

νo
)a−1. This depends on the cluster mass (Eq.6.7):

P (νo)

PR

∝ Mv
(a−1)(2−Γ+b)

(B2
<M>(Mv/ < M >)2b + B2

cmb)
2(a−1)

(6.8)

thus in the case B << Bcmb one has P (νo)/PR ∝ ( M
<M>

)(a−1)(2−Γ+b), while in the

case B >> Bcmb one has P (νo)/PR ∝ ( M
<M>

)(a−1)(2−Γ−3b), which means that for

B << Bcmb the P (νo) −M trend is steeper than the PR −M , while the opposite

happens in the case B >> Bcmb (the two scaling should be equal for continuity for

B ∼ Bcmb). On the other hand, the trends of P (νo)/PR with the cluster mass in

massive galaxy clusters is rather weak because the observed radio spectral index

between 327–1400 MHz is a ∼ 1.2 (e.g., Feretti 2003) and because B in the most

massive objects is probably close to Bcmb (Sec.3.3, Fig.6.7; Govoni & Feretti 2004).

Thus, in order to compare the model expectations with the observations, we will

safely assume the same scaling for the monochromatic and for the total radio power.
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In order to have a prompt comparison with observations we calculate the slope

αM of the P1.4 −M correlation between two points as:

αM =
log(P1/P2)

log(M1/M2)
(6.9)

Eq.6.9 can be compared with the observed slope to constrain the value of the

magnetic field and of the slope, b, of the scaling between B and the cluster mass.

The M1 and M2 values give the representative mass range spanned by the bulk of

clusters with giant RHs, while Bcmb should be calculated at the mean redshift of our

sample (< z >' 0.19). We point out that given B<M> and b, the values of B are

fixed for all the values of the masses of the clusters in our sample.

In Fig.6.5 we report the expected slope αM (Eq. 6.9) as a function of B<M>.

The different curves are obtained for different scaling-laws of the magnetic field with

the cluster mass (b = 0.5 to 1.7, see caption). Dashed lines refer to Γ ' 0.56 and

solid lines to the virial case. The two blue horizontal lines (Fig.6.5) indicate the

range of the observed slope (αM = 2.9± 0.4, Eq. 6.4).

Fig. 6.5 shows that there are values of B<M> and b for which the expected slope is

consistent with the observed one. As a first result we find that with increasing

b the values of B<M> should increase in order to match the observations (for

example, b ∼ 0.6 requires B<M> ∼ 0.2 − 1.4 µG while b ∼ 1.7 requires

B<M> ∼ 2 − 3 µG). Finally, the asymptotic behavior of Eq.6.6, combined

with the observed correlation (Eq. 6.4) allows to immediately constrain b: for

B<M> << Bcmb one has 0.58(0.53) < b < 0.98(0.93) for the virial (non-virial)

case, whereas in the case of B<M> >> Bcmb the model expectations cannot be

reconciled with the observations.

6.5.2 Radio power–cluster temperature correlation

Since the temperature is related to the cluster mass, the radio power – mass

correlation also implies a correlation between synchrotron radio power and cluster

temperature. Thus, in order to maximize the observational constraints, an analysis

similar to that of Sect. 6.5.1 can also be done for the radio power – temperature

correlation (PR−T ). Combining Eq. 6.6 with the M −T scaling law (T ∝ M2/3 for

the virial case and T ∝ M0.56) one has:
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Figure 6.6: Expected slope of the P1.4 − T correlation as a function of the magnetic field
intensity in a cluster with temperature < T >= 8 keV. The calculations are obtained for
b=0.5,0.6,0.7,0.8,0.9,1,1.2,1.3,1.5 and 1.7 (from bottom to top); T1 = 6 keV and T2 = 10
keV are adopted. The continuous lines are for Γ ' 0.67 and the dashed lines are for
Γ ' 0.56. The two horizontal lines mark the 1 σ value of the observed slope.

PR ∝ T
2
Γ
−1 B2

<M> (T/ < T >)2 bT

(B2
<M> · (T/ < T >)2 bT + B2

cmb)
2

(6.10)

where bT = b/Γ with Γ ' 2/3 (virial case) or Γ ' 0.56 (non-virial case). The

asymptotic behaviors of Eq. 6.10 are given by PR ∝ T 2/Γ−1+2bT (B<M> << Bcmb)

and PR ∝ M2Γ−1−2bT
v (B<M> >> Bcmb).

As in Sec. 6.5.1, here we can adopt the same scaling with T for both PR and

P1.4 and compare the values of the expected slope with those of the observed one.

We can calculate the slope αT of the P1.4 − T correlation between two points as:

αT =
log(P1/P2)

log(T1/T2)
(6.11)

where T1 and T2 define the interval of temperature of our sample, < T >= 8 keV

is the mean temperature, and Bcmb is evaluated at < z >' 0.19. In Fig. 6.6 we

report the slope αT of the P1.4 − T correlation as a function of the magnetic field

strength in a cluster with average mass, B<M>. The different curves are obtained

for different scaling-laws of the cluster magnetic fields with mass (i.e., temperature)
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Figure 6.7: The region in the plane (B<M>,b) allowed from the observed P1.4 −Mv and
P1.4 − T correlations is reported as a shadowed area; < M >= 1.6 × 1015 M¯. The
dashed line indicate the upper bound of the allowed region obtained considering only the
P1.4 − Mv correlation. The coloured points indicate the relevant configurations of the
parameters used in the statistical calculations in Sec.4-6 (Tab. 6.3). The vertical arrows
indicate the IC limits on B.

(b=0.5 to 1.7). Dashed lines are for Γ ' 0.65 and continuous lines are for the virial

case.

The horizontal blue lines mark the lower limit αT ' 4.76 and the upper limit

αT ' 8.05 of the observed correlation. Fig. 6.6 shows that there is a range of values

of the parameters (B<M>, b) for which the model is consistent with the observed

slope. The relevant point is that, similarly to the case of the P1.4 −M correlations,

also in this case values of B<M> >> Bcmb cannot be reconciled with observations:

a clear upper boundary at B < 3µG is obtained for B<M>.

6.5.3 Constraining the magnetic field

We combine the results obtained from the observed correlations (both P1.4 − Mv

and P1.4 − T ) and the model expected trends to selects the allowed region of the

(B<M>, b) parameters. In order to improve the statistical constraint, we consider

the slope of the P1.4 − T correlation αT ' 6.4 ± 1.64 as derived for the extended

sample (Sect. 6.4.2).
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In Fig.6.7 we report the region of the plane (B<M>, b) allowed by the observed

slopes at 1σ level. The lower bound of the (B<M>,b) region is due to the P1.4 −Mv

correlation while the upper bound is mostly due to the P1.4 − T correlation which

is poorly constrained because of the very large statistical errors. This bound is

however also limited by the P1.4 −Mv correlation (Fig.6.7, dashed line).

An additional limit on B<M>, also reported in Fig.6.7 (vertical arrows), can

be obtained from inverse Compton (IC) arguments. Indeed a lower bound to the

magnetic field strength can be inferred in order to not overproduce, via IC scattering

of the photons of the CMB radiation, the hard-X ray excess fluxes observed up to

now in a few clusters (e.g., Rephaeli & Gruber 2003, Fusco-Femiano et al 2003).

In this case the value of the mean magnetic field intensity in the cluster volume

can be estimated from the ratio between the hard-X ray and radio emission. The

resulting value of the magnetic field should be considered as a lower limit because

the IC emission may come from more external region with respect to the synchrotron

emission (e.g., Brunetti et al. 2001a, Kuo et al. 2003, Colafrancesco et al. 2005)

and also because, in principle, additional mechanisms may contribute to the hard-X

ray fluxes (e.g., Fusco-Femiano et al. 2003). One of the best studied cases is that

of the Coma cluster for which an average magnetic field intensity of the order of

BIC ' 0.2 µG was derived (Fusco-Femiano et al. 2004). As a first approximation

we can use this value to obtain the lower bound of B for each cluster mass from the

scaling B = B<M>(M/ < M >)b.

The resulting (B<M>,b) region resulting from the match between model and

observed scalings spans a wide range of values of B and b. An inspection of Fig.6.7

immediately identifies two allowed regimes: a super-linear scaling (b > 1) with

relatively high values of B and a sub-linear scaling (b < 1) with lower values of B.

All the calculations we will report in the following sections are carried out by

assuming representative values of (B<M>,b) inside the constrained region (Fig. 6.7

coloured filled dots and Tab.6.3).

6.6 Probability to form giant radio halos

6.6.1 Probability of radio halos and constraining ηt

In this Section we derive the probability, as a function of cluster mass, to find

giant RHs in the redshift range z=0–0.2. The byproduct of the Section is to
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calibrate the model by requiring that the expected fraction of cluster with giant RHs is

consistent with the observational constraints. This allows to select a range of values

of the parameter ηt, which is the ratio between the energy injected in the form of

magnetosonic waves and the PdV work done by the infalling subclusters in passing

through the most massive one (Sect. 5.4). ηt is a free parameter in our calculations

since the fraction of the energy which goes into the form of compressible modes is

likely to depend on the details of the driving turbulent force.

As in Sect. 5.6.2 RHs are identified with those objects in a synthetic cluster

population with a synchrotron peack frequency (Eq.6.7) νb >∼ 200 MHz in a region

of 1 Mpc h−1
50 size. In Chapt. 5 it was assumed that the magnetic field in the

radio halo volume is independent from the cluster mass and it is B ' 0.5µG.

Then νb ∝ M2−Γ and consequently massive clusters are expected to be favourite in

forming giant RHs. In Chapt. 5 indeed we show that the expected fraction of clusters

with giant RHs naturally shows an abrupt increase with cluster mass, and that the

observed fractions (20-30 % for M > 2× 1015 M¯ clusters, 2-5 % for M ∼ 1015 M¯

clusters and negligible for less massive objects) can be well reconciled with the model

expectations by assuming ηt ∼ 0.24− 0.34.

In this Chapter we assume that the rms magnetic field depends on the cluster

mass and, although this cannot affect the general expectation of an increasing

probability to form RHs in most massive clusters (Chapt. 5, the magnetic field should

affect the synchrotron break frequency (Eq. 6.7) and the details of the occurrence of

giant RHs with cluster mass. On the other hand, in Sect. 6.5 we have also shown

that the comparison between the expected and observed trends between radio power

and cluster mass (and temperature) helps in constraining the range of values which

can be assigned to the magnetic field in clusters.

Thus our calculations of the occurrence of giant RHs (z ≤ 0.2) and the selection of

the values of ηt necessary to reproduce the observations should be performed within

the dashed region in Fig.6.7.

To calculate the expected probabilities to form radio halos we first run a large

number, N , of trees for different cluster masses at z = 0, ranging from ∼ 5×1014M¯

to ∼ 6 × 1015M¯. Then we choose different mass bins ∆M and redshift bins

∆z in which to perform our calculations. Thus, for each mass M , the formation

probability of giant RHs in the mass bin ∆M and in the redshift bin ∆z is computed
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Figure 6.8: Probability to form giant RHs at 0.05 ≤ z ≤ 0.15 in the observed mass
bin I: 0.95 − 1.9 × 1015M¯ and at 0.05 ≤ z ≤ 0.2 in bin II: 1.9 − 3.8 × 1015M¯ as
a function of ηt. The calculations are reported for the following representative cases:
b = 1.7, B<M> = 3.0µG (blue points); b = 1.0, B<M> = 1.55µG (black points); b = 0.9,
B<M> = 0.18µG (cyan points) and b = 0.6, B<M> = 0.2µG (green points). The bottom
shadowed region marks the observed probability for giant RHs in the mass bin I while the
top shadowed region marks that in the mass bin II. The values of the observed probabilities
are obtained by combining the results from Giovannini et al. 1999, Giovannini & Feretti
2000, and Feretti 2002. The observed probabilities for the bin I are calculated up to
z ≤ 0.15 to minimize the effect due to the incompleteness of the X–ray and radio catalogs
used by these authors.

according to Eq. 5.29 (Chapt.5). The total probability of formation of giant RHs

in the mass bin ∆M and in the redshift bin ∆z is obtained by combining all the

contributions (Eq. 5.29) weighted with the local cluster mass function, we use the

Press & Schecther mass function.

To have a prompt comparison with present observational constraints, we

calculate the probability to form giant RHs at z <∼ 0.2 in the two observed mass

bins: bin I ([0.95− 1.9]× 1015M¯) and bin II ([1.9− 3.8]× 1015M¯).

As an example, in Fig. 6.8 we report these probabilities in both bin I and bin

II as a function of ηt for three representative cases which nicely sample the region

in Fig.6.7: b = 1.7, B<M> = 3.0µG (blue points); b = 1.0, B<M> = 1.55µG (black

points); b = 0.9, B<M> = 0.18µG (cyan points); b = 0.6, B<M> = 0.2µG (green

points).
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Table 6.3: Values of αM and ηt derived for relevant sets of b, B<M>[µG] parameters.
b B<M>[µG] αM ηmin ηmax

1.7 3.0 2.5 0.19 0.2
1.7 2.2 3.22 0.17 0.2
1.5 1.9 3.3 0.15 0.2
1.3 2.25 2.84 0.15 0.2
1.0 1.55 2.96 0.16 0.21
1.0 0.45 3.3 0.29 0.33
0.9 0.18 3.23 0.39 0.44
0.6 0.2 2.63 0.38 0.44

The bottom shadowed region in Fig. 6.8 marks the observed probability for giant

RHs in the mass bin I while the top shadowed region marks that in the mass bin

II. Fig. 6.8 shows that it is possible to find a range of values of the parameter ηt for

which the theoretical expectations are consistent with the observed statistics in both

the mass bins. However we note that the requirement in terms of energy of the MS

modes increases with decreasing the magnetic field: it goes from ηt ∼ 0.15− 0.2 for

intermediate–large values of B up to ηt ∼ 0.5 at the lower bound of the allowed B

strengths.

The fact that the magnetic field depends on the cluster mass is reflected in the

different behavior that the models based on different configurations of parameters

have in the two mass bins of Fig. 6.8: model-configuration may be favoured in a mass

bin with respect to another configuration but disfavoured in the other mass bin. This

is related to the transition from IC dominance (B < Bcmb) to synchrotron dominance

(B > Bcmb) that occurs in going from the bin I to the more massive clusters of bin

II. In the case of IC dominance an increase of B does not significantly affect the

particle energy losses, it causes an increase of νb (Eq.6.7) and thus an increase of

the probability to have giant RHs. On the other hand, in the case of synchrotron

dominance the particle energy losses increase and consequently νb decreases (Eq.6.7)

as well as the probability to form giant RHs.

For this reason, given ηt, the ratio between the probability to form giant RHs in

the bin I and in the bin II is expected to decrease with increasing b, as larger values

of b yield a more rapid increase of B with cluster mass (Fig.6.8).

In Tab.6.3 we report the maximum and the minimum values of ηt (ηt,max and
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ηt,min) for which the model reproduces the observed probabilities (1 σ limits) in

both the mass bins. The results are given for the relevant (B<M>, b) configurations

reported in Fig. 6.7. In agreement with the above discussions, one might notice

that in the case of IC dominance a larger magnetic field implies a smaller energetic

request (smaller ηt,max). Finally we point out that the values of ηt do not strongly

depend on model parameters as they also appear similar to those obtained in the

more simple calculations of Chapt. 5.

