
The Non-Associative Lambek Calculus
Logic, Linguistic and Computational Properties

Università degli Studi di Bologna

Dottorato in Filosofia

Tesi di Dottorato

Settore disciplinare: M-FIL/02

LOGICA E FILOSOFIA DELLA SCIENZA

Autore:

Matteo Capelletti

Coordinatore: Prof. W. Tega

Relatore: Prof. M. Ferriani

Correlatore: Prof. G. Sandri

This dissertation is typeset using LATEX.

Indice

I Categorial Grammars 9

1 Introduction 11
1.1 Categorial linguistics . 13

1.1.1 Semantics . 15
1.1.2 Logical syntax . 16

1.2 Categorial parsing . 19
1.2.1 Products . 25

1.3 Non-associative Lambek calculus 27
1.4 Overview . 30

2 Formal Background 31
2.1 Languages . 32
2.2 Grammars . 34

2.2.1 Deductive systems . 34
2.3 Context-free grammars . 37
2.4 Categorial grammars . 41
2.5 Lambda terms . 45

2.5.1 Typed lambda calculus 47
2.5.2 Lambda calculus in Haskell 53

2.6 The Lambek calculus . 56
2.7 Product types . 60

2.7.1 Linguistic analysis in NL 63
2.8 Multi-modal Type-logical Grammars 68
2.9 Formal properties of categorial grammars 72

3 Automated Reasoning 75
3.1 Problems . 75
3.2 Deductive parsers . 78
3.3 Bottom-up parsers . 78

3

4 INDICE

3.3.1 Basic categorial grammars 80
3.3.2 Product rules . 80

3.4 Earley style parsing . 85
3.4.1 Earley system for CF 86

3.5 Implementations . 88
3.6 Agenda-driven, chart-based procedure 89
3.7 Tabular parsing . 92

3.7.1 Tabular CYK . 92
3.8 Parses . 98
3.9 Parse forest . 98

3.9.1 Parse forests for AB⊗ grammars 101
3.10 From AB⊗ to AB . 103

3.10.1 Currying . 105
3.10.2 Uncurrying . 108

3.11 Parsing approaches for Lambek systems 113
3.12 Conclusion . 115

II The Non-associative Lambek Calculus 117

4 A Case Study: Cliticization 119
4.1 Information Structure . 121

4.1.1 Hendriks’ approach 123
4.1.2 Clitics and pregroups 124

4.2 Italian clitic cluster and core clause 126
4.2.1 Notation for cases . 127
4.2.2 Formal treatment . 129
4.2.3 Clitic attachment . 130

4.3 Clitic left-dislocation . 132
4.3.1 Redundant arguments 132
4.3.2 Proposals . 133
4.3.3 Non-relevant reasoning 135
4.3.4 A lexical solution . 136

4.4 Conclusion . 138

5 Normal Derivations in NL 141
5.1 Alternative formulations of NL 143
5.2 Normal derivations . 146
5.3 Automatic construction of normal derivations 148

5.3.1 Expansion and reduction 149

INDICE 5

5.3.2 Remarks on expansions and reductions 158
5.4 Proof terms . 160
5.5 Connection to parsing . 163
5.6 Conclusion . 165

6 Normal Derivations and Ambiguity 167
6.1 Eliminating redundancies . 168
6.2 Unique normal derivations 171
6.3 Enumerating readings . 173
6.4 Conclusion . 178

7 A look at cut elimination 179
7.1 Admissibility of Cut . 180

7.1.1 Main cuts . 181
7.1.2 Permutations . 184
7.1.3 Cycles . 187

7.2 Conclusion . 188

8 Conclusion 189

6 INDICE

Ringraziamenti

Questa tesi conclude cinque anni di ricerca condotti in parte presso l’Uni-
versità di Bologna ed in parte presso l’Università di Utrecht. Ringraziare
le molte persone che mi hanno in vari modi aiutato durante questi anni è
oltre che un dovere, un grande piacere.

Vorrei innanzi tutto ringraziare i miei supervisori: il Professor Maurizio
Ferriani e il Professor Giorgio Sandri, che hanno seguito con interesse il
mio percorso di dottorato. Inoltre, la Professoressa Claudia Casadio, per
avermi sostenuto nel mio lavoro fin dall’inizio e per avermi introdotto alla
grammatica categoriale prima e in seguito al Professor Moortgat col quale
ho svolto gran parte della mia ricerca in questi anni.

In secondo luogo, vorrei ringraziare i miei supervisori all’Università
di Utrecht: il Professor Michael Moortgat e il Professor Jan van Eijck, per
l’attenzione che hanno sempre dedicato al mio lavoro e le idee che mi hanno
aiutato a sviluppare.

Inoltre, devo ammettere che cinque anni non sono la durata standard di
un dottorato e, a tal proposito, devo ringraziare il Professor Walter Tega, in
qualità di coordinatore del Dottorato in Filosofia, per avermi concesso tutto
il tempo necessario a concludere il mio lavoro nel modo migliore.

Inoltre, Raffaella Bernardi, Cristina Paoletti, Willemijn Vermaat, Herman
Hendriks, i colleghi di Utrecht e di Bologna, che in vari modi e in vari
momenti mi hanno aiutato nell’arco degli anni.

In fine, un ringraziamento speciale va alla mia famiglia e a Saara Jäntti:
anche, e forse soprattutto, grazie al loro supporto sono riuscito a portare a
termine questo lavoro.

Ovviamente, di ogni errore, la responsabilità è solo mia.

7

8 INDICE

Part I

Categorial Grammars

9

Chapter 1

Introduction

This book is a comprehensive study of the non-associative Lambek calcu-
lus, a logical and linguistic system presented by Joachim Lambek in 1961.
The non-associative Lambek calculus belongs to the syntactic framework
of categorial grammar: a formalism for linguistic description grounded on
the distinction of syntactic categories between basic categories and functor
categories1.

Categorial grammar is in turn a branch of the scientific discipline of com-
putational linguistics, an approach to linguistics which tries to model natural
language with the methods and tools of mathematics and computer science.
During the past fifty years (in fact, from the advent of computers), these
two sciences have interacted with linguistics in a valuable way and lan-
guage technology has always been one of the most active fields of research
in computer science. Mathematics provided the linguists with expressive
formalisms, appropriate to a precise and concise description of languages.
Meanwhile, computers offered the place for large scale evaluation of the
mathematical statements about language. The possibility of implementing
the mathematical descriptions of specific languages on a computer, and of
testing the adequacy of such descriptions, has led to sophisticated methods
of linguistic analysis, as so called tabular parsing methods and the represen-
tation of ambiguous parsing in terms of shared forests (see chapter 3).

The main contribution of this study is the application of these methods

1To make such distinction more concrete since the beginning, let us give a simple example.
If the word John belongs to the basic syntactic category n of proper names (or noun phrases)
and John whistles belongs to the basic category s of well formed sentences, then whistles can
be seen as a functor that takes as argument a syntactic object of category n and returns a
syntactic object of category s (we might, for instance, denote such a functor n → s to make
more explicit the input-output relation that such a category expresses).

11

12 CHAPTER 1. INTRODUCTION

to non-associative Lambek grammars with product categories.
Tabular parsing methods were first designed for context-free grammars

by [Younger, 1967, Earley, 1970], and later extended to other syntactic frame-
works that were based on rewriting rules (we refer to [Shieber et al., 1995]
for a survey of these methods from a deductive parsing perspective). How-
ever, only a few attempts to apply these parsing strategies to Lambek style
categorial grammars have been made: while [Morrill, 1996] applies the
CYK algorithm to categorial proof nets, [Hepple, 1992] and [König, 1994]
develop different strategies for handling hypothetical reasoning in the Lam-
bek calculus (the system of [Lambek, 1958]). Instead, [Finkel and Tellier,
1996] show that the application of dynamic programming techniques to
grammars based on the Lambek calculus becomes relatively simple, after
the grammar has been reduced to a set of context-free rules according to the
method of [Pentus, 1993].

Furthermore, all these algorithms have been designed for product-free
fragments of (either associative or non-associative) Lambek systems. While
this aspect may not be relevant in the case of grammars based on the asso-
ciative calculus, we believe that it becomes a serious limitation in the case of
grammars based on the non-associative calculus. These grammars, in fact,
have been proposed in order to generate trees representing the structural
descriptions of grammatical expressions. Product categories are a powerful
tool for enforcing specific constituent structures, as we argue in chapter
2. On the other hand, we will see in chapter 3 that their introduction rule
is affected by a high degree of indeterminacy, which makes their efficient
application difficult. In regard to this, we will show in chapter 3 how it is
possible to handle the product rule in a computationally efficient way.

Concerning hypothetical reasoning, which is the most distinguishing
feature of Lambek style categorial grammars and, computationally, the
hardest to control, our algorithm will rely on a method of normal derivations
construction inspired by the works [Kandulski, 1988] and [Le Nir, 2004].
This method will be studied in great detail in chapters 5 and 6.

In chapter 4, we will explore the linguistic expressivity of the non-
associative Lambek calculus in relation to complex phenomena of Italian
syntax as cliticization and clitic left-dislocation.

We conclude this book by presenting the cut-elimination algorithm for
our original formulation of the non-associative Lambek calculus. We show
that the cut-elimination algorithm for non-associative Lambek calculus in-
tegrated with proof terms gives rise to term equations that can be used for
proof normalization.

1.1. CATEGORIAL LINGUISTICS 13

1.1 Categorial linguistics

Generative grammar stems from Chomsky’s seminal works [Chomsky, 1957,
1959]. In these works, Chomsky established the theory of grammar as
a branch of the mathematical theory of recursive functions. A grammar
of a language L is a function whose range is L. Furthermore, as natural
languages contain an infinite number of expressions, such a function cannot
simply consist of a list of pairs of categories and well formed expressions
of those categories. In order to make non-trivial claims about the structure
of natural language, the grammar should be a finite characterization of the
language. As such, it should incorporate recursive mechanisms.

Transformational grammar, starting from [Chomsky, 1957, 1965], con-
sisted of a set of context-sensitive rewriting rules. Generalized phrase struc-
ture grammar of [Gazdar et al., 1985], and its contemporary offspring head-
driven phrase structure grammar, presented in [Pollard and Sag, 1994],
adopted a context-free grammar architecture, extended with special mech-
anisms for handling discontinuous dependencies.

According to the definition of [Chomsky, 1957], categorial grammars are
generative grammars. However, rather than being based on the notion of
rewriting rule as context-free grammars, categorial grammars are based on
an explicit formulation of syntactic categories in terms of functor and argu-
ment categories, and on a notion of derivation proper to deductive systems.
In this linguistic framework, the internal structure of syntactic categories
encodes the combinatorial properties of the expressions to which they are
associated. In turn, the combinatorial properties are expressed by the ab-
stract inference schemes of a logical system.

The great majority of generative linguists adopted rewriting systems
to design natural language grammars. Indeed, rewriting systems can be
seen as deductive systems based on a set of non-logical axioms, namely, the
set of rewriting rules or productions, and on the only inference rule of cut.
When they are in Chomsky normal form the productions of such systems
can be divided into lexical and non-lexical. Lexical productions anchor the
vocabulary of the language to the syntactic categories of the grammar, and
non-lexical productions define the way complex linguistic expressions are
composed out of smaller ones.

One of the advantages of adopting categorial grammar is that the set
of non-logical axioms is limited to lexical assignments and that complex
expressions are derived according to a small number of abstract inference
schemes. This makes the lexicon the only idiosyncratic component of the
grammar and maintains a universal set of inference schemes for every

14 CHAPTER 1. INTRODUCTION

language specific grammar.
The shift of linguistic information from rule based encoding to lexi-

con based encoding is often called lexicalism. Today, most grammatical
frameworks assume some variant of the lexicalist approach, as the main
differences among human languages are lexical, for example [Gazdar et al.,
1985], [Pollard and Sag, 1994] and [Chomsky, 1995] to mention only a few.
In the case of categorial grammar, one can speak of radical lexicalism as the
only information driving the inferential process stems from the lexicon.

While empirically adequate, the division of the grammar architecture
between a language specific component, the lexicon, and a language univer-
sal component, the deductive system, has proved to be extremely fruitful
for the theoretical foundation of categorial logic. The deductive system of
a Lambek style categorial grammar is a fragment of linear logic, the logic
system introduced in [Girard, 1987]. The logic in [Lambek, 1958] has been
recognized as the non-commutative intuitionistic multiplicative fragment
of linear logic and in fact, also as the first fragment of linear logic in history.
In the past twenty years, linear logic has been one of the most intensively
investigated fields of research and the categorial grammar framework has
profited from this research both methodologically and theoretically, see
[Moortgat, 1997b, Moot, 2002].

The acknowledgment of the distinction between logical rules and struc-
tural rules is one of the cornerstones of linear logic. One of its main as-
sumptions, which is expressed in [Girard, 1995] in a very clear way, is that
the meaning of the logical constants of a given deductive system depends
on the possibilities of structural manipulation available in the deductive
system itself.

Contemporary research in categorial grammar is based on the so called
multi-modal setting of [Moortgat, 1997b]. Such system admits a variety
of category forming operators and partition the deductive module of the
grammar into a core module to which every logical connective obeys (the
so called pure logic of residuation) and a structural module, whose postulates
can interact only with specific configurations of the connectives. This has
the great advantage of assuming a highly restrictive base logical system and
of introducing restructuring operations only when and where it is required.

Among the formal tools introduced by linear logic, proof nets are a
redundancy free representation of logical proofs. Deductive systems may be
affected by so called spurious ambiguity: different syntactic derivations may
correspond to the same semantic object. Instead, different proofs nets are
always different semantic objects. A pleasant property of categorial logic is
that it is included in a fragment of linear logic, the multiplicative fragment,

1.1. CATEGORIAL LINGUISTICS 15

for which proof nets have a clear computational interpretation.
Proof nets have been applied to linguistics by several authors; we refer

to [Moot, 2002] as the most representative work on this approach to linguis-
tics and to the works he draws on. On the other hand, we will not adopt
the proof net formalism for our proposes, but more traditional axiomatic
formulations of categorial logic. These kinds of formulations, used, among
others, by [Lambek, 1958, 1961, Zielonka, 1981, Kandulski, 1988], offer the
possibility of detailed investigations of the logical and computational prop-
erties of different sets of axioms and inference rules. As we will see in
chapter 6, the problem of spurious ambiguity will not affect our system as
a consequence of our method of constructing derivations.

1.1.1 Semantics

One of the most attractive features of categorial grammar is its direct link
with semantics. Model theoretic semantics was first applied to natural
language by R. Montague in a series of papers, many of which have been
collected in [Montague, 1974], see also [Dowty et al., 1981, Partee et al., 1990].
Such approach assumes a close correspondence between the construction of
the syntactic derivation of an expression and the construction of its semantic
representation. This is indeed what the compositionality principle states: the
meaning of a complex expression depends on the meaning of its parts and
on the way in which the parts are put together. By “way in which the parts
are put together” we shall mean syntax. We will see, in chapter 2, that
the meaning representation language adopted by Montague, and by the
great majority of the linguists working in the model-theoretic tradition,
is based on typed lambda calculus: a formal language for speaking about
functions. In generative grammar, the compositionality principle amounts
to the assignment of lambda terms to the basic elements of the vocabulary,
the assignment of a semantic term to complex expressions being completely
determined by the syntactic derivation.

In the context of phrase structure grammar, the implementation of the
principle of compositionality assumes the form of a rule-to-rule approach, see
for instance [Montague, 1970a,b, Gazdar et al., 1985]. This means that to
every syntactic rule of the grammar a specific semantic rule is associated.

Categorial grammar improves notably on this situation. In first place,
the syntactic notation based on the function-argument distinction, which
is in fact grounded on a semantic distinction, makes the syntax-semantics
parallelism completely transparent. Besides, as we discussed before, and
we will see in detail in chapter 2, only a small number of logical rules is

16 CHAPTER 1. INTRODUCTION

required for building syntactic derivations since all the combinatorial prop-
erties of the expressions are encoded in the lexicon. The correspondence
between proofs and typed lambda terms, known as Curry-Howard corre-
spondence (we refer to [Girard et al., 1989] and to [Hindley, 1997] for clear
expositions of the topic) or formulae-as-types correspondence, allows to
see contemporarily the process of constructing a syntactic deduction as the
process of building a lambda term or a semantic representation. Thus, if the
lexical items of a categorial grammar are assigned lambda terms encoding
their meaning, the syntactic process constructing a derivation for a complex
expression should be contemporarily seen as a semantic process building
the semantic representation of that expression.

In this book, we will examine two ways of assigning terms to syntactic
derivations. In particular, while we will adopt the lambda calculus for
natural language semantics and present a new method for assigning lambda
terms to axiomatic proofs, we will also adopt a more refined term language,
in the style of [Lambek, 1988, 1993, Moortgat and Oehrle, 1997] for the
semantics of categorial proofs. This term language is isomorphic to Lambek
logic and will enable us to define reduction of proofs to normal form and
equivalence of proofs as syntactic congruence of terms in normal form.

1.1.2 Logical syntax

Several kinds of categorial grammar have been presented in the past cen-
tury, and further refinements and extensions to the system are continu-
ously being developed. The first formalization of syntactic categories as
functors and arguments appeared long before the advent of generative
grammar. [Ajdukiewicz, 1935] was one of the firsts to apply the distinction
between complete and incomplete expressions to the analysis of natural
language. He was formalizing and applying to natural language concepts
from Leśniewski’s mereology and Husserl’s notion of semantic category,
with mathematical tools derived from Russel’s theory of types and from
Frege’s functional notation. We refer to [Casadio, 1988] for a discussion
of the historical background of categorial grammars. A functor category, in
Ajdukiewicz notation, was an object of the form a

b . A linguistic resource w
of category a

b combines with another linguistic resource w′ of category b to
give a complex resource ww′ of category a.

In [Bar-Hillel, 1953], the functorial notation for syntactic categories was
further refined in order to distinguish left-functor categories and right-
functor categories. The rules governing the combination of such functor
categories to their arguments can be expressed as follows.

1.1. CATEGORIAL LINGUISTICS 17

(1.1) A linguistic resource w of category a/b combines with another
linguistic resource w′ of category b to its right to give a linguistic
resource ww′ of category a.

(1.2) A linguistic resource w of category b\a combines with another
linguistic resource w′ of category b to its left to give a linguistic
resource w′w of category a.

Actually, more general patterns of function-argument composition are
adopted in so called Ajdukiewicz Bar-Hillel systems, of which the previous
ones are instances. We will see later in more detail the Ajdukiewicz Bar-
Hillel system and discuss also this second kind of composition rule.

In this introductory chapter, we wish to emphasize the close relation-
ship between categorial grammar and deductive systems or typed logic.
Observe that the rules 1.1 and 1.2 express order sensitive variants of the
inference rule of modus ponens, which can be expressed as follows.

(1.3)
p p⇒ q

q

This rule can be spelled out as asserting that ‘if p and if p, then q are given,
then q follows’. One can see the left and right slashes of categorial grammar
as left and right implications of a deductive system in which the rule of
modus ponens has been split in two rules. The reader will recognize in the
following inference schemes a compact formulation of the rules 1.1 and 1.2.
We simply replaced the expression ‘linguistic resource z of category x’ with
the notation z :: x and we put the given syntactic material in the top part of
the tree and the resulting material in the lower part.

(1.4)
w :: a/b w′ :: b

ww′ :: a

(1.5)
w′ :: b w :: b\a

w′w :: a

To give a concrete example consider the following deduction of the sentence
John likes music:

18 CHAPTER 1. INTRODUCTION

(1.6)

John :: n
likes :: (n\s)/n music :: n

likes music :: n\s
John likes music :: s

Here, likes is taken to be a functor looking for a noun phrase to the right
to return another functor looking for a noun phrase to the left to give a
sentence. Shortly likes :: (n\s)/n.

At this stage of the presentation of categorial grammars, the correspon-
dence with deductive systems is only partial. In fact, deductive systems
have also rules for inferring implicational formulas which categorial gram-
mars, in the sense of Ajdukiewicz and Bar-Hillel, lack.

(1.7)
[p]....
q

p⇒ q

Such a rule states that ‘if q follows from the assumption of p, then p ⇒ q
holds’. The notation [p] indicates that the assumption p is ‘discharged’ as
a result of the inference rule, in other words, p is no longer among the
assumptions from which the conclusion p⇒ q is obtained.

A great enrichment to the theory of categorial grammar was the syntactic
calculus of [Lambek, 1958]. Lambek added to the inference rules of the
Ajdukiewicz Bar-Hillel calculus the following rules.

(1.8) If, with the aid of a rightmost assumption b, we proved that the
linguistic resource w b is of category a, then we can conclude that w is
of category a/b.

w b :: a
w :: a/b

(1.9) If, with the aid of a leftmost assumption b, we proved that the
linguistic resource b w is of category a, then we can conclude that w is
of category b\a.

b w :: a
w :: b\a

The rules 1.8 and 1.9 can be seen as the oriented variants of rule 1.7. Consider
now, as an example, a categorial lexicon containing the assignments John :: n
and le f t :: (s/(n\s))\s. We want to prove that John le f t :: s. Observe that, if

1.2. CATEGORIAL PARSING 19

no other lexical assignments are given for John and le f t, the Ajdukiewicz
Bar-Hillel system does not derive such conclusion. On the other hand, such
a sentence is derivable in a Lambek system.

(1.10)
John :: n n\s :: n\s

John n\s :: s
John :: s/(n\s) le f t :: (s/(n\s))\s

John le f t :: s

In this derivation, the assumption n\s :: n\s can be called a non-lexically
anchored hypothesis (or non-lexical hypothesis, for short), while the other
hypotheses are all lexically anchored. Being an identity, such hypothesis is
universally valid, thus it is possible to assume it in the derivation process.
The use of such hypotheses is often called hypothetical reasoning and is
undoubtedly the most distinguishing feature of Lambek style grammars
with respect to all other generative frameworks.

We will see that among the benefits of hypothetical reasoning there is
the reduction of the size of the lexicon, and especially an elegant account of
syntactic and semantic dependencies in local and non-local domains.

To find a solution to the difficulties that hypothetical reasoning involves
from the computational perspective is one of the central concerns of this
thesis and chapter 5 will be dedicated to this topic. In example 1.10, we
can see that while the hypothesis is triggered by the higher order verb, it
interacts in first place with the n resource. This raises problems because
several linguistic resources may occur in between the trigger and the point
where the hypothesis is used. The kernel of the procedure that we develop
in definition 82 of chapter 5 is in fact a method for handling hypotheses in
an efficient way. In the next section, we discuss in more detail the problems
we face in building a parsing algorithm for Lambek grammars and we give
an informal overview of our solution.

1.2 Categorial parsing

Together with the assumption that the grammar generates the language,
the theory of generative grammar requires that each generated expression
is assigned a structural description. The structural description, usually
shown as a tree, indicates

- the hierarchical grouping of the parts of the expression into con-
stituents,

20 CHAPTER 1. INTRODUCTION

- the grammatical category of each constituent and

- the left-to-right order of the constituents.

Technically, parsing is the process of assigning a structure to the expressions
generated by the grammar. As such, it presupposes that the expression to
be parsed has already been recognized as belonging to the language gen-
erated by the grammar. Furthermore, as an expression can be assigned
several structures by a grammar, thus parsing can assume existential or
universal import, depending on whether it addresses the task of returning
one or all the structures of the expression, respectively. Both tasks can be
accomplished by means of the method of so called parse forest: a compact
representation of all possible derivations that an expression may have in a
given grammar. Chapter 3 will be dedicated to these issues.

In the second half of the last century, several ways of parsing with
context-free grammars have been developed. These techniques have been
later extended to other grammar formalisms based on rewriting rules, as
feature grammars, tree-adjoining grammars, by [Vijay-Shanker, 1987], in-
dexed grammars by [van Eijck, 2005] or combinatory categorial grammars
by [Vijay-Shanker and Weir, 1990]. The most interesting are the so called
tabular parsing methods for context-free grammars, see [Aho and Ullman,
1972]. These algorithms are called tabular because their methods consists in
the construction of a table whose cells contain non-terminal symbols of the
grammar. Each cell is identified by a pair of integers indicating the portion
of the input string covered by the non-terminals contained in the cell, if
any. These algorithms are examples of dynamic programming, a program-
ming technique that relies on storing the results of partial computations
(memoization) for their subsequent reuse in case of need.

The most famous parsing algorithms for context-free grammars are the
Cocke-Younger-Kasami algorithm (CYK) and the Earley parsing algorithm,
which can be found in [Younger, 1967, Earley, 1970, Aho and Ullman, 1972].
They are tabular parsing methods and work in time cubic on the length of
the input string.

These algorithms can be presented as deductive systems adopting the
deductive parsing formalism of [Shieber et al., 1995]. This is a simple and
clean formalization of dynamic parsing based on the deductive approach to
syntax proper to logical grammars. For instance, in the case of Ajdukiewicz
Bar-Hillel grammars we can define the following rules (we write wi . . .w j :: c
for the sequence of words from wi to w j is of category c):

1.2. CATEGORIAL PARSING 21

(1.11) If wi+1 . . .wk :: a/b and wk+1 . . .w j :: b, then wi+1 . . .w j :: a. Formally,

(i, a/b, k) (k, b, j)
(i, a, j)

(1.12) If wi+1 . . .wk :: b and wk+1 . . .w j :: b\a, then wi+1 . . .w j :: a. Formally,

(i, b, k) (k, b\a, j)
(i, a, j)

In this formalism, parsing is seen as a deductive process regimented
by the linear order of the grammatical expressions occurring in the input
string. Deductive parsers consist of a specification three components:

1. a set of axioms, for instance:

(0, a1, 1) . . . (n − 1, an,n)

where wi :: ai is in the input grammar for all 1 6 i 6 n and n is the
length of the input string,

2. a set of inference rules, for instance those in 1.11 and 1.12, and

3. the goal of the computation, for example (0, s,n).

The axioms link the syntactic categories assigned by the grammar to each
word in the input string to the portion of the input occupied by that word.
Inference rules specify how to assign a syntactic category to a larger portion
of the input string on the basis of the grammar rules and of the syntactic
categories assigned to adjacent smaller portions of the input. The goal
defines which category should be assigned to the entire input.

Section 4.4 of [Shieber et al., 1995] is dedicated to the problems arising in
the application of the deductive parsing methodologies to Lambek calculi.
As our work represents a solution to these problems for the calculus of
[Lambek, 1961], we discuss here in detail these problems, quoting from
[Shieber et al., 1995]. Lambek calculi

are better presented in a sequent-calculus format. The main
reason for this is that those systems use nonatomic formulas
that represent concurrent or hypothetical analyses. [. . .] The
main difficulty with applying our techniques to sequent systems

22 CHAPTER 1. INTRODUCTION

is that computationally they are designed to be used in a top-
down direction. For instance, the rule used for the hypothetical
analysis [. . .] has the form

ΓB ` A
Γ ` A/B

(cfr. our rule 1.8). It is reasonable to use this rule in a goal-
directed fashion (consequent to antecedent) to show Γ ` A/B,
but using it in a forward direction is impractical, because B
must be arbitrarily assumed before knowing whether the rule is
applicable. [. . .] such undirected introduction of assumptions
just in case they may yield consequences that will be needed
later is computationally very costly. Systems that make full use
of the sequent formulation therefore seem to require top-down
proof search2.

The rules of the Lambek calculus that we presented before in 1.4, 1.5, 1.8
and 1.9, are, indeed, sequent-style natural deduction rules, see [Moortgat,
1997b]. Consider now the rules 1.11 and 1.12, the deductive parsing rules of
a (non-associative) Ajdukiewicz Bar-Hillel calculus. Observe that a forward
application of these rules is the only natural one. In fact, the formula b which
disappears in the conclusion is given in the premises. Instead, a top-down
approach would have to guess which formula b has disappeared from the
conclusion, and this would be a quite complex operation3.

On the other hand, the hypothetical rules 1.8 and 1.9 deserve a special
treatment. Firstly, we wish to remark that as in the case of the applica-
tion rules 1.4 and 1.5, the hypothetical rules express a conditional whose
antecedent is given by the premise(s), and whose succedent is given by
the conclusion. This means that while an antecedent-to-succedent (or for-
ward, or bottom-up, or from premises to conclusion) application of such
rules guarantees soundness of the approach, a goal-directed (or succedent-
to-antecedent, or top-down, or from conclusion to premise(s)) application

2Cursive mine.
3[Shieber et al., 1995] do not specify whether they refer to a Gentzen style sequent system

or a sequent-style natural deduction system as the one we gave. In the first case, rules
1.4 and 1.5 would be replaced by the left introduction rules of the slashes. For such rules,
forward application has not such a clear interpretation as for the natural deduction rules we
are examining. On the other hand, the hypothetical rule on which the argument in [Shieber
et al., 1995] is based, is common to both formalisms. In fact, section 4.2 of [Shieber et al.,
1995] presents a deductive parsing formulation of combinatory categorial grammar based
on the CYK algorithm, whose forward and backward application rules are very much alike
the 1.11 and 1.12 rules that we are discussing.

1.2. CATEGORIAL PARSING 23

does not. This, in turn, implies that even in the search of a proof for a
valid input sequent of a Lambek system, a top-down approach will often
encounter non-valid sequents and our computers will spend a great amount
of resources to prove that in fact they are not provable. Instead, a bottom-up
approach guarantees that only valid sequents are encountered in the search
of a proof for a given Lambek sequent.

Secondly, the arbitrary status of the hypothesis B in the previous quata-
tion is simply not true. In example 1.10, we have seen that the occurrence
of the non-lexical hypothesis was linked to the third order verb assignment.
Indeed, it would be rather strange if such hypothesis B could be any for-
mula, because sequent systems (either Gentzen style or natural deduction
style) enjoy the subformula property. Hypotheses can, in fact, be identified
as the negative premises of a par link in the proof net formalism. Thus, a
trivial unfolding of the lexical categories may determine which non-lexical
hypotheses will be needed in the derivation.

However, it is true that the hypothetical rules of a Lambek system, as
they have been formulated before, introduce a high degree of indeterminacy
in proof search. This is serious problem for automated theorem proving for
Lambek systems.

As we said, a first constraint that can limit such indeterminacy in the
choice of hypotheses is represented by the subformula property.

(1.13) In a cut free Gentzen style deduction, only subformulas of the
conclusion sequent appear in the premise sequent(s).

As discussed in [Lambek, 1958], this is the key property that guarantees
decidability of the syntactic calculus as it implies that the search space in the
proof of a Lambek sequent can be bound to sequents made of subformulas
of the input sequent. What we want to emphasize is that in proving a
sequent we may rely only on the subformulas of this sequent. Thus also
hypotheses can be chosen from such range of formulas.

As stated in 1.13, the subformula property seems to suggest a top-down
approach. However, this is not the only option as we can see: an example
of bottom-up algorithm taking advantage of the subformula property is
discussed in [Buszkowski, 2005].

A second way of constraining the hypothetical rules consists in defin-
ing more specialized variants of them. We will, in fact, adopt this is the
approach in chapter 5. The hypothetical rules allow to derive what we will
call, adopting the terminology of [Buszkowski, 1986, Kandulski, 1988], ex-
panding patterns. These are characteristic theorems of the Lambek systems

24 CHAPTER 1. INTRODUCTION

as the famous type lifting, a→ b/(a\b)4, which we saw implicitly already in
example 1.10. Lifting can be derived, with the rules given before, as follows.

(1.14)
a→ a a\b→ a\b

a a\b→ b
a→ b/(a\b)

This can be seen as a proof that everything that is assigned a category a can
infer the category b/(a\b), for any category b.

If we want to avoid the hypothetical rule in this derivation, one option
is to add such theorem as an axiom of the deductive system, as [Kandulski,
1988] does or, alternatively, to introduce a special rule for it, as [de Groote,
1999] does. For instance, we could have derived a → b/(a\b) with the
following rule.

(1.15)
b→ a\c′ c′ → c

a→ c/b

The lifting scheme, a→ b/(a\b), follows immediately from this rule without
need of the hypothetical rules.

(1.16)
a\b→ a\b b→ b

a→ b/(a\b)

The advantages of using a specialized rule as 1.15 for capturing part of the
hypothetical reasoning of Lambek grammars are several and we will discuss
them in detail in the following chapters. Here it is worth emphasizing that
the rule has a clear bottom-up computational interpretation as it appeals
to specific patterns occurring in the premises from which a subformula
(namely c′) is canceled in the conclusion.

The expanding patterns may look problematic also for another reason.
Let us consider lifting once more. This law states that for any formula a
and for any formula b, if a is derivable, then also b/(a\b) is. Now, if we
implement lifting as a rule that for any input formula a returns a formula
b/(a\b), for some formula b, we enter an infinite loop, since the output of
this rule can be directly taken as an input for its iterated application.
A better approach is to assume b/(a\b) as the given material, and to see a as

4The arrow→ can be read as ‘derives’.

1.2. CATEGORIAL PARSING 25

the result of a ‘simplification’ of this formula. For instance, we may capture
the meaning of lifting through a transition from b/(a\b)→ x to a→ x as the
following.

(1.17)
b/(a\b)→ x

a→ x

This rule has, again, a clear bottom-up interpretation. In fact, b/(a\b) is
among the given material. The rule performs a well determined reduction
and the conclusion is shorter than the premise. As for every formula x,
x→ x holds, we derive lifting by simply replacing b/(a\b) for x in 1.17.

Of course, rule 1.15 or 1.17, does not exhaust the contexts in which the
hypothetical rules can apply. On the other hand, we can aim at identifying
all the patterns that the hypothetical rules capture in a given fragment of the
Lambek calculus. As we just saw for the case of 1.15 and 1.17, the resulting
specialized rules convey important informations that can help in the context
of parsing. As proved in [Buszkowski, 1986, Kandulski, 1988, de Groote,
1999] and [Le Nir, 2004], in the case of the non-associative Lambek calculus,
such an enterprise indeed is possible, and also relatively simple in the case
of this fragment, in the sense that a small number of specialized rules can
replace the hypothetical rules altogether.

Our point of departure will be [Kandulski, 1988]. In this work, Kan-
dulski proves the equivalence of non-associative Lambek grammar with
product formulas and context-free grammars. This result relies on the pos-
sibility of reducing the derivations of non-associative Lambek grammars
with product formulas to those of Ajdukiewicz Bar-Hillel grammars with
product formulas by assuming that all hypothetical reasoning takes place
‘at the lexical level’.

1.2.1 Products

In our presentation of Lambek categorial grammar and of its parsing prop-
erties, we never encountered product formulas. Their role in linguistic
description will be discussed in the next section. Now we examine the
problems that product formulas (actually, their rules) raise from a com-
putational perspective. The rule for forming complex phrases of product
category can be given as follows.

(1.18) If the linguistic resource w is of category a and the linguistic

26 CHAPTER 1. INTRODUCTION

resource w′ is of category b, then the resource w w′ is of category a⊗ b.

w :: a w′ :: b
w w′ :: a ⊗ b

One may observe that this rule can be correctly regimented along the linear
order constraints of deductive parsing, as we did for the application rules
in 1.11 and 1.12.

(1.19) If wi+1 . . .wk :: a and wk+1 . . .w j :: b, then wi+1 . . .w j :: a ⊗ b.

(i, a, k) (k, b, j)
(i, a ⊗ b, j)

On the other hand, such a constraint does not prevent an exponential ex-
plosion of the search space in automatic proof construction: given an input
string of length n, there are C(n) ways of applying this rule, where C(n) is
the Catalan number of n (a huge number!). Thus it is important to find a
way to constrain the direct application of rule 1.19.

In chapter 3, we will see two methods to achieve this result. One based
on the subformula property, and one based on the complete elimination of
products. The first one restricts the application of rule 1.19 to generate only
products a ⊗ b that are required by other functor categories. The second
consists in a lexical transformation which has the effect of eliminating the
product rule from the grammar. Roughly, the elimination of product can
be seen as an application of the following inference schemes, attributed to
Schönfinkel in [Lambek, 1958]. The symbol↔ indicates that the inference
is in both directions.

(1.20)
a/(b ⊗ c)↔ (a/c)/b

(c ⊗ b)\a↔ b\(c\a)

One may observe that these inferences do not hold in the non-associative
Lambek calculus, as they essentially rely on the structural rule of asso-
ciativity. However, we will use them in a highly constrained way which
will prevent the system from overgenerating. In fact, we will also be able
to recover the deduction in the original grammar, through a simple term
encoding and normalization.

1.3. NON-ASSOCIATIVE LAMBEK CALCULUS 27

1.3 Non-associative Lambek calculus

The non associative Lambek calculus, NL hereafter, was introduced in [Lam-
bek, 1961]. The system resulted from the logic presented in [Lambek, 1958],
called syntactic calculus by eliminating the structural rules of associativity.

(1.21) Associativity:

a ⊗ (b ⊗ c)→ (a ⊗ b) ⊗ c (a ⊗ b) ⊗ c→ a ⊗ (b ⊗ c)

Roughly, the associativity rules state that the branching structure assigned
in a derivation is not relevant. For example, one can see them as assert-
ing the interderivability of left-branching structures and right-branching
structures.

(1.22)

a ⊗ (b ⊗ c)
�� HH
a b ⊗ c

��HH
b c

(a ⊗ b) ⊗ c
�� HH

a ⊗ b
�� HH
a b

c

More in general, a property of grammars based on the syntactic calculus
is structural completeness: for any string in the language generated by such
grammars all possible tree structures living on this string are derivable, see
[Buszkowski, 1997]. Thus, one can simply change the type of the antecedent
of a sequent from a tree of formulas to a list of formulas, a b c, as in [Hendriks,
1993], as lists are flat structures, insensitive to the hierarchical grouping of
constituents.

Lambek introduced the non-associative logic in the categorial grammar
framework to deal with tree structures representing the constituent analysis
of the expressions: while in the syntactic calculus the antecedent of a sequent
is a list of formulas, in NL it is a tree structure.

Although several categorial linguists adopt an associative regime for
linguistic analysis, and indeed, associativity simplifies partly the job of the
linguist, we believe that NL is a better starting point for linguistic description
than the syntactic calculus.

Our first remark concerns the weak generative capacity of Lambek syn-
tactic calculus and NL. Both logics generate the same class of languages,

28 CHAPTER 1. INTRODUCTION

namely the context-free languages. The equivalence of non-associative Lam-
bek grammars and context-free grammars was proved in [Kandulski, 1988],
and we will examine in detail his method in chapter 5 and in chapter 6. In-
stead, the equivalence of Lambek grammars based on the syntactic calculus
and context-free grammars, conjectured in [Chomsky, 1963], was proved
in [Pentus, 1993]. As the syntactic calculus results from NL by adding the
associativity rules, Pentus’ proof shows that such extension does not in-
crease the generative power of NL. Hence, our first reason to chose NL as a
syntactic framework for natural language is of methodological nature. NL is
a simpler theory of natural language than the syntactic calculus, in the sense
that it appeals to a smaller number of axioms.

A second remark concerns the computational properties of the two sys-
tems. We have discussed how important an efficient implementation of
these linguistic models is. On the other hand, [Pentus, 2003] proves that
Lambek syntactic calculus is NP-complete. Hence, it is most unlikely that
any efficient parsing algorithm will ever be discovered for this system. In-
stead, NL has much better parsing properties than the syntactic calculus. In
fact, [de Groote, 1999] and [Buszkowski, 2005] prove that NL can be parsed
in polynomial time.

Our last observation has to do with the strong generative capacity. The
assignment of structural descriptions to the expressions of a language is
a primary concern of generative linguistics, [Chomsky, 1957]. In this re-
spect, NL, equipped with product categories, has all the tools for generating
appropriate syntactic descriptions for grammatical expressions. We wish
to underline here that the presence of products categories in the NL is not
ornamental5. For example, one wants to distinguish the syntactic structures
projected by heads of the form in A from those of the form in B, below.

(1.23)
A B

a/(b ⊗ c) (a/c)/b

(c ⊗ b)\a b\(c\a)

(a\b)/c a\(b/c)

For example, one may prefer to assign the ditransitive verb gives the cat-
egory (n\s)/(n ⊗ n), rather than the category ((n\s)/n)/n which would be
the only option available in the product free variant of NL. The differ-

5As it is in the syntactic calculus due to the laws in 1.20.

1.3. NON-ASSOCIATIVE LAMBEK CALCULUS 29

ent structures projected by these two categories are given in the following
examples.

(1.24) Structure projected by gives :: (n\s)/(n ⊗ n).
s

�
���

H
HHH

n n\s

���
HHH

(n\s)/(n ⊗ n) n ⊗ n
�� HH

n n

(1.25) Structure projected by gives :: ((n\s)/n)/n.
s

��
���

HH
HHH

n n\s
��� HHH

(n\s)/n)
��� HHH

((n\s)/n)/n n

n

Due to structural completeness, no such distinction is possible within the
syntactic calculus. In fact, any of the previous two lexical assignments
would generate both syntactic structures as well as all the others living on
the same lexical categories.

