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Introduction

There are more things in heaven and earth, Horatio,

than are dreamt of in your philosophy.

- W. Shakespeare, Hamlet, act 1, scene 5 -

- L. van Beethoven, Symphony no. 5, Allegro con brio -

GACTGCTTGCATTAAAGGACTTCCTCATC...

- Human DNA, chromosome X, gene ODZ1 -

When William Shakespeare wrote his masterpieces, he certainly didn’t
think that, one day, someone would refer to them as productions; for sure,

while typing on his piano keybord, Ludwig van Beethoven didn’t consider
himself as an information source; and if we think of the sequence of bases in

a gene, our first idea will not be to look for patterns so as to be able to give
a shorter description of its structure.

The relationship between information theory and the real world is not

immediate, and the risk of confusing the reader is always present. Neverthe-
less, a large number of situations in our lives fit into this scheme: someone

or something “produces” an output, that can be represented as a sequence of
symbols extracted from some finite set; even if we do not know the details

of the source, we can reconstruct its properties by looking at the sequence
it generated, by extracting as much information as it is possible to deduce
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ii Introduction

from its content, structure, etc.

Let us go back to Shakespeare’s example: we have few details about his

biography, and nevertheless when we read Macbeth or Hamlet we acquire
a lot of information about his beliefs, his wit, his idiosyncrasies, his use of

words, etc. All of these elements can be included in the single, comprehensive
concept of style. And if the normal path for the detection of an author’s

style is the study of his bioghaphical and historical background, together
with an accurate (human!) reading of his writings, there are a number of

properties that can be detected by using automatic or semi-automatic tools.
This is exactly the object of research on automatic information extraction

from symbolic sequences, a very wide and lively field of information theory,
with a quite solid mathematical background and a number of contaminations

with other fields of research, as the theory of dynamical systems.

Since most of the information in the world can be represented in terms
of symbolic sequences (cf. [13]), the methods and models of information

extraction can be applied to a number of cases. Among others, and with no
pretension of completeness, we add to the already cited problem of authorship

attribution a large variety of text classification tasks (by genre, by topic,
...), the automatic extraction of keywords from long compositions [49, 50]

and, stepping away from written texts, the identification of musical pieces
from short and noisy excerpts, a number of biological sequence classification

problems [8, 20, 52], and the list could be much longer.

Some of the techniques that are used in literature for these and other

similar tasks exploit as much as possible the particular structure of the se-
quences that are the object of analysis: for example, a written text has an

underlying syntactical structure that can be put in evidence by an appro-
priate tagging of words or phrases, whereas a piece of music can be studied

in terms of its sections, beats, pauses, and so on. The methods that we
will apply for information extraction from written texts, instead, will be as

much as possible independent from the structure of the texts themselves, and
will refer to very general theoretical results in terms of entropy estimation



Introduction iii

and statistical properties of the sequence; this is a tendency that is gaining
ground in this field, usually through the studies of researchers coming from

“pure” sciences like mathematics or physics.

An important remark is that often the study of experimental results leads

to interesting considerations about the theoretical framework that underlies
the methods, and in our experience the practice of information extraction of-

ten requires the use of semi-statistical indicators: asymptotic properties and
statistically significant quantities are not often the case in real-world textual

corpora, and the study of this “borderline” region may lead to interesting
progresses both for theory and for the applications.

Here is the scheme of this thesis.

In chapter 1 we will present the theoretical framework of symbolic se-

quence analysis, adopting mainly the language of Information Theory, as
founded by C.E. Shannon in [59], but without forgetting the equivalent for-

mulation in terms of Dynamical Systems; a very stimulating reading to un-
derstand this equivalence is the book by P.C. Shields [60], that was the source

of inspiration for a good part of chapter 1. After presenting the definition of
information source and discussing the meaning and the central role of prop-

erties like stationarity and ergodicity, also for the applications, we will move
to data compression and its role in the estimation of the entropy of a source.

Data compression is nowadays a very well established field of information
theory, thanks to the founding papers published by J. Ziv, A. Lempel and

their coworkers in the 1970s (cf., among others, [38, 70, 71] and the review
paper [69]), where they proposed a variety of compression algorithms (the

family of LZ algorithms), based on the idea of a clever parsing (subdivision)
of the symbolic sequence. It was a huge progress in the field, since it was the

first example of compressor that doesn’t operate a fixed number of character
at a time, but is allowed to vary the length of encoded substrings according

to the “size” of the regularities that that specific sequence presents; indeed,
such algorithms are still at the base of the most common zipping software

that we use everyday on our computers.
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In 1993 J. Ziv and N. Merhav [73] proposed a method to estimate the rela-
tive entropy (or Kullback-Leibler divergence) between couples of information

sources, starting from their realizations: they proved that a modified version
of an LZ algorithm, where the regularities for a sequence are searched in

another sequence, can be used to approximate the relative entropy between
the two sources that generated such sequences. This important result was

used in various subsequent studies, among which [8], to deal with problems
of text classification and clustering.

Taking advantage of some results on the recurrence of patterns in symbolic
strings, that were developed in parallel in the context of dynamical systems

(in terms of hitting times for the orbits of dynamical systems, see for example
[21]) and with the language of probability and stochastic processes (cf. [33,

34]), we will give a new proof of Ziv-Merhav’s Theorem. Our proof is different
from the original one, which is based on heavy probabilistic tools, and also

from the one that H. Cai, S.R. Kulkarni and S. Verdú proposed in [11], where
they make use of the Burrows-Wheeler transform [10].

With chapter 2 we will move from a purely theoretical setup to the
applications to information extraction from written texts. In this chapter we

will deal in particular with problems of authorship attribution, using methods
that are derived from the results in chapter 1. With this we do not mean that

we will directly apply theoretical results of information theory to real-world
contexts: as discussed above, indeed, the passage from theory to practice

always requires great care and some adaptations to fit the specific problem.

We will describe in this section two experiments with real-world textual

corpora. The first is the result of a collaboration between our group, D.
Benedetto and E. Caglioti from Rome-La Sapienza, M. Lana from the Uni-

versity of Western Piedmont in Vercelli and the Fondazione Istituto Gramsci

in Rome. We were asked to give indications about the possibility that a num-

ber of short articles, published anonimously on the same newspapers where
Antonio Gramsci and his coworkes wrote, are actually pieces of Gramsci’s

writing; the Fondazione is passing the results of our study to his team of
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expert phylologists, so as to decide whether or not to include those texts in
the complete edition of Gramscian works that is in the process towards pub-

lication. Apart for the interest of the attribution problem per se, the corpus
that was made available to us is a very stimulating one from the point of

view of authorship attribution studies, as we will thoroughly discuss in the
chapter.

Furthermore, it is interesting to note that our studies, that certainly are
out of the mainstream of standard linguistic analysis of texts for authorship

attribution purpose, are nonetheless consistent with a tendency that started
gaining ground in the last decade or so in this area (cf. [32, 14, 29, 61, 62]

and the discussion in [6, in Italian]): the written text, which is the result
of a complex combination of semantic, linguistic and historical properties,

is deprived of all such structure and considered instead as a mere sequence
of symbols from a certain alphabet, on which statistical and semi-statistical

methods can be applied to extract stylistic information.

The same tendency has become prominent also in the field of plagia-

rism detection, that will be the subject of chapter 3. We move here to a
more “technological” application, at the same time very different and sharing

similar elements with authorship attribution. Indeed, from a certain point of
view the problem of recognizing the authenticity of a written text is certainly

a matter of style analysis, and in this it is near to authorship attribution;
on the other hand, plagiarism is much more content-related than authorship

is (cf. [16]), and also the typical size of a reference corpus for this kind of
studies is orders of magnitude larger than a standard real-world authorship

attribution data set.

In 2009 the 1st International Competition on Plagiarism Detection [54]

was proposed, in order to compare plagiarism recognition methods and tech-
nologies on a common ground. We participated in the contest (cf. [4]), and

obtained the third position among the ten participating groups: a good re-
sult considering that our background on plagiarism detection was practically

null. Indeed, we applied there our experience on authorship attribution, es-
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pecially for a first selection of the most relevant sources of plagiarism for
each suspicious text, which is the first phase of practically any plagiarism de-

tection algorithm (cf. [64]). We also developed a couple of interesting ideas
to reduce the computational load of the experiments, by using certain lossy

codings that allowed for a reduction of the alphabet and, in one case, for a
dratic cut of the text length. One of these codings, based on word lengths,

is analysed in a certain detail in this chapter, and with greater accuracy in
a work with A. Barrón-Cedeño and P. Rosso of the Polytechnic University

of Valencia [2]. As we will underline in the conclusions of this chapter, more
work needs to be done to reduce the heuristics and to give our methods a

better experimental validation in this field.
Most of the numerical experiments for this thesis were performed by using

Mathematica c© 7.
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Chapter 1

Entropy, relative entropy and

pattern matching

My greatest concern was what to call it. I thought of calling it ‘information’,

but the word was overly used, so I decided to call it ‘uncertainty’. When I

discussed it with John von Neumann, he had a better idea. Von Neumann

told me, ‘You should call it entropy, for two reasons. In the first place your

uncertainty function has been used in statistical mechanics under that name,

so it already has a name. In the second place, and more important, no one

really knows what entropy really is, so in a debate you will always have the

advantage.’

- C.E. Shannon in a private conversation, according to [66] -

1.1 Notations and main concepts

1.1.1 Basic notations and definitions

Let A be a finite set of symbols, which we will call alphabet. A can be

any finite set, from the simplest possible binary alphabet A = {0, 1} up
to those of written human languages, containing tens of symbols (letters,

punctuation marks, etc.). We will denote by A∗ = ∪n∈NAn and AN the
sets of, respectively, finite and infinite sequences of symbols from A. In the

following N = {1, 2, 3, . . .}, the set of positive integers.

1



2 1. Entropy, relative entropy and pattern matching

Now that we know the alphabet in which our symbolic sequences will
be written, we are interested in giving a model of the entity or mechanism

that generates them. The information source is represented differently in the
different fields of mathematics and computer science that deal with symbolic

sequence analysis. Mathematical physicists will more naturally consider the
symbolic sequences to be generated by a dynamical system, where at each

iteration a new symbol is added, corresponding to the element of a partition
of the phase space that the orbit intercepts at that time step. In the context of

Information Theory it is more common to use a probabilistic representation,
in terms of stochastic processes.

Definition 1.1. An information source is a stationary, ergodic stochastic
process.

The two definitions are exactly equivalent, and can be transformed one

into the other by adopting the right perspective: see for example [60].
We need here a few basic definitions, that will give us also the possibility

of fixing the notations for the whole of this work.

Definition 1.2. Let (Ω,S, P) be a probability space and A a finite alphabet.

A stochastic process is an infinite sequence X := {Xn} = {X1, X2, . . . , Xn, . . .}

of random variables Xn : Ω → A. The process is stationary iff P(X1 =

a1, . . . , Xn = an) = P(X1+k = a1, . . . , Xn+k = an) ∀ a1, . . . , an ∈ A, ∀ k, n ∈

N.

For sake of simpliticy, we will often denote the sequence a1, . . . , an with an
1 ,

and in the same way Xn
1 will be the first n variables of the stochastic process.

Stationarity is a natural but demanding request for a source: intuitively, it
means that the source doesn’t change its way of generating sequences with

the passing of time. This is a far from obvious request for a true source that
one can find in the applications, as we will see in later chapters; anyway, it

is an important property that we will always require from a source.
Since, indeed, in the following we will always deal with stationary pro-

cesses, we can introduce the following convenient notation: P (an
1 ) will be
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used in place of P(X1 = a1, . . . , Xn = an). Indeed, stationarity precisely
implies that these joint probabilities, which will be called in the whole the

distribution P of the process, are invariant under translation. Such distri-
bution is defined on cylinders of the form [xn

1 ] := {z ∈ AN | zn
1 = xn

1} as

P (xn
1 ) := P ([xn

1 ]) := P(Xn
1 = xn

1 ). The marginals of P obtained by consider-
ing just the first n variables of X is denoted by Pn when needed, otherwise

simply by P . The distribution P is a fundamental quantity for a stochastic
process, because it determines univocally the process itself: in other words,

the particular choice of (Ω,S) is not particularly relevant, as long as the dis-
tribution Pn, n ∈ N is given. Note, furthermore, that even the choice of the

alphabet A is not important: the only quantity that matters is its cardinality
|A|.

Example 1.1. In general the value of the i-th variable of a stationary process

can depend on all of the Xj with j < i; if this dependency is limited to a
finite number of preceeding steps, X is a Markov process. More rigorously, a

Markov process is a stochastic process for which the following holds:

P(Xn = an | Xn−1
1 = an−1

1 ) = P(Xn = an | Xn−1
n−k = an−1

n−k)

for some k ∈ N. The process is said to have memory k: indeed, the value

of the random variable at a given time step depends only on its value in the
latest k time steps, while it is independent of what has happened before.

When k = 1 the process is also called Markov chain. In this case, by
stationarity, the transition probabilities pa1a2

:= P(X2 = a2 | X1 = a1) define

the process completely, and they can be represented in a transition matrix

Pij := paiaj
, ∀ ai, aj ∈ A.

Note that k = 0 means that the random variables composing the process
are independent of one another, and in this case the stationarity of the pro-

cess is equivalent to its being an independent identically distributed (i.i.d.)
process.

What does it mean for a stationary process to be ergodic? As usual,

the answer depends strongly on the quantities that are interesting for the
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problem into consideration. A possible definition states that a dynamical
system is ergodic iff no set of positive measure (except the whole space) is

invariant under the map of the system.
For the purposes of this thesis, though, the most useful definition of er-

godicity is the following.

Definition 1.3. Let an
1 , bk

1 be two sequences in A∗, with n ≥ k, and fan
1
(bk

1)

the relative frequency of bk
1 in an

1 . Let us define the set of typical sequences

of the stationary process X:

T (X) = {a ∈ AN| ∀ k ∈ N, ∀ bk
1 ∈ Ak, fan

1
(bk

1) −−−→
n→∞

P(Xk
1 = bk

1)}.

A process (or, which is the same, its distribution P ) is ergodic iff P (T (X)) =

1, i.e., iff almost every sequence generated by the source itself is typical.

Intuitively, therefore, ergodicity means that almost every sequence that

is generated by the process has the same statistical properties. This prop-
erty is fundamental for the results in this thesis, and it has an interest for

applications too: since (almost) every sequence is asymptotically a “good
representative” of the whole source, we are somehow justified in using a few

“long enough” strings to reconstruct the distribution of the originating source,
which is usually unknown. This is more than a vague idea, as we will see in

Theorem 1.1.1.

Example 1.2. Ergodicity has an interesting form for Markov chains. Indeed,
a chain (or its transition matrix P , which is the same) is said to be irreducible

if for any pair ai, aj ∈ A there is a sequence i0 = i, i1, . . . , in = j of indices
such that all of the transitions are possible, i.e., Pimim+1

> 0 for all m =

0, . . . , n − 1; intuitively, this means that the chain can generate sequences
that start and end with any two characters of the alphabet A.

