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 PREFACE 

 
Europe is the oldest continent in the world, being a quarter of the entire 

population more than 60 years old. This “demographic explosion” makes important to 

identify factors (biological and not biological) involved in aging, with the main goal of 

increasing the number of elderly persons in good health. 

The present study is part of the Integrated European Project “GEHA - GEnetics of 

Healthy Aging” (Franceschi et al. 2007), whose aim is to identify genes involved in 

healthy aging and longevity, which allow individuals to survive to advanced age in good 

cognitive and physical conditions and in absence of the major age-related diseases. 

To achieve this aim, it was important to: (1) collect information on health status 

and DNA from 2192 long-lived sibpairs (90+) and an equal number of ethnically-

matched younger controls from the 11 European countries; (2) perform a genome-wide 

linkage scanning in all the sibpairs and a LD mapping (linkage disequilibrium) of the 

candidate chromosomal region; (3) analyse three chromosomal regions (region 

D4S1564 in chromosome 4, region 11.p15.5 in chromosome 11, APO-E in chromosome 

19), which were previously seen to be associated with longevity; (4) genotype all 

recruited subjects for APOE polymorphisms; (5) genotype all the recruited subjects for 

mtDNA haplogroups; (6) sequence a subset of the mtDNAs in order to evaluate the 

genetic and epigenetic variability. 

In this context, the purpose of the Project is to examine the association of 

haplogroups with healthy aging and to sequence the entire mitochondrial genome in 

order to study new mutations and polymorphisms related to aging. 
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Chapter 1 

 

INTRODUCTION 

 

1. The aging process and mortality deceleration 

Aging may be considered as the most common disease affecting inexorably 100% 

of the animal world and is the accumulation of changes in an organism over time. Aging 

can be defined as a multifactorial phenomenon characterized by a time-dependent 

decline in physiological function. The individual age can be defined with three 

parameters: chronological ageing, referring to how old a person is, is arguably the 

most straightforward definition of ageing and may be distinguished from "social 

ageing" (society's expectations of how people should act as they grow older) and 

"biological ageing" (an organism's physical state as it ages).  

Differences are sometimes made between populations of elderly people. Divisions 

are sometimes made between the young old (65–74), the middle old (75–84) and the 

oldest old (85+). However, problematic in this is that chronological age does not 

correlate perfectly with functional age, i.e. two people may be of the same chronologic 

age, but differ in their mental and physical capacities, so they have extremely different 

biological age.  

It is very difficult to define when ageing starts, because it is deeply influenced by 

culture, society, economic well-being and by the society self. Moreover, it is natural to 

associate aging with degenerative pathologies: some presents a mental decay, others 

only inferior articulation weakness or in particular one sensorial organ. From 

biomedical point of view, aging is a universal and progressive change which leads to a 

loss of individual capacity of adapting in the environment in which it lives. This event 

inexorably leads the organism to a major susceptibility condition against disease; 

consequently mortality arises in an age-dependent way. 

Senescence is the state or process of aging. In particular cellular senescence is a 

phenomenon where isolated cells demonstrate a limitated ability to divide in culture 

(discovered by Hayflick in 1961) while organismal senescence is the aging of organisms. 

This senescence is characterized by a declining ability to respond to stress, increasing 
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homeostatic imbalance and increased risk of disease. Today, it is still not discovered one 

single aging biomarker. In Humans, this phenomenon is characterized by an enormous 

heterogeneity which appear not only among different organisms, but also in the single 

organism: tissue age in different way, producing a proliferative mosaic (Franceschi et al., 

1999), where also single cells have different replicative potential. One example of 

cellular senescence has been attributed to the shortening, in vitro, of telomeres with 

each cell cycle in peripheral blood leucocyte and not in centenarians fibroblast; when 

telomeres become too short, the cells die. The length of telomeres is therefore the 

"molecular clock," predicted by Hayflick. 

From a demographic view, in the latest one hundred years, and in particular from 

the second half of XX century and in industrialized countries, a demographic transition 

has happened, characterized by  a drastic decrease of infant mortality and a rising of 

aging rate. 

In the world, Europe is the area with the highest aging rate: a quarter of the 

entire European population has more than 60 years of age and it is estimated that it 

could reach a third in the next 30 years. 

So, far from being fixed, the mortality of people over 80 years decrease 

dramatically since 1950, especially since 1970 in developed countries. The mortality 

curve was represented by Gompertz in 1825: it shows a semi-logarithmic scale in which 

death rate is in function with Age (years) and it explains why mortality rates increase 

exponentially with age (the Gompertz law) in many species, by taking into account the 

initial flaws (defects) in newly formed systems. He also suggested that it is a feature of 

all organisms but this could be true at his time, when people’s lifespan was 80 years 

maximum. The Gompertz–Makeham law of mortality describes the age dynamics of 

human mortality rather accurately in the age window from about 30 to 80 years of age. 

At more advanced ages, death rates do not increase as fast as predicted by this mortality 

law – a phenomenon known as the late-life mortality deceleration. Now people can 

reach the venerable age of 100 and “real” data appreciably differ from Gompertz curve 

(in blue in fig.1). Vaupel et al (1998) tested the hypothesis that mortality accelerates 

with age as reproduction declines, estimating age trajectories of death rates for Humans 

and other organisms. As Fig. 1.1 shows, death rates increase at a slowing rate after age 

80. A logistic curve (in blue), that fits the data well from age 80 to 105, indicates that 

death rates may reach a plateau. A quadratic curve (in green) fit to the data at ages 105+ 

suggests a decline in mortality after age 110. The red line is the aggregation of 14 
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countries (Japan and 13 Western European countries) with reliable data, over the period 

from 1950 to 1990 for ages 80 to 109 and to 1997 for ages 110 and over. 

(A) (B) 

Fig. 1.1:  (A)  Figure inspired by Gavrilov and Gavrilova. It represents the Gompetz law and the real data 

trend. After 90 years, the mortality rate decreases. (B)  Age trajectories of death rates from 80 to 122 

years for females. The logistic curve (in blue) fits the data well from age 80 to 105 and it indicates that 

death rates may reach a plateau. A quadratic curve (in green) fits  the data at ages 105+ suggesting a 

decline in mortality after age 110. The red line is the aggregation of 14 countries (Japan and 13 Western 

European countries) with reliable data, over the period from 1950 to 1990 for ages 80 to 109 and to 1997 

for ages 110 and over (Source: Vaupel et al. 1998) 

 

Mortality deceleration was observed not only in humans, but also in organisms, 

such as Ceratitis capitata (the Mediterranean fruit fly), Anastrepha ludens, Anastrepha 

obliqua, and Anastrepha serpentina (three other species of true fruit fly), 

Diachasmimorpha longiacaudtis (a parasitoid wasp), Drosophila melanogaster, 

Caenorhabditis elegans (a nematode worm), and Saccharomyces cerevisiae (baker’s 

yeast) (Vaupel et al., 1998). 

There is not still a clear explanation for this phenomenon, but this exponential 

rising of old persons could be attributable to changes at the individual level on the one 

hand and to changes in the composition of the surviving cohort on the other. In 2000, 69 

million people world wide were aged 80 or over. By 2050, the 80+ year-old people are 

projected to be more than 370 million, representing 4,4% of the entire population. 

Similarly, the number of nonagenarians will reach 63 million by 2050, and centenarians 

will reach 5.3 million. These improvements in life expectancy came as the consequence 

of rising standard quality of life, environment hygiene, alimentation (both quality and 
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total caloric introduction of food), public health interventions, and medical 

developments that reduced death from infectious diseases. 

The increase in life expectancy in developed countries leads to one hand  

extremely complicated demographic phenomenon, and on the other hand new problems 

regarding the allocation of resources for old age pensions and care for the elderly. In 

order to provide a suitable health care support, it is necessary a better comprehension 

of factors (biological and non-biological) involved in aging devoid of major diseases and 

disabilities, contributing to a much more well-being status. 

The aging phenomenon is very complicate and it requires an integrated approach, 

or rather to combine biological studies with social sciences, demographic, historic and 

anthropological studies (Franceschi et al., 2000a). Accordingly the term “successful 

aging” identifies a multidimensional phenomenon, encompassing the avoidance of 

disease and disability, the maintenance of high physical and cognitive function, and 

sustained engagement in social and productive activities. Successful ageing may be 

viewed an interdisciplinary concept, spanning both psychology and sociology, where it is 

seen as the transaction between society and individuals across the life span with specific 

focus on the later years of life (Fentleman et al. 1990) 

In this perspective, it is presumed that reaching an old age free from the most 

common pathologies is possible. Following studies have tried to separate the concept of 

“successful aging” from “pathological status” and “functional decline” (Rowe e Kahn, 

2004). Thus, aging can not be determined only by genetic control (30%) but also by 

environmental and social-sanitary factors (social problems, stress, poor-feeding, 

pathologies in general). All these factors may modify every individual vulnerability with 

a consequent loss of adaptability (Motta et al., 2005; Perls et al., 2002).  

Style of life seems to have an important role for aging as it is demonstrated by 

longitudinal studies; one of that was the European longitudinal study HALE (Knopps et 

al., 2004) conducted on subjects with a range age of 70-90 years, and a second study was 

conducted on subjects with a mean age of 80 years (Woo et al., 2002). The first has 

demonstrated that an optimal diet (Mediterranean diet) leads to a drastic decreasing of 

50% of mortality; the second that an intense physical activity and a major consumption 

of fish, associated with less cigarette and alcohol, dramatically reduce mortality. 

Day by day it has understood that “successful aging” studies could be the key to 

understand the difficult, and till now not completely clear, process of  senescence. Today 

we speak about longevity. 
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2. The extreme longevity 

Longevity is a multifactorial process in which genetic and environmental factors, 

as well epigenetic and stochastic element, seem to interact and each making variable 

contribution to the overall presentation of the phenotype (Candore et al., 2006).  

 

L = En + S + G + Ep  

(Longevity = Environment + Genetics + Epigenetics + Stochasticity) 

 

1) Environment: the environment represents about 20 to 30 percent of 

longevity, meaning non genetic survival attributes that are fixed for individuals by the 

time they are 30 years old (Vaupel et al., 1998). Among these non genetic fixed factors 

are healthy conditions early in life, socio-economic conditions in childhood, the socio-

economic position a person attained at about age 30, and physical environment 

(personality, intelligence, health behavior and everyday activities, mental and physical 

health), each contributing to attain longevity. Several studies in medicine and 

epidemiology, like Elo et al. (1992), and Evans et al. (2005), show that environmental 

quality is a very important factor affecting health and morbidity: air and water pollution, 

depletion of natural resources, are all capable of increasing human mortality. In today’s 

western world, many illnesses today emerge from poor eating habits, lack of exercise, 

poor sleeping habits, and bad habits such as excessive drinking, drugs and nicotine. 

Declining cigarette smoking as well as changes in diet habits may be important factors in 

rising life expectancy, at least in some countries. It has been widely reported that 

environment plays an important role during pregnancy and during the first year, 

because in this period neuron’s number and a lot of parameters are established. Barker’s 

(1992) “fetal-origins hypothesis” suggests that nourishment and infections in utero 

and during infancy program the development of risk factors for several important 

diseases of middle and old age.  Longevity may in part be determined by conditions in 

early childhood and perhaps before birth (Kanaka-Gantenbein, 2010). 

Another important trait is the psychological and dispositions towards life. A 

higher longevity makes people more sympathetic to future generations and/or their 

future selves. Therefore, if someone expects to live longer, they should be willing to 

invest more in environmental quality. Lower cognitive functioning was consistently 

associated with an increased mortality risk across a number of studies (Small and 
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Backman, 1999). There is also some evidence that aspects of subjective positive and 

happiness are related to a longer life, while psychological distress and depression may 

increase the risk of death (Huppert and Whittington, 1995). 

2) Stochasticity: another aspect to be taken into account is the stochasticity, 

meaning the wide variation of life span of genetically identical organisms even if reared 

in a constant environment. Kirkwood (2005) has shown that an isogenic population of 

the nematode C.Elegans has a striking intrinsic variability of life span (from 8 to 32 days, 

depending also on the strain). The whole process depend on chance and these stochastic 

events are absolutely random. 

3) Genetic and epigenetic: studies on twins estimate that unexpectedly less than 

10 % of individual variation in life expectancy after 30 years of age, depend on early 

event (intrauterine life and infancy), while the 65 %  on late event, happened after 30 

years of age. Thus, the same studies on twins indicate that 25-30% of longevity 

variability depends on  genetic-epigenetic pool as quantitative multifactorial trait. 

Epigenetic refers to phenotypic changes caused by mechanisms that are 

unrelated to changes in the underlying DNA sequence, most notably chromatin 

remodeling driven by histone modifications, and DNA methylation. An increasing body 

of evidence supports a role for epigenetic changes in the etiology of aging and its 

associated disease sequelae (Silvia Gravina and Jan Vijg, 2010). While epigenetic changes 

are essential for development and differentiation, they can also arise later in life either 

by non-random mechanisms, such as responses to environmental change, or through 

stochastic errors in maintaining fixed patterns of DNA or histone modification. 

What is the theoric end of human life? A French woman has reached 122 years 

and surely it will not be an isolated case. The aging rate and the maximum life span are 

extremely variable, in fact genetic factors control long survival (90 years and more) 

explaining why nonagenarians and centenarians are numerous in the same family 

(cluster). Stocasticity seems to be important during the first years of life, while genetic 

gives its contribute after sixty years. 

Interestingly, the aspect of sex differences in longevity must be analyzed. 

Oksuzyan et al. (2008) examined sex differences in health and survival, with a focus on 

Nordic countries, finding that men are physically stronger with fewer disabilities, but 

have substantially higher mortality rate at all ages compared with women. It is clearly a 

male-female health-survival paradox. It is probably due to multiple causes that include 

fundamental biological differences (immune factors and responses, hormones, and 
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disease patterns), behavioural differences (for example risk-taking, reluctance to seek 

and comply with medical treatment) and a methodological bias (such as selective non-

participation and under-reporting of health problems, and delayed seeking of treatment 

by men) between sexes. 

In recent decades the research on aging has expanded quickly, probably as a 

consequence of the lengthening of the average human life span and the increasing 

percentage of elderly population. There is a huge number of hypothesis and theories, 

divided according to the basic idea of aging being a programmed process or not, as the 

table shows (Tab. 1.1). 

 

 
Tab. 1.1 Classification of the most important theories of ageing (Source: Weinert and Timiras, 

2003) 

 

3. The evolutionary theories 

Before the theory of evolution, the process of aging was conceived in the same way 

that all things deteriorate slowly over time. The first evolutionary theory by Charles 

Darwin was based on the concept that random and heritable variation of biological traits 

(caused by mutations) will lead to natural selection for preferential reproduction of 

those individuals who are particularly fit in a given environment. After the development 

of the theory of evolution, scientists began to wonder why evolution had produced such 

complex and well-adapted creatures that were so successful at surviving from 

conception through to adulthood, but which then fell into decay and died. August 

Weismann in 1891 developed the theory of programmed death which proposed that 
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aging evolved to the advantage of the species, not the individual, and that there just be 

an evolutionary advantage to having only a limited lifespan. 

But contemporary theories propose two models for how aging can evolve: one is 

the theory of mutation accumulation and the second is the antagonistic pleiotropy 

hypothesis. The mutation accumulation theory of aging was proposed by Medawar in 

1952 and considers aging as a bio product of natural selection. Aging in fact has no 

adaptive traits because natural selection does not occur in long lived animals and 

provides little additional contribution to offspring numbers. It means that old age is not 

under selective pressure per se. On the other hand the antagonistic pleiotropy theory 

proposed by Williams in 1957 says that some genes are beneficial at earlier ages but 

harmful at later ages (the genes with age related opposite effects are called pleiotropic 

genes).  

There were attempts to define better the antagonistic pleiotropy theory; the 

disposable soma theory proposed by Kirkwood and Holliday (2005) predict that aging 

occurs due to the accumulation of damage during life and that failures of defensive or 

repair mechanisms contribute to aging. It postulated a special class of gene mutations 

with antagonistic pleiotropic effects in which hypothetical mutations save energy for 

reproduction (positive effect) by partially disabling molecular proofreading and other 

accuracy promoting devices in somatic cells (negative effect). In other words, given 

finite resources, the more an animal expends on bodily maintenance, the less it can 

expend on reproduction, and vice versa. The distinction between somatic and 

reproductive tissues is therefore important because the reproductive cell lineage, or 

germ line, must be maintained at a level that preserves viability across the generations, 

whereas the soma needs only to support the survival of a single generation. According to 

Kirkwood aging is a sort of strategy prefixed by natural selection in order to preserve 

energy (Fig.1.2). Organisms’ life, who live in wild conditions (in a not protected 

environment), is drastically reduced by extrinsic phenomena (incidents, starvation, cold, 

predation, infection, and so on) and in consequence they die before aging. In a protected 

environment, organism can reproduce but it does not die, experiencing the aging 

process. In conclusion, senescence is not programmed because it hits only individuals 

who live long. 
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Fig. 1.2 In a not protected environment, organisms’ life is drastically reduced by extrinsic phenomena. In a 

protected environment organisms can experience aging. 

 

4. The network theory 

In 1989 Franceschi proposed a general theory of aging suggesting that this 

process is controlled by a network of cellular and molecular defence mechanisms 

(Franceschi, 1989). Among molecular and cellular defence network there are (Fig. 1.3): 

� DNA repair mechanisms 

� Antioxidant defence system, enzymatic or not 

� Production of heat shock protein (HSPs) 

� Activation of poly(ADP-ribose)polymerase (PARP) 

� Apoptosis, an ancestral process which permit to eliminate damaged cells, 

mutated, or transformed (Franceschi et al.,1995a). 

These mechanisms cope with such a variety of potentially harmful agents, such 

as internal or external stressors, dangerous for the maintenance of cell functional 

integrity, physical stressors (UV, gamma radiation, heat), chemical stressors (oxygen 

free radicals and reducing sugars), biological agents (Bacteria and viruses). 
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Fig. 1.3: The network of cellular and molecular system anti-aging (Original fugure modified by “Inflamm-aging. 

An evolutionary perspective on immunosenescence”, Franceschi et al., 2000) 

 

The aim of the network theory is to combine evolutionary theories of aging 

proposed by Kirkwood (1977) with molecular biology data. An alteration of this defence 

system leads to a homeostasis loss and in consequence to senescence determined by 

physiological modification. 

The way that every single mechanism contribute to network and how it is 

organized are still not clear, in particular in superior organisms. Some of the necessary 

functions involved in stressors defence were conserved during evolution, making an 

improvement and expansion of mechanisms, producing new and higher levels of 

organization (Franceschi et al., 2000b).  

 

5. The remodelling theory 

The necessity to conceptualize studies on human immunosenescence and the 

new model of healthy centenarians has lead to the elaboration of remodelling theory in 

aging (Franceschi et al. 1995, Franceschi and Cossarizza, 1995); the main question was 

to evaluate which was the contributor of the immune system to longevity. 

In this approach only centenarians in good health, without principal pathologies 

and physic and cognitive disability were considered as a model of successful aging and 

successful physiological immunosenescence. Healthy centenarians are quite rare, so the 

assessment of their health status is methodologically difficult. Franceschi et al. (2000a) 
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studied 382 centenarians and found that 22 % of them were in good health status and 

they were compared with healthy people of different ages obtaining that some immune 

responses were unexpectedly well conserved in centenarians and that immune 

responses were differently affected by the aging process. Immunosenescence could be 

the result of continuous remodelling or adaptation of the entire system to the 

deteriorative changes occurring over time. In consequence, healthy centenarians are 

those who have the capacity of adapting their body to damaging agents and to 

immunological stressors as well. From an immunological point of view, centenarians are 

not “the best” but the “best adapted” to environment. From an evolutionary point of 

view, we have to consider that the human immunological system were programmed to 

survive till reproductive age and then to reach senescence. 

The increasing percentage of 80-20 years people and the fact that environment 

conditions are in rapidly changing, in which the probability to encounter new antigens is 

relatively higher than last centuries, force the immune system to operate in new 

conditions, not planned by evolution and thus to modify itself in a still not clear way. 

 

6. The replicative senescence  

A telomere is a region of repetitive DNA at the end of a chromosome, which 

protects the end of the chromosome from deterioration, and of some non coding genes. 

In Humans, the repetitive sequence in telomeres is constituted by six nucleotides 

TTAGGG, repeated for a total length of 3-20 kb. There are also additional 100-300 kb 

between telomere and the rest of chromosome. 

Telomere length is maintained in immortal cells by the telomerase enzyme. In 

laboratory, mortal cell lines can be immortalized by the activation of their telomerase 

gene, present in all cells but active in few cell types. What is the connection between 

telomere and aging process? Telomeres can be defined “molecular clock”: as a 

consequence of cellular replication, their length reduce dramatically till when they can 

not perform their protective function for chromosomes. Cells can not reproduce 

correctly because the telomerase enzyme, an inverse transcriptase, is not able to 

regenerate the telomere till the end and its structure reduces every time cell divides 

itself. It means that each DNA replication leads to an important loss of genetic 

information, causing cell death.  

To keep the same length of telomeres means confer eternity to cells. Joeng at al. 

(2004) conducted a study with two groups of worms belonging to C.Elegans and with 



 

15 

two different telomeric length. The research has demonstrated that the group with 

longer telomeres lived with a life expectancy more than 20%. But keeping the same 

telomere length means produce abnormal cells, leading to cancer. 

 

7. MtDNA damage and the mitochondrial theory of aging 

Among all aging theories, the free radical theory is one of the most gained, 

proposed for the first time by Harman in 1957. It explains how aging is strictly 

associated with high level of free radicals, which are chemical species with a free 

electron in their external orbital and, for this reason, they are extremely reactive and 

instable. Different conditions related to oxidative stress could interact with aging: an 

increasing speed of producing reactive oxygen species (ROS), a decline of antioxidant 

defense system and a low efficiency in repairing damaged molecules. 

Although the available evidence strongly suggests that mitochondria play a role in 

this process, there appears to be a wide range of opinions as to the exact nature of the 

involvement of mitochondria in aging. The mitochondrial theory, proposed by Miquel 

in 1980, is considered an extension of the free radical theory.  As it is commonly known, 

nDNA is protected by histone proteins and various repair enzymes, which minimizes 

damage to nDNA from free radicals/oxidants. mtDNA has no histone protection or 

significant enzymes repair systems to offer free radical protection. Therefore, mtDNA is 

far more subject to free radical damage than nDNA. The commonest form of free radical 

damage to mtDNA molecules is the production of 80HdG, an oxidized guanine base. Even 

in young (3 month old) rats, the level of 80HdG is already 16 times higher in mtDNA 

than nDNA (Richter et al. 1995). As mtDNA damage accumulates over the lifetime of an 

individual, the functionality of the ETC enzyme complexes that produce ATP, and are 

encoded for (in part) by mtDNA, decreases dramatically and gradually produces a 

cellular energy crisis. The system is not capable to keep the equilibrium and it leads to 

cellular aging first, organism aging then. The dramatic mutation increasing causes 

defective structures formation in the respiratory chain and in consequence a defective 

functionality which creates a rising in ROS production. The mitochondrial theory of 

aging is based around the idea of a vicious cycle, in which somatic mutation of mtDNA 

engenders respiratory chain dysfunction, enhancing the production of DNA-damaging 

oxygen radicals. 

The mtDNA has a very high mutation rate due to its chronic exposure to mitochondrial 

ROS. When a new mtDNA mutation arises in a cell, a mixed intracellular population of 
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mtDNAs is generated (wild-type and mutated mtDNAS), a state known as eteroplasmy. 

The mutant and normal molecules are randomly distributed into the daughter cells and 

as a consequence of this replicative segregation, the proportion of mutant and normal 

mtDNAs can drift toward an homoplasmic condition (all mutant or all wild type).  

Furthermore, it has seen that in order to compensate the energy deficiency, mtDNAs 

have been found to be preferentially, clonally, amplified within cells (Coskun et al. 

2003).  

Therefore, cells with defective mitochondria are preferentially stimulated to replicate 

their mitochondria and mtDNAs, the mitochondrial energetic output declines, ROS 

production increases, and the propensity for apoptosis increases. Thus the accumulation 

of mutant mtDNA creates the aging clock (Fig. 1.4). 

 

 

Fig. 1.4: Aging model. The dot line shows the minimum number of cells for the tissue to function normally. 

In black are died cells in a mitochondrial-mediate process. In green cells with optimal function. 

 

 

8. The genetics of Human Longevity 

A recent research conducted in Boston has revealed genetic profile of persons 

predispose to reach 100 years or more even if till now, a unique variant related to 

longevity has not been discovered but Family studies of exceptional longevity can 

potentially identify genetic and other factors contributing to long life and healthy aging. 
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The two main concepts arisen from recent studies on the genetics of human 

longevity are the following: 

1) Human longevity clusters in families 

2) Long-living siblings are likely enriched in longevity genes 

Sebastiani (Science, 2010) has analyzed genetic profiles of centenarians and she 

has discovered 19 variants shared by people with similar characteristic, i.e. survival age, 

delay in developing Alzheimer disease, cardiovascular diseases and hypertension.  

Therefore, natural selection does not select aging genes but aging is the result of 

pleiotropic effect of genes that operate in other areas. It is very interested that 

numerous studies have evidenced how life span is due to ipomorphic or nullomorphic 

mutations; the “wild-type” genes seem to codify processes with negative effect on 

longevity, thus defined “gerontogenes”. The overwhelming majority of gerontogenes 

mutations increase the capacity of coping with stress and specifically with oxidative 

stress and caloric restriction (Christensen et al., 2006). 

So, longevity is under genetic control (nuclear and mitochondrial), suggesting a 

substantial hereditability of healthy aging, in a complex interaction with a great variety 

of environmental factors (life style, nutrition and culture as well): 

 

1. Studies on evolutionistic biology indicate that life span is species-specific and 

has a strong genetic basis. There are also mutations in specific genes which are 

able to increase life span, being involved in some principle metabolic ways 

(resistance to oxidative stress, insulin way, energetic metabolism). We talk about 

“major genes”, genes conserved during the evolution and that control life span 

(Tatar et al., 2003). 

1. Studies on long-lived families and sibpairs have evidenced that the survival 

rates of siblings of centenarians and siblings of a similar birth cohort, who died in 

their early seventies, had a four times greater chance of surviving to their early 

nineties (Perls et al., 1998). The same group in 2002 discovered that males 

sibling of centenarians, comparing with a cohort of 1900, had a seventeen times 

greater change to reach 100 years, while sisters had a probability eight times 

greater (Perls et al., 2002).  

2. A great number of association studies have been conducted on candidate genes 

of centenarians. Some genes like ApoE, ApoB, ApoA1, H-Ras, IL-6, IL-10, IFNγ, 
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PON1, Tyrosine Hydroxylase, INS, IGF2, IGF-1R, Glutathione transferase (GSTT1) 

SIRT3 seem to play an important role in healthy aging and longevity (De 

Benedictis et al., 2001; Bonafè et al., 2003; Rose et al., 2003, Bellizzi et al. 2005, 

Glatt et al. 2007) (Fig. 1.5).  In particular, studies on -174 C/G polymorphism of 

IL-6 promoter in male centenarians has revealed a significant increasing of 

person carrying mutation CG or CC (Franceschi et al., 2000; Bonafè et al., 2001). 

Probably the presence of this mutation could be surviving favorable in the last 

part of life, since significative differences among classes of inferior ages have not 

been observed. 

Moreover, a relationship between plasmatic concentration of IL-6 and 

susceptibility to principal age-related pathologies, such as Alzheimer disease 

(Franceschi et al., 2001), diabetes (Fernandez-Real et al., 2000), osteoporosis 

(Ferrari et al., 2001; McLean, 2009) and cardiovascular pathologies (Basso et al., 

2002) has come out. 

Another study was conducted on PON1 gene (Paraoxonase1), a major anti-

atherosclerotic component of high-density lipoprotein (HDL), responsible for 

hydrolyising organophosphate pesticides and nerve gasses. Studies on two 

polymorphisms of PON1 gene (one in codon 55 and one in 192) evidenced that allele 

B frequency in codon 192 is higher in centenarians than in controls and that B+ 

subjects are carrying the M allele in codon 55 (Bonafè et al., 2003; Rea et al., 2004).   