A final issue that deserves some discussion is that of the generative
power of NL with respect to other frameworks for natural language analy-
sis. Context-free is generally considered a too restrictive class for natural
language, as human languages exhibit types of dependencies which are
beyond the scope of context-free grammars. Linguists believe that natu-
ral language lies somewhere in between context-free and context-sensitive,
within the range of so called mildly context-sensitive languages. In the past
decades, several formalisms for mildly context-sensitive grammars have
been designed. Among others indexed grammars, [Aho, 1967, Gazdar,
1988], generalized phrase structure grammars, [Gazdar et al., 1985], head-

30 CHAPTER 1. INTRODUCTION

driven phrase structure grammars, [Pollard and Sag, 1994], tree adjoining
grammars, [Joshi et al., 1975, Joshi, 1985], combinatory categorial grammar,
[Steedman, 2000b], minimalist grammars, [Stabler, 1997], and multi-modal
type-logical grammars, [Moortgat, 1997b, Morrill, 1994].

Our work should be located within the multi-modal framework, [Moort-
gat, 1997b]. As we discussed before, NL is the basic inferential engine of
this logical system in which more expressive logics are obtained from NL
by addition of structural postulates, [Kurtonina and Moortgat, 1997]. Thus,
our work addresses the core of the multi-modal setting and lay the ground
for future works oriented to more refined options of structure management.

1.4 Overview

This book is organized as follows.
Chapter 2 introduces the framework of categorial grammar in a formal

way. It defines the concepts and the notation that will be used through-
out the book with some emphasis to functional implementation using the
Haskell programming language.

In chapter 3, we formulate CYK style parsing systems for basic categorial
grammars.

Chapter 4 gives some concrete examples of type-logical analysis of spe-
cific linguistic phenomena taken from Italian syntax.

Chapters 5 and 6 contain our main contribution. In definition 82, we
present an effective procedure for proving two-formula sequents of NL.
Such procedure is simple, elegant and efficient for most applications. It
can be used to transform an NL grammar into a basic categorial grammar
with product by finite lexical extension. In chapter 6 we show that such
procedure is not affected by redundancies and we prove a beautiful result
linking the number of semantic reading of NL sequents to the Pascal triangle.

Chapter 7 presents the so called cut-elimination algorithm with proof
term labeling.

Chapter 2

Formal Background

In this chapter, we look in more detail at the notions informally introduced
in the first chapter. We start with the definition of the basic notions of
formal language theory as string, language, grammar, derivation, generation.
We introduce context-free grammars and categorial grammars as deductive
systems. The term categorial grammar includes various linguistic formalisms
which share the assumption that expressions may belong to either ‘com-
plete’ or ‘incomplete’ syntactic categories. However, the tools and the
methods of these formalisms may be quite different. On one side, there are
the combinatory combinatorial grammars of [Steedman, 2000b], originating
from the combinatorial grammars of [Ajdukiewicz, 1935] and [Bar-Hillel,
1953]. On the other, the logical grammars of [Morrill, 1994] and [Moortgat,
1997b] among others, stemming from [Lambek, 1958]. The two systems
differ both for theoretical and computational properties. In particular, the
Ajdukiewicz Bar-Hillel systems that we will consider contain only rules
for composing smaller structures into larger structures, while Lambek style
categorial grammars contain rules for composing structures as well as rules
for decomposing complex structures into simpler ones. This difference makes
combinatorial grammars easier to handle under many respects, for instance
in automatic proof search. On the other hand, the logical approach of
Lambek, even in its extended formulation as multi-modal system, can be
proved to be complete with respect to the appropriate models as shown in
[Kurtonina and Moortgat, 1997]1.

In this chapter, we will see associative and non-associative Ajdukiewicz
and Bar-Hillel grammars, the associative and non-associative Lambek cal-

1Which means that we have a syntactic method for proving all the valid statements of
the system.

31

32 CHAPTER 2. FORMAL BACKGROUND

culus and the framework of multi-modal type-logical grammars.
As a methodological remark, we underline the fact that in developing the

content of this book the Haskell programming language has played a great
role. We tried to render our notation independent from the Haskell syntax,
as specified in [Jones, 2003]. However, within the functional programming
paradigm, Haskell represents an excellent environment to reason about
mathematical statements, as shown in [Doets and van Eijck, 2004]. There-
fore, our definitions may sometimes have more than the flavor of Haskell
definition. This should allow the uninitiated reader to get acquainted with
some basic notion of functional programming and eventually to implement
the algorithms by straightforwardly translating our sugared notation into
a Haskell code.

2.1 Languages

Languages are defined from their terminal elements, often called words or
more in general symbols. In turn, symbols belong to a given vocabulary.

Definition 1. A vocabulary (or alphabet) is a finite non-empty set of symbols.

If the symbols in the vocabulary are of type a, we write the type of the
vocabulary as {a}.

Example 1. Vocabularies:

- V0 = {0, 1}, where 0, 1 are of type Int(eger).

- V1 = {a, b, c}, where a, b, c are of type Char.

- V2 = {John,Mary, every, a,man,woman, loves, ismissing},
where all the elements of V2 are of type String.

An object of type String consists in a list of objects of type Char in a given
order. More precisely, we introduce the notion of list, below.

Definition 2. A list of objects of type a, denoted List a is defined as

List a := ε | H a (List a)

This definition states that a list of objects of type a is either ε (the empty
list) or the result of the application of the type constructor H to an object of
type a and to a list of objects of type a. Following the Haskell syntax, [Jones,
2003], instead of List a, we use the notation [a] and instead of the constructor

2.1. LANGUAGES 33

H we use the colon : infix notation. The elements of a list are separated by
commas. Again, according to the Haskell conventions, a prefix function f
can be made infix by writing ` f `. While an infix function g is made prefix
by writing (g). Thus, H = (:) and : = `H`. The type of this function is written
(:) :: a → [a] → [a], which means that (:) is a function that takes in input
an argument x of type a, and returns a function that takes in input a list
[x1, . . . , xn] of objects of type a and returns as output a list [x, x1, . . . , xn] of
objects of type a. Thus, for example, we have the following equivalences.

[] = ε
a :as = H a as
[a, b, c] = a : b : c : [] = H a (H b (H c ε))

With this notation, we write the type String as [Char]. As usual, we use
for the wildcard. We define the length of a list xs, denoted |xs|:

|[]| = 0
|(:as)| = 1 + |as|

Definition 3. The concatenation, (++) :: [a]→ [a]→ [a], of two lists xs and ys
is defined as follows.

[] ++ ys = ys
(x :xs) ++ ys = x : (xs ++ ys)

List concatenation has the following properties.

- [] ++ ys = ys = ys ++ []

- (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Definition 4.

The Kleene closure of a set A of type {a}, denoted A∗ and of type of type {[a]},
is the set of all lists over A.

The positive Kleene closure of a set A of type {a}, denoted A+ and of type of
type {[a]}, is the set of all non-empty lists over A.

A language over a vocabulary V is a subset of V∗

Example 2. Languages:

- V∗0 = {[], [0], [1], [0, 1], [0, 0], [1, 1], [0, 0, 0], . . .},

- V+0 = {[0], [1], [0, 1], [0, 0], [1, 1], [0, 0, 0], . . .},

34 CHAPTER 2. FORMAL BACKGROUND

- L1 = {[0], [1], [0, 1, 1, 1]} is a (finite) language over V0.

By string, we mean a list symbols of some type. In order to simplify the
notation, we may write a list of Char type objects, [a, b, c], as abc and the
concatenation of two lists abc and de simply as abcde. This convention may
be extended to all the lists of unstructured symbols, like Char. When the
objects are more structured, we can use white-spaces to separate the various
tokens. For example, the list of integers [1, 100, 3] is written 1 100 3 and a list
of String type symbols [John,walks] as John walks. We will use this simplified
notation as far as it does not result ambiguous.
We extend the notion of concatenation to languages.

Definition 5. If L1 and L2 are two languages of type {[a]}, we write L1L2 the
language consisting of all the strings xy such that x ∈ L1 and y ∈ L2.

(++) :: {[a]} → {[a]} → {[a]}

L1++L2 = {x ++ y | x ∈ L1, y ∈ L2}

2.2 Grammars

A grammar is a formal device that characterizes a language. This means
that given a string in input, the grammar determines, in a finite number of
steps, whether the string is in the language or not, [Chomsky, 1957, 1959].
A grammar can be seen as a kind of deductive system, subject to specific
constraints. We will define in the next section deductive systems. Then, we
will examine context-free grammars and categorial grammars as instances
of deductive systems.

2.2.1 Deductive systems

We define a set syntactic categories. These are the basic objects that our
deductive systems will manipulate.

Definition 6. Syntactic categories.

Let a set of atoms, A be defined as

A := S | NP | VP | N | . . . | p1 | p2 | . . .

Furthermore, let
F := A

2.2. GRAMMARS 35

Later we will extend the data type F of formulas with other type construc-
tors.

Definition 7. A deductive system D is a triple 〈F ,AX,R〉, where

- AX = { 〈Γ,∆〉 | Γ ∈ F∗, ∆ ∈ F+ } is the set of axioms.
We show each 〈Γ,∆〉 ∈ AX as Γ→ ∆.

- R is the set of inference rules proper to the system. Such rules are of
the form

if Γ0 → ∆0 and . . . and Γn → ∆n

then Γ→ ∆

We write rules as
Γ0 → ∆0 . . . Γn → ∆n

Γ→ ∆

The objects of the form Γ → ∆ are called sequents. In a sequent Γ → ∆,
Γ is called the antecedent and ∆ the succedent. The Γ0 → ∆0 . . . Γn → ∆n
in the “if” part of the rules are called premises, and Γ → ∆ in the “then”
part is called conclusion. In what follows, we will present both context-free
grammars and categorial grammars as deductive systems, adopting the
perspective of parsing as deduction of [Pereira and Warren, 1983]. We denote
Γ[∆] an element of F + with a distinguished occurrence of ∆ ∈ F +. The
result of replacing ∆ ∈ F ∗ for a in Γ[a] is denoted Γ[∆].

Definition 8. A tree of objects of type a, denoted Tree a, is defined as follows

Tree a := Branch a [Tree a]

This definition states that a tree of objects of type a consists of a Brach
constructor followed by an a type object, the root, and by a list of trees
of type a, the brances of the tree. For simplicity, we write Lea f a for
Branch a []. We show a tree of the form Lea f x as x and a tree of the
form Branch r [t0, t1, . . . , tn] as

t0 t1 . . . tn
r

However, we will usually work with binary trees.

Definition 9. Let a deductive system D = 〈F,AX,R〉 be given. We recur-
sively define a deduction in D as

36 CHAPTER 2. FORMAL BACKGROUND

1. Lea f a is a deduction, if a ∈ AX.

2. Branch r [t0, t1, . . . , tn] is a deduction, if t0, t1, . . . , tn are deductions,
and r is the conclusion of an inference rule in R with the conclusions
of t0, t1, . . . , tn (in the order) as premises.

We introduce the notion of generation and of language generated.

Definition 10.

A deductive system D generates a sequent Γ → ∆, denoted `D Γ → ∆, if
Γ→ ∆ is the conclusion of a deduction in D.

The language generated by a deductive system D, denoted L(D) is the set
of sequents generated by D.

In the context of rewriting systems, which are the formal systems com-
monly adopted to describe context-free grammars, the notion of derivation
is used more often than the one of deduction. We will make use both
of deductions and of drivations. Thus, we introduce also the following
definitions.

Definition 11.

A rewriting system R is a pair 〈F ,AX〉 such that AX is as in definition 7.

The one step derivation⇒ is defined as follows:

Γ[Λ]⇒ Γ[∆] if Λ→ ∆ ∈ AX.

A derivation is the reflexive transitive closure of⇒, denoted⇒∗ and defined
as follows:

Γn ⇒
∗ Γ0 if and only if either Γ0 ≡ Γn or Γn ⇒

∗ Γ1 ⇒ Γ0.

R generates the pair 〈Γ,∆〉, notation `R Γ→ ∆ if and only if Γ⇒∗ ∆.

An immediate consequence of definition 11 is the following.

Proposition 1. Let R be a rewriting system. Then

if Λ⇒∗ ∆ and Γ[∆]⇒∗ Σ, then Γ[Λ]⇒∗ Σ

Proof.

If Λ ≡ ∆, then it holds trivially.

2.3. CONTEXT-FREE GRAMMARS 37

If Λ ⇒ ∆ ≡ Λ′[Ω′] ⇒ ∆′[Ω] and Ω′ → Ω ∈ AX, then Γ[∆] ⇒∗ Σ ≡
Γ[∆′[Ω]]⇒∗ Σ. Hence Γ[∆′[Ω′]]⇒∗ Σ ≡ Γ[Λ]⇒∗ Σ.

If Λn ⇒
∗ Λ1 ⇒ ∆, and Γ[∆]⇒∗ Σ, then Γ[Λ1]⇒ Γ[∆]⇒∗ Σ. �

We make now clear the link between a rewriting system and a deductive
system.

Proposition 2. LetR = 〈F ,AX〉be a rewriting system and D = 〈F ,AX, {Cut}〉
a deductive system and Cut is the following rule

Λ→ ∆ Γ[∆]→ Σ
Γ[Λ]→ Σ

Then
`R Γ→ ∆ iff `D Γ→ ∆

Proof. Clearly, Cut is the same inference rule as the one in proposition 1. �

The rule used in proposition 2, is an unrestricted version of the deductive
rule of cut. In what follows, we will assume that the succedent of every
sequent will be a single formula.

2.3 Context-free grammars

The context-free grammar formalism is important under several respects.
In first place, these grammars are simple and easy to use for designing
grammars. They are theoretically well understood and have pleasant com-
putational properties. Furthermore, every natural language is to a large
extent (though not entirely) context-free (CF), in the sense that it can be
analyzed with the formalism of CF grammars. These aspects made these
systems the first candidate for natural language analysis and a standard for
evaluating the properties of other frameworks.

Definition 12. A context-free grammar G is a triple 〈Vt,S,D〉where

- D = 〈F ,AX,R〉 is a deductive system2,

- AX = {Γ→ A | Γ ∈ (F ∪ Vt)∗, A ∈ F }

- R consists of the Cut rule:

∆→ B Γ[B]→ C
Γ[∆]→ C

2Equivalently, one may adopt a rewriting system in place of a deductive system.

38 CHAPTER 2. FORMAL BACKGROUND

- S is a distinguished formula, the start symbol,

- Vt is the terminal vocabulary. We assume that Vt ∩ F = ∅.

In the CF framework, the Γ → A ∈ AX are often called productions or also
rules. In the following examples of CF grammars, we write only the set of
non-logical axioms AX, as the sets Vt andF is easily inferable, while the set R
and the start symbol S are constant. Moreover, whenever several rewriting
options Γ0 → A, . . . ,Γn → A appear in AX, we write Γ0 | . . . | Γn → A.

Example 3. CF grammars:

- G0 = { 0S1 | ε→ S }.

- G1 = { (S)S | ε→ S }.

- G2 = { 1S | 0→ S }.

- G3 =

{ NP VP → S,

Np | Det N → NP,

IV | TV NP → VP,

whistles → IV,

loves → TV,

Renzo | Lucia → Np,

every | a → Det,

man | woman → N }.

We write `G Γ→ A, if the grammar G generates the sequent Γ→ A.

Definition 13. The terminal language generated by a context-free grammar
G, denoted Lt(G), is the set of the Γ ∈ V∗t such that `G Γ→ S.

Definition 14. A grammar G1 is equivalent to a grammar G2 if and only if
Lt(G1) = Lt(G2).

From the derivational perspective, we have the following notions.

Definition 15.

A context-free grammar G based on a rewriting system R = 〈F ,AX〉 is a
triple 〈Vt,S,R〉.

2.3. CONTEXT-FREE GRAMMARS 39

The terminal language generated is the set

{ Γ⇒∗ S | Γ ∈ V∗t }

Example 4. Terminal languages:

- Lt(G0) = {0n1n
| 0 6 n}.

- Lt(G1), is the language of strings of balanced brackets.

- Lt(G2) = {1n0 | 0 6 n}.

- Lt(G3) is the language of well-formed English sentences over the ter-
minal vocabulary of G3 which contains only the words appearing in
the productions.

Example 5. A deduction of the terminal string (())() in G1.

ε→ S
ε→ S (S)S→ S

()S→ S
()→ S

ε→ S
ε→ S (S)S→ S

()S→ S
()→ S (S)S→ S

(())S→ S
(())()→ S

Observe that several other deductions are available for the same terminal
string and all of them are in some sense equivalent. This may be seen, for
example, from the fact that all these deduction could be mapped to the
same structural description. A structural description is a tree whose nodes
are labeled by the non-terminals of the grammar and whose leaves by
terminals. We refer to section 1.2 of chapter 1 for the information encoded by
structural descriptions and define here a recursive procedure for mapping
a deduction into a structural description.

Definition 16. Let a CF grammar G = 〈Vt,S, 〈F ,AX,Cut〉〉 be given. Let
`G Γ → C. We build a structural description T for Γ → C in G as follows.
Assume that the γ’s and δ’s are elements of Vt ∪ F .

If Γ→ C ≡ δ1 . . . δm → C ∈ AX, then T is the tree

δ1 . . . δm
C

40 CHAPTER 2. FORMAL BACKGROUND

Otherwise, Γ → C ≡ γ1 . . . γiδ1 . . . δmγi+1 . . . γn → C and the last step of a
deduction of Γ→ C in G is

δ1 . . . δm → B γ1 . . . γiBγi+1 . . . γn → C
γ1 . . . γiδ1 . . . δmγi+1 . . . γn → C

Assume that the tree
δ1 . . . δm

B

is assigned to the deduction of δ1 . . . δm → B and that the tree

γ1 . . . γi B γi+1 . . . γn
C

is assigned to the deduction of γ1 . . . γiBγi+1 . . . γn → C. Then, T is the tree

γ1 . . . γi

δ1 . . . δm
B γi+1 . . . γn
C

The notion of deduction (as well as that of derivation) is affected by
spurious ambiguity. In the context of CF grammars, this means that several
deductions may correspond to the same structural description. In a com-
putation, we want to avoid such proliferation of equivalent deductions.
However, there may also be cases of genuine ambiguity, that is, different
deductions of the same sequent that correspond to different structural de-
scriptions, and we want to maintain these, for example because they express
different semantic interpretations of the root sequent. In the next chapter,
we will see that there are elegant and powerful methods to solve these
problems for CF grammars. We will also see that the notion of spurious am-
biguity has a more subtle character in the case of Lambek style categorial
grammars and that its elimination requires more ingenuity.

A class of context-free grammars has particularly nice computational
properties.

Definition 17. A grammar G is in Chomsky normal form (CNF), if it contains
only productions of the form:

A B→ C, A , S, B , S,

w→ A, w ∈ Vt or

ε→ S.

2.4. CATEGORIAL GRAMMARS 41

[Chomsky, 1959] proves that for every context-free grammars G there is
a CNF grammar G′ such that Lt(G) = Lt(G′). Observe that, for grammars
in CNF, it is possible to partition the set AX into two distinct sets: one
contains only lexical axioms, namely productions of the form w → A, the
other only non-lexical axioms, namely productions of the form A B→ C. All
productions of CNF grammars are binary, and we will see that this allows to
parse them with a very simple and elegant parsing algorithm known as the
CYK algorithm. The fact that all CF grammars can be put in CNF also makes
the CYK algorithm a general parsing algorithm for CF languages. However,
it should be remarked that the CNF variant of a CF grammar may generate
a different structural language from the one of the original grammar.

2.4 Categorial grammars

The first form of categorial notation was introduced by the Polish logician
Kazimier Ajdukiewicz in [Ajdukiewicz, 1935]. A category was presented
as an object of the following form,

a
b

where a and b are also categories. The intuition behind such a notation
is that of a function from an object of type b, the input (or argument or
denominator), to an object of type a, the output (or value or numerator). In
other words, an expression of category a

b is an incomplete expression, looking
for an expression of category b to give an expression of category a.

Later, Ajdukiewicz’s notation for categories was refined by Joshua Bar-
Hillel, who distinguished categories of the form a/b and categories of the
form b\a in [Bar-Hillel, 1953]. The meaning of such a notation was the
following.

- An expression of category a/b combines with an expression of category
b to its right to give an expression of category a.

- An expression of category b\a combines with an expression of category
b to its left to give an expression of category a.

The calculus resulting by adopting these rules, which we call cancellation
schemes, is nowadays called AB calculus, or also basic categorial logic. More
formally, we extend the formula type constructor as follows.

42 CHAPTER 2. FORMAL BACKGROUND

Definition 18. Formulas, or categories, are defined from the set of atoms A as

F := A | F /F | F \F | F ⊗ F

In the context of categorial grammar, CG hereafter, formulas as also
called categories. Formulas of CF grammars are also formulas of categorial
grammar. However, we will distinguish the two systems by writing atoms
of CG with lowercase letters, while the atoms of CF grammar will always
start with capital letters. In showing complex formulas, we omit the most
external brackets. Furthermore, we assume the slashes have higher prece-
dence over the product and juxtaposition. Thus for example we write a⊗b\c
for a⊗ (b\c) and a b\c for a (b\c). Finally, we assume that / is left associative
and \ is right associative. So (a/b)/c is written as a/b/c, and c\(b\a) as c\b\a
(we will sometimes drop this convention on the basis of readability).

Product formulas, that is formulas of the form a ⊗ b, appear for the first
time in [Lambek, 1958]. Still nowadays, many categorial linguists work
within product-free systems. In some case, this may be legitimate. However,
if we aim at the structural adequacy of the syntactic description, product
categories are a valuable tool. We will discuss categorial systems with and
without product, although one of our contributions is the application of
parsing systems as the CYK or the Earley parser to categorial grammars
with product.

Categorial grammars consist of a lexicon and of a deductive system. The
lexicon assigns words in the terminal vocabulary to syntactic categories and
the deductive system specifies the way complex expressions are derived,
according to the inference rules.

Definition 19. A categorial grammar based on a deductive system D is a
quadruple 〈Vt, s,Lex, 〈F ,AX,R〉〉where

- Vt is the terminal vocabulary of the grammar.

- s is the distinguished start symbol

- Lex, the lexicon, is a set of pairs 〈w, c〉, the lexical assignments, with
w ∈ Vt and c ∈ F which we write w→ c.

Thus, we can specify different kinds of categorial grammars by just
specifying a deductive system D. For instance, the Ajdukiewicz Bar-Hillel
calculus is defined as follows.

Definition 20. The AB deductive system is a triple 〈F ,AX,R〉 such that

2.4. CATEGORIAL GRAMMARS 43

- AX = { a→ a | a ∈ F },

- R consists of the following rules which we call basic cancellation rules.

Γ→ a/b ∆→ b
Γ∆→ a

Γ→ b ∆→ b\a
Γ∆→ a

We call AB grammar a categorial grammar based on the deductive system
AB. Consider, for example, the following AB grammar.

Example 6.

A0 = 〈{a, b}, s, {a→ s/c/s, ε→ s, b→ c}, AB〉

We can easily see that grammar A0 generates the language anbn. However,
we still have no link between the terminal language generated by the gram-
mar and the language generated by the categorial deductive system. The
following definition provides us with this link, observe that the lexicon may
contain assignments for the empty string, this is why the input string may
be shorter than the list of categories in the root sequent.

Definition 21. A categorial grammar G = 〈Vt, s,Lex,D〉 generates a string
w0 . . .wm ∈ V∗t if and only if `D a0 . . . an → s, 0 6 m 6 n and w0 . . .wm ⇒

∗

a0 . . . an on the basis of the axioms in Lex.

Example 7.

Grammar A0 generates aabb, since AB generates s/c/s, s/c/s, s, c, c → s
according to the following deduction

s/c/s→ s/c/s

s/c/s→ s/c/s s→ s
s/c/s, s→ s/c c→ c

s/c/s, s, c→ s
s/c/s, s/c/s, s, c→ s/c c→ c

s/c/s, s/c/s, s, c, c→ s

and
aabb ⇒

∗ s/c/s, s/c/s, s, c, c

on the basis of the axioms in Lex.

In the original formulations of AB grammars, a second kind of cancella-
tion rule was present together with the basic cancellation schemes, see also
[Lambek, 1958]. This second kind of rules can be seen as a generalization
of the basic cancellation rules. On the other hand, we preferred to keep
distinct the two systems and discuss them separately.

44 CHAPTER 2. FORMAL BACKGROUND

Definition 22. We call AAB (associative AB calculus) the deductive system
〈F ,AX,R〉 where F and AX are as in definition 20, and R consists of the
basic cancellation rules of the AB calculus and of the following inference
rules, which we call associative cancellation rules3.

Γ→ a/b ∆→ b/c
Γ∆→ a/c

Γ→ c\b ∆→ b\a
Γ∆→ c\a

An AAB grammar is a categorial grammar that has AAB as deductive en-
gine. Consider the following associative Ajdukiewicz Bar-Hillel categorial
grammar.

Example 8.

Let A1 be an AAB grammar, with the following lexicon:

{ John → n,
Mary → n,
someone → s/(n\s),
everyone → (s/n)\s,
everyone → ((n\s)/n)\(n\s),
loves → (n\s)/n,
ismissing → n\s,
ismissing → (s/(n\s))\s }

As formulas may become soon very long, we may introduce the following
macros.

Definition 23. Macros.
iv := n\s
tv := iv/n

Example 9. Deductions of Someone loves everyone in A1.

1.
s/iv→ s/iv tv→ iv/n

s/iv, tv→ s/n (s/n)\s→ (s/n)\s
s/iv, tv, (s/n)\s→ s

3In fact, one can generalize the cancellation schemes in the following way, with 1 6 j (if
j ≡ 1, then a/1 . . . /jb ≡ a/b) and 0 6 k (if k ≡ 0, then b/0 . . . /kc ≡ b):

Γ→ a/1 . . . /jb ∆→ b/0 . . . /kc
Γ∆→ a/1 . . . /j+k−1c

2.5. LAMBDA TERMS 45

2.

s/iv→ s/iv
tv→ tv tv\iv→ tv\iv

tv, tv\iv→ iv
s/iv, tv, tv\iv→ s

Deduction 1 relies essentially on the rules of the system AAB. We can
observe that these two deductions are not a case of spurious ambiguity.
Indeed they are different (one could easily map them to two different struc-
tural descriptions) and there are several reasons to be interested in both
of them. In the next section, we will introduce one of the most interest-
ing aspects of categorial grammars: the correspondence between syntax
and semantics. We will see that the two deductions in example 9 express
different scope relations between the subject and the object noun phrase4.

2.5 Lambda terms

The lambda calculus is the term language used in model theoretic semantics
to build semantic representations of linguistic expressions in accordance
with the compositionality principle. For our proposes, we can define the
lambda term language as follows.

Definition 24.

Var := x1 | x2 | . . .

Con := c1 | c2 | . . . | cn

Lam := Var | Con | λVar. Lam | (Lam Lam)
| 〈Lam, Lam〉 | π(Lam) | π′(Lam)

We show variables in Var as x, y or z, in which case different letters de-
note different variables. A term λx.t is called an abstract, (t1 t2) is called
application, 〈t1, t2〉 pair and π(t) and π′(t) are the first and second projections,
respectively. In order to simplify the notation, we assume that application
is left associative, thus we write the term ((t1 t2) t3) as (t1 t2 t3). Furthermore,
when it creates no ambiguity, we write π(x) as πx.

4At the syntactic and prosodic levels, instead, the two deductions in example 9 encode
different structural descriptions that can be assigned to the input string. The connection be-
tween categorial deductions and prosodic phrasing, expressed in terms of the branching of
structural descriptions, is being intensively studied in recent years. The works on combina-
tory categorial grammar of M. Steedman and his school, see for example [Steedman, 2000b,a],
emphasize the connection between the structures arising from (combinatory) categorial
deductions and prosodic phrasing.

46 CHAPTER 2. FORMAL BACKGROUND

Definition 25.

The scope of λx in λx.t is t.

A variable x is said to be free in a lambda term t, if it is not in the scope of a
λx. Otherwise is said to be bound.

As stated in [Blackburn and Bos, 2003], “the lambda calculus is a tool
for controlling the process of making substitutions”. The definition of sub-
stitution given below is partially taken from [Hindley, 1997] and extended
to the case of constant, pair and projection terms. We denote FV(t) the set
of free variables of the term t.

Definition 26. Substitution: t[x := t′] is the result of substituting t′ for x in t.
Formally,

x[x := v] = v
x[y := v] = x
c[y := v] = c if c ∈ Con
〈t1, t2〉[y := v] = 〈t1, [y := v], t2[y := v]〉
π(t)[y := v] = π(t[y := v])
π′(t)[y := v] = π′(t[y := v])
(t1 t2)[y := v] = (t1[y := v] t2[y := v])
(λ x.t)[x := v] = λ x.t
(λ x.t)[y := v] = λ x.t if y < FV(t)
(λ x.t)[y := v] = λ x.(t[y := v]) if y ∈ FV(t) and x < FV(v)
(λ x.t)[y := v] = λ z.(t[x := z][y := v]) if y ∈ FV(t) and x ∈ FV(v)

Observe that we are adopting the untyped variant of the lambda calcu-
lus. This means that expressions as (x x) are well formed. We will dedicate
the next section to typed lambda calculus and discuss its connection with
categorial grammar.

The following equalities define the basic steps of term reduction. In fact,
these equalities should be seen as rewriting rules. In each case, the term on
the left of the equality symbol, called redex, is rewritten to the equivalent,
though shorter, term on the right, called contractum. We put on the left
column β-contraction and on the right η-contraction.

Definition 27.

2.5. LAMBDA TERMS 47

Contraction: term equations for lambda terms

β-contraction η-contraction

π〈t1, t2〉 = t1
〈πt, π′t〉 = t

π′〈t1, t2〉 = t2

((λx.t) v) = t[x := v] λx.(t x) = t, if x < FV(t)

A reduction is a series of contractions.

A term is normal, if no contraction can be applied to it.

2.5.1 Typed lambda calculus

In the type free lambda calculus, each functional term is from lambda terms
to lambda terms, without restrictions. The typed lambda calculus is a proper
subset of the full lambda calculus (for example, self-application terms, like
(x x), are not in the typed calculus). In this system, each lambda term has
a single type associated with it. Thus, types can be seen as equivalence
classes of lambda terms. If a typed term t is functional, its type determines
the domain of its possible argument terms as well as the type of the result
of applying t to its argument. Observe the similarity with the categorial
formalism: an expression of functional category, say a

b combines with an
expression of category b to give a compound expression of category a. We
will see that there is indeed a close correspondence between formulas of
categorial grammar, types and typed terms.

For our proposes, we can define the type language as follows.

Type := e | t | Type→ Type | Type × Type

The types e and t are the primitive types of individuals and truth values,
respectively. Any other type is either a function from a type to a type or
a product of types. Intuitively, we can think of the types e as the set of
individuals and t as the set of truth values, {True,False}5. A type p→ q is a
function from p to q, while a type p × q is the Cartesian products of p and q.

We define the mapping from syntactic categories to types.

Definition 28. Let ty be a function from syntactic categories to types, ty ::
F → Type. Let ty(x) be given for all the x ∈ A, for instance ty(n) = e and

5In Montague grammar, one finds also the primitive type s for possible worlds, which is
beyond the scope of this book.

48 CHAPTER 2. FORMAL BACKGROUND

ty(s) = t. Compound formulas are mapped to compound types as follows:

ty(a/b) = ty(b)→ ty(a)
ty(b\a) = ty(b)→ ty(a)
ty(b ⊗ a) = ty(b) × ty(a)

In [Moortgat, 1997b], one can find a so called Church style definition of
typed lambda terms. Instead, we adopt an approach which is more in the
style of [Curry and Feys, 1958], see also [Hindley, 1997]. This means that
while our definition of the lambda term language is type-free, as it admits
terms as (x x), we define typed terms as those lambda terms to which a type
can be assigned.

The following typing rules are deduction rules working on type assign-
ments: objects of the form t :p, where t is a term and p is a type, meaning ‘t is
a term of type p’. Typing rules are expressed in the form of typing judgements
of the form

{x1 :p1, . . . xn :pn} ` t :p

with the meaning that ‘if xi : pi, 0 6 i 6 n, then t is a well formed term
of type p’. In such judgemets, all free variables of t must be contained in
{x1, . . . , xn}. We use Γ , Γi, 0 6 i as variables over sets of type assigments.

Definition 29. Typing rules for typed lambda calculus:

x :p ` x :p

Γ1 ` t :q→ p Γ2 ` t′ :q
Γ1 ∪ Γ2 ` (t t′) :p

Γ ∪ {x :q} ` t :p
Γ ` λx.t :q→ p

Γ ` t :p × q
Γ ` πt :p

Γ ` t :p × q
Γ ` π′t :q

Γ1 ` t :p Γ2 ` t′ :q
Γ1 ∪ Γ2 ` 〈t, t′〉 :p × q

To be precise, the typing rules operate on type variables p, q Thus
the result of a type deduction is a type schema for the input lambda term.
In the following example, we directly unify the typing of the term with
the type resulting for the syntactic category. A more precise description
of the typing algorithm for lambda calculus, including polymorphism and
unification, can be found in [Hankin, 2004] which in turn is based on [Damas

2.5. LAMBDA TERMS 49

and Milner, 1982].

Example 10. The word himsel f is assigned the category ((n\s)/n)\n\s and
the term λxλy.(x y y). We have:

ty(((n\s)/n)\n\s) = (e→ (e→ t))→ (e→ t).

{x :e→ (e→ t)} ` x :e→ (e→ t) {y :e} ` y :e
{x :e→ (e→ t), y :e} ` (x y) :e→ t {y :e} ` y :e

{x :e→ (e→ t), y :e} ` (x y y) : t
{x :e→ (e→ t)} ` λy.(x y y) :e→ t

∅ ` λxλy.(x y y) : (e→ (e→ t))→ (e→ t)

By extended deductive systems we mean a deductive system extended
with proof-encoding term of some sort. If we are interested in compo-
sitional semantics, the term language will be the lambda term language.
However, depending on the proposes, different term languages may result
to be useful. For example, [Lambek, 1993] uses a term language isomorphic
to deductions in the non-associtive Lambek calculus and defines proof nor-
malization via term equations, on the basis of the cut elimination algorithm.
Presently, we will largely use the lambda calculus as a term language also
because the notation for syntactic terms in the style of Lambek, see also
[Lambek, 1988, Lambek and Scott, 1987] and [Moortgat and Oehrle, 1997],
becomes soon quite heavy to read and is not relevant to our proposes.

Each sequent of an extended deductive system is paired with a term.
We call arrow an object of the form f : Γ→ c, where f is a term and Γ→ c is
a sequent.

Definition 30. An extended deductive system is a quadruple 〈F ,T ,AX,R〉
such that

- F is a set of formulas.

- T is a set of terms of a given term language (for example the lambda
calculus).

- AX = { t : Γ→ ∆ | t ∈ T , Γ ∈ F ∗, ∆ ∈ F + }.

- R is a set of inference rules of the form

f1 : Γ1 → ∆1 . . . fn : Γn → ∆n

ρ(f1 . . . fn) : Γ→ ∆

where ρ is an operation on terms such that ρ(f1 . . . fn) ∈ T .

50 CHAPTER 2. FORMAL BACKGROUND

We define now the semantic variant of the AAB calculus.
In categorial logic, one works with linear lambda terms which are a

subset of typed lambda terms obeying further constraints. As our lambda
calculus uses projections, we shall slightly modify the standard definition
of linear lambda terms. For x ∈ Var, let us call a projection of x, denoted πnx,
a term of the form πn . . . π1x, where each πi, 1 6 i 6 n is either a first or a
second projection. We assume that π0x ≡ x and we say that a projection πix
is free in t, if it is not in the scope of λx.

Definition 31. A linear lambda term t is a lambda term such that

- for each subterm λx.t′ of t, each projection of x occurs free in t′ exactly
once,

- no variable variable occurs free in t.

In fact, these constraints apply to what, in the next section, we will call
derivational semantics. Instead, at the lexical level one is, to some extent, free
to violate them. An example of the lexical violation of the constraints in
definition 31 is the assignment of the reflexive pronoun, himself, whose cate-
gory is ((n\s)/n)\(n\s) and whose term assignment isλxλy.(x y y). In section
2.7.1, we will see other examples of lexical assignments that violate the con-
straints on linear lambda terms. However, we will always keep distinct the
derivational and the lexical components of semantic interpretation.

The functorial structure of lambda calculus and categorial logic allows
to interpret each inference rule as an operation on the lambda term. We
present a new formulation of the AAB calculus. Here we use uppercase
greek letters for bracketed strings of categories. The role of brackets will be
clarified in definition 43. Let us extend the function ty as to apply to such
bracketed strings of categories by adding the clause

ty((Γ,∆)) = ty(Γ) × ty(∆)

An arrow with semantic label is always an object of the form

λx.v : Γ→ c

In such an arrow, the type of the term is (unifiable with) the type of the
sequent: both are functions from a Γ-type object to a c-type object.

2.5. LAMBDA TERMS 51

Definition 32. Semantic AAB calculus:

λ x.x : a→ a

v : Γ→ a/b u : ∆→ b
λx.(v πx (u π′x)) : (Γ, ∆)→ a

v : Γ→ a/b u : ∆→ b/c
λxλy.(v πx (u π′x y)) : (Γ, ∆)→ a/c

u : Γ→ b v : ∆→ b\a
λx.(v π′x (u πx)) : (Γ, ∆)→ a

u : Γ→ c\b v : ∆→ b\a
λxλy.(v π′x (u πx y)) : (Γ, ∆)→ c\a

We formulate labeled categorial grammar.

Definition 33. A labeled categorial grammar is a categorial grammar based
on a labeled deductive system D and whose lexicon Lex contains triples
〈t,w, c〉, which we show as t : w → c, where w ∈ Vt, c ∈ F and t ∈ T , the
term language of D.

The following is the variant of lexicon A1 resulting by adding semantic
terms. Well-typing requires the type of the lambda term to be the same as
that of the category to which it is associated. Thus, j and m are constants of
type e,  is of type e→ (e→ t),  is of type e→ t and ∗

is of type ((e → t) → t) → t. ∃ and ∀ are constants of type (e → t) → t.
An expression ∃x v is shorthand for (∃ λx. v), which is the term resulting
from application of the constant ∃ to the term λx. v of type e → t6. The
same holds for ∀x v. The type of the other terms can be easily recovered
from the category. We will see immediately that the well typing constraints
are enforced by the categories in the derivation. Hence, we do not need to
explicitly distinguish variables of different types.

Example 11.

A1 =

{ j : John → n,

m : Mary → n,

λx.∃y (x y) : someone → s/(n\s),

λx.∀y (x y) : everyone → (s/n)\s,

λxλy.∀z ((x z) y) : everyone → ((n\s)/n)\(n\s),

6Observe that λx.∃y (x y) assigned to someone in lexicon A1 η-reduces to ∃. Indeed,
we could use this reduced form in the lexicon. However, we preferred to keep the more
traditional notation for quantifiers.

52 CHAPTER 2. FORMAL BACKGROUND

 : loves → (n\s)/n,

 : ismissing → n\s,

∗ : ismissing → (s/(n\s))\s }

The notion of generation is extended to labeled systems in order to
assign a term to the generated string.

Definition 34. A categorial grammar with semantic labels G = 〈Vt, s,Lex,D〉
generates a string w0 . . .wm ∈ V∗t and assigns it the semantic term t if and
only if D generates f : Γ→ s and t = (f t′), where

1. Γ is a structure living on a0 . . . an, m 6 n,

2. w0 . . .wm ⇒
∗ a0 . . . an by means of axioms

ti : wi → ai ∈ Lex, 0 6 i 6 m
ti : ε→ ai ∈ Lex, 0 6 i 6 n

3. t′ is obtained by replacing in Γ each ai with ti, each (with 〈 and each)
with 〉.

This definition deserves some comments. For a structure Γ to live on a
list of formulas a0 . . . an, means that a0 . . . an is the result of eliminating all
brackets from Γ. In 2, we check whether we can rewrite w0 . . .wm to a0 . . . an
by means of transitions in the lexicon. The structural information encoded
by Γ is exploited in 3 to build a pair lambda term t′, which is itself a structure
living on the terms t0 . . . tn assigned, respectively, to a0 . . . an in the lexicon.
The term t′ encodes the lexical semantics of w0 . . .wm according to G. The
derivational semantics instead is encoded by the term f resulting from the
derivation. The semantic representation t of w0 . . .wm in G is given by the
application of the derivational term f the the lexical term t′, that is t = (f t′).

The deductions given in example 9 are now proposed once more with
lambda term decorations. For reasons of space we extend the macros in
definition 35 with the following new macros.

Definition 35. Macros.
qs := s/iv
qo := (s/n)\s

In the deductions below, we immediately reduce terms to normal form.
The notation t { t′ indicates that the term t′ is obtained from the term t
through a number of steps of contraction.

2.5. LAMBDA TERMS 53

Example 12. Semantic deductions:

1. Derivational semantics of deduction 1 of example 9.

λx.x : qs→ s/iv λy.y : tv→ iv/n
λxλy.(πx (π′x y)) : qs, tv→ s/n λz.z : qo→ qo
λx.(π′x λk.(ππx (π′πx k))) : (qs, tv), qo→ s

Lexical semantics: from the bracketed string of categories (qs, tv), qo
and A1, we obtain the term 〈〈λ x.∃y (x y), 〉, λ x.∀y (x y)〉.
Semantic representation of someone loves everyone according to the
deduction 1:

(λx.(π′x λk.(ππx (π′πx k))) 〈〈λ x.∃y (x y), 〉, λ x.∀y (x y)〉){
(λ x.∀y (x y) λk.(λ x.∃y (x y) ( k))){
(λ x.∀y (x y) λk.∃y ( k y)){
∀z (λk.∃y ( k y) z){
∀z∃y ( z y)

2. Deduction 2 of example 9, instead, assigns the lambda term∃y∀z ( z y)
to the input string, as it can be easily checked.

