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Abstract

A pursuer UAV tracking and loitering around a target is the problem an-

alyzed in this thesis. The UAV is assumed to be a fixed-wing vehicle and

constant airspeed together with bounded lateral accelerations are the main

constraints of the problem. Three different guidance laws are designed for

ensuring a continuos overfly on the target. Different proofs are presented to

demonstrate the stability properties of the laws. All the algorithms are tested

on a 6DoF Pioneer software simulator. Classic control design methods have

been adopted to develop autopilots for implementig the simulation platform

used for testing the guidance laws.
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Chapter 1

Introduction

1.1 Scope of the Thesis

The design of guidance laws for the UAVs (Unmanned Air Vehicle) is one of

the main problems for the researchers in the field of aerospace applications.

Since the last ten years, it has been occurred an exponentially growth of

different kind of solutions for the UAV guidance laws based on the scientific

works which have been developed in robot applications. In fact, as it will

be explained in the next sections, the mathematical model of the dynamic

system describing the mass-point kinematics, called unycicle, is used for a

fixed-wing UAVs in the same ways it has been exploited in robotics, but with

differences due to some important constraints.

In particular, the main constraints which have to be considered for UAVs

respect to the unycicle model can be summarized as:

• the speed of the UAVs is considered constant in order to ensure the lift

force to sustain the vehicle

• the lateral acceleration must be limited by the flight envelope (usually

the lateral acceleration is also considered as normal acceleration)

While a lot of solutions designed for the unicycle model exist for tracking a

desired path or loitering around a point, and consequently there are different

1



2 1. Introduction

kinds of guidance laws, for the UAVs the creation of guidance laws which

fulfills the requirement above stated is still a current research activity.

The aim of this work is to give a large overview of the most important

techniques used for the automatic guidance of fixed-wing UAVs. All the

techniques which will be presented have been used for the creation of different

suitable guidance laws in order to oversee a fixed target. In some of them

the guidance laws are used also to follow a moving target and a comparison

with some others guidance law is done.

The thesis is organized as follows. The first chapter is concluded with the

sections 1.2 and 1.3 which defines the state of the art and the mathematical

model used in all the approaches. The second chapter is dedicated to the

analysis of the most important guidance laws: Pursuit Navigation (PN) and

Proportional Navigation Guidance (PNG). They are explained to facilitate

the reader to understand the problem of tracking a fixed or moving target.

Chapter 3 shows the design of a feedback non linear guidance law and proof

its stability through a Lyapunov function. In Chapter 4 the technique of the

guidance vector field is explained and a particular solution is presented to

overflight a target.

Assumption

• the actual position of the target is known together with its velocity

• future position of the target are not known

1.2 State of the Art

The problem of finding UAV guidance laws for the UAV can be divided in

these three principal categories:

1. loitering around a fixed point;

2. following a moving target;

3. tracking of a fixed path created with specific techniques.
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For the first category the most innovative approach is based on the Lya-

punov Vector Field [20], [26]. The works presented in these two papers are

based on the concept of path following through the construction of a vector

field surrounding the path to be followed. General speaking, in this technique

the vector fields provide the course command to guide the UAV towards the

desired path. Usually the method is not used for tracking a target but it can

be used also to switch between different predefined way points in order to

create a more complicated trajectory.

The desired path created with this technique has the problem that it does

not guarantee a continue overflight on the fixed point because the chosen

fields are of circular Lyapunov.

The second category includes a lot of techniques. A particular introduc-

tion must be done for the PN and the PNG [21]. In the pursuit navigation

the follower aims directly at the target throughout the encounter, like a dog

chasing a cat. As it will explained in chapter 2 the angle between the longi-

tudinal axis of the UAV or its velocity vector and the line of sight (LOS) to

the target is driven to zero or some constant value. The proportional naviga-

tion guidance is one in which the follower heading rate is made proportional

to the UAV-target LOS rate. The purpose of such a course is to counter

the tendency for the LOS to rotate and, hence, to approximate a constant-

bearing course. Recently a new approach has been proposed in [28]. The

guidance method discussed in this paper adapts the method of the PN to

create the lateral acceleration commands for controlling a UAVs. A reference

point on the desired path is designed and the normal acceleration command

is generated according to the direction of the reference point, relative to the

vehicle velocity. The reference point on the desired path is considered at

a constant distance L forward to the vehicle. This nonlinear guidance law

method demonstrates a number of benefits over the Lyapunov Vector Field

approaches:

1. Naturally it follows any circular path of radius greater than a specific

limit imposed by the dynamics of the vehicle;

2. Has an element of anticipation of the desired flight path;
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3. Incorporates instantaneous vehicle speed adding an adaptive feature

with respect to changes in vehicle ground speed caused by external

disturbances such as wind;

4. Is asymptotically stable;

5. It is very simple and straightforward to apply in actual flight.

Although this guidance law shows a lot of benefits respect to the Lyapunov

Vector Field, it is created for tracking circular paths. As before this law it is

not adapt to overflight a fixed point.

In [12] a guidance logic that overcomes some of these problems is pre-

sented. As the method just cited it involves a reference point moving on the

desired path. The motion of this reference point is coupled to the motion of

the real vehicle by a factious mechanical link. In [28] there is a fixed length

distance requirement while in [12] approach is a springlike and supplemented

by a factious drag.

This paper is focused on the development of a 3d guidance law suitable

for different paths. However in this paper a lot examples are shown and some

of them can be related to the problem of monitoring a target.

The third category is more related to problems of operation research

than to automatic control. A lot of different algorithms can be used in

order to find the shortest paths, or the minimum energy path, or minimum

fuel consumption path, between various prestabilized way points. Once a

suitable path is stabilized it is usually followed through any guidance laws

or, better, a control law for tracking a reference signal. One of the most

important technique used to construct a path is the Dubins Theorem [8].

In [25] the problem of constructing minimum time trajectory for a Dubins

vehicle in the presence of a time-varying wind vector field is considered. The

results proposed in this paper extend the conclusion of the well-known Dubins

theorem.
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1.3 Kinematic Equations

Kinematic Modeling of the UAV

In this section an introduction to controllability and observability of the

main system used in all the subsequent chapters is given. The work is based

on the chapter 9 and chapter 11 of [34]. As it is discussed in 1, this thesis

has the aim to investigate and give some solutions to the problem of tracking

a ground target. The position of the target is assumed to be known by the

by the UAV guidance system. In the next chapter a brief introduction to

sensors of a guidance system is given.

The system model can descripted by the subsequent relations:











ẋ = V cos(χ)

ẏ = V sin(χ)

χ̇ = an
V

(1.1)

where V is the magnitude of the velocity vector V, χ is the heading angle

respect to the y-axis and an is the normal acceleration. In this case a xyz

inertial reference frame is chosen but the analisys can be considered valid for

any reference frame.

The lateral acceleration an are transformed into heading commands suit-

able to guarantee the maneuvers of the UAV to be consistent to its mechan-

ical limitations it terms of maximum turn rate. Similarly as in most flight

applications, a separate inner and outer feedback-loop control approach is

assumed in this thesis. This because of its simplicity and the availability of

good autopilots for vehicle motion inner-loop control such as stabilization

and altitude hold.

It is important to highlight the main difference respect to the well-known

system model of the unicycle [1]. In the system considered in this thesis

the velocity is assumed as a fixed parameter equal to the cruise airspeed of

the UAV chosen for the simulation. This constraint is necessary because the

UAV has to stay at a fixed altitude if a good target tracking wants to be

performed.
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The system model presented in 1.1 is subjected to a pure rolling non-

holomonic constraint:

ẋ sin(χ)− ẏ cos(χ) = 0 → χ = arctan( ẏ
ẋ
)

It specifies the direction of the velocity vector. Now, considerng n as

the number of the varible state and M the corrisponding manifold, the non-

holominc constraint restricts the instantaneous motion of the system to a

(n-1) dimensional space, but it is still possible to reach any configuration

in M. The analysis of this constraint will be treat later in the constraint

analysis section.

The system 1.1 can be expressed from a control point of view in the

following form:

ẋ = f(x) + g(x)u (1.2)

representing the kinematic model of the UAV. As it can be seen the UAV

model can be considered an analytic affine control system. In this case x =

[x, y, χ]T represents the n-state vector of the UAV on the manifoldM and u =

[u]T the m-vector of input (obviously in this case n=3 and m=1). Usually,

f(x) and g(x) are smooth vector field on the manifold M. The vector field f

is referred to as the drift vector field and the vector field g are referred to as

the input vector fields which in this case it is constant [0, 0, 1]T .

Control system 1.2 can be considered as a special case of a drift free

system of the form:

ẋ =
m
∑

i=0

gi(x)ui (1.3)

with the input u0 attached to the vector field g0(x) = f(x) and fixed at 1

(m=1).

In matrix form the system 1.1 becomes:







ẋ

ẏ

χ̇






=







V cosχ 0

V sinχ 0

0 1







[

1

u

]

(1.4)

where g0 = [V cos(χ), V sin(χ), 0]T , g1 = [0, 0, 1]T and u = an
V
. It can be

defined also ū = [1, u]T .



1.3 Kinematic Equations 7

Controllability Analysis

A non linear control system can be considered, as it can be seen in the

previous section, as a collection of vector fields parametrized by a parameter

called control. The system model is represented by vector fields as they allows

to perform algebraic operation on them such as taking linear combinations

and taking a product called Lie bracket.

Definition 1.1. Lie Bracket of two Vector Field.

Defined g : Rn → R
n and given two smooth vector fields g0(x), g1(x) on

the manifold M, a new vector field called Lie Bracket [g0(x), g1(x)] is defined

as follows:

[g0, g1] (x) =
∂g1
∂x
g0(x)− ∂g0

∂x
g1(x)

where ∂g1
∂x

and ∂g0
∂x

denote the Jacobi matrix of g0 and g1.

The Lie Bracket of two vector fields is another vector field which measures

noncommutativeness of the flows of the vector fields.

In order to define the control properties of the system 1.4 it is important

to give some definitions.

Definition 1.2. Distributions.

Given a set of smooth vector fields g0(x), g1(x) . . . gm(x) a distribution

∆(x) is defined as:

∆=span{g0(x), g1(x) . . . gm(x)}.

Definition 1.3. Involutive Distributions.

A distribution ∆
′

is called involutive if for any two vector field g0(x), g1(x)

∈ ∆
′

(x) their Lie Bracket [g0(x), g1(x)] ∈ ∆
′

.
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Besides, its involutive closure ∆̄ is the smallest involutive distribution

containing a generic distribution ∆
′

:

∆̄=span{g0, . . . , gm, [g1, g2] , [g1, g3] , . . . [g1, [g2, g3]] , [g2, [g3, g1]] , . . .}.

This variable ∆̄ is also known as the controllability distribution and contains

valuable information about the set of the states that are accessible from a

given starting point x0
1.

Definition 1.4. Invariance.

A distribution ∆ is said to be invariant under g0, with g0 ∈ ∆, if for every

τ ∈ ∆, [g0, τ ] ∈ ∆.

Theorem 1.3.1. Representation Theorem.

Let ∆ be a regular2 involutive distribution of dimension d and let ∆ be

invariant under g0. Then at each point x0 there exist a neighborhood U and

coordinate transformation z = φ(x) defined on U in which the vector field

has the form:

g̃0(z) =

























g01(z1, . . . , zd, zd+1 . . . , zn)
...

g0d(z1, . . . , zd, zd+1 . . . , zn)

g0d+1(zd+1 . . . , zn)
...

g0n(zd+1 . . . , zn)

























This machinery is very useful to study local decomposition of control sys-

tem of the form of 1.2. Let ∆ be a distribution which contains g0, g1, . . . , gm

and is invariant under the vector fields g0, g1, . . . , gm and which is involutive.

1It is easy to derive that the involutive distribution ∆̄ is also invariant under
g0, g1 . . . , gm

2Regular distribution means that the rank of ∆ is constant in U
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Then with an easy extension of the preceding theorem it is possible to find

coordinates such that the control system may be represented using suitable

coordinates as:
ξ̇1 = g01(ξ1, ξ2) +

∑m

i=1 g0i(ξ1, ξ2)ui

ξ̇2 = 0
(1.5)

A candidate for the involutive distribution ∆ which satisfies the preceding

requirements is the controllability distribution ∆̄. The discussion shows that

the ξ2 states are the uncontrollable states in that the dynamics (the ξ2 are

unaffected by the choice of the input). The number of the states ξ2 is equal

to n - dimension of ∆̄.

Considering equation 1.4 it results:

[g0, g1] (x) =







−V sinχ

V cosχ

0







and the dimension of ∆̄ is equal to 3 (dim(∆̄)=3). Hence, it can be conlucled

that the affine control system 1.2 is controllable because the number of states

ξ2 is zero.

Kinematic Modeling of the Tracking Problem

Amathematical model is used to describe UAV-target kinematics by using

the parameters of the LOS. These parameters are: the distance R between

UAV and target, the distance rate Ṙ and the azimuth angle σ between the

north axis and the LOS.

With reference to figure 1.1, the geometry of homing guidance in the

horizontal plane the measurable variables are:

• The distance R =
√

(xT − x)2 + (yT − y)2

• The LOS angle σ = arctan yT−y
xT−x

The variables used to specify the position and orientation of the UAV

and the target in a Cartesian reference frame are:

1. x, y, z and xT , yT , zT ;



10 1. Introduction

2. Heading angle χ and χT ;

3. The speed V and VT .

The Kinematics of UAV target geometry describes the change in time

of the position vector from the UAV to the target R. The kinematics is

characterized by two pairs of kinematic equations one of which determines

the relative motion of the center of the mass of the UAV and the target.

Hence, the system model description considered both for the UAV and for

the target is the same mathematical model described at eh beginning of

section 1.3.

UAV Equations of Motion











ẋ = V cos(χ)

ẏ = V sin(χ)

χ̇ = an
V

(1.6)

TARGET Equations of Motion











ẋT = VT cos(χT )

ẏT = VT sin(χT )

χ̇T = anT
VT

(1.7)

The direction along the UAV travels is dictated by an alghorithm section

in the guidance processor known as the guidance law. As it is written in

1.2 many different guidance laws have been developed over the years, and

with the advent of highly maneuverable airbone targets, research on improved

guidance laws is continuing. Currently several guidance laws of the two-point

(UAV and Target) are implemented. In the next chapter two of the most

famous LOS rate guidance laws will be explained: Pursuit Navigation

and Proportional Navigation Guidance 3.

Observing figure 1.1 the expression of the distance R can be also written

3The pedix T represents the positions, the heading and the speed of the Target
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V

UAV

TARGET

VT

E

N

RΧ

σ

ΧT

Figure 1.1: Relative Geometry for Guidance

as:
{

xT − x = R cos(σ)

yT − y = R sin(σ)

After some substitution, the final two equations which represent the rela-

tive movement in the horizontal plane of the UAV-target couple can be easily

derived.

{

Ṙ = VT cos(σ − χT )− V cos(σ − χ)

Rσ̇ = −VT sin(σ − χT ) + V sin(σ − χ)
(1.8)

Controllability analysis of the Kinematic Model of Tracking

Problem

It is important to give an expression for the system 1.6 where the drift

and the input vector field are highlighted. In this way the analysis of the
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relative motion will be easier. A rotation χ around the Z-axes is done in

order to express the relative motion along the UAV body axes. The matrix

rotation is the subsequent:

RB
I =







cos(χ) sin(χ) 0

− sin(χ) cos(χ) 0

0 0 1






(1.9)

where the sub-index I means the inertial frame while the sub-index B means

the body reference frame.

Defining xRI = [xT − x, yT − y, χT − χ]TI it can be derived: xRB =

RB
I xRI . The error coordinates can be defined as:











xR = (xT − x) cos(χ) + (yT − y) sin(χ)

yR = −(xT − x) sin(χ) + (yT − y) cos(χ)

χR = χT − χ

(1.10)

Therefore, the tracking error model is obtained from 1.10 and 1.7 1.6 after

some algebra manipulations:











ẋR = χ̇yR + VT cos(χR)− V

ẏR = −χ̇xR + VT sin(χR)

χ̇R = χ̇T − χ̇

(1.11)

For convenience, new coordinates and inputs are defined:










x0 = χR

x1 = yR

x2 = −xR
and

{

u0 = χ̇T − χ̇

Equation 1.11 can be rewritten as:











ẋ0 = u0

ẋ1 = x2(χ̇T − u0) + VT sin(x0)

ẋ2 = V − x1(χ̇T − u0)− VT cos(x0)

(1.12)
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Through this new coordinates x̄ = (x0, x1, x2) the tracking problem is

transformed into a stability problem. The system 1.12 is reffered to the error

model of the tracking problem. Note that every coordinate trasformation

used is invertible and (x0, x1, x2) = (0, 0, 0) is equivalent to x = xT , y = yT

and χ = χT . Hence, the tracking error model can now be expressed in an

affine form ˙̄x = f(x̄) + g(x̄)u0 where the drift and the input vector field

results:

{

f(x̄) = [0, VT sin(x0) + x2χ̇T , V − VT cos x0 − x1χ̇T ]
T

g(x̄) = [1,−x2, x1]T
(1.13)

As discussed in the precedent case, the controllability analysis of the

tracking problem passes through the definition of the Lie bracket of the just

presented system model. Equation 1.12 can be expressed in a form equal

to equation 1.4 where the affine control system is put in a form similar to a

driftless model system. In this way, considering f(x̄) = g0 and g(x̄) = g1 it

results:

[g0, g1] (x̄) =







0

−VT (sin(x0) + cos(x0))− uT (x1 + x2))

−VT sin(x0)− uTx2







where the variable uT = χ̇T .

The controllability distribution results:

∆̄ =







0 1 0

VT sin(x0) + uTx2 −x2 −VT (sin(x0) + cos(x0))− uT (x1 + x2)

V − VT cos(x0)− uTx1 x1 −VT sin(x0)− uTx2







which has dimension equal to 3. Of course in this case, the model remains

controllable.

It is important to underline that the solution of the Kinematic equation

of the motion can be found only using the normal acceleration of the UAV.

In fact, the target dynamics can be considered as an exosystem, completely

autonomous from the dynamics of the airplane. Besides, in order to create
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a suitable solution for the dynamics of the UAV, a saturation constraint

on the normal acceleration must be considered. Only under this bound the

trajectories created by the guidance law proposed can be tracked by the

airplane.

The tracking problem covers two different cases:

1. VT and uT are equal to zero. In this case the tracking problem is

reduced to a stability problem.

2. If the limt→∞ V 2
T + u2T 6= 0 the tracking problem is reduced to the so

called tracking control problem.

It has to be considered that the problem of tracking a ground target

can combine together the two cases just presented. However, since f is

the drift vector field, which is not stereable using control input it is not

completely clear in which direction it is possible to steer the control system

in the distribution ∆̄. It is necessary to define the set of states accessible

from a given state x0.

Accessibility analysis

Definition 1.5. Reachable Set from x0.

Let RU(x0, T ) ⊂ R
n be subset of all states accessible from state x0 in

time T with the trajectories being confined to a neighborhood U of x0. This

is called the reachable set from x0 (see Figure 1.2).

In order to categorize the reachable set, the accessibility Lie Algebra has

to be defined.

Definition 1.6. Accessibility Lie Algebra.

The accessibility Lie Algebra A of a control system in the form 1.2 is

defined to be the span over the ring of smooth function of elements in the

form:



1.3 Kinematic Equations 15

U

RU(x0, T)

x0

Figure 1.2: Reachable Set (shadowed figure)

A=span{g1, . . . , gm, [g0, g1] , [g0, g2] , . . . [g0, [g1, g2]] , [g0, [g1, g3]] , . . .}.

where, respect to Definition 1.3, {g1, . . . , gm} ∈ g (g is the input vector field).

The distribution A is involutive and gi invariant. The distribution A and

∆̄ are related by: ∆̄ = A+span(f).

Considering the input vector g = [0, 0, 1]T , which is the case of the uni-

cycle studied in this dissertation, it is evident that the reachable subset has

dimension equal to 3. This can be obviously supported because the system

model is completely controllable and, as in the linear case, the states are all

accessible.

The non linear control system 1.2 is locally accessible from x0 if ∀U , a
neighborhood of x0, ∀T ≥ 0 ∃ Ω ⊂ RU(x0, T ) with Ω some non-empty open

set (see Figure 1.3).

RU(x0,T)

X0

Figure 1.3: Locally Accessible Set

The locally accessible property can be checked through Chow Theorem.
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Theorem 1.3.2. Chow’s Theorem.

For drift control system of the form of 1.2 there exist admissible controls

to steer the system between two given arbitrary points x0 and x1 ∈ U if for

some p

Gp(x) = TRn ∼= R
n

for all x ∈ U

It can be also defined that a non linear control system is locally accessible

from x0 if and only if dim ∆̄(x0) = n (This last sentence is also known as

accessibility rank condition and n is equal to the number of the states).

