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“No começo, pensei que estivesse lutando para salvar seringueiras, 
depois pensei que estava lutando para salvar a floresta amazônica.  

Agora, percebo que estou lutando pela humanidade” 
(“At first, I thought I was fighting to save rubber trees, 

then I thought I was fighting to save the Amazon rainforest. 
 Now I realize I am fighting for humanity.”) 

 

(Chico Mendes, Brazilian Environmentalist) 

 

« C'era una volta... 
- Un re! - diranno subito i miei piccoli lettori. 

No ragazzi, avete sbagliato: c'era una volta un pezzo di legno. »  
(“Centuries ago there lived--  

"A king!" my little readers will say immediately.  
No, children, you are mistaken. Once upon a time there was a piece of wood”) 

 

(Carlo Collodi, incipit de "Le avventure di Pinocchio") 

 

“A model should be as simple as possible, but not simpler than that” 
 

(Albert Einstein) 
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Abstract i

ABSTRACT  
 

Atmospheric CO2 concentration ([CO2]) has increased over the last 250 years, mainly 

due to human activities. Of total anthropogenic emissions, almost 31% has been 

sequestered by the terrestrial biosphere. A considerable contribution to this sink comes 

from temperate and boreal forest ecosystems of the northern hemisphere, which 

contain a large amount of carbon (C) stored as biomass and soil organic matter. 

Several potential drivers for this forest C sequestration have been proposed, including 

increasing atmospheric [CO2], temperature, nitrogen (N) deposition and changes in 

management practices. However, it is not known which of these drivers are most 

important.   

The overall aim of this thesis project was to develop a simple ecosystem model which 

explicitly incorporates our best understanding of the mechanisms by which these 

drivers affect forest C storage, and to use this model to investigate the sensitivity of the 

forest ecosystem to these drivers. 

I firstly developed a version of the Generic Decomposition and Yield (G’DAY) model to 

explicitly investigate the mechanisms leading to forest C sequestration following N 

deposition. Specifically, I modified the G’DAY model to include advances in 

understanding of C allocation, canopy N uptake, and leaf trait relationships. I also 

incorporated a simple forest management practice subroutine. Secondly, I investigated 

the effect of CO2 fertilization on forest productivity with relation to the soil N availability 

feedback. I modified the model to allow it to simulate short-term responses of 

deciduous forests to environmental drivers, and applied it to data from a large-scale 

forest Free-Air CO2 Enrichment (FACE) experiment. Finally, I used the model to 

investigate the combined effects of recent observed changes in atmospheric [CO2], N 

deposition, and climate on a European forest stand.  

The model developed in my thesis project was an effective tool for analysis of effects of 

environmental drivers on forest ecosystem C storage. Key results from model 

simulations include: (i) N availability has a major role in forest ecosystem C 

sequestration; (ii) atmospheric N deposition is an important driver of N availability on 

short and long time-scales; (iii) rising temperature increases C storage by enhancing 

soil N availability and (iv) increasing [CO2] significantly affects forest growth and C 

storage only when N availability is not limiting. 
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ITALIAN ABSTRACT 
 

La concentrazione atmosferica di CO2 ([CO2]) è aumentata negli ultimo 250 anni, 

principalmente a causa delle attività umane. Circa il 31% di tutte le emissioni di natura 

antropogenica viene sequestrato dagli ecosistemi terrestri. Un contributo considerevole 

a tale sequestro viene dalle foreste temperate e boreali dell’emisfero nord, che 

immagazzinano una grande quantità di carbone (C) sotto forma di biomassa e 

sostanza organica del suolo. Sono  state proposte varie ipotesi alternative per spiegare 

tale stoccaggio, incluso l’aumento della [CO2] in atmosfera, della temperatura e delle 

deposizioni azotate e cambiamenti nelle pratiche gestionale; resta comunque ancora 

conosciuta quale di queste ipotesi abbia il maggio effetto.  

Scopo di questo progetto di tesi è sviluppare un semplice modello di ecosistema che 

incorpori esplicitamente le nostre migliori conoscenze dei meccanismi attraverso cui 

questi fattori influenzano il sequestro di C e usare tale modello per investigare la 

sensitività dell’ecosistema forestale a tali fattori.  

A tal fine, in primo luogo ho sviluppato una versione del modello G’DAY (Generic 

Decomposition and Yield) per indagare esplicitamente i meccanismi per il sequestro di 

C in seguito alle deposizioni azotate. Ho modificato il modello G’DAY per includervi le 

ultime conoscenze riguardo l’allocazione di C, l’assorbimento fogliare di azoto e le 

relazioni tra i principali tratti fogliari. Ho inoltre aggiunto una semplice subroutine per 

simulate la gestione forestale. In secondo luogo ho indagato l’effetto delle 

fertilizzazione da CO2 sulla produttività forestale in relazione alla disponibilità di azoto 

nel suolo. A questo scopo ho modificato il modello per poter simulate la risposta di 

breve tempo delle foreste decidue ai fattori ambientali, e l’ho applicato ai dati derivanti 

da un esperimento di fertilizzazione carbonica di larga scala (FACE, Free Air Carbon 

Enrichment). In fine ho usato il modello per indagare l’effetto combinato dovuto ai 

cambiamento della [CO2] atmosferica, delle deposizioni azotate e climatici su una 

foresta europea. 

Il modello sviluppato nel progetto di tesi si è rivelato uno strumento efficace per 

analizzare gli effetti dei fattori ambientali sull’immagazzinamento di C da parte degli 

ecosistemi forestali. Risultati chiave includono: (i) la disponibilità di azoto ha un ruolo 

fondamentale nel sequestro di C degli ecosistemi forestali; (ii) le deposizioni azotate 

sono importanti cause per l’aumento di disponibilità di azoto a breve e lungo periodo; 

(iii) l’aumento di temperatura aumenta il sequestro di C aumentando la disponibilità di 
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N nel suolo; (iv) l’aumento di [CO2] ha un effetto significativo sulla crescita forestale e il 

sequestro di C solo quando la disponibilità di azoto non è limitante.   
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1.1 INTRODUCTION 

Atmospheric CO2 concentration ([CO2]) has increased globally by about 38% over the 

last 250 years, from 280 ppm in the pre-industrial period (1750) to 385 ppm in 2008 

(http://www.globalcarbonproject.org). The rate of growth in [CO2] is also increasing, 

despite some year to year variability: the growth rate was larger during the period 

2000-2006 (average 1.93 ppm yr-1, or 4.1 PgC yr-1) than it has been since the 

beginning of continuous direct atmospheric measurements (1960-2005 average: 1.4 

ppmyr-1) (IPCC, 2007; Canadell et al., 2007). This increase in global atmospheric [CO2] 

is mainly due to human activities: primarily emissions from fossil fuels combustion, gas 

flaring and cement production, but also emissions due to land use changes and 

management such as deforestation (Houghton, 2003), biomass burning (Andreae & 

Merlet, 2001; van der Werf et al., 2004), crop production and conversion of grasslands 

to croplands (ICPP, 2007).  

The annual increase in atmospheric [CO2] is substantially smaller than the annual 

anthropogenic emissions, because of natural sinks. Of total combined anthropogenic 

emissions (fossil fuel plus land use), almost 45% remained in the atmosphere, while 

oceans are estimated to have taken up approximately 24%. The remaining 31% (2.8 

PgC yr-1) was sequestered by the terrestrial biosphere (IPCC, 2007; Canadell et al., 

2007). Although the location of this significant terrestrial carbon (C) sink is still debated, 

a considerable contribution to the sink likely comes from temperate and boreal forest 

ecosystems of the northern hemisphere, which are estimated to sequester 

approximately 0.6–0.7 Pg C yr-1 (Goodale et al., 2002).  

Forest ecosystems contain a large fraction of C stored in land as biomass and soil 

organic matter (Hyvönen et al., 2007). They also control the main bidirectional C flux 

between atmosphere and soil. Plants absorb CO2 from the atmosphere through 

photosynthesis, releasing oxygen back to the atmosphere. They use the C to produce 

sugars for their growth, storing it in their leaves, twigs, trunk and root system. Part of 

the C fixed by the plant is transferred to the soil through above and below ground litter 

and rhizodeposition. Forest ecosystems release CO2 back to the atmosphere via plant 

respiration (autotrophic respiration) on a short time scale and soil decomposition 

processes (heterotrophic respiration) on longer time scales. The difference between 

the amount of C absorbed and released during a period of time determines the role of 

the ecosystem with respect to the C budget: the forest ecosystem is a sink if the 

difference is positive, while it is a source if the difference is negative. Forest 
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ecosystems can change from source to sink, or vice versa, depending on different 

factors. 

To be able to predict the future course of the contribution to the global C budget by 

forest ecosystems, it is necessary to identify the major driving factors causing large-

scale forest C sequestration. A wide range of potential drivers has been identified and 

includes increasing atmospheric [CO2], rising temperature, increasing nitrogen (N) 

deposition, and changing forest management practices, all of which affect 

photosynthesis, plant growth and soil C decomposition (Ciais et al., 2008). 

Results from free-air CO2 enrichment (FACE) experiments have demonstrated a 

significant stimulatory effect of increased [CO2] on forest productivity (Norby et al., 

2005), leading to more C stored in tree biomass. Some studies on forest growth in 

CO2-enriched environments suggest that the potential for a growth response to 

increasing [CO2] is limited by the lack of nutrient availability (Oren et al., 2001; Luo et 

al., 2004; de Graaff et al., 2006; Johnson, 2006; Körner, 2006). However, there is some 

evidence of increased belowground C allocation under elevated [CO2], with consequent 

increase in N uptake, even in N-limited ecosystems (Finzi et al., 2007). Moreover, 

elevated [CO2] can also affect heterotrophic respiration by decreasing soil 

decomposition rate, thereby further promoting soil C sequestration (Six et al., 1998; 

Hyvönen et al., 2007).       

Global temperatures are rising. The average global temperature increased by 0.74°C 

from 1906 to 2006, and eleven of the twelve warmest years since 1850 occurred in the 

period 1995 – 2006 (IPCC, 2007). Changes in mean air temperature may affect forest 

productivity and carbon sequestration by increasing plant photosynthetic and 

autotrophic respiration rates, lengthening growing season (Myneni et al., 1997; Menzel 

& Fabian, 1999; Saxe et al., 2001; Nemani et al., 2003) and altering soil decomposition 

rate and nutrient mineralization (Saxe et al., 2001; Davidson & Janssens, 2006).  

Over the last 150 years, N deposition has also increased, mainly due to the use of 

fossil fuels, deforestation and agricultural practices (Mayewski et al., 1990; Galloway et 

al., 1995; Vitousek et al., 1997; Holland et al., 1999, 2005). The amount of nitrogen 

deposition varies from 0.1 gN m-2 yr-1, in remote forests at high latitude, up to 10 gN m-2 

yr-1, in industrial central Europe (Jarvis & Fowler, 2001). Although the quantitative 

impact of N deposition on the terrestrial carbon cycle is strongly debated, N input via 

atmospheric deposition has been likely a growth promoting factor during recent years, 

since N is the most significant growth-limiting nutrient in many forests worldwide 

(LeBauer & Treseder, 2008). Moreover, increased N deposition can increase the rate 
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of accumulation of soil organic matter (Berg & Matzner, 1997; Harrison et al., 2000; 

Schulze et al., 2000; Hagedorn et al., 2003). In a recent study, Magnani et al. (2007), 

analysing the C balance across a network of temperate and boreal forests in Europe 

and North America, demonstrated a strong positive relationship between N deposition 

and average forest C sequestration (Högberg, 2007). Although the size of the response 

indicated by this study has been questioned, since it appears to show a very high ratio 

of C sequestered per unit N deposited (Sutton et al., 2008; de Vries et al., 2008; 

Hyvönen et al., 2008; Högberg, 2007), there is consensus among scientists that, 

qualitatively, N deposition is likely to enhance forest C sequestration. 

There have been significant improvements in forest management practices in recent 

years. These include new regeneration methods, changes in species used and 

modifications to tending, thinning and harvesting regimes. These improvements aim to 

maximise wood production in combination with soil and water protection and have 

resulted in enhanced site productivity (Spiecker, 1999; Ciais et al., 2008; Kahle et al., 

2008).   

Although several studies have investigated the effects of increasing atmospheric [CO2], 

temperature, N deposition and changes in management practices on forest growth, 

there is still no consensus on their relative importance for forest NPP and C 

sequestration during recent decades, and how that might change in future. Some 

studies suggest that the major driver of growth increment in Europe is N deposition 

(Nellemann & Thomsen, 2001; Solberg et al., 2004; Van Oijen et al., 2004, 2008; van 

Oijen & Jandl, 2004; Mellert et al., 2008) while [CO2] and temperature have very little 

effect (Solberg et al., 2009; Laubhann et al., 2009). Rehfuess et al. (1999), using a 

combined (model-statistical-empirical) approach to investigate the relationships 

between recent changes of growth and nutrition of three European forests,  found that 

the combination of [CO2] and N deposition increase could account for a 15-20% 

increase in forest net primary production (NPP), while the rise in temperature was 

relatively unimportant. Using the complex forest model EFM (Thornley, 1991), 

parameterized for 22 stands across Europe, Milne & Van Oijen (2005) concluded that 

the main driver of increased forest growth in the 20th century has been increased N 

deposition, rather than increased [CO2] or climate change. Recently, the EU-

RECOGNITION project attempted to clarify the causes of the observed forest growth 

increase using long-term growth studies and models, and came to the conclusion that 

N availability should be regarded as the main driver for this increase (Kahle et al., 

2008; Van Oijen et al., 2008). On the other hand, using the ORCHIDEE model, Ciais et 

al. (2008) concluded that a significant fraction of the trend in European forest NPP may 
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be explained by changes in climate (temperature and precipitation) and [CO2]. Although 

Ciais et al. (2008) did not consider N limitations in their work, they suggested that N 

deposition has only a minor role.   

Several studies assessing potential climate change effects on future forest production 

also do not take account of the N deposition effect, identifying the main drivers of forest 

C accumulation as increased [CO2] and/or temperature (Loustau et al., 2005; Zaehle et 

al., 2007; Morales et al., 2007; Kirilenko et al., 2007; Sitch et al., 2008). Other studies 

find a role for both N deposition and climate: in a tree model study on the effect of N 

deposition and climate change on growth of different European forests, Laubhann et al. 

(2009) found a positive correlation between growth and both N deposition and 

temperature.     

Thus, there is uncertainty about the direction and magnitude of the effects of these 

driving factors ([CO2], temperature, N deposition, and forest management) on forest C 

sequestration. It is difficult to conduct experiments sufficiently long enough to observe 

responses on long time scales. Ecosystem models are therefore important tools for 

identifying and quantifying the mechanisms involved in the response of nutrient-limited 

forest ecosystems to increased [CO2], temperature, N deposition and forest 

management on different time scales. 

The overall aim of this thesis project was to develop a simple ecosystem-scale model 

which explicitly incorporates our best understanding of the impacts of N deposition, 

[CO2], temperature and forest management on forest function, and to use it to 

investigate the sensitivity of the forest system to these factors and their interactions. 

The model code is presented in Appendix I.   

1.2 THESIS OUTLINES 

The chapters that constitute the thesis are written as self-contained papers, either 

published in, or formatted for submission to, scientific journals. A brief synopsis of each 

of these papers is given below. 

Chapter 2 is focused on developing a model that is able to qualitatively describe the 

effect of N deposition on forest ecosystem C sequestration. To this end, a new version 

of the Generic Decomposition and Yield (G’DAY) model, originally developed by 

Comins & McMurtrie (1993), is presented. The new model version takes into account 

several recent scientific advances, including: advances in understanding of the 

relationship between C allocation and NPP (Palmroth et al., 2006); experimental 
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evidence for canopy N uptake (Sievering, 1999; Jenkinson et al., 1999; Sparks, 2009); 

and leaf trait relationships found by Reich et al. (1999). Moreover, it incorporates a 

simple forest management practice subroutine. Finally, the N leaching formulation was 

changed so that leaching occurs only for soil nitrogen in the form of nitrate, whilst 

nitrification is a direct function of soil C:N ratio (Aber et al., 2003).The aim of this part of 

the project was not to quantify precisely how much C is stored by ecosystems for a 

given amount of N deposition, but to further develop our understanding of the 

mechanisms leading to forest C sequestration following N deposition. This chapter has 

been published in Global Change Biology.  

Chapter 3 investigates the effect of CO2 fertilization on forest productivity with relation 

to soil N availability feedback, testing the G’DAY model against data from the closed-

canopy Sweetgum (Liquidambar styraciflua L.) plantation FACE experiment at Oak 

Ridge National Laboratory (ORNL). In particular the chapter focuses on testing whether 

G’DAY model can explain several key observations at this experiment: a decline in leaf 

N concentration over time; a decrease in net primary productivity (NPP) over time; and 

decreasing stimulation of NPP by elevated [CO2] over time. To this end the original 

version of the G’DAY model, developed for evergreen forest stands, was modified to fit 

the development of the ORNL FACE deciduous plantation. This new model version 

was then coupled to the Model Any Terrestrial Ecosystem (MATE) model (McMurtrie et 

al., in preparation), which incorporates the effect of atmospheric [CO2] and 

meteorological data (T, PAR, RH, rain) on light use efficiency (LUE). This chapter has 

been formatted for submission to Global Change Biology.  

Chapter 4 investigates the combined effect of recent changes in forest growth 

environmental drivers, i.e. atmospheric [CO2], N deposition, and climate variables 

(temperature, precipitation and radiation) on a pine forest stand near Bordeaux, 

France, with the aim of quantifying the relative contributions of these changes. The 

effect of observed changes in atmospheric [CO2], climate and N deposition over the 

period 1950-2000 were assessed for gross primary production, net ecosystem 

production, maximum annual increment and wood and tree C. In order to remove the 

overwhelming effects of forest age on growth and C sequestration (Pregitzer & 

Euskirchen, 2004; Magnani et al., 2007), the model was run assuming a wide range of 

years for forest establishment, thus simulating chronosequences over which outputs 

could be averaged, as suggested by Magnani et al., 2007). The effects of the 

environmental factors on chronosequence-scale outputs were examined separately 

and in combination, using a full factorial design analysis (Box et al., 1978). This chapter 

has been formatted for submission to Tree Physiology. 
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1.3 COLLABORATION AND CANDIDATE’S ROLE 

The work presented in this thesis has been developed in collaboration with others. The 

contribution of different parties to the work are as follows. 

Work presented in chapter two originated from a discussion with Federico Magnani 

about the possibility to test his work findings about nitrogen deposition and forest 

carbon sequestration (Magnani et al., 2007) using a simple forest ecosystem model. I 

chose the model to use, coded the model, made all the modifications, analysed its 

behaviour, and wrote the paper that was published in Global Change Biology (Dezi et 

al., 2010). Belinda Medlyn and Giustino Tonon both made major editorial contributions 

to this work.  

Chapter three originated from a project about the use of forest ecosystem models to 

reproduce observed forest productivity under elevated CO2 concentration. I coded the 

model, analysed its behaviour, and wrote the paper for submission to Global Change 

Biology. Model modifications to reproduce specific site behaviour were discussed with 

Belinda Medlyn, Ross McMurtrie and Federico Magnani. Belinda Medlyn and Giustino 

Tonon provided feedback on analyses and editorial suggestions to the draft prepared 

by me. Colleen Iversen calculated model parameters and model initial values and 

collected field data. Richard Norby provided us with the data from ORNL experiment 

used in this work. 

Chapter four originated from the decision to apply the final model version to one of the 

chronosequence studies from Magnani et al. (2007). I coded the model, analysed its 

behaviour, and wrote the paper for submission to Tree Physiology. Model modifications 

and analysis were decided with Federico Magnani. Federico Magnani, Giustiono Tonon 

and Belinda Medlyn provided feedbacks on analysis and editorial suggestions to the 

draft prepared by me. Denis Loustau provided us the data from “Le Bray” site used in 

the work, while, Twan van Noije provided us with model N deposition estimates at “Le 

Bray” site.  
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Abstract

The perturbation of the global nitrogen (N) cycle due to the increase in N deposition over the
last 150 years will likely have important effects on carbon (C) cycling, particularly via impacts
on forest C sequestration. To investigate this effect, and the relative importance of different
mechanisms involved, we used the Generic Decomposition And Yield (G’DAY) forest C–N
cycling model, introducing some new assumptions which focus on N deposition. Specifically,
we (i) considered the effect of forest management, (ii) assumed that belowground C allocation
was a function of net primary production, (iii) assumed that foliar litterfall and specific leaf
area were functions of leaf N concentration, (iv) assumed that forest canopies can directly take
up N, and (v) modified the model such that leaching occurred only for nitrate N. We applied
the model with and without each of these modifications to estimate forest C sequestration for
different N deposition levels. Our analysis showed that N deposition can have a large effect
on forest C storage at ecosystem level. Assumptions (i), (ii) and (iv) were the most important,
each giving rise to a markedly higher level of forest C sequestration than in their absence. On
the contrary assumptions (iii) and (v) had a negligible effect on simulated net ecosystem
production (NEP). With all five model modifications in place, we estimated that the C storage
capacity of a generic European forest ecosystem was at most 121 kg C kg�1 N deposited. This
estimate is four times higher than that obtained with the original version of G’DAY
(27.8 kg C kg�1 N). Thus, depending on model assumptions, the G’DAY ecosystem model
can reproduce the range of dC : dNdep values found in the literature. We conclude that effects
of historic N deposition must be taken into account when estimating the C storage capacity of
a forest ecosystem.

Keywords: allocation, canopy nitrogen uptake, carbon and nitrogen cycles, leaf nitrogen concentration,

models, specific leaf area
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Introduction

In the global carbon (C) budget, the terrestrial biosphere

is thought to be a significant C sink, sequestering on the

order of 2.8 Pg C yr�1 (Field 2001; Myneni et al., 2001;

Canadell et al., 2007). Although the location of the sink

is still debated, it appears likely that a considerable

contribution to the sink comes from temperate and

boreal forest ecosystems of the northern hemisphere;

these forests are estimated to sequester approximately

0.6–0.7 Pg C yr�1 (Goodale et al., 2002). A key scientific

challenge is to identify the cause of this sink, in order to

be able to predict its future time course.

There are several alternative hypotheses for the cause

of the forest sink: these include forest expansion follow-

ing agricultural abandonment; effects of changes in

management practices on established forests; and im-

pacts of increasing atmospheric CO2 concentration

([CO2]), temperature and nitrogen (N) deposition (Ciais

et al., 2008). At present, it is unclear how much each of

these mechanisms contributes to the sink, or how that

might change in future.

Many scientists have suggested that increasing atmo-

spheric [CO2] is the primary mechanism, stimulating

forest growth and leading to more C stored in wood

biomass. However, studies on forest growth in CO2-

enriched environments suggest that the potential capa-

city for a growth response to increasing [CO2] may be

limited by the lack of nutrient availability for growth

(Oren et al., 2001; Luo et al., 2004; de Graaff et al., 2006;

Johnson, 2006; Körner, 2006).
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Other researchers have focused on the important role

played by N deposition on forest growth (Townsend

et al., 1996; Jenkinson et al., 1999; Nadelhoffer et al., 1999;

Sievering, 1999; Högberg, 2007; Magnani et al., 2007).

Atmospheric N deposition has increased over the last

150 years, mainly due to the use of fossil fuels, defor-

estation and agricultural practices (Mayewski et al.,

1990; Galloway et al., 1995; Vitousek et al., 1997; Holland

et al., 1999, 2005). The impact on the terrestrial C cycle is

uncertain, and is strongly debated. An early attempt to

estimate the impact of N deposition on C sequestration

was made by Townsend et al. (1996). These authors

assumed that C is principally stored in wood, due to its

high C : N ratio (ranging from 150 to 300 depending on

vegetation type). They then used the NDEP model to

estimate a terrestrial C storage ranging from 0.44 to

0.74 Pg C yr�1 due to N deposition.

This estimate was contested by Nadelhoffer et al.

(1999). From 15N studies in nine temperate forests, they

found that only a small fraction (20%) of the tracer

ended up in the trees, with just 5% allocated to woody

biomass, while about 70% entered the forest floor and

soil pools. Therefore, they argued that increasing N

deposition is not the major contributor to the terrestrial

C sink in forested northern temperature regions as

suggested by Townsend et al. (1996). Instead, they

calculated that the contribution of N deposition to forest

C uptake was only of the order of 0.25 Pg yr�1, and

suggested that there must be other factors accounting

for the terrestrial sink. In their calculations, Nadelhoffer

et al. (1999) also assumed fixed C : N ratios for all

biomass pools.

Nadelhoffer et al.’s (1999) conclusions were in turn

questioned, by both Jenkinson et al. (1999) and Sievering

(1999). These authors pointed out that Nadelhoffer’s

group had simulated atmospheric deposition by adding
15N-tracer to forest soil in all the experiments, while

much of the atmospheric N deposition is actually inter-

cepted and absorbed by the forest canopy. They argued

that, if the direct canopy uptake is taken into account,

the N allocated to wood biomass would be doubled

or tripled (10–15%) and the C sink increased by 50–

100% over that estimated by Nadelhoffer et al. (1999)

(Sievering, 1999).

More recently, Magnani et al. (2007), analysing mea-

surements of average C sequestration in chronose-

quences of a number of temperate and boreal forests

in Europe and North America, demonstrated a strong

positive relationship between N deposition and average

forest C sequestration (Högberg, 2007). These results

have also been questioned, since they appear to show a

very high ratio of C sequestered per unit N deposited

(Högberg, 2007; Hyvönen et al., 2008; de Vries et al.,

2008; Sutton et al., 2008).

Thus, there is much uncertainty and debate about the

impact of atmospheric N deposition on forest C seques-

tration. One step towards resolving this issue is to

develop better ecosystem models, which incorporate

our best understanding of the impacts of N deposition

on forest function, and to use these models to advance

our understanding of the sensitivity of the forest system

to N deposition.

The key aim of this paper is to develop a model that is

able to qualitatively describe the effect of N deposition

on forest C. The model takes into account several recent

scientific advances, including: advances in understand-

ing of the relationship between allocation and net

primary production (NPP) (Palmroth et al., 2006); ex-

perimental evidence for canopy N uptake (CNU) (Jen-

kinson et al., 1999; Sievering, 1999; Sparks, 2009); and

leaf trait relationships found by Reich et al. (1999). We

do not claim to quantify precisely how much C is stored

by ecosystems for a given amount of N deposition.

Instead, we aim to further develop our understanding

of the mechanisms leading to forest C sequestration

following N deposition.

There are many different connections between the C

and N cycles in forest ecosystems. An increase in N

deposition may lead to an increase in photosynthesis

per unit land area by increasing both foliar biomass and

the concentration of photosynthetic enzymes, if other

nutrients are not limiting (Oren et al., 1988; Katz et al.,

1989b). The canopy seems to be able to absorb a certain

percentage of atmospheric N deposition (Sievering,

1999; Sievering et al., 2007), directly increasing the

photosynthetic rate. On the other hand, an increase in

tissue N concentration also leads to an increase in

respiration rate (Pregitzer et al., 1998; Reich et al.,

1998), and to a faster turnover of leaves (Reich et al.,

1999). Increasing N availability also causes a shift in the

allocation of plant C away from roots and their symbio-

tic mycorrhizal fungi, both short-lived, towards above-

ground structures with a high C : N ratio, which may

lead to an increase in C sequestration in forest wood

biomass (Berg & Matzner, 1997; Högberg, 2007). Apart

from its direct effects on biomass accumulation, this

shift will results in lower fine root litter deposition. The

ensuing reduction in soil C sequestration will be coun-

ter-balanced by the retardant effect on the decomposi-

tion of plant litter and soil organic matter (SOM; Berg &

Matzner, 1997; Högberg, 2007).

In this context, the use of a forest ecosystem model

that explicitly includes the effect of N deposition on

ecosystem dynamics is an important and helpful tool to

investigate these connections between the C and N

cycles and to obtain more realistic predictions of future

forest C balance. Here, we present a new version of the

Generic Decomposition and Yield (G’DAY) model
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developed by Comins & McMurtrie (1993). To focus on

the effect of N deposition on net forest ecosystem

production, we started from the model version of

McMurtrie et al. (2001), which incorporates explicitly

the dynamics of the SOM C and N pools, and we

introduced the following new model assumptions: (1)

all dead stems are exported each year from the ecosys-

tem as forest management practice; (2) C allocation is a

function of NPP (Palmroth et al., 2006); (3) foliar litterfall

and specific leaf area (SLA) are functions of leaf N

concentration (Reich et al., 1999; Burton et al., 2000);

(4) there is direct CNU (Sievering et al., 2007); and (5)

leaching occurs only for soil N in the form of nitrate,

while nitrification is a direct function of soil C : N ratio

(Aber et al., 2003). We estimated the sensitivity of model

estimates of net ecosystem production (NEP) to each

assumption, both individually and in all combinations,

using a full factorial design analysis (Box et al., 1978).

We then tried to explain the model sensitivities using

the nitrogen-use efficiency (NUE) analysis of Halliday

et al. (2003).

Materials and methods

The model

G’DAY is a process-based model that simulates C and N

dynamics in a forest ecosystem (Comins & McMurtrie,

1993). The model is fully described elsewhere (Comins

& McMurtrie, 1993; Medlyn et al., 2000); here we give a

brief overview of the original model, and then describe

in detail the modifications we have made.

G’DAY is composed of two submodels, representing

plant and soil components. The plant submodel simu-

lates the dynamics of the C and N contents of three

pools: foliage, wood (stem, branches and coarse roots)

and fine roots. The wood N content is divided into an

immobile component, held in structural compounds,

and a mobile (nonstructural) component that can be

retranslocated to support new woody tissue. The soil

submodel, as in the CENTURY soil model (Parton et al.,

1987, 1993), consists of four litter pools (structural and

metabolic, above- and belowground) and three SOM

pools (active, slow and passive) of C and N content. The

integrated model simulates plant C assimilation, plant

N uptake, C and N allocation among plant pools, tissue

senescence, N retranslocation, litter and SOM decom-

position, soil mineralization and immobilization, N

input by atmospheric deposition and biological fixation,

and N loss by leaching and gaseous emission.

In a previous study, McMurtrie et al. (2001) assumed

that the C : N of the substrate entering the three soil

pools decreases linearly between given minimum and

maximum values, as soil inorganic N (Ninorg) decreases

from a critical value (Ncrit) to zero. We have retained

this assumption, replacing the minimum and maximum

values of SOM C : N ratio with values more suitable for

a forest soil (Nalder & Wein, 2006).

We assumed that N taken up by the plant depends on

soil inorganic N (as in Comins & McMurtrie, 1993) but

is also a saturating function of root biomass, as in

Dewar & McMurtrie (1996a, b).

The following modifications were then made to the

model.

Forest management. It is known that forest management

of established forests, afforestation and natural

regeneration following agricultural abandonment are

significant processes in controlling the C sink in the

northern hemisphere (Houghton et al., 1999; Caspersen

et al., 2000; UN ECE/FAO, 2000; Fang et al., 2001;

Magnani et al., 2009). Changes in local forest

management may therefore have an important effect

on the global C balance (Schulze et al., 2000; Magnani

et al., 2007, 2009). To investigate this potential effect, and

its interaction with increasing N deposition, we

introduce into the model a simple representation of

forest management. Forest age class distribution was

not explicitely modelled, but all developmental stages

were supposed to be evenly represented at the scale of

interest, making it possible to consider natural mortality

and management a continuous rather than discrete

event.

In the absence of forest management, we assumed a

constant tree mortality rate as a result of self-thinning

and stand-replacing disturbances, with dead wood

entering the litter pools. To simulate forest

management, we assumed natural mortality to be

replaced by silvicultural practices (thinnings and

maturity harvests), with the only difference that dead

woody stems (a constant fraction of total woody

biomass) are exported from the system. Branches and

coarse roots of harvested trees are assumed to enter the

surface and soil structural litter pools, respectively, and

decompose over time.

A fixed value of 2.5% was assumed for annual

harvesting (and natural mortality), irrespective of site

fertility and yield class. Although lower mortality rates

are generally observed as a result of competition and

self-thinning, the figure represents a conservative

estimate when also the effects of stand-replacing

disturbance (windstorms, pests, etc.) and harvest at

maturity are considered (Eriksson, 1976).

The annual export of a fixed percentage of wood

represents a C sink for the forest system. The amount of

N in stems exported is very low due to the high C : N

ratio of stemwood (Kostiainen et al., 2004). Hence,

introducing the assumption of forest management
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should increase the overall ecosystem ability to

sequester C per unit of N entering the system

(dC : dNdep). We also expect that the export of woody

stems should decrease heterotrophic respiration and

shift the C : N ratio of soil pools with consequences for

soil N dynamics and N uptake.

Allocation as a function of NPP. Following photo

synthesis, C products can be transported to the

different parts of the plant (roots, stem and leaves)

and used for respiration or for growth. Although the

mechanisms of plant allocation between organs are not

well understood, they do appear to follow an

optimization principle, in which the plant is assumed

to try to obtain all the resources it needs for growth with

the lowest energetic cost (Aber & Melillo, 2001). For

example, under conditions of good light and no water

stress, nutrient availability determines the amount of C

allocated to roots, with a greater proportion of NPP

going to the roots on infertile sites than in fertile sites

(Santantonio, 1989; Landsberg & Waring, 1997). In a

review of existing literature, Litton et al. (2007) found

that increased nutrient availability increased parti

tioning to aboveground NPP and decreased partiti

oning to total belowground C flux.

Here, we have used a function relating allocation to

NPP, developed by Palmroth et al. (2006), based on

measurements of aboveground production and soil

efflux in forest CO2 enrichment experiments. After

rearrangement, this function links root allocation to

NPP, as follows:

Zr ¼
1

1þ 1

a Y0 þQ exp �BNPPð Þ
� �

; ð1Þ

where Zr is the root allocation coefficient

(dimensionless), a is the carbon-use efficiency

(NPP : GPP ratio, dimensionless), assumed constant

for a given forest type (DeLucia et al., 2007) and Y0, Q

and B are parameters describing the relationship

between total belowground C allocation and NPP (in

kg C m�2 yr�1) as in Palmroth et al. (2006). This

relationship suggests that, as tree production

increases, the percentage of available C allocated to

the root system decreases. In a system where the

production is limited only by N availability, Eqn (1)

results in a negative relationship between Zr and NPP.

Allocation to stemwood is assumed to be

proportional to foliage allocation

Zw ¼ dZf; ð2Þ

where Zf and Zw are the allocation coefficients to foliar

and wood, and d is an empirical parameter, here set

equal to 4 (Iivonen et al., 2006).

Equations for foliage allocation can then be

calculated from the requirement that

Zr þ Zf þ Zw ¼ 1: ð3Þ

Dependence of SLA and leaf mortality on leaf N

concentration. Reich et al. (1999) showed that there is a

convergence in interspecific leaf trait relationships

across diverse biomes. Testing 100 species in six

different biomes, they found significant relationships

between leaf N concentration (nf), SLA and leaf life span

in the pooled data. These relationships indicated that

leaf life span decreases, and SLA increases, with

increasing leaf N concentration.

Based on this work, we introduced expressions for

SLA and leaf mortality as functions of leaf N

concentration. We replotted data reported in Reich

et al. (1999) to obtain the following relationships:

SLA ¼ 767n1:0889
f ; ð4Þ

where SLA is the specific leaf area (in m2 kg�1 C) and nf

is the leaf N concentration (in kg N kg�1 C), and

gf ¼
n1:424

f

0:0108
; ð5Þ

where gf is the leaf mortality (in year�1).

The increase in SLA with nf [Eqn (4)] makes

productivity more sensitive to nf, because of the

enhanced leaf area, and therefore intercepted

radiation, in addition to the direct physiological effect

of nf on photosynthetic production. Conversely, Eqn (5)

represents a negative feed-back between nf and plant

productivity, because leaf mortality increases as nf

increases, reducing photosynthetic area.

CNU. Reactive N can be taken up directly by the canopy

via stomata leaf cuticle and bark (Katz et al., 1989a, b;

Sparks, 2009) and can amount to a substantial fraction

of atmospheric N deposition (De Vries et al., 2001) and

forest N requirements (Harrison et al., 2000). N

deposition is variable in time, space and composition

(Sievering et al., 2007). In general, the greater the

atmospheric input, the greater the net canopy effects

(Lovett, 1992), but there appears to be a maximum level

of N utilization and retention by forest ecosystems

(Aber et al., 2003; Gaige et al., 2007). Different studies

show that canopy N absorption varies depending upon

season, whether deposition is in the form of ammonia

or nitrate, and according to the age of the stand

(Tomaszewski et al., 2003; Klopatek et al., 2006; Gaige

et al., 2007). In their study, Sievering et al. (2007) found

that 80% of the growing-season total deposition

intercepted by the canopy was retained by foliage and

branches. This CNU constituted about 1/3 of the

canopy growing season new N demand at this conifer

N D E P O S I T I O N A N D F O R E S T C A R B O N S E Q U E S T R AT I O N 1473

r 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1470–1486

20



forest site. Studies with 15-N tracer confirm the retention

of wet N deposition by forest canopies (Garten et al.,

1998; Wilson & Tiley, 1998; Gaige et al., 2007).

In our model, we assumed that the CNU was equal to

the product of a CNU efficiency (CNUe), the vegetation

cover fraction (c) and the total N deposition (Nin):

CNU ¼ CNUe � c �Nin

CNUe was estimated to be equal to 0.8 (Sievering

et al., 2007) and c was here given a representative value

of 0.6 (Chopping et al., 2008). Although strictly valid

only in the case of wet deposition, the resulting N

deposition absorption percentage of 48% appears to be

consistent with independent estimates using budget

model (De Vries et al., 2001). Nin was set to

0.4 g N m�2 yr�1, as in McMurtrie et al. (2001), for the

low N deposition simulations and then was increased to

1, 2 or 3 g N m�2 yr�1.

It is still unclear whether N taken up by the canopy is

directly assimilated by leaves and used immediately in

the process of photosynthesis (Katz et al., 1989b). There

is evidence that part of the canopy N retention is

absorbed by branches and twigs rather than foliage

(Katz et al., 1989a; Boyce et al., 1996; Wilson & Tiley,

1998; Harrison et al., 2000; Sievering et al., 2007). To take

into account this uncertainty about the fate of N once

absorbed, we simulated two different hypothetical

scenarios: in (a) the N taken up is all added directly to

the N concentration of the foliage to stimulate the

photosynthesis (CNU 1 Nf); or alternatively, in (b) the

N taken up is added to the N taken up by roots and then

allocated to the different parts of the plant (CNU 1 Ur).

We compared these two scenarios to the scenario (c)

where there was assumed to be no CNU (CNU 5 0). In

each case, the quantity of N input to the soil was set

equal to the difference between Nin and CNU.