2.5.2 Lambda calculus in Haskell

The Haskell programming language is a functional language. In such a
programming language, a program is expressed as a function and the exe-
cution of the program amounts to the evaluation of a function. The syntax
and semantics of Haskell are largely based on lambda calculus and its no-
tion of reduction, respectively. The Haskell notation for lambda terms is
closely reminiscent of the lambda notation. For instance, \x→ v in Haskell
corresponds to what we wrote in the previous sections as λx.v.

In implementing the semantic component of a categorial grammar, it
would be convenient to rely on the lambda term notation and reduction
which is hardwired in the Haskell syntax and semantics, instead of de-
veloping our own object lambda term syntax and then a term reduction
routine, as it is done in [van Eijck, 2003]. For example, this would simplify
notably the mechanism of assigning fresh variables in the construction of
the derivation. And of course, a reduction routine defined in Haskell can-
not be faster than the reduction mechanism proper of the Haskell compiler
which interprets such routine.

On the other hand, Haskell lambda terms, as typed terms, inherit their
type from the type of their arguments and of their value and well typing

54 CHAPTER 2. FORMAL BACKGROUND

constraints prevent an object of type b from occuring where an object of
type a should occur. Thus, different Haskell lambda terms may belong to
different types. This raises some difficulties if we want to implement an
arrow t : w → c, where t is lambda term, by writing t as the corresponding
Haskell lambda term.

We will proceed in a way similar to the one proposed in [Wadler, 1992],
although we will not enter the details on monads. In that paper, a lambda
term language is defined, largely long the same lines in which we defined
the language Lam. An interpretation function maps terms in Lam into
the evaluation. The evaluation, eval :: Lam → Lam, in turn relies on
the reduction mechanism of the Haskell interpreter. Thus eval(λx.v) is
interpreted as Abs(\x → (evalv))7. Observe that while λx.v is an object
lambda term of type Lam, Abs(\x → v) is a value in the interpretation
language which includes a subterm \x → v built by means of Haskell
abstraction. Consider the following Haskell definition of object lambda
terms.

Lam := X Int | C String

| Abs (Lam→ Lam) | App Lam Lam

| Pair Lam Lam | Pi Lam | Pi′ Lam
The most remarkable difference with respect to the definition of Lam, in
the previous section, is that in the interpretation we state that an object of
type Lam can be of the form Abs (Lam → Lam), that is, it may consist of a
constructor Abs(traction) followed by a function from a Lam type object to a
Lam type object. This operation transforms a function f :: Lam→ Lam into
an object Abs f :: Lam.

Working on the interpreted language Lam, we can define the contractions
relying on Haskell reduction system.

Definition 36.

(o) :: Lam→ Lam→ Lam

(Abs f) o g = (f g)
f o g = f Àpp̀ g

f st, snd :: Lam→ Lam
f st (Pair f) = f
f st f = Pi f
snd (Pair f) = f
snd f = Pi′ f

7We are omitting the environment variable here, for simplicity.

2.5. LAMBDA TERMS 55

The operator (o) is interprets application. If its left argument is an
abstract of the form Abs f , then we know that f :: Lam → Lam. As the
right argument g is of type Lam, (Abs f) o g returns (f g), that is the result
of the application of f to g. Instead, if the left argument is not an abstract,
it returns the application of the constructor App, object level application, to
the arguments. The functions f st and snd, for first and second projection,
have a similar behavior. Thus the constructors App, Pi and Pi′ ‘fake’ their
lambda calculus counterparts exactly in those cases in which reduction is
not possible.

One may wish to define also the composition of lambda, which interprets
the cut rule, as follows

Definition 37.

(◦) :: Lam→ Lam→ Lam

(Abs f) ◦ (Abs g) = Abs f .g

Here, (.) :: (a→ b)→ (c→ a)→ c→ b is Haskell function composition,
defined as g. f = \x→ (g (f x)).

Another suitable operation is type raising, see for example [Hendriks,
1993].

Definition 38.

li f t :: Lam→ Lam
li f t x = Abs (\y→ y o x)

With this notation, the lexical assignment for someone → s/(n\s) becomes

Abs (\y→ ∃ o (Abs (\x→ y o x)))

Observe that no object variable is used in such a lexical assignment. Indeed,
y and y are Haskell variables. The object variables X i play a role only
in two cases. The first case has to do with lexical assignments containing
free variables, as pronouns of category s/(n\s), like she, which would be
assigned the term li f t (X i) for some integer i. The second case has to
do simply with showing a term Abs f . If we show a variable X i as xi,
we can extend the show function as to apply to a term Abs f in such a
way that show (Abs f) is λ xi. show (f (X i)) for a suitable index i. Thus
show (Abs (\y→ ∃ o (Abs (\x→ y o x)))) = λ x0.∃x1 (x0 x1), which is what we
want.

56 CHAPTER 2. FORMAL BACKGROUND

2.6 The Lambek calculus

The rule component of an (A)AB deductive systems consists of rules for
building larger structures from simpler ones. So, for example, if we have
a structure Γ of category a/b and a structure ∆ of category b, we can build
a structure Γ∆ of category a. Under this perspective the AB and AAB
grammars are not substantially different from phrase-structure grammars
where one builds a structure Γ∆ of category C from a structure Γ of category
A and a structure ∆ of category B, if the production A B → C is among the
axioms of the grammar.

A great enrichment to the field of categorial grammar was given by the
work of Joachim Lambek. In [Lambek, 1958], new rules were added to the
composition rules of the system AAB. These rules decompose a structured
sequent in a way that can be spelled out as follows.

- if a structure aΓ (that is, a structure with a as the leftmost category) is
of category c, then the structure Γ is of category a\c.

- if a structure Γ a is of category c, then the structure Γ is of category c/a.

These rules are called introduction rules of the slashes (in opposition to the
cancellation or elimination rules of AB) as they introduce a slash connective
in the conclusion, or also rules of proof (in opposition to the rules of use of
AB), as they state how to prove formulas with a main slash connective.

We present the product-free Lambek calculus. In [Lambek, 1958] the
calculus was associative, that is the following principles were assumed as
axioms (where y↔ x is shorthand for y→ x and x→ y).

a, (b, c)↔ (a, b), c

The unbracketed notation we use for the antecedents implicitly expresses
these laws. An actual simplification, with respect to the logic in [Lambek,
1958] is the absence of product rules, that is of rules which deal with formulas
of the form a ⊗ b. This is because we will dedicate a very special attention
to the product in later chapters. We call the following logic the associative
Lambek calculus without product, and we refer to it as L.

Definition 39. A product-free Lambek deductive system, L, is a triple
〈F ,AX,R〉where

F is a set of formulas,

AX = {a→ a | a ∈ F }

2.6. THE LAMBEK CALCULUS 57

R consists of the following rules:

• Elimination rules:

Γ→ c/b ∆→ b
Γ∆→ c

Γ→ a ∆→ a\c
Γ∆→ c

• Introduction rules, Γ ∈ F +:

Γ b→ c
Γ→ c/b

aΓ→ c
Γ→ a\c

A product-free Lambek grammar based on L is a categorial grammar
based on L.

We show now the system L at work with some examples.

Example 13. Lambek grammar A2:

A2 =

{ John → n,
Mary → n,
someone → s/(n\s),
everyone → (s/n)\s,
loves → (n\s)/n,
ismissing → (s/(n\s))\s }

Consider the sentence John ismissing. This sentence is deduced as fol-
lows.

(2.1)
n→ n n\s→ n\s

n, n\s→ s
n→ s/(n\s) (s/(n\s))\s→ (s/(n\s))\s

n, (s/(n\s))\s→ s

Observe that in the AAB grammar A1 we had to assign the category n\s to
ismissing to accept this as a sentence. However, this is not the case for the
Lambek grammar A2. In fact, one may verify that `L (s/(n\s))\s→ n\s, that
is to say that a third order verb as (s/(n\s))\s behaves also as a first order
one as n\s.

Consider now the example someone loves everyone of the previous sec-
tion. In this example, we wrote the lambda terms corresponding to each

58 CHAPTER 2. FORMAL BACKGROUND

derivation, although we have not presented the term construction proce-
dure for L yet. The first deduction corresponds to the object wide scope
reading, while the second to the subject wide scope reading. Thus the Lam-
bek grammar A2 generates both readings even though its lexicon lacks the
assignments that were required in A1 to achieve this result. For reasons
of space we use again the macros previously introduced and expand them
into the deduction on a readability basis.

Example 14. Deductions of someone loves everyone in A2

1. ∀x∃y (( x) y)

qs→ s/iv
tv→ iv/n n→ n

tv, n→ iv
qs, tv, n→ s
qs, tv→ s/n qo→ (s/n)\s

qs, tv, qo→ s

2. ∃y∀z (( z) y)

qs→ s/iv

n→ n
tv→ iv/n n→ n

tv, n→ n\s
n, tv, n→ s
n, tv→ s/n qo→ (s/n)\s

n, tv, qo→ s
tv, qo→ iv

qs, tv, qo→ s

In the object wide scope reading (deduction 1) the hypothesis n is ‘con-
sumed’ by the verb phrase tv and discharged after the subject second order
noun phrase, qs, has been composed. The result s/n is taken in input by
the object second order noun phrase, qo. In the subject wide scope reading
(deduction 2) even a more drastic restructuring intervenes: both arguments
of the verb phrase are assumed at the hypothetical level. These hypotheses
are used in a first-in first-out way allowing the composition of the object
noun phrase before that of the subject noun phrase.

Deduction 2 in the previous example shows that in L the verb assignment
(n\s)/n derives n\(s/n). Indeed this is an instance of the more general
scheme

(a\b)/c↔ a\(b/c)

which justified the notation n\s/n in [Lambek, 1958].
In L, the following principles can be proved.

2.6. THE LAMBEK CALCULUS 59

Example 15. Characteristic theorems of L:

a→ c/(a\c) a→ (c/a)\c

(a\b)/c→ a\(b/c) a\(b/c)→ (a\b)/c

a\b→ (c\a)\(c\b) b/a→ (b/c)/(a/c)

a\b→ (a\c)/(b\c) b/a→ (c/b)\(c/a)

Moreover, different kinds of derived inference rule can be adopted, and
could replace those we used in defining L, as it is done in [Lambek, 1958]
or [Zielonka, 1981] among others.

With regard to semantics, we can see that every inference rule of L has its
counterpart in the lambda term language, as in the case of (A)AB calculus.
Furthermore, we can see that each lambda calculus operation, apart from
pairing and projecting, has a counterpart in a rule of L8. The correspondence
between Lambek calculus, as a typed logic, and lambda terms is called
Curry-Howard correspondence9. Such correspondence does not hold for
(A)AB, as in (A)AB there are no general rules for introducing abstract terms.
The addition of the slash introduction rules completes the correspondence
between categorial logic and typed term systems. We propose once more
L with lambda term annotation. Observe that, as in the case of the labeled
AAB, we make explicit use of brackets.

Definition 40. Semantic labeling for L.

λ x.x : a→ a

v : (Γ, a)→ c
λxλy.(v 〈x, y〉) : Γ→ c/a

v : (a,Γ)→ c
λxλy.(v 〈y, x〉) : Γ→ a\c

v : Γ→ c/b u : ∆→ b
λx.(v πx (u π′x)) : (Γ, ∆)→ c

u : Γ→ b v : ∆→ b\c
λx.(v π′x (u πx)) : (Γ, ∆)→ c

Moreover, as the labeled calculus is bracketed we should assign a term also
to the associativity laws which we express in rule format and omitting the

8In fact, at this point of the discussion, neither L nor (A)AB have rules introducing pair
or projection terms. This is due to the absence of product rules in the systems we are
considering now. We will soon extend (A)AB and L to handle product formulas and we will
see the full correspondence with the lambda calculus.

9While Curry-Howard isomorphism is the correspondence between intuitionistic logic
and lambda calculus. Observe that there is not an isomorphism between proofs in L and
lambda terms, as the same term may encode more than one L proof.

60 CHAPTER 2. FORMAL BACKGROUND

most external brackets.

v : (Γ, ∆), Λ→ c
λx.(v 〈〈πx, ππ′x〉, π′π′x〉) : Γ, (∆, Λ)→ c

v : Γ, (∆, Λ)→ c
λx.(v 〈ππx, 〈π′πx, π′x〉〉) : (Γ, ∆), Λ→ c

Let us derive of the labeled variant of the associative cancellation rules
in the labeled L. Again, we omit the most external brackets and we reduce
the term to normal form at each step of the derivation.

Example 16. Deduction of one of the associative cancellation rules in L.

v : Γ→ c/b
u : ∆→ b/a λx.x : a→ a
λx.(u πx π′x) : ∆, a→ b

λx.(v πx (u ππ′x π′π′x)) : Γ, (∆, a)→ c
λx.(v ππx (u π′πx π′x)) : (Γ, ∆), a→ c
λxλy.(v πx (u π′x y)) : Γ, ∆→ c/a

2.7 Product types

In the previous sections, we presented the (A)AB calculus and associative
product-free Lambek calculus. Although they may have product formulas,
these systems have no rules to handle them. However, in the original
formulations of [Lambek, 1958, 1961], Lambek calculi also include product
formulas and rules to handle them. (A)AB calculi, instead, are customarily
presented product-free. The only formulation we know of an AB calculus
with product is given in [Kandulski, 1988].

Definition 41. Inference rules of the AB⊗ deductive system:

Γ→ a ∆→ b
Γ∆→ a ⊗ b

Γ→ a/b ∆→ b
Γ∆→ a

Γ→ b ∆→ b\a
Γ∆→ a

The system AB⊗ consists of the basic cancellation rules of the system
AB and of the product rule. The semantic labeling of the product rule is as
follows:

u : Γ→ a v : ∆→ b
λx.〈(u πx), (v π′x)〉 : (Γ, ∆)→ a ⊗ b

2.7. PRODUCT TYPES 61

We will largely use the system AB⊗ in the next chapters. Indeed, we can
see AB⊗ as the link between the non-associative Lambek calculus presented
below and context-free grammars.

Let us look now at the calculus of [Lambek, 1961]: the non-associative
Lambek calculus with product, NL for short. The calculus was introduced
by Lambek in order to handle bracketed strings of formulas, that is to say to
generate trees of formulas rather than lists of formulas10. As we discussed
in the first chapter, product formulas play a more important role here than
in the associative system of [Lambek, 1958] where structural completeness
holds. We present directly the labeled version of NL. The original calculus of
[Lambek, 1961] can be obtained from the following formulation by mapping
each arrow to a (two-formula) sequent. The logic is also called pure logic of
residuation in the multi-modal framework which we will discuss in the next
section.

Definition 42. Pure logic of residuation, NL.

- Identities:

Axioms Cut

λx.x : a→ a
v : a→ b u : b→ c
λx.(u (v x)) : a→ c

- Residuation rules:

v : a ⊗ b→ c
λxλy.(v 〈x, y〉) : a→ c/b

v : a→ c/b
λx.(v πx π′x) : a ⊗ b→ c

v : a ⊗ b→ c
λxλy.(v 〈y, x〉) : b→ a\c

v : b→ a\c
λx.(v π′x πx) : a ⊗ b→ c

Since there is no structural connective in NL, the definition of generation
is slightly more complex.

Definition 43. A NL grammar with semantic labels G generates a string
w0 . . .wm ∈ V∗t and assigns it the semantic term t if and only if NL generates
f : c→ s and t = (f t′), where

10Following [Buszkowski, 1997], we are assuming that the tree generated is the antecedent
of the conclusion of a deduction. However, [Tiede, 1998] claims that the tree structures gener-
ated by deductions in the (non-associative) Lambek calculus are the deductions themselves.

62 CHAPTER 2. FORMAL BACKGROUND

1. w0 . . .wm ⇒
∗ a0 . . . an by application of axioms

ti : wi → ai ∈ Lex, 0 6 i 6 m
ti : ε→ ai ∈ Lex, 0 6 i 6 n

2. a0 . . . an ⇒
∗ c by application of the transition axiom

a b→ a ⊗ b

3. t′ is obtained by replacing in c each ai with ti, each (with 〈 and each)
with 〉 and each ⊗with a comma.

Semantic interpretation

Formulas of NL can be interpreted in modal frames. A modal frame F, is a
pair (W, {R3

}), where W is a set and R3 is a ternary relation, see [Moortgat,
1997b, Buszkowski, 1997]. A model is a pair (F, v), of a modal frame F and an
interpretation function v which maps formulas into subsets of W. Assuming
that the interpretation of every atom is given, compound formulas are
interpreted as follows (here we use the symbol ⇒ here as shorthand for
implies).

Definition 44. Interpretation of formulas:

v(a ⊗ b) = { x | ∃y∃z (R3(x, y, z) & y ∈ v(a) & z ∈ v(b)) }
v(a/b) = { y | ∀x∀z ((R3(x, y, z) & z ∈ v(b)) ⇒ x ∈ v(a)) }
v(b\a) = { z | ∀x∀y ((R3(x, y, z) & y ∈ v(b)) ⇒ x ∈ v(a)) }

We refer to [Moortgat, 1997b] and to [Kurtonina, 1995] and to the ref-
erences therein for the proofs of soundness and completeness of NL with
respect to modal frames. The interpretation of Lambek formulas with re-
spect to other models is given in [Buszkowski, 1997]. Here we state the
following result.

Proposition 3. [Došen, 1992]

`NL a→ c iff v(a) ⊆ v(c) for every evaluation v on every ternary frame.

2.7. PRODUCT TYPES 63

2.7.1 Linguistic analysis in NL

Since this book is largely about NL, we present here some examples of
syntactic analysis of natural language constructs. The main propose of
the following analyses is to familiarize with NL and with some features
of categorial grammar. The examples are meant to enlighten the strong
generative capacity and the interface between syntax and semantics. We will
work on the following assignments.

Example 17. Lexicon PS.

give : gave → (n\s)/(n ⊗ n)
seem : seems → (n\s)/s
seem : seems → (n\s)/i

λx.(persuade πx (π′x πx)) : persuaded → (n\s)/(n ⊗ i)
λxλy.(promise πx (π′x y) y) : promised → (n\s)/(n ⊗ i)

λxλy.(want (x y) y) : wants → (n\s)/i
praise : praises → (n\s)/n

disappear : disappear → b
a : a → n/c

advice : advice → c
λx.x : to → i/b

λxλy.〈y, x〉 : to → (n\(n ⊗ n))/n
λxλy.(x y y) : himself → ((n\s)/n)\(n\s)

As we said before, the semantic terms in a categorial lexicon may violate
the constraints, stated in definition 31, on linear lambda terms, which in turn
apply to derivational semantics. It is instructive to see how the lexical and
derivational processes naturally interact to produce appropriate, or at least
partially appropriate, semantic representations of the input sentences. As
before, we we apply macros on the basis of a compromise between space
and readability.

Example 18. The first example is concerned the reflexive pronoun. In the
lexicon we have λxλy.(x y y) : himsel f → ((n\s)/n)\n\s. Thus himsel f needs
a transitive verb tv and a noun phrase n to its left to produce a sentence. At
the semantic level, the first argument of himself is applied to the second and
the result is applied again to the second argument.

64 CHAPTER 2. FORMAL BACKGROUND

Don Rodrigo praises himself.

1. Derivation:

λx.x : tv\iv→ tv\iv
λx.(π′x πx) : tv ⊗ tv\iv→ n\s

λx.(π′π′x ππ′x πx) : n ⊗ (tv ⊗ tv\iv)→ s

2. Lexical semantics:

〈DR, 〈praise, λxλy.(x y y)〉〉

3. Meaning representation:

(λx.(π′π′x ππ′x πx) 〈DR, 〈praise, λxλy.(x y y)〉〉) = (praise DR DR)

In example 18, we saw that an abstractor can bind multiple variables in a
lexical term. A similar situation occurs with verbs like wants, tries, promises
and persuades. An assignment for each other, as in Renzo and Lucia love each
other, should express reciprocity of the verb relation, that is its symmetry. If
we want that such a sentence is translated as

((loves L) R) ∧ ((loves R) L)

we need the same bound variable to occur in different places.
Below we give an example with want.

Example 19.

Don Abbondio wants to disappear.

1. Derivation:

λx.x : i/b→ i/b
λx.(πx π′x)) : i/b ⊗ b→ i

λx.x : iv/i→ iv/i
λx.(πx π′x)) : iv/i ⊗ i→ iv
λxλy.(y x) : i→ (iv/i)\iv

λxλy.(y (πx π′x))) : i/b ⊗ b→ (iv/i)\iv
λx.(πx (ππ′x π′π′x)) : iv/i ⊗ (i/b ⊗ b)→ iv

λx.(ππ′x (ππ′π′x π′π′π′x) πx) : n ⊗ (iv/i ⊗ (i/b ⊗ b))→ s

2. Lexical semantics:

〈DA, 〈λxλy.(want (x y) y), 〈λx.x, disappear〉〉〉

2.7. PRODUCT TYPES 65

3. Meaning representation:

(want (disappear DA) DA)

The multiple binding in λxλy.(want (x y) y) guarantees that the subject
of the main clause is the subject of the embedded clause. The verb promised
has a similar behavior. Instead persuaded enforces object control of the
embedded clause. An appropriate assignment for persuaded, as in Padre
Cristoforo persuaded Renzo to leave is

λx.(persuade πx (π′x πx)) : persuaded→ (n\s)/(n ⊗ i)

In its simpler occurrences, a verb like seem exhibits the following two
behaviors: in one case, its subject is the subject of the infinitive embedded
clause, in the second, it takes a ‘dummy’ subject and a finite embedded
clause. However, the two constructs may be seen as truth-conditionally
equivalent. In [Gazdar et al., 1985], vacuous abstraction is exploited at the
lexical level in order to account for the occurrence of dummy arguments.
We show how the same device can be applied in the logical setting.

Example 20.

Azzeccagarbugli seems to understand.

1. Derivation, see 19:

λx.(ππ′x (ππ′π′x π′π′π′x) πx) : n ⊗ (iv/i ⊗ (i/b ⊗ b))→ s

2. Lexical semantics:

〈AG, 〈λxλy.(seem (y x)), 〈λx.x,understand〉〉〉

3. Meaning representation:

(seem (understand AG))

It seems that Azzeccagarbugli understands.

66 CHAPTER 2. FORMAL BACKGROUND

1. Derivation:

iv→ n\s
n ⊗ iv→ s

s/s→ s/s....
s→ (s/s)\s

n ⊗ iv→ (s/s)\s
s/s ⊗ (n ⊗ iv)→ s

iv/s→ iv/s....
s→ (iv/s)\iv

s/s ⊗ (n ⊗ iv)→ (iv/s)\iv
iv/s ⊗ (s/s ⊗ (n ⊗ iv))→ n\s

qs→ qs....
iv→ (s/iv)\s

iv/s ⊗ (s/s ⊗ (n ⊗ iv))→ (s/iv)\s
qs ⊗ (iv/s ⊗ (s/s ⊗ (n ⊗ iv)))→ s

2. Derivational semantics:

λx.(πx (ππ′x (ππ′π′x (π′π′π′π′x ππ′π′π′x))))

3. Lexical semantics:

〈λx.(x y), 〈λxλy.(seem x), 〈λx.x, 〈AG,understand〉〉〉〉

4. Meaning representation:

(seem (understand AG))

The semantic assignment λxλy.(seem x) for seem in the ‘dummy’ subject
construction, contains a vacuous abstraction, which is used to discard the
meaning contribution of the ‘dummy’ subject it from the final meaning
representation. Thus the two constructs are rendered truth-conditionally
equivalent11. In general, vacuous abstraction can be exploited to discard
from the final meaning representation the contribution of arguments which
are not relevant.

Although the previous sentences were quite simple from the syntac-
tic (and semantic) point of view, we will see that the product operator
improves notably on the structural and semantic description in case of
multi-argument verbs. Consider the following two examples, from which
we omit the derivational component, as easily recoverable from the given
sequents.

11Observe that vacuous abstraction, that is an abstraction that binds no variable in its scope,
is not as rare as it may seem. For instance, the parentheses of a formal system, whose only
role is to disambiguate, translate to terms containing such vacuous abstractions.

2.7. PRODUCT TYPES 67

Example 21.

Agnese gave Renzo an advice.

1. n ⊗ (iv/(n ⊗ n) ⊗ (n ⊗ (n/c ⊗ c)))→ s

2. Derivational semantics:

λx.(ππ′x 〈ππ′π′x, (ππ′π′π′x π′π′π′π′x)〉 πx)

3. Lexical semantics:

〈A, 〈give, 〈R, 〈a, advice〉〉〉〉

4. Meaning representation:

((give 〈R, (a advice)〉) A)

Agnese gave an advice to Renzo.

1. n ⊗ (iv/(n ⊗ n) ⊗ ((n/c ⊗ c) ⊗ ((n\(n ⊗ n))/n ⊗ n)))→ s

2. Derivational semantics:

λ x.(ππ′x (ππ′π′π′x π′π′π′π′x (πππ′π′x π′ππ′π′x)) πx)

3. Lexical semantics:

〈A, 〈give, 〈〈a, advice〉, 〈λxλy.〈y, x〉,R〉〉〉〉

4. Meaning representation:

((give 〈R, (a advice)〉) A)

Observe that in both deductions the head gave is assigned the same
category (n\s)/(n ⊗ n). Nonetheless we obtain both syntactic and semantic
constructions. Both syntactic structures are right branching, in accordance
with intuition. Furthermore, both constructions express the same truth-
conditional interpretation. While other frameworks would appeal to mean-
ing postulates to express equivalence of the two constructs (see for instance
[Gazdar et al., 1985]) we obtain this result by assigning the preposition to
the term λxλy.〈y, x〉, encoding a commutation in the order of its arguments.
Observe that while syntactically inadequate, the assignment (n\s)/n/n for
the ditransitive verb should be associated to two different semantic trans-
lations to achieve the same effect.

68 CHAPTER 2. FORMAL BACKGROUND

2.8 Multi-modal Type-logical Grammars

Multi-modal type-logical grammars are a generalization of categorial gram-
mars. One may observe that the rules of associativity of the syntactic calculus
of [Lambek, 1958], have a somewhat special status: they are structural rule.
In the product-free system L, these rules were assumed implicitly, by treat-
ing the antecedent of every sequent as a list. However, in the labeled
variant of L, where brackets appeared, we explicitly expressed associativity
by means of two rules. From this perspective, the NL can be seen as the
result eliminating the rules of associativity from the syntactic calculus.

The type-logical approach adopts the opposite perspective. In this set-
ting, NL is the basic deductive system and other logics are defined by adding
to NL some packages of structural rules. Thus, a type-logical system is a
pair 〈Q,NL〉, where Q is a set of structural postulates. As we mentioned,
in the type-logical framework NL is also called the pure logic of residuation,
see [Moortgat, 1997b], since everything that is derivable in NL is either an
axiom or is derived through residuation principles and cut.

The type-logical analysis of a language always starts within NL as the
most restrictive deductive system. Postulates may be added mainly for two
reasons. Either to increase the generative power of the system or to capture
generalizations on classes of lexical items. For example, given a grammar G
based on D = 〈Q,NL〉, for some structural package Q, the extension of G to
G′ based on D′ = 〈Q′∪Q,NL〉 for some set of postulates Q′, may allow G′ to
derive sentences that were not derivable in G, or it may allow G′ to derive
a class of lexical categories in G from a single category, in such a way that
the lexicon of G′ results more compact. In this second case, the structural
package is used to capture a generalization on linguistic structure.

More concretely, the addition of a subset of the following postulates to
NL defines a hierarchy of logics, see [Kurtonina and Moortgat, 1997].

(2.2) Associativity, A:

A1 λx.〈〈πx, ππ′x〉, π′π′x〉 : a ⊗ (b ⊗ c)→ (a ⊗ b) ⊗ c

A2 λx.〈ππx, 〈π′πx, π′x〉〉 : (a ⊗ b) ⊗ c→ a ⊗ (b ⊗ c)

(2.3) Permutation, P:
λx.〈π′x, πx〉 : b ⊗ a→ a ⊗ b

(2.4) Contraction, C:
λx.〈x, x〉 : a→ a ⊗ a

2.8. MULTI-MODAL TYPE-LOGICAL GRAMMARS 69

(2.5) Weakening, W:

W1 W2

λx.πx : a ⊗ b→ a λx.π′x : b ⊗ a→ a

The addition to NL of some subset of these postulates identifies a logic. For
instance:

Example 22.

Intuitionistic logic: IL = 〈{A,P,W,C},NL〉.

Commutative Lambek calculus: LP = 〈{A,P},NL〉, [van Benthem, 1991, Hen-
driks, 1993].

Lambek syntactic calculus L∗ = 〈{A},NL〉, [Lambek, 1958].

However, none of these systems is suited for natural language analysis.
Linguistic reasoning is highly restrictive on the multiplicity of the resources,
thus postulates C and W should not be assumed in a natural language gram-
mar12. The natural candidates for natural language grammar seem to lay
in between the Lambek-van Benthem calculus and the syntactic calculus.
However, while the Lambek-van Benthem calculus is too inclusive, as it
would admit any permutation of the input string, the syntactic calculus is
too restrictive. For example, although this system can easily handle periph-
eral extraction in unbounded contexts (as in Who did Don Abbondio say . . . he
met?), it cannot as easily cope with unbounded embedded dependencies
(as in What does Don Abbondio think . . . he will tell to Renzo?).

In second place, the introduction of structural postulates into the gram-
mar system, in the naive way in which it has been presented before, obscures
more properties of the language structure than it reveals. For instance, the
syntactic calculus loses track of all the structural information that a deriva-
tion in NL encodes. The price to pay for such a global introduction of
structural reasoning may be too high with respect to its benefits.

The multi-modal setting, [Moortgat, 1996, 1997b] generalizes the notion
of the syntactic category in the following way.

Definition 45. Multi-modal formulas:

F = A | /ni (F 1, . . . ,F n) | \ni (F 1, . . . ,F n) | ⊗n
i (F 1, . . . ,F n)

12In fact, some syntactic phenomena seem to involve multiple binding at the derivational
level. Constructions like f ile x without reading x are dealt with in the combinatory categorial
setting of [Steedman, 2000b] the by means combinator (a\b)/c → (a/c)\(b/c), which would
be derived in the type logical setting by means of contraction C.

70 CHAPTER 2. FORMAL BACKGROUND

In this definition, n is a positive integer expressing the arity of the con-
nective and i another integer, the so called composition mode distinguishing
for example ⊗n

j from ⊗n
k . In previous systems, n = 2 and there was only

one composition mode. In [Buszkowski, 2005], one can find a Gentzen style
sequent calculus formulation for generalized Lambek calculus with n-ary
type forming operators. In linguistic applications, one usually works with
n 6 2. Thus the multi-modal formulation of NL results as follows.

Definition 46. Multi-modal pure logic of residuation, for every i:

- Identities:

Axioms Cut

λx.x : a→ a
v : a→ b u : b→ c
λx.(u (v x)) : a→ c

- Residuation rules:

v : a ⊗i b→ c
λxλy.(v 〈x, y〉) : a→ c/ib

v : a→ c/ib
λx.(v πx π′x) : a ⊗i b→ c

v : a ⊗i b→ c
λxλy.(v 〈y, x〉) : b→ a\ic

v : b→ a\ic
λx.(v π′x πx) : a ⊗i b→ c

Observe that every connective obeys the laws of the pure logic of resid-
uation. However, by specifying the modes appearing in the structural rules,
one specifies also which syntactic resources are subject to these rules. Hence,
which configurations of categories are subject to what kind of restructuring.

In recent years, the research on type-logical has tried to identify the pack-
ages of structural rules required for natural language analysis. [Moortgat,
1996] proposes the following forms of mixed commutativity, MP, and mixed
associativity, MA to deal with discontinuous dependencies.

Example 23. Mixed postulates:

MP a ⊗i (b ⊗ j c)↔ b ⊗ j (a ⊗i c)
MA a ⊗i (b ⊗ j c)↔ (a ⊗i b) ⊗ j c

We shall remark that the addition of the unlabeled variants of MP and
MA to NL would collapse the system into LP, as proved in [Moortgat, 1988].
However, the introduction of such modalized postulates guarantees that
only specific configurations will access their restructuring power.

2.8. MULTI-MODAL TYPE-LOGICAL GRAMMARS 71

More recently, [Vermaat, 2005] analyzes the realization of long distance
dependencies in several languages with the tools of type-logical grammar.
The shape of Vermaat’s postulates closely resembles that of Moortgat’s
postulates, the main difference consists in the use of the unary modalities
to mark the substructure subject to displacement.

The unary operators have a special role in the multi-modal setting. They
are the diamond ♦i = ⊗

1
i and the box �i, and are subject to the following

pure residuation logic.

Definition 47. Unary residuation rules:

v : ♦ia→ c
λxλy.(v 〈x, y〉) : a→ �ic

v : a→ �ic
λx.(v πx π′x) : ♦ia→ c

The interpretation of unary formulas is given by extending the modal
frame F which we saw before to a pair (W, {R2,R3

}), where R2 a binary
relation. The model-theoretic interpretation v is extended to unary formulas
in the straightforward way:

v(♦a) = { x | ∃y (R2(x, y) & y ∈ v(a)) }
v(�a) = { y | ∀x (R2(x, y) ⇒ x ∈ v(a)) }

The unary operators have found a wide range of application in categorial
linguistics. One option is to use them for a regimented interaction with the
structural module of the grammar. Vermaat adopts the following postulates
for long distance dependencies:

Example 24. Vermaat’s postulates:

♦a ⊗ (b ⊗ c)→ (♦a ⊗ b) ⊗ c
(a ⊗ b) ⊗ ♦c→ a ⊗ (b ⊗ ♦c)
♦a ⊗ (b ⊗ c)→ b ⊗ (♦a ⊗ c)
(a ⊗ b) ⊗ ♦c→ (a ⊗ ♦c) ⊗ b

One may observe that only the specific ternary configurations in which
the diamond marker appears are subject to these forms of restructuring.
The diamond decoration, in turn, is ultimately triggered by some lexical
item. Hence restructuring is always local, lexically driven and controlled.
We shall also remark that Vermaat claims that such package of structural
postulates is language universal, that means that it is capable of accounting
for all forms of variation across natural languages.

72 CHAPTER 2. FORMAL BACKGROUND

Recent literature on type-logical grammar exemplifies a wide range of
syntactic phenomena which can be elegantly analyzed through the multi-
modal devices. [Heylen, 1999] develops a feature theoretic syntax relying
of the unary logic. He also explores the expressivity of various forms of
unary distribution postulates expressing different forms feature percolation.
In [Bernardi, 2002], the unary operators are used to express co-occurrence
restrictions on polarity sensitive items. [Kraak, 1995] analyzes the phe-
nomenon of so called clitic climbing in Fench. In her treatment, the box
marks the verbal head and the clitic pronouns: unary distribution postu-
lates then enforce clitic climbing and ‘attachment’ of the clitic to the verb.
Finally in [Hendriks, 1999], the diamond is used as a prosodic selector.

We mention the fact that also in the framework of combinatory categorial
grammar, as for instance in [Kruijff and Baldridge, 2003], forms of multi-
modal control have been succesfully used.

2.9 Formal properties of categorial grammars

We conclude this chapter by recalling some results on the generative power
of categorial grammars.

The weak equivalence of CF grammars and AB grammars was proved
in [Bar-Hillel et al., 1964a]. [Buszkowski, 1988] establishes the equivalence
in strong generative power of the two systems, see also [Buszkowski, 1997].
The weak equivalence of AB⊗ and CF grammars is proved in [Kandulski,
1988].

Concerning Lambek style categorial grammars, [Buszkowski, 1986] and
[Kandulski, 1988] prove the equivalence of NL grammars, respectively with-
out and with product, and CF grammars. The proof of context-freeness of
the associative Lambek calculus, which has been an open problem for more
than thirty years, was given by [Pentus, 1993].

The generative power of multi-modal type-logical grammar depends
on the package of structural postulates which is assumed by the deductive
engine and on the way the lexical resources are allowed to interact with the
structural module. [Carpenter, 1996] shows that even without rules which
duplicate (e.g. contraction) or erase (e.g. weakening) material, multi-modal
type-logical grammars are Turing-complete, see also [Moot, 2002]. Moot
proves that if all postulates are non-expanding the multi-modal grammar is
equivalent to some context-sensitive grammar.

One may ask what is the generative power of a grammar adopting a spe-
cific set of structural postulates as the mixed postulates of [Moortgat, 1996]

2.9. FORMAL PROPERTIES OF CATEGORIAL GRAMMARS 73

and [Vermaat, 2005]. Although there is no proof of this, it is largely believed
that these systems lay within the mildly context-sensitive formalisms.

74 CHAPTER 2. FORMAL BACKGROUND

Chapter 3

Automated Reasoning

In the previous chapter, we have presented linguistic frameworks of increas-
ing complexity. We discussed context-free grammars and categorial gram-
mars. As examples of categorial grammars we saw (non-)associative Aj-
dukiewicz Bar-Hillel grammars, the product-free Lambek calculus, the non-
associative Lambek calculus and the general framework of multi-modal
type-logical grammar.

In this chapter, we will reformulate the CF and (A)AB system as parsing
systems, that is to say as deductive systems that take advantage of the linear
order of the syntactic categories involved to build a deduction.

Our contribution consists in the application of the CYK parsing systems
to AB⊗ grammars. A formulation CYK deductive parser for AAB grammars
can be found also in [Shieber et al., 1995]. We present a similar parser for
AB⊗.

CYK for AB⊗ has a natural way of encoding the cancellation rules, while
it is rather inelegant in respect to the product rule. For this reason we
will also formulate a procedure for converting an AB⊗ grammar into an
equivalent product-free AB grammar and conversely. The parsing system
presented here will be extended to NL in the following chapters.

3.1 Problems

In the chapter 2, we discussed what it means for a grammar to generate a
sequent and a terminal string. However, we did no specify any method
for the process of generation. For example, we observed about example 5
that several other deductions were be available. Let us consider another
example.

75

76 CHAPTER 3. AUTOMATED REASONING

According to the purely declarative notion of derivation given in defini-
tion 11, there are six possible ways of obtaining the sentence Renzo whistles
in grammar G3 from example 3 in chapter 2.

Example 25. Derivations of Renzo whistles in grammar G3

1. [Renzo whistles, Np whistles, NP whistles, NP IV, NP VP, S]

2. [Renzo whistles, Np whistles, Np IV, NP IV, NP VP, S]

3. [Renzo whistles, Renzo IV, Np IV, NP IV, NP VP, S]

4. [Renzo whistles, Np whistles, Np IV, Np VP, NP VP, S]

5. [Renzo whistles, Renzo IV, Np IV, Np VP, NP VP, S]

6. [Renzo whistles, Renzo IV, Renzo VP, Np VP, NP VP, S]

All these derivations differ only in the order in which the productions of
the grammar are applied. We can see that all encode the following structural
description:

S
��� HHH

NP

Np

Renzo

VP

IV

whistles

We called spurious ambiguity the presence of multiple derivations en-
coding the same structural description. Clearly, if six different derivations
are available for such a simple sentence, spurious ambiguity is a serious
problem that may affect drastically the search of a proof for a given input
string.

There are several (suboptimal) ways of reducing the degree of spurious
ambiguity in automatic proof search. We present some options in this
introductory section, and examine the more sophisticated methods in the
rest of the chapter.

One may observe that such a redundancy depends also on the shape of
the productions of the grammar. Indeed, grammar G3 could be rephrased
as follows.

3.1. PROBLEMS 77

Example 26.

G′3 =

{ NP VP → S,

Renzo | Lucia | Det N → NP,

whistles | TV NP → VP,

loves → TV,

every | a → Det,

man | woman → N }.

However, grammar G′3 still allows two equivalent derivations for the
sentence Renzo whistles.

1. [Renzo whistles, NP whistles, NP VP, S]

2. [Renzo whistles, Renzo VP, NP VP, S]

A second observation is that in building a derivation for a sentence we shall
chose a strategy for applying the productions of the grammar. For example,
for each rule X1 . . .Xn → X we may chose to always expand first either
the leftmost symbol X1 or rightmost symbol Xn. This would reduce the
derivations in the following way.

Example 27.

Leftmost derivation:

[Renzo whistles, NP whistles, NP VP, S]

Rightmost derivation:

[Renzo whistles, Renzo VP, NP VP, S]

Although the choice of one of these recognition strategies may seem
to solve the problem of multiple redundant derivations, we immediately
see that another problem may arise. A leftmost (resp. rightmost) reduc-
tion strategy may enter an infinite loop if the input grammar contains left
(resp. right) recursive productions, of the form Y X1 . . .Xn → Y (resp.
X1 . . .Xn Y→ Y). An example of left recursive rule in English is the follow-
ing:

A N→ N

78 CHAPTER 3. AUTOMATED REASONING

where A is the category of adjectives. Such a rule generates, for instance,
happy1 . . . happyn man.

We will see in the next sections that these problems have been solved
in extremely elegant and simple ways and that parsing context-free for-
malisms like the CF or (A)AB⊗ systems can be efficiently carried on auto-
matically.

3.2 Deductive parsers

In chapter 2, we presented context-free and categorial grammars as deduc-
tive systems. We are going to see that parsers, or more precisely recognizers,
can also be seen as deductive systems. This perspective on parsing is proper
to the deductive parsing formalism of [Shieber et al., 1995]: parsing a sentence
amounts to the construction of a deduction.