6.6.2 Probability of radio halos with Mv and evolution with z

In this Section we calculate the expected differential probability to form giant RHs

with cluster mass and redshift without restricting ourselves to the mass and redshift

bins covered by present observations (bin I and bin II in Fig. 6.8). In doing these

calculations we use the values of ηt as constrained in Tab.6.3 within the region

(B<M>,b) of Fig.6.7, and make the viable (and necessary) assumption that the value

of ηt (i.e., efficiency of turbulence in going into MS modes) is constant with redshift.

The detailed calculation of the acceleration efficiency and of the probability to

have giant RHs requires extensive Montecarlo calculations (see Sec. 5.6 and 5.7)

essentially because at each redshift the acceleration is driven by MS modes injected

in the ICM from the mergers that the cluster experienced in the last few Gyr at

that redshift. All the reported results make use of these calculations. However, to

readily understand and comment the model results reported in the following, we

may use the simplified formula Eq. (6.7) which describes the approximate trend

of the break frequency with cluster mass. The adopted scaling B ∝ M b implies

that the synchrotron losses overcome the IC losses first in the more massive objects.

Clusters of smaller mass in our synthetic populations have B << Bcmb and this

implies (Eq.6.7) νb ∝ M2−Γ+b (1 + z)−8 so that the probability to form giant RHs in

these clusters is expected to increase with the cluster mass (2 − Γ + b > 0 always)

and to decrease with redshift. In the case of more massive clusters the situation may

be more complicated. Indeed for these clusters there is a value of the mass, M∗,

for which the cluster magnetic field becomes equal to Bcmb. For M > M∗(z) it is

νb ∝ M2−Γ−3b (Eq. 6.7) and thus the probability to form giant RHs would decrease

as the mass becomes larger (given the lower bound of the slope b as constrained in

Fig. 6.7, it is 2−Γ−3b < 0). In these cases, at variance with the smaller clusters, the
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occurrence of giant RHs with z is only driven by the cosmological evolution of the

cluster-merger history (which drives the injection of turbulence) rather than by the

dependence of the IC losses with z (at least up to a redshift for which B ∼ Bcmb(z)).

As a consequence, the general picture is that going from smaller to larger masses,

the probability should reach a max value around M∗ for which B ∼ Bcmb(z), and

then it should start to smoothly decrease. The value of this mass increases with z

and depends on the scaling law of B with M. It is:

M∗(z) '< M >

(
3.2 (1 + z)2

B<M>(µG)

)1/b

(6.12)

In order to show in some detail this complex behavior in the following we analyze

two relevant examples.

An example with super-linear scaling: large B

As a first example we focus on the case of a super-linear scaling. In Fig. 6.9, we

report the occurrence of giant RHs as a function of the cluster mass in three redshift

bins (panel a)) and the occurrence of giant RHs as a function of redshift in two

mass bins (panel b)). These calculations have been performed using b = 1.7 and

B<M> = 3µG which are allowed from the observed correlations. We adopt ηt = 0.2

which is in the corresponding range of values obtained in Sec. 6.6 (see Tab. 6.3) in

order to reproduce the observed mean probability of giant RHs at z < 0.2. One

finds that at lower redshifts (z <∼ 0.1) the probability to form giant RHs increases

with the mass of the clusters up to M∗ ∼ 2 × 1015 M¯, while for M >∼ M∗

synchrotron losses become dominant and this causes the decrease of the probability

for M >∼ M∗. The mass at which B ∼ Bcmb(z) increases as (1 + z)2/b and this

causes the shift with z of the value of the cluster mass at which the maximum of

the probability is reached.

Fig.6.9b shows the occurrence of giant RHs with z. In the higher mass bin

(2 · 1015 ≤ M ≤ 4.5 · 1015) the occurrence increases up to z ∼ 0.4 and than

starts to drop. In this very massive clusters the magnetic field is larger than

Bcmb(z) at any redshift and thus the synchrotron losses are always the dominant loss

term. The behavior of the probability with z in this case is essentially due to the

fact that the bulk of turbulence in these massive clusters is injected preferentially

between z ∼ 0.2 − 0.4. A different behavior is observed in the lower mass bin
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Figure 6.9: a) Occurrence of giant RHs as a function of the cluster mass in three redshift
bins:0-0.1 (black line),0.2-0.3 (blue line), 0.4-0.5 (green line). b) Occurrence of giant RHs
as a function of redshift in two mass bins: [1-2]×1015M¯ (cyan line) and [2-4.5]×1015M¯
(blue line). The calculation have been performed assuming: b=1.7, B<M> = 3.0µG,
ηt = 0.2 in both panels.

Figure 6.10: a) Occurrence of giant RHs as a function of the cluster mass in three redshift
bins: 0-0.1 (black line),0.2-0.3 (blue line), 0.4-0.5 (green line). b) Occurrence of giant RHs
as a function of redshift in two mass bins: [1-2]×1015M¯ (cyan line) and [2-4.5]×1015M¯
(blue line). The calculation have been performed assuming: b=0.9, B<M> = 0.2µG,
ηt = 0.42 in both panels.
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(1015 ≤ M ≤ 2 · 1015) where the occurrence of giant RHs decreases with redshift.

This is because clusters with these lower masses have always B < Bcmb(z).

An example with sub-linear scaling: small B

As a second example we focus on a sublinear scaling. In Fig. 6.10 we report the

occurrence of giant RHs as a function of the cluster mass in three redshift bins (panel

a)) and the occurrence of gint RHs as a function of redshift in two mass bins (panel

b)). The calculations have been performed using b = 0.9 and B<M> = 0.2µG, which

are allowed from the correlations, and adopting a corresponding ηt = 0.42, which is

within the range of values obtained in Sec. 6.6 (see Tab. 6.3) in order to reproduce

the observed mean probability of formation of giant RHs at redshift z < 0.2. In

this case at any redshift the probability to form giant RHs increases with the mass

of the clusters. Indeed the magnetic field in these clusters is always B << Bcmb(z)

(for all redshifts and masses) and the IC losses are always the dominant loss term.

In addition, as expected, in both the considered mass bins the probability to form

giant RHs decreases as a function of redshift, due to the increase of the IC losses

(Fig. 6.10, panel b)).

6.7 Luminosity Functions of Giant Radio Halos

In this Section we derive the expected luminosity functions of giant radio halos

(RHLFs). Calculations for the RHLFs are carried out within the (B<M>,b) region

of Fig. 6.7 by adopting the corresponding values of ηt which allow to match the

mean giant RH occurrence at z < 0.2. First we use the probability P∆M
∆z to form

giant RHs with the cluster’s mass to estimate the mass functions of giant RHs

(dNH(z)/dMdV ):

dNH(z)

dM dV
=

dNcl(z)

dM dV
× P∆M

∆z = nPS × P∆M
∆z , (6.13)

where nPS = nPS(M, z) is the Press & Schechter (1974) mass function (Sect. 1.4.3,

Eq.1.66) whose normalization depends essentially on σ8 (present-day rms density

fluctuation on a scale of 8h−1 Mpc) and Ωo; we use σ8 = 0.9 in a Ωo = 0.3 universe.

The RHLF is thus given by:

dNH(z)

dV dP1.4

=
dNH(z)

dM dV

/
dP1.4

dM
. (6.14)
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Ensslin & Roettgering 2002, z=0

Figure 6.11: Expected RHLFs at z ' 0.05 (coloured lines with dots) obtained assuming:
b=1.7, B<M> = 3.0µG (blue lines: ηt = 0.2 (solid line) and ηt = 0.19 (dashed line));
b=1.7, B<M> = 2.2µG and ηt = 0.2 (magenta line); b=1.5, B<M> = 1.9µG and ηt = 0.2
(red line); b=0.9, B<M> = 0.18µG and ηt = 0.39 (cyan line); b=0.6, B<M> = 0.2µG
and ηt = 0.38 (green line); b=1.0, B<M> = 0.45µG and ηt = 0.33 (black line). For a
comparison we report the range of Local RHLF obtained by E&R02 (black solid thick
lines).

dP1.4/dM depends on the adopted values of (B<M>, b) since each allowed

configuration in Fig. 6.7 selects a value of the slope of P1.4 − Mv (e.g., Tab. 6.3)

which is consistent (at 1 σ) with the value of the observed slope obtained with

present observations (αM = 2.9± 0.4; see Sec. 6.4). In particular from Fig. 6.5 one

has that, for a given b, larger values of the magnetic field select smaller values of

the slope of the P1.4 −Mv correlation (and viceversa).

In Fig.6.11 we report the Local RHLFs (number of giant RHs per comoving

Gpc3 as a function of the radio power) as expected from our calculations. The most

interesting feature in the RHLFs is the presence of a cut-off/flattening at low radio

powers. This flattening is a unique feature of particle acceleration models since it

marks the effect of the decrease of the efficiency of the particles acceleration (in 1

Mpc h−1
50 cube) in the case of the less massive galaxy clusters. We stress that this

result does not depend on the particular choice of the parameters.

To highlight the result, in Fig.6.11 we also compare our RHLFs with the range
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Figure 6.12: Evolution of RHLFs with redshift. The RHLFs are reported from redshifts
0-0.1 to 0.5-0.6 (curves from top to bottom). Calculations are developed for: Panel a)
b=1.7, B<M> = 3.0µG, ηt = 0.2, αM ' 2.5 and Panel b) b=0.9, B<M> = 0.18µG,
ηt = 0.39, αM ' 3.23.

of Local (RHLFs)E&R (black solid lines) reported by Enßlin & Röttgering (2002).

These (RHLFs)E&R are obtained by combining the X-ray luminosity function of

clusters with the radio-X-ray correlation for giant RHs and assuming that a costant

fraction, frh = 1/3, of galaxy clusters have giant RHs independently from the cluster

mass (see Enßlin & Röttgering 2002).

The most important difference between the two expectations is indeed that a low-

radio power cut-off does not show up in the (RHLFs)E&R in which indeed the bulk

of giant RHs is expected at very low radio powers. The agreement between the

two Local RHLFs at higher synchrotron powers is essentially because the derived

occurrence of giant RHs in massive objects (Sect. 6.6) is in line with the fraction,

frh = 1/3, adopted by Enßlin & Röttgering (2002) in fitting the observed occurrence

of RHs.

In Fig. 6.12 we report the RHLFs expected by our calculations in different

redshift bins. The calculations are performed by using two relevant sets of

parameters (a super–linear and a sub–linear case as given in the caption of Fig. 6.12)

allowed from the observed correlations. With increasing redshift the RHLFs decrease

due to the evolution of the clusters mass function with z and to the evolution of the
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Figure 6.13: Expected RHLFs in 6 redshift bins (as reported in the panels). Calculations
are performed by using the following values of the parameters : b=1.7, B<M> = 3.0µG
(blue lines: ηt = 0.2 (solid lines) and ηt = 0.19 (dashed lines)); b=1.7, B<M> = 2.2µG
and ηt = 0.2 (magenta lines); b=1.5, B<M> = 1.9µG and ηt = 0.2 (red lines); b=0.9,
B<M> = 0.18µG and ηt = 0.39 (cyan lines); b=0.6, B<M> = 0.2µG and ηt = 0.38 (yellow
lines); b=1.0, B<M> = 0.45µG and ηt = 0.33 (black lines).
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probability to form giant RHs with z.

Fig. 6.12, allows to readily appreciate the different behavior of the RHLFs in

the case of a super-linear scaling of B with M, b = 1.7, (Fig. 6.12, Panel a)) and

of a sub-linear scaling, b = 0.9 (Fig. 6.12, Panel b)): the evolution with redshift

in the Panel b) (sub–linear case) is faster than that in the Panel a) (super–linear

case). This difference is driven by the probability to form giant RHs as a function

of redshift in the two cases: in the super–linear case the probability to form giant

RHs does not decrease rapidly with z, while a rapid decrease of such a probability

is obtained in the sub–linear case (see also Figs. 6.9, 6.10).

In Fig. 6.13 we report the RHLFs obtained by our calculations by adopting the

selected set of configurations given in Tab. 6.3 (colour code is the same of Fig. 6.7).

The combination of these configurations define a bundle of expected RHLFs which

determines the range of the possible RHLFs.

All the calculations are performed for the corresponding range of values of ηt which

allow to be consistent with the observed probability to form radio halos at z <∼ 0.2.

One finds that with increasing redshift the bundle of the RHLFs broadens along the

nH(P ) × P axis. This is again due to the different evolutions of the probability to

form giant RHs with z of the super–linear and sub–linear cases.

6.8 Number Counts of Giant Radio Halos

In this Section we derive the expected number counts of giant radio halos (RHNCs).

This will allow us to perform a first comparison between the model expectations

and the counts of giant RHs which can be derived from present observations, but

also to derive expectations for future observations. As for the case of the RHLFs,

in calculating the RHNCs we adopt the configurations of parameters which allow

to reproduce the observed mean probabilities of giant RHs at z < 0.2. However,

we point out that the fact that our expectations are consistent with the observed

mean probability to form giant RHs at z <∼ 0.2 does not imply that they should also

be consistent with the observed flux distribution of giant RHs in the same redshift

interval.

Given the RHLFs (dNH(z)/dP1.4dV ) the number of giant RHs with f > f1.4 is

given by:
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Figure 6.14: Number of expected giant RHs above a given radio flux at 1.4 Ghz from a
full sky coverage up to z ≤ 0.2. The black points are the data taken from Giovannini et
al.(1999) and corrected for the incompleteness of their sky-coverage (∼ 2π sr). a) The
colour code is that of Fig.6.11; b) calculations are reported for the superlinear scaling
(b > 1, upper region) and for the sublinear scaling (b < 1, lower region).

Figure 6.15: Number of expected giant RHs from the whole universe above a given radio
flux at 1.4 GHz. a) The colour code is the same of Fig.6.11; b) calculations are reported
for the superlinear scaling (b > 1, upper region) and for the sublinear scaling (b < 1, lower
region).
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NH(> f1.4) =
∫ z

z=0
dz′(

dV

dz′
)
∫

P1.4(f∗1.4,z′)

dNH(P1.4, z
′)

dP1.4 dV
dP1.4 (6.15)

where dV/dz is the comoving volume element in the ΛCDM cosmology (e.g., Carroll

et al. 1992); the radio flux and the radio power are related by P1.4 = 4π d2
L f1.4 with

dL the luminosity distance (where we neglect the K-correction since the slope of the

spectrum of radio halos is close to unity).

As a first step, we use Eq. 6.15 to calculate the number of expected giant RHs

above a given radio flux at 1.4 Ghz from a full sky coverage up to z <∼ 0.2 and

compare the results with number counts derived by making use of the present day

observations (Fig. 6.14, the colour code is that of Fig.6.11). Calculations in Fig. 6.14

are obtained by using the full bundle of RHLFs obtained in the previous Section

(Fig. 6.13). The black points are obtained by making use of the radio data from

the analysis of the radio survey NVSS by Giovannini et al.(1999); normalization

of counts is scaled to correct for the incompleteness due to the sky-coverage in

Giovannini et al. (∼ 2 π sr). The NVSS has a 1σ level at 1.4 GHz equal to 0.45

mJy/beam (beam=45×45 arcsec, Condon et al. 1998). By adopting a typical size of

giant RH of the order of 1 Mpc, the surface brightness of the objects which populate

the peak of the RHLFs (∼ 1024 W/Hz) at z∼0.15 is expected to fall below the 2σ

limit of the NVSS. These giant RHs have a flux of about 20 mJy, thus below this

flux the NVSS becomes poorly efficient in catching the bulk of giant RHs in the

redshift bin z=0–0.2 and a fair comparison with observations is not possible. For

larger fluxes we find that the expected number counts are in excellent agreement with

the counts obtained from the observations. We note that assuming a superlinear

scaling of B with cluster mass, up to 30-40 giant RHs at z < 0.2 are expected to

be discovered with future deeper radio surveys. On the other hand, the number of

these giant RHs in the case of a sublinear scaling should only be a factor of ∼ 2

larger than that of presently known halos (Fig. 6.14b).

