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value of ŷ, namely ŷt (Liu et al., 2005) . . . . . . . . . . . . . 8

2.2 Probability of exceeding the dyke level for the same expected

value, forecasted by models with different reliability. . . . . . . 14

2.3 Comparison between the expected value provided by models

with different reliability when the probability of exceeding the

dyke level is the same for all the models. . . . . . . . . . . . . 15

2.4 An optimal situation for using the QR. . . . . . . . . . . . . . 21

2.5 Poor results are obtained using QR in the situation repre-

sented here, which, by the way, is quite common in hydrolog-

ical applications. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 The four components of the joint probability mass function. . 28

2.7 The simple estimator of the joint probability mass function. . 29

3.1 Schematic representation of Predictive Uncertainty with two

forecast lead times in which the probability to exceed the value

ηH within the total horizon time is highlighted. . . . . . . . . 44

vii



viii LIST OF FIGURES

3.2 Truncated Normal Joint Distributions. The division of the

Joint Distribution in the Normal Space into two Bivariate

Truncated Normal Distributions is shown. The red line rep-

resents the modal value, while the grey lines represent the

5% and the 95% quantiles. The light blue line represents the

threshold used in order to divide the two TNDs. . . . . . . . 45

4.1 Digital Elevation Model of the Baron Fork basin at Eldon. . . 58

4.2 Soil Type map of the Baron Fork basin at Eldon. . . . . . . . 59

4.3 Land Use map of the Baron Fork basin at Eldon. . . . . . . . 60

4.4 Channel network of the Baron Fork basin at Eldon. . . . . . . 62

4.5 TOPKAPI simulation of events occurred in November 1996.

Observed discharges (black line); TOPKAPI simulation (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 TOPKAPI simulation of events occurred in April 1998. Ob-

served discharges (black line); TOPKAPI simulation (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 TOPKAPI simulation of the main event occurred in June

2000. Observed discharges (black line); TOPKAPI simulation

(dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 TOPKAPI simulation of events occurred in November 2001.

Observed discharges (black line); TOPKAPI simulation (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Maximum Static Storage map of the Baron Fork basin at Eldon. 68

4.10 Infiltration Capacity map of the Baron Fork basin at Eldon. . 69

4.11 Percolation Capacity map of the Baron Fork basin at Eldon. . 70

4.12 TETIS simulation during the entire calibration period, from

October 2001 to September 2002. Observed discharges (black

line); TETIS simulation (dashed line). . . . . . . . . . . . . . 71

4.13 TETIS simulation of events occurred in November 1996. Ob-

served discharges (black line); TETIS simulation (dashed line). 73



LIST OF FIGURES ix

4.14 TETIS simulation of events occurred in April 1998. Observed

discharges (black line); TETIS simulation (dashed line). . . . . 73

4.15 TETIS simulation of the main event occurred in June 2000.

Observed discharges (black line); TETIS simulation (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16 TETIS simulation of events occurred in November 2001. Ob-

served discharges (black line); TETIS simulation (dashed line). 74

4.17 Schematic scheme of the SOM network. . . . . . . . . . . . . . 76

4.18 Classification obtained with SOM network for the events oc-

curred during summer 2000. . . . . . . . . . . . . . . . . . . . 77

4.19 Classification obtained with SOM network for the events oc-

curred in the first months of 2002. . . . . . . . . . . . . . . . . 78

4.20 Nash efficiency computed for different numbers of neurons and

different initial weights’ value for the first class. . . . . . . . . 79

4.21 RMSE computed for different numbers of neurons and differ-

ent initial weights’ value for the first class. . . . . . . . . . . . 80

4.22 Nash efficiency computed for different numbers of neurons and

different initial weights’ value for the second class. . . . . . . . 80

4.23 RMSE computed for different numbers of neurons and differ-

ent initial weights’ value for the second class. . . . . . . . . . . 81

4.24 Nash efficiency computed for different numbers of neurons and

different initial weights’ value for the third class. . . . . . . . . 81

4.25 RMSE computed for different numbers of neurons and differ-

ent initial weights’ value for the third class. . . . . . . . . . . . 82

4.26 ANN simulation of calibration events. Observed discharges

(black line); ANN simulation (dashed line). . . . . . . . . . . . 83

4.27 ANN simulation of calibration events. Observed discharges

(black line); ANN simulation (dashed line). . . . . . . . . . . . 84

4.28 ANN simulation of validation events. Observed discharges

(black line); ANN simulation (dashed line). . . . . . . . . . . . 84



x LIST OF FIGURES

4.29 ANN simulation of validation events. Observed discharges

(black line); ANN simulation (dashed line). . . . . . . . . . . . 85

4.30 ANN simulation of validation events. Observed discharges

(black line); ANN simulation (dashed line). . . . . . . . . . . . 85

4.31 Instability of ANN in small validation events. Observed dis-

charges (black line); ANN simulation (dashed line). . . . . . . 86

4.32 Schematization of the available data division for calibrating

and validating the models and the MCP . . . . . . . . . . . . 87

4.33 Representation of the Normal Space obtained using the MCP

with the TOPKAPI (a), TETIS (b) and ANN (c) forecasts. . . 89

4.34 Representation of the Normal Space obtained using the MCP

with the combination of the 3 models. . . . . . . . . . . . . . 90

4.35 Error Standard Deviation for TOPKAPI model (TPK), TETIS

model (TET), ANN model and their combinations during the

entire validation period of the MCP. . . . . . . . . . . . . . . 91

4.36 Nash-Sutcliffe coefficient for TOPKAPI model (TPK), TETIS

model (TET), ANN model and their combinations during the

entire validation period of the MCP. . . . . . . . . . . . . . . 91

4.37 Comparison between the PU computed with one or two mod-

els on a flood event during calibration period. Observed dis-

charges (black line); expected value conditioned only to the

TOPKAPI forecast (dashed line); expected value conditioned

to the TOPKAPI and TETIS forecasts (dotted line); 90% Un-

certainty Band conditioned to the TOPKAPI forecast (light

grey band); 90% Uncertainty Band conditioned to the TOP-

KAPI and TETIS forecasts (grey band). . . . . . . . . . . . . 92



LIST OF FIGURES xi

4.38 Comparison between the PU computed combining, two or

three models on a flood event during calibration period. Ob-

served discharges (black line); expected value conditioned only

to the TOPKAPI and TETIS forecasts (dotted line); expected

value conditioned to the TOPKAPI, TETIS and ANN fore-

casts (dashed line); 90% Uncertainty Band conditioned to the

TOPKAPI and TETIS forecasts (light grey band); 90% Uncer-

tainty Band conditioned to the TOPKAPI, TETIS and ANN

forecasts (grey band). . . . . . . . . . . . . . . . . . . . . . . . 93

4.39 Comparison between the PU computed with one or two mod-

els on a flood event during validation period. Observed dis-

charges (black line); expected value conditioned only to the

TOPKAPI forecast (dashed line); expected value conditioned

to the TOPKAPI and TETIS forecasts (dotted line); 90% Un-

certainty Band conditioned to the TOPKAPI forecast (light

grey band); 90% Uncertainty Band conditioned to the TOP-

KAPI and TETIS forecasts (grey band). . . . . . . . . . . . . 94

4.40 Comparison between the PU computed combining, two or

three models on a flood event during validation period. Ob-

served discharges (black line); expected value conditioned only

to the TOPKAPI and TETIS forecasts (dotted line); expected

value conditioned to the TOPKAPI, TETIS and ANN fore-

casts (dashed line); 90% Uncertainty Band conditioned to the

TOPKAPI and TETIS forecasts (light grey band); 90% Uncer-

tainty Band conditioned to the TOPKAPI, TETIS and ANN

forecasts (grey band). . . . . . . . . . . . . . . . . . . . . . . . 95



xii LIST OF FIGURES

4.41 Flood event during calibration period. The lower part rep-

resents the discharge forecast; observed values (continuous

line); expected value conditioned to the TOPKAPI, TETIS

and ANN forecasts (dashed line); 90% Uncertainty Band (grey

area); alarm threshold of 350 m3s−1(small dashed line). The

upper part represents the probability of exceeding the alarm

threshold; observed binary response (continuous line) and Prob-

ability of exceeding the threshold computed by the MCP (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.42 Flood event during validation period. The lower part rep-

resents the discharge forecast; observed values (continuous

line); expected value conditioned to the TOPKAPI, TETIS

and ANN forecasts (dashed line); 90% Uncertainty Band (grey

area); alarm threshold of 350 m3s−1(small dashed line). The

upper part represents the probability of exceeding the alarm

threshold; observed binary response (continuous line) and Prob-

ability of exceeding the threshold computed by the MCP (dashed

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.43 Comparison between the PU computed with the MCP and

the QR on a flood event during calibration period. Observed

discharges (black line); expected value obtained with the MCP

(dashed line); expected value obtained with the QR (dotted

line); 90% Uncertainty Band computed by the MCP (dark grey

band); 90% Uncertainty Band computed by the QR (light grey

band). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



LIST OF FIGURES xiii

4.44 Comparison between the PU computed with the MCP and

the QR on a flood event during validation period. Observed

discharges (black line); expected value obtained with the MCP

(dashed line); expected value obtained with the QR (dotted

line); 90% Uncertainty Band computed by the MCP (dark grey

band); 90% Uncertainty Band computed by the QR (light grey

band)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.45 Representation of the Normal Space obtained using the Quan-

tile Regression with the TOPKAPI forecasts. . . . . . . . . . . 100

4.46 Error Standard Deviation (a) and Nash-Sutcliffe coefficient (b)

for TOPKAPI model, TETIS model, ANN model and their

combination with the MCP and the QR during the entire val-

idation period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.47 Representation of the Normal Space obtained using the Quan-

tile Regression with the TOPKAPI forecasts divided in 2 sam-

ples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.48 Error Standard Deviation (a) and Nash-Sutcliffe coefficient (b)

for TOPKAPI model, TETIS model, ANN model and their

combination obtained with the MCP and the QR with the

division in 2 samples during the entire validation period. . . . 103

4.49 Frequency of actual threshold exceedances vs the probability

estimated using the MCP Bayesian combination of the three

models. The red line represents the perfect behaviour. . . . . . 104

4.50 Digital Elevation Model of the Po basin. . . . . . . . . . . . . 106

4.51 Entire series of observed data provided by the Civil Protection

of Emilia Romiagna Region. . . . . . . . . . . . . . . . . . . . 107

4.52 Delayed prediction from the deterministic model at Ponte Spessa.

The forecast lead time is 18 hours. . . . . . . . . . . . . . . . 110

4.53 Comparison between deterministic and probabilistic predic-

tions at Ponte Spessa. The forecast lead time is 12 hours. . . . 111



xiv LIST OF FIGURES

4.54 Ponte Spessa, delayed deterministic prediction corrected by

the MCP. The forecast lead time is 18 hours. . . . . . . . . . . 112

4.55 Comparison between deterministic and probabilistic predic-

tions at Borgoforte. The forecast lead time is 24 hours. . . . . 112

4.56 Comparison between deterministic and probabilistic predic-

tions at Borgoforte. The forecast lead time is 24 hours. . . . . 113

4.57 Comparison between deterministic and probabilistic predic-

tions at Pontelagoscuro. The forecast lead time is 24 hours. . . 114

4.58 Comparison between deterministic and probabilistic predic-

tions at Pontelagoscuro. The forecast lead time is 24 hours. . . 114

4.59 Frequency of actual exceedances vs the probability estimated

using the MCP with the calibration data at Ponte Spessa. The

red line represents the perfect behavior. . . . . . . . . . . . . . 115

4.60 Frequency of actual exceedances vs the probability estimated

using the MCP with the validation data at Ponte Spessa. The

red line represents the perfect behavior. . . . . . . . . . . . . . 116

4.61 Frequency of actual exceedances vs the probability estimated

using the MCP with the calibration data at Borgoforte. The

red line represents the perfect behavior. . . . . . . . . . . . . . 117

4.62 Frequency of actual exceedances vs the probability estimated

using the MCP with the validation data at Borgoforte. The

red line represents the perfect behavior. . . . . . . . . . . . . . 117

4.63 Frequency of actual exceedances vs the probability estimated

using the MCP with the calibration data at Pontelagoscuro.

The red line represents the perfect behavior. . . . . . . . . . . 118

4.64 Frequency of actual exceedances vs the probability estimated

using the MCP with the validation data at Pontelagoscuro.

The red line represents the perfect behavior. . . . . . . . . . . 118

4.65 Calibration event occured in October 2000 at Ponte Spessa

station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



LIST OF FIGURES xv

4.66 Validation event occurred in November 2008 at Ponte Spessa

station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.67 Calibration event occurred in November 2002 at Borgoforte

station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.68 Validation event occurred in November 2008 at Borgoforte sta-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.69 Calibration event occurred in November 2002 at Pontelagoscuro

station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.70 Validation event occurred in November 2008 at Pontelagoscuro

station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.1 Percentage of liquid precipitation for TS=0 . . . . . . . . . . . 163



xvi LIST OF FIGURES



List of Tables

4.1 Calibrated values for the soil type parameters. Saturated hor-

izontal hydraulic conductivity (Ksh), residual water content

(θr), saturated water content (θs), depth, the exponent of the

horizontal flow law (αs), saturated vertical conductivity (Ksv)

and the exponent of the percolation law (αs). . . . . . . . . . 60

4.2 Calibrated values for the land use parameters: Surface Man-

ning coefficient (n) and Crop Factors for each month. . . . . . 61

4.3 Calibrated values for the channel parameters. Channel Man-

ning coefficient (n) and the tangent of the river banks angle

(α). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Overall evaluation indexes for the TOPKAPI simulation. Max-

imum observed and simulated discharges; Percent Bias; Root

Mean Square Error; Correlation Coefficient (R2); Nash-Sutcliffe

efficiency (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Calibrated corrector factors for the TETIS model. . . . . . . . 68

4.6 Evaluation indexes for the TETIS simulation computed during

the calibration period. Maximum observed and simulated dis-

charges; Percent Bias; Root Mean Square Error; Correlation

Coefficient (R2); Nash-Sutcliffe efficiency (E). . . . . . . . . . 71

4.7 Evaluation indexes for the TETIS simulation computed during

the entire available period. Maximum observed and simulated

discharges; Percent Bias; Root Mean Square Error; Correla-

tion Coefficient (R2); Nash-Sutcliffe efficiency (E). . . . . . . . 72

xvii



xviii LIST OF TABLES

4.8 Evaluation indexes for the ANN simulation computed during

entire, calibration, verification and validation periods. Maxi-

mum observed and simulated discharges; Percent Bias; Root

Mean Square Error; Correlation Coefficient (R2); Nash-Sutcliffe

efficiency (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Probability that the true value exceeds the 350 m3s−1 thresh-

old when the expected value of prediction equals 250 m3s−1,

computed for each model and their Bayesian combination. . . 104

4.10 Expected value of prediction corresponding to the probability

of 20% that the true value will exceed the 350 m3s−1 threshold,

computed for each model and their Bayesian combination. . . 105



Executive Summary

Hydrologic risk has always been an extremely relevant issue, due to the severe

consequences that may be generated by droughts and floods in terms of casu-

alties and economic losses. More specifically, floods are natural phenomena,

often catastrophic, and cannot be avoided, but their hazard and consequent

damages can be reduced if they are predicted sufficiently in advance. Flood

forecasting plays an essential role in the hydro-geological and hydrological

risk prevention and reduction of losses. In the last decades, an increasing

number of real time flood forecasting systems have been made operational.

Such systems give important information on the evolution of future events,

which helps reducing the associated uncertainty.

Dealing with future events means inevitably dealing with uncertainty is-

sues. One can try to reduce such uncertainty by using avatars of the future,

namely forecasting models; nonetheless, models are imperfect, which means

that we are still left with a residual uncertainty on what will actually happen.

The present work is aimed at defining what is meant with predictive uncer-

tainty, at discussing its role in real time flood forecasting and at presenting

a Bayesian methodology for its assessment.

After a brief introduction to the topic in question, Chapter 2 starts ex-

plaining which is the role of uncertainty in the decision making processes

and giving the definition of Predictive Uncertainty (PU) according to Krzy-

sztofowicz (1999) and Todini (2008). Afterwards, some important elements

related to the predictive uncertainty, such as the need of identifying proba-

bilistic alarm thresholds and making available probabilistic forecast within

xix



xx EXECUTIVE SUMMARY

a horizon time, are pointed out. At the end of the chapter a brief review

of the existing approaches for predictive uncertainty assessment is done in

which two statistical processor groups are presented. The first group is aimed

at solving the discrete probability problems while the second group tackles

the continuous probability case, which as will be discussed in the sequel is

more relevant to the flood forecasting case. Among the existing continuous

uncertainty processors, three will be analyzed more in detail: the Hydro-

logical Uncertainty Processor of Krzysztofowicz (Krzysztofowicz, 1999), the

Bayesian Model Averaging of Raftery (Raftery, 1993) and the Quantile Re-

gression (Koenker, 2005; Weerts et al., 2010). Concerning the discrete un-

certainty processors, a methodology to assess the flooding probability will be

presented and it will be shown how it can be applied according to different

methodologies.

In Chapter 3, a new Bayesian methodology for predictive uncertainty as-

sessment will be introduced, the Model Conditional Processor (MCP). The

basic ideas underlying the MCP will be evolved to reach a more complex

structure able to combine several deterministic model forecasts in order to

provide essential probabilistic knowledge like the predictive uncertainty dis-

tribution, the probability to exceed a prefixed level in a particular moment

or within a time horizon together with the probability of the flooding time.

In Chapter 4, two applications of the MCP will be shown. The first one

will concern the Multi-Model approach and the study case will be the Baron

Fork River, in Oklahoma, USA. The data set provided by the NOAAs Na-

tional Weather Service, within the DMIP 2 Project, allowed two distributed

models, the TOPKAPI model (Todini and Ciarapica, 2001; Liu and Todini,

2002) and the TETIS model (Francés et al., 2007; Vélez et al., 2009), to be

calibrated and a data driven model to be implemented using the Artificial

Neural Network. The three model forecasts will be combined to reduce the

PU and to improve the probabilistic forecast taking advantage of the differ-

ent models capabilities. A comparison between the proposed methodology

(MCP) and the Quantile Regression technique will be carried out. The sec-



xxi

ond application will concern the Multi-Temporal approach (Krzysztofowicz,

2008) and the study case will be the Po River, in Italy. In this application

the forecasts provided by the flood forecasting system of the Department of

Civil Protection of the Emilia Romagna region will be processed in order to

evaluate the MCP capability to assign the correct flooding probability within

a horizon time and the flooding time probability.

Finally, the results obtained in the two study cases mentioned above will

be analyzed in order to proof the MCP good performance and its usefulness

in the probabilistic forecasting assessment in terms of clear benefits towards

the decision making process.
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Chapter 1

Introduction

The present work concerns the real time flood forecasting, with particular

attention to operational applications in flood emergency management.

The hydrologic risk (and the hydro-geologic one, closely related to it) is,

and has always been, a very relevant issue, due to the severe consequences

that may be provoked by a flooding or by waters in general in terms of hu-

man and economic losses. This is reflected by the Italian Civil Protection

Department:

In Italy, in the 20th century, due to floods and landslides:

• more than 29,500 areas affected by flooding

• more than 31,500 areas affected by landslides

• 10,000 considering dead, injured and missing people

• 350,000 evacuated

• thousands of houses have been destroyed or damaged

• thousands of bridges have been destroyed or damaged

• hundreds kilometers of roads and railways have been destroyed or dam-

aged

1
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• approximately 8.000 square kilometers (2.6% of the entire surface of

Italy) defined as high and very high flood-risk areas. (after: Project

AVI CNR)

Floods are natural phenomena, often catastrophic, and cannot be avoided,

but their damages can be reduced if they are predicted sufficiently in ad-

vance. For this reason, the flood forecast plays an essential role in the

hydro-geological and hydrological risk prevention. Thanks to the develop-

ment of sophisticated meteorological, hydrologic and hydraulic models, in

recent decades the flood forecasting has made a significant progress. Real

time flood forecasting systems, based on the complex modeling of the nat-

ural physical processes that trigger the flood events, have been made op-

erational. Such systems give important information about the evolution

of future events; nonetheless, models are imperfect, due to the structural

and parametric approximations and simplifications of hydrological models

together with the input data provided by the meteorological forecasts. This

means that we are still left with a residual uncertainty on what will actually

happen. In this thesis, this type of uncertainty is what will be discussed and

analyzed.

Dealing with future events means inevitably dealing with the uncertainty

issue. Hence, from an operational standpoint, flood forecasting cannot be

tackled without taking into account the associated uncertainty issue. In this

sense, it is possible to affirm that the ultimate aim of forecasting systems is

not to reproduce the river behavior, but this is only a means through which

reducing the uncertainty associated to what will happen as a consequence of

a precipitation event. In other words, the main objective is to assess whether

or not preventive interventions should be adopted and which operational

strategy may represent the best option.

The main problem for a decision maker is to interpret model results and

translate them into an effective intervention strategy. This conversion is

a complex task, especially if more than one model is available providing

different forecasts for the same problem. In fact, not always more information
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or data helps to take a decision, on the contrary their interpretation can

be more difficult, and so increase the confusion instead of providing more

solid basis for decision-making. This issue often reflects the difficulties in

communication between scientific and technical staffs. On one hand, the

former are mainly focused on improving models predictive ability, tying to

include into the models they develop all the available knowledge about the

physical process as well as the most advanced modeling techniques. On the

other hand, the latter have to use the information provided by these models

to take decisions, therefore they will always have to deal with uncertain

data, no matter the greatest improvements that can be made in hydrological

modeling. Hence, the uncertainty assessment represents the key link between

the two different teams. Namely, the scientist must try to reduce and assess

the predictive uncertainty while the technician should understand and base

their actions on the estimation of such uncertainty.

To make this possible, it is necessary to clearly define what is meant

by uncertainty, since in the literature confusion is often made on this issue.

Therefore, the first objective of this thesis is to clarify this concept, starting

with a key question: is the decision maker interested in knowing the model

uncertainty or the uncertainty of the reality? In other words, should be

the choice of the intervention strategy to adopt based on the evaluation of

the model prediction based on its ability to represent the reality or on the

evaluation of what actually will happen on the basis of the information given

by the model forecast?

Once the previous idea is made unambiguous and well explained, the other

main concern of this work is related to the importance and responsibility of

the role of those who must intervene to prevent human and economic losses

caused by a flood event. The decision making process must start from an

analysis as objective as possible of the deterministic model forecasts in order

to estimate the probability of a certain event occurrence.

With this in mind, this work is finally aimed at developing a tool that can

provide an effective decision support, making possible doing objective and
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realistic risk evaluations. In particular, such tool should be able to provide an

uncertainty assessment as accurate as possible. This means primarily three

things: it must be able to correctly combine all the available deterministic

forecasts, it must assess the probability distribution of the predicted quan-

tity (level, discharge, volume) and it must quantify the flooding probability.

Furthermore, given that the time to implement prevention strategies is often

limited, the flooding probability will have to be linked to the time of occur-

rence. For this reason, it is necessary to quantify the flooding probability

within a horizon time related to that required to implement the intervention

strategy and it is also necessary to assess the probability of the flooding time.



Chapter 2

Research Framework

2.1 Decision Making Under Uncertainty

In the last decades, the interest in assessing uncertainty in models forecasts

has grown exponentially within the scientific communities of meteorologists

and hydrologists. In particular, the introduction of the Hydrological Un-

certainty Processor (Krzysztofowicz, 1999; Krzysztofowicz and Kelly, 2000),

aimed at assessing predictive uncertainty in hydrological forecasts, has cre-

ated the basis for the estimation of flood predictive uncertainty.