Leaching. In the original version of G’DAY (Comins &

McMurtrie, 1993), inorganic N in the soil is simulated as

a single pool, with no difference between ammonium

and nitrate forms of N. The loss rate of N through

leaching and gaseous emissions was assumed to be

proportional to the inorganic N pool (McMurtrie et al.,

2001). It is known that the main form of N lost by

leaching is nitrate, because of its greater mobility in soil

(Addiscott et al., 1991; Aber & Melillo, 2001). To

investigate the effect of a more realistic description of

N leaching on ecosystem productivity, we represented

the soil inorganic N as two pools, an ammonium and a

nitrate pool, and divided the net mineralization influx

between these pools, based on the soil C : N ratio as in

Aber et al. (2003). We modelled the N loss through

leaching and gaseous emissions as a constant fraction

of the nitrate inorganic N pool only, as such losses are

mostly from that form of N (Addiscott et al., 1991).

Simulations

We ran a series of simulations to study the influence of

each modification to the model on simulated NEP, as

follows:

(1) We first investigated the impact of forest manage-

ment on NEP. To do this, we ran the original model

version and varied only the forest management

assumption. In these simulations, SLA, leaf mortal-

ity and allocation coefficients were held constant,

the original leaching formulation was used and no

CNU was assumed.

(2) Second, we investigated the impact of the relation-

ships between allocation patterns and NPP [Eqns

(1)–(3)] and between leaf N, SLA and leaf mortality

[Eqns (4) and (5)]. Using the model version from (1)

with management applied, we began with a base-

case simulation where allocation, SLA and leaf

mortality were held constant (referred to below as

the ‘all const’ case). We then ran a similar simulation,

but with allocation driven by NPP [Eqns (1)–(3)]

and litterfall and SLA functions of leaf N concentra-

tion [Eqns (4) and (5)]. This case is referred to as the

‘all var’ case. The other intermediate cases between

these two combinations were also investigated.

(3) Third, we investigated the effect of CNU on the

NEP. To do this, we set the model from (2) in the ‘all

var’ case. Then we compared three different as-

sumptions regarding CNU: (i) no CNU (CNU 5 0);

(ii) the N taken up is all added to the N concentra-

tion of the foliage (CNU 1 Nf); (iii) the N taken up is

added to the N taken up by roots and then allocated

to the different parts of the plant (CNU 1 Ur).

(4) Fourth, we investigated the difference between our

new formulation for N losses and the previous

leaching formulation. Here, we used the version of

the model with management, ‘all var’ and CNU 1 Nf

as our base case.

(5) Finally, we investigated the overall effect of the new

version of the model, for different rates of N deposi-

tion (ranging from 0.4 to 3 g N m�2 yr�1) on NEP

after 100 years from the N deposition increased. We

performed two sets of simulations: one with the

basic model as in McMurtrie et al. (2001) (‘all const’,

CNU 5 0, without management and the old leach-

ing formulation), and a second with the model with

all new features (‘all var’, CNU 1 Nf, with manage-

ment and the new leaching formulation).

For all simulations, we ran the model to reach the

equilibrium state (defined as that state for which the
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difference between successive annual values of all out-

put variables is o10�11) under the baseline climate, and

then we imposed a step increase in the N input rate,

from 0.4 to 2 g N m�2 yr�1.

Although the parameters used in the simulation are

not site specific, they can be considered representative

of a European temperate stand of Norway spruce [Picea

abies (L.) Karst.]. We supposed that the site is N-limited

but not water-limited. A list of the parameters used is

given in the supporting information Appendix S1. The

model was run with a weekly time step using constant

mean annual climate data.

Sensitivity analysis

The simulations were run under constant environmen-

tal conditions (averaging out the annual climatic cycle).

To investigate the effect of environmental factors on the

model results, a sensitivity analysis was carried out.

The factors analysed were the two input meteorological

data [photosynthetically active radiation, (PAR) and the

soil temperature] and the variable characterizing soil

[soil silt plus clay fraction (T)]. The sensitivity of the

model to each of these input variables was explored by

varying each by a constant amount above and below the

value used in simulations (Table 1). The output variable

considered was the NEP 100 years after the step in-

crease in N deposition, for four different values of N

input rate (0.4, 1, 2 and 3 g N m�2 yr�1). The range of the

environmental factors chosen for the sensitivity analysis

are representative of environmental conditions across

Europe. In particular, the radiation range was obtained

from the JRC European solar radiation map (Šúri et al.,

2007), which represents the yearly sum of global irra-

diation incident on optimally inclined south-oriented

photovoltaic modules, averaged over the period

1981–1990.

Factorial analysis

To better understand the interactions among the five

new sets of relationships introduced in G’DAY, we also

implemented the full factorial design model analysis as

described by Box et al. (1978), Henderson-Sellers (1993)

and Henderson-Sellers & Henderson-Sellers (1996). For

this methodology, simulations must be run for all

combinations of factors at each of the perturbation

levels. Hence for n factors each with two levels, 2n

simulation runs are required. In our study the factors

considered are the five new relationships introduced to

the model, and the two levels represent: the cases ‘all

const’ and ‘all var’ for SLA, litterfall and allocation;

CNU 5 0 and CNU 1 Nf for the CNU; the original and

new formulations of leaching; and the inclusion or not

of forest management. The model output used for this

analysis was the NEP 100 years after the step increase in

N deposition.

The outputs are evaluated to estimate the effect of

each factor. Several alternative algorithms can be used

for this purpose. Here, we used the alternative method

given by Box et al. (1978, p. 322). The standard errors of

effects were calculated using higher-order interactions

(Box et al., 1978, p. 327) and the relative importance of

the single or combination of effects was assessed by the

Table 1 Net ecosystem production, 100 years following a step increase in nitrogen deposition from 0.4 g N m�2 yr�1, for different

values of Nin, PAR, soil temperature (Tsoil), and soil texture parameter (T)

Nin (g N m�2 yr�1) 0.4 1 2 3

PAR (MJ m�2 yr�1)

1800 �23 �20 �17 �16 %

2250 0.30 0.39 0.52 0.61 kg C m�2 yr�1

2700 20 17 15 13 %

Tsoil ( 1C)

5 �1 �2 �3 �2 %

10 0.30 0.39 0.52 0.61 kg C m�2 yr�1

15 1 3 4 3 %

T (�)

0.3 0 1 2 2 %

0.5 0.30 0.39 0.52 0.61 kg C m�2 yr�1

0.7 0 �1 �2 �2 %

The central bold numbers refer to the values of PAR, Tsoil and T used for the simulations ran in this study (from Figs 1–7) and to the

corresponding NEP. The other values are the percentage change with respect to the bold values. The simulations were run with SLA,

leaf mortality and allocation variable, the new leaching formulation, CNU 1 Nf and stem wood biomass export of 2.5% yr�1 as forest

management.
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normal probability method (Daniel, 1976; Box et al.,

1978; Henderson-Sellers, 1993).

NUE and N uptake

To identify the major physiological process or processes

that drive NEP following increased N deposition, we

applied the analysis of Halliday et al. (2003). This

analysis expresses NPP as the product of N uptake

and NUE, and thus identifies whether changes in NPP

are due principally to changes in N uptake or to

changes in NUE. In our study, we applied this analysis

in two steps. First we decomposed NEP into the terms

NPP and heterotrophic respiration (Rh). Then we ex-

pressed NPP as the product of N uptake and NUE, and

calculated the changes in each of these terms.

Results

Forest management

Before investigating the effect of increased N deposition

rate on the managed and unmanaged systems, we

investigated the effect of introducing a management

assumption into the model. To this end, we ran the

model to equilibrium for the system without manage-

ment and then introduced the management assump-

tion. For this simulation, SLA, leaf mortality and

allocation were kept constant (the case ‘all const’), and

we assumed the original leaching formulation, no CNU

(CNU 5 0), and a constant incoming N deposition rate

of 0.4 g N m�2 yr�1.

The effect of forest management on NEP is shown in

Fig. 1. Following the introduction of forest manage-

ment, it can be observed a sharp increase in NEP,

reaching a maximum (1.7 kg C m�2 yr�1) after 11 years,

followed by a progressive decline (Fig. 1a). NPP also

increased following the introduction of forest manage-

ment, from 1.6 kg C m�2 yr�1 at equilibrium to a max-

imum of 3.2 kg C m�2 yr�1 after 13 years, and then

progressively declined over time (Fig. 1b). Rh, on the

other hand, decreased following the introduction of

forest management (Fig. 1b). The overall increase in

NEP is due to the combination of the effects on NPP

and Rh.

The constant removal of stems (material with high

C : N ratio) from the ecosystem, in addition to repre-

senting a sink at forest ecosystem level, appears to have

a twofold effect. In the short term, the prevailing effect

is a reduction in the average C : N ratio of litter entering

the soil, which leads in turn to an increase in net N

mineralization. As a consequence, the amount of inor-

ganic N available for plant growth increases and so

does productivity. By removing stems, on the other

hand, management decreases the input of biomass to

the soil, and thus decreases the rate of decomposition

and soil respiration. As a result of both processes, NEP

is higher for the managed system than for the unma-

naged system.

In the long run, however, the N released is locked up

in standing biomass and partly exported from the

system as timber. Moreover, the reduction in C and N

soil pools and SOM decomposition translates in a slow

decline in net N mineralization rate. Plant N uptake and

NPP also decline slowly over time as a result. Even-

tually, the managed system reaches a new equilibrium

state with higher NEP, but lower inorganic N, NPP and

Rh compared with the equilibrium state of the unma-

naged system (see starting point in Fig. 2).

The effect of an increase in N deposition rate on both

managed and unmanaged forest ecosystem is shown in

Fig. 2. For these simulations, we ran the model to reach

the equilibrium state with and without management,

with SLA, leaf mortality and allocation kept constant

Fig. 1 Effect of introducing forest management at year 0 on net

ecosystem production (a), net primary production and hetero-

trophic respiration (b). The simulations were run with specific

leaf area (SLA), leaf mortality and allocation constant, the

original leaching formulation, canopy nitrogen uptake

(CNU) 5 0 and a rate of input nitrogen deposition of

0.4 g N m�2 yr�1.
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(the case ‘all const’), the original leaching formulation,

no CNU (CNU 5 0) and a step increase in external

nitrogen deposition at time 0 from 0.4 to 2 g N m�2 yr�1.

Following the step increase in deposition rate there

was an increase in NEP, which was sharper for the case

without forest management, where NEP increased from

0 to 0.12 kg C m�2 yr�1 in 6 years, than for the case with

forest management, where NEP increased from 0.28 to

0.3 kg C m�2 yr�1 over the same period of time (Fig. 2a).

In both cases, both NPP (Fig. 2b) and Rh (Fig. 2c)

increased following the step change in N input rate. For

the no-management case, the NPP increased by 9% after

7 years, while in the long term the rate of increase in

NPP was linear. Rh increased at a slower linear rate

throughout the simulation. In the case of managed

stand, NPP increased by just 2.4% after 7 years, while

in the long term the rate of increase was linear and

approximately half that in the unmanaged stand. Rh

increased at a very slow, linear rate.

The lower values of NPP overall in the with-manage-

ment simulation, as explained above, are due to the lower

amount of inorganic N available for plant growth, result-

ing from the smaller soil pools and the export of N due to

the constant removal of dead stems from the system.

As N deposition increases, N uptake, leaf N concen-

tration and photosynthesis increase in both cases, but

the absolute increase is lower in the management sce-

nario because of the stronger competition by soil mi-

crobes for inorganic N under these more N-limited

conditions.

The higher overall values of Rh in the no-manage-

ment case are caused by the increased amount of C in

soil pools associated with dead trees. In both cases, the

increase in N deposition rate enhances Rh because of the

gradual increase in litter production. This increase is

steeper in the no-management case because of the

additional contribution from stems.

Although both NPP and Rh are greater in the no-

management simulation, the difference between the

two (i.e. NEP) is higher in the simulation with manage-

ment. In the absence of management, NEP at equili-

brium must be zero by definition, as a result of the

build-up of soil C. The positive NEP at equilibrium in

the management simulation equals the export of C

biomass through harvesting.

Following a step increase in N deposition, both

managed and unmanaged systems become positive C

sinks (NEP40), but while the C sink increases over time

in the managed forest system, it progressively declines

towards zero in the unmanaged forest system. In both

cases, the system is returning to equilibrium. In the

unmanaged forest system, equilibrium NEP is zero

Fig. 2 Effect of forest management on net ecosystem production (a), net primary production (b), heterotrophic respiration (c) and

nitrogen uptake (d). The simulations were run with specific leaf area (SLA), leaf mortality and allocation constant, the original leaching

formulation, canopy nitrogen uptake (CNU) 5 0 and a step increase in nitrogen deposition at time 0 from 0.4 to 2 g N m�2 yr�1.
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regardless of the N deposition rate, whereas the equili-

brium NEP in the managed system increases with

increasing N deposition, due to the higher stem produc-

tion being exported.

SLA, leaf mortality and allocation

Figure 3 shows the simulated NEP in response to a step

increase in atmospheric N deposition from 0.4 to

2 g N m�2 yr�1 at time 0. There are eight different simu-

lations resulting from eight different combinations of

constant and/or variable allocation, leaf mortality and

SLA. In all of these simulations, we assumed that forest

management removes 2.5% of stem wood biomass per

year, there is no CNU and leaching follows the original

formulation.

Figure 3 shows a greater response of NEP to in-

creased N deposition for the ‘all var’ simulation than

for the ‘all const’ simulation for the entire simulation

period (from 0 to 140 years). In both of these simula-

tions there is a gradual increase in NEP, from

0.28 kg C m�2 yr�1 with low N input, to

0.32 kg C m�2 yr�1 in the ‘all const’ simulation and to

0.37 g C m�2 yr�1 in the ‘all var’ simulation, after 140

years of high N input.

Since NPP grows at a slightly greater rate than Rh,

NEP shows a slow, linear annual increase of

0.31 g C m�2 yr�1 for the ‘all var’ simulation and

0.11 g C m�2 yr�1 for the ‘all const’ simulation.

This slightly higher increase in NEP in response to N

deposition in the ‘all var’ simulation is due to the

increase in SLA and foliar biomass (Cf), and thus in

leaf area index (LAI), which enhance NPP, and to a

decrease in root biomass (Cr), which decreases Rh as

compared with ‘all const’ simulation. The increase in

SLA is a consequence of the positive relationship be-

tween SLA and leaf N concentration, while the changes

in foliage and root biomass are related to the new

allocation function. When allocation coefficients are

held constant, on the contrary, the increase in NPP

due to the increase in SLA is offset by the decrease in

Cf due to the increase in litterfall. Therefore, as indi-

cated by the other simulations in Fig. 3, the difference

between the ‘all const’ and the ‘all var’ cases is due

primarily to the change in the allocation relationship,

with a small effect of the change in SLA formulation. All

cases in which allocation coefficients are held constant,

even if the SLA and mortality change, show similar

values for NEP.

CNU

To investigate the effect of CNU, three different simula-

tions were performed. The baseline simulation was the

‘all var’ case from the previous analysis, with SLA, leaf

mortality and allocation being assumed to vary, a stem

wood biomass export of 2.5% yr�1 as forest manage-

ment, the original leaching formulation and a step

increase of external N deposition at time 0, from 0.4 to

2 g N m�2 yr�1.

Figure 4 shows the model response for the three

different hypotheses of (a) no CNU, (b) N taken up is

added to the N taken up by roots and then allocated to

the different parts of the plant (CNU 1 Ur) and (c) N

taken up is all added to the N concentration of the

foliage and directly stimulates photosynthesis

(CNU 1 Nf). In both cases (b) and (c) we can distinguish

a short- and a long-term response. In the short term, the

transient response of the system is described by a fast

increase in the NEP, followed by a smooth decrease. In

the long term, there is a quasi-equilibrium response

where NEP continues to increase, but at a slower linear

rate. The short-term response is more marked and

slightly faster in the case of CNU 1 Nf, increasing by

about 85% in 17 years, than in the case of CNU 1 Ur,

increasing by about 63% in 23 years, with the former

always greater than the latter. Both simulations always

give a value of NEP that is higher than in the CNU 5 0

case, where NEP increases by only 17% over the first 23

years.

In both cases (b) and (c), photosynthesis (GPP) shows

a faster initial increase than in case (a) because of

the higher amount of N in leaves derived from canopy

Fig. 3 Net ecosystem exchange in response to a step increase in

atmospheric nitrogen deposition from 0.4 to 2 g N m�2 yr�1 at

year 0 for all eight different combinations of constant and/or

variable allocation, leaf mortality and specific leaf area (SLA). In

all simulations we assumed as forest management to export 2.5%

of stem wood biomass per year, no canopy nitrogen uptake and

the old formulation of nitrogen leaching. The black lines refer to

the combinations with a variable allocation while the grey ones

refer to the simulations with a constant value for allocation equal

to the values at equilibrium.
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uptake and instantaneously available. This rapid in-

crease in GPP, along with the time-lag in respiration

rate, explains the rapid increase and decrease in NEP.

After a transient period of about 70 years for case (b)

and 90 years for case (c), a quasi-equilibrium state is

reached, where the annual rates of increase in NEP are

0.17 and 0.1 g C m�2 yr�1, respectively. The damped

response for case (b) compared with case (c) occurs

because less N is routed to the foliage, reducing the

amount that is instantly available for photosynthesis.

Leaching

Figure 5 shows the difference in model behaviour with

the original and new leaching formulations. Here, our

baseline case had SLA, leaf mortality and allocation

variable (‘all var’), a stem wood biomass export of

2.5% yr�1 as forest management, CNU allocated to

foliage (CNU 1 Nf) and a step increase in external N

deposition at time 0 from 0.4 to 2 gN m�2 yr�1.

Although there was no observable difference in the

NEP value or trend between the two formulations (the

two lines overlap, Fig. 5a), the N losses for leaching and

gas emissions were less for the new formulation than

for the original one (Fig. 5b). This reduction in N loss

occurs because, in the new formulation, only the nitrate

component is lost. Even if the C : N ratio of the soil is

such that all mineral N is in the nitrate form, there is still

a small quantity of N from deposition that is in the

ammonium form in soil and so is not lost by the

ecosystem.

The transient initial decrease in N loss in the new

formulation occurs because of an initial decrease in the

nitrate N pool. This initial decrease is mainly related to

an instantaneous decrease in net mineralization flux

following the step increase in N deposition.

The reduction in N lost by leaching does not lead to a

perceptible change in NEP because the reduction is very

small (0.02 g N m�2 yr�1) compared with the total

amount of N added to the system (2 g N m�2 yr�1). From

our analysis, the reduction in N leached should result in

a change in NEP of 0.01%, a change too small to be

visible in Fig. 5a.

N deposition rate

The model response to different rates of N addition was

investigated (Fig. 6). Two different model formulations:

Fig. 4 Net ecosystem exchanges for the three different hypoth-

eses of canopy nitrogen (N) uptake: (i) no canopy N uptake

(CNU 5 0), (ii) N taken up by the canopy is added to the N taken

up by roots and then allocated to the different parts of the plant

(CNU 1 Ur), (iii) N taken up by the canopy is added to the

foliage N concentration (CNU 1 Nf). The simulations were

run with specific leaf area (SLA), leaf mortality and allocation

variable, a stem wood biomass export of 2.5% yr�1 as forest

management, the old leaching formulation and a step increase

of external nitrogen deposition at time 0 from 0.4 to

2 gN m�2 yr�1.

Fig. 5 Model response to the new and old leaching formula-

tions in terms of net ecosystem production (a) and nitrogen

losses for leaching and gas emissions (b). The simulations were

run with specific leaf area (SLA), leaf mortality and allocation

variable, a stem wood biomass export of 2.5% yr�1 as forest

management, CNU 1 Nf and a step increase in external nitrogen

deposition at time 0 from 0.4 to 2 g N m�2 yr�1.
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the new model final formulation, with SLA, leaf mor-

tality and allocation variable (the case ‘all var’), the new

leaching formulation, CNU 1 Nf, and a stem wood

biomass export of 2.5% yr�1 as forest management,

was compared with the original model formation with

SLA, leaf mortality and allocation constant (the case ‘all

const’), the original leaching formulation, no CNU and

no forest management. Figure 6 shows the NEP after

100 years from the beginning of the increase in external

N deposition rate vs. the different N addition rates: 0.4

(the equilibrium state), 1, 2 and 3 g N m�2 yr�1.

For all the different N input rates, the new model

formulation shows higher values of NEP compared

with the original model formulation. The higher NEP

values are principally due to the assumption of forest

management, with the assumptions regarding CNU

and the variability of C allocation also contributing

(see ‘Factorial analysis’). The modelled values of

SLA, leaf N concentration, allocation and leaf mor-

tality, for the four different N input rates are shown in

Table 2.

Sensitivity analysis

Figure 7 shows the NEP simulated by the model after

100 years from the N deposition rise, for four different

values of N input rates (0.4, 1, 2 and 3 g N m�2 yr�1). The

new formulation of the model (the case ‘all var’, the new

leaching formulation, CNU 1 Nf, a stem wood biomass

export of 2.5% yr�1 as forest management) was run. For

each value of N input rate, we ran 27 simulations,

corresponding to all possible combinations of three

different values of the three environmental variables

analysed: the PAR, the soil temperature and the soil

texture parameter (Table 1).

As shown in Table 1, the forest system is more

sensitive to the PAR than to the other climatic condi-

tions. Also the effect of N deposition is important, while

the effects of variations in soil temperature and soil

texture on the system are negligible.

An increase in PAR and soil temperature drives an

increase of NEP, while an increase in the soil texture

parameter T leads to a decrease in NEP. Therefore, the

maximum values for NEP after 100 years from the N

deposition rate rise (0.36, 0.48, 0.63 and 0.73 kg C m�2

Fig. 6 Net ecosystem production of the new and old version of

Generic Decomposition And Yield (G’DAY) for different rates of

nitrogen deposition (0.4, 1, 2 and 3 g N m�2 yr�1). The two

different model formulations were: specific leaf area (SLA), leaf

mortality and allocation variable, new leaching formulation,

CNU 1 Nf, and a stem wood biomass export of 2.5% yr�1 as

forest management (new); SLA, leaf mortality and allocation

constant, old leaching formulation, no canopy nitrogen uptake

and no forest management (old). The values of NEP refer to 100

years after the beginning of the increase in external nitrogen

deposition rate vs. the different nitrogen addition rates, while the

NEP for 0.4 g N m�2 yr�1 is the value at the steady state.

Table 2 Values of specific leaf area (SLA), nitrogen leaf con-

centration (nf), allocation (Zf, Zr, Zw) and leaf mortality (gf),

calculated with our new version of G’DAY, for different nitro-

gen deposition rates (Nin), 100 years following a step increase

in N deposition rate

Nin (g N m�2 yr�1) 0.4 1 2 3

SLA (m2 kg C�1) 6.89 7.52 8.51 9.37

nf (kg N kg C�1) 0.013 0.014 0.016 0.017

Zf (�) 0.12 0.13 0.15 0.16

Zr (�) 0.4 0.34 0.26 0.22

Zw (�) 0.48 0.53 0.59 0.62

gf (year�1) 0.19 0.22 0.26 0.29

Fig. 7 Results of the sensitivity analysis of the model to envir-

onmental factors for all the different combinations of values of

soil temperature (5, 10, 15 1C), soil texture parameter T (0.3, 0.5,

0.7), PAR (1800, 2250, 2700 MJ m�2 yr�1), and nitrogen deposition

(0.4, 1, 2, 3 g N m�2 yr�1). The simulations were run with specific

leaf area (SLA), leaf mortality and allocation variable, a stem

wood biomass export of 2.5% yr�1 as forest management, the

new leaching formulation and CNU 1 Nf.
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corresponding to the N input rates of 0.4, 1, 2 and

3 g N m�2 yr�1, respectively) are reached with maxi-

mum values of PAR and soil temperature in the coarsest

textured soils, while the minimum values (0.22, 0.31,

0.42 and 0.51 kg C m�2 corresponding to the N input

rates of 0.4, 1, 2 and 3 g N m�2 yr�1) are those with

minimum values of PAR and soil temperature in the

finest texture soils.

Factorial analysis

Table 3 shows the effects of all combinations of the new

relationships introduced in the model. The five as-

sumptions are: SLA and litterfall depend on leaf N

concentration (1), root allocation depends on NPP (2),

canopy N is assumed, with all the N taken up going

into the leaves (CNU 1 Nf) (3), new leaching is mod-

elled (4), forest management is assumed (5). For the

single factor effects, the assumption regarding man-

agement (5) has the greatest effect, followed by the

assumptions regarding CNU (3), and allocation (2). All

the two- and three-way interactions between these

three factors also had distinguishable effects. The other

two assumptions had negligible effects, both when

considered alone or in combination with other

assumptions.

NUE and N uptake

Figure 8 shows the percentage change over time of

NEP and its component terms, compared with their

initial equilibrium values. Here, we investigate the

full new formulation of the model (the case ‘all var’,

the new leaching formulation, CNU 1 Nf, and a stem

wood biomass export of 2.5% yr�1 as forest manage-

ment).

The rise in N deposition rate has a strong positive

effect on NEP, NPP and Rh (Fig. 8a). NEP increases by

80% with respect to the steady state value, while NPP

and Rh increase by about 35% and 20%, respectively.

From Fig. 8a, it emerges that the marked increase in

NEP is mainly due to the increase in productivity

(NPP), while its transient short-term shape is mainly

due to the time lag in soil respiration.

Figure 8b shows the percentage change with time of

NPP, N uptake and NUE, compared with their initial

equilibrium values. As the N deposition rate in-

creases, the N uptake, considered to be the sum of

N uptake from roots and CNU, increases instantly

manly due to the assumption of CNU. After a few

years, as the mineralization flux increases, the N

taken up by roots also increases, giving rise to the

slowly rising shape of N uptake. In contrast, NUE

shows a sharply transient negative response in the

first few years after the increase of N deposition,

followed by a progressive decline. This pattern is a

consequence of both the instantaneous increase in N

uptake in year 1, and of the lag in the response of NPP,

due to the time needed to increase the canopy under

elevated N input.

Table 3 Estimated effects of all combinations of new as-

sumptions introduced into the model

Effects

Estimated effects �
standard error (10�3)

Average 161.3 � 0.08

1 �1.39 � 0.17

2 46.91 � 0.17

3 60.02 � 0.17

4 0.92 � 0.17

5 220.72 � 0.17

12 0.51 � 0.17

13 �0.55 � 0.17

14 �0.008 � 0.17

15 �1.06 � 0.17

23 11.6 � 0.17

24 �0.21 � 0.17

25 38.6 � 0.17

34 �0.48 � 0.17

35 58.63 � 0.17

45 1.61 � 0.17

123 0.19 � 0.17

124 �0.0003 � 0.17

125 0.6 � 0.17

134 0.0048 � 0.17

135 �0.52 � 0.17

145 �0.02 � 0.17

234 �0.04 � 0.17

235 11.82 � 0.17

245 0.1 � 0.17

345 �0.24 � 0.17

1234 0.009 � 0.17

1235 0.23 � 0.17

1245 �0.01 � 0.17

1345 0.0004 � 0.17

2345 �0.06 � 0.17

123 456 0.004 � 0.17

The magnitude of the effects was evaluated using the method

given by Box et al. (1978, p. 322), while the standard errors of

effects were calculated using higher-order interactions (Box

et al., 1978, p. 327). The relative importance of the single or

combination of effects was assessed by the normal probability

method (Daniel 1976; Box et al., 1978; Henderson-Sellers, 1993).

The five assumptions are: (1) SLA and litterfall depend on leaf

nitrogen concentration; (2) root allocation depends on NPP; (3)

canopy nitrogen uptake is assumed, with all the nitrogen taken

up going into the leaves (CNU 1 Nf); (4) the new formulation

for leaching is used; (5) forest management is assumed.

N D E P O S I T I O N A N D F O R E S T C A R B O N S E Q U E S T R AT I O N 1481

r 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1470–1486

28



Discussion

Of all the new model assumptions considered in the

study, the inclusion of forest management appears to be

the most important. The constant removal of woody

biomass increases the capacity of the ecosystem to store

C, and makes it more sensitive to changes in the rate of

N deposition than in the case of unmanaged forest.

Our study shows that management practice can

strongly affect C storage capacity of the system by

changing C and N soil dynamics, and that this effect

is variable over time.

The predicted short-term impact of forest manage-

ment is consistent with results from sawdust amend-

ment studies (Fisher et al., 2000). The truly long-term

effects of forest management on growth and soil pro-

cesses are more difficult to ascertain: whether un-man-

aged old-growth forest can be considered at

equilibrium under current conditions is a matter of

debate, as they have been recently found to be substan-

tial C sinks, although not as strong as younger managed

forests (Luyssaert et al. 2008).

Based on model simulations, knowledge of the manage-

ment history of a given forest ecosystem is very important

to model correctly the response of the system to an increase

in N deposition rate, especially in reference to the northern

temperate zone where most forests are, or have been,

managed. If anything, the relevance of forest management

under conditions of increasing N deposition could have

been underestimated, because of the simplifying assump-

tion of a constant mortality rate, irrespective of site fertility

and yield class; shorter rotation periods and more substan-

tial harvests are generally observed under conditions of

high fertility and fast growth (Eriksson, 1976), resulting in a

greater export of C from the forest and a higher NEP.

A second important contribution to the higher simu-

lated net C uptake of the ecosystem came from the

introduction of the assumption regarding variable allo-

cation patterns.

It is known that C in plants is allocated to different

organs depending on the availability of the resources

and the age of the stand (Aber & Melillo, 2001; Litton

et al., 2007). In this framework, if the forest ecosystem is

growing in an environment in which the only limiting

resource is the availability of N, as in the case of our

simulations, a change in N availability would lead to a

change in allocation patterns. A less limiting N envir-

onment is associated with a higher percentage of C

being allocated to the foliage and stems than to roots.

This in turn leads to a higher NEP, because of the higher

C : N ratio and lower turnover rate of stems.

The importance of a variable allocation pattern

emerged also from a study on the response of three

ecosystem models (Century, BGC and Hybrid) to N

enrichment, where Levy et al. (2004) found that the

most sensitive parameter in those models was the

allocation to the fine roots, whose increase was asso-

ciated with a reduction in DCtotal :DNdeposition in all

cases. Similarly, Milne & van Oijen (2005) highlighted

the dangers of using a simple model with constant

allocation coefficients when modelling impacts of N

deposition. In agreement with the study by Milne &

van Oijen (2005), we also found a small decrease in the

amount of fine roots following a step increase in N-

deposition under the assumption of no management; in

contrast, in the with-management case, the amount of

fine roots was quite constant, despite a decrease in root

allocation, in good agreement with experimental evi-

dence (e.g. Iivonen et al., 2006). In our results, after 100

years from the rise of N-deposition from 0.4 to

1 g N m�2 yr�1, we found a decrease in Zr of 16.5% and

an increase in Zf and Zw of 11.2%.

Fig. 8 Percentage changes of net ecosystem production (NEP)

and factors related to the change in net primary production

(NPP) and heterotrophic respiration (Rh) (a), and factors related

to change in NPP, N uptake and NUE (b). Values of all variables

are relative to their value for the initial equilibrium state. The

simulations were run with specific leaf area (SLA), leaf mortality

and allocation variable, a stem wood biomass export of 2.5% yr�1

as forest management, the new leaching formulation and

CNU 1 Nf, and a step increase in external nitrogen deposition

at time 0 from 0.4 to 2 gN m�2 yr�1.

1482 S . D E Z I et al.

r 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1470–1486

29



In accordance with the suggestion by Santantonio

(1989) and Litton et al. (2007) that a change in root

allocation is at expense of wood allocation, in the case

of the rise in N deposition from 0.4 to 2 g N m�2 yr�1, we

found that while the percentage of NPP allocated to

foliage increased from 12% to 14%, the percentages of

NPP allocated to wood and root changed from 48% to

59% and from 40% to 26%, respectively.

The model formulation we chose for allocation (Palm-

roth et al., 2006) relates Zr directly to NPP. We preferred

this approach to that taken in other models (e.g. Thorn-

ley, 1991; Landsberg & Waring, 1997; Milne & van Oijen,

2005), in which root allocation is an explicit function of

age and environmental factors, because it of the advan-

tage of its simplicity and of its empirical foundation.

The third important model assumption that we in-

troduced regards the CNU.

Although it is not yet clear to what extent plants

absorb N from atmospheric deposition through their

leaves or bark (Katz et al., 1989a, b), and what is the fate

of the N once taken up, it is important to note that this

process has the potential to considerably increase the

capacity of the forest ecosystem to store C. If all the N

absorbed by the canopy is delivered directly to photo-

synthetically active foliage, there is an instantaneous

increase in photosynthesis and GPP. As autotrophic

respiration is assumed to be a constant fraction of

GPP, and Rh lags environmental changes, this increase

in GPP translates to an immediate increase in NEP.

Even under the assumption that the N taken up by

the canopy is used indirectly, adding it to the root

uptake and then assigned to the different parts of the

plant, we observed a substantial increased in NEP.

From this study, adding 0.4 g N m�2 yr�1 at equili-

brium, it results that CNU (0.19 g N m�2 yr�1) supplies

8% additional N compared with the root N uptake

(results not shown). These estimates are in agreement

with the results of Sievering et al. (2000), who, for a

similar N deposition input (0.53 g N m�2 yr�1), found a

CNU of 0.1–0.5 g N m�2 over the growing season,

equivalent to 10–20% of N root uptake over several

years time. We also found that this percentage increases

with increasing N deposition rate, representing 48% of

total N uptake for an input of 3 g N m�2 yr�1 (results not

shown), and that, in accordance with Rennenberg &

Gessler (1999), the increase in CNU results in a decline

of N uptake by the roots, which is reduced from 2.4 to

1.5 g N m�2 yr�1
, 100 years after a step increase in N

deposition from 0.4 to 3 g N m�2 yr�1.

From our simulation also it results that supplying

0.19 and 0.96 g N m�2 yr�1 (corresponding to N deposi-

tion rate of 0.4 and 2 gN m�2 yr�1, respectively) by CNU

enhances forest C sequestration by 6% and 40%, respec-

tively (Fig. 5). Model simulations seem to confirm that

the N absorbed by canopy can have a large effect on the

capacity of the forest to store C (Sievering et al., 2007).

This calls for a renewed effort towards a better quanti-

fication and understanding of this often neglected eco-

logical process.

Unfortunately at the moment, it is difficult to make

other comparisons between our results and the out-

comes of experimental studies, for several reasons. (i) In

fertilization experiments, N is usually added to the soil,

bypassing the possible effect of canopy uptake (Nadel-

hoffer et al., 1999; Pregitzer et al., 2008). (ii) In studies of

CNU, the authors have been largely interested in the

percentage contribution of CNU to the annual N re-

quired by leaves for their growth, rather than the total N

uptake and its effect on productivity (Boyce et al., 1996;

Wilson & Tiley, 1998; Harrison et al., 2000; Ignatova &

Dambrine, 2000; Sievering et al., 2007). (iii) There is also

a great difference in techniques used by different

authors, making it difficult to compare results from

different experiments.

Because of the uncertainty regarding the fate and

amount of N taken up by the canopy, and the evidence

from some studies (Katz et al., 1989a, b; Boyce et al.,

1996; Wilson & Tiley, 1998; Harrison et al., 2000; Siever-

ing et al., 2007), that braches, twigs and stems can also

play an important rule in N deposition assimilation, the

most realistic representation of CNU would be some-

where in between the two assumptions investigated in

this study, with a fraction of the N from deposition

taken up by the canopy becoming immediately avail-

able for photosynthesis and the rest being allocated to

the different parts of the tree.

Our study has shown, in accordance with Sparks

(2009), the importance of CNU as a pathway of N flux

into foliage, in addition to N soil-derived uptake and

reallocation. We believe this to be the first time that this

mechanism has been implemented in an ecosystem

model to assess the ecosystem C balance. Having de-

monstrated the potential relevance of the process for a

proper representation of forest C–N interactions, a more

detailed representation would be now advisable, con-

sidering the effect of LAI on wet and dry deposition,

possible saturation effects and their relationship with

canopy closure, and the effects of meteorological con-

ditions (rain, fog, . . .) and plant internal N status on

gaseous and wet uptake (Simpson et al., 2003).

Introducing direct effects of the leaf N concentration

on SLA and turnover into the model did not greatly

affect the estimated NPP of the ecosystem. An increase

in leaf N concentration was accompanied by an increase

in SLA, but also by an increase in turnover. The two

effects, one tending to increase the photosynthetic

capacity of the system and the other one tending to

decrease this capacity, balanced each other out after a
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very short time, without affecting the C storage capacity

of the system. Including assumptions about manage-

ment practice, variable C allocation, and the capacity of

the leaves to directly take up N, made the model more

sensitive to the input of N, increasing the estimated

capacity of the ecosystem to store C in response to

increased N availability. Using our new version of the

model, we found that the ecosystem C storage capacity

was enhanced by 121 kg C kg�1 N deposited. This esti-

mate is more than four times the value obtained with

the version of G’DAY of McMurtrie et al. (2001)

(27.8 kg C kg�1 N) and represents an upper boundary

estimate of dC : dNdep ratio of the ecosystem. Following

the initial step increase the estimated ecosystem

dC : dNdep ratio appears to be little variable over time.

The same happens when the rate of N deposition is

altered, and when different assumptions are taken into

account. Therefore, we can consider these two values as

the upper and lower value for the C storage by forest

ecosystem under N deposition. Keeping in mind that

this is intended as a qualitative, rather than a quantita-

tive study, we have demonstrated that the G’DAY

ecosystem model can reproduce the range of dC : dNdep

values found in literature (Nadelhoffer et al., 1999;

Högberg, 2007; de Vries et al., 2008; Magnani et al.,

2008; Sutton et al., 2008), depending on the assumptions

introduced about management and ecological pro-

cesses. That being so, a revision of our current under-

standing of C–N interactions in forest ecosystems and

of their representation in global models appears urgent,

also taking into account the effects of ecosystem history

and forest management, in order to model accurately

the C sequestration capacity of forest ecosystems.

Conclusions

N and C cycles are closely related and interact in many

complex ways. To better understand their relationship it

is important to represent as well as possible the direct

and indirect effects of N deposition on forest C cycle.

The model described in this paper appears to be a

helpful tool for this purpose. It is able to consider and

analyse these interactions and to predict their implica-

tions, highlighting a strong relationship between NEP

and N deposition, mediated by CNU, C allocation and

forest management. Simulations with this model show

that assessment of the C exchange of a forest ecosystem

without taking into account effects of N deposition can

easily lead to an underestimate of the C storage capacity

of the forest ecosystem. For this purpose, it is critical to

know about forest management and N deposition his-

tory, but other effects such as the dependence of SLA

and litterfall on foliar N concentration appear to be

negligible.