As a second step, we calculate (Fig.6.15) the whole sky number of giant RHs

expected up z = 0.7 (the probability to form giant RHs at z > 0.7 is negligible).

We note that the number counts of giant RHs increases down to a radio flux of

f1.4 ∼ 2 − 3 mJy and then flattens due to the strong (negative) evolution of the

RHLFs (Fig. 6.13). We note that the expected total number of giant RHs above 1

mJy at 1.4 GHz is of the order of ∼ 100 depending on the scaling of the magnetic
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Figure 6.16: Expected total number of giant RHs above a given radio flux in different
redshift bins: panel a) above 5 mJy; panel b) above 30 mJy. In both panels the colour
code is the same of Fig.6.11.

field with cluster mass (Fig. 6.16b).

Finally we calculate the expected number counts of giant RHs above a given

radio flux in different redshift bins. This allows us to catch the redshift at which

the bulk of giant RHs is expected. In Fig. 6.16 we report the RHNCs integrated

above 5 mJy (Panel a)) and above 30 mJy (Panel b)). We note that the bulk of

giant RHs at 1.4 GHz is expected in the redshift interval 0.1− 0.3 and this does not

strongly depend on the flux limit. We note that the “relatively high value” of such

redshift range is also due to the presence of the low radio power cut-off in the RHLFs

which suppresses the expected number of low power giant RHs. On the other hand,

at radio fluxes > 30 mJy the contribution from higher redshift decreases since the

requested radio luminosities at these redshift correspond to masses of the parent

clusters which are above the high–mass cut-off of the cluster mass function.

6.9 Towards low radio frequencies: model expectations at
150 MHz

Due to their steep radio-spectra, giant RHs are ideal targets for upcoming low-

frequency radio telescopes, such as LOFAR and LWA. Having in hands apowerful
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Figure 6.17: a) The occurrences of giant RHs as a function of the cluster mass in the
redshift bins 0-0.1 (solid lines) and 0.4-0.5 (dashed lines) are reported for 150 MHz (thick
lines) and for 1.4 GHz (thin lines). b) Mass functions of giant RHs in the redshift bins
0-0.1 (solid lines) and 0.4-0.5 (dashed lines) are reported for 150 MHz (thick lines) and for
1.4 GHz (thin lines). c) Comparison between the expected RHNCs above a given radio
flux at 1.4 Ghz (thin lines) and at 150 MHz (thick lines) from a full sky coverage up to
z ≤ 0.6.
All the calculations have been performed assuming: b=1.5, B<M> = 1.9µG and ηt = 0.2.

(and presently unique) tool to calculate statistical expectations of RHs, in this

section we present calculations of the statistics of giant RHs at 150 MHz derived

from the electron reacceleration model.

For simplicity, we present these results only for one set of the parameters in

the plane (B<M>, b) (Fig.6.7): a super-linear case (b=1.5, B<M> = 1.9µG) (see

Sect. 6.5.3).

First, we calculate the probability to have giant RHs at ∼ 150 MHz as a function

of the cluster’s mass following the procedure outlined in Sect. 6.6 and requiring a

break frequency νb >∼ 20 MHz to account for the new observation frequency. In

Fig.6.17a we report the probability to have giant RHs as a function of virial mass in

two redshift bins at 1.4 GHz (thin lines) and at 150 MHz (thick lines). As expected,

the probability at 150 MHz is substantially larger than that calculated at 1.4 GHz,

particularly for higher redshifts and for low massive clusters. The increase of the

occurrence of RHs towards lower observing frequencies is a unique expectation of the

re-acceleration model.

One of the main findings of our work is the presence of a cut-off in the RHLFs
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at low radio powers (see Sec.5), which reflects the drop of the probability to form

giant RHs as the cluster’s mass decreases. In Fig.6.17b we plot the mass functions of

radio halos (RHMFs) at 1.4 GHz and at 150 MHz in two redshift bins (see caption

of Fig.6.17). We note that the number density of giant RHs is increased by only

a factor ∼ 2 for M > 2 · 1015 M¯, but by more than one order of magnitude for

M ≤ 1015 M¯. The most interesting feature is again the presence of a low mass

cut-off in the RHMFs at 150 MHz, which however is shifted by a factor ∼ 2 towards

smaller masses with respect to the case at 1.4 GHz. This is related to the fact that a

smaller energy density in the form of turbulence is sufficient to boost giant RHs at

lower frequencies, and this allows the formation of giant RHs also in slightly smaller

clusters, which indeed are expected to be less turbulent (Chapt.5).

Finally, in order to obtain estimates for the RHLFs and RHNCs at 150 MHz,

we tentatively assume the same PR − M scaling found at 1.4 GHz, scaled at 150

MHz with an average spectral index αν ∼ 1.2, and follow the approach outlined in

Secs. 6.7 and 6.8. In Fig.6.17c we report the expected integral number counts of

radio halos from a full sky coverage above a given radio flux at 1.4 GHz (thin lines)

and at 150 MHz (thick lines) up to a redshift z ∼ 0.6. The expected number of giant

RHs at 150 MHz are a factor of ∼ 10 larger than the number expected at 1.4 GHz,

with the bulk of giant RHs at fluxes ≥ few mJy.

The increase of the number of RH toward lower frequencies is driving by the

increase of the probability to have RH emitting at lower frequencies (Fig. 6.17a)

and is again a unique signature of the particle re-acceleration scenario. In the near

future LOFAR will be able to detect diffuse emission on Mpc scale at 150 MHz down

to these fluxes and this would be sufficient to catch the bulk of these giant RHs and

to test the re-acceleration scenario.

6.10 Summary and Discussion

The observed correlations between radio and X-ray properties of galaxy clusters

provide useful tools in constraining the physical parameters that are relevant to

the reacceleration models for the onset of giant radio halos (RHs). The presented

analisis is based on the calculations presented in Chapt.5, in which we have assumed

that a seed population of relativistic electrons reaccelerated by magnetosonic (MS)

waves is released in the ICM by relatively recent merger events. To this end we have
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collected from the literature a sample of 17 giant RH clusters for all of which, but

one (A2254), both radio and X-ray homogeneous data are available, as summarized

in Tab.1 & 2. Based on the relationships derived in the previous Chapt.5, we have

been able to constrain the (likely) dependence of the average magnetic field intensity

(B) on the cluster mass, under the assumption that B can be parameterized as

B = B<M>(M/ < M >)b (with B<M> the average field intensity of a cluster of mean

mass < M >= 1.6 × 1015 M¯ and b positive). This is an important achievement

because both the emitted synchrotron spectrum and losses depend critically on the

field intensity. Following the approach outlined in Chapt.5, the merger events are

obtained in the statistical scenario provided by the extended Press & Schechter

formalism that describes the hierarchical formation of galaxy clusters. The main

results of our study can be summarized as follows:

• Observed correlations

In Sect. 6.4 we derive the correlations between the radio power at 1.4 GHz (P1.4)

and the X-ray luminosity (0.1-2.4 keV), ICM temperature and cluster mass.

Most important for the purpose of the present investigation is the P1.4 −Mv

correlation which has been derived by combining the LX − Mv correlation

obtained for a large statistical sample of galaxy clusters (the HIFLUGCS

sample plus our sample) with the P1.4−LX correlation derived for our sample

of giant RHs. This procedure allows us to avoid the well known uncertainties

and limits which are introduced in measuring the masses of small samples of

galaxy clusters, especially in the case of merging systems. We find a value of

the slope αM = 2.9±0.4 (P1.4 ∝ MαM
v ). A steep correlation of the synchrotron

luminosity with the ICM temperature is also found, although with a large

statistical error in the determination of the slope : αT = 6.4±1.6 (P1.4 ∝ T αT ).

• Constraining the magnetic field dependence on the cluster mass

A correlation between the radio power and the cluster virial mass is naturally

expected in the framework of electron acceleration models. This relationships,

discussed in Sec. 6.5 (Eq.6.8), can reproduce the observed correlation for viable

values of the physical parameters. For instance, in the case B << Bcmb, it is
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P (νo) ∝ Mv
a(2−Γ+b)+b and the exponent agrees with the observed one (αM ∼ 3)

by adopting a typical slope of the radio spectrum a = 1− 1.2 and a sub–linear

scaling b ∼ 0.6− 0.8.

A systematic comparison of the expected correlations between the radio power

and the cluster mass with the observed one (Sects.6.5.1 and 6.5.3) allows the

definition of a permitted region of the parameters’ space (B<M>,b), where a

lower bound B<M> = 0.2 µG is obtained in order not to overproduce via the IC

scattering of the CMB photons the hard X-ray fluxes observed in the direction

of a few giant RHs (Sect. 6.5.3 and Fig. 6.7). It is found a lower bound at

b ∼ 0.5− 0.6 and that a relatively narrow range of B<M> values is allowed for

a fixed b. The boundaries of the allowed region, aside from the lower bound

of B<M>, are essentially sensitive to the limits from the P1.4−Mv correlation.

A super–linear scaling of B with mass, as expected by MHD simulations (Dolag

et al. 2004) falls within the allowed region.

The values of the average magnetic field intensity in the superlinear case

are close (slightly smaller) to those obtained from the Faraday rotation

measurements (e.g., Govoni & Feretti 2004), which, however, generally sample

regions which are even more internally placed than those spanned by giant

RHs.

Future observations will allow to better constrain the radio-X ray correlations

and thus to better define the region of the model parameters.

• Probability to form giant RHs

In Sect. 6.6 we report on extensive calculations aimed at constraining ηt, the

fraction of the available energy in MS waves, which is required to match

the observed mean occurrence of giant RHs at redshifts z ≤ 0.2 (Fig. 6.8).

By adopting a representative sampling of the allowed (B<M>,b) parameter

space (Fig.6.7) we find 0.15 ≤ ηt ≤ 0.44: the larger values are obtained for

B<M> approaching the lower bound of the allowed region, because of the larger

acceleration efficiency necessary to boost electrons at higher energies to obtain

a fixed fraction of clusters with giant RHs.
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With the constrained value of ηt for each set of (B<M>,b) parameters we can

calculate the probability of occurrence of giant RHs from smaller to larger

redshifts for which observational data are not available. This probability

depends on the merging history of clusters and on the relative importance of the

synchrotron and IC losses, and shows a somewhat complicated behavior with

cluster mass and redshift. The maximum value of this probability at a given

redshift is found for a cluster mass M∗ (Eq.6.12) which mark the transition

between the Compton and the synchrotron dominated phases.

In the case of sublinear scaling of the magnetic field with cluster mass (b∼0.6–

0.9) the allowed values of the strength of the magnetic field are relatively small

(Fig. 6.7), the value of M∗ is large and the IC losses are always dominant

for the mass range of clusters with known giant RHs. As a consequence the

probability to have giant RHs increases with cluster mass and decreases with

redshift (Fig 6.10). On the other hand superlinear scalings (b∼1.2–1.7) imply

allowed values of B<M> relatively large (Fig. 6.7), and even larger values of

the magnetic field for the most massive objects. In this case the value M∗ falls

within the range of masses spanned by giant RH clusters: the predicted fraction

of clusters with giant RHs increases with mass, then reaches a maximum value

at about Mv ∼ M∗, and finally falls down for larger masses (Fig 6.9). At

variance with the case of sublinear scaling, in this case the fraction of the most

massive objects with giant RHs is expected to slightly increase with redshift,

at least up to z=0.2–0.4 (Fig 6.9) where the bulk of turbulence is injected in a

ΛCDM model (Chapt.5).

• Luminosity functions (RHLFs)

In Sect. 6.7 we report the results of extensive calculations following a fair

sampling of the (B<M>,b) allowed region as summarized in Tab. 6.3; this

essentially allows a full coverage of all possible RHLFs given the present

correlations at 1σ. We find that, although the large uncertainties in

the (B<M>,b) region, the predicted local RHLFs are confined to a rather

narrow bundle, the most characteristic common feature being the presence

of a flattening/cut-off at radio powers below about 1024 W/Hz at 1.4 GHz
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(Fig.6.11). The fraction of giant RHs with 1.4 GHz luminosity below ∼
5 × 1022W Hz−1 h−2

70 , a factor of ∼ 5 smaller than the luminosity of the

less powerful giant RH (A2256, z=0.0581) known so far, is negligible. This

characteristic shape of the RHLFs, obtained in our work for the first time,

represents a unique prediction of particle acceleration models, and does not

depend on the adopted physical details for the particle acceleration mechanism.

This is due to the decrease of the efficiency of particle acceleration in the case

of less massive clusters which is related to three major reasons (see Chapt.5):

i) smaller clusters are less turbulent than larger ones since the turbulent

energy is expected to scale with the thermal one (see Chapt.5);

ii) turbulence is typically injected in large Mpc regions in more massive

clusters and thus these are favoured for the formation of giant RHs

(Chapt.5);

iii) since in the present work we found B ∝ M b with b >∼ 0.5, higher energy

electrons should be accelerated in smaller clusters to emit synchrotron

radiation at a given frequency.

Deep radio survey with future radio telescopes (LOFAR, LWA, SKA) are

required to test the presence of this cut-off/flattening in the luminosity function

of the giant RHs.

The predicted evolution of the RHLFs with redshift is illustrated in Fig. 6.13:

the comoving number density of giant RHs decreases with redshift due to

the evolutions of the cluster mass function and of the probability to form

giant RHs. The decrease with redshift of the RHLFs calculated by adopting

sublinear scaling of the magnetic field with cluster mass is faster than that in

the superlinear scaling causing a spread in the RHLFs bundle with z.

• Number counts (RHNCs) at 1.4 GHz

In Sect. 6.8 we have derived the integral number counts of giant RHs at 1.4

GHz. We find that the number counts predicted for the same set of RHLFs

discussed in Sect. 6.7 generally agree with those derived from the NVSS at
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the limit of this survey and within z = 0.2 (Fig.6.14). The flattening of the

counts below ∼ 50 − 60 mJy is both due to the combination of the low power

cut-offs of the RHLFs with the redshift limit, and to the RHLFs evolution with

redshift. On the other hand, past extrapolations of the data which assume a

fixed fraction of giant RHs with cluster mass predict an increasing number of

sources at lower fluxes (e.g., Enßlin & Röttgering 2002).

Giant RHs around the peak of our LFs (P1.4GHz ∼ 1024W/Hz) and at z∼0.15

would be detectable at fluxes below about 20 mJy, which however is below the

sensitivity limit of the NVSS for this type of objects. We estimate that the

number of giant RHs below this flux could be up to 30-40 (whole sky, z ≤ 0.2)

if superlinear scalings of the mass with B hold.