Constraint Analysis

The configuration of a mechanical system can be uniquely described by

a n-dimensional vector of generalized coordinates x = (x1, x2..., xn)
T .. The

configuration space M is an n-dimensional smooth manifold, locally repre-

sented by R
n. The generalized velocity at a generic point of a trajectory

x(t) ⊂ M can be considered as the tangent vector ẋ = (ẋ1, ẋ2, ..., ẋn)
T .

There are two different possible constraints:

1. Geometric Constraints.

A geometric constraints may exist or be imposed on the mechanical

system hi(x) = 0 (i=1,...,k) restricting the possible motion to a (n-k)-

dimensional submanifold.

2. Kinematic Constraints

A mechanical system may also be subjected to a set of kinematic con-

straints, involving generalized coordinates and their derivatives aTi (x, ẋ) =

0 (i=1,...,k).

In most cases the constraints can be considered Pfaffian that is when aTi (x)ẋ =

0 (i=1,...,k) holds. A set of Pfaffian constraints is called holonomic if it is in-

tegrable; otherwise, it is called nonholonomic. Holonomic and nonholonomic

constraints affect mobility in a completely different way.
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For illustration, consider a single Pfaffian constraint aT (x)ẋ = 0. If the

constraint is holonomic, then it can be integraded as h(x) = c (c 6= 0) with
∂h
∂x

= aT (x) and c an integration constant. The motion of the system is

confined to lie on a particular level surface of h depending on the initial con-

dition through c = h(x0). If the constraints is nonholonomic, then it cannot

be integrated: although at each configuration the instantaneous motion of

the system is restricted to an (n-1) dimensional subspace, it is still possible

to reach any configuration in M.

By analysing system 1.2 it can be easily derived that it is subjected to a

Pfaffian constraint described by:

ẋ sin(χ)− ẏ cos(χ) = 0 (1.14)

This constraint describes the pure rolling motion of the UAV and its ve-

locity direction. In Figure 1.4 the nonholonomic constraint is depicted using

a rolling disc because the system model used for describing the trajectories

of the UAV is equal to a classical unycicle model.

y

x

�

Figure 1.4: Pure NonHolomonic Constraint

The holonomy and nonholonomy of constraints may be conveniently stud-

ied through a dual approach: look at the directions in which motion is al-

lowed rather than directions in which motion is prohibited. In fact there is a

strict relationship between the capability of accessing every configuration and
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nonholonomy of the velocity constraints. Hence, controllability of its whole

configuration space is equivalent to nonholonomy of the original kinematic

constraints.

It can be concluded that a set of k Pfaffian constraint A(x)ẋ = 0 is

nonholomonic if and only if the associated kinematic model

ẋ =
∑m

i=0 gi(x)ui m=n-k

is controllable, that is dim∆̄ = n, being the involutive closure of the distri-

bution associated with g1, ..., gm.



Chapter 2

PN and PNG Guidance Laws

2.1 Target Tracking Sensor

A tracking sensor on an aircraft is a device to detect the relative position

vector of a target with respect to the pursuer. The functions of the tracking

sensor is to receive external signals that are sent to the follower vehicle for

the purpose of directing its heading χ. Because of its role in providing an

essential communication link to the external environment, the sensor becomes

the key element of the entire vehicle system.

The choice of this device is not included in this research. During the

presentation of all the guidance laws the assumption of a sensor capable to

detect the position and heading angle of a target is made. Different kind of

sensors can be chosen relative to the variables.

Table 2.1 includes various type of targeting sensor. A particularly com-

mon type is one which measures the azimuth angle and depression angle of

the pursuer-to-target LOS. Usually some type of image of the target area

is displayed to the weapon system operator. The operator then selects the

target by positioning a marker or a pair of crossed reticles over the target

and depresses a target designating a button. The computer responds by

recording the azimuth and depression angles of the target marker.

A range sensor provides two means of measuring slant range from the

pursuer to the target. It should be noted that the range R, the quality of in-

19
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Generic Type Measurement Examples

LOS angles Azimuth σ Gunsight, HUD, EO Display,
Mapping Radar, IR, Sonar,
Optical, Video Tracker

Distance R Radar, Laser, Sonar,
Optical Instruments, FCS,
Passive Ranging Processor,
On board Active sensor

LOS rate σ̇ EO Tracker

Range Rate Ṙ Doppler Radar

External Reference Ground Radar Director, LORAN,
TACAN, GPS, DME

Table 2.1: Targeting sensors

formation concerning which would be very important if it were being directly

utilized in the solution of Guidance Navigation Control (GNC) problems, is

not an easily measured quantity. Thus, it is advantageous to derive guidance

algorithms that do not require range information.

The great majority of angular rate sensing system that have been built

so far are of the TV contrast tracker type. In addition to requiring three axis

stabilization, these sensors have a response time that is scan rate limited.

The TV contrast tracker is also characterized by the requirement of a single,

high contrast point to track.

Determination of closing velocity Vc is done with the aid of a Doppler

tracking device. Doppler frequencies, which are one of the principal outputs

of the radar sensor, are proportional to Vc.

Each of these targeting sensors is a navigation aid, which locates the

pursuer in an electronically generated grid or coordinate system. The rest of

targeting task centers around locating the target in this same electronic grid

or set of coordinates. One way in which to implement this type of targeting is

to use radar ground control to direct pursuer’s flight, which requires that the

pursuer be within LOS of the ground radar. Other LOS positiong system
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include TACAN and DME. To a large extent, acccurancy is determined by

relative geometry between the pursuer and the several ground stations, also

known as GDOP (geometric dilution of position). The LORAN system is

capable of obtaining coverage beyond the LOS and at lowest altitude because

it uses ground wave transmission of low frequency radio waves. When GPS

is operational, it will be able to position low flying pursuers in all three

dimensions since its reference stations are satellites.

2.2 LOS Rate Guidance

LOS rate guidance is defined by:

χ̇ = λσ̇ (2.1)

χ = λσ + C (2.2)

where χ is the commanded flight path, λ is the navigation gain and C

is the initial flight path angle χ0. Pursuit Navigation law and Proportional

Navigation Guidance law, which are described in the next sections, can be

implemented in a guided UAV system using LOS angle and angle rate infor-

mation respectively. As it is explained the Pursuit Navigation has a limited

capability to engage manuvering target. Proportional Navigation Guidance

can be implemented easily and can reduce the maneuver requirements and

produce good miss distance performance. It has a long history of accetable

performance and has been used succesfully in several systems.

Pursuit Navigation (PN)

The first guidance law that was implemented is known as pursuit navi-

gation, resulting in a pursuit course. The pursuer aims directly at the target

throughout the encounter, like a dog chasing a rabbit. In pursuit navigation

the angle between the velocity vector and the LOS to the target is driven to

zero [37]. The UAV is commanded to turn at a rate equal to the difference

between the LOS and the heading angle. The UAV is constantly turning
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during the flight unless it is head on or tail on.

Figure 2.1a shows the diagram block of the Pursuit Navigation. The

direction of the UAV velocity vector must be sensed to steer the UAV with

the guidance law descripted by:

χ = σ (2.3)

which implies that λ = 1 and C = 0 in equation 2.2. Figure 2.1b shows

the same engagement problem using the kinematic equations between UAV

and the Target. It is evident that inside equations 1.8 there are the dynamics

of the UAV and the Target. In section 1.3 it is pointed out that the input of

the system is the normal acceleration of the UAV an.

From equation 2.3 and the definition of the Pursuit Navigation it holds:

χ̇ = σ − χ or an = V (σ − χ) (2.4)

For the following developments the assumptions of non-maneuvering tar-

get is made:

• χT=constant,VT=constant,V=constant;

This hypotesis are depicted in Figure 2.2.

Inserting equation 2.3 and considering the two assuptions just made, the

equations 1.8 becomes:

Ṙ = VT cos(σ − χT )− V (2.5)

Rσ̇ = −VT sin(σ − χT ) (2.6)

From equation 2.6 it can be derived that:

σ̇ = −VT sin(σ − χT )

R
(2.7)

Note that σ̇ = 0 if σ = χT or σ = χT + π. Therefore an will always

be varying unless χ = χT ,χT + π which implies a head-on or a tail-on path.
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Target 
Equations 
of Motions

(1.7)

UAV 
Equations 
of Motions

(1.6)

Z = σ-Χ
0

+/-

xT, yT, ΧT

x, y, ΧaN

(a) Kinematic Equations of Motions

Relative Motion 
Equations (1.8) & 3rd

Equation of (1.6) 
Z = σ-Χ+/-

0 an R, σ, Χ

VT ΧT

(b) Kinematic Equations of Relative Motion

Figure 2.1: Block Diagrams of Pursuit Navigation

Consequently, since equation 2.4, the UAV must be continuously turning if

χ 6= χT , χT + π.

The pursuit equations are solved as:

Ṙ

Rσ̇
= −cos(σ − χT )

sin(σ − χT )
+

V

VT sin(σ − χT )

hence:
dR

R
= (− cot(σ − χT ) +

V

VT
csc(σ − χT ))dσ (2.8)

Integrating equation 2.8 results:

ln(R) = − ln(sin(σ − χT )) + µ ln (tan(
σ − χT

2
)) + C (2.9)
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Pursuit Guidance

Target

UAV

Figure 2.2: Pursuit Navigation

where µ = V
VT

.

It has to be considered that if χT ≤ σ ≤ χT + pi the target is essentially

assumed to be in front of the UAV while if −π − χT ≤ σ ≤ χT the target is

behind the pursuer.

Operating on equation 2.9 it can be derived:

R sin(σ − χT )

(tan(σ−χT
2

))µ
= C (2.10)

Hence, considering equation 2.6 and using equation 2.10 it results:

σ̇ = −VTC(tan(
σ−χT

2
))µ

R2
(2.11)

If the target is assumed to be in front of the target this relation leads to

the property of Pursuit Navigation which terminates in a tail chase which

means σ(tf ) = χ(tf ) for all cases except the head-on case.

If the target is assumed to be behind the pursuer it is assumed that:

cot(σ) = − cot |σ| and csc(σ) = − csc |σ|. With these hypothesis it can be

derived in the same way that σ(tf ) = χ(tf ) = 0.
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For the non head-on pursuit, the UAV must go faster than the Target to

be able to catch it in a tail case, thus µ ≥ 1.

Figure 2.2 shows Target interception based on a Pursuit Navigation. In

the Pursuit Navigation law the UAV is commanded to turn at a rate equal

to the LOS rate.

Assuming a nonhead-on mission and analyzing equation 2.11, an has the

following range of values in the neighborhood of the terminal time:

an =

{

∞ if µ > 2,

0 if µ < 2.

Limits of Pursuit Navigation

The guidance law described by equation 2.3 creates errors even in absence

of wind due to the curvilinear nature of the UAV’s heading trajectory, and

the fact that the vector speed of the UAV V and the velocity vector respect

to the ground Vg are not always coincident due to the wind effect.

Figure 2.4 depicts the geometry of guidance with the wind effect. σLEAD

is the lead angle between the projections of the line of sight and the required

aircraft ground velocity vector Vg into the horizontal plane. The best results

are obtained using Velocity Pursuit Navigation, or pure guidance, as it is

called. The angle σLEAD has been defined in [22] as:

σLEAD = γ − α sin(φ) (2.12)

where γ = (σ − χ). α denotes the angle of attack and φ denotes the roll

angle.

The pure guidance law can be described by:

χg = σLEAD (2.13)

The essence of this guidance process is to align the aircraft’s ground

velocity vector with the LOS. Equation 2.13 shows that the velocity Pursuit

Navigation needs the measurements of the angle σLEAD, α and φ. The last

two are measured rather easily.Besides, it is important to underline that
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Figure 2.3: Wind Geometry

also the use of a GPS receiver provides directly the direction of the ground

velocity vector χg. Hence equation 2.12 can be written as: σLEAD = σ − χg.

Observing Figure 2.4 and using equations 2.12 it can be derived that

χg = χ+α sin(φ). Hence the guidance law 2.13 means that χ = (σ−σLEAD)−
α sin(φ). The scheme represented in 2.5 represents the block diagram that

can be used in order to avoid the effect of the wind in the Pursuit Navigation

law.

Generally, pursuit navigation is not used to guide a UAV for rendezvous

problem or interception if the velocity of the UAV becomes teo times greater

than the target velocity because the guidance forces tends to be too high

when the relative distance between the UAV and the target becomes zero.

Those problem will not occur for a chasing purpose if a reference target

with the same constant velocity of the UAV can be created. In both Pursuit

Navigation and velocity pursuit, the UAV is constantly turning unless it is tail
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Figure 2.4: Relative Geometry for Guidance with Wind Effect

on or head on respect to the target. While it permits a simple implementation

and it is less sensitive to noise, pursuit navigation and velocity pursuit are

considered impractical as a homing guidance law against moving target owing

to the high maneuver requirement when the UAV is close to the target.

Besides it is not possible to use this kind of guidance laws when the target

is supposed to be fixed because once it is reached the UAV continuates to

follow the LOS.

Proportional Navigation Guidance (PNG)

Proportional Navigation Guidance is a guidance law where the pursuer

heading rate is made proportional to the rate of the LOS. The purpose of such

a course is to counter the tendency for the LOS to rotate and to approximate

a constant-bearing course.

Consider the UAV pointed towards the target: if the latter is considered
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Figure 2.5: Guidance Pursuit with wind effect

non-maneuvering and the UAV and Target velocities remain unchanged, the

UAV will continue on a collision course, having achieved a constant-bearing

navigation. If it happens that the UAV is not launched on a collision course,

there will be some curvature associated with the resulting trajectory that

depends on a navigation constant λ.

The analysis of the navigation constant is very important to understand

the behavior of the UAV during the flight. For small λ values the UAV

corrections are small early in the flight while they begin to be larger as

the UAV get closer to the Target. The situation is reversed for high values

of λ, where the collision course errors are corrected early on in flight and

maneuvers consequently are kept at reasonable levels in the terminal phase.

A reasonable value of λ based on experience is usually set between 2 and 4.

The proportinal navigation guidance turns the relative velocity vector Vr

between the UAV and the target on the LOS through the guidance law:

χ̇ = λσ̇ or an = V λσ̇ (2.14)

Defining Vr = [ẏT − ẏ, ẋT − ẋ, 0]T and R = [yT − y, xT − x, 0]T as,

respectevely, the relative velocity vector and the distance vector, the rate of

the LOS angle can be also expressed by:

σ̇ =
Vr ×R

R2
(2.15)

Figures 2.6a and 2.6b represent the block diagrams of the proportinal
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Figure 2.6: Block Diagrams of PNG Guidance

guidance navigation. They are slightly different respect to figures 2.1a and

2.1b especially for the presence of the navigation factor λ. In order to anal-

yse the property of this guidance law, the same assumptions chosen for the

pursuit navigation are made (constant velocities, target nonmaneuvering,

χT = 0). Considering these hypothesis equations 1.8 becomes:

Ṙ = VT cos(σ − χT )− V cos(σ − χ) (2.16)

Rσ̇ = −VT sin(σ − χT ) + V sin(σ − χ) (2.17)
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Differentiation of equation 2.17 and the introduction of 2.14 leads to:

Rσ̈ + σ̇
[

2Ṙ− V cos(σ − χ)λ
]

= 0 (2.18)

In order to simplify this equation the followiong guidance factor is con-

sidered: λ = KṘ
V cos(σ−χ)

. In this way it highlighted that equation 2.18 can be

solved analytically and the results is:

σ̇ = σ̇0

(

R

R0

)K−2

(2.19)

For the purser target closing, Ṙ(t) < 0, equation 2.19 shows that σ̇(t)

decreases linearly to zero if K = 3 and approaches the value of zero asymp-

totically to zero forK > 3. The collision course condition σ̇(t) = 0 is satisfied

exactly at the final point R = 0 with an = 0.

Comparasion between PN and PNG

Different simulations for the Pursuit Navigation and the Proportional

Navigation Guidance are shown in order to better understand the behaviour

of these two guidance laws. It is important to underline that these two

laws have been created to intercept or following a moving target. However

figure 2.7 shows the trajectories travelled by the UAV when a fixed target is

considered.

In these two simulations the intial position of the UAV is in (500,500) and

with a heading angle initially pointed west. No wind effects are considered.

The target is placed at the origin of the system (0,0). The navigation factor

λ has been chosen equal to 4. The UAV speed is equal to 35[m/s]. Figure 2.8

plots the relative distance between the UAV and the target and the normal

acceleration of the airplane.

For the Pursuit Navigation the angle σ−χ is calculated through the wrap

angle function. This function is defined as: (σ − χ)wrap = mod((σ − χ) +

π, 2π)− π where mod is the modulus after division function.

Case 1: Fixed Target

As it can be seen in figure 2.7 in this first simulation only a interception
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Figure 2.7: Trajectories of the UAV

case is shown. This is due to the fact that when the UAV reaches the target

the PNG guidance law gives an infinite acceleration command because the

distance R is equal to zero. After this point is not really significative. On the

contrary, the PN is not affected by this problem and it ends in a loitering circle

(even if it is not shown in the figure) around the target position. However,

the normal acceleration on this circle is too high for an UAV. Figure 2.8

shows that the PN is faster than the PNG to reach the target but is gives an

higher acceleration command.

Case 2: Moving Target (VT ≤ V )

In this second case the target it is not considered fixed but with a constant

velocity slower than the target (10[m/s]) and with a fixed heading angle

(χT = 0). The initial conditions of the UAV are the same of Case 1.

Figure 2.9 shows the different trajectories created by the PNG and the

PN. The paths are granted respect to the explanation of the guidance law

given in section 2.2. In figure 2.10 the reader can see that when the UAV is

approaching the target the required normal acceleration increases.



32 2. PN and PNG Guidance Laws

Figure 2.8: Normal Acceleration and Distance with fixed target using PNG
and PN Guidance Laws

Figure 2.9: Trajectories of the UAV (Case 2)
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Pursuit Navigation permits the UAV to stay around the target. However,

even in this case, it is impossible to control the value of the distance and

consequently the normal acceleration required seems to be too high for the

UAV to perform.

Figure 2.10: Normal Acceleration and Distance with fixed target using PNG
and PN Guidance Laws (Case 2)

In this case one of the limit of the PNG is highlighted. It can not be

considered suitable for surveillance purpouse. On the contrary, the Pursuit

Navigation has a better behaviour under this point of view. However, even

for this guidance law, an improvement has to be done in order to create a

trajectory feasible for the UAV.

Case 3: Moving Target (VT = V )

This last case shows the fundamental limit of the Proportional Navigation

Guidance. A target with a north constant heading angle and with the same

speed of the UAV is considered. The initial position of the UAV are the same

as in the previous cases.

In figure 2.11 the UAV commanded with the PNG guidance law goes

straight also when it intercepts the target. This is due to the nature of this

guidance which consider only the rate of the LOS angle. Hence, considering

a target with the same speed of the UAV, σ̇ will not change and consequently
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the UAV will not turn. The distance between the target and the UAV will

increase linearly. Figure 2.12 shows that the normal acceleration an is zero

during all the simulation.

The pursuit navigation, which is represented by the red line, has a smarter

behaviour: it flies behind the target and the distance will be constant. In

this case the normal acceleration seems to be acceptable for the UAV.

Figure 2.11: Trajectories of the UAV (Case 3)

Even considering Case 2, the PNG shows another limit which gives this

guidance law unsuitable for monitoring or following a target.

This last case is very important when a ’ghost’ target will be created in

the next section. A new guidance law, which will have some properties of

the Proportional Navigation Guidance and the Pursuit Navigation, will be

created in the next section in order to avoid this limit but always considering

the rate of the LOS angle σ̇.

Summary of the PN and PNG criticalities

PNG

1. Unbounded lateral acceleration.
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Figure 2.12: Normal Acceleration and Distance with fixed target using PNG
and PN Guidance Laws (Case 3)

2. σ̇ → ∞ when R → ∞.

3. Steady state tracking error not error in certain situations.

4. Unbounded tracking error after interception.

PN

1. After interception there is a loitering around target behaviour.

2. Moving target causes tracking to be slow.

2.3 Tracking Targets by Lyapunov Guidance

The guidance law considered in this section forces the pursuer UAV to fol-

low a target by keeping a certain distance from it even in presence of target

unpredicted motion and wind. Moreover, the pursuer has to maintain an

airspeed not lower than the one it needs to have sufficient lift and to avoid

stall. The guidance law is a nonlinear law designed by means of a Lyapunov

based method that provides the stabilizing control input for correct tracking.
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The feedback nature of the guidance law lets it to be effective also in pres-

ence of wind. Global stability of tracking law is demonstrated by Lyapunov

analysis in the close loop system in the case the velocity of the pursuer is

not higher than that of the target. In this case the guidance law produces a

stable behaviour always pointing to the target also in case of wind and mov-

ing target while maintaining the UAV desired speed. Simulations in different

conditions show good tracking performances.