The qualitative analysis undertaken in this paper pro-

vides important insights into identification of the keys

areas of uncertainty regarding forest ecophysiological

processes considered by the model. In particular the

present study shows that C allocation and CNU can have

a critical role in determining the C storage capacity of

forest ecosystems. More knowledge of these processes

would be needed for further model development.

Although the model is also able to reproduce the all

range of values for C storage per N deposition found in

literature, we should stress here that this analysis is a

qualitative analysis, related to an ideal forest ecosystem

with no age or environmental effects, other than the N

deposition. It is beyond the scope of this paper to give a

quantitative answer to the debate that is currently

under way about the correct value of C : N ratio to use

when estimating forest C storage in response to N

deposition (Högberg, 2007; de Vries et al., 2008; Magna-

ni et al., 2008, Sutton et al., 2008).

A step forward in our analysis to better understand

the relationship between N deposition and NEP would

be to validate modelled simulation results against ex-

perimental data for a given forest or chronosequence.

Further model developments may also include: (i)

improvements in the formulation of CNU, encompass-

ing the dependence on LAI and the N deposition

saturation; (ii) explicit incorporation of the effect on

GPP of environment (as temperature, vapour pressure

deficit and soil water content); (iii) inclusion of the N

soil saturation effect on leaching and soil respiration.
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Canadell JG, Le Quéré C, Raupach MR et al. (2007) Contributions to

accelerating atmospheric CO2 growth economic activity, carbon inten-

sity, and efficiency of natural sinks. Proceedings of the National Academy

of Sciences of the United States of America, 104, 18866–18870.

Caspersen JP, Pacala SW, Jenkins JC et al. (2000) Contributions of land-use

history to carbon accumulation in US forests. Science, 290, 1148–1151.

Chopping M, Moisen GG, Su L, Laliberte A, Rango A, Martonchik JV, Peters

DPC (2008) Large area mapping of southwestern forest crown cover,

canopy height, and biomass using the NASA Multiangle Imaging Spectro-

Radiometer. Remote Sensing of Environment, 112, 2051–2063.

Ciais P, Schelhaas MJ, Zaehle S et al. (2008) Carbon accumulation in

European forests. Nature Geoscience, 1, 425–429.

Comins HN, McMurtrie RE (1993) Long-term response of nutrient-limited

forests to CO2 enrichment; equilibrium behaviour of plant–soil models.

Ecological Application, 3, 666–681.

Daniel C (1976) Application of Statistics to Industrial Experimentation. John

Wiley & Sons, New York.

de Graaff MA, van Groeningen KJ, Six J, Hungate BA, van Kessel C (2006)

Interactions between plant growth and soil nutrient cycling under

elevated CO2: a meta analysis. Global Change Biology, 12, 2077–2091.

DeLucia EH, Drake JE, Thomas RB, Gonzalez-Meler MA (2007) Forest

carbon use efficiency: is respiration a constant fraction of gross primary

production? Global Change Biology, 13, 1157–1167.

De Vries W, Reinds GJ, van der Salm C et al. (2001) Intensive Monitoring of

Forest Ecosystems in Europe. Technical Report (2001). EC, UN/ECE,

Brussels, Ginevra.

De Vries W, Solberg S, Dobbertin M et al. (2008) Ecologically implausible

carbon sequestration? Nature, 541, E1–E3.

Dewar RC, McMurtrie RE (1996a) Analytical model of stemwood growth

in relation to nitrogen supply. Tree Physiologist, 16, 161–171.

Dewar RC, McMurtrie RE (1996b) Sustainable stemwood yield in relation

to the nitrogen balance of forest plantations: a model analysis. Tree

Physiologist, 16, 173–182.

Eriksson H (1976) Yield of Norway spruce in Sweden. Royal College of

Forestry, Department of Forest Yield Research, Report 41, 291 pp.

Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest iomass carbon

storage in China between 1949 and 1998. Science, 292, 2320–2322.

Field CB (2001) Plant physiology of the ‘‘missing sink’’ carbon sink. Plant

Physiology, 125, 25–28.

Fisher RF, Binkley D, Pritchett WL (2000) Ecology and Management of Forest

Soils. John Wiley and Son, New York.

Gaige E, Dail DB, Hollinger DY et al. (2007) Changes in canopy processes

following whole-forest canopy nitrogen fertilization of a mature

spruce-hemlock forest. Ecosystems, 10, 1133–1147.

Galloway JN, Schlesinger WH, Levy II HL, Michaels A, Schnoor JL (1995)

Nitrogen fixation: anthropogenic enhancement-environmental

response. Global Biogeochemical Cycles, 9, 235–252.

Garten CT, Schwab AB, Shirshac TL (1998) Foliar retention of 15N tracers:

implications for net canopy exchange in low- and high-elevation forest

ecosystems. Forest Ecology and Management, 103, 211–216.

Goodale CL, Apps MJ, Birdsey RA et al. (2002) Forest carbon sink in North

Hemisphere. Ecological Applications, 12, 891–899.

Halliday JC, Tate KR, McMurtrie RE, Scott NA (2003) Mechanisms for

changes in soil carbon storage with pasture to Pinus radiata land-use

change. Global Change Biology, 4, 1294–1308.

Harrison AF, Schulze E-D, Gebauer G, Bruckener G (2000) Canopy uptake

and utilization of atmospheric pollution nitrogen. In: Carbon and

Nitrogen Cycling in European Forest Ecosystems. Ecological Studies, 142

(ed. Schulze E-D), pp. 171–188. Springer-Verlag, Berlin.

Henderson-Sellers A (1993) A factorial assessment of the sensitivity of the

BATS land-surface parameterization scheme. Journal of Climate, 6, 227–247.

Henderson-Sellers B, Henderson-Sellers A (1996) Sensitivity evaluation of

environmental models using fractional factorial experimentation. Eco-

logical Modelling, 86, 291–295.
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2.9 APPENDIX S 

Parameter values used in the model for a representative European temperate stand of 
Norway spruce (Picea abies (L.) Karst.). 

Parameter Definition Value Units Reference 
w C content of dry matter 0.49 - Medlyn et al. 2000 
f NPP/GPP ratio 0.53 - DeLucia et al. 2007 
k Light extinction factor 0.5 - Comins & McMurtrie 

1993 
PAR Incident photosynthetic active 

radiation 
2250 MJ m-1 yr-1 This study 

 Potential PAR utilisation 
efficiency 

2.73 gC MJ-1 Landsberg et al. 2003 

 Ratio of root nitrogen 
concentration to foliar nitrogen 
concentration  

0.6 - Newman & Hart 2006 

d w/f 4 - Iivonen et al. 2006 
B Exponential coefficient in r 

equation 
2.309 m2 yr kgC-1 Palmroth et al. 2006 

Q Coefficient in r equation 9.499 - Palmroth et al. 2006 
Y0 Constant in r equation 0.138 - Palmroth et al. 2006 
r Constant root mortality 0.667 yr-1 Withington et al. 2006 
T Soil texture parameter 0.5 - Comins & McMurtrie 

1993 
Tsoil Soil temperature 10 °C This study 
CNU_e Canopy nitrogen uptake 0.8 - Sievering et al. 2007 
c Fractional canopy cover 0.6 - Chopping et al. 2008 
f_BR Fraction of wood carbon in 

branches (average for 
American conifers)  

0.14 - Jenkins et al. 2003 

f_CR Fraction of wood carbon in 
coarse roots  (average for 
American conifers)  

0.18 - Jenkins et al. 2003 

Ncrit Critical inorganic N value for 
soil variable N/C scenario 

0.002 kgN m-2 McMurtrie et al. 2001 

f_max Maximum foliar N/C above 
which N is not limiting 

0.04 kgN kgC-1 Comins & McMurtrie 
1993 

f_min minimum foliar N/C  0.001 kgN kgC-1 This study 
u N/C ratio for surface structural 

litter 
1/150 kgN kgC-1 Comins & McMurtrie 

1993 
v N/C ratio for soil structural litter 1/150 kgN kgC-1 Comins & McMurtrie 

1993 
newa Intercept of relationship 

between new and f  
0 kgN kgC-1 Medlyn et al. 2000 

newb Slope of relationship between 
new and f 

0.16773 - Medlyn et al. 2000 

swa Intercept of relationship 
between sw and f  

0 kgN kgC-1 Medlyn et al. 2000 

swb Slope of relationship between 
sw and f 

0.05624 - Medlyn et al. 2000 

a_max Maximum for newly active soil 
pool SOM 

1/8 kgN kgC-1 Nalder & Wein 2006 

a_min Minimum for newly active soil 
pool SOM 

1/16 kgN kgC-1 Nalder & Wein 2006 

s_max Maximum for newly slow soil 
pool SOM 

1/12 kgN kgC-1 Nalder & Wein 2006 

s_min Minimum for newly slow soil 
pool SOM 

1/40 kgN kgC-1 Nalder & Wein 2006 

p_max Maximum for newly passive 
soil pool SOM 

1/6 kgN kgC-1 Nalder & Wein 2006 

p_min Minimum for newly passive soil 
pool SOM 

1/20 kgN kgC-1 Nalder & Wein 2006 
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Parameter Definition Value Units Reference 
a_max Maximum for newly active soil 

pool SOM 
1/8 kgN kgC-1 Nalder & Wein 2006 

a_min Minimum for newly active soil 
pool SOM 

1/16 kgN kgC-1 Nalder & Wein 2006 

s_max Maximum for newly slow soil 
pool SOM 

1/12 kgN kgC-1 Nalder & Wein 2006 

s_min Minimum for newly slow soil 
pool SOM 

1/40 kgN kgC-1 Nalder & Wein 2006 

p_max Maximum for newly passive 
soil pool SOM 

1/6 kgN kgC-1 Nalder & Wein 2006 

p_min Minimum for newly passive soil 
pool SOM 

1/20 kgN kgC-1 Nalder & Wein 2006 

loss Constant rate of N lost through 
leaching and gaseous 
emission  

0.1 yr-1 McMurtrie et al 2001 

u Constant rate of N uptake by 
plant roots  

1.9 yr-1 McMurtrie et al 2001 

kr Value of root C at which 50% 
of the available N is taken up  

0.05 kgC m-2 Dewar & McMurtrie 
1996 

Lfl Lignin/biomass ratio in leaf 
litter  

0.25 - Eliasson et al. 2005 

Lrl Lignin/biomass ratio in root 
litter  

0.127+0.393* Lfl - Newman & Hart 2006 
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2.10  CORRIGENDUM 

p.18: The text “the effect of N deposition on forest C” should be replaced with “the 

effect of N deposition on N limited forest C sequestration.” 

p. 19: The sentence “In a previous study McMurtrie et al. (2001) assumed that the C:N 

of the substrate entering the three soil pools decreases linearly between given 

minimum and maximum values, as soil inorganic N (Ninorg) decreases from a critical 

value (Ncrit) to zero.” should be “In a previous study McMurtrie et al. (2001) assumed 

that the N:C of the substrate entering the three soil pools decreases linearly between 

given maximum and minimum values, as soil inorganic N (Ninorg) decreases from a 

critical value (Ncrit) to zero.” 

p. 19: “the substrate entering the three soil pools the substrate entering the three soil 

pools decreases linearly between given minimum and maximum values, as soil 

inorganic N (Ninorg) decreases from a critical value (Ncrit) to zero.” should read “the 

partly decomposed substrate entering the soil pools from litter pools the substrate 

entering the three soil pools decreases linearly between given minimum and maximum 

values, as soil inorganic N (Ninorg) decreases from a critical value (Ncrit) to zero, while 

the decomposition rate of the litter pools depends on the C:N of the litter.” 

p. 19: The statement “(as in Comins & McMurtrie, 1993)” should read “(as in McMurtrie 

et al., 2001)” 

p.21: The following text should be added at the end of “CNU” section: “Although it is 

known that leaf N partitioning occurs between photosynthetic and not photosynthetic 

components (Field & Mooney, 1986; Evans, 1989; Evans & Seemann, 1989; Hikosaka, 

2004; Eichelmen et al., 2005), the level of detail of this partition makes it unsuitable for 

inclusion in a relatively simple forest ecosystem model as G’DAY.”  

p. 24: The statement “the rate of increase in NPP was linear” should read “the rate of 

increase in NPP was constant” 

p. 25: The text “due to the higher stem production being exported.” should be replaced 

with “due to the higher stem production being exported and that we are not considering 

the fate of this exported C wood.” 

p. 28, Table 3: “123456” should be “12345” 

p. 29: “it of the advantage” should be removed 
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p. 30: After the sentence “(iii) There is also a great difference in techniques used by 

different authors, making it difficult to compare results from different experiments.” the 

following text should be added: “However, comparing the values of leaf N concentration 

for low level of N deposition, under the assumption of canopy nitrogen uptake, we 

found a good correspondence with the vales observed by Calanni et al. (1999). In fact, 

simulating a step increase of N deposition from 0.4 to 1 gN m-2 yr-1 the foliar N 

concentration increases from 0.013 to 0.0145 kgN kgC-1, in good agreement with the 

avarege value of  0.0148 kgN/kgC found by Calanni et al. (1999) for the N deposition 

rate range of 0.4-0.8 gN m-2 yr-1.”  

p. 30: The sentence “We believe this to be the first time that this mechanism has been 

implemented in an ecosystem model to assess the ecosystem C balance” should be 

replaced with “Canopy N uptake has been modelled previously using transport-

resistance approaches to reproduce the instantaneous bi-directional exchange of N 

between leaves and atmosphere (Sutton et al., 1998, 2009; Flechard et al., 1999; 

Riedo et al., 2002). However, the fine temporal scale and the level of detail of these 

models make them unsuitable for inclusion in a relatively simple forest ecosystem 

model as G’DAY. Despite the ability of these models to provide detailed hourly 

estimates of canopy N exchange, they are not complete ecosystem models, as they do 

not represent all the plant and soil feedbacks. We can therefore state that this is the 

first time that the canopy N uptake has been explicitly considered in a forest ecosystem 

model.”  

p. 31: “the keys area” should be “the key area” 

p. 31: “the all range of values” should be “the range of values” 

p. 31: After the text “depending on the assumptions introduced about management and 

ecological processes.” the following sentence should be added: “For example, from the 

sensitivity analysis (Table 1), using a value for PAR equal to 1800 MJ m-2 yr-1, for Tsoil 

equal to 15°C and for T equal to 0.3, the modelled dC:dN ratio goes up to 177, which is 

within the range reported in Magnani et al. 2008”. 

p. 32: The reference “Calanni J, Berg M, Wood M, Mangis D, Boyce R, Weathers W, 

Sievering H (1999) Atmospheric nitrogen deposition at a conifer forest: response of 

free amino acids in Engelmann spruce needles. Environmental Pollution, 105, 79-89.” 

shoul be added.  
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p. 32: The reference “Eichelmann H, Oja V, Rasulov B, Padu E, et al. (2005) 

Adjustment of leaf photosynthesis to shade in a natural canopy: reallocation of 

nitrogen. Plant Cell and Environment, 28, 389–401.” Should be added 

p. 32: The reference “Evans JR (1989) Photosynthesis and nitrogen relationships in 

leaves of C3 plants. Oecologia, 78, 9–19.” should be added 

p. 32: The reference “Evans JR, Seemann JR (1989) The allocation of protein nitrogen 

in the photosynthetic apparatus: costs, consequences and control. In: Briggs WR (ed) 

Photosynthesis. Alan R. Liss, New York, pp 183–205” should be added 

p. 32: The reference “Field C, Mooney HA (1986) The photosynthesis-nitrogen 

relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and 

function. Cambridge University Press, Cambridge, pp 25–55” should be added 

p. 32: The reference “Flechard CR, Fowel D, Sutton MA, Cape JN (1999) A dynamic 

chemical model of bi-directional ammonia exchange between semi-natural vegetation 

and the atmosphere. Quarterly Journal of the Royal Meteorological Society, 125 (559), 

2611-2641.” should be added 

p. 32: The reference “Hikisaka K (2004) Interspecific difference in the photosynthesis-

nitrogen relationship: patterns, physiological causes, and ecological importance. 

Journal of Plant Research, 117, 481–494.” should be added 

p. 33: The reference “Riedo M, Milford C, Schmid M, Sutton MA (2002) Coupling soil-

plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. 

Ecological Modelling, 158, 83-110.” should be added  

p. 33: The reference “Sutton MA, Burkhardt JK, Guerin D, Nemitz E, Foeler D (1998) 

Development of forest resistance models to describe measurements of bi-directional 

ammonia surface-atmosphere exchange. Atmospheric Environmental, 32(3), 473-480.” 

should be added  

p. 33: The reference: “Sutton MA, Nemitz E, Milford C, Campbell C et al. (2009) 

Dynamics of ammonia exchange with cut grassland: synthesis of results and 

conclusions of the GRAMINAE Integrated Experiment. Biogeosciences, 6, 2907-2934.” 

should be added 
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p. 33: The reference “Thornley JHM (1991) A transport-resistance model forest growth 

and partitioning. Annals of Botany, 68, 211-226.” should be “Thornley JHM (1991) A 

transport-resistance model of forest growth and partitioning. Annals of Botany, 68, 211-

226.” 
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3.1 ABSTRACT 

Global average atmospheric CO2 concentration ([CO2]) has increased steadily since 

the industrial revolution and is predicted to further double by the end of this century. 

Free-Air CO2 Enrichment (FACE) experiments demonstrate that nitrogen availability 

plays a crucial role in determining the forest ecosystem response to this increase in 

atmospheric [CO2].  

We investigated the interaction between soil nitrogen (N) availability and the [CO2] 

effect on forest productivity by applying a forest ecosystem model to a large-scale 

forest FACE experiment where N availability has been observed to constrain the [CO2] 

response. We applied the Generic Decomposition And Yield (G’DAY) forest carbon-

nitrogen (C-N) cycling model to data from the Oak Ridge National Laboratory’s FACE 

experiment and investigated whether the model could simulate key C-N interactions 

observed in this experiment.  

It was found that the model could reproduce the observed decline in NPP at ambient 

[CO2], which was caused by declining soil N availability as the stand aged. However, 

the model failed to reproduce the observed stimulation in productivity at elevated [CO2]. 

Analysis of the mechanisms involved indicated that likely reasons for the model failures 

were (i) the initialization of soil pools and (ii) incorrect parameterization and/or 

formulation of the soil N uptake as function of depth. These values are not directly 

observable and their estimation poses a challenging problem. Further studies applying 

inverse techniques could potentially improve simulation results, and therefore our 

understanding of C-N feedbacks under rising atmospheric [CO2].  

3.2 INTRODUCTION 

Global average atmospheric CO2 concentration ([CO2]) increased from 280 ppm before 

the industrial revolution to 381 ppm in 2006 (Canadell et al., 2007a), and it is predicted 

to further double by the end of this century (IPCC, 2007). Forests, absorbing CO2 

through photosynthesis and releasing it through plant respiration and soil 

decomposition, control the major terrestrial bidirectional carbon (C) transfer between 

atmosphere and soil, and play an important role in the global C budget (IPCC, 2007; 

Canadell et al., 2007b, Hyvönen et al., 2007; Sitch et al., 2008).  

Using data from four Free-Air CO2 Enrichment (FACE) experiments, Norby et al. (2005) 

showed that the short-term (four to five years) NPP response to the atmospheric [CO2] 

predicted for the latter half of the century is conserved across a broad range of 
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productivity, with an average stimulation of 23  2 %. Nonetheless, there is evidence 

that the CO2 stimulation is limited under conditions of low nutrient availability, especially 

nitrogen (N) (Oren et al., 2001; Luo et al., 2004; Reich et al., 2006). As many 

temperate forests are N-limited, the ability of ecosystems to absorb additional C in 

future is very likely to be constrained by levels of N availability and fixation (Reich et al., 

1997). Therefore, a good understanding of the relationship between atmospheric [CO2] 

and soil N availability is necessary to better predict future forest ecosystem behaviour. 

Increased C uptake and its storage in a forest ecosystem growing under elevated [CO2] 

may increase ecosystem demand for N. On a long time scale, this increased N demand 

may result in a progressive N immobilisation in plant litter, biomass and soil organic 

matter (Luo et al., 2004). However the experimental evidence for progressive nitrogen 

limitation (PNL) remains equivocal, either because experiments were not run long 

enough to show it, or because of mechanisms that can delay N limitation (Luo et al., 

2006a; McKinley et al., 2009). Such mechanisms can include enhanced N uptake. In a 

recent meta-analysis of CO2 enrichment experiments, Luo et al. (2006a, b) reported an 

increase in the total ecosystem N pool under elevated [CO2]. Similarly, Finzi et al. 

(2007), reviewing forest FACE experiments, reported an increase in N uptake in N 

limited sites under elevated [CO2]. Both observations may be related to a shift in C 

allocation towards fine root system under conditions of decreased nutrient availability 

(Santantonio, 1989; Litton et al., 2007), as suggested by some CO2 enrichment studies, 

where an increase in fine root production has been observed (Pregitzer et al., 2000; 

Finzi et al., 2007; Stover et al., 2007; Iversen et al., 2008; Iversen, 2010). This increase 

in fine root production could enhance N uptake from parts of soil not previously 

explored by roots. It has also been observed that both stomatal conductance and N 

concentration are reduced in elevated [CO2] (Ainsworth & Long, 2005; Ainsworth & 

Rogers, 2007).  

Given the uncertainty of the direction and magnitude of the feedbacks between C and 

N availability, and the difficulty in conducting experiments sufficiently long to observe 

responses on long time scales, ecosystem models can represent important tools to 

identify and understand those mechanisms involved in the response of nutrient-limited 

forest ecosystems to increased [CO2] on different time scales. 

To this end, Comins and McMutrie (1993) developed the integrated plant-soil G’DAY 

(Generic Decomposition and Yield) model, which reproduces the dynamics of C and N 

in forest ecosystems. The G’DAY model predicts that the response of net primary 

productivity to a step change in [CO2] differs in magnitude and sign depending on 
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observation timescales: a positive transient response on short time scale is followed by 

a slight decrease and a subsequent small increase on long time scale (Comins & 

McMurtrie, 1993; Kirschbaum et al., 1994, 1998; McMurtrie & Comins, 1996; Medlyn & 

Dewar, 1996; McMurtrie & Dewar, 1999; Medlyn et al., 2000; Pepper et al., 2005; 

Pepper et al., 2007). The model also predicts that this response will vary depending on 

the N:C ratio of newly formed soil organic matter at elevated [CO2] concentration 

(McMurtrie & Comins, 1996). This ratio could vary because of decreased foliage N 

concentration under elevated [CO2], and/or because of the reduced soil N availability at 

high [CO2], (Medlyn et al., 2000; Pepper et al., 2007). Applying the model to a Norway 

spruce site, McMurtrie et al. (2000) also found that the only way to overcome soil N 

limitation on the long term CO2 fertilization effect is by increases in N acquisition.  

Although the G’DAY model represents a useful theoretical tool to investigate the effect 

of elevated [CO2] on forest C cycle, until now, the model has not explicitly been tested 

against data from CO2 enrichment experiments. The aim of this paper is to 

parameterize the G’DAY model for the closed-canopy forest FACE experiment at Oak 

Ridge National Laboratory (ORNL) and to test whether this C-N cycling model can 

explain the results observed at the study site. 

At the ORNL experiment site, a ten year old Sweetgum (Liquidambar styraciflua L.) 

plantation was fertilised with elevated [CO2] from 1998 to 2007. Although a large 

increase in NPP under elevated [CO2] was observed during the first five years of the 

experiment, the NPP response progressively declined over time to values similar to 

those for ambient [CO2] at the end of the experiment (Norby et al., 2010).  

The decrease in productivity over time, and the reduction over time of the fertilizing 

effect of CO2, have been attributed to increasing N limitation as the forest matures. 

Leaf N concentration, which was lower under elevated [CO2], decreased over the 

course of the experiment for both elevated and ambient [CO2] treatments. A slight 

reduction over time of the specific leaf area (SLA) was also observed in both 

treatments (Norby et al., 2010).   

In this paper we focused on testing whether the G’DAY model can explain the decline 

in leaf N concentration over time and whether the accumulation of N in litter and wood, 

during plantation development, can explain the decrease in NPP and the decreasing 

stimulation by CO2. The original version of G’DAY model, developed for evergreen 

forest stands, was modified to enable simulation of the development of the ORNL 

FACE deciduous plantation. This new model version was then coupled to the Model 

Any Terrestrial Ecosystem (MATE) model (McMurtrie et al. in preparation), that 
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incorporates the effect of atmospheric [CO2] and meteorological data (T, PAR, RH, 

rain) on light use efficiency (LUE). 

We ran the model testing two alternative representations for SLA: either (1) SLA was 

assumed to be constant and to have the same value for elevated and ambient [CO2] 

treatments, for the entire period of the simulation; or (2) SLA was assumed to vary with 

leaf N concentration. Finally we discussed the capacity of this C-N cycling model to 

reproduce and explain experimental results. 

3.3 MATERIALS AND METHODS 

3.3.1 STUDY SITE 

The study site is a Sweetgum (Liquidambar styraciflua L.) plantation established in 

1988 at the Oak Ridge National Environmental Research Park in Roane County, TN 

(35°54_N, 84°20_W). The soil, classified as Aquic Hapludult, has a silty clay loam 

texture and is moderately well drained (van Miegroet et al., 1994; Norby et al., 2001). 

One year old, bare-rooted seedlings were planted at a spacing of 2.3 x 1.2 m (Norby et 

al., 2004). The canopy has been closed since 1996 and the trees are in the linear 

growth phase (Norby et al., 2001). Wullschleger et al. (2002) stated that “A survey of 

the site in 1998 indicated that the 10-yr-old plantation had a basal area of about 29 m2 

ha–1, with an average height of 12 m and a leaf area index of 5.5 m2 m–2”. The mean 

annual temperature is 13.9 °C (1962-1993) and the mean annual precipitation is 1371 

mm (Norby et al., 2001).  

3.3.2 THE EXPERIMENT 

The free-air CO2 enrichment (FACE) experiment was established with the aims of 

understanding how the eastern deciduous forest will be affected by CO2 enrichment of 

the atmosphere, and quantifying feedbacks from the forest to the atmosphere 

(http://face.ornl.gov/index.html). The experimental plots comprise five 25 m diameter 

circular rings within the sweetgum plantation, enclosing 80-90 trees per ring (Sholtis et 

al., 2004). FACE apparatus was installed in four of the rings based on the design, 

equipment and software of Hendrey et al. (1999). Each ring consists of 24 vent pipes 

spaced 3.3 m apart, suspended from 12 aluminium towers. Pure CO2 is mixed with a 

turbulent air-stream in a plenum and released through vertical vent pipes, according to 

wind direction, and regulated to maintain the target [CO2] near the top of the canopy 

(Wullschleger et al., 2002; Norby et al., 2005). Two of these rings are treated with 
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elevated [CO2]. The other two rings, exposed to ambient CO2 concentration, and the 

fifth ring, without FACE apparatus, serve as control. The CO2 treatment commenced in 

April 1998 and has been maintained for 24 h per day every year, during the growing 

season (April-November). The treatment set point, in 1998, was a constant [CO2] of 

565 ppm (about 200 ppm above the global [CO2]). To better represent the diurnal 

variation in [CO2], the protocol was adjusted in 1999 and 2000 with a dual set point 

(565 ppm day and 645 ppm night).  

A complete description of the site and of ORNL FACE has been given by (Norby et al., 

2001, 2002, 2004). Operating, meteorological conditions and measurement results are 

documented at http://public.ornl.gov/face/ORNL/ornl_home.shtml and at   

http://face.ornl.gov. 

3.3.3 KEY EXPERIMENTAL RESULTS 

The major results on impacts of CO2 enrichment on C and N cycling from this 

experiment can be summarised as follows.  

(1) Net primary production (NPP, kgC m-2 yr-1) at the site was estimated as the sum of 

annual C increase in wood, leaves, coarse and fine roots and the major inputs of 

detritus (litterfall and fine root turnover) (Norby et al., 2005). The annual increments of 

stems and coarse woody roots were estimated by applying a site-specific allometric 

equation that incorporated basal area, height, taper and wood density to reduce the 

possible alterations deriving from elevated [CO2] (Norby et al., 2001, 2005). The annual 

leaf increment was zero, as is normal for deciduous trees, while litterfall was estimated 

using litter baskets (Norby et al., 2003). The contribution of fine root production to NPP, 

measured directly by using minirhizotrons and in-growth cores, averaged 16% (Norby 

et al., 2004, 2005, 2008).   

Comparison of NPP between elevated and ambient [CO2] plots shows that although 

CO2 enrichment consistently stimulated net primary production during the first years of 

the experiment (ca +33%), its fertilizing effect progressively declined over time to +9% 

at the end of the experiment (Norby et al., 2010). Although the decline in NPP was 

observed in both treatments, it was more consistent at elevated [CO2] (Norby et al., 

2010).     

 (2) Leaf N content per unit leaf mass was measured from the leaves sampled in the 

plots (Norby & Iversen, 2006). Leaf N concentration was found to be consistently 

reduced in the trees treated with elevated [CO2] (Norby et al., 2010). In both 
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treatments, leaf N concentration declines over time with the same rate of about 1.1 gN 

kgC-1 per year from 1998 to 2007 (Norby et al., 2010).  

3.3.4 THE MODEL 

G’DAY (Generic Decomposition and Yield) model is a process-based model that 

simulates C and N dynamics in a forest ecosystem (Comins & McMurtrie, 1993). The 

model is composed of two sub-models representing plant-system production and soil 

organic matter decomposition, respectively. The plant sub-model consists of three 

pools: foliage, wood (stem, branches and coarse roots) and fine roots. The soil sub-

model, as in the CENTURY soil model (Parton et al., 1987, 1993), consists of four litter 

pools (structural and metabolic, both above and below ground), three soil organic 

matter pools (active, slow and passive) of C and N content, and a pool for available 

inorganic N. A full description of the model is given elsewhere (Comins & McMurtrie, 

1993; Medlyn et al., 2000; McMurtrie et al., 2001); here we focus on the modifications 

made to allow simulation of the ORNL FACE experiment.  

Following McMurtrie et al. (2001), we assumed that the N:C ratio of substrate entering 

the three soil pools increases linearly with increasing  inorganic N  until a critical value 

of inorganic N (Ncrit), after which the N:C ratio is constant. The minimum and maximum 

values of the three soil pool N:C ratios were taken from Nalder & Wein (2006).  

Observations at ORNL FACE experiment site have suggested that the increased 

demand for available N at elevated [CO2] was satisfied through a deeper exploration of 

soil profile by increased root biomass (Norby & Iverson, 2006). In the previous version 

of G’DAY there was no dependence of N uptake on root biomass. Here, we modified 

the N uptake formulation and assumed that N taken up by the plant is a saturating 

function of root biomass, as in Dewar & McMurtrie (1996a, b):   

 
r

u u ino
r r

C
N = λ N

C + k
                                                                                                    (1) 

where Nu (kgN m-2) is the root N uptake, u (yr-1) is a constant,  Nino (kgN m-2) is the 

available inorganic N, Cr (kgC m-2) is the root C and kr (kgC m-2) is the value of Cr at 

which 50% of Nino is taken up.  

No effect of soil moisture on the system was considered.   

The original G’DAY model employed a very simple representation of LUE, assuming it 

depended only on leaf N concentration and atmospheric [CO2] (Comins & McMurtrie, 
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1993). To better capture effects of daily environmental variability, and to take 

advantage of extensive physiological data available from the experiment, we 

incorporated a new sub-model MATE (Model Any Terrestrial Ecosystem, McMurtrie et 

al., in preparation) to estimate daily LUE. This model integrates the leaf-level 

photosynthetic rate obtained from the Farquhar & von Caemmerer (1982) model over 

the whole canopy, using an algorithm proposed by Sands (1995) (see Appendix).  

The original version of G’DAY was developed for evergreen forest stands. To apply the 

model to a deciduous stand, such as the Sweetgum plantation at Oak Ridge, it was 

necessary to add phenological development and modify the representation of C and N 

allocation processes. In deciduous trees, plant growth processes (i.e. photosynthesis, 

autotrophic respiration, etc.) are not constant throughout the year but take place during 

the growing season, defined as the time between bud burst and senescence. To adjust 

the model to reproduce deciduous stand dynamics, we needed to identify the growing 

season and to relate plant growth processes to this time interval. Here we made use of 

the time course of the measured LAI to indentify the growing season period. We set the 

first day of growing season (and therefore of photosynthesis, autotrophic respiration, 

etc.) as the first day of the year for which LAI is greater than zero. We then set the 

senescence period as beginning on the day LAI reaches its maximum value (LAImax) 

and ending on the day LAI returns to zero. LAI values vary slightly year to year without 

any clear trend over time and with no apparent effect of treatment (Norby et al., 2001, 

2010).  

While photosynthesis was simulated throughout the growing season on a daily time 

step, allocation of C and N to the different plant pools required calculations on both a 

daily and an annual time step. During each year, we assumed that all C assimilated 

during the growing season was placed in a storage pool. At the end of the year, the 

stored C was divided between foliage, wood (stem, branch and coarse root) and fine 

root. The absolute amount of C allocated to foliage was held constant (Hf), as indicated 

by the data (Norby et al., 2005, 2008), and the remaining amount of C was divided 

between wood (Hw) and roots (Hr) according to annual C allocation coefficients 

estimated from measurements (Norby et al., 2005, 2008). The values of Hf and the 

Hw:Hr ratio were found to be different for ambient and elevated treatments (see Table 

1).  

In the same way, we assumed that all N taken up by roots during the year, plus that 

retranslocated from senescent foliage, was placed in a storage pool and then divided 

between the three plant pools at the end of each year. The fraction of stored N going to 

each pool was estimated from leaf N concentration. We assumed that the N:C ratio of 
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fine roots is constant (0.2 kgN kgC-1), as indicated by measurements (Norby et al., 

2008), and that the N:C ratios of the mobile and structural components of wood N are 

functions of leaf N concentration (Medlyn et al., 2000). If UN is the total amount of N 

available for the plant at the end of the year (root uptake plus leaf re-translocation), we 

have: 

N f w r f f f wnewb w r rU = N + N + N = ν H + ν ν H + ν H                                                          (2) 

so that: 

N r r
f

f wnewb w

U - ν H
ν =

H + ν H
                                                                                                      (3) 

where f and r (kgN kgC-1) are the leaf and fine root N:C ratios, and wnewb 

(dimensionless) is the slope of the relationship between the N:C ratio of new wood and 

the N:C ratio of foliage. 

The amounts of N allocated to the plant pools (Ai) are then given by: 

f f fA = ν H                                                                                                                     (4) 

 wm wnewb wmb f wA = ν - ν ν H                                                                                              (5) 

ws wmb f wA = ν ν H                                                                                                              (6) 

r r rA = ν H                                                                                                                       (7) 

where wmb (dimensionless) is the slope of the relationship between the N:C ratio of the 

non-structural component of the new wood and the N:C ratio of foliage. Measurements 

indicate there is no N retranslocation from wood (Norby, personal communication).   

The C and N in each of these plant storage pools were then allocated during the next 

year to foliage, wood and fine root pools on a daily time step. The daily allocation of C 

and N to foliage during the growing season was assumed to follow the time course of 

LAI:LAImax ratio. The daily amounts of C and N lost by litterfall during senescence were 

also determined from the time course of LAI:LAImax ratio. In this way we have a 

constant value of leaf N:C ratio throughout the year. The daily allocation of C to wood 

was also set to follow the time course of LAI:LAImax ratio during the growing season, 

while the amount of N allocated daily to the mobile and structural pools of wood was 

proportional to leaf N concentration as in Medlyn et al. (2000). Mortality of trees was 

estimated from data and set equal to 1.1 and 1.2 % for ambient and elevated CO2 
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respectively (Norby, personal communication). The daily allocation of C and N to fine 

root pools was assumed to occur at a constant rate over the full year, as were the C 

and N losses, so that root N concentration was kept constant throughout the year as 

indicated by measurements (Norby & Iversen, 2006).  

There is evidence from measurements of changes in SLA over time (Norby, personal 

communication). To investigate the importance of these changes, we incorporated two 

alternative hypotheses about SLA into the model. In the first hypothesis, SLA is held 

constant and assumed not to differ between elevated and ambient treatments. In the 

second hypothesis, SLA is assumed to vary with leaf N concentration (Norby et al., 

2010). The relationship between SLA and leaf N concentration was obtained by plotting 

measured data from both treatments (Norby, personal communication). We obtained: 

fSLA = 514.3ν + 8.2                                                                                                      (8) 

where SLA is in m2 kgC-1 and f in kgN kgC-1. 

3.3.5 MODEL SIMULATIONS 

Simulations for the Oak-Ridge site were run in three steps. In an attempt to initialize the 

values of C and N soil pools at the beginning of the treatments (1998), we simulated 

the site history. Before the plantation was established in 1988 the site was a grassland, 

so we first ran a simulation with the model parameterized for a grassland, using a 30 

year meteorological data sequence from the site, repeated until pools equilibrated. We 

then ran a second simulation, initialised with the soil pool values obtained from the 

grassland equilibrium simulation, to reproduce the development of the young 

sweetgum stand from 1988 to 1997.  

At this point we ran the main simulation for the mature stand. To better fit the shape of 

measured values of NPP (Norby et al., 2008, 2010) we changed the initial values of soil 

C pools and soil organic and inorganic N pools. For this purpose we kept the C:N ratios 

of soil pools equal to the values obtained from the young stand simulation and changed 

initial soil C values and initial soil inorganic N value. We ran four simulations, two for 

the elevated plots and two for the ambient plots. The two simulations for each 

treatment related to the assumption of constant or variable SLA. 

A sensitivity analysis of simulated NPP to the main parameters characterizing plant 

physiology at ambient and elevated [CO2] was also carried out. Starting from the 

baseline case of simulated NPP at ambient [CO2], with constant SLA, four different 

simulations were run. We first ran the model for elevated [CO2] but parameterized 
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exactly as for the ambient [CO2] simulation. The second simulation was run as 

previously, but using the root life span parameter estimated for the elevated [CO2] 

treatment. In the third simulation we changed also the NPP:GPP ratio to that estimated 

for the elevated [CO2] treatment. Finally the estimated annual C wood allocation for the 

elevated [CO2] treatment was added to the previous simulation.   

We ran the simulations on a daily time step, using the daily meteorological data of air 

and soil temperature, relative humidity, precipitation, photosynthetically active radiation 

and atmospheric [CO2] measured for the period 1999-2007 at the plots 

(http://public.ornl.gov/face/index.shtml). The annual values of N deposition, equally 

distributed throughout the year, were measured at Walker Branch Watershed station, 

Anderson County, Tennessee, USA (http://nadp.sws.uiuc.edu/).  