Flood emergency management requires adopting operational decisions in

real time that may lead to dramatic consequences (economical losses, casu-

alties, etc.). The hardest obstacle the managers have to deal with is the

uncertainty on the future evolution of events. Decision theory (De Groot,

1970; Raiffa and Schlaifer, 1961) studied this problem and provided the most

appropriate solutions for taking decisions under uncertainty. This approach

consists in minimizing the expected value of a utility function U(y) repre-

senting the losses, or more in general the manager perception of them, as a

function of a predictand that will occur at a future time (such as a future

discharge or water stage in a cross section). This quantity is unknown at

the time of the decision (t0) and the aim of forecasting is to assess its proba-

bility of occurrence, in terms of a predictive uncertainty probability density

5
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function.

In the case of flood forecasting, predictive uncertainty can be defined

as the uncertainty that a decision maker has on the future evolution of a

predictand that he uses to make a specific decision.

In order to fully understand and to appreciate what is actually meant

by predictive uncertainty, it is necessary to realize that what will cause the

flooding damages is the actual future realization of the discharge and/or the

water level that will occur, not the prediction generated by a forecasting

model; in other words the damages will occur when the actual water level yt

and certainly not if the prediction ŷt will overtop the dyke level yD (Todini,

2009). Therefore a utility/damage function at any future time (t > t0) must

be expressed as a function of the actual level that will occur at time t :

{
U (yt) = 0

U (yt) = g (yt − yD)

∀yt ≤ yD

∀yt > yD
(2.1)

where g(·) represents a generic function relating the cost of damages and

losses to the future, albeit unknown water stage yt. In this case the manager,

according to the decision theory (De Groot, 1970; Raiffa and Schlaifer, 1961),

must take his decisions on the basis of the expected utility E {U (yt)}. This

value can be estimated only if the probability density function of the future

event is known, and it can be written as:

E {U (yt)} =

∫ +∞

0

U (yt)f (yt) dyt (2.2)

where f (yt) is the probability density expressing our incomplete knowledge

(in other words our uncertainty) on the future value that will occur. This

density, which can be estimated from historical data, is generally too broad

because it lacks the conditionality on the current events. This is why it is

essential to improve this historical probability distribution function by more

realistically using one or more hydrological models able to summarize all the

available information (like the rain forecast, the catchment geomorphology,
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the state of the river at the moment of the forecast, etc. . . ) and to provide

a more informative density f
(
yt|Ŷt|t0

)
, which expresses our uncertainty on

the future predictand value after knowing the models’ forecasts issued at

time t0, namely Ŷt|t0 ,
[
ŷ1t|t0 , ŷ2t|t0 , . . . , ŷMt|t0 ,

]
, where M is the number of

forecasting models. Equation 2.2 can now be rewritten as:

E
{
U
(
yt|Ŷt|t0

)}
=

∫ +∞

0

U (yt)f
(
yt|Ŷt|t0

)
dyt (2.3)

The probability distribution function f
(
yt|Ŷt|t0

)
represents the PU, hereafter

denominated f (y|ŷ) for sake of simplicity.

Summarizing, for a decision maker to take rational decisions it is necessary

first of all to define his propensity to risk (eg the decision-maker could be

risk-prone when the level of damage is low or risk-averse when the level

of damage is high), which afterwards can be included in the chosen utility

function, and then try to minimize the expected value of this risk on the basis

of a predictive density function conditional on all the information he/she can

gather and in particular on the available model forecasts.

2.2 Definition Of Predictive Uncertainty

Predictive uncertainty (PU) can be defined as the probability of any future

(real) value conditional upon all the knowledge and information, available up

to the present, we were able to acquire through a learning inferential process.

In clarifying to hydrologists the meaning of predictive uncertainty, Krzy-

sztofowicz (1999) points out that “Rational decision making (for flood warn-

ing, navigation, or reservoir systems) requires that the total uncertainty about

a hydrologic predictand (such as river stage, discharge, or runoff volume) be

quantified in terms of a probability distribution, conditional on all available

information and knowledge.” and that “Hydrologic knowledge is typically

embodied in a deterministic catchment model”.

These statements underline two aspects usually not fully and clearly un-
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derstood by hydrologists. The first is that, as previously mentioned, the

objective of forecasting is the description of the uncertainty of actual future

values of water stage, discharge, runoff volume, etc. rather than the uncer-

tainty of predictions generated by the hydrological forecasting models. The

second is that this uncertainty, generally expressed in terms of a probability

density (or probability distribution) function, is “conditional” upon the hy-

drological forecasting model prediction, which is now seen as the available,

although uncertain, knowledge of the future. In other words, the forecasting

model prediction is now a way to reduce uncertainty in the decision making

process and not the provider of deterministic (and therefore “certain”) future

levels, flows, etc.

To clarify these aspects, following Todini (2008) let us introduce the con-

cept of the joint probability distribution of the real quantity of interest, the

predictand (namely the discharge, the water level at a specific cross section,

etc.) y, and the model forecast ŷ.

Figure 2.1: Joint y−ŷ sample frequency from which a joint probability density
can be estimated.The conditional density of y given ŷ is then obtained by
cutting the joint density for the given a value of ŷ, namely ŷt (Liu et al.,
2005)
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Unless the model is exceptionally accurate, thus perfectly matching the

observations, a scatter will always be observed in the y− ŷ plane as in Figure

2.1. This scatter is a representation of the joint sample frequency of y and

ŷ that can be used to estimate the joint probability density. For any given

model, the model forecast ŷt, will be a function of the specific value θ of the

parameter set used and of the input forcing xt (the covariate), thus the joint

probability density can be expressed as in Equation 2.2:

f (yt| (ŷt|xt, θ)) (2.4)

which, for the sake of clarity, is written more explicitly, than in classical

statistical notation, by explicitly describing the conditionality of the model

output ŷt, on the covariate and the model parameters.

If there is no scatter and yt = ŷt}∀}t, then and only then one can use ŷt as

a forecast of yt. In all the other cases there is an inherent uncertainty, and, in

order to predict yt, one must derive the conditional probability of yt given ŷt.

This is easily done by cutting for a given ŷt the previously mentioned joint

probability density (Figure 2.1) and renormalizing it. This can be formalized

as:

f (yt| (ŷt|xt, θ)) =
f (yt, (ŷt|xt, θ))∫∞

0
f (yt, (ŷt|xt, θ)) dy

(2.5)

It is important that the reader understands that the conditional uncertainty

of Equation 2.5 expresses the predictive uncertainty of a “given” model un-

der a “given” input forcing, “given” initial and boundary conditions and a

“given” set of parameter values.

This has nothing to do with the uncertainty induced by the model choice,

and/or by the input and output measurement errors, and/or initial and

boundary condition errors, and/or by the parameter value uncertainty. If

we believe that these additional uncertainties may strongly affect the esti-

mated value and its uncertainty, as in the case of parameter estimation, then

all these uncertainties should be specifically assessed and marginalized. Note

that when dealing with forecasting, it is fundamental to “marginalize” out
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the uncertainties. It is not sufficient to express the uncertainty due to model,

input forcing, initial and boundary conditions, parameters etc.: what is re-

quested when forecasting in the presence of uncertainty is the expected value

of the conditional density, taken on the basis of the assessed uncertainty.

For instance, following the Bayesian approach (De Finetti, 1975), all the

previously mentioned additional uncertainty (namely model, measurements,

initial and boundary conditions and parameters) can be concentrated in a

number of “dummy” parameters, the uncertainty of which is described via

a posterior probability density and successively marginalized out. Using the

notation in Mantovan and Todini (2006), a formal definition of such predic-

tive uncertainty is given as:

f (yt|xt, Yt0 , Xt0) =

∫
Θ

f (yt|xt, θ) g (θ|Yt0 , Xt0) dθ (2.6)

This can also be written more explicitly as:

f (yt| (ŷt|xt, Yt0 , Xt0)) =

∫
Θ

f (yt| (ŷt|xt, θ)) g (θ|Yt0 , Xt0) dθ (2.7)

where the predictand yt is explicitly written conditionally upon the model

output ŷt, which is in turn conditional on the covariate and the parameters.

In Equations 2.6 and 2.7:

f (yt|xt, Yt0 , Xt0) or f (yt| (ŷt|xt, Yt0 , Xt0)) is the probability density of the

predictand conditional upon the historical observations and the covariate

after marginalizing the uncertainty due to the parameters.

Yt0 is the set of historical predictand observations (for instance water

levels, discharges, etc.) and n is the record length; Xt0 is the set of historical

covariates (for instance rainfall, upstream inflows, etc.); yt is the predictand

value of interest; xt is the corresponding value of the covariate; θ is a given

parameter vector; Θ is the ensemble of all possible parameter realizations;

f (yt|xt, θ) or f (yt| (ŷt|xt, θ)) is the probability density of the predictand value

of interest conditional upon the covariate and a generic set of parameters

θ; g (θ|Yt0 , Xt0) is the posterior density of parameters given the historical
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observations.

Equation 2.7 shows that, in order to account for all the different (model,

parameters and measurements) uncertainties, the predictive uncertainty must

be derived by marginalizing the dummy parameters effect from the condi-

tional probability density expressed by Equation 2.5. Therefore, the pos-

terior probability density for the parameter vector θ, namely g (θ|Yt0 , Xt0),

can be derived by means of a Bayesian inferential process (Mantovan and

Todini, 2006) and plays an important role in the derivation of the predictive

uncertainty. The Bayesian inference process allows this posterior probability

density to be derived from the historical observations Yt0 , Xt0 , starting from a

prior density expressing our subjective knowledge about the parameters. The

posterior density is used to marginalize out the conditionality on the param-

eters; this involves integrating over Θ, the entire domain of existence of the

parameters, its product with the probability density function f (yt| (ŷt|xt, θ))
of the predictand yt conditional on the covariate xt and the parameter vector

θ that identifies the specific model. Equation 2.7 is then the basis for deriving

the predictive probability density for the tth observation, and can be used to

describe the predictive uncertainty both in “hindcast” mode, when t ≤ t0,

and in “forecast” mode for t > t0.

In “forecast” mode there is another issue to be discussed. If one uses

a predicted input x̂t instead of a measured one, as for instance when using

the meteorological quantitative precipitation forecasts as the forcing of a hy-

drological model, instead of the observed precipitation (which is obviously

not available at a future time), both f (yt| (ŷt|xt, θ)), and g (θ|Yt0 , Xt0), are

no more valid. The first one becomes f (yt| (ŷt|x̂t, θ)) and the second one

g
(
θ|Yt0 , X̂t0

)
, which means that both the density of the predictand condi-

tional on the parameters as well as the posterior parameter densities must

be re-derived using the predicted values of the co-variate instead of the mea-

sured ones. There are alternative ways to obtain the parameter posterior

density, but the use of the predicted co-variate values is unavoidable.
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2.3 The Probabilistic Threshold Paradigm

Today, similarly to what was done for more than a century, in order to trigger

their decisions, the majority of water authorities involved in flood emergency

management prepare their plans on the basis of pre-determined water depths

or thresholds ranging from the warning water level to the flooding level.

Decisions, and consequent actions, are then taken as soon as a real time

measure of the water stage overtops one of these thresholds. This approach,

which is correct and sound in the absence of flood forecasting models is a

way of anticipating events on the basis of water level measures (in the cross

sections of interest or in upstream cross sections), but can only be effective on

very large rivers where the time lag between the overtopping of the warning

and the flooding levels is sufficiently large to allow for the implementation

of the planned flood relief strategies and interventions (Todini and Coccia,

2010).

Given that all the water stage measures are affected by relatively small

errors (1-2 cm), they can be, and have been, considered as deterministic;

therefore in the sequel this approach will be referred to as the deterministic

threshold paradigm.

Unfortunately, the advent and the operational use of real time flood fore-

casting models, has not changed this paradigm, which has been the cause of

several unsatisfactory results. Today, the flood managers, instead of compar-

ing the actual measurements to the different threshold levels, they compare

the forecasts, namely the hydrologic or hydraulic models’ outputs, which is

obviously done in order to further anticipate decisions by taking advantage

from the prediction time horizon. Unfortunately, by doing so the forecasts

are implicitly assumed to be real and deterministic, which is not the case,

given that the forecasts, by their nature are virtual reality and are affected

by prediction errors, which magnitude is by far larger than that of the mea-

surement errors.

More recently, the concept of predictive uncertainty has radically changed

the deterministic thre-shold paradigm (Todini and Coccia, 2010). This in-
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herent uncertain nature of forecasts, as opposed to the higher accuracy of

measurements, requires the definition of a probabilistic threshold paradigm,

defined in terms of the probability of flooding taken at different probability

levels (20%, 50%, etc.) instead of the definition of deterministic threshold

values. The probabilistic thresholds, as opposed to the deterministic water

level thresholds, can result into improved tools in the hands of decision mak-

ers. As it will be shown in the sequel, using the probabilistic thresholds, the

same predicted water level may have different meaning and different effects

on decisions owing to the reliability of prediction. In other words the same

forecast may or may not trigger the decision of issuing a warning or evacuat-

ing an area, conditionally to its assessed level of uncertainty. More uncertain

forecasts need necessarily to be treated more cautiously than more reliable

ones; uncertain lower water stage forecasts could then trigger a protective

measure, whereas higher, albeit more accurate water stage forecasts, would

not.

Particular attention must be given to the probability of exceeding an

alert threshold (for example the dike level or the corresponding discharge),

which for simplicity will be called alert level. Namely, the knowledge of the

predictive uncertainty allows a probability alert threshold to be estimated

instead of the commonly used deterministic alert level. As mentioned above,

model forecast is a representation of the reality, but not the reality itself.

Hence, the comparison between the deterministic model prediction and the

actual alert level can be considered an incorrect operational approach, since

one compares to the real threshold a virtual quantity such as the forecast

instead of real quantity that will occur in the future. A more correct way

to proceed would be to account for the probability of exceeding the alert

level conditional to the knowledge of the model(s) forecast(s) in terms of

a probabilistic threshold value, which must reflect the emergency manager’s

safety concept. With the probabilistic threshold concept the reliability of the

different models can also be taken in account because it is the spread of the

density that characterises the uncertainty, not the expected value. As can be
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seen from the Figure 2.2, for the same expected value (the horizontal dashed

line) a better forecast (Model A), characterised by a narrower predictive

density, will show a smaller probability of exceedance of the flooding level

when compared to a worse one (Model B).

Figure 2.2: Probability of exceeding the dyke level for the same expected
value, forecasted by models with different reliability.

This property can be looked at from an alternative perspective, giving

scope to the definition of a probabilistic forecast paradigm. As shown in Fig-

ure 2.3 the same probability of flooding (exceedance of the flooding threshold

level) corresponds to a lower expected value if the spread of PU is larger

(Model B) than when it is narrower (Model A). This implies that if a proba-

bilistic threshold is defined (for instance 15% probability of flooding) instead

of a deterministic threshold level, when the PU is larger the decision maker

must be more cautious and would be advised to issue an alert even when,

looking at the expected value of the forecast, he would not think of issuing

it, because he may regard it as being too low.

Nonetheless, the pre-requisite to implement the new probabilistic thresh-

old paradigm is an accurate and effective estimate of predictive uncertainty.

In the following sections the introduction of a new probabilistic thresholds

paradigm and how this is conditioned upon a reliable estimate of predictive

uncertainty will be discussed. The present work also aims at showing how the

probabilistic threshold paradigm may lead to a dynamic application of the

principle of precaution as a function of the degree of predictive uncertainty
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Figure 2.3: Comparison between the expected value provided by models with
different reliability when the probability of exceeding the dyke level is the
same for all the models.

with consequent benefits both in terms of increased reliability and robustness

of decisions.

2.4 The need for probabilistic forecasts within

a time horizon

As described above, the concepts of Predictive Uncertainty and Probabilistic

Thresholds allow probabilistic sort of knowledge to be included in a flood

warning response system, taking especially advantage of the future event

probability distribution. In particular, in order to take a decision optimally,

the system needs quantitative information about the predictive uncertainty,

but also about the maximum river stage exceedance probability within a time

interval (Krzysztofowicz, 2008).

A flood forecasting system usually provides forecasts within a time horizon

which depends on catchment features and on the influence of precipitation

uncertainty over the forecasted flow. From a probabilistic point of view, these

forecasts provide important information concerning the exceeding probabil-

ity of a prefixed river stage within the forecast lead time. For instance, the

knowledge of forecasts until 48 hours in advance allows not only the pre-

dictive uncertainty to be assessed for each forecasted time step, but also it
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allows the probability to exceed the dyke level and how it varies during the

forecast time to be estimated within the entire time interval.

Following Rougier (2007) and Todini (2009), a simple question may help to

clarify this concept:

Which is the probability that the river dykes will be overtopped in the next

24 hours?

This seems to be a well-posed question, and certainly a topical one. In fact,

it is the kind of question a flood emergency manager might ask the technical

staff. The Predictive Uncertainty assessment, as explained in the previous

sections, aims at answering this kind of questions. When decisions about

issuing or not a flood alarm must be taken, many variables have to be taken

into account. Therefore, the best operational procedure should be applied

on the basis of the knowledge they are able to provide. The Predictive Un-

certainty assessment deal with the first problem, that is to combine all the

available information in a probability value of the occurrence of an event,

which means defining the hazard . The second question concerns the fact

that an operational decision must be taken according to this estimated prob-

ability value. In this process the hazard must be converted into risk and

other variables must be taken in account: the vulnerability of the area and

its value (in human lives and economic terms). In the risk assessment, these

variables are multiplied by the hazard , so it is evident that a small flooding

probability may be enough to issue an alarm in highly vulnerable areas with

high economic value. Hence, it is also clear the reason why in this framework,

an accurate flooding probability estimation is very important.

Coming back to the previously mentioned question, there is an important

aspect that ought to be highlighted. The question refers to the probability

within a specific horizon time, not to the probability at a specific moment.

It must be bore in mind that there is a significant difference between the

two formulations. The latter does not account for what will happen during

the whole forecast time, but only for the specific chose instant time, so it is
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conditioned only to that specific model forecast. Otherwise, the former takes

into account the whole forecast, hence, the PU must be conditioned to all

the available forecasts, that is the forecasts at each step within the whole

forecast lead time.

Most of the uncertainty processors available in literature can not answer the

previous question, but they only can answer to the following one:

Which is the probability that the river dykes will be overtopped exactly at the

hour 24th?

It is evident that if this probability is computed for each time forecast step

it is possible to identify a variation of the probability of occurrence during

the entire forecast time, but each probability is conditioned only to the cor-

respondent prediction and the forecast is not considered on its whole. The

problem is so converted from an univariate form to a multivariate one and

the Predictive Uncertainty takes the form of a multivariate distribution of

the actual future values of the predictand at each forecast time step. If the

integration of this multivariate distribution is done for each variable below

the value of the prefixed predictand threshold, it is possible to identify the

probability that this threshold will never be exceeded during the forecast

time, so its complementary to 1 is the probability to observe almost one ex-

ceeding occurrence within the forecast time horizon.

Additionally, another question concerning the probability of the exceeding

time can be answered. Once the exceeding probability within the time inter-

val is identified, a decision maker can also be interested in knowing when this

exceeding event will occur. Even if this is not a crucial information in a de-

cision making process, it is closely related to the previous concepts. Namely,

if the probabilities of occurrence are computed within every time step, they

identify a discrete cumulative exceeding probability within the entire time

horizon, from which it is easy to identify the probability of the time exceeding

as its discrete derivative (Krzysztofowicz, 2008).
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2.5 Existing Approaches For PU Assessment

The prediction problem can be tackled with two different approaches, de-

pending on the nature of the decision problem to be solved. The first ap-

proach relates to continuous processes, which require the estimation of the

entire predictive probability function: for instance when dealing with flood

damages, which vary with the water level reached, the expected value of these

damages can only be estimated if the full probability density of water levels

is available. There are other cases where only the integral above or below a

threshold of the predictive density is required. This is the case for instance

when one has to decide, based on model forecasts, whether the flood event

will exceed an alert threshold or not; these cases can be described in discrete

probability terms.

2.5.1 Continuous Probability Problem

Hydrological Uncertainty Processor (HUP)

Krzysztofowicz (1999) introduced a Bayesian processor, the Hydrological

Uncertainty Processor (HUP) which aims at estimating the predictive un-

certainty given a set of historical observations and a hydrological model

prediction. The HUP was developed around the idea of converting both

observations and model predictions into a Normal space by means of the

NQT in order to derive the joint distribution and the predictive conditional

distribution from a treatable multivariate distribution. In practice, as de-

scribed in Krzysztofowicz (1999), after converting the observations and the

model forecasts available for the historical period into the Normal space, the

HUP combines the prior predictive uncertainty (in this case derived using

an autoregressive model) with a Likelihood function in order to obtain the

posterior density of the predictand conditional to the model forecasts. From

the Normal space this conditional density is finally re-converted into the real

space in order to provide the predictive probability density.

The introduction of HUP generated a positive impact into the hydrological
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community, because it was the first time that predicting uncertainty was

correctly formulated and used in hydrological forecasting. Nonetheless, HUP

has three major limitations. The first one relates to the fact that only one

model at a time can be used in HUP, which is hardly extendable to multi

model forecasts. Moreover the used prior autoregressive (AR) model fre-

quently tends to be inadequate to represent the predictand, as for instance

in the case of a flood routing problem where the AR model is adequate for

representing the recession but not the rising limb of the flood wave. Finally,

the HUP procedure implies the independence of the AR model errors from

those deriving from the used prediction model, which is not guaranteed due

to the fact that both models tend to be highly correlated to the observations,

which inevitably induces a level of correlation among them.

Bayesian Model Averaging (BMA)

Introduced by Raftery (1993), Bayesian Model Averaging (BMA) has gained

a certain popularity in the latest years. The scope of Bayesian Model Aver-

aging is correctly formulated in that it aims at assessing the mean and vari-

ance of any future value of the predictand conditional upon several model

forecasts. Differently from the HUP assumptions, in BMA all the mod-

els (including the AR prior model) are similarly considered as alternative

models. Raftery et al. (2005) developed the approach on the assumption

that the predictand as well as the model forecasts were approximately Nor-

mally distributed, while Vrugt and Robinson (2007) relaxed this hypothesis

and showed how to apply the BMA to Log-normal and Gamma distributed

variables. In practice the Bayesian Inference problem, namely the need for

estimating a posterior density for the parameters, is overcome in the BMA

by estimating a number of weights via a constrained optimization problem.

Once the weights have been estimated, BMA allows to estimate the mean

and the variance of the predictand conditional upon several models at the

same time.

The original BMA, as introduced by Raftery (1993), has shown several prob-
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lems. First of all, as pointed out by Vrugt and Robinson (2007), the original

assumption of approximately Normally distributed errors, is not appropriate

for representing highly skewed quantities such as water discharges or water

levels in rivers. Therefore one must either relax this hypothesis, as done by

Vrugt and Robinson (2007) who applied the BMA to Log-normal and Gamma

distributed variables or to convert the original in the Normal space once again

using the NQT, as done in Todini (2008). Another problem, which emerges

from the application of BMA is the use of the “expectation-maximization”

(EM) algorithm (Dempster et al., 1977) proposed by Raftery et al. (2005),

which was not found to properly converge to the maximum of the likelihood.