2.3.1 Description of the mathematical model

In this section the airspeed, i.e. the speed of the UAV with respect to air

flow, is assumed to be constant. Constant speed assumption, also made in

others papers ([26], [30] and [27]), is consistent with typical tracking require-

ments because fixed-wing aircraft velocity changes are generally considered

undesirable, in order to avoid altitude variations due to changes in lift. There-

fore, according to the scopes and objectives of most guidance problems, it

is possible to describe the translation motion of the air vehicle as a mass-

point moving in a two dimensional plane. An orthogonal Cartesian frame

description of UAV dynamical motion is as follows (see also Figure 2.13):

ẋ = V cos(χ) +W cosχw

ẏ = V sin(χ) +W sinχw

χ̇ = an
V

(2.20)

where x = [x, y]T is the position vector of the UAV. The angle χ is

positive in an anti-clockwise sense and it represents the angle between the

x axis and the direction of the UAV airspeed vector V; V is supposed to

lie along the aircraft longitudinal axis. V is the modulus of V; W is the

modulus of the wind velocity vector W; χw is defined as the wind course

angle. an is the single input signal of the model and represents the value of

lateral acceleration. No longitudinal acceleration respect to the air flow is

considered because V is assumed constant.

The velocity vector of the UAV respect to the ground is represented by
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Vg = V +W.

Figure 2.13 shows the angles and the velocity vectors defined above; β,

the angle between the ground velocity Vg and the airspeed vector V, is:

β = arctan
(V ×Vg) · k̂

V ·Vg

(2.21)

where k̂ represents the z-axis unit vector orthogonal to the plane x-y. ×
and · are the usual symbols denoting cross and inner product, respectively.

x

y

V

W

Vg

Χw

Χ

β

Figure 2.13: Vectors and angles involved

Figure 2.14 shows the direction of the lateral acceleration; its effect is to

cause a change in the rate of turn while leaving the airspeed unchanged.

In this section as, it was explained at the beginning of this thesis, it is

assumed that the position of the target is known by the pursuer guidance

system. In [39] and [3] a description of typical sensors useful for this scope

are given.

Moreover, another important assumption is that intensity and direction of

the wind are known. This is a easy to assume hypothesis because a position-

velocity sensor (i.e. a satellite receiver) and a Pitot tube are standard equip-

ments usually installed on-board an UAV: they allow for an easy on-board
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Figure 2.14: Control input, ground and air velocity

airspeed and wind velocity vector computation.

These assumptions allow for the on-board computation also of the rate

of change of β that, under the hypothesis of constant wind velocity, is easy

to demonstrate that is given by:

β̇ =
V̇ ×W · k̂ (V ·W + V 2)−V ×W · k̂

(

V̇ ·W
)

(1 + tan2 β) (V 2 +V ·W)2
(2.22)

The derivative of airspeed velocity vector respect with time is

V̇ = V χ̇n̂ = ann̂ (2.23)

where n̂ is the unity vector orthogonal to velocity V.

In next section the computation of β̇ will be demonstrated to result useful

for the proposed guidance law: in fact it lets to compensate for the negative

effects of the wind during reference tracking.

2.3.2 Proposed Guidance Law

The objective of the proposed guidance law is to allow the pursuer UAV for

tracking a target. This aim is achieved by providing the pursuer guidance

system with a reference command obtained as the line of sight (LOS) between
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the pursuer UAV and a virtual target. The virtual target, that actually

behaves as the main target for the UAV, is defined in such a way as to

always stay at a fixed distance from the pursuer. The course angle of the

virtual target (i. e. the direction of its ground velocity) has to be selected in

order to point to the real target, except when virtual target is passing before

real one. In fact, in this case there would be an abrupt change in virtual-

real target LOS that could result in unacceptable rate of turn of the UAV.

This situation could happen when UAV velocity is higher than real target

velocity. Planning of virtual target motion in these cases is not discussed in

this paper.

The aim of this section is to describe how the proposed guidance law can

be designed by means of a procedure based on a general Lyapunov function.

In figure 2.15 the geometry of the problem is sketched. As stated before,

what is indicated as the target now is actually the center of oscillation: the

guidance law is based on tracking of it. Consider the following scalar function:

VL = VL (x) =
1

2
[h (x)− g (h (x))]2 (2.24)

where

x ∈ Rn, h (x) := Rn → R and g (h) := R → R are scalar smooth

functions and

g (h (x)) = 0 when h(x) = 0.

It can be seen that VL is a positive semidefinite function. Moreover, after

some algebra, the rate of change of VL results to be:

V̇L = [h (x)− g (h (x))]

(

1− ∂g

∂h

)

∇h · ẋ (2.25)

If the following relationship holds

∇h · ẋ = −K1 [h (x)− g (h (x))] (2.26)

where K1 is a scalar positive constant, then V̇L ≤ 0 (because the term
(

1− ∂g

∂h

)

can be assumed to be always positive) and the system state trajec-
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tory converges to a stable domain. Equation (2.26) can be adapted to the

guidance problem considered in this work. Hence, it becomes

V
∂h

∂x
cosχ+ V

∂h

∂y
sinχ+

1

V

∂h

∂χ
an = K1 (g (h (x))− h (x)) (2.27)

Now, consider the line of sight UAV-virtual target angle σ (see figure

2.15 for a visualization of the involved geometry). Having defined function

h(x) = χ− σ, it is easy to demonstrate that:

y

x

V Vg

Χ

W

σ

Virtual
Target

UAV

Figure 2.15: Geometry of the tracking problem

tan σ =

(

yR
xR

)

(2.28)

σ̇ =
Ṙ×R

R2
(2.29)

whereR = [xR, yR]
T is the vector representing the relative pursuer-virtual

target position coordinates, R = ‖R‖ is constant due to the definition of

Virtual target. Hence, it is possible to derive a stabilizing guidance law in

terms of normal acceleration that has to be provided as input to the pursuer

UAV. In fact, by developing substitutions in (2.27), it holds
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an
V

= σ̇ +K1 (σ − χ+ g (σ − χ)) (2.30)

The choice of function g () can be accomplished with a certain degree

of arbitrarily under the assumption g (0) = 0. In particular, the following

choice has been made in this work:

g (h) = K2 tanh (K3h) (2.31)

where K2 and K3 are constants to be tuned during calibration of the

guidance law in order to improve the readiness of the close loop system

performance.

2.3.3 Simulation and Analysis Results

The aim of this subsection is to evaluate the different performances and

behaviors of the proposed guidance law respect to the PNG. In particular

three different cases are investigated in the following numerical simulations:

1. Moving target at constant velocity equal to the UAV and with a heading

pointed constantly west. Initial position of the target at (0, 0). Initial

position of the UAV at (500, 500) with heading pointed West. No wind

effect.

2. Moving target at constant velocity 10 (m/s) and fixed West direction.

Initial position of the target at (0, 0). Initial position of the UAV at

(500, 500) with heading pointed West. Wind intensity of 5 (m/s) with

North-East Direction.

3. Moving target at constant velocity 35 (m/s) with a circle trajectory.

Initial position of the target at (0, 0) and initial heading pointed in a

west direction. Initial position of the UAV at (0, 500) with heading

pointed West. No wind effect.

The airspeed of the UAV is fixed at 35 (m/s). The gains are always

chosen as cited in section 2.3.2: K1 = 0.1, K2 =
π
4
. Just to remind the PNG

guidance law is described by χ̇ = λσ̇ where λ is navigation gain. The variable
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λ is always set to 4. In figure 2.16 the dashed line represents the trajectory

of the UAV with the proposed guidance law while the continuous line is the

trajectory with the Proportional Navigation Guidance. The dot line is the

position of the ghost target created at a fixed distance on the line of sight.

Case 1

Figure 2.16: Comparison between guidance law behaviors (Case 1)

In this case, where the target and the UAV have the same speed, the

new guidance law avoid the lateral error and try to chase the target. The

proportional navigation guidance does not give an acceleration command

because the rate of the LOS angle remains constant (σ̇ = 0). Hence, this

simulation shows that the PNG is not designed for following a moving target.

Case 2

Figure 2.17 highlights the different aim between the two guidance laws.

The guidance law designed in this paper tries to chase a moving target while

the classical PNG is designed to intercept it. The new guidance law drives the

UAV towards the target with a smoother trajectory. As in the PNG guidance

law there is a singularity point when the distance between the target and the

UAV goes to zero. It is not the object of this article to investigate this
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Figure 2.17: Comparison between guidance law behaviors (Case 2)

problem but a suitable ghost trajectory can be created in order to drive the

UAV behind the target again.

In Figure 2.18 the same parameters chosen for 2.17 is used but with a

speed of the target equal to the UAV (35 m/s). In this case the PNG diverges

respect to the trajectory of the target instead of what the new guidance does.

This is one of the great advantage to use this guidance law for following a

moving target.

Figure 2.18: Comparison between guidance law behaviors (Case 2)

Case 3

Figure 2.19 shows how the UAV follows a circle trajectory. The dot

line which represents the ghost target is outside the circle created by the
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target because a fixed distance of 150 (m) is chosen for all the simulations.

However the new guidance law drives the UAV close to the target without

high acceleration command. Figure 2.19 shows the behavior of the UAV

with the PNG guidance. Even if with this guidance law the UAV is driven

to the circle, when the distance R is close to zero the corrections of the UAV

becomes really pronounced. This situation is not correctable with a different

choice of the constant navigation λ. In fact, if a higher gain is chosen, the

corrections of the UAV becomes impossible early in the flight.

Figure 2.19: UAV circling trajectory with proposed guidance law (Case 3)

Application of New Guidance Law for inspection of different waypoints

This subsection is dedicated to show the behavior of the guidance law

when a tour planning for an UAV is prefixed. A similar problem can be

seen in [6] and[24] where an optimal solution is given to find a trajectory for

inspection of different waypoints in wind conditions. In all these articles a

predefined trajectory is calculated in order that the resulting path can be

followed easily by an inner autopilot. In this approach, the target is com-

manded to create a trajectory around the waypoints. Figure 2.21 and figure

2.22 shows how the proposed guidance law tracks this type of trajectory. The

four different waypoint are located at:

• WayPoint 1: (500, 0)
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Figure 2.20: UAV circling trajectory with PNG (Case 3)

• WayPoint 2: (−200, 0)

• WayPoint 3: (−200, 500)

• WayPoint 4: (500, 500)

The velocity of the UAV is always setted to 35 (m/s) while the wind has a

constant magnitude of 2 (m/s) in north east direction.

Figure 2.21: Inspection of WayPoints (No Wind)
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Figure 2.22: Inspection of WayPoints (Wind)

It is important to underline that, using the proposed guidance law, the

trajectory will not be an optimal solution. However if an optimal solution

is given by an external algorithm or is calculated off-line, it is possible to

create a target which tracks that kind of trajectory with the same speed of

the UAV. In this case the proposed guidance law can be used to track the

moving target.

2.3.4 Conclusion

In this section a new nonlinear guidance law for target tracking is presented.

The guidance law forces the UAV to track a virtual target at constant dis-

tance from the pursuer. The guidance law is obtained by following a quite

simple design method based on the definition of a suitable Lyapunov func-

tion. The same method can be exploited in order to generate other guidance

laws by modifying the selected Lyapunov function.

From simulation tests it results that, by comparing the performances of

the proposed guidance law with the classic proportional navigation (PNG)

one, the nonlinear law behaves better than the PNG in case of wind and in

case of moving target. Hence it can be concluded that the proposed law has

good features in terms of robustness to disturbances, tracking performances,
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simplicity of derivation and adaptability to different scenarios.



This page is intentionally left blank.



Chapter 3

Nonlinear Guidance Law

3.1 Introduction

This section presents a new non-linear two dimensional (2D) guidance law

for an aerial pursuer, such as an unmanned air vehicle (UAV) tracking a

ground moving target. In particular, the problem consists in steering the

pursuer for flying over or at a minimum distance from a target, tracking it

whether the target is moving or it is keeping still. Moreover, the pursuer has

to maintain an airspeed not lower than the one it needs to have sufficient lift

and to avoid stall. Beside this, the rate of turn of the aircraft cannot exceed

an upper bound required by its flight performances. The trajectory of the

target is not a priori known by the pursuer, and the one of the pursuer has

to be adaptively generated by the feedback guidance loop.

The presented guidance law drives the pursuer to fly over the target or

to pass close to it at the minimum desired distance, the first time, and

subsequently to loiter around it by following a curve that asymptotically

becomes a circumference centered on the target. If the minimum pre-set

distance is greater than that of the minimum turn radius required by the

aircraft, the first one is that followed by the aircraft.

The feedback nature of the guidance law lets it to be effective also in

presence of wind and/or unpredicted target maneuvers. Global stability of

the presented non-linear guidance law is demonstrated by Lyapunov analysis

49
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in the close loop system in the case of no wind and no moving target. In this

case the guidance law produces stable behavior converging to a stable point

in the state space or a circle in the configuration space.

Simulations show good tracking capabilities of the guidance law also in

case of background wind and moving target while maintaining the pursuer

desired air speed. Hence, this law is well suitable for problems like continuous

live sensing from around and ahead of friendly, adversarial or unidentified

targets.

3.2 Model System Dynamics

The system dynamics in this particular section is described by the following

kinematic model as exoressed to a fixed reference frame:











ẋR = V cos(χ) +Wx − VTx

ẏR = V sin(χ) +Wy − VTy

χ̇ = an
V

(3.1)

This model is used to describe the geometry of the movement of a mobile

point, regardless of the forces acting on it. In equation 3.1, [xR, yR]
T is the

position of the target relative to the pursuer, [VTN , VTE]
T is the absolute

velocity vector of the target and [WN ,WE]
T are the components of the wind

velocity. The other variables are defined in the nomenclature section.

By referring to figure 1.1, model 3.1 can also be expressed in polar coor-

dinates as the model described in 1.8 and it becomes:











Ṙ = VT cos(σ − χT )− V cos(σ − χ)

Rσ̇ = −VT sin(σ − χT ) + V sin(σ − χ)

χ̇ = an
V

(3.2)

In these equation is preferable to consider the pursuer velocity and its

course angle instead of the magnitude of the UAV airpseed. It is better to

define the component of the velocity vectors as follow:
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1. Speed components of the UAV velocity vector

V =

[

V cos(χ)

V sin(χ)

]

(3.3)

2. Speed components of the Target velocity vector

VT =

[

VT cos(χT )

VT sin(χT )

]

(3.4)

3. Speed components of the Wind velocity vector

W =

[

W cos(χW )

W sin(χW )

]

(3.5)

Observing figure 3.1 it holds VP = V + W and consequently it can be

defined:

Χ

ΧP

ΧW

V
VP

W

Figure 3.1: Difference between V and Vp

VP =

[

V cos(χ) +W cos(χW )

V sin(χ) +W sin(χW )

]

(3.6)

The new velocity vectorVP is called velocity vector of the Pursuer. Using

this new vector equation 3.2 can be also defined:
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









Ṙ = VT cos(σ − χT )− VP cos(σ − χP )

Rσ̇ = −VT sin(σ − χT ) + VP sin(σ − χP )

χ̇ = an
V

(3.7)

Wind and target velocity enter equation 3.1 in the same way, so it is

convenient to consider a single velocity term:

TN = VTN −WN (3.8)

TE = VTE −WE (3.9)

After some algebra equation 3.7 becomes:











Ṙ = TN cos(σ) + TE sin(σ)− V cos(σ − χ)

Rσ̇ = −TN sin(σ) + TE cos(σ)− V sin(σ − χ)

χ̇ = an
V

(3.10)

It now results useful to define the following alpha angle α as:

α = σ − χ (3.11)

Hence, model 3.10 can be written in the following more suitable form:











Ṙ = TN cos(σ) + TE sin(σ)− V cos(σ − χ)

α̇ = −TN sin(σ)+TE cos(σ)−V sin(α)
R

− an
V

σ̇ = −TN sin(σ)+TE cos(σ)−V sin(α)
R

(3.12)

3.3 Guidance Law

In this section a guidance law for the UAV vehicle is described. The objective

of the law consists of allowing it tracking a ground target. In particular,

target tracking is here assumed as the possibility to loiter near a target by

circling around it at a radius not lower than a prescribed one. Eventually,

the vehicle can over-flight the target a first time by setting up a prescribed

radius of zero length. In the following the UAV vehicle is also indicated as
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the pursuer.

Assumption

From now on it is assumed that the target has a ground speed lower than

that of the pursuer: this in order to avoid problems that can occur in case

of target-pursuer relative speed equal to zero.

Moreover, the flight of the vehicle has to be performed under the require-

ments of a maximum rate of turn and with a constant airspeed, in order to

avoid loss of lift.The latter requirement is fulfilled by considering a guidance

law that acts only on the lateral acceleration, i.e. the acceleration perpen-

dicular to the vehicle velocity respect to air, while leaving the longitudinal

acceleration at zero.

Now, by defining RD as the minimum radius of a circle centered over the

target position and such that the pursuer-target distance cannot be lower, it

results (see figure 3.2)

sin(φ) =
RD

R
(3.13)

if R ≥ RD where R is the tangent-pursuer distance;φ is the angle between

the target-pursuer line of sight and the direction of the tangent to the circle

with radius RD taken from the pursuer position.

UAV

Target

V

R

RD

σ

Χ

α

φ

Figure 3.2: Geometry of the Guidance Law

If the pursuer is inside the circle, and expression 3.13 is not defined. In
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this case φ is arbitrarily set to π
2
, the value it has over the circumference.

Summarizing, it holds:

{

φ = arcsin
(

RD
R

)

R ≥ RD

φ = π
2
R ≥ RD

(3.14)

The aim of the guidance law is to force the pursuer to steer toward the

closest tangent-to-circle direction, that can be

σ − φ or σ + φ (3.15)

or, depending on the direction of the pursuer velocity vector. For the de-

scription of the proposed guidance law it is now useful to define the following

two-level sign function:

sign2 : R → R, sign2 (x) =

{

1 x ≥ 0

−1 x < 0
(3.16)

that is a slight modification of the usual well known sign function (often

indicated as ”sgn”), that assumes value of zero when x = 0.

Now by setting

s = sign2 (sin (α)) (3.17)

it is easy to see that s allows to select between the two sides of the

horizontal plane that are cut by the LOS.

It is now quite easy to write down an unique formula for the reference

direction that comprises the two expressions given in 3.15:

σ − sφ (3.18)

The feedback control law considered for the normal acceleration an an

has the following analytical expression:

an = Ksign2 [sin (α− sφ)]

∣

∣

∣

∣

sin

(

α− sφ

2

)∣

∣

∣

∣

(3.19)

where K is an arbitrary scalar gain.
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It is straightforward to note that the maximum possible absolute value for

the normal acceleration is K; hence, the acceleration is bounded and similarly

the maximum turn-rate of the vehicle. Therefore the gain can be chosen in

a way such to fulfill the structural requirements of the vehicle.

Moreover, it is possible to note that the expression of the acceleration

consists, apart from the gain, of two factors.

The first one is responsible of the side of the acceleration (it can only be

-1 or +1). Its role is that of steering the pursuer to right or left in order to

point to the selected reference direction.

The second one causes a continuous modulation of the gain between 0

and 1: no acceleration when angle α coincides with the reference direction

sφ; maximum lateral acceleration when α differs 180 from sφ, hence forcing

the vehicle that was going in the opposite way for gradually heading toward

the reference direction.

Pursuer over the Target

It is worth observing that angle σ, the LOS angle, is not defined when

R = 0. As a consequence, the same is for the guidance law. This is not a

problem because the pursuer-target relative speed is always assumed grater

than zero. So, the pursuer-target geometry cannot permanently have zero

LOS angle but only in a numerable set of instants. When this happens, i.e.

when R is zero, the commanded normal acceleration can be conventionally

set to zero.

Behaviour of the closed loop system

The following two figures show the effect of the described guidance law

in two different cases, A and B respectively. The gain K has been chosen

such that normal acceleration cannot exceed a prescribed maximum value,

i.e. that required by the structural limits of the vehicle.

In case A (figure 3.3), the pursuer starts from point (800,800), heading

North-East, and the target is fixed at (0,0). It is specified a minimum cir-

cling radius RD = 500 and, as can be seen, the pursuer directs toward the

corresponding circumference and loiters around it.
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Figure 3.3: Trajectory of the Pursuer case A

In case B (Figure 5), the pursuer starts with heading North-East, and the

target is fixed at (0,0). In this case a low circling radius is imposed: RD = 20.

This radius is too low and would require a too high turn-rate: hence, as can be

seen, the pursuer directs toward the corresponding circumference but then it

automatically finds and stabilizes on a greater circumference where the turn

rate is sustainable by the vehicle.

3.4 Stability Analysis

Bounds on state Derivatives

In this section a Lyapunov function is developed that ensures stability of

the nonlinear guidance law for the model that is represented in 3.10 but with

the characteristic of no wind and no target speed. Moreover, the demonstra-

tion is presented here for the special case of RD = 0. In this special case

model 3.12, with the insertion of the described acceleration law, becomes:
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Figure 3.4: Trajectory of the Pursuer case B

{

Ṙ = −V cos (α)

α̇ = V sin(α)
R

− Ksign2[sin(α−sφ)]|sin(α2 )|
V

(3.20)

The basic ideas for the development of this section builds on the results

of [4] and [28].