It is not difficult to see that if P is irreducible there is a unique probability
vector π (the equilibrium state) such that πP = P , i.e., the chain that starts

with distribution π is a stationary process.
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Moreover, it is possible to prove (cf. [60]) that a stationary Markov chain
is ergodic iff its transition matrix P is irreducible.

1.1.2 Entropy and relative entropy

The definition of entropy of a random variable X was originally given by

C.E. Shannon in [59]. If X takes values in A = {a1, . . . , ak} with probabilities
pi := P(X = ai), its entropy is the expected value of minus the logarithm of

the probability of X, or:

H(X) := −
k

∑

i=1

pi log pi,

where the term of the sum for i is assumed to be zero when pi = 0.

A complete discussion on the properties of entropy for a random variable

can be found in [17]; we will now quickly move to the entropy of a process.
Let now X be a stochastic process with distribution P .

Definition 1.4. The entropy (or entropy rate) h of the process X is defined

as

h(X) := lim sup
n→∞

H(Xn
1 )

n
, (1.1)

with

H(Xn
1 ) := H(Pn) = −

∑

xn
1∈A

n

P (xn
1) log P (xn

1 ),

the joint entropy of the random variables X1, . . . , Xn, which is also known as
the n−block entropy of the process X.

Eq. (1.1) is not the only possible definition for the entropy of a process;
indeed, the following is equivalent to (1.1), as it is easily proved (cf. [17]):

Definition 1.5. Let hn(X) := H(Xn|X
n−1
1 ) := H(Xn

1 ) − H(Xn−1
1 ), the

conditional entropy of Xn given Xn−1
1 . The entropy of the process X is

h(X) := lim sup
n→∞

hn(X). (1.2)
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Note that the sequence of conditional entropies hn(X) is nonincreasing in
n for a stationary process: indeed, it is a general fact that conditioning on

more variables reduces entropy: H(X|Y, Z) ≤ H(X|Y ). Therefore:

hn+1(X) = H(Xn+1|X
n
1 ) ≤ H(Xn+1|X

n
2 ) = (by stationarity) H(Xn|X

n−1
1 ) = hn(X).

Since hn(X) ≥ 0, for a stationary process we can substitute the superior
limit in (1.2) with a limit. The same holds for (1.1), but there we need to

use a result on subadditivity (cf. [60]).
We will sometimes use the notation h(P ) instead of h(X), since the pro-

cess is defined by its distribution.
As for a single variable, also the entropy of a stochastic process is a

measure of the randomness of the process itself. Let us give a couple of
simple examples.

Example 1.3. Let X be a i.i.d. process, i.e. a process where all of the
variables Xj have the same distribution pi = P(Xj = ai), i = 1, . . . , |A|.

Then the joint entropy of the first n variables of the process is simply n

times the entropy of any of the Xj, and

h(X) = lim
n→∞

nH(Xj)

n
= H(Xj),

i.e., the entropy of the process is equal to the entropy of any of its variables.

Example 1.4. Let X be a stationary Markov chain (memory k = 1).

The Markov property ensures that hn(X) = H(Xn|X
n−1
1 ) = H(Xn|Xn−1),

and the definition in (1.2) becomes h(X) = limn→∞ H(Xn|Xn−1). But the

stationarity of the process then allows us to substitute H(Xn|Xn−1) with
H(X2|X1), so that the limit is not needed and the entropy of the chain

is simply the entropy of its second variable conditioned to the first one:
h(X) = h1(X) = H(X2|X1).

In an analogous way it can be proven that a stationary process X is
Markov with memory k if and only if h(X) = hk(X), i.e., in this case the

nondecreasing sequence hn(X) reaches its limit for n = k.
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In the general case of an unknown stationary process no such reduction
is possible, and we are forced to find approximations of the process entropy.

The following result will be of great importance in this context.

Theorem 1.1.1. Let X be an ergodic source on the finite alphabet A. Then,

for almost all a ∈ AN:

lim
n→∞

−
1

n
log P (an

1) = h(X).

Theorem 1.1.1 is referred to as Shannon-McMillan-Breiman Theorem,
from the names of those who proved it in more and more general cases; the

(weaker) version with convergence in probabilty is also often called Asymp-

totic Equipartition Property (AEP) and sometimes this denomination is ex-

tended, with an abuse, to the stronger version. A complete proof of this
result can be found in [60, pp. 51-55].

Consider now two independent information sources X and Y with the
same finite alphabet A and distributions P and Q respectively. The relative

entropy (or Kullback-Leibler divergence) between P and Q is defined as

d(P‖Q) := lim sup
n→∞

D(Pn‖Qn)

n
,

where
D(Pn‖Qn) :=

∑

xn
1∈A

n

P (xn
1 ) log

P (xn
1 )

Q(xn
1 )

. (1.3)

Note that the quantity in (1.3) is well defined and is finite if Pn ) Qn

eventually, i.e., for n * 1 and for all measurable subset B ∈ An, Qn(B) =

0⇒ Pn(B) = 0. This ensures that a sequence which is a possible production
of X (i.e. has non-zero P -measure) is also a possible production of Y (i.e. has

non-zero Q-measure). As a convention, the term of the sum for a sequence
xn

1 is assumed to be zero when P (xn
1) = Q(xn

1 ) = 0.

The relative entropy is a measure of the statistical difference (divergence)
between two distributions, and it has the following property:

Theorem 1.1.2. For any couple of probability distributions P and Q for

which d(P‖Q) is defined, d(P‖Q) ≥ 0 and the equality holds iff P = Q.
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Thanks to this result, a symmetrized version of the relative entropy is
sometimes used in the applications as a pseudo-distance between information

sources; even if it is not a true distance, since d doesn’t satisfy the triangle
inequality, we will see in the following that this approach gives good results

in the applications.

1.2 Coding and LZ compression

1.2.1 Coding and entropy

As we have seen, the entropy of a process is a measure of “how interesting”
are the sequences that process produces, of how unpredictable they are. The

direct calculus of entropy using either the definition (1.1) or Theorem 1.1.1,
though, is not possible in practice, since extracting the statistics of subse-

quences of growing length would mean exponentially growing the length of
the observed string itself, with obvious computational problems, and also

problems of availability of such long sequences, if we are dealing with a real
situation.

The theory and practice of data compression gives an alternative method
of estimating the entropy of a system. What is a data compressor?

Definition 1.6. A code on the alphabet A is a function C : A→ B∗, where
B∗ is the set of finite sequences on the alphabet B. We will often consider

binary codes, where B is the binary alphabet {0, 1}.

A code is said to be:

• non-singular if it is injective;

• universally decodable (UD) if any sequence b ∈ B∗ can be univocally
interpreted as a sequence of images of characters from A through C.

Note that this is not implied by the non-singularity: for example, the
code

a
C
,→ 0 ; b

C
,→ 1 ; c

C
,→ 01
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is injective but not UD, since the sequence 01 of B∗ can correspond to
either c or ab;

• prefix-free or istantaneous if no code word w ∈ C(A) is the prefix of

another code word. This implies that this UD code can be reversed
with one single reading of the encoded sequence, since during the read-

ing there is no ambiguity with respect to where the code words end.
Prefix-free (or, simply, prefix ) codes are the most interesting for the

applications, because of the time saving they allow in the decoding
process.

All of these definitions apply to any kind of code. Moving now to data
compressors in particular, the most interesting quantity is the average length

of an encoded sequence. Let X be a random variable with values in the
alphabet A and distribution pi = P(X = ai), and let LC be the length

function for code C, i.e. LC(ai) = |C(ai)|, where |w| is the length of the word
w.

The average code length is by definition

EX(LC) =
∑

ai∈A

piLC(ai).

Note that the definition doesn’t depend on the values of the code function
C, but only on the length of the code words, i.e., on LC.

The following result defines a limit for the average code length and relates
data compression to (single variable) entropy.

Theorem 1.2.1. i) For every UD code C

EX(LC) ≥ H(X)

and the equality holds iff |C(ai)| = − log pi.

ii) There is a prefix code such that

EX(LC) ≤ H(X) + 1
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For a proof of this theorem see [17]. Since H(X) is defined as EX(− log P (X)),
it can be interpreted as the average length of a code that uses exactly − log pi

characters to code ai; theorem 1.2.1 then ensures that this choice is the best
possible for a UD code.

1.2.2 Universal codes, LZ compressors

Coding functions, according to the definition we gave in the previous
section, take one single symbol of the string to code and map it to some string

in another alphabet (which we will consider to be binary in the following).
Clearly, this is not the only way of coding a string: one could assign code

words to sequences of 2, 3, 4... n symbols in the alphabet A (n−grams):

Definition 1.7. An n-code is a function

Cn : An → B∗.

The same definitions for non-singular, UD and prefix codes hold here.
Theorem 1.2.1 becomes in this context:

i) for every UD n-code C

1

n
EXn

1
(LCn) ≥

H(Xn
1 )

n
; (1.4)

ii) there is a prefix n−code such that

1

n
EXn

1
(LCn) ≤

H(Xn
1 )

n
+

1

n
. (1.5)

We can now consider a prefix code sequence, i.e. a sequence {Cn}n∈N of
prefix n-codes, and define its compression rate as

R({Cn}) := lim sup
n→∞

E(LCn)

n
.

The results in (1.4) and (1.5) then lead to the following theorem (cf. [60]).

Theorem 1.2.2. Let X be a stationary process with entropy h. Then:
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i) there is a prefix code sequence {Cn} such that R({Cn}) ≤ h;

ii) there is no prefix code sequence {Cn} such that R({Cn}) < h;

According to the theorem, h is a tight lower bound for the compression
rate of any data compressor, and we are also sure that, for a given process,

there will be a prefix code sequence that compresses to the value of entropy
of that process.

As we already discussed (and will see in further chapters), though, the
source distribution is almost always unknown; that’s why we have to intro-

duce a much stronger concept.

Definition 1.8. A n−code sequence {Cn} is universally asymptotically op-

timal (or simply universal) iff

lim sup
n→∞

LCn(an
1 )

n
≤ h(X) almost surely

for every ergodic process X.

Note that, first of all, we move from an average to an almost sure condi-

tion on the realizations of the source and, furthermore, we require optimality
of the n−code sequence for all ergodic stationary sources. A universal com-

pressor is therefore a very interesting object from our point of view: even
without knowing anything of the source, if not its ergodicity, we can be cer-

tain that the compression rate will go to the source entropy in the limit
for infinite sequences. The compressor can then be used to investigate the

source, to find an approximation of its entropy, which is usually unknown.
Luckily, a result analogue to theorems 1.2.1 (cf. [60]) ensures that such

universal compressors exist, and can be built using only istantaneous codes.

Theorem 1.2.3. i) There is a universal prefix code sequence.

ii) For any sequence {Cn} of non-singular n−codes and any process X,

lim inf
n→∞

LCn(an
1 )

n
≥ H(X).
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For a constructive proof of this result see [60, pp. 122-129]. We will now
give an example of a universal code, which will have a great importance for

the following of this thesis.

Example 1.5 (LZ algorithms). J. Ziv and A. Lempel, together with various
coworkers, proposed in the last decades of the XX century a good number of

compression algorithms. The key idea behind all of their algorithms is the
concept of parsing the sequence, i.e. to split it up into pieces in a clever way,

so that this separation can then be used to produce a shorter, equivalent
version of the string itself. All of these compressors are istantaneous: only a

single reading of the compressed sequence is needed for the decoding process.
Furthermore, with respect to other very popular algorithms like Huffman

coding [26], LZ compressors have the advantage to be sequential, i.e., they do
not need more than one reading of the sequence to compress: the compression

is performed while the sequence is read for the first time.
We will first describe here the version of the algorithm that is presented

in [71]. A parsing into blocks (often referred to as words) of variable length
is performed according to the following rule: the next word is the shortest

word that hasn’t been previously seen in the parse. Every new parsed word
is added to a dictionary, which can then be used for reference to proceed in

the parsing. As an example, let us consider the following sequence:

an
1 = accbbabcbcbbabbcbcabbb

The first word will be simply the first a, since we have not parsed anything
yet. Also the c in position 2 will be parsed on its own, but then the second

c is a repeated word, so that we can go further and parse cb, which is a new
word. The following b is again a new word, then we can parse an ab and so

on. The final result of the parse is:

a|c|cb|b|ab|cbc|bb|abb|cbca|bbb

While it parses the string, the algorithm also does the coding: since we
are certain that the prefix of each word that excludes only the last character

is already in the dictionary, we can code each parsed sequence simply with:
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1. cn pointers to the positions of the prefix of each parsed word in the
dictionary, which cost at most cn log cn bits, with n the length of the se-

quence to code and cn the cardinality of the resulting dictionary (which
obviously depends on the string itself);

2. a binary encoding of the ending character, the only new one, for each of
the cn parsed words. This will require at most cn log |A| bits, A being

the original alphabet of the sequence to code.

When we calculate the rate, dividing the expected code length by the

length n of the sequence, the term cn log |A| goes to zero in the limit and the
dominating term is cn log cn. The universality of this algorithm is proved in

[71].

Lempel and Ziv proposed a number of variants of their algorithms. The
one that we will refer to in the following, LZ77 [70], differs from the one

described above because the parsed words can be chosen not only in the
vocabulary of previously parsed words, but in the set of all the subwords of

a certain string that plays the role of a database. In the different versions of
this algorithm, the database can either be a previously generated sequence

coming from the same source, or the part of the sequence that has already
been parsed (transient effects disappear in the limit for infinite length).

In this second case, the sequence above is parsed as follows:

a|c|cb|ba|bc|bcbb|abb|cbca|bbb

This very simple example already shows that this version of the algorithm

gives longer parsed words with respect to LZ78: for example the sequence
aaaaaaaaaaaaaaa (15 a’s) is parsed to a|aa|aaa|aaaa|aaaaa with LZ78 and

a|aaaaaaaaaaaaaa with LZ77. This obviously has a computational cost: in
this case the dominant term of the compression rate is indeed cn log n, since

the pointer to the prefix can refer back to any point in the previously parsed
string, and in general cn log n ≥ cn log cn. Anyway, the following Theorem

by Ziv [72] ensures that the described algorithm is universal.
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Theorem 1.2.4. If X is an ergodic process,

cn log n

n
−−−→
n→∞

h(X) almost certainly.

We will not give the orginal proof of this result here, since it will follow
from the more general theorem that will be given in the next paragrah and

proved in an original way in the following.

1.2.3 Ziv-Merhav Theorem for relative entropy

Now suppose you have two (stationary, ergodic) information sources, X

and Y . There are some obvious ways of generalizing LZ77 parsing inside a

single string to cross-parsing, i.e., parsing a realization from X with words
“coming from” a realization of Y , which can be used as the dictionary for the

parsing. Let x and y be two sequences in A∗, generated respectively by X

and Y . To obtain a LZ parsing of x with respect to y, we will first identify

the longest prefix of x that is also a substring of y, i.e. inf{m ≥ 0 | ∃ i ≥

0 s.t. xm
1 = yi+m−1

i }. If m = 0, the first parsed word will simply be the first

character of x. The algorithm then proceeds in the same way but starting
from xm+1, until all of x is parsed.