The predicted number of giant RHs (Fig.6.15) (whole Universe) could be up

to >∼ 100 if a superlinear scaling of the mass with B holds, while a sublinear

scaling would give a number 2-3 times smaller. A substantial number of these

objects would be found also down to a flux of a few mJy at 1.4 GHz in the

case of a superlinear scaling, while in the case of sublinear scalings the number

of giant RHs below about 10 mJy would be negligible.

We also find that the bulk of giant RHs is expected at z ∼0.1–0.3 (Fig.6.16). It

should be mainly composed by those RHs populating the peak of the RHLFs,

i.e., objects similar (or slightly more powerful) to the giant RH in the Coma

cluster.

• Toward expectations at low radio frequencies: 150 MHz

In Sect. 6.9 we have extended our estimates to the case of low frequency

observations which will be made with upcoming instruments, such as LOFAR

and LWA. Lower energetic electrons contribute to these frequencies and thus

- in the framework of the particle re-acceleration scenario - the efficiency of

producing giant RHs in galaxy clusters is expected to be higher than that of

giant RHs emitting at 1.4 GHz.

By presenting the analysis for a representative set of parameters, we have shown

that the probability to have giant RHs emitting at 150 MHz is significantly
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larger than that of those emitting at 1.4 GHz, particularly in the mass range

∼ 5 · 1014 − 1.5 · 1015 M¯. Consequently, the low mass cut-off in the RHMFs

is shifted down by a factor of ∼ 2. This is naturally expected and is due to the

fact that slightly less turbulent systems are able to generate giant RHs at lower

frequencies.

We have also estimated that the number counts of giant RHs at low frequencies

might outnumber those at 1.4 GHz by at least one order of magnitude. We

estimate that LOFAR is likely to discover >∼ 103 (all sky) giant RHs down to

a flux of few mJy at 150 MHz.



Chapter 7

Revised statistics of giant radio
halos (work in progress)

The calculations carried out in the previous Chapters (Chapt. 5 and Chapt. 6)

provide a “unique” predictive power which combined with deep radio observations

of complete samples of galaxy clusters can be used to constrain the models for the

formation of giant radio halos (RHs) and the physical properties of the ICM.

In particular we have estimated the energy of turbulence injected in galaxy

clusters through cluster mergers, and derived the expected occurrence of giant RHs

as a function of the mass and dynamical status of the clusters in the framework of

the merger–induced particle re–acceleration scenario (Chapt. 5). The most relevant

result of those calculations is that the occurrence of giant RHs increases with the

cluster mass, which is in agreement with observation at z≤ 0.2 (e.g., Giovannini et

al. 1999). Most importantly we have also derived the evolution with redshift of the

formation rate of RHs in galaxy clusters with different masses for different scaling

laws between the rms magnetic field strength and the virial mass of the parent

clusters (B ∝ M b
v).

In Sect. 6.8 we have also shown that the bulk of giant RH is expected to be

in the redshift range z ∼ 0.1 ÷ 0.3 (see also Fig. 7.1) and this comes from two

competing effects: the general decrease of the number density of RHs as a function

of redshift (or the negative evolution of the RHLFs) and the increase of the volume

of the Universe with increasing redshift.

Unfortunately these expectations cannot be tested with present radio surveys

as the cross correlation of X-ray cluster samples with both the NVSS at 1.4 GHz

(Giovannini et al. 1999) and the WENSS at 327 MHz (Kempner & Sarazin 2001),

179
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Figure 7.1: Expected total number of giant RHs above 5 mJy in different redshift bins.
The calculations are reported for the superlinear scaling (b > 1, upper region) and for the
sublinear scaling (b < 1, lower region); see Chapt.6 for a discussion.

which used clusters samples which were complete up to z < 0.2.

Starting from the results of the present PhD project and with the main aim

to derive the fraction of massive galaxy clusters hosting a RH at relatively higher

redshift (0.2 ≤ z ≤ 0.4) we carried out relatively deep observations of 50 massive

(X-ray luminous) galaxy clusters at 610 MHz with the Giant Metrewave Radio

Telescope (GMRT, Pune, India). We will refer to this project as the GMRT Radio

Halos Survey.

The combination of this project with previous efforts from the NVSS will allow

us to have a large complete sample of X-ray selected clusters in the redshift range

0 < z < 0.4 and thus to perform a “statistical” analysis of these clusters, deriving

the occurrence of RHs as a function of mass and redshift taking into account the

observational biases and selection effects. We stress that this study is extremely

important for understanding the origin of the RHs in galaxy clusters.

In general the main steps of this work can be summarized as follow:

• measure for the first time the occurrence of RHs in the redshift range 0.2 ≤
z ≤ 0.35;

• constrain the dependence of their occurrence with cluster mass;
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• combine the results with that at z < 0.2 (Giovannini et al. 1999) and test the

theoretical expectation of the re-acceleration model

All the quantities are reported for a ΛCDM cosmology (Ho = 70 Km s−1 Mpc−1,

Ωo,m = 0.3, ΩΛ = 0.7, σ8 = 0.9).

7.1 Selection of the sample in the redshift bin: 0.2÷ 0.4

In order to obtain a statistically significant sample of clusters suitable for our aims,

we based our selection on the ROSAT–ESO Flux Limited X–ray (REFLEX) galaxy

cluster catalog (Böhringer et al. 2004) and on the extended ROSAT Brightest Cluster

Sample (eBCS) catalog (Ebeling et al. 1998, 2000). These two catalogs have almost

the same flux limit in the 0.1− 2.4 keV band ( >∼ 3 · 10−12erg s−1 cm−2) and thus we

can selected an homogeneous flux limited sample. Form these catalogs we selected

all clusters satisfying the following criteria:

1) LX(0.1–2.4 keV) > 5 × 1044 erg s−1;

2) 0.2 ≤ z ≤ 0.4;

7.1.1 The Reflex sub-sample

The Reflex survey covers the southern sky up to declination δ = +2.5◦, avoiding the

Milky Way and the regions of the Magellanic clouds, for a total area of 13924 deg2

(4.24 sr). The sample is complete for X-ray fluxes larger than ∼ 3 ·10−12erg s−1 cm−2

up to z ∼ 0.3; above this redshift only very luminous objects (with X-ray luminosities

of several 1045 erg/s) are observed (Böhringer et al. 2001). In order to have a good

u-v coverage with the GMRT we selected in this sample only clusters with δ ≥ −30◦.

In Fig. 7.2 we report the distribution of the REFLEX clusters in the plane

LX − z and highlight with red circles the clusters which meet all the above criteria.

We obtain a total sample of 27 clusters. The source list is reported in Tab. 7.1,

where we give (1) the REFLEX name, (2) alternative name from other catalogs, (3)

and (4) J2000 coordinates, (5) redshift, (6) the X–ray luminosity in the 0.1–2.4 keV

band in unit of 1044 erg/s.

Among these 27 clusters, there are three clusters with known RHs, i.e., A 2744,

A 1300 and A 2163. From the remaining 24 clusters in Tab. 7.1 we selected all

clusters with no radio information available in the literature and we also excluded all
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Reflex 
GMRT selected Reflex 

GMRT selected

Figure 7.2: X-ray luminosity (in 0.1 − 2.4 keV band) versus z for the REFLEX clusters
(black filled circles). Open red circles select the clusters belonging to our sample.

clusters belonging to the GMRT Cluster Key Project (P.I. Kulkarni), and remained

with 18 clusters (marked with the symbol
√

in Tab. 7.1) which were all observed

with the GMRT (in several observational run from January 2005 to August 2005).

7.1.2 The extended BCS sub-sample

The ROSAT Brightest Cluster Sample (BCS; Ebeling et al. 1998) is a 90 per cent

flux-complete sample of the 201 clusters of galaxies in the northen hemisphere

selected from the ROSAT All-Sky Survey (RASS). All these clusters have fluxes

higher than 4.4×10−12 erg cm−2 s−1 in the 0.1-2.4 keV band. This sample is combined

with a low-flux extension of the BCS (Ebeling et al. 2000) which consist of 99 clusters

of galaxies with fluxes higher than 2.8× 10−12 erg cm−2 s−1 in the 0.1-2.4 keV band.

The combination of these two samples forms the homogeneously selected extended

BCS (eBCS) which is statistically complete within a redshift z ∼ 0.3 (Ebeling et al.

1998, 2000).

From the eBCS catalog we select all clusters which meet the above criteria and

with 15◦ < δ < 60◦, and obtain a total sample of 23 clusters. In Fig. 7.3 we report the

distribution of the eBCS clusters in the plane LX − z and highlight with red circles

the clusters which meet our selection criteria. The source list is reported in Tab. 7.2,

where we give (1) the cluster’s name, (2) and (3) J2000 coordinates, (4) redshift, (5)

the X–ray luminosity in the 0.1–2.4 keV band in unit of 1044 erg/s. Among these 23
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eBCS 
GMRT selected eBCS 

GMRT selected

Figure 7.3: X-ray luminosity (in 0.1 − 2.4 keV band) versus z for the REFLEX clusters
(black filled circles). Open red circles select the clusters belonging to our sample.

objects 4 have already known diffuse radio emission (A 773, A 1758, A 2219, A 2390)

and 3 other clusters have been already observed with the VLA (at 1.4 GHz) and

the data are available in the VLA archive. Thus we ended up with a subset of 16

galaxy clusters which we observed with the GMRT (in August-September 2005).

7.1.3 Preliminary published results: the REFLEX sub-sample

The preliminary observational results of this work have been published in Venturi et

al. (2007) and concern the observation at 610 MHz of 11 clusters from the REFLEX

sub-sample. The sensitivity (1σ) in the obtained GMRT radio maps is in the range

35–100 µJy beam−1 for all clusters. We found three new RHs (see Fig. 7.4), in

particular, giant RHs were found in A 209 and RXCJ 2003.5–2323, and one halo (of

smaller size) was found in RXCJ 1314.4–2515. Furthermore, a radio relic was found

in A 521, and two relics were found in RXCJ 1314.5–2515.

The remaining six clusters observed do not host extended emission of any kind

at the level of 50-100 µJy/beam. This is an important and basic point of our

investigation, since it is expected that the bulk of clusters of galaxies do not host an

extended RH, therefore the deep upper limits on “radio-quiet” clusters are important

at least as the detections.

In Fig. 7.5 we report the location of the giant RHs in A 209 and RXCJ 2003.5–

2323 on the LX − P1.4 correlation, where all the previously known clusters with
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Figure 7.4: a) Radio conturns of A 209 RH after subtraction of the discrete radio sources
on the X-ray archive Chandra image (colour) in the 0.3-9 keV band; the radio map has
a resolution of 32”× 30” and an rms of 0.15 mJy/beam; the RH has LLS= 810 h−1

70 kpc.
b) Radio conturns and colour image of the RH in RXCJ2003-2323 after subtraction of
the discrete radio sources. The radio map has a resolution of 32” × 23” and an rms of
100 µJy/beam; the RH has LLS= 1.4 h−1

70 Mpc. c) Radio conturns of RXCJ1314-2515
superposed on the X-ray archive ASCA image (colour), the radio map has a resolution of
25”× 32” and an rms of 0.18 mJy/beam; the RH has LLS= 460 h−1

70 kpc.
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Figure 7.5: X-ray luminosity–radio power correlation for cluster with RHs. Stars represent
the literature clusters at z<0.2 and filled circles the literature clusters at z> 0.2. Open
circles show the location of A 209 (lower left) and RXCJ2003.5–2323 (upper right).

giant RHs are also reported (see Chapt.6). The radio power at 1.4 GHz for these

two clusters was obtained scaling the measured flux density at 610 MHz with a

spectral index α1.4 GHz
610 MHz = 1.2 ± 0.2 (the uncertainty assumed here dominates over

the 610 MHz flux density error). Clusters at z<0.2 and those at z>0.2 are shown

with different symbols. The location of A 209 and RXCJ2003.5–2323 on the plot

is in good agreement with the distribution of all giant radio halos known in the

literature.

An important piece of information would be the knowledge of the merging

stage of the clusters in the sample, since cluster mergers are a major ingredient

in the re–acceleration model. The literature information on the clusters presented

here is not homogeneous, and it is not possible to make conclusive statements on

the connection between merging/non–merging signatures and the presence/absence

of RHs. A 209 is known to be undergoing merging events, but no information is

available for RXCJ 2003.5–2323, except for an elongated X–ray emission imaged by

ROSAT (Venturi et al. 2007). The three RH clusters known from the literature and

belonging to our sample are all reported to be dynamically active (see for instance

Finoguenov et al. 2005; Zhang et al. 2006). Signature of cluster merger is present
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in the optical and X–ray bands for A 521 (Giacintucci et al. 2006, and references

therein) and RXCJ 1314.4–2515, which host extended radio emission in the form of

RHs and relics. Elongated or more complex X–ray isophotes are visible in S 780,

A 141, A 2631 and in RXCJ 0437.1+0043, which lack cluster scale radio emission.

The remaining two clusters without extended emission are considered “relaxed” on

the basis of the X–ray emission (Venturi et al. 2007).

To summarize, the optical and X–ray information for the REFLEX sub-sample

of clusters presented in Venturi et al. (2007) is in line with the findings that clusters

with RHs are characterized by signatures of merging processes. On the other hand,

clusters without extended radio emission (“radio quiet”) may or may not show

dynamical activity at some level.

7.2 Towards a revision of the occurrence of RHs within
z < 0.4: preliminary results

The importance of the statistical properties of RHs resides in the fact that these can

be used to discriminate among the possible models for the origin of RHs. Therefore

an unbiased and exhaustive investigation of the present statistics of RHs is crucial

in order to achieve a firm conclusion on the origin of RHs.

With this goal in mind we planned to revise the occurrence of RHs in the redshift

range 0-0.4, combining the low redshift (z < 0.2) statistical study of XBACs clusters

with the NVSS (Giovannini et al. 1999) with our recent results from the radio follow

up of REFLEX and eBCS clusters, the GMRT RH survey, at relatively higher

redshift (0.2 < z < 0.4).

The XBACs clusters (Ebeling et al. 1996) are extracted from an all-sky, X-ray

flux limited sample of 242 clusters from the catalog of Abell (1989) (ACO) detected

in the RASS with an X-ray flux above 5 · 1012 erg cm−2 s−1 in the 0.1-2.4 keV band

and within z < 0.2 (which is the nominal completeness limit of the ACO clusters).

The NVSS is a radio survey performed at 1.4 GHz with the Very Large Array

(VLA) in the D configuration, has an angular resolution of 45” (HPBW), a noise

level of 0.45 mJy/beam (1 σ) and cover all the sky north of δ = −40◦. Because

of the lack of short baseline the NVSS is insensitive to structure larger then 15′,

thus, since RHs have a typical total extension of about 1 Mpc, Giovannini et al.

(1999) have limited their search to clusters with z > 0.044 (in a LCDM cosmology
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XBACs (NVSS) 

eBCS+REFLEX
(GMRT RH survey) 

Figure 7.6: X-ray luminosity (in 0.1 − 2.4 keV band) versus z for the XBACs clusters
inspected with the NVSS (black filled circles) and for the REFLEX and eBCS clusters
inspected with the GMRT (black open circles). Are also marked the 5 clusters belonging
to the GMRT cluster key project (blue filled circles), the giant RH (open red circles), the
small and/or mini halos (open green circles) and the relics we found in the REFLEX+eBCS
sub-samples (cyan crosses). The black straight line gives the lower limit on cluster X-ray
luminosity for a detection of a RH with size of ∼ 1 h−1

50 Mpc in the NVSS, assuming a 1σ
brightness limit and the radio power – X-ray luminosity correlations.
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these means that the maximum detectable size at z ∼ 0.044 is about 780 kpc). We

select all clusters with 0.044 ≤ z ≤ 0.2 and with δ > −40 from the XBACs and end

up with a XBACs sub-sample of 182 clusters which have been all inspected in the

NVSS (once one excludes A 1773 and A 388 which fall in the few remaining gaps of

the NVSS) by Giovannini et al. (1999).