Consider now the regions where the state derivatives of model 3.20 are

zero. From the second of equations 3.20, after the application of half-angle

formula, is:

α̇ = sign2 [sin (α)]×
[

2V

R

∣

∣

∣
sin
(α

2

)∣

∣

∣

∣

∣

∣
cos
(α

2

)∣

∣

∣
− K

V

∣

∣

∣
sin
(α

2

)∣

∣

∣

]

(3.21)

and

α̇ =
K

V
sign2 [sin (α)]×

∣

∣

∣
sin
(α

2

)∣

∣

∣

[

2V 2

RK

∣

∣

∣
cos
(α

2

)∣

∣

∣
− 1

]

(3.22)
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Now, α̇ = 0 if
∣

∣sin
(

α
2

)∣

∣ = 0 that is α = −2π, 0, 2π ∀ R or

2V 2

R(α)K

∣

∣cos
(

α
2

)∣

∣− 1.

that is

R(α) =
2V 2

∣

∣cos
(

α
2

)∣

∣

K
(3.23)

Moreover, analyzing equation 3.23, it results:

α̇ ⇔











R < R(α) and sign2 [sin (α]) < 0

or

R > R(α) and sign2 [sin (α]) > 0

(3.24)

α̇ ⇔











R > R(α) and sign2 [sin (α]) > 0

or

R > R(α) and sign2 [sin (α]) < 0

(3.25)

In figure 6 these conditions on α̇ are summarized on the on system state

space.

Figure 3.5: Direction of α̇

Similar condition on Ṙ = 0 in the first equation of 3.20 brings to:

Ṙ = 0 ⇒ α = ±π
2
;±3π

2
(3.26)

and
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Ṙ < 0 ⇒ −2π < α <
−3π

2
;−2π

2
< α <

2π

2
;
3π

2
< α < 2π (3.27)

Figure 3.6: Direction of Ṙ

All the conditions expressed by 3.25, 3.26 and 3.27 impose restrictions on

the direction that state space trajectory can take. Figure 3.7 summarizes all

these condition.

Figure 3.7: Vector Field of the Guidance Closed Loop

The arrows indicate the possible direction that the state variables can take

during their evolutions. It is important to note that the purser approaches
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the target when α = λ−χ = 0. When the pursuer over flies the target there

is a significant change in the controlled acceleration that passes from the

minimum value to maximum one. There are four equilibrium points: these

are represented on the figure by a star and their coordinates are:

Pe1 =

(

−3π

2
;

√
2V 2

K

)

(3.28)

Pe2 =

(

−pi
2

;

√
2V 2

K

)

(3.29)

Pe3 =

(

pi

2
;

√
2V 2

K

)

(3.30)

Pe4 =

(

3π

2
;

√
2V 2

K

)

(3.31)

Moreover the arrows in the figure indicate that, from every initial state,

trajectories proceed in a clockwise or anti-clockwise fashion to one of the

equilibrium points. It is evident that in the state space there are four sections

and for each one there is a corresponding equilibrium point.

• Section 1: −2π < α < −π

• Section 2: −pi < α < 0

• Section 3: 0 < α < π

• Section 4: pi < α < 2π

The following considerations are referred to Section 3: because of sym-

metry, the other sections can be handled in a similar way. By examining

Section 3 (0 < α < π), a bound for the maximum value of R that can be

reached from any point of the Section can be found by analyzing the value

of Ṙ
α̇
and its derivatives.

Then, the vector field slope is described by:
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Ṙ

α̇
=

− cos (α)

sin(α)
R

− K sin(α
2
)

V 2

(3.32)

By studying function 3.32 it is possible to find that, after the system has

just over flown the target and hence Ṙ = 0, the minimum value of this ratio

is obtained at α = π and it is:

Ṙ

α̇ (α=π)
= −V

2

K
(3.33)

As a consequence, the farest point from the target that can be reached

(maximum R after overflight) is:

Rmax = −V
2π

2K
(3.34)

In order to demonstrate the asymptotic stability of the system, it is useful

to consider its behavior along some reference curves, as depicted in 3.8.

Figure 3.8: Arcs Bounding State Trajectory

In particular, the slope of tangent lines to arcs of ellipses and straight

lines has been compared to the slope of the system vector field along the
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same arcs.

The slope of an ellipse tangent line is a2(α−α0)
b2(R−R0)

with:

• a, b ellipse semi-axes

• a0 =
π
2
,R0 =

√
2V 2

K
: equilibrium coordinates.

More precisely, the curve from point 1 and point 2 is an arc of ellipse. 2

and 3 are connected by a vertical straight line. From point 4 to 5 there is

another ellipse, with a minor axis that is smaller than the one of the previous

ellipse. 6 and 7 are connected by two straight line segments. Finally, curve

connecting 8 and 1 is another arc of ellipse whose major axis is the same

as the first ellipse. Dotted arrows represent the real directions of the vector

field and emphasize that the state trajectory is heading inner points.

Figure 3.9: Arcs Bounding State Trajectory

This comparison shows that, by starting from an initial point denoted by

1, the evolution of the system state proceeds pointing to the interior of the

figure bounded by the arcs. This is due to the direction of the vector field

that forces the system state to leave the arcs of the figure because of the

values in their tangent line slopes respect to the corresponding values of the

arc tangent line slopes. After a complete anti-clockwise turn, the position of
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Figure 3.10: Arcs Bounding State Trajectory

the system state is in a point that is closer to the equilibrium point than the

initial position. Consequently, the resulting system state can be considered

as a new initial point and the reasoning can be repeated now for a smaller

area figure. The area of each figure defined by the system position in the

state plane can be considered a Lyapunov function, because it is a strictly

decreasing positive definite function.

3.5 Simulation Results

The aim of this paragraph is to evaluate the different performances and

behaviors of the proposed guidance law in two different forms, i.e. RD = 0

and RD 6= 0. In particular three different case studies are presented in the

following numerical simulations:

1. Not moving target, located at (0, 0), initial position of the pursuer at

(800, 800), heading North.

2. Not moving target, located at (0, 0), initial position of the pursuer at

(800, 800), heading the target.
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3. Moving target at constant velocity, initial position of the pursuer at

(800, 800), initially heading to the target.

All the simulation last 1000 sec and the airspeed of the pursuer is 20 m/s.

In the third case the speed of the target is 5 m/s, less then the pursuer, as

stated in an initial assumption. Obviously, the K gain value has been chosen

so that the aircraft turn rate maximum value is never exceeded. Moreover,

the minimum radius chosen for the general guidance law case is RD = 500

[m].

A comparison of the two guidance law forms shows the main differences

among them. In the case (1), with RD = 0, the pursuer tends to intercept

the target and, only after this attempt, it moves on a loitering circle with

radius of
√
2V 2

K
. In this case the pursuer does not perfectly flies over the

target, due to its initial condition, however the aim of the law is to fly it as

close as possible to the target.

With RD 6= 0 the UAV heads directly to the loitering circle.

A similar behavior features case (2) even if the initial pursuer heading is

very different from case (1) (see figures 3.13 and 3.14). The RD = 0 guidance

law has a little change respect to the previous case in fact the UAV over flies

the target instead of flying only near it. In case (3) the behavior of both

guidance law is very similar. The only difference is the maximum distance

between the target and the UAV that, for the RD 6= 0 guidance law form can

be changed (see figure 3.14 and 3.15).

3.6 Conclusion

A new non-linear two dimensional (2D) guidance law for an aerial pursuer,

such as an unmanned air vehicle tracking a ground moving target. The law

forces the pursuer to intercept at least one time the target, differently from

what other guidance laws do. Moreover, after a first over-fly or fly-by of the

target, starts loitering around it. Stability demonstration of a special case of

the presented law in the feedback loop, together with numerical simulations

of its performances are given in this work.
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Figure 3.11: Position of the UAV relative to a fixed target RD = 500

Figure 3.12: Position of the UAV relative to a fixed target with different
initial condition RD = 0
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Figure 3.13: Position of the UAV relative to a fixed target with different
initial condition RD = 500

Figure 3.14: Position of the UAV relative to a moving target RD = 0
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Figure 3.15: Position of the UAV relative to a moving target RD = 500

An advantage of this guidance law is that the maximum value of the

lateral acceleration can be chosen by the user simply acting on the gain .

Another advantage consists on the fact that in every situation the airspeed

of the aircraft is kept above a fixed threshold. The main limitation is that

it is difficult to predict the exact behavior of the UAV when one decides

to intercept the target. In fact there are some initial condition that cannot

allow the vehicle for flying over the target due to the upper bound on the

lateral acceleration. Hence the pursuer directly heads for the loitering circle.

Applications of the results. The capability of the guidance law to pass over

the target and then to loiter around this at a stand-off distance is highlighted,

both when the target is moving and when it is not. So this law is well suitable

for problems like continuous live sensing from around and ahead of friendly,

adversarial or unidentified targets.

Further investigations are needed in order to find an analytical proof of

the stability of the general case of the proposed guidance law. Moreover,

modifications of the law in order to face situations where many transits over

the target are possible, as well as situations where better performances are

assured with respect to wind and more general target motions, necessitate

to be considered.



This page is intentionally left blank.



Chapter 4

Lyapunov Vector Field

4.1 Introduction

This paper proposes a 2D guidance law for an aerial pursuer tracking a ground

moving target and subject to kinematic constraints in order to be consistent

to its flight performances. Several scientific papers cope with problems of

target tracking, trajectory tracking and trajectory planning for unmanned

air vehicle (UAV).

The problem of target tracking has been studied for a long time. The most

famous guidance laws are “LOS angle guidance” and “LOS rate Guidance”,

see [21]. A different guidance law has been recently presented, see [28]. This

second approach shows a number of benefits over the first one and it is

designed for following any circular path or, as a specific case, a straight line.

Both these guidance laws are not suitable if the aim is to pass over the target

or to track a fixed target.

The trajectory tracking has been studied for more time in the robot ap-

plication than in the aeronautical field. See [38] for some example. Both the

articles presented the trajectory tracking utilizing the Lyapunov vector field

technique.

The trajectory planning is a slightly different study field. Almost the

articles are more focused on the optimization of a path defined by a several

numbers of waypoints see [25]. The main source of this technique Has been

69
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proposed by Dubins in one of his most famous article see [8].

In this chapter the target tracking is performed by forcing the UAV to

loiter around the target by going through a suitable path whose shape is a

priori decided according to pre-established needs. In particular, the emerging

Lyapunov vector field approach is followed: a loitering trajectory is defined

as stable limit cycle in the system state space. Moreover, the guidance law

forces the UAV velocity vector to align with the vector field directions and,

hence, to direct towards the limit cycle.

Reliability and simplicity motivate the development of this approach: it

provides a simple, yet highly capable basis, for higher level algorithms that

adjust the parameters of the vector field to accomplish complex autonomous

UAV behaviour. An inner feedback control loop is assumed to ensure the

vehicle tracks the vector field by actuating the aircraft control surfaces in or-

der to produce aerodynamics moments to achieve the desired vehicle attitude

and altitude hold mode. The direction and the magnitude of the computed

vector field velocity are transformed by the guidance outer loop into heading

commands, suitable to assure the maneuvers of the UAV to be consistent to

its flight performances in terms of minimum required air-speed and maximum

turn-rate.

Several Lyapunov vector field guidance laws have been proposed in liter-

ature but the capability to fly over the target and to have a continuous live

sensing on it from around and ahead of friendly, adversarial or unidentified

targets has not yet been explored. The first solution was to follow a straight

line see [26]. In this work also the solution of a circle has been proposed

but it has been improved later see [20]. Slightly different works have been

focused on the use of Lyapunov vector for a cooperative tracking of by two

or more UAV see [10]. In last cited paper the shape chosen for the two UAV

when the target is not moving was always a circle. The new aspect of this

last work was the presence of two UAV monitoring a target on the same

Lyapunov vector field.

In this chapter a novel application of vector field-derived guidance law is

presented: the proposed law drives the pursuer UAV to fly over the target by

following a bow-shaped loitering path centered on the target, a sort of petal-
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shaped trajectory. This guidance law is designed for a continuous overflight

of a fixed target The main difference with respect to other guidance laws is

given by the particular figure chosen. This bow shaped trajectory allows for

the possibility to pass more than one time over the target and to surveillance

its state. In this way the best applications of this guidance law are for aims

as: continuous overflight of a ship with damages or for rescue of people lost in

any environment. This goal is accomplished by defining a Lyapunov function

whose zero-level set defines a Bernoulli Lemniscate curve. The exact shape

of the lemniscates are tunable by setting the parameters of the Lyapunov

function according to the aircraft flight performances. The lemniscates rep-

resents a stable limit cycle that defines the loitering trajectory around the

target. A reference vector field that drives the system towards this limit

cycle has been proposed and, based on it, a simple feedback control loop has

been defined. Theoretical considerations about global stability of the guid-

ance law are also provided. They have been inspired by several works on the

Lyapunov stability global see [15].

The feedback nature of the guidance law allows it for being effective also

in presence of wind. The basic algorithm is presented for a stationary target

in the absence of wind and then a modification is described that accounts

for known constant target velocity and known constant background wind. In

these cases the capability of the guidance law to pass over the target and

then to loiter is highlighted by means of simulation results both when the

target is moving and when it is fixed.

4.2 Lyapunov Vector Field Construction

For vehicle guidance, a vector field can be represented by:

ṙd = h (r, θ) (4.1)

parameterized by a coefficient array θ. This provides a desired velocity

vector ṙd at each vehicle position r (see figure 4.1) that can be used as a

reference for middle level control of vehicle acceleration. If global behavior
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of this vector field can be specified to be simple and robust for all values of θ,

then management of the vehicle can be accomplished at a higher hierarchical

level by relatively infrequent manipulation of the parameters in θ. This pro-

motes a high degree of autonomy in the vehicle, and reduced communication

bandwidth to centralized command and control systems.

Desired asymptotic behavior is produced via an attractor, which consists

of a path or equivalently a set of desired positions to which the vehicle should

converge. In many other applications, this set could be a single equilibrium

point, which implies an asymptotically fixed position (zero velocity). For

airplane UAVs, however, this is not possible since they must maintain air-

speed to remain aloft. Here we are interested in attractors that allow asymp-

totic motion with non-zero velocity. Such attractors are continuous curves

in configuration space, and can take many forms, including chaotic strange

attractors [14]. To provide well-understood vehicle behavior, we focus on the

simplest of these attractors, i.e. limit cycles. In this application, these are

closed, non-intersecting curves C ∋ R
3 which contain no equilibrium points.

The problem is then to construct a vector field h (r, θ) that causes vehicle

motion to be globally attracted to this set C.

x
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.
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Figure 4.1: UAV inertial position and velocity, along with the desired velocity
defined by the Lyapunov vector field
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Lyapunov stability theory is used to construct a vector field, rather than

to analyze a given vector field. In this approach, the desired attractor C is

specified as a zero-level set of an otherwise positive potential function VF (r).

That is, VF (r) is positive definite on C . We also require that VF (r) is

radially unbounded, i.e. r → ∞ implies that VF (r) → ∞ , that the gradient

of VF (r) is finite, i.e. that ∂VF
∂r

is bounded whenever r is bounded, and that
∂VF
∂r

→ 0 implies that VF (r) → 0. The time derivative of VF (r) is given by:

V̇F (r) =
∂VF
∂r

ṙ =
∂VF
∂r

h (r, θ) (4.2)

Assume for the moment that the vehicle motion ṙ can be specified to

equal any desired vector field ṙd.Then choose the following vector field:

ṙ = ṙd = h (r, θ) = −
[

∂VF
∂r

Γ (r)

]T

+ S (r) (4.3)

where Γ (r) is any symmetric positive definite matrix function such that
∂VF
∂r

Γ (r) is bounded whenever r is bounded, ∂VF
∂r

Γ (r)
[

∂VF
∂r

]T → 0 implies

that ∂VF
∂r

→ 0 and S (r) satisfies:

∂VF
∂r

S (r) = 0 (4.4)

Then

V̇F (r) =

(

∂VF
∂r

)

Γ (r)

(

∂VF
∂r

)T

(4.5)

Since V̇F (r) ≤ 0, VF (r) is bounded and converges. Since VF (r) is radially

unbounded, r is bounded. Then by the assumption on Γ (r) and 4.4, V̇F (r) ≤
0 is bounded, hence V̇F (r) ≤ 0 → 0 by the Barbalat lemma [17]. By the

LaSalle invariance principle [17], r globally converges to the largest set that

satisfies both V̇F (r) = 0 and 4.3. Since Γ (r) is positive definite V̇F (r) = 0

implies that ∂VF
∂r

= 0. In 4.3 this requires that ṙ = S (r). Observe that the

function S (r) cannot be zero on the attractor C since this would result in

zero asymptotic vehicle velocity. Since ∂VF
∂r

→ 0 implies that VF (r) → 0, we

have shown that integral curves of the vector field converge to the desired
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attractor, i.e. r → C.

The first term in the vector field 4.3 is a contraction which produces

a vector field component that is directed opposite to the gradient of the

potential function VF (r). When Γ is isotropic (a scaled identity matrix), this

term is exactly opposite to the gradient of VF (r). A non-isotropic Γ allows a

limited variation in this gradient-opposing direction, so that VF (r) remains

monotone decreasing over time. The second term in 4.3 is a circulation term,

which is always normal to the gradient of VF (r), hence does not contribute

to the change in VF (r) over time.

For UAV tracking control, it is desirable that Γ (r) and S (r) be chosen

so that the vector field 4.3 is normalized to provide a desired vehicle speed v

at any point r , i.e:

|h (r, θ)| =
∣

∣

∣

∣

∣

−
[

∂VF
∂r

Γ (r)

]T

+ S (r)

∣

∣

∣

∣

∣

= ν (4.6)

Note that ν can be any non-negative value. When ν is a function of time

which is bounded away from zero, this makes the system non-autonomous,

and the proof of stability must be modified to use the Barbalat lemma [17]

instead of the LaSalle invariance principle. This is not developed here, how-

ever.

An example of functions VF (r) , Γ (r), and S (r) that satisfy these as-

sumptions, and produce a simple set C are as follows, which is similar to

that originally provided by [19]. Later work ([16] [11], [26], [9]) has also uti-

lized similar vector fields. Let the coordinates of r be given by the difference

between the vehicle location (x, y, z) and the center of a desired loiter circle

attractor C at (x0, y0, z0).

Let the loiter circle lie in a plane normal to the unit vector n̂ , and let

the desired in-plane radius of C be ρ. Define the normal component of r by

r =
(

rT n̂
)

n̂ and the tangential (in-plane) component by rt =
(

I − n̂n̂T
)

r.

Then define

VF (r) =

(

rTn n̂
)

2

2

−
(

rTt r̂t − ρ
)

2

2

(4.7)
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so that rn = rT n̂ and rt = |rt| so that r̂t =
rt
rt

it results

∂VF
∂r

= rnn̂
T + (r̂t − ρ) rTt (4.8)

Also define

Γ (r) =
I

α (r)
(4.9)

and

S (r) =
γn̂rt
α (r)

(4.10)

where γ > 0 and the normalization α (r) is given by

α (r) =

√

r2n + (rt − ρ)2 + ρ2γ2ν (4.11)

Note that VF (r) is zero only when the vehicle position r lies on the desired

loiter circle C, so that rn = 0 and rt = ρ. If n̂ is oriented vertically, the loiter

circle is horizontal. Since 4.7 holds, the vector field velocity is everywhere

given by ν. Also, on C there is the vector field contraction term ∂VF
∂r

Γ (r) = 0

and from 4.7, the vector field circulation term S (r) = ν, providing the desired

velocity on the loiter circle. The sign of γ S (r) determines the direction of

circulation on C. When r becomes large, the circulation term S (r) → 0

and the contraction term
∣

∣

∂VF
∂r

Γ (r) → 0
∣

∣. From 4.8, the vector field points

toward the center of the loiter circle when far away, and smoothly veers into

a circular loiter as the radial distance converges to ρ. The magnitude of γ

controls the relative strength of the circulation and contraction terms, which

modifies the abruptness of the transition from domination by contraction to

domination by circulation.

Likewise, a non-isotropic Γ (r) could be used to vary the strength of con-

traction normal to the circle relative to the contraction in the plane of the

circle. Observe that ∂VF
∂r

Γ (r) → 0 implies ∂VF
∂r

→ 0, and ∂VF
∂r

→ 0 implies

VF (r) → 0, hence we have asymptotic convergence of r to the loiter circle C

beginning at any initial conditions.

Figure 4.2 shows this vector field for (x0, y0, z0) = (0, 0, 10) [m], ρ = 100
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[m], γ = 0.2 , and ν = 10 [m/s], as well as some integrated trajectories

beginning at various initial conditions.

Figure 4.2: Example Vector Field satisfying the assumption for a globally
attractive limit cycle

Note that this overall behavior is easy to understand: any initial state

results in circular loitering flight centered at (x0, y0, z0) with radius ρ and

velocity ν. It provides the UAV with autonomous control which is sim-

ple to implement in an on-board microprocessor autopilot This globally at-

tractive loiter circle behavior is specified through only 6 scalar parameters

θ = (x0, y0, z0, ρ, γ, ν) and the normal vector n̂, which can be modified at low

communication rates to provide a variety of useful capabilities.