Now the question is: is there a way to use this modified version of LZ
to give an approximation of the relative entropy between X and Y , in the

same way as standard, universal LZ compressors approximate the entropy
of a single source? The answer comes (at least for Markov sources) from

Ziv-Merhav’s Theorem [73]: the number of words of the “cross”-LZ parsing
described above, appropriately scaled with the length n of the strings into

consideration, goes at the limit for n→∞ to h + d, where h is the entropy
of the process X and d is the relative entropy between X and Y .

More rigorously,

Theorem 1.2.5. (Ziv, Merhav) If X is stationary and ergodic with positive

entropy and Y is a Markov chain, with Pn ) Qn asymptotically, then

lim
n→∞

cn(x|y) log n

n
= h(P ) + d(P‖Q) (P ×Q)− a.s.,
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where cn(x|y) is the number of parsed words of xn
1 with respect to the

sequence/database y2n
1 .

The original proof of this result relies on heavy probabilistic instruments;
in the following section we will present a new and hopefully clearer version

of the proof, that underlines the fundamental role of cross recurrences in the
estimation of relative entropy.

1.3 Relative entropy via return times and match

lengths

1.3.1 Definitions and asymptotical results

Let us consider again x, y ∈ AN, two infinite strings produced respectively

by X and Y .

Definition 1.9. The cross match length of x with respect to y is defined as

Ln(x|y) := inf{k ∈ N | xk
1 0= yj+k−1

j ∀ j = 1, 2, . . . , n}, (1.6)

i.e. the length of the shortest prefix of x∞
1 which cannot be found starting in

the window yn
1 (the shortest non-appearing word). Note that if no match is

found Ln(x|y) = 1.

In literature, it is frequent to find a slightly different but perfectly equiv-

alent definition, according to which the cross match length measures the
longest prefix of x that appears as a subsequence in y. The difference be-

tween the two versions is of exactly 1 for each match, and cannot therefore
affect asymptotic results.

The cross match length is a dual quantity to the waiting time:

Wm(x|y) := inf{j ∈ N | xm
1 = yj+m−1

j }; (1.7)

we have indeed [69]:

Ln(x|y) ≤ m ⇔ Wm(x|y) > n.



16 1. Entropy, relative entropy and pattern matching

The asymptotic properties of cross recurrences (or equivalently of cross
match lengths) between sources X and Y are governed by the entropy of the

source and the relative entropy between the two sources, as stated in the
following theorem [33]:

Theorem 1.3.1. If X is a stationary ergodic source with h(X) > 0 and Y

is a Markov chain, with Pn ) Qn eventually,

lim
m→∞

log Wm(x|y)

m
= h(P ) + d(P‖Q), (P ×Q)− a.s..

Equivalently, in terms of match lengths:

lim
n→∞

Ln(x|y)

log n
=

1

h(P ) + d(P‖Q)
, (P ×Q)− a.s..

The proof of Theorem 1.3.1 is given in [33, 34] and consists of two steps:

1. The first step is a generalization of Shannon-McMillan-Breiman’s The-

orem due to A.R. Barron [1], which ensures that

lim
n→∞

1

n
log

1

Q(xn
1 )

= h(P ) + d(P‖Q), P -a.s. (1.8)

Here we will give a simple proof of (1.8) in the case when both X

and Y are Markov chains and Pn ) Qn eventually (a generalization
to Markov processes with memory k is straightforward; see [1] for the

general case). Let us denote with pab and qab, a, b ∈ A, the transition
probabilities for P and Q respectively. Given a sequence xn

1 from P ,

let nab be the number of occurrences of the couple ab in xn
1 ; then

log Q(xn
1 ) = log Q(x1) +

∑

ab∈A2

nab log qab

Since by Theorem 1.1.1 nab/n → P (ab) = P (a)pab P -a.s, we simply

have that

lim
n→∞

1

n
log

1

Q(xn
1 )

= −
∑

ab

P (a)pab log qab P -a.s..



1.3 Relative entropy via return times and match lengths 17

On the right hand side we recognize

−
∑

ab

P (a)pab log qab = −
∑

ab

P (a)pab log

[

qab

pab

]

+

−
∑

ab

P (a)pab log pab

= h(P ) + d(P‖Q).

This concludes the proof of (1.8) for Markov chains.

2. The second step relates almost sure asymptotic properties of recurrence

times to the measure of the recurrent sequence. More precisely:

log Wn(x|y)− log
1

Q(xn
1 )
−−−→
n→∞

0 Q-a.s. in y and ∀ x. (1.9)

We stress here that the notion of waiting time (or hitting time) has
recently attracted lot of attention in the dynamical systems community.

Some of the idea developed in that area of research can be fruitfully
transposed in the present context. Indeed consider a probability space

(Ω,S, P ) and a partition P = {Pa}a∈A of Ω. The random variable
XP(x) defined as XP(x) = a if x ∈ Pa, together with a measure-

preserving transformation T , defines a stochastic process, the so-called
(T,P)-process (for precise definitions see for example [60]). Poincaré

recurrence theorem states that almost every point of B ⊆ X, with
P (B) > 0, will eventually return in B. Kaç lemma quantifies this

return by relating the average return time to the measure P(B) of the
reference set. This result was later improved and extended in various

directions. It is worth to mention the following result (see for example
[57] and references therein), particularly relevant for our purposes: take

a family of nested sets Bn with P(Bn) → 0 (precise conditions on Bn

can be found in [57]); then for almost every x in Bn the first return

time τBn(x) in Bn has the property: log τBn(x)− log 1
P (Bn) −−−→n→∞

0.

This result was recently extended (see for example [21] and reference

therein) to deal with the waiting time, that is, the number of iterations
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of T that a point x ∈ Ω needs to enter a given set B for the first time
(note that the waiting time is equivalent to the return time if x is forced

to start in the reference set B). In this setting the search for a match
of the type (1.9) can be rephrased as follow: first consider the (T,P)-

process equivalent to the stochastic process under study. Let Bn be the
family of cylinders induced by the sequence y: Bn := [y1, y2, · · · , yn].

Note that the condition P (Bn) > 0 is guaranteed by the assumption
that Pn ) Qn eventually. The quantity Wn(x|y) defined in (1.7) is then

equivalent to the waiting time for a first passage in Bn and thus (1.9)
follows from the more general result mentioned above. We stress here

that dealing with the cylinders Bn is much simpler than the general
case (for example, balls) treated in the above mentioned references; we

expect that these stronger results derived in dynamical systems could
be fruitfully applied in the setting of information theory, providing

effective tools for the derivation of novel techniques.

1.3.2 Relative entropy via return times and match lengths

In order to provide an useful tool that can stand as a starting point for a

meaningful definition of a (pseudo)-distance between two finite sequences, we
need to somehow modify the results in Theorem 1.3.1, that deal with infinite

sequences. In order to cope with the finite length sequences xn
1 and y2n

1 , we
define a truncated version of the match length defined above:

L̃n(x|y) := min{Ln(x|y), n}. (1.10)

Now, let σ : AZ → AZ be the left shift and define recursively the sequence

of indices {l1, l2, . . . , lc} :
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l1 := L̃n(x|y)

l2 := L̃n−l1(σ
l1(x)|y)

l3 := L̃n−(l1+l2)(σ
l1+l2(x)|y)

. . .

lc := L̃n−(l1+l2+...+lc−1)(σ
l1+...+lc−1(x)|y), (1.11)

where σli(x) = xn
li
, with 1 ≤ i ≤ c.

The LZ parsing of the sequence xn
1 with respect to y2n

1 that we described
in the previous paragraph can now be represented as follows:

xn
1 = {xl1

1 , xl1+l2
l1+1 , . . . , xn

n−(
Pc−1

i=1
li)
}, (1.12)

Note that this parsing is the one that Ziv and Merhav define in [73] where
the length of the parsed word is exactly the match length1. Here, as discussed

above, cn = cn(x|y) is the number of parsed words of xn
1 with respect to the

sequence/database y2n
1 , and it plays a fundamental role in the relationship

with the relative entropy, as stated by Theorem 1.2.5.

We are now ready to prove the Theorem of Ziv-Merhav.

Proof. Let us suppose that h(P ) and d(P‖Q) are not both equal to zero

(otherwise cn = 1 ∀ n and the theorem becomes obvious). First note that

n

cn log n
=

1

cn

cn
∑

i=1

li
log n

,

where every li is of the form L̃k(σj(x|y)) for some j, k ∈ N (see definition in
(1.11)). Observe that, for every x, y, there is a N ∈ N such that L̃k(σj(x)|y) =

Lk(σj(x)|y) for all k ≥ N ; indeed, L̃n(x|y)
log n

≤ Ln(x|y)
log n

which goes to 1/(h+d) for
n → ∞ by Theorem 1.3.1. Since, moreover, Theorem 1.3.1 holds for a.a. x

and y, Lk(σj(x)|y) has the same asymptotic behavior as Lk(x|y) for all j ∈ N

1except maybe the last word, but we neglect this detail, since we are interested in

asymptotic results.
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and for a.a. x, y. We can therefore substitute each li
log n

with Ln

log n
+ εi(n),

with the corrective term εi(n) −−−→
n→∞

0, so that:

Ln

log n
+ min

i=1,...,c
εi(n) ≤

n

cn log n
=

1

c

c
∑

i=1

Ln

log n
+ εi(n) ≤

Ln

log n
+ max

i=1,...,c
εi(n)

and thus, taking the limit for n→∞,

n

cn log n
−−−→
n→∞

1

h(P ) + d(P‖Q)
.

In the case when X and Y are the same source (P = Q), Theorem 1.2.5

gives another proof of the universality of the LZ77 compression algorithm
described in section 1.2.1, and precisely of the version with fixed database,

defined in [67]. Our proof is different from the the one proposed there by
Wyner and Ziv and later by Ornstein and Weiss in [51].

Another proof of the Theorem of Ziv-Merhav, that makes use of the
Burrows-Wheeler transform [10], can be found in [11].



Chapter 2

Applications: authorship

attribution

Ordinarily when an unsigned poem sweeps across the continent like a tidal

wave whose roar and boom and thunder are made up of admiration, delight,

and applause, a dozen obscure people rise up and claim the authorship.

- M. Twain, Is Shakespeare dead? -

2.1 Stylometry, from words to n-grams

Why and how should authorship attribution (or stylometry, as it is some-

times called) be the object of a mathematical study? The idea of applying
quantitative (not always mathematically founded) ideas to the problem of

recognizing the author of an anonymous or apocryphal text is not new, but
dates back at least to the end of the 19th century, when two studies by the

mathematician A. De Morgan [19] and the geophysicist T. C. Mendenhall [48]
proposed to calculate the average lengths of words in the works of different

writers and to compare them in order to establish authorship.

During more than one century of history, a large variety of methods with

different origins were applied to authorship attribution problems, from scien-
tists of many different fields; for an extensive review see for example [25] and

the more recent [37, in Italian], [23] and [62]. Disregarding those methods

21
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that are too distant from our approach, a few choices are needed to define
an authorship attribution method.

First of all, we need to choose the quantity that we want to compute in

the texts or, as it is usually called, the feature to extract. There is a huge
variety of possibilities, with different origins and approaches to the written

text. Following the scheme in [62], to which we refer for an exhaustive list of
references, a possible classification of features is the following:

1. character-level features: character frequencies, character n−grams...

2. lexical features: word frequencies, vocabulary richness, errors...

3. syntactic features: sentence and phrase structure, part-of-speech dis-
tribution...

4. semantic features: synonyms, ...

Note that as the order in the list proceeds, the proposed methods use
more and more of the structure of the text, correspondingly increasing the

complexity of the techniques and of the instruments they require.

Even if lexical or syntactic methods are still frequent in literature, several
works of the last decade adopted instead the simpler approach of carachter-

level features. In this case the text is considered merely as a sequence of
symbols, as it is quite natural for non-linguists. Indeed, this point of view

was adopted both by Markov [42, 43] and by Shannon [59] in their original
works: in both cases, the words as basic components of the text have no more

meaning than other aggregates of symbols, while the statistics of sequences of
n consecutive characters (the so called n-grams) appear naturally as the fun-

damental object of investigation. From this point of view, the link between
the study of written texts and the results on symbolic sequences in chapter 1

becomes clearer: the analysis of texts is deprived of historical and phylologi-
cal details, syntactic or lexical considerations are in general avoided, and we

are therefore reduced to the automatic extraction of information to be used
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for stylistic or semantic classification. Here is where statistical measures as
the entropy and divergence come into play, as we will see in the following.

The “n-gram approach” has attracted more and more interest in the last
decade in the field of authorship attribution: R. Clement and D. Sharp,

for example, proposed in 2003 [14] a method based on n-gram frequencies,
whereas in 2001 D. V. Khmelev and F. J. Tweedie [32] published some results

obtained by considering texts as first order Markov chains, i.e. by calculating
a (empirical) one-step transition matrix from the reference texts of an author

and then using it to establish the probability for a given anonymous text to
have been written by that author. A validation of non-lexical methods came

from the results of the Ad-hoc Authorship Attribution Competition (AAAC),
an attribution contest launched by P. Juola in 2003 [29]: one of the best global

results for the 13 data sets of the competition was obtained by V. Kešelj
using a metric method, once again based on n-gram frequencies, which was

the starting point of part of our research (see paragraph 2.2.2). More recently
also E. Stamatatos [61] used n−grams to classify a corpus of Greek newspaper

articles, and J. Grieve [23] found them to be the most effective feature in
a large-scale comparison of a number of lexical and syntactic authorship

attribution methods.

Again, the key idea, common to all of these approaches, is to consider

a text “just” as a symbolic sequence, not taking into consideration either
the content of the text or its grammatical aspects: letters of the alphabet,

punctuation marks, blank spaces between words are just abstract symbols,
without a hierarchy. Using the language of chapter 1: a text is seen as an

element of A∗ = ∪n∈NAn, the set of finite sequences over the finite alphabet
A. The alphabet can be any finite set, and it is in general quite large; for the

Gramscian corpus which will be described later, for example, A is made up
of 84 symbols: the 21 letters of the Italian alphabet (upper and lowercase,

with and without accent), together with some letters of foreign alphabets;
the digits from 0 to 9; the commonest punctuation marks and the blank

space.
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Following the scheme of information theory as developed in the previous
chapter, symbolic sequences can be thought as being generated sequentially

by an information source according to some probability distribution; such dis-
tribution is generally (and in particular in our case) unknown, but texts can

be considered as “randomly generated samples” of the source. For the case of
authorship attribution, we would like to identify the author as the informa-

tion source and be able to reconstruct the distribution of the source/author
by measuring some quantities in the texts he wrote; or, to say it in a more

pictoresque way: we would like to give a quantitative characterization of an
author’s style.

Once that we have chosen “what to count”, we are faced with a second

important choice: how to count it, i.e., how to use the information that we
have extracted from the texts to establish the authorship. And again, there

is a vast plethora of methods, many of which use advanced techniques like
machine learning.