3.3.6 MODEL PARAMETERISATION 

We parameterized the model for Oak Ridge using experimental data. Where parameter 

values were not available from measurements, we took values from the literature. 

Some parameters were found to differ between elevated and ambient treatments, while 

others were the same. A list of all parameters used is given in Table 1.   

The grass to-equilibrium simulation was parameterized with default values typical for 

grassland, taken from Pepper et al. (2005). For the young forest stand we initialised the 

stand with values found in literature and used the same parameter values as for the 

main ambient simulation. 

The daily values of LAI (total one-sided leaf area per unit ground area) used to 

estimate the allocation coefficients for foliage and wood, were calculated for each plot 

for every day of the growing season from measurements of absorbed PAR and litterfall 

as described in Norby et al. (2003).  

The value of N uptake rate coefficient u was tuned to obtain a good match between 

the net primary production of the last year of the simulation for the young stand and the 

measured value at the beginning of the treatment. The nitrogen uptake parameter, kr 

(Eqn (1)) was estimated from values of N uptake and root biomass measured at both 

ambient and elevated [CO2] from 2001 to 2007 (Fig. 1).  

3.3.7 STATISTICAL ANALYSIS 

The correspondence between simulated and observed data was tested applying linear 

regression analysis. The simultaneous F-test for slope = 1 and intercept = 0 was 
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performed to identify bias (Dent & Blackie, 1979; Mayer et al., 1994). Small values of F-

test mean that the model is a good fit. Model performance in reproduced observed data 

was also tested using the model efficiency index (EF, Loague & Green, 1991; Mayer & 

Butler, 1993). This test directly relates model predictions to observed data and 

represents an assessment of how well the 1:1 line explains the variance in simulated 

vs observed correlation. The goodness of model fit decreases as the EF value 

decreases from one (perfect fit), with negative values representing a poor fit.  

3.4 RESULTS 

3.4.1 AMBIENT [CO2] 

SIMULATION WITH CONSTANT SLA 

Figure 2 shows simulated and observed net primary production, leaf N concentration, 

SLA and LAI of the ambient [CO2] grown plots over time. In this simulation SLA is kept 

constant and equal to 24.2 m2 kgC-1. The initial values of soil N (organic and inorganic) 

and C pools are reported in Table 2. 

Observed NPP in the ambient [CO2] treatment increased from 0.83 kgC m-2 yr-1 in 1998 

to a plateau of around 1 kgC m-2 yr-1 in 2001-2003. From 2003 to 2006 NPP decreased 

progressively to a lower value of productivity than at the beginning of experiment, with 

a stabilisation in 2007 (Fig. 2a, 3a).   

Modelled NPP follows a very similar trend to observed NPP for the ambient [CO2] 

treatment. It increases during the first two years, from 0.83 kgC m-2 yr-1 in 1998 to 1.06 

kgC m-2 yr-1 in 2000, and then decreases progressively to the value of 0.72 kgC m-2 yr-1 

in 2007 (Fig. 2a). In Figure 4a we plot observed NPP against simulated NPP. Although 

there is some scatter of data around the regression line (R2=0.62, Fig. 4a, Table 3), the 

agreement between observed and simulated data seems very good. This is also 

confirmed by the low F-test result and the positive EF index value (F=0.02, EF=0.62, 

Table 3).    

Simulated leaf N concentration increases from 0.04 kgN kgC-1 in 1998 to 0.05 kgN kgC-

1 in 1999. From 1999 it decreases steadily, reaching the value of 0.025 kgN kgC-1 in 

2007 (Fig. 2b). The peak in leaf N concentration in 1999 is the consequence of the 

higher amount of N taken up during 1998 and allocated to foliage in 1999, since the 

amount of C allocated to the foliage system is constant. Comparing observed and 

simulated leaf N concentration, it is evident that, although the regression indicates a 

quite good correlation between observed and simulated data (R2=0.69, Fig. 4b, Table 
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3), there is a low correspondence of data with the line 1:1 (F=68.3 p<0.001, EF=-5.44, 

Table 3). While the model underestimates low leaf N concentration values, it slightly 

overestimates high values (Fig. 4b).    

Figures 2c and 2d show a good accordance between simulated and observed SLA and 

LAI. This agreement is expected, because SLA and foliage biomass are held constant 

at measured average values in this simulation.  

SIMULATION WITH VARIABLE SLA 

Figure 3 shows simulated and observed net primary production, leaf N concentration, 

SLA and LAI of the plots treated with ambient [CO2] over time. In this simulation SLA is 

variable as in Eqn (8). The initial values of soil N (organic and inorganic) and C pools 

are reported in Table 2. 

As for the case with SLA constant, simulated NPP increases initially, from 0.83 kgC m-2 

yr-1 in 1998 to 1.01 kgC m-2 yr-1 in 2000. After 2000, simulated NPP decreases 

progressively to the value of 0.69 kgC m-2 yr-1 in 2007 (Fig. 3a).  

Comparing observed NPP with simulated NPP it emerges that, although the best fit line 

does not follow the 1:1 line as well as the case assuming constant SLA (Fig. 4), the 

smaller scatter of data and the statistical analysis (R2=0.81, EF=0.76, Fig. 4c, Table 3) 

indicate that the model is slightly better at predicting NPP with the assumption of 

variable SLA than in the previous case.   

After increasing from 0.04 kgN kgC-1 in 1998 to 0.08 kgN kgC-1 in 1999, simulated leaf 

N concentration decreases almost constantly, reaching the value of 0.017 kgN kgC-1 in 

2007 (Fig. 3b). The peak in leaf N concentration in 1999 is the consequence of the 

higher amount of N taken up during 1998 and allocated to foliage in 1999, since the 

amount of C allocated to the foliage system is constant. Comparing observed and 

simulated leaf N concentration, it is evident that, although the regression indicates a 

quite good correlation between observed and simulated data (R2=0.68, Fig. 4d, Table 

3), there is no correspondence of data with the line 1:1 (F=393 p<0.001, EF=-36.7, 

Table 3). The model predicts a much wider range of leaf N concentration values than 

that observed (Fig. 4d).  

Simulated SLA and LAI, being linear functions of leaf N concentration (Eqn (8)), show 

the same trend as leaf N concentration. They increase from 1998 to 1999, and then 

decrease progressively over time, in disagreement with observed data (Fig. 3c and 3d).  
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3.4.2 ELEVATED [CO2] 

SIMULATION WITH CONSTANT SLA 

Figure 5 shows simulated and observed net primary production, leaf N concentration, 

SLA and LAI of the enriched CO2 plots over time. In this simulation, SLA is kept 

constant and equal to 24.2 m2 kgC-1. The initial values of soil N (organic and inorganic) 

and C pools are the same as in the case of ambient [CO2] and SLA constant (Table 2). 

Observed NPP increased until 2001, when it reached a maximum value of 1.38 kgC m-

2 yr-1. After 2001, NPP decreased progressively to 0.7 kgC m-2 yr-1 in 2006, a lower 

value than at the beginning of experiment. This low productivity was also measured 

during 2007 (Fig. 5a and 6a).   

Simulated net primary production shows a decrease in 1999 followed by an increase 

during 2000, reaching a value slightly higher than that of 1998. From 2000 NPP 

decreases progressively from 1.09 kgC m-2 yr-1 to 0.68 kgC m-2 yr-1 in 2007 (Fig. 5a). 

Simulated NPP is always lower than observed NPP. This difference is maximum for the 

period from 2001 to 2004 and decreases at the end of simulated time interval. The 

regression curve is not parallel to the 1:1 line, there is some scatter around the line 

(R2=0.61, Fig. 7a) and EF is negative (Table 3). 

After an increase in 1999, simulated leaf N concentration decreases almost steadily, 

reaching the value of 0.015 kgN kgC-1 in 2007 (Fig. 5b). The regression line of 

observed against simulated leaf N concentration does not follow the 1:1 line, showing a 

poor correspondence between simulated and observed data, confirmed by the high F-

test result and negative EF value (F=105 p<0.001, EF=-9.8, Fig. 7b, Table 3). While the 

model underestimates low leaf N concentration values, it slightly overestimates high 

values (Fig. 7b).    

As expected, Figures 5c and 5d show a good accordance between simulated and 

observed SLA and LAI. 

SIMULATION WITH VARIABLE SLA 

Figure 6 shows simulated and observed net primary production, leaf N concentration, 

SLA and LAI of the enriched CO2 plots over time. In this simulation, SLA is variable as 

in Eqn (8). The initial values of soil N (organic and inorganic) and C pools are the same 

as in the case of elevated [CO2] and SLA constant (Table 2). 
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Simulated net primary production decreases from 1998 to 1999 and increases during 

2000. From 2000 onwards, NPP decreases progressively to 0.64 kgC m-2 yr-1 in 2007 

(Fig. 6a). 

Although the shape of the time course of simulated NPP is similar to that of observed 

NPP, the simulated values are always lower than observed values. The regression 

curve is not parallel to the 1:1 line and EF is negative (Table 3, Fig. 7c). 

Simulated leaf N concentration, as in the previous cases, increases during the first year 

of simulation, from 0.036 kgN kgC-1 in 1998 to 0.07 kgN kgC-1 in 1999. From 1999 leaf 

N concentration decreases progressively over time, reaching the value of 0.008 kgN 

kgC-1 in 2007 (Fig. 6b). Comparing observed and simulated leaf N concentration, it is 

evident that, there is no correspondence of data with the line 1:1 (F=407 p<0.001, EF=-

41.2, Table 3, Fig. 7d): the model, once more, predicts a much wider range of leaf N 

concentration values than that observed. (Fig. 7d).    

Simulated SLA and LAI, being linear functions of leaf N concentration (Eqn (8)), show 

the same trend as leaf N concentration. They increase from 1998 to 1999, and then 

decrease progressively, in disagreement with observed data (Fig. 6c, 6d).  

3.4.3 NITROGEN UPTAKE, INORGANIC NITROGEN AND ROOT 

BIOMASS 

Figure 8 shows simulated and observed N uptake and root biomass and simulated soil 

available inorganic N of the ambient and enriched CO2 plots over the period 1998 to 

2007. The initial values of soil N (organic and inorganic) and C pools are reported in 

Table 2. Given the better fit of model results assuming a constant SLA value, these 

simulations were run just with this assumption.  

Observed N uptake by the root system increases during the first half of the experiment 

and then progressively decreases with some fluctuations at both ambient and elevated 

atmospheric [CO2]. Observed N uptake is higher at elevated [CO2] than at ambient 

[CO2] during all years of the experiment but the difference between the two treatments 

is not constant: it reaches its maximum during the first years of the experiment (+50%) 

and then decreases to 10% at the end of the experiment (Fig. 8a). 

In contrast, simulated N uptake from soil by the root system decreases progressively at 

both ambient and elevated atmospheric [CO2]. At elevated [CO2], N uptake stabilises 

during the last years of simulation, but at ambient [CO2], N uptake shows a slight 

increase during this period (Fig. 8a). 
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This decrease in simulated N uptake over time can be attributed to a decrease in soil 

inorganic N availability. Inorganic N markedly decreases during 1998 – 2000 and then 

stabilises (Fig. 8c). Although inorganic N is always higher for ambient than for elevated 

[CO2], the trend in inorganic N is the same for both treatments.   

Observed root biomass is consistently higher at elevated [CO2] than at ambient [CO2]. 

The difference between the two treatments in maximum during the third year of the 

experiment and than decreases progressively (Fig. 8b). Simulated root biomass is 

predicted to increase from 1998 to 2000 and then decrease, for both treatments. The 

initial increase is much higher in the elevated [CO2] treatment (Fig. 8b).  

3.4.4 SENSITIVITY ANALYSIS  

Figure 11 shows the sensitivity analysis of NPP (kgC m-2 yr-1) for the main parameters 

characterizing plant physiology at ambient and elevated [CO2]. The NPP values 

represent the output of four different simulations run using the model parameterized as 

for the case at ambient [CO2] and then changing one by one parameters to values from 

the elevated [CO2] treatment: first the root life span, then the NPP:GPP ratio and finally 

the annual C wood allocation. Values of simulated NPP are from 1998 to 2007. The 

simulations were run under the assumption that SLA is constant. 

The analysis shows that when the model is parameterized  as for the ambient [CO2] 

treatment but running with high [CO2], it predicts an increase in NPP of about 13% 

compared to the NPP at ambient [CO2]. This increase in NPP is similar when root life 

span is changed to the high [CO2] value, but decreases slightly to10% when the 

NPP:GPP ratio for elevated [CO2] is used. However, when the annual C wood 

allocation for elevated [CO2] is used, the model predicts a decrease in NPP compared 

to ambient [CO2] (-2%). The model is thus very sensitive to this parameter. This 

sensitivity occurs because a higher fraction of C going to the root system (1-aw, 

Table1) translates to a higher amount of N going to the root system (N:C ratio is 

constant, see material and methods, the model) and therefore a smaller amount of N 

going to the above ground plant fraction than for the ambient [CO2] case. 

3.5 DISCUSSION 

3.5.1 AMBIENT [CO2] SIMULATIONS 

The model predicts an overall decline over time of sweetgum plantation net primary 

production at ambient [CO2], in good agreement with data. The decline over time of 



Model analysis of feedbacks between CO2 and N availability          

 

57

modelled NPP is a consequence of the decrease in leaf N concentration, that in turn is 

a consequence of reduced soil N availability. This is in agreement with the results from 

several studies which show a progressive N limitation of the system regardless of the 

initialization state of the model (Comins & McMurtrie, 1993; McMurtrie et al., 2000, 

2001; Medlyn et al., 2000). 

Annual plant available N is given by the sum of N taken up by roots and that 

retranslocated within the foliage, both of which decrease over time. The reduction in 

modelled root N uptake is a consequence of a movement of C and N into long 

residence time SOM pools, which causes a decrease in net N mineralization. 

Retranslocation is assumed to be a constant fraction of N resorbed from foliage before 

the fall, so the decrease in retranslocation over time is a consequence of decreased 

amount of N in foliage. This simulated decrease in leaf N concentration, despite the 

initial increase and the following faster decrease, is in reasonable agreement with the 

observed data trend (Norby et al., 2010).  

The reduction in modelled leaf N concentration, after the marked increase during 1999, 

is observed in simulations with both SLA assumptions, constant and variable. However, 

under the assumption of variable SLA, the maximum value for leaf N concentration is 

considerably higher than with the constant SLA assumption, and the decrease over 

time is faster. Although modelled NPP with this assumption seems to better fit 

measured NPP, we consider the assumption of variable SLA definitely incorrect 

because of the large difference between observed and modelled leaf N concentration.  

Although there is evidence of a positive correlation between SLA and leaf N 

concentration across different species (Reich et al., 1999) and observations from Oak 

Ridge experiment show a decrease in N concentration and SLA, it may be that the 

relationship between these two parameters is poor within a single species. A full 

investigation of the relationship between leaf N concentration,  SLA and photosynthesis 

would be desirable.     

Currently it is assumed that the maximum rate of electron transport (Jmax) and the 

maximum rate of Rubisco activity (Vcmax) vary linearly with leaf N per unit area, based 

on photosynthesis measurements from August 1999 and 2007 (see appendix). 

However, changes in SLA might modify these relationships (Peterson et al., 1999). A 

path analysis of the dependence of Jmax and Vcmax on leaf N per unit area, leaf N per 

unit mass and SLA, based on all photosynthesis measurements would be useful to 

determine how SLA should be incorporated into the photosynthesis model. If Jmax and 
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Vcmax are related to SLA as well as to leaf N, that may change the outcome when SLA 

is variable.  

3.5.2 EFFECT OF ELEVATED [CO2] 

The model fails to simulate the initial stimulatory effect of elevated [CO2] on forest 

production. The model predicts reduced net primary production at elevated [CO2] (Fig. 

9), in complete disagreement with experimental data, which show an average 

enhancement of NPP by about 23% (Norby et al., 2005). The model results also differ 

from previous model studies showing enhanced NPP in response to elevated [CO2] 

(Comins & McMurtrie, 1993; Kirschbaum et al., 1994, 1998; McMutrie & Comins, 1996; 

Medlyn & Dewar, 1996; McMurtrie & Dewar, 1999; Medlyn et al., 2000, Pepper et al., 

2005, Pepper et al., 2007).  

The main reason for this model outcome is the simulated decrease in leaf N 

concentration. The leaf N concentration in elevated [CO2] is lower than in ambient 

[CO2], not just because of the dilution effect due to higher canopy biomass in elevated 

[CO2], but also because the increase in root biomass results in a decreased fraction of 

N uptake being allocated to foliage. Since modelled N uptake is similar in ambient and 

elevated [CO2], and total N allocated to wood plus root is higher in elevated [CO2], the 

N allocated to foliage is reduced. This is also confirmed by the sensitivity analysis of 

NPP to the main parameters characterizing plant physiology at ambient and elevated 

[CO2]. This analysis shows that the lowest response of NPP at elevated [CO2] is 

correlated to the highest fraction of C allocated to the root system (1-aw, Table 1) and 

then to a higher amount of N (Fig. 11) allocated to this pool compared at elevated 

[CO2]. This reduction in N allocated to foliage enhances the dilution effect and 

decreases leaf N concentration to such a degree that it offsets the direct stimulatory 

effect of increased atmospheric [CO2] on photosynthesis. 

To test this conclusion, we forced the model with measured leaf N concentrations. We 

first used observed ambient leaf N concentration and different [CO2], and then used 

observed ambient and elevated leaf N concentration and different [CO2].  We found 

that, on average, NPP at elevated [CO2] was higher than NPP at ambient [CO2] for 

both these sets of simulations (around +15% for the first and +6% for the second set). 

Although the increase in production simulated by the model in these two cases was 

less than the value of 232 % estimated by Norby et al. (2005), the outcome highlights 

that the main problem with current simulations is the strong decrease in leaf N 

concentration.    
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The model allocates a greater amount of N to root system as a consequence of 

increased fine root production in elevated [CO2], which is in accordance with 

experimental evidence (Norby & Collen, 2006; Iversen et al., 2008). Despite the 

increase in root biomass at elevated [CO2], the model simulates similar N uptake by 

roots in ambient and elevated [CO2], in disagreement with data (Norby et al., 2005; 

Finzi et al., 2007). This discrepancy may be caused by an incorrect formulation of the N 

uptake function or by an incorrect parameterization of the N uptake function used in the 

paper (Eqn (1)), where Nino represents the total amount of inorganic N in the soil 

available for plant uptake, and root biomass represents an assessment of the portion of 

soil volume explored, in which Nino is contained. Therefore increased root biomass 

translates into increased soil volume explored and increased N uptake. This 

relationship between root biomass and N uptake continues until the whole soil volume 

has been explored. With the current parameterization of this function (Table 1), almost 

all soil volume is already explored by roots at ambient [CO2]. Therefore, although fine 

root biomass at elevated [CO2] increases to more than twofold fine root biomass at 

ambient [CO2], soil volume explored only increases from 90% to 94-95% (Fig. 10). This 

small increase in percentage of explored soil volume does not result in increased N 

uptake, because inorganic N decreases more rapidly in elevated than in ambient [CO2].  

We examined the model sensitivity to the parameterisation of this function. Using a 

higher value of the kr coefficient used in N uptake function, we found a stronger effect 

of fine root increase on N uptake. However, we also found a decrease in N uptake and 

in NPP compared with the previous case due to a decrease in the percentage of soil 

volume explored by root (from 39% at minimum to 55% at maximum root biomass for kr 

= 0.15). Although an increase in u can counter-act the decrease in N uptake at high kr, 

since u is a multiplicative term in the N uptake formulation, this analysis does not add 

any further information about the reasons for the disagreement between observed and 

simulated N uptake in relation to root biomass. 

Given the parameterization of root N uptake formulation and the consequent lack of 

effect of increased root biomass, the main reason for the decrease in simulated N 

uptake is the decrease in inorganic N, which occurs because of a reduction in net N 

mineralization. This outcome disagrees with experimental data, which shows an 

increase in N uptake and a constant N mineralization rate at elevated [CO2] (Finzi et al. 

2007). In simulations at both [CO2] levels, net N mineralization decreases as a 

consequence of a shift of soil N towards long residence time soil organic matter pools. 

This shift happens mainly during first 5 years of simulation, after which the system 
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equilibrates. To explore this result, we ran further simulations with the values of this 

equilibrium state as initial values for C and N soil pools. Using the new initial values, 

the model simulated lower values for NPP and N uptake. Running several simulations 

for different initial values of soil pools, we found that the magnitude and the overall time 

course of model outputs are very sensitive to the initial condition of simulation, 

expecially regarding the active and slow soil pools, while they seem to be insensitive to 

initial values of the passive soil pool (Fig. 12). Further studies on a new improved 

formulation for N availability and root N uptake as a function of depth is needed to 

improve the model’s ability to simulate outcomes of this experiment. 

Although the initial values of the total soil C and N used in the simulations are lower 

than the measured values, that has no effect on the results of our analysis. This is 

because the passive soil pool has a turnover life of 200-1500 years (Parton et al,. 

1987), considerably longer than the 10 years of simulation. Therefore allocating a 

higher amount of C and N to this pool would increase the soil C and N amounts 

towards the measured value without changing the results of the analysis. This is also 

confirmed by the sensitivity analysis of the model for different initial values of soil pools 

(Fig. 12).  

Estimation of appropriate initial conditions and parameter values pose challenging 

problems when applying models to experimental data, especially with respect to soil 

organic matter models. Initial values for soil pools are not directly observable, and it is 

difficult to partition C and N between the different model soil pools. Inappropriate 

adjustment of these values can lead to important errors in model results (Bruun & 

Jensen, 2002; Orescanin et al., 2009; Yeluripati et al., 2009). Using inverse or 

statistical analysis techniques can help to select more appropriate parameters to 

optimize the model and to estimate the distribution of SOM and N within soil pools 

(Bruun & Jensen, 2002; Calvello & Finno, 2004; Wang et al., 2006; Orescanin et al., 

2009; Yeluripati et al., 2009).  

To improve the ability of the model to simulate the Oak Ridge FACE experiment, we 

would focus on (i) a better formulation for N availability and the N uptake as function of 

depth and (ii) initialization of soil C and N pools, potentially using model inversion.  

3.6 CONCLUSIONS  

Soil N availability is likely to play a crucial rule in determining forest ecosystem 

response to increasing atmospheric [CO2]. To reliably predict forest ecosystem 
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responses to future atmospheric [CO2], it is important to understand and represent as 

well as possible feedbacks between the C and N cycles. 

In this paper we compared the integrated plant-soil G’DAY model, which reproduces 

the dynamic of C and N in forest ecosystems with data from the closed-canopy forest 

FACE experiment at Oak Ridge National Laboratory (ORNL). 

The model successfully reproduced the observed decline in NPP at ambient [CO2]. 

However, it failed to reproduce the observed effect of elevated [CO2] on forest 

production, simulating net primary production values that were lower than at ambient 

atmospheric [CO2]. In accordance with observations, it predicted a decline in observed 

leaf N concentration at both [CO2], but the magnitude of the predicted decline was 

much greater than observed. 

Although the model failed to simulate the observed transient [CO2] response in this 

experimental system, the model did capture the observed longer-term reduction in the 

[CO2] effect on productivity, indicating that it is still valid to use the model for simulating 

long-term responses to gradually increasing [CO2].  

From the analysis of the mechanisms involved, it emerged that likely reasons for the 

model failures were (i) initialization of soil pools, and (ii) incorrect parameterization 

and/or formulation of the soil N uptake as function of depth. These values are not 

directly observable and their estimation poses a challenging problem. Further studies 

applying inverse techniques can help to improve simulation results. 
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Table 3-1 Parameter values used in the model for the sweetgum (Liquidambar 
styraciflua L.) plantation at 1988 at the Oak Ridge National Environmental Research 
Park, TN. 

 

Symbol & Definition Value aCO2 Value eCO2 Units Reference 

W C content of dry matter 0.467 - This study 
F NPP/GPP ratio 0.52 0.49 - Norby et al. 2002 
K Light extinction factor 0.5 - Comins & 

McMurtrie 1993 
r

-1 Constant root life span 0.783 1.1640 yr This study 
T Soil texture parameter 0.5 - Comins & 

McMurtrie 1993 
f_BR Fraction of wood carbon in 

branches (average for 
American conifers)  

0.0941 - This study 

f_CR Fraction of wood carbon in 
coarse roots  (average for 
American conifers)  

0.071 0.070 - This study 

Ncrit Critical inorganic N value for 
soil variable N/C scenario 

0.002 kgN m-2 McMurtrie et al. 
2001 

f_min minimum foliar N/C  0.0151 0.0121 kgN kgC-

1 
This study 

u N/C ratio for surface 
structural litter 

1/150 kgN kgC-

1 
Comins & 
McMurtrie 1993 

v N/C ratio for soil structural 
litter 

1/150 kgN kgC-

1 
Comins & 
McMurtrie 1993 

newa Intercept of relationship 
between new and f  

0 kgN kgC-

1 
This study 

newb Slope of relationship 
between new and f 

0.0736 0.0827 - This study 

swa Intercept of relationship 
between sw and f  

0 kgN kgC-

1 
This study 

swb Slope of relationship 
between sw and f 

0.0559 0.0629 - This study 

a_ma

x 
Maximum for newly active 
soil pool SOM 

1/8 kgN kgC-

1 
Nalder & Wein 
2006 

a_min Minimum for newly active 
soil pool SOM 

1/16 kgN kgC-

1 
Nalder & Wein 
2006 

s_ma

x 
Maximum for newly slow soil 
pool SOM 

1/12 kgN kgC-

1 
Nalder & Wein 
2006 

s_min Minimum for newly slow soil 
pool SOM 

1/40 kgN kgC-

1 
Nalder & Wein 
2006 

p_ma

x 
Maximum for newly passive 
soil pool SOM 

1/6 kgN kgC-

1 
Nalder & Wein 
2006 

p_min Minimum for newly passive 
soil pool SOM 

1/20 kgN kgC-

1 
Nalder & Wein 
2006 

loss Constant rate of N lost 
through leaching and 
gaseous emission  

0.3899 0.32 yr-1 This study 

u Constant rate of N uptake by 
plant roots  

9.7 6.0 yr-1 This study 

kr Value of root C at which 50% 
of the available N is taken up 

0.0105 kgC m-2 This study 

Lfl Lignin/biomass ratio in leaf 
litter  

0.279 0.286 - This study 

Lrl Lignin/biomass ratio in root 
litter  

0.127+0.393* Lfl - Newman & Hart 
2006 

Hf NPP allocated to leaf 
annually  

0.216 0.233 kgC m-

2yr-1 
This study 

aw Hw/(Hw+Hr) 0.85 0.73 - This study 
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Table 3-2 Initial values for C (in kg C m-2) and N (inorganic and organic, in kg N m-2) in 
soil, for ambient and elevated [CO2] simulations, with constant and variable SLA.  

 

 Constant SLA Variable SLA 

C in the active pool (kg Cm-2) 0.43 0.65 

C in the slow pool (kg Cm-2) 2.1 0.7 

C in the passive pool (kg Cm-2) 0.5 0.6 

N in the active pool (kg Nm-2) 0.039 0.059 

N in the slow pool (kg Nm-2) 0.086 0.029 

N in the passive pool (kg Nm-2) 0.05 0.06 

N in the inorganic soil pool (g Nm-2) 0.623 0.628 

 

 

 

Table 3-3 Statistical analysis of model validation results. Linear regression parameters, 
simultaneous F-test for slope = 1 and intercept = 0 and model efficiency index (EF) 
were reported for both NPP and leaf N concentration (f), under the assumptions of 
constant and variable SLA, at both ambient and elevated [CO2]. 

 

Treatment Assumption Variable 
Linear regression 

Fa EF 
R2 Slope Intercept 

Ambient 

Constant SLA 
NPP 0.62 1.05 -0.05 0.02ns 0.62 

f 0.69 0.25 0.02 68.33 -5.44 

Variable SLA 
NPP 0.81 1.25 -0.2 0.81ns 0.76 

f 0.68 0.12 0.03 3933 -36.8 

Elevated 

Constant SLA 
NPP 0.61 1.27 0.01 8.51 -0.34 

f 0.65 0.23 0.02 1053 -9.8 

Variable SLA 
NPP 0.82 1.24 0.02 17.82 -0.08 

f 0.64 0.11 0.03 4073 -41.2 
a Simultaneous F-statistic for slope = 1 and intercept = 0. 

ns not significant; 1 P < 0.025; 2 P < 0.0025; 3 P < 0.001; 
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Figure 3-1 Observed root C (Cr) : root N uptake (Nu) ratio vs Cr for both the ambient 
and elevated [CO2] treatments from 2001 to 2007. The kr parameter (Eqn (1)) is equal 
to the half-saturation (Half sat) constant in the Michaelis-Menten equation relating Nu to 
Cr (regression line, Eqn (1)), where MaxNu is the maximum value of available N that the 
root system can uptake and both ambient and elevated [CO2] data are considered 
together. 
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Figure 3-2 NPP, leaf N concentration, SLA and LAI simulated and observed ± SEM, 
from 1998 to 2007, for the ambient [CO2] treatment. The simulation was run under the 
assumption that SLA is constant and equal to 24.2 m2 kgC-1. 
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Figure 3-3 NPP, leaf N concentration, SLA and LAI simulated and observed ± SEM, 
from 1998 to 2007, for the ambient [CO2] treatment. The simulation was run under the 
assumption that SLA varies according to Eqn (8). 
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Figure 3-4 Net primary production and leaf N concentration observed against net 
primary production and leaf N concentration predicted by the model regression scatter 
plots in the two cases of constant (a, b) and variable (c, d) SLA, for the ambient [CO2] 
treatment. Regression equations are shown in the graphs. 
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Figure 3-5 NPP, leaf N concentration, SLA and LAI simulated and observed ± SEM, 
from 1998 to 2007, for the elevated [CO2] treatment. The simulation was run under the 
assumption that SLA is constant and equal to 24.2 m2 kgC-1. 
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Figure 3-6 NPP, leaf N concentration, SLA and LAI simulated and observed ± SEM, 
from 1998 to 2007, for the elevated [CO2] treatment. The simulation was run under the 
assumption that SLA varies according to Eqn (8). 
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Figure 3-7 Net primary production and leaf N concentration observed against net 
primary production and leaf N concentration predicted by the model regression scatter 
plots in the two cases of constant (a, b) and variable (c, d) SLA, for the elevated [CO2] 
treatment. Regression equations are shown in the graphs. 
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Figure 3-8 Simulated and observed  (± SEM) N uptake (A) and root biomass (B) and 

simulated inorganic N available for plants (C) from 1998 to 2007, for the ambient and 

elevated [CO2] treatments. The simulation was run under the assumption that SLA is 

constant and equal to 24.2  m2 kgC-1. 
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Figure 3-9 Simulated and observed elevated to ambient [CO2] treatment ratios for net 

primary production (A) and leaf N concentration (B) from 1998 to 2007. The simulation 

was run under the assumption that SLA is constant and equal to 24.2  m2 kgC-1. 
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Figure 3-10 Simulated N uptake (A) and Cr:(Cr+kr) ratio (B) vs root C (Cr) for the 

ambient and elevated [CO2] treatments. The simulation was run under the assumption 

that SLA is constant and equal to 24.2  m2 kgC-1. 
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Figure 3-11 Sensitivity analysis of NPP (kgC m-2 yr-1) for the main parameters 

characterizing plant physiology at ambient and elevated [CO2]. The NPP values 

represent the output of four different simulations run using the model parameterized as 

for the case at ambient [CO2] (NPPa) and then changing one by one parameters to 

values from the elevated [CO2] treatment (NPPe): first the [CO2] (+[CO2]e), than the 

root life span (+gr), than the NPP:GPP ratio (+f) and finally the annual C wood 

allocation (+aw). Values of simulated NPP are from 1999 to 2007. The simulations were 

run under the assumption that SLA is constant and equal to 24.2  m2 kgC-1. 
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Figure 3-12 Sensitivity analysis of NPP (kgC m-2 yr-1) for different soil pool 

initializations.The NPP values represent the output of six different simulations run using 

the model parameterized at ambient [CO2]. In the first simulation the model was 

initialized using the soil C and N (organic and inorganic) pools values reported in Table 

3.2 (base). In the other simulations the model was initilizated using a doubled amount 

of both C and N in the active, slow and passive and inorganic N pools, respectively. 

Finally a simulation was run initializing the model with a doubled amount of C and N in 

all the soil pools. Values of simulated NPP are from 1998 to 2007. The simulations 

were run under the assumption that SLA is constant and equal to 24.2  m2 kgC-1. 
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3.7 APPENDIX: THE MATE MODEL 

The MATE (Model Any Terrestrial Ecosystem) model (McMurtrie, in preparation) was 

used in this study as the light use efficiency (LUE) sub-model in G’DAY. MATE 

calculates daily values of LUE as a function of the environmental factors (temperature, 

atmospheric [CO2], soil moisture, vapour pressure deficit) and physiological factors 

(leaf nitrogen concentration) that limit photosynthesis. In the original version of G’DAY, 

these effects were represented by multiplier functions, with values between 0 and 1, 

applied directly to gross primary production. 

In MATE, the Farquhar & von Caemmerer (1982) model is used to calculate the rate of 

leaf photosynthesis. The rate of photosynthesis is given by the minimum of the rate of 

carboxylation when Rubisco activity is limiting (Ac) and that when RUBP regeneration is 

limiting (Aj): 

c jA = min(A ,A )                                                                                                          (A1) 

Here Ac (mol CO2 m
-2 s-1) is given by 

 
 

*
i

c cmax
i m

C - Γ
A = V

C + k
                                                                                                  (A2)           

where Vcmax (mol CO2 m
-2 s-1) is the maximum rate of Rubisco activity, Ci (mol mol-1) 

is the intercellular [CO2], * (mol mol-1) is the CO2 compensation point in the absence 

of mitochondrial respiration, and Km (mol mol-1) is the effective Michaelis-Menten 

constant for Rubisco catalytic activity for CO2; while Aj (mol CO2 m
-2 s-1) is given by 

*
max i

j *
i

J C - Γ
A =

4 C + 2Γ
                                                                                                     (A3) 

where Jmax (mol CO2 m
-2 s-1) is the maximum rate of electron transport.  

Vcmax, Jmax and Km have temperature dependences as given by Medlyn et al. (2002a 

and b).  

Jmax25 and Vcmax25, the values of Jmax and Vc at 25°C, are functions of leaf nitrogen 

content per area (f’, gN m-2): 

'
max25 fJ = aν + b                                                                                                            (A4) 

'
cmax25 f= cν + dV                                                                                                           (A5) 
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where a, b, c, d are empirical parameters that were fitted to site specific data. 

Ci, the intercellular [CO2], is calculated as the product of Ca (atmospheric [CO2], mol 

mol-1) and the ratio of Ci:Ca. The Ci:Ca ratio is estimated by combining the Ball Berry 

model (Eqn (A6)) for stomatal conductance, with the equation for CO2 diffusion into the 

leaf (Eqn (A7)), as follows. According to the Ball-Berry model,  

sw i w
a

RH
g = g f A

C
                                                                                                         (A6) 

where gs (mol m-2 s-1) is the stomatal conductance, gi (dimensionless) is a slope 

parameter, fw (dimensionless) is a factor describing the effect of soil moisture on 

stomatal conductance, with values from zero to 1, A (mol CO2 m
-2 s-1) is the rate of 

leaf photosynthesis and RH (dimensionless) is the relative humidity. The diffusion 

equation can be expressed as: 

 sw
a i

g
A = C - C

1.6
                                                                                                       (A7) 

where 1.6 accounts for the different diffusivities of water vapour and CO2 in air. 

Combining Eqns (A6) and (A7) gives the following expression for the Ci : Ca ratio:  

i

a i w

C 1.6
= 1-

C g f RH
                                                                                                         (A8) 

The value for leaf photosynthesis estimated through this set of equations is then 

integrated using the method of Sands (1995) to estimate the daily value of LUE 

integrated over the canopy. 

Briefly, using Sands’ (1995) model, the LUE is given by: 

LUE = απg                                                                                                                  (A9) 

where  (mol mol-1) is the quantum efficiency of photosynthesis and g is given by the 

integral (Sands 1995): 

 
 

π 2

0 2

2 2 q sinx
g q,θ =

π 1+ q sinx 1+ q sinx - 4 θ q sinx
                                                   (A10) 

where  (dimensionless) is the shape of light-response curve and q is given by 

π k α Q γ
q =

2 h A
                                                                                                            (A11) 
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where k (dimensionless) is the light extinction coefficient; Q (MJ m-2 day-1) is total daily 

irradiance above the canopy;  (mol PAR MJ-1) converts total solar irradiance into 

photosynthetically active radiation (PAR) and h (s day-1) is the day-length. 

 All the calculations to estimate LUE are performed twice, using mean meteorological 

data for the morning and afternoon periods, and the average of the morning and 

afternoon LUE is used in the simulation to calculate canopy photosynthesis. 
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4.1 ABSTRACT 

During recent decades forest growth rates have increased in several European 

regions. Increasing atmospheric [CO2], temperature, nitrogen (N) deposition and 

changes in management practices have been suggested as potential causes for this 

increase. However, in order to predict future dynamics of forest growth and carbon (C) 

sequestration it is of fundamental importance to understand the specific role of these 

factors and their interactions.   

We investigated the combined effect of recent changes in forest growth environmental 

drivers (atmospheric [CO2], N deposition, and climate variables) on a maritime pine 

stand in France. To this end, we used a modified version of the Generic Decomposition 

And Yield (G’DAY) forest C-N cycling model, which incorporates explicitly N deposition 

effects on forest ecosystems, coupled to the Model Any Terrestrial Ecosystem (MATE) 

model, which describes the effects of atmospheric [CO2] and meteorological data 

(temperature, radiation, relative humidity and rain) on light use efficiency. The coupled 

model was parameterized using data from a maritime pine (Pinus pinaster Ait.) stand in 

“Le Bray”, France. The confounding effects of age on tree growth and C sequestration 

were removed by averaging across simulated forest chronosequences.  

We found that enhanced N availability could explain the observed increase in forest 

growth rates. Specifically, increasing N deposition was found to greatly increase N 

availability both through direct canopy uptake, which produces a short term stimulation 

effect on forest growth, and through stimulation of net soil N mineralization, which 

produces a long term effect on forest growth. In addition, increased temperature was 

found to enhance N availability, but at a lower rate than N deposition. Finally the 

observed increase in atmospheric [CO2] was found to be important only when N was 

not limiting, i.e. in recent decades.    