To overcome this problem, one can either use sophisticated, complex opti-

mization tools such as the SCEM-UA (Vrugt et al., 2003) or, as proposed by

Todini (2008), a simple and original constrained Newton-Raphson approach,

which converges in a very limited number of iterations.

The Error Heteroscedasticity Problem: Quantile Regression (QR)

The latest uncertainty processors (UP) approaches tackle the problem of the

heteroscedasticity of the errors often present in hydrological modelling. All

the previously described techniques imply homoscedasticity of the error vari-

ance, which is assumed to be independent from the magnitude of the observed

or forecasted values. In real cases this assumption leads to a lack of accuracy,

especially at reproducing high flows, because the NQT tends to increase the

variance of the lower values. Moreover, the number of observed and com-

puted low and medium flows is much larger than that of high flows with the

consequence of a higher weight in the determination of the regression or the

correlation coefficients used by the different approaches. As a consequence

the estimation of high flows in the Normal Space will be affected by a dis-

tortion in the mean as well as an overestimation of the variance, which will

inevitably increase when returning into the Real Space.

Recently, in order to overcome this problem, the Quantile Regression (Koenker,

2005) was used (Weerts et al., 2010).
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The Quantile Regression (QR) approach tries to represent the error het-

eroscedasticity identifying a linear variation of the quantiles of the PU as

a function of the model forecast magnitude. This technique allows all the

desired quantiles of the PU to be assessed in the Normal Space and then

reconverted by means of the Inverse NQT to the Real Space. The τ th sam-

ple quantile is computed solving the Equation 2.8, from which is possible to

identify the parameters aτ and bτ which defines the linear regression for the

τ th quantile.

min
aτ ,bτ∈R

n∑
i=1

ρτ (η − aτ − bτ · η̂) (2.8)

where ρτ (x) =

{
x · (τ − 1) if x < 0

x · τ if x ≥ 0

The problem is correctly formulated and allows each quantile of the PU

to be computed, but it requires the estimation of at least two parameters per

quantile (in the linear case) and the number of parameters to be estimated

may become quite large. Moreover, QR not always improves from assuming

homoscedasticity: this depends on the actual distribution of the errors. Fig-

ure 2.4 and Figure 2.5 show two situations in which the use of QR leads to

very different results.

Figure 2.4: An optimal situation for using the QR.
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Figure 2.4 is an optimal situation for using QR because the variation of

error variance is linearly decreasing with the magnitude of the forecasts and

the resulting quantiles well represent the real distribution of the data. On

the contrary, in Figure 2.5 it is not possible to identify a linear variation of

the error variance and the use QR does not provide improved assessments of

PU, particularly for high forecast values.

Figure 2.5: Poor results are obtained using QR in the situation represented
here, which, by the way, is quite common in hydrological applications.

2.5.2 Discrete Probability Problem

As mentioned above, the prediction problem can be also faced adopting a

discrete formulation, especially when only the integral above or below a

threshold of the predictive density is needed. In practical problems, such

as the flood warning management, the decision making process is based on

the assessment of the probability to exceed the dyke level, that is the prob-

ability of a flooding occurrence. As described in Section 2.3, the continuous

processors allow this probability to be computed, but also discrete probabil-

ity processors (DPPs) can be used to estimate it. The main advantage given

by these processors is their simple structure that can considerably reduce the

computational time. Moreover, the DPPs can be coupled with continuous
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processors to provide more information concerning the predicted event and

the effects that it could cause.

When dealing with discrete probability problems, the predictive problem

is generally simpler when both the predictand and the predictors are binary

functions such as rain/no-rain or quantities above/below a threshold. Un-

fortunately, several problems, generally referred to as binary response, have

binary predictands but continuous predictors. In this case the problem can

be quite complex due to the need of converting the continuous functions into

binary ones.

Let us consider a binary response variable, the predictand (y), taking val-

ues of 1 or 0, and a single explanatory variable, the predictor (ŷ) . The most

commonly used statistical models for this type of data are the generalized

linear models:

g (πi) = β0 + β1 · ŷi (2.9)

where πi = P {yi = 1} is the probability of positive response, namely

yi taking the value 1 when the ŷ value is ŷi, while g is the link function

(McCullagh and Nelder, 1989; Nelder and Wedderburn, 1972). In the present

work, this kind of problem has been faced in the present work using two

different link functions: the logistic one and the integral of the beta functions.

The solution of the problem is obtained identifying the function parameters

that maximize the probability of success, that is the probability to predict

the level exceeding when it actually occurs and to do not predict it otherwise.

If the alert level is called T, the probability of success is defined as:

Ps =
n∏
i=1

πi
ri · (1− πi)1−ri (2.10)

where ri is the observed value at step i, which can assume values ri = 1 if

y ≥ T and ri = 0 if y < T . The solution of Equation 2.10 cannot usually

be analytically obtained and a numerical algorithm is required. In literature

different algorithms have bee proposed, such as a weighted iterative least
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squares (Miller, 1992) or a Newton-Raphson based approach proposed by

Todini et al. (2009); in the present work the SCE-UA algorithm (Duan et

al., 1992) has been used.

Based on the same idea, another kind of function to determine the prob-

ability response has been introduced. In this case the parameter to be iden-

tified is a threshold in the virtual space of the predictors, a virtual threshold ,

on which the probability response depends; this threshold must be computed

as the one that maximizes the probability of success. This kind of processor

has been called Beta Distribution Processor because it is based on a feature

of the beta distribution that will be explained below.

Finally, the last DPP presented is the Bayesian Univariate Binary Pro-

cessor (Todini et al., 2009). This processor is based on the Bayes theorem

and does not require a structural link model, it only requires the estimation

of a virtual threshold in the space of the predictor.

The DPPs have been tested on a preliminary study case on the Po river

in Italy, the obtained results highlighted what was expected. The DPPs

require low computational times and their predictive ability is good, even

if none of them could reach the performance of the continuous processors.

In fact, only the continuous processors can identify the complete predictive

distribution. Additionally, the continuous processors are based on a more

informative process, which allows the probability to exceed a river stage to

be more accurately estimated and the false and missed alarm rates obtained

with the DPPs are almost always greater than the ones produced by the con-

tinuous processors. Nevertheless, the DPPs can provide a further support in

operational alarm warning management and can be coupled to the contin-

uous processors without a huge computational extra-effort. For this reason

they have been analyzed and described in the following sections.

LOGIT Processor

When the link function has a logistic form, the probability of positive re-

sponse is defined as:
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π =
eβ0+β1·ŷ

1 + eβ0+β1·ŷ
(2.11)

The historical available data are used in the calibration phase to estimate

the values of β0
∗ and β1

∗ that maximize Equation 2.10. Afterward, these

values are used in Equation 2.11 to validate the model.

The probability to exceed the level T is then computed by Equation 2.12:

P (y ≥ T |ŷi) =
eβ
∗
0+β∗1 ·ŷi

1 + eβ
∗
0+β∗1 ·ŷi

(2.12)

The binary response is finally obtained verifying if P (y ≥ T |ŷ) is greater

or lower than 0.5, which indicates if the probability to exceed the level T

is greater or lower than the one of not exceeding it. In the first case the

response takes value 1 and in the second case 0.yi > T ∀P (y > T |ŷi) > 1
2

yi ≤ T ∀P (y > T |ŷi) ≤ 1
2

(2.13)

Beta Function Processor

If the link function is the integral of a beta function with parameters r and

s, the probability function is defined as:

πi =

∫ P (ŷi)

0

Be (p; r, s) dp =

∫ P (ŷi)

0

Γ (r + s)

Γ (r) · Γ (s)
· pr−1 · (1− p)s−1 dp (2.14)

Differently from the logistic function, Equation 2.14 does not relate di-

rectly the predictor value ŷi with the exceeding probability, but it is func-

tional on the probability of occurrence of ŷi. In other words, in Equation

2.14 P (ŷi) identifies the probability of occurrence of ŷi, computed with the

Weibull plotting position on the calibration data.

As done for the LOGIT model, during the calibration phase, in Equation

2.14 the optimal parameters r∗ and s∗ are obtained maximizing the success
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probability of Equation 2.10.

Finally, in order to validate the model the probability P (ŷi) = i
N+1

is as-

signed to the model predicted value ŷi, where i is the position assumed by

the prediction into the ordered calibration vector and N is the total number

of calibration data. Then, the probability of occurence is used to obtain the

probability to exceed the level T through Equation 2.14.

P (y ≥ T |ŷi) =

∫ P (ŷi)

0

Be (p; r∗, s∗) dp (2.15)

The binary response is computed according to the scheme of Equation

2.13.

Beta Distribution Processor

As mentioned above, the Beta Distribution Processor takes advantage of

a Beta distribution according to which the probability distribution of the

i−esim element in an ordered vector composed of N elements is represented

by a Beta distribution with parameters i and N − i+ 1:

Be (i, N − i+ 1) =
N !

(i− 1)! (N − i)!
· pi−1 · (1− p)N−i (2.16)

If an unknown virtual threshold T̂ is defined in the domain ]0,1[ and a

model prediction assuming position i into the ordered calibration vector, ŷi,

is considered, it is possible to identify the probability to exceed the virtual

threshold conditioned to the model predicted value as:

πi =

∫ ∞
T̂

Be (i, N − i+ 1) dp (2.17)

The virtual threshold T̂ is the only model parameter, whose optimal value

T̂ ∗ is identified by maximizing the probability of success of Equation 2.10,

as done for the previous binary models. Hence, the probability to exceed the

level T conditioned to the model prediction ŷi is computed as:
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P (y > T |ŷi) =

∫ ∞
T̂ ∗

Be (i, N − i+ 1) dp (2.18)

As done for the previous binary models, the binary response is obtained

verifying if P (y ≥ T |ŷi) is greater or lower than 0.5:yi > T ∀P (y > T |ŷi) > 1
2

yi ≤ T ∀P (y > T |ŷi) ≤ 1
2

(2.19)

Bayesian Univariate Binary Predictor (BUBP)

The use of a virtual threshold is an important feature also of the BUBP and

concerning this threshold some considerations can be done. The need for a

discrete binary response model lies in the fact that on the one hand the pre-

dictand is a binary quantity while, in general, the predictors are represented

by continuous variables within a certain range. This is why a first step in the

proposed model is required to convert the conditioning variables, the predic-

tors, into binary quantities (below a threshold = 0, above a threshold =1).

It is also necessary to clarify that the thresholds to which one must compare

the predictors to generate a binary variable are not necessarily the same

threshold used for the predictand. Usually the predictand is a real quantity

which is compared to a specific real threshold: for instance the rain/no-rain

event or a water level in a river which is above/below a warning level or the

dyke height. On the contrary, the predictors must be considered as virtual

reality representations. This is so not only when dealing with the output of

a model but also when the predictor is an error corrupted direct or indirect

measure of the predictand (Todini et al., 2009). With this in mind, we can

easily understand that the thresholds we must compare the predictors to, are

not the real threshold but rather virtual thresholds in the virtual space of the

predictors. In other words if for instance we want to estimate the probability

of a real water level being above a warning level conditional to our modeled

water level being above a threshold, this threshold will not necessarily be

the same real warning level, but rather a specific virtual warning level coher-
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ent with the virtual world in which our model operates. Maybe this virtual

reality concept be can better understood when the predictand is the actual

water level in a river and the predictors are some estimated rainfall over the

catchment and the soil moisture storage. In this case, one must estimate a

virtual rainfall threshold and a virtual soil moisture threshold values in order

to maximise their probability when observing the real water stage above the

real warning level.

The proposed BUBP approach is valid for the case of a single predictor, any-

way the extension of the approach to multiple predictors is quite easy to do,

but it will not be described in this document.

Knowing the real threshold T , which is given as part of the problem, and

one a priori unknown virtual threshold T̂ , which must be estimated from the

observations, the joint probability of the observation y and the prediction ŷ

can be matched to the joint probability mass function of Figure 2.6, where,

the binary variables r (real) and v (virtual) are defined as follows:

Figure 2.6: The four components of the joint probability mass function.

The four components of the joint probability mass function can be easily

computed from observations conditionally to the knowledge of the threshold

value T̂ :
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Pr=0,v=0 = Py≤T,ŷ≤T̂ = n00

n

Pr=0,v=1 = Py≤T,ŷ>T̂ = n01

n

Pr=1,v=0 = Py>T,ŷ≤T̂ = n10

n

Pr=1,v=1 = Py>T,ŷ>T̂ = n11

n

(2.20)

where n is the total number of observations, and as in Figure 2.7, n00 is the

number of observations for which r = 0 and v = 0; n01 is the number of

observations for which r = 0 and v = 1; n10 is the number of observations

for which r = 1 and v = 0; n11 is the number of observations for which r = 1

is the number of observations for which r = 1 and v = 1.

Figure 2.7: The simple estimator of the joint probability mass function.

Similarly one can compute the marginal probabilities:
Pr=0 = Py≤T =

n00+n01

n
= n0

n

Pr=1 = Py>T =
n10+n11

n
= n1

n

Pv=0 = Pŷ≤T̂ = n00+n10

n

Pv=1 = Pŷ>T̂ = n01+n11

n

(2.21)

As opposed to the LOGIT and Beta Function and as described for the

Beta Distribution, this representation does not require a link model. The

only parameter to be estimated is the virtual threshold T̂ . The calibration,

namely the estimation of this parameter, can be successfully achieved by

maximising the Likelihood of successes and at the same time minimizing the
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Likelihood of failures. These Likelihoods can be easily defined on the basis

of the probabilities of the predictor conditional upon the observations, that

can be derived by means of the Bayes theorem:



Pv=0|r=0 = Pŷ≤T̂ |y≤T =
P
y≤T,ŷ≤T̂

P
y≤T,ŷ≤T̂+P

y≤T,ŷ>T̂
=

n00
n

n00
n

+
n01
n

= n00

n00+n01

Pv=1|r=0 = Pŷ>T̂ |y≤T =
P
y≤T,ŷ>T̂

P
y≤T,ŷ≤T̂+P

y≤T,ŷ>T̂
=

n01
n

n00
n

+
n01
n

= n01

n00+n01

Pv=0|r=1 = Pŷ≤T̂ |y>T =
P
y>T,ŷ≤T̂

P
y>T,ŷ≤T̂+P

y>T,ŷ>T̂
=

n10
n

n10
n

+
n11
n

= n10

n10+n11

Pv=1|r=1 = Pŷ>T̂ |y>T =
P
y>T,ŷ>T̂

P
y>T,ŷ≤T̂+P

y>T,ŷ>T̂
=

n11
n

n10
n

+
n11
n

= n11

n10+n11

(2.22)

When dealing with only one predictor the problem is easily solved by

searching, in only one dimension, the optimal threshold value which max-

imises the following Likelihood function, which expresses the probability of

successes given the threshold and the observations:

Ls

(
T̂
)

= Pv=0|r=0 · Pv=1|r=1 = Pŷ≤T̂ |y≤T · Pŷ>T̂ |y>T =

=
Py≤T,ŷ≤T̂
Py≤T

·
Py>T,ŷ>T̂
Py>T

=
n00

(
T̂
)
· n11

(
T̂
)

n0 · n1

∝

∝ n00

(
T̂
)
· n11

(
T̂
) (2.23)

while, at the same time, minimises the Likelihood function which expresses

the probability of failures given the threshold and the observations:

Lf

(
T̂
)

= Pv=1|r=0 · Pv=0|r=1 = Pŷ>T̂ |y≤T · Pŷ≤T̂ |y>T =

=
Py≤T,ŷ>T̂
Py≤T

·
Py>T,ŷ≤T̂
Py>T

=
n01

(
T̂
)
· n10

(
T̂
)

n0 · n1

∝

∝ n01

(
T̂
)
· n10

(
T̂
) (2.24)

this can be formulated as follows:
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MaxT̂

{
Ls

(
T̂
)
− Lf

(
T̂
)}

= n00

(
T̂
)
·n11

(
T̂
)
−n01

(
T̂
)
·n10

(
T̂
)

(2.25)

The search of the threshold value can be in the positive direction if there

is a positive correlation between reality and virtual reality, namely when

both predictand and predictor generally grow or decrease at the same time,

or it can be in the negative direction if the correlation is negative. A simple

solution to this problem is to compute the two thresholds in the opposed

directions and then select the one that produces the largest value of the

objective function. Once the threshold value T̂ is found, it is now easy to

perform a prediction. The predictive scheme is now:
Py≤T |ŷ =

Py≤T |ŷ≤T̂ ∀ŷ ≤ T̂

Py≤T |ŷ>T̂ ∀ŷ > T̂

Py>T |ŷ =

Py>T |ŷ≤T̂ ∀ŷ ≤ T̂

Py>T |ŷ>T̂ ∀ŷ > T̂

(2.26)

In this case, as opposed to what was done to calibrate the threshold (and

generally what is also done to validate the model in terms of POD or FAR)

the conditionality is no more on the observations, which being in a in predic-

tive mode, are now assumed to be unknown. The conditional probabilities

to be used are then the probabilities of the real event conditional upon the

occurrence of the virtual one.

The probabilities appearing in 2.25 can now be derived using the Bayes the-

orem as follows:



Pr=0|v=0 = Py≤T |ŷ≤T̂ =
P
y≤T,ŷ≤T̂

P
y≤T,ŷ≤T̂+P

y>T,ŷ≤T̂
=

n00
n

n00
n

+
n10
n

= n00

n00+n10

Pr=0|v=1 = Py≤T |ŷ>T̂ =
P
y≤T,ŷ>T̂

P
y≤T,ŷ>T̂+P

y>T,ŷ>T̂
=

n01
n

n01
n

+
n11
n

= n01

n01+n11

Pr=1|v=0 = Py>T |ŷ≤T̂ =
P
y>T,ŷ≤T̂

P
y≤T,ŷ≤T̂+P

y>T,ŷ≤T̂
=

n10
n

n00
n

+
n10
n

= n10

n00+n10

Pr=1|v=1 = Py>T |ŷ>T̂ =
P
y>T,ŷ>T̂

P
y≤T,ŷ>T̂+P

y>T,ŷ>T̂
=

n11
n

n01
n

+
n11
n

= n11

n01+n11

(2.27)
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Using the predictive probability Py > T |ŷ (only one of the two is needed

since Py≤T |ŷ = 1−Py>T |ŷ) one can decide whether yi > T or yi ≤ T according

to: yi > T ∀Py>T |ŷ > 1
2

yi ≤ T ∀Py>T |ŷ ≤ 1
2

(2.28)



Chapter 3

Methodological Approach

3.1 The Model Conditional Processor (MCP)

3.1.1 Basic Ideas

The Model Conditional Processor (MCP) is a Bayesian methodology, pro-

posed by Todini (2008), for estimating the predictive uncertainty. The deriva-

tion of the predictive distribution is essentially based on the estimation of

a joint predictand-prediction distribution, computed by taking advantage of

the model behaviour knowledge acquired through the available historical se-

ries. Since the multivariate distributions can be formulated and effectively

analytically treated in a very limited number of cases, Krzysztofowicz (1999)

suggested transforming the observations and model forecasts in a Gaussian

or Normal space via a non parametric transformation known as the Normal

Quantile Transform (NQT) (Van der Waerden, 1952, 1953a,b). The NQT

allows the observation y and the model forecast ŷ to be converted into a

Normal space using the quantiles associated to the order statistics, computed

by means of the Weibull plotting position.

The original variables y and ŷ are so converted to their transformed val-

ues η and η̂ respectively, which are distributed with a Normal Standard

Distribution, and the probability of each element is the same as its original

33
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corresponding value. So the relation between the original variables and their

transformed values is:

P (y < yi) =
i

n+ 1
= P (η < ηi), for}i = 1..n,

where n is the number of the historical available data and i the plotting

position order.

In the Normal space the joint distribution of η and η̂ can be assumed as

a Normal Bivariate, f (η, η̂), with mean and variance:

µη,η̂ =

[
0

0

]
(3.1)

Ση,η̂ =

[
1 σηη̂

σηη̂ 1

]
(3.2)

Moreover, the covariance between η and η̂, due to the Normal Standard

distribution of the two variables, is equal to the correlation coefficient ρηη̂.

Hence, the Equation 3.2 can be written as the cross correlation matrix:

Ση,η̂ =

[
1 ρηη̂

ρηη̂ 1

]
(3.3)

Through the knowledge of the joint and marginal distributions it is easy

to compute the predictive distribution according to the Bayes theorem. In

fact, the predictive uncertainty, defined as the distribution of the predictand

conditioned on the model forecast, can be obtained by calculating the ratio

between the joint distribution and the forecast marginal distribution:
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f (η|η̂) =
f (η, η̂)

f (η̂)
=

=

[
2π

∣∣∣∣∣ 1 ρηη̂

ρηη̂ 1

∣∣∣∣∣
]− 1

2

exp

−1
2

[
η η̂

] [ 1 ρηη̂

ρηη̂ 1

]−1 [
η

η̂

]
[2π]−

1
2 exp

(
−1

2
η̂2
)

(3.4)

This equation leads to the definition of the predictive distribution in the

Normal space as a Normal Distribution with moments:

µη|η̂ = ρηη̂ · η̂
σ2
η|η̂ = 1− ρηη̂2

(3.5)

Therefore, after obtaining the conditional probability in the normal space,

the results have to be converted into the real world in order to compute

the predictive probability f(y| ŷ). To do so the predictive density has to

be sampled in the Normal space and then the obtained quantiles have to

be reconverted into the real space by a reverse process. This is due to the

fact that the transformation is highly non linear, and, for instance, the mean

value in the Normal space does not correspond to the mean value in the real

world, in fact it corresponds to the median (50% probability) (Todini, 2009).

Finally, in order to introduce the probabilistic threshold paradigm de-

scribed in Section 2.3 it is necessary to compute the probability to exceed

a maximum river stage H, P (y > H|ŷ, ŷ∗). This can be done directly from

the predictive uncertainty in the Normal Space. In fact, if ηH is the trasfor-

mation in the Normal Space of H, obtained by using the NQT considering

that H belongs to the observed variable y, then it is possible to write the

following equality:

P (y > H|ŷ, ŷ∗) = P (η > ηH |η̂, η̂∗) (3.6)
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The knowledge of the exact form of the predictive uncertainty in the

Gaussian Space allows this probability to be analitically computed. It is

equal to the integral of the Normal Distribution with moments of Equation

3.5 above the threshold value ηH :

P (η > ηH |η̂, η̂∗) =

∫ +∞

ηH

f (η|η̂, η̂∗) dη (3.7)

The Distribution Tails

In this process the use of the Weibull plotting position implies the need of

using an additional model to be fitted to the tails of all the variables, namely

the observations and the model forecast, in the real space, in order to adjust

probability quantiles larger than n
n+1

or lower than 1
n+1

. To identify the best

curve for fitting the distribution tails, several models have been tested, such

as General Extreme Value, 3 parameters Log-Normal, Paretian, Exponen-

tial functions and others. This analysis led to two main conclusions, firstly

was not possible to identify one model better than another one because the

processor is very sensitive to the chosen function. In fact small variations

of the probability value cause big differences in the correspondent value of

the variable and the range of probability concerning the tails is usually lower

than 0.001. Secondly, in order to avoid marked steps in the PU when the

model tails are used, it is necessary to impose the continuity between the

distribution obtained with the Weibull plotting position and the tails func-

tions. The latter can be easily solved forcing the function to pass through

the specific probability value above (or below for the lower tail) which the

tail will be used. At the end of this analysis for the lower tail the following

function has been chosen:

p (y) = pinf ·
[

y

y (pinf )

]a
(3.8)

and for the upper tail:
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p (y) = 1− (1− psup) ·
[

ymax − y
ymax − y (psup)

]b
(3.9)

where pinf and psup are the limits below and above which the tails will be

used; y (pinf ) and y (psup) are the values of the variable y correspondent to

the probability limits; ymax is the maximum value for which the probability

is assumed to be equal to 1 and it is assumed to be equal to twice the

maximum value ever observed; a and b are the parameters to be estimated.