It has also been evidenced that the presence of allelic variant ε4 of ApoE gene 

(ApoE4) plays a negative role in reaching longevity: biomedical researchers have 

demonstrated how ε4 frequency in Italian and French centenarians is 

significantly lower than in younger controls. Moreover, it has been noticed that 

subjects affected by Alzheimer disease have a higher frequencies of ε4 allele, 

demonstrating that this allelic variant represents a high risk for the pathology 

(Carrieri et al., 2001; Blanchè et al., 2001).  
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Fig. 1.5: Candidate genes in association studies related to longevity (from “The genetics of human 

longevity”, Capri et al., 2006) 

 

3. Studies on chromosome 4: a genome wide scan, with “Affected Sibpairs 

Analysis” (ASP), has been performed on 308 individuals belonging to 137 

sibships demonstrating exceptional longevity and a significantly statistical 

association (P=0.044) between longevity and the genetic marker D4S1564 

microsatellite on chromosome 4, that is underrepresented among long-living 

individuals when compared with younger controls (Puca et al., 2001). In order to 

identify gene variants affecting life span, the same group performed an 

haplotype-based fine-mapping study of the fragment. What they found was a 

haplotype marker within microsomal transfer protein (MTP) as a modifier of 

human life span. Nebel et al. (2005) performed a study on 1039 unrelated 

subjects of German ancestry with a mean age of 98 years, 373 of them were 

centenarians. They found that the MTP haplotype was over-represented only in 

controls, in comparison with studies reported in the literature. 

Beekman et al. (2006) investigated the linkage to 4q25 in 164 nonagenarian 

sibships of Leiden Longevity Study (LLS), comparing the MTP -493G/T and Q95H 

allele and haplotype frequencies in the Leiden Longevity Study (379 

nonagenarians, 525 of their offspring, and 251 partners of their offspring) and in 

the Leiden 85+ Study (655 octogenarians and 244 young controls). This study 
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population was followed for at least 7 years, providing the opportunity to 

perform also prospective analyses using the longitudinal data. They found neither 

evidence for linkage at 4q25 nor association of the MTP locus with longevity in 

nonagenarian individuals. After a meta-analysis of all previous studies the 

authors concluded that the association in U.S. Caucasians may have its source in 

admixture of the U.S. control population rather than in the genetic effect of the 

locus on exceptional longevity. 

4. Studies on chromosome 11: it is becoming more and more evident that 

chromosome 11 could be involved in human longevity because several studies 

have shown a large number of variants in such a region. The 11p15.5 

chromosomal region, about 2.8 Mb, is of particular interest as it encloses five 

genes (HRAS1, SIRT3, TH, INS and IGF2) and its variability of which was found to 

be associated with life extension by association studies. These genes are 

homologous of genes that modulate lifespan in model organisms (De Benedictis 

et al., 1998; De Luca et a., 2002; Bonafè et al. 2002, Rose et al., 2003; De Rango et 

al., 2008). A recent study was perfomed by Lescai et al. (2009) who scanned the 

area in four European sample groups for a total of 1321 centenarians and 1140 

younger subjects, matched for ethnicity and geographical origin, with a set of 239 

SNPs. They didn’t confirm the earlier findings of the literature because no 

significant results (P<0.05) have been found on the earlier associated loci (ie, TH, 

IGF2, INS and HRAS1). They performed a meta-analysis on the SIRT3 SNP data 

and the other 229 markers including 2461 samples. For SIRT3 no positive 

association was found except for one SNP having a significant effect (rs939915); 

for the other 229 markers, six SNPs have been found significant for the frequent 

genotype (rs4073591, DEAF1-rs4073590, KRTAP5-6-rs11040489, rs4930001, 

TSPAN32-rs800140 and rs16928120).  

5. Studies on European centenarians suggest an association between hereditable 

variants of mitochondrial DNA (mtDNA) and longevity. In particular the group 

leaded by De Benedictis (De Benedictis et al., 1999) collected and analysed 

individuals selected for successful aging and longevity (212 subjects older than 

100 years and in good clinical condition) and a sample of 275 younger 

individuals (median age 38 years) carefully matched as to sex and geographic 

origin (northern and southern Italy). They carried out that mtDNA haplogroup 

frequency distribution was different between centenarians and younger 
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individuals (P=0.017); and that the frequency of the J haplogroup was notably 

higher in centenarians than in younger individuals (P=0.0052). Further data 

showed that this distribution is population-specific, being also present in long-

lived subjects from Ireland (Ross et al., 2001) and from Finland (Niemi et al., 

2003), but not in subjects coming from southern Italy (Dato et al., 2004). 

Morever, a C150T mutation in mtDNA is much more frequent in centenarians 

than in younger subjects. This mutation is so important because it causes a 

remodelling of the replication origin at position 151, instead of 149 and can be 

inherited (as polymorphism) or acquired during life (mutation) (Rose et al, 

2007). 
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Chapter 2 

 

THE MITOCHONDRIAL GENOME 

 

1. Mitochondrial genetics 

Mitochondria are semi-autonomously functioning organelles, harbouring some 

life important cellular process, like apoptosis, regulation of cell cycle, lipidic metabolism, 

the citric acid cycle, the respiratory chain and the oxidative phosphorylation (OXPHOS), 

the last one generates approximately 90% of cellular adenosine triphosphate (ATP) 

(Wallace, 1997). 

Mitochondria are involved in aging process and, as nucleous, contain  a resident 

genome having unique genetic features, in fact it is independently replicated, translated 

and transcribed, is maternally inherited, because the cytoplasmic location of 

mitochondria, does not recombine and undergoes replicative segregation during both 

mitosis and meiosis (Anderson et al, 1981; Taanman, 1999). MtDNA comprise 0,1-1.0% 

of the total DNA in most mammalian cells, each organelle contains 2-10 copies of mtDNA 

molecules and each cell contain several mitochondria, so each human cell contains more 

than 1000 copies of mtDNA (Penta et al, 2001).  

Another characteristic is that the human mtDNA is a supercoiled, double-

stranded circular molecule of 16,569 base pairs (bp) composed of a control region or D-

loop (displacement loop) and a coding region. Introns and intergenic sequences are 

absent so genes overlap. MtDNA contains 37 genes coding for 13 polypeptides of the 

mitochondrial electron respiratory chain, 22 tRNAs and 2 rRNAs.  

The mitochondrial proteome consists of 1500 polypeptides, whose only 13 

codified directly by mtDNA, and in particular by mitochondrial ribosome or 

mitoribosome.  

The 13 mtDNA-encoded polypeptide genes are translated on mitochondrial 

ribosomes and all are structural subunits of OXPHOS enzyme complexes. These include 

7 (ND1, 2, 3, 4L, 4, 5, 6) of the 46 polypeptides of complex I (NADH dehydrogenase), one 

(cytochrome b, cytb) of the 11 polypeptides of complex III (bc1 complex), 3 (COI, II, III) 
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of the 13 polypeptides of complex IV (cytochrome c oxidase), and 2 (ATP 6 and 8) of the 

16 proteins of complex V (ATP 

synthetase). The nDNA codes for all other mitochondrial proteins including all four 

subunits of complex II (succinate dehydrogenase), the mitochondrial DNA polymerase γ 

(POLG) subunits, the mitochondrial RNA polymerase components, the mitochondrial 

transcription factor (mtTFA), the mitochondrial ribosomal proteins and elongation 

factors, and the mitochondrial metabolic enzymes. These factors are recognized thanks 

to a leader sequence in the N-term and then transported in the mitochondrion. 

MtDNA undergoes replication utilizing a different origin for each of the two DNA 

strands, the purine abundant heavy strand (H-strand), and the pyrimidine abundant 

light strand (L-strand). In addition to its mRNA, rRNA, and tRNA genes, the mtDNA 

comprises  a 1,121-np control region (CR), also called displacement loop (D-loop, nt 

16024-576) (Taanman, 1999). This CR includes the L- and H-strand promoters (PL and 

PH); their mitochondrial transcription factor A (mtTFA) binding sites; the downstream 

conserved sequence blocks (CSB) I, II, and III; and the origins of H-strand replication 

(OH1 and OH2) (Shadel and Clayton, 1997) (Fig. 2.1). 

 

 

Unlike nuclear DNA, mtDNA may replicate more than once during each cell cycle, 

or not at all, and may undergo replication in non-dividing cells. 

Fig. 2.1: Scheme of the mitochondrial DNA molecole organization. ND1, ND2, ND3, ND4, ND4L, ND5, ND6 

are subunits of complex I; COI, COII, COIII are subunits of complex IV; cyt b is the complex III; genes 

codifying tRNAs are defyined with a single letter of the corrispondine amminoacid. 
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The human mtDNAs are strictly maternally inherited, thus the offspring mtDNA is 

identical to maternal mtDNA (except some mutations). When a mutation arises in an 

mtDNA, it creates a mixed population of normal and mutant type of mtDNAs, a state 

known as heteroplasmy. When a heteroplasmic cell divides, the two types of mtDNAs 

are randomly distributed into the daughter cells, which drifts toward either pure mutant 

or wild type. Over time, this replicative segregation results in segregation of the mutant 

mtDNAs into pure mutant or into normal population, this event is called homoplasmy 

(Wallace, 2007). 

However, there are highly conserved regions, while other regions show a very high 

variability. 

The overall mutation rate is ten to twenty times higher than the nuclear genome 

and most of the replacements that have been found in mitochondrial DNA are point 

mutations, with a strong preponderance of transitions (substitutions purine → purine or 

pirimidine → pirimidine) respect to transvertions (sostitutions purine → pirimidine or 

vice versa).  

It has a very high mutation rate, due to the lack of histones and to an inefficient 

repair system. Moreover mtDNA is located in the mitochondrial matrix, near the 

mitochondrial respiratory chain, that is a potent source of DNA damaging free radicals. 

Particularly, the 1121 nucleotides of D-loop region, are the most sensitive to 

mutagenesis (Chinnery et al, 1999). In addition, mtDNA has a high mutation fixation 

rate, which explains the high level of mtDNA substitutions. 

As a direct consequence of these mtDNA features, there are two levels of mtDNA 

variability: an hereditary or inter-individual variability, and a somatic or intra-individual 

variability. 

Because of strict maternal inheritance, mtDNAs can only evolve by the sequential 

accumulation of mutations along radiating maternal lineages and the number of 

mutation, that differentiate the mtDNA of an individual from that of his ancestor, can be 

used as a molecular clock, providing a useful and thorny tool to the phylogenetic 

reconstruction. 

This means that the human mtDNA is a molecular archive of the history and 

migration of women who have passed on to subsequent generations. If a mtDNA 

mutation arises that is beneficial in a particular environment, it and its descendants will 

increase in frequency in that environment. Thus, different subsets of the variation in 
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mtDNA tend to be confined to different regions and different human populations 

(Torroni, 2006). 

 

2. The D-loop 

The mtDNA comprises  a 1,121-np control region (CR), also called displacement 

loop (D-loop, nt 16024-576) (Taanman, 1999). This CR includes the L- and H-strand 

promoters (PL and PH); their mitochondrial transcription factor A (mtTFA) binding sites; 

the downstream conserved sequence blocks (CSB) I, II, and III; and the origins of H-

strand replication (OH1 and OH2) (Shadel and Clayton, 1997) (Fig. 2.2). In this particular 

trait three hypervariable sequences are present, called HVSI, HVSII and HVSIII, 

characterized by a high level of mutation, higher than mtDNA variability, showing a high 

number of hotspot (Malyarchuk and Rogozin, 2004).  

 

 

 

Fig. 2.2: Schematic representation of the D-loop region. HV1 and HV2 are 

hypervariable regions, OH is the origino f replication of the heavy chain and P are 

promoters of transcription. 

 
Particularly, the 1121 nucleotides of D-loop region, are the most sensitive to 

mutagenesis (Chinnery et al, 1999). In addition, mtDNA has a high mutation fixation 

rate, and the high level of mtDNA substitutions and their relative stability make the d-

loop the ideal candidate for the identification and classification of mitochondrial 

haplogroups (Kivisild et al, 2005; Torroni et al, 2006). 

 

3. Using of mitochondrial DNA in a population’s study   

The uniparental inheritance is one of the greatest advantages of this marker 

because it allows us to trace the ancestral information in the DNA of a population based 
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solely on the maternal contribution and eliminating the effects of recombination, which 

characterize the nuclear DNA. The phylogenetic trees constructed on the casis of 

mitochondrial DNA data can therefore be interpreted as genealogies that trace the 

history of a species and/or a population by female lineage. 

The first completely sequenced mitochondrial DNA was obtained in 1981 by 

Anderson and still we use it as a reference sequence (Cambridge Reference Sequence, 

CRS; Anderson et al., 1981; subsequently recise and corrected by Andrews et al., 1999).  

The analysis of mitochondrial DNA variability in human populations is expressed 

at three levels: 

• Analysis of D-loop sequenze; 

• Analysis of restriction sites polymorphisms (RFLPs) in the coding region; 

• Sequencing of the entire genome. 

 
4. MtDNA inherited variability: the haplogroups 

Testing mutations of the coding region, it is possible to attribute to individuals or 

people the belonging to specific haplogroups, i.e. monophyletic lines defined by the 

presence or absence of restriction sites in specific locations of the genome. The members 

of a haplogroup are descended from a single common female ancestor who first had this 

particular set of polymorphisms. Haplogroups can be thought as the arms of the family 

tree that correspond to various human migrations made by people during the expansion 

in the world. 

The mitochondrial genome inherited variability has been studied for many years in 

relation to human history, on the assumption that the polymorphic inherited variants 

were neutral from the  selection point of view and the populationistic arrangement of 

human mitochondrial genomes derived solely from the phenomena drift. And now it is 

established that the polymorphic variants of the mtDNA, that is mitochondrial 

haplogroups, are not neutral and therefore mitochondrial types have different 

efficiencies on different functional basic characters. In particular it was noted that there 

is a correlation between haplogroups and diseases, haplogroups and longevity. 

To perform a detailed and thorough study, which can provide not only the 

variability of the oldest but also the most recent, it is necessary to dissect haplogroups in 

subhaplogroups, i.e. smaller phylogenetic entities. 

All the information necessary to the reconstruction of phylogenetic trees, today in 

our possession, were found by sequencing a large number of samples; this analysis has 
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gone through a number of technological and methodological stages and is now in the era 

of complete sequence. 

Even during the nineties emerged a defined phylogenetic picture of the mtDNA 

thanks to the mtDNA digestion with specific restriction enzymes and the study of the 

length of the fragments obtained after enzymatic cleavage (restriction fragment length 

polymorphism-enzyme, RFLP). 

This method was applied for the first time by Wallace revealing that the mtDNAs 

can be classified into small monophyletic lines, i.e. haplogroups. More recent studies 

have been conducted by Torroni (Torroni et al. 1994) whose studies on  175 European 

American individuals mtDNAs revealed 117 haplotypes (different sequences). More 

related haplotypes were grouped into four haplogroups, referred to by capital letters (H, 

I, J, K). 

Summarizing the data obtained from restriction, the main RFLP markers that 

define the major haplogroups observed in Europe are the following:
 

• Haplogroup J: presence of NlaIII site at position 4216, presence of DdeI 

site at position 10394 and absence of BstI and HinfI site, respectively at positions 

13704 and 16065. 

• Haplogroup H: absence of AluI site at position 7025, absence of DdeI site 

at  position 10394 and absence of MseI site at position 14766. 

•  Haplogroup I: absence of DdeI site at position 1715, absence of HaeII site 

at  position 4529, simultaneous presence of AvaII site at position 8249 and 

absence of  HaeIII site at 8250, presence of AluI site at 10032, presence of DdeI 

site at 10394, simultaneous presence of BamHI/MboI sites at position 16389 and 

absence of AvaII site at position 16390. 

•  Haplogroup K: simultaneous presence of HaeII site at 9052 and HhaI at 

9053, presence of DdeI site at position 10394, presence of HinfI site at position 

12308. 

 

The RFLP analysis of 49 Finns, 37 Swedes and 48 Tuscans mtDNAs has revealed 

the presence of additional European haplogroups that have been called T, U, V, W and X 

(Torroni et al. 1996): 

• Haplogroup T: presence of NlaIII site at position 4216, presence of BfaI 

site at position 4917, absence of DdeI site at 10394, simultaneous presence of 
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BamHI  site at 13366, MboI at 13367 and absence of AvaII site at 13367, MspI at 

15925 and presence of AluI site at 15606. 

• Haplogroup U: absence of DdeI site at position 10394, presence of HinfI 

at position 12308. 

•  Haplogroup V: absence of NlaIII site at position 4577, DdeI at 10394, 

MseI at 14766. 

•  Haplogroup W: simultaneous presence of AvaII site at position 8249 and 

absence of HaeIII at  8250 and 8994, DdeI at 10394. 

•  Haplogroup X: absence of DdeI site at 1715 e 10394, presence of AccI 

site at  position 14465. 

 

So the nine haplogroups listed above, along with a few representatives L African 

haplogroup and M Asian haplogroup, collect almost all of the variation of mtDNA in 

Europe. 

Until recently three African haplogroups (L1, L2, L3), seven Asian (A, B, C, D, E, F, 

G) and nine in Europe (H, T, U, V, W, X, J, I, K) (Torroni et al, 1996) were identified, but 

now great strides are made in the phylogenetic analysis of mitochondrial haplogroups 

whose studies have provided a variation of the internal monophyletic haplogroups by 

dividing them into smaller subsets called subhaplogroups (Kivisild et al. 1999, 

Macaulay et al, 1999, Torroni et al. 2001). 

The latest studies are examples of the ability of genetics to make inferences about 

the origin of humans and studies of evolutionary biology. These analysis show us that 

the data provided by mtDNA can be used not only to evaluate models based on direct 

inquiry of ancient material offered by other disciplines, but also to identify relationships 

previously never assumed among very different populations and different geographical 

areas. Thus, human genetics can now directly promote the development of new areas of 

research in paleontological, archaeological, linguistic and historical areas, not to 

mention the important discoveries in medicine, which led to relate the mitochondrion 

and its functions to multiple diseases and disorders. 

Alongside the increased phylogenetic definition, even the nomenclature of the 

various haplogroups was amended and supplemented: haplogroup R0 replaced the pre-

HV, pre-V replaced the HV0  and HV0a gathers everything that is not V, and all that is in 

HV0 branch (Torroni et al, 2006). 
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5. The phylogenetic trees 

MtDNA variations studies in human populations have identified peculiar 

mutations that are neutral or near neutral, avoid elimination by selection and may thus 

become prevalent through genetic drift. 

Hence, mutations which occurred tens thousands of years ago will nowadays be 

present in high frequency, population and continent specific mtDNA polymorphisms, 

creating groups of related mtDNA haplotypes, or haplogroups sharing a specific set of 

stable polymorphic restriction sites (Torroni and Wallace, 1994; Wallace 1995; Wallace, 

1994). The classification of mtDNA haplogroups is based on information gained from 

RFLP analysis of the coding region and from the nucleotide sequence of the 

hypervariable segments I (HVSI) in the control region (Torroni et al., 1996).  

In all the studies and construction of phylogenetic trees it is considered a mutation 

all the differences between the sequence to be analyzed and the sequence of Cambridge, 

and thanks to these mutations it is possible to identify the haplogroup and its subclass. 

Haplogroups are coded with capital letters and subclusters with a running number 

(Ballinger et al., 1992; Torroni et al., 1996). 

According to the most recent classification, the phylogenetic tree of mitochondrial 

DNA originated in Africa about 150-200 thousand years ago (Fig. 2.3); African 

haplogroups are the oldest and fall into four main haplogroups: L0 (the oldest), L1, L2 and 

L3 (the younger). L0, L1 and L2 represent about 76% of all mtDNA sub-Saharan Africa and 

are defined by the HpaII restriction site in position 3592. All non-Africans mtDNAs are 

descended from the branch L3 and they are divided into the superfamilies M and N about 

65,000 years ago.
 

 

Fig. 2.3: Representation of the most important haplogroups. It is noticed the diramation of European 

haplogroups M and N from L3.  
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Haplogroups H, I, J, N1b, T, U, V, W are characteristic of  populations of European 

descent, while macrohaplogroups A, B, C, D are present in the New World and Asia; G, Y, 

and Z are mainly present in Siberia (Mishmar et al., 2003) and the haplogroup X present 

with low frequency in northern Africa, western and central Asia, Europe and North 

America (Reidla et al, 2003). 

The eight most common European haplogroups (H, U - which also includes K - J, T, 

V, X, I, W) all originate from the branch N. In Asia there is a multitude of different 

haplogroups, which includes more than thirty subdivisions, most of which belong to 

class M. N originated from haplogroups A, B and F while C, D and G separated from M 

haplogroup (Fig. 2.4). Of all these haplogroups, A, C and D were the first to overcome the 

Bering Strait about 20-30 thousand years ago, followed by haplogroup X 15,000 years 

ago and B 14,000 years ago. 

 

 

 

Fig. 2.4: Diagram outlining the migratory history of female mtDNA haplogroups. All mtDNAs arose in Africa 

with the first L0 branch, followed by lineages L1, L2 and L3. In the North L3 gave origine to M and N, which 

succeeded in leaving Africa and colonizing Eurasia. In Europe, N gave rise to the H, I, J, Uk, T, U, V,W, and X 

haplogroups. In Asia, M and N gave rise to a diverse range of mtDNA lineages including A, B, and F from N 

and C, D, and G from M.  

 

Also today it was recognized that H and V, as well as J and T, form lines sisters 

(Umetsu et al., 2005) and K is a subgroup dell'aplogruppo U (UK). 

 

6. Geographic selection theory 

The geographic selection theory is the most recent theory that seeks to explain the 

origin of the various polymorphisms and their distribution;  it hypothesizes that the 

polymorphisms, and therefore the protein variants, have been selected by climate 
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adaptation (Mishmar et al., 2003) and confer a genetic advantage for survival. In fact, in 

the case of efficient respiratory chain, most of the proton gradient developed by the 

various mitochondrial complexes is converted in ATP, whereas in the case that some 

mutation makes this process less effective, the proton gradient is dissipated, producing 

heat. Such mutations would be a selective advantage for populations living in cold 

climate regions (Wallace, 2005). 

Other researchers (Kivisild et al., 2006) assume that if a polymorphism has an 

adaptive function, then it must be placed in a more ancient tree of mtDNA. On the 

contrary an excess of non synonymous mutations is characteristic of a younger line of 

the phylogenetic tree. 

Studies about proteins encoded by mitochondrial DNA have shown, in favor of this 

thesis, that the amino acid sequence of the ATP6 gene is highly variable in the Arctic and 

it is highly conserved in the tropics and temperate zones; cytb is hypervariable and 

conserved in temperate in the tropics and the Arctic; COI is variable in tropical while it is 

kept in temperate zones and in the Arctic (Wallace, 2005; Raule et al, 2007). 

These polymorphisms are therefore widely used to identify the race an individual 

belong and with the maternity test in forensic medicine, thanks to the unique features of 

mitochondrial DNA: maternal transmission, a high number of copies per cell, high- 

mutation and the absence of recombination (Yuasa and Umetsu, 2005). 

 
7. The importance of “Mitochondrial Eve” 

A comparison of mitochondrial DNA belonging to human races of different 

ethnicities and regions suggests that these DNA sequences have evolved molecularly 

from the sequence of a common ancestor. On the assumption that an individual inherits 

mitochondria only from his mother, this finding implies that all human beings have a 

female descent deriving from a female that researchers have named Mitochondrial Eve. 

Based on the molecular clock technique, which correlates over time with genetic 

drift observed, it is believed that Eve has lived about 150,000 years ago. Although the 

name suggests the biblical Eve, the mitochondrial Eve was not the only female of her 

time in fact it is assumed that there were more than 20,000 individuals of the species of 

Eve. Only Eva gave rise to a single unbroken line of daughters that persists today. Thus 

considering how many and which mutations characterize an individual, it can be traced 

back to the genetic history of her female ancestors: the number of mutations separating 

the two individuals is indicative of the temporal distance between them and the 
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common ancestor, while the analysis of haplogroups allows us to reconstruct 

displacements of ancient men, or better women, across continents and regions of the 

world.
 

The phylogeny suggests that the first woman lived in Africa and that living beings, 

whose mitochondrial lineages branched first, are those of indigenous Africans. All other 

indigenous peoples of other continents have branched from the African. 

All descended from Africans, some of them migrated out of Africa to populate the 

rest of the world. Because the mitochondrial Eve represents the root of the 

mitochondrial family tree, she must have lived in Africa before the exodus. Both 

archaeological discoveries, and anthropological examinations on the skull, as well the 

latest information generated by DNA research, confirms the theory of “Out of Africa”. 

Obviously, the mutations accumulated in hundreds of thousands of years, represent the 

key to the reconstruction of our genetic history and the identification of mitochondrial 

lineages. 

From the historical point of view the genetic data suggest that modern man's 

passage from East Africa to Asia probably occurred in two ways. One route took him to 

India and South-east Asia and from there further splits:  to south, ie Australia, and to 

north, ie China and Japan. 

The northern route took him through the Middle East, Persia, Central Asia and 

from there expanded in several directions: towards west (Europe) and to the east and 

north-east (Siberia and America, no later than 15,000 years ago, through Beringia, strip 

of land covering the present Bering Strait).  

Population growth was a bit slow, also affected by the alternation of more or less 

favorable climatic junctures. The end of the last glacial period, about 14,000 years ago, 

was followed by a period of climatic stability. From 13 to 10,000 years ago in various 

parts of the world agriculture and pastoralism began to grow, providing significant new 

sources of food to groups of men devoted to hunting and gathering wild fruits. The 

emergence of agriculture involved a considerable development of new tools, the 

emergence of a new era in human history, the Neolithic Age. 

 

 

 

 



 

33 

8. Correlation between haplogroups and longevity, haplogroups and 

pathologies  

The analysis of mtDNA haplogroups is currently providing new insights into the 

role of mtDNA-inherited variability in several complex traits like aging and 

neurodegenerative disease. It was observed that in Italian centenarians mtDNA 

haplogroup J was overexpressed (De Benedictis et al., 1999), suggesting a protective role 

for this mtDNA variant against aging and this observation was confirmed in a study on 

Finnish (Niemi et al., 2003). Other studies refute this association (Dato et al, 2004 and 

Ross et al, 2001). In Japanese centenarians a sublineage of haplogroup D was more 

frequent (Tanaka et., al 1998; Tanaka et al., 2000).  

We have previously argued that mitochondrial DNA has a high rate of mutation 

which leads not only to the accumulation of a wide range of sequence polymorphisms 

that define haplogroups and subhaplogroups, but also to mutations that cause diseases. 

These diseases arise particularly in tissues and organs with high energy demand: the 

central nervous system, heart, skeletal muscle and heart, just to name a few. In addition 

to a wide spectrum of pathological changes, there are many other mtDNA 

polymorphisms that, alone or in combination with other polymorphisms appear to 

modulate the risk of complex diseases. Mutations characterizing haplogroups and 

subhaplogroups and considered "neutral" may instead play a role in some complex 

diseases.  

It seems that certain polymorphisms are associated with one or more haplogroups 

and that they confer a protection against the onset of these neurodegenerative diseases, 

while others seem to facilitate their development (Santoro et al, 2006, Reeve et al, 

2008). For example, some studies have shown that the J haplogroup could affect the 

expression of Leber's optic neuropathy (LHON) (Chinney et al, 2001) and in particular 

that some polymorphisms characteristic of J may increase the penetrance of pathogenic 

mutations (Torroni et al. 1997) such as, diabetes (Mohlke et al, 2005), and optic neuritis 

(Reynier et al, 1999).  

It has been proposed that J haplogroup can have two different aspects: on one 

hand it can lead to longevity by minimizing the ROS production and it can favour a 

decoupling situation as Fig. 2.5 shows. In fact some authors suggested that this OXPHOS 

uncoupling characteristic was an ancient mitochondrial adaptation to the cold, as it 

promoted heat production (Wallace et al, 1999). The same authors suggested that this 

condition would reduce ROS production, decreasing the gradual mitochondria 
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degradation thus favouring aging. This could explain the overrepresentation of J among 

populations of people over 100 years. 

On the other hand, J has a general low ATP production that, in addition to 

environmental factors, causes ah higher proportion of diabetes patients. Furthermore it 

seems to amplificate some pathologies, as happens in LHON patients, in association with 

11778 mutation. 