For example, the loiter circle approach can be used to construct robust

waypoint navigation schemes, where the next waypoint is given as the loiter

circle center., or as a point on the loiter circle so the vehicle flies directly

over the way point. This is robust to waypoint generation timing: if the

next waypoint is not available as the existing waypoint is approached, the
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vehicle will simply orbit the existing waypoint until the next one is available.

No complex decision logic is needed to initiate turns. Also, the next way-

point vector field can be enabled based on proximity to the current target

loiter circle, providing automatic sequencing timing of waypoints to produce

smooth transitions between waypoints.

Extending this idea further, switching circular loiter vector fields can be

used to follow arbitrary way point sequences, e.g. that are produced by

higher level task planning algorithms [13] and [2] This enables more complex

flight patterns, without the need for pre-processed route information.

Another application that utilizes loiter circles is in-situ atmospheric sens-

ing with large numbers of small UAVs [29]. There, each vehicle is guided by

its own loiter circle vector field, but data sensed in this process is used to

autonomously modify the loiter circle location, e.g. to cause vehicles to clus-

ter in regions where high quality data is located. Here, a tilted loiter circle

enables gradients of the atmospheric data to be estimated on each circuit,

and this can be used to modify loiter circle location and diameter for desired

clustering control. The robust, globally stable vector field behavior enables

inter-vehicle coordination to be accomplished at higher levels in the control

hierarchy, and at lower rates of intercommunication.

The loiter circle approach has also been used for stand-off tracking of

ground targets [11] and [9], where range to the target optimizes the trade-off

between sensor accuracy and field of view, or where close approach to a hostile

target is undesirable for stealth or safety reasons. Both this application and

the atmospheric sensing application have time variation in the loiter circle

parameter vector, i.e. center location, that can cause mistracking of the

desired path, with errors proportional to the speed of parameter motion. In

some cases, e.g. [11], knowledge of the time variation can be used to recover

asymptotic convergence, provided the parameter motion speed is smaller than

the vehicle speed. This section is taken from [20].

4.3 The Lemniscate Vector Field

The Lyapunov vector field guidance law structure is shown in figure 4.3.
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Desired
Vector 
Field

Controller Plant

x

x
.

hd

Figure 4.3: Vector Field Control Scheme

The desired asymptotic behaviour of the UAV is produced by a particular

geometric curve, famous as Bernoulli Lemniscate where x and y are the

components of the 2D position vector of the UAV in a local reference system,

c and a are parameters of the Lemniscate.

(

x2 + y2
)2

= 4a2
(

cy2 − x2 (1− c)
)

(4.12)

Figure 4.4 shows the flexibility of this equation. The different geometric

figures are simply constructed tuning the coefficients c and a. This is an in-

tersecting curve and consequently provides a continuous pass over the target.

The Lyapunov Function that ensures the Lemniscate is the desired circuit

attractor is the following:

FLF (x, y) =
[

(

x2 + y2
)2 − 4a2

(

cy2 − x2 (1− c)
)

]2

(4.13)

Figure 4.5 demonstrates that the function is radially unbounded.

Figure 4.6 represents the Lyapunov vector Field associated to the Lem-

niscate. Its shape can be seen as an attractive loiter for an UAV. Far away

from the path the vector field is directed perpendicular while, close to the

Lemniscate, it becomes tangent.

Another assumption requested by the classical Lyapunov vector field the-

ory is that ∂FLF
∂x

, ∂FLF
∂y

→ 0 implies FLF (x, y) → 0.

It is evident that the two derivatives just cited become zero also in the

origin of the axis. This is a discontinuity point in the sense of Lipschitz

definition. However this problem is considered negligible in the development

of this discussion because of the inertia of the vehicle that mainly annuls its

effect.

The desired vector field hd is created according to the same formulation
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Figure 4.4: Lemniscate

Figure 4.5: Lyapunov Function of Lemniscate
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Figure 4.6: Lemniscate Vector Field

proposed by [20]. By defining x = [x, y]T , it becomes:

hd (x) = −
[

∂FLF
∂x

Γ (x)

]T

+ γ (x)S (x) (4.14)

where







Γ (x) =
arctan

(
∣

∣

∣(x2+y2)
2

−4a2(cy2−x2(1−c))
∣

∣

∣

)

C

γ (x) = sign (y)
(4.15)

are position-dependent scalar functions chosen in a suitable way such to

behave as position-dependent gains. Moreover,∂FLF
∂x

, and S (x), when evalu-

ated along the Lemniscate, are orthogonal and tangent vectors, respectively.

As a consequence, vector S (x) is chosen in order to satisfy the orthogonality

condition expressed by the following inner product equality:

∂FLF
∂x

S = 0 (4.16)

From 4.16 the scalar components of S (x) = [Sx, Sy]
T results:
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{

Sx = y (x2 + y2 − 2a2c)

Sy = −x (x2 + y2 + 2a2 (1− c))
(4.17)

Equation 4.14 is composed by two terms. The joint action of these terms

acts in the following way. The vector field points toward the Lemniscate

when the UAV is far from it and directs along the Lemniscate path when

the UAV is over it. At intermediate distance there is a mix of these two

movements that is modulated by the two position dependent gains defined

in 4.15.

In particular, ∂FLF
∂x

Γ (x) → 0 when ∂FLF
∂x

→ 0 (this happens near the

Lemniscate). ∂FLF
∂x

is the contraction term cited in the last section. The

term γ (x)S (x) is the circulation term and ensures that when we are on the

trajectory there is still a component of the desired vector field that drives

the movement on the Lemniscates. Constant C in 4.15 acts as a sort of

normalization of for function G. It has to be tuned according to the required

performances for the UAV in terms of velocity of response of the guidance

law accordingly to the dynamical constraints of the plane.

4.4 Guidance Law

The system dynamics in this particular section is described by the following

kinematic model as exoressed to a fixed reference frame:











ẋR = V cos(χ) +Wx

ẏR = V sin(χ) +Wy

χ̇ = an
V

(4.18)

In order to allow the UAV to follow the desired trajectory in the velocity

vector field, it can be assumed that the UAV has a heading autopilot. The

autopilot controls the UAV for tracking the desired course angle χd.

The desired vector field and the desired course angle χd are related by

the following equations:



82 4. Lyapunov Vector Field

{

hdx = V cos (χd)

hdy = V sin (χd)
(4.19)

where h = [hdx, hdy]
T .

Consequently, the guidance law has to provide the UAV an acceleration an

able to steer the actual UAV course angle, χ, to its reference value expressed

by χd. This is to be performed by a feedback control. Hence, the proposed

guidance law has the following expression:

an = K (ψ − χd) + V χ̇d (4.20)

that, when substituted into the third equation of 4.18, assures χ̇ = χ̇d

when χ = χd.

K is a suitable scalar gain: it is not the aim of this article to discuss the

tuning of this gain in the proposed guidance law. It has to be chosen in order

to provide a lateral acceleration whose maximum value does not exceed the

UAV dynamic structural bounds.

It is possible to demonstrate that:

χ̇d =
hd × ḣd · k

V 2
(4.21)

and, in case of absence of wind,

tan (χ− χd) =
ẋ× hd · k
ẋ× hd

(4.22)

where bfK is the z-axis unit vector orthogonal to plane x-y in a clockwise

reference system, while × and · are the usual symbols denoting cross and

inner products, respectively.

Hence the guidance law becomes:

an = K arctan

(

ẋ× hd · k
ẋ× hd

)

+
hd × ḣd · k

V
(4.23)

Equation 4.23 is quite useful because it allows for expressing the guidance

law in terms of the desired vector field and its time-derivative. In particular,
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hd and ḣd can be calculated from 4.14 and, of course, their expression is

related to the selected Lyapunov function.

The closed loop stability of system 4.18 together with guidance law 4.23

has not been demonstrated here. While simulations show that stability is

always reached, nevertheless an analytic demonstration is still under devel-

opment.

A preliminary analysis of 4.23 has been carried on here in order to assess

the behaviour of an. Note that the guidance law consists of two terms: the

first one is bounded, due to the limitedness of function arctan ().

The second term can be shown is bounded too. The complete demonstra-

tion is not reported here because the length of algebraic calculations involved.

Nevertheless the initial steps are given. The starting point is to express 4.18

as the sum of two perpendicular vectors:

hd (x) = fnn+ fss (4.24)

with fn, fs bounded scalar functions, n is a unit-vector pointing along
∂FLF
∂x

direction, s is a unit-vector pointing along S (x) direction (see 4.17).

Of course it holds ns = 0. After that, it is necessary to express the time-

derivative of the desired vector field:

ḣd (x) = ḟnn+ fnṅ+ ḟss+ fsṡ = gnn+ gss (4.25)

with gn, gs scalar functions. The course of the demonstration states the

boundness of gn, gs. As a consequence, also the proposed guidance law has a

bound.

4.5 Simulation Results

In this paragraph we want to show the different behaviour of the proposed

guidance law in two different cases. The first one is a simulation without

any disturbances while the second one is with the presence of a constant

disturbance. In this way we tried to simulate the effect of the wind.
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In particular, the two different case studies presented here are carried on

in the following numerical simulations:

• Not wind effect, initial position of the UAV at (300,0), heading south;

• Presence of a constant wind, east direction, initial position of the UAV

at (300,0), heading south.

Both the simulations last 600 s and the airspeed of the UAV is 10 m/s.

In the second case the speed of the wind is 3 m/s.

As mentioned, this work is not focused on the tuning of the gain K.

In both these simulations the values of K = 5 has been chosen in order to

obtain a good behaviour. Under this choice the maximum lateral acceleration

is always supported by the UAV.

The parameters defining the Lemniscate are the following:

a=400, C=0.5

The two different simulations show the similar behaviour that is reported

in figure 4.7 and figure 4.8. In both simulations the tracking of the Lemniscate

is performed. The main difference among the two simulations is that the

presence of the wind, in the second case, obviously enforces the UAV to turn

towards east. The preliminary design of the parameter of the guidance law

allows for tracking the Lemniscate in a very good way.

The initial movement towards west in 4.7 is determined by the γ (x)

function.

4.6 Conclusion

A new guidance law, suitable for UAV missions, in order to loiter around a

target by following a Lemniscate-type trajectory, has been proposed. The

Lyapunov Vector Field methodology has been applied and described to solve

this problem. Even though some mathematical singularities due to the un-

singleness of the derivatives of the Lemniscate centre point, preliminary theo-

retical analysis together with simulation results have given very good results
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Figure 4.7: Behaviour of the Guidance Law without Wind

Figure 4.8: Tracking Law with Constant Wind
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in terms of general behaviour of the feedback guidance and control system.

While simulations has given good performances also in presence of wind,

further theoretical investigation and tests will be needed in order to assure

global stability and a globally stable functioning in presence of different types

of disturbances.



Chapter 5

Oscillatory Control

5.1 Introduction

A pursuer UAV tracking and loitering around a target is the problem ana-

lyzed in this chapter. The UAV is always assumed to be a fixed-wing vehicle

and constant airspeed together with bounded lateral accelerations are the

main constraints of the problem. The pursuer motion control law proposed

in this chapter is based on the definition of an oscillatory motion created by

a center of oscillation: it allows the pursuer UAV for the fulfillment of the

requirements of target tracking under the stated constraints. In particular,

the center of oscillation tracks the real motion of the target and the UAV

tracks the center of oscillation by means of a suitable guidance law.

One of the main problems in Unmanned Airplane Vehicle (UAV) research

involves the determination of suitable autonomous guidance strategies that

achieve specific tasks. For example, the ability to perform UAV surveillance

operations or to track a specific target or to follow particular trajectories

has demonstrated its importance in military context [36]. Similar types of

surveillance and tracking activities are also important in civil and commer-

cial operations, such as maritime and rural search and rescue. In these ap-

plications the ability of an UAV to track a pre-planned trajectory with high

precision can be fundamental.

Different approaches have been proposed in literature for UAV trajectory

87
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tracking applications; the two most significant main streams are path fol-

lowing and virtual waypoint techniques. One of the most innovative path

following technique is the Lyapunov vector field guidance in which a field

of vectors describes the heading angles required to guide the UAV onto the

desired path [20], [31]. Alternatively, in a virtual point technique ([35], [12]),

the UAV pursuer tracks the motion of a virtual point that is created and

moves along the target trajectory. At the moment many research activities

are focused on different techniques to construct trajectories for virtual points

([25], [23]).

In this chapter, the derivation of a Lyapunov based guidance law is pro-

posed in order to track a reference trajectory created by means of the defi-

nition of a center of oscillation. A center of oscillation is a virtual point that

moves along a sinusoidal oscillatory path created around the actual trajec-

tory of the target (see also [18]). The great advantage of this method consists

in creating a path with the same constant cruise speed of the UAV. Besides,

if the target is fixed, a Lemniscate-like trajectory is gone by the UAV. This

kind of guidance law seems to be suitable for convoy protection or continuous

live sensing of a predefined target.

This chapter is structured as follows. In section 5.3 the mathematical

model of the UAV and the center of oscillation idea is presented. Section 5.4

presents the technique of the oscillator motion. In section 5.5 shows different

simulation results. The last section 5.6 provides some conclusion remarks of

the proposed method.

5.2 Averaging: Theory and Definition

A large class of perturbed problems can (after a transformation) be posed in

the standard form:

dx

dt
= ǫF (x, θ; ǫ) x ∈ R

n (5.1)
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dθ

dt
= ω (θ) ǫG (x, θ; ǫ) θ ∈ R

m (5.2)

where ǫ ≪ 1, and both F and G are 2π-periodic in θi, θ = (θ1, . . . , θm).

Some authors also pose standard form as

dx

dt
= ǫF (x, t; ǫ) x ∈ R

n x (0) = x0 (5.3)

where F is 2π-periodic in t. The connection between the two standard

forms can be seen if one rewrites 5.3 as the system

dx

dt
= ǫF (x, t; ǫ) (5.4)

dθ

dt
= 1 (5.5)

For 5.3 define the average

F (x, ǫ) ≡ 1

2π

∫ 2π

0

F (x, t, ǫ) dt (5.6)

Let y satisfy the initial value problem

dy

dt
= ǫF (y, ǫ) y (0) = x0 (5.7)

Then there are averaging theorems which prove, under certain conditions

‖x (t)− y (t)‖ = O (ǫ) (5.8)

for t = O
(

1
t

)

.The method of averaging thus involves

1. A transformation to standard form

2. Solving the averaged equations

Transformation to Standard Form: Introductory example
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Consider the problem

ẍ+ x = ǫf (x, dotx) (̇) =
d

dt
() (5.9)

The solution of the unperturbed problem (ǫ = 0) is

x0 (t) = A0 cos (t+ φ0) (5.10)

where A0 and φ0 are constants. It can be found an exact solution of the

perturbed problem using variation of parameters based on the amplitude-

phase form of the solution x0(t):

x0 (t) = A (t) cos (t+ φ (t)) ≡ A cos ζ (5.11)

The assumption that x solves the sole equation 5.9 imposes one condition

relating the two functions A, φ. Thus, we get to impose a second condition

on A; φ. The second condition we impose on A and is one which guarantees

ẋ (t) = −A (t) sin (t+ φ (t)) = −A sin ζ (5.12)

that is, a condition which makes differentiation of x appear as if A and φ

were constant.

Explicitly, we are therefore imposing the condition

d

dt
A cos ζ = −A sin ζ (5.13)

Using 5.11-5.12 in 5.9, it is readily seen that

−Ȧ sin ζ − Aφ̇ cos ζ = ǫf (A cos ζ,−A sin ζ) (5.14)

Expanding out the second condition 5.13 one gets

Ȧ cos ζ − φ̇A sin ζ = 0 (5.15)

Solving 5.14 - 5.15 for Ȧ and φ̇ yields
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Ȧ = ǫF1 (A, φ, t) ≡ −ǫ sin ζf (A cos ζ,−A sin ζ) (5.16)

φ̇ = ǫF2 (A, φ, t) ≡ −ǫ 1
A

cos ζf (A cos ζ,−A sin ζ) (5.17)

Clearly, Fk is 2π-periodic in t, thus 5.16-5.17 is in standard form.

Transformation of weakly nonlinear problems

Let

ẋ = A (t) x+ ǫg (x, t) x (0) = x0 ∈ R
n (5.18)

where A(t) ∈ R
n×n. This problem is said to be weakly nonlinear because

the unperturbed problem

ż = A (t) z (5.19)

is linear. The unperturbed problem has n linearly independent solutions

zi (t) , i = 1, . . . , n from which a fundamental solution matrix

Z (t) = [z1, . . . , zn] (5.20)

can be formed. Furthermore, Z is invertible since the columns are inde-

pendent. If we define y via

x = Z (t) y (5.21)

and substitute 5.21 into 5.18 we get

ẋ = Ży + Zẏ = AZy + ǫg (Zy, t) (5.22)

But, since Ż = AZ and Z is invertible,

ẏ = ǫZ−1 (t) g (Zy, t) (5.23)

If all zi and g are T-periodic in t, the latter system is in standard form.
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Transformation of strongly nonlinear problems

Let

ẋ = f (x, t) + ǫg (x, t, ǫ) x (0) = x0 ∈ R
n (5.24)

We say this is strongly nonlinear because the unperturbed problem is

nonlinear. Assume the unperturbed problem

ẏ = f (y, t) y (0) = E (5.25)

has a (explicitly) known solution

y = Y (t, E) (5.26)

We then seek a solution of the perturbed problem of the form

x = Y (t, e (t)) (5.27)

where e(t) = (e1(t), . . . , en(t)) is some vector valued function. Substitu-

tion of this expression into 5.24 yields

∂y

∂t
+
∂y

∂e

∂e

∂t
= f (y, t) + ǫg (y, t, ǫ) (5.28)

where

∂y

∂z
=

[

∂Yi
∂Ej

]

ij

(5.29)

Since

∂y

∂t
= f (y, t) (5.30)

this simplifies to

∂y

∂e

∂e

∂t
= ǫg (y, t, ǫ) (5.31)

If ∂y

∂e
is nonsingular, then
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∂e

∂t
= ǫ

(

∂y

∂e

)−1

g (y, t, ǫ) (5.32)

5.3 Description of the Problem

5.3.1 Mathematical Model of the UAV

In this paper the airspeed, i.e. the speed of the UAV with respect to air flow,

is assumed to be constant. Constant speed assumption, also made in others

papers ([26], [30] and [28]), is consistent with typical tracking requirements

because fixed-wing aircraft velocity changes are generally considered unde-

sirable, in order to avoid altitude variations due to changes in lift. Therefore,

according to the scopes and objectives of most guidance problems, it is pos-

sible to describe the translation motion of the air vehicle as a mass-point

moving in a two dimensional plane. An orthogonal Cartesian frame descrip-

tion of UAV dynamical motion is as follows (see also Figure 5.1):

ẋ = V cos(χ)

ẏ = V sin(χ)

χ̇ = an
V

(5.33)

where x = [x, y, χ]T is the state vector of the UAV model. The angle χ

is positive in an anti-clockwise sense and it represents the angle between the

x axis and the direction of the UAV airspeed vector V; V is supposed to lie

along the aircraft longitudinal axis. V is the modulus of V; an is the single

input signal of the model and represents the value of lateral acceleration. No

longitudinal acceleration respect to the air flow is considered because V is

assumed constant. Figure 5.1 shows the direction of the lateral acceleration;

its effect is to cause a change in the rate of turn while leaving the airspeed

unchanged.

In this paper it is assumed that the position of the target is known by the

pursuer guidance system. In [39] and [3] a description of typical sensors useful

for this aim are given. The derivative of airspeed velocity vector respect with

time is
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x

y V

an

Figure 5.1: Control input, ground and air velocity

V̇ = V χ̇n̂ = ann̂ (5.34)

where n̂ is the unit vector along the direction orthogonal to the velocity

vector.

The movement of the target is modeled by the same mathematical model

described by 5.33. In the next section the variable χT represents the heading

angle of the target and χ̇T its angular rate. Target speed is represented by

the variable VT .

5.3.2 Oscillatory idea for tracking a target

The aim of this work is to develop a guidance law for tracking a ground based

target and/or loitering around it. It can be assumed that a car or a convoy

which is moving in an urban context or military area, represents the target.

Usually such a target has a speed slower than the UAV and, besides, it can

stop its movement for a period. Consequently, the UAV must be able to stay

around the target during all situations. In section 5.3 a fixed altitude UAV

with a restricted flight envelope is considered. During the tracking of the

target, constant height is desirable and hence constant airspeed is necessary.

The main idea is to define a center of oscillation, i.e. a virtual point that
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moves along an oscillatory path that must be gone with the same speed of the

UAV. This kind of trajectory must be flexible with respect to the position and

the speed of the target. Besides, when the target is fixed, a stable trajectory

must be created by the center of oscillation. Once the trajectory is created, a

suitable guidance law will track it instead of directly tracking the real target.