In Fig. 7.6 we report the total sample of 230 clusters which have been observed

in the radio (NVSS or GMRT). From the REFLEX sub-sample we exclude A 2163

(z=0.203) and A 209 (z=0.206) and from the eBCS sub-sample A 963 (0.206), which

were already included in the XBACs sub-sample. On the other hand in the REFLEX

sub-sample there are 5 clusters which are part of the GMRT cluster Key Project

(P.I. Kulkarni) and for which no public radio information are available at present

(they are marked with blue filled circles in Fig. 7.6). The total cluster sample is

made of 210 clusters between 0.044 ≤ z ≤ 0.4. In Fig. 7.6 we also mark with open

red circles the clusters hosting a giant RH and with open green circles those hosting

smaller or mini RHs: there is a tendency of RH to be hosted in high X-ray luminosity

clusters, and this is line with previous claims (Giovannini et al. 1999).

This point, however, needs further investigation because, in order to derive

the occurrence of RHs in galaxy clusters from the presented samples, one has to

carefully check how the radio observations affect the completeness of the samples

themselves. The observations carried out by our group at the GMRT are deep

enough (1σ ∼ 35−100 µJy beam−1, depending on the specific objects) to guarantee

that the non-detections of extended diffuse emissions are significant (Venturi et al.,

in prep; Brunetti et al. in prep.). On the other hand the NVSS survey is affected

by surface brightness-limit (1σ = 0.45 mJy/beam) and this may affect the statistic

of RH in the less X-ray luminous clusters.

As an example we report in Fig. 7.6 the lower limit on cluster X-ray luminosity

for a detection of a RH with size of ∼ 1 h−1
50 Mpc in the NVSS, assuming 1σ NVSS

brightness limit and that the radio power – X-ray luminosity correlations observed

for high X-ray luminous clusters, LX >∼ 2 ·1044 h−2
70 erg/s (Chapt. 6, Fig.6.1), is valid

also for lower X-ray luminosities.

This issue needs to be carefully explored and represent the final goal of this

project. By taking into account the brightness limit of the NVSS radio survey and

the the X-ray flux limits of the X-ray cluster samples, we will perform a detailed
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and unbiased statistical analysis of the occurrence of RHs as a function of X-ray

luminosity (mass) and redshift, and to compare these results with our expectations

carried out in the framework of the re-acceleration scenario. This will be discussed

in an upcoming paper (Cassano et al. in prep.).
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Table 7.1: Cluster sample from the REFLEX catalog.

REFLEX Name Alt. name RAJ2000 DECJ2000 z LX

√
RXCJ0003.1−0605 A 2697 00 03 11.8 −06 05 10 0.2320 6.876

? RXCJ0014.3−3023 A 2744 00 14 18.8 −30 23 00 0.3066 12.916√
RXCJ0043.4−2037 A 2813 00 43 24.4 −20 37 17 0.2924 7.615√
RXCJ0105.5−2439 A 141 01 05 34.8 −24 39 17 0.2300 5.762√
RXCJ0118.1−2658 A 2895 01 18 11.1 −26 58 23 0.2275 5.559√
RXCJ0131.8−1336 A 209 01 31 53.0 −13 36 34 0.2060 6.289√
RXCJ0307.0−2840 A 3088 03 07 04.1 −28 40 14 0.2537 6.953
RXCJ0437.1+0043 − 04 37 10.1 +00 43 38 0.2842 8.989√
RXCJ0454.1−1014 A 521 04 54 09.1 −10 14 19 0.2475 8.178
RXCJ0510.7−0801 − 05 10 44.7 −08 01 06 0.2195 8.551√
RXCJ1023.8−2715 A 3444 10 23 50.8 −27 15 31 0.2542 13.760√
RXCJ1115.8+0129 − 11 15 54.0 +01 29 44 0.3499 13.579

? RXCJ1131.9−1955 A 1300 11 31 56.3 −19 55 37 0.3075 13.968
RXCJ1212.3−1816 − 12 12 18.9 −18 16 43 0.2690 6.197√
RXCJ1314.4−2515 − 13 14 28.0 −25 15 41 0.2439 10.943√
RXCJ1459.4−1811 S 780 14 59 29.3 −18 11 13 0.2357 15.531
RXCJ1504.1−0248 − 15 04 07.7 −02 48 18 0.2153 28.073√
RXCJ1512.2−2254 − 15 12 12.6 −22 54 59 0.3152 10.186
RXCJ1514.9−1523 − 15 14 58.0 −15 23 10 0.2226 7.160

? RXCJ1615.7−0608 A 2163 16 15 46.9 −06 08 45 0.2030 23.170√
RXCJ2003.5−2323 − 20 03 30.4 −23 23 05 0.3171 9.248
RXCJ2211.7−0350 − 22 11 43.4 −03 50 07 0.2700 7.418√
RXCJ2248.5−1606 A 2485 22 48 32.9 −16 06 23 0.2472 5.100√
RXCJ2308.3−0211 A 2537 23 08 23.2 −02 11 31 0.2966 10.174√
RXCJ2337.6+0016 A 2631 23 37 40.6 +00 16 36 0.2779 7.571√
RXCJ2341.2−0901 A 2645 23 41 16.8 −09 01 39 0.2510 5.789√
RXCJ2351.6−2605 A 2667 23 51 40.7 −26 05 01 0.2264 13.651

Symbols are as follows:
√

marks the clusters observed by us with the GMRT as part of our
radio halo survey; ? marks the clusters with radio halo known from the literature (A 2744
Govoni et al. 2001; A 1300 Reid et al. 1999; A 2163 Herbig & Birkinshaw 1994 and Feretti
et al. 2001). All the remaining clusters are part of the GMRT cluster Key Project (P.I.
Kulkarni).
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Table 7.2: Cluster sample from the eBCS catalog.

Name RAJ2000 DECJ2000 z LX

√
RXJ0027.6+2616 00 27 49.8 +26 16 26 0.3649 12.29√
A611 08 00 58.1 +36 04 41 0.2880 8.855√
A697 08 42 53.3 +36 20 12 0.2820 10.57√
Z2089 09 00 45.9 +20 55 13 0.2347 6.79

?A773 09 17 59.4 +51 42 23 0.2170 8.097√
A781 09 20 23.2 +30 26 15 0.2984 11.29√
Z2701 09 52 55.3 +51 52 52 0.2140 6.59√
Z2661 09 49 57.0 +17 08 58 0.3825 17.79√
A963 10 17 09.6 +39 01 00 0.2060 6.39√
A1423 11 57 22.5 +33 39 18 0.2130 6.19√
Z5699 13 06 00.4 +26 30 58 0.3063 8.96√
A1682 13 06 49.7 +46 32 59 0.2260 7.017√
Z5768 13 11 31.5 +22 00 05 0.2660 7.465

?A1758a 13 32 32.1 +50 30 37 0.2800 12.26
A1763 13 35 17.2 +40 59 58 0.2279 9.32√

Z7160 14 57 15.2 +22 20 30 0.2578 8.411√
Z7215 15 01 23.2 +42 21 06 0.2897 7.34√
RXJ1532.9+3021 15 32 54.2 +30 21 11 0.3450 16.485

A2111 15 39 38.3 +34 24 21 0.2290 6.83
?A2219 16 40 21.1 +46 41 16 0.2281 12.73
A2261 17 22 28.3 +32 09 13 0.2240 11.31
∗A2390 21 53 34.6 +17 40 11 0.2329 13.43√

RXJ2228.6+2037 22 28 34.4 +20 36 47 0.4177 19.44

Symbols are as follows:
√

marks the clusters observed by us with the GMRT as part of
our radio halo survey; ? marks the clusters with a RH known from the literature (A 773
Govoni et al. 2001; A 1758 Giovannini et al. 2006; A 2219 Bacchi et al. 2003); ∗ marks
the clusters with “mini-halos” known from the literature (A 2390 Bacchi et al. 2003).
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Chapter 8

New scaling relations in cluster
RHs and the re-acceleration model

In the previous Chapters (Chapt. 5 and Chapt. 6) we have reported calculations

carried out for the first time in the framework of the re-acceleration scenario, in which

we have modelled the connection between RHs and cosmological cluster mergers, and

investigated the observed correlations between the synchrotron radio power and the

X-ray properties of the hosting clusters. Observed correlations relate the radio power

at 1.4 GHz (P1.4) with the X-ray luminosity (LX), temperature (T ) and cluster mass

(Liang 1999; Colafrancesco 1999; Feretti 2000,2003; Govoni et al. 2001a; Enßlin and

Röttgering 2002; see also Chapt. 6); also a trend between the largest linear size of

RH and the X-ray luminosities of the hosting clusters is found (Feretti 2000). In

particular, in Chapt. 6 we found a correlation between P1.4 and the virial mass Mv

of the hosting clusters, P1.4 ∝ M2.9±0.4
v , and discussed this correlation in the particle

re-acceleration scenario. However, this correlation relates quantities which pertain

to very different spatial regions: the observed radio emission comes from a radial

size RH ∼ 3− 6 time smaller than the virial radius Rv.

The formalism and procedures developed in the previous Chapts. 5 and 6 does

not allow us to give a spatially resolved modeling of the particle acceleration process

in galaxy clusters and for this reason the size of RH in Chapts.5 and 6 is taken

≈ 1 Mpc h−1
50 . In principle in order to study at the same time the morphology and

the statistical properties of RHs extensive numerical simulations (with ∼ 100 clusters

with M > 1015 M¯) are necessary and this is well above present ongoing projects.

On the other hand, by making use of simple time-independent recipes based on the

statistical modelling given in Chapts.5 and 6 one may discuss expected properties

193
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Figure 8.1: Function F−1, normalized to the F−1 value for a mean MH = Mm =
3 · 1014 M¯, as a function of MH , for bH = 0.5 and assuming different values of the
magnetic field BH corresponding to the mean mass Bm = 0.5, 1, 3, 6µG, from top to
bottom.

of RHs which are not restricted to virial quantities (Mv and Rv).

In this Chapter we will discuss expected scaling relations for RHs in the framework

of the re-acceleration scenario in its simplest form. Then we present new observed

correlations between the radio properties of RHs and dynamical quantities related

to the radio emitting region and compare them with the expectations.

A ΛCDM (Ho = 70 Km s−1 Mpc−1, Ωm = 0.3, ΩΛ = 0.7) cosmology is adopted.

The results presented in this Chapter are reported in a submitted paper

(Cassano, Brunetti, Setti, Govoni, Dolag; submitted to MNRAS).

8.1 Expected scalings in the re-acceleration scenario

In this Section we derive scaling expectations for giant and powerful RH in the

context of the re–acceleration scenario in its simplest form.

The most important ingredient is the energy of the turbulence injected in the

ICM which is expected to be induced by the infalling sub-halos (e.g., Roettiger

et al. 1997; Ricker & Sarazin 2001; Tormen et al. 2004). We have derived in

Chapt. 5 an estimate of the energy of merging-injected turbulence by assuming
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that a fraction of the PdV work done by the infalling sub-halos is injected into

compressible turbulence. We have shown also that the turbulent energy is expected

to roughly scale with the thermal energy of the ICM, a result in line with recent

analysis of numerical simulations (Vazza et al. 2006).

Following Chapts. 5, 6 we assume that once injected this turbulence is damped

by Transit-Time-Damping (TTD) resonance with thermal and relativistic particles

(at a rate Γth and Γrel, respectively). Since the damping time is shorter than the

other relevant time scales (dynamical and re-acceleration) the energy density of the

turbulence reaches a stationary condition given by ε̇t/(Γth + Γrel), where ε̇t is the

turbulence injection rate (see Chapt. 5 for details). When re–acceleration starts, the

bulk of the energy density of compressible modes which is damped by the relativistic

electrons goes into the re–energization of these electrons. On the other hand, after

a few re–acceleration times, in a time–scale of the order of the typical age of RHs,

particle re–acceleration is balanced by radiative losses, a quasi stationary situation

is reached, and it can be assumed that the energy flux of the turbulent modes is

essentially re–radiated via synchrotron and inverse Compton mechanisms:

(
ε̇t Γrel

Γth + Γrel

) ∝ (ε̇syn + ε̇ic) ⇒ ε̇syn ∝ ε̇t × (Γrel/Γth)

(1 + ε̇ic

ε̇syn
)

(8.1)

where ε̇syn and ε̇ic are the synchrotron and IC emissivities (and Γth >> Γrel, see

Chapt. 5; Brunetti & Lazarian 2007).

The ratio ε̇ic/ε̇syn simply depends on (Bcmb/BH)2, where Bcmb = 3.2 (1 + z)2 µG

is the equivalent magnetic field strength of the CMB (z, the redshift) and BH the

mean magnetic field strength in the radio halo volume, which can be parameterized

as BH ∝ M bH
H with MH the total cluster mass within RH (the average radius of the

radio emitting region).

Based on the results of Chapt. 5, the injection rate of the turbulence in the

RH volume can be estimated as ε̇t ∝ ρH v2
i /τcros, where ρH is the mean density of

the ICM in the RH volume, vi is the cluster-cluster impact velocity, v2
i ∝ Mv/Rv,

and τcros is the cluster-cluster crossing time (roughly constant). In the case RH is

larger than the cluster core radius one simply has v2
i ∝ σ2

H ≈ GMH/RH , where

σH is the velocity dispersion inside RH , and we shall assume ε̇t ∝ ρH σ2
H . The

term Γrel/Γth scales with εrel/εth ×
√

T (Brunetti 2006, Brunetti & Lazarian 2007),

where T is the temperature of the cluster gas, and εrel/εth is the ratio between the
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energy densities in relativistic particles and in the thermal plasma. Although this

ratio might reasonably vary from cluster to cluster, we shall assume that it does

not appreciably change in any systematic way with cluster mass (or temperature),

at least if one restricts to the relatively narrow range in cluster mass spanned by

clusters with giant RHs (see also the results from numerical simulations in Jubelgas

et al. 2006). Then from Eq.8.1 the total emitted radio power is:

PR =
∫

ε̇syn dVH ∝ MH σ3
H

F(z, MH , bH)
(8.2)

where we have taken
√

T ∝ σH and defined F(z, MH , bH) = [1 + (3.2 (1 + z)2/BH)2].

The expression F (Fig.8.1) is costant in the asymptotic limit B2
H >> B2

cmb or in the

simple case in which the rms magnetic field in the RH region is independent of the

cluster mass. For B2
H << B2

cmb one has that F−1 ∝ M2bH
H , thus in the general case

the expected scaling is steeper (slightly for BH of the order of a few µG) than that

obtained by assuming a constant F .