Concerning the lower tail it is assumed that the null probability is assigned

to the null value of the variable y, that is true when dealing with discharges,

but not if y represents level values. In this case it is necessary to refer all the

values to the bedstream level, in order that the null level is the lowest level

possible. Moreover, using level values also ymax must be computed as the

double of the maximum level observed referred to the bedstream level. The

parameters a and b are estimated with the Least Squares method using all

the data respectively lower or greater than y (pinf ) and y (psup). For sake of

simplicity, Equations 3.8 and 3.9 are linearised using a logarithmic conversion

and the Least Square problem assumes a linear form, in fact Equations 3.8

and 3.9 can be written as:

ln

[
p (y)

pinf

]
= a · ln

[
y

y (pinf )

]
(3.10)

ln

[
p (y)

1− (1− psup)

]
= b · ln

[
ymax − y

ymax − y (psup)

]
(3.11)

and the parameters a and b can be obtained as:

a =

∑
i

{
ln
[
p(yi)
pinf

]
· ln
[

yi
y(pinf)

]}
∑

i

{
ln

[
yi

y(pinf)

]}2 (3.12)
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b =

∑
i

{
ln
[

p(yi)
1−(1−psup)

]
· ln
[

ymax−yi
ymax−y(psup)

]}
∑

i

{
ln
[

ymax−yi
ymax−y(psup)

]}2 (3.13)

In addition to the Least Square method an alternative way to identify

the parameters of the functions is using a numerical algorithm in order to

maximize the correspondence between the expected value and the observed

value. The SCE-UA algorithm (Duan et al., 1992) has been added to the

MCP and the user can choose between that or the Least Square method. In

the first case, the initial values assigned to the parameters (a′ and b′) are the

ones obtained using the linear regression, as described above, and the search

range varies between 0.5 and 2 times the initial value. It is necessary to note

that the use of the SCE-UA algorithm has two disadvantages. Firstly the

calibration phase can take long time because for each set of parameters tried

by the algorithm the entire calibration series must be processed. Secondly,

there is high risk of overfitting the calibration data.

3.1.2 Multi-Model Approach

The previously described MCP methodology has generated the idea of gener-

alizing the procedure using a multi-Normal approach (Todini, 2008). Often,

a real time forecasting system is composed by more than one model, or a

chain of models, and the emergency manager has to take a decision on the

basis of multiple forecasts of the same quantity that may also be very dif-

ferent from each other. It is very difficult to find an objective way to state

that one model is better than another , or to assign a correct weight to each

forecast in order to extrapolate from all the available information a stochastic

forecast that allows the emergency to be managed in the best way.

In order to combine several model forecasts, the MCP can be improved

by generalizing the Bivariate Normal approach to a Multivariate Normal ap-

proach (Mardia et al., 1979). In this case the Multivariate space is composed

by M+1 variables, that are the observed discharges (or water levels) y and
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the M predictions ŷk, k = 1..M . Using the NQT, all the variables are con-

verted to their transformed values, η and η̂k, k = 1..M , in the multi-Normal

space.

All the variables in the Normal space have a Standard Normal Distribu-

tion and the predictive uncertainty, defined now as the distribution of the

future event conditioned on the forecasts of the M models, can be expressed

as (y|ŷ1, . . . , ŷM) , for simplicity abbreviated to f(y|ŷk) for the original vari-

able and f(η|η̂k) in the normal space.

The joint distribution is a Multi-Normal Distribution with mean and

variance:

µη,η̂k =


0
...

0

 (3.14)

Ση,η̂k =


1 σηη̂1 · · · σηη̂M

ση̂1η
. . . . . .

...
...

. . . . . . σηη̂M−1

ση̂Mη · · · ση̂M−1η 1

 (3.15)

Moreover, all the covariances, due to the Normal Standard distribution of all

the variables, are equal to the correlation coefficients. So Equation 3.15 can

be written as the cross correlation matrix:

Ση,η̂k =



1 ρηη̂1 ρηη̂2 · · · ρηη̂M

ρη̂1η 1 ρη̂1η̂2

. . . ρη̂1η̂M

ρη̂2η ρη̂2η̂1

. . . . . .
...

...
. . . . . . . . . ρη̂M−1η̂M

ρη̂Mη ρη̂M η̂1 · · · ρη̂M η̂M−1
1


(3.16)
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Defining: 

Σηη = 1

Σηη̂ =
[
ρηη̂1 ρηη̂2 · · · ρηη̂M

]

Ση̂η̂ =


1 ρη̂1η̂2 · · · ρη̂1η̂M

ρη̂2η̂1

. . . . . .
...

...
. . . . . . ρη̂M−1η̂M

ρη̂M η̂1 · · · ρη̂M η̂M−1
1


(3.17)

and substituting Equations 3.17 in Equation 3.16, the cross correlation ma-

trix can also be written as:

Ση,η̂k =

[
Σηη Σηη̂

ΣT
ηη̂ Ση̂η̂

]
(3.18)

Then the predictive uncertainty can be expressed as:

f (η| η̂k) =
f (η, η̂1, . . . , η̂M)

f (η̂1, . . . , η̂M)
(3.19)

The solution of Equation 3.19 is easily obtained and leads to a Normal dis-

tribution with moments derived from Equation 3.18 as:

µη|η̂k,η̂∗k = Σηη̂ · Σ−1
η̂η̂ ·


η̂∗1
...

η̂∗M


σ2
η|η̂k,η̂∗k

= 1− Σηη̂ · Σ−1
η̂η̂ · Σηη̂

T

(3.20)

Please note that Equations 3.20 do not differ from the classical Multiple

Regression results.

As done for the univariate case, the predictive uncertainty in the real

world, f (y| ŷk), is obtained by converting f (η| η̂k) by means of the Inverse
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NQT.

3.1.3 Multi-Temporal Approach

Following the concepts described in Section 2.4, the multi-model approach

can be further generalized. If T forecast time steps are provided by the

M model chains of the flood forecasting system it is possible to include all

them into the MCP. Hence, the Normal Multivariate Space is composed by

T · (M + 1) variables, namely the observed values, ηi, i = 1..T , and the

forecasts of the M models at each one of the T time steps, η̂i,k, k = 1..M .

Note that ηi contains T vectors equals but moved forward a time step. Also

note that in the multi-model case, explained in the previous section, there

is just one observed value, while in the multi-temporal approach there are T

observed values as much as the number of considered time steps. Therefore,

the predictive uncertainty in the Normal Space is represented by a normal

multivariate distribution, composed by T variables, f (η1, .., ηT |η̂1,1, ..., η̂T,M),

for simplicity abbreviated to f (ηi|η̂i,k).
The joint distribution of observed and forecasted variable is a Normal

T · (N + 1)-variate distribution with the following mean and variance, where

the correlation coefficients are written instead of the covariances :

µηi,η̂i,k =


0
...

0

 (3.21)

Σηi,η̂i,k =



1 · · · ρη1,ηT ρη1,η̂1,1 · · · ρη1,η̂T,M
...

. . . . . . . . . . . .
...

ρηT ,η1 · 1 ρηT ,η̂1,1 · · · ρηT ,η̂T,M

ρη̂1,1,η1

. . . ρη̂1,1,ηT 1
. . . ρη̂1,1,η̂T,M

...
. . . . . . . . . . . .

...

ρη̂T,M ,η1 · · · ρη̂T,M ,ηT ρη̂T,M ,η̂1,1 · · · 1


(3.22)

In this case, the components of the cross correlation matrix can be expressed
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as:

Σηη =



1 ρη1,η2 · · · ρη1,ηT−1
ρη1,ηT

ρη2,η1

. . . . . . . . .
...

...
. . . . . . . . . ρηT−1,ηT

...
. . . . . . . . .

...

ρηT ,η1 ρηT ,η2 · · · ρηT ,ηT−1
1



Σηη̂ =



ρη1,η̂1,1 ρη1,η̂1,2 · · · ρη1,η̂T,M−1
ρη1,η̂T,M

ρη2,η̂1,1

. . . . . . . . . ρη2,η̂T,M
...

. . . . . . . . .
...

ρηT−1,η̂1,1

. . . . . . . . . ρηT−1,η̂T,M

ρηT ,η̂1,1 ρηT ,η̂1,2 · · · ρηT ,η̂T,M−1
ρηT ,η̂T,M



Ση̂η̂ =



1 ρη̂1,1,η̂1,2 · · · ρη̂1,1,η̂T,M−1
ρη̂1,1,η̂T,M

ρη̂1,2,η̂1,1

. . . . . . . . . ρη̂1,2,η̂T,M
...

. . . . . . . . .
...

ρη̂T,M−1,η̂1,1

. . . . . . . . . ρη̂T,N−1,η̂T,M

ρη̂T,M ,η̂1,1 ρη̂T,N ,η̂1,2 · · · ρη̂T,M ,η̂T,M−1
1



(3.23)

and substituting Equations 3.23 in Equation 3.22, the cross correlation ma-

trix can be written as:

Σηi,η̂i,k =

[
Σηη Σηη̂

ΣT
ηη̂ Ση̂η̂

]
(3.24)

Hence, the predictive uncertainty can be expressed as:

f (ηi|η̂i,k) =
f (η1, . . . , ηT , η̂1,1, . . . , η̂T,M)

f (η̂1,1, . . . , η̂T,M)
(3.25)

The solution of Equation 3.25 is easily obtained and leads to a Normal dis-
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tribution with moments derived from Equation 3.24 as:

µηi|η̂i,k,η̂∗i,k = Σηη̂ · Σ−1
η̂η̂ ·


η̂∗1,1

...

η̂∗T,M


Σηi|η̂i,k,η̂∗i,k = Σηη − Σηη̂ · Σ−1

η̂η̂ · Σηη̂
T

(3.26)

Now, the predictive uncertainty describes the joint predictive distribution

of the observed values for the T forecasted time steps. With respect to

the previously described approach, the additional information that can be

extrapolated from this distribution is the probability to exceed a maximum

river stage H (e.g. the dyke level) within the horizon time t = 1..T and the

exceeding time probability. To compute the former it is possible to follow

the idea of Equation 3.7, but considering that in this case the interest is

focused on computing the probability within t time steps, ∀t = 1..T . This

probability takes into account that the level H may be overtopped even just

in one of the considered time steps. Hence, it must be computed with the

following equation:

P
(
ηt > ηH |η̂t,k, η̂∗t,k

)
= 1−

∫ ηH

−∞
. . .

∫ ηH

−∞
f
(
ηi|η̂i,k, η̂∗i,k

)
dη1 . . . dηt (3.27)

where: t = 1..T

For the simplest case of one model and two time steps, the area computed

by Equation 3.27 is shown in Figure 3.1. It represents the total probability

of exceedance during just the first time step (red area), just the second time

step (green area) and both time steps (grey area).

By the Equation 3.27 a sort of cumulative probability, function of the

time, is derived and for sake of simplicity hereafter it will be called PH (t).
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Figure 3.1: Schematic representation of Predictive Uncertainty with two fore-
cast lead times in which the probability to exceed the value ηH within the
total horizon time is highlighted.

Obviously it is verified that:

PH (t) ≤ PH (τ) ∀ t < τ (3.28)

The exceeding time probability t∗ is proportional to the derivative of

this cumulative probability. Hence, it can be obtained by marginalzing the

derivative function of PH (t):

f (t∗) ∝ ∆PH (t)

∆t
(3.29)

3.1.4 Truncated Normal Joint Distribution

As described in Section 2.5.1 the problem of the heteroscedasticity of the

errors, often present in hydrological modeling, should be taken in account and

the Quantile Regression, even if is a valid methodology, not always can well

represent the real error variance. For instance, in the situation represented

in Figure 3.2 a different alternative approach can be used to improve results.

Namely, within the MCP framework the entire Normal domain is divided into

two (or more) sub-domains where Truncated Normal Distributions (TNDs)
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can be used (Coccia and Todini, 2010). In this case, the MCP can be applied

assuming that the joint distribution in the Normal Space is not unique, but

can be divided into two (or more) TNDs. A threshold separating low flows

form high flows in the forecast domain is relatively easy to be identified.

Figure 3.2 shows the two TNDs that can be used in the example.

Figure 3.2: Truncated Normal Joint Distributions. The division of the Joint
Distribution in the Normal Space into two Bivariate Truncated Normal Dis-
tributions is shown. The red line represents the modal value, while the grey
lines represent the 5% and the 95% quantiles. The light blue line represents
the threshold used in order to divide the two TNDs.

The identification of the two TNDs is not immediate, but can be ob-

tained by the following procedure that depends on the number of available

forecasting models.

TNDs With Only One Forecasting Model After converting the orig-

inal variables y and ŷ to their transformed values η and η̂, the so obtained

samples are assumed to belong to two unknown normal distributions trun-

cated over η̂ by a threshold a. The moments of these truncated distributions

can be estimated by equating them to the sampling moments.

For the sample that includes the high flows, the Truncated Normal dis-

tribution for η̂ > a is:

f (η̂|η̂ > a) =
f (η̂)∫ +∞

a
f (η̂) dη̂

=
f (η̂)

1− Fη̂ (a)
(3.30)
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whit f (η̂) defined as:

f (η̂) =
1√

2πsη̂
exp

{
−1

2

(
η̂ −mη̂

sη̂

)2
}

(3.31)

where m̂ and ŝ are the mean and the standard deviation of the non truncated,

albeit unknown distribution.

Therefore, the joint distribution is the following Truncated Normal Bi-

variate distribution:

f (η, η̂|η̂ > a) =
f (η, η̂)∫ +∞

−∞

[∫ +∞
a

f (η, η̂) dη̂
]
dη

=
f (η, η̂)

1− Fη̂ (a)
(3.32)

Where f (η, η̂) is defined as:

f (η, η̂) =

exp

{
−1

2

[
η −mη η̂ −mη̂

]
S−1

[
η −mη

η̂ −mη̂

]}
√

2π |S|
(3.33)

where: S =

[
sη

2 sηη̂

sηη̂ sη̂
2

]
In Equations 3.31 and 3.33, the values of mη̂, sη̂, mη, sη and sηη̂ are

unknown but can be derived from the sampling moments. Applying the

Bayes theorem to the Truncated Normal, the predictive uncertainty (which

in this case represents the probability distribution of η conditional on the

model forecast η̂∗ > a) becomes:

f (η|η̂ > a, η̂∗) =
f (η, η̂|η̂ > a, η̂∗)

f (η̂|η̂ > a, η̂∗)
=
f (η, η̂|η̂∗)
f (η̂|η̂∗)

(3.34)

and it is normally distributed with mean and variance:

µη|η̂>a,η̂∗ = mη +
sηη̂
sη̂2 (η̂∗ −mη̂)

σ2
η|η̂>a,η̂∗ = sη

2 − sηη̂
2

sη̂2

(3.35)
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Similarly for η̂∗ < a, Equations 3.30 and 3.32 become respectively:

f (η̂|η̂ < a, η̂∗) =
f (η̂)∫ a

−∞ f (η̂) dη̂
=

f (η̂)

Fη̂ (a)
(3.36)

f (η, η̂|η̂ < a, η̂∗) =
f (η, η̂)∫ +∞

−∞

[∫ a
−∞ f (η, η̂) dη̂

]
dη

=
f (η, η̂)

Fη̂ (a)
(3.37)

According to the procedure described in Appendix A, the previous equations

allow the PU in the Normal Space to be defined as a Normal Distribution

with mean and variance:

µη|η̂>a,η̂∗ = µη +
σηη̂
ση̂2 (η̂∗ − µη̂)

σ2
η|η̂>a,η̂∗ = σ2

η −
σηη̂

2

ση̂2

(3.38)

for the case that the predicted value η̂∗ is greater than the threshold value

a. Here µη, µη̂ are respectively the sample means of η|η̂ > a and η̂|η̂ > a and

ση, ση̂ are their sample standard deviations. These moments are obviously

computed considering only the sample including the data belong to the upper

sample.

If η̂∗ is lower than the threshold value a, the mean and variance of PU in

Normal Space are:

µη|η̂=η̂∗<a = µη +
σηη̂
ση̂2 (η̂∗ − µη̂)

σ2
η|η̂=η̂∗<a = σ2

η −
σηη̂

2

ση̂2

(3.39)

where µη, µη̂, ση and ση̂ are computed taking in account only the data of the

lower sample.

TNDs With More Than One Forecasting Model When dealing with

more than one model, the procedure becomes a bit more difficult. The thresh-

old should be identified for each model and the joint distribution would be

represented by 2M MTNDs (where M is the number of models) that include

all the possible simultaneous combinations of each model overtopping or not
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its respective threshold. The moments of each MTNDs should be obtained

by means of the sampling moments computation, but unfortunately in real

cases often the available data are not enough to identify representative sam-

ples and the MTNDs cannot be well assessed.

In order to avoid this situation the problem can be tackled with a dif-

ferent approach. The MCP can be applied in three phases. Firstly, each

model is processed separately using the TNDs as described above. In this

phase, for each model its threshold is identified. In the second phase, the

series of expected values of each model simulation (previously obtained) are

combined using two MTNDs indentified on the basis of the model that bet-

ter represented the high flows. In other words, for each model the variances

of the upper sample are computed and then they are compared each other

in order to identify which model will be used in the second phase in order

to split the multivariate joint distribution in two MTNDs. Finally, in the

third phase the series of expected values computed in the second phase is

processed using the TNDs as described above. The detailed description of

the procedure is the following.

Considering M available models and applying to each model the method-

ology described in Section 2.4.2.1, the following parameters are computed:

a′i = threshold used for identifying the TNDs of the model i=1,M

σ2
η|η̂i=η̂∗i>a′i

= conditioned variance of the upper TND for model i=1,M

In the second phase the joint MTNDs are identified on the basis of the

model k, which is the model that better represents the high flows:

σ2
η|η̂k>a′k,η̂

∗
k
< σ2

η|η̂i>a′i,η̂∗i
∀ i 6= k

Considering the upper sample, for sake of simplicity let’s define the vector

a, such as:

{
ai = −∞ ∀ i 6= k

ak = a′k
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the vector η̂ represents the variables related to the model simulations,

η̂ =
[
η̂1 · · · η̂M

]T
.

The joint distribution of the simulated variables η̂i > −∞ ∀ i 6= k and

η̂k > ak is:

f (η̂|η̂k > ak) =
f (η̂)

1− Fη̂k (ak)
(3.40)

Where f (η̂) is defined as:

f (η̂) =
exp

{
−1

2
[η̂ − m̂]S−1

η̂η̂ [η̂ − m̂]T
}

(2π)1/M
√
|Sη̂η̂|

(3.41)

where m̂ =


mη̂1

...

mη̂M

 is the vector containing the means of the marginal

distributions of η̂ and Sη̂η̂ is the covariance matrix between the variables η̂:

Sη̂η̂ =


s2
η̂1

sη̂2η̂1 · · · sη̂M η̂1

sη̂1η̂2

. . . . . .
...

...
. . . . . . sη̂M−1η̂1

sη̂1η̂M · · · sη̂1η̂M−1
s2
η̂M

 (3.42)

Therefore, the joint distribution of all the variables is the following MTND:

f (η, η̂|η̂ > a) =
f (η, η̂)

1− Fη̂k (ak)
(3.43)

Where f (η, η̂) is defined as:

f (η, η̂) =

exp

{
−1

2

[
η −m η̂ − m̂

]
S−1

[
η −m
η̂ − m̂

]}
(2π)

1
M+1 ·

√
|S|

(3.44)

where:
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m is the mean of the marginal distributions of η

S =

[
Sηη Sηη̂

STηη̂ Sη̂η̂

]
(3.45)

Sηη =
[
s2
η

]
Sηη̂ =

[
sηη̂1 · · · sηη̂m

]
In Equations 3.41 and 3.44, m̂, Sη̂η̂ m, Sηη and Sηη̂ are unknown but can be

derived from the sampling moments.

Applying the Bayes theorem to the joint MTND, the predictive uncer-

tainty, namely the probability distribution of η conditional on the realization

of the model forecasts η̂∗, becomes:

f (η|η̂k > ak, η̂
∗) =

f (η, η̂|η̂k > ak, η̂
∗)

f (η̂|η̂k > ak, η̂∗)
=
f (η, η̂|η̂∗)
f (η̂|η̂∗)

(3.46)

Please, note that Equation 3.46 is conceptually equal to Equation 3.32. In

other words, being M the number of models considered, f (η, η̂) is a (M+1)-

variate and f (η̂) is M-variate, and in Equation 3.32 M=1.

The conditional distribution of Equation 3.46 is normally distributed with

mean and variance:

µη|η̂k>ak,η̂∗ = m+ Sηη̂S
−1
η̂η̂ (η̂∗ − m̂)

σ2
η|η̂k>ak,η̂∗ = Sηη − Sηη̂S−1

η̂η̂ S
T
ηη̂

(3.47)

Following the procedure described in Appendix A, the previous equations

lead to define PU in the Normal Space as a Normal Distribution with mean

and variance:
µη|η̂k>ak,η̂∗ = µ+ Σηη̂Σ

−1
η̂η̂ (η̂∗ − µ̂)

σ2
η|η̂k>ak,η̂∗ = Σηη − Σηη̂Σ

−1
η̂η̂ ΣT

ηη̂

(3.48)

if the predicted value of the model k, η̂∗k, is greater than the threshold value ak.

Here µ, µ̂ are respectively the sample means of η|η̂k > ak and η̂|η̂k > ak and

Σηη, Σηη̂,}Ση̂η̂ are the components of the covariance matrix of η, η̂|η̂k > ak.
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Similarly for the sample below the threshold and taking into account that

the vector a is defined as: {
ai = +∞ ∀ i 6= k

ak = a′k

Equations 3.40 and 3.43 become, respectively:

f (η̂|η̂ < a) =
f (η̂)

Fη̂k (ak)
(3.49)

f (η, η̂|η̂ < a) =
f (η, η̂)

Fη̂k (ak)
(3.50)

Hence, if η̂∗k is lower than the threshold value ak, the mean and variance of

PU in Normal Space are:

µη|η̂k<ak,η̂∗ = µ+ Σηη̂Σ
−1
η̂η̂ (η̂∗ − µ̂)

σ2
η|η̂k<ak,η̂∗ = Σηη − Σηη̂Σ

−1
η̂η̂ ΣT

ηη̂

(3.51)

where µ, µ̂,Σηη,Σηη̂ and Ση̂η̂ are computed taking in account only the data

of the lower sample.

PU derived from a Truncated Normal Joint Distribution

Considering M available forecasting models and starting from the hypothesis

that the data divided over η̂k by the threshold ak, belong to two Multivari-

ate Truncated Normal Distributions (MTNDs) and considering the upper

sample, the marginal distributions of η|η̂ > a and η̂|η̂ > a are respectively a

Truncated Normal (TN) and a Multivariate Truncated Normal (MTN) called

f (η|η̂k > ak) = TN (µ,Σηη) (3.52)

and

f (η̂|η̂k > ak) = MTN (µ̂,Ση̂η̂) (3.53)



52 CHAPTER 3. METHODOLOGICAL APPROACH

Their Joint Truncated Distribution is called

f (η, η̂|η̂k > ak) = MTN

([
µ

µ̂

]
,

[
Σηη Σηη̂

Ση̂η Ση̂η̂

])
(3.54)

All the parameters µ, Σηη, µ̂, Ση̂η̂ and Σηη̂ are known, because they are

assumed to be equal to the sample ones.