The approach followed in our experiments consists in synthesizing as a

single quantity the difference/dissimilarity observed by measuring the chosen
features in the texts. This value will be a measure of the proximity of two

texts or of a text and an author; in other words, we would like to use these
measures to define on the set of symbolic sequences a distance that can

account for the stylistic similarities between authors.

2.2 The Gramsci Project

2.2.1 Description of the project and corpora

Starting in 2006, a group made up of researchers from the Mathematics

Department of the Universities of Bologna (M. Degli Esposti, C. Basile)
and Rome - La Sapienza (D. Benedetto, E. Caglioti), together with the

linguist M. Lana from the University of Western Piedmont in Vercelli, started
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working on a project proposed by the Fondazione Istituto Gramsci1, based in
Rome. The idea was to recognize the authorship of a large number of short

newspaper articles written by Antonio Gramsci2 and his coworkers during
the first decades of the XX century. The Istituto Gramsci is publishing a

complete edition of the works of the author (Edizione nazionale degli scritti

di Antonio Gramsci3), trying to include also a number of those articles that

he left unsigned, a practice which was not uncommon at that times.

The Gramscian corpus, as we will call it in the following, is very inter-

esting from the point of view of a stylometric study. Indeed, in order to be
sure that the recognition is based on authorship and not on other factors,

a good corpus has to be homogeneous in as many respects as possible (cf.
the discussion in [23]); this is exactly the case of our corpus, that is homoge-

neous from the point of view of the publishing time (a couple of decades), the
genre (articles published on a limited number of newspapers), the audience

(the readers of Communist newspapers) and, more generally, the cultural
background shared by both the authors and the readers of those texts. Even

more important, it is interesting that the articles deal with common subjects:
when experimenting a quantitative authorship attribution method, indeed, it

is crucial to distinguish its results from a possible distinction by subject. In
the case of the Gramscian corpus, the texts deal mainly with contemporary

political events.

Last, but not less important, our texts are short, ranging from one to

around fifteen thousand characters: discriminating between short texts is
much tougher than dealing with whole novels, due to the lack of statistics;

on the other side, most attribution cases from the real world require the
capability of dealing with short documents, and our research goes precisely

in that direction.

1http://www.fondazionegramsci.org/
2Antonio Gramsci (Ales, 1891 - Rome, 1937) was a famous Italian politician, philoso-

pher and journalist, and one of the founders of the Communist Party of Italy.
3http://www.fondazionegramsci.org/ag_edizione_nazionale.htm
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2.2.2 The n-gram distance

The first method we used is probably one of the simplest possible measures

on a text, and it has a relatively short history in published bibliography.
After a first experiment based on bigram frequencies presented in 1976

by W. R. Bennett [9], V. Kešelj et al. published in 2003 a paper [30] in which
n-gram frequencies were used to define a similarity distance between texts.

First, they define a so-called profile for each author A, built in this way: once
the value of n has been fixed, usually between 4 and 8, n-gram frequencies are

calculated using all the available texts by author A. Then these n-grams are
disposed in decreasing order by frequency and only the first L are taken into

consideration, where L is a further parameter to set. The same operation
(n-gram frequency extraction and ordering) is then repeated on the unknown

text x for which attribution is sought.
We call ω an arbitrary n-gram, fx(ω) the relative frequency with which ω

appears in the text x, and fA(ω) the relative frequency with which ω appears
in author A’s texts, Dn(x) the n-gram dictionary of x, that is, the set of all n-

grams which have non-zero frequency in x, and Dn(A) the n-gram dictionary
of all author A’s texts. With these notations a text x can be compared with

a profile A through the following formula, which defines a measure of the
proximity between text x and author A:

dK
n (x, A) :=

∑

ω∈Dn(A)∪Dn(x)

(fA(ω)− fx(ω))2

(fA(ω) + fx(ω))2
. (2.1)

In presence of the L parameter, the sum is restricted to the first L n−grams
in order of decreasing frequency. The text x is thus attributed to the author

A for which the distance is minimal. The authors of [30] assert that the
inspiration for this formula came from the paper [9] by Bennet, who used

as a (dis)similarity indicator the distance defined simply as the sum of the
squares of the differences between frequencies in A and x, i.e. the squared

Euclidean distance between frequency vectors.
Note that in formula (2.1), in contrast with what happens for the Eu-

clidean distance, each term of the sum is weighted with the inverse of the
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square of the sum of the frequencies of that particular n-gram in A and in
x, so that terms related to “rare words”, i.e., n-grams with lower frequencies,

give a larger contribution to the sum. In this way, for example, a difference
of 0.01 for an n-gram with frequencies 0.09 and 0.08 in the two profiles will

have a lower weight than the same difference for an n-gram with frequen-
cies 0.02 and 0.01. It is also useful to underline that dK

n (x, A) is indeed a

pseudo-distance, for instance it does not satisfy the triangular inequality. In
the following, however, we will conform to the accepted practice of calling all

such functions “distances”, with a small and unimportant lack of mathemat-
ical rigor.

Kešelj and his coworkers tested the effectiveness of their method on dif-
ferent text corpora: literary works by 8 English authors from different ages;

newspaper articles of 10 different authors, written in modern Greek; some
novels on martial arts by 8 modern Chinese writers. As reported in the cited

work [30], the final results are quite satisfactory and they reach or surpass
in almost every case (with the only exception of the Chinese corpus) the

ones obtained with the methods experimented before by Kešelj and other
researchers on the same text sets. It is worth observing, though, that the

dependance on one or two parameters (n and possibly L) puts forward a
methodological problem: how to choose n and L for a real attribution prob-

lem, in which the solution is not known? In the very brief paper [31] Kešelj
and Cercone suggested indeed a suitable weighted voting to answer this ques-

tion: this is the so-called Common N-Grams Method with Weighted Voting

they used in the AAAC, see [29].

For our experiments on Gramsci’s articles recognition we partially used
Kešelj’s ideas, adjusting them to fit our particular scenario, which has pecu-

liar characteristics when compared to other attribution problems (e.g. the
ones of AAAC). A first aspect is that our aim is “just” to determine whether

a text was written by Gramsci or not, and not to establish the attribution
of the specific author of every text; this feature is an element of great sim-

plification if compared to a generic attribution problem with many possible
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authors.

In a preliminary tuning stage we used 100 texts, 50 by Gramsci and 50 by

the 17 other authors listed in Table 2.1 together with some data concerning
the length of the available articles for each author. Some modifications of

Kešelj’s method followed directly from the examination of the data set. First
of all, we decided not to merge to a single profile all the texts of a reference

author but to calculate the distance between every single pair of available
texts. Indeed, in this case building the authors’ profiles as in Kešelj’s method

would be in contrast with the characteristics of the 100 articles by Gramsci
and coworkers, where the subdivision of the texts among the different authors

is strongly heterogeneous (see Table 2.1), so that merging all texts of an
author in a single profile we would have obtained profiles with very different

statistical meaning: note, for example, the large disparity between the total
lengths of available texts by Gramsci and by Viglongo.

Furthermore, because of the shortness of the articles and of the choice of
comparing them individually, the L parameter became unuseful and it was

necessary to consider all the possible n-grams with nonzero frequency. In a
single text and for large n, indeed, as can be seen from the example in Table

2.2, most of the n-grams appear just once, so that considering just the L

more frequent ones would be the same as arbitrarily choosing L n-grams.

Ultimately, in order to eliminate the strong dependance of Kešelj’s for-

mula on the length of the texts into consideration, the distance is divided by
the sum of the number of n-grams in the two texts; the resulting formula is

the following, for two texts x, y ∈ A∗:

dn(x, y) =
1

|Dn(x)| + |Dn(y)|

∑

ω∈Dn(x)∪Dn(y)

(

fx(ω)− fy(ω)

fx(ω) + fy(ω)

)2

. (2.2)

From now on we will call n-gram distance the one defined in (2.2), unless

otherwise stated. Again, dn is a pseudo-distance, since it does not satisfy the
triangular inequality and it is not even positive definite: two texts x, y can

be at distance dn(x, y) = 0 without being the same.
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author number total length mean length

of articles of the articles of the articles

Antonio Gramsci 50 326843 6536.9

Palmiro Togliatti 11 91334 8303.1

Amedeo Bordiga 7 47894 6842.0

Angelo Tasca 5 48684 9736.8

Leo Galetto 4 18623 4655.7

Adolfo Giusti 4 14346 3586.5

Giuseppe Bianchi 3 12928 4309.3

Attilio Carena 3 23556 7852.0

Giacinto Menotti Serrati 3 12852 4284.0

Alfonso Leonetti 2 16514 8257.0

Gino Castagno 1 8146 8146.0

C. D. 1 5612 5612.0

Alessandro De Giovanni 1 6700 6700.0

C. F. 1 2659 2659.0

Ottavio Pastore 1 4176 4176.0

Mario Santarosa 1 5053 5053.0

Umberto Terracini 1 9432 9432.0

Andrea Viglongo 1 7450 7450.0

Table 2.1: Total and average character length of the articles used in the prelimi-

nary phase, by author.

The results of the attribution of the 100 texts, obtained by assigning

to each unknown text the author of its nearest neighbour according to the
distance dn, are plotted in figure 2.1. The length of n-grams varies along the

horizontal axis, with n from 1 to 10; two symbols correspond to each value
of n: the circle marks the number of Gramscian texts which are correctly

attributed to him by the method (true positives), while the triangle indicates
the number of non-Gramscian texts which are correctly recognized as such

(true negatives).

For the following experiments we chose n = 8: for this value, indeed,
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n total n-grams appearing percentage of n-grams

n-grams only once appearing only once

1 62 9 15%

2 416 107 26%

3 1576 689 44%

4 2948 1805 61%

5 3960 2948 74%

6 4611 3806 83%

7 5030 4405 88%

8 5297 4806 91%

9 5480 5086 93%

10 5611 5294 94%

11 5707 5453 96%

12 5777 5565 96%

13 5837 5660 97%

14 5888 5741 98%

15 5931 5807 98%

Table 2.2: Number and percentage of occurrences of n-grams appearing only once

in the text g_27.

we achieved the best attribution results (41 texts out of 50) without loosing
too much in precision (only 5 false positives). We will comment later on the

implications of such a choice for n.

These first results were obtained by taking into consideration only the

first neighbour of each text. Such a choice ignores the fact that the reference
set contains as many as 100 different articles with which one can compare

the given “unknown” text. This suggests some questions:

• what can we expect about the distance of an article by Gramsci from
the 49 other texts by him?

• will these 49 articles be “nearer on the average” to the text in consid-

eration?
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Figure 2.1: Number of correctly attributed Gramscian and non-Gramscian texts

with the first neighbour, over the 100 texts of the training corpus.

• is it possible to consider conveniently also the distances from all the
other reference texts, not only the first neighbour?

Some of these issues, especially the first, will be further discussed later, in
paragraph 2.2.6. Trying to give a first answer to such questions, we defined

for a text x a Gramscianity index g(x) in the following way: all the reference
texts are listed in order of growing distance from the text x; the j-th text

by Gramsci in the list is given the score k(j)/j, where k(j) is its rank in the
list; the Gramscianity index g(x) is the sum of the scores of the 49 texts by

Gramsci which appear in the list. The non-Gramscianity index ng(x) of text
x is defined similarly as the sum of the corresponding scores for the first 49

texts not by Gramsci.
The Gramscianity index will be lower as long as the unknown text is

nearer to the group of Gramscian texts (ng(x) has the same property for
non-Gramscian texts). The text x is therefore attributed to Gramsci if its

Gramscianity index g(x) is lower than its non-Gramscianity index ng(x).
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Figure 2.2: Attributions using Gramscianity and non-Gramscianity index, for the

100 texts of the training corpus.

Figure 2.2 illustrates, with the same conventions used for figure 2.1, the
results obtained for the 100 text corpus using the index method with n-gram

length from 1 to 10. Even in this case, the results suggest n = 7 or n = 8

as the best choices for the parameter; for such values, indeed, we have the

best results for the recognition of texts by Gramsci (43/50 texts) and no false
positive.

The use of these indices has also another advantage: their difference gives
a natural measure of the reliability of the attribution. More precisely, given

an article x to attribute, if g(x) and ng(x) are the Gramscianity and non-
Gramscianity indices defined above, the number

v(x) =
ng(x)− g(x)

ng(x) + g(x)
(2.3)

lies always between -1 and 1: a value near to 1 (or -1) gives a strong attri-
bution to Gramsci (or to “non-Gramsci”), while values near to 0 are a mark

of great undecidability.
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The value of the vote v for each of the 100 texts of the corpus is illustrated
in figure 2.3: it is easy to notice that some texts, for example g03, g08 and

n39, have a much weaker attribution than g04 or n01.

1 5 10 20 30 40 1 5 10 20 30 40 50

g03

g04

g08

n01

n39v

Figure 2.3: Attribution of the 100 texts with measure of attribution reliability,

using the Gramscianity and non-Gramscianity indices defined in the text.

2.2.3 Entropy and compression: the BCL method

Shannon’s information theory, as described in chapter 1, has a rigorous
and consistent formulation only for well defined mathematical objects: we

have seen how the stationarity and ergodicity of the source play a fundamen-
tal role in its development. Anyway, it is quite natural to use it also in the

field of text analysis. Shannon himself, indeed, estimated with an experiment
that the average quantity of information of the source “English language” is

between 0.6 and 1.3 bits per character. Though the entropic characteristics
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of an author’s writing are certainly interesting, an approximated value of
entropy per se is not very useful for the attribution problem, as can be seen

in Table 2.3, where the compression rate obtained with an LZ compressor
is listed for various authors of Italian literature: it would not be possible to

distinguish Dante’s works from Boccaccio’s only based on this measure and,
on the other hand, different works by the same author can have very different

values of entropy.

author work compression rate

Dante Commedia 3.2

De Vulgari Eloquentia 3.0

Convivio 2.7

Boccaccio Decamerone 2.8

Petrarca Canzoniere 3.1

Table 2.3: Compression rates in bits per character of some texts from Italian

literature.

Moving now from a single source (author) to the comparison between
two sources, relative entropy can be considered as a very powerful tool to

quantify their difference: it is indeed reasonable to expect that the relative
entropy of two texts by Boccaccio is smaller than the one between a text

by Boccaccio and a text by Petrarca. Moreover, relative entropy can be
computed effectively using compression algorithms, as we have seen in 1.

As we have seen, some compression algorithms, and the ones in the LZ
family in particular, allow indeed to obtain an estimate of the relative entropy

between two texts, and hence to measure their closeness. Various methods
based on Ziv-Merhav’s theorem and similar ideas have been proposed and

used on specific problems in the fields of biological sequence analysis and of
authorship attribution; here we cite, with no pretension of completeness, the

works of M. Li et al. [39], P. Juola [28], W.J. Teahan [65], O.V. Kukushkina,
A.A. Polikarpov and D.V. Khmelev [35], and D. Benedetto, E. Caglioti and

V. Loreto [8].
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In [8] it has been proposed to estimate the relative entropy as follows
(see also [35],[41]). Suppose you compress the text y + x, that is, the text

obtained by attaching text x to text y. The compression algorithm, being
sequential, will code first all the characters of y and then will start coding

those of x, looking for the strings in the part which it has already read, i.e.
in the text y. The more similar the two texts are, the longer will be the

strings in x which are found in y, and therefore the more effective will be the
compression of the whole file. The compressor, in fact, in this case will take

advantage not only of the redundancy within the single texts, but also of the
one between the two texts, improving the compression rate. The difference

between the lengths of the compressed versions of y + x and of y, divided by
the length of x, is a measure of the relative entropy of text x with respect to

y (for a detailed analysis of the compression of attached files see [56]).