 

 

Fig. 2.5:  Hypothetical mechanism of the “J paradox”. The figure summarizes the impact of J on the OXPOS 

level, the implications on an individual level and the impact on the distribution of populations studied 

within the phylogeny. 

 

Other associations were studied: haplogroups J and K are underrepresented in 

Parkinson’s disease (van der Walt et al., 2003), and haplogroup T is underrepresentedin 

AD patients (Chagnon et al., 1999). Hence, it is likely to think that the different mtDNA 

lineages are qualitatively different from each other, bearing mutations able to improve 

the OXPHOS efficiency, and consequentely reducing the risk of some pathologies. 

Furthermore, it has been reported by Ruiz Pesini et al., that haplogroups H and T 

displayed a significant difference in the activity of complex I and IV of OXPHOS (Ruiz 

Pesini et al., 2000). 
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9. Point mutation of mtDNA 

The mitochondrial theory of aging (Hamilton et al., 2001) proposes that 

accumulation of mutations in mtDNA and consequent mitochondrial dysfunction are the 

major contributors to aging and age-related neurodegenerative disease. 

The polymorphisms and single base mutations in mtDNA are very probable 

because of the proximity of a source of ROS and the limited ability to correct from the 

enzyme deputy to the replication of mtDNA, polymerase γ (Kaguni 2004, Kujoth et al. 

2005, Johnson et al. 2001). 

Recently, somatic mutations in the Control Region (CR) of the mtDNA have been 

associated with aging (Coskun et al., 2003). The A189G and T408A CR mutations 

accumulate with age in skeletal muscle (Wang et al., 2001), and a T150C mutation 

accumulates in white blood cells (Zhang et al., 2003). 

The C150T mutation (where a cytosine (C) is replaced with a thymine (T) in 

position 150 of the control region CR) is of particular interest in the study of aging. 

It has been identified not only in skin fibroblasts but also in lymphocytes and 

granulocytes of peripheral blood in centenarians and twins. This led to hypothesize a 

link between mutation and longevity, and between mutation and resistance to stress-

induced ROS production (Coskun et al. 2003). 

The C150T mutation seems to promote longevity causing the displacement of the 

origin of replication from 151 to 149 in the control region (Zhang et al. 2003). In fact, the 

C150T is located near one of the main origins of replication of the H strand of mtDNA 

(Fig. 2.6). 

 

Fig. 2.6: Position of the C150T mutation in the D-loop and other specific tissue mutations age-dependent. 
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Zhang et al. (2003) argue that the somatic event in or near the 150 position could 

lead to a general remodeling of the entire system of replication, probably controlled by 

the nucleus. Therefore this remodeling could accelerate mtDNA replication, to 

compensate the oxidative damage of the same DNA and its functional deterioration 

occurring in old age. The age-dependent accumulation of point mutations with age, the 

previously identified in fibroblasts and skeletal muscle in critical sites for mtDNA 

replication, can be considered part of the remodeling. 

The data also showed that C150T variant causes a remodelling of the replication 

origin at position 151 and can be either inherited (polymorphism) or somatically 

acquired (mutation).It also may cause an activity decreasing. Coskun et al. (2003) 

suggested that mtDNA haplogroups are likely not neutral and that C150T variant 

associated with haplogroup J (De Benedictis et al, 1999) might have changed oxidative 

phosphorylation efficiency (OXPHOS) by reducing the activity. Moreover J haplogroup is 

associated to the presence of at least four mutation near the replication origin, C150T 

included (Niemi et al., 2005).  

How might C150T and/or haplogroup J contribute to longevity? The C150T variant 

or a linked polymorphism in haplogroup J might change OXPHOS efficiency and thus ROS 

production, reducing oxidation stress and increasing longevity. In fact human mtDNAs 

radiated out of Africa and colonized the world through successive accumulation of 

sequential mutations along radiating maternal linage, from mother to daughter. 

Transitions in mtDNA types between Africa and Eurasia and north and south seem to 

correlate with latitude indicating that mtDNA diversity has been subjected to climatic 

selection (Mishmar et al., 2003). This means that mitochondria burn calories to make 

ATP to do work, and generate heat to maintain the inside body temperature. The balance 

between these two mutually exclusive processes is determined by the OXPHOS efficiency. 

Highly efficient OXPHOS generates ATP with little waste heat. Less efficient OXPHOS 

generates more heat producing the same amount of ATP. The most efficient activity is 

preferable in the tropics, whereas the less would be critical for survival in the arctic. 

What is more in the arctic area  the amino acid sequence of the human mtDNA ATP6 

protein is hypervariable, implying that mutations in this mtDNA gene have been 

important for human adaptation to extreme cold. A reduction in OXPHOS efficiency 

would also burn more calories. As a result, fewer reducing electrons are introduced from 

the diet to make ROS. A life-long reduction in mitochondrial ROS stress would, in turn, 

decrease apoptosis and increase longevity.  
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Rather frequent is heteroplasmic somatic mutation T414G (fig. 2.6), a transversion 

at position 414 in the D-loop region of the mitochondrial genome, normally present in 

high proportions (more than 50%) in cultured fibroblasts of individuals with age over 

65 years (Michikawa et al., 1999).  

Wang et al. (2001), conducting studies on skeletal muscle, discovered that while 

the 414G mutation is absent, there are two other heteroplasmic mutations, A189G and 

T408A. Unlike somatic T414G, A189G and T408A polymorphisms are transmitted by 

germline and thus associated with specific mitochondrial haplogroups (Rose et al., 

2002).  

These muscle-specific mutations accumulate with age in the mitochondrial genome 

(Wang et al., 2001, Del Bo et al., 2002), particularly in the control region, which is 

important for replication. Another interesting observation is that the A189G is located in 

a position very close to one of the main origins of replication for the heavy chain H 

(position 191). It is curious to note that two of the main origins of replication have been 

identified as sites of accumulation of age-related mutations. 
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Chapter 3 

 

The GEHA Project – Genetic of Healthy Aging 

 

1. The GEHA Project 

Europe is the oldest continent and in the last decade the number of people aged 

more than 90 years is rapidly rising. The actual proportion of people with more than 90 

years is about 50% of the total population. There is a small proportion of elders that 

apparently undergoes an aging process and they surprisingly appear deprived of the 

most common age-related disease (cardiovascular disease, stroke, type II diabetes, 

cancer and dementia). In this scenario it is important to study causes and mechanisms of 

the aging, that in 2001 the 5-year European Union Integrated Project GEnetics of 

Healthy Aging (GEHA) born. The most important aim of this study is to identify genes 

involved in healthy aging and longevity, which allows individuals to reach advanced old 

age in good cognitive and physical conditions, without the major age-related diseases.  

The GEHA Project represents the strongest and the most competitive consortium 

ever realized in Europe to investigate genetic bases of human aging process, capable of 

reaching results that is impossible to obtain in a single European country. 

The 5-year GEHA Project was supported through Priority 1 (Life Sciences, 

Genomics and Biotechnology for Health) of EU’s FP6 (Project Number LSHM-CT-2004-

503270) and approved by European Commission. The project started on May 1, 2004 

and ended ion April 30, 2010 (with a 1-year delay). 

The Project can be divided in several steps: 

1) Standardization of all procedures: two Informed Consent Form (one for 90+ 

sibpairs and one for the younger controls), three Questionnaires (for 90+ 

sibpairs, for the younger control and for the family of the 90+ sibpair, in the 

National language and in English), phenotypic, genetic database plus a database 

for mtDNA, set up a collection of biological material (blood samples and cheek 

swab), a protocol for extraction and for APOE genotyping; 
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2) the recruitment of subjects, divided in 90+ sibpairs and an equal number of 

controls (TRIOS is composed of at least two 90+ sibs and 1 younger ethnically-

matched control subject); 

3) the DNA extraction, the quality control and shipment to the GEHA Partners in 

order to conduct genetic analysis (nuclear and mitochondrial genomes); 

4) Genetic analysis on nuclear and mitochondrial DNA 

5) Statistical analysis of the collected data with mathematical methods. 

The GEHA Project is the largest international collaborative research group for the 

theoretical and sperimental capacity in the biogerontology and genetic are of aging. 

 

2. The objectives of the GEHA Project 

The most important objective of the Project is to identify gene which influence 

healthy aging and longevity, and that protect individuals from major age-related 

diseases. Accordingly the major goals of the Project are the following: 

1. To overcome the fragmentation of the research on the genetics of aging in 

Europe; 

2. to set up a coherent, tightly integrated program of research that unites 

demographers, geriatricians, geneticists, epidemiologists, molecular biologists, 

bioinformaticians and statisticians; 

3. to recruit an unprecedented number of long-living sibpairs (2192) were 

both members are aged 90 years of age and more from 11 Euperan countries in 

15 geographic areas; 

4. to perform a genome-wide scan on the DNA of all the recruited subjects (ASP, 

Affected Sibpairs analysis, or Linkage Analysis); 

5. to recruit 2192 etnically-mached control subjects (mean age 50-75 years) 

from the same geographic area in order to fine-map the chromosomal regions 

identified by Linkage analysis and the three candidate chromosomal regions 

(see n.8); 

6. to perform bioinformatics, functionale genomics, proteomics and 

molecular biology studies on the putative longevity genes and gene variants 

resulting from ASP and LD mapping; 

7. to test whether ethnically different European population (including Sardinia 

and Finland) share the same genes involved in aging and longevity; 
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8. to study the role played in human longevity by nuclear regions (D4S1564 in 

chromosome 4, 11p15.5 in chromosome 11, and ApoE in chromosome 19); 

9. to study the role of mitochondrial DNA through the analysis of germline 

variants (haplogroups) and mutations (C150T) in human longevity; 

10. to identify gender-specificity genes associated with longevity; 

11. to stratify the samples according to APOE genotype; 

12. to develop innovative analytical strategies (based on statistical and 

mathematical models) capable of combining all the collected data; 

13. to perform a short longitudinal study to evaluate the importance of genetic 

factors on the mortality of the recruited 90+ sibpairs; 

14. to organize activities for young researchers and to disseminate the results of 

the GEHA activity, discussing ethical implications. 

 

3. The GEHA consortium and its bodies 

The GEHA consortium is composed of 25 partners of 12 European Countries (Italy, 

France, Germany, Denmark, Finland, Greece, England, North Ireland, Belgium, 

Nertherlands, Poland and Ukraina) and 1 Partner from China, who collaborates in an 

interdisciplinary study (Fig. 3.1).  

 

 

 

Fig. 3.1: representation of the 25 Partners who collaborates in the GEHA project 
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All these countries have different laws and traditions about privacy, ethical 

recommendation, access to demographic source, IPR (Intellectual Property Rules) rules, 

among others. The GEHA project regarding the genetics of human longevity requires the 

recruitment of very old sibpairs and the donation of blood or other biological material 

on which carry out the genetic analysis. Moreover, GEHA deals with sensitive issues, 

which requires attention and care as much as possible. For these reasons it was 

necessary to standardize all the tools and the fulfilment or ethical requirements both 

essential to start the first phase of the Project, i.e. the recruitment of 90+ sibpairs and 

younger controls. 

In order to fulfil all the scientific, ethical, financial and IPR requirements, and 

following the guidelines of the EU, the GEHA project was endowed with a complex 

organization structure composed by the following bodies: 

• Coordinator (Professor Claudio Franceschi),  

• Project Manager (Dr. Alessandra Malavolta),  

• Scientific Manager (Dr. Silvana Valensin),  

• General Assembly composed of 25 members (i.e. all the Principal 

Investigator, one person from each Partner) 

• Steering Committee composed of 9 members (i.e. the leaders of the 12 

WPs), 

• Ethics Steering Group composed of 3 internal members and 2 external 

member, 

• External Advisory and Gender Board composed of eminent scientist 

from United States and Europe 

• Financial Management Board composed of 5 members, 

• Legal and IPR Board composed of 3 members. 

 

The GEHA Consortium was composed as following:  

• PARTNER 1: UNIBO (GEHA Project Coordinator) University of Bologna, Italy, 

PI: Prof. C. Franceschi 

• PARTNER 2: CRLC, University of Montpellier, France, I: Prof. J.M. Robine 

• PARTNER 3: CAU, Kiel Centre for Functional Genomics, Germany, PI: Prof. S. 

Schreiber 
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• PARTNER 4: CEPH, Foundation Jean Dausset, France, PI: Dr. H. Blanché 

• PARTNER 5: ISS, Istituto Superiore di Sanità, Italy, PI: Dr. A. Stazi 

• PARTNER 6: LUMC, Leiden University Medical Centre, LUMC, The Netherlands 

PI: Prof. E. Slagboom 

• PARTNER 7: MPIDR, Max Planck Institute for Demographic Research, Germany, 

PI: Prof. J. Vaupel 

• PARTNER 8: NHRF, National Hellenic Researcher Foundation, Greece, PI: Dr. E. 

Gonos 

• PARTNER 9: KTL, Tampere School of Public Health, Finland, PI: Prof. A. 

Hervonen 

• PARTNER 10: NENCKI, Nencki Istitute for Experimental Biology, Poland, PI: Prof. 

E. Sikora 

• PARTNER 11: QUB, Queen’s University of Belfast, UK, PI: Prof. I. M. Rea 

• PARTNER 12: UNICAL, University of Calabria, Italy, PI: Prof. G.De Benedictis 

• PARTNER 13: IFOM, Institute of Milan, Italy, PI: Prof. G. Pelicci 

• PARTNER 14: UNISS, University of Sassari, Italy, PI: Prof. L. Deiana 

• PARTNER 15: UCL, Catholic University of Louvain, Belgium, PI: Prof. M. Poulain 

• PARTNER 16 : FUNDP, Facultes Universitaire Notre Dame de la Paix, Belgium, PI: 

Prof. O. Toussaint 

• PARTNER 17: UNEW, University of Newcastle, UK, PI: Prof. T. Kirkwood 

• PARTNER 18: SDU, University of Southern Denmark, Denmark, PI: Prof. B. Jeune 

• PARTNER 19: TAMPERE, National Public Health Institute, Finland, PI: Prof. L. 

Peltonen 

• PARTNER 20: R&I, Research Innovation s.r.l., Italy, PI: Dr. A. Leon 

• PARTNER 21: INRCA, Italian National Research Centre on Aging, Italy, PI: Dr. L. 

Spazzafumo 

• PARTNER 22: UAAR, University of Aarhus, Denmark, PI: Dr. P. Kristensen 

• PARTNER 23: BGI, Bejing Genomics Institute, BGI, China, PI: Prof. L. Bolund  

• PARTNER 24: EAT, Eppendorf Array Technologies, Belgium, PI:  Prof. J. Remacle 

• PARTNER 25: IG, Institute of Gerontology, Kiev, Ukraine,PI: Professor V.V. 

Bezrukov 
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4. GEHA databases 

In order to ensure data privacy to the participant subjects and at the same time 

ensures full availability of samples, phenotypes and molecular data to all the Partners, 

GEHA envisages a peculiar centralization of the different types of data collected. The 

GEHA consortium set up three main databases: 

• The Phenotypic Database containing clinical and demographic data on the 

basis of GEHA questionnaires (Odense, Denmark); 

• The Genotypic Database containing genotyping data (Kiel, Germany); 

• mtDNA Database containing data related to studies on mtDNA (Tampere, 

Finland). It allows to assign haplogroups automatically, to recognize 

aminoacidic variations automatically and to obtain all the references 

related to a polimorphism automatically (www.mitomap.org). 

Even if these three databases are physically separated, they are strictly 

interconnected, allowing to all GEHA Partner to perform all types of analysis and 

protecting privacy of participants. It gives the possibility to introduce independent 

projects and treat data separately, connecting with the other GEHA databases in 

progress. 

 

5. Genetic analysis (nuclear and mitochondrial genome) 

 

Nuclear genome 

In the last few years an enormous quantity of data are presented about human 

genome on millions of new single polymorphism (SNPs) variants. The main goal of GEHA 

is to perform Linkage analysis but surprising data were obtained with association 

studies (Fig. 3.2). After a preliminary investigation, the scan of the 11p15.5 region was 

performed, using DNA from centenarians and younger controls. A density of 1 SNP per 

10.037 bp was obtained in the 2.4 Mb region. A variation in a gene already implicated in 

longevity was replicated in the German samples, and other three genes gave positive 

signals in both German and Central Italians, which render these genes important 

candidates gehe involved in longevity. Also the Linkage analysis was performed 

including 15 centers together and separate. Only at chromosome 19 they observed a 

borderline significant linkage result. Linkage analysis looks for co-inheritance of 

chromosomal regions with the trai in families. It is not only more powerful than 
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association studies for identifying rare-risk disease alleles but also it is not influenced by 

population admixture. 

 

Fig. 3.2: graphic representation of the GEHA design. Linkage analysis (1) and association studies (2) were 

conducted on all recruited samples. 

 

Mitochondrial DNA 

About the study of mitochondrial DNA, the main activities were: 

1. mtDNA resequencing. Different approaches were developed by the GEHA 

consortium in order to obtain complete sequences. The first methods uses 3 sets of 

primers producing fragments of about 6kb, sequenced with 39 primers, the second 

method uses 55 primers for each strand and a kit provided by APPLERA and 

standardized in the lab of Partner n.1 (UNIBO), and the productes are sequenced by  a 

single universal primers. GEHA sample belong to the specific population of Southern 

Italy and Greece (sequenced by partner n.1), Finland and Denmark (sequenced by 

Partner n.23) for a total of 1000 mtDNAs. In particular Partner n. 1 should sequence 660 

subjects, divided in 300 nonagenarians (90+) and 330 younger controls. 

2. All other GEHA samples are genotyped for mtDNA haplogroups and 

subhaplogroups, using a protocol based on PCR amplification and sequencing of the 

mtDNA D-loop.  
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Results are showed in this thesis. The list of GEHA TRIOS (each constituted by two 

90+ sibpairs and one younger ethnically matched control, Tab. 3.1 and Fig. 3.3) is the 

following: 

 

 

Tab. 3.1: list of all recruited samples coming from all Europe. The GEHA center, country and the number 

of trios are reported. 

 

 

 

GEHA center Country 
2 sibs and 

one control 

3 sibs and 

one control 

4 sibs and 

one control 

5 sibs and 

one control 

UNIBO Italy 182 23 6 1 

CRLC France 241 29 3 1 

CAU Germany 93 5   

ISS Italy 73 2   

LUMC Netherland 148 14 2  

SDU DK 392 46 5  

NENKI Poland 133 4   

NHRF Greece 95 3   

UNICAL Italy 185 7 1  

UNISS Italy 50 2   

UCL Belgium 79 1   

QUB Ireland 58 4 2  

UNEW UK 100 1   

TAMPERE Finland 127 24 1 1 

INST.GERONT Ukraine 46 2   

TOTAL  2002 167 20 3 
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% Trios with 2, 3, 4 and 5 sibs (all Countries)

% Trios with 3 sibs
8,1%

% Trios with 4 sibs
1,1%

% Trios with 2 sibs
90,7%

% Trios with 5 sibs
0,1%

% Trios with 2 sibs % Trios with 3 sibs
% Trios with 4 sibs % Trios with 5 sibs

 

Fig. 3.3: a trios is formed by at least two 90+ sibpairs and one younger ethnically matched control. In our 

data sibships with two sibs are 90.7%, sibships with more than two sibs are 9.3%. 

 

3. Analysis of heteroplasmy. A new protocol to highlight the heteroplasmy of the 

C150T point mutation by DHPLC technology has been developed and standardized. The 

results show that a correlation between heteroplasmy levels and longevity exists and is 

highly significant (Partner n.12). 



 

47 

Chapter 4 

 

AIM OF THE STUDY 

 
 

In the present study, we investigate the association of haplogroups, mitochondrial 

polymorphisms and mutation with longevity. It has been discovered that longevity is 

essentially a familiar characteristic: centenarians offspring lived more than others, 

centenarians offsprings are presumed to reach aging in physical and cognitive 

conditions better than their coetaneous. In this scenario, mitochondrial DNA and its 

variability plays an important role. 

The aim of the Project GEHA is to identify genes involved in healthy aging and 

longevity, allowing individuals to survive to advanced old age in good cognitive and 

physical function and in the absence of major age-related diseases, such as type II 

diabetes, neurodegenerative diseases, cardiovascular diseases and osteoporosis. 

The principal aim of this study is to analyse molecular markers that could play a 

role in healthy aging, proposing: 

1. Amplification of control region and RFLP in order to study haplogroups and 

the relationship with longevity. The technique is applied on subjects coming 

from 11 European countries adherent to the Project; 

2. Standardization of the entire methodology used to analyze mtDNAs, thanks 

to robotized platform Hamilton MicroLab Star; 

3. Statistical analysis of obtained results and research of polymorphisms and 

mutations associated with longevity and healthy aging; 

4. Analysis of complete sequences 

5. Cluster analysis and Network analysis 

 

The 2192 recruited candidates represent a great number of subjects, allowing to 

obtain sufficient data for statistical analysis. Moreover the extension of the recruitment 

area allow not to limit the analysis to a very restricted haplogroup numbers, exceeding 

all the geographic problems (because mtDNA is localized in limited geographic area).  
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Chapter 5 

 

MATHERIALS AND METHODS  
 

 

1. Samples 

The available DNA samples belong to subjects that are divided in two groups: 

probands and controls.  Proband is the oldest sibling of the sibship that was recruited, 

should have 90 years or more and should have at least one sibling of the same surname 

and an age above 90. The control subject is ethnically-matched with proband and should 

be aged 50-75 years. Subjects come from 11 countries, corresponding to 15 different 

geographic areas. Since the two members of the sibpair must have the same mtDNA due 

to maternal inheritance, the Project decided that only the oldest of the sibpairs must be 

genotyped for mtDNA haplogroup. Our sample is divided as follows: 

 

ANALYSIS SIBS CONTROLS TOT 

Complete sequencing 637 655 1,292 

D-loop sequencing 1449 1498 2,947 

TOT 2,086 2,153 4,239 

 

All subject’s DNA has been extracted with an automate and standardized 

procedure (Gentra) in order to guarantee the uniformity of all concentrations by one 

Partner of the Project (KTL - Helsinki, Finland). For our analysis, 4 µg of genomic DNA 

have been provided by KTL. 

 

2. General protocol 

The general plan for the definition of mtDNA subhaplogroups is first the 

amplification and then the sequencing of D-loop fragment. Then we are able to assign a 

preliminary haplogroups which must be confirmed by amplification of a specific trait in 

the coding region, and a digestion with a specific enzyme.  

The general scheme of the protocol is as follows: 

- Amplification of the D-loop region (about 1500 bp)  

- Agarose gel electrophoresis 
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- PCR clean-up reaction using ExoSAP-IT® 

- Sequencing reaction 

- Sequence analysis with SeqScape software in order to attribute a 

preliminary subhaplogroup 

- Amplification of a coding region trait specific for each haplogroup 

- Digestion using specific restriction enzymes 

- To confirm or not the predicted subhaplogroup 

 

PCR amplification  

A pair of primers were used for Dloop amplification reaction: 15877F 

(CAAATGGGCCTGTCCTTGTA) and 770R (GCTGCGTGCTTGATG CTTGT) which are 

specific for the interested segment of mtDNA (the D-loop, about 1500 bp).  

Amplification was performed in a 25 µl volume. Each amplification will contain at 

final concentration: 

 

REAGENTS [STOCK] [FINAL] VOLUME 

Buffer 10X 

 (Invitrogen) 

 200 mM Tris-HCl 

(pH8) 

 500 mM KCl 

20 mM Tris-

HCl (pH8) 

50 mM KCl 

2.5 µl 

MgCl2 

(Invitrogen) 
50 mM 1 mM 0.5 µl 

dNTP 

(Invitrogen) 
100 mM 16 µM 4 µl 

Taq 

(Invitrogen) 
5 U/µl 0.04 U/µl 0.3 µl 

Primers: 

15877F, 770R 
10 µM 0.4 µM 1 µl 

DNA 60 ng/µl 0.72 ng/µl 2 µl 

Water / / 13.55 µl 

Final volume 25 µl 

 

The PCR cycling profile (using T1 Thermocycler Biometria) is as follows:  

 

Temperature  Cycle number 

95°C 5 min 1 

95°C 

68°C 

72°C 

40 sec 

40 sec 

2 min 
35 
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72°C 12 min 1 

 

Agarose gel electrophoresis 

It is very important to verify the amplification on a agarose gel 1.5%. Materials we 

need are:  

� 1.5 agarose gel made up with standard 0.5X TBE (see APPENDIX) 

� Ethidium Bromide solution if this has not been pre-incorporated into the 

gel 

� Tracking dye (Bromophenol Blue and/or xylene cyanol + glycerol) 

In each well pipet 1.2 μl of the cleaned-up PCR reactions and 8.8 μl (6.2 μl H2O and 

2.6 μl BF6X) to reach a volume of 10 μl. Load in a well a marker which contains a mix of 

known fragments and used to compare our bands. Run the gel at 150 V for half an hour. 

 

PCR clean-up 

The clean-up reaction is important because it purify PCR products from primers or 

nucleotides not incorporated. For PCR clean-up add 2 μl of Exosap-IT (directly to PCR 

product) each 5 μl of PCR product (Fig. 5.1). We experimented that only 1 μl of ExoSAP 

each 25 μl PCR product is sufficient and it allows to reduce costs. ExoSAP-IT® (USB, PN 

78200) is a mix containing two enzymes: an exonuclease (ExoI) degrades residual single-

stranded primers and any extraneous single-stranded DNA produced by PCR, and a 

shrimp alkaline phosphates (SAP) hydrolyzes remaining dNTPs from the PCR mixture 

which could interfere with the sequencing reaction. 
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Fig. 5.1: PCR clean-up 

The PCR cycling profile (using T1 Thermocycler Biometria) is as follows:  

1. activation of enzyme at 37°C per 30 minutes 

2. inactivation at 80°C per 15’ 

 

Sequencing reaction 

The sequencing technique has been developed by Torroni’s lab of University of 

Pavia. He has provided us a list of the most used primers to be tested on our samples. To 

execute the sequencing reaction, we have used three primers, each at concentration of  

3.2 pmol/µl. 

 

 

 

 

 

 

The d-loop is sequenced in three different fragments, partially overlapping.  

The reaction was performed in a 10 ul volume. Each reaction will contain at final 

concentration: 

 

 

 

Primers  Sequence Lenght (bp) Tm 

15973 For AACTCCACCATTAGCACCCA 20 60.38 

16522 For TAAAGCCTAAATAGCCCACA 20 55.27 

13 For ATCACCCTATTAACCACTCACG 22 58.01 
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REAGENTS [STOCK] [FINAL] VOLUME 

Buffer 5X 

(Applied 

Biosystems) 

5X 0.8X 1.6 µl 

Big Dye 

Terminator 

v.3.1 

(Applied 

Biosystems) 

8 µl in a total volume 

of 20 µl 

per reaction  

1 µl 0.8 µl 

Primers: 

13F, 

15973F,16522F 

10 µM 0.32 µM 1 µl 

Cleaned-up PCR 

product 
/ / 2 µl 

Water / / 4,6 µl 

Final volume 10 µl 

 

The thermal profile is as follows: 

 

Temperature  Cycle number 

96°C 1 min 1 

96°C 

50°C 

60°C 

10 sec 

5 sec 

4 min 
25 

 

The BigDye Terminator reagent contains a mix of nucleotide. Free bases that 

match the template sequence can attach to the new strand's growing (3') end, but among 

all the free bases swimming in the solution, there are a few having a chemical 

fluorescent part, i.e. dye. When the coloured bases attach to the growing strand, the 

extra chemical part keeps the new DNA strand from growing any further. A different 

coloured dye is attached to each of the four kinds of bases. 

A completed sequencing reaction contains an array of coloured DNA fragments. 

The shortest are the length of the primer plus one coloured base. The longest fragments 

are usually between 500 and 800 bases long, which is when the sequencing reaction 

runs out of steam. 