4.2 INTRODUCTION 

During recent decades, forest growth rates have increased across Europe (Spiecker et 

al., 1996, 1999; Ciais et al., 2008; Kahle et al., 2008; Bedison & McNeil, 2009; Thomas 

et al., 2010). Ciais et al. (2008) estimated that net primary production of European 

forest, on average, has increased by 67% over the last 50 years.   

There are several possible causes for this increase: changes in forest management 

practices; climate change, including increased temperature and longer growing 

seasons; increased atmospheric CO2 concentration ([CO2]); and increased nitrogen (N) 



Model analysis of N deposition, CO2 and climate effects on a forest stand  

 

103

deposition may all have had a role in the increase in forest growth rate (Spiecker et al., 

1996, 1999; Ciais et al., 2008). The factors act individually and also interactively. To 

date, it is not clear how much each of these factors contributes to the increase in forest 

growth rate. However, it is important to quantify the role of each of these factors in 

order to be able to predict how growth rate might change in future  (Spiecker et al., 

1996; Ciais et al., 2008; Canadell et al., 2007a,b). 

Improvements in forest management practices, such as new regeneration methods, 

changes in species mixtures, and modifications to tending, thinning and harvesting 

regimes, aim to maximise wood production while maintaining soil and water protection 

function. These improvements have resulted in enhanced site productivity in recent 

years (Spiecker, 1999; Ciais et al., 2008; Kahle et al., 2008).   

 Annual average land temperature over Europe up to 2008 has increased by about 

1.3°C above pre-industrial levels (EEA 2009). Increases in mean air temperature affect 

forest productivity by increasing plant photosynthetic and autotrophic respiration rates, 

lengthening the growing season (Myneni et al., 1997; Menzel & Fabian, 1999; Saxe et 

al., 2001; Nemani et al., 2003) and altering soil decomposition and nutrient 

mineralization rates (Saxe et al., 2001; Davidson & Janssens, 2006).   

Global average atmospheric [CO2] increased from 280 ppm before the industrial 

revolution to 381 ppm in 2006 (Canadell et al., 2007a), and it is predicted to further 

double by the end of this century (IPCC, 2007). Results from free-air CO2 enrichment 

(FACE) experiments have demonstrated a significant stimulatory effect of CO2 on 

forest productivity (Norby et al., 2005), leading to more carbon (C) being stored in 

woody biomass. However, studies of forest growth in CO2-enriched environments have 

also suggested that the potential for a plant growth response to increasing [CO2] may 

be limited by low nutrient availability (Oren et al., 2001; Luo et al., 2004; de Graaff et 

al., 2006; Johnson 2006; Körner, 2006). On the other hand, there is also evidence of 

increasing belowground C allocation under elevated [CO2], with consequent increase in 

N uptake, even in N-limited ecosystems (Finzi et al., 2007).   

N input via atmospheric deposition has likely been a growth promoting factor during 

recent years, because N is the most significant growth-limiting nutrient in many forests 

worldwide (LeBauer & Treseder, 2008). Moreover, increased N deposition can also 

increase soil organic matter accumulation rates by reducing mineralization rates (Berg 

& Matzner, 1997; Harrison et al., 2000; Schulze et al., 2000; Hagedorn et al., 2003). In 

a recent study, Magnani et al. (2007) demonstrated a strong positive relationship 

between N deposition and average forest C sequestration (Högberg, 2007). Although 
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the numeric values of these results have been questioned, because they appear to 

show a very high ratio of C sequestered per unit N deposited (Sutton et al., 2008; de 

Vries et al., 2008; Hyvönen et al., 2008; Högberg, 2007), scientists nevertheless agree 

that N deposition is likely to enhance forest C sequestration.       

Several studies have investigated the effect of environmental factors (climate, N 

deposition and [CO2]) on forest growth, but there is still no consensus on their relative 

importance for C sequestration during recent decades. Some studies suggest that the 

major driver of growth increment in Europe is N deposition (Nellemann & Thomsen, 

2001; Solberg et al., 2004; Van Oijen et al., 2004, 2008; van Oijen & Jandl, 2004; 

Mellert et al., 2008) while rising [CO2] and temperature have very little effect (Solberg et 

al., 2009; Laubhann et al., 2009). Rehfuess et al. (1999) used a combined (model-

statistical-empirical) approach to investigate the relationships between recent changes 

of growth and nutrition of Norway spruce, Scots pine and European beech forests. 

They found that the combination of [CO2] and N deposition increase could account for a 

15-20% increase in forest net primary production (NPP), while the rise in temperature 

was relatively unimportant. Using the complex forest model EFM (Thornley, 1991), 

parameterized for 22 stands across Europe, Milne & Van Oijen (2005) concluded that 

the main driver of increased forest growth in the 20th century has been increased N 

deposition, rather than increased [CO2] or climate change. Recently, the EU-

RECOGNITION project attempted to clarify the causes of the observed forest growth 

increase using long-term growth studies and models, and came to the conclusion that 

N availability should be regarded as the main driver for this increase (Kahle et al., 

2008; Van Oijen et al., 2008).  

On the other hand, using the ORCHIDEE model, Ciais et al. (2008) concluded that a 

significant fraction of the trend in European forest NPP may be explained by changes 

in climate (temperature and precipitation) and [CO2]. Although Ciais et al. (2008) did 

not consider N limitations in their work, they suggested that N deposition has only a 

minor role.   

Several studies assessing potential climate change effects on future forest production 

also do not take account of the N deposition effect, identifying the main drivers of forest 

C accumulation as increased [CO2] and/or temperature (Loustau et al., 2005; Zaehle et 

al., 2007; Morales et al., 2007; Kirilenko et al., 2007; Sitch et al., 2008). Other studies 

find a role for both N deposition and climate: in a tree model study on the effect of N 

deposition and climate change on growth of different European forests, Laubhann et al. 

(2009) found a positive correlation between growth and both N deposition and 

temperature.     
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In a recent study, however, Dezi et al. (2010) demonstrated that several key 

components of the response of forest ecosystems to N deposition have not been taken 

into account in previous modelling studies. Therefore a novel study is needed, taking 

into account the latest ecological evidence to investigate the effect of global change 

components on forest growth and C sequestration rates over the last decades. 

In a review of the impact of elevated [CO2], N deposition, increased temperature and 

management on C sequestration in temperate and boreal forest ecosystems, Hyvönen 

et al. (2007) observed a lack of relationship between net ecosystem exchange (NEE) 

and N deposition. They concluded that to account for effects of N deposition, all stand 

factors need to be included. However, Magnani et al. (2007) subsequently showed that 

the main confounding factor is forest age and that it is possible to account for this 

confounding factor by using data from chronosequences. Once the age effect was 

corrected for, a strong relationship between average NEE and N deposition was found. 

Therefore, in the present study, we opted to use a chronosequence approach in order 

to avoid confounding due to age effects when evaluating results. 

 We investigated the combined effect of recent changes in forest growth environmental 

drivers, i.e. atmospheric [CO2], N deposition, and climate variables (temperature, 

precipitation and radiation) on a maritime pine plantation. We used a coupled 

ecosystem model, the Generic Decomposition and Yield (G’DAY) model, developed by 

Comins & McMurtrie (1993). We used a version of the model modified by Dezi et al. 

(2010) to explicitly consider forest management and N deposition effects on forest 

ecosystems. Data from “Le Bray” maritime pine stand near Bordeaux, France, were 

used to parameterize the model. The “Le Bray” site was chosen because it is one of 

the chronosequence studies from Magnani et al. (2007). The effect of observed 

changes in atmospheric [CO2], climate and N deposition over the period 1950-2000 

were assessed for gross primary production, net ecosystem production, maximum 

annual increment and wood and tree C. In order to factor out the overwhelming effects 

of forest age on growth and C sequestration (Pregitzer & Euskirchen, 2004; Magnani et 

al., 2007), the model was run assuming a wide range of years for forest establishment, 

thus simulating chronosequences over which outputs could be averaged. The effects of 

the environmental factors on chronosequence-scale outputs were examined separately 

and in combination, using a full factorial design analysis (Box et al., 1978). 
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4.3 MATERIALS AND METHODS 

4.3.1 THE MODEL 

The G’DAY (Generic Decomposition and Yield) model, as modified by Dezi et al. 

(2010), was used to represent tree and soil C and N dynamics. Within the G’DAY 

model, we implemented the MATE (Model Any Terrestrial Ecosystem) submodel 

(McMurtrie et al., in preparation) to estimate daily light use efficiency (LUE) as affected 

by atmospheric [CO2] and environmental factors.      

Briefly, G’DAY is a process-based model that simulates C and N dynamics in a forest 

ecosystem (Comins & McMurtrie, 1993). The model is composed of two sub-models, 

one that simulates plant production and one that simulates soil organic matter 

decomposition. The plant sub-model consists of three pools: foliage, wood (stem, 

branches and coarse roots) and fine roots. The soil sub-model, which is similar to the 

CENTURY soil model (Parton et al., 1987, 1993), consists of four litter pools (structural 

and metabolic, above and below ground) and three soil organic matter pools (active, 

slow and passive) of C and N content. The N:C ratio of the substrate entering the three 

soil pools is assumed to be a saturating function of the soil inorganic N content (Ninorg), 

as Ninorg increases from zero to a critical value (Ncrit) (McMurtrie et al., 2001). A full 

description of the model is given elsewhere (Comins & McMurtrie, 1993; Medlyn et al., 

2000; McMurtrie et al., 2001).  

Several new assumptions were introduced to the model by Dezi et al. (2010) in order to 

simulate the effects of N deposition on forest C sequestration. These assumptions 

were: (i) prescribed forest thinning was assumed to result in the annual removal of a 

constant fraction of total woody biomass from the system, while the branches and the 

coarse roots of harvested trees were assumed to enter the surface and soil structural 

litter pools, respectively, and decompose over time; (ii) C root allocation was assumed 

to depend on NPP (Palmroth et al., 2006) so that as tree production increases, the 

percentage of available C allocated to the root system decreases; (iii) foliar litterfall and 

specific leaf area (SLA) were assumed to increase with increasing leaf N concentration 

(Burton et al., 2000; Reich et al., 1999); (iv) leaves could directly absorb a fraction of 

the N deposition retained by the canopy (Sievering et al., 2007) equal to the product of 

the canopy nitrogen uptake efficiency and the vegetation cover fraction; (v) the 

inorganic N soil pool was divided in two pools, namely nitrate and ammonium 

components; only the nitrate form could be lost from the system by leaching. The N 

taken up by the plant was assumed to depend on both soil inorganic N pools (Comins 
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& McMurtrie, 1993) and to be a saturating function of root biomass as in Dewar & 

McMurtrie (1996a, b).  

For this paper, a few additional modifications are made to the model.  

(1) A more realistic representation of silvicultural practices is introduced. Forest 

thinning is simulated as a periodic rather than annual event, applying prescribed export 

fractions derived from local Growth & Yield tables (Lemoine & Décourt, 1969). In order 

to simulate final harvests, all stems are assumed to be exported from the system 

following a clear-cut, while branches, leaves, fine and coarse roots remain in the 

system and enter the decomposition pools. Immediately after the clear-cut, the 

plantation of a new stand is simulated by setting C and N contents of foliage and roots 

to very low levels, with woody pools remaining at zero. For the current study, we 

assumed a rotation length of 50 years (Lemoine & Décourt, 1969).  (2) C partitioning to 

foliage is assumed to be conservative and equal to 26 % of NPP, as shown by Litton et 

al. (2007). C root allocation is assumed to be a function of NPP as in Dezi et al. (2010), 

the remaining fraction being allocated to wood.     

(3) N-induced changes in SLA and foliage mortality were demonstrated to be of minor 

importance by Dezi et al. (2010), so a constant value for leaf turnover and SLA is 

assumed in the present study.   

(4) The representation of stand water balance and of the effects of soil moisture on 

litter and soil decomposition rate are taken from Corbeels et al. (2005a, b), with the 

exception that soil moisture is represented using only two layers, the top soil layer and 

the total root zone, rather than three. 

(5) Finally, in order to incorporate the effects of atmospheric [CO2] and other 

environmental variables on forest C sequestration, we use the MATE (McMurtrie et al. 

in preparation) plant model to calculate LUE of the stand as a function of 

meteorological data, atmospheric [CO2] and leaf N concentration. This model 

calculates leaf photosynthesis based on the Farquhar & von Caemmerer (1982) model, 

and uses this value to estimate daily canopy-scale LUE according to the algorithm 

developed by Sands (1995).  

4.3.2 EXPERIMENTAL SITE 

The study site is a maritime pine (Pinus pinaster Ait.) plantation established in 1970 at 

“Le Bray”, 20 km southwest of Bordeaux, France (44°42’ N, 0°43’ W). The understory 

consists mainly of Molinia coerulea (L.) Moench. The soil is a sandy humic podzol with 
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a cemented Bh horizon limiting the depth of the root zone at 75 cm and a permanent 

water table that fluctuates between 20 and 150 cm below the soil surface (Loustau & 

Granier, 1993).   

The mean annual temperature is 12.5 °C and mean annual precipitation is 932 mm 

(Loustau & Granier, 1993; Granier & Loustau, 1994). Although the site is subject to 

summer drought, growth rates are relatively high, with a mean height of about 25 m at 

50 years (Lemoine & Decourt, 1969; Delzon & Loustau, 2005). The stand, originating 

from direct sowing, covers an area of 16 ha and its elevation is 60 m a.s.l.. In 1997 the 

density of the pines was 621 trees per hectare (Loustau & Granier, 1993; Porté et al., 

2002) and leaf area index (LAI) ranged from 2.6 to 3.1 m2 m-2. In 1996-1999 the mean 

net ecosystem production (NEP) of the stand, estimated from eddy covariance 

measurements, was 530 gC m-2 yr-1 (Berbigier et al., 2001) and the mean above 

ground net primary production (ANPP), estimated by allometric equations, was 390 gC 

ha-1 yr-1 (Bosc et al., 2003; Porté, 1999; Porté et al., 2002).  

Since 1987, the site has been intensively studied for C and water relations, energy 

fluxes, tree transpiration, allometric relationships, resulting in a collection of available 

physiological data suitable for model parameterisation (Berbigier et al., 1991; Granier & 

Loustau, 1994; Berbigier & Bonnefond, 1995; Loustau et al., 1992a, 1992b, 1997, 

1998; Porté & Loustau, 1998; Bosc, 1999; Porté et al., 2002).     

The silvicultural practices applied to this stand are characterized by a medium-term 

rotation cycle (ca. 50 years) with clear-cut harvesting and frequent thinning (ca every 5-

7 years) (Lemoine & Décourt, 1969; Brin et al., 2008). 

A complete description of the site was given by Diawara et al. (1991). 

4.3.3 PARAMETERISATION 

Model simulations were driven by daily meteorological data of precipitation, global 

radiation, and maximum and minimum temperatures recorded on site from 1951 to 

2000 (Fig. 1). Missing values of radiation and temperature were filled with the mean 

values between the previous and subsequent days. For precipitation, gaps were filled 

by averaging all values of precipitation registered that same day of year, for all 50 

years. Daily soil temperatures were calculated using the 15-day moving average of 

mean daily air temperature. The values of temperature for morning (AM) and afternoon 

(PM) periods used in MATE were calculated as in McMurtrie et al. (1990). To estimate 

the values of vapour pressure deficit (VPD) for AM and PM periods we used the model 
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proposed by Kimball et al. (1997), which gives minimum daily humidity estimates using 

daily air temperature, annual precipitation and daily potential evapotranspiration.  

The values of atmospheric [CO2] (Fig. 2a) were derived from measurements at Mauna 

Loa, Hawaii, USA (http://cdiac.ornl.gov/). The values of N deposition (Fig. 2b) were 

simulated for the “Le Bray” site using the models EDGAR_HYDE, for the period 1949-

1959, and TM4 RETRO, for the period 1960-2000 (van Noije, personal 

communication). A list of the principal model parameters used for this site are given in 

Table 1.       

In the version of the plant model MATE used in this study, stomatal conductance was 

estimated using the Leuning model (1995), as modified by Medlyn et al. (2005). In this 

model, neglecting the effects of stomatal opening at the light compensation point, the 

intercellular [CO2] (Ci) to atmospheric [CO2] (Ca) ratio is calculated as: 

 i

a i

1.6 1+ VPD bC
= 1-

C g
                                                                                               (1) 

where Ci and Ca are expressed in mol mol-1, VPD is vapour pressure deficit in kPa, gi 

(dimensionless) is the slope parameter for the Leuning model (1995), b (kPa-1) is a 

constant representing stomatal sensitivity to VPD and the 1.6 factor corrects for the 

difference in diffusivity between CO2 and water.  

 The site-specific dependence of stomatal conductance on soil moisture was taken 

from Granier & Loustau (1994). Computed values of Ci were then used as input to the 

Farquhar photosynthesis model (Farquhar et al., 1982). The species-specific 

coefficients for the relationships between leaf N concentration per area and the 

maximum values of electron transport and Rubisco activity rates at 25°C, used in 

MATE, are from Medlyn et al. (2002). 

In Dezi et al. (2010) two possible pathways for N taken up by canopy were explored: 

(a) the N taken up is all added directly to the nitrogen concentration of the foliage to 

stimulate the photosynthesis; or alternatively, (b) it is added to the N taken up by roots 

and then allocated to the different parts of the plant. Given the uncertainty regarding 

the fate and amount of nitrogen taken up by the canopy the more conservative second 

assumption was used.  

In Dezi et al. (2010), foliar litterfall and SLA were simulated as functions of N 

concentration, following Reich et al. (1999). Since there was no evidence that turnover 

rate and SLA changed with N concentration in maritime pine, in this study the foliage 
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turnover rate and SLA were held constant at 0.5 yr-1 and 21.13 m2 kgC-1 respectively 

(this study). Values for root N uptake rate and N leaching rate were tuned to fit data 

(Table 1).   

A rotation length of 50 years was assumed (Brin et al., 2008), with imposed thinnings at 

an age of 24, 30, 35, 40 and 45 years (of intensity equal to 15, 14, 12, 5 and 5% 

respectively; Lemoine & Décourt, 1969). We assumed no natural tree mortality 

between thinnings.  

4.3.4 SIMULATIONS AND ANALYSIS 

Simulations for “Le Bray” maritime pine plantation consisted of two steps: (1) a 

simulation that led the system to the equilibrium condition, defining the common 

starting point for the (2) combination of simulations to investigate the effect of rising 

atmospheric [CO2], N deposition and climate change (incident radiation, precipitation, 

temperature and humidity) on production and C sequestration of the plantation.      

We initialised the model to equilibrium by repeating the first half of the available 

meteorological data set (i.e. from 1951 to 1975).  In this simulation we kept N 

deposition rate and atmospheric [CO2] constant and equal to 0.4 gN m-2 yr-1 and 280 

ppm respectively, values characteristic of the start of the industrial revolution period. 

We used the values of litter and soil pools from this simulation to initialize the model for 

the analysis. 

Direct meteorological measurements were used for the period 1976-2000 to reproduce 

the effects of any recent changes in climatic conditions at the site. 

In order to account for the effects of forest age on growth and C sequestration rates, 

and highlight the impact of environmental factors alone, model results were averaged 

over an entire chronosequence, i.e. a number of stands of age ranging from 0 

(regenerating stand, just after a clear-cut) to 50 (mature stand, just before harvesting). 

For this purpose, we simulated the dynamics over four rotations (i.e. covering a period 

of 200 years) of stands first established in 1801, 1811, 1821, 1831, 1841 or 1850. 

Model simulations were repeated for all combinations of the three varying 

environmental drivers (atmospheric [CO2], N deposition and climate; hereafter referred 

to as the CO2, Nd and CC driver respectively) that can affect forest C sequestration. 

Changes in environmental drivers over the period of simulations are presented in 

Figures 1 and 2.   

In this way, both synchronic and diachronic analyses of model results could be 

performed. In this study, a synchronic analysis compares for a specific year a number 
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of stands of different age, grown under the same site and environmental conditions, 

while a diachronic analysis describes the development of an individual stand over time. 

The combined effects of varying age and environmental conditions overlap in the 

diachronic analysis (see Fig. 4). In the synchronic analysis, the effects of age can be 

removed by averaging results for one specific year (i.e., 1950, 1960, 1970, 1980, 1990 

or 2000) across age classes. 

In order to disentangle the effects of recent changes in each environmental driver 

considered, model results were then analyzed through a full factorial design model 

analysis, as described by Box et al. (1978), Henderson-Sellers (1993) and Henderson-

Sellers & Henderson-Sellers (1996). Given three factors (atmospheric [CO2], N 

deposition and climate change) and two levels (either constant or observed natural 

trend), 23 simulations were required. The model outputs considered for this analysis 

were: gross primary production (GPP, kgC m-2 yr-1), net ecosystem production (NEP, 

kgC m-2 yr-1), wood C (Cw, kgC m-2), total ecosystem C (Ctot,  kgC m-2) and mean 

annual increment (MAI, kgC m-2 yr-1). To remove the age effect on this analysis, the 

average values of GPP, NEP, Cw and Ctot at year 2000, for the 6 different 

establishment years, were used for the analysis, while the maximum value across the 

age sequence was used for MAI.      

4.4 RESULTS 

4.4.1 VARIATION IN GROWTH RATE WITH ESTABLISHMENT YEAR 

In model simulations with all three global environmental drivers (CO2, Nd and CC) 

changing, the model predicted a clear difference in wood C accumulation among 

stands with different establishment years (Fig. 3, where the age of the stand after 

germination is reported on the abscissa). The three simulations shown in Figure 3 

correspond to stands planted in 1900, 1950 and 1980. The wood C of all three stands 

increases over time, but the more recently the stand was planted, the higher the 

amount of C stored in wood for the same stand age. 

At an age of 20 years, the stands planted in 1900, 1950 and 1980 stored in wood 1.3, 

2.0 and 3.9 kgC m-2, respectively. Growth rate was also higher for the most recently 

planted stand. While the stand planted in 1900 stored C in woody organs at a rate of 66 

gC m-2 yr-1, for the stands planted in 1950 and 1980 the rates were 146 and 257 gC m-2 

yr-1, respectively.  



                      Model analysis of N deposition, CO2 and climate effects on a forest stand 112

Results were then averaged across simulated forest chronosequences in order to 

remove the variable effects of age on forest response to environmental drivers.   

4.4.2 CHRONOSEQUENCE ANALYSIS 

A forest chronosequence is a set of stands of different ages, grown on sites with the 

same characteristics and under the same environmental conditions. Therefore, a forest 

chronosequence represents a substitute for the temporal development of the stand and 

can be used to remove the effects of age on stand response to long term changes in 

environmental drivers. In the present study, forest chronosequences were simulated by 

combining results from 6 simulations, representing 6 stands of different ages, assuming 

the same site characteristics and environmental conditions (see Material and Methods).  

The pattern of wood biomass over time for the 6 simulated stands grown under the 

observed trend in the CO2, Nd and CC drivers is presented in Figure 4a. From these 

simulations it is evident that wood C increased from the beginning of the 1900s, with an 

accelerating trend towards the end of the century. The last 50 years of the same 

simulations are presented in more detail in Figure 4b. The vertical boxes indicate the 

years for which values of GPP, NEP, Cw, Ctot were averaged across the 6 stands of a 

chronosequence. In the case of MAI, the maximum value over the chronosequence 

was evaluated. 

Hereafter we will always refer to average values of GPP, NEP, Cw, Ctot and maximum 

MAI, from which age effects have been removed, for all the analyses.          

4.4.3 TEMPORAL RESPONSE TO CLIMATE CHANGE, N DEPOSITION 

AND ATMOSPHERIC [CO2]                                           

To investigate the effects of the CO2, Nd and CC drivers on the forest ecosystem at “Le 

Bray”, the average values of NEP, GPP, MAI, Cw and Ctot from 1950 to 2000 were 

considered. Starting from the baseline case (none), which was run with pre-industrial 

constant values of all the drivers, simulations with all combinations of constant and 

increasing natural trends of the CO2, Nd, and CC drivers are presented in Figure 5.  It is 

important to stress that only the last 50 years of simulation are shown and that in each 

figure all the different simulations have a common origin. The split into different groups 

is due to the effects of the environmental drivers.  

Figure 5a represents the effects of environmental drivers on average NEP over time. 

The variability of NEP over time within each curve is a consequence of the inter-annual 
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variability in the climatic pattern used. The decrease in NEP in 1980, for all cases not 

driven by the observed trend in CC, is likely due to the short term variability in the 

climate pattern used for the baseline case and to the sampling frequency used for 

setting up the chronosequences. This conclusion seems to be confirmed by the lack of 

decline in NEP in 1980 when the model is driven by the observed trend in CC. 

Using a 25-year repeated meteorological data set, we would expect to have the same 

model response for the periods 1950-1975 and 1975-2000 in the baseline case. 

However, using a sampling frequency of 10 years, it follows that there is a mismatch 

between the years used for representing the period 1950-1970 (corresponding to the 

years 0, 10 and 20 of the data set) and those used for representing the period 1980-

2000 (corresponding to the years 5, 15 and 25 of the data set). This mismatch would 

explain the different model response during the two periods in the base line case and in 

all cases without the CC driver. 

In our model simulations, N deposition strongly enhances the capacity of the system to 

store C, as shown by the fact that all the combinations with the Nd driver lie in the upper 

part of the graph and keep increasing over time (Fig. 5a). The combinations without the 

Nd driver all have similar values of NEP in the year 2000, but those which include the 

observed Nd driver trend show different values. The combinations with the Nd driver but 

without the CC driver show a stabilization of NEP in the last period of the simulation, 

while the combinations with the CC driver show a continuation of the enhancement of 

NEP through to the end of the simulation. 

These differences are confirmed by the analysis of GPP in Figure 5b, where the 

simulations with the Nd driver but without the CC driver show a decrease in GPP during 

the last years of simulation, when N deposition rate levels off, while in the simulations 

with both Nd and CC drivers (NdCC), GPP keeps increasing. This effect of CC may be a 

consequence of increased temperatures, which stimulate N mineralization rates in the 

soil. Although a higher N mineralization is associated with more heterotrophic 

respiration (Rh), it also means that a greater amount of N is available in the soil for 

plant uptake, so stimulating leaf N content, LAI and therefore GPP. 

 Figure 5b shows an increase in productivity for each of the environmental drivers 

considered and for their combinations. The effect of the CO2 and CC drivers, without Nd 

(CO2CC), is evident only in the last 25 years of the simulations, when the increase in 

atmospheric [CO2] and temperature is maximum. On the contrary, the effect of Nd is 

evident throughout the simulated period, resulting in an increase of GPP over the 

control from 30% in 1950 to 62% in 2000 (considering only the Nd driver). Increasing N 
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deposition rate also seems to enhance the CO2 driver effect on GPP, while the main 

effect of the CC driver is the interaction with the Nd driver effect towards the end of the 

simulation period.  

Figure 5c shows maximum MAI over time, for the 8 environmental driver combinations. 

The effect of CO2 and CC and their combination is to slightly increase maximum MAI at 

the end of the simulation period. In contrast, the Nd driver enhances maximum MAI 

throughout the simulation; this enhancement is already evident in 1950 and increases 

over time. As with GPP, simulations with the Nd driver but without the CC driver seem 

to stabilize at the end of the simulation period, due to the stabilization in N deposition 

rates, whereas maximum MAI continues to increase in simulations including the CC 

driver. .  

The resulting effects of the environmental drivers on wood and total C over time are 

shown in Figure 6. As with C fluxes, the Nd driver is the most important factor 

increasing C stocks, both for wood and total ecosystem C. Once more, the effects of 

the CC and CO2 drivers and of the CO2CC combination are evident only at the end of 

simulation period, slightly increasing the amount of C stored. The combination of the 

CC and CO2 drivers with the Nd driver strongly enhances this effect.  

For the baseline case, wood and total ecosystem C remain constant at values of about 

0.8 and 5.9 kgC m-2 yr-1, respectively, throughout the simulation period. In contrast, in 

the case with all environmental drivers applied (All), wood C increases from 1.7 kgC m-

2 yr-1 in 1950 to 3.9 kgC m-2 yr-1 in 2000 (Fig. 6a), and total C increases from 7.4 to 10.1 

kgC m-2 yr-1 during the same period (Fig. 6b).      

4.4.4 AVERAGE RESPONSE TO CLIMATE CHANGE, N DEPOSITION AND 

ATMOSPHERIC [CO2] OVER THE PERIOD 1950 - 2000 

Simulated values of NEP, GPP and maximum MAI, averaged over the period 1950-

2000, for all the combination of environmental drivers are shown in Figure 7. The 

results are expressed as the percentage change from the baseline simulation, run with 

pre-industrial constant values of all the environmental drivers.  

The CO2 driver increases NEP and the CC driver reduces it; overall, the CO2CC 

combination has very little effect on NEP over the 50 years considered. The Nd driver 

can increase NEP by about 800%; this seems large but it should be stressed that NEP 

assumes very low values, so that even small absolute changes result in great 

percentage changes. As in the case without the Nd driver, the effect of the combination 
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of Nd and CC (NdCC) is to decrease the NEP response compared with Nd alone, while 

the combination of Nd and CO2 (NdCO2) increases it. Finally, the joint effect of all 

environmental drivers is to increase NEP by about 840 % compared with the baseline 

case. 

All environmental drivers and their combinations increase GPP. The greatest GPP 

response is observed when all environmental drivers are applied (+60%), while the 

NdCO2 and NdCC combinations and the Nd driver alone increased GPP by 54%, 52% 

and 49%, respectively. The smallest effect on GPP was observed in the case of the 

CO2 driver alone, with GPP increasing by just 2% over 50 years.       

Maximum MAI increased under all environmental driver combinations compared with 

the baseline scenario. As for GPP, the greatest positive effect was observed when all 

environmental drivers are considered. Of the three drivers, the most important is the Nd 

driver, which magnifies the positive effect on maximum MAI of both the CO2 and CC 

drivers, while the CO2 driver alone seems to have a negligible effect on maximum MAI.    

Simulated values of wood and total carbon stocks, averaged over the period 1950-

2000, for all the combination of environmental drivers are shown in Figure 8. The 

results are expressed as the percentage change from the baseline simulation, ran with 

pre-industrial constant values of all the environmental drivers. 

The CC and CO2 drivers each had a relatively small effect on both Cw and Ctot, while 

the Nd driver had a much larger effect, increasing Cw and Ctot on average by 170% and 

38%, respectively, compared with the baseline case. The larger increase in Cw relative 

to Ctot in response to N deposition is due to the higher C:N ratio of wood compared with 

the C:N ratio of the entire ecosystem, and to the fact that Cw does not represent the 

main component of Ctot. Therefore an increase in N taken up by the plant translates 

into a greater percentage increase of C stored in wood than in the ecosystem as a 

whole.     

The NdCO2 combination has a slightly greater effect on Cw and Ctot than the NdCC 

combination. This reflects the NEP behaviour under the same driver combinations.  

For both Cw and Ctot the greatest response is observed when all drivers are applied, 

while the lowest response is observed when only the CO2 driver is considered.   



                      Model analysis of N deposition, CO2 and climate effects on a forest stand 116

4.4.5 FACTORIAL ANALYSIS 

The effects of all combinations of the three environmental drivers on NEP, GPP, Cw, 

Ctot and maximum MAI, once the age effect has been removed, are summarized in 

Table 2. The three environmental drivers considered are: observed atmospheric [CO2] 

trend (CO2), observed N deposition rate (Nd) and observed climate change (CC). For 

all variables, the single driver with the greatest effect is the change in N deposition rate. 

For NEP, the second most important driver is the increase in atmospheric [CO2], 

followed by climate change, while for the other variables the CC driver is more 

important than the CO2 driver.  Of all the two-way and three-way interactions, only the 

NdCC interaction was significant; interactive effects between the other driver 

combinations were negligible.  

4.5 DISCUSSION 

Model results show a strong effect of time of stand establishment on growth stand 

dynamics. Stands planted more recently grow faster than stands planted in the past 

because increased temperature, atmospheric [CO2] and N deposition stimulate 

photosynthesis and modify resource allocation. These results are in agreement with the 

observations of an increase in site quality and growth over recent decades (Spiecker, 

1999, 2002; Lebourgeois et al., 2000). An increase in site quality will also influence tree 

growth rhythm (Peschel, 1938), so that recently established stands may grow faster 

and reach maximum current annual increment earlier than stands established in the 

past (Spiecker, 2002). Although the amount of simulated C in wood is higher than that 

reported in this studies due to other limiting factors as a result of long-term N 

fertilization (see discussion below about MAI), model results seem to agree with the 

observed pattern in stand growth. 

Given the strong overlap between age dynamics and changes in environmental factors 

(climate change, [CO2] and N deposition) in their effects on forest ecosystem growth 

and C storage capacity, in order to investigate climate-growth relations it was 

necessary to remove the effects of any  age-related changes (Pregitzer & Euskirchen, 

2004; Magnani et al., 2007). In this study, we removed confounding age effects by 

simulating forest chronosequences. After removal of this confounding effect, forest 

dynamics over recent decades were found to be driven mainly by the increase in N 

deposition. This finding is in agreement with the experimental results of Mellert et al. 

(2008) that increased N nutrition was the most important driving factor (compared to 
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precipitation and air temperature) of growth acceleration of Scots pine during the period 

1950-2000 in Central Europe, where N deposition rate was generally high. 

Atmospheric N deposition affects forest ecosystems via two main mechanisms. Part of 

the N deposited is intercepted by the canopy and absorbed by leaves, thus directly 

affecting forest trees (Katz et al., 1989a, b; Wilson & Tiley, 1998; de Vries et al., 2001; 

Harrison et al., 2000; Sievering et al., 2007; Sparks, 2009). The N deposited that is not 

retained by leaves reaches the soil and largely accumulates in soil organic matter, 

changing the soil C:N ratio and so influencing the conversion by the microbial 

community of soil and litter organic N into the inorganic N required by trees. This 

process of net N mineralization is generally considered to be the rate-limiting step in 

plant N uptake (Bending & Read, 1996, 1997; Colpaert & Van Laere, 1996; Nave et al., 

2009a). This long-term stimulation of N mineralization is an indirect effect of N 

deposition on forest trees. 

In our simulations, the relative contribution of N deposition to total N taken up by trees 

changed with time. As N deposition increased from 0.2 to 1.3 gN m-2 yr-1 from 1800 to 

1974, the contribution of N deposition to total N uptake increased from 10% to 31%. 

Between 1974 and 2000, the N deposition rate decreased to 1.0 gN m-2 yr-1, and the 

contribution to total N uptake decreased to 21%. These values are in agreement with 

the estimated contribution from N deposition to total N requirements for forest growth of 

15% estimated by Nave et al. (2009a), for a N deposition rate of 0.75 gN m-2 yr-1.  

In our model, about 48% of N deposition is assumed to be retained and absorbed by 

the canopy. Thus, the direct contribution of N deposition, as canopy N uptake, to 

annual N requirements for stand growth amounts to 5-15%. These values are in 

agreement with experimental measurements of the contribution of canopy N uptake to 

total annual N requirement, which range from 2 to 42% (Boyce et al., 1996; Wilson & 

Tiley, 1998; Harrison et al., 2000). However, given the simplified formulation used in 

the model to estimate canopy N uptake, the uncertainty in canopy nitrogen uptake 

efficiency and the important effect that this mechanism may have on forest growth and 

C storage (Dezi et al., 2010), further studies towards a better quantification and 

understanding of this often neglected ecological process are desirable. In particular, 

research should focus on replacing the the dependence on the constant vegetation 

cover fraction c with the dependence on LAI effect on wet and dry deposition, possible 

saturation effects and their relationship with canopy closure, meteorological conditions 

and plant internal N status on wet and dry deposition, and the inclusion of the N soil 

saturation effect on leaching and soil respiration. 
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In contrast with canopy nitrogen uptake, which closely follows the trend in N deposition 

rate, net N mineralization continues to increase over time, despite the decrease in N 

deposition in recent decades, and therefore it can be regarded as a long-lasting indirect 

effect of N deposition on forest growth. In the simulation with only the N deposition 

driver, net N mineralization increases from 3 gN m-2 yr-1 in 1950 to around 4 gN m-2 yr-1 

in 2000 due to the stimulatory effect of N deposition. This represents a 33% increase 

during the period 1950-2000, or 82% if considering the entire period of simulation 

(1810-2000). Such percentages are of the same order of magnitude as the value 

estimated by Nave et al. (2009b), who carried out a meta-analysis of the responses of 

soil C storage, soil C:N ratio, and net N mineralization to different types of N inputs in 

northern temperate forests.  

 The contribution of net N mineralization to total annual N uptake decreases until 1974 

and then slightly increases, being always higher than 70%.  

Our model simulations therefore indicate that the main mechanism through which N 

deposition interacts with forest ecosystems, increasing forest growth and C 

sequestration, is through the long-term increase in net N mineralization.   

Adding climate change effects to N deposition, we found an acceleration in the rise of 

net N mineralization during the last 50 years, as it was found to increase from 3 gN m-2 

yr-1 in 1950 to around 4.8 gN m-2 yr-1 in 2000. The effect of this larger increase in net N 

mineralization is to further stimulate tree growth from 1980 onward, corresponding to a 

recorded temperature increase of about 1.8 °C from 1980 to 2000. This increase in 

growth translates into a parallel increase in litter production, representing a positive 

feedback for mineralization. The enhancement of decomposition rate by temperature 

increases the release of nutrient available for plant uptake, as found by Jarvis & Linder 

(2000) for a boreal forest and by Rustad et al. (2001) in a meta-analysis of ecosystem 

responses to experimental warming. This extra input of N due to increased temperature 

translates in turn into an increase in foliar N concentration, photosynthesis, tree growth 

and C accumulation.  

Although net N mineralization also increased after 1980 in the simulation with only the 

observed trend in climate change applied, the rate of increase was lower than in 

presence of N deposition, therefore highlighting an interaction between temperature 

and N deposition, also confirmed by factorial analysis. This indirect temperature effect, 

of enhancing soil N availability, is in agreement with several studies that identify 

changes in N supply, and not only N deposition, as the main nutritional factor that may 
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have induced changes in site index and height growth in European stands during 

recent decades (Mellert et al., 2004, 2008; Kahle et al., 2008).     

Increases in mean air temperature affect forest productivity directly by lengthening the 

growing season (Myneni et al., 1997; Menzel & Fabian, 1999; Saxe et al., 2001; 

Nemani et al., 2003) and indirectly by altering soil decomposition and nutrient 

mineralization rates (Saxe et al., 2001; Davidson & Janssens, 2006). In our simulation 

the direct effect of increased temperature on photosynthesis is modelled as an 

increase in LUE. However, given the model formulation of LUE, which includes also the 

effect of increased leaf N concentration, it is not possible at this stage to discriminate 

between the two effects of temperature on LUE and ecosystem C sequestration (i.e. 

directly and through changes in net N mineralization). Further model analyses would 

help to discriminate between the two mechanisms. 