It is actually possible to implement the method described above using

winzip or gzip, and the results obtained are reasonable. However, in LZ77-
based compressors, the coding phase is followed by another one in which

suitable algorithms re-code the couples of numbers in order to optimize com-
pression. Benedetto, Caglioti and Loreto have therefore developed a program,

called BCL, in which this re-coding is optimized, in a way similar to gzip, to
improve attribution skills, and where the repeated strings are searched only

in the first file, in the attempt to apply Ziv-Merhav’s theorem. Note that
this is exactly the cross compression algorithm we discussed in 1.2.3.

Here we used this method, adapting it to the Gramscian problem. The
results for the 100 texts by Gramsci and coworkers used in the preliminary

tuning stage were not good enough: 32 true positives and 14 false positives.
The point is that the entropic method is strongly sensitive to the size of

reference texts. In general, all the methods based on the comparison of
single texts tend to choose the nearest neighbour of the unknown text among

those of larger size. Long texts, indeed, are relatively richer in statistics and
information, and are therefore likelier to have common characteristics with

the test documents. On the other hand, if for the n-gram method the texts
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appearing at first ranks in the attributions have a size about 1.5 times the
average for the 100 texts, for the entropic method this ratio is above 2.

Therefore, we proceeded by using “reassembled” texts for the comparison:

the reference corpus, for example Gramscian texts, was first merged into a
single large file and then cut into many parts of equal length (loosing the

original partition into articles). These new files of equal size became the new
reference texts. The results were sensibly better; we show them in figure 2.4,

varying the standard length of reassembled texts for the reference corpus.

Figure 2.4: Attribution of Gramscian and non-Gramscian texts with BCL method,

related to the length of reassembled texts.

We then applied also here the voting technique described for n-grams,

but limiting the sum to the first three Gramscian and non-Gramscian texts
in the ranking. With a length of 29 500 bytes we had the best results: 46

true positives and one false negative.
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2.2.4 The overall procedure and the experiments

The overall attribution strategy was hence based on the two methods
described above:

• 8-grams with vote extended to all the reference texts;

• relative entropy with reassembled texts 29 500 characters long and vote

for the first three texts in the ranking.

The two methods are based upon completely different principles. On the

other hand, one can fear that they give in fact the same information, adding
nothing to the accuracy of the global method. We have therefore made sure,

with suitable methods, of the statistical independence of the rankings of the
texts ordered according to the two distances.

We finally attributed to Gramsci only the texts that both methods as-
signed to him. Moreover, both techniques give a numerical value for the

attribution (see eq.(2.3)) so that it is possible (and very useful) to give a
graphical representation of the overall results, as the one shown in figure 2.5.

The Gramscianity index obtained with the n-gram method is plotted on

the horizontal axis: positive values correspond to the attribution to Gram-
sci, negative values to “non-Gramsci”. The rightmost points are the texts for

which the attribution to Gramsci is more certain, the leftmost are those for
which the method suggests with greatest certainty an attribution to authors

different from Gramsci. On the vertical axis we show the value of the analo-
gous index given by the relative entropy method; in this case advancing from

bottom up means moving from suggested non-Gramscian texts to suggested
Gramscian ones.

The absence of triangles in the first quadrant means that there are no false
positives (no wrong attributions to Gramsci). The number of texts correctly

attributed to Gramsci is 43, the 86% of the total. In the second quadrant lie
the texts attributed to Gramsci by the relative entropy method but not by

the n-gram method: among them the Gramscian texts g07, g08 and g35.
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Figure 2.5: The attributions for the 100 texts for the training, at the end of the

preliminary stage.

There is no text in the fourth quadrant: these would be those attributed

to Gramsci by the n-gram method but not by the entropic method. Finally,
the third quadrant contains the texts not attributed to Gramsci by either

method. Among them the Gramscian texts g01, g02, g14 and g50.

Next, we applied this procedure to the attribution of 40 additional articles

we received by the scientific committee of the National Edition during a blind

test. The application of the method to these 40 new articles gave the results

shown in figure 2.6, obtained with the same procedure used in figure 2.5 for
the 100 tuning texts: the abscissa of each point represents the vote given by

the n-gram method, on the ordinate there is the value of the vote for the
relative entropy method; the texts which both methods attribute to Gramsci

lie therefore in the first quadrant.
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n

Figure 2.6: Attributions for the 40 texts of the blind test.

The results of this blind test were very good: 18 Gramscian texts out
of 20 were correctly attributed to Gramsci, that is the 90%, with no false

positives. There are just two Gramscian texts not recognized by the n-gram
method, corresponding to the two circular marks in the second quadrant:

one is a very short text, consisting of few lines, and hence objectively quite
difficult to attribute, while the other one shows no singular characteristics.

2.2.5 n-gram statistics

An interesting object of investigation concerning the 8-gram distance is
the statistical distribution of the 8-grams in the 100 training articles. Let

us consider the big text made up of the 50 training texts by Gramsci and
the one made up of the 50 training texts by non-Gramscian authors. In the

following table we summarize some statistical properties of the 8-grams in
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this data set.

number of 8-grams number of number of 8-grams

with their multiplicity distinct 8-grams with 1 occurrence

Gramscian 326 836 186 986 141 206

Not Gramscian 335 951 194 594 149 212

all 662 787 327 510 237 276

Table 2.4: 8-gram statistics for the Gramscian corpus.

Moreover, if ω is an 8-gram chosen randomly in Gramscian texts, the

probability that ω does not appear in any non-Gramscian text is 0.492, and
the probability that it does not appear throughout Gramscian texts, if it

is chosen in non-Gramscian ones, is 0.498. Note that the term fx(ω)−fy(ω)
fx(ω)+fy(ω)

in formula (2.2) for the n-gram distance is 1 in case either fx(ω) = 0 or

fy(ω) = 0. The previous considerations suggest that a relevant part of dn

is due to the contribution of 8-grams which are present only in one of the

two files; namely for the 100 training texts this part is, on average, the 92%

of the distance. In figure 2.7 we show the mean part of dn which is due to

n-grams with frequency 0 in one of the two files, as a function of n.

These considerations suggest to test another, simplified n-gram distance:

ds
n(x, y) =

|Dn(x)3Dn(y)|

|Dn(x)| + |Dn(y)|
,

or, equivalently,

ds
n(x, y) =

|Dn(x)3Dn(y)|

|Dn(x) ∪Dn(y)|
,

where Dn(x) and Dn(y) denote, as before, the n-gram dictionaries for texts
x and y respectively and ∆ is the symmetric difference: A3B = (A \ B) ∪

(B \ A). For n = 8 the two expressions above differ for a small term of
order |D(x)∩D(y)|/|D(x)∪D(y)|2. The second formulation of this measure

is usually called Jaccard dissimilarity coefficient or index in text retrieval
publications, and is a very simple quantity commonly used in classification

problems of various kind (see chapter 3).
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Figure 2.7: The mean fraction of the distance between two texts of our data set

due to the n-grams which are present only in one of them.

Due to the previous considerations on n-gram statistics, it is not surpris-
ing that both these distances, with n large enough (e.g. n ≥ 7), give the

same results as the n-gram distance.

2.2.6 Ranking analysis

Quantitative methods for authorship attribution do not use any a-priori

information on the stylistic differences between authors. On the other hand,
an efficient quantitative method can provide a-posteriori information. In

this section we discuss some preliminary theoretical considerations on this
subject.

In order to delimitate the problem, we assume to have only two sources:

G (e.g. the author Gramsci) and N (e.g. the other authors). Supposing it
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is possible to consider G and N as ergodic sources, the values of the n-gram
distance calculated between two arbitrary texts from the two sources have a

probabilistic distribution depending only on the sources G and N themselves.
Nevertheless, a statistical analysis of these values would not be very useful,

mostly because the distance between two texts strongly depends on their
lengths: to put it differently, it seems unadvised to compare the distances

between different pairs of texts, while it is much more sensible to compare
the distance of two texts from a fixed one. Indeed, we are trying to define

quantities which are invariant under a suitable class of transformations.
Given a text x from the source G, we consider the empirical distributions,

denoted by g and n, of the distance between x and a random text of G and
of N , respectively. With a monotonic transformation we can consider g as

uniformly distributed in [0, 1] and n as a continuous variable taking values
in [0, 1]. We denote by mn the distribution function of n with respect to g:

if z ∈ [0, 1] is the fraction of G-texts with distance less then a fixed value d

from the text x, then mn(z) is the fraction of N -texts whose distance from

x is less then d.
We will recover mn from the data on the distances of the training set.

Once we have fixed x ∈ G, we have the values of the distance between x

and 49 other Gramscian texts, which we indicate with g1 < . . . < g49. We

also have the 50 values n1 < . . . < n50 of the distances between x and the
50 non-Gramscian texts. An empirical approximation of mn is given by the

following formula: let k ∈ {1, . . . 49},

mn

(

k

50

)

=
1

50

50
∑

i=1

X{ni ≤ gk},

where X is the characteristic function. We also set mn(0) = 0 and mn(1) = 1.

The function mn(z) is the non-Gramscian mass which corresponds to the
Gramscian mass z. Taking the average for x varying in all the Gramscian

texts G, we obtain the function with the plot on the left of figure 2.8 (linearly
interpolated in the intervals [k/50, (k + 1)/50]).

In the same way we obtain the distribution function mg (plot on the right
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Figure 2.8: The distribution function mn with respect to mg for Gramscian texts,

and the distribution function mg with respect to mn for non-Gramscian texts.

Dashed lines are the power law approximations of the two functions.

of figure 2.8), which is the distribution function of the distance of the Gram-

scian texts from a given non-Gramscian text, with respect to the distribution
of the distances of non-Gramscian texts.

Observing the two graphics we can make some considerations.

• In both cases, in the initial part the “mass” for the “wrong” author is
less then the mass for the right one, according to the fact that the

n-gram distance is a good indicator for authorship.

• The initial part of both curves can be approximated by a power law. A

log-log regression (without the constant term) gives the exponent 1.237

for mn and the exponent 1.501 for mg.

• The distribution function mn changes its convexity for mg ≈ 0.65, and
becomes larger than mg. This means that, given a Gramscian text,

the more distant non-Gramscian texts are closer to it than the farther
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Gramscian texts. This statistical fact may show that Gramsci was a
more various author then the others (note furthermore that the author

N is indeed a collection of 17 different authors).

This analysis suggests a way to define theoretically a Gramscianity in-
dex, in the spirit of section 2.2.2. Consider now a text x of an unknown

author (either G or N) and its distances from & Gramscian texts and & non-
Gramscian texts. We indicate with c ∈ {G, N}2" the ranking of the authors

of the references texts; for example, a ranking c = (G, G, N, G, N, N) for
& = 3 means that, sorting the 6 reference texts by growing distance from x,

the first, second and fourth neighbours are Gramscian, while the third, fifth
and sixth are non-Gramscian.

Assuming a given expression for mn, we can calculate P (c| x ∈ G), i.e.,
the conditional probability of observing the positions of G- and N -texts in

c, if x is indeed a text by G:

P (c| x ∈ G) =

∫ 1

0

ρ1(z1)∂z1

∫ 1

z1

ρ2(z2)∂z2

∫ 1

z2

ρ3(z3)∂z3 · · ·

∫ 1

z2!−1

ρ2"(z2")∂z2",

(2.4)

where

ρi(z) =

{

1 if ci = G

m′
n(z) if ci = N

.

In a similar way we can express P (c| x ∈ N) assuming a given expression for

mg.
Using Bayes formula, we can also calculate P (x ∈ G| c) and P (x ∈ N | c).

We can then attribute x to G or to N by evaluating the sign of the difference
P (x ∈ G| c) − P (x ∈ N | c). Namely, we can identify P (x ∈ G| c) with a

Gramscianity index and P (x ∈ N | c) with a non-Gramscianity index for the
text x, and we can proceed as in section 2.2.2. In order to use Bayes formula

we need to know the a-priori values of P (x ∈ G) and P (x ∈ N). We have
used an equal number of texts of G and of N , so that P (x ∈ G) = P (x ∈

N) = 1/2. Therefore:

P (c) =
P (c| x ∈ G) + P (c| x ∈ N)

2
,
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and

P (x ∈ G| c) =
P (c| x ∈ G)

P (c| x ∈ G) + P (c| x ∈ N)

P (x ∈ N | c) =
P (c| x ∈ N)

P (c| x ∈ G) + P (c| x ∈ N)

The construction of these indices depends on the explicit calculation of
P (c| x ∈ G) and P (c| x ∈ N), as in (2.4), which is easy for some particular

choice of the laws ρi(z). This is the case for a power law. In particular, if
mn(z) = z1+α, then

ρi(z) = (1 + αi)z
(1+αi)−1, where αi =

{

0 if ci = G

α if ci = N
.

Inserting this expression in (2.4), we can now use the fact that, by direct
integration,

∫ 1

0

zα1−1
1 ∂z1

∫ 1

z1

zα2−1
2 ∂z2 · · ·

∫ 1

zk−1

zαk−1
k ∂zk =

1

α1(α1 + α2) · · · (α1 + α2 + . . . + αk)
.

(2.5)
Defining

m̄g(k) =
k

∑

i=1

X{ci = G}, m̄n(k) =
k

∑

i=1

X{ci = N}

we have m̄g(k) + m̄n(k) = k and

α1 + . . . + αk = k + αm̄n(k) = k

(

1 + α
m̄n(k)

k

)

.

Finally

P (c| x ∈ G) =
(1 + α)"

(2&)!

1

(1 + αm̄n(1)/1) · · · (1 + αm̄n(2&)/(2&))
. (2.6)

In the same way, if mg(z) = z1+β , we obtain

P (c| x ∈ N) =
(1 + β)"

(2&)!

1

(1 + βm̄g(1)/1) · · · (1 + βm̄g(2&)/(2&))
. (2.7)
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A simple expression for P (x ∈ G| c) − P (x ∈ N | c) can be obtained by
considering the first order in α, β of these expressions. We obtain

β

(

2"
∑

k=1

m̄n(k)

k
− &

)

− α

(

2"
∑

k=1

m̄g(k)

k
− &

)

.

Since m̄g(k) + m̄n(k) = k,

P (x ∈ G| c)− P (x ∈ N | c) = (α + β)
(

∑2"
k=1

m̄g(k)
k
− &

)

= α+β
2

∑2"
k=1

(

m̄g(k)
k
− m̄n(k)

k

)

.

We obtain the following condition for the choice of G as the author of the
text x:

2"
∑

k=1

(

m̄g(k)

k
−

m̄n(k)

k

)

> 0.