The distributions

f (η) = N (m,Sηη) (3.55)

f (η̂) = N (m̂, Sη̂η̂) (3.56)

f (η, η̂) = N

([
m

m̂

]
,

[
Sηη Sηη̂

Sη̂η Sη̂η̂

])
(3.57)

are the Multivariate Complete Normal Distributions (MCNDs) to which

the MTNDs, respectively represented by Equations 3.52, 3.53, 3.54, are sup-

posed to belong.

All the parameters of the MCNDs, m, S, m̂, Sη̂η̂ and Sηη̂, are unknown

and they must be identified in order to define the conditioned distribution,

that is the PU in the Normal Space conditioned to the model forecasts that

transformed using the NQT gives a value for the model k greater than the

threshold value ak.

In fact, as described by Equation 3.46, the conditioned distribution is

f (η|η̂k > ak, η̂
∗) =

f (η, η̂)

f (η̂)
= N

(
µη|η̂k>ak,η̂∗ .σ

2
η|η̂k>ak,η̂∗

)
(3.58)

Hence, the mean and variance of the conditioned distribution are (see

Equations 3.47:

µη|η̂k>ak,η̂∗ = m+ Sηη̂ · S−1
η̂η̂ · (η̂

∗ − m̂) (3.59)
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σ2
η|η̂k>ak,η̂∗ = Sηη − Sηη̂ · Sη̂η̂−1 · Sηη̂T (3.60)

The parameters of the MCNDs can be derived from the following equa-

tions, provided by the Truncated Multi-Normal Distribution Theory (Tallis,

1961), which relate the moments of the MTNDs to the ones of the MCNDs.

m = µ− Σηη̂k√
Ση̂kη̂k

· λ (αk) (3.61)

m̂ = µ̂− Ση̂η̂k√
Ση̂kη̂k

· λ (αk) (3.62)

Sηη = Σηη +
Σηη̂k

2

Ση̂kη̂k

· δ (αk) (3.63)

Sη̂η̂ = Ση̂η̂ +
Ση̂η̂k · Ση̂η̂k

T

Ση̂kη̂k

· δ (αk) (3.64)

Sηη̂ = Σηη̂ +
Σηη̂k · Ση̂η̂k

Ση̂kη̂k

· δ (αk) (3.65)

where:

αk = ak−mk√
Sη̂kη̂k

λ (αk) = φ(αk)
1−Φ(αk)

δ (αk) = λ (αk) · [λ (αk)− αk]

(3.66)

and φ and Φ respectively represent the pdf and the cdf of the Normal

Standard Distribution.

The equality between Equations 3.47 and Equations 3.48 (or between

Equations 3.35 and 3.38 for the bi-dimensional case), leads to:

µη|η̂∗>a = m+ Sηη̂S
−1
η̂η̂ (η̂∗ − m̂) = µ+ Σηη̂Σ

−1
η̂η̂ (η̂∗ − µ̂) (3.67)

Σ2
η|η̂∗>a = Sηη − Sηη̂S−1

η̂η̂ S
T
ηη̂ = Σηη − Σηη̂Σ

−1
η̂η̂ ΣT

ηη̂ (3.68)
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For sake of simplicity, these equalities will be demonstrated for one avail-

able forecast model. In this case only two variables are taken in account,

η e η̂, and their joint distribution is truncated over the variable η̂ by the

threshold value a. Hence, by substituting Equations 3.61, 3.62, 3.64 and

3.65, adapted for the specific case, in Equation 3.67 the following equation

is obtained:

µ− Σηη̂√
Ση̂η̂

· λ (α) +
Σηη̂ +

Σηη̂ ·Ση̂η̂
Ση̂η̂

· δ (α)

Ση̂η̂ +
Ση̂η̂

2

Ση̂η̂
· δ (α)

·

[
η̂∗ − µ̂+

Ση̂η̂√
Ση̂η̂

· λ (α)

]
=

= µ+
Σηη̂

Ση̂η̂

· (η̂∗ − µ̂)

(3.69)

Which can be rewritten as:

µ− Σηη̂√
Ση̂η̂

· λ (α) +
Σηη̂ · Ση̂η̂ · [1 + δ (α)]

Ση̂η̂
2 · [1 + δ (α)]

·
[
η̂∗ − µ̂+

√
Ση̂η̂ · λ (α)

]
=

= µ+
Σηη̂

Ση̂η̂

· (η̂∗ − µ̂)

(3.70)

By developing the Equation 3.70 the following equation is obtained:

µ+
σηη̂
ση̂η̂
· (η̂∗ − µ̂) = µ+

σηη̂
ση̂η̂
· (η̂∗ − µ̂) (3.71)

Taking in account the Equation 3.68, it can be rewritten as:

Σηη +
Σηη̂

2

Ση̂η̂

· δ (α)−

[
Σηη̂ +

Σηη̂ ·Ση̂η̂
Ση̂η̂

· δ (α)
]2

Ση̂η̂ +
Ση̂η̂

2

Ση̂η̂
· δ (α)

= Σηη −
Σηη̂

2

Ση̂η̂

(3.72)

By developing it the following equation is obtained:
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Σηη +
Σηη̂

2

Ση̂η̂

· δ (α)− {Σηη̂ · Ση̂η̂ · [1 + δ (α)]}2

Ση̂η̂ ·
{

Ση̂η̂
2 · [1 + δ (α)]

} = Σηη −
Σηη̂

2

Ση̂η̂

(3.73)

Which can be rewritten as:

Σηη +
Σηη̂

2

Ση̂η̂

· δ (α)− Σηη̂
2

Ση̂η̂

· [1 + δ (α)] = Σηη −
Σηη̂

2

Ση̂η̂

(3.74)

Now the equality is obtained:

σηη −
σηη̂

2

ση̂η̂
= σηη −

σηη̂
2

ση̂η̂
(3.75)

If considering the lower sample, only the second of the Equations 3.66

changes, while the other two expressions are still the same:

αk = ak−mk√
Sη̂kη̂k

λ (α) = − φ(α)
Φ(α)

δ (α) = λ (α) · [λ (α)− α]

(3.76)

The change in the form of λ (α) does not modify the previous procedure,

which remains valid also for the lower sample and leads to the same result,

with the only obvious difference that the sample moments are computed on

the lower sample.
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Chapter 4

Applications of the MCP

4.1 Baron Fork River, Multi-Model Applica-

tion

4.1.1 Study Case

The NOAA’s National Weather Service, has provided a long series of ob-

served discharge and precipitation data for the Baron Fork River, OK, USA

within the frame of the DMIP 2 Project which aims at comparing distributed

hydrological models. Using this data set three models were developed: two

physically based hydrological models, the TOPKAPI model (Todini and Cia-

rapica, 2001; Liu and Todini, 2002) and TETIS model (Francés et al., 2007;

Vélez et al., 2009), and an additional data driven model based on Artificial

Neural Networks. The catchment has a drainage area of about 800 km2 at

the measurement station of Eldon with a mean slope around 0.25%, while

some kilometres downstream Eldon the river flows into the Illinois river. The

simulations provided by the three models have been processed using the MCP

firstly separately and then combined each other.

57
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Figure 4.1: Digital Elevation Model of the Baron Fork basin at Eldon.

4.1.2 Available Data

Available meteorological data were hourly rain and temperature grids in-

cluded between 10/01/1995 and 09/30/2002, with a 4 km resolution. During

the same period the observed discharges in the measurement station of El-

don, OK, were available, too. Summarizing, the available data allow the

basin behaviour to be simulated during a long period of about 7 years with

a time step of 1 hour.

4.1.3 TOPKAPI Model Application

The TOPKAPI model has been developed at the University of Bologna (To-

dini and Ciarapica, 2001; Liu and Todini, 2002), it is composed of six com-

ponents, which take into account the surface, sub-surface and deep flows,

the routing in the channel, the snow accumulation/melt and the evapotran-

spiration. The application domain is divided in cells where the mass and

momentum balances are solved at every time step. A more detailed model

description can be found in Appendix A.

The model has been calibrated by a trial and error procedure applied to
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the data included between 10/01/1996 and 09/30/2002; the year included

between 10/01/1995 and 09/30/1996 has been used as ‘warm up’ period,

allowing the model to reach a reasonable initial state.

Soil Type

The NOOA’s National Weather Service provided the maps of 11 soil layers,

from the surface to a depth of approximately 2 meters. The combination

of these maps allowed identifying areas with the same soil type succession

and for each area the parameter mean values required by the TOPKAPI

model have been extrapolated. The mean initial parameter values have been

computed with a weighted average on the basis of the percentage of each layer

on the entire depth. The total depth of each soil type was identified with

respect to the bedrock level. The resulting map is shown in Figure 4.2 while

Table 4.1 describes the calibrated parameter values. During the calibration

phase, especially the hydraulic conductivities and the soil depths have been

changed, in particular the former ones have been increased of approximately

one decimal order and the latter ones have been generally decreased.

Figure 4.2: Soil Type map of the Baron Fork basin at Eldon.
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Code Ksh[ms
−1] θr θs Depth[m] αs Ksv[ms

−1] αs
1 4.22 · 10−4 0.458 0.084 0.60 1.41 4.65 · 10−8 19.83
2 4.56 · 10−4 0.464 0.083 0.70 1.45 8.12 · 10−8 19.48
3 2.46 · 10−4 0.460 0.080 0.70 1.43 5.55 · 10−8 20.02
4 3.14 · 10−4 0.441 0.072 0.40 1.49 8.53 · 10−8 17.36
5 8.86 · 10−4 0.458 0.081 0.42 1.45 4.01 · 10−8 19.69
6 3.25 · 10−4 0.444 0.060 0.70 1.69 7.33 · 10−8 13.78

Table 4.1: Calibrated values for the soil type parameters. Saturated horizon-
tal hydraulic conductivity (Ksh), residual water content (θr), saturated water
content (θs), depth, the exponent of the horizontal flow law (αs), saturated
vertical conductivity (Ksv) and the exponent of the percolation law (αs).

Land Use

The TOPKAPI model requires two parameters concerning the land use,

which are the Surface Manning Coefficient (n) and the Crop Factors (K )

for each month.

Figure 4.3: Land Use map of the Baron Fork basin at Eldon.

The Manning coefficient is used to solve the surface component, where the

momentum equation is approximated by the Manning’s formula. The crop

factors are necessary to compute the reference evapo-transpiration accord-
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ing to Thornthwaite and Mather (1955), as described in Appendix A. The

map of land use (Figure 4.3) has been derived from the data provided by the

Corine Land Cover Project. Table 4.2 shows the calibrated parameters.

ID 1 4 5 6 7 11 14
n 0.22 0.28 0.28 0.16 0.10 0.10 0.10

Jan 0.90 0.60 0.75 0.75 0.80 0.70 0.20
Feb 0.90 0.70 1.00 1.00 1.05 1.00 0.20
Mar 0.90 0.95 0.90 0.90 1.10 1.10 0.20
Apr 0.90 1.05 0.95 0.95 1.10 1.20 0.20
May 0.90 1.05 1.20 1.20 1.10 1.35 0.20
Jun 0.90 0.80 0.85 0.85 0.80 1.20 0.20
Jul 0.90 0.80 0.85 0.85 0.90 1.10 0.20
Aug 0.90 0.80 0.85 0.85 0.80 0.90 0.20
Sep 0.90 0.80 0.85 0.85 0.80 1.30 0.20
Oct 0.90 1.20 1.05 1.05 1.00 1.25 0.20
Nov 0.90 1.10 1.00 1.00 1.00 1.20 0.20
Dec 0.90 0.60 0.75 0.75 0.90 0.75 0.20

Table 4.2: Calibrated values for the land use parameters: Surface Manning
coefficient (n) and Crop Factors for each month.

Channel Network

The channel network is derived according to the Strahler Orders. TOPKAPI

automatically computes them and draws the network (Figure 4.4). The pa-

rameters to solve the channel component are assigned for each Strahler order

(Table 4.3). A triangular cross section has been adopted for each channel

class, hence the the slope of the river banks (α) is the only required param-

eter to approximately describe the geometry. Moreover, the routing model

requires the definition of the Manning coefficient (n) for the channel rough-

ness.
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ID 1 2 3 4 5 6 7
n 0.1 0.09 0.08 0.075 0.07 0.065 0.06
α 1.5 2.2 2.7 3.2 3.7 4.5 6

Table 4.3: Calibrated values for the channel parameters. Channel Manning
coefficient (n) and the tangent of the river banks angle (α).

Figure 4.4: Channel network of the Baron Fork basin at Eldon.

Results

The TOPKAPI model has been calibrated by a trial and error procedure

looking at all the available data and watching out for both high and low flows.

Nevertheless, obtaining the best parameter set was not the main objective

of this application. In fact, the main aim of the application was to test

the MCP, rather than the TOPKAPI model. Although the parameter set

obtained in the present study are not the best ones, the result obtained are

adequate to allow discussion of the merits of the MCP.

Briefly, analyzing the TOPKAPI model simulation, the main flood peaks

are generally underestimated, especially when the discharge is around 1000
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m3s−1, as visible in Figures 4.6 and 4.7. Figure 4.7 represents the main

event occurred during the available period, the peak flow is underestimated of

approximately 450 m3s−1 over a maximum observed value of approximately

1550 m3s−1. Moreover, the recession curves are usually not steep enough

and the low flow is generally underestimated. This behavior lead to think

that the soil emptying is too slow and, when a low soil moisture percentage

is reached, the subsurface flow is too small. The same behavior is shown in

other events (Figures 4.5 and 4.6) and it is due to the presence of only one soil

response in the TOPKAPI soil conceptualization; last modifications in the

model presented by Coccia et al. (2010) solved this problem. Nevertheless,

the time peak is almost always correctly reproduced and the other minor

events are well simulated also in terms of peak value, as shown in Figures 4.5

and 4.8.

Figure 4.5: TOPKAPI simulation of events occurred in November 1996.
Observed discharges (black line); TOPKAPI simulation (dashed line).

Finally, in order to evaluate the model calibration some evaluation indexes

have been computed on the entire simulated period (Table 4.4).

The overall evaluation indexes in Table 4.4 show that the calibration
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Figure 4.6: TOPKAPI simulation of events occurred in April 1998. Observed
discharges (black line); TOPKAPI simulation (dashed line).

Figure 4.7: TOPKAPI simulation of the main event occurred in June 2000.
Observed discharges (black line); TOPKAPI simulation (dashed line).
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Figure 4.8: TOPKAPI simulation of events occurred in November 2001.
Observed discharges (black line); TOPKAPI simulation (dashed line).

Max Q Obs Max Q TPK % Bias RMSE R2 E
1549 m3s−1 1101 m3s−1 -1.38 % 13.29 m3s−1 0.91 0.82

Table 4.4: Overall evaluation indexes for the TOPKAPI simulation. Max-
imum observed and simulated discharges; Percent Bias; Root Mean Square
Error; Correlation Coefficient (R2); Nash-Sutcliffe efficiency (E).
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results are good, especially the percent bias is very low, approximately −1.4%

that corresponds to a bias of about 0.14 m3s−1, and the correlation coefficient

is high, approximately 0.91. The Nash-Sutcliffe coefficient is quite high, 0.82,

but lower than the common model efficiency, which points out the possibility

to improve the calibration even if it has not be done for the reasons described

above.
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4.1.4 TETIS Model application

In the TETIS model, developed by the Polytechnic University of Valencia

(Francés et al., 2007; Vélez et al., 2009), the conceptual scheme, at each cell,

consists of a series of 5 connected tanks, each one of them representing dif-

ferent water storages in the soil column. The vertical connections between

tanks describe the precipitation, evapotranspiration, infiltration and percola-

tion processes, whereas, the horizontal flows represent the main hydrological

processes as: snowmelt, overland runoff, interflow and base flow. The rout-

ing along the channel network couples its geomorphologic characteristics with

the kinematic wave approach. The TETIS model automatic calibration pro-

cedure was applied to the hydrological year included between October 2001

and September 2002. As done for the TOPKAPI model, the first year of data

has been used as ‘warm up’ period and with the remaining data the model

has been validated. The configuration of the TETIS model for the Baron

Fork river has been implemented by J. Camilo Munera from the Polytechnic

University of Valencia and he provided all the following maps, tables, images

and comments.

Before analyzing the main model parameters it is necessary to highlight that

the automatic calibration does not modify the initial parameter values (de-

scribed in the following sections), but it modifies 9 correction factors by

which the parameters are multiplied when are used in the different model

components, as described in (Vélez et al., 2009). The calibrated correction

factor values are shown in Table 4.5.

Maximum Static Storage

The Maximum Static Storage is the most important parameter in TETIS.

This parameter represents the maximum water quantity that can be stored

in the static tank, which accounts for initial abstractions and the capillary

water storage in the upper part of the soil. Further information about this

parameter can be found in Francés et al. (2007) and Vélez et al. (2009). In

Figure 4.9 the Maximum Storage Capacity map is depicted.
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Correction Factor Involved Process Calibrated Value
R-1 Static Tank 0.38130
R-2 Evapotranspiration 0.72315
R-3 Infiltration 1.25944
R-4 Overland Flow 2.00000
R-5 Percolation 0.33292
R-6 Interflow 30.0015
R-7 Groundwater outflow 0.00000
R-8 Base flow 114.4292
R-9 Channel Routing 0.20089

Table 4.5: Calibrated corrector factors for the TETIS model.

Figure 4.9: Maximum Static Storage map of the Baron Fork basin at Eldon.
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Infiltration and Percolation Capacities

The infiltration and percolation capacities represent the hydraulic conduc-

tivities respectively of the surface and gravitational tanks. These parameters

are fundamental in assessing the overland and subsurface flows and the ver-

tical flows among the tanks. The initial parameter values, which have been

estimated on the basis of the soil texture maps provided by the NOAA’s

National Weather Service, are shown in Figures 4.10 and 4.11.

Figure 4.10: Infiltration Capacity map of the Baron Fork basin at Eldon.
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Figure 4.11: Percolation Capacity map of the Baron Fork basin at Eldon.

Results

The period chosen to calibrate the model is the year included between Oc-

tober 2001 and September 2002 that is the last available year. The selection

was done considering a compromise between the computation time and the

calibration efficiency. Model calibration attempts considering longer time-

series if data have been done, however despite the fact that using 2 or 3

years of data the evaluation indexes for the calibration period increase and

the computational time becomes very high. Hence, the gain in the simulation

of the entire period is not enough to justify it and the use of too much data

for the automatic calibration can lead to the overfitting problem.

In Figure 4.12 the observed data are compared with the TETIS simulation

during the calibration year. Two questions about the results of the calibra-

tion are worth to be mentioned, firstly that the model can well reproduce

the observed data, especially with particular accuracy for the recession curves

and the base flow. The presence of three soil responses in the model con-

ceptualization allows the subsurface and base flows to be more realistic than

those produced by the TOPKAPI model, which has just one soil response;
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this concurs with the considerations done above concerning the need to iden-

tify two different soil layers in the TOPKAPI model. The second question

concerns the underestimation of the two main peaks; the TOPKAPI model

showed the same behavior that lead to think to some kind of error in the

observed data, maybe in the rating curve or in the precipitations. The good

model performance in the calibration period is also outlined by the evaluation

indexes shown in Table 4.6; the value of the percent bias (-13.6%) reflects

the peaks underestimation.

Figure 4.12: TETIS simulation during the entire calibration period, from
October 2001 to September 2002. Observed discharges (black line); TETIS
simulation (dashed line).

Max Q Obs Max Q TPK % Bias RMSE R2 E
445 m3s−1 326 m3s−1 -13.6 % 7.13 m3s−1 0.96 0.91

Table 4.6: Evaluation indexes for the TETIS simulation computed during the
calibration period. Maximum observed and simulated discharges; Percent
Bias; Root Mean Square Error; Correlation Coefficient (R2); Nash-Sutcliffe
efficiency (E).
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Figures from 4.13 to 4.16 depict some events occurred during the vali-

dation period and confirm the behavior seen during the calibration, that is

the correct representation of the recession curves and the base flow, but a

systematic underestimation of the peaks, which is accentuated with respect

to the calibration.

Table 4.7 shows the evaluation indexes computed on the entire period, in-

cluding validation and calibration data. The reduction of accuracy when the

model is used in validation has been pointed out. Considering the entire set

of data, the evaluation indexes does not differ much to the ones obtained

with the TOPKAPI model, in fact they show a similar behavior, even if the

TETIS model better represents the base flow while the TOPKAPI the peak

flows.

Max Q Obs Max Q TPK % Bias RMSE R2 E
1549 m3s−1 807 m3s−1 -15.4 % 13.92 m3s−1 0.90 0.80

Table 4.7: Evaluation indexes for the TETIS simulation computed during
the entire available period. Maximum observed and simulated discharges;
Percent Bias; Root Mean Square Error; Correlation Coefficient (R2); Nash-
Sutcliffe efficiency (E).
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Figure 4.13: TETIS simulation of events occurred in November 1996. Ob-
served discharges (black line); TETIS simulation (dashed line).

Figure 4.14: TETIS simulation of events occurred in April 1998. Observed
discharges (black line); TETIS simulation (dashed line).
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Figure 4.15: TETIS simulation of the main event occurred in June 2000.
Observed discharges (black line); TETIS simulation (dashed line).

Figure 4.16: TETIS simulation of events occurred in November 2001. Ob-
served discharges (black line); TETIS simulation (dashed line).
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4.1.5 ANN Model Application

The Artificial Neural Network model was developed and applied in two main

phases, as previously done by Toh and Brath (2008) and Pujol (2009). Firstly

the data were divided in three groups through a Self Organizing Map (SOM)

network (Kohonen, 1990) that automatically classifies the input data accord-

ing to specific criteria established by the user. The SOM network has been

calibrated using the data included in the period between 10/01/1995 and

05/31/1997, the remaining data until 09/30/2002 have been used for the val-

idation process. The three sets of data classified by the SOM network have

been used separately in order to calibrate three different Multi Layer Per-

ceptron (MLP) networks (Werbos, 1974; Parker, 1987; Werbos, 1988, 1990;

Pujol, 2009), which are able to predict discharges with an horizon time of 6

hours. Summarizing, using the SOM network the data have been divided in

three groups, which represent three different hydrological states of the sys-

tem; then each group has been calibrated with a Feed Forward Network in

order to forecast the discharge 6 hours in advance. Moreover, to avoid the

risk of overfitting the calibration data, the early stopping procedure has been

used introducing a verification set of data, form 06/01/1997 to 01/31/1998.

The data from 02/01/1998 to 09/30/2002 have been used for validating the

model.

Self Organizing Map (SOM) Network

The SOM network, introduced by (Kohonen, 1990), is an unsupervised clas-

sification methodology that allows data to be classified on a statistic basis,

without an a-priori class definition. In the structure proposed by (Kohonen,

1990) the neurons are topologically ordered and they compete against each

other until just one of them is activated. The learning objective is to link

topologically similar neurons and input patterns with similar features. The

SOM network is composed of two neuron layers, the input one and the out-

put one. The output layer is composed by a matrix with dimensions equals
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to the number of classes.