Studies on forest growth in CO2-enriched environments show that lack of nutrients 

limits the enhancement effect of [CO2] on forest productivity (Oren et al., 2001; Luo et 

al., 2004; de Graaff et al., 2006; Johnson, 2006; Körner, 2006). In accordance with 

these studies, we found that increasing [CO2] significantly affects forest growth and C 

storage substantially in simulations when the observed N deposition trend is also 

applied.  

A small increase in forest growth was also observed in the simulation when increasing 

[CO2] and temperature were considered together. This result is a consequence of the 

increased N availability for plant growth due to faster N mineralization.  

The difference in the intensity of forest growth increase between the two simulations is 

because of the higher N availability due to N deposition than to increased temperature.   

This result is in agreement also with the suggestion by Mellert et al. (2008) that 

atmospheric [CO2] was only of a secondary importance for accelerating growth, based 

on the consideration that there was spatial variation of tree growth changes in Europe, 

and that growth increases were mainly restricted to those stands where N nutrition 

improved.   

It should be stressed, however, that the CO2 effect is possibly underestimated in our 

model results. This underestimation is due to the allocation formulation we used for our 

simulations. While we kept constant the fraction of C allocated to canopy, we varied the 

fraction to root system in accordance with Dezi et al. (2010) using the coefficients 

suggested in Palmroth et al. (2006) for the ambient [CO2] treatment. A higher 

belowground allocation fraction is commonly observed in elevated [CO2], suggesting 
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that there should be a relationship between allocation coefficients and [CO2], which is 

not captured in these simulations. Allocation patterns could have differed under the 

lower atmospheric [CO2] assumed at the beginning of the simulation period. Use of 

allocation fractions estimated for current ambient [CO2] at earlier, lower [CO2] may 

mean the model overestimates past C allocation to the root system, and therefore 

overestimates past forest growth and productivity. A lower past growth rate would have 

resulted in a higher difference between baseline and CO2 treatments, meaning that this 

effect is likely underestimated in the model results presented here. Further studies on 

the relationship between atmosphere [CO2] and belowground C allocation are needed 

to improve the model’s outcomes.   

Although the stand age effects on changes in C allocation over lifetime of the forest are 

not explicit in the model, it is realistically considered through the NPP-driver patter as 

reported by Litton et al. (2007, Fig. 8) and Ryan et al. (2004). Moreover, we found that 

the percentage of C allocated to the root system decreased over time to a maximum of 

0.73 to 0.63 (corresponding to a value of GPP of 870 gC m-2 yr-1), in agreement with 

the values found by Litton et al. (2007).  

Another important limitation on our results is the inability of the soil C submodel to take 

into account the effects of pH on soil decomposition. A low or high soil pH would likely 

decrease soil organic matter decomposition rates and therefore increase soil C:N ratio. 

Including such an effect in our simulations would have resulted in a higher soil C:N 

ratio. Measured soil C:N ratio at “Le Bray” site was above 25, while simulated soil C:N 

ratio was around 20. Since N deposition effect is more pronounced on soil having C:N 

above 25 (Solberg et al., 2009), the exclusion of pH effects on decomposition could 

have led to an underestimation of N deposition effects on forest growth analysis.    

Although there are no data available on long-term changes in forest productivity at the 

“Le Bray” site, an acceleration in height growth rate up to 60% was observed for an 

even-aged stand of common beech (Fagus sylvatica L.) in north-east  France at the 

end of 20th century (Bontemps et al., 2009). An increase in basal area of about 50 % 

was also observed in a Corsican pine (Pinus nigra Arnold ssp. Laricio var. Corsicana) 

plantation in western France from 1921-1991 (Lebourgeois et al., 2000). In both cases 

N deposition was proposed as one of the most likely drivers.   

Although changes in MAI will be greater than for either height and basal area, as 

discussed in RECOGNITION project, estimation of MAI changes (around +100%, 

during the period 1950-2000) from our study is likely higher than observed on the 

ground. This over-estimation may be due to other limiting factors as a result of long-
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term N fertilization, such as phosphorous (P) availability, as suggested by the 

significant P x N interaction observed by Trichet et al. (2009) in their fertilization 

experiment on Maritime pine (Pinus pinaster) close to “Le Bray”. These limiting factors 

are not considered at present in the G’Day model,     

Finally we want to stress that our model results are not directly applicable for assessing 

future forest growth rate and C sequestration capacity, given the uncertain effects of 

government measures on N deposition and climate change in future. However we can 

infer that although N deposition rates are predict to decrease in near future, the 

fertilizing effect due to N deposition would continue for some decades. 

4.6 CONCLUSIONS 

Forest ecosystems are an important component of the terrestrial C sink. The rate of 

forest growth has increased over the last decades. Using a model that explicitly 

incorporates N deposition, atmospheric [CO2] and climate change effects, we found 

that the main driver for the observed increase in forest growth is enhanced N 

availability, in agreement with recent results from the RECOGNITION project. Model 

simulations allowed us also to discriminate between the different mechanisms 

responsible for such an increase in N availability, and their relative importance. 

Atmospheric N deposition is found to be the main source for the increase in N 

availability, both through direct canopy uptake over a short time scale and through 

indirect effects on net N mineralization over long time scales. Increased temperature 

was also found to enhance N availability, but at a lower rate than N deposition. Finally 

[CO2] effects were found to be important only when N was not limiting, as a result of 

either N deposition or higher temperatures and faster N mineralization rates. A step 

forward in our analysis to enhance the impact of the present study relative to previous 

one (e.g. RECOGNITION, Kahle et al., 2008) would be to validate modelled simulation 

results against experimental data on long-term changes in forest productivity.       
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Table 4-1 Parameter values used in the model for the maritime pine (Pinus pinaster 
Ait.) plantation of Le Bray. 

Symbol Definition Value Units Reference 
w C content of dry matter 0.53 - This study 
f NPP/GPP ratio 0.53 - DeLucia et al. 2007 
k Light extinction factor 0.467 - This study 
 Ratio of root nitrogen 

concentration to foliar nitrogen 
concentration  

0.6 - Newman & Hart 2006 

d w/f 1.17 - This study 
B Exponential coefficient in r 

equation 
2.309 m2 yr kgC-1 Palmroth et al. 2006 

Q Coefficient in r equation 9.499 - Palmroth et al. 2006 
Y0 Constant in r equation 0.138 - Palmroth et al. 2006 
r Constant root mortality 1.39 yr-1 This study 
T Soil texture parameter 0.1 - This study 
CNU_e Canopy nitrogen uptake 0.8 - Sievering et al. 2007 
c Fractional canopy cover 0.6 - Chopping et al. 2008 
f_BR Fraction of wood carbon in 

branches (average for 
American conifers)  

0.26 - This study 

f_CR Fraction of wood carbon in 
coarse roots  (average for 
American conifers)  

0.21 - This study 

Ncrit Critical inorganic N value for 
soil variable N/C scenario 

0.002 kgN m-2 McMurtrie et al. 2001 

f_max Maximum foliar N/C above 
which N is not limiting 

0.04 kgN kgC-1 Comins & McMurtrie 
1993 

f_min minimum foliar N/C  0.001 kgN kgC-1 This study 
u N/C ratio for surface structural 

litter 
1/150 kgN kgC-1 Comins & McMurtrie 

1993 
v N/C ratio for soil structural litter 1/150 kgN kgC-1 Comins & McMurtrie 

1993 
newa Intercept of relationship 

between new and f  
0 kgN kgC-1 Medlyn et al. 2000 

newb Slope of relationship between 
new and f 

0.16773 - Medlyn et al. 2000 

swa Intercept of relationship 
between sw and f  

0 kgN kgC-1 Medlyn et al. 2000 

swb Slope of relationship between 
sw and f 

0.05624 - Medlyn et al. 2000 

a_max Maximum for newly active soil 
pool SOM 

1/8 kgN kgC-1 Nalder & Wein 2006 

a_min Minimum for newly active soil 
pool SOM 

1/16 kgN kgC-1 Nalder & Wein 2006 

s_max Maximum for newly slow soil 
pool SOM 

1/12 kgN kgC-1 Nalder & Wein 2006 

s_min Minimum for newly slow soil 
pool SOM 

1/40 kgN kgC-1 Nalder & Wein 2006 

p_max Maximum for newly passive 
soil pool SOM 

1/6 kgN kgC-1 Nalder & Wein 2006 

p_min Minimum for newly passive soil 
pool SOM 

1/20 kgN kgC-1 Nalder & Wein 2006 

loss Constant rate of N lost through 
leaching and gaseous emission 

0.32 yr-1 This study 

u Constant rate of N uptake by 
plant roots  

6.0 yr-1 This study 

kr Value of root C at which 50% of 
the available N is taken up  

0.05 kgC m-2 Dewar & McMurtrie 
1996 

Lfl Lignin/biomass ratio in leaf litter 0.25 - Eliasson et al. 2005 
Lrl Lignin/biomass ratio in root 

litter  
0.127+0.393* Lfl - Newman & Hart 2006 
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Table 4-2 Dimensionless estimated effects of all combinations of the three 

environmental drivers on GPP, NEP Cw and Ctot and maximum MAI age effect 

removed. The magnitude of the effects was evaluated using the method given by Box 

et al. (1978, p. 322), while the standard errors of effects were calculated using higher-

order interactions (Box et al., 1978, p. 327). The relative importance of the single or 

combination of effects was assessed by the normal probability method (Henderson-

Sellers, 1993; Box et al., 1978; Daniel, 1976). The three environmental drivers are: 

observed atmospheric [CO2] (CO2), observed N deposition rate (N) and observed trend 

of climate change (CC). 

 

Effects Estimated effects ± standard error  (10-2) 

 NEP GPP Cw Ctot 
Maximum 

MAI 
      

average 7.64  0.32 109.24  0.27 219.07  4.39 781.09  5.2 11.285  0.24 

CO2 1.76  0.64 6.33  0.55 29.12  8.78 21.55  10.49 1.71  0.49 

N 14  0.64 51.55  0.55 241.97   8.78 353.69  10.49 12.49  0.49 

CC 0.45  0.64 11.13  0.55 38.22  8.78 41.19  10.49 2.44  0.49 

CO2N 1.27  0.64 3.04  0.55 17.55   8.78 20.98  10.49 0.97  0.49 

CO2CC 0.32  0.64 0.86  0.55 3.48   8.78 3.91 10.49 0.25  0.49 

CCN 0.91  0.64 1.09  0.55 13.94   8.78 5.33  10.49 0.86  0.49 

CO2CCN 0.17  0.64 0.16  0.55 1.57   8.78 1.62  10.49 0.05  0.49 
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Figure 4-1 Yearly observed average air temperature, total photosynthetically active 
radiation (PAR) and precipitation for Le Bray site from 1950 to 2000. 
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Figure 4-2 Yearly atmospheric [CO2] and total N deposition from 1800 to 2000. The 
values of atmospheric [CO2] are derived from in situ air samples collected at Mauna 
Loa, Hawaii, USA (http://cdiac.ornl.gov/). The values of N deposition were simulated for 
the Le Bray site using the models EDGAR_HYDE, for the period 1949-1959, and TM4 
RETRO, for the period 1960-2000 (Twan van Noije, personal comunication). 
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Figure 4-3 Wood C over time for three stands established in 1900, 1950 and 1980, 
plotted against stand age. The simulations were driven with observed trends in 
atmospheric [CO2], N deposition and climate. 
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Figure 4-4 Wood C of 6 simulated stands established in 1801, 1811, 1821 1831, 1841 
and 1850. The simulations were run considering the same observed trend of climate 
change, atmospheric [CO2] and N deposition for all the stands, from 1801 to 2000 (A) 
and from 1950 to 2000 (B). The vertical boxes in B indicate the years when 
chronosequence data were grouped for the age-effect removal analysis.  
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Figure 4-5 Simulated average net ecosystem production (A), average gross primary 
production (B) and maximum mean annual increment (C) for the Le Bray maritime pine 
stand, for the different environmental driver combinations applied from 1950 to 2000. 
The variables were averaged for 6 specific years (i.e., 1950, 1960, 1970, 1980, 1990 or 
2000) across age classes to remove the effects of age. The environmental drivers are: 
observed atmospheric [CO2] (CO2), N deposition (Nd) rate and climate change (CC) 
trends. 
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Figure 4-6 Average wood (A) and average total (B) C for the Le Bray maritime pine 
stand, for the different environmental driver combinations applied from 1950 to 2000. 
The variables were averaged for 6 specific years (i.e., 1950, 1960, 1970, 1980, 1990 or 
2000) across age classes to remove the effects of age. The environmental drivers are: 
observed atmospheric [CO2] (CO2), N deposition (Nd) rate and climate change (CC) 
trends. 
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Figure 4-7 Net ecosystem production (black), gross primary production (light gray) and 
maximum mean annul increment (dark grey) for the Le Bray maritime pine stand, for 
the different environmental driver combinations averaged over the period 1950-2000. 
The results are expressed as percentage difference from the baseline case with 
constant driver values applied. The environmental drivers are: observed atmospheric 
[CO2] (CO2), N deposition (Nd) rate and climate change (CC) trends. 
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Figure 4-8 Wood (black) and total (grey) C for the Le Bray maritime pine stand, for the 
different treatments combinations averaged over the period 1950-2000. The results are 
expressed as percentage difference from the baseline case with constant driver values 
applied. The environmental drivers are: observed atmospheric [CO2] (CO2), N 
deposition (Nd) rate and climate change (CC) trends. 
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5.1 DISCUSSION AND CONCLUSIONS 

Boreal and temperate forest ecosystems are currently an important carbon (C) sink. To 

be able to predict the future course of this sink, we need to identify the major driving 

factors. Potential drivers that have been identified include increasing atmospheric CO2, 

temperature, N deposition and changes in management practices. Although several 

studies have investigated these effects of these factors individually on forest growth, 

there is still no consensus on their relative importance for forest NPP and C 

sequestration during recent decades, and how that might change in future. 

The overall aim of this thesis project was to develop a simple ecosystem model which 

explicitly incorporates our best understanding of the impacts of N deposition, [CO2], 

temperature and forest management on forest functions, and to use it to investigate the 

sensitivity of the forest system to these factors and their interactions. Model code is 

presented in Appendix I.  

To this end, a new version of the Generic Decomposition and Yield (G’DAY) model, 

originally developed by Comins & McMurtrie (1993), was developed. Unlike very 

process-specific models, such as MAESTRO (Wang & Jarvis, 1990), which provide 

very detailed simulations of canopy photosynthesis but not other processes, or very 

complex ecosystem models, such as the Edinburgh Forest Model (Thornley, 1991), 

which requires 261 parameters (Milne & Van Oijen, 2005), the G’DAY model 

represents a simple complete ecosystem model. It simulates tree and soil carbon and 

nitrogen dynamics over time using a limited number of equations and parameters. This 

simple model approach was appropriate for this study because it can adequately 

represent the aspect of ecosystem functions I was interested in and at the same time it 

is relatively simple to modifiedy, its behaviour is understandable and explicable in 

terms of the underlying assumptions. Moreover the model has been already tested 

against the daily version of CENTURY (Pepper et al., 2005; Parton et al., 1998) and 

validated against observation datasets (Corbeels et al., 2005a, b, c). 

In chapter 2 of this thesis, the model was applied to investigate the effects of N 

deposition on N limited forest C sequestration. The model was modified to take into 

account recent scientific advances in understanding of some key processes. In 

particular, it was used to examine the sensitivity of model predictions to assumptions 

about canopy nitrogen uptake, forest C allocation, canopy N uptake, leaf trait 

relationships, forest management, and leaching. Model simulations showed a strong 

relationship between net ecosystem production and N deposition, which was mediated 

by canopy N uptake, C allocation and forest management. In contrast, the model 
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predictions were not sensitive to assumptions about leaf trait relationships or leaching. 

Simulations with the model clearly show that assessment of forest ecosystem C 

sequestration must take into account effects of atmospheric N deposition, in particular 

for N-limited forests. For this purpose it is critical to know about forest management 

and N deposition history, since most of the northern temperate forests are, or have 

been, managed, and N is the most significant growth-limiting nutrient in many forests 

worldwide (LeBauer & Treseder, 2008). No comparisons with data are shown in the 

paper, since the model was here used as a tool to understand processes. However, 

comparing the values of leaf N concentration for low level of N deposition, under the 

assumption of canopy nitrogen uptake, I found a good correspondence with the vales 

observed by Calanni et al. (1999). The qualitative analysis undertaken identifies two 

key areas of uncertainty regarding forest ecophysiological processes considered by the 

model, namely canopy N uptake and C allocation. C allocation has long been identified 

as an important processes in forest response to N enrichment (Levy et al., 2004; Milne 

& Van Oijen, 2005) requiring better information. The model formulation we chose for 

carbon allocation relates carbon allocated to root directly to NPP and already 

incorporate the CO2 effect (Palmroth et al., 2006), while the N deposition effect is 

directly related to NPP. We preferred this approach to that taken in other models (e.g. 

Thornley, 1991; Landsberg & Waring, 1997; Milne & van Oijen, 2005), in which root 

allocation is an explicit function of age and environmental factors, because of the 

advantage of its simplicity and of its empirical foundation. Canopy N uptake has been 

modelled previously using transport-resistance approaches to reproduce the 

instantaneous bi-directional exchange of N between leaves and atmosphere (Sutton et 

al., 1998, 2009; Flechard et al., 1999; Riedo et al., 2002). However, the fine temporal 

scale and the level of detail of these models make them unsuitable for inclusion in a 

relatively simple forest ecosystem model. Despite the ability of these models to provide 

detailed hourly estimates of canopy N exchange, they are not complete ecosystem 

models, as they do not represent all the plant and soil feedbacks. I can therefore state 

that this is the first time that the canopy N uptake has been explicitly considered in a 

forest ecosystem model. Although the canopy N uptake formulation used in my thesis 

is relatively simple, the estimate assumed in the model of about 50% of total (wet+dry) 

deposition that could be absorbed through canopy N uptake is in line with results from 

the ICP-Forest monitoring network. Data from this network, which are based on the 

canopy budget approach, show that canopy exchange for both NO3 and NH4 is on 

average of the same order of magnitude of N throughfall, except for very high N 

deposition levels (De Vries et al., 2001). More understanding of the potential relevant 



                                                                                               Discussion and conclusions 158

processes identified by this model analysis, combined with a test of the assumptions 

presented in this chapter against more detailed models, is needed to reduce model 

uncertainty. In particular, research should focus on the formulation of canopy N uptake, 

replacing the the dependence on vegetation cover fraction c with  the the dependence 

on LAI effect on wet and dry deposition, possible saturation effects and their 

relationship with canopy closure, meteorological conditions and plant internal N status 

on wet and dry deposition, and the inclusion of the N soil saturation effect on leaching 

and soil respiration.  

In chapter 3, the G’DAY model was used to investigate the effect of elevated CO2 and 

N interactions on forest productivity. The model was tested against data from the 

closed-canopy Sweetgum (Liquidambar styraciflua L.) plantation FACE experiment at 

Oak Ridge National Laboratory (ORNL). To achieve this comparison, the model was 

adapted to simulate deciduous forest processes, and a new sub-model (MATE) was 

introduced to simulate climate and CO2 impacts on photosynthesis on short 

(experimental) timescales. Model results show that the model does not adequately 

represent the short-term transient response to a step increase in [CO2] at the ORNL 

site. While the model can reproduce the observed decline in NPP at ambient [CO2], 

which was caused by declining soil N availability as the stand aged, it failed to 

reproduce the observed short-term stimulation in productivity at elevated [CO2]. 

Analysis of the mechanisms involved indicated a likely reason for the model failures 

was incorrect parameterization and/or formulation of the soil N uptake function. The 

observed short-term [CO2]-induced increase in productivity was supported by 

enhanced N uptake at depth, which was not captured by the model. To correctly 

capture this response, an improved formulation for N availability and root N uptake as 

function of depth is needed. A possible alternative approach that can help to overcome 

the limitations of G’DAY to capture some of the ORNL responses is represented by the 

use of optimization models (Franklin, 2007; McMurtrie et al., 2008) to investigate the 

optimum root depth and allocation patterns. Although the model failed to simulate the 

observed transient [CO2] response in this experimental system, the model is known to 

capture longer-term reduction in the [CO2] effect on productivity (Comins & McMurtrie, 

1993; McMurtrie et al., 2000, 2001; Medlyn et al., 2000; Pepper et al., 2005), indicating 

that it is still valid for simulating long-term responses to gradually increasing [CO2]. It is 

debatable whether a relatively generic forest ecosystem, such as the G’DAY model, 

given its simplicity, is able to reproduce short-term response. However such relatively 

simple models represent very useful tools to explore and analyse model behaviour in 
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relation to new assumptions and different environmental factors, also when they fail to 

reproduce observed data trends.    

In chapter 4 the model was applied to investigate the combined effects of observed 

increases in N deposition, atmospheric [CO2] and air temperature on productivity and C 

storage of a maritime pine forest during recent decades. The aim was to analyse the 

relative importance of these drivers for the C cycle in the past, giving a basis for 

predictions of how the sink is likely to change in future. Simulations results showed that 

enhanced N availability could explain the observed increase in forest growth rates. 

Model simulations allowed us also to discriminate between the different mechanisms 

responsible for such an increase in N availability, and their relative importance. In 

particular, increasing N deposition was found to greatly increase N availability both 

through direct canopy uptake, which produces a short term stimulation effect on forest 

growth, and through stimulation of net soil N mineralization, which produces a long 

term effect on forest growth. In addition, increased temperature was found to enhance 

N availability, but at a lower rate than N deposition. Finally, the observed increase in 

atmospheric [CO2] was found to be important only when N was not limiting, as a result 

of either N deposition or higher temperatures and faster N mineralization rates.    

I should stress here that the analysis undertaken in this thesis project is a qualitative 

analysis in which the model was mainly used as a tool to understand processes and 

explore their potential relevance for forest productivity, without attempting to 

quantitatively reproduce real data. In this context, simulating model responses to step 

changes are very useful because they allow straightforward analysis of model outputs. 

However, experimental data sets on the response of forest ecosystems to long-term N 

fertilization are indeed available (Hyvönen et al., 2008), which are conceptually similar 

to the step increase in N deposition that we have simulated in the chapter 2, and they 

will be analyzed in future developments.  

I should also stress that I have only shown the output variables that are most important 

for the purpose of the particular analysis. Therefore, for example, in chapter 2, where 

the analysis aim was to show the effect of the new assumptions on C-fluxes, fluxes are 

shown rather than state variables, as these represent the integral of fluxes over time 

and therefore are less sensitive to short-term changes in forcing conditions. On the 

other hand, in chapter 4, where the aim was to relate the increase in forest productivity 

and forest growth of different environmental drivers, also the values of total system 

carbon, wood carbon and mean annual increment are shown.      
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General conclusions  

The large variety of forest ecosystem models in existence illustrates that the selection 

of a model should carefully be matched with analysis objectives. Models provide a 

versatile means to quantify how ecosystem processes may vary and affect forest 

growth and other properties. No single model, however, should be expected to apply to 

all situations. 

The model developed for this thesis project appears to be an effective tool for analysis 

of the effects of a range of environmental drivers on carbon sequestration by forest 

ecosystems. Although the model failed to reproduce the specific transient [CO2] 

response at the ORNL site, it is nonetheless valuable for simulating long-term impacts 

on rising [CO2] on forest stands.  

Model results show that N availability has a key role in determining forest ecosystem C 

sequestration. Moreover, the model demonstrates that atmospheric N deposition has 

an important role to play in enhancing N availability, in particular for N-limited forests. 

Although N deposition rates are predicted to decrease in near future, the fertilizing 

effect due to past N deposition is likely to continue for some decades. Therefore, 

assessments of the forest ecosystem C sink over the next century need to consider the 

role of atmospheric N deposition. Rising temperature also increases C storage by 

enhancing soil N availability but at a lower rate than N deposition, while increasing 

[CO2] significantly affects forest growth and C storage only when N availability is not 

limiting. 

An important role of modelling is to identify key process uncertainties. In this thesis, 

model analysis demonstrated that there are several important uncertainties in our 

understanding of forest ecophysiological processes that require further investigation 

and improved model representations. In particular, the processes of C allocation, 

canopy N uptake and root N uptake at depth have a critical role in determining the C 

storage capacity of forest ecosystems. Better knowledge of these processes is needed 

if we are to improve our understanding of, and predictive capacity for, the forest carbon 

sink.  
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6.1 THE G’DAY MODEL CODE 

C  MAIN PROGRAM GDAY 
C  Author: Silvia Dezi 
C  Date:   17.01.2007        
C  Purpose: implementation of a new version of the G'DAY (Generic  
C  Decomposition and Yield) model, a process-based model that simulates carbon  
C  (C) and nitrogen (N) dynamics in a forest ecosystem (Comins & McMurtrie  
C  1993). The new version explicitly incorporates our best understanding of  
C  the impacts of N deposition, [CO2], temperature and forest management on  
C  forest functions, and to use it to investigate the sensitivity of the  
C  forest system to these factors and their interactions. 
C  The G'DAY model links the plant production model of McMurtrie & Wolf (1983)  
C  & McMurtrie (1985,1991),to CENTURY, the soil-carbon-nutrient model of  
C  Parton et al. (1987,1993). The plant sub-model consists of three pools:  
C  foliage, wood (stem, branches and coarse roots) and fine roots. The soil  
C  sub-model consists of four litter pools (structural and metabolic, both  
C  above and below ground), three soil organic matter pools with different  
C  turnover time (active, slow and passive) of C and N content, and a pool for  
C  available inorganic N. The model consists of a set of difference equations  
C  describing the dynamics C  of tree and soil components. These components  
C  are denoted by lower-case subscripts, as follows: 
C  -Tree biomass components: foliage "f", wood "w" and fine roots "r" 
C  -Four litter fractions: surface structural "u", soil structural "v",  
C  surface metabolic "m", soil metabolic "n" 
C  -Soil organic matter pools: active "a", slow "s", passive "p".   
C  The rate of nitrogen uptake by trees depends on the rate at which soil  
C  mineral nitrogen is made available and on the root carbon (Dewar and  
C  McMurtrie,1996).   
C  Allocation of carbon to the root pool is based on NPP (Palmroth et  
C  al.2006). 
C  Specific leaf area (SLA) and foliar mortality are based on foliar nitrogen  
C  concentration (Reich et al.1999). 
C  Canopy nitrogen uptake (CNU)is given by the mathematical product of canopy  
C  nitrogen uptake efficiency, the fraction vegetation cover and the nitrogen  
C  deposition.  
C  Forest management is represented as thinning or/and clear cut. Thinning is  
C  given by the exportation of dead woody stems from the system, while  
C  branches and course roots of harvested trees enter litter pools. After the  
C  clear cut no litter is left in the system.  
C  Mineral nitrogen pool is divided in two different pools, an ammonium and a  
C  nitrate pool,and the divided mineralization influx between these pools in  
C  based on the soil C:N ratio (Aber et al.2003). 
C  The increase in N deposition input is by step. 
C  There are both the daily and yearly output. 
C  This version is parameterized to simulate the equilibrium state and 200  
C  years simulation for Bray (1801-2000)  
C 
C 
C  ARGUMENTS 
C 
C  A           soil activity coefficient (-) 
C  APAR        fraction of PAR intercepted (-) 
C  B           exponential coefficient in etar equation (m2 y kgC-1)  
C  c           fractional vegetation cover (-)  
C  Ca          C content of active soil pool (kgC m-2) 
C  Cf          C content of foliage (kgC m-2) 
C  Cm          C content of surface metabolic litter (kgC m-2) 
C  Cn          C content of soil metabolic litter (kgC m-2) 
C  CNU         canopy nitrogen uptake efficency (kgN m-2 d-1)  
C  CNU_e       canopy nitrogen uptake efficency (-) 
C  CN_soil     average N:C ratio in mineral+organis soil (kg N / kg C) 
C  CO2         atmospheric CO2 concentration (umol mol-1) 
C  Cp          C content of passive soil pool (kgC m-2) 
C  Cr          C content of roots (kgC m-2) 
C  Cs          C content of slow soil pool (kgC m-2) 
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C  Cu          C content of surface structural litter (kgC m-2) 
C  Cv          C content of soil structural litter (kgC m-2) 
C  Cw          C content of wood (kgC m-2) 
C  d           etaw/etaf (-) 
C  daylen      daylength (h d-1) 
C  DeltaES     slope of sat vapour pressure vs temperatue at mean daily  
C              temperature (kPa K-1)  
C  di          decay rates of litter and soil pools (d-1) 
C  Ef          segmented function for dependence of LUE on foliage N/C (-) 
C  e0          potential PAR utilisation efficiency (dry mass basis; kg MJ-1) 
C  eps         ratio of the increase of latent heat content to increase of  
C              sensible heat content of saturated air (DeltaES/gamma)(-) 
C  etaf        allocation coefficient to foliage (-) 
C  etar        allocation coefficient to roots (-) 
C  etaw        allocation coefficient to wood (-) 
C  Ev          daily evaporation (from equilibrium ev) (kg m-2 d-1 = mm d-1)  
C  f           NPP/GPP ratio (-) 
C  FC          filed capacity (m3/m3) 
C  f_BR        fraction of wood carbon in branches (-) 
C  f_CR        fraction of wood carbon in coarse roots (-) 
C  FLAG2       CNU strategy (FLAG2=0 Nf+CNU; FLAG2=1 Ur+CNU; FLAG2=2 CNU=0.) 
C  fnit        fraction of nitrification (-) 
C  Fwev        reduction factor of Ev due to soil moisture (-, between 0 and  
C              1) 
C  Fwev_min    effect of soil water on grass LUE & ground evap - Relative PAW  
C              in top-soil layer for min(-) 
C  Fwev_max    effect of soil water on grass LUE & ground evap - Relative PAW  
C              in top-soil layer for max(-) 
C  Fwr         moisture factor in belowground and SOM decomposition factors   
C              (-) 
C  Fwrmax      relative water content in rooting zone above which  
C              decomposition is not limited by  
C              moisture (-)(Corbeels et al/a 2005) 
C  Fwrmin      relative water content in rooting zone below which there is no  
C              decomposer activity (-)(Corbeels et al/a 2005) 
C  Fwts        moisture factor in top soil layer decomposition factors for (-) 
C  Fwtsmax     relative water content in top soil layer above which  
C              decomposition is not limited by moisture (-)(Corbeels et al  
C              2005a) 
C  Fwtsmin     relative water content in top soil layer below which there is  
C              no decomposer activity (-)(Corbeels et al/a 2005) 
C  g           albedo (used in calculating Radnet)(-) 
C  gamaw       fixed mortality/thinning coefficient for wood (y-1) 
C  gamma       psychrometric constant (Pa K-1) 
C  gammaf      fixed mortality coefficient for foliage (d-1) 
C  gammar      fixed mortality coefficient for roots (d-1) 
C  gammaw      fixed mortality/thinning coefficient for wood (d-1) 
C  GPP         gross primary production (kgC m-2 d-1) 
C  Iamm        flux of N entering ammonia nitrogen pool (kgN m-2 d-1) 
C  Ijc         flux of C entering pool j (kgC m-2 d-1) 
C  Ijn         flux of N entering pool j (kgN m-2 d-1) 
C  Igmin       gross mineralisation flux (kgN m-2 d-1) 
C  Il          rainfall interception per unit LAI (mm d-1) 
C  Imm         N immobilization flux (kgN m-2 d-1) 
C  Init        flux of N entering nitrate nitrogen pool (kgN m-2 d-1)  
C  Inmin       net mineralisation flux (kgN m-2 d-1) 
C  Jamm        flux of N leaving ammonia N pool (kgN m-2 d-1) 
C  Jinon       flux of N leaving N inorganic (kgN m-2 d-1) 
C  Jjc         flux of C leaving pool j (kgC m-2 d-1) 
C  Jjn         flux of N leaving pool j (kgN m-2 d-1)   
C  Jnit        flux of N leaving nitrate N pool (kgN m-2 d-1)  
C  k           light extinction coefficient (-) 
C  Kn          reducing decay rate coefficient of slow and passive soil polls  
C              deposition (d-1) 
C  Kr          value of root carbon at which 50% of the available N is taken  
C              up (kgC m-2) 
C  LAI         leaf aere index (m2 m-2) 
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C  lambda      latent heat of vapourisation (J kg-1) 
C  lambdaf     ratio of litter N/C to live N/C for foliage (-) 
C  lambdar     ratio of litter N/C to live N/C for roots (-) 
C  lambdaloss  constant rate for N loss (d-1) 
C  lambdau     constant rate for N uptake (d-1) 
C  lambdawm    1-N re-translocated from wood (-) 
C  Lfl         lignin to biomass ratio in leaf litter (-) 
C  livesr      fixed life span coefficient for fine roots (y) 
C  lmbdaloss   constant rate for N loss (Y-1) 
C  lmbdau      constant rate for N uptake (y-1) 
C  Lrl         lignin to biomass ratio in root litter (-) 
C  Mng         forest management (yes=1;no=0) (-)  
C  Na          N content of active soil pool (kgN m-2) 
C  Namm        N content of ammonia nitrogen pool (kgN m-2) 
C  NC_a0max    maximum N/C of newly SOM for active soil pool (kgN kg-1C) 
C  NC_s0max    maximum N/C of newly SOM for slow soil pool (kgN kg-1C) 
C  NC_p0max    maximum N/C of newly SOM for passive soil pool (kgN kg-1C) 
C  NC_a0min    minimum N/C of newly SOM for active soil pool (kgN kg-1C) 
C  NC_s0min    minimum N/C of newly SOM for slow soil pool (kgN kg-1C) 
C  NC_p0min    minimum N/C of newly SOM for passive soil pool (kgN kg-1C) 
C  NC_a0       N/C of newly SOM for active soil pool (kgN kg-1C) 
C  NC_s0       N/C of newly SOM for slow soil pool (kgN kg-1C) 
C  NC_p0       N/C of newly SOM for passive soil pool (kgN kg-1C) 
C  NC_f        N/C for foliage (kgN kg-1C) 
C  NC_fmax     maximum N/C for foliage, above which N content is not limiting  
C             (kgN kg-1C) 
C  NC_fmin     minimum N/C for foliage (kgN kg-1C) 
C  NC_m        N/C for surface metabolic litter pool (kgN kg-1C) 
C  NC_m0max    maximum N/C for surface metabolic litter pool (kgN kg-1C) 
C  NC_m0min    minimum N/C for surface metabolic litter pool (kgN kg-1C) 
C  NC_n        N/C for soil metabolic litter pool (kgN kg-1C) 
C  NC_n0max    maximum N/C for soil metabolic litter pool (kgN kg-1C) 
C  NC_n0min    minimum N/C for soil metabolic litter pool (kgN kg-1C) 
C  NC_r        N/C for roots (kgN kg-1C) 
C  NC_u        N/C for surface structural litter pool(kgN kg-1C) 
C  NC_v        N/C for soil structural litter pool(kgN kg-1C) 
C  NC_wnew     N/C for new wood as function of N/C for foliage (-) 
C  NC_wnewa    intercept of relationship between N/C for new wood and N/C for  
C              foliage  
C  NC_wnewb    slop of relationship between N/C for new wood and N/C for  
C              foliage 
C  NC_ws       N/C for stuctural wood as function of N/C for foliage 
C  NC_wsa      intercept of relationship between N/C for stuctural wood and  
C              N/C for foliage  
C  NC_wsb      slop of relationship between N/C for structural wood and N/C  
C              for foliage 
C  Ncrit       critical value for inorganic N (kgN m-2)  
C  NEEP        net ecosystem production (kgC m-2 y-1) 
C  NEP         net ecosystem production (kgC m-2 d-1)       
C  Nf          N content of foliage (kgN m-2) 
C  Nin         N input into the system for deposition or fixation (kgN m-2  
C              d-1) 
C  Nino        inorganic N (kgN m-2) 
C  Nloss       loss of N for leaching or denitrification (kgN m-2 d-1) 
C  Nlooss      loss of N for leaching or denitrification (kgN m-2 y-1) 
C  Nm          N content of surface metabolic pool (kgN m-2) 
C  Nn          N content of soil metabolic pool (kgN m-2) 
C  Nnit        N content of nitrate nitrogen pool (kgN m-2) 
C  Np          N content of passive soil pool (kgN m-2) 
C  Nr          N content of roots (kgN m-2) 
C  Ns          N content of slow soil pool (kgN m-2) 
C  Nu          N content of surface structural pool (kgN m-2) 
C  Nv          N content of soil structural pool (kgN m-2) 
C  Nw          N content of wood (kgN m-2) 
C  NPP         net primary production (kgC m-2 d-1) 
C  Ntree       total N content of the tree (KgN m-2) 
C  PAR         incident photosyntetically active radiation (MJ m-2 d-1) 
c  PAWr        plant available water in root zone (mm) 
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C  PAWrmax     maximum plant available water in rooting zone (mm) 
c  PAWts       plant available water in top soil layer (mm) 
c  PAWtsmax    maximum plant available water in top soil layer (mm) 
C  pij         fraction of C flow from C pool j into C pool i (-) 
C  PN          annual net primary production (kgC m-2 y-1) 
C  PG          annual gross primary production (kgC m-2 yr-1) 
C  Q           coefficient in etar equation 
C  qe          fraction of tree water uptake from top-soil layer (-)  
C  R           nitrogen re-translocation rate (kgN m-2 d1) 
C  Ra          autotrophic respiration (kgC m-2 d-1) 
C  RAA         autotrophic respiration (kgC m-2 y-1) 
C  Radlong     net long-wave radiation (MJ m-2 d-1)(for daylen h) 
C  Radnet      net radiation (MJ m-2 d-1) 
C  rain        daily precipitation (mm d-1) 
C  raineff     daily effective rainfall (mm d-1) 
C  Rg          ideal gas constant (J mol-1 °K-1) 
C  Rh          heterotrophic respiration (kgC m-2 d-1) 
C  RHH         heterotrophic respiration (kgC m-2 y-1) 
C  ro          ratio of N/C of roots to that of foliage (-) 
C  rotation    rotation length applied during initialization (y) 
C  Rv          ideal gas constant for water vapour (J kg-1 °K-1) 
C  rw          retranslocation rate of mobile wood N (y-1) 
C  rwm         retranslocation rate of mobile wood N (d-1)        
C  sd          soil depth (m), containing at least 75% of the root system 
C  SLA         spacific keaf area (m2 kgC-1) 
C  T           soil texture parameter (-) 
C  Ta          air temperature for AM period (°C) 
C  Tair        average air temperature equal to (Ta+Tp)/2 (°C) 
C  Tk          average air temperature equal to (Ta+Tp)/2 (°K) 
C  Tp          air temperature for PM period (°C) 
C  Tr          plant transpiration (mm d-1) 
C  Tsoil       average soil temperature (°C) 
C  T0          0°C express in °K (°K) 
C  Ur          total root nitrogen uptake (kgN m-2 d-1) 
C  Uramm       root ammonia nitrogen uptake from (kgN m-2 d-1) 
C  Urnit       root nitrate nitrogen uptake from (kgN m-2 d-1) 
C  U           uptake rate of plant available nitrogen (kgN m-2 d-1) 
C  UU          uptake rate of plant available nitrogen (kgN m-2 y-1) 
C  VPDa        vapour pressure deficit for AM period (kPa) 
C  VPDp        vapour pressure deficit for PM period (kPa) 
C  w           C content of biomass (kgC kg-1DM)+ 
C  WCr         soil water content in root zone (m3/m3)  
C  WP          wilting point (m3/m3) 
C  WUE         mean water use efficiency(kgC m-2 mm-1) 
C  years       number of 200 years cycles for computation (y)  
C  Y0          costant in etar equation  
C 
 