 

Sequencing clean-up reaction 

To perform the sequencing clean-up reaction, it is important to add in each well 

the following reagents: 

• 2.0 µl of sodium acetate (NaAc); 
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• 30 µl Ethanol 100% stored at –20°C, in order to precipitate  sequenced 

fragments; 

• Incubate at room temperature for 10 min; 

• Spin the plate at 1100 xg for 42 min; 

• Remove cover and invert onto paper towel and spin at 100xg for no more 

than 1 min 

• 70 µl ethanol 70% stored at –20°C  

• Spin at 1100 xg for 14 min; 

• Remove cover and invert onto paper towel and spin at 100xg for no more 

than 1 min; 

• Store the plate at 37°C for at least 1h in order to evaporate all the ethanol; 

• Resuspend all wells with 10µl Hi Di Formamide (denaturing agent which 

allows to maintain a denaturing state for capillary elechtrophoresis); 

• Denaturing at 95°C for 2 min. 

 

3. Analysis at ABI3730 sequencer   

The sample are then loaded on the automatic sequencer (ABI 3730, 48 capillaries). 

Inside the sequencer the division of the fragment depends on their molecular weight and 

are separated by a process called capillary electrophoresis. The sequencing machine sets 

up an electric field; all the DNA moves down through a porous gel toward the positive 

charge. Shorter fragments of DNA move more quickly through the matrix of the gel than 

larger fragments do (Fig. 5.2). 

In the sequencing machine, a laser excites the fluorescent dyes, and a camera 

detects the lights that the excited dyes emit. One by one, the sequencing machine reads 

the DNA molecules passing down the gel, and sends the information to a computer. Each 

nucleotide have a different  emission spectrum allowing to identify different bases. 

A computer program helps integrate the information from individual sequencing 

reactions. It spots where fragments overlap, to puzzle the pieces back together.  
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Fig. 5.2: principle of sequenze function. The sequencing fragments obtained (a) pass through a laser (b), 

while a system provides to record the Energy emitted by the excited fluorescent molecole 

 

Many overlapping sequencing reads are needed to reveal the uninterrupted 

sequence of the original stretch of DNA. On average, every base pair of human DNA will 

be sequenced nine times. Some stretches of DNA are easier to read and need to be 

sequenced a little less often to get high-quality sequence. Some stretches need to be 

analyzed more exhaustively to get finished high-quality sequence. 

The sequencer gives data in electropherogram form, through a file (.ab1) that 

shows four different peaks (green for adenine, red for timine, blue for cytosine and black 

for guanosine) and the height of each peak depends on the detected intensity. 

Now, we are able to read file .ab1 with the software SeqScape v2.1.1 (Applied 

Biosystems) which allows the alignment, the assembling of the overlapping fragments 

and a comparison with the Reference Sequence of Cambridge (Fig. 5.3). 
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Fig. 5.3: Image of an analysis with Seqscape. The Cambridge reference sequence is in brown, 

coloured peak represent all the four nitrogenous bases and the green bars indicates the quality of 

the peak relative to the background noise. 

 

4. Preliminary assignment of subhaplogroups 

After having compared our sequences with the reference one, it is indispensable to 

define every single subhaplogroups to use specific phylogenetic trees. 

The position 73 is the most ancient and whose transition A/G (adenine/guanosine) 

allows to distinguish between HV branch and U, JT and N branches. 

If in position 73 there is an A (equal to Cambridge sequence), our interest is direct 

to HV branch, if there is a G we will take into account U, JT and N branches (for 

phylogenetic trees see ADDENDUM). 

All mutations must be researched in its specific phylogenetic tree, till it is possible 

to obtain a more detailed description. Then a specific enzymatic digestion is needed.  

The following table summarize the most important position of each 

subhaplogroup. 

 

 

Branch H-V: 

Subhaplogroup Mutational sites 

V 72, 16298, 4580 

Pre*V2 72,16298, 15904 
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Pre*V1 72, 16298, 14766 

HV1 16067, 14766 

PreHV1 16126, 16362, 11719 

HV* 16168 

H 7025 
        � H1 3010 
        � H3 6776 

        � H5 456-16304 
        � H6 239-16362-16482 

 

Branch U 

Subhaplogroup Mutational sites 

U1 16249, 285, 13104 
        � U1a 16183, 16189, 4991 

U2  
        � U2e 16051, 16129, 16189,16362 

U3 16343, 14139 
       � U3a 16390 

U4 16356, 499, 4646 

U5 16270 
       � U5a 16256, 14793 

       � U5b 150, 14182 

U6 16172, 3348 

U7 16318, 5360 

U8  
      � K 16244, 16311, 9055 

      � U8b 16311, 16234, 9055 

U9 6386, 12308 

 

Branch JT 

Subhaplogroup Mutational sites 

JT 16126 

J 16069 

      � J1 3010 
      � J2 7476 

T 16294 
      � T1 16163, 16189, 12633 
      � T2 16296, 14233 

Branch N 

 

Subhaplogroup Mutational sites 

N 16233 
      � X 16189, 16278, 153, 14470 

      � I 16129, 16392, 199, 204, 250, 

10034 
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      � W 16292, 189, 195, 204, 8994 
      � N1b 16145, 16176G, 11362 

 

Amplification of coding region trait 

Once each subhaplogroup was hypothesed, it is indispensable to confirm this 

hypothesis trough the presence of particular polymorphisms in the coding region. 

Amplification was performed in a 25 ul volume. Each amplification will contain at 

final concentration: 

 

REAGENTS [STOCK] [FINAL] VOLUME 

Buffer 10X 

 (Invitrogen) 

 200 mM Tris-HCl 

(pH8) 

 500 mM KCl 

20 mM Tris-

HCl (pH8) 

50 mM KCl 

2.5 µl 

MgCl2 

(Invitrogen) 
50 mM 1.5 mM 0.75 µl 

dNTP 

(Invitrogen) 
100 mM 16 µM 4 µl 

Taq 

(Invitrogen) 
5 U/µl 0.04 U/µl 0.2 µl 

Specific 

primers(*) 
10 µM specific specific 

DNA 60 ng/µl 0.72 ng/µl 2 µl 

water / / variable 

Final volume 25 µl 

 

The thermal profile is as follows: 

Temperature  Cycle number 

93°C 30 sec 1 

93°C 

T°C 

72°C 

15 sec 

20 sec 

1 min 
35 

72°C 12 min 1 

 

The following table (Tab.5.1) reports all the pair of primers necessary to produce 

the amplification, with the relative annealing temperature and the amplificated 

fragment length. Only for U4 and J2 haplogroups the cycle number of annealing is 44 

instead of 35. 

 

Subhapl Primers and their sequence Tann Length 
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H 6892F: GCAATATGAAATGATCTGCTGC                                                     

7860R: TCGTTGACCTCGTCTGTTATGT    
54,5°C 242 bp  

H1 
2988F: CGATGTTGGATCAGGACATCTC                                                   

3235R: CTTAACAAACCCTGTTCTTGGG  
60°C 248 bp 

H3 
6637F: TTCTTATCCTACCAGGCTTCG                                                      

6807R: GTGTGTCTACGTCTATTCCTACTGTAAACA 
62°C 170 bp  

R0a 
11491F: ACGCCTCACACTCATTCTCA                                                    

11750R: TGCTAGGCAGAATAGTAATGAGGATGTAGG 
64°C 260 bp  

V 
4381F: ACCTATCACACCCCATCCTAAA                                      

4683R: TTAGAAGGATTATGGATGCGGT 
57°C 302 bp  

HV1-

HV0* 
14676F: TTCTCGCACGGACTACAACC                                                   

14996R: CGTGAAGGTAGCGGATGATT 
55°C 321 bp  

HV0a 
15796F: GGACAAGTAGCATCCGTACT                                                    

16439R: GCACTCTTGTGCGGGATATT 
55°C 643 bp  

U1 
12744F: CCTATTCCAACTGTTCATCG                                                      

13192R: GAGTGGTGATAGCGCCTAAG 
55°C 448 bp  

U1a 
4381F: ACCTATCACACCCCATCCTAAA                                                          

5210R: GGTGGATGGAATTAAGGGTGTT   
59°C 829 bp  

U2e 
13134F: AGCAGAAAATAGCCCACTAA                                                  

13829R: AGTCCTAGGAAAGTGACAGCGA  
56°C 695 bp  

U3 
14103F: CTCTTTCTTCTTCCCACTCA                                                    

14996R: CGTGAAGGTAGCGGATGATT 
53°C 893 bp  

U4 
4381F: ACCTATCACACCCCATCCTAAA                                                     

5073R: TGGTTATGTTAGGGTTGTACGG 
59°C 656 bp  

U5a 
14676F: TTCTCGCACGGACTACAACC                                                      

14996R: CGTGAAGGTAGCGGATGATT 
55°C 321 bp  

U5b 
14158F: CCGAGCAATCTCAATTACAATATG                                                                      

14996R: CGTGAAGGTAGCGGATGATT 
57°C 835 bp  

U6 
3085F: ATCCAGGTCGGTTTCTATCT                                                        

3693R: CAGGGCGTAGTTTGAGTTTGA 
54°C 608 bp  

U7 
5199F: ATTCCATCCACCCTCCTCTC                                                           

5607R: AGTGGGGTTTTGCAGTCCTT 
56°C 409 bp  

U8b-K 
8829F: CCTAGCCATGGCCATCC                                  

9184R: GGCTTACTAGAAGTGTGAAAAC 
50°C 356 bp  

U9 
6120F: ATCATAATCGGAGGCTTTGG                            

6455R: GAAGAGGGGCGTTTGGTATT 
54°C 335 bp  

TJ 
4142F: GATTCCGCTACGACCAACTC                             

4365R: GGATTCTCAGGGATGGGTTC   
57°C 224 bp  

T1 
12014F: CTCACCCACCACATTAACAACA                     

13829R: AGTCCTAGGAAAGTGACAGCGA  
60°C 1816 bp  

T2 
13957F: GGCCTTCTTACGAGCCAAAA                        

14257R: TATTGGTGCGGGGGCTTTGTATAA  
60°C 300 bp  

J1 
2988F: CGATGTTGGATCAGGACATCTC                        

3235R: CTTAACAAACCCTGTTCTTGGG 
60°C 248 bp  

J2 
7239F: GCATACACCACATGAAACATCC                       

7860R: TCGTTGACCTCGTCTGTTATGT    
59°C 622 bp  

I 
9893F: CAAACATCACTTTGGCTTCG                           

10280R: GGGTAAAAGGAGGGCAATTT 
53°C 388 bp  

X 
14379F: CCATCGCTAACCCCACTAAA                                                                      

14996R: CGTGAAGGTAGCGGATGATT 
54°C 618 bp  

W 
8910F: CTTACCACAAGGCACACCTACA                       

9230R: ATAGGCATGTGATTGGTGGG 
58°C 320 bp  

M1 
10147F: ACATAGAAAAATCCACCCCT                           

10569R: CTAGGCATAGTAGGGAGGAT 
53°C 422 bp  
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N1b 
10457F: TCATATTTACCAAATGCCCCTC                      

11750R: TGCTAGGCAGAATAGTAATGAGGATGTAGG 
64°C 1294 bp  

L 10498F: TAGCATTTACCATCTCACTTCT                       

10930R: GGAAAAGGTTGGGGAACAGC 
56°C 433 bp  

Tab. 5.1: primers and related sequences, annealing temperature and length of each fragment. 

 

Enzymatic digestion reaction 

The reaction has a final quantity of 25 µl composed of 7 µl of PCR product, 1 U of 

enzyme (New England) and related buffer 1X, and for a few enzyme also BSA 0.6X.  

The list of all enzyme is reported in Tab. 5.2, with information about their 

temperature, the dimension of digested and not digested fragments.  

 

 

Sub-hapl Enzyme Temp Digested fragments Not digested fragments Cut 

H AluI 37°C 137-75-30 167-75 - 

H1, J1 TaqI 65°C 228-20 248 - 

H3 NlaIII + BSA 37°C 139-31 170 + 

R0a HaeIII 37°C 228-32 260 + 

HV1-HV0* MseI + BSA 37°C 209-90-17-4 209-107-4 - 

HV0a MseI + BSA 37°C 430-175-142-108 430-108-67-38 + 

U1 HinfI 37°C 287-89-72 287-161 - 

U1a AluI 37°C 305-186-116 491-116 - 

U2e HinfI 37°C 462-134-99-86 561-134 + 

U3 MboI 37°C 610-127-120-36 610-156-27 + 

U4 RsaI 37°C 411-179-83-19 590-83-19 + 

U5a BsrbI 37°C 205-115 321 + 

U5b RsaI+AluI 37°C 700-123-23 700-146 - 

U6 MboI 37°C 311-263-34 574-34 + 

U7 Tsp509I 65°C 158-82-76-57-35 240-76-57-35 + 

U8b-K HaeII + BSA 37°C 224-132 356 - 

U9 HaeIII 37°C 140-123-72 195-140 - 

TJ NlaIII + BSA 37°C 149-74 224 + 

T1 AvaII 37°C 1200-615 o 738-615-462 1816 - 

T2 Tsp509I 65°C 85-73-62-54-26 88-85-73-54 - 

J2 AluI 37°C 235-219-167 409-219 - 

I AluI 37°C 200-139-48 339-48 + 

V NlaIII + BSA 37°C 269-163 432 - 

X AccI 37°C 531-86 618 + 

W HaeIII 37°C 205-84-31 205-115 - 

M1 AluI 37°C 172-165-85 343-85 + 

L MnlI + BSA 37°C 243-61-58 301-61 - 
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N1b AluI 37°C 441-313-215-142-106-70 441-313-227-142-106-70 - 

Tab. 5.2: list of haplogroups and their specific enzymes. Incubation temperature and fragments digested 

or not are reported. 

 

The digested product are visualized on agarose gel 2.5%, only T1 and T2 

subhaplogroups need particolar conditions: 

• Agarose gel 0,8% for T1 subhaplogroup (because of the great dimension of 

fragments) 

• agarose gel 4% for T2 subhaplogroup (because of the little dimension of 

fragments). 

If the first digestion does not confirm the hypotesis, it is necessari to revaluate the 

sequence, to suppose other subhaplogroup and digest the fragment with other enzyme. 

 

5. Automated procedure 

We also have automated the amplification and sequencing reaction with the 

MICROLAB STAR workstation, equipped with 16 channels and able to arrenge all the 

operation, reducing time and manual errors. The platform can prepare reactions for 96 

different samples, can distribute the reagent mix (manually prepared) in each well and 

96 different DNAs both stored in plates and in 2 ml tubes. The latest must be collocated 

in specific adaptor with the barcode turned to laser (Fig. 5.4). 

 

Fig. 5.4: robotic platform and the localization of all components and reagents. 

Blue plate  (-20°) + 
BioPlastic (96) plate 

4     5     6 
adapters for 1,5 

eppendorf 

1 

32 

33 

64 

65 

96 
B 

White plate (+4°) + 
Eppendorf 2 ml 

1 
7 

13 
19 

Green plate + BioPlastic 
(96) x DNA plate 

Filter Tips 
300  

Tips 300  

Filter Tips  
10  
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The MICROLAB STAR workstation also allows to perform the sequencing reaction 

(Fig. 5.5). As this reaction is performed with three primers for each sample, all the 96 samples 

are divided in three plates, each carrying 32 samples as follows: 

 

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

B1 B2 B3 B4 B1 B2 B3 B4 B1 B2 B3 B4

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4

H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4

Primer 1 Primer 2 Primer 3

  

Samples 1-32 

 

 

Fig. 5.5: robotic platform and the localization of all components and reagents for sequencing. 

 

6. Example of RFLP for H haplogroup 

In order to analyze the mtDNA genetic variability in our population and their 

relationship with longevity, different diagnostic sites has been identyfied through 

restriction analysis of the mtDNA coding region. This restriction allowed attributing at a 

single sample one specific haplogroup. 

Tips 300  

Filter Tips 10  

3 mix 
Plate     ABI 1 

(1-32) 

Plate    BioPlastic 
(PCR) 

Plate     ABI 2 
(33-64) 

Plate     ABI 3 
(65-96) 

1 
7
1 13 
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An example of H haplogroup analysis (attributed with a first preliminary analysis 

by SeqScape) is reported. 

 

DNA amplification 

As expected, the agarose gel shows an amplified band of 242 bp (Fig. 5.6). The PCR 

program is the same used for D-loop amplification, only annealing temperature has been 

modified, because it depends on primers. 

 

 

Fig. 5.6: Amplification of a coding region fragment specific for H haplogroup. 

 

Digestion of amplified fragments 

The digestion of amplified regions is performed using AluI enzyme (specific for the 

H haplogroup identification) (Fig. 5.7). 

 

 

  Fig. 5.7: AluI digestion of specific amplificated traits for H haplogroup.  
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It is known that AluI must not cut in 7025 position to confirm the H haplogroup 

hypothesis. The 242 bp fragment can be cut: 

1) In only two fragments (one in 167 bp, and the other in 75 bp) if the enzyme has 

not digested in 7025 position; 

2) In three fragments (on in 137 bp, one in 75 bp  and in 30 bp) if the enzyme has 

digested in 7025 position; 

The overwhelming majority is not digested confirming our hypothesis and so it is 

necessary to continue with other amplifications and digestion with specific enzyme for 

H1 and H3. Samples which show 137 bp and 75 bp bands do not belong to H haplogroup, 

but to V haplogroup for example, which presents in position 73 the A nucleotide. 

Sample marked with (*) in Fig. 5.2 has probably endured a contamination; it is 

advisable to repeat the digestion. 

 

7. Statistical analysis 

The analysis of the sequences to determine haplogroups and somatic mtDNA 

variability was carried out by SeqScape software v 2.1.1 (Applied Biosystem). 

Mitochondrial sub-haplogroups, genotype frequencies and gender were compared 

between 90+ subjects and their ethnically-matched controls using the χ2 with Pearson 

correction or Fisher-exact test. 

The mitochondrial subhaplogroups variability envisages at least 80 

subhaplogroups, which have been further grouped into 27 subgroups considering their 

frequencies and phylogenetic relationship. The comparison between each of the 27 

mtDNA subhaplogroups in 90+ cases and younger ethnically-matched controls have 

been computed by applying Pearson's Chi-squared test with Yates' continuity correction. 

All analyses were performed separately for women and men, as well as for the 

total group. Tests for statistical significance were two-sided with = 0.05; we performed 

also a logistic regression to generate odds ratio (OR) with their associated 95% 

confidence intervals (CI), to asses odds of carrying each mtDNA haplogroups in cases 

compared with controls. R statistical software was used for all statistical analyses. 

The phylogenetic relation and the distribution of haplogroup J were represented 

by mathematical method of Median-Joining Network (Bandelt et al., 1999). This 

method combines two algorithms, one is Kruskal to calculate the minimum spanning 

trees and one is Farris euristic to calculate the maximum parsimony. The first was used 

to construct all the phylogenetic trees minimizing the sum of distances among 
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haplotypes, the latter to create median vectors which allow to group trees. We can 

consider median vectors as eventual haplotype not sampled or ancestral haplotype 

become extinct. Phylogenetic networks were constructed with Network 4.1.1.1 

program (http://www.fluxus-engineering.com). Polymorphisms were divided into 4 

classes according to their rate of evolution (Hasegawa et al. 1993; Malyarchuk and 

Derenko 2001; Allard et al. 2002). Fast positions (16093, 16129, 16189, 16311, 16362) 

were weighted by one, intermediate positions (16051, 16126, 16145, 16168, 16172, 

16184, 16192, 16209, 16218, 16223, 16256, 16261, 16278, 16291, 16293, 16294, 

16304, 16320, 16325) by 2, and slow positions (all other transitions between 16024 and 

16383 as well as 16482) by 4.  

Multidimensional scaling (MDS) is a set of related statistical techniques used in 

information visualization for exploring similarities or dissimilarities in data. In general, 

the goal of the analysis is to detect meaningful underlying dimensions that allow to 

explain observed similarities or dissimilarities (distances) between the investigated 

objects. The distances used in MDS need not be metric, as non-metric distances such as 

ranking can be used and the output coordinates are in the standard Euclidean space of 

the user-chosen dimension. The program used to obtain the distribution gives “stress” 

values, related to the good quality of distances data. The lower is the stress value, better 

is the adaptation of the reproduced distance matrix. Conventionally, a map is considered 

acceptable if the stress value is less than 0.1. In this thesis, the not metric MDS analysis 

was implemented in the sammon function in MASS library of R program.  
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Chapter 6 

 

RESULTS 

 

 

1. Distribution of samples 

In this study it has been applied a high resolution analysis, through sequencing of 

d-loop and restriction analysis of specific markers in the coding region of mtDNA. We 

explore the mitochondriale haplogroups and the possible association between mtDNA-

inherited sequence variation and longevity in a total of 4,239 samples. In 1,292 it has 

been conducted the entire sequencing, in 2,947 it has been performed the RFLP analysis.  

The distribution between the sinlings and controls is shown in the table below. 

The Tab. 6.1 shows males/females proportion with its associated percentage. The 

haplogroup analysis is conducted on all our subjects and includes also samples whose 

mtDNA was completely sequenced. In particular our sample are divided as follows:  

 

ANALYSIS SIBS CONTROLS TOT 

Complete sequencing 637 655 1,292 

Dloop sequencing 1449 1498 2,947 

TOT 2,086 2,153 4,239 

 

In particular, the 1,292 samples are divided in 1,167 sequenced by the Chinese 

Partner (BGI) and 125 sequences analyzed in UNIBO. 

In our total sample, there is a higher proportion of female (69%) subjects but, in 

both categories (male and female), proportion is equilibrate (about 50% cases and 

controls). 

Moreover, subjects who can reach 100 years are higher in female than in male 

(respectively 4.8% e 2.7%). One possible reason is that males are under a much more 

stronger selection than females, so males can hardly reach the same female ages. This 

consideration reflects the general proportion in the population.  
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 Males (N = 1,327)  Females (N = 2,860) 

 90+ (%) Controls (%)  90+ (%) Controls (%) 

N 628 (47) 699 (53)  1458 (50) 1454 (50) 

Mean Range 94.1 ± 2.5 61.7 ± 6.2  94.5 ± 2.6 61.7 ± 6.2 

Age range 89-103 43-79  88-107 49-83 

 17>100 years   70> 100 years  

Tab. 6.1: sample distribution and general characteristic of the study participants. 

 

 

All the analyzed samples come from European countries and from different 

geographic areas. For example Italy is represented by Bologna, Rome, Sassari and from 

Calabria region. 

It is extremely important for statistical analysis to balance the number of 90+ 

subjects with their matched controls as reported in Table 6.2 and Fig. 6.1. 

 

 

Country Center name No. siblings No. younger controls 

Belfast QUB 64 64 

Belgium UCL 80 88 

Bologna UNIBO 213 214 

Germany CAU 94 96 

Finland  TAMPERE 153 145 

Montpellier CRLC 274 275 

Newcastle  UNEW 99 100 

Denmark SDU 428 441 

Netherland LUMC 162 167 

Poland NENKI 129 132 

Roma ISS 75 75 

Sassari UNISS 47 52 

Ukraina INST GERONT 49 49 

Calabria UNICAL 125 152 

Greece NHRF 94 103 

Total  2,086 2,153 
 

Table 6.2: distribution of samples and their different countries. 
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Fig. 6.1: Graphic distribution of 90+ subjects and controls as reported in Tab.1. 

They are correctedly bilanced. 

 

1.1 Sex distribution of the participants 

As we observed previously, females are more numerous than males, except for 

Greece where more males than females were recruited. The total number of males and 

females divided per country is reported in Tab. 6.3 and in the following figures. 

 

 Sibs Controls 

 Male Female Male Female 

Belfast 16 48 15 49 

Belgium 25 55 26 62 

Bologna 55 158 54 160 

Calabria 41 84 66 86 

Denmark 138 290 141 300 

Finland 40 113 46 99 

Germany 31 63 30 66 

Greece 67 27 72 31 

Montpellier 75 199 77 198 

Netherland 52 110 74 93 

Newcastle 21 78 25 75 

Poland 24 105 26 106 

Roma 25 50 27 48 

Sassari 11 36 12 40 

Ukraina 7 42 8 41 
 

Tab. 6.3: Sex distribution (in %) 
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Fig. 6.2 : Sex distribution in each countries in all 90+ subjects (in %) 

 

 

 

 

Figure 6.3 : Sex distribution in each countries in all control subjects (in %) 
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1.2 Age Distribution 

The following tables (Tab. 6.4 and Tab 6.5) summaries the minimum, median, and 

maximum age of the older siblings and controls, separately for females and males.  

 

 Female Male 

 Min Median Max Min Median Max 

Belfast 89 96.5 104 89 93.5 98 

Belgium 90 95.5 101 91 94 97 

Bologna 90 96 102 91 97 103 

Calabria 90 96 102 91 97 103 

Denmark 90 96.5 103 90 95 100 

Finland 88 95 102 89 96 103 

Germany 91 96.5 102 90 96 102 

Greece 91 99 107 90 96 102 

Montpellier 90 97.5 105 91 95.5 100 

Netherland 90 96 102 91 97 103 

Newcastle 90 96.5 103 91 95.5 100 

Poland 91 96.5 102 91 95 99 

Roma 91 95.5 100 91 95.5 100 

Sassari 91 96 101 91 94.5 98 

Ukraina 92 98 104 92 94.5 97 
 

Tab 6.4: Summary of age-distribution for old siblings by sex and country (age in years) 

 

Fig. 6.4: Age distribution boxplot of female siblings by countries 
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Fig. 6.5: Age distribution boxplot of male siblings by countries 

 

 Female Male 

 Min Median Max Min Median Max 

Belfast 50 62.5 75 56 65 74 

Belgium 50 61.5 73 50 62.5 75 

Bologna 50 62.5 75 51 62 73 

Calabria 50 62.5 75 50 62.5 75 

Denmark 50 66.5 83 43 61 79 

Finland 50 62.5 75 50 61.5 73 

Germany 53 64 75 51 61.5 72 

Greece 50 62.5 75 50 63 76 

Montpellier 50 62 74 50 63 76 

Netherland 50 65 80 51 63.5 76 

Newcastle 50 62.5 75 51 63.5 76 

Poland 49 61 73 49 61.5 74 

Roma 50 61.5 73 52 60.5 69 

Sassari 54 65 76 61 64.5 68 

Ukraina 56 66 76 61 64.5 68 
 

Tab. 6.5: Summary of age-distribution for the controls by sex and country (age in years) 
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Fig. 6.6: Age distribution boxplot of female controls by countries. 

 

Fig. 6.7: Age distribution boxplot of male controls by countries. 

 

The red bars in the figures above indicate the general average age and we can 

observe that, specially among 90+ males, dividing in geographical areas, Bologna, 

Calabria, Rome and Greece (which belong to Mediterranean area) and Germany, Finland 

and Netherland (to the northern areas) have an higher average age than other countries 

and other subjects. 

  

2. Distribution of haplogroups 

Among our total samples (4,239 samples), the hierarchical survey of diagnostic 

markers, present in the coding region, allowed the classification of mtDNA from 90+ and 

controls into more than 40 haplogroups and sub-haplogroups. Most of these are typical 

of modern European population, but a few percentage of East Asian (M1a, D5a), sub-

Saharian African (L1b1) and North American (A4, C1d) mtDNAs has been also detected. 

This latter finding is not so unexpected because in Europe, East Asian and in particular 
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African haplogroups are quite common. We decided to group all the sub-haplogroups 

with frequencies lower than 1.5%, thus reducing the overall number of categories from 

85 (see Tab.1 in the Appendix) to 22 (Tab. 6.6 and Fig. 6.8). 