We remark that this condition is very similar to the one used for the experi-
ments described in the preceding sections, which, in this notation, is

2"
∑

k=1

(

m̄g(k)

k
X{ck = G}−

m̄n(k)

k
X{ck = N}

)

> 0.

The results for the 100 training tests are very similar for the two methods.

2.2.7 A quick comparison with other methods

As discussed in 2.2.1, the Gramscian corpus has many interesting char-
acteristics from the point of view of authorship attribution studies. In a first

attempt to compare our methods with other techniques on a common test
ground, we used the JGAAP software, developed by a group leaded by P.

Juola, the organizer of the AAAC.
Unfortunately, the “Documentation” section of the software web page4 is

very basic, and lacks a precise description of the methods; on the other hand,
the source code is fully available and can be downloaded and compiled freely.
We used version 3.1 of the software.

4http://server8.mathcomp.duq.edu/jgaap/w/index.php/Main_Page
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The Event set section of the program allows to choose among the following
features:

• characters

• words

• word lengths

• syllables

• character n−grams with n = 2, 3, 4

• word n−grams with n = 2, 3, 4

The method of analysis can instead be chosen among the following ones:

• cross entropy

• histogram distance

• KS distance

• Levenshtein distance

• Camberra distance

• Manhattan distance

• LDA (linear discriminan analysis)

• SVM (support vector machine)

• Gaussian SVM

We tried all the possible combinations of features and methods on the
blind test corpus of 100 reference texts and 40 test documents described

above, obtaining the results reported in table 2.5. We use here a standard
performance indicator for text retrieval, the F-measure, defined as follows:

F -measure =
2 ∗ Precision ∗ Recall

Precision + Recall
,

where, if TP (respectively TN) is the number of true positives (negatives)

and FP (respectively FN) is the number of false positives (negatives),

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
.

The F -measure is therefore the harmonic mean of precision and recall.
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The comparison shows that, at least for the Gramscian corpus, both of
our attribution techniques work better than all of those available in Juola’s

software; indeed, the F−measure on the blind test corpus is 0.947 for the
8-gram distance, and 0.909 for the BCL method.

char. words word syll. char. char. char. word word word

lgths 2−gr. 3−gr- 4−gr. 2−gr. 3−gr. 4−gr.

cross entropy 0.714 0.731 0.717 0.694 0.698 0.723 0.696 0.642 0.605 0.485

histogram d. 0.485 0.698 0.667 0.533 0.818 0.650 0.634 0.655 0.667 0.667

KS d. 0.667 0.625 0.615 0.429 0.556 0.516 0.588 0.714 0.619 0.462

Levenshtein d. 0.579 0.625 0.583 0.698 0.634 0.810 0.615 0.679 0.643 0.655

Camberra d. 0.698 0.667 0.486 0.537 0.711 0.750 0.714 0.667 0.667 0.667

Manhattan d. 0.667 0.625 0.615 0.429 0.556 0.516 0.588 0.714 0.619 0.462

LDA 0.595 0.711 0.732 0.684 0.872 0.864 0.732 0.766 0.667 0.667

SVM 0.833 0.650 0.667 0.703 0.833 0.878 0.833 0.745 0.667 0.667

Gaussian SVM 0.765 0.727 0.524 0. 636 0.842 0.864 0.776 0.667 0.667 0.667

Table 2.5: F−measure on the Gramscian blind test data set with the methods

available in the JGAAP software. Features on the columns, attribution methods

on the rows. Note that methods using character n−grams and machine learning

techniques are the majority among those that have an F−measure higher than 0.8

(highlighted in red and underlined).

We do not pretend this comparison to be highly significant, since we

merely used the JGAAP package as a “black box” by feeding it with the
texts and accepting the results it returned, without being able to tune the

methods by setting the parameters etc. Anyway, we can think to this test
as a further indication of the good behaviour of our methods for authorship

attribution. As a future work, we plan to do a more extensive and better
grounded comparison on a quite large benchmark, in the spirit of the one

that Grieve reported and discussed in [23].
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2.3 Xenophon and Thucydides

2.3.1 The problem

When the Gramsci project was already under way, we started a prelimi-
nary collaboration with Luciano Canfora, a well known classical philologist

from the University of Bari, Italy. He proposed to our group an interest-
ing and demanding open problem of disputed authorship in Greek historical

literature.

Canfora’s theory [12, in Italian] is the following: in the traditional, Hel-

lenistic partition of the History of the Peloponnesian War, the monumental
work by Thucydides5, the part that narrates the 22nd-27th years of the war

between Athens and Sparta was erroneously attributed to Xenophon6. The
first and a part of the second book of Xenophon’s Hellenica should therefore

be attributed to Thucydides instead, according to this thesis.

The problem is undoubtedly interesting for a stylometric study, and very
different from the previous work on Gramscian articles. Apart for the ob-

vious difference in the language, which will be further discussed in the next
paragraph, an important element of distinction is the text length: even after

removing a lot of characters to “normalize” the texts of the corpus, they are
on average 50,000-100,000 character long, allowing for much richer statistics

for any feature extraction method.

Unfortunately, the only exceptionally short texts in the corpus are pre-

cisely the first and the initial part of the second book of the Hellenica, that
is, the disputed texts under analysis. Once again, when dealing with real-

world problems there is no hope of having the “perfect corpus”, and this is
true even more for this Greek data set; a broader discussion on this subject

5Thucydides (c. 460 BC – c. 395 BC) was a Greek historian, and the first who wrote

a detailed and scientifically built historical work in Greek’s literature.
6Xenophon (c. 430 – 354 BC) was a Greek historian, soldier and mercenary, who

wrote a number of historical works, among which the Hellenica, which is considered as

the natural continuation of Thucydides’ History of the Peloponnesian War, since it starts

from where Thucydides had ended his narration.
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will follow.

2.3.2 A first experiment

The textual source that we used to compose the corpus was the digital

library of the Perseus Project of Tufts University7; we had to pretreat the
texts to make them homogeneous, by removing HTML tags and all the char-

acters that didn’t belong to the Greek alphabet at the time when Thucydides
and Xenophon wrote: lowercase letters and punctuation, indeed, appeared

later in Greek writing, as well as most diacritical marks (accents, breathings,
iota subscript).

The following operations were performed, in summary:

• subdivision into books, with the exceptions discussed below;

• deletion of HTML tags;

• reduction of the alphabet to only the letters and the whitespace sepa-
rator;

• whitespace normalization;

• elimination of all diacritical marks;

• uppercasing.

The resulting alphabet is composed of only the 24 characters of the classical

Greek alphabet, plus the whitespace.

The first corpus we used for our experiments was made up of the following

texts, that we kept as a reference for the attribution:

Thucydides : the eight books of the History of the Peloponnesian War,

with the chapters from 1 to 83 of book III excluded, since they are not
signed by Thucydides himself (cf. again [12]);

Xenophon : the seven books of the Anabasis, the books from 3rd to 7th
of the Hellenica and the second part of the second book of that same

7http://www.perseus.tufts.edu/
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work (from 3.11 to the end, the part that was certainly written by
Xenophon).

The texts are quite long, as already discussed: their lengths are shown in

figure 2.9.
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Figure 2.9: Lengths of texts by Xenophon and Thucydides, together with their av-

erages (solid and dashed horizontal lines, respectively). Note that the two disputed

texts, shown in green, are among the shortest of the whole corpus.

In order to have a cross-validation of the results, we used the same texts
also as a test set, together with the two texts for which we were trying to

determine the attribution, namely the first book and the second book up to
3.10 of the Hellenica.

We tested on this corpus exactly the same n−gram distance dn that
we had succesfully used for the Gramsci project; since the right value of n

depends strongly on the language (and possibly on many other characteristics
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of the corpus), though, we didn’t fix a single value of the parameter, which
was allowed to vary between 1 and 15.

The results of this first experiment were surprisingly good, possibly even
too good: for any value of n ≥ 2 the reference texts are correctly parted

between the two authors. This result holds already when we consider only
the first neighbour, and it is confirmed when we use a weighted index like

the one defined in paragraph 2.2.2. The two disputed texts are attributed in
any case to Xenophon.

2.3.3 Are simple statistics enough?

Considering the extraordinary good classification we had obtained in the
first experiment, we needed to understand if there was some very basic differ-

ence between the styles of the two authors, something that could be detected
by extracting very simple statistics from the corpus.

The character distribution, shown in figure 2.10, doesn’t seem to highlight
any notable difference between the two authors. This is indeed consistent

with the fact that n = 1 is the only value of the parameter for which the
distance gives the wrong attribution for some texts.

The word length distribution is shown in figure 2.11. It is interesting to

note the difference in the distribution for words between 4 and 10 character
long, for Xenophon and Thucydides. More interestingly, the distribution for

the disputed texts (green squares) is nearer to the one for Thucydides.

2.3.4 Extending the corpus

A sligthly deeper analysis of the results of the first experiment shows

that each text has as its first neighbour not only a text written by the same
author, but always another chapter of the same book from where the text

itself was extracted. The suspicion that the attribution was based on the
subject, instead of the authorship, was therefore very strong.

We tried to avoid as much as possible this risk by expanding the data set
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Figure 2.10: Distribution of the character of the alphabet in the two authors’

reference texts, compared with the one of the disputed texts (green).

in two directions:

1. either by removing the Hellenica from the reference corpus and adding

in its place chapters of other works by Xenophon (namely the eight
books of the Cyropaedia8), dealing with other subjects;

2. or by adding texts written by other authors on the same subject: books
XI, XII e XIII of the Bibliotheca Historica9 by Diodorus Siculus and

the Lives of Alcibiades, Lysander, Nicias and Pericles, from Plutarch’s
Parallel Lives10.

8The Cyropaedia is a partly fictional biography of Cyrus the Great written by Xenophon

in the early 4th century BC.
9The Bibliotheca Historica is a monumental work of universal history by Diodorus

Siculus (90-27 aC).
10The Parallel Lives, or Lives of the Noble Greeks and Romans, is a work by Plutarch

(46-127 dC) containing a series of biographies of famour men, arranged in pairs in order

to underline common characteristics.
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Figure 2.11: Word length distribution in the reference texts of the two authors,

compared with the one of the disputed texts (green squares).

We want to underline that neither of these choices results in the perfect

corpus : in the first case, we weren’t able to enrich the corpus with other

works by Thucydides, who wrote only the History of the Peloponnesian War,
whereas Xenophon was a much more prolific author. In the second option

the works we added are very well centered on the same subject, but from
very different ages then the ones of the original corpus: as we have already

discussed, the time when a certain work was written is a key factor in deter-
mining the style, and comparing texts separated by a time span of three or

four centuries is not a very sensible choice. We want to underline that this
is precisely the kind of problems that one is faced with when dealing with

real-world attribution corpora; this is why we decided to try our methods on
these new data sets anyway, even if with the awareness that we were dealing

somehow with “borderline” data.

With the first of the two corpora described above we obtained results
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perfectly comparable with those we got with the original corpus, i.e., all the
texts of known authorship were correctly attributed; in this case, though,

the value of n for which this happens is higher: n ≥ 7. Considering only the
first neighbour, the two disputed texts are here attributed to Thucydides,

while they are assigned back to Xenophon with a weighted index on a larger
number of neighbours. It is interesting to note that the first chapter of the

Hellenica has the eigth book of the Peloponnesian War as its first neighbour,
for any value of n, a fact that suggests a very high resemblance between the

two texts.

The second proposed corpus gave for the first book of the Hellenica ex-

actly the same results as the experiments described up to now, i.e., the
attribution depends on whether or not the other chapters of the Hellenica

are among the reference texts. The texts by Diodorus and by Plutarch are in
general correctly assigned to the corresponding authors, with the exception

of the XII book of Diodorus’ Bibliotheca Historica, which goes to Thucydides
for any value of the parameter: this could indeed be a case where the subject

is more relevant than the author’s style for the attribution. The first part of
the second book of Xenophon’s Hellenica, instead, has as its first neighbour

the XIII book of Diodorus’ Bibliotheca Historica; we want to underline once
again, though, that this text is very short with respect to all those that com-

pose the corpus, and therefore its attribution is certainly less sure than the
one of the other works.

The preliminary experiments we performed on the same corpora by using
our compression-based method described in section 2.2.3yielded essentially

the same results.

In conclusion, the results we obtained for the Greek corpora are certainly

very good from the point of view of the attribution of reference texts, but
they do not allow us to state whether these attribution results depend on

the subject or on the author’s style; hence, we cannot use them to give a
convincing attribution for the disputed texts.

It is certainly true, though, that even simple statistics indicate a simi-
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larity between the beginning of the Hellenica and Thucydides’ work, which
is confirmed by observing that the eigth book of the Peloponnesian War is

often in the first positions of the distance rankings for the disputed texts,
for various values of the n−gram distance. Note that the VIII book of the

Peloponnesian War has been the object of quantitative authorship verifica-
tion studies itself, among which [36, in Italian] by M. Lana, who suggested a

comparison with Xenophon’s work as the next step of his research.

2.4 Conclusions and future developments

Authorship attribution is a very wide area of research, where a huge va-
riety of methods have been experimented. The relatively recent interest in

non-linguistic methods is certainly confirmed by the results of our experi-
ments with n−gram statistics and data compressors, however limited such

experiments may be. For sure, indeed, they give positive indications about
the possibility of adopting those methods for the study of authorship; and

with the Gramsci project we had the occasion of testing them on a real-
world and at the same time well organized (in the sense discussed above)

and controlled corpus.

What emerges in the tests with the n−gram distance is also the good

performance of relatively large values of the parameter n, like 7, 8 or 9.
The question about which value to choose for n is indeed completely open,

also in the literature. If it is true that a “large” n is more exposed to the
risk of catching the subject of the text (cf. [23, 62]), since it takes into

consideration long, content-related words, on the other side such large values
outperformed smaller ones both in our experiment on the Gramscian corpus,

whose homogenity by topic has already been discussed, and a in controlled
test that Clement and Sharp [14] performed using movie reviews extracted

from the Internet Movie Database11. The reason for this fact is not clear,
and deserves more attention. A possible interpretation is that a “large” n

11http://www.imdb.com/
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is able to account for more factors among those that determine the text; it
behaves somehow like a “multiple” feature, that contains information about

the distribution of punctuation, of syllables, of function and content words, of
couples of words, etc. All of these informations, that are marks of the author’s

style, come in a single “package”, with no possibility of being isolated from
one another, with scarcely controllable but fruitful effects on the attributions.

It would certainly be worth to test our methods on a larger controlled
corpus, and to compare it with other attribution techniques, in the spirit of

[23]. With respect to Grieve’s experiment, though, we would be interested
in trying a broader comparison, by applying also more standard techniques

like Principal Component Analysis (PCA) or machine learning methods.
For what concerns real-world attribution problems, we could certainly im-

prove the Greek corpus, and we are thinking of possible new corpora too; a
potential idea is to try and give indications about the authorship of the Histo-

ria Augusta, a collection of biographies of Roman emperors and usurpers who
lived in the II-III century BC. The work is signed by six different authors,

and dated around the IV century; however, there is an open controversy
regarding both the dating and the authorship of the text, since various phy-

lological studies indicate it as a later work of a single author who would have
simulated different styles. Stylometric studies have already been performed

on this work, with alternate results (see for example the publications in [40]);
we plan to test on it our attribution methods.