      PROGRAM GDAY 
 
C     ---------------------------------------------------------------------- 
C     Declare variables and parameters 
C     ---------------------------------------------------------------------- 
C REAL PAR(18262),Tsoil(18262),Ninn(18262),meteo(11,18262),year(50) !For  
C      equilibrium state 
C REAL Nina(18262),Ta(18262),Tp(18262),VPDa(18262),VPDp(18262) !For  
C      equilibrium state 
C REAL CO2a(18262),CO2e(18262),Nine(18262),CO2(18262),rain(18262) !For  
C      equilibrium state 

REAL PAR(73050),Tsoil(73050),Ninn(73050),meteo(18,73050),year(200) !For            
       200 years simulation 
 REAL Nina(73050),Ta(73050),Tp(73050),VPDa(73050),VPDp(73050) !For 200         
       years simulation 
 REAL CO2a(73050),CO2e(73050),Nine(73050),CO2(73050),rain(73050) !For 200  
       years simulation 

REAL PARa(73050),PARe(73050),Tsoila(73050),Tsoile(73050) !For 200 years  
       simulation 
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 REAL raina(73050),raine(73050),Taa(73050),Tae(73050),Tpa(73050) !For 200  
       years simulation 
 REAL Tpe(73050),VPDaa(73050),VPDae(73050),VPDpa(73050) !For 200 years  
       simulation 
 REAL VPDpe(73050) 
 REAL e0,APAR,Ef,k,SLA,Cf,w,NC_f,GPP,NPP,f,Ifc,etaf 
 REAL Jfc,Cw,Lfl,Cm,Lrl,pau,pam,psu,psv,Nf,Nr,R 
 REAL gammaf,Irc,etar,Jrc,gammar,Cr,Iwc,etaw,Jwc,gammaw 
 REAL lambdaf,puf,A,du,Cu,Iuc,Juc,pmf,dm,Imc,Jmc 
 REAL lambdar,pvr,NC_r,dv,Cv,Ivc,Jvc,pnr,dn,Cn,inc,Jnc 
 REAL pav,pan,T,pas,pap,da,Ca,Iac,Jac,ds,dp,Cs,Cp,psa 
 REAL Isc,Jsc,ppa,pps,Ipc,Jpc,Rh,NEP,ro,Iwn,Jwn,Nw 
 REAL U,Ifn,Jfn,Irn,Jrn,Ntree,NC_u,NC_v,Iun,Jun 
 REAL Nu,Ivn,Jvn,Nv,Imn,Jmn,Nm,NC_m,Nn,Inn,Jnn,NC_n 
 REAL NC_a0max,NC_s0max,NC_p0max,NC_a0min,NC_s0min 
 REAL NC_p0min,Jsn,Ipn,Jpn,FC,WP,sd,PAWtsmax 
 REAL NC_a0,NC_s0,NC_p0,Ncrit,Nino,Na,Ns,Np,Ian,Jan,Isn 
 REAL Iinon,Jinon,Nin,Nloss,lambdaloss,lambdau 
 REAL PG,PN,x,RAA,RHH,NEEP,UU,Nlooss,NC_fmax,NC_fmin 
 REAL d,Kr,rotation,f_BR,f_CR,c,CNU_e,CNU,g,PAWrmax 
 REAL Ur,B,Q,Y0,Kn,Igmin,Inmin,Iamm,Init,PPN 
 REAL Uramm,Urnit,Nnit,Namm,fnit,Jamm,Jnit,CN_soil 
 REAL Nws,Nwm,NC_wnew,NC_ws,NC_wnewb,NC_wsb,rwm 
 REAL Jwns,Jwnm,Iwns,Iwnm,lambdawm,gammaww,fixu,fixv,fix_relm 
 REAL daay,dd,vv(730),zz(730),SUM,lmbdaloss,lmbdau,livesr 
 REAL NC_m0max,NC_m0min,NC_n0max,NC_n0min,fix_reln,gamaw 
 REAL Fwrmax,Fwrmin,Fwtsmax,Fwtsmin,PAWr,PAWts,WUE,Tair,Tk 
 REAL lambda,gamma,Tr,LAI,raineff,Il,daylen,Radlong,Radnet 
 REAL DeltaES,eps,Fwev,Fwev_max,Fwev_min,ev,Fwr,Fwts,qe,WCr 
 INTEGER h,n,years,FLAG,Mng,coppice,FLAG2,m,day,daayy 
 CHARACTER*84 IPARMS,SOILTYPE,IVALUES,IVALUESS 
 PARAMETER (PI=3.1415926536,Rg=8.3144472,T0=273.15,Rv=461.5) 
 
C --------------------- 
C Open files for output 
C --------------------- 

OPEN(10,file='Output_C_ag_y.txt',status='unknown') 
 OPEN(20,file='Output_C_bg_y.txt',status='unknown') 
 OPEN(30,file='Output_N_ag_y.txt',status='unknown') 
 OPEN(40,file='Output_N_bg_y.txt',status='unknown') 
 OPEN(35,file='Output_C_ag_d.txt',status='unknown') 
 OPEN(45,file='Output_C_bg_d.txt',status='unknown') 
 OPEN(55,file='Output_N_ag_d.txt',status='unknown') 
 OPEN(75,file='Output_N_bg_d.txt',status='unknown') 
  
C ------------------------------------------------------------------ 
C Print to file headings of output variables and corresponding units 
C ------------------------------------------------------------------ 

WRITE(10,*)'GPP ','NPP ','Ra ','Rh ','NEP ','Cf ','Cr ','Cw ','gammar ', 
* 'LUE ','PAWr ','PAWts '    
WRITE(10,*)'kgC/m2yr ','kgC/m2yr ','kgC/m2yr ','kgC/m2yr ', ,'kgC/m2yr ' 
* , 'kgC/m2   ','kgC/m2   ','kgC/m2   ','d-1 ','kgC/MJPAR ','mm  
* ','mm ' 
WRITE(20,*)'Cu ','Cm ','Cv ','Cn ','Ca ','Cs ','Cp ','etaf ','etar ' 
WRITE(20,*)'kgC/m2 ','kgC/m2 ','kgC/m2 ','kgC/m2 ','kgC/m2 ','kgC/m2  
* ','kgC/m2 ','- ','- ' 
WRITE(30,*)'Nf ','Nr ','Nw ','Ntree ','NC_f ','U ','etaw ','SLA ',  
* 'gammaf ','Nws ','Nwm ','Namm ','Nnit ' 
WRITE(30,*)'kgN/m2 ','kgN/m2 ','kgN/kgC ','kgN/m2yr ','- ','m2/kgC ','d- 
* 1 ','kgN/m2yr ','kgN/m2yr ' 
WRITE(40,*)'Nu ','Nm ','Nv ','Nn ','Na ','Ns ','Np ','Nino ','Nloss ',  
* 'CNU ','kgN/m2 ','kgN/m2 '    
WRITE(40,*)'kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ', 
* 'kgN/m2 ','kgN/m2 ','kgN/m2yr ','kgN/m2d ','kgN/m2 ','kgN/m2 ' 
WRITE(35,*)'GPP ','NPP ','Ra ','Rh ','NEP ','Cf ','Cr ','Cw ','gammar ', 
* 'LUE ','J25 ','Vc25 ','PAWr ','PAWts '    
WRITE(35,*)'kgC/m2d ','kgC/m2d ','kgC/m2d ','kgC/m2d ','kgC/m2d ', *
 'kgC/m2 ','kgC/m2 ','kgC/m2 ','d-1 ','kgC/MJPAR ','mm ','mm ' 



The model code     

 

171

WRITE(45,*)'Cu ','Cm ','Cv ','Cn ','Ca ','Cs ','Cp ','etaf ','etar ', *
 'alfam ','alfapm '     
WRITE(45,*)'kgC/m2 ','kgC/m2 ','kgC/m2 ','kgC/m2 ','kgC/m2 ','kgC/m2  
* ','kgC/m2 ','- ','- ','molCO2/molPAR ','molCO2/molPAR ' 
WRITE(55,*)'Nf ','Nr ','Nw ','Ntree ','NC_f ','U ','etaw ','SLA ', *
 'gammaf ','GrossMin ','NetMin ','kgN/kgC '  
WRITE(55,*)'kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2d ','- ', *
 'm2/kgC ','d-1 ','kgN/m2d ','kgN/m2d ' 
WRITE(75,*)'Nu ','Nm ','Nv ','Nn ','Na ','Ns ','Np ','Nino ','Nloss ', *
 'CNU ','Namm ','Nnit '    
WRITE(75,*)'kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ','kgN/m2 ', 
* 'kgN/m2 ','kgN/m2 ','kgN/m2d ','kgN/m2d ','kgN/m2 ','kgN/m2 ' 

 
C ------------------------- 
C Input parms and variables 
C -------------------------            
C OPEN(15,file='years50.txt',status='old') !For equilibrium state 
 OPEN(15,file='years1801-2000.txt',status='old') !For 200 years  
       simulation 
 READ(15,*)year   
C OPEN(25,file='meteodata50.txt',status='old') !For equilibrium state 
 OPEN(25,file='meteodata1801-2000.txt',status='old') !For 200 years  
       simulation 
 READ(25,*) meteo 
C DO 10 i=1,18262       !For equilibrium state 
 DO 10 i=1,73050       !For 200 years simulation 
  PARa(i)= meteo(1,i)/1000000./2. !incident photosyntetically active  
         radiation for model initialization(MJ m-2 d-1) 

 PARe(i)= meteo(2,i)/1000000./2. !incident photosyntetically active  
         radiation historical trend(MJ m-2 d-1) 
C  PAR(i)= meteo(1,i)*0.217  !incident photosyntetically active radiation  
         (MJ m-2 d-1) if the input is in mol m-2 d-1 

 Tsoila(i)= meteo(3,i)     !average soil temperature for model  
         initialization(°C) 

 Tsoile(i)= meteo(4,i)     !average soil temperature historical   
         trand(°C) 

 raina(i)= meteo(5,i)      !daily precipitation for model  
         initialization(mm d-1) 

 raine(i)= meteo(6,i)      !daily precipitation historical trend(mm d-1) 
 Taa(i)= meteo(7,i)        !air temperature for AM period for model  

         initialization(°C) 
        Tae(i)= meteo(8,i)        !air temperature for AM period historical  
         trend(°C) 

 Tpa(i)= meteo(9,i)        !air temperature for PM period for model  
         initialization(°C) 

 Tpe(i)= meteo(10,i)       !air temperature for PM periods historical  
         trend(°C) 
  VPDaa(i)= meteo(11,i)/1000.  !vapour pressure deficit for AM period for  
         model initialization(kPa) 
  VPDae(i)= meteo(12,i)/1000.  !vapour pressure deficit for AM period  
         historical trend(kPa)  
  VPDpa(i)= meteo(13,i)/1000.  !vapour pressure deficit for PM period for  
         model initialization(kPa)           
  VPDpe(i)= meteo(14,i)/1000.  !vapour pressure deficit for PM period  
         historical trend(kPa) 
  CO2a(i)= meteo(15,i)         !atmospheric CO2 concentration for model  
         initialization(umol mol-1) 

 CO2e(i)= meteo(16,i)         !atmospheric CO2 historical trend (umol  
         mol-1) 

 Nina(i)= meteo(17,i)/1000.   !N input for deposition or fixation for  
         model initialization (kgN m-2 y-1) 

 Nine(i)= meteo(18,i)/1000.   !N input for deposition or fixation  
         historical trend (kgN m-2 y-1) 
10 CONTINUE  

PAR= PARe  
Tsoil= Tsoile 
rain= raine 



                                                                                                                 The model code 172

 Ta= Tae  
 Tp= Tpe 
 VPDa= VPDae 
 VPDp= VPDpe 

CO2= CO2e  
Ninn= Nine 

       
C ------------------ 
C Define parameters 
C ------------------ 

IPARMS='C:\My Projects\gDAY\BRAYf\parms Bray.txt' 
 CALL RDINIT (1 ,0 ,IPARMS) 
 CALL RDSREA('k'       , k          ) !light extinction coefficient (-)  
 CALL RDSREA('w'       , w          ) !C content of biomass (kgC kg-1DM)  
 CALL RDSREA('f'       , f          ) !NPP/GPP ratio (-)  
 CALL RDSREA('d'       , d          ) !etaw/etaf (-) 
 CALL RDSREA('ro'      , ro         ) !ratio of N/C of roots to that of  
       foliage (-) 
 CALL RDSREA('NCfmax'  , NC_fmax    ) !maximum N/C for foliage, above  
       which N content is not limiting(kgN kg-1C) 
 CALL RDSREA('NCfmin'  , NC_fmin    ) !minimum N/C for foliage (kgN kg-      
       1C) 

CALL RDSREA('Lfl'     , Lfl        ) !lignin to biomass ratio in leaf  
       litter (-) 
 CALL RDSREA('lambf'   , lambdaf    ) !ratio of litter N/C to live N/C  
       for foliage (-) 
 CALL RDSREA('lambr'   , lambdar    ) !ratio of litter N/C to live N/C  
       for roots (-) 
 CALL RDSREA('fBR'     , f_BR       ) !fraction of wood carbon in  
       branches (-) 
 CALL RDSREA('fCR'     , f_CR       ) !fraction of wood carbon in coarse  
       roots (-) 
 CALL RDSREA('T'       , T          ) !soil texture parameter (silt +  
       clay fraction)(-) 
 CALL RDSREA('c'       , c          ) !fractional vegetation cover (-) 
 CALL RDSREA('CNUe'    , CNU_e      ) !canopy nitrogen uptake efficiency  
       (-) 
 CALL RDSREA('sd'      , sd         ) !soil depth (m), containing at  
       least 75% of the root system 
 CALL RDSREA('lloss'   , lmbdaloss  ) !constant rate for N loss (y-1) 
 CALL RDSREA('lambu'   , lmbdau     ) !constant rate for N uptake (y-1) 
 CALL RDSREA('livesr'  , livesr     ) !fixed life span coefficient for  
       fine roots (y) 

CALL RDSREA('Ncrit'   , Ncrit      ) !fixed life span coefficient for  
       fine roots (y) 
 CALL RDSREA('Kr'      , Kr         ) !fixed life span coefficient for     
       fine roots (y) 
 CALL RDSREA('NCwnwa'  , NC_wnewa   ) !intercept of relationship between  
       N/C for new wood and N/C for foliage 
 CALL RDSREA('NCwnwb'  , NC_wnewb   ) !slop of relationship between N/C  
       for new wood and N/C for foliage 
 CALL RDSREA('NCwsa'   , NC_wsa     ) !intercept of relationship between  
       N/C for structural wood and N/C for foliage (-) 
 CALL RDSREA('NCwsb'   , NC_wsb     ) !slop of relationship between N/C  
       for structural wood and N/C for foliage (-) 
 CALL RDSREA('rwm'     , rw         ) !retranslocation rate of mobile           
       wood N (y-1) 
 CALL RDSREA('FC   '   , FC         ) !field capacity (m3 m-3) 

CALL RDSREA('WP'      , WP         ) !wilting point (m3 m-3) 
CALL RDSREA('Il'      , Il         ) !rainfall interception per unit LAI  

       (mm d-1) 
 CALL RDSREA('g'       , g          ) !albedo (used in calculating  
       Radnet)(-) 
 CALL RDSREA('qe'      , qe         ) !fraction of tree water uptake from  
       top-soil layer (-) 
 CALL RDSREA('FevM'    , Fwev_max   ) !effect of soil water on grass LUE  
       & ground evap - Relative PAW in top-soil layer for max(-) 
 CALL RDSREA('Fevmi'   , Fwev_min   ) !effect of soil water on grass LUE       
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       & ground evap - Relative PAW in top-soil layer for min(-) 
 CLOSE (1) 

days= 365. 
 
 PAWrmax= (FC-WP)*sd*1000.  !maximum plant available water in rooting  
       zone (mm) 
 PAWtsmax= PAWrmax/2.       !maximum plant available water in top soil  
       layer (mm) 
      Fwrmax= 0.7   !relative water content in rooting zone above which  
       decomposition is not limited by moisture (-)(Corbeels et al/a 2005) 
 Fwrmin= 0.1   !relative water content in rooting zone below which there  
       is no decomposer activity (-)(Corbeels et al/a 2005) 

Fwtsmax= 0.5  !relative water content in top soil layer above which 
       decomposition is not limited by moisture (-)(Corbeels et al/a 2005) 

Fwtsmin= 0.   !relative water content inj top soil layer below which  
       there is no decomposer activity (-)(Corbeels et al/a 2005) 
 B= 2.309      !exponential coefficient in etar equation (m2 yr kgC-1)  
       (Palmroth et al.2006)  
 Q= 9.499      !coefficient in etar equation (Palmroth et al.2006) 
 Y0= 0.138     !costant in etar equation (Palmroth et al.2006) 

NC_u= 1./150. !N/C for surface structural litter pool(kgN kg-1C) (Comins      
       & McMurtrie,1993) 
 NC_v= 1./150. !N/C for soil structural litter pool (kgN kg-1C) (Comins &  
       McMurtrie,1993) 
 NC_m0max= 1./10.  !maximum N/C metabolic surface litter pool(kgN kg-1C)  
 NC_m0min= 1./25.  !minimum N/C metabolic surface litter pool(kgN kg-1C)  
 NC_n0max= 1./10.  !maximum N/C metabolic soil litter pool(kgN kg-1C)  
 NC_n0min= 1./25.  !minimum N/C metabolic soil litter pool (kgN kg-1C)  
C New ranges of soil N:C ratios as a function of soil mineral N, valid for   
C forest ecosystems (see CENTURY slides) 

NC_a0max= 1./8.      !maximum N/C of newly SOM for active soil pool (kgN  
       kg-1C) (Nalder & Wein 2006) 
 NC_a0min= 1./16.     !minimum N/C of newly SOM for active soil pool (kgN  
       kg-1C) (Nalder & Wein 2006) 

NC_s0max= 1./12.     !maximum N/C of newly SOM for slow soil pool  
       (kgN kg-1C) (Nalder & Wein 2006)  
 NC_s0min= 1./40.     !minimum N/C of newly SOM for slow soil pool (kgN  
       kg-1C) (Nalder & Wein 2006) 

NC_p0max= 1./6.      !maximum N/C of newly SOM for passive soil pool  
       (kgN kg-1C) (Nalder & Wein 2006) 
 NC_p0min= 1./20.     !minimum N/C of newly SOM for passive soil pool  
       (kgN kg-1C) (Nalder & Wein 2006) 

Lrl= 0.127+ 0.393*Lfl  !lignin to biomass ratio in root litter (-) (as a  
       function of leaf lignin; Newman & Hart,2006) 
 gamaw=0. 
 
C ---------------------------------------------------- 
C Initial variables and parameters for initialization 
C ---------------------------------------------------- 
C IVALUES='C:\My Projects\gDAY\BRAYf\Invalueseql.txt' !For equilibrium  
C      state 

IVALUES='C:\My Projects\gDAY\BRAYf\Invalues.txt'     !For 200 years  
       Simulation 
 CALL RDINIT (1 ,0 ,IVALUES) 

CALL RDSREA('Namm'    , Namm      ) !N content of ammonia nitrogen pool  
       (kgN m-2) 
 CALL RDSREA('Nnit'    , Nnit      ) !N content of nitrate nitrogen pool  
       (kgN m-2) 
 CALL RDSREA('Cf'      , Cf        ) !plant C pools (kgC m-2) 
 CALL RDSREA('Cr'      , Cr        )    
 CALL RDSREA('Cw'      , Cw        ) 
 CALL RDSREA('Cu'      , Cu        ) !litter C pools (kgC m-2)(High value  
       for initialization)=10*(Flakaliden, Eliasson et al.2005,fig.7)  
 CALL RDSREA('Cm'      , Cm        ) 
 CALL RDSREA('Cv'      , Cv        ) 
 CALL RDSREA('Cn'      , Cn        ) 
 CALL RDSREA('Ca'      , Ca        ) !soil C pools (kgC m-2) (High value  
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       for initialization) 
 CALL RDSREA('Cs'      , Cs        ) 
 CALL RDSREA('Cp'      , Cp        ) 
 CALL RDSREA('NCf'     , NC_f      ) !N/C for foliage (kgN kg-1C) 
 CALL RDSREA('Nf'      , Nf        ) !N content of foliage (kgN m-2)  
 CALL RDSREA('Nr'      , Nr        ) !N content of roots (kgN m-2)  
 CALL RDSREA('Nm'      , Nm        ) !N content of surface metabolic  
       litter pool (kgN m-2)   
 CALL RDSREA('Nn'      , Nn        ) !N content of soil metabolic litter  
       pool (kgN m-2) 
 CALL RDSREA('Nu'      , Nu        ) !N content of surface structural  
       litter pool (kgN m-2)   
 CALL RDSREA('Nv'      , Nv        ) !N content of soil structural litter  
       pool (kgN m-2) 
 CALL RDSREA('Na'      , Na        ) !N content of active soil pool (kgN  
       m-2) 
 CALL RDSREA('Ns'      , Ns        ) !N content of slow soil pool (kgN    
       m-2) 
 CALL RDSREA('Np'      , Np        ) !N content of passive soil pool (kgN  
       m-2) 
 CALL RDSREA('NPP'     , PPN       ) !net primary production of the  
       previous year (for allocation Palmroth et al.2006) (kgC m-2 d-1) 
 CLOSE (1) 
 
C --------------------- 
C Initialize variables 
C --------------------- 
 Nino= Namm+Nnit     !inorganic N (kgN m-2) 

IF (Nino.LE.0.) THEN 
 NC_a0= NC_a0min  !N/C of new SOM entering active soil pool (kgN kg-1C) 
 NC_s0= NC_s0min  !N/C of new SOM entering slow soil pool (kgN kg-1C) 
 NC_p0= NC_p0min  !N/C of new SOM entering passive soil pool (kgN kg-1C) 
ELSE IF (Nino.GT.Ncrit) THEN 
 NC_a0= NC_a0max 
 NC_s0= NC_s0max 
 NC_p0= NC_p0max 
ELSE 
 NC_a0= 1./(1./NC_a0min+(1./NC_a0max-1./NC_a0min)*(Nino/Ncrit)) 
 NC_s0= 1./(1./NC_s0min+(1./NC_s0max-1./NC_s0min)*(Nino/Ncrit)) 
 NC_p0= 1./(1./NC_p0min+(1./NC_p0max-1./NC_p0min)*(Nino/Ncrit)) 
END IF 
NC_r= ro*NC_f             !N/C for roots (kgN kg-1C)  
NC_wnew= NC_wnewa+NC_wnewb*NC_f  !N/C for new wood as function of N/C   

       for foliage (-)(Medlyn et al 2000) 
NC_ws= NC_wsba+NC_wsb*NC_f       !N/C for structural wood as function of  

       N/C for foliage (-)(Medlyn et al 2000) 
gammaw= (gamaw/days)       !fixed mortality coefficient for wood (d-1) 

 rwm= (rw/days)             !re-translocation rate of mobile wood N (d-1)  
       (McMurtrie et al 2000) 

lambdawm= gammaw/(gammaw+rwm)  !1-N re-translocated from wood (-) 
Nw= Nwm+Nws                    !N content of wood (kgN m-2)  
NPP= 0.                        !net primary production (kgC m-2 d-1)  
Kn= 1.                         !reducing decay rate coefficient of slow  

       and passive soil (-)    
   PAWr= PAWrmax            !plant available water in root zone (mm) 
 PAWts= PAWtsmax          !plant available water in top soil layer (mm) 

WCr= PAWr/sd/1000.+wp    !soil water content in root zone (m3/m3)  
 
C -------------------------------------- 
C Runtime parameters for initialization 
C -------------------------------------- 
C FLAG=0.          !control marker (FLAG=0 equilibrium; FLAG=1 simulation) 

years= 1500      !number of 50 years cycles for equilibrium state   
 years= 1.        !number of 200 years cycles for 200 years simulation 
C Nin= (0.0004/days)  !N input into the system for deposition or fixation  
       during model initialization (kgN m-2 d-1) 

rotation= 50   !rotation length applied during initialization (y) 
coppice= 0. 
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 Mng= 0.        !forest management (yes=1;no=0) (-)  
FLAG2= 1.  !CNU strategy (FLAG2=0 Nf+CNU; FLAG2=1 Ur+CNU; FLAG2=2  

       CNU=0.) 
vv= 0.     !variable using in computing C allocation   
SUM= 0.    !variable using in computing C allocation   

  
 lmbdaloss=0.05*lmbdau/0.95   
  
C --------------------- 
C Start of simulations 
C --------------------- 
50 CONTINUE 

m= 1             !simulating years count 
DO 100,h=1,years 

  day= 1         !simulating days count (1 to 365/6*years) and starting     
 day for daily simulations 

C  DO 90,i=1,50        !For equilibrium state 
 DO 90,i=1,200       !For 200 years simulation 

   daay= year(i)/4.   !computing number of days per years 
  daayy= year(i)/4. 
  dd= daay/daayy 
  IF (dd.eq.1.) THEN  
   days= 366 
  ELSE  
   days= 365 
  END IF 
  mng=0             !forest management (yes=1;no=0) (-) 

   gamaw=0.          !fixed mortality coefficient for wood (y-1) 
C   --------------------------- 
C   Imposing periodic thinning 
C   --------------------------- 

  IF ((i.EQ.24).OR.(i.EQ.74).OR.(i.EQ.124).OR.(i.EQ.174)) THEN 
   mng= 1           !forest management (yes=1;no=0) (-) 
   gamaw= 0.15      !fixed mortality/thinning coefficient for wood (y-1) 
  END IF 
  IF ((i.EQ.30).OR.(i.EQ.80).OR.(i.EQ.130).OR.(i.EQ.180)) THEN 
   mng= 1           !forest management (yes=1;no=0) (-) 
   gamaw= 0.14      !fixed mortality/thinning coefficient for wood (y-1) 
  END IF 
  IF ((i.EQ.35).OR.(i.EQ.85).OR.(i.EQ.135).OR.(i.EQ.185)) THEN 
   mng= 1           !forest management (yes=1;no=0) (-) 
   gamaw= 0.12      !fixed mortality/thinning coefficient for wood (y-1) 
  END IF 
  IF ((i.EQ.40).OR.(i.EQ.90).OR.(i.EQ.140).OR.(i.EQ.190)) THEN 
   mng= 1           !forest management (yes=1;no=0) (-) 
   gamaw= 0.05      !fixed mortality/thinning coefficient for wood (y-1) 
  END IF 
  IF ((i.EQ.45).OR.(i.EQ.95).OR.(i.EQ.145).OR.(i.EQ.195)) THEN 
   mng= 1           !forest management (yes=1;no=0) (-) 
   gamaw= 0.05      !fixed mortality/thinning coefficient for wood (y-1) 
  END IF 
  lambdaloss= (lmbdaloss/days    !constant rate for N loss (d-1) 
  gammar= 1./(livesr*days)  !fixed mortality coefficient for roots (d-1) 
  lambdau= (lmbdau/days)    !constant rate for N uptake (d-1) 
  gammaw= (gamaw/days)     !fixed mortality/thinning coefficient for  

         wood (d-1) 
  rwm= (rw/days)           !re-translocation rate of mobile wood N (d- 

         1) (McMurtrie et al 2000) 
  lambdawm= gammaw/(gammaw+rwm)  !1-N re-translocated from wood (-) 
  Nin=(Ninn(day)/days)       !N input into the system for  

         deposition or fixation (kgN m-2 d-1)  
  gammaf= 1./2./days      !fixed mortality coefficient for foliage (d-1) 
  IF (FLAG2.EQ.2.) THEN    !CNU strategy (FLAG2=0 Nf+CNU; FLAG2=1  

          Ur+CNU; FLAG2=2 CNU=0.) 
   CNU= 0. 
  ELSE 
   CNU= Nin*c*CNU_e        !CNU efficiency (kgN m-2 d-1) 
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  END IF 
C   Reset to zero all annual fluxes 

  PG= 0.        !annual gross primary production (kgC m-2 yr-1) 
  PN= 0.        !annual net primary production (kgC m-2 y-1) 
  RAA= 0.       !autotrophic respiration (kgC m-2 y-1) 
  RHH= 0.       !heterotrophic respiration (kgC m-2 y-1) 
  NEEP= 0.      !net ecosystem production (kgC m-2 y-1) 
  UU= 0.        !uptake rate of plant available nitrogen (kgN m-2 y-1) 
  Nlooss= 0.    !loss of N for leaching or denitrification (kgN m-2 y-1) 
  DO 70,n=1,days 
   IF (NC_f.GT.NC_fmax) THEN   !segmented function for dependence of LUE  
     on foliage N/C (-) 
    Ef= 1.                  
   ELSE IF (NC_f.LE.0.) THEN    
    Ef= 1.E-6 
   ELSE 
    Ef= NC_f/NC_fmax 
   END IF 
   Ef= 1. 

       
   etar= 1./(1.+1./(f*(Y0+Q*exp(-B*PPN))))  !allocation coefficient to     

          root (-)(Palmroth et al.2006) 
C    etaf= (1-etar)/(1.+d)          !allocation coefficient to foliage (-) 
C    etaw= d*etaf                   !allocation coefficient to wood (-) 

   etaf= 0.26                     !allocation coefficient to foliage (-) 
   IF ((etar+etaf).GT.1.) THEN 
    etar= 1.-etaf                  !allocation coefficient to root (-) 
   END IF 
    etaw= 1.-etar-etaf             !allocation coefficient to wood (-) 

C    SLA= 767.6565*NC_f**1.0889 !specific leaf area (m2 kg-1C)(from Reich  
C          et al 1999) Fitting on data 

   SLA= 11.2/w           !specific leaf area (m2 total leaf area  kg-1C) 
C    gammaf= (1./(0.0108*NC_f**(-1.424)))/days        !variable mortality 
C          coefficient for foliage(d-1)(from Reich et al 1999)Fitting on data       

   LAI= SLA*Cf/2.57            !leaf aere index (m2 m-2) 

 
   CALL MATE(k,e0,NC_f,days,day,Ta(day),Tp(day),VPDa(day),VPDp(day),   
* CO2(day),PAR(day),SLA,WUE,WCr,FC,WP,daylen,J25,VC25,alfam,alfpm) 

 
C    ------------------------------------ 
C    Compute transpiration & evaporation 
C    ------------------------------------      

   (Ta+Tp)/2(°C) 
   Tk= Tair+T0          !average air temperature equal to (Ta+Tp)/2 (°K) 
   lambda= 2513000.-2367.*Tair    !latent heat of vapourisation (J kg-1) 
   gamma= 66.+0.05*Tair               !psychrometric constant (Pa K-1)        
   raineff= MAX(0.,rain(day)-LAI*Il)  !daily effective rainfall (mm d-1) 
   Radlong= (107.-0.3*Tair)*daylen*3.6/1000.    !net long-wave radiation  

          (MJ m-2 d-1)(for 12 h)(Priciples of environmental physics) 
   Radnet=MAX(0.,((1.-g)*PAR(day)*2.-Radlong))   !net radiation (MJ m-2  

          d-1) 
   DeltaES= 0.611*(lambda/Rv)*(1/(Tk**2))*exp((lambda/Rv)* 
* ((Tk-T0)/(T0*Tk)))    !slope of sat vapour pressure vs   
        temperature at mean daily temperature (kPa K-1)       
   eps= DeltaES*1000./gamma !ratio of the increase of latent heat  
    content to increase of sensible heat content of saturated  

           air(DeltaES/gamma)(-) 
   Fwev= MIN(1.,MAX(0.,(PAWts/PAWtsmax-Fwev_min)/ (Fwev_max-Fwev_min))) 

          !reduction factor of Ev due to soil moisture (-, between 0 and 1)
    Ev= eps*Radnet/(eps+1.)/lambda*1000000.     !daily evaporation (from   
          equilibrium ev) (kg m-2 d-1 = mm d-1)          

   Ev= Ev*EXP(-0.398*LAI)*Fwev          !daily evaporation corrected for  
          canopy shading and for soil moisture(kg m-2 d-1 = mm d-1)            

   Ev= min(Ev,PAWts+raineff)                                   
 
C    --------------------------- 
C    Fluxes in plant C dynamics 
C    --------------------------- 
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   APAR= 1.-exp(-k*SLA*Cf/2.57)  !fraction of PAR intercepted (-) 
   GPP= PAR(day)*e0*APAR*Ef      !gross primary production (kgC m-2 d-1) 
   NPP= GPP*f                    !net primary production (kgC m-2 d-1)  
   Ra= GPP*(1-f)                 !autotrophic respiration (kgC m-2 d-1)     
   Ifc= NPP*etaf          !flux of C entering pool foliage (kgC m-2 d-1) 
   Irc= NPP*etar          !flux of C entering pool roots (kgC m-2 d-1) 

     Iwc= NPP*etaw          !flux of C entering pool wood (kgC m-2 d-1) 
   Jfc= Cf*gammaf         !flux of C leaving pool foliage (kgC m-2 d-1) 
   Jrc= Cr*gammar         !flux of C leaving pool roots (kgC m-2 d-1) 
   Jwc= Cw*gammaw         !flux of C leaving pool wood (kgC m-2 d-1) 
   Tr= GPP/WUE            !plant transpiration (mm d-1) 
 

C    ---------------------------------------------------------------- 
C    Fluxes in soil and litter C dynamics  (Comins & McMurtrie,1993) 
C    ---------------------------------------------------------------- 

   IF (Tsoil(day).LT.0.) THEN 
    A= 0. 
   ELSE 
    A=0.0326+0.00351*(Tsoil(day)**1.652)-((Tsoil(day)/41.748)**7.19)  

          !soil activity coefficient (-) 
   END IF 

  
    Fwts= MIN(1.,MAX(0.,(PAWts/PAWtsmax-Fwtsmin)/(Fwtsmax-Fwtsmin)))   
          !moisture factor in top soil layer decomposition factors for (-) 
C    ------------------------------------------- 
C    Flux partitioning to litter and soil pools 
C    ------------------------------------------- 

   puf= 0.15+0.018*Lfl/(w*lambdaf*NC_f)  !fraction of C flow from C  
          foliage pool into C surface structural pool (-) 

   IF(puf.GT.1.) puf= 1.              !constrain its value between 0-1 
   IF(puf.LT.0.) puf= 0. 
   pmf= 1.-puf    !fraction of C flow from C foliage pool into C surface  

          metabolic pool (-)    
   pvr= 0.15+0.018*Lrl/(w*lambdar*NC_r)  !fraction of C flow from C root  

          pool into C soil structural pool (-) 
   IF (pvr.GT.1.) pvr= 1.              !constrain its value between 0-1 
   IF (pvr.LT.0.) pvr= 0. 
   pnr= 1.-pvr          !fraction of C flow from C root pool into C soil  

          metabolic pool (-) 
   pau= 0.55*(1-Lfl)      !fraction of C flow from C surface structural  

          pool into C active soil pool (-) 
   pam= 0.45           !fraction of C flow from C surface metabolic pool  

          into C active soil pool (-) 
   pav= 0.45*(1-Lrl)   !fraction of C flow from C soil structural pool  

          into C active soil pool (-) 
   pan= 0.45           !fraction of C flow from C soil metabolic pool  

          into C active soil pool (-) 
   pas= 0.42           !fraction of C flow from C slow soil pool into C  

          active soil pool (-) 
   pap= 0.45           !fraction of C flow from C passive soil pool into  

          C active soil pool (-) 
   psa= 0.996-(0.85-0.68*T) !fraction of C flow from C active soil pool  

          into C slow soil pool (-) 
   psu= 0.7*Lfl            !fraction of C flow from C surface structural  

          pool into C slow soil pool (-) 
   psv= 0.7*Lrl        !fraction of C flow from C soil structural pool  

          into C slow soil pool  (-) 
   ppa= 0.004         !fraction of C flow from C active soil pool into C  

          passive soil pool (-) 
   pps= 0.03           !fraction of C flow from C slow soil pool into C  

          passive soil pool (-) 
 
C    ------------ 
C    Decay rates  
C    ------------ 

   du= 0.076*A*exp(-3*Lfl)/7.   !decay rates of surface structural pool  
          (d-1) 
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   dm= 0.28*A/7.            !decay rates of surface metabolic pool (d-1) 
   dv= 0.094*A*exp(-3*Lrl)/7.*Fwts   !decay rates of soil structural  

          pool (d-1) 
   dn= 0.35*A/7.*Fwts          !decay rates of soil metabolic pool (d-1) 
   da= 0.14*A*(1-0.75*T)/7.*Fwts  !decay rates of active soil pool (d-1) 
   ds= 0.0038*A*kn/7.*Fwts       !decay rates of slow soil pool (d-1) 
   dp= 0.00013*A*Kn/7.*Fwts      !decay rates of passive soil pool (d-1) 

 
C    ------------------ 
C    Flux computation 
C    ------------------ 

   Juc= du*Cu   !flux of C leaving surface structural pool (kgC m-2 d-1) 
   Jmc= dm*Cm   !flux of C leaving surface metabolic pool (kgC m-2 d-1) 
   Jvc= dv*Cv   !flux of C leaving soil structural pool (kgC m-2 d-1) 
   Jnc= dn*Cn   !flux of C leaving soil metabolic pool (kgC m-2 d-1) 
   Jac= da*Ca   !flux of C leaving soil active pool (kgC m-2 d-1) 
   Jsc= ds*Cs   !flux of C leaving soil slow pool (kgC m-2 d-1) 
   Jpc= dp*Cp   !flux of C leaving soil passive pool (kgC m-2 d-1) 
   IF (Mng.EQ.1) THEN 
    Iuc= puf*Jfc+f_BR*Jwc   !flux of C entering surface structural pool  