In this application, the SOM network has been fed with pattern composed

of 4 variables. If the time at which the prediction is done is called t0, the

input data to the SOM network are the accumulated precipitation of 2 days

before t0 (AccP ), the discharge observed at t0 (Qt0) and the gradient of the

discharge during 2 hours before t0 (∆Qt0−1 and ∆Qt0−2). The output layer

contains a vector with three elements and each element corresponds to one of

the three classes in which the data will be classified. Hence, the network out-

put is a number included between 1 and 3 that represents the class to which

the input pattern belongs. The flooding process non-linearity is mainly due

to the soil saturation state therefore the classes’ identification identification

procedure should respect this state. In fact, this approach aims at identify-

ing whether the precipitation event occurs when the soil is dry, saturated or

almost saturated, so that each one of these conditions will be then processed

with a specific network in order to reduce the process non-linearity.

Figure 4.17: Schematic scheme of the SOM network.

Figure 4.17 depicts the simple conceptual SOM scheme above described

and Figures 4.18 and 4.19 show two examples of the obtained classification.

In these figures the depicted discharge is the forecast target, which is the

discharge 6 hours in advance; hence, the discharge values belonging to the

same group will be then predicted by the same network. The flood events

belong to the first class, the low flows to the third one and the second class

contains uncertain situations. The classification results are quite satisfactory,
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even if outliers are present in each class. For example, some low flows have

been included in the first group, so this may lead to predict an event that did

not actually occur. Another example concerns the event occurred approxi-

mately at the end of May 2000 (Figure 4.18), in which data corresponding

to some hours before the flood event were included in the first group which

will probably bring forward the event prediction.

Figure 4.18: Classification obtained with SOM network for the events oc-
curred during summer 2000.

Multi Layer Perceptron (MLP) Networks

The second step of the ANN model application was the processing of the pre-

viously classified data through the Multi Layer Perceptron networks (Wer-

bos, 1974; Parker, 1987; Werbos, 1988, 1990; Pujol, 2009). This kind of

network is one of the most used in hydrology, especially coupled with a

Back-Propagation algorithm for its training. Its structure is composed of at

least three neuron layers: input, output and one (or more) hidden layer. The

input and output layers contain respectively as many neurons as the number

of input and output variables; the number of the neurons in the hidden layer
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Figure 4.19: Classification obtained with SOM network for the events oc-
curred in the first months of 2002.

is one of the parameters that have to be set concerning the network structure.

The weights of each neuron connection are automatically identified during

the calibration process, in this phase the Back-Propagation algorithm adapts

them to a set of pattern proposed to the network with both the input and

output variables. Iteratively the algorithm modifies the weights in order to

minimize the error function until the error tolerance is reached.

In this case three MLP networks, one for each class identified by the SOM

network, have been set up to forecast discharges 6 hours in advance starting

from the available observed variables at the forecast time (t0). The variables

used as input to the network are the observed precipitation and discharges

at t0 and, respectively, during 12 and 2 hours before. The output of the net-

works is the discharge 6 hours after the t0. Hence, the input layers of each

network contain 16 neurons and the output layers 1. After several tests, sim-

ple networks’ structures have been chosen; every network has been calibrated

with different numbers of hidden neurons and with 100 different parameters’

initial states. For each network, the number of hidden neurons that gave the

best verification results has been selected; the model performance was eval-
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uated computing the Nash coefficient and the RMSE and taking in account

their mean values and their variances on the 100 calibrations with different

initial states.

Figures from 4.20 to 4.25 represent the evaluation indexes resulting from

this test. For the first class, containing 2195 data in the calibration set, the

network configuration that led to the best results was composed of 6 hidden

neurons, for the second class (1708 data), the best results have been obtained

with 3 neurons and for the third class (containing 10690 data) with 5 neu-

rons. As was expected, the third class gave the best performances because it

represents the low flows while the first class, which represents the high flows,

was more difficult to be well reproduced.

Figure 4.20: Nash efficiency computed for different numbers of neurons and
different initial weights’ value for the first class.

Results

The available data have been divided in three sets as described above and

depicted in Figure 4.32. The verification set has been used to check the error

function at the same time that the calibration in order to stop it when the
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Figure 4.21: RMSE computed for different numbers of neurons and different
initial weights’ value for the first class.

Figure 4.22: Nash efficiency computed for different numbers of neurons and
different initial weights’ value for the second class.
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Figure 4.23: RMSE computed for different numbers of neurons and different
initial weights’ value for the second class.

Figure 4.24: Nash efficiency computed for different numbers of neurons and
different initial weights’ value for the third class.



82 CHAPTER 4. APPLICATIONS OF THE MCP

Figure 4.25: RMSE computed for different numbers of neurons and different
initial weights’ value for the third class.

efficiency in verification begins to decrease, even if the error tolerance has

not been reached. This procedure is called early stopping and it is used to

avoid the calibration data overfitting and the lack of generalization ability.

Table 4.8 shows some evaluation indexes computed during the calibration,

verification and validation periods and highlights that the system of networks

is able to reproduce data different from those seen during the calibration. The

calibration, verification and validation evaluation indexes do not differ much

one from each other. In fact, the RMSE is even greater in validation than in

calibration, the Nash efficiency decreases from 0.91 to 0.88 in validation and

only the percent bias has a significant increase from 0.95 % to 4.15 %, even

if the absolute value just changes from 0.11 m3s−1 to 0.4 m3s−1.

Figures 4.26 and 4.27 depict some events occurred during the calibration

period and Figures from 4.28 to 4.30 during the validation and verification

periods. It can be observed that the ANN model produces good simulations,

even if in some cases it is instable, especially for small events (Figure 4.31).
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Periods
Indexes Entire Calibration Verification Validation
Max Q Obs [m3s−1] 1549 893 894 1549
Max Q ANN [m3s−1] 1706 876 617 1706
Percent Bias [%] 3.06 0.95 2.14 4.15
RMSE [m3s−1] 10.46 10.92 12.19 10.00
R2 0.94 0.952 0.94 0.94
E 0.89 0.91 0.88 0.88

Table 4.8: Evaluation indexes for the ANN simulation computed during en-
tire, calibration, verification and validation periods. Maximum observed and
simulated discharges; Percent Bias; Root Mean Square Error; Correlation
Coefficient (R2); Nash-Sutcliffe efficiency (E).

Figure 4.26: ANN simulation of calibration events. Observed discharges
(black line); ANN simulation (dashed line).
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Figure 4.27: ANN simulation of calibration events. Observed discharges
(black line); ANN simulation (dashed line).

Figure 4.28: ANN simulation of validation events. Observed discharges
(black line); ANN simulation (dashed line).
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Figure 4.29: ANN simulation of validation events. Observed discharges
(black line); ANN simulation (dashed line).

Figure 4.30: ANN simulation of validation events. Observed discharges
(black line); ANN simulation (dashed line).
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Figure 4.31: Instability of ANN in small validation events. Observed dis-
charges (black line); ANN simulation (dashed line).

4.1.6 MCP Application

Data set

In Figure 4.32 a schematic summary of the division of the data used for

calibrating and validating each model is depicted.

The two physically based models are conceptually quite similar; it can be

highlighted that the TOPKAPI model tends to underestimate the highest

flood events, to overestimate the smallest ones and to reproduce the flood

events of medium magnitude quite well. The TETIS model also generally

underestimates the highest events and often underestimates the small events

too. The ANN model, due to its nature of data driven model, is not able to

well reproduce the peack flows, which are often underestimated and predicted

with late of 1 or 2 hours, but it has a perfect behaviour in reproducing the

low flows.
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Figure 4.32: Schematization of the available data division for calibrating and
validating the models and the MCP

Predictive Uncertainty Assessment

The MCP has been applied in three phases and in every phase the Joint

TNDs have been used.

1. Firstly the models simulations have been processed separately. All

the historical data have been processed and the expected value of the

predictive distribution has been computed at each time step. Figures

4.33(a), 4.33(b) and 4.33(c) represent schematically the predictive dis-

tribution computed separately with each model. For the ANN model

it was not necessary to divide the data in two samples because the

joint distribution of observed and forecasted transformed values was

well represented by just one bi-variate normal distribution. The TNDs

have been used for the other two models and both of them give a lower

uncertainty for the upper sample. Concerning the TOPKAPI model

it is necessary to note that the threshold used for the division in two

samples seems to be too low, because a threshold of about 2.4 would

have further reduced the uncertainty in the upper sample. The proces-

sor found that threshold because the seeking is lower and upper limited

in order to count with significant samples for computing the moments
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of the truncated distribution.

2. In the second phase, the series of the expected values of each model sim-

ulation have been processed with the MCP multivariate approach and

the combined expected value has been computed from the predictive

uncertainty of each time step.

3. Finally, in the third phase, this series of expected values has been

processed. Figure 4.34 shows the normal space obtained in this phase,

also in this case the use of the TNDs was not necessary.

Figures 4.35 and 4.36 summarize the obtained results with regard to the

models combination computed by means of the expected value of the predic-

tive distribution. Figure 4.35 represents the Error Standard Deviation and

Figure 4.36 represents the Nash-Sutcliffe coefficient.

In Figures 4.37 - 4.38 two examples of models combination are shown,

one during the calibration period and the other one during the validation

period. In both events the uncertainty band is narrower as the number of

models increases and in the calibration event the expected value computed

with the combination of all the models well matches the observed series. In

the validation event, the peack flow is quite better represented when only the

TOPKAPI model is used, probably due to its better forecast in this specific

case, but also in this event the uncertainty band is reduced combining all the

models.

The knowledge of the uncertainty distribution also allows the probability

of exceeding an alert threshold to be estimated, that is a stochastic way to

predict the flooding risk. In section 4 a way to identify the alert threshold,

different to the deterministic method commonly used, will be discussed. The

threshold has been set at 350 m3s−1. In Figures 4.39 and 4.40, the com-

parison between the deterministic and stochastic discharge forecasts and the

correspondent probability of overtopping the threshold is shown.
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(a)

(b)

(c)

Figure 4.33: Representation of the Normal Space obtained using the MCP
with the TOPKAPI (a), TETIS (b) and ANN (c) forecasts.
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Figure 4.34: Representation of the Normal Space obtained using the MCP
with the combination of the 3 models.

Comparison Between MCP with TNDs and QR

In this paragraph a comparison between the results obtained using the TNDs

with the MCP and the Quantile Regression methodology (QR) will be pre-

sented. For sake of consistency the QR has been applied in three phases,

as in the case of the MCP, combining all the deterministic models. Firstly

each model has been processed independently and then the results of this

first phase have been combined with a Multiple Quantile Regression. For

19 quantiles τ = 5, 10, ..., 95 the regression parameters have been computed

following the Equation 2.8. The expected value in the real space has been

computed as the average of the 19 quantiles transformed using the inverse

NQT.

Figure 4.43 shows that the uncertainty band given by the QR is much

narrower than the one obtained with the MCP, even if some clues let think

this uncertainty band is not realistic. Namely, first of all it is too influenced

by the ANN model, which is the cause of the oscillations during the rising

limb. Secondly, is the closeness between the expected value and the 95th

quantiles, especially visible for high discharges. Looking at the uncertainty

band obtained for the validation event in Figure 4.44 the inconsistent be-

havior of the QR is confirmed. In fact, most of the main event is out of the
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Figure 4.35: Error Standard Deviation for TOPKAPI model (TPK), TETIS
model (TET), ANN model and their combinations during the entire valida-
tion period of the MCP.

Figure 4.36: Nash-Sutcliffe coefficient for TOPKAPI model (TPK), TETIS
model (TET), ANN model and their combinations during the entire valida-
tion period of the MCP.
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Figure 4.37: Comparison between the PU computed with one or two models
on a flood event during calibration period. Observed discharges (black line);
expected value conditioned only to the TOPKAPI forecast (dashed line);
expected value conditioned to the TOPKAPI and TETIS forecasts (dotted
line); 90% Uncertainty Band conditioned to the TOPKAPI forecast (light
grey band); 90% Uncertainty Band conditioned to the TOPKAPI and TETIS
forecasts (grey band).
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Figure 4.38: Comparison between the PU computed combining, two or three
models on a flood event during calibration period. Observed discharges (black
line); expected value conditioned only to the TOPKAPI and TETIS forecasts
(dotted line); expected value conditioned to the TOPKAPI, TETIS and ANN
forecasts (dashed line); 90% Uncertainty Band conditioned to the TOPKAPI
and TETIS forecasts (light grey band); 90% Uncertainty Band conditioned
to the TOPKAPI, TETIS and ANN forecasts (grey band).
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Figure 4.39: Comparison between the PU computed with one or two models
on a flood event during validation period. Observed discharges (black line);
expected value conditioned only to the TOPKAPI forecast (dashed line);
expected value conditioned to the TOPKAPI and TETIS forecasts (dotted
line); 90% Uncertainty Band conditioned to the TOPKAPI forecast (light
grey band); 90% Uncertainty Band conditioned to the TOPKAPI and TETIS
forecasts (grey band).
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Figure 4.40: Comparison between the PU computed combining, two or three
models on a flood event during validation period. Observed discharges (black
line); expected value conditioned only to the TOPKAPI and TETIS forecasts
(dotted line); expected value conditioned to the TOPKAPI, TETIS and ANN
forecasts (dashed line); 90% Uncertainty Band conditioned to the TOPKAPI
and TETIS forecasts (light grey band); 90% Uncertainty Band conditioned
to the TOPKAPI, TETIS and ANN forecasts (grey band).
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Figure 4.41: Flood event during calibration period. The lower part represents
the discharge forecast; observed values (continuous line); expected value con-
ditioned to the TOPKAPI, TETIS and ANN forecasts (dashed line); 90% Un-
certainty Band (grey area); alarm threshold of 350 m3s−1(small dashed line).
The upper part represents the probability of exceeding the alarm threshold;
observed binary response (continuous line) and Probability of exceeding the
threshold computed by the MCP (dashed line).
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Figure 4.42: Flood event during validation period. The lower part represents
the discharge forecast; observed values (continuous line); expected value con-
ditioned to the TOPKAPI, TETIS and ANN forecasts (dashed line); 90% Un-
certainty Band (grey area); alarm threshold of 350 m3s−1(small dashed line).
The upper part represents the probability of exceeding the alarm threshold;
observed binary response (continuous line) and Probability of exceeding the
threshold computed by the MCP (dashed line).
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band and it is delayed of some hours. Comparing Figures 4.43 and 4.28 it

is possible to note that the band given by the QR follows the ANN wrong

prediction, hence a little weight is assigned to the forecasts of the distributed

models, which are better in this case.

Figure 4.43: Comparison between the PU computed with the MCP and the
QR on a flood event during calibration period. Observed discharges (black
line); expected value obtained with the MCP (dashed line); expected value
obtained with the QR (dotted line); 90% Uncertainty Band computed by the
MCP (dark grey band); 90% Uncertainty Band computed by the QR (light
grey band).

Also the representation of the analysis of the Normal Space obtained us-

ing the QR can help to understand why the Predictive Uncertainty is not

well estimated. For sake of simplicity, Figure 4.45 shows the 5% and 95%

quantiles computed only with the prediction of the TOPKAPI model, even

if it would have been more representative, unfortunately the Multi-Normal

Space is not easy to be depicted. In Figure 4.45 is possible to note as the

lower quantile does not well represent the data, especially for the highest

values; due to the joint distribution of the observed and predicted discharges
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Figure 4.44: Comparison between the PU computed with the MCP and the
QR on a flood event during validation period. Observed discharges (black
line); expected value obtained with the MCP (dashed line); expected value
obtained with the QR (dotted line); 90% Uncertainty Band computed by the
MCP (dark grey band); 90% Uncertainty Band computed by the QR (light
grey band)).
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the QR is not able to give a realistic estimation of the PU in this application.

Figure 4.45: Representation of the Normal Space obtained using the Quantile
Regression with the TOPKAPI forecasts.

This is confirmed also by Figure 4.46 where the evaluation indexes com-

puted on the entire validation period are shown.

The Nash-Sutcliffe coefficient (Figure 4.46(b)) obtained with the QR is

similar to the ones computed with the deterministic models and it is much

lower than the one obtained with the MCP. The Error Standard Deviation

(Figure 4.46(a)) is even greater than the one computed with the ANN model

deterministic forecast and much greater than the one computed with the

MCP.

An alternative way to use the QR in cases like this is to divide the data

in representative samples, similar to what has be done introducing the Trun-

cated Normal Distributions in the MCP. With this change the QR can achieve

good results in the PU assessment also in cases where the error eteroschedas-

ticity is high (Figure 4.47) and the evaluation indexes are improved, even if
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(a)

(b)

Figure 4.46: Error Standard Deviation (a) and Nash-Sutcliffe coefficient (b)
for TOPKAPI model, TETIS model, ANN model and their combination with
the MCP and the QR during the entire validation period.

they are still worse than the ones obtained with the MCP (Figure 4.48).

Nevertheless, this methodology has three disadvantages that must be con-

sidered. The identification of different samples requires a great number of

parameters to be estimated for applying the QR; referring to the present

application, in order to combine three model forecasts, dividing the data in

two samples and computing 19 quantiles, it was necessary to compute 152

parameters, 8 for each quantile. Another risk in using the QR and dividing

the data in several samples is the overfitting of the calibration data, which



102 CHAPTER 4. APPLICATIONS OF THE MCP

Figure 4.47: Representation of the Normal Space obtained using the Quantile
Regression with the TOPKAPI forecasts divided in 2 samples.

can lead to a lack of generalization ability. Moreover, a common problem in

QR is the quantile crossing, which can be solved but it requires an additional

computational effort.

Probabilistic Thresholds Analysis

The obtained results allow also an analysis of the correctness of probability

of exceeding an alert threshold, estimated using MCP together with the

improvement obtainable using the combination of models, to be performed.

As can be seen from the Figure 4.49, apart from a small bias in the lower

part mainly due to the larger error variance of the lower Truncated Normal,

there is a relatively good agreement between the actual threshold exceedances

and the probability of exceedance estimated from the PU density obtained

through the MCP combination of the three models (TOPKAPI, TETIS and

ANN). This agreement allows for the change of paradigm discussed in Section

1.2, which would not be possible in case of incorrect estimate of the quantiles.

In addition, Tables 4.9 and 4.10 allow to exemplify the improvements

obtainable by the Bayesian combination of the different models. Table 4.9

confirms the behaviour represented in Figure 2.2 showing the probability that
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(a)

(b)

Figure 4.48: Error Standard Deviation (a) and Nash-Sutcliffe coefficient (b)
for TOPKAPI model, TETIS model, ANN model and their combination
obtained with the MCP and the QR with the division in 2 samples during
the entire validation period.

the true value exceeds the 350 m3s−1 threshold when the expected value of

prediction equals 250 m3s−1, computed for each model and their Bayesian

combination. One can see the reduction of exceedance probability as a func-

tion of the quality of the forecast. Finally, the effect of the introduction

of the new probabilistic forecast paradigm can be appreciated in Table 4.10

that shows, similarly to what is qualitatively displayed in Figure 2.3, the ex-

pected value of the prediction corresponding to the probability of 20% that

the true value will exceed the 350 m3s−1 threshold, computed for each model
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Figure 4.49: Frequency of actual threshold exceedances vs the probability
estimated using the MCP Bayesian combination of the three models. The
red line represents the perfect behaviour.

and their Bayesian combination. As can be seen better models allow to wait

until the expected value of prediction is closer to the flooding level, while

worse models require earlier action corresponding to lower levels on the basis

of the principle of precaution, which corresponds to the fact that the decision

maker is more uncertain.

P (y > 350m3s−1|ŷ = 250m3s−1)
TOPKAPI TETIS ANN 3 MODELS

0.25 0.34 0.16 0.15

Table 4.9: Probability that the true value exceeds the 350 m3s−1 threshold
when the expected value of prediction equals 250 m3s−1, computed for each
model and their Bayesian combination.
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E [y|ŷ] | [P (y > 350m3s−1 | ŷ) = 0.2]
TOPKAPI TETIS ANN 3 MODELS
217 m3s−1 138 m3s−1 270 m3s−1 284 m3s−1

Table 4.10: Expected value of prediction corresponding to the probability of
20% that the true value will exceed the 350 m3s−1 threshold, computed for
each model and their Bayesian combination.

4.2 Po River, Multi-Temporal Application

4.2.1 Study Case

The Po river is the main italian river, both in terms of length (652 km)

and discharge (it can reach 10.500 m3s−1 near Pontelagoscuro) (Figure 4.50).

It starts from the Monviso mountain, during its course it is feeded by 141

tributaries end eventually it ends into the Adriatic Sea with a delta of about

380 km2. Moreover, the Po basin is the largest italian catchment with a

drainage area of approximately 71.000 km2, which represents a quarter of

the entire national area. The average discharge at the gauging station of

Pontelagoscuro, located just upstream of the river delta, is about 1500 m3s−1,

for an average annual water volume of 47.3·109 m3.

The Civil Protection of Emilia Romagna Region has implemented a flood

forecast system based on the hydraulic model PAB (Todini and Bossi, 1986),

which makes possible to obtain forecasts with a lead time of 72 hours at the

Pontelagoscuro station.

Differently than in the case of the Baron Fork River application, in this

case it was not necessary to calibrate the forecast model because it is already

operative in a flood forecasting system. This makes interesting the Po river

application; since the uncertainty due to the model calibration and to the

meteorological prediction is the actual one with which the decision makers

have to deal and on which basis they have to take an operational decision

about the emergency management.

Taking advantage of the availability of these data, this application ob-

jective was to verify the behavior of the MCP in assessing the probability of
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Figure 4.50: Digital Elevation Model of the Po basin.

exceeding a maximum river stage within a time horizon and the exceeding

time probability, as described in Section 3.1.3.

4.2.2 Available Data

The Civil Protection of Emilia Romagna Region provided a long series of

observed discharges corresponding to 6 measurement stations (Ponte Spessa,

Cremona, Piacenza, Borgoforte, Boretto and Pontelagoscuro) and the hourly

forecasts of the PAB model within a time horizon of 36 hours. The available

hourly data includes the period from May 2000 to January 2009. Four years

have been used to calibrate the MCP, whilst five years were used for the

validation process. The forecasted data have been extracted considering a

3 hours time step, therefore for each hourly time step, within the 36-time

horizon, 12 forecasts were taken into account.

The entire period of available data includes nine significant flood events;

in particular, the two main events occured in October 2000 and November
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2002 belong to the calibration data set, while the validation period includes

minor events, such as those occured in November 2004, June, November and

December 2008 (Figure 4.51).

Figure 4.51: Entire series of observed data provided by the Civil Protection
of Emilia Romiagna Region.

In addition, for each station the Civil Protection identified three alarm

levels, which are used in the operational flood alarm process; in this applica-

tion the lowest of these levels has been regarded as the maximum river stage

for which the probability of exceedance has been analyzed.

4.2.3 MCP Application

To pursue the intent of the application, the MCP has been applied in four

phases, of which the first three are the same described for the multi-model

approach, whilst the fourth one is specific for this approach.

1. The first phase consists in the separate processing of each model pre-

diction for each forecast lead time; for each forecasted time series the

MCP bivariate approach has been applied using the TNDs. For each
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model, the result of this phase is a series of forecasted expected values

for each forecast lead time. More exactly, for each horizon time and

each available model, the expected values of the predictive uncertainty

conditioned to the model forecast are computed.

2. In this phase the series of expected values are processed in order to

combine the different models predictions. However, for the present

application only one model is available, therefore this phase must be

skipped. Nevertheless, in case more models were available, this phase

result would have been the expected values of the predictive uncertainty

conditioned to the forecast of all the models for the same horizon time.