 

90+ sibpair (n=2,086)  controls (n=2,153) 

sub-haplogroups N % SE  sub-haplogroups N % SE 

H* (1) 402 19.27 0.0086  H* (1) 381 17.70 0.0082 

H1 292 14.00 0.0076  H1 325 15.10 0.0077 

H2 42 2.01 0.0031  H2 23 1.07 0.0022 

H3 71 3.40 0.0040  H3 85 3.95 0.0042 

H5 68 3.26 0.0039  H5 63 2.93 0.0036 

H6 52 2.49 0.0034  H6 47 2.18 0.0031 

HV0* (2) 83 3.98 0.0043  HV0* (2) 68 3.16 0.0038 

HV* 42 2.01 0.0031  HV* 50 2.32 0.0032 

I 46 2.21 0.0032  I 44 2.04 0.0030 

J1 144 6.90 0.0056  J1 153 7.11 0.0055 

J2 39 1.87 0.0030  J2 57 2.65 0.0035 

K1 117 5.61 0.0050  K1 140 6.50 0.0053 

T1 43 2.06 0.0000  T1 53 2.46 0.0033 

T2 174 8.34 0.0061  T2 152 7.06 0.0055 

U (3) 59 2.83 0.0036  U (3) 61 2.83 0.0036 

U2 38 1.82 0.0029  U2 39 1.81 0.0029 

U4 34 1.63 0.0028  U4 48 2.23 0.0032 

U5a 90 4.31 0.0044  U5a 109 5.06 0.0047 

U5b 51 2.44 0.0034  U5b 56 2.60 0.0034 

W 51 2.44 0.0034  W 39 1.81 0.0029 

X 42 2.01 0.0031  X 41 1.90 0.0029 

OTHER (4) 106 5.08 0.0048  OTHER (4) 119 5.53 0.0049 

 

Tab. 6.6: list of sub-haplogroups with the related frequencies and Standard Error (SE). (1) H* includes all 

mtDNAs belonging to H, except those classified as H1, H3, H5 and H6. (2) HV0* includes HV0a, (3) U 

includes U1, U3, U6, U7, U8, (4) OTHER includes K, K2, T, R0, R0a, R1, R2, HV1, HV2, N1a, N1b, N1c,N9a, 

A4, D5, C1d, M1, L1b1, with frequencies lower than 1,5%. 
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Fig. 6.8: Distribution of the most important haplogroups. 

 

No significant difference was found between cases and controls distribution in 

mtDNAs classification. 

Comparing our frequencies with those previously reported in literature Tab. 6.7 

(Richards et al. 2000), we verified that our results correspond with a good 

approximation to the reference values referred to populations. 

 

Haplogroup  90+ subjects  Controls  Reference (*)  

HV   51.7%  48.3%  50.4-54.1%  

 H  44.4%  42.9%  44.5-48.2%  

 V  1.3%  1.5%  3.9-5.4%  

J   8.7%  9.7%  8.3-10.4%  

T   10.6%  9.8%  7.2-9.2%  

U   13.0%  14.5%  20.1-23.2%  

K   6.5%  7.4%  4.9-6.6%  

I   2.2%  2.0%  1.6-2.7%  

W   2.4%  1.8%  1.5-2.5%  
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X   2.0%  1.9%  1.2-2.0%  

(*) Richards et al. 2000    

Tab. 6.7: The table shows the haplogrops’ frequencies compared with those reported by Richards et al. 

2000. 

 

In general, frequencies are similar to those reported in literature except for 

frequencies of V, T and U haplogroups that are more distant from Richards data. In 

particular haplogroup HV resulted to be the most frequent, present in 51.7% 

nonagenarians and 48.3% controls in agreement to previous studies (Torroni et al. 

1996). Haplogroup T has a  higher frequency both in 90+ subjects and controls than in 

reference population, while haplogroups V and U have an opposite trend. Probably, it 

could be due to the fact that we have studied new population previously never explored.  

It is also extremely important to perform analysis data divided for gender. The 

sub-haplogroups, the frequencies, the Standard Error and the comparison between male 

and female are shown in Tab. 6.8 and Tab. 6.9 (and respectively in Fig. 6.9 and Fig. 

6.10). 

 

Males (N = 1327) 

  90+ subjects (N=628)   Controls (N= 699) 

 N % SE  N % SE 

H* (1) 134 21.3 0.0163   135 19.3 0.0149 

H1 75 11.9 0.0129  108 15.5 0.0137 

H2 10 1.6 0.0050   11 1.6 0.0047 

H3 18 2.9 0.0067  16 2.3 0.0057 

H5 24 3.8 0.0077   20 2.9 0.0063 

H6 19 3.0 0.0068  16 2.3 0.0057 

HV0* (2) 24 3.8 0.0077   24 3.4 0.0069 

HV* 14 2.2 0.0059  17 2.4 0.0058 

I 7 1.1 0.0042   13 1.9 0.0051 

J1 40 6.4 0.0097  44 6.3 0.0092 

J2 6 1.0 0.0039   22 3.1 0.0066 

K1 47 7.5 0.0105  46 6.6 0.0094 

T1 11 1.8 0.0052   11 1.6 0.0047 

T2 46 7.3 0.0104  54 7.7 0.0101 

U (3) 21 3.3 0.0072   20 2.9 0.0063 

U2 12 1.9 0.0055  13 1.9 0.0051 

U4 13 2.1 0.0057   13 1.9 0.0051 

U5a 24 3.8 0.0077  30 4.3 0.0077 

U5b 18 2.9 0.0067   17 2.4 0.0058 



 

75 

W 13 2.1 0.0057  16 2.3 0.0057 

X 18 2.9 0.0067   19 2.7 0.0062 

OTHER (4) 34 5.4 0.0090  34 4.9 0.0081 

 
 
Tab. 6.8: frequencies of male mtDNA sub-haplogroups of 628 90+subjects and 699 controls from all 

European countries. SE=Standard Error; Sub-haplogroups with frequencies lower than 1.5% were 

grouped. (1) H* includes all mtDNAs belonging to H, except those classified as H1, H3, H5 and H6. (2) HV0* 

includes HV0a, (3) U includes U1, U3, U6, U7, U8, (4) OTHER includes K, K2, T, R0, R0a, R1, R2, HV1, HV2, 

N1a, N1b, N1c,N9a, A4, D5, C1d, M1, L1b1, with frequencies lower than 1.5%. 

 

 

 
Fig. 6.9: Haplogroup distribution of frequencies in males. 

 

The Pearson chi-squared test has demonstrated that haplogroup distribution in 

males is not significant (X-squared = 22.6211, p-value = 0.6543). 

 

Females (N = 2912) 

  90+ subjects (N= 1458)   Controls (N= 1454) 

 N % SE  N % SE 

H* 268 18.4 0.0101   246 16.9 0.0098 

H1 217 14.9 0.0093  217 14.9 0.0093 

H2 32 2.2 0.0038   12 0.8 0.0024 

H3 53 3.6 0.0049  69 4.7 0.0056 

H5 44 3.0 0.0045   43 3.0 0.0044 

H6 33 2.3 0.0039  31 2.1 0.0038 

HV0* 59 4.0 0.0052   44 3.0 0.0045 

HV* 28 1.9 0.0036  33 2.3 0.0039 

I 39 2.7 0.0042   31 2.1 0.0038 

J1 104 7.1 0.0067  109 7.5 0.0069 

J2 33 2.3 0.0039   35 2.4 0.0040 

K1 70 4.8 0.0056  94 6.5 0.0064 
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T1 32 2.2 0.0038   42 2.9 0.0044 

T2 128 8.8 0.0074  98 6.7 0.0066 

U 38 2.6 0.0042   41 2.8 0.0043 

U2 26 1.8 0.0035  26 1.8 0.0035 

U4 21 1.4 0.0031   35 2.4 0.0040 

U5a 66 4.5 0.0054  79 5.4 0.0059 

U5b 33 2.3 0.0039   39 2.7 0.0042 

W 38 2.6 0.0042  23 1.6 0.0033 

X 24 1.6 0.0033   22 1.5 0.0032 

OTHER 72 4.9 0.0057  85 5.8 0.0062 

 

Tab. 6.9: frequencies of female mtDNA sub-haplogroups in 1458 90+ subjects and 1,454 controls from 11 

European countries. SE=Standard Error; Sub-haplogroups with frequencies lower than 1.5% were grouped. 

H* includes all mtDNAs belonging to haplogroup H, except those further classified (H1, H3, H5 and H6). 

The same rationale has been used for HV0*, U and Other. 

 

 
Fig. 6.10: HaplogroupS’ distribution of frequencies in females. 

 

The Pearson chi-squared test has demonstrated that haplogroup distribution in 

females is slightly statistical significant (X-squared = 39.5362, p-value = 0.04329). Also a 

XY conditioning plot analysis was conducted: thit is a plot of two variables conditional 

on the value of a third variable (called the conditioning variable). The conditioning 

variable may be either a variable that takes on only a few discrete values or a continuous 

variable that is divided into a limited number of subsets. In the graph below (Fig. 6.11) 

it is possible to notice that for both cases and controls the majority of haplogroup 

frequencies are around the 5%, only a few are near 10% and two are more than 15%. 
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Fig. 6.11: a XY conditioning plot divided in Females and Males. On the ordinate there are the haplogroup 

frequencies of 90+ subjects, on the x-axis the controls frequencies (there are 26 dots, each corresponding 

to an haplogroup). On the x-axis the frequency of controls is reported, on the y-axis the frequency of 

siblings. 

 

3. Associations between haplogroups and longevity 

As no difference has been revealed from the distribution between 90+ cases and 

controls even when frequencies were compared separately for gender, we further 

proceeded with statistical analysis performing an association test (Fisher test) between 

cases/controls and gender (Tab. 6.10) for each subhaplogroup (high resolution 

analysis), to identify the potential sub-haplogroup associated with healthy aging and 

longevity.  

Subhaplogroups OR 95% CI 
Fisher exact test 

p value 

H 0.874 0.71 - 1.06 0.1938 

H1 0.695 0.48 - 0.99 0.0427 

H3 1.461 0.63 - 3.38 0.3379 

H5 1.171 0.53 - 2.59 0.7137 

H6 1.114 0.45 - 2.77 0.8357 
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HV 0.971 0.37 - 2.52 1 

HV0* 0.884 0.47 - 1.64 0.7665 

I 0.484 0.08 - 2.45 0.4748 

I1 0.392 0.006 - 6.09 0.6030 

I3 0.367 0.02 - 3.41 0.3707 

J1 0.953 0.55 - 1.62 0.8978 

J2 0.293 0.08 - 0.86 0.0214 

K 0.403 0.060 - 2.31 0.2761 

K1 1.370 0.79 - 2.36 0.2425 

K2 0.102 0.001 - 1.73 0.1026 

N 3 0.078 - 234.45 1 

N1 0.728 0.13 - 3.64 0.7311 

R0 4.156 0.34 - 232.12 0.3333 

T 1.886 0.12 - 37.90 1 

T1 1.309 0.45 - 3.80 0.6303 

T2 0.653 0.39 - 1.07 0.0918 

U1 1.137 0.17 - 7.49 1 

U2 0.924 0.31 - 2.66 1 

U3 2.023 0.28 - 24.13 0.6800 

U4 1.656 0.58 - 4.72 0.3392 

U5 1.060 0.62 - 1.78 0.9000 

U6 3.237 0.29 - 51.96 0.3348 

U8 2.307 0.33 - 17.92 0.4136 

W 0.724 0.20 - 2.53 0.5843 

W5 0.141 0.0014 - 4.93 0.2262 

X 1.570 0.25 - 10.38 0.6951 

X2 0.577 0.17 - 1.87 0.4210 
 

Tab. 6.10: Fisher test (p-value), Odds ratio (OR) and 95% Confidence Intervals (95%CI) for 

subhaplogroups in the entire sample. 

 

In Tab. 6.10 only the principal subhaplogroups are reported, the other are too few 

to give a significative result (for example A4, C, D, L, M, N, R1, R2, U7, U9, W1, W4, W6 

and X1). 

Of all haplogroups, only H1 and J2 resulted significant. 
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Fig. 6.12: distribution of males and females, cases and controls belonging to H1 haplogroup. 

 

Among all males, H1 is more represented in controls than cases, while among 

females the frequency is similar. The p value is slightly significant (p=0.0427) (Fig. 

6.12). 

As regard haplogroup J2,  differences between cases and controls resulted 

significant (p=0.0214). If we take into account gender considering the distribution 

among males shows that more than 80% are cases, as Fig. 6.13 reports, while among 

females the frequency is equally distributed. 

 

 

Fig. 6.13:  distribution of male and female belonging to J2 haplogroup. It is represented with a high 

frequency among male controls. 
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These percentages mean that haplogroup J2 has an higher frequency among male 

controls than cases and that we cannot observe any difference between the cases and 

controls among females. 

 

4. H1 and J2 distribution in countries 

We also analyzed the distribution of H1 and J2 haplogroup in the 11 European 

countries in order to investigate the possible association with one or more countries. By 

applying a Pearson's Chi-squared test to each country in the H1 distribution (Tab. 6.11 

and Fig. 6.14), without taking into account gender, we verified that H1 is significantly 

associated with control  belonging to Greece (p=0.0455), Poland (p=0.01631) and highly 

associated with Newcastle (p=0.00604). But H1 inverts its trend in Belfast, Belgium, 

Montpellier, Finland and Sassari even if they are not significant (being more represented 

in 90+ subjects of different countries than controls). If we stratify for gender, we could 

find that H1 in Greece, Poland and Newcastle, is significantly associated with male 

controls confirming this association (data not reported). 

 

 90+  controls 

 N % SE  N % SE 

Belfast 12 4.1 0.0150  8 2.5 0.0126 

Belgium 17 5.8 0.0178  15 4.6 0.0170 

Bologna 20 6.8 0.0191  29 8.9 0.0231 

Calabria 9 3.1 0.0131  14 4.3 0.0165 

Denmark 75 25.7 0.0331  81 24.9 0.0351 

Finland 25 8.6 0.0212  22 6.8 0.0204 

Germany 13 4.5 0.0156  14 4.3 0.0165 

Greece 4 1.4 0.0088  12 3.7 0.0153 

Montpellier 48 16.4 0.0281  44 13.5 0.0278 

Netherland 19 6.5 0.0187  21 6.5 0.0199 

Newcastle 6 2.1 0.0108  20 6.2 0.0195 

Poland 12 4.1 0.0150  27 8.3 0.0224 

Roma 9 3.1 0.0131  4 1.2 0.0089 

Sassari 16 5.5 0.0173  7 2.2 0.0118 

Ukraina 7 2.4 0.0116  7 2.2 0.0118 
 

Tab. 6.11: distribution of haplogroup H1 in all the 11 countries. The frequencies and the Standard Error 

(SE) are reported. 
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Fig. 6.14: H1 distribution for cases and controls in all countries. 

 

The same rationale has been used for J2 haplogroup distribution (Tab. 6.12 and 

Fig. 6.15) and the same Pearson's Chi-squared test was conducted, showing that J2 is 

associated with male controls belonging to Calabria (p=0.008151) and Greece 

(p=0.02535), which surprisingly represent the South Europe. As the distribution of this 

haplogroup evidences, J2 is not represented among 90+ subjects in Calabria and Greece 

but only among controls subjects. The absence of association of mtDNA haplogroup J 

with longevity in southern Italian population was previously observed (De Benedictis et 

al, 1999 and Dato et al, 2004). 

 90+  controls 

 N % SE  N % SE 

Belfast 1 2.6 0.0120  3 5.3 0.0181 

Belgium 2 5.1 0.0167  2 3.5 0.0149 

Bologna 3 7.7 0.0202  5 8.8 0.0229 

Calabria 0 0.0 0.0000  7 12.3 0.0266 

Denmark 9 23.1 0.0319  12 21.1 0.0331 

Finland 3 7.7 0.0202  5 8.8 0.0229 

Germany 4 10.3 0.0230  1 1.8 0.0106 

Greece 0 0.0 0.0000  5 8.8 0.0229 

Montpellier 4 10.3 0.0230  6 10.5 0.0249 

Netherland 2 5.1 0.0167  4 7.0 0.0207 

Newcastle 2 5.1 0.0167  1 1.8 0.0106 

Poland 3 7.7 0.0202  2 3.5 0.0149 

Roma 1 2.6 0.0120  0 0.0 0.0000 

Sassari 4 10.3 0.0230  3 5.3 0.0181 

Ukraina 1 2.6 0.0120  1 1.8 0.0106 
 

Tab. 6.12: distribution of haplogroup J2 in all the 11 countries. We reported the frequencies and the 

Standard Error (SE). 
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As we can observe from the distribution of J2 in each country, the distribution of 

this subhaplogroup, not considering Calabria and Greece, is nearly balanced (for a total 

of 39 J2 cases and 45 J2 controls), but when considering also these two areas, J2 seems 

to be more prevalent in controls. We conclude that Calabria and Greece determined this 

difference. The frequency in Calabria and Greece is high (respectively 4.6% and 4.8%) 

considering that J2 represents only 2% of the entire distribution (2.6% in controls and 

1.8% in siblings).  

 

 

Fig. 6.15: Distribution of J2 in all the 11 countries adherent to the Project. 

 

Also, if we stratify for gender, we could better appreciate the association between 

J2 and male controls but the number of samples belonging to this haplogroup is not 

enough to conduct exhaustive statistical analysis. 

 

5. How subhaplogroups can influence associations? 

Furthermore, we have studied the distribution of all subhaplogroups of H1 (H1a, 

H1a1, H1a2, H1a3, H1b, H1c, H1c1, H1e, H1f, H1n) in order to verify which 

subhaplogroup, if present, could influence the association (Fig. 6.16). The analysis was 

conducted only taking into account the complete sequences. In fact, simply analyzing the 

Dlopp sequences we are not able to assign the subhaplogroups of H1. Only by 

sequencing the entire sequence we can go more deeply in the analysis. 
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Fig. 6.16: distribution of all H1 subhaplogroups. None of the subhaplogroups resulted significant. 

 

The calculation of p value for all  the subhaplogroups, taking into account 

male/female and case/control, reported no significant data. 

Furthermore, we have studied the distribution of the subhaplogroups J2a and J2b, 

and we observed that only J2a is really significant (X-squared = 5.6958, p-value = 

0.01701) rather than J2b subhaplogroup (X-squared = 1.1722, p-value = 0.2789). If we 

consider the distribution in male and females (Fig. 6.17 and Fig. 6.18), among males 

about 80% are controls, confirming the J2 haplogroup trend. This analysis was 

conducted both on complete sequences and on d-loop sequences. 

 

 
Fig. 6.17: distribution of J2a among gender.  
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This fact suggests that the higher frequency of haplogroup J2 in male controls is 

attributable to an increase in subcluster J2a, rather than to J2b. 

 

 

Fig. 6.18: distribution of J2b among gender. 

 

These data are in contrast with data reported by literature. The fact that J2 has a 

higher frequency in male controls is not supported by previous studies conducted in 

North Italy and in Finland (De Benedictis, 1999, Niemi et al. 2003). Other studies are in 

contrast with the findings of De Benedictis et al. (1999). The study conducted by Ross et 

al. (2001) on Irish failed to show any J haplogroup association with either age and 

gender. We found the association between H1 and male controls, and with a highly 

significance, J2 with male controls. 

It is very interesting to note that in general J2 haplogroup appears to be slightly 

more frequent in 90+ females than in control females, even thought this data is not 

significant. But analyzing J2a and J2b subhaplogroups, we can see an opposite trend: J2a 

seems to be more frequent in cases while J2b in controls. 

 

6. Analysis of quartiles 

A quartile is one of the three values that divide a range of data into four equal 

parts. The first quartile (also defined “lower quartile”) is the number below which lies 

the 25 percent of the bottom data. The second quartile (the 'median') divides the range 

in the middle and has 50 percent of the data below it. The third quartile (also called 

'upper quartile') has 75 percent of the data below it and the top 25 percent of the data 

above it.  



 

85 

We tried to analyze our 90+ subjects samples using quartiles in order to discover 

association never seen. For men, we identified different values: the I quartile is 

represented by samples with age below 92 years, the II quartile by subjects with 92 and 

93 years, the III quartile by samples with 94 and 95 years and the IV quartile by subjects 

with age higher than 96 years (to 103 years). For women, the I quartile groups samples 

with age below 93 years, the II quartile is represented by subjects with 93 years, the III 

quartile by samples with 94 and 95 years (Median value is 94) and the IV quartile by 

subjects with age higher than 96 years (to 107 years). The values of median, lower 

quartile and upper quartile are as follows: 

 

  Male Female 

Median 94 94 

Lower quartile 92 93 

Upper quartile 96 96 
 

We wanted to study the association between J2 and subjects with more than 96 

years (the upper quartile value) and eventually apply the same association study to all 

other haplogroups.  

Firstly we analyzed J haplogroup in a case/control study, taking into account the 

gender. By applying a Fisher exact test, J1 subhaplogroup seems to be no significantly 

associated with this group of subjects (OR=0.78, 95%CI 0.39-1.51, p=0.5337), J2 is again 

significant and associated with male controls (OR=0.24, 95%CI 0.041-0.96, p=0.03302), 

in fact among males, 88% is represented by controls, as Fig. 6.19 shows.  

 

 

Fig. 6.19: distribution of males and females to J2 haplogroup in cases and controls. 88% of males are 

controls. 
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By extending this analysis on this restricted group to all haplogroups in this 

restricted group (over 96 years), also T2 haplogroup resulted significant (OR=0.566, 

95%CI 0.30-1.02, p=0.05) as Fig. 6.20 shows. Among cases, 76% are females while 

males are only 23%. T2 is tendentially more represented in females both cases and 

controls. In T2 subjects younger than 96 years old no significant association is observed. 

Instead, H1 is now not significant (p=0.09).  

 

 

Fig. 6.20: distribution of males and females belonging to T2 haplogroup in cases and controls. 69% of 

males are represented by controls. 

 

 

7. Analysis of mutations in complete sequences 

  

7.1 J2 haplogroup and complete sequencing 

In order to identify whether the association of J2 with longevity could be attributed 

to specific mutations, the complete sequences of Finland and Denmark samples were 

analyzed. The Operative Unit of Bologna has sequenced all mtDNAs from Calabria and 

Greece but J2 is not represented among sibs, while among controls there were only two 

sequences for Greece and one for Calabria, not sufficient for statistical analysis or more 

simply for a comparison. The Chinese Partner has sequenced mtDNAs from Finland and 

Denmark and we have used these data in order to verify whether could exist a mutation 

or mutations more frequent in 90+ subjects than controls or viceversa. In order to assess 

if the J2 background of the patients harboured mutations responsible for the longevity 

phenotype, we investigated the complete sequences of J2 haplogroup subjects 

(compared to controls). The result of the sequence analysis is summarized in Table 



 

87 

6.13. A total of 110 mutated positions relative to the reference sequence of Cambridge 

were detected and analyzed. Overall 23 of the total mutations (underlined and in italics) 

were not previously reported in either MITOMAP (www.mitomap.org) or mtDB 

(www.genpat.uu.se/mtDB) and each mutation was observed only in a single J2 mtDNA. 

Nucleotide 

position 

Locus Nucleotide 

Change 

Aminoacid 

Change 

90+ subjects 

N=12 (%) 

Controls 

N=17 (%) 

73 D-loop (HVSII) A>G  non coding 12 (100) 17 (100) 

146 D-loop (HVSII) T>C  non coding 1 (8,3) 0 (0) 

150 D-loop (HVSII) C>T  non coding 12 (100) 17 (100) 

152 D-loop (HVSII) T>C  non coding 12 (100) 17 (100) 

189 D-loop (HVSII) A>G  non coding 1 (8,3) 3 (17,6) 

195 D-loop (HVSII) T>C  non coding 9 (75) 13 (76,5) 

203 D-loop (HVSII) G>A  non coding 1 (8,3) 0 (0) 

215 D-loop (HVSII) A>G  non coding 9 (75) 12 (70,6) 

295 D-loop (HVSII) C>T  non coding 12 (100) 17 (100) 

319 D-loop (HVSII) T>C  non coding 9 (75) 13 (76,5) 

430 D-loop T>C  non coding 0 (0) 2 (11,8) 

489 D-loop (HVSIII) T>C  non coding 12 (100) 17 (100) 

513 D-loop (HVSIII) G>A  non coding 9 (75) 13 (76,5) 

569 D-loop (HVSIII) C>T  non coding 1 (8,3) 0 (0) 

709 rRNA 12S G>A  - 1 (8,3) 1 (5,9) 

750 rRNA 12S A>G  - 12 (100) 17 (100) 

1438 rRNA 12S A>G  - 12 (100) 17 (100) 

1850 rRNA 16S T>C  - 9 (75) 13 (76,5) 

2706 rRNA 16S A>G  - 12 (100) 17 (100) 

2824 rRNA 16S C>G  - 1 (8,3) 0 (0) 

3447 NADH dehydrogenase subunit 1 A>G  synonymous 4 (33,3) 5 (29,4) 

3915 NADH dehydrogenase subunit 1 G>A  synonymous 1 (8,3) 0 (0) 

3930 NADH dehydrogenase subunit 1 C>T  synonymous 0 (0) 1 (5,9) 

4216 NADH dehydrogenase subunit 1 T>C  Tyr Y > His H 12 (100) 17 (100) 

4232 NADH dehydrogenase subunit 1 T>C  Ile I > Thr T 0 (0) 1 (5,9) 

4769 tRNa isoleucine A>G  - 12 (100) 17 (100) 

5290 NADH dehydrogenase subunit 2 A>G  Asn N > Ser S 0 (0) 1 (5,9) 

5307 NADH dehydrogenase subunit 2 A>G  Thr T > Ala A 0 (0) 1 (5,9) 

5585 - G>A  - 2 (16,7) 0 (0) 

5633 tRNa alanine C>T  - 3 (25) 4 (23,5) 

5936 Cytochrome c oxidase subunit I  C>A  Asn N > Lys K 0 (0) 1 (5,9) 

6019 Cytochrome c oxidase subunit I  C>G  Ala A > Gly G 0 (0) 1 (5,9) 

6020 Cytochrome c oxidase subunit I  C>G  synonymous 0 (0) 1 (5,9) 

6024 Cytochrome c oxidase subunit I  C>A  Leu L > Met M 0 (0) 1 (5,9) 

6025 Cytochrome c oxidase subunit I  T>A  Leu L > Gln Q 0 (0) 1 (5,9) 

6026 Cytochrome c oxidase subunit I  G>A  synonymous 0 (0) 1 (5,9) 

6027 Cytochrome c oxidase subunit I  G>A  Gly G > Ser S 0 (0) 1 (5,9) 

6029 Cytochrome c oxidase subunit I  C>A  synonymous 0 (0) 1 (5,9) 
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6378 Cytochrome c oxidase subunit I  T>C  synonymous 1 (8,3) 0 (0) 

6447 Cytochrome c oxidase subunit I  C>T  Pro P > Ser S 0 (0) 1 (5,9) 

6448 Cytochrome c oxidase subunit I  C>A  Pro P > His H 0 (0) 1 (5,9) 

6731 Cytochrome c oxidase subunit I  T>C  synonymous 1 (8,3) 0 (0) 

7028 Cytochrome c oxidase subunit I  C>T  synonymous 12 (100) 16 (94,1) 

7302 Cytochrome c oxidase subunit I  T>C  synonymous 1 (8,3) 0 (0) 

7476 tRNA serine C>T  - 12 (100) 17 (100) 

7501 tRNA serine T>C  - 2 (16,7) 2 (11,8) 

7690 Cytochrome c oxidase subunit II C>T  synonymous 0 (0) 1 (5,9) 

7789 Cytochrome c oxidase subunit II G>A  synonymous 9 (75) 12 (70,6) 

7960 Cytochrome c oxidase subunit II A>G  synonymous 1 (8,3) 0 (0) 

8245 Cytochrome c oxidase subunit II A>G  synonymous 1 (8,3) 0 (0) 

8860 ATP synthase F0 subunit 6  A>G  Thr T > Ala A 12 (100) 17 (100) 

8904 ATP synthase F0 subunit 6  C>T  synonymous 0 (0) 1 (5,9) 

9145 ATP synthase F0 subunit 6  G>A  Ala A> Thr T 1 (8,3) 0 (0) 

9344 Cytochrome c oxidase subunit III C>T  synonymous 0 (0) 1 (5,9) 

9477 Cytochrome c oxidase subunit III G>A  Val V> Ile I 1 (8,3) 0 (0) 

9788 Cytochrome c oxidase subunit III C>G  synonymous 1 (8,3) 0 (0) 

9791 Cytochrome c oxidase subunit III A>T  synonymous 2 (16,7) 0 (0) 

9856 Cytochrome c oxidase subunit III T>G  Ile I > Ser S 0 (0) 1 (5,9) 

9857 Cytochrome c oxidase subunit III C>G  Ile I > Met M  0 (0) 1 (5,9) 

9861 Cytochrome c oxidase subunit III T>C  Phe F > Leu L 0 (0) 1 (5,9) 

10172 NADH dehydrogenase subunit 3  G>A  synonymous 3 (25) 4 (23,5) 

10237 NADH dehydrogenase subunit 4 T>C  Ile I > Thr T 1 (8,3) 3 (17,6) 

10398 NADH dehydrogenase subunit 5 A>G  Thr T > Ala A 12 (100) 17 (100) 

10448 tRNA arginine T>C  - 1 (8,3) 0 (0) 