It is important to stress here that the expression in Eq.8.2 is a general theoretical

trend which implies simple scaling relations. Indeed, by taking σH ≈
√

GMH/RH

and under the very reasonable assumption that the mass scales with RH as MH ∝
Rα

H (see also Sect. 8.2.2), Eq.8.2 (with F ∼ cost) entails the correlations:

PR ∝ M
5α−3
2α

H (8.3)

PR ∝ R
5α−3

2
H (8.4)

PR ∝ σ
5α−3
α−1

H (8.5)

the effect of a non constant F is a steepening (although not substantial for ∼ µG

fields) of these scalings.

8.2 Observed scaling relations in clusters with radio halos

Motivated by the theoretical expectations outlined in the previous Section, we have

searched for the predicted scaling relations in the available data set for giant RHs.

We consider a sample of 15 clusters with known giant RH (RH >∼ 300 kpc)

already analyzed in Chapt. 6, with the exclusion of CL0016+16, due to the lack of
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Figure 8.2: P1.4 versus RH . The fit has been performed using a power-law form in the
log-log space and the best fit slope is reported in the panel.

good radio images to measure RH , and of A754, due to very complex radio structure.

References for 14 giant RHs are given in Chapt. 6, while for A2256 we use the more

recent radio data from Clarke & Enßlin (2006). In Tab.8.1 we report the relevant

observed and derived quantities for our sample.

8.2.1 Radio power versus sizes of radio halos

The first point that we want to investigate is the existence of a PR−RH correlation

(Eq.8.4) by making use of directly measurable quantities, such as the power and

the radius at 1.4 GHz. In the present literature it is customary to use the Largest

Linear Size (LLS), obtained from the Largest Angular Size (LAS) measured on the

radio images as the largest extension of the 2σ or 3σ contour level, as a measure

of the radio emitting region (e.g., Giovannini & Feretti 2000; Kempner & Sarazin

2001). Since a fraction of RHs in our sample is characterized by a non–spherical

morphology, meaning a non-circular projection on the plane of the sky, an adequate

measure of a RH’s size can be obtained by modelling the emitting volume with a

spherical region of radius RH =
√

Rmin ×Rmax, Rmin and Rmax being the minimum

and maximum radius measured on the 3σ radio isophotes. In this way we have

derived the RH values for all 15 RHs, as reported in Tab.8.1, by making use of the
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Table 8.1: In Col.(1): Cluster name. Col.(2): cluster redshift. Col.(3): logarithm of the
radio power at 1.4 GHz, P1.4, in unit of Watt/Hz. Col.(4): logarithm of the size of the RH,
RH , in unit of kpc h−1

70 . Col.(5): logarithm of the total cluster mass inside RH , MH , in
unit of solar masses. The references for the cluster redshift and radio power are reported
in CBS06, while for A2256 we use the more recent radio data from Clarke & Enßlin (2006).

cluster’s z Log(P1.4) Log(RH) Log(MH) Log(σ2
H)

name [Watt/Hz] [kpc h−1
70 ] [M¯ h−1

70 ] [km2 s−2]
1E50657-558 0.2994 25.45± 0.03 2.84± 0.04 14.83± 0.07 6.63± 0.08
A2163 0.2030 25.27± 0.01 3.01± 0.04 15.02± 0.05 6.65± 0.07
A2744 0.3080 25.23± 0.04 2.90± 0.06 14.76± 0.10 6.49± 0.11
A2219 0.2280 25.09± 0.02 2.84± 0.05 14.66± 0.08 6.46± 0.09
A1914 0.1712 24.72± 0.02 2.77± 0.04 14.68± 0.05 6.54± 0.06
A665 0.1816 24.60± 0.04 2.84± 0.04 14.57± 0.09 6.37± 0.10
A520 0.2010 24.59± 0.04 2.61± 0.04 14.21± 0.10 6.24± 0.11
A2254 0.1780 24.47± 0.04 2.61± 0.03 −− −−
A2256 0.0581 23.91± 0.08 2.63± 0.04 14.17± 0.09 6.18± 0.11
A773 0.2170 24.24± 0.04 2.71± 0.03 14.43± 0.05 6.36± 0.06
A545 0.1530 24.17± 0.02 2.58± 0.03 14.08± 0.30 6.13± 0.30
A2319 0.0559 24.05± 0.04 2.63± 0.02 14.30± 0.03 6.30± 0.03
A1300 0.3071 24.78± 0.04 2.76± 0.14 14.54± 0.17 6.42± 0.22
Coma (A1656) 0.0231 23.86± 0.04 2.53± 0.01 14.12± 0.03 6.22± 0.03
A2255 0.0808 23.95± 0.02 2.65± 0.03 14.16± 0.07 6.14± 0.07
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most recent radio maps available in literature. In Fig.8.2 we report P1.4 versus RH

for our sample. We find a clear trend with RH increasing with P1.4, i.e., the more

extended RHs are also the most powerful. The best-fit of this correlation is given

by:

log
[

P1.4 GHz

5 · 1024 h−2
70

Watt
Hz

]
= (4.18± 0.68) log

[
RH

500 h−1
70 kpc

]
− (0.26± 0.07) (8.6)

A Spearmann test yields a correlation coefficient of ∼ 0.84 and a s = 0.00011

significance, indicative of a relatively strong correlation.

Uncertainties in the measure of the size of RH

The dispersion of the P1.4−RH correlation is relatively large, a factor of ∼ 2 in RH ,

and this may be due to the errors associated with the measure of RH . Indeed, RHs

are low brightness diffuse radio sources which fade away gradually, until they are

lost below the noise level of a given observation. Thus, the measure of a physical size

is not obvious and, in any case, it needs to be explored with great care. However,

what is important here is not so much the precise measure of RH for each RH, but

rather the avoidance of selection effects which might force a correlation.

In principle the sensitivity in the different maps may play a role because the

most powerful RHs are also the most bright ones (Feretti 2005), and thus they

might appear more extended then the less powerful RHs in the radio maps. To

check if this effect is present, in Fig.8.3 we plot the ratios between the average

surface brightness of each RH in our sample and the rms of each map used to get

RH . It is clear that there is some scattering in the distribution which would yield a

corresponding dispersion in the accuracy of RH , however, and most importantly, the

ratios are randomly scattered, and there is no trend with RH , i.e., fainter RHs are

usually imaged with a higher sensitivity and thus the P1.4 − RH correlation cannot

be forced by the maps used to derive RH .

An additional effort in assessing the reliability of RH (and of the P1.4 − RH

correlation) would be to measure the radial brightness profile of regular RHs which

are not severely affected by powerful and extended radio sources. In our sample it is

feasible to obtain accurate radial profiles from available data for the following RHs:

A2163, A2255, A2744, A545 and A2319. We take the data at 1.4 GHz (Feretti et al.

2001, Govoni et al. 2005, Govoni et al. 2001a, Bacchi et al. 2003, Feretti et al. 1997,
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Figure 8.3: Ratios between the average surface brightness of each RH and the
corresponding 1σ noise level from the radio maps. The five most regular RHs are
earmarked.

respectively), and use the software package SYNAGE++ (Murgia 2001) to extract

the radial brightness profiles, after subtraction of the embedded radio sources.

In Fig.8.4 we report the integrated brightness profiles of these RHs. It is seen

that the profiles flatten with distance from the respective clusters centres, indicating

that basically all the extended radio emission is caught and that it is possible to

extract an accurate physical size. In Fig.8.5 we report for these 5 RHs the comparison

between RH , estimated directly from 3σ radio isophotes (see the above definition),

and R85 and R75, i.e., the radii respectively containing the 85% and 75% of the flux

of the RHs. We apply the same procedure also to the case of the Coma cluster at

330 MHz for which a brightness profile and radio map were already presented in the

literature (Govoni et al 2001b). For Coma at 330 MHz we find RH ∼ 520 h−1
70 kpc

and R85 ∼ 610 h−1
70 kpc, which set Coma in a configuration similar to that of the

other clusters in Fig.8.5.

The linear, almost one-to-one correlation between RH and R85 and the relatively

small dispersion, consistent with the uncertainties in the profiles due to source

subtraction, prove that our definition of RH is a simple but representative estimate

of the physical size of RHs.
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Figure 8.4: Integrated radial brightness profiles of the cluster RHs in A2744, A2319,
A545, A2163 and A2255 (from the top left to the bottom right corner). The errors in the
profiles, including the uncertainties in the sources subtraction and the statistical errors,
are between 5− 10% depending on the cluster.
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Figure 8.5: Radius enclosing the 85% (filled circles) and the 75% (open circle) of the total
radio flux at 1.4 GHz obtained by the profiles (Fig.8.4) versus RH estimated directly from
the radio maps at 1.4 GHz.

We note that the sensitivities of the radio maps, the physical sizes R85 and

powers P1.4 of the 5 regular halos are representatives of the values encompassed by

the full RH sample. Moreover, for these 5 RHs alone we find P1.4 ∝ R4.25±0.63
85 , fully

consistent with the P1.4 −RH correlation obtained for the total sample.

Possible biases in the selection of the sample

One has to check whether this correlation may not be forced by observational biases

due to the selection of the RH population itself. Indeed the great majority of these

RHs have been discovered by follow-ups of candidates, mostly identified from the

NVSS (GTF99), which has a brightness limits of 1σ=0.45 mJy/beam (beam=45×45

arcsec, Condon et al. 1998), and this may introduce biases in the selected sample.

The upper bound of the correlation is likely to be solid: objects as powerful as

those at the upper end of the correlation (log P1.4 ≥ 25) but with small RH (similar

to that of RHs in the lower end of the correlation) should appear in the NVSS up

to the largest redshifts of the sample, since, even at z ∼ 0.3, they should be ≥10

times brighter than the low power RH in the correlation and extended (∼ 2.5′). As

a matter of fact A545 (z=0.15) and A520 (z=0.2), which are among the smaller RHs
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Figure 8.6: Distribution of the slopes, S, of the P1.4 − RH correlation obtained with our
Monte Carlo procedure (with 400 trails). The arrow indicate the value of the observed
best-fit slope ' 4.18.

in our sample, are already detected in the NVSS up to a redshift 0.2 and there is no

reason why objects with similar extension, but ∼ 8 − 10 times brighter should not

have been detected at z ≤ 0.3.

The lower bound of the correlation deserves much care since the brightness limit

of the NVSS may play some role. It is clear that present surveys may significantly

affect the selection of the faint end of the RH population. However, Feretti (2005)

and Clarke (2005), have already concluded that the typical brightness of the powerful

and giant RHs are well above the detection limit.

In any case, a brightness limit should drive a P1.4 ∝ R2
H correlation, much

flatter then the observed one. In order to provide a further compelling argument

against observational biases, we have run Monte Carlo simulations. To this end

we have randomly extracted brightness values of hypothetical RHs within a factor

of ∼ 5 interval (consistently with the range spanned in our sample) above a given

minimum brightness and each time randomly assigned RH and z among the observed

values. In Fig.8.6 we report the distribution of the P1.4 − RH slopes obtained with

our Montecarlo procedure and note that this distribution is peaked around ∼ 2.5

with a dispersion of ±0.4 (this is somewhat steeper than the expected P1.4 ∝ R2
H
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due to the well known redshift effect, however small given the small redshift range

of our sample). The values of the slopes from the Montecarlo procedure are far from

the observed value (Fig.8.6) and a statistical test allows us to conclude that the

probability that the observed P1.4−RH correlation is forced by observational biases

is <∼ 0.05%.

8.2.2 Radio power versus mass and velocity dispersion

In order to observationally investigate the existence of P1.4 − MH and P1.4 − σH

correlations the main difficulty concerns the measure of the cluster mass inside a

volume of size RH . Here the only possibility is to use the X-ray mass determination

based on the assumption of hydrostatic equilibrium. Nevertheless, RH clusters are

not well relaxed systems and thus the assumption of hydrostatic equilibrium and

spherical symmetry may introduce sizeable errors in the mass determination. As

discussed in Chapt. 1 several studies indicate that in the case of merging clusters

the hydrostatic equilibrium method might lead to errors up to 40% of the true mass,

which can be either overestimated or underestimated (e.g., Evrard et al. 1996;

Röttiger et al. 1996; Schindler 1996; Rasia et al. 2006). This would cause an

unavoidable scattering in the determination of the mass in our sample, although

there are indications that a better agreement between the gravitational lensing, X-

ray and optically determined cluster masses is achieved on scales larger than the

X-ray core radii (e.g., Wu 1994; Allen 1998; Wu et al. 1998), which is the case

under consideration (RH > rc).

However, what is important here is that the mass determination does not

introduce systematic errors which depend on the mass itself and which may thus

affect the real trend of the P1.4 − MH correlation. We thus compute the total

gravitational cluster mass within the radius RH as:

MH = Mtot(< RH) =
3KBTR3

Hβ

µmpG

(
1

R2
H + r2

c

)
(8.7)

where rc is the core radius, T the isothermal gas temperature and β the ratio between

the kinetic energy of the dark matter and that of the gas (e.g., Sarazin 1986). We

have excluded from our analysis A2254 for which no information on the β-model

is available. For the remaining 14 clusters references are given in Chapt. 6. From

Eq.8.7 one has that MH ∝ RH for RH >> rc and MH ∝ R3
H for RH << rc. In
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Figure 8.7: MH versus RH for giant RHs. The best-fit power-law and the value of the
slope are also reported in the panel.

Figure 8.8: P1.4 versus MH for giant RHs. The best-fit power-law and its slope are also
reported in the panel.
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Figure 8.9: P1.4 versus σH for the giant RH. The best-fit power-law and its slope are also
reported in the panel.

Figure 8.10: Square of the velocity dispersion inside RH versus RH . The best-fit power-law
and its slope are also reported in the panel.
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Fig.8.7 we plot RH versus MH for our sample: we find MH ∝ R2.17±0.19
H , which falls

in between the above asymptotic expectations.

The two correlations that we have found so far for giant RHs, P1.4−RH (Eq. 8.6)

and MH −RH , imply that P1.4 should roughly scale as M1.9−2
H . In Fig.8.8 we report

P1.4 versus MH for our sample together with the best-fit: P1.4 ∝ M1.99±0.22
H , which

is indeed in line with the above expectation. A Spearmann test of this correlation

yields a correlation coefficient of ∼ 0.91 and s = 7.3 · 10−6 significance, indicative of

a very strong correlation.

As discussed at the end of Sect. 8.1, the P1.4 vs. RH and MH correlations should

translate in a P1.4 vs. σH correlation. In Fig.8.9 we report P1.4 versus σH for our

sample of clusters with giant RH together with the best-fit: P1.4 ∝ (σ2
H)4.64±1.07. A

Spearmann test of this correlation yields a correlation coefficient of ∼ 0.89 and to

s = 2 · 10−5 significance, indicative of a very strong correlation.

As a by-product of all the derived scalings, it is worth noticing that also a trend

between RH − σH is expected (Fig.8.10). This finding might also be tested with

observations in the optical domain.

8.3 Some implications of the derived scalings

Given that the larger RHs are also the most powerful ones and are hosted in the most

massive clusters, we expect that the size of a giant RH should scale with the size

of the hosting cluster. We estimate for each cluster of our sample the virial radius

(Rv) by combining the virial mass–X-ray correlation (Mv − LX ; Chapt. 6) and the

virial radius-virial mass relation (e.g. Kitayama & Suto 1996). This method allows

to reduce the effect of scattering due to the uncertainties in the mass measurements

(and thus in the Rv) of merging galaxy clusters (see discussion in Chapt. 6). In

Fig.8.11 we plot RH versus Rv for our sample. The best fit gives RH ∝ R2.63±0.50
v

, i.e. a pronounced non-linear increase of the size of the radio emitting region with

the virial radius. A Spearmann test yields a correlation coefficient of ∼ 0.74 and

s = 0.0023 significance, indicative of a relatively strong correlation, albeit less strong

than the others correlations found in this paper.