           (kgC m-2 d-1) 
   ELSE 
    Iuc= puf*Jfc+Jwc*(1-f_CR)  
   END IF 
   Imc= pmf*Jfc    !flux of C entering surface metabolic pool (kgC m-2  

          d-1) 
   Ivc= pvr*Jrc + f_CR*Jwc  !flux of C entering soil structural pool  

          (kgC m-2 d-1) 
   Inc= pnr*Jrc    !flux of C entering soil metabolic pool (kgC m-2 d-1) 
   Iac= pau*Juc+pam*Jmc+pav*Jvc+pan*Jnc+pas*Jsc+pap*Jpc       !flux of C  

          entering soil active pool (kgC m-2 d-1) 
   Isc= psa*Jac+psu*Juc+psv*Jvc   !flux of C entering soil slow pool  

          (kgC m-2 d-1) 
   Ipc= ppa*Jac+pps*Jsc   !flux of C entering soil passive pool (kgC m-2  

          d-1) 
 

   Rh= (Juc+Jmc+Jvc+Jnc+Jac+Jsc+Jpc)-(Iac+Isc+Ipc)  !heterotrophic  
          respiration (kgC m-2 d-1) 

   NEP= GPP-Ra-Rh               !net ecosystem production (kgC m-2 d-1) 
 
C    ---------------------------- 
C    Fluxes in plant N dynamics 
C    ---------------------------- 

   Jfn= MIN((Nf*gammaf),(Nf+Ifn))        !flux of N leaving pool foliage  
          (kgN m-2 d-1) 

   Jrn= MIN((Nr*gammar),(Nr+Irn))        !flux of N leaving pool root  
          (kgN m-2 d-1) 

   Jwns= MIN((Nws*gammaw),(Nws+Iwns))    !flux of N leaving pool  
          structural wood (kgN m-2 d-1) 

   Jwnm= MIN((Nwm*gammaw+Rwm*Nwm),(Nwm+Iwnm))   !flux of N leaving pool  
          mobile wood (kgN m-2 d-1) 
C    R= (1-lambdaf)*Jfn+(1-lambdar)*Jrn+(Rwm*Nwm) !N re-translocation rate  
          (kgN m-2 d-1) 

   R= (1.-lambdaf)*Jfn+(1.-lambdar)*Jrn+(1.-lambdawm)*Jwnm       !N re- 
          translocation rate (kgN m-2 d-1) 

   Uramm= MAX(lambdau*Namm*Cr/(Cr+Kr),0.)  !root ammonia N uptake  
          from (kgN m-2 d-1) 

   Urnit= MAX(lambdau*Nnit*Cr/(Cr+Kr),0.)  !root nitrate N uptake  
          from (kgN m-2 d-1) 

   Ur= Uramm+Urnit              !total root N uptake (kgN m-2 d-1) 
   Iwns= Iwc*NC_ws              !flux of N entering pool structural wood  

          (kgN m-2 d-1) 
   Iwnm= Iwc*(NC_wnew-NC_ws)    !flux of N entering pool mobile wood  

          (kgN m-2 d-1)      
   IF(FLAG2.EQ.0.) THEN   !CNU strategy (FLAG2=0 Nf+CNU; FLAG2=1 Ur+CNU;    

           FLAG2=2 CNU=0.) 
    U= Ur               !uptake rate of plant available N (kgN m-2 d-1)       
   ELSE 
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    U= Ur+CNU 
   END IF     
   IF((Iwns+Iwnm).GT.(U+R)) THEN   !If R+Ur is not enough, put it all in  

           N stem pools  
    Iwns= Iwns*(U+R)/(Iwns+Iwnm)  
    Iwnm= Iwnm*(U+R)/(Iwns+Iwnm) 
   END If 
   IF(FLAG2.EQ.0.) THEN   !CNU strategy (FLAG2=0 Nf+CNU; FLAG2=1 Ur+CNU;  

           FLAG2=2 CNU=0.) 
    Irn= (U+R-Iwns-Iwnm)*((ro*etar)/(etaf+ro*etar))  !flux of N entering  

           pool root (kgN m-2 d-1) 
      Ifn= (U+R-Iwns-Iwnm-Irn) + CNU     !flux of N entering pool foliage  
           (kgN m-2 d-1) 

   ELSE 
    Ifn= (U+R-Iwns-Iwnm-Irn)           !flux of N entering pool foliage  

           (kgN m-2 d-1) 
   END IF 

  
C    ----------------------------------------------------------------- 
C    Fluxes in soil and litter N dynamics  (Comins & McMurtrie,1993) 
C    ----------------------------------------------------------------- 

   IF (Mng.EQ.1) THEN                !forest management (yes=1;no=0)               
    Iun= MIN((NC_u*Iuc),(Jfn*lambdaf+f_BR*(Jwns+Jwnm-Rwm*Nwm)))  !flux  

           of N entering surface structural pool (kgN m-2 d-1)Mass balance  
           guaranteed 

    Imn= (Jfn*lambdaf+f_BR*(Jwns+Jwnm-Rwm*Nwm))-Iun   !flux of N  
           entering surface metabolic pool (kgN m-2 d-1) 

   ELSE 
    Iun= MIN((NC_u*Iuc),(Jfn*lambdaf+(Jwns+Jwnm-Rwm*Nwm)*(1-f_CR))) 
    Imn= (Jfn*lambdaf+(Jwns+Jwnm-Rwm*Nwm)*(1-f_CR)) - Iun                
   END IF 
   Ivn= MIN((NC_v*Ivc),(Jrn*lambdar+f_CR*(Jwns+Jwnm-Rwm*Nwm))) !flux of  

          N entering soil structural pool (kgN m-2 d-1)Mass balance guaranteed 
   Inn= Jrn*lambdar+f_CR*(Jwns+Jwnm-Rwm*Nwm)-Ivn     !flux of N entering  

          soil metabolic pool (kgN m-2 d-1) 
       

   IF (Iun.LT.(NC_u*Iuc)) THEN    !Fix N from Inorganic pool to keep N:C  
           of structural pools equals to 1/150 

    fixu= NC_u*Iuc-Iun 
    Iun= Iun+fixu 
   ELSE  
    fixu= 0. 
   END IF 
   IF (Ivn.LT.(NC_v*Ivc)) THEN   !Fix N from Inorganic pool to keep N:C  

           of structural pools equals to 1/150 
    fixv= NC_v*Ivc-Ivn 
    Ivn= Ivn+fixv 
   ELSE  
    fixv= 0. 
   END IF 
   IF (Imn.LT.(NC_m0min*Imc)) THEN  !Fix or release N from/to Inorganic  

           pool to keep N:C of metabolic pools between N:Cmin and N:Cmax 
    fix_relm= NC_m0min*Imc-Imn 
   ELSE IF (Imn.GT.(NC_m0max*Imc)) THEN               
    fix_relm= NC_m0max*Imc-Imn 
   ELSE    
    fix_relm= 0. 
   END IF 
   Imn= Imn+fix_relm 
   IF (Inn.LT.(NC_n0min*Inc)) THEN 
    fix_reln= NC_n0min*Inc-Inn 
   ELSE IF (Inn.GT.(NC_n0max*Inc)) THEN               
    fix_reln= NC_n0max*Inc-Inn 
   ELSE    
    fix_reln= 0. 
   END IF 
   Inn= Inn+fix_reln 
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   IF (Nino.LT.0.) THEN 
    NC_a0= NC_a0min     !N/C of new SOM entering active soil pool (kgN  

           kg-1C) 
    NC_s0= NC_s0min !N/C of new SOM entering slow soil pool (kgN kg-1C) 
    NC_p0= NC_p0min    !N/C of new SOM entering passive soil pool (kgN  

           kg-1C) 
   ELSE IF (Nino.GT.Ncrit) THEN 
    NC_a0= NC_a0max            
    NC_s0= NC_s0max            
    NC_p0= NC_p0max            
   ELSE 
    NC_a0= 1./(1./NC_a0min+(1./NC_a0max-1./NC_a0min)*(Nino/Ncrit)) 
    NC_s0= 1./(1./NC_s0min+(1./NC_s0max-1./NC_s0min)*(Nino/Ncrit)) 
    NC_p0= 1./(1./NC_p0min+(1./NC_p0max-1./NC_p0min)*(Nino/Ncrit)) 
   END IF 
   Ian= NC_a0*Iac    !flux of N entering active soil pool (kgN m-2 d-1) 
   Isn= NC_s0*Isc    !flux of N entering slow soil pool (kgN m-2 d-1) 
   Ipn= NC_p0*Ipc    !flux of N entering passive soil pool (kgN m-2 d-1) 
   Jun= MIN((du*Nu),(Nu+Iun))  !flux of N leaving surface structural  

          pool (kgN m-2 d-1) 
   Jvn= MIN((dv*Nv),(Nv+Ivn))  !flux of N leaving soil structural pool  

          (kgN m-2 d-1) 
   Jmn= MIN((dm*Nm),(Nm+Imn))  !flux of N leaving surface metabolic pool  

          (kgN m-2 d-1) 
   Jnn= MIN((dn*Nn),(Nn+Inn))  !flux of N leaving soil metabolic pool  

          (kgN m-2 d-1) 
   Jan= MIN((da*Na),(Na+Ian))  !flux of N leaving active soil pool (kgN  

          m-2 d-1) 
   Jsn= MIN((ds*Ns),(Ns+Isn))  !flux of N leaving slow soil pool (kgN m- 

          2 d-1) 
   Jpn= MIN((dp*Np),(Np+Ipn))  !flux of N leaving passive soil pool (kgN  

          m-2 d-1) 
     Nloss= MAX(0.,(lambdaloss*Nnit))           !loss of N for leaching or  
          denitrification (kgN m-2 d-1) 

 
   CN_soil= (Ca+Cs+Cp)/(Na+Ns+Np)  !average N:C ratio in mineral+organis  

          soil (kgN kg-1C) 
   IF (CN_soil.GT.22.5) THEN 
    fnit= 0.   
   ELSE IF (CN_soil.LT.17.5) THEN 
    fnit= 1. 
   ELSE 
    fnit=4.5-0.2*CN_soil          !fraction of nitrification (-) 
   END IF     

   
Igmin= Jfn*lambdaf+Jrn*lambdar+(Jwns+Jwnm-Rwm*Nwm)+Jun+Jmn+Jvn+Jnn+    

* Jan+Jsn+Jpn           !gross mineralisation flux (kgN m-2 d-1) 
   Imm= (Iun+Imn+Ivn+Inn)+(Ian+Isn+Ipn)    !N immobilization flux (kgN  

          m-2 d-1) 
    
   IF((Nino+Igmin+(Nin-CNU)-Imm-Uramm-Urnit-Nloss).LE.0.) THEN  !ensure  

            that Nino does not fall below zero, reduce all outgoing fluxes in  
            parallel 
     Imm= Imm * (Nino+Igmin+(Nin-CNU))/(Imm-Uramm-Urnit-Nloss) 
           Uramm= Uramm * (Nino+Igmin+(Nin-CNU))/(Imm-Uramm-Urnit-Nloss) 
           Urnit= Urnit * (Nino+Igmin+(Nin-CNU))/(Imm-Uramm-Urnit-Nloss) 
           Nloss= Nloss * (Nino+Igmin+(Nin-CNU))/(Imm-Uramm-Urnit-Nloss) 
           Ur= Uramm+Urnit 
           U=Ur  

   END IF 
 
   Inmin= Igmin-Imm            !net mineralisation flux (kgN m-2 d-1) 
   Iamm= 0.33*(Nin-CNU)+Inmin*(1.-fnit)   !flux of N entering ammonia      

          N pool (kgN m-2 d-1) 
   Init= 0.67*(Nin-CNU)+Inmin*fnit        !flux of N entering nitrate N  

          pool (kgN m-2 d-1)  
   Jamm= Uramm   !flux of N entering ammonia nitrogen pool (kgN m-2 d-1) 
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   Jnit= Urnit+Nloss 

 
C    ---------------- 
C    Update C pools 
C    ---------------- 

   Cf= Cf+Ifc-Jfc                 !update C content of foliage (kgC m-2) 
   Cr= Cr+Irc-Jrc                 !update C content of roots (kgC m-2)

    Cw= Cw+Iwc-Jwc                 !update C content of wood (kgC m-2) 
    Cu= Cu+Iuc-Juc     !update C content of surface structural pool (kgC  
          m-2) 
    Cm= Cm+Imc-Jmc     !update C content of surface metabolic pool (kgC    
          m-2) 
    Cv= Cv+Ivc-Jvc    !update C content of soil structural pool (kgC m-2) 
    Cn= Cn+Inc-Jnc    !update C content of soil metabolic pool (kgC m-2) 
    Ca= Ca+Iac-Jac    !update C content of soil active pool (kgC m-2) 
    Cs= Cs+Isc-Jsc    !update C content of soil slow pool (kgC m-2) 
    Cp= Cp+Ipc-Jpc    !update C content of soil passive pool (kgC m-2) 
 
C    ---------------- 
C    Update N pools 
C    ---------------- 

   Nf= Nf+Ifn-Jfn         !update N content of foliage (kgN m-2) 
   Nws= Nws+Iwns-Jwns     !update N content of structural wood (kgN m-2) 
   Nwm= Nwm+Iwnm-Jwnm     !update N content of mobile wood (kgN m-2) 
   Nw= Nws+Nwm            !update N content of total wood (kgN m-2) 
   Nr= Nr+Irn-Jrn         !update N content of root (kgN m-2) 
   Ntree= Nf+Nr+Nw        !total N content of trees (kgN m-2) 

          
   NC_f= MAX(Nf/Cf,NC_fmin)      !N/C for foliage (kgN kg-1C) 
   IF (FLAG2.EQ.0) THEN  !CNU strategy (FLAG2=0 Nf+CNU; FLAG2=1 Ur+CNU;  

           FLAG2=2 CNU=0.) 
    NC_r=ro*(NC_f-CNU/Ifc)     !N/C for roots (kgN kg-1C)  
   ELSE 

           NC_r=ro*NC_F 
   END IF 
   NC_ws= NC_wsa+NC_wsb*NC_f       !N/C ratio of structural wood as a  

          function of foliage N:C ratio (kgN kg-1C)   
   NC_wnew= NC_wnewa+NC_wnewb*NC_f  !N/C ratio of new wood as a function  

          of foliage N:C ratio (kgN kg-1C) 
 

   Nu= Nu+Iun-Jun  !update N content of litter surface structural pool  
          (kgN m-2) 

   Nv= Nv+Ivn-Jvn    !update N content of litter soil structural pool  
          (kgN m-2) 

   Nm= Nm+Imn-Jmn    !update N content of litter surface metabolic pool  
          (kgN m-2) 

   Nn= Nn+Inn-Jnn    !update N content of litter soil metabolic pool  
          (kgN m-2) 

   NC_m= Nm/Cm       !N/C for litter surface metabolic pool (kgN kg-1C)  
          (1/10:1/25)   

   NC_n= Nn/Cn       !N/C for litter soil metabolic pool (kgN kg-1C)  
          (1/10:1/25) 

   Na= Na+Ian-Jan  !update N content of active soil pool (kgN m-2) 
    Ns= Ns+Isn-Jsn  !update N content of slow soil pool (kgN m-2) 

   Np= Np+Ipn-Jpn  !update N content of passive soil pool (kgN m-2) 
   Namm=Namm+Iamm-Jamm     !update N content of ammonia N pool (kgN m-2) 

    Nnit=Nnit+Init-Jnit     !update N content of nitrate N pool (kgN m-2) 
    Nino=Namm+Nnit       !update N inorganic pool (kgN m-2) 
 
C    ---------------------- 
C    Update annual fluxes 
C    ---------------------- 

   PG= PG+GPP            !annual gross primary production (kgC m-2 y-1) 
    PN= PN+NPP            !annual net primary production (kgC m-2 y-1) 
    RAA= RAA+Ra      !annual autotrophic respiration (kgC m-2 y-1) 
    RHH= RHH+Rh      !annual heterotrophic respiration (kgC m-2 y-1) 
    NEEP= NEEP+NEP      !annual net ecosystem exchange (kgC m-2 y-1) 
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    UU= UU+U       !annual plant N uptake (kgN m-2 year-1) 
    Nlooss=Nlooss+Nloss   !annual N losses (kgN m-2 year-1) 
 
C    --------------------- 
C    Update water balance   
C    --------------------- 

   PAWr= MAX(0.,MIN(PAWrmax,PAWr+raineff-Tr-Ev))  !plant available water  
          in root zone (mm) 

   PAWts= MAX(0.,MIN(PAWtsmax,PAWts+raineff-Tr*qe-Ev,PAWr))       !plant  
          available water in top soil layer (mm) 

   WCr= PAWr/sd/1000.+WP       !soil water content in root zone (m3/m3) 
  

   DO 60 j=1,729     
    zz(j)= vv(j+1) 
    SUM= SUM+zz(j)  

60    CONTINUE 
   zz(730)= npp 
   SUM= SUM+npp 
   vv= zz 
   PPN= SUM/2. 
   SUM= 0. 

       
C    IF ((FLAG.EQ.0).AND.(m.LE.(years*50-50))) THEN !For equilibrium state  
    IF ((FLAG.EQ.0).AND.(m.LE.(150.))) THEN     !For 200 years simulation 
     GOTO 65 

   END IF   
   WRITE(35,1000)gpp,npp,RA,RH,NEP,Cf,Cr,Cw,gammar,e0,J25,VC25,PAWr, 
* PAWts        
   WRITE(45,1000)Cu,Cm,Cv,Cn,Ca,Cs,Cp,etaf,etar,alfam,alfpm  
   WRITE(55,1000)Nf,Nr,Nw,Ntree,NC_f,U,etaw,SLA,gammaf,Igmin,Inmin 
   WRITE(75,1000)Nu,Nm,Nv,Nn,Na,Ns,Np,Nino,Nloss,CNU,Namm,Nnit  

 
65    day=day+1 
70   CONTINUE 
 
C   --------------------------------------------- 
C   Impose harvesting at the end of the rotation 
C   --------------------------------------------- 
C   IF (((i)/rotation).EQ.INT((i)/rotation)) THEN   !update pools for   
           management and slash release 

   CONTINUE 
   IF (coppice.EQ.0) THEN 
    CONTINUE 

     Jfc= Cf - 0.001   !C flux leaving the foliage pool at harvest (kgC    
            m-2) 
     Jrc= Cr - 0.001     !C flux leaving the fine root pool at harvest    
           (kgC m-2) 

    Jwc= Cw           !C flux leaving the wood pool at harvest (kgC m-2) 
    Jfn= Jfc*NC_f   !N flux leaving the foliage pool at harvest (kgN  

           m-2) 
    Jrn= Jrc*NC_r       !N flux leaving the fine root pool at harvest  

           (kgN m-2) 
    Jwns= Jwc*NC_ws     !flux of N leaving pool strustural wood (kgN m-2  

           d-1) 
    Jwnm= Jwc*(NC_wnew-NC_ws)    !flux of N leaving pool mobile wood  

           (kgN m-2 d-1) 
            

    Iuc= 0.    !flux of C entering surface structural pool at harvest  
           (kgC m-2) 

    Imc= 0.    !flux of C entering surface metabolic pool at harvest  
           (kgC m-2) 
     Ivc= 0.    !flux of C entering soil structural pool at harvest (kgC   
           m-2) 

    Inc= 0.    !flux of C entering soil metabolic pool at harvest (kgC  
           m-2) 

    Iun= 0.  !flux of N entering surface structural pool at harvest (kgN  
           m-2) 

    Imn= 0.  !flux of N entering surface metabolic pool at harvest (kgN  
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           m-2) 
    Ivn= 0.   !flux of N entering soil structural pool at harvest (kgN  

           m-2) 
     Inn= 0.    !flux of N entering soil metabolic pool at harvest (kgN   
           m-2) 

   END IF 
 

   Cf= Cf – Jfc           !foliage C (kgC m-2) 
   Cr= Cr – Jrc           !fine root C (kgC m-2) 

    Cw= Cw – Jwc           !wood C (kgC m-2) 
   Nf= Cf*NC_f            !foliage N (kgN m-2) 
   Nr= Cr*NC_r            !fine root N (kgN m-2) 
   Nws= Cw*NC_ws          !update N content of structural wood (kgN m-2) 
   Nwm= Cw*(NC_wnew-NC_ws) !update N content of mobile wood (kgN m-2) 
   Nw=Nws+Nwm 
   Cu= Cu + Iuc   !C content of litter surface structural pool (kgC m-2) 
   Cm= Cm + Imc   !C content of litter surface metabolic pool (kgC m-2) 
   Cv= Cv + Ivc   !C content of litter soil structural pool (kgC m-2) 

    Cn= Cn + Inc   !C content of litter soil metabolic pool (kgC m-2) 
   Nu= Nu + Iun   !N content of litter surface structural pool (kgN m-2) 

    Nm= Nm + Imn   !N content of litter surface metabolic pool (kgN m-2) 
    Nv= Nv + Ivn   !N content of litter soil structural pool (kgN m-2) 
    Nn= Nn + Inn   !N content of litter soil metabolic pool (kgN m-2) 

   vv=0. 
   PPN=0. 
  END IF 

  
C   ----------------------------------------------- 
C   Print results to file at the end of each year 
C   ----------------------------------------------- 
C   IF ((FLAG.EQ.0).AND.(m.LE.(years*50-200))) THEN  

  IF ((FLAG.EQ.0).AND.(m.LE.(years*200-200))) THEN  
   GOTO 80 
  END IF 

 
  WRITE(10,1000)PG,PN,RAA,RHH,NEEP,Cf,Cr,Cw,gammar,E0,PAWr,PAWts  
  WRITE(20,1000)Cu,Cm,Cv,Cn,Ca,Cs,Cp,etaf,etar  
  WRITE(30,1000)Nf,Nr,Nw,Ntree,NC_f,UU,etaw,SLA ,gammaf,Nws,Nwm 
  WRITE(40,1000)Nu,Nm,Nv,Nn,Na,Ns,Np,Nino,Nlooss,CNU,Namm,Nnit  

 
80   m=m+1       
90  CONTINUE       
100 CONTINUE 
 
C -------- 
C Formats 
C -------- 
1000 FORMAT(20(1x,f30.11)) 
 

STOP 
 END 
 
C  ----------- 
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6.2 THE MATE MODEL CODE 

C  MAIN PROGRAM MATE 
C  Author: Silvia Dezi 
C  Date:   11.08.2008        
C  Pourpose: implementation of the RMATE model (Model Any Terrestrial  
C  Ecosystems) (McMurtrien et al, in preparation), that incorporates the  
C  effect of atmospheric [CO2] and meteorological data (T, PAR, RH, rain) on  
C  light use efficiency (LUE)  
C 
C 
C  ARGUMENTS 
C 
C  Aam,Apm          rate of leaf photosynthesis for AM, PM periods (umol CO2  
C                   m-2 s-1) 
C  Acam,Acpm        rate of leaf photosynthesis when Rubisco activity is  
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C                   limiting for AM, PM periods (umol CO2 m-2 s-1)        
C  Ajam,Ajpm        rate of leaf photosynthesis when RUBP regeneration is  
C                   limiting for AM, PM periods (umol CO2 m-2 s-1) 
C  alfam,alfpm      quantum efficiency for AM, PM periods (mol CO2 mol-1 PAR) 
C  Ca               atmospheric CO2 concentration (umol mol-1) 
C  CiCa_am,CiCa_pm  ratio intercellular to atmospheric CO2 concentration for  
C                 AM, PM periods(-) 
C  d              factor for identify hemisphere (1 north, -1 south) (-)      
C  daylen         daylength (h d-1) 
c  declination    declination of the sun to the the Equator (rad) 
C  delSJ          (J mol-1 k-1) 
C  DeltaES        slope of sat vapour pressure vs temperatue at mean daily  
C                 temperature (kPa K-1) 
C  doy            day of year (-) 
C  eam,epm        light-use efficency for AM, PM periods (mol CO2 mol-1 PAR) 
C  EaV            activation energy for Rubisco(J mol-1) 
C  EaJ            activation energy for electron transport(J mol-1) 
C  EdJ            deactivation energy for electron transport(J mol-1) 
C  e              mean light-use efficency (mol CO2 mol-1 PAR) 
C  FC             field capacity (m3 m-3) 
c  g              albedo (-) 
C  gamma          convertion factor for PAR (from mol PAR to umol PAR) 
C  gammap         psychrometric constant (Pa K-1) 
C  GamStaram,     light compensation point for AM periods(umol umol-1) 
C  GamStarpm      light compensation point for PM periods(umol umol-1) 
C  gi             slope parameter for B-B model(-) 
C  gw             reduction factor in B-B model due to soil moisture (-,  
C                 between 0 and 1) 
C  Il             rainfall interception per unit LAI (mm d-1) 
C  Jmam,Jmpm      maximum rate of electron transport for AM, PM periods(umol  
C                 CO2 m-2 s-1) 
C  J25            maximum rate of electron transport at 25°C(umol CO2 m-2 s-1) 
C  ke             light extinction coefficient (-) 
C  kmam,kmpm      Michaelis constant for CO2 fixation for AM, PM periods(umol  
C                 umol-1) 
C  LAI            leaf area index (m2 m-2) 
C  lambda         latent heat of vapourisation (J kg-1) 
C  Lat            Latitude (° + '/60 + ''/3600) (-) 
C  Pa             air vapor pressure (kPa) 
C  PARR           incident photosyntetically active radiation (molPAR m-2 d-1) 
C  pi             value of pi greco ??? 
C  PS             saturation vapor pressure (kPa) 
C  qam,qpm        mormalised daily irradiance for AM, PM periods (-) 
C  Radlong        net long-wave radiation (MJ m-2 d-1) 
C  Radnet         net radiation (MJ m-2 d-1) 
C  rain           daily precipitation (mm d-1) 
C  raineff        daily effective rainfall (mm d-1) 
C  Rg             ideal gas constant (J °K-1 mol-1) 
C  RH             atmosheric relative humidy(-)  
C  RHam,RHpm      atmosheric relative humidy for AM, PM periods(-) 
C  RHav           mean atmosheric relative humidy(-)  
C  Rv             gas constant for water vapour (J K-1 kg-1) 
C  SLAA           spacific keaf area (m2 kgC-1) 
C  SWP            soil water potential in rooting zone (MPa=kJ kg-1) 
C  Tam,Tpm        atmospheric temperature for AM, PM periods(°C) 
C  Tav            mean atmospheric temperature (°C) 
C  Tmax           maximum atmospheric temperature (°C) 
C  Tmin           minum atmospheric temperature (°C)    
C  teta           shape of light-response curve (-) 
C  Tkam,Tkpm      atmospheric temperature for AM, PM periods in Kelvin(K) 
C  Tavk           mean atmospheric temperature in Kelvin(K) 
C  Tr             plant transpiration (mm d-1) 
C  Tref           reference temperature in Kelvin (K) 
C  T0             °C in Kelvin (K) 
C  Vmam,Vmpm      maximum rate of Rubisco activity for AM, PM periods(umol CO2  
C                 m-2 s-1) 
C  VPDam,VPDpm    vapour pressure deficit for AM, PM periods(kPa) 
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C  Vc25           maximum rate of Rubisco activity at 25°C(umol CO2 m-2 s-1) 
C  WC             water content in root zone (m3m-3) 
C  WP             wilting point (m3 m-3) 
C  WUE            mean water use efficiency(kgC m-2 mm-1) 
C  WUEam,WUEpm    water use efficiency for AM, PM periods(kgC m-2 mm-1) 
C 
 SUBROUTINE MATE(ke,e,NCf,doys,doy,Tam,Tpm,VPDam,VPDpm,Ca,PARR,SLAA 

* ,WUE,WC,FC,WP,daylen,J25,VC25,alfam,alfpm) 
 
C --------------------------------- 
C Declare variables and parameters 
C --------------------------------- 
 REAL sen(6),gam(6),gpm(6),PARR,Ca,RHpm,Tam,Tpm,RHam,SLAA 
 REAL qq,ke,alfam,alfpm,PAR,daylen,Amax,PI,Lat,Decl,Acam,Acpm 
 REAL Aam,Apm,qam,qpm,ggam,ggpm,teta,Rg,Jmam,NCf 
 REAL CiCa_pm,RHaam,RHppm,gi,GamStaram,GamStarpm,T0,Tmax 
 REAL Tkam,Tkpm,J25,EaV,EaJ,EdJ,delSJ,Tav,HR,Vc25,Vmam 
 REAL  kmpm,RHav,Jmpm,CiCa_am,Tmin,Tref,Vmpm,kmam 
 REAL e,Ajam,Ajpm,k,ee(3287),Tavk,Tr,rainn,raineff,LAI,Il 
 REAL Radlong,Radnet,g,lambda,gammap,DeltaES,Rv,SWP,gw 
 REAL VPDam,VPDpm,WUEam,WUEpm,WUE,FC,WP,doys 
 INTEGER gamma,doy,d,j,days,years,day 
 CHARACTER*40 IPARMS 

PARAMETER (PI=3.1415926536,Rg=8.3144472,T0=273.15,Rv=461.5) 
 
C     ------------------ 
C     Define parameters 
C     ------------------ 

teta= 0.95    !shape of light-response curve (-)(Medlyn et al. 2005) 
Vcmax= 80     !maximum rate of Rubisco activity at 25°C  (umol CO2 m-2  

       s-1)(Medlyn et al. 2005) 
EaV= 58520.   !activation energy for Rubisco(J mol-1)(Medlyn et al.  

       2005) 
Jmax= 120     !maximum rate of electron transport at 25°C (umol CO2 m-2     

       s-1)(Medlyn et al. 2005) 
EaJ= 38670.   !activation energy for electron transport(J mol-1)     

       (Medlyn et al. 2005) 
EdJ= 200000.  !deactivation energy for electron transport(J mol-1)   

       (Medlyn et al. 2005) 
delSJ= 624.4  !(J mol-1 K-1)(Medlyn et al. 2002,Medlyn et al. 2005) 
gi= 8.63      !slope parameter for Leuning model(-)(Medlyn et al. 2005) 
Lat= 44.7     !Latitude 44° 42'(° + '/60 + ''/3600)(Medlyn et al. 2005) 
Il= 0.5       !rainfall interception per unit LAI (mm d-1) 

       (19991.2000R1_THWaterBal20080710RM_Ring1.xls & McMurtrie et al 1990) 
g= 0.2        !albedo (used in calculating Radnet)(-)  

       (19991.2000R1_THWaterBal20080710RM_Ring1.xls) 
Tref= 25.+T0  !reference temperature in Kelvin (K) 

 
C --------------------- 
C Start of simulations 
C --------------------- 
 DO 10 i=1,6      

 sen(i)=SIN((i*2-1)*PI/24) 
10 CONTINUE  

J25= (48.7*NCf/SLAA*1000.-2.5)*2.*0.8     !maximum rate of Rubisco  
       activity at 25°C(umol CO2 m-2 s-1)(Medlyn et al 2002)      

VC25= (25.8*NCf/SLAA*1000.+11.7)*2.*0.8   !maximum rate of electron  
       transport at 25°C(umol CO2 m-2 s-1)(Medlyn et al 2002) 
      
C --------------------------------------- 
C Computation rate of leaf photosynthesis 
C ---------------------------------------- 

gw= 1.-MIN(1.,0.0156*EXP(4.269*(FC-WC)/(FC-WP)))   !reduction factor in  
       gs model due to soil moisture (-, between 0 and 1)(BRAY,Granier &  
       Loustau 1994) 

Tkam= Tam+T0    !atmospheric temperature for AM period in Kelvin(K) 
Tkpm= Tpm+T0    !atmospheric temperature for PM period in Kelvin(K) 
CiCa_am= MAX((1.-1.6/(gi*gw)*(1.+VPDam/1.39)),0.2)  !ratio intercellular  
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       to atmospheric CO2 concentration for AM period(-)(BRAY,Medlyn et al  
       2005) 

CiCa_pm= MAX((1.-1.6/(gi*gw)*(1.+VPDpm/1.39)),0.2)  !ratio intercellular  
       to atmospheric CO2 concentration for PM period(-)(BRAY,Medlyn et al    
       2005) 

GamStaram = 42.75*EXP(37830*(Tam-25.)/(Rg*Tkam*Tref))       !light  
       compensation point for AM period(umol umol-1) 

GamStarpm = 42.75*EXP(37830*(Tpm-25.)/(Rg*Tkpm*Tref))       !light  
       compensation point for PM period(umol umol-1) 

kmam= 404.9*EXP(79430*(Tam-25.)/(Rg*Tkam*Tref))*(1.+ 205000./ 278400. 
* /EXP(36830*(Tam-25.)/(Rg*Tkam*Tref)))   !Michaelis constant for  

       CO2 fixation for AM period(umol umol-1) 
kmpm= 404.9*EXP(79430*(Tpm-25.)/(Rg*Tkpm*Tref))*(1.+ 205000./278400. 
* /EXP(36830*(Tpm-25.)/(Rg*Tkpm*Tref)))     !Michaelis constant for     

       CO2 fixation for PM period(umol umol-1) 
Jmam= J25*EXP(EaJ*(Tam-25.)/(Rg*Tkam*Tref))*(1.+ EXP((delSJ*Tref-EdJ)/ 
* Rg/Tref))/(1.+EXP((delSJ*Tkam-EdJ)/Rg/Tkam))    !maximum rate of  

       electron transport for AM period(umol CO2 m-2 s-1) 
Jmpm= J25*EXP(EaJ*(Tpm-25.)/(Rg*Tkpm*Tref))*(1.+ EXP((delSJ*Tref-EdJ)/ 
* Rg/Tref))/(1.+EXP((delSJ*Tkpm-EdJ)/Rg/Tkpm))    !maximum rate of  

       electron transport for PM period(umol CO2 m-2 s-1) 
Vmam= Vc25*EXP(EaV*(Tam-25.)/(Rg*Tkam*Tref))    !maximum rate of Rubisco  

       activity for AM period(umol CO2 m-2 s-1) 
Vmpm= Vc25*EXP(EaV*(Tpm-25.)/(Rg*Tkpm*Tref))    !maximum rate of Rubisco  

       activity for PM period(umol CO2 m-2 s-1) 
Acam= MAX(0.,(Ca*CiCa_am-GamStaram))*Vmam/(Ca*CiCa_am+kmam)  !rate of  

       leaf photosynthesis when Rubisco activity is limiting for AM period    
       (umol CO2 m-2 s-1) 

Acpm= MAX(0.,(Ca*CiCa_pm-GamStarpm))*Vmpm/(Ca*CiCa_pm+kmpm)  !rate of  
       leaf photosynthesis when Rubisco activity is limiting for PM period   
       (umol CO2 m-2 s-1) 

Ajam= (Jmam/4.)*((Ca*CiCa_am-GamStaram)/(Ca*CiCa_am+2.*GamStaram))     
       !rate of leaf photosynthesis when RUBP regeneration is limiting for AM  
       period (umol CO2 m-2 s-1) 

Ajpm= (Jmpm/4.)*((Ca*CiCa_pm-GamStarpm)/(Ca*CiCa_pm+2.*GamStarpm))     
       !rate of leaf photosynthesis when RUBP regeneration is limiting for PM   
       period (umol CO2 m-2 s-1) 
  Aam= MIN(Acam,Ajam)    !rate of leaf photosynthesis for AM period (umol    
       CO2 m-2 s-1) 

Apm= MIN(Acpm,Ajpm)    !rate of leaf photosynthesis for PM period (umol  
       CO2 m-2 s-1) 

alfam=(0.2+0.15)/2./4.*MAX(0.,(Ca-GamStaram))/(Ca+2.*GamStaram) !quantum  
       efficiency for AM periods (mol CO2 mol-1 PAR) 

alfpm=(0.2+0.15)/2./4.*MAX(0.,(Ca-GamStarpm))/(Ca+2.*GamStarpm) !quantum  
       efficiency for PM periods (mol CO2 mol-1 PAR) 
                     
C -------------------------------- 
C Computation light-use efficency 
C --------------------------------             

Decl= -23.45*pi/180.*COS(2.*PI*(doy+10.)/doys)    !declination of the  
       sun to the the Equator (rad) 

daylen= ACOS(-TAN(Lat*PI/180.)*TAN(Decl))*24./PI   !daylength (h d-1) 
IF (Aam.LE.0.) THEN    !computation light-use efficency for AM period  

        (mol CO2 mol-1 PAR)  
 eam= 0. 
ELSE 
 qam= (PI*ke*alfam*PARR*2*2000000.)/(2.*daylen*3600*Aam)    !mormalised  

        daily irradiance for AM period (-) 
 ggam= 0. 
 DO 20 j=1,6 
  gam(j)= sen(j)/(1.+qam*sen(j)+SQRT(((1.+qam*sen(j))**2)- 
* 4.*teta*qam*sen(j))) 
  ggam=ggam+gam(j) 

20  CONTINUE  
 eam= alfam*PI*ggam/6.      !light-use efficency for AM period (mol CO2  

        mol-1 PAR) 
END IF     
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IF (Apm.LE.0.) THEN    !computation light-use efficency for PM period  
        (mol CO2 mol-1 PAR) 

 epm= 0.  
ELSE 
 qpm= (PI*ke*alfpm*PARR*2*2000000.)/(2*daylen*3600*Apm)     !mormalised  

        daily irradiance for PM period (-) 
 ggpm= 0. 
 DO 30 j=1,6 
  gpm(j)= sen(j)/(1.+qpm*sen(j)+SQRT(((1.+qpm*sen(j))**2)- 
* 4*teta*qpm*sen(j))) 
  ggpm=ggpm+gpm(j) 

30  CONTINUE    
 epm= alfpm*PI*ggpm/6.       !light-use efficency for PM period (mol CO2  

        mol-1 PAR) 
END IF   
e= (eam+epm)/2.       !mean light-use efficency (mol CO2 mol-1 PAR) 
e= e*12/1000/0.217    !mean light-use efficency (kgC MJ-1 PAR) 

 
C --------------------------------- 
C Computation water use efficiency 
C --------------------------------- 

WUEam= Ca*(1-CiCa_am)/1.6/VPDam/10./1.5/1000.   !water use efficiency  
       for AM periods(kgC m-2 mm-1) 

WUEpm= Ca*(1-CiCa_pm)/1.6/VPDpm/10./1.5/1000.   !water use efficiency  
       for PM periods(kgC m-2 mm-1) 

WUE= (WUEam+WUEpm)/2.         !mean water use efficiency (kgC m-2 mm-1) 
 
RETURN 
END 

 
C  ----------- 
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« Com'ero buffo, quand'ero un burattino!... e come ora son contento di essere diventato 
un ragazzino perbene!.... » 

(“How ridiculous I was as a Marionette!... And how happy I am, now that I have become a real boy!...”) 
 

(Carlo Collodi, incipit de "Le avventure di Pinocchio") 
 