Parsers are deductive systems whose items (replacing the sequents of the
deductive systems previously seen) encode, at least, the portion of the input
string that is analyzed and its syntactic category. A deduction succeeds if
the entire input is analyzed as being a sentence.

The deductive perspective on parsing plays an important role also in
parsing schemata theory, see [Sikkel, 1993, 1998]. In fact, the formulation
of a parser as a deductive system offers a high level of abstraction over
implementational details which allows to easily prove formal properties of
the parser, such as its correctness.

Definition 48.

A parsing systemD is a triple 〈I,A,R〉where I is a set of items,A is the set
of axioms ofD and R a set of inference rules on items.

A deduction in a parsing systemD is defined in the usual way.

We say that a parsing systemD generates an item η, denoted η ∈ D, if there
is a deduction inD of η.

In the following sections we will see the most famous and efficient
parsing systems for natural language and apply them to (A)AB⊗ grammars.
As we said before, these are the CYK parser and the Eraley parser.

3.3 Bottom-up parsers

The CYK algorithm owes its name to the names of its inventors. The
algorithm was developed in the early 1960s by John Cocke for parsing CF

3.3. BOTTOM-UP PARSERS 79

grammars. Later [Younger, 1967] showed that this algorithm takes O(n3)
operations to recognize a string of length n. A similar algorithm had been
proposed by [Kasami, 1965].

Let us consider the deductive formulation of CYK parser for CF gram-
mars. From now on, for simplicity, we write a CF grammar G as 〈Vt,S,F ,AX〉
instead of 〈Vt,S, 〈F ,AX, {Cut}〉〉 and a Chomsky normal form grammar
G = 〈Vt,S,Lex, 〈F ,AX, {Cut}〉〉 as G = 〈Vt,S,F ,Lex,AX〉. The systemCF CYK,
in its simplest form, works with Chomsky normal form CF grammars with-
out ε-productions. However, it can easily be generalized for grammars
which are not in CNF.

Definition 49. Let a CNF grammar CF grammar G = 〈Vt,S,F ,Lex,AX〉 and a
string w1 . . .wn be given. The parsing system CF CYK = 〈I,A,R〉 is defined
as follows:

I = { (i,A, j) | A ∈ F , 0 6 i < j < n }

A = { (i − 1,A, i) | wi → A ∈ Lex }

R =

(i,A, k) (k,B, j)
(i,C, j) if A B→ C ∈ AX

As we said, the CYK system builds deductions bottom-up, that is from
premises to conclusion. Observe that two instances of the cut rule are
implicitly encoded by the only rule in R. In this way, the following two
distinct deductions are identified.

Example 28. Decoding if the inference rule of CF CYK.

Γ→ A
∆→ B A B→ C

A ∆→ C
Γ∆→ C

∆→ B
Γ→ A A B→ C

Γ B→ C
Γ∆→ C

Consider now the following example.

Example 29. Deduction in CF CYK.

Inputs: grammar G′3 and string Renzo loves a woman

Renzo
(0,NP, 1)

loves
(1,TV, 2)

a
(2,Det, 3)

woman
(3,N, 4)

(2,NP, 4)
(1,VP, 4)

(0,S, 4)

It can be proved that the system CF CYK for a CF grammar G recognizes
items (i,C, j) such that `G wi+1 . . .w j → C.

80 CHAPTER 3. AUTOMATED REASONING

3.3.1 Basic categorial grammars

From CF CYK to the CYK parsing system for AB grammars the step is short.
As before, we simplify the notation and we write an (A)AB⊗ grammar
G = 〈Vt, s,Lex, 〈F ,AX,R〉〉 as G = 〈Vt, s,F ,Lex,R〉.

Definition 50. Let a AB grammar G = 〈Vt,S,F ,Lex,AB〉 and a string
w1 . . .wn be given. The parsing system ABCYK = 〈I,A,R〉 is defined as
follows:

I = { (i, a, j) | a ∈ F , 0 6 i < j < n }

A = { (i − 1, a, i) | wi → a ∈ Lex }

R =


(i, c/a, k) (k, a, j)

(i, c, j)

(i, a, k) (k, a\c, j)
(i, c, j)

Observe that the addition to the rule package ofABCYK of the following
rules gives the parsing system for associative AB grammars, which we call
AABCYK.

(i, c/a, k) (k, a/b, j)
(i, c/b, j)

(i, b\a, k) (k, a\c, j)
(i, b\c, j)

A parsing system for CCG, which is an extension ofAABCYK, is presented
in [Shieber et al., 1995].

As in the case of CF CYK, one can easily prove that the item (i, c, j) is
generated by (A)ABCYK if and only if `G wi+1 . . .w j → c, where G is the
(A)AB grammar of reference. In the next section we will prove this statement
for the systemAB⊗CYK.

3.3.2 Product rules

In the previous section, we considered product free basic categorial system.
However, it is possible to extend the CYK deductive systems to the AB
calculus with product, AB⊗. The product rule,

Γ→ a ∆→ b
(Γ,∆)→ a ⊗ b

can be straightforwardly transformed in a correct parsing rule. For example,
the following rule could be added toABCYK and produce a correct parsing
systemAB⊗CYK for for grammars based on AB⊗.

3.3. BOTTOM-UP PARSERS 81

(3.1)
(i, a, k) (k, b, j)

(i, a ⊗ b, j)

However, as it is, this rule is applicable to every two adjacent items, gener-
ating thus all possible product formulas having as immediate subformulas
the formulas occurring in the premises. For example, given item (i, a, j),
(j, b, k) and (k, c, l), we can have both the following deductions

(i, a, j) (j, b, k)
(i, a ⊗ b, k) (k, c, l)

(i, (a ⊗ b) ⊗ c, l)
(i, a, j)

(j, b, k) (k, c, l)
(j, b ⊗ c, l)

(i, a ⊗ (b ⊗ c), l)

Thus if we adopt rule 3.1, the parsing system for AB⊗ grammars will gener-
ate an exponential number of items. More precisely, the product rule in 3.1
gives rise to a so called Catalan explosion of the number of items generated.

Clearly, only a small subset of all the product items that can be generated
by rule 3.1 are in fact needed in the derivation. Thus we should constrain
rule 3.1 in such a way that an item of the form (i, a ⊗ b, k) is generated by
rule 3.1 only if the formula a⊗ b is needed in the deduction process. As AB⊗

grammars enjoy the subformula property1, we can restrict the application
of rule 3.1 to generate only items whose formulas belong to the set of
subformulas of the axioms. Observe also that the problem of limiting the
search space to subformulas of the input sequent does not arise forABCYK.
In this case the conclusion of each inference rule is a subformula of the
premises.

In fact, not all subformulas of the axiom item are needed: we are inter-
ested only in the product formulas that can be generated by rule 3.1. We
define the following set of formulas.

Definition 51. We define two functions, δ+, δ− :: F → {F }, returning the
set of product subformulas needed for the subformula test for the product
parsing rule (we omit the symmetric cases).

δ+(a ⊗ b) = {a ⊗ b} ∪ δ+(a) ∪ δ+(b)
δ+() = ∅

δ−(c/x) =

δ+(x) ∪ δ−(c) if x ≡ a ⊗ b

δ−(c) otherwise.
δ−() = ∅

1The subformula property states that all formulas occurring in a deduction are subfor-
mulas of the formulas occurring in the conclusion sequent.

82 CHAPTER 3. AUTOMATED REASONING

In order to clarify the role of the functions δ+ and δ− we generalize AB⊗

grammars to tuples G = 〈Vt,E,F ,Lex,AB⊗〉, where E, occurring in place of
s, is a set of formulas: the output categories.

Definition 52. Let an AB⊗ grammar G = 〈Vt,E,F ,Lex,AB⊗〉, a string w1 . . .wn
and a formula c ∈ E be given.

A set of formulas Σ is generated as follows:

Σ = δ+(c) ∪ { b | wi → a ∈ Lex, 1 6 i 6 n, b ∈ δ−(a) }

We define the parsing systemAB⊗CYK = 〈I,A,R〉 as follows:

I = { (i, a, j) | a ∈ F , 0 6 i < j 6 n }

A = { (i − 1, a, i) | wi → a ∈ Lex }

R =



(i, c/a, k) (k, a, j)
(i, c, j)

(i, a, k) (k, a\c, j)
(i, c, j)

(i, a, k) (k, b, j)
(i, a ⊗ b, j) if a ⊗ b ∈ Σ

Observe that the set Σ contains all and only the formulas of the form
a⊗ b whose generation may require an instance of the product parsing rule.
As we discussed, without this restriction theAB⊗CYK parsing system would
generate a number of items greater than the Catalan number of the length
of the input string.

Example 30. Deduction inAB⊗CYK:

We consider the AB⊗ grammar for propositional logic, PL, whose lexicon
consists of the following entries:

pi → s 0 6 i
∧ → (s\s)/s
∨ → (s\s)/s
¬ → s/s
[→ s/(s ⊗ c)
] → c

3.3. BOTTOM-UP PARSERS 83

Input string: ¬[p1 ∨ p2]. Output category s. Σ = {s ⊗ c}.

¬

(0, s/s, 1)

[
(1, s/(s ⊗ c), 2)

p1

(2, s, 3)

∨

(3, (s\s)/s, 4)
p2

(4, s, 5)
(3, s\s, 5)

(2, s, 5)
]

(5, c, 6)
(2, s ⊗ c, 6)

(1, s, 6)
(0, s, 6)

We now prove the correctness ofAB⊗CYK.

Correctness ofAB⊗CYK

Proving correctness of a parsing system requires proving its soundness and
completeness. Once a definition of the items generated by a parsing systemD
is given, soundness amounts to the proof that every item deduced according
to the rules of D satisfies the definition. Instead, completeness requires that
every item that conforms to the definition is generated through application
of the rules of D. Usually, the proof of soundness is easier, as it simply
involves looking at the rules. [Sikkel, 1998] provides a general method for
proving correctness of a parsing system. Such method results, in fact, in an
abstraction of the traditional proof methods that can be found in [Aho and
Ullman, 1972] and [Harrison, 1978], an abstraction made available by the
deductive parsing approach.

Let us introduce some formal definitions.

Definition 53. LetD = 〈I,A,R〉 be a parsing system.

The set of valid items V(D) is the set of items which can be deduced in any
number of steps from hypotheses inA and, eventually, some further items.

The set of viable items,W ⊆ I, is the set of items that should be recognized
by a parsing systemD.

Correctness of a parsing system is defined as follows.

Definition 54. A parsing system D is correct, if it is sound and complete.
Formally, letW be a set of viable items ofD, then:

a) Soundness: V(D) ⊆W.

b) Completeness: W ⊆ V(D).

84 CHAPTER 3. AUTOMATED REASONING

c) Correctness: W = V(D).

The proof of soundness amounts to a proof the following statement.

Proposition 4. LetD be a parsing system andW ⊆ I.

If for all inference rules inD,

η1 . . . ηn

ξ

with ηi ∈ A ∪W, 1 6 i 6 n, it holds that ξ ∈ W, then V(D) ⊆W.

For the specific case of AB⊗CYK, we define the set of viable items as
follows.

Definition 55. For an AB⊗CYK system, for an AB⊗ grammar G and a string
w1 . . .wn, we define the set of viable itemsW as follows

W = { (i, a, j) | wi+1 . . .wi ⇒
∗ a }

We proceed to prove the soundness of AB⊗CYK. We use lowercase Greek
letters as variables over items.

Proposition 5. Soundess ofAB⊗CYK.

V(AB⊗CYK) ⊆W

Proof.

If ξ ∈ A, then ξ ≡ (i − 1, a, i) and wi → a ∈ Lex. Thus ξ ∈ W.

If ξ is deduced by cancellation from items (i, a/b, k) and (k, b, j), then ξ ≡
(i, a, j). By IH (i, a/b, k) ∈ W and (k, b, j) ∈ W. Thus wi+1 . . .wk ⇒

∗ a/b and
wk+1 . . .w j ⇒

∗ b. We conclude that wi+1 . . .wkwk+1 . . .w j ⇒
∗ a. Hence ξ ∈ W.

If ξ is deduced by product rule from items (i, a, k) and (k, b, j), then ξ ≡
(i, a⊗b, j). By IH we have wi+1 . . .wk ⇒

∗ a and wk+1 . . .w j ⇒
∗ b. We conclude

that wi+1 . . .wkwk+1 . . .w j ⇒
∗ a ⊗ b. Hence ξ ∈ W. �

In order to prove completeness of a parsing system, [Sikkel, 1998]defines
a deduction length function on the set of viable items W. A similar notion
is the rank of [Aho and Ullman, 1972], used also in [Shieber et al., 1995] for
proving completeness of deductive parsers.

Definition 56. Deduction length function, dfl.

Let D be a parsing system and W ⊆ I a set of items. A function d ::
(A∪W)→ Int is a deduction length function iff

3.4. EARLEY STYLE PARSING 85

1. d(h) = 0, if h ∈ A

2. for each ξ ∈ W there is an inference rule inD

η1 . . . ηn

ξ

such that {η1, . . . , ηn} ⊆ W and d(ηi) < d(ξ) for 0 6 i 6 n.

The dfl allows to prove completeness by induction on d(ξ).

Proposition 6. LetD be a parsing system andW ⊆ I.

If a dfl d exists, thenW ⊆ V(D).

Completeness ofAB⊗CYK is proved as follows. From the assumption that
items η, with d(η) < m, are valid, it has to be proven that all ξwith d(ξ) = m
are valid.

Proposition 7. Completeness ofAB⊗CYK.

W ⊆ V(AB⊗CYK)

Proof. One defines a function d such that

d(i − 1, a, i) = 0
d(i, a, j) = j − i

Clearly, d is a deduction length function. �

3.4 Earley style parsing

In the previous section, we examined the CYK deductive system for CF
grammars and AB grammars with and without product. The CYK system
tries to construct a deduction of the input string starting from the pretermi-
nal categories, assigned to the words in the string. A category is assigned
to a larger portion of the input on the basis of the categories assigned to
the premises and of rules of the grammar. It is called bottom-up because it
proceeds from the premises to the conclusion.

Although very simple and elegant, the CYK system has some limitations.
Firstly, in the case of CF grammars, we shall assume that the input grammar
is in Chomsky normal form2. Secondly, the input grammar should not produce
the empty string.

2In fact, there are also generalized variants of the CYK system.

86 CHAPTER 3. AUTOMATED REASONING

In this section, we discuss another kind of deductive parser which is
not affected by the previous limitations: the Earley parser, from the name of
its inventor Jay Earley. It works with any CF grammar, and it is faster than
the CYK algorithm, at least if the underlying grammar is not ambiguous.
The algorithm works partly top-down (in the so called predictive phase)
and partly bottom-up (in the completion phase). Nonetheless, it is often
considered a top-down parser as it tries to construct a derivation from the
root towards the leaves.

3.4.1 Earley system for CF

The Earley algorithm was presented in Jay Earley’s doctoral dissertation
[Earley, 1968], see also [Earley, 1970]. As we said before it works with any
CF grammar and in some case it is more efficient than the CYK parser.

Definition 57. Earley’s deductive parser.

Let a CF grammar G = 〈Vt,S,F ,AX〉 and a string w1 . . .wn. The symbol S′

is a new start symbol not in F .

We define the parsing system CF Earley = 〈I,A,R〉 as follows:

I = { (i,Γ • ∆→ C, j) | Γ∆→ C ∈ AX, 0 6 i 6 j 6 n }

A = { (i − 1,wi, i) | 1 6 i 6 n }

R =



(0, •Γ→ S, 0) for all Γ→ S ∈ AX Init

(i,∆ • wΓ→ C, j) (j,w, j + 1)
(i,∆w • Γ→ C, j + 1) Scan

(i,∆ • AΓ→ C, j)
(j, •Λ→ A, j) Λ→ A ∈ AX Predict

(k,Λ• → A, j) (i,∆ • AΓ→ C, k)
(i,∆A • Γ→ C, j) Complete

The systemCF Earley is known to be correct. A simple proof can be found
in [Sikkel, 1998]. The set of viable itemsW is defined as follows:

W = { (i,∆ •Λ→ A, j) | wi+1 . . .w j ⇒
∗ ∆,

w1 . . .wi AΓ⇒∗ S for some Γ ∈ (Vt ∪ F)∗ }

Let us examine an example deduction in CF Earley.

3.4. EARLEY STYLE PARSING 87

Example 31. Deduction of [[]] in grammar [S]S | ε→ S.

Items generated:

1. (0, •[S]S→ S, 0): Init

2. (0, • → S, 0): Init

3. (0, [•S]S→ S, 1): Scan 1

4. (1, •[S]S→ S, 1): Predict 3

5. (0, [S•]S→ S, 1): Complete 2-3

6. (1, [•S]S→ S, 2): Scan 4

7. (2, •[S]S→ S, 2): Predict 6

8. (2, • → S, 2): Predict 6

9. (1, [S•]S→ S, 2): Complete 8-6

10. (1, [S] • S→ S, 3): Scan 9

11. (3, •[S]S→ S, 3): Predict 10

12. (3, • → S, 3): Predict 10

13. (1, [S]S• → S, 3): Complete 12-10

14. (0, [S•]S→ S, 3): Complete 13-3

15. (0, [S] • S→ S, 4): Scan 14

16. (4, •[S]S→ S, 4): Predict 15

17. (4, • → S, 4): Predict 15

18. (0, [S]S• → S, 4): Complete 17-15

88 CHAPTER 3. AUTOMATED REASONING

The deduction can be shown as a tree3. We present part of the previous
deduction in tree format:

(4, • → S, 4)

....
(1, [S]S• → S, 3)

(0, •[S]S→ S, 0) (0, [, 1)
(0, [•S]S→ S, 1)

(0, [S•]S→ S, 3) (3,], 4)
(0, [S] • S→ S, 4)

(0, [S]S• → S, 4)

Soundness of CF Earley is, as usual, trivial. In order to prove completeness,
one defines a deduction length function d :: (A∪W)→ Int by

d(i,∆ •Λ→ A, j) = min{ δ + 2γ + 2µ + j | wi+1 . . .w j ⇒
γ ∆,

ΓAΓ′ ⇒δ S,
w1 . . .wi ⇒

µ Γ }

One should check that d satisfies condition 2 of definition 56 for every item
in W. We refer to [Sikkel, 1998] for the details of the proof. In the next
section, we will see the Earley deductive system for AB⊗ grammars.

3.5 Implementations

The labeled inference rules of the parsing systems formulated in the previ-
ous chapter specify what conclusion follows from what premises. However,
they do not specify any order in which these rules should be applied nor
how the inference-drawing process should be iterated. In this chapter,
we present some implementations chart parsers. The first is the agenda-
driven, chart-based deductive procedure of [Shieber et al., 1995]: we provide a
functional implementation of this procedure. The second is based on the
description of the CYK algorithm of [Aho and Ullman, 1972]. This imple-
mentation is in fact the most efficient as it results in a O(n3) time complexity
recognition algorithm. Furthermore, the table resulting from this recogni-
tion procedure, called parse table, can be easily used to extract deduction
trees. We will present algorithms for building, from the parse table, parse
trees similar to those given in the examples of the previous chapter.

3In fact, in order to have such a representation, we shall assume that predicted items are
leaves of the proof tree (the place of hypotheses), although they are in fact derived. A graph
would be a better representation of Earley deductions, but for simplicity we stick to the the
tree formalism.

3.6. AGENDA-DRIVEN, CHART-BASED PROCEDURE 89

3.6 Agenda-driven, chart-based procedure

An agenda-driven chart-based procedure, A C procedure for short, oper-
ates on two sets of items called the agenda and the chart. The agenda contains
all items whose consequences are still to be computed. The chart the items
whose consequences have already been computed.

Algorithm 1 is an adaptation of the A C procedure specified in [Shieber
et al., 1995].

Algorithm 1. Agenda-driven, chart-based deduction procedure.

1. Initialize the chart to the empty set of items and the agenda to the
axioms of the deduction system.

2. Repeat the following steps until the agenda is exhausted:

(a) Select an item from the agenda, called the trigger item, and remove
it.

(b) Add the trigger item to the chart, if necessary.

(c) If the trigger item was added to the chart, generate all items that
are new immediate consequences of the trigger item together
with all items in the chart, and add these generated items to the
agenda.

3. If a goal item is in the chart, the goal is proved (and the string recog-
nized); otherwise it is not.

A goal item is an item that coves the whole input string with the start
category, for example (0, s,n) in AB⊗CYK or (0, s• → S′,n) in CF Earley, where
n is the length of the input string. The proviso “if necessary” in 2b means
“if not already present”, and in 2c “new” means “not already present”. In
[Shieber et al., 1995], one may find a detailed discussion of the problem
of redundant items as well as a proof of soundness and completeness of
algorithm 1.

Functional implementation

Algorithm 2 below is a functional implementation of the A C procedure
specified in algorithm 1 for categorial grammars. This implementation is
similar to the one in [van Eijck, 2004] who provides a functional imple-
mentation of CF Earley. However, it differs in that we directly work with
sets, rather than with lists from which duplicates are removed. Sets can be

90 CHAPTER 3. AUTOMATED REASONING

implemented in the functional setting as red-black trees, see [Okasaki, 1998,
1999], and also [Adams, 1993]. In short, red-black trees represent sets as
trees whose nodes are ordered. For instance, what we write as {a, b, c, d, e, f , g}
is interpreted as the tree:

a c
b

e g′

f
d

Red and black are node labels which enforce further invariants and allow
to implement set-theoretic operations efficiently, see [Cormen et al., 1990].
We assume that a data-type for sets of objects of type a, which we write {a},
has been defined. We write X[x] for a set X with a distinguished element
x, so that X results from X[x] by removing the element x (we may, for
example, assume that x is the least element of the red-black tree). We use
the conventional notation for operations on sets.

Algorithm 2. Haskell implementation of the A C procedure in algorithm
1.

Let a parsing systemD = 〈I,A,R〉 be given.

Let type Chart = {I}. Initial value of the chart variable Z = ∅.

Let type Agenda = {I}. Initial value of the agenda variable Y = A.

- exhaust-agenda :: (Chart,Agenda)→ (Chart,Agenda)

exhaust-agenda (Z, ∅) = (Z, ∅)
exhaust-agenda (Z,Y[y]) =

if y ∈ Z
then exhaust-agenda (Z,Y)
else exhaust-agenda (Z′,Y′)

where
a) C = { c | z ∈ Z, ρ ∈ R, c ∈ ρ y z }
b) Y′ = Y ∪ C
c) Z′ = {y} ∪ Z

Step by step analysis: exhaust-agenda calculates all the valid items of a
given parsing system. The constructs type x = y declare a type variable x
to be of the form y. Thus Chart and Agenda are type variables for sets of
items: we initialize these variable to the empty set and to the set of axioms
of the parsing system, respectively. The derived items are stored in the
chart variable Z at the end of the computation, that is when the agenda

3.6. AGENDA-DRIVEN, CHART-BASED PROCEDURE 91

variable Y is empty. At each iteration, the recursive call of exhaust-agenda
tests if an item y taken from the agenda is already in the chart Z. If this is
the case, its immediate consequences have already been computed, and we
can proceed to the next item in the agenda. Otherwise, we calculate in the
set C the immediate consequences of y with every z ∈ Z on the basis of the
rules in R, in line a). In line b), we build the new agenda as the union of the
old agenda, minus the trigger itemy, with the immediate consequences of
y. Then the trigger y is added to the chart. The process is iterated with the
new cart and new agenda until the agenda is empty.

What still remains to be done is to appropriately implement the rules of
the parsing system. Let us consider the implementation ofAB⊗CYK.

Example 32. Implementation of rules forAB⊗CYK = 〈I,A,R〉.

Let a set of formulasΣ be calculated from the axioms according to definition
51 in chapter 3. Then R consists of rues el and p Σ defined below.

p :: {F } → I → I → {I}

p Σ (i, a, k) (k′, b, j) = if k ≡ k′ & a ⊗ b ∈ Σ then {(i, a ⊗ b, j)} else ∅

el, e0, e1 :: I → I → {I}

el x y = e0 x y ∪ e1 x y

e0 (i, b, k) (k′, b′\a, j) = if k ≡ k′ & b ≡ b′ then {(i, a, j)} else ∅
e0 (i, a/b, k) (k′, b′, j) = if k ≡ k′ & b ≡ b′ then {(i, a, j)} else ∅
e0 = ∅

e1 (k′, b′\a, j) (i, b, k) = if k ≡ k′ & b ≡ b′ then {(i, a, j)} else ∅
e1 (k′, b′, j) (i, a/b, k) = if k ≡ k′ & b ≡ b′ then {(i, a, j)} else ∅
e1 = ∅

Observe that e0 and e1 exhaust the possible occurrences of patterns for
their arguments, hence el is a complete formulation of the cancellation rules
ofAB⊗CYK.

In order to apply algorithm 2 to the CF CYK system, one should store
the set of productions of the input CF grammar in the variable W in the
exhaust-agenda procedure. Then the transitions may look like the follow-
ing.

Example 33. Implementation of rules for CF CYK = 〈I,A,R〉.

92 CHAPTER 3. AUTOMATED REASONING

Let AX be the set of the productions of the input grammar. Then R consists
of cfInf AX where:

cfInf :: AX→ I→ I → {I}

cfInf AX (i, a, k) (l, b, j) =

{ (i, c, j) | l ≡ k, (a′ b′ → c) ∈ AX, a ≡ a′, b ≡ b′ }

∪

{ (l, c, k) | j ≡ i, (b′ a′ → c) ∈ AX, a ≡ a′, b ≡ b′ }

3.7 Tabular parsing

One can easily check that the complexity of algorithm 2 is O(n5), for an
input string of length n. However, a well known fact about the CYK and
Earley’s approaches is that they can run in cubic time. In this section, we
illustrate the more efficient implementations of these parsers presented in
[Aho and Ullman, 1972]. The main limitation of algorithm 2 is that at each
iteration, we check whether the trigger item had already been computed.

The algorithms that we are going to see avoid this problem by making
use of more refined data structures which allow a more efficient bookkeep-
ing strategy. They are called tabular because their method is based on the
construction of a table, called parse table, or of a similar data structure. The
table is a database that stores systematically the partial analyses obtained at
a given point of the computation. Thus these analyses can be efficiently
retrieved from the table and used for building larger analyses, which in
turn are stored in the appropriate place in the table.

For example in the case of the CYK parser, if we are analyzing a string
w1 . . .wn in a grammar G, then the table T may consist of cells, denoted t(j,i),
with 0 6 j < n and 0 < i 6 n. The cells contain formulas and we have that
c ∈ t(j,i) if and only if w j+1 . . .wi ⇒

∗ c. Therefore, to test whether w1 . . .wn
belongs to Lt(G) according to the CYK algorithm, we compute the parse
table for w1 . . .wn and check whether the start symbol of G is in t(0,n).

3.7.1 Tabular CYK

We present the CYK method of table construction. The algorithm works for
CF grammars in CNF without ε-productions or basic categorial grammars
(with and without product) without assignments for the empty string. We
call these grammars lexicalized grammars. The symbol

`
is a variable

over binary operations on sets of formulas. After the definition of the

3.7. TABULAR PARSING 93

table construction method we will instantiate
`

with the specific operations
proper to a CF or a basic categorial grammar. Similarly, Start is a variable
over the start symbol of the input grammar.

Algorithm 3.

Input: A lexicalized grammar G = 〈Vt,Start,Lex,F ,AX〉without ε-assignments
and a string w1 . . .wn.

Output: A parse table T for w1 . . .wn such that t(j,i) contains c if and only if
w j+1 . . .wi →

∗ c.

Method:

1. Initialization: for all m, 0 < m 6 n, set

t(m−1,m) = { a | wm → a ∈ Lex }

2. Table completion:

(a) Set i = 1.

(b) Test if i = n. If not, increment i by 1 and perform line (i) at point
3 below.

(c) Repeat step (2b) until i = n.

3. line (i):

(a) Let j = i − 2.

(b) Let k = j + 1.

(c) Let t(j,i) = t(j,i) ∪ (t(j,k)
`

t(k,i))

(d) Increment k by 1.

(e) If k = i, then go to step (3f). Else, go to step (3c).

(f) If j = 0, then halt. Else, decrease j by 1 and go to step (3b).

The algorithm recognizes a string w1 . . .wn if and only if Start ∈ t(0,n).

Definition 58. Instantiation of
`

for CF grammars.

If the grammar input of algorithm 3 is a CF grammar G, then
`
= ~AX, where

AX are the productions of G and (~AX) :: {F } → {F } → {F } is defined as
follows:

X ~AX Y = { A | B ∈ X, C ∈ Y, B C→ A ∈ AX }

94 CHAPTER 3. AUTOMATED REASONING

We call C YKCF the algorithm resulting from algorithm 3 by instantiating
`

with ~AX.

Example 34. We examine algorithm 3 applied to the string every man loves a woman
and to grammar G′3 in example 26.

Table generated:

1 2 3 4 5 i
j

Det NP S 0
N 1

TV VP 2
Det NP 3

N 4

The CYK parsing algorithm is also called chart parsing for another graph-
ical representation of the deduction to which it gives rise. The chart for
example 34 is presented in figure 3.1. The vertices of the graph indicate
the positions of the words in the input string. The edge label indicate the
grammatical category of the subexpression between the vertices linked by
the edge.

0 every 1 man 2 loves 3 a 4 woman 5

Det N TV

Det N

NP

NP

VP

S

Figure 3.1: Chart

Example 35. Let us consider now a second example from grammar G1′

which consists of the following rewriting rules.

O S′ | S S | O C→ S

S C → S′

(→ O

) → C

3.7. TABULAR PARSING 95

This grammar generates the language of non-empty balanced brackets.
Furthermore this grammar is in Chomsky normal form.

Algorithm 3 applied to string (()())() and grammar G1′ .

1 2 3 4 5 6 7 8 i
j

O S S 0
O S S S′ 1

C 2
O S 3

C 4
C 5

O S 6
C 7

The correctness of algorithm 3 is known and we refer the reader to [Aho
and Ullman, 1972] for the proof soundness and completeness. Below we
will see this proofs for AB⊗.

We now define the
`

operation for basic categorial grammars.

Definition 59. Instantiation of
`

for AB⊗ grammars.

If the grammar input of algorithm 3 is an AB⊗ grammar G, then
`
= >Σ,

where Σ is a set of formulas obtained from the lexical categories assigned to
the input string by function δ− in definition 51 and (>Σ) :: {F } → {F } → {F }
is defined as follows:

X >Σ Y = { c | c/b ∈ X, b ∈ Y }
∪

{ c | b ∈ X, b\c ∈ Y }
∪

{ a ⊗ b | a ∈ X, b ∈ Y, a ⊗ b ∈ Σ }

We call C YKAB⊗ the algorithm resulting from algorithm 3 by instantiating`
with >Σ.

Example 36. Application of C YKAB⊗ to the string aacbb and to grammar
A0.

Table
1 2 3 4 5 i

j
(s/b)/s s/b s 0

(s/b)/s s/b s 1
s 2

b 3
b 4

96 CHAPTER 3. AUTOMATED REASONING

Chart:

0 a 1 a 2 c 3 b 4 b 5

(s/b)/s

(s/b)/s s

b

b

s/b

s

s/b

s

Figure 3.2: Chart of C YKAB⊗ applied to the string aacbb and to grammar A0

Proposition 8. If algorithm 3 is applied to a lexicalized grammar G and to
a string w1 . . .wn, then upon termination,

c ∈ t(j,i) iff `G w j+1 . . .wi → c

Proof. Induction on i. We consider the a few cases for AB⊗ grammars. Let
Σ be the set of subformulas obtained in accordance with definition 59.

[only if]: If i = j+ 1 and c ∈ t(j,i), then wi → c ∈ Lex. If i > j+ 1, then for
k, j < k < i we have three cases:

1. a ∈ t(j,k) and b ∈ t(k,i), c ≡ a ⊗ b and c ∈ Σ,

2. c/b ∈ t(j,k) and b ∈ t(k,i),

3. b ∈ t(j,k) and b\c ∈ t(k,i).

In all cases, we conclude `G w j+1 . . .wkwk+1 . . .wi → c by IH and one
rule application.

[if]: If i = j + 1, then wi → c ∈ Lex. Then c ∈ t(j,i) by step 1. If i > j + 1,
then for k, j < k < i we have three cases:

1. c ≡ a ⊗ b, c ∈ Σ and `G w j+1 . . .wk → a and `G wk+1 . . .wi → b,

2. for some formula b, `G w j+1 . . .wk → c/b and `G wk+1 . . .wi → b,

3. for some formula b, `G w j+1 . . .wk → b and `G wk+1 . . .wi → b\c.

3.7. TABULAR PARSING 97

In each case, by IH, the succedent formula is in the cell identified by
the antecedent index extension. Hence c ∈ t(j,i) in step 3c by rule >Σ
from definition 59.

�

The complexity of the CYK algorithm is calculated in terms of the ele-
mentary operations required to build the table. According to the terminology
of [Aho and Ullman, 1972] we have the following kinds of elementary
operations.

1. Setting a variable to a constant, to the value held by some variable, or
to the sum or difference of the value of two variables or constants.

2. Testing if two variables are equal.

3. Examining and/or altering the value of j, i, if j and i are the current
values of two integer variables of constants.

4. Examining wi, the ith input symbol, if i is the value of some variable.

Proposition 9. Let n be the length of the input string. Then algorithm 3
requires O(n3) elementary operations to compute t(j,i) for all i and j.

Proof. See [Aho and Ullman, 1972]. �

The argument is based on the fact that the algorithm consists of three em-
bedded cycles. The most external one computes line (i) n times. The
instructions in line (i), in turn, consist of two embedded cycles, one for j,
from step 3a to step 3f, and one for k, from step 3b to step 3c. Both j and k
range between 0 and n. Thus line (i) takes O(n2) elementary operation, and
therefore algorithm 3 requires O(n3) elementary operations.

Remark 1. The complexity result expressed in proposition 9 concerns the
variation of time in relation to the length of the input string. Another
parameter which may become relevant in the calculation of the complexity
of the CYK algorithm is the size of the input grammar, expressed in terms
of the number of its axioms: |G| = O(|AX|). Thus, the complexity of 3 can be
expressed as O(|G|n3), see [Nederhof and Satta, 2004]. It should be remarked
that tn the case of CF grammars, conversion to CNF may square the size of
the original grammar. As |G| is usually much bigger than the length of the
input string, squaring it may affect drastically the performance of the CYK
algorithm. However, this remark does not apply to the CYK algorithm
for AB⊗ grammars: since these grammars have only binary rules, they are
already in the required normal form.

98 CHAPTER 3. AUTOMATED REASONING

The CYK algorithm for AB grammars can easily be extended to asso-
ciative AB grammars, AAB, by simply adding the associative cancellation
rules. One extends the operation >with the following sets

{ c/a | c/b ∈ X, b/a ∈ Y }
∪

{ a\c | a\b ∈ X, b\c ∈ Y }

Observe that with these new rules the outputs a/c and c\a of the associative
composition rules may not belong themselves to the set of subformulas of
formulas of the grammar. This aspect may increase the complexity of the
algorithm. However, [Vijay-Shanker and Weir, 1990] prove that the even a
more general variant of the AAB system4 can be parsed in time O(n6).

3.8 Parses

Although we often spoke of ‘parsing’ algorithmsin the preceding sections,
what we described and implemented were, technically, recognition algo-
rithms: procedures to determine whether the given string belongs to the
language generated by the given grammar.

Technically, a parser returns the tree structure(s) assigned by a grammar
to a string. A distinction can be drawn between a parser that returns one
structure, if any, and a parser that returns all the tree structures assigned by
a grammar to a string.

In the following sections, we will see that the problems of recognition
and parsing are closely related. Indeed, we saw already that the output of
the recognition algorithms is a parse table. Thus parsing, in its existential or
universal meaning, is the process of retrieving from such a table one or all
the structural descriptions of the input. The extraction of parse trees will
be based on the technique of parse forest.

3.9 Parse forest

The extraction of structural descriptions from a parse table may become
easy and fast if we have a concise way of representing all possible parses

4Such variant admits generalized associative composition rules that abstract on the num-
ber of the arguments of the categories and partially on the orientation of the slashes. We
refer the reader to [Steedman, 2000b] for a discussion of such system and its complexity
properties.

3.9. PARSE FOREST 99

from a given output table. Parse forests, originally introduced in [Bar-Hillel
et al., 1964b] and also called shared forests in [Billot and Lang, 1989], are a
way of encoding all parse trees for a given input in a compact way. We shall
remark that a string may be assigned an exponential number of structural
descriptions (exponential on its length) or even infinite in case the input
grammar is cyclic. Thus parse forest are a valuable tool for encoding and
retrieving parses.

Algorithm 4. Let G = 〈Vt,S,F ,Lex,AX〉 be a CNF grammar without ε-
productions. Let a string ws = w1 . . .wn and the parse table T resulting by
application of algorithm C YKCF to G and ws be given. The parse forest
Gw = 〈V′t , (0,S,n),Fw,Lexw,AXw〉 resulting from G, ws and T is constructed
as follows.

V′t = { (i − 1,wi, i) | wi ∈ Vt }

Fw = { (j,A, i) | A ∈ F , 0 6 j < i 6 n }

Lexw = { (i − 1,wi, i)→ (i − 1,A, i) | wi → A ∈ Lex }

AXw = { (j,A, k) (k,B, i)→ (j,C, i) | A B→ C ∈ AX,
A ∈ t(j,k), B ∈ t(k,i) }

Example 37. Consider the grammar G5 with the following production rules:

S PP | NP VP→ S
V NP→ VP
Det N | NP PP | John |Mary→ NP
Pr NP→ PP
telescope→ N
the→ Det
with→ Pr
saw→ V

From the parse table T returned by algorithm C YKCF applied to G5 and the
sentence Mary saw John with a telescope, we can construct the parse forest
Gw5 whose productions are below.

100 CHAPTER 3. AUTOMATED REASONING

(0,S, 3) (3,PP, 6) → (0,S, 6)
(0,NP, 1) (1,VP, 6)→ (0,S, 6)
(0,NP, 1) (1,VP, 3)→ (0,S, 3)
(1,V, 2) (2,NP, 6) → (1,VP, 6)
(1,V, 2) (2,NP, 3) → (1,VP, 3)
(4,Det, 5) (5,N, 6)→ (4,NP, 6)
(2,NP, 3) (3,PP, 6) → (2,NP, 6)
(3,Pr, 4) (4,NP, 6) → (3,PP, 6)
(5, telescope, 6) → (5,N, 6)
(4, the, 5) → (4,Det, 5)
(3,with, 4) → (3,Pr, 4)
(2, John, 3) → (2,NP, 3)
(1, saw, 2) → (1,V, 2)
(0,Mary, 1) → (0,NP, 1)

From the parse forest we can easily recover the parse trees with the
following procedure which consists in following the rewrite rules of the
parse forest from the root to the leaves.

Algorithm 5. Let Gw = 〈V′t , (0,S,n),Fw,Lexw,AXw〉 be a parse forest. Let
gen∗ :: Fw → Gw → {Tree Fw} be a function taking in input a non-terminal
in Fw, a parse forest Gw and returning a set of trees.

gen∗ C Gw = { Branch C l r | A B→ C ∈ AXw,

l ∈ gen∗ A Gw,

r ∈ gen∗ B Gw }

∪

{ Lea f C | → C ∈ Lexw }

Example 38. From the parse forest Gw5 above, gen∗ (0,S, 6) Gw5 returns the
following two structures (to whom we added the terminal leaves for clarity).

3.9. PARSE FOREST 101

Mary
(0,NP, 1)

saw
(1,V, 2)

John
(2,NP, 3)

with
(3,Pr, 4)

the
(4,Det, 5)

telescope
(5,N, 6)

(4,NP, 6)
(3,PP, 6)

(2,NP, 6)
(1,VP, 6)

(0,S, 6)

Mary
(0,NP, 1)

saw
(1,V, 2)

John
(2,NP, 3)

(1,VP, 3)
(0,S, 3)

with
(3,Pr, 4)

the
(4,Det, 5)

telescope
(5,N, 6)

(4,NP, 6)
(3,PP, 6)

(0,S, 6)

We can represent the two parses in parallel as a graph.

0

1

NP :: John

3

S

6

S

2V :: saw

VP

VP

NP :: Mary

NP

4

Pr :: with

PP

5

Det :: a

NP

N :: telescope

3.9.1 Parse forests for AB⊗ grammars

The generation of the parse forest for AB categorial grammars is parallel to
the method for CF grammars presented in the previous section.

Algorithm 6. Let G = 〈Vt, s,F ,Lex,AX〉 be an AB⊗ grammar. Let a string
ws = w1 . . .wn and the parse table T resulting by application of C YKAB⊗ to G
and ws be given. We construct the parse forest Gw = 〈V′t , (0, s,n),Fw,Lexw,AXw〉

resulting from G, ws and T, where V′t , Fw and Lexw are as in algorithm 4.
The productions of Gw are constructed as follows.