10499 NADH dehydrogenase subunit 4L  A>G  synonymous 9 (75) 13 (76,5) 

10801 NADH dehydrogenase subunit 4  G>A  synonymous 0 (0) 1 (5,9) 

10961 NADH dehydrogenase subunit 4  C>T  synonymous 1 (8,3) 0 (0) 

10966 NADH dehydrogenase subunit 4  T>C  synonymous 1 (8,3) 0 (0) 

11251 NADH dehydrogenase subunit 4  A>G  synonymous 12 (100) 17 (100) 

11377 NADH dehydrogenase subunit 4  G>A  synonymous 9 (75) 13 (76,5) 

11719 NADH dehydrogenase subunit 4  G>A  synonymous 12 (100) 17 (100) 

11900 NADH dehydrogenase subunit 4  G>A  Val V > Met M 1 (8,3) 0 (0) 

12528 NADH dehydrogenase subunit 5  G>A  synonymous 12 (100) 17 (100) 

12612 NADH dehydrogenase subunit 5  A>G  synonymous 12 (100) 17 (100) 

13026 NADH dehydrogenase subunit 5  C>T  synonymous 1 (8,3) 0 (0) 

13708 NADH dehydrogenase subunit 5  G>A  Ala A> Thr T 12 (100) 17 (100) 

13722 NADH dehydrogenase subunit 5  A>G  synonymous 9 (75) 13 (76,5) 

14133 NADH dehydrogenase subunit 5  A>G  synonymous 9 (75) 13 (76,5) 

14180 NADH dehydrogenase subunit 6 T>C  synonymous 0 (0) 1 (5,9) 

14194 NADH dehydrogenase subunit 6 C>T  synonymous 1 (8,3) 0 (0) 

14759 cytochrome b C>A  Arg R> Gly G 0 (0) 1 (5,9) 

14766 cytochrome b C>T  Ile I > Thr T 12 (100) 17 (100) 

15014 cytochrome b T>C  Phe F > Leu L 1 (8,3) 0 (0) 

15191 cytochrome b T>C  Leu L > Met M 1 (8,3) 3 (17,6) 

15213 cytochrome b T>C  Ile I > Thr T 0 (0) 1 (5,9) 
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15217 cytochrome b G>A  synonymous 2 (16,7) 0 (0) 

15257 cytochrome b G>A  Asp D > Asn N 12 (100) 17 (100) 

15326 cytochrome b A>G  Thr T > Ala A 12 (100) 17 (100) 

15452 cytochrome b C>A  Leu L > Ile I 12 (100) 17 (100) 

15613 cytochrome b A>G  synonymous 0 (0) 1 (5,9) 

15812 cytochrome b G>A  Val V > Met M 3 (25) 4 (23,5) 

15930 tRNA threonine G>A  - 1 (8,3) 0 (0) 

15983 tRNA proline T>C  - 1 (8,3) 0 (0) 

16037 D-loop A>G  non coding 0 (0) 1 (5,9) 

16069 D-loop (HVS I) C>T  non coding 12 (100) 17 (100) 

16086 D-loop (HVS I) T>C  non coding 1 (8,3) 0 (0) 

16126 D-loop (HVS I) T>C  non coding 12 (100) 17 (100) 

16145 D-loop (HVS I) G>A  non coding 9 (75) 13 (76,5) 

16168 D-loop (HVS I) C>T  non coding 0 (0) 1 (5,9) 

16172 D-loop (HVS I) T>C  non coding 1 (8,3) 3 (17,6) 

16193 D-loop (HVS I) C>T  non coding 3 (25) 4 (23,5) 

16220 D-loop (HVS I) A>G  non coding 0 (0) 1 (5,9) 

16231 D-loop (HVS I) T>C  non coding 9 (75) 13 (76,5) 

16261 D-loop (HVS I) C>T  non coding 9 (75) 13 (76,5) 

16278 D-loop (HVS I) C>T  non coding 3 (25) 3 (17,6) 

16299 D-loop (HVS I) A>G  non coding 0 (0) 1 (5,9) 

16301 D-loop (HVS I) C>T  non coding 1 (8,3) 1 (5,9) 

16311 D-loop (HVS I) T>C  non coding 0 (0) 1 (5,9) 

16355 D-loop (HVS I) C>T  non coding 0 (0) 2 (11,8) 

16519 D-loop T>C  non coding 0 (0) 3 (17,6) 

 

Tab. 6.13: Novel mutation are underlined and in italics, mutations resulting in an amino acid change are 

in bold. 

 

In the table above, we can identify mutations which were previously observed to 

be connected to longevity. In particular T489C, G13708A and A14133G were associated 

to longevity by a study conducted by Bilal et al. (2008) and the mutation A10398G by 

Tanaka et al. (2002), even though they are all characteristic polymorphisms of J2 

haplogroup. 

We also analyzed the novel mutations and we found that there are eight new 

mutation in old subjects (two of them modify the aminoacid) and fifteen are in controls 

(ten of them imply an aminoacid modification) but we haven’t found nothing of 

significative. 

We have tried to compare the number of mutations along mtDNA molecule by 

mtDNA regions (Tab. 6.14) and we found that the accumulation of mutations in the 

Dloop is significantly higher in controls than in cases (p=0.0001). 
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J2 

mtDNA region 
N. mutations in 

90+ 

N. mutations in 

controls 

D-loop 160 235 

ND1 17 24 

ND2 0 2 

ND3 3 4 

ND4L 9 13 

ND4 39 51 

ND5 55 78 

ND6 1 1 

COI 15 26 

COII 11 13 

COIII 4 4 

ATPase6 13 18 

ATPase8 0 0 

cyt b 55 78 

rRNA total 47 65 

tRNA total 32 40 
 

Tab. 6.14: Number of mutations found along the mtDNA molecule regions in 90+ subjects and younger 

controls. 

 

In general, there are more mutation in controls than in 90+ subjects and in 

particular in COI, which is a part of IV complex, even when we consider the frequency of 

mutation in each mitochondrial gene. 

As regard sporadic mutations (showing up in one sample only), they are observed 

in 23 mtDNAs positions in 90+ subjects while they are observed in 30 positions in 

controls subjects. Even though this difference between cases and controls is not 

significant (X-squared = 0.9245, p-value = 0.3363), it is very interesting to notice how 

mutations accumulate in each group. In general, In controls there are much more 

mutations than in nonagenarians (Fig. 6.21). These could mean that there are more 

deleterious mutations wich lead to a further decreasing of the performance. In fact 

controls have 5 non coding mutations, 10 synonymous mutations and 15 aminoacid 

changes. These mutations which change the aminoacid sequence hit NADH 

dehydrogenase subunits (I, II and VI), cytochrome c (subunit I and III) and cytochrome 

b. At the same time we found also among cases some 90+ subjects belonging to J2 

haplogroup. First of all they have different mutations in different positions (ATP 

synthase F0 subunit VI, Cytochrome c oxidase subunit III, NADH dehydrogenase subunit 
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IV and cytochrome b), 4 non coding mutations and 11 synonymous mutations. 

Intringuingly, we notice that 90+ subjects’ mtDNAs have 4 sporadic mutations hitting 

tRNA and rRNA genes, absolutely absent in the control subjects.  

 

 

 

 

 

We verified the significance of this finding by comparing the number of the tRNA + 

rRNA mutations with the number of mutations falling in the remaining of coding region 

(23 in siblings and 30 in controls). The χ2 test showed a strong significance (p=0.017). 

 

Fig.6.21: List of sporadic mutations found in controls and 90+ subjects. For details see the text 

above. 

 

We then analyzed the non-synonymous mutations that affect subjects belonging to 

haplogroup J2, and we observed that the frequency of these mutations (the number of 

mutations in a given complex divided by the total number of only non-synonymous 

mutations) is larger and is statistically significant in the respiratory chain complex IV of 

the control subjects. In the other complexes it appears that the non synonymous 

mutations accumulate more among the nineties, even though there are not significant 

differences. But at what subunits of the respiratory chain the significance is due to? The 

significance is attributable to cytochrome c subunit I, which is significant with a p value 

= 0.0081 (Fig. 6.22). 
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Fig. 6.22: distribution of non synonymous mutations in each gene. ND1, ND2, ND4, ND5 belong to 

complex I, cyt b to complex III, cyt c I and cyt c III to complex IV and ATP6 to complex V. 

 

7.2 T2 haplogroup and complete sequencing 

In order to assess if the T2 background of the patients harboured mutations 

responsible for the longevity phenotype, we investigated the complete sequences of T2 

haplogroup subjects (compared to controls). The same analysis of J2 was performed for 

T2 haplogroup. The result of the sequence analysis are summarized in Tab. 6.15. 

A total of 251 mutated positions relative to the reference sequence of Cambridge 

were detected and analyzed.  Overall 46 of the total mutations (underlined and in italics) 

were not previously reported in either MITOMAP (www.mitomap.org) or mtDB 

(www.genpat.uu.se/mtDB). The majority of mutations were observed in a single mtDNA 

(or in 90+ subjects or in controls). There are other mutations that were detected both in 

90+ and in controls (position 5322, 8492, 9788, 9790, 9791, 10496, 12363, 16236, 

16276), other mutations are present only in 90+ subjects and other in controls (see 

beyond in sporadic mutations). This could explain how the increasing of mutation 

numbers in 90+ subjects is a favourable aspect and it is genetically positive.  

Among all mutations observed in the 86 T2 mtDNA sequences, the mutation in 

position 189 was observed in 17.3% in 90+ subjects and in 2.9% in controls subjects and 

this difference is slightly significant (p=0.046). Also mutation in position 195 was 

observed only in 23.6% of controls subjects (p=0.011) and mutation C150T already 

associated to longevity (Rose et al. 2007) is present only in mtDNAs of 90+ subjects than 
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controls even if it is not resulted significant. Also mutation in position 189 is present in 

eight mtDNAs of sibling and only in one of controls (p=0.01141). All these mutations hit 

the dloop region. There is another mutation in position 3350 (ND1 subunit) which is 

present only in four mtDNAs of 90+ subjects, it does not change an amino acid and hence 

is not considered a candidate mutation even if it could have a functional role.   

Nucleotide 

position 

 
Locus Nucleotide 

Change 

Aminoacid 

Change 

90+ subjects 

N=52 (%) 

Controls 

N=34 (%) 

41 D-loop C>T  non coding 0 (0) 1 (2,9) 

57 D-loop (HVSII) T>C  non coding 1 (1,9) 0 (0) 

61 D-loop (HVSII) C>T  non coding 2 (3,8) 1 (2,9) 

64 D-loop (HVSII) C>T  non coding 1 (1,9) 1 (2,9) 

73 D-loop (HVSII) A>G  non coding 52 (100) 33 (97,0) 

93 D-loop (HVSII) A>G  non coding 1 (1,9) 1 (2,9) 

95 D-loop (HVSII) A>C  non coding 1 (1,9) 1 (2,9) 

146 D-loop (HVSII) T>C  non coding 8 (15,3) 4 (11,8) 

150 D-loop (HVSII) C>T  non coding 3 (5,8) 0 (0) 

151 D-loop (HVSII) C>T  non coding 1 (1,9) 0 (0) 

152 D-loop (HVSII) T>C  non coding 5 (9,6) 8 (23,6) 

153 D-loop (HVSII) A>G  non coding 2 (3,8) 0 (0) 

189 D-loop (HVSII) A>G  non coding 9 (17,3) 1 (2,9) 

195 D-loop (HVSII) T>C  non coding 0 (0) 8 (23,6) 

198 D-loop (HVSII) C>T  non coding 3 (5,8) 1 (2,9) 

204 D-loop (HVSII) T>C  non coding 1 (1,9) 0 (0) 

215 D-loop (HVSII) A>G  non coding 3 (5,8) 1 (2,9) 

225 D-loop (HVSII) G>A  non coding 1 (1,9) 0 (0) 

227 D-loop (HVSII) A>G  non coding 1 (1,9) 0 (0) 

279 D-loop (HVSII) T>C  non coding 4 (7,7) 3 (8,8) 

297 D-loop (HVSII) A>C  non coding 0 (0) 1 (2,9) 

310 D-loop (HVSII) T>C  non coding 0 (0) 1 (2,9) 

316 D-loop (HVSII) G>A  non coding 1 (1,9) 1 (2,9) 

316 D-loop (HVSII) G>C  non coding 1 (1,9) 1 (2,9) 

321 D-loop (HVSII) T>C  non coding 1 (1,9) 0 (0) 

324 D-loop (HVSII) C>G  non coding 0 (0) 1 (2,9) 

330 D-loop (HVSII) C>A  non coding 0 (0) 1 (2,9) 

350 D-loop (HVSII) A>C  non coding 0 (0) 1 (2,9) 

385 D-loop A>G  non coding 1 (1,9) 0 (0) 

389 D-loop G>A  non coding 2 (3,8) 0 (0) 

513 D-loop (HVSIII) G>A  non coding 1 (1,9) 0 (0) 

709 rRNA 12S G>A  - 52 (100) 34 (100) 

750 rRNA 12S A>G  - 52 (100) 34 (100) 

930 rRNA 12S G>A  - 28 (53,8) 14 (41,2) 

1420 rRNA 12S T>C  - 1 (1,9) 0 (0) 

1438 rRNA 12S A>G  - 52 (100) 34 (100) 
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1530 rRNA 12S A>G  - 1 (1,9) 0 (0) 

1625 tRNA valine  A>G  - 1 (1,9) 0 (0) 

1888 rRNA 16S G>A - 52 (100) 34 (100) 

2141 rRNA 16S T>C  - 6 (11,5) 2 (5,9) 

2412 rRNA 16S A>G  - 1 (1,9) 0 (0) 

2706 rRNA 16S A>G  - 52 (100) 34 (100) 

2707 rRNA 16S A>G  - 1 (1,9) 0 (0) 

2780 rRNA 16S C>G  - 1 (1,9) 0 (0) 

2850 rRNA 16S T>C  - 1 (1,9) 3 (8,8) 

3010 rRNA 16S G>A  - 1 (1,9) 0 (0) 

3105 rRNA 16S A>G  - 1 (1,9) 0 (0) 

3335 NADH dehydrogenase subunit 1 T>C  synonymous 1 (1,9) 0 (0) 

3338 NADH dehydrogenase subunit 1 T>C  synonymous 1 (1,9) 1 (2,9) 

3350 NADH dehydrogenase subunit 1 T>C  synonymous 4 (7,7) 0 (0) 

3394 NADH dehydrogenase subunit 1 T>C  Tyr Y> His H 0 (0) 1 (2,9) 

3398 NADH dehydrogenase subunit 1 T>C  Met M > Thr T 1 (1,9) 0 (0) 

3511 NADH dehydrogenase subunit 1 A>G  Thr T > Ala A 1 (1,9) 0 (0) 

3549 NADH dehydrogenase subunit 1 C>T  synonymous 0 (0) 1 (2,9) 

3552 NADH dehydrogenase subunit 1 T>C  synonymous 1 (1,9) 0 (0) 

3633 NADH dehydrogenase subunit 1 T>C  synonymous 0 (0) 1 (2,9) 

3826 NADH dehydrogenase subunit 1 T>C  synonymous 0 (0) 3 (8,8) 

3867 NADH dehydrogenase subunit 1 C>T  synonymous 0 (0) 1 (2,9) 

4216 NADH dehydrogenase subunit 1 T>C  Tyr Y > His H 52 (100) 34 (100) 

4246 NADH dehydrogenase subunit 1 A>C  Ile I > Leu L 1 (1,9) 0 (0) 

4491 NADH dehydrogenase subunit 2 G>A  Val V > Ile I 1 (1,9) 1 (2,9) 

4688 NADH dehydrogenase subunit 2 T>C  synonymous 1 (1,9) 1 (2,9) 

4769 NADH dehydrogenase subunit 2 A>G  synonymous 52 (100) 34 (100) 

4859 NADH dehydrogenase subunit 2 T>C  synonymous 1 (1,9) 1 (2,9) 

4913 NADH dehydrogenase subunit 2 A>C  synonymous 0 (0) 1 (2,9) 

4917 NADH dehydrogenase subunit 2 A>G  Asn N-Asp D 52 (100) 34 (100) 

4924 NADH dehydrogenase subunit 2 G>C  Ser S > Thr T 1 (1,9) 0 (0) 

4961 NADH dehydrogenase subunit 2 A>G  synonymous 1 (1,9) 0 (0) 

5147 NADH dehydrogenase subunit 2 G>A  synonymous 24 (46,1) 13 (38,2) 

5187 NADH dehydrogenase subunit 2 C>T  synonymous 4 (7,7) 3 (8,8) 

5277 NADH dehydrogenase subunit 2 T>C  Phe F > Leu L 2 (3,8) 5 (14,7) 

5319 NADH dehydrogenase subunit 2 A>G  Thr T > Ala A 1 (1,9) 1 (2,9) 

5322 NADH dehydrogenase subunit 2 A>C  synonymous 2 (3,8) 1 (2,9) 

5426 NADH dehydrogenase subunit 2 T>C  synonymous 2 (3,8) 5 (14,7) 

5480 NADH dehydrogenase subunit 2 A>G  Ala A > Thr T 1 (1,9) 0 (0) 

5527 tRNA tryptophan  A>G  - 1 (1,9) 0 (0) 

5567 tRNA tryptophan  T>C  - 0 (0) 1 (2,9) 

5580 - T>C  - 2 (3,8) 0 (0) 

6249 Cytochrome c oxidase subunit I  G>A  Ala A > Thr T 1 (1,9) 0 (0) 

6261 Cytochrome c oxidase subunit I  G>A  Ala A > Thr T 4 (7,7) 3 (8,8) 

6293 Cytochrome c oxidase subunit I  T>C  synonymous 0 (0) 1 (2,9) 

6489 Cytochrome c oxidase subunit I  C>A  Leu L>Ile I 2 (3,8) 5 (14,7) 

6524 Cytochrome c oxidase subunit I  T>C  synonymous 1 (1,9) 0 (0) 
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6899 Cytochrome c oxidase subunit I  G>A  synonymous 1 (1,9) 0 (0) 

7022 Cytochrome c oxidase subunit I  T>C  synonymous 1 (1,9) 3 (8,8) 

7028 Cytochrome c oxidase subunit I  C>T  synonymous 52 (100) 34 (100) 

7041 Cytochrome c oxidase subunit I  G>A  Val V > Ile I 1 (1,9) 0 (0) 

7076 Cytochrome c oxidase subunit I  A>G  synonymous 0 (0) 1 (2,9) 

7100 Cytochrome c oxidase subunit I  A>G  synonymous 1 (1,9) 0 (0) 

7268 Cytochrome c oxidase subunit I  T>C  synonymous 0 (0) 1 (2,9) 

7684 Cytochrome c oxidase subunit II T>C  synonymous 1 (1,9) 0 (0) 

7685 Cytochrome c oxidase subunit II A>G  Ile I > Val V 1 (1,9) 0 (0) 

7853 Cytochrome c oxidase subunit II G>A  Val V > Ile I 1 (1,9) 0 (0) 

7873 Cytochrome c oxidase subunit II C>T  synonymous 4 (7,7) 3 (8,8) 

7891 Cytochrome c oxidase subunit II C>T  synonymous 1 (1,9) 1 (2,9) 

7979 Cytochrome c oxidase subunit II G>A  Asp D > Asp N 0 (0) 1 (2,9) 

8041 Cytochrome c oxidase subunit II A>G  Met M > Val V 1 (1,9) 1 (2,9) 

8256 Cytochrome c oxidase subunit II T>C  Val V > Ala A 2 (3,8) 0 (0) 

8270 - C>T  - 1 (1,9) 0 (0) 

8416 ATP synthase F0 subunit 8  C>T  synonymous 0 (0) 1 (2,9) 

8492 ATP synthase F0 subunit 8  A>G  Lys K > Asp D 1 (1,9) 1 (2,9) 

8572 ATP synthase F0 subunit 8  G>C  synonymous 0 (0) 2 (5,9) 

8697 ATP synthase F0 subunit 6  G>A  synonymous 52 (100) 34 (100) 

8860 ATP synthase F0 subunit 6  A>G  Thr T > Ala A 52 (100) 34 (100) 

8944 ATP synthase F0 subunit 6  A>G  Met M > Val V 1 (1,9) 1 (2,9) 

9053 ATP synthase F0 subunit 6  G>A  Ser S > Asn N 1 (1,9) 0 (0) 

9117 ATP synthase F0 subunit 6  T>C  synonymous 6 (11,5) 2 (5,9) 

9254 Cytochrome c oxidase subunit III A>G  synonymous 6 (11,5) 4 (11,8) 

9719 Cytochrome c oxidase subunit III C>A  synonymous 1 (1,9) 0 (0) 

9788 Cytochrome c oxidase subunit III C>G  synonymous 1 (1,9) 2 (5,9) 

9790 Cytochrome c oxidase subunit III C>T  Ser S > Stop 1 (1,9) 2 (5,9) 

9791 Cytochrome c oxidase subunit III A>T  synonymous 1 (1,9) 2 (5,9) 

9843 Cytochrome c oxidase subunit III A>G  Thr T > Ala A 0 (0) 1 (2,9) 

10000 tRNA glycine  G>T  - 1 (1,9) 0 (0) 

10005 tRNA glycine  A>G  - 1 (1,9) 0 (0) 

10111 NADH dehydrogenase subunit 3  T>A  Met M > Lys K 2 (3,8) 0 (0) 

10116 NADH dehydrogenase subunit 3  A>G  Ile I > Val V 1 (1,9) 0 (0) 

10243 NADH dehydrogenase subunit 3  T>C  Phe F > Ser S 0 (0) 1 (2,9) 

10403 NADH dehydrogenase subunit 3  A>G  synonymous 1 (1,9) 0 (0) 

10463 tRNA arginine T>C  - 52 (100) 34 (100) 

10496 NADH dehydrogenase subunit 4L  A>G  synonymous 1 (1,9) 1 (2,9) 

10559 NADH dehydrogenase subunit 4L  A>G  synonymous 2 (3,8) 0 (0) 

10589 NADH dehydrogenase subunit 4L  G>A  synonymous 1 (1,9) 0 (0) 

10746 NADH dehydrogenase subunit 4L  C>T  synonymous 0 (0) 1 (2,9) 

10750 NADH dehydrogenase subunit 4L  A>G  Asn N > Ser S 2 (3,8) 3 (8,8) 

10822 NADH dehydrogenase subunit 4  C>T  synonymous 4 (7,7) 3 (8,8) 

10876 NADH dehydrogenase subunit 4  A>G  synonymous 0 (0) 1 (2,9) 

10879 NADH dehydrogenase subunit 4 A>C  synonymous 0 (0) 1 (2,9) 

10993 NADH dehydrogenase subunit 4 G>A  synonymous 0 (0) 1 (2,9) 

10997 NADH dehydrogenase subunit 4 A>C  Ser S > Arg R 1 (1,9) 0 (0) 
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11016 NADH dehydrogenase subunit 4 G>A  Ser S > Asn N 0 (0) 1 (2,9) 

11020 NADH dehydrogenase subunit 4 A>G  synonymous 1 (1,9) 0 (0) 

11176 NADH dehydrogenase subunit 4 G>A  synonymous 2 (3,8) 0 (0) 

11251 NADH dehydrogenase subunit 4 A>G  synonymous 52 (100) 34 (100) 

11260 NADH dehydrogenase subunit 4 T>C  synonymous 1 (1,9) 0 (0) 

11290 NADH dehydrogenase subunit 4 A>G  synonymous 1 (1,9) 0 (0) 

11344 NADH dehydrogenase subunit 4 A>G  synonymous 0 (0) 1 (2,9) 

11395 NADH dehydrogenase subunit 4 C>T  synonymous 0 (0) 1 (2,9) 

11719 NADH dehydrogenase subunit 4 G>A  synonymous 52 (100) 34 (100) 

11812 NADH dehydrogenase subunit 4 A>G  synonymous 52 (100) 34 (100) 

11914 NADH dehydrogenase subunit 4 G>A  synonymous 5 (9,6) 3 (8,8) 

11944 NADH dehydrogenase subunit 4 T>C  synonymous 0 (0) 3 (8,8) 

12172 tRNA histidine  A>G  - 0 (0) 2 (5,9) 

12341 NADH dehydrogenase subunit 5  C>T  Thr T > Ile I 2 (3,8) 0 (0) 

12358 NADH dehydrogenase subunit 5  A>G  Thr T > Ala A 1 (1,9) 0 (0) 

12363 NADH dehydrogenase subunit 5 C>T  synonymous 3 (5,8) 2 (5,9) 

12397 NADH dehydrogenase subunit 5 A>G  Thr T > Ala A 1 (1,9) 1 (2,9) 

12408 NADH dehydrogenase subunit 5 T>C  synonymous 1 (1,9) 0 (0) 

12481 NADH dehydrogenase subunit 5 T>A  Phe F > Ile I 1 (1,9) 0 (0) 

12501 NADH dehydrogenase subunit 5 G>A  synonymous 0 (0) 1 (2,9) 

12741 NADH dehydrogenase subunit 5 C>T  synonymous 5 (9,6) 1 (2,9) 

12771 NADH dehydrogenase subunit 5 G>A  synonymous 1 (1,9) 1 (2,9) 

13020 NADH dehydrogenase subunit 5 T>C  synonymous 3 (5,8) 1 (2,9) 

13050 NADH dehydrogenase subunit 5 A>G  synonymous 1 (1,9) 0 (0) 

13105 NADH dehydrogenase subunit 5 A>C  Ile I > Leu L 0 (0) 1 (2,9) 

13359 NADH dehydrogenase subunit 5 G>A  synonymous 0 (0) 1 (2,9) 

13368 NADH dehydrogenase subunit 5 G>A  synonymous 52 (100) 34 (100) 

13692 NADH dehydrogenase subunit 5 C>T  synonymous 1 (1,9) 1 (2,9) 

13722 NADH dehydrogenase subunit 5 A>G  synonymous 2 (3,8) 0 (0) 

13934 NADH dehydrogenase subunit 5 C>T  Thr T > Met M 1 (1,9) 0 (0) 

13965 NADH dehydrogenase subunit 5 T>C  synonymous 11 (21,1) 6 (17,6) 

13966 NADH dehydrogenase subunit 5 A>G  Thr T > Ala A 6 (11,5) 2 (5,9) 

13980 NADH dehydrogenase subunit 5 G>A  synonymous 1 (1,9) 0 (0) 

14097 NADH dehydrogenase subunit 5 C>T  synonymous 1 (1,9) 0 (0) 

14118 NADH dehydrogenase subunit 5 A>G  synonymous 2 (3,8) 1 (2,9) 

14233 NADH dehydrogenase subunit 6 A>G  synonymous 52 (100) 34 (100) 

14587 NADH dehydrogenase subunit 6 A>G  synonymous 1 (1,9) 0 (0) 

14687 NADH dehydrogenase subunit 6 A>G  synonymous 8 (15,3) 5 (14,7) 

14720 tRNA glutamic acid  C>G  - 1 (1,9) 0 (0) 

14722 tRNA glutamic acid  T>G  - 1 (1,9) 0 (0) 

14727 tRNA glutamic acid  T>C  - 2 (3,8) 0 (0) 

14759 cytochrome b C>A  Arg R > Ser S 1 (1,9) 0 (0) 

14762 cytochrome b A>G  Lys K > Glu E 2 (3,8) 0 (0) 

14766 cytochrome b C>T  synonymous 51 (98,1) 34 (100) 

14819 cytochrome b T>C  Ser S > Pro P 1 (1,9) 0 (0) 

14905 cytochrome b G>A  synonymous 52 (100) 34 (100) 

14954 cytochrome b A>G  Thr T > Ala A 0 (0) 1 (2,9) 
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15028 cytochrome b C>A  synonymous 2 (3,8) 5 (14,7) 

15043 cytochrome b G>A  synonymous 2 (3,8) 5 (14,7) 

15110 cytochrome b G>A  Ala A > Thr T 1 (1,9) 1 (2,9) 

15326 cytochrome b A>G  Thr T > Ala A 52 (100) 34 (100) 

15381 cytochrome b C>T  Thr T > Ile I 1 (1,9) 0 (0) 

15452 cytochrome b C>A  Leu L- Ile I  52 (100) 34 (100) 