The attribution problems we have dealt with up to now have a common
characteristic: the distinction is always between two authors, or an author

and all the other ones, considered as a whole, as in the Gramscian corpus.
This two-class problem is realistic but also limited: one can easily imagine

situations where a text is disputed among three or more authors. We would
like to find suitable ways of extending our approach to this more general

situation, as well as to adapt our ranking technique to the case when the
classes are not homogeneous by the number of texts.
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Chapter 3

Applications: plagiarism

Sheldon: You two may want to know that when I publish my findings, rest

assured that your contributions will not go forgotten.

Howard: Thanks.

Sheldon: Although I will not have time to mention you on my Nobel speech,

when I get around to writing my memoirs, I promise you a very effusive

footnote, and maybe a signed copy.

- The Big Bang Theory, season 3, episode 1 -

3.1 Plagiarism detection

The phenomenon of plagiarism has been seeing a growing interest in
the last two decades, with the rapid development of the world wide web,

a tremendously vast source of documentation on virtually any subject of the
human knowledge. We want to concentrate here on plagiarism for written

texts, i.e., the re-use of (parts of) someone else’s writing or written ideas
without a proper citation or reference; this can happen either intentionally

or unintentionally. There are various mechanisms that can be put in place
to disguise an act of plagiarism, among which rephrasing the copied texts,

changing the structure of the sentences, using synonims, and so on. There-
fore, it is not enough for an algorithm for automatic plagiarism detection

to identify identical passages: a more refined idea is needed. Furthermore,

59
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some cases of more “borderline” plagiarism, like the re-use of someone’s idea
without a direct copying of any of his writings, can make the task even more

difficult, if not impossible, for automatic methods.

As P. Clough underlines in his reviews of existing methods and softwares

for plagiarism detection [15, 16], the origin of such research lies in the analysis
of program code authenticity. Programming languages, though, are much

simpler to analyse than natural language, due to the presence of structure and
the closed vocabulary: often a comparison of the structures of two programs

can be enough to generate or confirm a suspicion of plagiarism. For natural
language writing, instead, no fixed structure or vocabulary is given, and the

research often disregards complex NLP1 techniques, and is instead driven
towards simpler, statistical methods, like those that we have seen applied to

authorship recognition issues. The problem of plagiarism is indeed strictly
related to the one of authorship attribution: what we are looking for is an

information about the style of the text, i.e., those characteristics that mark
it as the work of some precise writer. On the other hand, as Clough correctly

observes, this problem is also different from authorship attribution, in that
it also strongly content-related, and it cannot be reduced to an analysis of

style.

In 2009 the Web Technology and Information Systems Group at the
Bauhaus-Universität Weimar, in Germany, and the Natural Language En-

gineering Lab at the Universidad Politécnica de Valencia, Spain, launched
the 1st International Competition on Plagiarism Detection [54] in the con-

text of the PAN‘09 workshop, with the aim of testing and comparing various
methods for plagiarism detection on a common and well structured corpus.

Due to the difficulty of finding a freely available corpus of real-world cases
of plagiarism – in general, authors do not declare frauds openly! – the orga-

nizers had to build cases of artificial plagiarism out of a large collection of
texts they downloaded from the Project Gutenberg website2. In order to re-

1Natural Language Processing
2http://www.gutenberg.org
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produce as much as possible the mechanisms that a human author could use
to disguise a plagiarized text, they automatically obfuscated the copy-pasted

passages by using one or more of the following mechanisms [54]:

Random Text Operations: random shuffling, removal or insertion of words
or short phrases;

Semantic Word Variations: random replacement of words with their syn-
onims, antonyms, hyponyms or hypernyms;

POS-preserving Word Shuffling: plagiarized sentences are tagged with

parts-of-speech (POS), and then words are shuffled in a way that pre-
serves the original POS sequence.

Even if the automatic obfuscation doesn’t reproduce exactly the mecha-

nisms of human plagiarism (for example, the sentences it produces are often
nonsense and can have sequences of repeated punctuation marks and other

such irregularities), the corpus that was proposed was certainly interesting
for plagiarism detection experiments, and indeed a number of groups parte-

cipated in the contest, which was parted into two cathegories, corresponding
to different real-world situations:

External Plagiarism: both the corpus of “suspicious” texts and the one
of the possible sources of plagiarism were given, and the task was to

identify whether or not each suspicious text contained plagiarized pas-
sages and the correct sources and positions from where they had been

extracted. This corresponds to the situation where the source is avail-
able, for example in cases of plagiarism among students of the same

class, self-plagiarism in the work of an author, etc.;

Intrinsic Plagiarism: the sources were not given, and the plagiarized pas-
sages had to be identified uniquely with an analysis of the suspicious

text itself. This is often the case for real-world situations, when the text
is somehow suspicious of not being original, but there is no idea about

the source of such plagiarism, or the database of candidate sources is
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so large that no computation on it is possible (e.g., the World Wide
Web).

Ten groups participated in the first cathegory, and only four in the second
one, which was certainly tougher. The results reported in [54] show interest-

ing good performances for methods based on character n−grams: both the
winners of the External and Intrinsic Plagiarism competitions used n−gram

based methods, even if in very different ways. We refer to their respective
works [24] and [63] for a complete description of their approaches, and will

now concentrate on our contribution to the External Plagiarism contest. We
will then make a few quick comments on intrinsic plagiarism in section 3.4.

3.2 PAN‘09 competition: our method for ex-

ternal plagiarism

3.2.1 A general scheme for plagiarism detection

One of the main differences between the typical authorship attribution
problem and most plagiarism recognition situations is certainly the size of

the reference corpus. Whereas it is common and realistic to deal with few
texts for each author in an authorship recognition framework, the PAN‘09

corpus counts (already in its training section) more than 7000 suspicious texts
and the same number of potential sources. As a side note, it is interesting

to observe that plagiarism recognition research is most often developed by
researchers in the field of computer science and information retrieval than

authorship attribution is, a fact which probably has both computational and
historical reasons.

Due to the size of the corpora, a generic method for the detection of
external plagiarism can be divided into three steps, according to [64]:

i) heuristic identification of potential source documents: for each suspicious
text a small subset of source documents has to be identified for the

second and deeper (computationally demanding) analysis;
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ii) exhaustive comparison of texts: the texts in the identified couples are
compared in order to find those fragments that could have been copied,

and the corresponding passages in the sources;

iii) knowledge-based post-processing, to eliminate proper citations from the

plagiarism candidate fragments.

Our method fits in this framework, apart for the third point, which we

completely disregarded. We will describe it in the next paragraphs, after a
brief description of the PAN‘09 corpus.

3.2.2 The PAN‘09 corpus of external plagiarism

The organizers of the competition provided a training corpus, composed
of 7214 source documents and 7214 suspicious documents, each with an as-

sociated XML file containing the information about plagiarized passages.
A first statistical analysis shows that text lengths vary from few hundreds

to 2.5 million characters, and the total number of plagiarized passages is
37046. Moreover, exactly half of the suspicious texts contain no plagiarism

and about 25% of the source documents are not used to plagiarize any suspi-
cious document. The length of the plagiarized passages has a very peculiar

distribution, see figure 3.1: there are no passages with length in the window
6000-12000 characters, and even for long texts there is no plagiarism longer

than 30000 characters; this is probably due to the artificial character of this
corpus. A remarkable fact is that about 13% of the plagiarized passages

consist of translated plagiarism.

Similarly, the competition corpus is composed of 7215 source documents

and 7214 suspicious documents (obviously without any associated XML file).
The length statistics are very close to those for the training corpus, see figure

3.2.

The details about the calculation of the mesuares of performance for the

competition can be found in [54]; essentially, the overall score is calculated as
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Figure 3.1: Distribution of plagiarized passage lengths in the training corpus.

the ratio between (character-level) F -measure and granularity, i.e., a measure
of the average number of identified segments for the same plagiarized passage.

3.2.3 A first selection with word length coding

When we decided to partecipate in the competition, only one month was
left for training, and we had to operate on a very tight time schedule.

Led by our experience in the field of authorship attribution, we decided to
try to deal with plagiarism, at least for the first selection of relevant sources,

as if it were a problem of style analysis; to this aim, hence, we applied the
methods we had developed for authorship attribution, obviously adapting

them to this context.

In order to identify, for each suspicious document, a set of candidate

sources for plagiarism, we wanted to use the n−gram distance described in
section 2.2.2, which had beed proved successful in authorship attribution

problems. Since here we were looking for (obfuscated) copies of portions of
texts, we expected a quite large value of n to give the best results3; com-

3Note indeed that the winning group used for this phase a kernel-based method with
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Figure 3.2: Text length distribution for the training corpus and for the competition

corpus.

putation time requirements, though, made a comparison of the 7214× 7214

texts impractical.

That is why we decided to apply a coding, similar to those described in

section 1.2.1, but with the characteristic of being lossy : the texts were trans-
formed into sequences of word lengths, so that for example the sentence To

be, or not to be: that is the question becomes simply 2223224238.
All word lengths greater than 9 were cut to 9, so that the new alphabet con-

sisted of the nine symbols {1, . . . , 9}. These encoded versions of the texts
were on average 82.5% shorter than the original ones, and so computation

times were greatly reduced.

Since it was impossible to do repeated computations of the n−gram dis-

tance with different values of n on the whole corpus, the tuning of the param-
eter was done by using a small subset of 160 suspicious texts and 300 source

texts, suitably selected by imposing text and plagiarism length distributions
comparable to those of the whole corpus. The parameter n = 8 was then

chosen as a compromise between a good recall (the fraction of plagiarized

16-grams of characters, cf. [24].
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characters coming from the first 10 nearest neighbours of each suspicious
text is 81%) and acceptable computation times. Note that a recall of 81% is

a very good result for the 8-gram distance, since the method just described
has basically no hope of recognizing the 13% of translated plagiarism. There-

fore, at least on the small subset of the training corpus, only about 6% of
the (non-translated) plagiarized passages are lost in this phase.

For each suspicious text the first 10 source neighbours ordered according

to this distance were kept for further analysis.

3.2.4 Detailed analysis: T9, matches and “squares”

After identifying the 10 most probable sources for each suspicious doc-
ument, we performed a more detailed analysis to detect the plagiarized

passages. Our (very simple) idea was to look for common subsequences
(matches) longer than a fixed threshold. To this goal we needed to recover

some of the information we lost in the first passage, by first rewriting the
text in the original alphabet and then using again a coding, but a different,

less “lossy” one, once again to reduce computational times and also in order
to be able to apply a fast algorithm for the identification of longest matches,

as it will be discussed below. We performed a T9-like coding, emulating the
system that is used for assisted writing on most mobile phones. The idea is to

translate three or four different letters into the same character, for example
{a,b,c} ,→ 2, {d,e,f} ,→ 3 and so on, as in a typical mobile phone key-

board. The symbol 0 is used for newline and blank space, 1 for all symbols
other than these two and the letters of the alphabet. The new alphabet for

the encoded texts is therefore made up of 10 symbols: {0, 1, 2, . . . , 9}. Note
that the use of T9 “compression”, which could seem strange at a first sight,

can be justified by observing that a “long” T9 sequence (10-15 characters)
has in most cases an “almost unique” translation into a sentence which makes

sense in the original language: this is what allows a mobile phone user not
to switch too often to words different from the one that the system suggests

as the first guess, especially for long words. Also, in this way we got no
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change in the length of texts, and we were able to avoid the use of indices to
reconstruct the actual positions and lengths of matches.

The “true” matches between suspicious and source documents were then
found: from any possible starting position in the suspicious document the

longest match in the source document was calculated (possibly more than
one with the same length). If the length was larger than a fixed threshold

and the match was not a submatch of a previously detected one, it was stored
in a list.

Here, we took advantage of the choice of the T9 coding, which uses ten
symbols: for any starting position in the source document, the algorithm

stores the last previous position of the same string of length 7, and for any
possible string of length 7 it is memorized, in a vector of size 107, the last

occurrence in the source file. With respect to other methods (suffix trees or
sorting, for istance), in this way we can search the maximum match in the

source document while avoiding to care for shorter ones.

The threshold for the match length was arbitrarily fixed to 15 for texts

shorter than 500,000 characters, to 25 for longer texts.

This algorithm provided us with a long list of matches for each suspicious-

source pair of documents. Since the plagiarized passages had undergone
various levels of obfuscation, the matches were typically “close” to each other

in the suspicious texts but taken from not necessarily subsequent places in
the source texts. If we represent the pair of texts in a bidimensional plot

(cf. also the Dotplots in [16]), with the suspicious text on the x axis and
the source text on the y axis, each match of length l, starting at x in the

suspicious document and at y in the source document, draws a line from (x, y)

to (x + l, y + l). The result is often something similar to figure 3.3: there

are some random (short) matches all around the plane but there are places
where matches accumulate, forming lines or something similar to a square.

Non-obfuscated plagiarism corresponds to lines, i.e., a single long match or
many short close matches which are in succession both in the suspicious and

in the source texts, whereas intuitively obfuscated plagiarism corresponds to
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“squares”: here the matching sequences are in a different order in the source
and suspicious documents.

50000 100000 150000 200000 250000
0

20000

40000

60000

80000

100000

120000

140000
suspicious!document00814.txt vs. source!document04005.txt

Figure 3.3: Orange points correspond to the position of matching characters (mea-

sured in number of chars from the beginning) between a suspicious and a source

document of the training corpus. A “square” of matches corresponds to an obfus-

cated plagiarism.

Figure 3.4 is an example of what can happen when there is no plagiarism:

the matches are uniformly spread around the plane and do not accumulate
anywhere. Obviously these are just two of the many possible settings: longer

texts or the presence of “noise” (e.g. long sequences of blanks, tables of
numbers...) can give rise to a much higher density of matches, substantially

increasing the difficulties in identifying the correct plagiarized passages.

In order to provide a single quadruple (x, y, lx, ly) of starting points and
lengths for each detected plagiarized passage we needed to implement an

algorithm that joined the “cloud” of matches of each “square”. Note that
the algorithm that performs this task needs to be scalable with plagiarism

lengths, which can vary from few hundreds up to tens of thousands characters.

The algorithm we used here joins two matches if the following conditions

hold simultaneously:

1. the matches are subsequent in the x coordinate;
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Figure 3.4: Orange lines correspond to the position of matching characters (mea-

sured in number of chars from the beginning) between a suspicious and a source

document of the training corpus. No plagiarism is present in this case.

2. the distance between the projections of the matches on the x axis is
greater than or equal to zero (no superimposed plagiarism) but shorter

than or equal to the lx of the longest of the two sequences, scaled by a
certain δx;

3. the distance between the projection of the matches on the y axis is
greater than or equal to zero but shorter than or equal to the ly of the

longer of the two sequences, scaled by a certain δy.