The control architecture is shown in figure 5.2.

Target
Center

of
Oscillation

Guidance Law
&

Plant

+/-

Figure 5.2: Control Architecture

5.4 Analysis of Oscillatory Motion

The proposed mathematical model that describes the motion of the center

of oscillation (CO) is:

ẋCO = V cos(χCO)

ẏCO = V sin(χCO)

χ̇CO = ηω0 cos(φ) + χ̇T

(5.35)

where η and ω are scalar parameters, φ is an input signal that acts as

oscillation phase. In order to analyze the mathematical model of the center

of oscillation, the dynamics of the target is considered to be with constant

velocity along a straight line (χ̇T = 0). With this assumption it can be seen

that, when η is constant, a sinusoidal trajectory is created while when η = 0

the center of oscillation goes a straight-line at the same speed of the UAV.

The value of η will be defined later in this section.

In order to control the phase and frequency of the oscillation, the phase

rate φ̇ is forced to follow the subsequent law by means of a simple closed loop

control:
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φ̇ = ω0 − φ+ ω0t+ φ0 (5.36)

where ω0 is the trim frequency (in this case equal to 1) and φ(0) = φ0 = 0

is the commanded initial reference phase. The long term solution is φ(t) =

ω0t+ φ0 = t.

This statement allows to derive (by using the third equation of 5.35 and

the stated assumptions):

χCO(t) =

∫ t

0

ηω0 cosφ(τ)dτ + χ0C0
(5.37)

By performing the integration, it results in the following periodic function:

χCO = η sin t+ χ0CO (5.38)

The variable χ0CO represents the initial heading value of the center of

oscillation. The period T is 2π [s].

In order to define the variable η, equation 5.38 is substituted into equation

5.35. In this way it is possible to calculate the mean components of the vector

V in a period T :

ẋCO = 1
T

∫ T

0
V cos (η sin t+ χ0CO) dt

ẏCO = 1
T

∫ T

0
V sin (η sin t+ χ0CO) dt

(5.39)

With the variable change θ = 2πt
T

− π = t − π the integrals in (5.39)

become:
ẋCO = V

2π

∫ π

−π
cos (η sin (θ + π) + χ0CO) dθ

ẏCO = V
2π

∫ π

−π
sin (η sin (θ + π) + χ0CO) dθ

(5.40)

Now, considering that the functions sin (η sin θ) and − sin (η sin θ) are

odd, their integrals between the interval [−π, π] are obviously zero. Therefore

(5.40) becomes:
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ẋCO =
V cosχ0CO

2π

∫ π

−π
cos (η sin θ) dθ

ẏCO =
V sinχ0CO

2π

∫ π

−π
cos (η sin θ) dθ

(5.41)

The equation

ν =
1

2π

∫ π

−π

cos (η sin θ) dθ = J0 (η) (5.42)

represents a order zero Bessel function of the first kind. In order to find

the variable η, the airspeed of the center of oscillation can be equated to the

speed of the target. As a consequence, it results:

ẋ
2

CO + ẏ
2

CO = ẋ2T + ẏ2T → J0(η) =
VT
V

(5.43)

Figure 5.3: Bessel Function

The value of η will be calculated at every period T and it will be used

in model equations 5.35 in order to define the trajectory of the center of

oscillation. In this paper the assumption of VT ≤ V is made. The domain of

the Bessel function J0(η) can be restricted to [0, 2.48]. Once the magnitude

of the speed of the target is known, the Bessel function can be inverted to

find the value of η.

It is important to underline that when the target is fixed (VT = 0) the

value of η will be 2.48. The center of oscillation will create a Lemniscate-like

trajectory centered nearby the fixed target position. Further investigations
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have to be made to exactly overlap the center of the Lemniscate on the target

position.

It is desirable that the trajectory of the center of oscillation has its average

position centered around the position of the target. For this purpose it is

important to define the maximum amplitude of the oscillation. Now, it is

assumed a reference frame with its first axis along the target initial velocity

vector, and the second axis orthogonal to the first. The initial heading and

the initial value of the first coordinate of center of oscillation have to be

chosen equal to the target ones (see figure 5.4).

Target

Center of 
Oscillation

UAV

x

y

VT

VCO

V

Figure 5.4: Initial Scheme

On the contrary, the second coordinate initial value will be half of the

maximum oscillation below the initial second coordinate of the target. By
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assuming xCO and yCO as the first and second position coordinates, respec-

tively, it holds:

∫ π

0

ẏCOdt = V

∫ π

0

sin (η sin t) dt (5.44)

The second coordinate at the half of the period can be also written as:

yCO(π)

π
=
V

π

∫ π

0

sin (η sin t) dt (5.45)

By subtracting to both members the integrals

−V
π

∫ π

0
2 exp(−η sinh(t))dt

(5.45) becomes:

yCO(π) = V Y0(η)π + 2V

∫ π

0

exp(−η sinh t)dt (5.46)

where Y0(η) is the Bessel function of the second kind. Once the variable η is

computed, the maximum amplitude of the oscillation is described by (5.46).

Hence, here the initial position of the center of oscillation is assumed to

be:

xCO(0) = xT (0)

yCO(0) = −1
2

(

V Y0(η)π + 2V
∫ π

0
exp(−η sinh t)dt

)

(5.47)

Now, considering the cartesian coordinates (xL, yL) of the Lemniscate of

Bernoulli can be represented by the subsequent equations:

xL = a cos(φ)

1+sin2(φ)

yL = a cos(φ) sin(φ)

1+sin2(φ)

(5.48)

where a is a parameter and φ is a curvilinear coordinate.

The rate of the tangent vector to the Lemniscate can be represented by:

χ̇L =
ÿLẋL − ẍLẏL
ẋ2L + ẋ2L

(5.49)



100 5. Oscillatory Control

where
ẋL = − φ̇a sin(φ)(3−sin2(φ))

(1+sin2(φ))2

ẏL = φ̇a sin(φ)(1−3 sin2(φ))

(1+sin2(φ))2

(5.50)

and
ẍL = − φ̇2a cos(φ)(sin6(φ)−11 sin4(φ)−9 sin2(φ)+3)

(1+sin2(φ))4

ÿL = φ̇2a cos(φ)(6 sin5(φ)−4 sin3(φ)−10 sin(φ)

(1+sin2(φ))4

(5.51)

By substituting equation 5.51 and 5.50 into equation 5.49 it results:

χ̇L =
3 cos(φ)φ̇

sin2(φ) + 1
(5.52)

By keeping in mind that φ̇ = ω0, a comparison between equation 5.52 and

the third equation of 5.35 can be made. χT can be considered zero because

the Lemniscate is created when the target is fixed.

Considering f(x) = 3 cos(φ)

1+sin2(φ)
, its Fourier terms are:

a0 =
1
π

∫ π

−π
f(x)dx = 0

a1 =
1
π

∫ π

−π
f(x) cos(x)dx = 2.48

b1 =
1
π

∫ π

−π
f(x) cos(x)dx = 0

(5.53)

As cited in at the beginning of this section section the value of η when

the target is fixed is 2.48 which is the same value found by analyzing the

Lemniscate of Bernoulli.

5.5 Simulation Results

In this section different simulations are presented in order to demonstrate

the effectiveness of the proposed guidance law and the center of oscillation

motion. The guidance law used for these simulations is the same descripted

in section 2.3.2. The position and the lateral acceleration of the target are

supposed to be known by an external sensor. The value of η is sampled

every 2π s and its value is found with a numerical solution which inverts

the Bessel function J0(η). In all the simulations the velocity of the target
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is supposed to be lower than the UAV speed and not constant. Besides,

different trajectories are performed by the target. All the simulations are

shown with the comparison between the classical Proportional Navigation

Guidance (PNG) law and the proposed guidance law.

As a reminder, the PNG is described by χ̇ = Cσ̇ where C is the navigation

gain. In all the simulations the value of C is 4.

The initial position of the target is assumed at (0, 0), the origin of the

reference system, while the initial position of the UAV is in (−50, 0). The

speed is V = 35 m/s. The values of the gains K1, K2 and K3 are chosen

respectively equal to 1, 1 and 0.1.

Case 1

In this simulation the target is supposed to go along a straight trajectory

with a different velocity profile. The simulation lasts 90 s. Figure 5.5 shows

the velocity profile chosen for the ground target. A constant acceleration,

after a constant speed, then a deceleration and finally a zero speed phase are

simulated. The target trajectory is supposed to be a straight line.

Figure 5.5: Target Speed Profile

Figure 5.6 shows the behavior of the UAV and how it is able to track the

center of oscillation trajectory. Although the PNG seems to have a good per-

formance too, it is important to remember that when the distance between

the UAV and the center of oscillation becomes small a high acceleration com-

mand results. A real UAV cannot achieve that kind of normal acceleration

requested. With the proposed guidance law the vehicle approaches the cen-
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ter of oscillation trajectory with a smoother profile and acceptable normal

accelerations.

Figure 5.6: UAV trajectories

Case 2

In this second case a more complex target trajectory is used. The first

part is the same as in Case 1 but after 60 s the target performs a left turn

at a constant velocity and afterwards it continues to go straight. The entire

simulation lasts 150 [s]. Figure 5.7 shows the velocity profile of the target in

this case.

Figure 5.7: Target Speed Profile (Case 2)

Figure 5.8 shows that, after loitering around the stopped target in the

first half of the simulation with a Lemniscate-like trajectory, the center of

oscillation starts again in order to construct a new oscillating trajectory
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tracking the restarted target. Also in this simulation a comparison with the

PNG guidance law is done. Obviously the same considerations made in Case

1 can be repeated here. Once the PNG intercepts the center of oscillation,

the trajectories overlap.

Figure 5.8: UAV trajectories (Case 2)

Case 3

In the third case a circling trajectory is created for the target. It travels

at a constant velocity of 10 m/s with a constant lateral acceleration of 0.2
m
s2
.

As figure 5.9 shows, the center of oscillation creates a trajectory that both

PNG and the proposed guidance law are able to track. The simulation lasts

30 s.

5.6 Conclusion

In this paper a method for creating and tracking an oscillatory trajectory

based on the position of the target is presented. The value of the parameter

η is sampled every 2π s. Once the measurement of the speed of the target

is obtained, through equation 5.43, the value of η is numerically calculated.

The path created by the center of oscillation is particularly suitable for aerial

vehicle with constant speed constrains and generates smooth turns that are
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Figure 5.9: UAV trajectories (Case 3)

easily navigable by the UAV. However, the trim frequency ω0 can be chosen

small enough that the trajectory created by the center of oscillation results

with an acceptable lateral acceleration.

Besides, the new guidance law presented in chapter 3 is used for tracking

this type of trajectory.

Simulation results where a comparison of the performances between the

proposed law and the classical PNG have given: they show promising results

especially in the lateral (normal) required acceleration. A stability proof of

the guidance is given and consequently it guarantees that the UAV will fly

directly on the center of oscillation trajectory.



Chapter 6

Pioneer UAV

6.1 BackGround History

In June 1982, Israeli forces very successfully used UAVs as a key element

in their attack on Syria. Scout and Mastiff UAVs were used to locate and

classify SAM and AAA weaponry and to act as decoys for other aircraft. This

action resulted in heavy Syrian losses and minimal Israeli losses. A year and

a half later, the U.S. Navy launched strikes against Syrian forces in the same

area with losses much higher for the Navy than those of the Israelis.

The Commandant of the Marine Corps, General P. X. Kelly, recognized

the effectiveness of the Israeli UAVs. Secretary of the Navy John Lehman

then initiated development of a UAV program for the U.S. Anxious to get

UAVs to the fleet, Secretary Lehman stipulated that UAV technology would

be off-the-shelf. After the contract award to AAI Corporation of Baltimore,

Maryland for the Pioneer UAV, developmental and operational testing took

place concurrently.

This approach resulted in quick integration of the Pioneer into the fleet.

Unfortunately, such quick integration into the fleet can result in problerm

identified during operational use which had not been fully explored in the

test and evaluation process. The UAV Office a. the Pacific Missile Test

Center (PMTC, now the Naval Air Warfare Center, NAWC, Weapons Divi-

sion, Pt. Mugu) was tasked with Developmental Test and Evaluation of the

105
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Pioneer. Testing revealed the following concerns which warranted further

investigation:

1. discrepancies in predicted with flight-tested rate of climb, time to climb,and

fuel flow at altitude;

2. apparent autopilot-related pitch instability;

3. tall boom structural failure;

4. severely limited lateral control;

5. slow pitch response causing degraded maneuverability at high gross

weights;

6. insufficient testing to determine the effects of the icew wing on flight

endurance.

The Target Simulation Laboratory at Pt. Mugu was tasked to develop a

computer simulation of the Pioneer in order to provide cost-effective train-

ing for pilots. Aerodynamic data were needed to provide the stability and

control derivatives necessary for the simulation as well as to answer ques-

tions concerning basic flying qualities of the Pioneer. In order to provide

support to the research being done at Pt. Mugu and to provide for future

UAV project support, a research program was begun at the Naval Postgrad-

uate School (NPS). An instrumented half-scale radio-controlled model of the

Pioneer was used 6 for the research at NPS.

Research performed included wind tunnel tests, flight tests, and numerical

modeling. Initial NPS research on the Pioneer, performed by Capt. Daniel

Lyons, involved a computer analysis of the Pioneer in its original configura-

tion and with a proposed larger tail. A low order panel method (PMARC)

was used for the aerodynamic analysis. Static longitudinal and directional

stability derivatives, the neutral point, and crosswind limitations were calcu-

lated. Drag polars were constructed using the component buildup method for

profile drag, and drag reduction measures were considered. In conjunction

with Capt. Lyons work, Lt. James Tanner conducted wind tunnel’ tests to
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Figure 6.1: Pioneer RQ2 on a Platform Laucher during Desert Shield Military
Operation

determine propeller efficiencies and thrust coefficients for drag studies. Lt.

Tanner also conducted flight tests to determine power required curves and

drag polars.

Capt. Robert Bray later conducted wind tunnel tests of a 0.4-scale model

at Wichita State University to determine static stability and control deriva-

tives. Aerodynamic data obtained by Capt. Lyons and Bray have been

supplied to PMTC to be used for simulation. Lt. Jim Salmons performed

initial flying qualities flight testing using an onboard data recording system

in order to determine static stability parameters. Unfortunately, vibration

problems with the onboard recorder rendered much of the data unusable

[Ref 10]. Following up on Lt. Salmons’ work, Lt. Kent Aitcheson installed

the CHOW-IG telemetry system, designed by Lt. Kevin Wilhelm, in an

attempt to alleviate the vibration 7 probiem experienced by Lt. Salmons.

The new flight test configuration was used to test static longitudinal and

lateral-directional stability characteristics of the Pioneer.

The vibration problem experienced by Lt. Salmons was overcome, though

not enough data were acquired for a complete and thorough analysis of the
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Pioneeres characteristics. Much insight was gained, however, concerning in-

strumentation. Resolution needed to be improved for flight control position

indication. Lt. Paul Koch conducted further flight tests of the Pioneer with

the CHOW-IG telemetry system. Static longitudinal stability results from

the flight tests correlated well with theoretical predictions and with simu-

lations of a full-scale Pioneer. Electromagnetic interference with the flight

control system at the test site resulted in loss of the half-scale model Pioneer

before further data collection and analysis could be performed

6.2 Technical Charateristic

The Pioneer RQ2 was designed on the IAI Israelian Scouth Air vehicle and,

similarly with this one, it has a twin-boom structure with a rectilinear wing.

The UAV propulsion is a bicilindrical engine Sachs & Fichtel SF2-350 of

19 kW and a rotary group UEL AR-741 of 28.3 kW.

The vehicle has a fixed landing gear. It is composed by metal and fiber

glass in order to make it low observable by the radar.

The technical charateristic are summarized by tables 6.1 and 6.2.

Figure 6.2: Geometric Pioneer RQ2

These information are taken from [5].
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Wing

Area 2.826 m2

Span 5.151 m
A.R 9.36
Mean Aerodynamic Chord 0.549 m
Airfoil NACA 4415
Incidence 0.035 rad
Airelon Deflection ±0.350 rad

Horizontal Stabilizer

Area 0.564 m2

Span 1.850 m
A.R 6.07
Mean Aerodynamic Chord 0.305 m
Airfoil NACA 0012
Incidence -0.052 rad
Elevetor Deflection ±0.350 rad

Vertical Stabilizer

Area 0.202 m2

Apertura alare 0.661 m
A.R 2.16
Mean Aerodynamic Chord 0.305
Airfoil NACA 0012
Rudder Deflection ±0.350 rad

Geometric Charateristic

Length 4.96 m
Height 1.02 m

Table 6.1: Pioneer Geometric Charateristic



110 6. Pioneer UAV

Cruise Speed 89-130 km/h
Max Speed 185 km/h
Cruise Range 185 km
Endurance 8 h
Ceiling 4600 m
Maximum TakeOff 200 kg
Payload 40 kg

Table 6.2: Airvehicle Perfomance

6.3 Equation of Motion

This section and the subsequent are based on the work published by M. Cook

[7].

The equation of motion for a 6Dof aircfraft are:











m(U̇ − rV + qW ) = X

m(V̇ − pW + rU) = Y

m(Ẇ − qU + pV ) = Z

(6.1)











Ixṗ− (Iy − Iz)qr − Ixz(pq + ṙ) = L

Iy q̇ + (Ix − Iz)pr + Ixz(p
2 − r2) =M

Iz ṙ − (Ix − Iy)pq + Ixz(qr − ṗ) = N

(6.2)

wherem is the mass of the vehicle, (U ,V ,W ) and (X,Y ,Z) are the velocity

components respect to the body frame (o,x,y,z) (see figure 6.4). (p,q,r) and

(L,M ,N) represent the angular velocity and moment in the same frame.

Considering the effect of disturbances it results:











































m(U̇ − rV + qW ) = Xa +Xg +Xc +Xp +Xd

m(V̇ − pW + rU) = Ya + Yg + Yc + Yp + Yd

m(Ẇ − qU + pV ) = Za + Zg + Zc + Zp + Zd

Ixṗ− (Iy − Iz)qr − Ixz(pq + ṙ) = La + Lg + Lc + Lp + Ld

Iy q̇ + (Ix − Iz)pr + Ixz(p
2 − r2) =Ma +Mg +Mc +Mp +Md

Iz ṙ − (Ix − Iy)pq + Ixz(qr − ṗ) = Na +Ng +Nc +Np +Nd

(6.3)
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Figure 6.3: North Est Down Frame

The equation 6.3 are nonlinear and consequently a closed form solution

is not obtainable. Besides, the term on the right side should be substituded

with expression which are very difficult to express. Usually these equation

of motion are linearized around a trim condition.

6.4 Linearized Equation of Motion

Initially the aeroplane is assumed to be flying in steady trimmed rectilinear

flight with zero roll, sideslip and yaw angles. Thus, the plane of symmetry

of the aeroplane oxz is vertical with respect to the earth reference frame. At

this flight condition the velocity of the aeroplane is V0, the components of

linear velocity are (Ue,Ve,We) and the angular velocity components are all

zero. Since there is no sideslip Ve = 0. A stable undisturbed atmosphere is

also assumed such that

Xd = Yd = Zd = Ld =Md = Nd = 0 (6.4)
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Figure 6.4: Body Frame

If now the aeroplane experiences a small perturbation about trim, the

components of the linear disturbance velocities are (u, v,w) and the compo-

nents of the angular disturbance velocities are (p, q, r) with respect to the

undisturbed aeroplane axes (oxyz). Thus the total velocity components of

the cg in the disturbed motion are given by

U = Ue + u

V = Ve + v = v

W = We + w

(6.5)

Now, by definition (u, v,w) and (p, q, r) are small quantities such that

terms involving products and squares of these terms are insignificantly small

and may be ignored. Thus, substituting equations 6.4 and 6.5 into equations

6.3, note that (Ue, Ve,We) are steady and hence constant, and eliminating the

insignificantly small terms, the linearised equations of motion are obtained:











































m(u̇+ qWe) = Xa +Xg +Xc +Xp

m(v̇ − pWe + rUe) = Ya + Yg + Yc + Yp

m(ẇ − qUe) = Za + Zg + Zc + Zp

Ixṗ− Ixz ṙ = La + Lg + Lc + Lp

Iy q̇ =Ma +Mg +Mc +Mp

Iz ṙ − Ixzṗ = Na +Ng +Nc +Np

(6.6)
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The development of expressions to replace the terms on the right hand

sides of equations 6.6 is now much simpler since it is only necessary to con-

sider small disturbances about trim.

The gravitational terms can be espressed by:











































Xg = −mg sin θe −mgθ cos θe

Yg = mgψ sin θe +mgφ cos θe

Zg = mg cos θe −mgθ sin θe

Lg = 0

Mg = 0

Ng = 0

(6.7)

The variables with the pedix e are reffered to the trim condition while

the other are referred to the perturbation (see figure 6.5).