102 CHAPTER 3. AUTOMATED REASONING

AXw = { (j, a/b, k) (k, b, i)→ (j, a, i) | a/b ∈ t(j,k),

b ∈ t(k,i) }

∪

{ (j, b, k) (k, b\a, i)→ (j, a, i) | b ∈ t(j,k),

b\a ∈ t(k,i) }

∪

{ (j, a, k) (k, b, i)→ (j, a ⊗ b, i) | a ∈ t(j,k),

b ∈ t(k,i) }

Example 39. Let A4 consist of the following lexical assignments:

saw → (n\s)/n
John → n
Mary → n
telescope→ c
the → n/c
with → (n\n)/n
with → (s\s)/n

Then, the parse forest returned by the construction in algorithm 6 applied to
the table resulting from application of C YKAB⊗ to John saw Mary with the telescope
and A4 is Aw4 with the following AX set

(0,n, 1) (1,n\s, 6) → (0, s, 6)
(0, s, 3) (3, s\s, 6) → (0, s, 6)
(0,n, 1) (1,n\s, 3) → (0, s, 3)
(3, (s\s)/n, 4) (4,n, 6) → (3, s\s, 6)
(3, (n\n)/n, 4) (4,n, 6)→ (3,n\n, 6)
(1, (n\s)/n, 2) (2,n, 6) → (1,n\s, 6)
(1, (n\s)/n, 2) (2,n, 3) → (1,n\s, 3)
(2,n, 3) (3,n\n, 6) → (2,n, 6)
(4,n/c, 5) (5, c, 6) → (4,n, 6)
(5, telescope, 6) → (5, c, 6)
(4, the, 5) → (4,n/c, 5)
(3,with, 4) → (3, (s\s)/n, 4)

3.10. FROM AB⊗ TO AB 103

(3,with, 4) → (3, (n\n)/n, 4)
(2,Mary, 3) → (2,n, 3)
(1, saw, 2) → (1, (n\s)/n, 2)
(0, John, 1) → (0,n, 1)

Then the procedure in definition 5 can immediately applied to Aw4 , as
we moved into the axioms AX the result of all the inferences. Application
of gen∗ (0, s, 6) Aw4 returns the following trees.

John
(0,n, 1)

saw
(1, (n\s)/n, 2)

Mary
(2,n, 3)

with
(3, (n\n)/n, 4)

the
(4,n/c, 5)

telescope
(5, c, 6)

(4,n, 6)
(3,n\n, 6)

(2,n, 6)
(1,n\s, 6)

(0, s, 6)

John
(0,n, 1)

saw
(1, (n\s)/n, 2)

Mary
(2,n, 3)

(1,n\s, 3)
(0, s, 3)

with
(3, (s\s)/n, 4)

the
(4,n/c, 5)

telescope
(5, c, 6)

(4,n, 6)
(3, s\s, 6)

(0, s, 6)

3.10 From AB⊗ to AB

The presence of product formulas in AB⊗, and of a product rule especially,
represents a disadvantage from the parsing perspective as we have seen in
the previous sections. In this section, we will show how the multi-modal
setting can improve the situation. As AB⊗ grammars and AB grammars
generate the same class of languages, namely the CF languages, we can
define a procedure transforming an AB⊗ grammar G into an AB grammar
G′ generating the same terminal language in an easy way. On the other
hand, as we explained in chapter 1, our interest in the systems with product
is motivated by the strong generative capacity of such systems. Indeed, the
structural language generated by G′ is not necessarily the same as the one
generated by G. In order to avoid such collapse of structural descriptions,

104 CHAPTER 3. AUTOMATED REASONING

we will define an inverse mapping from derivations in G′ to derivations in
G. We explain informally how this two processes work.

In Lambek [1958], one finds the discussion of an operation attributed
to Schönfinkel. In the associative Lambek calculus, the following principles
hold.

(3.2) c/(a ⊗ b)↔ (c/b)/a

(3.3) (b ⊗ a)\c↔ a\(b\c)

As usual, the double arrow means that the inference is in both directions.
Schönfinkel “observed that a function of two variables may be regarded
as an ordinary function of one variable whose value is again an ordinary
function5”, so that

f (a, b) = f (a)(b)

In the literature, the direction → of the inference is called currying, while
the direction← is called uncurrying.
Obviously, from the parsing perspective, the advantage of using the curried
variant of a formula is that the product rule is no longer needed. The only
case in which we might still need the product rule occurs when we are
going to parse a string as of category a⊗b. However, observe that if Γ→ c is
provable, then also Γ, c\c→ c is. Thus, currying could apply to c\c, eluding
the use of the product rule.

Although these two inferences do not hold in NL, we will use the curried
variant of a sequent into the computation under the following constraints.

- Curried formulas are marked with a distinguished mode of com-
position which prevents them from ever being arguments of other
categories.

- Each application of currying has to be canceled by a corresponding
application of uncurrying.

In this way, we can exploit the currying-uncurrying symmetry as an expe-
dient for simplifying the computation.

In what follows, we will work with arrows, objects of the form f : Γ→ c,
where f is a syntactic term encoding the proof of Γ → c. The proof terms
will play an essential role in the procedure. We will define currying as an
operation applying to an arrow f : a → a such that a is a lexical category
and returning, the set of arrows f ′ : a → a′, where a′ is a curried variant

5Lambek [1958]

3.10. FROM AB⊗ TO AB 105

of a and f ′ encodes the way in which currying has been applied to a in
order to produce a′. Then, we define the converse operation which we
call uncurrying. Uncurrying takes in input a proof term, as (f ′/(g))/(g′),
the term encoding the right application of the curried arrow labeled f ′ to
the arrow labeled g and to the one labeled g′, in the order, and uses the
codification in f ′ to perform the restructuring of its argument. One should
expect the following rewriting rules.

Example 40.

Uncurry of (f ′/(g))/(g′) gives f /(g ∗ g′).

Uncurry of (f ′\(g))\(g′) gives f \(g′ ∗ g).

We propose now the labeled variant of system AB⊗.

Definition 60. Labeled AB⊗:

1a : a→ a

f : Γ→ a g : ∆→ b
f ∗ g : (Γ,∆)→ a ⊗ b

g : Γ→ a′ f : ∆→ a′\c

f \(g) : (Γ,∆)→ c
f : Γ→ c/b′ g : ∆→ b′

f /(g) : (Γ,∆)→ c

3.10.1 Currying

Consider a formula as a/(b ⊗ (c ⊗ d)). Such formula takes as argument a
formula b ⊗ (c ⊗ d) to give a formula a. The argument b ⊗ (c ⊗ d) can be a
lexical category, or it can be derived from a formula b and a formula c ⊗ d.
This second formula, can itself be lexical, or derived. As we cannot exclude
any option, currying should return at least a set of formulas, which, in this
case, is {a/(b ⊗ (c ⊗ d)), a/(c ⊗ d)/b, a/d/c/b}.

Besides, assume a formula a/b′ appears in the parsing process and that
for some formula b, b′ results from currying b. Therefore, we could, by
mistake, derive a from a/b′ and b′ as b → b′ is not a licit transition in the
non-associative logic. Therefore, curried formula should be marked as to
avoid invalid pattern matching.

Last, the formula a/(b⊗ c) project a structure which is different from the
one projected by a/c/b. Thus, currying would change the strong generative
capacity of the grammar, while the reason to work with AB with product

106 CHAPTER 3. AUTOMATED REASONING

is mainly its strong generative power. In order to avoid this structural col-
lapse, we introduce some operators which encode the order of the currying
operation and can be used in the uncurrying phase to recover the proof
generated by the original formulas.

- Operators6:
OP := σC | ι | ε | γ

For each operator ϕ and combinator f , we write ϕ(f) the application of ϕ

to f . These operators are introduced by the following function returning
all the possible curried variants of an arrow7.

Definition 61.

Σ :: (CB,F)→ {(CB,F)}

- Σ(f : c/i(a ⊗j b)) =

{ σ/i(f) : c/∗b/∗a }
∪

Σ(σ/i(f) : c/∗b/∗a)
∪

{ ι(f ′) : c′/i(a ⊗ b) | f ′ : c′ ∈ Σ(ε(f) : c) }

- Σ(f : c/ia) = { ι(f ′) : c′/ia | f ′ : c′ ∈ Σ(ε(f) : c) }

- Σ() = {}

The function Σ takes in input a pair of a syntactic term and a multi-modal
formula, which we write f : x, and scans the arguments of x looking for
a product in argument position. When Σ encounters a subformula of the
form c/i(a⊗ b), it restructures it to c/∗b/∗a, and applies the operator σ/i to the
term of the arrow and starts currying this new arrow. Here, i and j are a
variables ranging over modes of composition, while ∗ is a distinct mode of
composition which should appear only on curried formulas. While access-
ing embedded arguments, the function Σ encodes in the syntactic term the
original position of the scanned argument by means of the ε and ι opera-
tors. Every ε operator marks the original position of an argument, while the

6Such operators have a purely syntactical propose in that they encode the application of
currying.

7We often call arrow a pair of a syntactic term and a formula. As the term encodes a proof,
it encodes also its conclusion. However, we are often interested only in one formula of the
conclusion. Thus, for simplicity we dropped the other one, this being always recoverable
by the term.

3.10. FROM AB⊗ TO AB 107

corresponding ι operator marks its new position after restructuring. Thus,
at the end of currying, the occurrences of ε and ι will be balanced. Indeed,
the distribution of the operators encoding currying can be captured by the
following context-free grammar, where ε , ε and ε is the empty string:

Definition 62.

Grammar for the distribution of currying operators:

S := SS | σ | ι S ε | ε

Observe that if no istance of product is found in argument position, the
function returns the empty set.

The above transformation guarantees that we will not need the prod-
uct rule for the input categories. The remaining case is when the output
category is a product. Instead of proving that Γ → c, we can prove that
Γ, c\c → c. The advantage of this move is that if c = c1 ⊗ c2, we can apply
currying to c\c. Observe that c\c should be taken as argument. Hence, the
following function uses again a multi-modal encoding to constrain pattern
matching.

Definition 63.

Σ′(f : c) =
{ γ(f) : c\∗�∗♦∗c }

∪

Σ(γ(f) : c\∗�∗♦∗c)

This operation produces the arrow coming from the left discharge of the
antecedent together with all the arrows deriving from its currying. For any
formula c, we will write �∗♦∗c as c?.
We prove the equivalence between any AB⊗ grammar G and its curried
variant G′.

Proposition 10. Let G = 〈Vt, s,Lex,AB⊗〉 be given. Let G′ = 〈Vt, s,Lex ∪
Lex′,AB〉, where

Lex′ = { w→ a′ | w→ a ∈ Lex, f : a′ ∈ Σ(1a : a) }
Then, Lt(G) = Lt(G′).

Proof. induction on the AB⊗ derivation D of a0 . . . an → s such that wi → ai ∈

Lex for all 0 6 i 6 n. Assume D ends with
a0 . . . ak → a ak+1 . . . ai → b

a0 . . . ai → a ⊗ b ai+1 . . . an → (a ⊗ b)\s
a0 . . . an → s

108 CHAPTER 3. AUTOMATED REASONING

If ai+1 . . . an → (a ⊗ b)\s, then for some w j → a j, i < j 6 n, (a ⊗ b)\s is a
subformula of a j. Thus, b\∗a\∗s is a subformula of some a′j in G′ obtained by
currying a j and the derivation in AB runs as follows.

a0 . . . ak → a
ak+1 . . . ai → b ai+1 . . . an → b\∗a\∗s

ak+1 . . . an → a\∗s
a0 . . . an → s

Besides, no curried formula will ever be consumed as an argument in G′,
due to the multi-modal labeling of curried formulas with the distinguished
composition mode ∗. �

3.10.2 Uncurrying

We implement the operation of uncurrying as taking place at the end of
the derivation process. It transforms the proof term of the final arrow
to its uncurried variant, if any of its subterms have been curried before,
otherwise it returns the term itself. We first give the basic cases of the
uncurrying normalization in the form of rewriting rules f { g, to be read
as “the term f rewrites as the term g”. Then we generalize to unbounded
contexts.

The first rule applies to the curried output.

(3.4) (γ(f))\(g) { f ◦ g

In fact, if f : b → c, then Σ′(f : b → c) = γ (f) : b\∗c?. Assume we have
derived g : b from assumptions Γ. Then, the two following derivations are
equivalent.

(3.5)

Γ....
g : b γ(f) : b\∗c?

(γ(f))\(g) : c?

Γ....
g : b.... f : b→ c?

f ◦ g : c?

To be fully explicit we should remark that for every formula a, ` a → a?.
However, we may neglect such transition from the term f as it is inessential
to the aim of the computation.
Uncurrying has the following two primitive instances.

(3.6) ((σ/(f))/(g))/(h) { f /(g ∗ h)

3.10. FROM AB⊗ TO AB 109

(3.7) ((σ\(f))\(g))\(h) { f \(h ∗ g)

Example 41. Let us consider the first reduction. Let f : a/(b ⊗ c) be given.
Then Σ(f : a/(b ⊗ c)) = {σ(f) : a/∗c/∗b}8.

σ/(f) : a/∗c/∗b

Γ....
g : b

(σ/(f))/(g) : a/∗c

∆....
h : c

((σ/(f))/(g))/(h) : a
f : a/(b ⊗ c)

Γ....
g : b

∆....
h : c

g ∗ h : b ⊗ c
f /(g ∗ h) : a/c

The cancellation of the ι and ε operators is slightly more complicate to
show, primarily because these operators appear embedded into terms as
(. . . ((ι(f))|(g1))|(g2) . . .)|(gn) or (. . . ((ε(f))|(g1))|(g2) . . .)|(gn), where each | is
any of the two slashes, and the restructuring they give rise to is unbounded.
Therefore, we assume that the rewriting rules for these operators keep
track of the argument combinators with the aid of two lists containing the
unfolded arguments to be restructured.

(3.8) ι(f) (g : gs) hs { f gs (g :hs)

(3.9) ε(f) gs (h :hs) { f (h : gs) hs

In the following definitions, we make use of lifted terms of the formλh.h|(g),
which we call themACB-terms. These are functions fromCB toCB, that is,
if g ∈ ACB and f ∈ CB, then (g f) = f (g)9. We decompose the uncurrying
process in three main parts. The function Υ∗ initializes and finalizes the
procedure.

Definition 64. Υ∗ :: CB → CB

Υ∗ (f |(g)) = let f ′ be Υ((f |(g)), [], []) in
h ◦ g′, if f ′ ≡ (γ(h))\(g′)
f ′, otherwise

Υ∗ f = f

If the input is an application term, of the form (f |(g)), it is sent to the
Υ procedure, defined below, which in turn is initialized with two empty

8This is what actually Σ computes. The initial item f : a/(b ⊗ c) is be added by default.
9Observe that the meta-level function application, (g f), is distinct from object-level

application, f (g).

110 CHAPTER 3. AUTOMATED REASONING

lists. If the term returned by the Υ subroutine is of the appropriate form, Υ∗

applies the rewrite rule in example 3.4.
The main normalization of the uncurrying function is defined by the fol-
lowing clauses. We call the list gs of Υ(f |(g), gs, hs) mainACB-list and hs,
auxiliaryACB-list.

Definition 65. Υ :: (CB, [ACB], [ACB])→ CB

Υ(f |(g), gs, gs′) = Υ(f , (λh.h|(g′) : gs), gs′) where g′ = Υ∗ g

Υ(σ/(f), (λh.h/(gi) :λh.h/(gk) : gs), gs′) = Υ(f , (λh.h/(gi ∗ gk) : gs), gs′)

Υ(σ\(f), (λh.h\(gi) :λh.h\(gk) : gs), gs′) = Υ(f , (λh.h\(gk ∗ gi) : gs), gs′)

Υ(ι(f), (g : gs), gs′) = Υ(f , gs, (g : gs′))

Υ(ε(f), gs, (g : gs′)) = Υ(f , (g : gs), gs′)

Υ(f , gs, []) = fold f gs

Once the auxiliary list of ACB-terms is exhausted, and no other instance
pattern is applicable, we may fold back the input term.

Definition 66.

fold :: CB → [ACB]→ CB
fold f [] = f
fold f (g : gs) = fold (g f) gs

Consider the following example. We want to prove that given the arrows
f : d/(a ⊗ (b ⊗ c)), g1 : a, g2 : b and g3 : c, we can derive f /(g1 ∗ (g2 ∗ g3)) : d
without using the product rule, but instead the currying-uncurrying symmetry
as defined above. We proceed along the following steps:

1. Currying of the assumptions. We assume that the only arrow return-
ing a non empty list is f : d/(a ⊗ (b ⊗ c)). Σ(f : d/(a ⊗ (b ⊗ c))) gives

{ σ/ f : d/∗(b ⊗ c)/∗a,

ισ/εσ/ f : d/∗c∗/b∗/a }

2. Proof by means of cancellation schemes only. We write f ′ for ισ/εσ/ f :

f ′ : d/∗c/∗b/∗a g1 : a
f ′/(g1) : d/∗c/∗b g2 : b

(f ′/(g1))/(g2) : d/∗c g3 : c
((f ′/(g1))/(g2))/(g3) : d

3.10. FROM AB⊗ TO AB 111

3. Uncurrying of the output term ((ι(σ/(ε(σ/ f)))/(g1))/(g2))/(g3). We as-
sume stage 0 has estracted all the argument terms (first line of the
function Υ), and we look only at the operation of recomposition of the
structure.

Input MainACB’s AuxiliarACB’s

0 ισ/εσ/ f [λh. h/(g1), λh. h/(g2), λh. h/(g3)] []

1 σ/εσ/ f [λh. h/(g2), λh. h/(g3)] [λh. h/(g1)]

2 εσ/ f [λh. h/(g2 ∗ g3)] [λh. h/(g1)]

3 σ/ f [λh. h/(g1), λh. h/(g2 ∗ g3)] []

4 f [λh. h/(g1 ∗ (g2 ∗ g3))] []

4. (λh.h/(g1 ∗ (g2 ∗ g3)) f) = f /(g1 ∗ (g2 ∗ g3)).

5. Mapping f /(g1 ∗ (g2 ∗ g3)) to a proof tree gives the following result.

f : d/(a ⊗ (b ⊗ c))
g1 : a

g2 : b g3 : c
g2 ∗ g3 : b ⊗ c

g1 ∗ (g2 ∗ g3) : a ⊗ (b ⊗ c)

f /(g1 ∗ (g2 ∗ g3)) : d

We give another example to make more clear the way curry and uncurry
work. Assume the process involves f : d/((a ⊗ b) ⊗ c) and g1 : a, g2 : b and
g3 : c.

1. Currying of the arrow f : d/((a ⊗ b) ⊗ c) would give the following set.

{ σ/ f : d/∗c/∗(a ⊗ b),

σ/σ/ f : d/∗c/∗b/∗a }

2. Although the formula occurring in σ/(σ/(f)) : d/∗c/∗b/∗a is the same
as the one of the previous example, the term is different and the
normalization would run as follows.

Input MainACB’s AuxiliarACB’s

0 σ/σ/ f [λh. h/(g1), λh. h/(g2), λh. h/(g3)] []

1 σ/ f [λh. h/(g1 ∗ g2), λh. h/(g3)] []

2 f [λh. h/((g1 ∗ g2) ∗ g3)] []

112 CHAPTER 3. AUTOMATED REASONING

3. And the term f /((g1 ∗ g2) ∗ g3) would project the original structure.

f : d/((a ⊗ b) ⊗ c)

g1 : a g2 : b
g2 ∗ g3 : a ⊗ b g3 : c

(g1 ∗ g2) ∗ g3 : (a ⊗ b) ⊗ c
f /((g1 ∗ g2) ∗ g3) : d

While we proved in proposition 10 that the curried variant G′ of an AB⊗

grammar G generates the same terminal language as G, we now state the
equivalence between the uncurrying of a derivation in G′ the corresponding
derivation in G.

Proposition 11. Let G = 〈Vt, s,Lex,AB⊗〉 be given. Let G′ = 〈Vt, s,Lex ∪
Lex′,AB〉, where

Lex′ = { f ′ : w→ a′ | f : w→ a ∈ Lex, f ′ : a′ ∈ Σ(f : a) }

Then, G generates f : ws → s if and only if G′ generates f ′ : ws → s such
that Υ∗(f ′) = f .

Proof. From proposition 10, we know that G and G′ are equivalent. Thus,
we have to prove that Υ and Υ∗ are correct. We always consider only one
of the two slashes, the other being symmetric.

1. Assume that the Υ normalization is in stage m below.

m ι(f) (g : gs) hs

m + 1 f gs (g :hs)

Then, if g : a, then ι(f) : c/a for some formula c such that c contains a
subformula z/∗y/∗x obtained from a subformula z/(x⊗y) by application
of Σ. Therefore, g is not in its original position and some of the gs
should be restructured. Thus, we postpone the consumption of g by
moving it to the auxiliary list hs in stage m + 1.

2. Assume that the Υ normalization is in stage m below.

m ε(f) gs (g :hs)

m + 1 f (g : gs) hs

Then, if g : a, then ε(f) : c for some formula c such that f : c/a (see
definition 61). Thus that is the point in which g should be restored
among the arguments. We move it back to the main argument list in
stage m + 1.

3.11. PARSING APPROACHES FOR LAMBEK SYSTEMS 113

3. Assume that the Υ normalization is in stage m below.

m σ/(f) (g : g′ : gs) hs

m + 1 f (g ⊗ g′ : gs) hs

Then, if g : a and g′ : b, then σ/(f) : c/∗b/∗a where f : c/(a ⊗ b). Thus f
would have consumed g ⊗ g′, where σ/(f) consumed first g′ : b and
then g : a. Hence, in stage m + 1, we replace the first two terms of the
main list with a new term which is the product of the two.

4. After scanning all occurrences of such operators in f ′, the auxiliary
list will become empty, and the main list will contain all arguments of
the original term f from the last to the first. Hence the fold procedure
applies. Observe also that the operator γ, if it appears, will be the
most external one. Thus its restructuring operates in the final stage,
in the main function Υ∗.

�

3.11 Parsing approaches for Lambek systems

Lambek style categorial grammars are intrinsically richer than basic cate-
gorial grammars. As we said before, the great difference is that while basic
categorial systems only compose larger structures from simpler ones (as CF
grammars) Lambek grammars may also decompose complex structures into
simpler ones.

In this chapter, we how to regiment the composition rules by means of
indices. On the other hand, the introduction rules of Lambek systems

Γ, b→ c
Γ→ c/b

a, Γ→ c
Γ→ a\c

with Γ , ε, do not seem to have a clear indexed counterpart.
An attempt of applying chart methods to hypothetical reasoning of

Lambek calculi is [König, 1994]. However, this “method requires rather
complicated book-keeping”10.

In automatic proof search for Lambek style grammars, one often adopts
a cut-free axiomatization of the underlying logic. Then, the proof of a
sequent may consist in reaching axioms by forward application (that is,

10[Hepple, 1999]

114 CHAPTER 3. AUTOMATED REASONING

from conclusion to premises) of each rule of the calculus. Examples of such
approach, also called goal directed proof search, can be found in [Moortgat,
1988], [Hendriks, 1993] and in [Andreoli, 1992] within the broader field of
linear logic, see also [Moortgat, 1997b]. However, we should mention that
unless the underlying logic is associative, these approaches require the input
sequent, the goal, to be already assigned a structure to begin with. Secondly,
one may immediately notice that the conclusion-to-premises approach is
not sound: although it guarantees that a solution can be found, if it exists, it
encounters also several non-valid sequents along the process. For example,
the following is a possible result of applying, conclusion-to-premises, the
left rule for \ of the sequent calculus11:

a/(b\a)→ b a→ a
a/(b\a), b\a→ a

Observe that there is no type invariant (as the balancing constraints of [van
Benthem, 1991, Moortgat, 1988]) preventing the occurrence of a/(b\a)→ b.

Other approaches to parsing with Lambek grammars can be found in
the literature. [Finkel and Tellier, 1996] formulate a CYK style algorithm
for the product-free associative Lambek calculus. Their method is based on
the algorithm in [Pentus, 1993] for the conversion of a Lambek grammar
into a CF grammar. The recognition algorithm is cubic on the length of the
input string, although the grammar conversion results in “a long process”
and “complicated”, as the authors admit. Indeed, Pentus’ translation is
exponential on the size of the input Lambek grammar, and this may have
serious consequences for the recognition procedure itself.

Another approach is the one of [Hepple, 1996, 1999] based on a method
of first-order compilation. This method “involves excising the subformulae
that correspond to hypotheticals, leaving a first-order residue. The excised
subformulae are added as additional assumptions”12. As the one of König,
Hepple’s approach constrains the use of “hypotheticals” through a rather
complicate mechanism of indexing and index sharing. This mechanism
allows then the application of standard parsing techniques (viz. Earley
style parsing) to Lambek grammars.

11The rule we are referring to is usually presented as follows:

∆→ b Γ[a]→ c
Γ[(∆, b\a)]→ c

12[Hepple, 1999]

3.12. CONCLUSION 115

Other parsing algorithms have been based on proof nets. [Morrill, 1996]
designs CYK style parsers for proof nets for the Lambek calculus (associa-
tive and non-associative). [Moot, 2002] is undoubtedly the most extensive
study of linguistic applications of proof nets. This work addresses the en-
tire multi-modal setting from the proof net perspective and proves that if
the structural rules are linear and non-expanding (the shape commonly
required for natural language analysis) recognition is P-space complete.

Most of the works discussed briefly in this section have been designed
for the associative Lambek calculus. Nowadays, it is not surprising that they
are not polynomial, as we know from [Pentus, 2006] (circulated before as
[Pentus, 2003]) that the calculus of [Lambek, 1958] is NP-complete. A bet-
ter situation holds for other fragments of the Lambek calculus. [Savateev,
2006] proves that sequents of the unidirectional associative Lambek calcu-
lus can be recognized in cubic time. Instead, [de Groote, 1999, de Groote
and Lamarche, 2002] prove that two-formula sequents of non-associative
Lambek calculus (that is sequents whose antecedent structure is expressed
through the branching of products) can be recognized in polynomial time.
[Buszkowski, 2005] and [Buliśka, 2006] extend this result to structured se-
quents of NL enriched with non-logical axioms (and empty antecedent in
the work of Buliśka).

A common feature of most of the approaches mentioned before is that
the parsing process is divided in two main components: a grammar prepro-
cessing module, ‘simplifying’ the structure of syntactic categories, and an
actual parsing module, operating on the simplified categories and imple-
menting (some variant of) some traditional context-free parsing algorithm.

In the next chapters, we will follow this approach in implementing an
efficient grammar preprocessing module for grammars based on the non-
associative Lambek calculus. This module will allow the application of
the parsing systems discussed in this chapter to non-associative Lambek
grammars with product.

3.12 Conclusion

This chapter presents parsing methods for AB⊗ grammars based on the
CYK method. We proved that the recognition procedure works in cubic
time as its context-free counterparts. Parse trees instead can be extracted
from the parse forest in time proportional to the length of the input string.
We have also shown that the product rule is dispensable, in the sense that
we can obtain an AB⊗ deduction by exploiting the symmetry that we called

116 CHAPTER 3. AUTOMATED REASONING

currying and uncurrying.
In chapter 5, we will show how to extend the methods presented here

to grammars based on NL.

Part II

The Non-associative Lambek
Calculus

117

Chapter 4

A Case Study: Cliticization

In this chapter, we apply the the tools and techniques formally presented
in chapter 2 to linguistics and examine some characteristic phenomena of
Italian syntax.

Our analysis is primarily concerned with the exploration of the expres-
sive power of the type-logical setting in application to specific language
phenomena and does not mean to be exhaustive. On the other hand, we
hope to make more concrete many of the things abstractly discussed in the
previous chapters and lay the ground for further analysis.

We will examine the phenomena of cliticization and so called clitic left
dislocation (CLD) from a base-logical perspective.

Clitics are atone pronouns. In Italian, for instance, la, gli, si, ne as in

(4.1) veder
to see

-la
her

to see her

(4.2) gli
to him

parla
he speaks

he speaks to her

and so forth, are clitic pronouns. Syntactically, clitics attach tightly to the
verb, nothing being allowed to intervene between a clitic and its ‘host’. We
use the star notation for ungrammaticality.

(4.3) *gli
to him

non
not

parla
he speaks

119

120 CHAPTER 4. A CASE STUDY: CLITICIZATION

(4.4) *gli
to him

gentilmente
gently

parla
he speaks

In Italian they precede a finite tense verbal head and follow a non finite one.
If more than one, we have a, so called, cluster. In that case clitics appear in
a fixed order.

(4.5) te
to you

lo
it

racconto
I tell

I tell it to you

(4.6) *lo
it

te
to you

racconto
I tell

Clustering is also subject to further morphological constraints, which we
will partially illustrate in section 4.2.1 and we refer to Monachesi [1999] for
a more articulated analysis of these aspects. As pronouns, they saturate an
argument positions. Nevertheless, their occurrence does not exclude the
possibility of the co-occurrence of (one or more) full noun phrases, each
concordant with one of the clitics, to the left and/or right of the cliticized
clause.

(4.7) Mario,
Mario

lo
him

ho
I have

visto
seen

ieri
yesterday

I have seen Mario yesterday

By clitic left dislocation (CLD) is meant the co-occurrence, typical of Romance
languages, of a left extraposed constituent and of a clitic pronoun coindexed
with it. After cliticization, a left peripheral position is made available for
a dislocated phrase. Since the clitic, as a pronoun, saturates an argument
position of the verb, the dislocated phrase is optional. Nonetheless this
optional position is licensed only after cliticization has taken place. The
character of ‘licensed optionality’ of the extraposed constituent, also called
satellite, has to be made explicit in the structure of the categories involved
in the construction. We will show how the phenomenon goes beyond the
resource sensitive regime of type-logical grammar, violating the relevance
constraint and we present several options to accommodate it into the sys-
tem. We will discuss the limits and advantages of various treatments, some
of which have been developed within the categorial literature (see, in par-
ticular, Hendriks [1999], Sanfilippo [1990]).

4.1. INFORMATION STRUCTURE 121

4.1 Information Structure

The research field we are going to explore is that of so called information
packaging (IP for short), also known as information structure: an area of
linguistic research which lies in between syntax and prosody. In the theory
of IP developed in Vallduvi [1990], linguistic information is divided into
two components: the focus which the only obligatory part which carries
new information, and ground. It is helpful to look at such phenomena in
dialogue rather than in simple sentences. For example, the partition focus-
ground can be exemplified in the following short exchange where, for the
answer (A), we white the focus in italic and the ground in  .

(4.8) Q: Who did you see?

A: I Mario.

The ground is optional (one may just reply Mario, an all focus answer) and
divides further into link (which we write in boldface) and tail.

Q: (4.9) Quando
When

hai
have you

visto
seen

Mario?
Mario

When did you see Mario

A: (4.10) Mario,    ieri

I have seen Mario yesterday

In terms of information, links perform an ‘ushering’ role1: they have the
informational role of signaling to the hearer, in Vallduvı́’s terminology, where
the new information, provided by the focused part of the sentence, has to
be stored, in which ‘file card’, assuming the mental model of the context
is actually structured as in Heim [1983]. Tails signal to the hearer how the
information must fit into his knowledge store, in particular if the focused
information has to replace some preexisting information. In languages like
Catalan or Italian, links are realized sentence initially and accompained by
cliticization of the corresponding verbal arguments, as we can see from the
previous example. In English they are expressed through the L+H* accent
of Pierrehumbert and Hirshberg [1990]. Tails are ‘clitic right dislocated’

1Vallduvı́ adopts Heim’s file change semantics (FCS), and therefore a locational theory of
context. The non-locational theory of Hendriks appeals to non-monotonic anaphora, see
Hendriks and Dekker [1998]. We continue to speak about locations, presently, as a good
metaphor.

122 CHAPTER 4. A CASE STUDY: CLITICIZATION

noun phrase expressions in Italian and Catalan, and result unaccented in
English.

Several logical approaches to the syntax and prosody of IP have been
proposed in recent years. A common aim of approaches developed within
different traditions of categorial grammar is the attempt of capturing, through
the lexicon, constituent structures which are ‘odd’ with respect to traditional
syntactic constituency.

Most notably, the approaches developed in the combinatory categorial
grammar (CCG) framework consider the more flexible criterion for syntactic
structure arising from the combinatorial system2 as a characterization of
prosodic constituency: all prosodically possible branchings are generated
in CCG derivations and the notion of prosodic constituent is claimed to
correspond with that of syntactic constituent. The analyses of [Steedman,
2000b,a] are focused on the prosodic realization of IP, and further extensions
are still needed in order to apply CCG to languages like Italian or Catalan
which realize IP through the syntax.

Prosody is a central concern also for the approaches rooted in the
type-logical and model-theoretic tradition, we mention Oehrle [1988], Mor-
rill [1994], Moortgat [1997a], Moortgat and Morrill [1991],Hendriks [1999]
among others. These works adopt and refine the setup firstly introduced
in Oehrle [1988]: linguistic resources are conceived as objects characterized
by a prosodic, a syntactic and a semantic dimension and the deduction of a
complex expression requires well-formedness of each component.

Hendriks [1999] provides a type-logical account of IP in Catalan in which
verbal morphology and clitic pronouns are functors taking the focused
part of the clause as argument and leaving esternal argument positions for
dislocated phrases. We will discuss Hendrik’s approach in more detail in
section 42 and we note here that the introduction of such external positions
by elements internal to the core clause makes the role of dislocated phrases
that of obligatory arguments of the core clause.

An original logical approach to cliticization is the one of [Casadio and
Lambek, 2001], see also [Casadio, 2002]. This work is based on the system
of pregroups recently developed in [Lambek, 2001, Casadio and Lambek,
2002]. We will see examples of their treatments in section 4.1.2, because
nowadays several analyses of specific linguistic phenomena are being de-
veloped within the pregroups setting and because pregroups very similar
to the type-logical systems that we are studying.

2And its analysis of ‘non-constituent’ coordination.

4.1. INFORMATION STRUCTURE 123

A common feature of all the logical approaches to information structure
is the use of higher order categories, lexicalized as intonational boundaries or
empty (phonetically null) elements. The combinatorial analyses of [Steed-
man, 2000b,a] make use of higher order types in order to constrain the num-
ber of the accessible structures for a derivation in the flexible constituency
regime made available by the combinatory categorial system. The higher
order functors of Hendriks, instead, precompile permutative operations (in
the case of Catalan at least) on a basic unassociative, head dependent, calcu-
lus. Thus, while the higher order types of Steedman are restrictive devices,
those of Hendriks are permissive in that they allow structures which would
not be generated through the basic lexical assignments.

4.1.1 Hendriks’ approach

Hendriks addresses problems of Information Structure from a model theo-
retic perspective, in a number of papers published between 94 and 99, (see
Hendriks [1999] for a collection of these works). His system addresses both
the syntax, the prosodic phonology and the semantics of IP. In the present
section we sketch some features of his typelogical treatment of the syntactic
realization of IP in Catalan adopting data and terminology from Vallduvi
[1990].

In Hendriks [1999], the analysis of the prosodically dominant English
and syntactically dominant Catalan is developed on the basis of the de-
pendency calculus of Moortgat and Morrill [1991], without structural rules.
The dependency calculus (DC for short) has been developed as an headed
variant of NL. The product ‘⊗’ operator is split into a left dominant ‘⊗l’ and
a right dominant ‘⊗r’. The resulting structures are ‘headed trees’:

binary trees in which each mother node has a distinguished
daughter: either the left or right subtree it immediately domi-
nates is designated as head, and hence the other as non-head, or
dependent.

The headed trees are used to encode metrical trees in Moortgat and Morrill
[1991] and in Hendriks [1999] to deal with subsegmental phonology.

Lexical entries are triples formed by prosodic category, syntactic cate-
gory, and semantic term. Prosodic terms are interpreted through a prosodic
substitution function which unfolds the headed tree which is the antecedent
of the prosodic deduction. The substitution splits the tree, along the dom-
inance relations, in a dominant (focused) part and an unaccented and/or

124 CHAPTER 4. A CASE STUDY: CLITICIZATION

topical part (‘forgetful mapping’)3. All focus sentences are assumed to be
the default case. Morphology and cliticization in Catalan and intonational
boundaries in English represent what Hendriks calls defocusing operators
which license informational partitions different from the default all focus
one. These defocusing operators are higher order functors which perform
dominance and word order transformations over the default structures.

As an example, we present the syntactic derivation of a Catalan link-
focus-tail sentence:

(4.11) L’
The

amo
boss

l’
it

odi
hate

-a
-s

el
the

broquil.
broccoli.

The boss hates the broccoli.

The following dependency lexicon, from [Hendriks, 1999], accounts for the
correct distribution of the informational component within the left dislo-
cated sentence, as the reader can easily verify.

Example 42.

l′ → n/rc
amo → c
el → n/rc
broquil → c
l′ → ((n\rs)/ln)/r((n\rs)/rn)
odi− → (s/rn)/rn
−a → ((s/rn)/rn)\l((n\rs)/rn)

After spell out of the tree, the prosodic term results in the following,
where italics denote the H* pitch accent (fuocus) on the sillable, and 
 denote unaccented items (ground).

Prosody L’  ’ odi  

4.1.2 Clitics and pregroups

Pregroups have been introduced in [Lambek, 2001]. A pregroup is

3The process reaches the subsegmental level in delivering the H*, L+H* pitch accents
aligned with the strongest syllable in their domain and so providing a solution to the
problem of alignment.

4.1. INFORMATION STRUCTURE 125

an ordered monoid in which each element a has a left adjoint al

such that:
ala 6 1 6 aal

and a right adjoint ar such that:

aar 6 1 6 ara

[Casadio and Lambek, 2001, Casadio, 2002] propose a logical approach
to cliticization based on the system of pregroups. If we write the partial
ordering 6 as→, as we do in type-logical grammar, the pregroup system is
defined as follows.

Definition 67. The pregroup system.

Reductions: ala→ 1 aar
→ 1

Expansions: 1 → aal 1 → ara

The process of recognition of a list of formulas consists in a series of con-
traction which finally ends in 1. To quote [Casadio and Lambek, 2001]:

Fortunately, for the propose of sentence verification the expan-
sions are not needed, but only the contractions [. . .]

Let us see how the pregroups system applies to linguistic analysis. We use
the⇒ rewrite symbol in a way parallel to CF grammars, that is Γ[∆]⇒ Γ if
∆→ 1 in the pregroup.

Example 43. Pregroup lexicon.

ama → snl

raconta→ snlnl

Mario → n
lo → snllsl

te → snllsl

Derivation of ama Mario:
snl n⇒ s

Derivation of lo ama:
snllsl snl

⇒ snllnl
⇒ s

126 CHAPTER 4. A CASE STUDY: CLITICIZATION

Derivation of te lo racconta:

snllsl snllsl snlnl
⇒ snllnllnlnl

⇒ snllnl
⇒ s

We do not enter here the details of cliticization in pregroup grammars
and refer the reader to [Casadio and Lambek, 2001, Casadio, 2002] for
an analysis of a wide range of Italian constructions involving cliticization.
These analyses also account for the ordering constraints among cases, which
we oversimplified. Observe, however, that we assigned ‘higher order’
types to clitics, as it is customary to treat pronouns in type-logical grammar.
Then, the cluster te-lo is easily solved on the basis of the associative regime
underlying pregroups grammar. [Degeilh and Preller, 2005] is another
interesting work on pregroups which addresses also computational issues.

4.2 Italian clitic cluster and core clause

In this section, we look at Italian and we attempt to develope a grammar
for clitic pronouns and the structure of the core clause. By core clause, we
mean the complex constituted by the clitic cluster, the verb and non clitic
arguments of the verb. For simplicity we will not take into consideration
the subject of the verb nor nominative clitic, if any.

As we said before, if clitic pronouns occur, they attach tightly to the
verbal head. If the verb is finite they precede it, if it is non finite they follow
it. The occurrence of one or more clitics constitutes a cluster. The clitics
in the cluster have a rigid order, which depends on their case. In order
to provide a mathematical generalization, we assume that the argumets of
the verb also occur in a fixed order, and that different orders obey other
informational reasons which we do not investigate any further.

In the next section we introduce the abbreviations for case. This is
meant to provide an informal notation which may help to identify their
linear ordering and to speak about full noun phrase and clitic arguments of
the verb. Our generalization can be anticipated as follows.

Proposition 12. The linear order of the clitic arguments of a verb v is the
mirror image of the order of the full arguments of v.

On the basis of this generalization, which is confirmed by the examples
that we consider4, a general treatment for clitic clustering and core clause

4Although we are not considering optional clitics as the reflexive and the genitive.

4.2. ITALIAN CLITIC CLUSTER AND CORE CLAUSE 127

structure is proposed. The proposal generalize over the number of argu-
ments of the verb, those which are cliticized, and those which are full noun
phrases. This approach boils down to the recoursive definition of a macro
over structures of an indefinite number of arguments. Of course, lexical
instances of this macro are bound by the number of arguments of a verb
and by the number of clitics present.

4.2.1 Notation for cases

Clitics are marked for case, we use the following abbreviations for identi-
fying the case:

O Accusative Direct object
I Dative Indirect object
L Locative Location

On full noun phrase arguments, case is expressed by prepositions, while
clitics are morpho-phonologically marked for case.

The category that we will assign to the verb will contain no information
about the case. Indeed, we want to identify a natural order of the verbal argu-
ments that can be considered as the default case. The examples that follow
are based on the lexicon given in 71. We represent in (b) congruous answers
to the questions in (a). The structural adequacy of the answers is presented
in terms of brackets. These structures show the syntactic outscoping of the
focused element. The cases in (c) (if any) represent cliticized answers to
the questions in (a). In (d) we give instances of left adjunction putting the
extraposed constituent in square brackets.