3. The third phase is the separate processing of each one of the series

obtained in the previous phase, with the aim of computing the correct

predictive uncertainty distribution.

4. The last phase is the most important for this application; the series ob-

tained in the third phase (one for each forecast lead time) are combined

together, in order to compute the multivariate predictive uncertainty

described in Section 3.1.3. Following the procedure described in that

section, the cumulative probability to exceed the alarm level is com-

puted for each horizon time. Afterwards, the exceeding time probabil-

ity is obtained as the discrete derivative of the cumulative probability

to exceed the alarm level.

Among the 6 stations where observed data were available, 3 stations have

been chosen in order to analyze the application of the Multi-Temporal version

of the MCP: Ponte Spessa, Borgoforte and Pontelagoscuro. Ponte Spessa

is the first station in the Emilia Romagna stretch of the Po river. The

forecasting system uses the observed data some kilometers upstream this

station, so the forecast lead time for which the forecasts can be considered

reliable is not greater than approximately 24 hours. Pontelagoscuro is the

last station of the forecasting system, it is close to the end of the river,
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some kilometers far from the Adriatic Sea; in this station the forecasts can

be considered reliable several hours in advance, hence in this application a

forecast time horizon of 36 hours has been used. Borgoforte is located in the

middle between the two previous stations, here the forecast lead time is 36

hours also in this case.

In the next sections the obtained results will be shown, firstly the probability

to exceed the alarm levels within a horizon time will be analyzed and then

the probability of the exceeding time.

Probability to exceed the alarm level within a time horizon

The probability to exceed the alarm level within a time horizon is the key

information given by the Multi-Temporal approach. The knowledge of such

probability is fundamental not just in order to quantify the hazard concerning

a future flood event, but also because it allows combining the information

given by all the forecasts during the whole forecast lead time, and so to

almost eliminate, or significantly reduce the time bias of the prediction. In

fact, if a forecast reproduces the peak flow systematically late or in advance,

the Multi-Temporal approach can identify this error and help in reducing it.

This is the case of Ponte Spessa station, where the deterministic model

prediction is often delayed with respect to the observed data. This is due

to the forecasting system structure, which is based on the propagation of

the flow observed few kilometers upstream Ponte Spessa. Since the forecast

quality tends to rapidly decrease as the horizon time increases and because

the time of flow propagation until Ponte Spessa is approximately 12 hours,

it has been observed that any horizon time greater than 15 hours leads to a

delay in the forecasts (Figure 4.52).

Figures 4.53 and 4.54, which concern the validation events, show the

benefit obtainable using the Multi-Temporal MCP on this station. In these

figures the lower panel represents the model prediction (blue line) respec-

tively considering 12 and 18 hours forecast lead time. In the middle panel,
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Figure 4.52: Delayed prediction from the deterministic model at Ponte
Spessa. The forecast lead time is 18 hours.

the probability to exceed the level of 3.5 meters within the total horizon

time is depicted, the light red line is the MCP response, the black line is the

observed binary value and the blue line the deterministic forecast.

In Figure 4.53 the deterministic model makes a good prediction and the bi-

nary deterministic prediction perfectly matches the actual one. The MCP

reflects this behavior and it reaches an exceeding probability of 80% when

the level exceeding actually occurs, starting few hours before to predict in-

creasing probability values. The MCP response has been depicted also in a

more effective and clearer way: in the upper panel of this figure the proba-

bility values computed by the MCP are grouped in three classes according to

different probability levels: the green group includes probabilities less than

25%, the red group includes the probability values greater than 75% and fi-

nally the yellow group contains the values within these two thresholds. These

thresholds can be chosen on the basis of the vulnerability and value of the

area, as mentioned in Section 2.4.
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Figure 4.53: Comparison between deterministic and probabilistic predictions
at Ponte Spessa. The forecast lead time is 12 hours.

Figure 4.54 represents an event predicted 18 hours in advance. This 18-hours

horizon time causes often the deterministic model forecast to be delayed. In

fact, in the depicted event the model predicts the level exceeding several hours

later than the actual occurrence. The MCP can correct this error assigning a

high exceeding probability to a certain number of hours preceding the event.

In particular, it assigns a probability greater than 80% to the 15 hours before

the model prediction as well as to the time interval in which the exceeding

occurs. The benefit of using the Multi-Temporal approach is clearly visible

in the upper panel of this figure, where the probabilistic response provides

the highest alarm level right on time with the observed behavior.

In the other two stations, Borgoforte e Pontelagoscuro, the deterministic

forecasts are reliable up to several hours in advance, rarely the predictions

are delayed and the actual behavior is well reproduced.

Concerning Borgoforte, Figures 4.55 and 4.56 depict two validation events

in which the deterministic model predicts the level exceeding few hours in

advance. Also in this case the MCP is able to recognize and correct this

error.
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Figure 4.54: Ponte Spessa, delayed deterministic prediction corrected by the
MCP. The forecast lead time is 18 hours.

Figure 4.55: Comparison between deterministic and probabilistic predictions
at Borgoforte. The forecast lead time is 24 hours.
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Figure 4.56: Comparison between deterministic and probabilistic predictions
at Borgoforte. The forecast lead time is 24 hours.

At Pontelagoscuro, the deterministic forecast is very good and the ex-

ceeding time is often well reproduced. Figures 4.57 and 4.58 represent two

validation events for this station. In the first case the MCP reflects the op-

timal behavior of the deterministic model, which is on time with the actual

observation (Figure 4.57). The second event represents a situation in which

the alarm level is not exceeded, but the maximum level registered is very

close to this threshold; the MCP computes exceeding probability values al-

ways lower than 45%, issuing only a yellow response, correctly reflecting the

actual occurrence (Figure 4.58).
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Figure 4.57: Comparison between deterministic and probabilistic predictions
at Pontelagoscuro. The forecast lead time is 24 hours.

Figure 4.58: Comparison between deterministic and probabilistic predictions
at Pontelagoscuro. The forecast lead time is 24 hours.
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Verification of the exceeding probability evaluation correctness

As mentioned for the Multi-Model application to the Baron Fork River, the

correctness of the exceeding probability value computed by the MCP can be

verified comparing the observed exceeding event frequency to the probability

value given by the MCP. For instance, considering all the cases in which the

MCP provides an exceeding probability of approximately 0.2, to be correct,

the correspondent observed occurrences should be approximately the 20%.

Unfortunately, it is not possible to make this verification for each probability

value, but it is necessary to make discrete the domain. In the present appli-

cation the discretization has been done with a 0.05 probability interval.

Figures from 4.59 and 4.64 represent the verification made with the cal-

ibration and validation data for the three considered stations and a time

horizon equal to 18 hours for Ponte Spessa, while a 24-hour time horizon was

considered for Borgoforte and Potelagoscuro.

Figure 4.59: Frequency of actual exceedances vs the probability estimated
using the MCP with the calibration data at Ponte Spessa. The red line
represents the perfect behavior.

At Ponte Spessa (Figures 4.59 and 4.60) the verification results highlight
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Figure 4.60: Frequency of actual exceedances vs the probability estimated
using the MCP with the validation data at Ponte Spessa. The red line
represents the perfect behavior.

a positive bias, especially for the lower values of the calibration period, while

considering the validation data, the MCP tends to subestimate the actual

probability when dealing with high probability values. The positive bias

observed during the calibration period can be explained considering that in-

evitably approximations are used in the joint distribution representation of

observed and predicted data, which is higher when the correlation between

these two variables is lower. This behavior is much less evident at Borgo-

forte or Pontelagoscuro than Ponte Spessa and it is due to the fact that in

these stations the correlation between actual and predicted levels is higher,

especially for forecast lead time greater than 15 hours.

The subestimation of the high probability values obtained with the vali-

dation data at Ponte Spessa may be probably due to the upper distribution

tail that is the other main assumption into the MCP structure.

Figures 4.63 and 4.64, concerning the station of Pontelagoscuro, high-

light the same problem for the u tail, but confirm the general good behavior

shown by all the three stations in representing the exceeding probability in
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Figure 4.61: Frequency of actual exceedances vs the probability estimated us-
ing the MCP with the calibration data at Borgoforte. The red line represents
the perfect behavior.

Figure 4.62: Frequency of actual exceedances vs the probability estimated us-
ing the MCP with the validation data at Borgoforte. The red line represents
the perfect behavior.
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Figure 4.63: Frequency of actual exceedances vs the probability estimated
using the MCP with the calibration data at Pontelagoscuro. The red line
represents the perfect behavior.

Figure 4.64: Frequency of actual exceedances vs the probability estimated
using the MCP with the validation data at Pontelagoscuro. The red line
represents the perfect behavior.
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its whole.In fact, despite these few points, it can be certainly said that there

is a relatively good agreement between simulated probabilities and actual

occurrences and the MCP can be defined as a reliable tool to estimate the

exceeding probability.

Exceeding Time Probability

The Multi-Temporal approach provides also essential information concerning

the exceeding time probability, which represents the discrete probability of

the instant when the exceeding event occurs. Such probability is computed

as the discrete derivative of the cumulative probability of exceeding the alarm

level (described in the previous section) and it is represented in the following

figures applying a linear interpolation between the obtained discrete values.
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Figures from 4.65 to 4.70 depict for each station two events: one occurred

during the calibration period and the other one during the validation period.

Each figure is composed of 3 panels: in the lowest panel the predictive uncer-

tainty is represented by the grey area; in the middle one the observed binary

response of exceeding the threshold is compared with the modeled one as

well as the cumulative probability computed by the MCP; finally, the upper

panel represents the probability of the exceeding time. The forecast horizon

taken into account is 24 hours and the alarm level (e.g. the river stage used

for computing the exceeding probability and the exceeding time probability)

is, for each station, the lowest between those provided by the Civil Protection

of Emilia Romagna.
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Figure 4.65 represents the event occurred at Ponte Spessa in October

2000, starting on 14th October at 4.00, while Figure 4.66 represents an event

occurred also occurred at Ponte Spessa during the validation period, specifi-

cally on 5th November 2008. In these figures three consecutive forecasts are

depicted, with a time interval of 6 hours between them.

Concerning the application to Ponte Spessa station, it is interesting to

note that the MCP computes a high probability to exceed the threshold

within the horizon forecast time even if the deterministic prediction does not

reach the alert level. Moreover, the exceeding time probability well repre-

sents the observed behavior and the modal value is always really close to

the actual instant when the exceedance occurs. As expected, the comparison

between the three consecutive forecasts depicted for each event shows that

the uncertainty of the exceeding time decreases when the forecast is updated.

In fact, the exceeding time probability distribution obtained linearly inter-

polating the discrete values becomes tighter when the starting forecast time

increases and the modal value tends to the actual exceeding time value.
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At Borgoforte and Pontelagoscuro stations the considered events (Figures

4.67 and 4.69 concern calibration events while Figures 4.68 and 4.70 show

validation ones) point out the same behavior observed at Ponte Spessa. Also

in these cases the MCP application allows the time of flood occurrence to

be well estimated. In fact, the exceeding time probability often reaches the

highest value closer to the actual exceeding instant than the deterministic

forecast, correcting the fact that the exceeding event is predicted with certain

delay or few hours in advance. This behavior is visible for both calibration

and validation events. Finally, also in these stations the forecast updating

leads to the reduction of the prediction uncertainty, as it is expected to do.
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Chapter 5

Conclusions and Future

Research Lines

5.1 Discussions and Conclusions

The analysis presented in this thesis allowed to obtain significant results as

well as fulfill the objectives planned at the outset. First of all, predictive

uncertainty has been defined, in agreement with Krzysztofowicz (1999) and

Todini (2008), as the probability of the occurrence of a real future value

of the predictand (level, discharge, volume, . . . ) conditional upon all the

knowledge and information available up to the present, which is usually em-

bodied in observations and in deterministic forecasting models and can be

acquired via a learning inferential process. It was also highlighted that the

final aim of forecasting systems is to reduce predictive uncertainty through

a representation of the physical processes that condition the hydrological

phenomena.

This research work was mainly focused on the development of the Model

Conditional Processor development for assessing predictive uncertainty. Two

applications, the first one to the Baron Fork River (OK, USA) and the second

one to the Po River (Italy) allowed to draw several important conclusions,

which are summarized below.

129



130 CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH LINES

• The predictive uncertainty assessment starts with the identification of

the marginal distributions of the observed and predicted data as well as

their joint distribution. Such marginal distributions are often unknown

in the untransformed observation space, and moreover it is extremely

difficult to make hypotheses on the shape of their joint distribution.

Several works in the literature (Krzysztofowicz, 1999; Montanari and

Brath, 2004; Todini, 2008) suggested to use to use a non-parametric

approach based on order statistics, namely to use the Weibull Plot-

ting Position as an estimate of the probability of an ordered vector.

Accordingly, a nonlinear transformation, the Normal Quantile Trans-

form, is used to move from the original observation space to the Normal

one, where by construction the marginal distributions assume a Stan-

dard Normal shape and the joint distribution can be reasonably ap-

proximated by a Multivariate Normal distribution. Nonetheless, this

approach has some disadvantages. First of all, it implies to identify

additional models to adjust the quantiles outside the range of the his-

torical available data. The proposed technique is very sensitive to the

shape and to the parameters of these models and some precautions in

the choice of the subset of observations used for calibrating the tails

data must be taken. They must contain a large variety of cases, as

required by any Bayesian approach, and in order to reduce the un-

certainty on the marginal distribution tails the calibration data must

include the highest number of extreme cases.

• The assumption of a Normal Multivariate joint distribution in the

transformed space implies unavoidable approximations and it does not

account for the heteroscedasticity error. In order to reduce it a non-

linear regression model could be used. In this thesis a piecewise linear

approach has been preferred to a fully non-linear model. The piecewise

linear approach allows for the use of Truncated Multivariate Normal

joint distributions. This technique can be easily developed and applied

and good results have been obtained for both the study cases where it
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has been used.

• The comparison between the use of the Truncated Normal Distributions

technique (TNDs) and the Quantile Regression (QR) showed that the

first technique, requires a lower computational cost and, in the appli-

cation proposed in this work, leads to better results. This is also true

when the QR technique is applied splitting the Normal space in two

parts. Nonetheless, the alternative use of the two techniques should be

approached on the basis of a detailed error analysis. After this analy-

sis the methodology that better adapts to the specific case should be

used. Anyway, the lower computational cost and the higher flexibility

of TNDs make this technique adaptable to a wider number of cases.

• Multiple predictions originated by several models, as discussed in the

introduction, is of difficult understanding and interpretation by the de-

cision makers, particularly when these predictions are in contrast one

to another. The application of the MCP on Baron Fork has shown

that the proposed technique allows the correct combination of different

forecasts into a unique probability of the event, which is of much eas-

ier interpretation and use in the decision making process. In fact, the

combination of the three models predictions, obtained by assigning dif-

ferent weights to each model according to the Bayesian theory, allows

the forecast quality to be improved as it is shown by the evaluation in-

dexes in Figures 4.35 and 4.36. In particular, the two distributed model

taken into account in this work (TETIS and TOPKAPI models) have

very similar structures and this leads to just a marginal gain in terms

of forecast improvement, which is shown by the standard deviation of

the errors and the Nash-Sutcliffe coefficient (Figures 4.35 and 4.36).

Instead, the combination of one physically based model with the data

driven model leads to greater improvements in forecast and, in partic-

ular, the combination of all the three models gives the best values of

the analyzed indexes in Figures 4.35 and 4.36. These results show that
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the combination of models with different nature allows the probabilistic

forecast to improve the deterministic forecast of each model.

• The validity of the methodology on which is based the Model Condi-

tional Processor is also verified by the analysis of the probability to

exceed a fixed level (such as the level of the embankment, which cor-

responds to the probability of flooding). Figure 4.49 shows that the

probability values computed by the processor well represent the actual

realizations concerning the application to the Baron Fork River. The

same is shown by Figures from 4.59 to 4.64 about the application to the

Po River, apart from some minor situations in which the probability

is slightly underestimated or overestimated. This verification not only

demonstrates the validity of the method, but also it makes possible to

assess with good accuracy the actual hazard of the event occurrences,

on which basis it is possible to make a proper risk analysis that is an

essential element of the decision-making process.

• The analysis of the application to the Po river, where the Multi-Temporal

approach has been tested, highlights the ability of the MCP to link the

hazard of a predicted event to its time of occurrence. In an operational

phase, the processor provides clear and easily interpretable estimates of

the probability that an event will happen within a given time horizon.

This information is essential to assess the available time to actuate in-

tervention procedures and properly organizing the available resources.

• The results obtained at the Ponte Spessa station point out that the

Multi-Temporal approach allows taking into account the possible pres-

ence of a systematic model prediction time displacement. In fact, at

Ponte Spessa, due to structural features of the forecasting system, the

predictions are often delayed when the forecast lead time is greater than

15 hours. As shown in Figures 4.54, 4.65 and 4.66, the MCP was able

to recognize and drastically reduce this delay and to assess with good

accuracy the exceeding time probability, systematically improving the
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deterministic forecasts.

Other conclusions concerning the deterministic models, in particular the

TOPKAPI and Artificial Neural Networks ones, were pointed out. Their ap-

plication, although uniquely addressed to provide data for testing the MCP,

involved a significant part of the work and suggested the following consider-

ations.

• The TOPKAPI model application to the Baron Fork River showed a

good predictive ability and provided reliable simulations of flood events

as well as of the general catchment behavior. However, deficiencies

were highlighted concerning the TOPKAPI capacity to differentiate

the ’wetting up period’ from the ’wet period’. The inclusion of just

one soil layer in the TOPKAPI conceptual scheme produces a single

subsurface flow response. In fact, the more surface layer is generally

characterized by higher permeability and faster responses to the rain

input, while the deeper layer has lower conductivity and lower and

slower responses. Therefore, the consequences of the simplified con-

ceptual scheme of the TOPKAPI had to be solved through model cali-

bration, forcing the related parameters to assume values that represent

a compromise solution between the two soil layers mentioned above.

A soil representation composed of two different layers vertically inter-

acting between them further improves the model predictive ability, as

demonstrated by (Coccia et al., 2010).

• Artificial Neural Networks have been used as a data driven model, in

order to complement the distributed models’ forecast. Following Toh

and Brath (2008) and Pujol (2009), the model has been developed

combining a Self Organizing Map network (SOM) to three Multi Layer

Perceptron ones (MLP). The former (SOM) has the task of classifying

the data into groups that are expected to represent different catchment

conditions. This will help the latter (MLP) to produce better forecasts.

The SOM network automatic classification ability is highly dependent
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on the calibration data selection and in this work it has to be pointed

out that the network was not always able to differentiate wet conditions

from dry ones. Nevertheless, the MLP networks were able to provide

good forecasts, even if it showed high instability and some problems

in reproducing the main flood events. The MLP predictive ability is

closely related to the last available discharge (or level) observation and

it rapidly decreases as the forecast lead time increases. Hence, mod-

els application to a small basin, such as the Baron Fork River, where

process non-linearity is more evident, must be preceded by an accurate

analysis of data and catchment features. The data selection in order

to feed the SOM network is the crucial step to obtain reliable results,

because the correct data assignment to the right group representing the

catchment soil moisture state allows the process non-linearity to be well

represented, which is essential to obtain reliable forecasts. Anyway, as

pointed out by Pujol (2009), it is not advisable to use the Artificial Neu-

ral Networks without the support of a more robust forecast provided

by a distributed or semi-distributed physically based model.

5.2 Future Research Lines

Nowadays, predictive uncertainty is an extremely relevant topic and it is still

open to discussions. There are still wide research fields open for developments

and improvements that may be undertaken to tackle several issues pointed

out in this thesis. Three of them are here highlighted, because closely related

to the present work.

• The tail models choice for the marginal distributions of the variables

used in the MCP is one of the points that require to be deepened.

Alternative approaches to the NQT should be studied using paramet-

ric probability distribution functions for the transformation into the

Normal space.
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• The choice of the truncation threshold in the TNDs is carried out in this

work according to the criterion of maximizing the upper sample data

correlation, given that the main objective is to better reproduce the

probability of higher floods. The variation range for this threshold value

must be limited in order to avoid the upper sample to include just few

data, which could not be sufficient to significantly represent the joint

distribution for higher values. Different methods of threshold selection

must be evaluated, also including the possibility to differentiate them

according to specific cases.

• The applications presented in this thesis show a rather good behavior

of the MCP at estimating the elements associated with the predictive

uncertainty (such as the flooding and the flooding time probabilities),

but it would be useful to conduct further tests on different case studies

and with other deterministic models.
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Appendix A

The TOPKAPI Hydrological

Model

The TOPKAPI (TOPographic Kinematic APproximation and Integration)

model is a fully-distributed physically-based hydrologic model with a sim-

ple and parsimonious parameterization which simulates the rainfall runoff

transformation using data collected by a network of rain-gauges.

The model is based on the idea of combining the Kinematic approach and

the topography of the basin. Spatial distribution of catchment parameters,

precipitation input and hydrologic response is achieved horizontally by an

orthogonal grid network and vertically by soil layers at each grid pixel.

Three structurally similar non-linear reservoir differential equations char-

acterize the TOPKAPI approach and are used to describe subsurface flow,

overland flow and channel flow. Moreover the TOPKAPI model includes

components representing the primary processes of the hydrologic cycle: infil-

tration, percolation, evapo-transpiration and snowmelt, plus a lake/reservoir

component, a parabolic routing component and a groundwater component.

Being a physically based model, the values of the model parameters can

be easily derived from digital elevation maps, soil type and land use maps in

terms of topology, slope, soil permeability, soil depth and superficial rough-

ness. A calibration based on observed streamflow data is then necessary for
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fine tuning the model to reproduce the behaviour of the catchment.

Thanks to its physically based parameters, the TOPKAPI model can

be successfully implemented also in un-gauged catchments where the model

cannot be calibrated using measured data. In this case the model parameters

can be derived from thematic maps, literature and experience.

A.1 The Soil Water Component

A.1.1 Basic Assumptions

The fundamental assumptions on which the TOPKAPI model is based, can

be described as follows:

1. Precipitation is assumed to be constant over the integration domain

(namely the single cell), by means of suitable averaging operations on

the local rainfall data, such as Thiessen polygons techniques, Block

Kriging (De Marsily, 1986; Matheron, 1970) or others;

2. All the precipitation falling on the soil infiltrates into it, unless the

soil is already saturated in a particular zone (namely the single cell);

this is equivalent to adopting the saturation mechanism from below

as the sole mechanism for the formation of overland flow, ignoring on

the other hand the possible activation of the Hortonian mechanism

due to infiltration excess. This decision is justified by the fact that the

infiltration excess mechanism is characteristic of a local modeling scale,

whereas the saturation excess mechanism, being linked to a cumulative

phenomenon and conditioned by a lateral redistribution movement of

the water in the soil, becomes dominant as the scale of the modeling

increases (Blöschl and Sivapalan, 1995).

3. The slope of the water table is assumed to coincide with the slope of the

ground, unless the latter is very small (less than 0.01%); this constitutes

the fundamental assumption of the approximation of the kinematic
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wave in the De Saint Venant equations, and it implies the adoption

of a kinematic wave propagation model with regard to horizontal flow,

or drainage, in the unsaturated area (Henderson and Wooding, 1964;

Beven, 1981, 1982; Borah et al., 1980; Sloan and Moore, 1984; Hurley

and Pantelis, 1985; Stagnitti et al., 1986; Steenhuis et al., 1988);

4. Local transmissivity, like local horizontal flow, depends on the total

water content of the soil, i.e. it depends on the integral of the water

content profile in a vertical direction;

5. Saturated hydraulic conductivity is constant with depth in a surface

soil layer but much larger than that of deeper layers; this forms the

basis for the vertical aggregation of the transmissivity, and therefore

of the horizontal flow, as it will be described in details in the following

section.