Merging repeatedly the segments which are superimposed either in x or
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in y, we obtained some quadruples, which corresponded roughly to the “di-
agonals” of the “squares” in figure 3.3. To conclude, we ran the algorithm

once again but using smaller parameters δ′x and δ′y, in order to reduce the
granularity from 2 to approximately the optimal value of 1. Figure 3.5 shows

the result of the algorithm for the couple of texts of figure 3.3 (blue), and
figure 3.6 shows the very good superimposition with the actual plagiarized

passages (black), as derived from the XML file.
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Figure 3.5: Detected plagiarism for the pair of texts of the training corpus indi-

cated at the top of the plot. Single matches in orange, joined matches in blue.

Note that “joining algorithm” described above depends on 4 parameters:

δx and δy for the first joining phase, and the rescaled δ′x and δ′y for the second
joining phase. Our choice of the actual values in use was dictated essentially

by the lack of time and no rigorous and efficient optimization was performed.
Driven by very few trials and with some heuristics, we decided to use the

following values: δx = δy = 3 and δ′x = δ′y = 0.5.
It is important to remark that different choices of the δ values yield to dif-

ferent detection results. For example, increasing their values typically results
in a larger recall and in a better granularity, but also in a smaller precision.

A further analysis of these dependencies could provide a controllable way of
modifying the precision, the recall and the granularity, depending on the pla-

giarism detection task into consideration. A promising strategy that we plan
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Figure 3.6: Plagiarized passages for the pair of texts of the training corpus indi-

cated at the top of the plot. Single matches in orange, actual plagiarism in black.

Note the perfect superimposition between the blue lines in figure 3.5 and the black

lines here.

to explore in the future consists in a dynamical tuning of these parameters,

according, for example, to the density of matches or to the lengths of the two
texts into consideration.

3.2.5 Results and comments

The described algorithm gave the following results on the competition

corpus [54]:

• Precision: 0.6727

• Recall: 0.6272

• F-measure: 0.6491

• Granularity: 1.1060

• Overall score: 0.6041

The overall score was the third best result after 0.6093 and 0.6957 of the
first two partecipants. We stress that the overall scores dropped considerably

starting from the fourth position (0.3045), the fifth (0.1885), and so on.
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Moreover, while the winner had better results in all precision, recall and
granularity, our precision was better than the one of the second partecipant,

while recall and granularity were worse.

3.3 Back to the word length coding

How lossy is the word length coding precisely? And to what level encoded
texts can be used as a valid alternative to the original ones? We had no

time to address these questions with the due completeness during the PAN
competition, but in a later study [2], done in collaboration with one of the

groups that organized the contest, we estimated its efficiency in deeper detail.

An answer to the first question comes from the comparison between the
distributions of word n−grams (sequences of n words, without coding) and

word length n−grams, shown in figure 3.7 for a set composed of 500 doc-
uments extracted from the PAN corpus. Note that, as n grows, the two

distributions tend to coincide, and a large superimposition is reached al-
ready for n = 12. This observation supports empirically the intuitive idea

that, for a large enough n, the length coding is “almost injective”, i.e., very
few word n−grams are mapped to the same length n−gram.

In order to test the appropriateness of the length coding for the selection
of potential sources for plagiarism, we also performed a few other experiments

on the PAN training corpus. First we used a repeated sampling technique:
for every run, we selected a small random subset of suspicious documents

documents and an appropriate subset of reference documents, and evaluated
the performance (cf. figure 3.8(a)).

Instead of the n−gram distance dn, we used here an analogous of the

simplified measure defined in section 2.2.5, the Jaccard similarity coefficient

(cf. [27, in French]):

Jn(s, t) :=
|Dn(s) ∩Dn(t)|

|Dn(s) ∪Dn(t)|
, (3.1)

where s and t are two texts and, again, Dn(s) is the n−gram dictionary
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(b) n=5
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Figure 3.7: Frequency distributions for length n−grams (black stars) and for word

n−grams (grey squares), for some values of n. The number of occurrences lies on

the x−axis, with the corresponding percentage of n-grams on the y−axis. The

length n−gram distribution converges to the one of word n−grams as n grows. No

stars appear in the first plot because we show up to 200 occurrences only, which

is lower than the frequency of any possible 1-gram of length encoded text in a

representative corpus.

of s. The 10 nearest source texts for each suspicious document were then

selected, exactly as it happened in the competition, and the performance was
evaluated in terms of character-level recall over those 10 neighbours, Rc@10.

We also compared the recall with word length n−grams with the one we

obtained with the standard word n−grams on the same subset of 160 suspi-
cious and 300 reference texts used in the training stage of the competition;

the results are shown in figure 3.8(b).

The obtained results confirmed an intuitive fact: there exists a threshold
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Figure 3.8: Character-level recall in the first 10 neighbours (Rc@10) for the
PAN-PC-09 corpus (a) by averaging over 100 samples of 150 random query

texts and around 300 reference documents, with length coding; and (b) com-
pared to word n−grams on a fixed small subset of the training corpus.

for n, here around n = 12, above which the length coding and the word
n−gram methods are equivalent; to be true, here the coding method per-

forms always slightly better than word n−grams, for n ≥ 12, but such small
differences may be not reliable due to the fact that we are using a small

subset of the corpus.

An important observation, indeed, is that identifying the relevant texts
in such small samples of the corpus is much simpler, from a purely statisti-

cal viewpoint, than the “real” task of detecting few relevant texts for each
suspicious document in the whole dataset of 7214 sources. At this point,

thus, having identified 12 as a proper value for n, we calculated the Jac-
card coefficient J12 on the whole PAN training corpus and obtained a recall

Rc@10 = 0.86, a value even higher than the one shown in figure 3.8(a) for
n = 12 with the small samples. Considering, again, that 13% of the pla-

giarism cases in the corpus are cross-language (cf. [54]) and the method we
propose here has no hope of retrieving such cases, we consider a recall above

0.85 to be a very good result.

Furthermore, other experiments on a multi-language corpus of Wikipedia

article revisions (not shown here, cf.[2]) confirmed the very good behaviour of
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the word length coding for the pre-selection of suspicious documents in cases
not only of (artificial) plagiarism, but also in a more general situation of text

re-use. Even there, a quite high value of n (between 8 and 12) performed the
best, and the results were always slightly better than those obtained (with

much longer computation times!) with standard word n−grams.

3.4 Intrinsic plagiarism

The detection of intrinsic plagiarism is certainly a much tougher problem
than the one of external plagiarism recognition. When the set of possible

sources is not available, or it is too large to allow for an extensive comparison
with the suspicious texts, the method is forced to work only on the text itself,

and the only possible measure is one that detects a change in the style of the
suspicious work. The resemblance with the case of authorship attribution is

therefore more evident for this kind of problems, and indeed the winner of
that cathegory of the PAN competition was E. Stamatatos [63], whom we

already cited for his studies on authorship. And indeed, Stamatatos used a
technique based on character 3−grams and distances: he considered a sliding

window on the suspicious text, and compared the 3−gram statistics for the
window and the whole text by using a slightly modified version of Kešelj’s

n−gram distance [30]. He then identified as suspicious those passages for
which the distance between window and whole text was higher than a certain

threshold, that depends on the variance of the sequence of distance values
obtained while the window slides along the text.

Only four groups partecipated to the competition in this cathegory, prob-
ably both because of the shorter history of intrinsic plagiarism detection,

if compared to external plagiarism recognition, and of the higher level of
difficulty of the problem. Indeed Stamatatos’ method, that had the best

performance for this task, got an overall score of only 0.2462.

Another group of partecipants, L. Seaward and S. Matwin [58], applied

instead a technique based on LZ compression of sequences of occurrences of
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certain word classes in the texts, like nouns, verbs, prepositions, etc. Their
results on the competition corpus, though, were quite poor, being even below

the baseline performance level of considering every suspicious document as
plagiarism-free (cf. [54]). In the recent past a group of English researchers

[47] used the compression of appended texts as an indicator for plagiarism,
in the spirit of [8], to deal with a specific plagiarism recognition problem in

biomedical student reports.

We did not partecipate in this contest, but certainly it would be inter-
esting to test the methods that we developed for the Gramsci project on

this corpus. Stamatatos’s n−gram approach is not far from our methods
for authorship attribution, and it allowed him to obtain interesting results.

In recent, very preliminar experiments, we had the idea of testing also our
compression-based BCL method, by adapting it to this context: a window

of w characters slides through the text in steps of s characters, and for each
step we calculate the compression rate of that excerpt of length w by allowing

the compressor to “learn” from the text deprived of the window and “shifted”
so that it begins with the first character following the window. In other

words, the window is considered as the test document, and the remaining
text, made cyclic and rotated, is taken as the reference text, and then the

cross-compression method described in section 2.2.3 is applied.

Once again, as it was for the external plagiarism competition, setting the
parameters is a difficult and key aspect in the development of the method.

Figure 3.9 shows the results for two texts in the PAN‘09 corpus, with a
window length w(l) = 7l/508, l being the length of the text into consideration

and 7x8 the integer part of x, and step s(l) = 7l/5008. We are not at all
sure that this is the best choice of the parameters, and we are planning to

perform more extensive tests in the near future. However, these first results
show that the method definitely has something to say in this context, and

deserves further investigation.



3.5 Concluding remarks 77

0 10000 20000 30000 40000 50000 60000 70000
2.0

2.5

3.0

3.5

4.0

4.5

5.0

characters

BC
L
co
m
pr
es
sio
n
ra
te

suspicious!document00962 with w ; 761 and s ; 761

0 10000 20000 30000 40000
2.0

2.5

3.0

3.5

4.0

4.5

5.0

characters

BC
L
co
m
pr
es
sio
n
ra
te

suspicious!document02771 with w ; 445 and s ; 445

Figure 3.9: Results of the preliminary experiments on intrinsic plagiarism detec-

tion for two texts of the PAN‘09 corpus. The plots show the rate of the cross

compression (with BCL) of a window of length w that slides in steps of s charac-

ters, using the rest of the text as the database. The dashed horizontal line marks

the average rate and the thick red segments indicate the plagiarized passages.

3.5 Concluding remarks

Plagiarism detection is in a sense a much more “technological” application
of the ideas on information extraction from texts that we developed in chapter

1. However, it is certainly true that this problem has a great relevance in
the field of information retrieval, and its importance will most probably grow

with the spreading of the world wide web.

Apart for its practical interest, though, we believe it to be a very interest-
ing test bench for our methods, and the presence of well structured textual

corpora makes the comparison with other methods much simpler than in the
case of authorship attribution. The results we obtained in the PAN‘09 com-

petition encouraged us to proceed in this direction, and the overall results of
the different competitors certainly highlight the success of those methods that

generally disregard a deep NLP approach in favour of simpler, non-syntactic
approaches.

For intrinsic plagiarism, we plan to develop in the near future the recogni-
tion method sketched in the previous paragraph, that uses BCL compression,

with a careful tuning of parameters. Also the n−gram approach deserves at-
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tention here, as Stamatatos’ first experiments underlined [63].
A further interesting possibility is to use a mixed approach, where intrinsic

plagiarism techniques are used to detect stylistic difformities in suspicious
texts, in order to recognize those that potentially contain plagiarism for a

later comparison with possible reference texts.
The idea of using the word length coding to reduce the computational

weight of n−gram extraction and comparison resulted in a quite successful
method for the selection of source texts from a large database, that probably

deserves further development. Note, furthermore, that the coding allows
for the reduction of the cardinality of the alphabet to only 9 symbols; we

started to analyse in [2] the possible advantages of this fact, like the ability
of building in a single passage a prefix tree of the whole n−gram dictionary

of the encoded text, so as to be able to use multiple values of n for the
calculation of the distance.

Other interesting developments could come from automatic keyword ex-
traction methods as the ones that we will discuss in the conclusions of this

thesis: they could be used to select a restricted vocabulary of “interesting”
words or n−grams on which a distance method could act.

For what concerns the “detailed analysis” step of external plagiarism de-
tection, we can certainly improve greatly the approach that we used for the

PAN competition. In particular, standard, less ad hoc clustering algorithm
could be tested.



Discussion and perspectives

‘Data! Data! Data!’ he cried impatiently. ‘I can’t make bricks without clay.’

- A. Conan Doyle, The Adventures of Sherlock Holmes -

When dealing with applied problems as the ones we have presented in

the two previous chapters, the temptation to jump from one real-world open
problem to the other is always present. We have often let ourselves indulge

in such temptation, and many of the experiments we tried in these years have
never reached the needed level of accuracy to be included in a thesis.

As already discussed, though, at least for authorship attribution the lit-
erature and the number of available methods is so wide that probably the

most necessary step in the research in this field at the moment would be
a comparison on a well structured corpus, in the spirit of [23], but with a

larger scope than the one that Grieve proposes in his work. Also, the field
would certainly profit for a new competition, after the one that Juola pro-

posed in 2003 [29]: this would force single groups to compare their methods
on a common and hopefully solid ground. Indeed, the series of International

Competitions on Plagiarism Detection [54, 55], to the first of which we par-
ticipated, has proved to be a very stimulating environment for research and

collaborations.
From the point of view of the applications, our interest is now focus-

ing on the extraction of semantic information from a single text, in terms
of keywords or automatic summaries. Some recent publications by M.A.

Montemurro and D.H.Zanette [49, 50] propose an interesting idea for the ex-
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traction of keywords from a written text through the analysis of the variation
of entropy within the text itself. More precisely, their approach is to consider

a word to be important for the text if its distribution (i.e., the distribution
of its return times in the text, to use the terminology of chapter 1) is not

uniform; such non-uniformity is measured by cutting the text into sections of
fixed length and calculating the empirical entropy of the frequency distribu-

tion of words within the different sections, and then by comparing it with the
one of a shuffled version of the text. We have experimented this approach

on a number of texts, with decent results; we plan to investigate possible
improvements, or combinations with other techniques, like the analysis of

the representation of the text in terms of networks (graphs) of its words or
n−grams, in the spirit of [44, 45].

The approach to this kind of problems could give us indications on a
problem of classification of medical reports that Noemalife S.p.A. proposed

to us recently. The documents are very short and noisy, which makes the
problem really tough, and the goal is to assign to each of them one or more

tags from a standard medical terminology, like the ICD9 nomenclature4,
which is used by the Italian Ministry of Health. Some experiments with the

SNOMED nomenclature5 are available in literature, see for example [18, 53].
The theoretical framework from where our methods originated is the fruit

of an interaction between various areas of research in mathematical physics
and related fields (cf. [60]). We strongly believe in the power of such inter-

action, and would like to explore its potential in deeper detail. In particular,
a very recent collaboration between our group and Benedetto and Caglioti

at La Sapienza University led to a new estimator of relative entropy based
on recursive pair substitutions [22, 7]. This and other estimators, like the

one proposed in [11], deserve further analysis, in particular for what concerns
their speed of convergence to relative entropy.

4http://www.salute.gov.it/ricoveriOspedalieri/paginaMenuRicoveriOspedalieri.

jsp?menu=classificazione
5http://www.ihtsdo.org/snomed-ct/
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