(4.12) a. Cosa fa?
What does he do?

b. mette ((una moneta) ((in tasca) (a Mario)))
(he) puts a coin in the pocket to Mario.

b’. put (O (L I))

(4.13) a. A chi mette ((una moneta) (in tasca))?
To whom does he put a coin in the pocket?

b. (mette ((una moneta) (in tasca))) (a Mario)

b’. (put (O L)) I

c. (((ce la) mette) (a Mario))

c’. (((L O) put) I)

128 CHAPTER 4. A CASE STUDY: CLITICIZATION

d. [(una moneta) (in tasca)] (((ce la) mette) (a Mario))

d’. [O L] (((L O) put) I)

(4.14) a. Dove mette ((una moneta) (a Mario))?
Where does he put a coin to Mario?

b. (mette ((una moneta) (a Mario))) (in tasca)

b’. (put (O I)) L

c. (((glie la) mette) (in tasca))

c’. (((I O) put) L)

d. [(una moneta) (a Mario)] (((glie la) mette) (in tasca))

d’. [O I] (((I O) put) L)

(4.15) a. Cosa mette ((in tasca) (a Mario))?
What does he put in the pocket to Mario?

b. (mette ((in tasca) (a Mario))) (una moneta)

b’. (put (L I)) O

c. (((gli ci) mette) (una moneta))

c’. (((I L) put) O)

d. [(in tasca) (a Mario)] (((gli ci) mette) (una moneta))

d’. [L I] (((I L) put) O)

(4.16) a. Chi mette ((una moneta) ((in tasca) (a Mario)))
Who puts a coin in the pocket to Mario?

b. Maria (mette ((una moneta) ((in tasca) (a Mario))))

b’. (put (O (L I)))

c. (((gli ce) la) mette)

c’. (((I L) O) put)

d. [O (L I)] (((I L) O) put)

Vallduvi [1990] and Hendriks [1999] claim that the relative order of the links
(left adjoints) is not relevant. However, in question answer pairs like the
previous ones, we find it preferable to maintain the order of the adjoints in
the answer as it appears in the question.

What looks clear is that a case ordering can be identified for full ar-
guments of the verb and especially for clitic arguments. We propose the
following generalization.

4.2. ITALIAN CLITIC CLUSTER AND CORE CLAUSE 129

Proposition 13. Case ordering for Italian.

O ≺ L ≺ I full arguments
I ≺ L ≺ O clitic arguments

4.2.2 Formal treatment

We present here a categorial treatment of cliticization in NL that formalizes
the discussion in the previous sections.

Definition 68. Let us define a sequence Nm, of m occurrences of the category
n as follows:

N1 = n
Ni = n ⊗Ni−1.

We represent a sentential functor looking for m arguments of category
n to the right to give a sentence as Sm. So

Sm = s/Nm

For example, S1 ≡ s/N1 ≡ s/n. For the semantics, we also write:

π1 = π

πn = ππn−1

π′1 = π′

π′n = π′π′n−1

where π is the first projection and π′ the second. Summing up, we have
adopted the following convention.

Definition 69. Multi-argument verb5.

s/Nn Sn λx.(((S′n π′n−1 x) ππ′n−2 x) . . . π x)

A verb subcategorizing for three arguments will have, according to
proposition 13, as first argument an accusative noun phrase, as second a
locative phrase and as third an indirect object. On the other hand, the
bare typelogical structure of the sentential functor expresses only a series
of n’s. Thus, we assign S1 to both talks and love and leave open the issue

5We remark that we are not considering the subject, for simplicity.

130 CHAPTER 4. A CASE STUDY: CLITICIZATION

of expressing this kind of selectional restrictions (what can easily be done
through subcategorizational devices in the style of [Bernardi, 2002]).

We use the macro C := s/(s/n) for clitics. A clitic cluster is a complex
constituted by one or more clitics. We use the macro Ci for clusters of i
clitics.

Definition 70. Clitic macro.

C1 = C

Cn = Cn−1 ⊗ C

Observe that while the sequence Ni is right branching, clitic clustering
is left branching. Indeed, this supports our claim that the structure of full
arguments of the verb is mirrored by the clitic arguments. We propose the
following lexicon.

Definition 71. Lexicon.

LEX CAT TERM

la s/(s/n) λz.(z xi)
gli s/(s/n) λz.(z xi)
ci s/(s/n) λz.(z xi)
infila S3 ≡ s/(n ⊗ (n ⊗ n)) λx. f ill′ π′2x ππ′x πx
una n/c ∃

in n/c λx.x
a n/c λx.x
moneta c coin′

tasca c pocket′

4.2.3 Clitic attachment

In type-logical grammar, clitic attachment is usually enforced by special
multi-modal postulates. [Kraak, 1995] presents a sophisticated method for
ensuring that no material occurs between the clitic pronoun and the verbal
head. The method of [Kraak, 1995] can be extended to Italian with minor
modifications. In particular in the case of Italian the analysis should account
for the two positions in which the clitic may occur: preverbal, if the verb is
finite, and post-verbal if the verb is non-finite.

We present here a simple method for achieving this result without the
use of structural postulates. Our treatment will be based on an assignment
to the empty string, which we denoted ε in the previous chapter. As we

4.2. ITALIAN CLITIC CLUSTER AND CORE CLAUSE 131

discussed before, the assignment of syntactic categories to the empty word
is a common strategy in dealing with IP related phenomena. Furthermore,
while postulates increase the generative power and the complexity of the
logic, assignments to the empty word is harmless: it does not increase the
generative power, nor the complexity of the logic. Thus, we develop a
base-logical theory of clitic attachment.

The following generalized assignment captures the attachment of a clitic
cluster Ci of i clitics to the left of a sentential functor Sn looking for n
arguments to the right, providing a sentential functor looking for n − i
arguments to its right. It is understood that this macro type will have
lexical instances only for n > i and that n will be bound for any natural
language grammar6.

Definition 72. Finite clitic attachment.

LEX CAT MACRO
ε (Ci ⊗ Sn)\Sn−i CCi,n

We may observe that if i = n, then the output is a full sentence S0 = s
whose arguments are all saturated by clitic pronouns. If i < n, then S0 will
have other n − i non clitic arguments. Consider the following example.

Example 44.

gli→ C ce→ C

C2 → C2 lo→ C
C3 → C3 in f ila→ S3

C3 ⊗ S3 → C3 ⊗ S3 ε→ (C3 ⊗ S3)\S3

(C3 ⊗ S3) ⊗ CC3,3 → s
(((gli ce) lo) in f ila)→ s

gli→ C ci→ C

C2 → C2 in f ila→ S3

C2 ⊗ S3 → C3 ⊗ S3 ε→ (C2 ⊗ S3)\S1

(C2 ⊗ S3) ⊗ CC2,3 → S1

il→ n/c libro→ c
n/c ⊗ c→ n

((C2 ⊗ S3) ⊗ CC2,3) ⊗ (n/c ⊗ c)→ s
((gli ci) in f ila) (il libro)→ s

6Indeed, we may even state that n will never be greater that 3, as one can hardly find
verbs with more than 4 arguments.

132 CHAPTER 4. A CASE STUDY: CLITICIZATION

The case of postverbal clitics with infinitive verbal heads is dealt as
follows:

Definition 73. Non-finite clitic attachment. Let i be the primitive syntactic
category of infinitivals and In be defined as Sn before. We have the following
assignment for post-verbal cliticization.

LEX CAT MACRO
ε (In ⊗ Ci)\In−i ICi,n

Example 45.

in f ilar→ I3

gli→ C ci→ C

C2 → C2

I3 ⊗ C2 → I3 ⊗ C2 ε→ IC2,3

(I3 ⊗ C2) ⊗ IC2,3 → I1

il→ n/c libro→ c
n/c ⊗ c→ n

(in f ilar (gli ci)) (il libro)→ s

4.3 Clitic left-dislocation

As we saw in many examples from the previous sections, cliticization often
occurs in combination with left dislocation. Indeed, if a clitic fills a verb
argument, a full noun phrase, concordant under gender and number and
indeed coreferential to the clitic, may occur at the left or right periphery. We
only consider the case of the left periphery and limit our attention to what
such a co-occurrence means for a resource sensitive grammar formalism as
type-logical grammar. We refer to the bibliography given at the beginning
of the chapter for an analysis of dislocation from an IP perspective.

4.3.1 Redundant arguments

The most simple instance of the problem we are going to address can be
shown with the following example from Italian:

(4.17) Maria,
Maria,

la
her

am
love

-o.
I.

I love Maria.

We assume that the verb phrase amo is a syntactic object of category
s/n, the subject position being already occupied by the subject through

4.3. CLITIC LEFT-DISLOCATION 133

morphological composition of the stem ‘am-’ and the first person suffix ‘-o’.
The semantic term corresponding to it is λx.(love′ x S′), where S′ represents
informally the speaker.

The proper name Maria is assigned the type n, so that amo Maria is a full
sentence s whose ‘meaning’ is love′ M′ S′.

Clitic pronouns are expressions of type ((e → t) → t) represented in
the semantics by the terms λP.(P xi), which expresses the binding of a verb
argument position with a free variable xi.

Consider the following example lexicon

Example 46. Lexicon:

Maria n M′

amo s/n λx.(love′ x S′)
la s/(s/n) λP.(P xi)

With this assignments, the expression la amo is analyzed as s : love′ xi S′.
However, these lexical assignments do not allow to derive Maria, la amo as
an expression of type s, since the sequent

(4.18) n ⊗ (s/(s/n) ⊗ s/n)→ s

is not derivable. This sequent violates a basic character of the resource
sensitivity of type-logical grammar, namely the type balancing constraints
of van Benthem [1991]. This can be noticed from the fact that two n’s occur
in negative position but only one in a positive position.

4.3.2 Proposals

In Sanfilippo [1990] the phenomenon of CLD is approached within the
framework of Unification Categorial Grammar. The author claims that
clitics “satisfy the subcategorizational requirements of the verb”, but do
not “reduce the thematic domain of the verb”. Their semantic import
to the thematic structure of the verb consists in adding further featural
specifications “relative to the thematic entailments they instantiate and
postpone the discharge of such entailments”. The type-logical grammar
system of Hendriks [1999] is built according to these lines. As we saw in
example 42, agreement morphology and cliticization perform word order
and head dependency exchanges: the clitic is a functor which does not
saturate any argument of the verb, but performs the syntactic rearrangement
of the cliticized verb argument to a preverbal (or postverbal) position, where

134 CHAPTER 4. A CASE STUDY: CLITICIZATION

the dislocated constituent occurs. With some simplification, Hendriks type
for the clitic looks like the following:

(n\s)/(s/n) : λPλx.(P x)

The sequent corresponding to the example 4.17, Maria, la amo, is

(4.19) n ⊗ ((n\s)/(s/n) ⊗ s/n)→ s : love′ M′ S′

This lexical assignment expresses the dependency of the satellite from
the clitic in the category of the cliticized clause, n\s . The problem, then, is
that a cliticized clause is not a full s. So, unless we provide multiple lexical
assignments for the clitic, the optional status of the left extraposed phrase
cannot be expressed.

As an alternative, one could maintain the full argument type assignment
for the clitic and modify the type of the satellite to s/s.

(4.20) s/s ⊗ (s/(s/n) ⊗ s/n)→ s : M′ (love′ xi S′)

This gives the right result for the optionality of the extraposed phrase,
but does not express the dependency between the satellite and the clitic.
In the present case infact, the category of the satellite becomes that of a
sentential modifier and this is a rather odd result from the semantic point
of view as can be seen from the semantic representation arising with these
assignments.

Reinhart [1982] and Vallduvi [1990] theories of information packaging
assume that topics (or equivalently the links, depending on the terminology)
indicate the address in the mental knowledge store where the semantic
iterpretation of the sentence has to be located. In these theories, the semantic
import of a sentence with topic can be represented as a pair constituted of the
interpretation of the topic noun phrase and of the proposition which is the
interpretation of the sentence.

In categorial terms such a structured object could be obtained by requir-
ing, in particular contexts, the output sequent to be n ⊗ s rather that s. The
following sequent can in fact be proved in NL without any change to the
categories inolved.

(4.21) n ⊗ (s/(s/n) ⊗ s/n)→ n ⊗ s : 〈M′, love′ xi S′〉

Such a move is somehow what we need in order to balance the positive and
negative occurrences of n types in the sequent. We notice anyway that this
ouput type would admit non grammatical sentences, since it would license

4.3. CLITIC LEFT-DISLOCATION 135

the occurrence of an n to the left of any sentence. We can improve this
situation by admitting such an output only if the sentential term of the pair
contains a free variable: the semantic component of the grammar could
then capture the free variable occurring in the term via the well known
methods proper to dynamic semantics. However, such an approach is rather
intricate. We observe also that these lexical assignments do not express any
relation of dependence between the satellite and the clitic.

In order to express the clitic-satelite dependency, the category of the
clitic should express licensing conditions for the presence of the satellite.
In categorial terms this can be expressed by having the clitic a left looking
functor over n as output formula, for some formula b as right input, so
(n\a)/b. The fact that the clitic binds (and fully instantiate) an argument
position of the verb is expressed by being b a sentential functor looking on
the right for an argument of type n, namely (n\a)/(s/n). Now if we want
a cliticized clause to preserve the character of a fully instantiated sentence,
we cannot assume that a is the category s, as we discussed before in regard
to Hendriks account. However, if a is the category n ⊗ s, the output for a
cliticized clause is n\(n ⊗ s), which maintains the full instantiation of the
verb argument and is related to s via the scheme

λxλy.〈y, x〉 : a→ b\(b ⊗ a)

which holds in the pure logic of residuation.
Thus, assuming that the clitic is assigned the syntactic category (n\(n ⊗

s))/(s/n) and the semantic term λPλy.〈y, (P xi)〉 we have the following re-
sults. If the satellite does not occur, our output is something more specific
than an s:

(4.22) (n\(n ⊗ s))/(s/n) ⊗ s/n→ n\(n ⊗ s) : λy.〈y, love′ xi S′〉

Instead, if it does occur, we obtain the result in 4.21.

(4.23) n ⊗ ((n\(n ⊗ s))/(s/n) ⊗ s/n)→ n ⊗ s : 〈M′, love′ xi S′〉

4.3.3 Non-relevant reasoning

The problem exemplified in the previous sections is related to the structural
properties of the syntactic calculus. Type balancing is a deep constraint
of type-logical grammar, which reflects the fact that we can neither freely
add resources, nor use them more than once (Contraction) in the derivation
process. While various categorial approaches to pronouns and anaphora
appeal to contraction (see Jäger [2001]), that is multiple use of the same

136 CHAPTER 4. A CASE STUDY: CLITICIZATION

resource, the phenomenon of CLD seems to involve the addition of a re-
source which is not in itself strictly required, and so is not relevant, in the
sense of Relevant logic. In the case of CLD, a (clitic) pronoun and a noun
phrase antecedent are involved. But while in the case of anaphora we have
the antecedent playing its local role of noun phrase and a non local role of
pronoun antecedent, the noun phrase in CLD plays no active role in the
deduction. We notice, in particular, that if the clitic pronoun were an iden-
tity function (as in Hendriks’ approach), no step of contraction would be
required. If instead, we assign the clitic the full argument type, we find that
the satellite occuring in the root sequent is not required. In other words,
while in the case of anaphora a single resource accomplishes two roles, in
CLD two resources play one and the same role.

We can abstractly formalize the kind of reasoning involved in CLD, with
the following deduction which makes use of the weakening axiom a⊗b→ b.

n ⊗ (s/(s/n) ⊗ s/n)→ s/(s/n) ⊗ s/n
s/(s/n)→ s/(s/n) s/n→ s/n

s/(s/n) ⊗ s/n→ s
n ⊗ (s/(s/n) ⊗ s/n)→ s

Maria (la amo)→ s

4.3.4 A lexical solution

Although a multi-modal type-logical grammar may contain rules for linear
restructuring of the antecedent, it is quite rare to have rules of multiplication
or reduction of the resources. Usually, the lexical type assignment allows
to incorporate the non-linear forms structural reasoning which these rules
provide in more powerful logics. In chapter 2, we saw several such cases,
among which reflexivization performing an operation of multiple binding
and so a form of contraction (identification of two arguments). Another
one in the case of coordination, usually assigned the polymorphic category
(a\a)/a, in which two resources of the same type are consumed to produce
the same category of the arguments.

In many categorial approaches to information structure (see in particular
Steedman [2000b], Hendriks [1999]), the prosodic boundaries which mark
the edges of the phonological phrases are assigned lexical categories in
order to impose constraints on the prosodic structure (primarily expressed
in terms of branching) of the surrounding context.

In the context of CLD, the satellite constitutes a phrasal unit, separated
from the cliticized core clause by the LH% boundary tone of Pierrehumbert
and Hirshberg [1990].

4.3. CLITIC LEFT-DISLOCATION 137

In what follows, we make use of a lexical assignment for the LH%
boundary tone in order to solve the non relevant type equation discussed
before. The category assigned to the boundary will resolve the occurrence
of the clitic with that of the satellite. Since the prosodic boundary follows
the satellite, it will be present only if the satellite occurs. This allows us to
leave unchanged our primitive type assignments. The prosodic boundary
will perform the reduction of the number of resources and semantically will
provide the appropriate translation, in which the interpretation of the free
variable of the clitic is bound to the context provided by the satellite.

If we concern only with the semantics, the type of the boundary LH%,
for the present proposes, should be

(4.24) ((e→ t)→ t)→ ((e→ t)→ t)→ ((e→ t)→ t)

If we assume the first argument is the satellite, and the second the clitic the
following term would be appropriate for our proposes:

(4.25) λPλP ′λP.[(P ′ λx.(P λy.x = y)) ∧ (P ′ P)]

This term would give the following translation for our example sentence:

(4.26) [xi =M′ ∧ love′ xi S′]

An immediate syntactic instantiation of this type could be the following.

(4.27) LH% : (s/(n\s))\((s/(s/n))/(s/(s/n)))

which would anyway give rise to the structure

(4.28)
���

HHH

��� HHH

�� HH

Maria LH%
la

amo

This structure is still inadequate, since there is no evidence for left
branching for CLD. Moreover, as we saw, the clitic attaches tightly to the
verb host and forms with it a cliticized clause. The structure we want to
obtain should be the folowing:

138 CHAPTER 4. A CASE STUDY: CLITICIZATION

(4.29)
����

HHHH

�� HH

Maria LH%
�� HH

la amo

Such a tree can be obtained by uncurrying the previous assignment to
the boundary tone, that is by transforming it into the following type.

(4.30) LH% : (s/(n\s))\(s/((s/(s/n)) ⊗ (s/n)))

The lambda term associated with this category is given below.

(4.31) λPλQ.[(πQ λx.(P λy.x = y)) ∧ (πQ π′Q)]

Hence we obtain the following deduction:

(4.32) [xi =M′ ∧ love′ xi S′]

��
��

HH
HH

�� HH

Maria LH%
�� HH

la amo

This deduction is in accordance with our intuitions both on the syntac-
tic/prosodic side and on the semantic/pragmatic side. Indeed, it elegantly
solves the non-linear equations involved in the phenomenon of CLD in
type-logical grammar. We wish to emphasize in particular the simplicity of
this solution that relies entirely on the pure logic of residuation and on the
power made available by a categorial lexicon.

Such a treatment may be extended to more complex constructions, but
this is beyond the scope of this chapter which was meant to show that the
pure logic of residuation is a powerful system for linguistic analysis and
which can successfully be applied to complex linguistic phenomena.

4.4 Conclusion

In this chapter, we applied the non-associative Lambek calculus to linguistic
analysis. In particular, we examined the phenomenon of cliticization and
clitic left-dislocation. Our analysis relied upon all and only the tools of
the pure logic of residuation. This means that no one of our solutions

4.4. CONCLUSION 139

was dependent on structural postulates which increase the power of the
system, or on special stipulations. Instead, we opted for a strongly lexical
strategy, which involved assigning categories to empty words and prosodic
boundaries.

We presented several options for a type-logical approach to CLD. We
saw that in the phenomenon of CLD two lexical resources occur which
have only one logical role. This motivated our claim for the non relevant
reasoning involved in this kind of construction. Our proposal was to assign
to the LH% boundary tone which follows the satellite an higher order type
that solves the non linear type equation involved in CLD. In this respect, the
boundary plays an essential role in the derivation, as it reduces the number
of the resources involved and constrains the branching of the prosodic
structure. Although the introduction of tone boundaries in the lexicon is
partly questionable, due to the sub- and super-segmental character of prosodic
phonology, this step allowed us to give an elegant solution to a non linear
linguistic problem without abandoning the resource sensitive regime of NL.
In fact, all the resources involved in our analysis have been taken from
the lexicon and we have not changed the default assignment of the items
involved in the deduction of the simple cliticized clause.

140 CHAPTER 4. A CASE STUDY: CLITICIZATION

Chapter 5

Normal Derivations in NL

In this chapter, we present a recognition method for sequents of the non-
associative Lambek calculus based on the construction of normal derivations.

We start by limiting the discussion to two-formula sequents. The problem
we are going to deal with can be stated as follows.

- Given a sequent a → c, such that a, c ∈ F , how do we prove whether
`NL a→ c ?

The restriction to two-formula sequents indicates that the antecedent struc-
ture is given and expressed, here as in [de Groote, 1999], through the branch-
ing of the product formulas. It should be noted the difference between the
problem that we are going to address here and the recognition problem as
discussed in the previous chapter. Although the structure is already given,
recognition of two-formula sequents of NL represents a non-trivial problem.
In fact, the application of the rules of the calculus is non-deterministic, and
we cannot easily discard options, as these may become relevant at later
stages of the computation. Consider the following sequent.

(5.1) a/(c/b ⊗ b) ⊗ (c/b ⊗ b)→ a

Assume that as soon as we encounter c/b ⊗ b at the right of the main
connective, we apply the transition c/b ⊗ b→ c so that we replace c for that
occurrence of c/b⊗b in a/(c/b⊗b)⊗(c/b⊗b)→ a, obtaining a/(c/b⊗b)⊗c→ a.
At this point we cannot simplify any further. In fact, the sequent in 5.1
is itself an instance of the scheme x/y ⊗ y → x, and that replacement has
excluded the only possibility of reducing the input sequent. Of course, if we
had tried immediately to apply the pattern x/y ⊗ y→ x to that sequent, we
would have succeeded. However, this is not always possible, as embedded

141

142 CHAPTER 5. NORMAL DERIVATIONS IN NL

formulas may have to be reduced before, in order to make other external
patterns available for reduction.

In this chapter, we present a method for constructing derivations of two
-formula sequents. We will proceed as follows: we examine an important
result from [Kandulski, 1988] about the construction of normal derivations
in NL. Kandulski extended to NL the proof of the equivalence between non-
associative Lambek grammars without product and context free grammars
of [Buszkowski, 1986]. The normalization procedure used in these works
has interesting properties also from the computational perspective. We
provide a new method for constructing normal derivations in NL, adopting
ideas from the method of Buszkowski and Kandulski.

Our construction generalizes that of Kandulski in applying also to the
unary operators of [Moortgat, 1997b]. The procedure works bottom-up,
namely from the leaves to the root, and its operations are always simplifying
and goal oriented. These aspects guarantee termination and limit the non-
determinism of the rules. We interpret the task of proving a (two-formula)
sequent a → c as that of finding a formula b such that a and c ‘simplify’ to
b. The notion of simplification concerns the length of the formulas involved
and will be the central notion of the formal procedure. We will define two
forms of simplification (or contraction), one from left to right, which we
call reduction and one from right to left called expansion. The key intuition
behind our work is that patterns called expanding, such as the so called
lifting or co-application, are also simplifying, although the direction of the
simplification is the reverse of the arrow symbol.

The system that we are going to design presents similarities to the one
used in [Le Nir, 2004] for the compilation of a non-associative Ajdukiewicz
Bar-Hillel grammar without product from a non-associative Lambek gram-
mar without product. Indeed, our method allows to transform the compu-
tation of an NL grammar into the computation of an Ajdukiewicz Bar-Hillel
grammar with product by finite lexical extension, enabling thus to indirectly
apply the parsing methods discussed in chapter 3 to NL grammar. On the
other hand, the presence of product formulas makes our formulation capa-
ble of handling with full generality proofs of sequents whose structure is
given. We will see also that Le Nir method, discussed after definition 83
contains some mistakes.

In respect to Kandulski’s and Buskowski’s work, the normal derivations
constructed by our system are free from spurious ambiguity, as we will
prove in chapter 6.

5.1. ALTERNATIVE FORMULATIONS OF NL 143

5.1 Alternative formulations of NL

As we said in the introduction, we limit our present discussion to sequents
made of two formulas. Hence, a sequent is a pair of formulas, which we
write a → c. In chapter 2, we presented NL with lambda term labeling.
We propose it once more in a compact way and without lambda semantics.
The double inference line in the residuation rules, is simply a shorthand
indicating that the rules work in both directions. We call this axiomatization
C, to distinguish it from the others that we will discuss later.

Definition 74. The system C.

For a, b and c ranging over formulas, we have

- Identities:
Axioms Cut

a→ a
a→ b b→ c

a→ c

- Residuation Rules:

a ⊗ b→ c
a→ c/b

a ⊗ b→ c
b→ a\c

An example of derivation in C involving hypothetical reasoning is the
following.

Example 47. We prove that `C n ⊗ (s/(n\s))\s→ s.

n\s→ n\s
n ⊗ n\s→ s
n→ s/(n\s)

(s/(n\s))\s→ (s/(n\s))\s
s/(n\s) ⊗ (s/(n\s))\s→ s
s/(n\s)→ s/((s/(n\s))\s)

n→ s/((s/(n\s))\s)
n ⊗ (s/(n\s))\s→ s

This could be seen as a proof that the expression John is missing is a sentence
if John is assigned the category n and is missing the category (s/(n\s))\s.

Characteristic theorems of NL are the following.

Definition 75.

AX0, for all formulas a, c.

144 CHAPTER 5. NORMAL DERIVATIONS IN NL

c/a ⊗ a→ c a ⊗ a\c→ c

a→ (a ⊗ c)/c a→ c\(c ⊗ a)

a→ c/(a\c) a→ (c/a)\c

Moreover, one can prove the following derived rules of inference.

Definition 76.

M0, for every formula a and b.

a→ a′
a ⊗ b→ a′ ⊗ b ⊗M b→ b′

a ⊗ b→ a ⊗ b′ ⊗M

a′ → a
b\a′ → b\a

\M a′ → a
a′/b→ a/b

/M

b→ b′
b′\a→ b\a

\M′ b→ b′
a/b′ → a/b

/M′

In fact, we can give a complete axiomatization of NL as follows.

Definition 77. Let AX denote the smallest set such that:

1. AX contains the axioms of C and AX0.

2. AX is closed under rules M0.

3. AX is closed under the following two rules:

(a) if a→ b ∈ AX, |a| > |b| and b→ c ∈ AX, |b| > |c|, then a→ c ∈ AX.
(b) if a→ b ∈ AX, |a| < |b| and b→ c ∈ AX, |b| < |c|, then a→ c ∈ AX.

Remark 2. In [Kandulski, 1988] one finds a similar construction of a set Ax
of axioms. Indeed, our definition of AX results from Kandulski’s Ax set
by adding clause 3. This clause is added to include in the set AX sequents
derivable by monotonous instances of cut, see also [Le Nir, 2004]. This
extension does not affect Kandulski’s argument. Although the difference
should be borne in mind in the definitions and propositions that follow.
The advantage of such an extension will become clear in the proof of the
equivalence of definition 82 with the set AX. Roughly, we want to include
in this set sequents like, for instance, a/b→ a′/b′ obtained by monotonous
cut on the premises a/b → a′/b and a′/b → a′/b′, since such sequents will
be derived without using cut in definition 82.

5.1. ALTERNATIVE FORMULATIONS OF NL 145

Every sequent in AX can be derived in C. Moreover, we can prove the
following.

Proposition 14. Every sequent derivable in C can be obtained from AX by
means of the Cut rule only.

Proof. See [Kandulski, 1988]. �

Thus, let use define the following alternative axiomatization of NL.

Definition 78. Let K be the smallest set such that:

1. K contains AX.

2. K is closed under Cut.

From proposition 14, we know that K is equivalent to C. In the next sec-
tion, we will examine the method of [Kandulski, 1988] for the construction
of normal derivations. The construction is based on K. The reader might have
noticed that K would be equivalent to C even without assuming a→ c/(a\c)
and its symmetric as primitive axioms in AX, as they could be derived.

a→ (a ⊗ a\c)/(a\c)
a ⊗ a\c→ c

(a ⊗ a\c)/(a\c)→ c/(a\c)
a→ c/(a\c)

The same holds for \M′ and /M′.

a/b′ → (a/b′ ⊗ b)/b

b→ b′
a/b′ ⊗ b→ a/b′ ⊗ b′ a/b′ ⊗ b′ → a

a/b′ ⊗ b→ a
(a/b′ ⊗ b)/b→ a/b

a/b′ → a/b

On the other hand, “it is expedient to have them”1 in AX since they sim-
plify the computation as we will see in more detail. [Kandulski, 1988]
extended a result in [Buszkowski, 1986] for NL grammars without product
to grammar based on the full non-associative Lambek calculus with prod-
uct. The normalization procedure in the next section proves the reducibility
of non-associative Lambek grammars with product formulas to Ajdukiewicz
Bar-Hillel grammars with product formulas, and therefore the equivalence

1[Kandulski, 1988]

146 CHAPTER 5. NORMAL DERIVATIONS IN NL

of non-associative Lambek grammars with product and context-free gram-
mars. We will use Kandulski’s method for the construction of normal
derivations to design a regimented deductive system for automated theo-
rem proving. The procedure has been suggested by the recursive definition
of [Le Nir, 2004] for the compilation of the AB grammar (without product)
inferable from a non-associative Lambek grammar without product. How-
ever, we avoid to fall into the inconsistencies of Le Nir construction (see the
discussion after definition 83).

5.2 Normal derivations

The notion of normal derivation in [Kandulski, 1988] is defined for a logic
whose sequents are of the form Γ → c where Γ is a tree structure with
formulas on the leaves. We work with only one formula in the antecedent,
therefore his argument applies also to our system. Moreover, the restriction
to two-formula sequents does not imply that our system is weaker than the
one used by Kandulski. It only means that we assume that the structure
of our sequents is already given and expressed through the branching of
products in the antecedent formula. As discussed in [de Groote, 1999],
even the task of proving two formula sequents of NL is non-trivial from
the computational perspective. Furthermore, provability of two formula
sequents can be seen as a preliminary issue with respect to the problem
of parsing, that is the problem of finding a proof for a sequence of input
formulas and an output formula.

Definition 79. A two-formula sequent a → c from AX is called expanding
(resp. reducing), if |a| < |c| (resp. |c| < |a|).

Observe that all the elements of AX, except from the axioms, are either
expanding or reducing.

A derivation of a sequent a → c in K can be seen as a sequence of
formulas x0 . . . xn (derivation list) such that

- x0 = a,

- xn = c and

- for all i, 0 6 i < n, xi → xi+1 ∈ AX.

Example 48. Kandulski’s construction, presented below, shows that a deriva-
tion of a sequent a→ c in K can be configured as a derivation list x0 . . . xk . . . xn
where

5.2. NORMAL DERIVATIONS 147

- x0 = a,

- xn = c,

- for all i, 0 6 i < k, xi → xi+1 are reducing patterns from AX and

- for all j, k 6 j < n, x j → x j+1 are expanding patterns from AX.

The main property of AX (which in the original formulation did not include
the sequents obtained by clause 3 in the construction of definition 77) is
proved in the following proposition, from [Kandulski, 1988].

Proposition 15. Given formulas x, y and z, x , z and both x → y and
y → z are in AX, then if x → y and y → z are expanding and reducing,
respectively, then there is a formula y′ such that |y′| < |y| and x → y′ and
y′ → z are in AX.

Proof. see [Kandulski, 1988] for NL, the proof for the system without product
was given in [Buszkowski, 1986]. �

Example 49. Some relevant instances of the proof of proposition 15 are
given below.

If a→ (a⊗a\b)/(a\b) and (a⊗a\b)/(a\b)→ b/(a\b) are in AX, then y′ = b/(a\b).

If a → (a ⊗ b)/(a\(a ⊗ b)) and (a ⊗ b)/(a\(a ⊗ b)) → (a ⊗ b)/b are in AX, then
y′ = (a ⊗ b)/b.

If a ⊗ a\b→ b/(a\b) ⊗ a\b and b/(a\b) ⊗ a\b→ b are in AX, then y′ = a ⊗ a\b.

Proposition 15 guarantees that for every sequent a → c derivable in NL
has a derivation D = x0 . . . xn in K such that no sublist xi−1 xi xi+1, 0 < i < n
of D is such that |xi−1| < |xi| and |xi| > |xi+1|. Hence, normal derivations are
defined as follows.

Definition 80. A derivation D = x0 . . . xn of a sequent a → c in K is normal
if and only if for no k, 0 < k < n, there is a sublist xk−1 xk xk+1 of D such that
|xk−1| < |xk| > |xk+1|

2.

Let |x0 . . . xn| = |x0| + . . . + |xn|.

Definition 81. A derivation D of a→ c in K is minimal if and only if for all
the derivations D′ of a→ c in K, |D| 6 |D′|.

2We used the notation x < y > z for x < y and y > z.

148 CHAPTER 5. NORMAL DERIVATIONS IN NL

Remark 3. We note that a derivations x0 . . . xn such that for some i, 0 6
i < n, xi ≡ xi+1 cannot be minimal. In fact, whenever a derivation is of the
form x0 . . . xi xi+1 . . . xn with xi ≡ xi+1, we can replace it with x0 . . . xi . . . xn,
obtaining a shorter one.

Proposition 16. Each minimal derivation is normal.

Proof. [Kandulski, 1988]: induction on D = x0 . . . xn. Assume that D is
minimal. There are two cases:

If xn−1 → xn is expanding, then D is normal by induction hypothesis.

If xn−1 → xn is reducing, one reasons by contraposition. �

Given Kandulski’s construction for normal derivations, the process of
finding a proof for a sequent a→ c can be divided into two subprocesses of
contraction, as illustrated in example 48. One from left to right, corresponding
to the process of finding the formula to which the antecedent formula
reduces. And one from right to left, corresponding to the process of finding
the formula which expands to the succedent formula. The advantage of
this strategy is that the two processes proceed in a monotonic decreasing
way: every formula encountered in each of the two processes results by
application of a transition axioms from AX, expressing a form of contraction,
to the previous formula.

Example 50. The derivation of the sequent a ⊗ a\b → c/(b\c) results in the
composition of the two sequents a⊗ a\b→ b and b→ c/(b\c) from AX. One
has the following derivation:

a ⊗ a\b, b, c/(b\c)

5.3 Automatic construction of normal derivations

In this section, we present an alternative characterization of normal deriva-
tions for NL. Our system will be partially based on the construction of
Kandulski and Buszkowski. Indeed, from the computational perspective,
our definition can be seen as a characterization with finite means of the
set AX. Hence as an algorithm for automatic theorem proving. Observe,
in fact, that the set AX is infinite and cannot be used straightforwardly to
build a derivation automatically.

5.3. AUTOMATIC CONSTRUCTION OF NORMAL DERIVATIONS 149

In addressing the question of automated theorem proving, some prelim-
inary issues have to be solved. Among others, the problem of the instantia-
tion of the axiom and transition schemes, and, closely related, the direction
of the proof construction process.

In the search of a proof for a sequent a→ c, we use only a finite number
of elements of AX to perform the transitions from a to c and the choice of
these elements is dictated by what is in a and in c.

Concerning the direction of the search procedure one may work from
the leaves to the root (bottom-up) or from the root to the leaves (top-down).
A bottom-up search strategy guarantees that every stage of the process will
contain only valid sequents. This is not guaranteed in every top-down
approach, witness

(a/b)\a 6→ b
a/b→ a/((a/b)\a)

which is a possible way of unfolding the root sequent though /M. There-
fore, our procedure will construct derivations from the leaves to the root,
avoiding thus to ever encounter invalid sequents.

The key intuition underlying our method is the following. One may
observe that expanding schemes such as lifting, a→ b/(a\b), or coapplication,
a → (a ⊗ b)/b, simplify formulas in the same way as the reducing scheme
a⊗a\b→ b does, though in opposite direction. In the case of a⊗a\b→ b one
sees b as the result of contracting a ⊗ a\b. Instead, in the case of a→ b/(a\b)
or a→ (a⊗ b)/b one can see a as the result of contracting b/(a\b) or (a⊗ b)/b.
What we want to emphasize is the fact that expanding patterns can be seen
as right-to-left transition rules, while the reducing patterns as left-to-right
transition rules.

We wish also to remark with respect to Kandulski’s work that our con-
struction method is not affected by spurious ambiguity. We will examine
this aspect in chapter 6.

5.3.1 Expansion and reduction

In this section, we present the core routines of our recognition method and
prove their correctness. We are going to define two functions e and r of
type F → {F }. To make more compact the presentation below, we use the
construct

let x be v in t

150 CHAPTER 5. NORMAL DERIVATIONS IN NL

which is another way of expressing the substitution of v for x in t, denoted
before as t[x := v]3. Moreover, we label the clauses in the algorithm as to
simplify reference to them in the proofs which follow. To avoid any possible
source of misunderstanding, subclauses (a), (b) and (c) in clause 3) and 2’)
are interleaved by union, ∪. Furthermore, the operations of subclauses (b)
and (c) are simple maps and not closures4.

Definition 82. The functions expand, e, and reduce, r (we omitted the sym-
metric cases):

1) e(a) = {a}, if a is an atom

2) e(a ⊗ b) = { a′ ⊗ b′ | a′ ∈ e(a) & b′ ∈ e(b) }

3) e(a/b) = let mon be { a′/b′ | a′ ∈ e(a) & b′ ∈ r(b) } in
(a) mon

∪

(b) { c | (c ⊗ b′)/b′ ∈ mon }
∪

(c) { c | a′/(c\a′) ∈ mon }

1’) r(a) = {a}, if a is an atom

2’) r(a ⊗ b) = let mon be { a′ ⊗ b′ | a′ ∈ r(a) & b′ ∈ r(b) } in
(a) mon

∪

(b) { c | c/b′ ⊗ b′ ∈ mon }
∪

(c) { c | a′ ⊗ a′\c ∈ mon }

3’) r(a/b) = { a′/b′ | a′ ∈ r(a) & b′ ∈ e(b) }

Observe that the sets e(x) and r(x) are finite for every formula x as all
their elements are shorter of x or identical to x.

3The so called let construct is borrowed from functional programming. It offers a simple
way of assigning a value v to a variable x and of using x with such a value v into the body t.
While it makes more concise the formulation, it makes also clear that functions e and r are
in fact a functional program, with some syntactic sugaring.

4This means that if, for instance, the formula c returned by clause 3b) or 3c) is itself of
the form (y ⊗ x)/x or x/(y\x), no further contraction is applied to c.

5.3. AUTOMATIC CONSTRUCTION OF NORMAL DERIVATIONS 151

Example 51. We calculate some reductions and expansions showing the
trace of the recursion as a tree.

r((s/(n\s))\s):

r(s) = {s}
e(s) = {s}

r(s) = {s} e(n) = {n}
r(n\s) = {n\s}

e(s/(n\s)) = {s/(n\s), n}
r((s/(n\s))\s) = {(s/(n\s))\s, n\s}

e((s/(n\s))\s):

e(s) = {s}
r(s) = {s}

e(s) = {s} r(n) = {n}
e(n\s) = {n\s}

r(s/(n\s)) = {s/(n\s)}
e((s/(n\s))\s) = {(s/(n\s))\s, n\s}

r((a ⊗ a\c)/b ⊗ b):

r(a) = {a}
r(c) = {c} e(a) = {a}

r(a\c) = {a\c}
r(a ⊗ a\c) = {a ⊗ a\c, c} e(b) = {b}

r((a ⊗ a\c)/b) = {(a ⊗ a\c)/b, c/b} r(b) = {b}
r((a ⊗ a\c)/b ⊗ b) = {(a ⊗ a\c)/b ⊗ b, c/b ⊗ b, a ⊗ a\c, c}

Correctness of definition 82

Let us introduce the following abbreviations.

Notation 1.

x e
→ y := x→ y ∈ AX and |x| < |y| or x ≡ y.

x r
→ y := x→ y ∈ AX and |x| > |y| or x ≡ y.

We assume now, for the sake of exposition, that the following equivalences
hold.

- e(y) = { x | x e
→ y }.

- r(x) = { y | x r
→ y }.

We will formally prove these equivalences in proposition 18 and 19. We
describe each step of definition 82.

152 CHAPTER 5. NORMAL DERIVATIONS IN NL

Definition 82 is a recursive definition. Function e and r return the sin-
gleton set on atomic input, clauses 1) and 1’). The other clauses have
non-atomic input formulas. Let us examine clause 3), for all. The input of
e is a/b. The function calls e(a) and r(b) and stores in the variable mon all
the a′/b′ such that a′ ∈ e(a) and b′ ∈ r(b). As we assumed, and will prove
in proposition 18, if a′ ∈ e(a), then a′ e

→ a and if b′ ∈ r(b), then b r
→ b′.