15479 cytochrome b T>C  Phe F > Leu L 2 (3,8) 0 (0) 

15607 cytochrome b A>G  synonymous 52 (100) 34 (100) 

15608 cytochrome b C>G  Leu L > Val V 0 (0) 1 (2,9) 

15609 cytochrome b T>C  Leu L > Pro P 0 (0) 1 (2,9) 

15610 cytochrome b A>G  synonymous 0 (0) 1 (2,9) 

15758 cytochrome b A>G  Ile I > Val V 2 (3,8) 0 (0) 

15884 cytochrome b G>A  Ala A > Thr T 1 (1,9) 0 (0) 

15928 - G>A  - 52 (100) 34 (100) 

16037 D-loop (HVSI) A>G  non coding 0 (0) 1 (2,9) 

16126 D-loop (HVSI) T>C  non coding 52 (100) 34 (100) 

16129 D-loop (HVSI) G>A  non coding 1 (1,9) 0 (0) 

16140 D-loop (HVSI) T>C  non coding 1 (1,9) 0 (0) 

16153 D-loop (HVSI) G>A  non coding 1 (1,9) 0 (0) 

16172 D-loop (HVSI) T>C  non coding 5 (9,6) 3 (8,8) 

16182 D-loop (HVSI) A>C  non coding 2 (3,8) 5 (14,7) 

16183 D-loop (HVSI) A>C  non coding 3 (5,8) 6 (17,6) 

16184 D-loop (HVSI) C>T  non coding 0 (0) 1 (2,9) 

16189 D-loop (HVSI) T>C  non coding 7 (13,4) 7 (20,6) 

16194 D-loop (HVSI) A>C  non coding 1 (1,9) 0 (0) 

16195 D-loop (HVSI) T>G  non coding 0 (0) 1 (2,9) 

16197 D-loop (HVSI) C>G  non coding 1 (1,9) 0 (0) 

16201 D-loop (HVSI) C>A  non coding 1 (1,9) 0 (0) 

16204 D-loop (HVSI) G>A  non coding 1 (1,9) 0 (0) 

16205 D-loop (HVSI) C>A  non coding 1 (1,9) 0 (0) 

16208 D-loop (HVSI) G>A  non coding 1 (1,9) 0 (0) 

16209 D-loop (HVSI) T>A  non coding 1 (1,9) 0 (0) 

16211 D-loop (HVSI) C>A  non coding 1 (1,9) 0 (0) 

16213 D-loop (HVSI) G>A  non coding 1 (1,9) 0 (0) 

16214 D-loop (HVSI) C>A  non coding 1 (1,9) 1 (2,9) 

16218 D-loop (HVSI) C>A  non coding 0 (0) 1 (2,9) 

16224 D-loop (HVSI) T>C  non coding 1 (1,9) 0 (0) 

16228 D-loop (HVSI) C>A  non coding 0 (0) 1 (2,9) 

16228 D-loop (HVSI) C>T  non coding 1 (1,9) 0 (0) 

16232 D-loop (HVSI) C>A  non coding 1 (1,9) 0 (0) 

16234 D-loop (HVSI) C>A  non coding 0 (0) 1 (2,9) 

16236 D-loop (HVSI) C>A  non coding 1 (1,9) 1 (2,9) 

16245 D-loop (HVSI) C>G  non coding 2 (3,8) 1 (2,9) 

16245 D-loop (HVSI) C>T  non coding 2 (3,8) 1 (2,9) 

16247 D-loop (HVSI) A>G  non coding 1 (1,9) 0 (0) 

16255 D-loop (HVSI) G>A  non coding 1 (1,9) 0 (0) 

16258 D-loop (HVSI) A>C  non coding 1 (1,9) 1 (2,9) 
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16261 D-loop (HVSI) C>T  non coding 1 (1,9) 0 (0) 

16263 D-loop (HVSI) T>C  non coding 2 (3,8) 0 (0) 

16265 D-loop (HVSI) A>C  non coding 1 (1,9) 1 (2,9) 

16266 D-loop (HVSI) C>T  non coding 1 (1,9) 0 (0) 

16269 D-loop (HVSI) A>C  non coding 1 (1,9) 1 (2,9) 

16276 D-loop (HVSI) T>A  non coding 1 (1,9) 1 (2,9) 

16282 D-loop (HVSI) C>A  non coding 1 (1,9) 1 (2,9) 

16291 D-loop (HVSI) C>T  non coding 0 (0) 1 (2,9) 

16292 D-loop (HVSI) C>T  non coding 5 (9,6) 4 (11,8) 

16294 D-loop (HVSI) C>T  non coding 52 (100) 34 (100) 

16295 D-loop (HVSI) C>T  non coding 0 (0) 1 (2,9) 

16296 D-loop (HVSI) C>T  non coding 33 (63,5) 20 (58,8) 

16297 D-loop (HVSI) T>C  non coding 0 (0) 1 (2,9) 

16298 D-loop (HVSI) T>C  non coding 2 (3,8) 5 (14,7) 

16299 D-loop (HVSI) A>G  non coding 1 (1,9) 1 (2,9) 

16304 D-loop (HVSI) T>C  non coding 27 (51,9) 14 (41,2) 

16308 D-loop (HVSI) T>A  non coding 0 (0) 1 (2,9) 

16310 D-loop (HVSI) G>T  non coding 0 (0) 1 (2,9) 

16311 D-loop (HVSI) T>C  non coding 1 (1,9) 0 (0) 

16313 D-loop (HVSI) C>A  non coding 0 (0) 1 (2,9) 

16315 D-loop (HVSI) T>A  non coding 0 (0) 1 (2,9) 

16320 D-loop (HVSI) C>T  non coding 2 (3,8) 0 (0) 

16322 D-loop (HVSI) A>T  non coding 0 (0) 1 (2,9) 

16324 D-loop (HVSI) T>C  non coding 7 (13,4) 3 (8,8) 

16368 D-loop T>C  non coding 1 (1,9) 0 (0) 

16519 D-loop T>C  non coding 45 (86,5) 30 (88,2) 

 

Tab. 6.15: Novel mutation are underlined and in italics, mutations resulting in an amino acid change are 

in bold. 

 

We noticed that among all mutations listed in the above Tab.6.15, some of them 

were previously associated with longevity. In particular the mutation G3010A was 

connected to longevity by Tanaka et al (2002) an Bilal et al. (2008), such as for 

G15043A, G16129A and T16297C. They are all sporadic mutation present only in 90+ 

subjects except for the mutation T16297C, present in one control sequence. 

We also tried to compare the number of mutations along mtDNA molecule by 

mtDNA regions (Tab. 6.16) and we did not find any statistical significant result. The 

complete re-sequencing of the 86 mtDNAs belonging to T2 revealed that 90+ subjects 

showed a trend towards a higher number of mutations in all genes when compared with 

controls. But if we consider the total number of mutations, the frequency of mutations in 

each region is higher in controls than in our cases. 

 



 

99 

T2 

mtDNA 

region N. mutations in 90+ N. mutations in controls 

D-loop 380 258 

ND1 62 42 

ND2 121 87 

ND3 4 1 

ND4L 6 5 

ND4 171 117 

ND5 96 53 

ND6 61 39 

COI 64 48 

COII 11 6 

COIII 10 11 

ATPase6 112 71 

ATPase8 1 4 

cyt b 274 151 

rRNA total 302 189 

tRNA total 60 37 
Tab. 6.16: Number of mutations found along the mtDNA molecule regions in 90+ subjects and younger 

controls. 

 

Subsequently, we searched for groups of singleton mutations falling in specific 

mtDNA regions that may be associated with longevity. They are observed in 79 mtDNAs 

positions in 90+ subjects while they are observed in 47 positions in controls subjects. 

This difference between cases and controls is strongly significant (X-squared = 8.127, df 

= 1, p-value = 0.004361) and it is very interesting to notice how mutations accumulate in 

each group. In general, taking into account simply absolut numbers it appears that 

mutations seem to accumulate much more in cases than in controls, but if frequency is 

considered, the trend is opposite. In other words, mutations accumulate with higher 

frequency in controls than in cases, reflecting the same pathway of J2 haplogroup 

mutations. As figure 6.23 shows, 29 non coding mutations, 18 synonymous mutations 

and 19 mutations which cause the aminoacid changes accumulate in 90+ subjects, 

whereas 20 non coding mutations, 17 synonymous mutations and 9 mutations changing 

the sequence of aminoacids accumulate in controls. As for the analysis of entire 

sequences resulting J2, also here we assist to a high accumulations of mutations in tRNA 

and rRNA genes in 90+ subjects. 
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Fig.6.23: List of sporadic mutations found in controls and 90+ subjects. For details see the text 

above. 

 

We found that 13 sporadic mutations (single occurrences) were present in tRNA 

and rRNA genes from 90+ subjects mtDNAs and only one sporadic mutation in controls. 

 

SPORADIC MUTATIONS 

 90+ controls 

tRNA 6 1 

rRNA 7 0 

   

 

We verified the significance of this finding by comparing the number of the 

tRNA+rRNA mutations with the number of mutations falling in the remaining of coding 

region (79 in siblings and 47 in controls). The χ2 test showed a strong significance 

(p=0.014). 

Finally, we have investigated the non-synonymous mutations that affect persons 

belonging haplogroup T2, and we discovered that the frequency of these mutations, as 

well as already performed for J2, is larger, but not significant, in the respiratory chain 

complex IV of the control subjects. Also in this haplogroup frequency of non-

synonymous mutations in other genes seem to accumulate more in the nineties. In 

particular, once again there are more mutations in genes cyt c I and cyt c III but nothing 

is statistically significant (Fig. 6.24). 
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Fig. 6.24: distribution of non synonymous mutations in each gene. ND1, ND2, ND3, ND4, ND4L and ND5 

belong to the complex I, cyt b to complex III, cyt c I, II and III to complex IV and ATP6 and ATP8 to complex 

V. 

 

8. Cluster analysis 

Cluster analysis or clustering (introduced by Robert Tryon in 1939) or group 

analysis, is the assignment of a set of observations into subsets (called clusters) so that 

observations in the same cluster are similar in some sense. All the clustering techniques 

calculate the distance between two elements based on Euclidean distance, or more 

simply the geometric distance in the multidimensional space. The good quality of 

analysis depends on how the distance is calculated. Clustering algorithms group 

together elements on the strength of their mutual distance, thus depends on how much 

the element is distant from the set. 

We have applied this cluster analysis to our samples taking into account all 

subhaplogroups frequency distribution in different geographic areas (Fig. 6.25). To 

justify the countries aggregations, it has been conducted a similarity study among 

countries and parameters were haplogroups frequencies in cases and controls. 
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Fig. 6.25: Cluster analysis of all 15 geographic areas. On the left the first group includes Italian regions 

and Central Europe, on the right the second group includes North European countries, and the unexpected 

Greece. 

 

More precisely, this aggregation has been built recording for each nation 

differences among frequencies related to cases and controls for all the haplogroups, 

except for N1, OTHER and R0A because too less numerous. 

The analysis resulted in the two groups of samples, using a Chi-squared test to try 

out the significativity of cases/controls vs. haplogroups. In detail, we have obtained the 

following results. The first group includes Sassari, all Italian regions (Calabria, Bologna 

and Roma) and Central Europe countries (Denmark, Germany, Montpellier and 

Belgium). Sassari is the only geographic area that distance itself from the others, 

Bologna and Roma on one hand and Denmark and Montpellier on the other hand result 

similar. The distribution of this first group results significative (X-squared = 17.6093, p-

value = 0.01386). 

The only anomaly in the distribution of the second group is Greece which is 

thought to be more associated to Mediterranean countries (in particular to Calabria, 

representative of the South Europe) than to North European countries. Also in this case 

the distribution is statistically significative (X-squared = 19.513, p-value = 0.006723). In 
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order to conduct the same cluster analysis, we have forced the analysis by dividing the 

11 countries into three  groups, each representative of a single geographic area, as 

follows: 

1. Finland 

2. Europe: Denmark, Belfast, Newcastle, Netherland, Belgium, Germany, France, 

Poland, Ukraine 

3. Mediterraneo: Bologna, Roma, Calabria, Sassari, Greece. 

We decided to set Finland alone on the basis of a study conducted by Perola in 

2008 on GEHA nuclear data. According to this study, Finland may distance itself from the 

other countries, as Fig. 6.26: 

 

 
 

Fig. 6.26: PCA analysis on the 15 geographic areas (11 countries adherent to the Project) on the nuclear 

DNA. As we immediately notice Finland distance itself from other countries (red squared), while Greece is 

similar to Calabria, Sassari, Rome and Bologna (in the left side of the figure). We do not know the 

parameters used. 

 

Then, we have obtained a matrix of distances in which value change from 0 (maximum 

similarity) to 1 (no similarity). 

 Finland  Europe Mediterranean area 

Finland 0.000 0.083 0.115 

Europe 0.083 0.000 0.030 

Mediterranean area 0.115 0.030 0.000 
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As we expected, Finland is the country with the maximum divergence rate (red 

value) and whose haplogroup distribution differ from the rest of the analyzed countries. 

The Mediterranean area (included Greece) is deeply divergent from Finland (value 

in orange), while the rest of Europe has an intermediate trend between Finland and 

Mediterranean area. 

 

9. MDS – Multidimensional scaling 

Multidimensional scaling (MDS) allows to explain observed similarities or 

dissimilarities (distances) between the investigated objects, by analyzing any kind of 

similarity or dissimilarity matrix, in addition to correlation matrices.  In order to 

compare the distribution of haplotype variability in our samples and to confirm the 

genetic similarity between Finland and Greece,  we calculated the genetic distances. 

Distance matrix was represented with not metric MDS using MASS library of R. 

Fig. 6.27 reports the distribution of all countries in controls subjects. We report 

only controls distribution because the high number of samples is more statistically 

significant than 90+ subjects. 

All the dissimilarities were calculated using Hellinger distance, which is used to 

quantify the similarity between two probability distributions and it is defined in term of  

the “Hellinger integral”. It considers the relative frequencies of control haplogroups 

related to the two compared countries. 

We can notice that all countries are well distributed in a homogeneous cluster. All 

the Northern countries are in the middle of the graph, near among them. Belfast samples 

seems to be more different than other countries because it shows a high grade of 

isolation, such as Finland. In this MDS, again Greece is the nearest country to Finland, 

confirming our similarity between these two countries. 
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Fig. 6.27: MDS constructed on the basis of distance matrix of all our controls subjects belonging to all 

European areas. 

 

10. Network of J haplogroup 

The overall phylogenetic network, based on 281 J haplogroup females (137 sibs 

and 144 controls), 112 J haplogroup males (46 sibs and 66 controls) and their 

corresponding haplotypes is shown in Fig. 6.28 (females) and Fig. 6.31 (males). In 

order to analyze the different haplotype distribution among nations, a median-joining 

network was also constructed for the HVS-I and HVS-II sequence data (16080-300 

segment region) of all samples resulted J.  

Each node and solid edge could be labeled, but even with a small font the labels 

may detract from the overall presentation. Above on the left the legend has been 

reported.  

A phylogenetic network for the variation scored in the 393 haplogroup J mtDNAs is 

shown. 
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Figure 6.28: The J phylogenetic network (unlabelled) of all sibs and controls females. Circles are 

proportional to lineage frequencies. The red circle is the median vector 8, which connects the two 

phylogenetic branch of J2a and J2b. The area of each circle is proportional to the number of mtDNAs in the 

total sample harboring the corresponding haplotype. Lines represent one mutational step and red dots 

are hypothetical missing intermediates (median vectors). 

 

The node corresponding to mv3 (median vector3 in red, Fig. 6.28) has been 

evidenced to emphasize that it is the point at which the network connects the two 

phylogenetic branch of J2a and J2b. In particular J2 is characterize by 150 and 152 

mutations, J2a is defined by polymorphisms 195, 215, 16145, 16231 and 16261, J2b by 

16193. With the red line under mutations in Fig. 6.29, there are typical polimorphisms 

of J. With the blue circle we indicate the median vector 9, which really divides J2a from 

J2b (also visible and clear in Fig. 6.30). 
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Fig. 6.29: The J phylogenetic network (unlabelled) of all sibs and controls females. Circles are 

proportional to lineage frequencies. The red circle is the median vector 3, which represent the start point 

of J haplogroup. The blue circle indicates the median vector 8, which divides J2a from J2b branch. The red 

lines under mutations are  ancient polymorphisms typical of haplogroup J. The area of each circle is 

proportional to the number of mtDNAs in the total sample harboring the corresponding haplotype. Lines 

represent one mutational step and red dots are hypothetical missing intermediates. 

 

 

Fig. 6.30: J2 haplogroup branch and typical polymorphisms. 

 

There are several obvious features of the phylogenetic network for the haplogroup. 

One of the most apparent is the subgroups J1 and J2 dominating the haplogroup. In 

female network (Fig. 6.28) subhaplogroup J2a, J2b and J1b take the form of star-like 
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clusters, whereas J1c do not exhibit the pattern of a dominant central node with more 

than one node, radiating out from it. The star-like shape of network indicates population 

expansion. 

The network analysis has allowed us not only to revise and correct wrong 

haplogroups but also to collocate samples, whose haplogroup were general, in specific 

cluster (in our case, samples defined as J1 were collocated by Network in J1b 

subcluster). Another striking aspect of the network is that it is not a tree, but instead it 

contains many cycles or reticulations. A closer inspection of the edges in the network 

reveals that several of these cycles contain edges that correspond to mutations at 

nucleotide 228, typical of J1c.  

As regard male network (Fig. 6.31), we observed that only J2a and J1b have a star-

like cluster, J1c has different central nodes, as in females network, while J2b do not 

present a specific cluster. It is interesting to notice that in J2b cluster different cycles are 

present and in particular the most recurring mutation is 16261, representative of this 

haplogroup. 

 

 

Fig. 6.31: The J phylogenetic network (unlabelled) of all sibs and controls males. Circles are proportional 

to lineage frequencies. The area of each circle is proportional to the number of mtDNAs in the total sample 

harboring the corresponding haplotype. Lines represent one mutational step and red dots are 

hypothetical missing intermediates. 
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The node corresponding to mv10 (median vector10, Fig. 6.32) has been evidenced 

to emphasize that it is the point at which the network connects the two phylogenetic 

branch of J2a and J2b. As for female network, J2 is characterized by 150 and 152 

mutations, J2a is defined in this case by polymorphisms 195, 16145 and 16261, J2b by 

16193. With the red line under mutations, there are typical polimorphisms of J.  

 

 

Fig. 6.32: The J phylogenetic network (unlabelled) of males. Circles are proportional to lineage 

frequencies. The red circle is the median vector 10, which connects the two phylogenetic branch of J2a and 

J2b. The red lines under mutations are  ancient polymorphisms typical of haplogroup J.The area of each 

circle is proportional to the number of mtDNAs in the total sample harboring the corresponding 

haplotype. Lines represent one mutational step and red dots are hypothetical missing intermediates. 

 

We have also tried to focus on geographical distribution in J network, in order to 

evidence a particular trend of Finland in females and males (Fig. 6.33 and Fig. 6.34). 

The distribution of countries haplotypes in the European-wide minimum 

spanning-network suggests multiple independent colonization events. Multiple 

unrelated founding events is one possible explanation for this pattern. In particular 

Finland seems to localize in the external branches, suggesting the fact that Finland is an 
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isolated country both in females and male networks. Instead Denmark is represented 

with higher frequency more than other countries in J2a and J1c in both gender. The star-

like shape of the European-wide haplotype network strongly suggest sudden expansion. 

 

 

Fig. 6.33: The geographic representation of J females. Circles are proportional to lineage 

frequencies. 

 
 

Fig. 6.34: The geographic representation of J males. Circles are proportional to lineage frequencies. 
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Chapter 6 

 

DISCUSSION 

 

Much evidence has accumulated on the association between mitochondrial DNA 

and the aging process. It is known that somatic mutations accumulate with aging 

suggesting a possible pathophysiology role for mtDNA in aging and senescence. On the 

other hand, several data demonstrate that the inherited mtDNA variability plays a role in 

longevity. 

The present study is part of the European Project GEHA – GEnetic of Healthy Aging 

– whose the most important aim is to identify genes involved in healthy aging and 

longevity, which allows individuals to reach advanced old age in good cognitive and 

physical conditions, without the major age-related diseases.  The GEHA Project 

represents the strongest and the most competitive consortium ever realized in Europe 

to investigate genetic bases of human aging process, capable of reaching results that is 

impossible to obtain in a single European country. The aim of the Project GEHA is to 

identify genes involved in healthy aging and longevity, allowing individuals to survive to 

advanced old age in good cognitive and physical function and in the absence of major 

age-related diseases, such as type II diabetes, neurodegenerative diseases, 

cardiovascular diseases and osteoporosis. 

In the present study, we investigate the association of haplogroups, mitochondrial 

polymorphisms and mutation with longevity.  

 

1. Haplogroups and association with male controls 

In this study it has been applied a high resolution analysis, through the complete 

sequencing, the D-loop region sequencing and the restriction analysis of specific 

markers in the coding region of mtDNA. We determined and analyzed the haplogroup of 

a large cohort of 90+ subjects (N=2,086) and controls (N=2158) comparable for 

ethnicity and sex from 11 European countries, adherent to the GEHA Project and we 

wanted to test whether the analysis of mtDNA haplogroups is able to reveal any 

association between mtDNA inherited variability and longevity. The approach was a 
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comparative analysis between mtDNA of healthy 90+ subjects and younger controls 

matched for sex and geographic area, avoiding possible bias related to a founder effect 

or population heterogeneity. 

From a descriptive analysis, we can observe that recruited females are in general 

more numerous than males in all countries except for Greece where the number of 

males is incredibly higher than females, both in cases and controls. We can say that the 

distribution is balanced among recruitment centre. The approach was a comparative 

analysis between our cases (90+ subjects) and the younger controls, matched for sex 

and geographic area. 

Then we wanted to test whether the analysis of mtDNA haplogroups is able to 

reveal any association between mtDNA inherited variability and longevity.  

The mitochondrial theory of aging proposes that the accumulation of mutations in 

mtDNA, caused by ROS (Reactive Species of Oxygen), is the mayor contributor to the 

cellular deterioration, leading to the aging process (Kowald and Kirkwood, 2000). 

Consistent with this theory is the enormous number of data in literature identifying 

mutations occurring with age. The fact that there is a possibility to inherit mtDNA 

polymorphisms which may predispose certain individuals to become nonagenarians or 

centenarians is supported by some studies. In fact the question of whether unusual 

longevity is linked to certain genetic markers has sparked much interest and resulted in 

a sizeable literature. From an evolutionary view, if there is a clear genetic component to 

longevity, and if longevity benefits fitness, long-lived individuals should have an 

evolutionary advantage, and their genes should be expected to become more frequent in 

a population across several generations. 

Previous reviews (Madrigal et al, 2008; Capri et al, 2006) on candidate genes, 

which may result in unusual longevity, conclude that there is a consistent association 

between longevity and some apolipoprotein genes, genes involved in stress-response, 

and mtDNA. Of these, mitochondrial DNA has been the most frequently researched 

system. The hypothesis that longevity is associated with advantageous mtDNA markers 

has been tested mainly in individuals with unusual longevity, taken to mean individuals 

who live over 90 years of age (although a few studies focus on centenarians). 

Specifically, three mutations (mt5178A, mt8414T, mt3010A) were found in 

significantly higher frequencies in Japanese centenarians (Tanaka et al, 1998; Alexe et al, 

2007), while another variant (mt9055A) was found to be significantly more frequent in 

French centenarians (Ivanova et al, 1998).  
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Other studies have shown that centenarians from Northern Italy have a 

significantly different frequency of the J haplogroup than do younger controls (20 vs. 

about 2%) (De Benedictis et al, 1999). A higher frequency of the J haplogroup and a 

significantly high frequency of three mtDNA polymorphisms (150T, 489C, 10398G) has 

also been reported in Finnish long-lived subjects (Niemi et al, 2003). 

Lastly, other studies report a significantly higher frequency of the 150T mutation 

in aged individuals in comparison with younger subjects in Finnish (Niemi et al, 2003), 

Japanese (Zhang et al, 2003) and Italian subjects (De Benedictis et al, 1999), although 

this association was not replicated by a study with Ashkenazi Jews (Shlush et al, 2008 ), 

who is a homogeneous population, due to a strong founder effect, followed by a rapid 

population expansions and characterized by high levels of consanguinity and endogamy.  

  The fact that both Finnish as well as the northern Italian study found an 

association of longevity, with the same mtDNA haplogroup J, certainly motivates further 

investigation. Several of these associations were not replicated in other studies (Iwata et 

al, 2007, Castri et al, 2009) suggesting that the association between mitochondrial DNA 

variants and longevity could be population-dependent (Dato et al, 2003). In this regard, 

Dominguez-Garrido et al (2009) found that J2 was overrepresented in elderly people in 

Pyrenees but not in people coming from the Ebro’s Valley in Spain and they discovered 

that the former population have a lower mtDNA damage. It means that environmental 

condition can have a phenotypic survival advantage or disadvantage on population in 

study, demonstrating that the geographical altitude (Pyrenees Mountains), causing a 

lower oxygen pressure, determines lesser ROS production and reduces levels of mtDNA 

damage than in Valley one.  

Our data demonstrates that there is not an increased frequency of haplogroup J 

within the aged population. In fact, in contrast to the findings of De Benedictis et al. who 

found that the J haplogroup was significantly associated with male centenarians of 

northern Italy, our study failed to show this association, even though we found that H1 

and J2 significantly increased in the control males, thus representing a risk factor.  

Among all males, H1 is more represented in controls than cases (p=0.0427), while 

among females the frequency is the same. As regard J2 haplogroup, it is resulted 

significant (p=0.0214). If we take into account gender considering the distribution 

among males, more than 80% are cases, as Fig.16 reports, while among females the 

frequency is equally distributed. These percentages mean that haplogroup J2 has an 
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higher frequency among male controls than cases and that J2 is not associated with 

female gender. 

Furthermore, we have studied the distribution of H1 and J2 subhaplogroups in 

order to verify which subhaplogroup, if present, could influence the association. We 

studied H1 subhaplogroups (H1a, H1a1, H1a2, H1a3, H1b, H1c, H1c1, H1e, H1f, H1n) but 

we found no significant data. What about J2, we have studied the distribution of the 

subhaplogroups J2a and J2b, and we observed that only J2a is highly significant (p-value 

= 0.01701) rather than J2b subhaplogroup (p-value = 0.2789) and in particular among 

males about 80% are controls, confirming the J2 haplogroup trend. This fact suggests 

that the higher frequency of haplogroup J2 in male controls is attributable to an increase 

in subcluster J2a, rather than to J2b. 

As these results demonstrates, it is very important to conduct a high resolution 

analysis by stratifying in subhaplogroups and for gender. For example, haplogroup H, 

the most common in Europe with a frequency of  30%-50%, is divided in numerous 

subhaplogroups, whose frequency is geographic-specific. Such a diversity could explain 

how differences in European countries are effectively noticed in association studies. 

Also, the strategy to collect subhaplogroups phylogenetically related, could be statistical 

informative, but not sufficiently biological exhaustive. 

Therefore, we investigated the relationship between haplogroups and aging 

through the analysis of age quartile, which has directed us to study subjects with an age 

superior to 96 years. For men, we identified 94 years as median, 92 years is the lower 

quartile value and 96 years is the upper quartile value. For women, we identified 94 

years as median, 93 years is the lower quartile value and 96 years is the upper quartile 

value. We decided to analyze the association between haplogroups and all 96+ years old 

subjects.  

Firstly we verified the association of this group of individuals with J2 haplogroup. 

By applying a Fisher exact test, J1 seems to be no significantly associated with this group 

of subjects (p=0.5337), J2 is again significant and associated with male controls 

(p=0.03302), in fact among males, 88% is represented by controls.  

Secondly, we calculated the significance for all subhaplogroups and also T2 

haplogroup resulted slightly significant (p=0.05). T2 is more represented in male 

controls than females even though it is tendentially over-represented in females either 

cases and controls. In T2 subjects younger than 96 years old no significant association 

was observed. Instead, H1 is now not significant (p=0.09).  
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This finding is almost expected because in the overall phylogenetic tree, 

haplogroup T is closest to haplogroup J, which is characterised by the HVR1 motif 

16069–16126 (Torroni et al. 1994; Richards et al. 1996) as well as coding region 

mutations at 4216, 10398, 11251, 12612, 13708, and 15452 (Torroni et al. 1994; 

Macaulay et al. 1999; Finnilä and Majamaa 2001). When considering HVR1 mutations, it 

is therefore the additional mutation at 16294 that defines haplogroup T, whereas 

haplogroup J is distinguished by the mutation at 16069. 