Given that massive clusters are almost self similar (e.g., Rosati et al. 2002) one

might have expected that RH scales with Rv and that the radial profiles of the radio

emission are self-similar. On the contrary, our results prove that self-similarity is
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Figure 8.11: RH versus virial radius,Rv, of hosting clusters estimated from the Lx −Mv

correlation (see CBS06). In the panel is also reported the best-fit correlation.

broken in the case of the non-thermal cluster components. This property of RHs was

also noticed by Kempner & Sarazin (2001), which used a sample of RHs taken from

Feretti (2000) and found evidence for a trend of the Largest Linear Size, LLS, with

the X-ray luminosity in the 0.1-2.4 keV band, LLS ∝ L1/2
x , while a flatter scaling,

LLS ∝ Rv ∝ L
1/6
X is expected in the case of a self-similarity. Their results imply

RH ∝ R3
v; if one takes RH ≈ LLS, this is substantially in line with our findings. It is

also worth noticing that X-ray–radio comparison studies of a few RHs indicates that

the profile of the radio emission is typically broader than that of the thermal emission

(e.g., Govoni et al. 2001b). The two ingredients which should be responsible for the

break of the self–similarity are the distributions of relativistic electrons and magnetic

fields. In MHD cosmological simulations (Dolag et al. 2002, 2005) it is found that

the magnetic field strength in cluster cores increases non-linearly with cluster mass

(temperature). This implies that the radio emitting volume should increase with

cluster mass because the magnetic field at a given distance from the cluster centre

increases with increasing the mass. A detailed analysis of the magnetic field profiles

of massive clusters from MHD simulations could be of help in testing if the magnetic

field is the principal cause of the break of the self-similarity.

A basic constraint on the rms magnetic field (BH) inside RH may come
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from the P1.4 − MH correlation. Indeed, under the assumption that the number

density of relativistic electrons does not critically depend on cluster mass and that

the average radio spectral index is ∼ 1.2 (e.g., Feretti 2005), the synchrotron

radio power should be P1.4 ∝ B2.2
H R3

H . From the scaling MH ∝ R2.17±0.19
H one

finds P1.4 ∝ M
2.2 bH+(1.38±0.12)
H , where bH has already (Sect. 8.1) been defined as

BH ∝ M bH
H , which should be compared with the observed P1.4 − MH correlation.

By taking into account the actual values of the observed correlations and the error

propagation we obtain 0.12 <∼ bH <∼ 0.43, implying that BH does not critically

depend on cluster mass inside RH and that RHs might essentially select the regions

of the cluster volume in which the magnetic field strength is above some minimum

value (say ∼ µG level). It is important to note that a roughly constant BH with

cluster mass does not contradict the scaling of B, averaged in a fixed volume, with

cluster mass (or temperature) found in the MHD simulations (B within the cluster

core radius, rc ∼ 300 h−1
70 kpc), and also found in Chapt. 6 (B averaged within a

fixed region of ∼ 720 h−1
70 kpc size), because the magnetic field BH is averaged over

a volume of radius RH that becomes substantially larger than the core radius with

increasing the cluster mass (RH/rc goes from ∼ 1.1 to ∼ 3 with increasing cluster

mass in our sample).

8.4 Particle re-acceleration model and observed scalings

Although we have been guided by the analysis of Eq.8.2 to predict the existence

of scaling relationships, the observed correlations derived in Sect. 8.2 are actually

independent of the form of this equation. To test Eq.8.2 against the observed

quantities of our sample of RH we shall make use of the monochromatic P1.4 instead

of the unavailable bolometric PR. This is possible because of the typical shape of

RH spectra (because of the negligible K-correction; see discussion in Chapt. 6).

In Fig.8.12 we report P1.4 versus MH σ3
H . The best fit gives P1.4 ∝

(MH σ3
H)1.24±0.19. The observed scaling is slightly steeper, but still in line with

the linear scaling expected from Eq.8.2 for F constant (dashed line). As already

discussed in Sec. 8.1 F is constant for B2
H >> B2

cmb or in the case in which the

rms magnetic field in the RH region is quite independent from the cluster mass

(small bH), while formally a non–constant F always implies a steepening of the

P1.4 −MH σ3
H scaling. Namely, in the case of ∼ µG magnetic fields, by combining
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Figure 8.12: P1.4 versus MH σ3
H . The best-fits correlations (solid line) and the predicted

scaling with F ∼ constant (dashed line) are reported.

Eq.8.2 with the observed MH − RH correlation (Sec. 8.2.2, Fig.8.7), one has that

the best-fit in Fig.8.12 is fulfilled by the model expectations for 0.05 ≤ bH ≤ 0.39,

which is also consistent with the findings of Sec. 8.3.

In principle the fit can be used to set constraints on the values of the theoretical

parameters entering the normalization of Eq.8.2, (namely εCR/εth, and the fraction

of the PdV work which goes into turbulence), but we will not pursue this any further

here (see however discussion in Chapt. 5, Sect. 5.6.2).

It is important to stress that not only the trend in Fig. 8.12, but also the

existence of the correlations found in Sec. 8.2 could have been predicted on the basis

of the re-acceleration model (Sec. 8.1, Eqs. 8.3, 8.4, 8.5) under the very reasonable

assumption that MH ∝ Rα
H . Indeed, if one uses the observed scaling MH ∝ R2.17±0.19

H

to fix the parameter α, from Eq.8.2, and assuming the most simple case in which

F is constant, one finds P1.4 ∝ R3.9
H and P1.4 ∝ M1.8

H , which are actually consistent

(within the dispersion) with the observed correlations (Sec. 8.2); as in the case of

the trend in Fig. 8.12, an even better fulfillment of all these correlations is obtained

for a slightly non-constant F .
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8.5 Summary & Conclusions

In this Chapter we have investigated new scaling relations by combining recipes

for the turbulence in galaxy clusters from our Montecarlo studies (Chapt.5) with a

simplified form of the particle re-acceleration model. We have found that:

• In its simplest form, as assumed here (Sect. 8.1), the re-acceleration model

predicts that the local injection of turbulence by a cluster merger, the particle re-

acceleration and the radiation losses combine leading to a very simple relationship

(Eq.8.2) between the total radio power PR, the total mass MH within the RH, the

gas velocity dispersion σH and the average magnetic field BH . Under the very

reasonable assumptions that MH scales with the size RH and that the gas is in

gravitational equilibrium Eq.8.2 naturally translates into simple scaling relations:

PR −MH , PR −RH and PR − σH (Eqs. 8.3, 8.4, 8.5).

Motivated by the above theoretical considerations, we have searched for the existence

of this type of correlations by analyzing a sample of 15 galaxy clusters with giant

RHs. A most important point here is the measure of the size RH , in itself a non-

trivial matter, since the brightest RHs may appear more extended in the radio maps

and this might force artificial correlations with radio power. A careful analysis of

published 15 GHz radio maps of the RHs of our sample shows that this effect is not

present (Sect. 8.2.1).

From the same data set we derive a meaningful estimate of the radius for each

RH. We also show that our procedure leads to estimates fully consistent with the

measurements from the brightness profiles worked out from the data for the five

most regular RHs; this consistency holds over the total range spanned by RH in our

sample (Sect. 8.2.1).

• We obtain a good, new correlation (correlation coefficient ∼ 0.84) between the

observed radio power at 1.4 GHz and the measured size of the RHs in the form

P1.4 ∝ R4.18±0.68
H (Sect. 8.2.1). In Sect. 8.2.1 we discuss in detail several selection

effects which might affect this correlation and conclude that it is very unlikely that

the observed correlation is driven by observational biases.

• We calculate the cluster mass and the velocity dispersion within the radius RH for

all objects in our sample and derive relatively strong new correlations (Sect. 8.2.2)

in the form: P1.4 ∝ M1.99±0.22
H and P1.4 ∝ (σ2

H)4.64±1.07, and, as a byproduct of these
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scalings, σ2
H ∝ R0.90±0.25

H .

A correlation between the size RH and the cluster virial radius, Rv, is qualitatively

expected in the framework of the particle re-acceleration model.

• In Sect. 8.3 we compare RH vs. Rv for our sample of clusters with giant RHs,

obtaining the non-linear trend RH ∝ R2.63±0.50
v , i.e., the fraction of the cluster volume

that is radio emitting significantly increases with the cluster mass. This break of the

self-similarity, in line with previous suggestions (e.g., Kempner & Sarazin 2001),

points to the changing distributions of the magnetic fields and relativistic electrons

with cluster mass and, as such, is potentially important in constraining the physical

parameters entering the hierarchical formation scenario, such as the turbulence

injection scale and the magnetic field strength and profile. Finally, we note that, by

combining the RH − Rv and P1.4 − RH correlations, one easily derives P1.4 ∝ M3
v ,

which is consistent with previous findings (P1.4 ∝ M2.9±0.4
v , Chap. 6).

• Under the assumption that the number density of relativistic electrons does not

significantly depend on the cluster mass, from the P1.4 − MH correlation and the

synchrotron laws we find that the rms magnetic field intensity B inside RH should

be weakly dependent on the cluster mass (BH ∝ M0.28±0.16
H ).

• These observed correlations are well understood in the framework of the particle

re-acceleration model. Indeed, we show that the theoretical expectation (Eq.8.2)

is consistent with the data (see Fig.8.12). Assuming a simple constant form for

F in Eq.8.2 and the observed MH − RH scaling, which is necessary to fix the

model parameter α (Sect. 8.1), the model expectations (Eqs. 8.3, 8.4, 8.5) naturally

translates into P1.4 ∝ R3.9
H , P1.4 ∝ M1.8

H and P1.4 ∝ (σ2
H)3.4 correlations, all consistent

(within the dispersion) with the observed correlations; an even better fulfillment of

all these correlations is obtained for a slightly non-constant F , which corresponds

to ≈ µG field in the RH region.

To conclude, the particle re-acceleration model, closely linked to the development of

the turbulence in the hierarchical formation scenario, appears to provide a viable and

basic physical interpretation for all the correlations obtained so far with the available
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data for giant RHs. Future deep radio surveys and upcoming data from LOFAR

and LWA will be crucial to improve the statistics and to provide further constraints

on the origin of RHs.
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Chapter 9

Summary and Conclusions

9.1 Focus of the Thesis

It is now clear that the Intra Cluster Medium (ICM) is made not only of the

thermal gas but also of magnetic fields and relativistic particles (leptons and

hadrons). Relativistic electrons diffusing throughout turbulent magnetic fields emit

synchrotron radiation in the form of Radio Halos (RH) and may give sufficient IC

radiation to explain the hard X-ray (HXR) excess. Turbulent magnetic fields and

cosmic rays in the ICM may drive still unexplored physical processes and this call

for a “revision” of the physics of the ICM (e.g., Schekochihin et al. 2005; Brunetti

& Lazarian 2007).

Among the models which have been proposed to explain the origin of the

electrons emitting RHs (and hard X-ray emission), a re-acceleration scenario in

which MHD turbulence injected during cluster mergers re-accelerates high energy

particles seem to be favoured by present observations (Brunetti 2004; Blasi 2004;

Hwang 2004). The complex physics of the particle acceleration due to turbulence in

galaxy clusters deserved some attention in literature (e.g., Ohno et al. 2002; Fujita

et al. 2003; Brunetti et al. 2004; Brunetti & Blasi 2005; Brunetti & Lazarian 2007,

see also Chapt. 4) still a theoretical investigation of the statistical properties of RH

(occurrence, correlations with thermal properties and luminosity functions) in the

framework of the re-acceleration model was completely lacking at the beginning of

this PhD work.

Despite the complex and still poorly explored physics of this model, RHs (as

well as the relative IC emission in the hard X-rays) in this scenario should have

unique and unavoidable properties which should leave an imprint in the statistical
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behavior of these sources. Crucial constraints on the origin of these RHs can thus

be provided by statistical observational studies which have shown so far that RHs

are “rare” and that a connection exist between the formation of these sources and

cluster mergers. This PhD work is inspired by the possibility to open this new tool

of investigation and the main goals of the PhD have been to derive the theoretical

expectations from the re-acceleration scenario for the statistical properties of the

RHs in galaxy clusters, to compare them with present observations, and to obtain

expectations to test with incoming facilities. In the following we summarized the

main results obtained.

9.2 Statistical calculations

9.2.1 Main ingredients and Monte-Carlo based procedure

We developed a semi-analytical procedure to model “self-consistently” the formation

and evolution of galaxy clusters (“merging history”), the injection of turbulence

during mergers and the evolution of relativistic electrons in the ICM, due to both

energy losses and gains. Our approach is based on the following main steps:

• A Monte-Carlo procedure based on the extended Press & Schechter theory

technique has been developed to build up extensive merger trees of galaxy

clusters with different present day virial masses. We ended up with a synthetic

cluster population with present day masses >∼ 2 · 1014 M¯ (we have ∼ 500

clusters with masses >∼ 1015 M¯).

• Cluster turbulence was assumed to be injected during cluster mergers and

dissipated in a time-scale of the order of the cluster-cluster crossing time.

The energetics of the chaotic motions injected at large scales in the ICM was

“calibrated” with the PdV work done by the infalling subclusters in passing

through the volume of the most massive one. We assumed that a non negligible

fraction, ηt, of this large scale turbulent motions was channelled into the form of

fast magnetosonic waves (MS waves). The evolution of the spectrum of these

MS waves was calculated solving a turbulent-diffusion equation with cosmic

time and by combining the effect of all mergers at that cosmic epoch.

• Relativistic electrons were assumed to be continuously injected in the ICM at

some “minimum” level (by shocks, AGNs and star forming galaxies). These
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electrons are necessary to have a “relic” population of relativistic particles to

be re-accelerated during mergers (this is the assumption of the “standard” re-

acceleration scenario). The total energy injected in the relativistic electrons

during the cluster life up to z = 0 was simply assumed to be a fraction, ηe,

of the thermal energy of the clusters at the present epoch. The cosmological

evolution of the relativistic electrons was calculated by solving a Fokker-Planck

equation and accounting for the acceleration by MS waves and the particle’s

energy losses.

• Then the ensuing synchrotron and IC emission in the radio and hard X-

ray band respectively, were calculated for the synthetic population of galaxy

clusters as a function of cosmic time.

It is almost impossible to obtain a spatially resolved (morphological) description

of turbulence, particle acceleration and non-thermal emission in galaxy clusters by

making use of semi-analytical techniques. This in principle would be possible by

making use of ad hoc numerical simulations, which however goes well beyond present

projects. Thus we chosen to model “average quantities” in galaxy clusters in a fixed

spherical volume of radius ≈ 0.5 h−1
50 Mpc, typical of giant RHs.

• RHs (at 1.4 GHz) at a given z were identified with those clusters in our

synthetic cluster population having a break frequency νb >∼ 200− 300 MHz in

the synchrotron spectrum computed at that cosmological time; this condition

is necessary to have a slope of the synchrotron spectrum around 1.4 GHz

consistent with that of the observed RHs (νb < 200 MHz would give a

synchrotron spectrum too steep and the RH should “disappear”).