Thus, a′/b′ e
→ a/b′ and a/b′ e

→ a/b by clause 2 of definition 77. Hence,
a′/b′ e

→ a/b by clause 3 of definition 77 (an instance of monotonous cut).
Instead of using monotonous cuts, the generation of the set mon is based on
the following rule, from [Moortgat and Oehrle, 1997].

a′ → a b→ b′
a′/b′ → a/b

The set mon is added in clause 3a) of algorithm 82 to two other sets, gen-
erated in 3b) and 3c). The set in 3b) contains all the c’s such that (c ⊗ b′)/b′

is an element of mon. While the set in 3c) contains all the c’s such that
a′/(c\a′) is an element of mon. The inferences captured in 3b) and 3c) could
be expressed by the following rule.

y→ x
z→ x if z→ y ∈ AX0 and |z| < |y|

For example, assume that a′/(c\a′) ∈ e(x) by clause 3a). Then a′/(c\a′) e
→ x

by assumption. The set AX contains the expanding sequent c → a′/(c\a′),
by clause 1) of definition 77, and is closed under monotonous cuts by clause
3) of definition 77. Thus c e

→ x. We conclude c ∈ e(x).
The other clauses are similar. Some output set consists only of the

inductive case, as in clauses 2) and 3’). Instead, the set in clause 2’), as the
one in 3), results from an inductive clause generating a set mon and two
inference steps, which can be captured by the inference rule below.

x→ z
x→ y if z→ y ∈ AX0 and |y| < |z|

Clearly the algorithm draws inferences from the premises to the con-
clusion: a complex problem, represented by a non-atomic input formula, is
divided into two subproblems. The sets of solutions for the subproblems
provide the premises for the solution of the problem.

In order to prove the correctness of the functions e and r, we shall prove
the following equivalences.

5.3. AUTOMATIC CONSTRUCTION OF NORMAL DERIVATIONS 153

- x ∈ e(y) iff x e
→ y.

- y ∈ r(x) iff x r
→ y.

We refer to the ‘if’ direction as completeness and to the ‘only if’ direction as
soundness. In each case of the following analyses, we omit the symmetric
cases. We start by proving the identity case.

Proposition 17. For all x, x ∈ r(x) and x ∈ e(x).

Proof. Induction on x. If x is atomic, then x ∈ r(x) and x ∈ e(x). Otherwise
x ≡ y]z,] ∈ {⊗, /, \}. By IH, y ∈ r(y) and y ∈ e(y), and z ∈ r(z) and z ∈ e(z),
we conclude y]z ∈ r(y]z) and y]z ∈ e(y]z). �

Soundness of definition 82 is proved as follows.

Proposition 18. Soundness:

(A) If y ∈ r(x), then x r
→ y.

(B) If y ∈ e(x), then y e
→ x.

Proof. Induction on x. If x is atomic, we have x r
→ x and x e

→ x by clause 1)
of definition 77. Otherwise we have the following cases.

Proof of (A):

1. x ≡ x′ ⊗ x∗

(a) y ≡ y′ ⊗ y∗, with y′ ∈ r(x′) and y∗ ∈ r(x∗). By IH, x′ r
→ y′ and

x∗ r
→ y∗. By clause 2) of definition 77, we have x′ ⊗ x∗ r

→ y′ ⊗ x∗

and y′ ⊗ x∗ r
→ y′ ⊗ y∗. Hence, x′ ⊗ x∗ r

→ y′ ⊗ y∗ by clause 3a) of
definition 77.

(b) Otherwise y/z ⊗ z ∈ r(x′ ⊗ x∗), with y/z ∈ r(x′) and z ∈ r(x∗). We
obtain x′ ⊗ x∗ r

→ y/z ⊗ z like in the previous case. Since we have
y/z⊗ z r

→ y by clause 1) of definition 77, we conclude x′ ⊗ x∗ r
→ y

by clause 3a) of definition 77.

2. If x ≡ x′/x∗, then y ≡ y′/y∗, with y′ ∈ r(x′) and y∗ ∈ e(x∗). By IH, x′ r
→ y′

and y∗ e
→ x∗. By clause 2) of definition 77, we have x′/x∗ r

→ y′/x∗ and
y′/x∗ r

→ y′/y∗. Hence, x′/x∗ r
→ y′/y∗ by clause 3a) of definition 77.

Proof of (B):

154 CHAPTER 5. NORMAL DERIVATIONS IN NL

1. If x ≡ x′ ⊗ x∗, then y ≡ y′ ⊗ y∗, with y′ ∈ e(x′) and y∗ ∈ e(x∗). By
IH, y′ e

→ x′ and y∗ r
→ x∗. By clause 2) of definition 77, we have

y′ ⊗ y∗ e
→ y′ ⊗ x∗ and y′ ⊗ x∗ e

→ x′ ⊗ x∗. Hence, y′ ⊗ y∗ e
→ x′ ⊗ x∗ by

clause 3b) of definition 77.

2. If x ≡ x′/x∗

(a) y ≡ y′/y∗, with y′ ∈ e(x′) and y∗ ∈ r(x∗). By IH, y′ e
→ x′ and

x∗ r
→ y∗. By clause 2) of definition 77, we have y′/y∗ e

→ x′/y∗ and
x′/y∗ e

→ x′/x∗. Hence, y′/y∗ e
→ x′/x∗ by clause 2) of definition 77.

(b) Let (y ⊗ v)/v ∈ e(x′/x∗), with y ⊗ v ∈ e(x′) and v ∈ r(x∗). We
obtain (y ⊗ v)/v e

→ x′/x∗ like in the previous case. By clause 1)
of definition 77, y e

→ (y ⊗ v)/v. We conclude y e
→ x′/x∗ by clause

3b) of definition 77.

(c) Otherwise, let v/(y\v) ∈ e(x′/x∗), with v ∈ e(x′) and y\v ∈ r(x∗).
We obtain v/(y\v) e

→ x′/x∗ like in the previous case. By clause 1)
of definition 77, y e

→ v/(y\v). Hence, y e
→ x′/x∗ by clause 3b) of

definition 77.

�

Completeness of definition 82 is proved as follows.

Proposition 19. Completeness:

(A) If x r
→ y, then y ∈ r(x).

(B) If y e
→ x, then y ∈ e(x).

Proof. Induction on the AX derivation. If x ≡ y, then (A) and (B) hold by
proposition 17. Otherwise:

Proof of (A):

1. x r
→ y ≡ b/a ⊗ a → b. By proposition 17, b/a ⊗ a ∈ r(b/a ⊗ a). Hence

b ∈ r(b/a ⊗ a) by clause 2’b) of definition 82.

2. x r
→ y is obtained by clause 2) of definition 77. We have the following

subcases.

(a) x r
→ y ≡ a⊗b r

→ a′⊗b and a r
→ a′. By IH, a′ ∈ r(a). By proposition

17, b ∈ r(b). Hence, a′ ⊗ b ∈ r(a⊗ b) by clause 2’a) of definition 82.

5.3. AUTOMATIC CONSTRUCTION OF NORMAL DERIVATIONS 155

(b) x r
→ y ≡ a/b r

→ a′/b and a r
→ a′. By IH, a′ ∈ r(a). By proposition

17, b ∈ e(b). Hence, a′/b ∈ r(a/b) by clause 3’) of definition 82.

(c) x r
→ y ≡ a/b r

→ a/b′ and b′ e
→ b. By IH, b′ ∈ e(b). By proposition

17, a ∈ r(a). Hence, a/b′ ∈ r(a/b) by clause 3’) of definition 82.

3. x r
→ y is obtained by clause 3a) of definition 77. We shall consider the

following subderivations.

(a)
x′ r
→ y′

x′/x∗ r
→ y′/x∗

y∗ e
→ x∗

y′/x∗ r
→ y′/y∗

x′/x∗ r
→ y′/y∗

By IH, y′ ∈ r(x′) and y∗ ∈ e(x∗). Then, by clause 3’) of definition
82, y′/y∗ ∈ r(x′/x∗).

(b)
x′ r
→ y′

x′ ⊗ x∗ r
→ y′ ⊗ x∗

x∗ r
→ y∗

y′ ⊗ x∗ r
→ y′ ⊗ y∗

x′ ⊗ x∗ r
→ y′ ⊗ y∗

By IH, y′ ∈ r(x′) and y∗ ∈ r(x∗). Then, by clause 2’a) of definition
82, y′ ⊗ y∗ ∈ r(x′ ⊗ x∗).

(c)
x′ r
→ y/z

x′ ⊗ x∗ r
→ y/z ⊗ x∗

x∗ r
→ z

y/z ⊗ x∗ r
→ y/z ⊗ z

x′ ⊗ x∗ r
→ y/z ⊗ z y/z ⊗ z r

→ y

x′ ⊗ x∗ r
→ y

By IH, y/z ∈ r(x′) and z ∈ r(x∗). Then, by clause 2’a) of definition
82, y/z ⊗ z ∈ r(x′ ⊗ x∗) and by clause 2’b) y ∈ r(x′ ⊗ x∗).

Proof of (B):

1. y e
→ x ≡ a e

→ (a⊗b)/b. By proposition 17, (a⊗b)/b ∈ e((a⊗b)/b). Hence
a ∈ e((a ⊗ b)/b) by clause 3b) of definition 82.

2. y e
→ x ≡ a e

→ b/(a\b). By proposition 17, b/(a\b) ∈ e(b/(a\b)). Hence
a ∈ e(b/(a\b)) by clause 3c) of definition 82.

156 CHAPTER 5. NORMAL DERIVATIONS IN NL

3. y e
→ x is obtained by clause 2) of definition 77. We have the following

subcases.

(a) y e
→ x ≡ a′⊗b e

→ a⊗b and a′ e
→ a. By IH, a′ ∈ e(a). By proposition

17, b ∈ e(b). Hence, a′ ⊗ b ∈ e(a ⊗ b) by clause 2) of definition 82.

(b) y e
→ x ≡ a′/b e

→ a/b and a′ e
→ a. By IH, a′ ∈ e(a). By proposition

17, b ∈ r(b). Hence, a′/b ∈ e(a/b) by clause 3a) of definition 82.

(c) y e
→ x ≡ a/b′ e

→ a/b and b r
→ b′. By IH, b′ ∈ r(b). By proposition

17, a ∈ e(a). Hence, a/b′ ∈ e(a/b) by clause 3a) of definition 82.

4. y e
→ x is obtained by clause 3b) of definition 77. We shall consider the

following subderivations.

(a)
y′ e
→ x′

y′ ⊗ y∗ e
→ x′ ⊗ y∗

y∗ e
→ x∗

x′ ⊗ y∗ e
→ x′ ⊗ x∗

y′ ⊗ y∗ e
→ x′ ⊗ x∗

By IH, y′ ∈ e(x′) and y∗ ∈ e(x∗). Then, by clause 2) of definition
82, y′ ⊗ y∗ ∈ e(x′ ⊗ x∗).

(b)
y′ e
→ x′

y′/y∗ e
→ x′/y∗

x∗ r
→ y∗

x′/y∗ e
→ x′/x∗

y′/y∗ e
→ x′/x∗

By IH, y′ ∈ e(x′) and y∗ ∈ r(x∗). Then, by clause 3a) of definition
82, y′/y∗ ∈ e(x′/x∗).

(c)

y e
→ (y ⊗ z)/z

y ⊗ z e
→ x′

(y ⊗ z)/z e
→ x′/z

x∗ r
→ z

x′/z e
→ x′/x∗

(y ⊗ z)/z e
→ x′/x∗

y e
→ x′/x∗

By IH, y⊗ z ∈ e(x′) and z ∈ r(x∗). Then, by clause 3a) of definition
82, (y ⊗ z)/z ∈ e(x′/x∗) and by clause 3a) y ∈ e(x′/x∗).

5.3. AUTOMATIC CONSTRUCTION OF NORMAL DERIVATIONS 157

(d)

y e
→ z/(y\z)

x∗ r
→ y\z

z/(y\z) e
→ z/x∗

z e
→ x′

z/x∗ e
→ x′/x∗

z/(y\z) e
→ x′/x∗

y e
→ x′/x∗

By IH, z ∈ e(x′) and y\z ∈ r(x∗). Then, by clause 3a) of definition
82, z/(y\z) ∈ e(x′/x∗) and by clause 3c) y ∈ e(x′/x∗).

�

We have proved the equivalence of the set of reducing and expanding
sequents of AX with the set r and e from definition 82, respectively. By
construction, AX is closed under monotonous cut. In turn, we have that, if
y ∈ w(x) and z ∈ w(y), then z ∈ w(x), where w ∈ {e, r}. We express this as
follows.

Proposition 20.

If y ∈ r(x), then r(y) ⊆ r(x).

If y ∈ e(x), then e(y) ⊆ e(x).

Proof. Immediate after proposition 18 and 19. �

What still remains to be done is to link two sets of expanding and
reducing sequents generated by the functions e and r to provability in K.
As AX is closed under monotonous cuts, and we know from proposition 16
that normal derivations in K are structured as lists of the form x0 . . . xk . . . xn,
where the sublist x0 . . . xk consists of a series of reducing inferences and the
sublist xk . . . xn consists of a series of expanding inferences, there remains
only one instance of cut in K which we need to use for general theorem
proving. That is the cut between a left reducing and a right expanding
premise. This can be expressed as follows.

Proposition 21.
`NL a→ c iff r(a) ∩ e(c) , ∅.

Proof.

If part: Let b ∈ r(a) ∩ e(c). Then b ∈ r(a) and b ∈ e(c). Hence a r
→ b and b e

→ c,
by proposition 18.

158 CHAPTER 5. NORMAL DERIVATIONS IN NL

Only if part: If `NL a→ c, then, by proposition 16, there is a normal derivation
of x0 . . . xk . . . xn, such that a = x0, c = xn and for all i, 0 6 i < k, xi

r
→ xi+1,

and for all j, k 6 j < n, x j
e
→ x j+1. By proposition 19 and proposition 20,

xk ∈ r(x0) and xk ∈ e(xn). �

Example 52.

We prove that `NL a ⊗ a\b→ c/(b\c) as follows.

r(a ⊗ a\b) ∩ e(c/(b\c)) = {a ⊗ a\b, b} ∩ {c/(b\c), b} = {b}

The following application of proposition 21 concludes a example 51.

r((s/(n\s))\s) ∩ e((s/(n\s))\s) =
{(s/(n\s))\s, n\s} ∩ {(s/(n\s))\s, n\s} =
{(s/(n\s))\s, n\s}

5.3.2 Remarks on expansions and reductions

[Le Nir, 2004] presents recursive functions for the generation of what we
called expansion and reduction sets which may seem to resemble our defi-
nitions. Le Nir worked on the product free fragment of NL. Let us discuss
here his definition to show that, in fact, the differences with our construction
are more remarkable than the similarities.

Definition 83. [Le Nir, 2004]: expansion and reduction operations for the
product free fragment of NL (symmetric cases omitted and some irrelevant
notational changes).

E(a) = {a}, if a is an atom
R(a) = {a}, if a is an atom

R(a/b) = { a′/b′ | a′ ∈ R(a) & b′ ∈ E(b) }

E(a/b) = { a′/b′ | a′ ∈ E(a) & b′ ∈ R(b) }
∪

{ z | b ≡ x\c & z ∈ E(x) & a ∈ R(c) ∨ a ∈ E(c) }

Observe that the second clause of E(a/b), which is ambiguous, ad-
mits a formula x in the expansion set of z/(x\y), if z is in the expansion
set of y. Thus, for instance, x ∈ E(z/(x\(y/(z\y)))). On the other hand
x → z/(x\(y/(z\y))) is not a valid sequent. Indeed, Le Nir’s arguments
involving expanding patters are rather confusing: in many places he seems

5.3. AUTOMATIC CONSTRUCTION OF NORMAL DERIVATIONS 159

to write x ∈ E(y) meaning y ∈ E(x). On the other hand, he explicitly states
that b ∈ E(a/(b\a)). The same observations hold for [Le Nir, 2003].

A generalization on Kandulski’s construction is the extension to the
unary operators of [Moortgat, 1997b]. The set AX can be extended to
include the axioms and rules for the diamond and box operators.

a→ �♦a ♦�a→ a

a→ c
�a→ �c �M

a→ c
♦a→ ♦c ♦M

In turn, algorithm 82 can be extended to deal with the unary operators by
just adding the following clauses.

Definition 84. Expansion and reduction clauses for unary operators.

e(♦a) = { ♦a′ | a′ ∈ e(a) }

e(�a) = let mon be { �a′ | a′ ∈ e(a) } in
mon
∪

{ a′ | �♦a′ ∈ mon }

r(♦a) = let mon be { ♦a′ | a′ ∈ r(a) } in
mon
∪

{ a′ | ♦�a′ ∈ mon }

r(�a) = { �a′ | a′ ∈ r(a) }

Correctness can easily be proved also for this extended system.
The deductive system implicitly used in algorithm 82 and proposition

21 is the following which we call ER.

Definition 85. The system ER.

- Identities:
Axioms Cut

a→ a
a→ b b→ c

a→ c

160 CHAPTER 5. NORMAL DERIVATIONS IN NL

- Unary Rules

Application:
a→ b ⊗ b\c

a→ c
a→ c/b ⊗ b

a→ c

Lifting:
(b/a)\b→ c

a→ c
b/(a\b)→ c

a→ c

Coapplication:
b\(b ⊗ a)→ c

a→ c
(a ⊗ b)/b→ c

a→ c

- Binary Rules:

Product Rule:
a→ a′ b→ b′
a ⊗ b→ a′ ⊗ b′

Monotonicity:
a′ → a b→ b′

b′\a′ → b\a
a′ → a b→ b′

a′/b′ → a/b

The unary extension instead gives rise to the following deduction rules.

Definition 86. Rules for unary operators:

Contraction Rules
�♦a→ c

a→ c
a→ ♦�c

a→ c

Monotonicities
a→ c
�a→ �c

a→ c
♦a→ ♦c

5.4 Proof terms

In this section, we present the calculus G, which has the same properties of
ER. G is a labeled deductive system, as defined in chapter 2. We define the
term language on which deductions of G operate.

Definition 87. Proof term language.

CB := 1F | CB · CB |

CB ⊗ CB |
(CB,CB) | �(CB,CB) |

CB
C(CB) | L C

(CB,CB) | C C
(CB,CB) |

The rules of G operate on arrows, f : a→ c, where f ∈ CB is a syntactic
term encoding the proof of the sequent a→ c.

5.4. PROOF TERMS 161

Definition 88. The system G.

- Identities:

Axioms Cut

1a : a→ a
f : a→ b g : b→ c

g · f : a→ c

- Binary Rules:

f : a→ a′ g : b→ b′

f ⊗ g : a ⊗ b→ a′ ⊗ b′

g : a→ a′ f : b→ a′\c

f \(g) : a ⊗ b→ c
f : a→ c/b′ g : b→ b′

f /(g) : a ⊗ b→ c

f : a′ → a g : b→ b′

(f ,g) : b′\a′ → b\a
f : a′ → a g : b→ b′

�(f ,g) : a′/b′ → a/b

g : b→ a′/c f : a′ → a

L \

(f ,g) : c→ b\a

g : b→ c\a′ f : a′ → a

L /
(f ,g) : c→ a/b

g : b→ b′ f : b′ ⊗ c→ a

C \(f ,g) : c→ b\a

g : b→ b′ f : c ⊗ b′ → a

C /(f ,g) : c→ a/b

The link between proof terms in CB and lambda terms is given by the
following function.

Definition 89. Mapping from proof term to lambda term.

- (†) :: CB → Lam

(1)† = λ x. x

(L(f ,g))† = λ x y. (f † (g† y x))

(f /(g))† = λ x. ((f † πx) (g† π′x))

(f \(g))† = λ x. ((f † π′x) (g† πx))

(C/(f ,g))
† = λ x y. (f † 〈x, (g† y)〉)

162 CHAPTER 5. NORMAL DERIVATIONS IN NL

(C\(f ,g))
† = λ x y. (f † 〈(g† y), x〉)

(f ⊗ g)† = λ x.〈(f † πx), (g† π′x)〉

(‖(f ,g))† = λ x y. (f † (x (g† y)))

As we said, the system G is closely related to the deductive system ER.
In some sense we can see G as a generalization of ER. The monotonicity
and cut rules are common to both systems. Instead, the other rules of G
are all derivable in two steps in ER. For example, we have the following
correspondences (omitting the proof term from the G deductions).

- Application:

a→ a′ b→ a′\c
a ⊗ b→ c

a→ a′ b→ a′\c
a ⊗ b→ a′ ⊗ a′\c

a ⊗ b→ c

- Lifting:

b→ a′/c a′ → a
c→ b\a

a′ → a b→ a′/c
(a′/c)\a′ → b\a

c→ b\a

- Coapplication:

b→ b′ b′ ⊗ c→ a
c→ b\a

b′ ⊗ c→ a b→ b′
b′\(b′ ⊗ c)→ b\a

c→ b\a

We are going to see that the expansion-reduction procedure given in defini-
tion 82 can be restated to work onG. The only difference with respect to def-
inition 82 is that that the functions are now of type e?, r? :: F → {(CB,F)},
where CB encodes the proof. The functions are defined below. Observe
that we added also the clauses for the unary operators, according to the
term labeling of the system G.

Definition 90. Labeled expansion-reduction procedure.

- e?(a) = { 1a : a }, if a is an atom.

- e?(a ⊗ b) = { f ⊗ g : a′ ⊗ b′ | f : a′ ∈ e?(a) & g : b′ ∈ e?(b) }

5.5. CONNECTION TO PARSING 163

- e?(a/b) = let as be e?(a) and bs = r?(b) in

{ �(f ,g) : a′/b′ | f : a′ ∈ as & g : b′ ∈ bs }
∪

{ C /(f ,g) : c | f : c ⊗ b′ ∈ as & g : b′ ∈ bs }
∪

{L /
(f ,g) : c | f : a′ ∈ as & g : c\a′ ∈ bs }

- r?(a) = { 1a : a }, if a is an atom.

- r?(a/b) = { �(f ,g) : a′/b′ | f : a′ ∈ r?(a) & g : b′ ∈ e?(b) }

- r?(a ⊗ b) = let as be r?(a) and bs be r?(b) in

{ f ⊗ g : a′ ⊗ b′ | f : a′ ∈ as & g : b′ ∈ bs }
∪

{ f /(g) : c | f : c/b′ ∈ as & g : b′ ∈ bs }
∪

{ f \(g) : c | g : a′ ∈ as & f : a′\c ∈ bs }

One can easily prove the following statements.

Proposition 22.

If f : a ∈ e?(c), then f : a e
→ c.

If f : c ∈ r?(a), then f : a r
→ c.

`NL f · g : a→ c iff g : b ∈ r?(a) and f : b ∈ e?(c).

In chapter 7, we will apply the cut elimination algorithm to G and see
how proof terms can be used for proof normalization.

5.5 Connection to parsing

Although definition 82 provides a recognition procedure for two-formula
sequents, the method can be easily generalized for addressing the more
general problem of parsing. The result of [Kandulski, 1988] of equivalence of
NL grammars and CF grammars relies on the reducibility of an NL grammar
into an AB grammar with product. In the present setting, we can state the
reducibility of NL computations to AB computations as follows (see also
[Buszkowski, 1997]).

164 CHAPTER 5. NORMAL DERIVATIONS IN NL

Proposition 23. If a1, . . . , an → c is provable in NL, then there are formulas
bi, 1 6 i 6 n such that bi ∈ r(ai), and a formula b′, such that b′ ∈ e(c), and
b1, . . . , bn → b′ is derivable only by means of the application and product
rule of AB⊗.

More in general, the expansion and reduction operations can be used to
transform a NL grammar into an AB⊗ grammar as follows.

Proposition 24. From a NL categorial grammar G = 〈Vt, s,Lex,NL〉, we
compute an AB grammar G′ = 〈Vt, s,Lex′,AB⊗〉 such that L(G) = L(G′),
where

Lex′ = { w→ x′ | w→ x ∈ Lex, x′ ∈ r(x) }

Example 53.

Let us use starred variables for lexical items and write x → y1 | . . . | yn for
x→ y1, . . . , x→ yn. A6 is the NL grammar with the following lexicon:

n∗ → n | s/(n\s) | tv\(s/(n\s))\s | (s/(n\s) ⊗ tv)\s
tv∗ → tv
hv∗ → (s/(n\s))\s

Lexical expansion, according to proposition 24, of grammar A6 gives the
AB grammar with product whose lexicon is the following.

n∗ → n | s/(n\s) | tv\(s/(n\s))\s | tv\n\s | (s/(n\s) ⊗ tv)\s | (n ⊗ tv)\s
tv∗ → tv
hv∗→ (s/(n\s))\s |n\s

Thus the parsing methods developed in the chapter 3 can be immedi-
ately applied to the resulting grammar.

An important issue should be investigated. The efficiency of all parsing
algorithms of the chapter 3 is influenced by the size of the input AB grammar.
The size of the input AB grammar in turn depends on the size of the original
NL. Indeed, if G is the original NL grammar and G′ the resulting AB grammar
with product, then |G| 6 |G′|. How bigger G′ is, depends on the length
and on the order of the formulas of G. In many practical applications, G′

may retain a reasonable size, as higher order types rarely exceed the third
order, and formulas are usually relatively short. However in general, lexical
expansion may give rise to an exponential growth of the resulting grammar.

5.6. CONCLUSION 165

5.6 Conclusion

We started this chapter by presenting Buszkowski’s and Kandulski’s method
for the construction of normal derivations. We defined two recursive func-
tions, called e and r, generating respectively the set of expanding and the
set of reducing sequents of Kandulski’s construction with finite means. We
used these two functions to define a recognition method for two formula
sequents and a lexical compilation transforming an NL grammar into an
AB⊗ grammar.

In chapter 6, we will see that the expansion/reduction approach im-
proves on Kandulski’s construction under a second significant respect. Nor-
mal derivations, as constructed in proposition 21 are a subset of Kandulski’s
normal derivations. However, we will prove that all derivations which are
excluded by our method are in fact redundant.

166 CHAPTER 5. NORMAL DERIVATIONS IN NL

Chapter 6

Normal Derivations and
Ambiguity

In the previous chapter, we have defined a simple and elegant method for
proving two-formula sequents. This method has been grounded on the
result of [Kandulski, 1988] about normal derivations in NL. We proved
the equivalence of our recursive functions e and r in definition 82 with
Kandulski’s characterization of the sets of expanding and reducing sequents
of NL.

In this chapter, we show that while the functions in definition 82 do the
same job of Kandulski’s construction, in fact they do it better. We address the
problem of spurious ambiguity in NL. We observe that normal in Kandulski’s
sense, does not imply uniqueness as we may find several equivalent deriva-
tions of the same two formula sequent according to Kandulski’s method.
Instead, the recursive functions e and r in definition 82 return exactly one
deduction for every semantic reading that a sequent may have. Thus, the
method we designed for proving two formula sequents is a redundancy-free
theorem prover.

We will address also a second problem, which can be stated as follows.

- Given a provable sequent a → c, how many proofs may this sequent
have?

This question has been previously addressed in [van Benthem, 1991] and
[Tiede, 1999] and represents an important issue for proof theoretic gram-
mar. In [van Benthem, 1991], one finds the discussion of the problem of
providing “an explicit function computing numbers of non-equivalent read-

167

168 CHAPTER 6. NORMAL DERIVATIONS AND AMBIGUITY

ings for sequents in the Lambek calculus”1. We present such an “explicit
function”, whose only parameter is the length of the input sequent. While
van Benthem and later [Tiede, 1999] prove the so called finite reading prop-
erty for sequents of the Lambek calculus (with permutation), we establish a
direct link between the length of an NL sequent and the binomial coefficient.

6.1 Eliminating redundancies

The reader may have observed that Kandulski’s notion of normal derivation
does not imply uniqueness. Consider the following examples.

(6.1) (a ⊗ a\c)/b ⊗ b, c/b ⊗ b, c

(6.2) (a ⊗ a\c)/b ⊗ b, a ⊗ a\c, c

These two derivations have the same length. Moreover, no shorter deriva-
tion is available for the sequent (a ⊗ a\c)/b ⊗ b → c. Thus, they are both
minimal, hence normal by proposition 16. However, while distinct, these
derivations are also in some sense equivalent. We have seen that in the case
of CF grammars (as well as for basic categorial grammars), the structural
description represents a criterion of equivalence among different derivations.
In the case of NL and of logical systems in general, the issue of derivation
equivalence is much more subtle and deep. The theory of proof nets, for
instance, has been developed primarily as redundancy-free representation
of proofs. We will appeal to lambda term semantics to define equivalence
among different derivations of the same sequent.

Let us assign to each axiom and rule that we used in the construction in
definition 77 in the previous chapter a lambda term.

Definition 91. Labeled axioms and rules of NL.

- Identities:

Axioms Cut

λx.x : a→ a
u : a→ b v : b→ c
λx.(v (u x)) : a→ c

1Cursive mine. The quotation of [van Benthem, 1991] is taken from [Tiede, 1999] who
quotes the American edition of the book.

6.1. ELIMINATING REDUNDANCIES 169

- AX0:

λx.(π′x πx) : b ⊗ b\c→ c λx.(πx π′x) : c/b ⊗ b→ c

λxλy.(y x) : a→ (b/a)\b λxλy.(y x) : a→ b/(a\b)

λ xλy.〈y, x〉 : a→ b\(b ⊗ a) λ xλy.〈x, y〉 : a→ (a ⊗ b)/b

- M0:

u : a→ a′
λ x.〈(u πx), π′x〉 : a ⊗ b→ a′ ⊗ b

v : b→ b′
λ x.〈πx, (v π′x)〉 : a ⊗ b→ a ⊗ b′

u : a′ → a
λ x y. (u (x y)) : b\a′ → b\a

u : a′ → a
λ x y. (u (x y)) : a′/b→ a/b

v : b→ b′
λ x y. (x (v y)) : b′\a→ b\a

v : b→ b′
λ x y. (x (v y)) : a/b′ → a/b

The construction of normal derivations in the previous chapter can be
rephrased to work with the arrows given above in a straightforward way.
The lambda terms will play a role only in telling us which derivations are
equivalent. Let us define equivalence among normal derivations.

Definition 92. Let D1 and D2 be two labeled normal derivations of a sequent
a→ c in AX. Let t1 and t2 be the normal form lambda terms in the conclusion
of D1 and D2, respectively. Then D1 is equivalent to D2 if and only if t1 ≡ t2.

One may observe that the symmetric variants of all axioms and rules
in which only slashes appear receive the same semantic labelings. On the
other hand, for instance, the trivial derivations λxλy.(y x) : a→ (b/a)\b and
λxλy.(y x) : a→ b/(a\b) are not equivalent, as a→ (b/a)\b , a→ b/(a\b). A
similar argument applies to what is deduced from the rules of inferece.

Let us consider the previous example of spurious ambiguity, this time
with term labeling and in tree format. For reasons of space, we represent
cuts as unary rules, in a way similar to the system ER.

(6.3) Labeled derivation 6.1:

λx.(πx π′x) : a ⊗ a\c→ c
λ x.λ y.(π′(x y) π(x y)) : (a ⊗ a\c)/b→ c/b

λ x.〈λ y.(π′(πx y) π(πx y)), π′x〉 : (a ⊗ a\c)/b ⊗ b→ c/b ⊗ b
λ x.(π′(πx π′x) π(πx π′x)) : (a ⊗ a\c)/b ⊗ b→ c

170 CHAPTER 6. NORMAL DERIVATIONS AND AMBIGUITY

(6.4) Labeled derivation 6.2:
λx.(πx π′x) : (a ⊗ a\c)/b ⊗ b→ a ⊗ a\c

λ x.(π′(πx π′x) π(πx π′x)) : (a ⊗ a\c)/b ⊗ b→ c

The term in the conclusion of the two deductions is indeed the same, hence
the two deductions are equivalent.

We are going to address the problem of spurious ambiguity in the context
of normal derivations. The previous example shows that Kandulski’s nor-
mal derivations are not exempt from redundancies. However, we will see
that the construction method that we provided in definition 82 is free from
spurious ambiguity.

We will single out, among Kandulski’s normal derivations, those deriva-
tions that are redundant. The choice of which derivations are redundant is,
to some extent, arbitrary. We can observe, however, that the deductions
in 6.3 and in 6.4 exhibit two different structures. Deduction 6.1 follows an
innermost reduction strategy: the most embedded formulas are contracted
before the most external ones. Instead, deduction 6.1 follows an outermost
reduction strategy: the most external formulas are contracted before the
most embedded ones. In this chapter, our choice will fall on the outermost
reduction. Whenever two derivations D1 and D2 are available that differ
only in that D1 follows an innermost reduction, where D2 follows an outer-
most reduction, we will say that D2 is redundant. Our choice is primarily
dictated by the fact that in the present context the innermost reduction re-
sults very easy to control and implement. We will see in the next section
that definition 82 implements an innermost reduction strategy. In the next
chapter, we will explore also the benefits of an outermost reduction strategy.

Let us formally define what we mean by redundant derivation in the
present context.

Definition 93. A normal derivation D = x1 . . . xn is redundant, if D contains
the sublist xi−1xixi+1 such that xi−1 → xi and xi → xi+1 are obtained through
n, 0 6 n, applications of M0 (clause 2) of definition 77) from two premises
x → y and y → z, respectively, which are both expanding or reducing
sequents in AX0.

We call the sequence xi−1xixi+1, generating the redundancy in the deriva-
tion, redundant sequence.

According to this definition, derivation 6.2 is redundant, while deriva-
tion 6.1 is not. Other examples of redundant derivations are the followings.

a, (a ⊗ b)/b, c/(((a ⊗ b)/b)\c)
(c/(((a ⊗ b)/b)\c))\x, ((a ⊗ b)/b)\x, a\x

6.2. UNIQUE NORMAL DERIVATIONS 171

Indeed, we are assuming that the ‘genuine’ derivations are those following
the innermost reduction strategy:

a, c/(a\c), c/(((a ⊗ b)/b)\c)
(c/(((a ⊗ b)/b)\c))\x, (c/(a\c))\x, a\x

We can easily prove that redundant derivations are indeed superfluous, in
the sense that we are free to discard them without loss of information.

Proposition 25. Let D be a redundant derivation of a→ c. Let xi−1xixi+1 be
a redundant sequence in D. Then there is another normal derivation D′ of
a→ c in which the redundant sequence xi−1xixi+1 does not appear.

Proof.

Assume xi−1 → xi and xi → xi+1 in D are both instances of application, as in
example 6.2. Then xi occurs as a subformula of xi−1. Thus, by replacing xi+1
for xi in xi−1, we obtain the derivation D′, as in example 6.1.

If xi−1 → xi and xi → xi+1 are both instances of coapplication or lifting, or
one of coapplication and the other of lifting, we proceed in the same way
as before.

Suppose that xi−1 → xi and xi → xi+1 in D are obtained by n applications of
M0, n > 0. Then there are premises x′i−1 → x′i and x′i → x′i+1 (or x′i+1 → x′i
and x′i → x′i−1) obtained by n − 1 applications of M0. By IH, there is a
non-redundant sequence x′i−1x∗i x

′

i+1 (or x′i+1x∗i x
′

i−1) in AX, and by the closure
of AX under M0, we obtain D′ containing the non-redundant sequence
xi−1x′∗i xi+1. �

6.2 Unique normal derivations

In the previous section, we showed how to filter out redundant derivations
from Kandulski’s normal derivations. We have selected as non-redundant
the derivations following the innermost contraction strategy. Let us con-
sider once more examples 6.1 and 6.2, proposed here as 6.5 and 6.6, respec-
tively.

(6.5) (a ⊗ a\c)/b ⊗ b, c/b ⊗ b, c

(6.6) (a ⊗ a\c)/b ⊗ b, a ⊗ a\c, c

172 CHAPTER 6. NORMAL DERIVATIONS AND AMBIGUITY

One may observe that definition 82 would generate (a ⊗ a\c)/b ⊗ b → c
according to (the deduction corresponding to) derivation 6.5, rather than
to derivation 6.6. In fact, algorithm 82 follows the innermost contraction
strategy.

In order to show that no redundancy affects our algorithm, let us restate
definition 82 to be sensitive to multiplicity.

Algorithm 7. Let us define functions e′ and r′, which are like e and r in
definition 82, respectively, except for the fact that they use [] instead of { },
that is, list comprehension instead of set comprehension, and ++ instead of
∪, that is, list concatenation instead of set union.

Then we can see the following trace for r′((a ⊗ a\c)/b ⊗ b).

r′(a) = [a]
r′(c) = [c] e′(a) = [a]

r′(a\c) = [a\c]
r′(a ⊗ a\c) = [a ⊗ a\c, c] e′(b) = [b]

r′((a ⊗ a\c)/b) = [(a ⊗ a\c)/b, c/b] r′(b) = [b]
r′((a ⊗ a\c)/b ⊗ b) = [(a ⊗ a\c)/b ⊗ b, c/b ⊗ b, a ⊗ a\c, c]

Although both c/b ⊗ b and a ⊗ a\c are in the list r′((a ⊗ a\c)/b ⊗ b), only one
occurrence of the formula c is in this list. In fact, c is obtained at the root by
contracting c/b ⊗ b (which is also obtained at the root). Instead, a ⊗ a\c is
obtained, again at the root, by contracting (a⊗a\c)/b⊗b. Thus, the deduction
we obtain for (a ⊗ a\c)/b ⊗ b→ c is the following.

(6.7)
a ⊗ a\c→ a ⊗ a\c

a ⊗ a\c→ c b→ b
(a ⊗ a\c)/b→ c/b b→ b

(a ⊗ a\c)/b ⊗ b→ c/b ⊗ b
(a ⊗ a\c)/b ⊗ b→ c

As we saw, the derivation list in example 6.6 corresponds to the following
deduction.

(6.8)
(a ⊗ a\c)/b ⊗ b→ (a ⊗ a\c)/b ⊗ b

(a ⊗ a\c)/b ⊗ b→ a ⊗ a\c
(a ⊗ a\c)/b ⊗ b→ c

6.3. ENUMERATING READINGS 173

Observe that this second derivation could be obtained by definition 82 if,
instead of one cycle of pattern contraction for each formula in mon (see
clauses b) and c) of definition 82), we computed the closure of the set mon
under contraction operations. However, this is not necessary required for
NL2.

Proposition 26. The recognition procedure resulting from proposition 21
generates only non-redundant derivations.

Proof. As definition 82 follows the innermost reduction strategy and only
one cycle of pattern contraction is applied, no redundant derivation may
arise. �

6.3 Enumerating readings

In this section, we examine the problem of calculating how many readings,
that is how many non-equivalent derivations, a sequent may have. [van
Benthem, 1991] proves that the number of non-equivalent readings for
sequents of the commutative Lambek calculus is finite. Obviously, this
finiteness result applies NL as well (every sequent has only a finite number
of normal derivations). Nonetheless, it appears that this number may soon
become very big in relation, for instance, to the length of the input sequent.
Consider the example of s/(n\s) ⊗ (s/(n\s))\s→ s, discussed by [Hendriks,
1993] and [de Groote, 1999], among others. This sequent has the following
two readings, presented as deductions in ER.

(6.9) Subject wide scope:

s/(n\s)→ s/(n\s)
s→ s

s/(n\s)→ s/(n\s)
n→ s/(n\s)

(s/(n\s))\s→ n\s
s/(n\s) ⊗ (s/(n\s))\s→ s/(n\s) ⊗ n\s

s/(n\s) ⊗ (s/(n\s))\s→ s
2Compare this situation to the associative Lambek calculus. If we wish to build normal

derivations for this system, we should, for example, capture among the pattern contractions,
the expanding pattern a/b → (a/c)/(b/c). Thus, if a formula of the form (a/c)/(b/c) were in
the set mon, we would generate a/b, in the same way as we generate c, if a/(c\a) is in mon
in definition 82. Observe, anyway, that in this case a/b is not a subformula of (a/c)/(b/c),
thus it may give raise to a further contraction, if, for eample, a/b ≡ (a′/x)/(b′/x), and so
on. Therefore, in this case, one cycle of pattern simplification would not be enough and we
should compute the closure of the set mon under the appropriate contraction operations.

174 CHAPTER 6. NORMAL DERIVATIONS AND AMBIGUITY

(6.10) Verb wide scope:

s/(n\s) ⊗ (s/(n\s))\s→ s/(n\s) ⊗ (s/(n\s))\s
s/(n\s) ⊗ (s/(n\s))\s→ s

De Groote concludes what follows.

Now it is easy to construct, from the above example, sequents
with an exponential number of possible proofs.

Let us examine this problem in more detail and try to find an upper bound
to such number. Consider once more the set AX0 of the basic characteristic
laws of NL.

c/a ⊗ a→ c a ⊗ a\c→ c

a→ (a ⊗ c)/c a→ c\(c ⊗ a)

a→ c/(a\c) a→ (c/a)\c

Let us define the following operations, together with their symmetric forms,
eventually.

Definition 94. For a and b ranging over atoms,

- φx(a)(b)(0) = a, for x ∈ {e, c, l}

- φe(a)(b)(i + 1) = (φe(a)(b)(i))/b ⊗ b

- φc(a)(b)(i + 1) = ((φc(a)(b)(i)) ⊗ b)/b

- φl(a)(b)(i + 1) = b/((φl(a)(b)(i))\b)

Each iteration of these operations introduces a pair of connectives. As
a and b are arbitrary atoms, and constant in the iteration, we shall write
φx(n), x ∈ {e, c, l}, for φx(a)(b)(n). We may observe the following.

Remark 4. φx(n), x ∈ {c, l} is a closure operation, for n > 0 as each of the
following sequents is provable.