Figure 6.5: Body Axis with and without a perturbation

The aerodynamic terms can be expressed as:
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

















































Xa = Xae+
◦

Xu u+
◦

Xv v+
◦

Xw w+
◦

Xp p+
◦

Xq q+
◦

Xr r+
◦

Xẇ ẇ

Ya = Yae+
◦

Yu u+
◦

Yv v+
◦

Yw w+
◦

Yp p+
◦

Yq q+
◦

Yr r+
◦

Yẇ ẇ

Za = Zae+
◦

Zu u+
◦

Zv v+
◦

Zw w+
◦

Zp p+
◦

Zq q+
◦

Zr r+
◦

Zẇ ẇ

La = Xae+
◦

Lu u+
◦

Lv v+
◦

Lw w+
◦

Lp p+
◦

Lq q+
◦

Lr r+
◦

Lẇ ẇ

Ma = Xae+
◦

Mu u+
◦

Mv v+
◦

Mw w+
◦

Mp p+
◦

Mq q+
◦

Mr r+
◦

Mẇ ẇ

Na = Xae+
◦

Nu u+
◦

Nv v+
◦

Nw w+
◦

Np p+
◦

Nq q+
◦

Nr r+
◦

Nẇ ẇ

(6.8)

The coefficients
◦

Xu,
◦

Xv,
◦

Xw etc. are called aerodynamic stability deriva-

tives and the dressing ◦ denotes the derivatives to be dimensional.

The aerodynamic control terms are:



















































Xc =
◦

Mξ ξ+
◦

Xη η+
◦

Xζ ζ

Yc =
◦

Yξ ξ+
◦

Yη η+
◦

Yζ ζ

Zc =
◦

Zξ ξ+
◦

Zη η+
◦

Zζ ζ

Lc =
◦

Lξ ξ+
◦

Lη η+
◦

Lζ ζ

Mc =
◦

Mξ ξ+
◦

Mη η+
◦

Mζ ζ

Nc =
◦

Nξ ξ+
◦

Nη η+
◦

Nζ ζ

(6.9)

Since equation 6.9 describes the effect of the aerodynamic controls with

respect to the prevailing trim condition it is important to realise that the

control angles, ξ, η and ζ are measured relative to the trim settings ξe, ηe

and ζe respectively.

The power terms are described by the subsequent relations:
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

















































Xp =
◦

Xττ

Yp =
◦

Yττ

Zp =
◦

Zττ

Lp =
◦

Lττ

Mp =
◦

Mττ

Np =
◦

Nττ

(6.10)

As for the aerodynamic controls, power changes are measured with respect

to the prevailing trim setting.

Now, substituting equations (6.7), (6.8), (6.9), (6.10) into (6.6) and

simplyfing it results:
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







































































































































































mu̇−
◦

Xu u−
◦

Xv v−
◦

Xẇ ẇ−
◦

Xw w−
◦

Xp p− (
◦

Xq −mWe)q−
◦

Xr r

+mgθ cos θe =
◦

Xξ ξ+
◦

Xη η+
◦

Xζ ζ+
◦

Xτ τ

−
◦

Yu u+mv̇−
◦

Yv v−
◦

Yẇ ẇ−
◦

Yw w − (
◦

Yp +mWe)p−
◦

Yq q − (
◦

Yr −mUe)r
−mgφ cos θe −mgψ sin θe =

◦

Yξ ξ+
◦

Yζ ζ+
◦

Yη η+
◦

Yτ τ

−
◦

Zu u−
◦

Zv v + (m−
◦

Zẇ)ẇ−
◦

Zw w−
◦

Zp p− (
◦

Zq +mUe)q−
◦

Zr r

+mg sin θe =
◦

Zξ ξ+
◦

Zη η+
◦

Zζ ζ+
◦

Zτ τ

−
◦

Lu u−
◦

Lv v−
◦

Lẇ ẇ−
◦

Lw w + Ixṗ−
◦

Lp p−
◦

Lq q − Ixyṙ−
◦

Lr r =
◦

Lξ ξ

+
◦

Lη η+
◦

Lζ ζ+
◦

Lτ τ

−
◦

Mu u−
◦

Mv v−
◦

Mẇ ẇ−
◦

Mw w−
◦

Mp p+ Iy q̇−
◦

Mq q−
◦

Mr r =
◦

Mξ ξ

+
◦

Mη η+
◦

Mζ ζ+
◦

Mτ τ

−
◦

Nu u−
◦

Nv v−
◦

Nẇ ẇ−
◦

Nw w − Ixyṗ−
◦

Np p−
◦

Nq q + Iz ṙ−
◦

Nr r =
◦

Nξ ξ

+
◦

Nη η+
◦

Nζ ζ+
◦

Nτ τ

(6.11)

Equations 6.11 are the small perturbation equations of motion, referred

to body axes, which describe the transient response of an aeroplane about the

trimmed flight condition following a small input disturbance. The equations

comprise a set of six simultaneous linear differential equations written in

the traditional manner with the forcing, or input, terms on the right hand

side. As written, and subject to the assumptions made in their derivation,

the equations of motion are perfectly general and describe motion in which

longitudinal and lateral dynamics may be fully coupled.

However, for the vast majority of aeroplaneswhen small perturbation

transient motion only is considered, as is the case here, longitudinallateral
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coupling is usually negligible. Consequently it is convenient to simplify the

equations by assuming that longitudinal and lateral motion is in fact fully

decoupled.

6.5 Decoupled Equations of Motion

6.5.1 The longitudinal Equation of Motion

Decoupled longitudinal motion is motion in response to a disturbance which

is constrained to the longitudinal plane of symmetry, the oxz plane, only. The

motion is therefore described by the axial force X , the normal force Z and

the pitching moment M equations only. Since no lateral motion is involved

the lateral motion variables v, p and r and their derivatives are all zero. Also,

decoupled longitudinallateral motion means that the aerodynamic coupling

derivatives are negligibly small and may be taken as zero whence

◦

Xv=
◦

Xp=
◦

Xr=
◦

Zv=
◦

Zp=
◦

Zr=
◦

Mv=
◦

Mp=
◦

Mr= 0 (6.12)

Similarly, since aileron or rudder deflections do not usually cause mo-

tion in the longitudinal plane of symmetry the coupling aerodynamic control

derivatives may also be taken as zero thus

◦

Xξ=
◦

Xζ=
◦

Zξ=
◦

Zζ=
◦

Mξ=
◦

Mζ= 0 (6.13)

The equations of longitudinal symmetric motion are therefore obtained

by extracting the axial force, normal force and pitching moment equations

from equations 6.11 and substituting equations 6.12 and 6.13 as appropriate.

If it assumed that the aeroplane is in level flight and the reference axes are

wind or stability axes then θe = We = 0and the equations become:















mu̇−
◦

Xu u−
◦

Xẇ ẇ−
◦

Xw w−
◦

Xq q +mgθ =
◦

Xη η+
◦

Xτ τ

−
◦

Zu u+ (m−
◦

Xẇ ẇ)−
◦

Zw w − (
◦

Zq +mUe)q =
◦

Zη η+
◦

Zτ τ

−
◦

Mu u−
◦

Mẇ ẇ−
◦

Mw w + Iy q̇−
◦

Mq q =
◦

Mη η+
◦

Mτ τ

(6.14)



118 6. Pioneer UAV

Equations 6.14 represent the simplest possible form of the decoupled lon-

gitudinal equations of motion.

6.5.2 The lateral-directional Equation of Motion

Decoupled lateral directional motion involves roll, yawand sideslip only. The

motion is therefore described by the side force Y , the rolling moment L and

the yawing moment N equations only. As no longitudinal motion is involved

the longitudinal motion variables u, w and q and their derivatives are all

zero. Also, decoupled longitudinallateral motion means that the aerodynamic

coupling derivatives are negligibly small and may be taken as zero whence

◦

Yu=
◦

Yẇ=
◦

Yw=
◦

Yq=
◦

Lu=
◦

Lẇ=
◦

Lw=
◦

Lq=
◦

Nu=
◦

Nẇ=
◦

Nw=
◦

Nq= 0 (6.15)

Similarly, since the airframe is symmetric, elevator deflection and thrust

variation do not usually cause lateraldirectional motion and the coupling

aerodynamic control derivatives may also be taken as zero thus

◦

Yη=
◦

Yτ=
◦

Lη=
◦

Lτ=
◦

Nη=
◦

Nτ= 0 (6.16)

The equations of lateral asymmetric motion are therefore obtained by

extracting the side force, rolling moment and yawing moment equations from

equations 6.11 and substituting equations 6.15 and 6.16 as appropriate. If it

is assumed that the aeroplane is in level flight and the reference axes are wind

or stability axes then, as before,θe = We = 0 and the equations becomes:















mv̇−
◦

Yv v−
◦

Yp p− (
◦

Yr −mUe)r −mgφ =
◦

Yξ ξ+
◦

Yζ ζ

−
◦

Lv v + Ixṗ−
◦

Lp p− Ixz ṙ−
◦

Lr r =
◦

Lξ ξ+
◦

Lζ ζ

−
◦

Nv v − Ixzṗ−
◦

Np p+ Iz ṙ−
◦

Nr r =
◦

Nξ ξ+
◦

Nζ ζ

(6.17)

Equations 6.17 represent the simplest possible form of the decoupled lat-
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eraldirectional equations of motion.

6.6 Solution of Equation of Motion

The primary reason for solving the equations of motion is to obtain a math-

ematical, and hence graphical, description of the time histories of all the

motion variables in response to a control input, or atmospheric disturbance,

and to enable an assessment of stability to be made. It is also important that

the chosen method of solution provides good insight into the way in which

the physical properties of the airframe influence the nature of the responses.

Since the evolution of the development of the equations of motion and their

solution followed in the wake of observation of aeroplane behaviour, it was no

accident that practical constraints were applied which resulted in the decou-

pled small perturbation equations. The longitudinal and lateral decoupled

equations of motion are each represented by a set of three simultaneous lin-

ear differential equations which have traditionally been solved using classical

mathematical analysis methods.

Although laborious to apply, the advantage of the traditional approach

is that it is capable of providing excellent insight into the nature of aircraft

stability and response. However, since the traditional methods of solution

invariably involve the use of the dimensionless equations of motion consider-

able care in the interpretation of the numerical results is required if confusion

is to be avoided.

Operational methods have also enjoyed some popularity as a means for

solving the equations of motion. In particular, the Laplace transform method

has been, and continues to be used extensively. By transforming the differ-

ential equations, they become algebraic equations expressed in terms of the

Laplace operator s. Their manipulation to obtain a solution then becomes

a relatively straightforward exercise in algebra. Thus the problem is trans-

formed into one of solving a set of simultaneous linear algebraic equations,

a process that is readily accomplished by computational methods. Further,

the inputoutput response relationship or transfer characteristic is described

by a simple algebraic transfer function in terms of the Laplace operator. The
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time response then follows by finding the inverse Laplace transform of the

transfer function for the input of interest.

Now the transfer function as a means for describing the characteristics of

a linear dynamic system is the principal tool of the control systems engineer

and a vast array of mathematical tools is available for analysing transfer

functions.With relative ease, analysis of the transfer function of a system

enables a complete picture of its dynamic behaviour to be drawn. In partic-

ular, stability, time response and frequency response information is readily

obtained.

Furthermore, obtaining the system transfer function is usually the pre-

lude to the design of a feedback control system and an additional array of

mathematical tools is also available to support this task. Since most modern

aeroplanes are dependent, to a greater or lesser extent, on feedback control

for their continued proper operation, it would seem particularly advantageous

to be able to describe the aeroplane in terms of transfer functions.

Fortunately this is easily accomplished. The Laplace transform of the

linearised small perturbation equations of motion is readily obtained and

by the subsequent application of the appropriate mathematical tools the

response transfer functions may be derived. An analysis of the dynamic

properties of the aeroplane may then be made using control engineering tools

as an alternative to the traditional methods of the aerodynamicist.

Thus the process of solution requires that the equations of motion are

assembled in the appropriate format, numerical values for the derivatives

and other parameters are substituted and then the whole model is input

to a suitable computer program. The output, which is usually obtained

instantaneously, is most conveniently arranged in terms of response transfer

functions.

The remainder of this sectioin is therefore concerned with a discussion of

the use of the Laplace transform for solving the small perturbation equations

of motion to obtain the response transfer functions. This is followed by a

description of the computational process involving matrix methods which is

normally undertaken with the aid of a suitable computer software package.
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6.7 The Longitudinal Response Transfer Func-

tion

The solution of the longitudinal equations of motion by, for example, the

methods described in this section enables the response transfer functions to

be obtained. These completely describe the linear dynamic response to a

control input in the plane of symmetry. Implicit in the response are the dy-

namic properties determined by the stability characteristics of the aeroplane.

The transfer functions and the response variables described by them are lin-

ear since the entire modelling process is based on the assumption that the

motion is constrained to small disturbances about an equilibrium trim state.

However, it is common practice to assume that the response to controls is

valid when the magnitude of the response can hardly be described as a small

perturbation.

The longitudinal transfer function are:

u(s)

η(s)
≡
N s
η (s)

∆(s)
=

ku(s+ 1/Tu)(s
2 + 2ζuωnus+ ωnu

2)

(s2 + 2ζpωnps+ ωnp
2)(s2 + 2ζsωnss+ ωns

2)
(6.18)

w(s)

η(s)
≡
Nw
η (s)

∆(s)
=

kw(s+ 1/Tα)(s
2 + 2ζαωnαs+ ωnα

2)

(s2 + 2ζpωnps+ ωnp
2)(s2 + 2ζsωnss+ ωns

2)
(6.19)

q(s)

η(s)
≡
N q
η (s)

∆(s)
=

kqs(s+ 1/Tθ1)(s+ 1/Tθ2)

(s2 + 2ζpωnps+ ωnp
2)(s2 + 2ζsωnss+ ωns

2)
(6.20)

θ(s)

η(s)
≡
N θ
η (s)

∆(s)
=

kθ(s+ 1/Tθ1)(s+ 1/Tθ2)

(s2 + 2ζpωnps+ ωnp
2)(s2 + 2ζsωnss+ ωns

2)
(6.21)

As has already been indicated, the common denominator of the transfer

functions describes the characteristic polynomial which, in turn, describes the
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stability characteristics of the aeroplane. Thus the response of all variables

to an elevator input is dominated by the denominator parameters namely,

damping ratios and natural frequencies. The differences between the indi-

vidual responses is entirely determined by their respective numerators. It is

therefore important to fully appreciate the role of the numerator in deter-

mining response dynamics.

6.7.1 Short Period Mode

The short period mode is typically a damped oscillation in pitch about the

oy axis. Whenever an aircraft is disturbed from its pitch equilibrium state

the mode is excited and manifests itself as a classical second order oscillation

in which the principal variables are incidence α(w), pitch rate q and pitch

attitude θ.

Figure 6.6: Mass Spring Damper

Figure 6.7: Short Period Mode
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6.7.2 Phugoid Period Mode

The phugoid mode is most commonly a lightly damped low frequency oscilla-

tion in speed u which couples into pitch attitude and height h. A significant

feature of this mode is that the incidence α(w) remains substantially constant

during a disturbance.

Figure 6.8: Velivolo soggetto a modo fugoide stabile

6.8 Lateral Directional Dynamics

The procedures for investigating and interpreting the lateraldirectional dy-

namics of an aeroplane are much the same as those used to deal with the

longitudinal dynamics and are not repeated at the same level of detail in this

section.

As for the longitudinal response transfer functions, it is convenient to

adopt a shorthand style of writing the transfer functions. The transfer func-

tions describing response to aileron are conveniently written

v(s)

ξ(s)
≡
N v
ξ (s)

∆(s)
=

kv(s+ 1/Tβ1)(s+ 1/Tβ2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.22)

p(s)

ξ(s)
≡
Np
ξ (s)

∆(s)
=

kps(s
2 + 2ζφωnφs+ ωnφ

2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.23)
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r(s)

ξ(s)
≡
N r
ξ (s)

∆(s)
=

kr(s+ 1/Tψ)(s
2 + 2ζψωnψs+ ωnψ

2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.24)

φ(s)

ξ(s)
≡
Nφ
ξ (s)

∆(s)
=

kφ(s
2 + 2ζφωnφs+ ωnφ

2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.25)

v(s)

ζ(s)
≡
N v
ζ (s)

∆(s)
=

kv(s+ 1/Tβ1)(s+ 1/Tβ2)(s+ 1/Tβ3)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.26)

p(s)

ζ(s)
≡
Np
ζ (s)

∆(s)
=

kps(s+ 1/Tφ1)(s+ 1/Tφ2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.27)

r(s)

ζ(s)
≡
N r
ζ (s)

∆(s)
=

kr(s+ 1/Tψ)(s
2 + 2ζψωnψs+ ωnψ

2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.28)

φ(s)

ζ(s)
≡
Nφ
ζ (s)

∆(s)
=

kφ(s+ 1/Tφ1)(s+ 1/Tφ2)

(s+ 1/Ts)(s+ 1/Tr)(s2 + 2ζdωnds+ ωnd
2)

(6.29)

As before, the denominator of the transfer functions describes the charac-

teristic polynomial which, in turn, describes the lateral directional stability

characteristics of the aeroplane. The transfer function denominator is there-

fore common to all response transfer functions. Thus the response of all

variables to an aileron or to a rudder input is dominated by the denominator

parameters namely, time constants, damping ratio and natural frequency.

The differences between the individual responses are entirely determined by

their respective numerators and the response shapes of the individual vari-

ables are determined by the common denominator and coloured by their

respective numerators.
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6.8.1 The Roll Subsidence Mode

The roll subsidence mode, or simply the roll mode, is a non-oscillatory lateral

characteristic which is usually substantially decoupled from the spiral and

dutch roll modes. Since it is non-oscillatory it is described by a single real

root of the characteristic polynomial, and it manifests itself as an exponential

lag characteristic in rolling motion.

Figure 6.9: Description of the Roll Mode

6.8.2 Spiral Mode

The spiral mode is also non-oscillatory and is determined by the other real

root in the characteristic polynomial. When excited, the mode dynamics are

usually slow todevelop and involve complex coupled motion in roll, yaw and

sideslip.

6.8.3 Dutch Roll Mode

The dutch roll mode is a classical damped oscillation in yaw, about the

oz axis of the aircraft, which couples into roll and, to a lesser extent, into
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Figure 6.10: Description of the Spiral Mode

sideslip. The motion described by the dutch roll mode is therefore a com-

plex interaction between all three lateraldirectional degrees of freedom. Its

characteristics are described by the pair of complex roots in the characteris-

tic polynomial. Fundamentally, the dutch roll mode is the lateraldirectional

equivalent of the longitudinal short period mode.

6.9 Analysis of the Pioneer

6.9.1 Transfer Function of the Pioneer

The transfer function of the Pioneer are obtained in the trim condition

showed by equation 6.30. This condition was chosen based on the work

developed by Bray [5].
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Figure 6.11: Description of the Dutch Roll Mode
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























htrim = 500 m

Vtrim = 35 m/s

αtrim = 0.0988 rad

βtrim = −3.15 · 10−8 rad

θtrim = 0.0988 rad

φtrim = 1.427 · 10−8 rad

ψtrim = 0 rad

ηtrim = 0.0047 rad

τtrim = 177.8486 N

ξtrim = 7.4103 · 10−9 rad

ζtrim = −2.7280 · 10−7 rad

(6.30)

Following the procedure explained in the precedent sections the longitu-

dinal transfer function of the Pioneer are:

V (s)

η(s)
=

−0.14441(s+ 29.24)(s− 22.66)(s+ 3.016)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

m/s

rad
(6.31)

α(s)

η(s)
=

−0.12446(s+ 176.6)(s2 + 0.05184s+ 0.1546)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

rad

rad
(6.32)

q(s)

η(s)
=

−21.9706s(s+ 1.271)(s+ 0.1247)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

rad/s

rad
(6.33)

θ(s)

η(s)
=

−21.9706(s+ 1.271)(s+ 0.1247)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

rad

rad
(6.34)

h(s)

η(s)
=

4.3563(s+ 15.48)(s− 15.32)(s+ 0.002931)

s(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

m

rad
(6.35)
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V (s)

τ(s)
=

0.0052234(s− 0.02338)(s2 + 4.995s+ 30.72)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

m/s

N
(6.36)

α(s)

τ(s)
=

−1.4788 · 10−5(s+ 5.639)(s+ 3.496)(s+ 2.032 · 10−7)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

rad

N
(6.37)

q(s)

τ(s)
=

0.00038371s(s+ 5.639)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

rad/s

N
(6.38)

θ(s)

τ(s)
=

0.00038371(s+ 5.639)

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

rad

N
(6.39)

h(s)

τ(s)
=

0.00051759(s+ 5.639)(s2 + 3.496s+ 25.95)

s(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67)

m

N
(6.40)

The lateral directional dynamics are:

β(s)

ξ(s)
=

6.4212(s+ 8.161)(s+ 0.2477)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad

rad
(6.41)

p(s)

ξ(s)
=

39.7152(s− 0.02712)(s2 + 1.495s+ 14.21)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad/s

rad
(6.42)

r(s)

ξ(s)
=

−2.5172(s+ 16.3)(s− 2.454)(s+ 1.533)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad/s

rad
(6.43)
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φ(s)

ξ(s)
=

39.4658(s2 + 1.38s+ 14.38)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad

rad
(6.44)

ψ(s)

ξ(s)
=

−2.5172(s+ 16.3)(s− 2.454)(s+ 1.533)

s(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad

rad
(6.45)

β(s)

ζ(s)
=

0.040515(s+ 270.2)(s+ 7.24)(s− 0.1615)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad

rad
(6.46)

p(s)

ζ(s)
=

3.4117(s− 12.62)(s+ 1.553)(s− 0.02493)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad/s

rad
(6.47)

r(s)

ζ(s)
=

−10.5877(s+ 7.548)(s2 + 0.1869s+ 0.2105))

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad/s

rad
(6.48)

φ(s)

ζ(s)
=

2.3626(s− 20.83)(s+ 1.375)

(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad

rad
(6.49)

ψ(s)

ζ(s)
=

−10.6395(s+ 7.548)(s2 + 0.1869s+ 0.2105)

s(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59)

rad

rad
(6.50)

6.9.2 Longitudinal Mode

The charateristacal polyniomial of the longitudinal transfer function of the

Pioneer in the trim condition expressed before is:

(s2 + 0.04138s+ 0.1308)(s2 + 4.998s+ 30.67) (6.51)

The phugod mode is descripted by the subsequent natural frequency and
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damping ratio

{

2ζ1ωn1
= 0.04138

ωn1

2 = 0.1308
→
{

ωn1
≈ 0.362 rad/s

ζ1 ≈ 0.0572

while the short period presents

{

2ζ2ωn2
= 4.998

ωn2

2 = 30.67
→
{

ωn2
≈ 5.54 rad/s

ζ2 ≈ 0.451

The figure 6.12 shows the poles in the phase plain.