As we can see from these data, age is a strong limit and this interaction suggests 

that age 96, corresponding to upper quartile of our samples, could be considered as a 

threshold. These data allowed us to identify the subgroup of 90+ subjects (older than 96 

years of age) where J2 and T2 haplogroup has a stronger effect. 

 

2. Analysis of H1 and J2 in all European countries  

Therefore, we analyzed the distribution of H1 and J2 haplogroup in the 11 

European countries in order to discover, where it is possible, an association with one or 

more countries. By applying a Pearson's Chi-squared test to each country in the H1 

distribution, without taking into account gender, we verified that H1 is significantly 

associated with control  belonging to Greece (p=0.0455), Poland (p=0.01631) and highly 

associated with Newcastle (p=0.00604). But H1 inverts its trend in Belfast, Belgium, 

Montpellier, Finland and Sassari (being more represented in 90+ subjects of different 

countries than controls) even if they are not significant. If we stratify for gender, we 

could find that H1 is significantly associated with male controls confirming this 

association (data not reported). 

The same analysis has been used for J2 haplogroup distribution showing that J2 is 

associated with male controls belonging to Calabria (p=0.008151) and Greece 

(p=0.02535), which surprisingly represent the South Europe. As the distribution of this 

haplogroup evidences, J2 is not represented among 90+ subjects in Calabria and Greece 

but only among controls subjects. Even discarding Calabria and Greece, the distribution 

of J2 haplogroup is nearly balanced (for a total of 39 J2 cases and 45 J2 controls), but 

when considering these two areas, J2 seems to be more prevalent in controls. We 

conclude that Calabria and Greece determined this difference. The frequency in Calabria 

and Greece is high (respectively 4.6% and 4.8%) considering that J2 represents only 2% 

of the entire distribution (2.6% in controls and 1.8% in siblings). 
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The absence of association of mtDNA haplogroup J with longevity in southern 

Italian population (in Calabria) was in keeping with a study on southern Italian 

population (Dato et al. 2004) which revealed the absence of association of mtDNA 

haplogroup J with longevity in a southern Italian population. After that this association 

has been reported in three independent studies in northern Europeans, suggesting that 

the influence of mtDNA variability on longevity is population specific. Sequencing of 

HVS-I in Italian centenarians and controls has not revealed any clustering into a specific 

haplotype within haplogroup J (Rose et al. 2001). These data suggest that the association 

between mtDNA variants and longevity could be highly geographically or population 

dependent, as could be seen from other genetic studies on longevity (Franceschi et al. 

2005).  

Similarly, in the Japanese population, the C5178A transversion (characteristic of 

haplogroup D), was reported to be associated with longevity, being more frequent in 

centenarians than in a control group of younger subjects. But the same study confirmed 

an absence of association of haplogroup D with southern Chinese. This is likely to be due 

to the absence of old persons in the Chinese sample (the maximum age was 75 years 

old), but it is true that an association between haplogroup D and longevity exists and is 

specific of the Japanese population and thus absent in the Chinese group. 

 

3. The analysis of complete sequences 

Most of the pathological mtDNA mutations identified so far were probably the 

easiest to evidence at first, but according to many,they are only the most extreme 

fraction of a much larger group mutations that although "natural" are not necessarily 

"neutral". In recent years, for many other diseases and phenotypes, which lack a clear 

pattern of transmission, has been postulated a role for sequence variation in the 

"natural" sequence of the mtDNA and it was assumed that the "natural "forms of mtDNA, 

which can be very different from each other because of the high evolutionary rate of 

mtDNA, may modulate the expression not only of pathological mtDNA mutations, but 

also of nuclear genotypes. It is generally accepted that mtDNAs should be entirely 

sequenced. It is believed, in fact, that the entire sequence can hide non-functional 

polymorphisms that may be associated with a particular character and whose D-loop 

sequencing data does not give enough clarification on SNPs that characterize the 

genomic sequence. 
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The entire sequence also allows to identify all the polymorphisms, searching those 

really functional, and to identify any new mutations that may play a role in longevity and 

aging. 

Finally, the entire sequence, although much more expensive and laborious, allow a 

better resolution of haplogroups’ phylogeographic trees, which were widely 

documented (Torroni et al, 2006).  

In order to assess whether J2 and T2 haplogroups harboured mutations involved 

in longevity, we investigated the complete mtDNA sequences of our J2 and T2 subjects 

among complete sequences. Since J2 and T2 are not present among 90+ subjects of 

Greece and Calabria, we cannot analyze them. We focused on the complete sequences of 

Denmark and Finland, sequenced by Chinese Partner, and more numerous than our 

samples. We did not find any particular mutation in J2, while in T2 we found some 

mutated position hitting the control region. In particular the mutation A189G is 

observed in 17.3% of siblings and in 2.9% controls and this difference is slightly 

statistically significant (p=0.046). It has been reported that CR mutation A189G 

accumulates with age in skeletal muscle (Wang et al. 2001, Zhang et al. 2003) and is 

germline transmitted polymorphism associated with specific mtDNA haplogroups (in 

this case with haplogroup T). Thus, it appears that each tissue may accumulate its own 

unique somatic mtDNA CR mutations with age, but some of these same variants might 

also be inherited. 

Two additional mtDNA CR mutations has been detected, T195C and C150T. The 

first was observed only in mtDNAs controls in a percentage of 23.6% (p=0.011), the 

second is present only in mtDNAs of 90+ subjects and not in controls even if this 

distribution is not significant. The story of C150T is a bit complicated; it accumulates 

with age in skin fibroblasts, but is also present in the blood cell lymphocytes of 

centenarians and twins. Rose et al. (2007) reported the association of the C150T 

mutation with centenarians (and in particular the high level of heteroplasmy) 

suggesting to the authors that the C150T imparts resistance to stress and thus promotes 

longevity. Yet, this mutation has also been reported to be an inherited polymorphism in 

some instances. 

We have compared the number of mutations along mtDNA molecule by mtDNA 

regions for J2 and T2 haplogroups. We found that the percentage of mutations in the D-

loop of subjects resulted in J2 is significantly higher in controls than in cases (p=0.0001). 

In almost all regions, mutations seem to be more numerous in controls than cases. In 
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particular, ND1 and ND2 show a slightly higher percentage of mutation in controls than 

in cases, as well as the COI region shows a similar trend (4.29% vs controls. 3.50% in 

cases). While for T2 the frequency of mutation accumulation in each region is quite 

similar both in cases and controls. As for J2, we do not notice any significant difference 

between cases and controls in the regions of ND1 and ND2, while the percentage of 

mutations in the COI is higher (3.99% vs. 3.0%), once again, in controls than in cases. 

These data are not statistically significant but a trend that favors mutations in controls 

compared to cases is clear.  

ND1 is thought that, if hit by mutations, it is able to bypass the “obstacle” or 

preventing the onset of OXPHOS itself, or using other mechanisms. The situation is quite 

different for the COI, which belongs to complex IV. If the COI is affected by many 

mutations, it is unable to cope with this situation and to bypass the site of damage. The 

OXPHOS crashes and this leads to an event even more dangerous with further 

accumulation of ROS. 

In addition we found that sporadic mutations are more numerous in controls than 

in cases both in J2 and T2. As regard J2 complete sequences, 23 sporadic mutations are 

observed in in 90+ subjects while 30 in controls. This fact could mean that there are 

more deleterious mutations which could lead to a further decreasing of the performance 

in a very negative way. Controls have 5 non coding mutations, 9 synonymou mutations 

and 16 amminoacid changes. But we have found that there are 90+ subjects belonging to 

J2 haplogroup. Why? We investigated tha mutations which lead to amminoacid change 

and we discovered that they hit different genes. Intringuingly, we notice that 90+ 

subjects’ mtDNAs have 4 sporadic mutations hitting tRNA and rRNA genes, totally 

absent in the control subjects. We already know that J2 haplogroup is characterized by a 

low OXPHOS performance and by a low ROS production as a consequence, as previously 

anticipated, and we hypotize that these mutations in tRNA and rRNAs could lead to a 

further decreasing of ROS production. This advantageous situation could compense the 

disadvantageous effect of J2. We investigated the accumulation of non-synonymous 

mutations both in nonagenarians and control subjects and we discovered that there is 

an higher number of these mutations in controls than in nonagenarians in complex IV 

and in particular in cyt c subunitI. The same was observed for T2 even though this data 

is not significant. 

As regard T2 sporadic mutations’ accumulation, we found the same trend as seen 

in J2. A number of 13 sporadic mutations tRNA plus rRNA genes from 90+ subjects 
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mtDNAs and only one sporadic mutation in controls. The same mechanisms can be 

hypotized for T2 haplogroup. 

So the complete re-sequencing revealed that 90+ subjects showed a trend towards 

a higher number of sporadic mutations in tRNA and rRNA genes when compared with 

controls. 

 

4. Final consideration on the association study 

We have found an association between H1, J2 and T2 haplogroups and male 

controls.  

Each of the mtDNA haplogroups is determined by a few ancient polymorphism, 

even though they harbour a great number of other nucleotide variants. Polymorphisms 

in mtDNA may be mildly deleterious, causing a subtle decrease in OXPHOS activity and 

an increase in the frequency of somatic mtDNA mutations. The differences in mtDNA 

haplogroup frequencies between the present 90+ group subjects and the controls 

suggest either a contribution from mildly deleterious polymorphisms that shorten the 

life span in the younger age groups or from advantageous polymorphisms that lengthen 

the life span in the elderly. Our data appear to favour the presence of disadvantageous 

polymorphisms and support a role for mitochondria and mtDNA in the degenerative 

processes involved in ageing. 

It has been proposed that J haplogroup represents a paradox (Rose et al, 2001) 

because it is associated with longevity on one hand, but on the other hand it shows 

similar characteristic to that found in association with several complex diseases, for 

example the Leber Hereditary Optic Neuropathy (LHON). In fact, it has been found that 

haplogroup J seems to boost the effect of mutations causing this disease and thus 

contributing to optic neuritis in multiple sclerosis patients. Indeed, a relationship 

between OXPHOS performance and haplogroups exists. 

Haplogroup J seems to have a border line status because a low OXPHOS 

performance could lead to a reducing in the production of ROS (through an increase in 

detoxifying enzymes, due to nuclear genes). In this way, a low OXPHOS performance 

may not necessarily be detrimental  for the cell. On the other hand, this situation could 

put the cell in a vulnerable situation where a further single mutation (for example 11778 

in LHON) would be even more damaging (see paragraph 8 of Chapter 2).  
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Intriguingly, haplogroup T shows a significantly less efficient OXPHOS respect to H 

(Ruiz-Pesini et al, 2000). Also the mutations defining the haplogroup J hit particularly 

the complex I protein subunits and partly share with haplogroup T.  

It seems that there is a strong similarity between these two haplogroups, in fact we 

found that both are significantly associated with male controls. 

But why were these phenomena not observed in females? Different findings 

support the difference in gene/aging  association studies in males and females (Ivanova 

et al 1998). Longevity is a multifactorial trait in which a phenotypic effect of a gene 

depends on the physiological background where the gene is expressed. The effect of 

mtDNA variability on successful aging could vary between sexes, since males and 

females have a different physiological aspect. It is known that life expectancy is 

significantly higher in females than in males for a gender effect and probably for this 

reason we have found the association of J2, as risk factor, with male controls. 

Another question is: why have not we found J2 represented in Southern Europe? 

The mitochondrial genome is highly variable and a continent-specific haplogroup may 

include mtDNA mutations that only occur in a specific ethnic group. Also genetic and 

environmental background can influence the effect of mtDNA mutations on a complex 

trait, such as longevity. It is extremely important to remember that the mtDNA 

haplogroup J, which is believed to have entered Europe about 10 000 years ago from the 

Near East, is characterized by a low efficiency of oxidative phosphorylation. This may 

favors the onset of either complex diseases or longevity, according to the genetic 

background of the carriers. It has been proposed that a low efficiency of oxidative 

phosphorylation leads to a waste of heat which represents an advantage in the cold 

climate of northern Europe; on turn, the cold climate of northern Europe seems to have 

favored the accumulation of further mutations emphasizing this feature of the J 

molecules. Therefore, the population-specific association of mtDNA haplogroup J with 

longevity may be due to population-specific genetic backgrounds, to particular 

interactions between haplogroup J and different environments, and/or to diversity of 

the J molecules between northern and southern European populations. In this regard, it 

is important to continue to have rapid and cheap genetic markers, such as haplogroups, 

to test the role of mtDNA on longevity in various populations from various geographical 

areas. For example, the Mt5178A mutation found in Japanese centenarians (Tanaka et al, 

2000) and postulated to decelerate the accumulation of mtDNA mutations in somatic 

cells with advancing age, is included in the M haplogroup, but virtually absent in Europe. 
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Similarly, it is important to point out that any specific nucleotide, or haplogroup 

defining, mtDNA polymorphism associated with aging, may not directly involved but 

simply acting as a marker for other tightly linked polymorphisms occurring elsewhere in 

the mtDNA genome that directly could affect longevity. 

 

5. The cluster analysis and MDS analysis 

In this thesis, we have also conducted a cluster analysis on the differences of all 

haplogroups frequencies in all countries. In general the calculation of cluster analysis is 

based on the distance between two elements based on Euclidean distance, or more 

simply the geometric distance in the multidimensional space. The good quality of 

analysis depends on how the distance is calculated.  

More precisely, this aggregation has been built recording for each nation 

differences among frequencies related to cases and controls for all the haplogroups, 

except for N1, OTHER and R0A because too less numerous. The cluster analysis 

evidenced two groups, both statistical significative: one including all Calabria, Bologna, 

Roma and Sassari belonging to Italy, Germany, Montpellier and Belgium belonging to 

Central Europe and Denmark (p=0.01386), the second including all the northern 

European countries plus Greece, which might have been collocated in the first group, 

near to Calabria and Mediterranean area (p-value=0.006723). 

Perola et al. (2008, data not yet published) conducted the same analysis on the 

nuclear genome of GEHA samples and found that Finland may distance itself from the 

other countries. On the basis of this result, we decided to force our analysis by grouping 

countries into three clusters: Finland, Europe (including Denmark, Belfast, Newcastle, 

Netherland, Belgium, Germany, France, Poland, Ukraine) and Mediterranean area 

(Bologna, Roma, Calabria, Sassari, Greece). As expected, Finland is the country with the 

maximum divergence rate, it means that its overall haplogroup distributions deeply 

differ from that of the rest of countries. The same result was obtained by conducting a 

MDS  (Multidimensional scaling) analysis. Again Finland is isolated from other countries, 

while all the Northern countries are in the middle of the graph, near among them. Also 

Mediterranean area countries are close by each other. Greece is one more time the 

nearest country to Finland.  

Why Finland is so isolated? It is known that geographical and cultural isolation has 

greatly shaped Finnish gene pool towards homogeneity, as can be seen for example in 

certain recessive diseases which are infrequent elsewhere (Norio et al. 1973). The 
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oldest settlement in Finland dates back approximately 9,000 years and a second wave of 

settlers arrived in the southern parts of Finland around 5,500 years ago. Permanent 

settlement extended across southern Finland and along the coast and riversides of 

Ostrobothnia in the 16th century (Norio et al. 1973). About 40% of the Finns belong to 

haplogroup H, which is the most common haplogroup in Europe but rare among Asians 

(Torroni et al. 1996, Richards et al. 1998). Also haplogroup U (16-28%), J (4.5-14%), W 

(4.1-9.2%) and T (2.5-6.1%) are frequent among Finns. The remaining European 

haplogroups, I, K, V and X, are less common, as in other parts of Europe, each with 

frequency below 5.5% in both studies.  

This means that Finland has different haplogroup frequencies from other 

European countries, for examples, haplogroup J in Finland has a frequency of 8%, in Italy 

about 2%.  

From the cluster analysis and MDS analysis we have noticed that the nearest 

country to Finland was Greece. Why? There are not scientific evidences or literature 

supporting this similarity, but an emerging theory could explain it. About the historical 

studious Felice Vinci, the Achaeans would have lived in the early II millennium B.C. on 

the Baltic coast and in the middle of the millennium, following a tightening of the 

climate, as identified in this age by paleoclimatology, they would have moved southward 

along the Dnepr river reaching the Black Sea and the Aegean. The newcomers have 

founded the Mycenaean City and they would have given to the new places the same 

names of northern cities, but they are not fully responsive to their original geographical 

location, due to differences in conformation of the two regions. The main argument is 

represented by inconsistencies detected by Vinci between the geography described by 

Homer in his Iliad and Odyssey and the conformation on the Mediterranean lands, 

already noticed by Strabo. Also the climate description in Homeric poems would better 

adapt to Baltic region rather than Mediterranean. 

This is only a theory since we have no scientific support to our observation. 

 

6. The network analysis 

The haplogroup J network based on sequence variation in the control region could 

be divided into two subclusters that confirmed the subdivision proposed previously 

(Torroni et al. 1997). 

The overall phylogenetic network was based on 281 J haplogroup females (137 

sibs and 144 controls) and 112 J haplogroup males (46 sibs and 66 controls). In order to 
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analyze the different haplotype distribution among nations, a median-joining network 

was also constructed for the HVS-I and HVS-II sequence data (16080-300 segment 

region) of all J samples. We have individuate the median vectors in female and male 

network representing a branch point between J2a and J2b. In particular in female 

network we have identified the median vector 3 from which we found the ancient 

polymorphisms 150 and 152, then the median vector 9 which divides J2a from J2b. J2a is 

defined by polymorphisms 195, 215, 16145, 16231 and 16261, J2b by 16193. In male 

network we see that median vector 10 is responsible of the division between J2a and 

J2b.  As for female network, J2 is characterize by 150 and 152 mutations, J2a is defined 

in this case by polymorphisms 195, 16145 and 16261, J2b by 16193. 

There are several obvious features of the phylogenetic network for the haplogroup 

J. In female network subhaplogroup J2a, J2b and J1b take the form of star-like clusters, 

whereas J1c do not exhibit the pattern of a dominant central node with more than one 

node, radiating out from it. The star-like shape of network indicates population 

expansion. 

As regard male network (figure 28), we observed that only J2a and J1b have a star-

like cluster, J1c has different central nodes, as in females network, while J2b do not 

present a specific cluster. It is interesting to notice that in J2b cluster different cycles are 

present and in particular the most recurring mutation is 16261, representative of this 

haplogroup. 

Another striking aspect of these networks is that there are areas with a form 

different from tree branch, rather they contain reticulations. This kind of conformation 

is more frequent in males than in females, in fact a closer inspection of the edges in the 

male network reveals that several of these cycles contain edges that correspond to 

mutations at nucleotide 228, typical of J1c.  

At the end, we tried to focus on geographical distribution of J haplogroup in all the 

European countries, members of the European Project GEHA. We cannot observe any 

particular distribution; we only can this nation, as previously reported (Finnila et al. 

2000). 
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Chapter 7 

 

CONCLUSIONS 

 

It can be concluded that the studies of associations between haplogroups and 

longevity or healthy aging is still an open field of research. 

The development of high-throughput genotyping technologies has greatly 

increased the feasibility of comprehensive associatin studies of the mitochondrial 

genome. 

Stratifing by sex, significant differences were found between controls and 90+ 

subjects and we found the association of J2 with males controls. Even when we consider 

the age and particularly subjects with an age over 96 years, in addition to J2, whose 

significance was confirmed,  T2 was significant. 

In general, we can confirm that the association of J2 is population dependent and 

that the population-specific association of mtDNA haplogroup J with longevity may be 

due to population-specific genetic backgrounds, to particular interactions between 

haplogroup J and different environments, and/or to diversity of the J molecules between 

northern and southern European populations. 

These observation were possible because the number of recruited samples were 

too high that it allowed to obtain sufficient data for statistical analysis; this is defined as 

the power of GEHA. 

We also analyzed the entire sequences in oder to understand if there were any 

particular mutations in the coding region which can justify such associations. In fact, 

from this analysis we observed a higher percentage of mutations in controls compared 

with sibs, which could have a negative role and could justify the association of J2 with 

the controls as a risk factor. The fact that a higher percentage of mutations in tRNA and 

rRNA accumulate only in sibs, might have a beneficial effect on them. 

Finally, the GEHA project has planned the collection of phenotypic data of each 

patient (BMI, handgrip, cognitive and functional Activities, hypercholesterolemia, 

diseases, etc. ..). It would be interesting to stratify for these data because there could be a 

hidden association between haplogroups and a particular phenotype. 
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APPENDIX 

 
 
TBE 5X (TRIS BORATO EDTA) 1L 

 

54 gr TRIS BASE 

27,5 gr boric acid 

20 ml  EDTA 0,5X pH=8 

 

TBE 0,5X 1L 

100 ml TBE 5X 

900 ml distilled H2O  

 

AGAROSE GEL 1,5% IN TBE 0.5X 250 ML 

 

250 ml TBE 0,5X 

3,75 gr agarose 1.5% 

12,5 ml Ethidium Bromide (5 μl in 100 ml) 

 

EDTA 

 

P.M.=372.24 g/mol 

A final volume of 50 ml at concentration 125 mM: 

Moles=0.125M·0.050 l= 0.00625 moles 

Grams: 0.00625·372.24=2.33g 

 

NaAc 

 

P.M.=82.03 g/moli 

A final concetration of 3M pH=4.6. 

Moles= 3M·0.2 l=0.6 moles 

Grams= 0.6 moli·82.03 g/moles=49.218g 



 

126 

 

90+ sibpair (n=2,086)   controls (n=2,153) 

sub-haplogroups N % SE  sub-haplogroups N % SE 

H* 366 17,55 0,0083   H* 357 16,58 0,0080 

H1 292 14,00 0,0076  H1 325 15,10 0,0077 

H2 42 2,01 0,0031   H2 23 1,07 0,0022 

H3 71 3,40 0,0040  H3 85 3,95 0,0042 

H4 5 0,24 0,0011   H4 9 0,42 0,0014 

H5 68 3,26 0,0039  H5 63 2,93 0,0036 

H6 52 2,49 0,0034   H6 47 2,18 0,0031 

H7 18 0,86 0,0020  H7 10 0,46 0,0015 

H8 4 0,19 0,0010   H8 0 0,00 0,0000 

H9 9 0,43 0,0014  H9 5 0,23 0,0010 

HV0a 13 0,62 0,0017   HV0a 6 0,28 0,0011 

HV0* 70 3,36 0,0039  HV0* 62 2,88 0,0036 

HV1 4 0,19 0,0010   HV1 5 0,23 0,0010 

HV2 1 0,05 0,0005  HV2 0 0,00 0,0000 

HV* 42 2,01 0,0031   HV* 50 2,32 0,0032 

V 27 1,29 0,0025  V 33 1,53 0,0026 

I 25 1,20 0,0024   I 21 0,98 0,0021 

I1 9 0,43 0,0014  I1 12 0,56 0,0016 

I3 12 0,58 0,0017   I3 11 0,51 0,0015 

J1 9 0,43 0,0014  J1 8 0,37 0,0013 

J1b 25 1,20 0,0024   J1b 27 1,25 0,0024 

J1c 109 5,23 0,0049  J1c 117 5,43 0,0049 

J1d 1 0,05 0,0005   J1d 1 0,05 0,0005 

J2 2 0,10 0,0007  J2 7 0,33 0,0012 

J2a 25 1,20 0,0024   J2a 32 1,49 0,0026 

J2b 12 0,58 0,0017  J2b 18 0,84 0,0020 

K 13 0,62 0,0017   K 15 0,70 0,0018 

K1 13 0,62 0,0017  K1 12 0,56 0,0016 

K1a 79 3,79 0,0042   K1a 91 4,23 0,0043 

K1b 0 0,00 0,0000  K1b 1 0,05 0,0005 

K1c 25 1,20 0,0024   K1c 36 1,67 0,0028 

K2 7 0,34 0,0013  K2 6 0,28 0,0011 

N1a 8 0,38 0,0014   N1a 5 0,23 0,0010 

N1b 12 0,58 0,0017  N1b 15 0,70 0,0018 

N1c 2 0,10 0,0007   N1c 3 0,14 0,0008 

N9a 2 0,10 0,0007  N9a 1 0,05 0,0005 

R0 3 0,14 0,0008   R0 3 0,14 0,0008 

R0a 12 0,58 0,0017  R0a 10 0,46 0,0015 

R1a 1 0,05 0,0005   R1a 1 0,05 0,0005 

R2 0 0,00 0,0000  R2 4 0,19 0,0009 

T 6 0,29 0,0012   T 6 0,28 0,0011 

T1 4 0,19 0,0010  T1 5 0,23 0,0010 

T1a 38 1,82 0,0029   T1a 44 2,04 0,0030 
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T1b 1 0,05 0,0005  T1b 4 0,19 0,0009 

T2 50 2,40 0,0033   T2 44 2,04 0,0030 

T2a 7 0,34 0,0013  T2a 2 0,09 0,0007 

T2b 104 4,99 0,0048   T2b 94 4,37 0,0044 

T2c 7 0,34 0,0013  T2c 5 0,23 0,0010 

T2e 6 0,29 0,0012   T2e 6 0,28 0,0011 

T2f 0 0,00 0,0000  T2f 1 0,05 0,0005 

U 2 0,10 0,0007   U 4 0,19 0,0009 

U1 4 0,19 0,0010  U1 3 0,14 0,0008 

U1a 4 0,19 0,0010   U1a 11 0,51 0,0015 

U1b 2 0,10 0,0007  U1b 0 0,00 0,0000 

U1c 0 0,00 0,0000   U1c 1 0,05 0,0005 

U2 13 0,62 0,0017  U2 13 0,60 0,0017 

U2d 1 0,05 0,0005   U2d 0 0,00 0,0000 

U2e 24 1,15 0,0023  U2e 26 1,21 0,0024 

U3 11 0,53 0,0016   U3 5 0,23 0,0010 

U3a 11 0,53 0,0016  U3a 7 0,33 0,0012 

U3b 0 0,00 0,0000   U3b 1 0,05 0,0005 

U4 14 0,67 0,0018  U4 21 0,98 0,0021 

U4a 15 0,72 0,0018   U4a 17 0,79 0,0019 

U4b 5 0,24 0,0011  U4b 10 0,46 0,0015 

U5 0 0,00 0,0000   U5 3 0,14 0,0008 

U5a 90 4,31 0,0044  U5a 109 5,06 0,0047 

U5b 51 2,44 0,0034   U5b 56 2,60 0,0034 

U6a 6 0,29 0,0012  U6a 11 0,51 0,0015 

U7 7 0,34 0,0013   U7 3 0,14 0,0008 

U8 3 0,14 0,0008  U8 3 0,14 0,0008 

U8a 4 0,19 0,0010   U8a 1 0,05 0,0005 

U8b 4 0,19 0,0010  U8b 8 0,37 0,0013 

U9 1 0,05 0,0005   U9 0 0,00 0,0000 

W 29 1,39 0,0026  W 26 1,21 0,0024 

W1 1 0,05 0,0005   W1 1 0,05 0,0005 

W4 13 0,62 0,0017  W4 1 0,05 0,0005 

W5 6 0,29 0,0012   W5 3 0,14 0,0008 

W6 2 0,10 0,0007  W6 8 0,37 0,0013 

X 12 0,58 0,0017   X 13 0,60 0,0017 

X1 0 0,00 0,0000  X1 2 0,09 0,0007 

X2 11 0,53 0,0016   X2 6 0,28 0,0011 

X2a 2 0,10 0,0007  X2a 0 0,00 0,0000 

X2b 15 0,72 0,0018   X2b 12 0,56 0,0016 

X2c 2 0,10 0,0007  X2c 8 0,37 0,0013 

OTHER 8 0,38 0,0014   OTHER 12 0,56 0,0016 
Tab. 1: Frequencies of all mtDNA sub-haplogroups in 2,086 90+ sibpairs and 2,153 controls from all over 

Europe.  
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Fig. 1: Graphical distribution of all 90+ and controls subhaplogroups. 
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