A.1.2 The Vertical Lumping

The transmissivity of a soil layer in non-saturated condition is given by the

following expression:

T =

∫ L

0

k
(
θ̃ (z)

)
dz (A.1)

Where: L = soil thickness of the layer affected by the horizontal flow.

k
(
θ̃ (z)

)
= hydraulic conductivity in non-saturated conditions.

θ̃ = θ−θr
θs−θr= reduced water content.

θr, θs = residual and saturated water content

θ = actual water content in the soil.

In accordance with the hypotheses 4) and 5) the transmissivity given by

Equation A.1 can be replaced by the following approximated expression:

T
(

Θ̃
)

= ksLΘ̃α (A.2)

where ks = saturated hydraulic conductivity.
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Θ̃ = 1
L

∫ L
0
θ̃ (z) dz = mean value along the vertical profile of the reduced

water content.

α = parameter depending on the characteristics of the soil.

The horizontal flux is calculated as follows, by means of an approximation

of the Brooks and Corey’s formula k
(
θ̃
)

= ksθ̃
α:

q = tan (β) ksLΘ̃α (A.3)

where β = slope angle [rad].

α = parameter which depends on the soil characteristics.

[q] =
[
m3s−1

]
A.1.3 Kinematic Wave Formulation for Sub-Surface

Flow

The analysis of a generic hydraulic system is usually addressed using the

continuity equation and the dynamic equation. In the TOPKAPI model,

the dynamic equation is represented by an approximate form expressed by

Equation A.3. Combining Equation A.3 with the equation for continuity of

mass, the following system is obtained:{
(θs − θr)L∂Θ̃

∂t
+ ∂q

∂x
= p

q = tan (β) ksLΘ̃α
(A.4)

Where p is the intensity of precipitation [ms−1].

The model is written in just one direction since it is assumed that the

flow along the slopes is characterized by a preferential direction, which can

be described as the direction of maximum slope.

Equation A.4 can be rewritten in terms of the actual total water content

in the soil η:

η = (θs − θr)LΘ̃ (A.5)
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and making the following substitution:

C =
tan (β) ksL

(θs − θr)αLα
(A.6)

The term C represents in physical terms a local conductivity coefficient,

since it depends on soil parameters for a point position, which encompasses

the effects of hydraulic conductivity and slope, to which it is directly propor-

tionate, and storage capacity, to which it is inversely proportionate.

Equation A.4, rewritten in terms of actual total water content in the soil,

along the vertical profile, leads to the following Kinematic equation:

∂η

∂t
= p− C∂η

α

∂x
(A.7)

A.1.4 Non-Linear Reservoir Model for the Soil Water

in a Generic Cell

By integrating Equation A.7 in the soil over the ith DEM grid cell, whose

space dimension is X, gives:

∂vsi
∂t

= pX − (Csiη
αs
i ) (A.8)

where: vsi= volume of water per unit of width [m2].

X = grid cell dimension [m].

The subscript s is introduced here to distinguish this soil water equation

from the ones relevant to the overland and the drainage network flows and

will be kept from now on. The subscript i is introduced to highlight that the

equation is referred to the ith cell and it will be omitted from now on.

In the TOPKAPI model, the grid cells are connected by a tree shaped

network; water moves down slope along this tree shaped flow pathway start-

ing from the initial cells (without upstream contributing areas) representing

the ‘sources’ towards the outlet. According to this procedure, and assuming

that in each cell the variation of the vertical water content along the cell

is negligible, the volume of water stored in each cell (per unit width) can
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be related to the total water content, which is equivalent to the free water

volume in depth, by means of the simple expression:

vsi = Xη (A.9)

Substituting for η in Equation A.8 and writing it for a generic cell, given

the total inflow to the cell, the following non-linear reservoir equation is

obtained:

∂Vs
∂t

=
(
pX2 +Qu

o +Qu
s

)
− CsX

X2αs
V αs
s (A.10)

where: Vs= volume of water stored in the ith DEM grid cell [m3].

pX2 = precipitation on the ith DEM grid cell [m3s−1].

Qu
o= streamflow entering the active cell i as overland flow from the up-

stream contributing area [m3s−1].

Qu
s= streamflow entering the active cell i as sub-surface flow from the

upstream contributing area [m3s−1].

αs = parameter which depends on the soil characteristics.

The volume of water stored in a cell can be related to the actual total

water content by means of the following equation:

Vs = Xvs = X2η (A.11)

Substituting Equation A.11 into Equation A.10 the differential equation

for the soil component can be written as:

∂η

∂t
=

1

X2

(
pX2 +Qu

o +Qu
s

)
− Cs
X
ηαs (A.12)

In general Equation A.12 can be written as:

∂η

∂t
= a− bηc (A.13)

where: a = pX2+Quo+Qus
X2

b =
Cs
X
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c = αs

Equation A.13 can be solved analytically or numerically by means of the

Runge-Kutta method.

A.1.5 Soil Water Balance

For the ith cell at each time step, the soil water balance can be calculated as

follows:

Qd
s =

(
pX2 +Qu

o +Qu
s

)
− Vs (t0 + dT )− Vs (t0)

dT
(A.14)

where: Qd
s = outflow from the ith cell during the time interval dT [m3s−1].

pX2 = water falling on the ith cell during the time interval dT [m3s−1].

Vs = volume of water stored in the soil [m3].

In case of saturation of the soil cell the volume of water that exceeds the

soil can be computed as follows:

Vexfs = Vs (t0 + dT )− Vsats

where: Vexfs = saturation excess volume for the ith cell [m3].

Vsats = saturated soil water storage for the ith cell [m3].

A.1.6 Subsurface Flow in a Cell with General Inclina-

tion

If we consider a pixel with slope equal to tgβ1 in x direction and slope equal

to tgβ2 in y direction the Equation A.4 should be modified in the following

way:

q = tan (β1)

(
1 +

tan (β2)

tan (β1)

)
ksLΘ̃α (A.15)

As a consequence also the local conductivity coefficient Cs will be modi-

fied:
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Cs = tan (β1)
ΣsksL

(θs − θr)αLα
(A.16)

with:

Σs = 1 +
tan (β2)

tan (β1)
(A.17)

The coefficient σS will be called soil drainage coefficient. Equation A.13

representing the non-linear reservoir for the subsurface flow component will

be modified in the following way:

∂η

∂t
= a− Σsbη

c (A.18)

From Equation A.18 the total outflow Qout from the soil is computed.

Then the outflow is partitioned between the downstream cell and the channel

network, according to the flow partition coefficient.

A.2 The Surface Water Component

The input to the surface water model is the precipitation excess resulting

from the saturation of the surface soil layer. In addition, water in the soil

can exfiltrate on the surface as return flow due to a sudden change in hill

slope or soil properties, and thus it can also feed the overland flow. The

subsurface flow and the overland flow together feed the channel along the

drainage network.

Overland flow routing is described similarly to the soil component, ac-

cording to the kinematic approach (Wooding, 1965), in which the momentum

equation is approximated by means of the Manning’s formula. For a general

cell, the kinematic wave approximation for overland flow is described as:{
∂ho
∂t

= ro − ∂qo
∂x

qo = 1
no
tan (β)

1
2ho

5
3 = Coh

αo
o

(A.19)

where: ho = water depth over the ground surface [m].

ro = saturation excess resulting from the solution of the soil water bal-
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ance either as precipitation or exfiltration from the soil in absence of rainfall

[ms−1].

qo = horizontal flow on the ground surface, corresponding to a streamflow

per unit of width [m2s−1].

no = Manning’s friction coefficient for the surface roughness [m−1/3s].

αo = exponent that derives from using Manning’s formula, equal to 5/3.

Co = tan(β)
1
2

no
= coefficient relevant to Manning’s formula for overland

flow.

A subscript o denotes the overland flow. Equation A.19, leads to the

following kinematic equation:

∂ho
∂t

= ro − Co
∂ (hαoo )

∂x
(A.20)

By analogy with what was done for the soil, assuming the surface water

depth constant over the cell and integrating the kinematic equation over the

longitudinal dimension, the non-linear reservoir equation for the overland

flow for the ith cell can be obtained as:

∂Voi
∂t

= roiXWoi −
CoWoi

(XWoi)
αo V

αo
oi

(A.21)

where Vo = surface water volume in the cell [m3].

Wo = width of the surface (free of the channel) [m].

The subscript i is introduced here to highlight that Equation A.21 was

written for the ith DEM grid cell and it will be omitted from now on. The

volume of water stored on the surface of each cell can be written through a

simple expression:

Vo = XWoho (A.22)

Substituting Equation A.22 into Equation A.21 the differential equation

for the surface component can be written as:

∂ho
∂t

= ro −
Co
X
hαoo (A.23)
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In general Equation A.23 can be written as:

∂ho
∂t

= a− bhco (A.24)

whit: a = ro = 1
XWo

Vexf
dT

b =
Co
X

=
tan (β)

1
2

noX

c = αo

where: Vexf = precipitation excess [m3]

Equation A.23 can be solved numerically (Runge-Kutta) or analytically.

A.2.1 Surface Water Balance

For the ith cell at each time step, the surface water balance can be calculated

as follows:

Qd
o = (roXWo)−

Vo (t0 + dT )− Vo (t0)

dT
(A.25)

where: Qd
o = outflow from the ith cell during the time interval T [m3s−1].

roXWo = inflow into the ith cell during the time interval dT [ms−1].

Vo= volume of water on the surface [m3].

Up to this point it has been implicitly assumed that the entire overland

flow from a cell flows into the downstream cell immediately. However, this

is not entirely true since note has to be taken of the depletion caused by the

drainage network. Thus, for the cells in the channel network, the overland

flow is still evaluated by Equation A.23, but it is then partitioned between the

channel and the downstream cell. This allows determination of the amount

of overland flow feeding the drainage channel network.
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A.2.2 Overland Flow in a Cell with General Inclination

If we consider a pixel with slope equal to tgβ1 in x direction and slope equal

to tgβ2 in y direction the Equation A.19 should be modified in the following

way:

qo =
1

no
(tanβ1)

1
2

[
1 +

(
tanβ2

tanβ1

) 1
2

]
ho

5
3 (A.26)

Σo = 1 +

(
tan (β2)

tan (β1)

) 1
2

(A.27)

The coefficient σO will be called surface drainage coefficient. Equation

A.13 representing the non-linear reservoir for the overland flow component

will be modified in the following way:

∂ho
∂t

= a− Σobh
c
o (A.28)

From Equation A.28 the total outflow Qout from the overland flow is

computed. Then the outflow is partitioned between the downstream cell and

the channel network according to the flow partition coefficient.

A.3 The Channel Component

In the TOPKAPI model, different kinds of channel cross section geometries

can be set; following, a rectangular cross section will be used as an example

to describe the channel component structure.

A.3.1 Channels with Rectangular Cross Sections

The channel flow is described similarly to the surface component, although

in this case the channel is assumed to be tree shaped with reaches having

rectangular cross sections.

The kinematic wave approximation for the channel flow is described ac-
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cording to the kinematic approach in which the momentum equation is ap-

proximated by means of the Manning’s formula:
∂Vc
∂t

= (rc +Qu
c )− qc

qc = 1
nc

√
s0

(
Ax
Cx

) 2
3
Bxy

5
3
c

(A.29)

where: yc = water depth in the channel reach [m].

rc = lateral drainage input, including the surface runoff and the soil

drainage reaching the channel [m3s−1].

Qu
c = inflow from the channel reach of the upper cell [m3s−1].

qc = horizontal flow in the channel [m3s−1].

nc = Manning’s friction coefficient [m−1/3s].

s0 = bed slope.

Ax = wet area [m2]

Cx = wet contour [m]

Bx = width of the channel reach [m].

A subscript c denotes the channel flow. Equation A.29, rewritten in terms

of water depth in the channel reach, yc, leads to the following equation:

∂Vc
∂t

= (rc +Qu
c )−

√
s0

nc

(
Ax
Cx

) 2
3

Bxy
5
3
c (A.30)

With simple substitutions we obtain the following equation that describes

the non-linear reservoir equation for the channel flow for the ith cell:

∂Vc
∂t

= (rc +Qu
c )−

√
s0

nc

(
1

Cx

) 2
3 1

X
5
3

V
5
3
c (A.31)

In general Equation A.31 can be written as:

∂Vc
∂t

= a− bV c
c (A.32)

whit: a = rc +Qu
c

b =

√
s0

nc

(
1

Cx

) 2
3 1

X
5
3
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c =
5

3

where: Ax = Byc0= wet area at the beginning of the computation time step

[m2].

Cx = 2yc0 + B = wet contour at the beginning of the computation time

step [m].

The channel width B is increasing as a function of the area drained by

the ith cell on the basis of geo-morphological considerations.

A.3.2 Channel Water Balance

For the ith cell at each time step, the channel water balance can be calculated

as follows:

Qd
c = (rcXW +Qu

c )−
Vc (t0 + dT )− Vc (t0)

dT
(A.33)

where: Qd
c = outflow [m3s−1].

rcXW = inflow from the lateral cells [m3s−1].

Qu
c = inflow from the upper cell [m3s−1].

Vc = volume of water in the channel [m3].

A.3.3 Analytical Solution of the Non-Linear Reservoir

Ordinary Differential Equation (ODE)

As described in the previous subsections, the TOPKAPI model formulation

leads to three tree-shaped cascades of non-linear reservoirs, each of which is

described by a structurally similar ’ ordinary differential equation (ODE) to

be solved in time. In the first version of the TOPKAPI model (Todini and

Ciarapica, 2001), the solution of the ODE for each single reservoir represent-

ing the soil, the surface and the channel network, was based upon a variable

step fifth order Runge-Kutta numerical algorithm due to Cash and Karp

(1990). Nowadays, it has been found that the non-linear reservoir equation
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can be solved analytically based on an appropriate approximation (Liu and

Todini, 2002).

A.3.4 The Muskingum-Cunge-Todini Routing Method

In the TOPKAPI model it is possible to use the Muskingum-Cunge-Todini

(MCT) (Todini, 2007b) routing method as an alternative to the Kinematic

non-linear reservoir for channels with slope smaller than 0.1%, namely chan-

nels where the Kinematic approximation of De Saint-Venant equations does

not hold.

The Muskingum-Cunge (MC) routing method (Cunge, 1969; Ponce adn

Yevjevich, 1978; Koussis, 1980, 1983; Miller and Cunge, 1975; Wienmann

and Laurenson, 1979) is actually a lumped Kinematic wave routing method,

in which the Kinematic wave equation is transformed into an equivalent

diffusive wave equation by matching the physical diffusion to the numeri-

cal diffusion resulting from the imperfectly centered finite difference scheme

(Smith, 1980; Tang and Samuels, 1999). Thus the MC method accounts for

both the convection and diffusion of the flood wave. The routing parameters

can be linked to physical channel properties and flow characteristics (Cunge,

1969), and when these parameters are recalculated and updated as a function

of local flow values for each computational cell, the routing parameters are

varying in time (Prince, 1995). The MCT algorithm, is basically a variable

parameter MC corrected for its typical mass balance error (Todini, 2007b).

A.4 The Evapo-Transpiration Component

The evapo-transpiration is taken into account as water loss, subtracted from

the soil’s water balance. A simplified technique is used to calculate evapo-

transpiration starting from air temperature and from other topographic,

geographic and climatic information. The effects of the vapour pressure

and wind speed are explicitly ignored. In the TOPKAPI model, the evapo-

transpiration is evaluated at the DEM grid scale.
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A.4.1 Empirical Equation for Computing the Refer-

ence Potential Evapo-Transpiration

An empirical equation, that relates the reference potential evapo-transpiration

ET0m, to the compensation factor Wta, to the mean recorded temperature of

the month T and the maximum number of hours of sunshine N of the month,

was developed. The reference potential evapo-transpiration is computed on

a monthly basis using one of the available simplified expressions such as for

instance the one due to Thornthwaite and Mather (1955). The developed

relationship is linear in temperature (and hence additive) and allows the un-

bundling of the monthly results on daily or hourly basis, while most other

empirical equations are ill-suited for time intervals shorter than one month.

The relation used, which is structurally similar to the radiation method

formula (Doorembos et al., 1984) in which the air temperature is taken as

an index of radiation, is:

ET 0m = α + βNWtaTm (A.34)

Where: ET 0m = reference evapo-transpiration for a monthly time step

(computed using Thornthwaite’s formula) [mm]

α, β = regression coefficients to be estimated

Tm = area mean air temperature averaged over a month [◦C]

N = monthly mean of the maximum number of daily hours of sunshine

(tabulated as a function of latitude)

Wta = weighting factor, it can be either obtained from tables or approx-

imated by a fitted parabola:

Wta = T
2

+BT + C

A, B, C = coefficients to be estimated

T = mean monthly temperature [◦C]

For a given time step ∆t and a given crop culture, the potential evapo-

transpiration value is computed as:
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ET 0 = Kc (α + βNWtaT4t)
4t

30 · 24 · 3600
(A.35)

where: ET 0 = reference evapo-transpiration for a specified time step ∆t

[mm].

Kc = crop factor.

T4t = pixel mean air temperature averaged over ∆t [◦C].

A.4.2 Estimation of the Average Monthly Potential

Evapo-Transpiration According to Thornthwaite

The values of the potential evapo-transpiration can be computed for a given

DEM grid according to Thornthwaite and Mather (1955), by means of the

following formula:

ET 0m (i) = 16a (i)

[
10
T (i)

b

]c
(A.36)

whit: a = n(i)
30

N(i)
12

b =
12∑
i=1

[
T (i)

5

]1.514

c = 0.49239 + 1792× 10−5b− 771× 10−7b2 + 675× 10−9b3

where: ET 0m (i) = average monthly potential evapo-transpiration [mm/month].

T (i) = monthly-average air temperature for ith month [◦ C ].

n(i) = number of days in month i.

N(i) = Mean Daily Duration of Maximum Possible Sunshine Hours (in

‘Crop Water Requirements’ FAO Irrigation and Drainage Paper 24).
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A.4.3 Computation of the Actual Evapo-Transpiration

The potential evapo-transpiration is corrected as a function of the actual soil

moisture content, to obtain the actual evapo-transpiration (ETa):
ET a = 0 for V ≤ β1Vsat

ET a = ET 0
V
Vsat

for β1Vsat ≤ V ≤ β2Vsat

ET a = ET 0 otherwise

where: V, Vsat = actual and saturation volume of water into the soil [m3].

β1, β2 = parameters to be set.

A.5 The Snow Accumulation and Snow Melt-

ing Component

The snowmelt module of the TOPKAPI model is driven by a radiation esti-

mate based upon the air temperature measurements; in practice, the inputs

to the module are the precipitation, the temperature, and the same radiation

approximation which was used in the evapo-transpiration module.

The snowmelt module consists of the following steps.

A.5.1 Estimation of Solar Radiation

The estimation of the solar radiation at the DEM is performed by re-converting

the latent heat and the sensible heat, assumed equals to the reference evapo-

transpiration back into radiation, by means of a conversion factor Cer (Kcal

Kg−1):

Cer = 606.5− 0.695 (T − T0) (A.37)

where: Cer = conversion factor [KcalKg−1].

T0 = fusion temperature of ice [273◦K].

T = air temperature [◦ K].
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In addition, to account for albedo, which plays an extremely important

role in snowmelt, it is necessary to apply an efficiency factor which will be

assumed approximately as η = 0.6 for clear sky and η = 0.8 for overcast

conditions. Moreover, a coefficient ηrad is used to take in account the radia-

tion efficiency; it depends on the sun height with respect to the terrain slope.

This leads to the following estimate for the driving radiation term:

Rad = 2ηalηrad [606.5− 0.695 (T − T0)]ET 0 (A.38)

where: Rad = radiation term.

ηal= efficiency factor for albedo.

ηrad = radiation efficiency factor.

ET 0 = potential evapo-transpiration.

A.5.2 Computation of the Solid and Liquid Percentage

of Precipitation

The percentage of liquid precipitation is calculated by means of a function

of the air temperature:

F (T ) =
1

1 + e−
T−Ts

Σ

(A.39)

where σ is equal to 0.3 (derived by experimental data) and the value

of TS (which generally ranges between 271 and 275◦K) must be derived, as

previously mentioned, by plotting the frequency of the status of historically

recorded precipitation as a function of air temperature.

A.5.3 Estimation of the Water and Energy Budgets on

the Hypothesis of Zero Snowmelt

The water equivalent mass (Z ) is estimated with the following simple mass

balance equation:
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Figure A.1: Percentage of liquid precipitation for TS=0

Z∗t+∆t = Zt + P (A.40)

where P is the precipitation.

The water equivalent at the end of the time step is identified with a star,

because it is a tentative value which does not yet account for the eventual

snowmelt. Similarly to the mass, the energy is estimated in the following

way, by computing the increase (or decrease) of total energy (E ):

E∗t+∆t = Et+Rad+CsiT ·[1− F (T )]P+[CsiT0 + Clf + Csa (T + T0)]P ·F (T )

(A.41)

where: Csi = specific heat of ice

Clf = latent heat of fusion of water

Csa = specific heat of water

A.5.4 Estimation of Snowmelt and Updating of Mass

and Energy Budgets

If the total available energy is smaller or equal to that required to maintain

the total mass in the solid phase at the temperature T0 i.e: CsiZ
∗
t+∆tT0 ≥
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E∗t+∆t, it means that the available energy is not sufficient to melt part of the

accumulated snow, and therefore:
Rsm = 0

Zt+∆t = Z∗t+∆t

Et+∆t = E∗t+∆t

(A.42)

where: Rsm = snowmelt [mm]

If the total available energy is larger than that required to maintain the

total mass in the solid phase at the temperature T0, it means that part of

the accumulated snow will melt, and therefore the following energy balance

equation holds:

Csi
(
Z∗t+∆t −Rsm

)
T0 = E∗t+∆t − (CsiT0 + Clf )Rsm (A.43)

from which the snowmelt and the mass and energy state variables can be

computed as: 
Rsm =

E∗t+∆t−CsiT0Z∗t+∆t

Clf

Zt+∆t = Z∗t+∆t −Rsm

Et+∆t = E∗t+∆t − (CsiT0 + Clf )Rsm

(A.44)

A.6 The Percolation Component

For the deep aquifer flow, the response time related to the vertical transport

of water through the thick soil above this aquifer is so large that horizontal

flow in the aquifer can be assumed to be almost constant with no significant

response on one specific storm event in a catchment (Todini, 1995). Nev-

ertheless, the TOPKAPI model accounts for water percolation towards the

deeper subsoil layers even though it does not contribute to the streamflow.

It is assumed that percolation starts if the soil moisture content of the up-

per soil layer exceeds its field capacity. The percolation rate from the upper

soil layer is assumed to increase as a function of the soil water content, ac-
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cording to an experimentally determined power law (Clapp and Hornberger,

1978; Liu et al., 2005).

Pr = ksv

(
v

vsat

)αp
(A.45)

where: Pr = percolation [mm]

ksv = vertical soil saturated hydraulic conductivity

v = volume of water [m3]

vsat = local saturation volume [m3]

αp = exponent depending on the type of the soil (αp 11 for sand; αp 25

for clay)