−2.65 −2.6 −2.55 −2.5 −2.45 −2.4 −2.35
−6

−4

−2

0

2

4

(a) Short Period Poles

−0.04 −0.03 −0.02 −0.01 0

−0.5

0

0.5

(b) Phugoid Poles

Figure 6.12: Poles of the Longitudinal Transfer Functions

In the time domain it results:











ωp ≈ 0.361 rad/s

Tp ≈ 17.4 s

Tap ≈ 145 s

(6.52)











ωs ≈ 4.94 rad/s

Ts ≈ 1.27 s

Tas ≈ 1.20 s

(6.53)

6.9.3 Lateral Directional Mode

As in the precedent section, the charateristacal polyniomial of the lateral

transfer function of the Pioneer in the trim condition expressed before is:
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(s+ 7.139)(s− 0.1297)(s2 + 2.153s+ 16.59) (6.54)

The first value indicated in 6.55 the roll mode while the second represents

the spiral:

{

τ1 =
1

7.139
≈ 0.140 s

τ2 =
1

−0.1297
≈ −7.71 s

(6.55)

For the dutch roll model it results:

{

2ζdωnd = 2.153

ωn1

2 = 16.59
→
{

ωnd ≈ 4.07 rad/s

ζd ≈ 0.264

In the next figure it can be seen the position of the poles in the phase

plane:

−7.6 −7.4 −7.2 −7 −6.8 −6.6 −6.4
−2

−1

0

1

2

(a) Roll Mode Pole

−1.5 −1 −0.5 0
−4

−2

0

2

4

(b) Dutch-Roll and Spiral Poles

Figure 6.13: Poles in the phase plane

In the time domain it results:











ωd ≈ 3.93 rad/s

Td ≈ 1.60 s

Tad ≈ 2.79 s

(6.56)

6.9.4 Static Stability of the Pioneer

The static stability of an aircraft is commonly interpreted to describe its

tendency to converge on the initial equilibrium condition following a small
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disturbance from trim. Dynamic stability, on the other hand, describes the

transient motion involved in the process of recovering equilibrium following

the disturbance. Figure 6.14 includes two illustrations showing the effects

of static stability and static instability in an otherwise dynamically stable

aircraft. Following an initial disturbance displacement, for example in pitch,

at time t = 0 the subsequent response time history is shown and is clearly

dependent on the stability of the aircraft.

Figure 6.14: Statically Stable and Unstable examples

It should be noted that the damping of the dynamic oscillatory component

of the responses shownwas deliberately chosen to be low in order to best

illustrate the static and dynamic stability characteristics. In establishing

trim equilibrium the pilot adjusts the elevator angle and thrust to obtain

a lift force sufficient to support the weight and thrust sufficient to balance

the drag at the desired speed and flight path angle. Since the airframe is

symmetric the equilibrium side force is of course zero. Provided that the

speed is above the minimum drag speed then the force balance will remain
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stable with speed. Therefore, the static stability of the aircraft reduces to

a consideration of the effects of angular disturbances about the three axes.

Following such a disturbance the aerodynamic forces and moments will no

longer be in equilibrium, and in a statically stable aircraft the resultant

moments will cause the aircraft to converge on its initial condition. The

condition for an aircraft to be statically stable is therefore easily deduced.

Consider a positive pitch, or incidence, disturbance from equilibrium.

This is in the nose up sense and results in an increase in incidence α and

hence in lift coefficient CL. In a stable aircraft the resulting pitching mo-

ment must be restoring, that is, in the negative or nose down sense. And of

course the converse must be true following a nose down disturbance. Thus

the condition for longitudinal static stability may be determined by plot-

ting pitching moment M, or pitching moment coefficient Cm, for variation

in incidence α about the trim value αe as shown in figure 6.15. The nose

up disturbance increases α and takes the aircraft to the out-of-trim point

p where the pitching moment coefficient becomes negative and is therefore

restoring. Clearly, a nose down disturbance leads to the same conclusion. As

indicated, the aircraft is stable when the slope of this plot is negative. Thus,

the condition for stable trim at incidence αe may be expressed:

Cmα =
dCm
dα

< 0 (6.57)

Figure 6.15: Pitching Moment Variation with Incidence for a Stable Aircfraft

In a similar way the conditions for lateraldirectional static stability may
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be deduced as

{

Cnβ = dCn
dβ

< 0

Clβ = dCl
dβ

< 0
(6.58)

where Cl and Cn are rolling moment and yawing moment coefficients

respectively and φ and β are roll angle and sideslip angle respectively.

The stability derivatives of the Pioneer are obtained in the same linearized

condition descripted in the precedent subsection and result:

Pitching Stiffness Cmα −2.12
Yaw Stiffness Cnβ 0.153
Diedral Effect Clβ −0.0230

Table 6.3: Stability Derivatives

The Pioneer is yaw unstable.
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Chapter 7

Stability Augmentation System

Stability augmentation systems makes the aircraft more stable. There are

SASs for both the dynamic stability (whether the eigenmotions don not di-

verge) and the static stability (whether the equilibrium position itself is sta-

ble). This work has been inspired by the work of Roskam (see [33] and [32])

7.1 Yaw Damper

When an aircraft has a low speed at a high altitude, the Dutch roll properties

of the aircraft deteriorate. To prevent this, a yaw damper is used. An

overview of this system can be seen in figure 7.1 (GR(s) is the yaw damper

gain and amplifier; Gζ(s) is the rudder servo transfer function). The transfer

function of the rate gyro GH(s) has been chosen equal to 1.

The yaw damper gets its input (feedback) from the yaw rate gyro. It then

sends a signal to the rudder servo. The rudder is then moved in such a way

that the Dutch roll is damped much more quickly than usual. As a designer,

it is possible only to influence the yaw damper. However, it is necessary

to know how the other systems work as well. For this reason, all the other

systems are modelled. Usually it is assumed that the model of the aircraft is

known in order to examine only the other systems.

Based on the equation 6.48 considering a Gζ(s) = 20
20+s

as the transfer

function of the servo, the gain of GR(s) has be chosen equal to -1.7.

137
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Figure 7.1: Block Diagram fo a Yaw Damper

7.2 Pitch Damper

When an aircraft flies at a low speed and a high altitude, the short period

eigenmotion has a low damping. To compensate for this, a pitch damper is

used. The pitch damper is in many ways similar to the yaw damper. Also

the set-up is similar. Only this time, the elevators and a pitch rate gyro are

used, instead of the rudder and a yaw rate gyro.

Figure 7.2: Block Diagram fo a Pitch Damper

Observing figure 7.2, the transfer function GP,q is defined in equation

6.33. The servo transfer function Gη(s) is, as the yaw damper, equal to 20
20+s

while the transfer function of the rate gyro GH,q has been considered equal

to 1.

After a linear analysis and the well-known design procedure the gain GR,q

has been chosen equal to -0.22.
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7.3 Basic Longitudinal Autopilot System

7.3.1 Pitch Attitude Hold Mode

The pitch attitude hold mode prevents pilots from constantly having to con-

trol the pitch attitude. Especially in turbulent air, this can get tiring for

the pilot. This system uses the data from the vertical gyroscope as input

(feedback). It then controls the aircraft through the elevators. To be more

precise, it sends a signal to the SAS, which then again uses this as a reference

signal to control the servo. An overview of the system can be seen in figure

7.3. The transfer function of the servo is modelled as for the pitch damper.

In this figure Gtot,q(s) is the transfer function of the pitch damper while Gp,γ

can be easily derived from equation 6.34. The transfer equation of the pitch

attitude gyro GH,γ(s) has been set equal to one.

Figure 7.3: Block Diagram for the Pitch Attitude

There is also the reference pitch angle θ that needs to be set. This is

done when the pitch attitude hold mode is activated. In fact, the hold mode

usually tries to keep the current pitch angle. The reference pitch angle θ is

thus the pitch angle that was present at the moment that the hold mode

was activated. Finally, it is necessary to design the pitch controller block.

It usually consists of a proportional, an integral and a derivative action: the

right gains Kp, KI and KD must be chosen. It can happen that, with the

new gains, the damping ratio of (for example) the short period motion has

shifted a bit. If it falls outside of the requirements, the SAS of the aircraft



140 7. Stability Augmentation System

needs to be adjusted. This is not a problem in the case of an UAV.

The trasnfer function of the regularor GR,γ(s) is equal only to a gain

Kp = −3.5.

7.3.2 Altitude Hold Mode

The altitude hold mode prevents pilots from constantly having to maintain

their altitude. The input (feedback) comes from the altimeter. The system

then uses the elevator to control the altitude. The way in which the altimeter

is modelled depends on the type of altimeter. For a radar or GPS altimeter,

it is used Haltimeter ≈ 1. However, for a barometric altimeter, it is possible

to include a lag. The servo trasnfer function is always considered as in the

precedent cases.

The reference value of the height h is set in the mode control panel. To

control h, we must have some expression for h in our aircraft model. But h is

not one of the parameters in the basic state space model of the aircraft. So,

we need to derive an expression for it. This is done, using ḣ = V sin γ ≈ V γ.

The altitude hold mode also consists of a proportional, an integral and a

derivative action. However, often it turns out that an integral action is not

necessary. And since generally it is necessary to keep controllers as simple

as possible, it can be simply a PD controller.

Figure 7.4: Block Diagram for the Altitude Hold Mode

In figure 7.4 the transfer function Gtot,γ(s) represents the pitch attitude

autopilot designed while Gp,h is the transfer function 6.35. As in the prece-
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dent cases the transfer function of the sensor GH,h(s) is not considered. In

this case the regulator GR,h(s) is equal to a proportional gain Kp = 0.005.

A clearly scheme which includes all the longitudinal basic autopilots is

depicted in figure 7.5.

Figure 7.5: Block Diagram for the Complete Autopilot System

7.3.3 Speed Hold Mode

The airspeed hold mode holds a certain airspeed. It uses the airspeed sensor

as input and it controls the throttle. Of course, the airspeed sensor should be

modelled. For GPS airspeed calculations, it is possible to use HV−sensor(s) ≈
1. However it is supposed to be equal to one. The engine servo has been

modelled with a lag of τ = 20 while the engine with a τ = 1 (due to lack

of experimental data). Taking the engine model into account might seem

complicated. Luckily, there is an alternative. It is possible to include the

engine effects in the state space model and consequently it is possible to add

a term KthδT to the equation for u̇. This term then represents the thrust, due

to the throttle setting. In this way it is necessary to model only the servo.

The reference value of the velocity V is often set at the mode control panel.
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Alternatively, it can be derived from the actions of the pilot. For example, if

the pilot manually pushes the throttle forward, the computer increases the

desired (reference) velocity V. The GP (s) transfer function is described by

equation 6.36.

The diagram block is showed in figure 7.6

Figure 7.6: Block Diagram for the Speed Hold Mode

For this control the proportional gain Kp = 100.

7.4 Basic Lateral Autopilot System

7.4.1 The roll angle hold mode

The roll angle hold mode prevents the pilot from constantly having to ad-

just/control the roll angle during a turn. It uses the roll angle gyro as sensor

and it effects the ailerons. The roll angle gyro and the aileron servo are again

modelled as Hgyro(s) ≈ 1 and Hservo(s) =
20
s+20

.The roll angle that is used as

reference angle is defined on the mode control panel. When modelling the

aircraft, it is often assumed that rolling is the only degree of freedom. This

reduced model significantly simplifies matters. In fact, the transfer function

between φ(s) and δa(s) is descripted in equation 6.44.

Nevertheless, it is often worth while to check whether the behaviour of

the full model (without the simplifications) is much different from that of

the reduced model. It can, for instance, occur that the Dutch roll becomes
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unstable in the full model, whereas the reduced model does not indicate this.

The block diagram presented in figure 7.7 explains this loop.

Bank-angle-to-aileron

)(, sG R φ )( sG Aδ )(, sG P φ
-

+

Figure 7.7: Block Diagram for the Roll Angle Hold Mode

The regulator of the roll angle has been set Kp = 0.25.

7.4.2 Heading Angle Control Mode

The heading angle control mode controls the heading. It does this by giving

the aircraft a roll angle. In fact, it sends a signal to the (coordinated) roll

angle hold mode, telling it which roll angle the aircraft should have. This

roll angle is maintained until the desired heading is achieved. As sensor, this

system uses the directional gyro, modelled as Hgyro(s) ≈ 1. Its output effects

the ailerons. (The latter is evident, since the system controls the roll angle

hold mode).

The reference angle ψ is defined by the pilot, through the mode control

panel. There is, however, a problem. In the aircraft model, it is not always

possible to have ψ as one of the state parameters. To find it, it is possible to

use the equation: ψ̇ = q sinφ
cos θ

+ r cosφ
cos θ

.

This can be simplified assuming q = 0 and θ = cost. Besides, φ is

considered a small angle and it results: ψ̇ = r
cos θ

or ψ = r
s cos θ

.

The transfer function is 6.45. The block diagram presented in figure 7.8

all the scheme of the lateral autopilot.

The gain Kp of this loop has been set equal to 0.8.
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Figure 7.8: Block Diagram for the Heading Angle Hold Mode

7.5 Simulation on the 6DoF Software Simu-

lator

The guidance laws presented in chapter 3 and 5 are simulated on a software

simulator of the Pioneer.

The guidance law created with the Lyapunov vector field technique is

not presented because, as it will be shown later, the guidance law created

through the oscillatory control is able to create a Lemniscate when the target

is fixed. Considering that this thesis is focused on different approaches to

follow a ground moving target, it is more convenient to present the results

of the oscillatory control than the Lyapunov vector field.

However it must be considered that, only through the application of the

vector field to the Lemniscate, it has been possible to derive the oscillation

control solution. Besides, if the position of the target is sampled every T

period, a Lemniscate vector field could be created (this solution is still under

research).

The equation of motion described at the beginnig of this section are easily

implemented on the Matlab Simulink software. One of the most important

thing is that all the aerodynamic coefficents derived from [5] are reproduced
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inside the simulator through the use of different look-up tables (see figures

7.9 and 7.10).

Figure 7.9: Look-up table for the forces

Figure 7.10: Look-up table for the moment

The UAV is supposed to be equipped with a standard autopilot perform-

ing typical autopilots mode: altitude hold, heading angle hold, yaw damping

and speed hold mode. These autopilots have been descripted in the precedent

section.The cruise speed of the Pioneer is 35[m/s] at an altitude of 500[m].

A comparison between the nonlinear guidance law and the oscillatory

approach is made in order to appreciate the different trajectories.

In this section two different paths are supposed for the target:

1. Target along a straigh line with a different velocity profile (see figure

7.11)



146 7. Stability Augmentation System

2. Target with a constant velocity along a slightly bend

Case 1

The target velocity profile chosen for both the guidance laws is depicted

in figure 7.11 where it can be also derived that the simulation lasts 2000[s].

Figure 7.11: Target velocity profile Case 1

Nonlinear Guidance Law

In figure 7.12 the trajectory created by the nonlinear guidance law is

depicted: the distance remains around the fixed value of 500[m]. Even if the

error on the radious desired e = R−RD is not equal to zero, the UAV remains

around the target. In particular, when the target stops its movement, the

UAV starts a circle loitering circuit ensuring a continuos live sensing. Figure

7.13 shows that, through the altitude hold autopilot designed, the UAV is

able to mantain the desired altitude. The oscillations around the desired

value are due to the continuos turns given by the guidance laws. However

figure 7.14, shows that the roll angle and the pitch angle are limited and

acceptable for an UAV.

Oscillatory Control

The results of the oscillatory control (with the gain K1 = 40) are repre-

sented in the subsequent figures (7.15, 7.16 and 7.17). The trim frequency ω0

is set to 0.01. This choice influences the amplitude of the oscillation around
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Figure 7.12: 3D positions with Oscillatory Control

Figure 7.13: Altitude with Oscillatory Control
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Figure 7.14: Attitude with Oscillatory Control Case 1

the target.As it can be seen the roll angle φ and the pitch angle θ have re-

spectively: the former a maximum value around 20[deg], the latter remains

constant for almost all the simulation (figure 7.17).

The altitude plot (see figure 7.16) shows a small oscillation around the

fixed trim value of 500 [m]. This is simply due to the turns that the UAV

performs during the tracking: in fact the speed hold mode maintains the

prescribed value of 35[m/s] but this value is the trim value for a steady

flight. During a turn the lift force decreases and an increment of thrust

should be applied for holding a constant height value.

Case 2

The target velocity profile is considered at a constant value of 10[m/s].

The simulation lasts 2000[s] as in the precedent case.

Nonlinear Guidance Law

All the considerations written for the Case 1 can be repeated here, where

the target performs a curve path (see figures: 7.18, 7.19 and 7.20).

Oscillatory Control

The oscillatory control, as it can be seen in figure 7.21, shows an os-
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Figure 7.15: 3D positions with Oscillatory Control

Figure 7.16: Altitude with Oscillatory Control
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Figure 7.17: Attitude with Oscillatory Control Case 1

Figure 7.18: 3D positions with Oscillatory Control Case 2
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Figure 7.19: Altitude with Oscillatory Control Case 2

Figure 7.20: Attitude with Oscillatory Control Case 2
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cillation trajectory around the positions of the target and the Lemniscate

trajectory once the target stops. All the considerations on the attitude angle

and altitude can be repeated as in the precedent case.

Figure 7.21: 3D positions with Oscillatory Control Case 2
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Figure 7.22: Altitude with Oscillatory Control Case 2

Figure 7.23: Attitude with Oscillatory Control Case 2
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Chapter 8

Conclusion

The problem of tracking a moving or fixed ground target with an UAV has

different solutions. In particular, the constraints of a fixed airspeed and mini-

mum normal accelleration avoid different nonlinear technique used in robotics

application. Besides, the effect of the wind makes some other guidance laws

adopted for the unicycle, useless.

In this thesis, different novel approaches are proposed not only for follow-

ing a ground moving target but also for monitoring it when the target stops.

In chapter 3, a wind robust guidance law able to guide the UAV towards the

target and, once reached, to ensure a circular loiter path around the follower

is preseted. Further investigations must be carried out in order to make the

final error between the circle reached and the desired one equal to zero.

In chapter 4 a novel application of the known Lyapunov vector field tech-

nique is proposed. The chance to overfly the target more than one time, as

it is with the nonlinear guidance law of chapter 3, could be very useful. Be-

sides, the lemniscate figure ensures a maximum visibility of the target which

is considered in the middle of the figure. The vector fields presents a fail safe

towards wind effect.

The impossibility to use the guidance law proposed with the Lyapunov

vector fields when the target is moving, has created the oscillator control

approach presented in chapter 5. The use of a center of oscillation moving

around the positions of the target, together with a particular guidance law

presented in section 2.3 ensures a particular pursuit of the target. It is

155



156 8. Conclusion

important to underline that, with this method a Lemniscate figure is ensured

when the target is fixed. Further investigations must be done, in order to

make the creation of the oscillatory trajectory stable for all the possible target

trajectories.

In chapter 6 a static and dynamic analysis of a particular UAV model is

made and in chapter 7 classical autopilots are designed in order to try the

proposed guidance on a 6DoF software simulator.
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