9.2.2 Results from Monte-Carlo calculations

The case of a magnetic field constant with cluster mass

In Chapt.5 we consider the simplest situation in which the magnetic field strength

averaged in the fixed volume has a constant value of ≈ 0.5 µG which does not

depend on cluster mass. We thus report a first comparison between the results from

our Monte-Carlo calculations and the observations, which can be summarized in two

main steps:
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• First we show that the typical observed radio and hard X-ray luminosities can

be successfully reproduced by our modelling in the case of typical merging

clusters with virial mass Mv ∼ 1015 M¯ in our synthetic cluster population

provided that a fraction of the energy of the large scale turbulent motions,

ηt ∼ 0.2− 0.3, is channeled into MS waves during major mergers, and that the

total energy injected in cosmic ray electrons during the cluster life up to the

present epoch is ≈ 10−3 − 10−4 times that of the thermal energy of the ICM.

• Then, we show that the fraction of galaxy clusters in our modelled population

in which a RH can form at z < 0.2 is consistent with present observations

provided that ηt ≈ 0.24 − 0.34. More specifically, in this case, this fraction is

found to naturally increase with cluster mass: 20-30 % for M > 2 × 1015 M¯

clusters, 2-5 % for M ∼ 1015 M¯ clusters, and negligible for less massive objects

in agreement with present data.

An important finding from our calculations is that small clusters “hardly” form

RHs emitting at 1.4 GHz and that essentially only massive clusters can host these

giant RHs (the probability to form these diffuse radio sources rapidly increases for

clusters with M ≥ 2×1015M¯). This is because the energy of the turbulence injected

in galaxy clusters by merger events is found to roughly scale with the thermal energy

of the clusters and thus the energy density of the MS waves (and the efficiency of

particle acceleration) is an increasing function of the mass of the clusters. In addition

we found that turbulent motions are typically injected in large Mpc regions in more

massive clusters and this favors the formation process of giant RHs.

The case of a magnetic field changing with cluster mass

In Chapt.6 we present a natural extensions of the analysis performed in the Chapt.5

by considering the case of a magnetic field in galaxy clusters whose strength, B,

depends on cluster virial mass, Mv. To this end in our modelling we have adopted

a scaling law between the rms magnetic field strength (averaged in the synchrotron

emitting volume) and the virial mass of the parent clusters, B ∝ M b
v . The main

results of Chapt.6 can be summarized as follow:

• Observed correlations and magnetic field constraints:
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The assumption of a scaling between B and Mv has allowed us to

model expected scalings between radio properties and virial quantities.

Observationally we thus have collected a sample of 17 clusters with giant RHs

(making use of available data from the literature) and derived the correlations

between the monochromatic radio power at 1.4 GHz (P1.4) and the X-ray

luminosity (LX), temperature and cluster virial mass (Mv; see Sect.6.4 for

details).

A systematic comparison of the model-expected correlation, between radio power

and cluster virial mass, with the observed power-mass scaling allowed us to the

define a permitted region of the parameters’ space (B<M>,b); B<M> being the

rms magnetic field associated to a cluster with mass equal to the mean mass

< M > of the cluster sample. Additionally, a lower bound B<M> ' 0.2 µG was

obtained in order not to overproduce via IC scattering of the CMB photons

the typical observed hard X-rays luminosities. It was found that b >∼ 0.5− 0.6

and that a relatively narrow range of values of B<M> is allowed for a fixed

b. In addition a super–linear scaling of B with mass, as expected by MHD

simulations (Dolag et al. 2004), was found to fall within the allowed region.

• Probability to form giant RHs emitting at 1.4 GHz:

For each set of costrained magnetic parameters (B<M>,b) we have found the

range of the values of ηt which is required to match the observed occurrence of

giant RHs in the redshift bin z ∼ 0− 0.2. With these constrained values of ηt

and for each set of (B<M>,b) we have calculated the differential occurrence of

giant RHs with redshifts and obtained expectations for the redshifts at which

observational data are not available. We show in Chapt. 6 that this probability

depends on the merging history of clusters and on the relative importance of

the synchrotron and IC losses. The interplay between these two effects drives

a somewhat complicated behavior of the probability to form RHs with cluster

mass and redshift. However, the important finding is that the maximum value

of this probability at a given redshift was found for clusters with masses for

which the synchrotron and IC losses have the same strength.

• Luminosity functions of RHs (RHLFs) at 1.4 GHz

We calculated the RHLFs by adopting a fair sampling of the (B<M>,b) allowed
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region. We found that the main feature of the derived RHLFs is the presence of

a flattening/cut-off at low radio powers (below about 1024 W/Hz at 1.4 GHz).

This characteristic shape of the RHLFs is a unique prediction of particle re-

acceleration models, and does not depend on the adopted physical details for

the particle acceleration mechanism. This is essentially due to the decrease of

the efficiency of particle acceleration in the case of less massive clusters (see

also Sect. 9.2.2) and also because in the case of B ∝ M b (with b >∼ 0.5) higher

energy electrons should be accelerated in smaller clusters to emit synchrotron

radiation at a given frequency.

Deep future radio surveys will be of great importance to test the expected shape

of the RHLFs.

• Number counts (RHNCs) at 1.4 GHz:

We have also derived the integral number counts of giant RHs at 1.4 GHz. We

found that the RHNCs predicted at relatively low (z < 0.2) redshift generally

agree with those derived from the NVSS within the flux limit of this survey.

We have found that the model-expected RHNCs should flatten below ∼ 50− 60

mJy, because of the combination of the low power cut-offs of the RHLFs with

the redshift limit, and because of the RHLFs evolution with redshift. On the

other hand, past extrapolations of the data which assume a fixed fraction of

giant RHs with cluster mass lead to a monotonic increase of the number of

sources at lower fluxes (e.g., Enßlin & Röttgering, 2002).

The expected number of giant RHs in the whole Universe from our modeling

is >∼ 100 in the case of a superlinear scaling (b > 1) of the magnetic field with

cluster mass, while a sublinear scaling (b < 1) would give a number 2-3 times

smaller.

Our calculations suggest that the bulk of these giant RHs is expected to be

at z ∼0.1–0.3. This expectation has triggered an observational follow up of

the occurrence of RHs at z >∼ 0.2 and 180 hours of observations were obtained

to carry out pointed observations of ∼ 50 massive clusters in the redshift bin

0.2 < z < 0.4 at the GMRT in India. In Chapt.7 we briefly discuss first

results from this project and present a work in progress on the “revision” of

the occurrence of Radio Halos. We combined past informations from the NVSS
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radio survey at z < 0.2 with our ongoing GMRT observations at 0.2 < z < 0.4.

The total sample is of 205 galaxy clusters at 0.05 < z < 0.4, and a carefull

analysis of the properties of this sample and a comparison with our model

expectations will be shortly concluded.

• Toward expectations at low radio frequencies: 150 MHz:

LOFAR and LWA will operate at still poorly explored frequencies in a few

years and this represents a unique possibility to test the expectations of the re-

acceleration model. For this reason we have extended our calculations to the

case of low frequency observations. Synchrotron emission from lower energetic

electrons contributes to these frequencies and thus - in the framework of the

particle re-acceleration scenario - the efficiency of producing “low-frequency”

giant RHs in galaxy clusters is expected to be larger than that of giant RHs

emitting at 1.4 GHz.

We found that the fraction of galaxy clusters with giant RHs emitting at 150

MHz is expected to be significantly larger than that of galaxy clusters with RHs

emitting at 1.4 GHz, and this increase is particularly large for less massive

clusters. Consequently, the low mass cut-off in the mass functions of RHs was

found to be shifted at lower masses by a factor of ∼ 2 with respect to the case

at 1.4 GHz: slightly less turbulent systems are able to generate giant RHs at

150 MHz but not able to produce the necessary re-acceleration efficiency to have

electrons emitting at higher frequencies. This boost up the number of RHs in

the Universe emitting at lower frequencies and indeed we have estimated that

the number counts of giant RHs at lower frequencies may result at least one

order of magnitude larger than that at 1.4 GHz.

9.3 Time-independent calculations and size of Radio Halos

As outlined above, Monte-Carlo calculations do not allow to have a spatially resolved

modeling of the particle acceleration process in galaxy clusters and for this reason

the size of RH in Chapts.5-7 was taken ≈ 1 h−1
50 Mpc.

In Chapt.8 we relax the hypothesis of a fixed size and assume that the mass

of the cluster contained within the radio emitting region scales with the size of the

RH, MH ∝ Rα
H . Starting with this assumption we use a simplified time-independent



222 CHAPTER 9. SUMMARY AND CONCLUSIONS

version of the re-acceleration model to investigate novel scaling relations between the

radio power and properties of the ICM in the RH region. We adopted the recipes

developed in Chapts.5 and 6 for estimating the turbulent energy and consider a

quasi stationary situation in which the energy flux of the turbulent modes which is

damped by the relativistic electrons is assumed to be re–radiated via synchrotron

and IC. We have shown that the re-acceleration model predicts simple relationships

between the total radio power PR, the size of the RH, RH , the total cluster mass

within RH , MH , and the gas velocity dispersion σH .

Stimulated by these results we have searched for the existence of these

correlations from present data. By analyzing the most recent radio maps of a

sample of 15 galaxy clusters with giant RHs we were able to obtain new observed

correlations: P1.4 ∝ R4.18±0.68
H , P1.4 ∝ M1.99±0.22

H and P1.4 ∝ (σ2
H)4.64±1.07, and found

that these observed trends can be well reconciled with our expectations once the

slope α of the “geometrical” scaling between MH and RH is fixed from observations

(MH ∝ R2.17±0.19
H ) and provided that the mean magnetic field strength in the radio

halo volume has only a slight variation with the cluster mass within the same volume.

A byproduct correlation σ2
H ∝ R0.90±0.25

H is also found, and can be tested by optical

studies.

This is a relevant point as in this Chapt. 8 we have concluded that all the observed

scalings known so far for giant RHs are now understood provided that the radio

emission from these RHs essentially traces the volume of turbulent/merging galaxy

clusters magnetized at ≈ µG level.

In addition, we found that observationally the size of Radio Halos scales non-

linearly with the virial radius of the host cluster, RH ∝ R2.63±0.50
v , i.e., the fraction of

the cluster volume that is radio emitting significantly increases with the cluster mass.

This break of the self-similarity, in line with previous suggestions (e.g., Kempner &

Sarazin 2001), could be driven by the behavior of the profiles of the magnetic field

and density of relativistic electrons with cluster mass and/or by the behavior of the

injection and developing of the turbulence with cluster mass.

9.4 Immediate future developments

LOFAR, LWA and GLAST will shortly observe in essentially still unexplored regions

of the electromagnetic spectrum, and the non-thermal emission from galaxy clusters
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is among the main issues to address with these instruments. The near future for the

research in this field is thus expected to be very bright also because new measures in

the hard X-ray band (Suzaku) may also come and help in planning the science with

very sensitive hard X-ray telescopes which hopefully will become available within

5-15 years (e.g., Simbol-X).

The immediate next steps in the project started with this PhD thesis can be briefly

summarized as follows:

• Revision of the statistics of Radio Halos:

The observed fraction of galaxy clusters at z < 0.2 with RH was found to

increase with cluster mass (or X-ray luminosity). This is an important point as

it appears to be in line with the expectations from the re-acceleration scenario

and represents a challenge for other proposed models. However observational

biases still need to be carefully addressed and the relatively poor statistics of

present studies requires extensive new surveys. As explained in Chapt. 7, by

combining past NVSS results and our GMRT survey we have in hands a sample

of ∼ 200 clusters at 0.05 < z < 0.4 with radio follow up and this will allow us

to calculate an “unbiased” occurrence of RHs with cluster mass and redshift,

and to compare the observations with the model expectations.

• Exploring the LOFAR sky:

Although in Chapt. 6 we have presented the first model expectations at low

frequency, the behavior of the re-acceleration model at these frequencies is

still poorly explored by this PhD work and a detailed study requires an

improvement of our procedures. What is now clear from our work is that the

study of differential changes of RH statistics with observing frequency is among

the most powerful tools to understand the origin of these sources. LOFAR will

survey the sky between 40 MHz and 240 MHz within 2-3 years and will probably

discover thousands of new RHs. Potentially we have in hand the first tool to

calculate the statistical properties of RHs with redshift, mass and observing

frequency and thus it will be crucial to work on expectations to interpret the

LOFAR data.

• Hard X-ray tails

This PhD work was mainly focused on RHs for which enough data are available.
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On the other hand hard X-ray tails may also be powered by IC emission from re-

accelerated electrons. One of the most important step forward of this project is

to explore, using procedures based on our semi-analytical recipes, the expected

properties of hard X-ray tails with mass and redshift of the parent clusters,

and to understand how common they are expected to be. Our expectation

will also provide important indications for the planning of the science case of

future HXR detectors (e.g., Simbol-X).
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Orrù, E., et al. 2007, ArXiv Astrophysics e-prints, arXiv:astro-ph/0701776

Overduin, J. M., & Wesson, P. S. 1993, ApJ, 414, 449

Overduin, J. M., & Wesson, P. S. 1997, ApJ, 480, 470

Owen, F., Morrison, G., & Voges, W. 1999, Diffuse Thermal and Relativistic Plasma

in Galaxy Clusters, 9

Owen, F. N., Eilek, J. A., & Kassim, N. E. 2000, ApJ, 543, 611

1993, Physics Today, 46, 87

Peacock JA. 1999, Cosmology Physics. Cambridge, UK: Cambridge Univ Press

Peterson, J. R., Kahn, S. M., Paerels, F. B. S., Kaastra, J. S., Tamura, T., Bleeker,

J. A. M., Ferrigno, C., & Jernigan, J. G. 2003, ApJ, 590, 207

Peterson, J. R., & Fabian, A. C. 2006, Phys. Rep., 427, 1

Petrosian V., 2001, ApJ 557, 560

Petrosian, V. 2003, Astronomical Society of the Pacific Conference Series, 301, 337

Petrosian, V., Madejski, G., & Luli, K. 2006, ApJ, 652, 948

Pfrommer, C., & Enßlin, T. A. 2004, A&A, 413, 17

Pfrommer, C., Springel, V., Enßlin, T. A., & Jubelgas, M. 2006, MNRAS, 367, 113



240 BIBLIOGRAPHY

Pierre M., Matsumoto H., Tsuru T., Ebeling H., Hunstead R., 1999, A&AS 136,

173

Plionis, M., & Basilakos, S. 2002, MNRAS, 329, L47

Press W.H., Schechter P., 1974, ApJ 187, 425

Randall S.W., Sarazin C.L., Ricker P.M., 2002, ApJ 577, 579

Rasia E., Ettori S., Moscardini L., Mazzotta P., Borgani S., Dolag K., Tormen G.,

Cheng L.M., Diaferio A, 2006, MNRAS369, 2013

Reid, A. D., Hunstead, R. W., Lemonon, L., & Pierre, M. M. 1999, MNRAS, 302,

571

Reimer, O., Pohl, M., Sreekumar, P., & Mattox, J. R. 2003, ApJ, 588, 155

Reimer, A., Reimer, O., Schlickeiser, R., & Iyudin, A. 2004, A&A, 424, 773
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Röttiger K., Burns J.O., Loken C., 1996, ApJ473, 651
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