φx(n) → φx(n + 1)
φx(n + 2) → φx(n + 1)
φx(a)(b)(n) → φx(a′)(b)(n), if a→ a′

In order to make this construction completely uniform, we may introduce
the following abstraction.

6.3. ENUMERATING READINGS 175

Definition 95. Let n > 0 and m > 0. We write n
φ
→ m for

φ(a)(b)(n)→ φ(a)(b)(m), if φ ∈ {φc,φl
}

φ(a)(b)(m)→ φ(a)(b)(n), if φ ∈ {φe
}.

We call φ-sequents such kinds of sequents. For example,

(6.11) 2
φc

→ 3 = ((a ⊗ b)/b ⊗ b)/b→ (((a ⊗ b)/b ⊗ b)/b ⊗ b)/b

(6.12) 2
φe

→ 3 = ((a/b ⊗ b)/b ⊗ b)/b ⊗ b→ (a/b ⊗ b)/b ⊗ b

As we said before, the number of non-equivalent proofs for a sequent of the
commutative Lambek is finite as proved in [van Benthem, 1991] and [Tiede,
1999]. [de Groote, 1999] claims that such number may be exponential on the
length of the sequent even in the case of NL. In general, it seems to us that
the only way to find out the actual number of readings of a sequent is to
count the number of proofs that can be constructed for it. Consequently, we
can know the degree of ambiguity of a sequent only a posteriori. In certain
special cases, however, it is possible to know the number of readings of a
sequent by just looking at its shape. This is indeed the case for φ-sequents,
as we will see. Furthermore, we are going to show that φ-sequents of length
n provide an upper bound for the number of readings of any sequent of
length n. This gives us the possibility to provide an a priori upper bound
for the degree of ambiguity of any sequent.

Let us define the following count.

Definition 96. Let n > 0 and m > 1.

ρ(n,m) = 1, if n = 0 or m = 1
ρ(n + 1,m + 1) = ρ(n,m + 1) + ρ(n + 1,m)

We now prove that the function ρ counts exactly the number of readings of
φ-sequents. We write |a→ c|ρ for the number of different proofs of a→ c.

Proposition 27. Let n > 0 and m > 1.

|n
φ
→ m|ρ = ρ(n,m)

Proof. In the proof, we examine the case of φc, the other cases being similar.

176 CHAPTER 6. NORMAL DERIVATIONS AND AMBIGUITY

Case n = 0 and m > 1. By induction hypothesis, |0
φ
→ m − 1|ρ = 1. There is

only the following way to obtain a
φ
→ m.

0
φc

→ m − 1
a→ φc(m − 1) b→ b
a ⊗ b→ φc(m − 1) ⊗ b b→ b
(a ⊗ b)/b→ (φc(m − 1) ⊗ b)/b

a→ (φc(m − 1) ⊗ b)/b

0
φc

→ m

Case m = 1 and n > 0. Then, by induction hypothesis, |n− 1
φ
→ 1|ρ = 1. The

only way of proving n
φ
→ 1 is the following.

n − 1
φc

→ 1
φc(n − 1)→ (a ⊗ b)/b b→ b
φc(n − 1) ⊗ b→ (a ⊗ b)/b ⊗ b

φc(n − 1) ⊗ b→ a ⊗ b b→ b
(φc(n − 1) ⊗ b)/b→ (a ⊗ b)/b

n
φc

→ 1

Case n > 0 and m > 1. There are two possibilities of obtaining n
φc

→ m.

1.
n

φc

→ m − 1
φc(n)→ φc(m − 1) b→ b
φc(n) ⊗ b→ φc(m − 1) ⊗ b b→ b
(φc(n) ⊗ b)/b→ (φc(m − 1) ⊗ b)/b

φc(n)→ (φc(m − 1) ⊗ b)/b

n
φc

→ m

2.
n − 1

φc

→ m
φc(n − 1)→ φc(m)

φc(n − 1)→ (φc(m − 1) ⊗ b)/b b→ b
φc(n − 1) ⊗ b→ (φc(m − 1) ⊗ b)/b ⊗ b

φc(n − 1) ⊗ b→ φc(m − 1) ⊗ b b→ b
(φc(n − 1) ⊗ b)/b→ (φc(m − 1) ⊗ b)/b

n
φc

→ m

6.3. ENUMERATING READINGS 177

Therefore, |n
φ
→ m|ρ = |n

φ
→ m− 1|ρ + |n− 1

φ
→ m|ρ. By induction hypothesis,

|n
φ
→ m− 1|ρ = ρ(n,m− 1) and |n− 1

φ
→ m|ρ = ρ(n− 1,m). Hence, |n

φ
→ m|ρ =

ρ(n − 1,m) + ρ(n,m − 1). �

Theorem 27 gives rise to the table in figure 6.1, where we enumerate

readings for φ-sequents. For n
φ
→ m, with 0 6 n 6 7 and 0 < m 6 7, we

write n in the leftmost vertical column and m in the topmost horizontal row.
Notice that this is the well known Pascal’s triangle.

φ
→ 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7
2 1 3 6 10 15 21 28
3 1 4 10 20 35 56 84
4 1 5 15 35 70 126 210
5 1 6 21 56 126 252 462
6 1 7 28 84 210 462 924
7 1 8 36 120 330 792 1716

Figure 6.1: Readings of φ-sequents.

Remark 5. The count ρ(n,m) can be formulated in terms of the binomial
coefficient.

ρ(n,m) =
(
n +m − 1

m − 1

)
=

(n +m − 1)!
n!(m − 1)!

Going back to the issue of finding an upper bound for the number of
reading of a NL sequent, let us introduce the following notation. We denote
Φn the set of φ-sequents of length n. Moreover, let dΦne be the integer m
such that s ∈ Φn, |s|ρ = m and for all s′ ∈ Φn, m > |s′|ρ. We can state the
following.

Proposition 28. Let a→ c be given. If |a→ c| = n, then |a→ c|ρ 6 dΦne.

Proof. The shape of φ-sequents allows to match literals and connectives
inside them, introducing an high degree of ambiguity. Consider, as an

example, the φ-sequent 1
φc

→ 2. This has two readings, namely

((a ⊗ b)/b ⊗ b)/b→ ((a ⊗ b)/b ⊗ b)/b
(a ⊗ b)/b→ ((a ⊗ b)/b ⊗ b)/b

178 CHAPTER 6. NORMAL DERIVATIONS AND AMBIGUITY

and
(a ⊗ b)/b→ (a ⊗ b)/b

a→ (a ⊗ b)/b b→ b
a ⊗ b→ (a ⊗ b)/b ⊗ b b→ b

(a ⊗ b)/b→ ((a ⊗ b)/b ⊗ b)/b

Any sequent resulting from a φ-sequent by changing atoms, for example
(a⊗ b)/b→ ((a⊗ b)/b⊗ c)/c, has a smaller number of readings. If we replace
a formula for an atom, the length of the sequent increases. Changing
connectives destroys the shape of φ-sequents. �

In conclusion, we have the following result for the number of readings
of arbitrary sequents.

Proposition 29. Let a→ c be given. Let |a→ c| = n and m = n
2 − 1. Then,

- if m = 0, then
|a→ c|ρ 6 1

- otherwise,

|a→ c|ρ 6 max { ρ(i, j) | 0 6 i & 0 < j & i + j = m }

Proof. The case m = 0 accounts for the case in which a and c are atoms. The
other case follows immediately from propositions 27 and28. �

6.4 Conclusion

In this chapter, we have refined Kandulski’s notion of normal derivation
by eliminating what we called redundant derivations. We proved that the
procedure in definition 82 does indeed generate only non-redundant deriva-
tions. Thus, definition 82 provides a stronger notion of normal derivation:
one which is not affected by spurious ambiguity.

In exploring the properties of the theorem prover arising from proposi-
tion 21, we observed the elegant progression of figure 6.1. I wish to thank
Michael Moortgat for telling me that that was the famous Pascal triangle.
The link between number of readings of NL sequents and binomial coef-
ficient is an important result, that strengthen the previous results of [van
Benthem, 1991] and [Tiede, 1999]. This result clarifies also [de Groote, 1999]
claims about the exponential number of readings of NL sequents.

Chapter 7

A look at cut elimination

In chapter 2, we have presented labeled deductive systems and shown how
to associate lambda terms to derivations. Although it is possible to as-
sign lambda terms to categorial derivations, it is not possible to associate
categorial derivations to lambda terms: due to the lack of directionality
of the lambda notation several derivations may correspond to the same
lambda term. This means that the relation between Lambek derivations
and lambda terms is not an isomorphism, as it is the relation between intu-
itionistic derivations and lambda terms, but only an homomorphism: several
derivations may correspond to a single term.

In a series of papers, Lambek presented his calculi with the term an-
notation proper to category theory and formulated rules of conversion for
terms encoding proofs. [Lambek and Scott, 1987] is probably the most thor-
ough work on this approach, although it is dedicated to intuitionistic logic.
Instead, NL appears as a fragment of the logic in [Lambek, 1993], where a
term language isomorphic to sequent calculus deductions is formulated. In
this paper, Lambek defines conversion rules for proof terms on the basis
of the equations arising from application of the cut-elimination algorithm.
From this perspective, what we called before a sequent becomes the type of
the term. The advantage of such a formalism for proofs is that equality of
proofs become syntactic congruence of terms in normal form.

On the other hand, the sequent formulation adopted in [Lambek, 1993]
renders sometimes ambiguous the formulation of terms, as Lambek himself
admits.

The notation f 〈g〉 for the resulting sequent of a cut is of course
ambiguous, as it does not show where f has been substituted
into g, but we shall use it nonetheless in order to avoid making

179

180 CHAPTER 7. A LOOK AT CUT ELIMINATION

the notation too heavy.

In this chapter, we look at the cut-elimination algorithm within a combinato-
rial formulation of NL which will allow us to define explicitly the equations
arising from the cut elimination algorithm.

7.1 Admissibility of Cut

Let us formulate the system G?, which is like G except in that it lacks the
lifting rule,

g : b→ a′/c f : a′ → a

L \

(f ,g) : c→ b\a

and its symmetric. These rules are in fact derivable in G?, thus we omit
them from the analysis.

1b : b→ b

g : b→ a′/c 1c : c→ c
g/(1c) : b ⊗ c→ a′ f : a′ → a

f · g/(1c) : b ⊗ c→ a

C
\

(f ·g/(1c),1b)
:: c→ b\a

Hence, we have
L \

(f ,g) = C
\

(f ·g/(1c)1b)

L /
(f ,g) = C

/
(f ·g\(1c)1b)

For ease of exposition, we give here the system G?.

- Identities:

Axioms Cut

1a : a→ a
f : a→ b g : b→ c

g · f : a→ c

- Binary Rules:

f : a→ a′ g : b→ b′

f ⊗ g : a ⊗ b→ a′ ⊗ b′

7.1. ADMISSIBILITY OF CUT 181

g : a→ a′ f : b→ a′\c

f \(g) : a ⊗ b→ c
f : a→ c/b′ g : b→ b′

f /(g) : a ⊗ b→ c

f : a′ → a g : b→ b′

(f ,g) : b′\a′ → b\a
f : a′ → a g : b→ b′

�(f ,g) : a′/b′ → a/b

g : b→ b′ f : b′ ⊗ c→ a

C \(f ,g) : c→ b\a

g : b→ b′ f : c ⊗ b′ → a

C /(f ,g) : c→ a/b

The following proof of cut elimination for G provides us with the term
equations which allow normalization of proof terms. The proof proceeds as
the ususal proof of cut elimination for sequent calculus, with the main cases,
listed immediately below and the permutation cases in the next section. One
assumes, without loss of generality, that the premises f : a→ b and g : b→ c,
from which g · f : a→ c is derived, have been constructed without cut. The
degree of the cut is defined as usual as the number of occurrences of each
connective in the sequents involved in the cut. The main cases properly
lower the degree of the cut, while the permutation cases percolate the cut
upwards. Each instance, provides us with a rewriting rule for proof terms.
We call redex the proof on the left and contractum the proof on the right.
The term in the root arrow of the redex is rewritten as the term in the root
arrow of the contractum. We have finally instance of what we call cycles
which give rise to further reduction. These arise from cyclic application of
the rules and we will see how to eliminate them.

The first case we examine is the trivial cut occurring when one of the
premises is an identity axiom.

(7.1) Cut with identities:

Redex: Contractum:

1a : a→ a f : a→ b
f · 1a : a→ b { f : a→ b

f : a→ b 1b : b→ b
1b · f : a→ b { f : a→ b

7.1.1 Main cuts

We examine the main cases of cut. These properly reduce the degree of the
cut.

182 CHAPTER 7. A LOOK AT CUT ELIMINATION

(7.2) The cut formula is a∗ ⊗ b∗ and is introduced on both premisses by
product introduction rule:

Redex:

f : a→ a∗ g : b→ b∗

f ⊗ g : a ⊗ b→ a∗ ⊗ b∗
f ′ : a∗ → a′ g′ : b∗ → b′

f ′ ⊗ g′ : a∗ ⊗ b∗ → a′ ⊗ b′

(f ′ ⊗ g′) · (f ⊗ g) : a ⊗ b→ a′ ⊗ b′

Contractum:

f : a→ a∗ f ′ : a∗ → a′

f ′ · f : a→ a′
g : b→ b∗ g′ : b∗ → b′

g′ · g : b→ b′

(f ′ · f) ⊗ (g′ · g) : a ⊗ b→ a′ ⊗ b′

(7.3) The cut formula is a∗ ⊗ b∗ and is introduced on the left premise by
product introduction rule and on the right by application rule (we
omit the symmetric case):

Redex:

f : a→ a∗ g : b→ b∗

f ⊗ g : a ⊗ b→ a∗ ⊗ b∗
f ′ : a∗ → c/b′ g′ : b∗ → b′

f ′/(g′) : a∗ ⊗ b∗ → c

f ′/(g′) · f ⊗ g : a ⊗ b→ c

Contractum:

f : a→ a∗ f ′ : a∗ → c/b′

f ′ · f : a→ c/b′
g : b→ b∗ g′ : b∗ → b′

g′ · g : b→ b′

(f ′ · f)/(g′ · g) : a ⊗ b→ c

(7.4) The cut formula is a∗/b∗ and is introduced on both premisses by

7.1. ADMISSIBILITY OF CUT 183

monotonicity of the slash (we omit the symmetric case):

Redex:

f : a→ a∗ g : b∗ → b
�(f ,g) : a/b→ a∗/b∗

f ′ : a∗ → a′ g′ : b′ → b∗

�(f ′,g′) : a∗/b∗ → a′/b′

�(f ′,g′) · �(f ,g) : a/b→ a′/b′

Contractum:

f : a→ a∗ f ′ : a∗ → a′

f ′ · f : a→ a′
g′ : b′ → b∗ g : b∗ → b

g · g′ : b′ → b
�(f ′ · f ,g · g′) : a/b→ a′/b′

(7.5) The cut formula is a/b and is introduced on the left premise by the
coapplication rule and on the right premise by monotonicity of the
slash (we omit the symmetric case):

Redex:

g : b→ b∗ f : c ⊗ b∗ → a

C /(f ,g) : c→ a/b
f ′ : a→ a′ g′ : b′ → b
�(f ′,g′) : a/b→ a′/b′

�(f ′,g′) · C
/
(f ,g) : c→ a′/b′

Contractum:

f : c ⊗ b∗ → a f ′ : a→ a′

f ′ · f : c ⊗ b∗ → a′
g′ : b′ → b g : b→ b∗

g · g′ : b′ → b∗

C /(f ′ · f ,g · g′) : c→ a′/b′

As the term notation allows abstraction over the slash orientation, let us
use ‖ as a variable over {�,
}. We can capture the above instances in the
folowing schematic rewriting rules:

Definition 97. Main reductions.

σ(f ′,g′) · δ(f ,g) { σ(f ′· f ,g′·g),
if σ(f ′,g′) ∈ { f ′ ⊗ g′, f ′(g′)} and δ(f ,g) ∈ { f ⊗ g}.

σ(f ′,g′) · δ(f ,g) { σ(f ′· f ,g·g′),
if σ(f ′,g′) ∈ {‖(f ′,g′)} and δ(f ,g) ∈ {‖(f ,g),C(f ,g)}

184 CHAPTER 7. A LOOK AT CUT ELIMINATION

7.1.2 Permutations

The cases that we analyze below are distinct from the previous ones in
that they do not directly reduce the degree of the cut, but permute the cut
upwards, making new cuts visible. In every case, the cut formula is the
simpler formula of a simplifying rule. For each case we distinguish various
subcases, depending on the rule from which the main premise f : x→ y of
the main premise of the cut is derived.

(7.6) Case:

h : c→ c′
g : b→ b′ f : c′ ⊗ b′ → a

C /(f ,g) : c′ → a/b

C /(f ,g) · h : c′ → a/b

1. Subcase: f : c′ ⊗ b′ → a derives from product introduction rule.

Redex:

h : c→ c′
g : b→ b′

f ∗ : c′ → c∗ f ′ : b′ → a′

f ∗ ⊗ f ′ : c′ ⊗ b′ → c∗ ⊗ a′

C /(f ∗⊗ f ′,g) : c′ → (c∗ ⊗ a′)/b

C /(f ∗⊗ f ′,g) · h : c→ (c∗ ⊗ a′)/b

Contractum:

1b : b→ b

h : c→ c′ f ∗ : c′ → c∗

f ∗ · h : c→ c∗
g : b→ b′ f ′ : b′ → a′

f ′ · g : b→ a′

(f ∗ · h) ⊗ (f ′ · g) : c ⊗ b→ c∗ ⊗ a′

C /((f ∗·h)⊗(f ′·g),1b) : c→ (c∗ ⊗ a′)/b

7.1. ADMISSIBILITY OF CUT 185

2. Subcase: f : c′ ⊗ b′ → a derives from the rule of right application.

Redex:

h : c→ c′
g : b→ b′

f ∗ : c′ → a/a′ f ′ : b′ → a′

f ∗/(f ′) : c′ ⊗ b′ → a

C /
(f ∗/(f ′),g)

: c′ → a/b

C /
(f ∗/(f ′),g)

· h : c→ a/b

Contractum:

1b : b→ b

h : c→ c′ f ∗ : c′ → a/a′

f ∗ · h : c→ a/a′
g : b→ b′ f ′ : b′ → a′

f ′ · g : b→ a′

f ∗ · h/(f ′ · g) : c ⊗ b→ a

C /
(f ∗·h/(f ′·g),1b)

: c→ a/b

3. Subcase: f : c′ ⊗ b′ → a derives from the rule of left application.

Redex:

h : c→ c′
g : b→ b′

f ∗ : c′ → a′ f ′ : b′ → a′\a

f ′\(f ∗) : c′ ⊗ b′ → a

C /
(f ′\(f ∗),g)

: c′ → a/b

C /
(f ′\(f ∗),g)

· h : c→ a/b

Contractum:

1b : b→ b

h : c→ c′ f ∗ : c′ → a′

f ∗ · h : c→ a′
g : b→ b′ f ′ : b′ → a′\a

f ′ · g : b→ a′\a

(f ′ · g)\(f ∗ · h) : c ⊗ b→ a

C /
((f ′·g)\(f ∗·h),1b)

: c→ a/b

4. Subcase: f : c′ ⊗ b′ → a derives from the rule of coapplication.
Then f ≡ C(f ′,g′). Then one applies one of the previous cases to
f ′.

186 CHAPTER 7. A LOOK AT CUT ELIMINATION

(7.7) Case:
f : a→ c′/b′ g : b→ b′

f /(g) : a ⊗ b→ c′ h : c′ → c
h · (f /(g)) : a ⊗ b→ c

1. Subcase: f : a→ c′/b′ derives from the rule of monotonicity of
slash.

Redex:

f ′ : a′ → c′ f ∗ : b′ → a∗

�(f ′, f ∗) : a′/a∗ → c′/b′ g : b→ b′

(�(f ′, f ∗))/(g) : a′/a∗ ⊗ b→ c′ h : c′ → c

h · ((�(f ′, f ∗))/(g)) : a′/a∗ ⊗ b→ c

Contractum:

f ′ : a′ → c′ h : c′ → c
h · f ′ : a′ → c

g : b→ b′ f ∗ : b′ → a∗

f ∗ · g : b→ a∗

�(h· f ′, f ∗·g) : a′/a∗ → c/b 1b : b→ b

(�(h· f ′, f ∗·g))/(1b) : a′/a∗ ⊗ b→ c

2. Subcase: f : a→ c′/b′ derives from the rule of coapplication.

Redex:

f ∗ : b′ → b∗ f ′ : a ⊗ b∗ → c′

C /(f ′, f ∗) : a→ c′/b′ g : b→ b′

(C /(f ′, f ∗))
/(g) : a ⊗ b→ c′ h : c′ → c

h · ((C /(f ′, f ∗))
/(g)) : a ⊗ b→ c

Contractum:

g : b→ b′ f ∗ : b′ → b∗

f ∗ · g : b→ b∗
f ′ : a ⊗ b∗ → c′ h : c′ → c

h · f ′ : a ⊗ b∗ → c

C /(h· f ′, f ∗·g) : a→ c/b 1b : b→ b

(C(h· f ′, f ∗·g))/(1b) : a ⊗ b→ c

3. Subcase: f : a→ c′/b′ derives from the rule of application. Then
f ≡ f ′(g′). Then one applies one of the previous cases to f ′.

7.1. ADMISSIBILITY OF CUT 187

We can capture the above instances in the folowing schematic rewriting
rules:

Definition 98. Permutations.

If σ(f ,g) ∈ {C
#
(f ,g)}, then if δ(g,h) ∈ {g⊗h, g#(h)}, then σ(δ(f ∗ , f ′),g) ·h { σ(δ(f ∗·h, f ′·g),1).

Else, if δ(g,h) ∈ {g ⊗ h, g
∼

#(h)}, then σ(δ(f ∗ , f ′),g) · h { σ(δ(f ∗·g, f ′·h),1), where
∼

is the
symmetric connective of #.

h · σ(δ(f ′ , f ∗),g) { σ(δ(h· f ′ , f ∗·g),1), if σ(f ,g) ∈ { f (g)} and δ(f ,g) ∈ {‖(f ,g),C(f ,g)}.

This concludes the analysis of the various instances of cut.

7.1.3 Cycles

The following cases do not deal with cut. However, the cases in the previous
section may give rise to further reductions. We call such instances cycles
and we show how to reduce and eliminate them.

1. Instance:

Redex:

g : b∗ → b′ f : c ⊗ b′ → a

C /(f ,g) : c→ a/b∗ h : b→ b∗

(C /(f ,g))
/(h) : c ⊗ b→ a

Contractum:

h : b→ b∗ g : b∗ → b′

g · h : b→ b′ f : c ⊗ b′ → a

C /(f ,g·h) : c→ a/b 1b : b→ b

(C /(f ,g·h))
/(1b) : c ⊗ b→ a

Termination:

1b : b→ b f : c ⊗ b→ a

C /(f ,1b) : c→ a/b 1b : b→ b

(C /(f ,1b))
/(1b) : c ⊗ b→ a { f : c ⊗ b→ a

188 CHAPTER 7. A LOOK AT CUT ELIMINATION

2. Instance:

Redex:

h : b→ b∗
f : c→ a/b′ g : b∗ → b′

f /(g) : c ⊗ b∗ → a

C /
(f /(g),h)

: c→ a/b

Contractum:

1b : b→ b
f : c→ a/b′

h : b→ b∗ g : b∗ → b′

g · h : b→ b′

f /(g · h) : c ⊗ b→ a

C /
(f /(g·h),1b)

: c→ a/b

Termination:

1b : b→ b
f : c→ a/b 1b : b→ b

f /(1b) : c ⊗ b→ a

C /
(f /(1b),1b)

: c→ a/b { f : c→ a/b

7.2 Conclusion

The combinatorial analysis of the cut elimination algorithm proposed in
the previous sections represents the basis for further work which may en-
lighten the properties of an appropriate term language for encoding normal
NL proofs. The task is quite an ambitious one, as it aims at expressing equiv-
alence of proofs for the non-associative Lambek calculus. As we saw in the
various case analyses, the proof term notation becomes soon rather complex
and probably the choice of a simpler notation, if possible, would help. We
discussed, on the other hand, the fact that [Lambek, 1993] notation, though
slightly simpler, is ambiguous. In this respect, we provided an explicit no-
tation for proof terms isomorphic to NL proofs. The equation arising in this
analysis represent a further step towards the semantics of NL proofs.

Chapter 8

Conclusion

This book presented a thorough study of categorial grammars. We investi-
gated logical, linguistic and computational properties of the non-associative
Lambek calculus.

Concerning the logical properties, in chapter 5 we improved on the
method of [Kandulski, 1988] for the construction of normal derivations for
NL, by defining a finite procedure for building normal derivations. Fur-
thermore, our procedure is free from spurious ambiguity as we showed in
chapter 6. As a result, we calculated the number of readings of a special
class of sequents, that we called φ-sequents. The connection with the Pas-
cal triangle is a pleasant theoretical result, illustrating the great generative
power of NL.

With respect to linguistics, the analysis that we presented in chapter 4
should mainly be taken as an exemplification of how NL may be applied
to natural language analysis. The problems we have dealt with are com-
plex and articulated, as acknowledged by the entire linguistic community.
They involve aspect of morphology and prosodic phonology as well as of
semantics and pragmatics of discourse which were beyond the scope of our
treatment. Thus, we hope at least that our examples were clear and that
our approach may lay the ground for further research.

Finally, we studied the computational properties of NL. In chapter 3,
we designed the CYK parser for Ajdukiewicz Bar-Hillel grammars with
product. As the normalization procedure given in chapter 5 converts an NL
into an equivalent AB⊗ grammar, the converted NL grammar can also be
parsed in cubic time. In chapter 3, we showed also that one can get rid of the
product introduction rule in the parsing process, through a transformation
that converts an AB⊗ grammar into an equivalent AB grammar (without

189

190 CHAPTER 8. CONCLUSION

product), and still be able to recover the deduction in the original AB⊗ via
a simple term normalization procedure, whose complexity is linear. We
also applied the technique of shared forest to the parse table returned by
the CYK recognition algorithm for AB⊗. Since one is usually interested in
retrieving all readings of a categorial sequent, this technique represents an
efficient solution of this problem.

The term equations arisen in the application of the cut-elimination algo-
rithm in chapter 7 are an interesting aspect of proof theoretic investigation
of NL which deserve further study. As we explained, lambda terms do not
offer an appropriate semantics of NL proofs and only a few works on term
languages isomorphic to NL proofs have been proposed. The proof terms
that we have developed and the reductions we identified by applying the
cut elimination algorithm are a further step towards an explicit semantics
of proofs for NL.

Bibliography

S. Adams. Functional pearls: Efficient sets—a balancing act. Journal of
Functional Programming, 3(4):553–561, October 1993.

A. Aho and J. Ullman. The Theory of Parsing, Translation and Compiling,
volume 1: Parsing. Prentice-Hall, INC., 1972.

A. V. Aho. Indexed grammars - An extension of context free grammars. In
FOCS, pages 21–31. IEEE, 1967.

K. Ajdukiewicz. Die syntaktische Konnexität. Studia Philosophica, 1:1–27,
1935.

Y-M. Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):197–347, 1992.

Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Lan-
guage, 29:47–58, 1953.

Y. Bar-Hillel, C. Gaifman, and E. Shamir. On categorial and phrase structure
grammars. In Y. Bar-Hillel, editor, Language and Information. Selected Essays
on their Theory and Application, pages 99–115. Addison-Wesley, Reading,
MA, 1964a.

Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple
phrase structure grammars. In Y. Bar-Hillel, editor, Language and In-
formation: Selected Essays on their Theory and Application, pages 116–150.
Addison-Wesley Publishing Co., 1964b.

R. Bernardi. Reasoning with polarity in categorial type logic. PhD thesis, UiL-
OTS, Utrecht, 2002.

S. Billot and B. Lang. The structure of shared forests in ambiguous parsing.
In Proceedings of the 27th annual meeting on Association for Computational

191

192 BIBLIOGRAPHY

Linguistics, pages 143–151, Morristown, NJ, USA, 1989. Association for
Computational Linguistics.

P. Blackburn and J. Bos. Computational semantics for natural language.
Course notes for NASSLLI 2003, Indiana University, 2003.

M. Buliśka. P-TIME decidability of NL1 with assumptions. In FG2006:
The 11th Conference on Formal Grammar, pages 29–38, 2006. URL http:
//cs.haifa.ac.il/∼shuly/fg06/FG.pdf.

W. Buszkowski. Lambek calculus with nonlogical axioms. In C. Casadio,
P. Scott, and R. Seely, editors, Language and Grammar: Studies in Mathe-
matical Linguistics and Natural Language, pages 77–93. CSLI Lecture Notes
168, Stanford, 2005.

W. Buszkowski. Generative capacity of the nonassociative Lambek calculus.
Bulletin of the Polish Academy of Sciences, Mathematics, 34:507–516, 1986.

W. Buszkowski. Gaifman’s theorem on categorial grammars revisited. Stu-
dia Logica, 47:23–33, 1988.

W. Buszkowski. Mathematical linguistics and proof theory. In J. van Ben-
them and A. ter Meulen, editors, Handbook of Logic and Language, pages
683–736. Elsevier, Amsterdam, 1997.

B. Carpenter. The turing-completeness of multimodal categorial grammars,
1996. URL citeseer.ist.psu.edu/194254.html.

C. Casadio. Logic for Grammar. Developments in Linear Logic and Formal
Linguistics. Bulzoni, Roma, 2002.

C. Casadio. Semantic categories and the development of categorial gram-
mars. In R. Oehrle, E. Bach, and D. Wheeler, editors, Categorial Grammar
and Natural Language Structures. Reidel, Dodrecht, 1988.

C. Casadio and J. Lambek. An algebraic analysis of clitic pronouns in
italian. In P. de Groote, G. Morrill, and C. Retoré, editors, Logical Aspects
of Computational Linguistics, Lecture Notes in Computer Science, pages
110–124. Springer, 2001.

Claudio Casadio and Joachim Lambek. A tale of four grammars. Studia
Logica, 71(3):315–329, 2002.

N. Chomsky. Syntactic Structures. Mouton and Co., The Hague, 1957.

http://cs.haifa.ac.il/~shuly/fg06/FG.pdf
http://cs.haifa.ac.il/~shuly/fg06/FG.pdf
citeseer.ist.psu.edu/194254.html

BIBLIOGRAPHY 193

N. Chomsky. On certain formal properties of grammars. Information and
Control, 2(2):137–167, 1959.

N. Chomsky. Formal properties of grammars. In Handbook of Mathematical
Psychology, volume 2, pages 323–418. J. Wiley and Sons, New York, 1963.

N. Chomsky. Aspects of the theory of syntax. The MIT Press, 1965.

N. Chomsky. The Minimalist Program. The MIT Press, Cambridge, Mas-
sachusetts, 1995.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

H. B Curry and R. Feys. Combinatory Logic I. North-Holland, Amsterdam,
1958.

L. Damas and R. Milner. Principal type-schemes for functional programs.
In POPL, pages 207–212, 1982.

F. de Groote. The non-associative Lambek calculus with product in poly-
nomial time. In N. V. Murray, editor, Lecture Notes in Artificial Intelligence,
volume 1617. Springer-Verlag, 1999.

Philippe de Groote and François Lamarche. Classical non-associative lam-
bek calculus. Studia Logica, 71(3):355–388, 2002.

S. Degeilh and A. Preller. Efficiency of pregroups and the French noun
phrase. Journal of Logic, Language, and Information, 14(4):423–444, 2005.

K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming.
King’s College Publications, 2004.

K. Došen. A brief survey of frames for the Lambek calculus. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 38:179–187, 1992.

D. R. Dowty, R. E. Wall, and S. Peters. Introduction to Montague Semantics.
Reidel, Dordrecht, 1981.

J. Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, 1968.

J. Earley. An efficient context-free parsing algorithm. Comm. ACM, 13:
94–102, 1970.

194 BIBLIOGRAPHY

A. Finkel and I. Tellier. A polynomial algorithm for the membership problem
with categorial grammar. Theoretical Computer Science, 164:207–221, 1996.

G. Gazdar. Applicability of indexed grammars to natural languages. In
U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic
Theories, pages 69–94. D. Reidel, Dordrecht, 1988.

G. Gazdar, E. Klein, G. Pullum, and I. Sag. Generalized Phrase Structure
Grammar. Basil Blackwell, 1985.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, Workshop on Linear
Logic, 1993, pages 1–42. Cambridge Univ. Press, 1995.

J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, 1989.

C. Hankin. An Introduction to Lambda Calculi for Computer Scientist. King’s
College Publications, 2004.

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Massachussets, 1978.

I. Heim. File change semantics and the familiarity theory of definiteness.
In Rainer Bäuerle, Christoph Schwarze, and Arnim von Stechow, editors,
Meaning, Use, and Interpretation of Language, pages 164–189. Walter de
Gruyter, Berlin, 1983.

H. Hendriks. Studied Flexibility: Categories and Types in Syntax and Semantics.
PhD thesis, ILLC, Amsterdam, 1993.

H. Hendriks. The logic of tune. A proof-theoretic analysis of intonation. In
A. Lecomte, editor, Logical Aspects of Computational Linguistics, New York,
1999. Springer.

H. Hendriks and P. Dekker. Links without locations. In P. Dekker and
M. Stokhof, editors, Proceedings of the Tenth Amsterdam Colloquium, 1998.

M. Hepple. Chart parsing Lambek grammars: Modal extensions and in-
crementality. In Proceedings of COLING-92, pages 134–140, 1992. URL
http://acl.ldc.upenn.edu/C/C92/C92-1024.pdf.

http://acl.ldc.upenn.edu/C/C92/C92-1024.pdf

BIBLIOGRAPHY 195

M. Hepple. A compilation-chart method for linear categorial deduction. In
Proceedings of COLING-96, pages 537–542, Copenhagen, 1996.

M. Hepple. An earley-style predictive chart parsing method for Lambek
grammars. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL’99), pages 465–472, Maryland, June 1999.

D. Heylen. Types and Sorts. Resource logic for feature checking. PhD thesis,
UiL-OTS, Utrecht, 1999.

J. R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

G. Jäger. Anaphora and quantification in categorial grammar. In M. Moort-
gat, editor, Logical Aspects of Computational Linguistics, volume 2014, Lec-
ture Notes in Computer Science. Springer-Verlag, 2001.

S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

A. K. Joshi. How much context-sensitivity is necessary for characterizing
structural descriptions – tree adjoining grammars. In D. Dowty, L. Kart-
tunen, and A. Zwicky, editors, Natural Language Processing – Theoretical,
Computational and Psychological Perspectives, pages 206–250. Cambridge
University Press, 1985.

A. K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars. JCSS:
Journal of Computer and System Sciences, 10, 1975.

M. Kandulski. The equivalence of nonassociative Lambek categorial gram-
mars and context-free grammars. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 34:41–52, 1988.

T. Kasami. An efficient recognition and syntax analysis algorithm for
context-free languages. Technical Report AFCRL-65-758, Air Force Cam-
bridge Res. Lab., Bedford Mass.,, 1965.

E. König. A hypothetical reasoning algorithm for linguistic analysis. Journal
of Logic and Computation, 4(1):1–19, February 1994.

E. Kraak. French object clitics: a multimodal analysis. In G. Morrill and
R. T. Oehrle, editors, Formal Grammar, 1995.

G.-J. M. Kruijff and J. Baldridge. Multi-modal combinatory categorial gram-
mar. In EACL, pages 211–218, 2003. URL http://acl.ldc.upenn.edu/
E/E03/E03-1036.pdf.

http://acl.ldc.upenn.edu/E/E03/E03-1036.pdf
http://acl.ldc.upenn.edu/E/E03/E03-1036.pdf

196 BIBLIOGRAPHY

N. Kurtonina. Frames and labels. A modal analysis of categorial inference. PhD
thesis, UiL-OTS, Utrecht, 1995.

N. Kurtonina and M. Moortgat. Structural control. In P. Blackburn and
M. de Rijke, editors, Specifying Syntactic Structures, pages 75–113. CSLI,
Stanford, 1997.

J. Lambek. Type grammars as pregroups. Grammars, 4(1):21–39, 2001.

J. Lambek. The mathematic of sentence structure. American Mathematical
Monthly, 65(3):154–170, 1958.

J. Lambek. On the calculus of syntactic types. In R. Jacobson, editor,
Proceedings of the Twelfth Symposium in Applied Mathematics, volume XII,
pages 166–178, 1961.

J. Lambek. Categorial and categorical grammars. In R. T. Oehrle et al.,
editor, Categorial Grammars and Natural Language Structures, pages 297–
317. Reidel, Dodrecht, 1988.

J. Lambek. Logic without structural rules (another look at cut elimination).
In P. Schroeder-Heister and K. Dosen, editors, Substructural Logic, pages
179–206. Claredon Press, Oxford, 1993.

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1987.

Y. Le Nir. From NL grammars to AB grammars. In M. Moortgat and
V. Prince, editors, CG2004 Proceedings, Montpellier-France, 2004.

Y. Le Nir. Structures des analyses syntaxiques catégorielles. Application à
l’inférence grammaticale. PhD thesis, Université de Rennes 1, Rennes, 2003.

P. Monachesi. A lexical approach to Italian cliticization. CSLI publications,
Stanford, 1999.

R. Montague. Universal grammar. Theoria, 36:373–398, 1970a. Reprinted in
[Montague, 1974].

R. Montague. English as a formal language. In Linguaggi nella Società e nella
Tecnica, pages 189–224. Edizioni di Comunità, Milan, 1970b. Reprinted in
[Montague, 1974].

R. Montague. Formal Philosophy: Selected Papers of Richard Montague. Yale,
1974. Edited and with an introduction by R. Thomason.

BIBLIOGRAPHY 197

M. Moortgat. Generalized quantification and disconinuous type construc-
tors. In H. Bunt and A. van Horck, editors, Proceedings of the Tilburg Sym-
posium on Discontinuous Dependencies, Berlin, 1997a. Mouton de Gruyter.

M. Moortgat. Categorial Investigations. Logical and Linguistic Aspects of the
Lambek Calculus. Foris, Dordrecht, 1988.

M. Moortgat. Multimodal linguistic inference. Journal of Logic, Language and
Information, 5(3/4):349–385, 1996.

M. Moortgat. Categorial type logics. In J. van Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 93–177. Elsevier, Amster-
dam, 1997b.

M. Moortgat and G. Morrill. Heads and phrases. Type calculus for depen-
dency and constituent structure. OTS Research Papers, 1991.

M. Moortgat and R.T. Oehrle. Proof nets for the grammatical base logic. In
V.M. Abrusci and C. Casadio, editors, Proceedings of the IV Roma Workshop,
Roma, 1997. Bulzoni Editore.

R. Moot. Proof Nets for Linguistic Analysis. PhD thesis, UiL-OTS, Utrecht,
2002.

G. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer, Dor-
drecht, 1994.

G. Morrill. Memoisation of categorial proof nets: Parallelism in categorial
processing. In V. M. Abrusci and C. Casadio, editors, Proofs and Linguistic
Categories, Proceedings 1996 Roma Workshop, pages 157–169, Bologna,
1996. Cooperativa Libraria Universitaria Editrice.

M.-J. Nederhof and G. Satta. Tabular parsing. In C. Martin-Vide, V. Mi-
trana, and G. Paun, editors, Formal Languages and Applications, Studies in
Fuzziness and Soft Computing 148, pages 529–549. Springer, 2004.

R. T. Oehrle. Multi-dimensional compositional functions as a basis for
grammatical analysis. In R. Oehrle, E. Bach, and D. Wheeler, editors,
Categorial Grammar and Natural Language Structures. Reidel, Dodrecht,
1988.

C. Okasaki. Purely Functional Data Structures. Cambridge University Press,
Cambridge, England, 1998.

198 BIBLIOGRAPHY

C. Okasaki. Red-black trees in a functional setting. Journal of Functional
Programming, 9(4):471–477, 1999.

B. H. Partee, A. ter Meulen, and R. E. Wall. Mathematical Methods in Linguis-
tics. Kluwer Academic Publishers, 1990.

M. Pentus. Lambek calculus is NP-complete. CUNY
Ph.D. Program in Computer Science Technical Report TR–
2003005, CUNY Graduate Center, New York, May 2003.
http://www.cs.gc.cuny.edu/tr/techreport.php?id=79.

M. Pentus. Lambek calculus is np-complete. Theoretical Computer Science,
357(1-3):186–201, 2006.

M. Pentus. Lambek grammars are context free. In Proceedings of the 8th
Annual IEEE Symposium on Logic in Computer Science, pages 429–433, Los
Alamitos, California, 1993. IEEE Computer Society Press.

F. C. N. Pereira and D. H. D. Warren. Parsing as deduction. In Proceedings
of 21st Annual Meeting of the Association for Computational Linguistics. MIT,
June 1983.

J. Pierrehumbert and G. Hirshberg. The meaning of intonational contours
in the interpretation of discourse. In J. Morgan P. Cohen and M. Pollack,
editors, Intentions in Communication. The MIT Press, Cambridge, 1990.

C. Pollard and I. A. Sag. Head-driven Phrase Structure Grammar. University
of Chicago Press, Chicago, IL, 1994.

T. Reinhart. Pragmatics and linguistics: an analysis of sentence topics.
Philosophica, 27:53–116, 1982.

A. Sanfilippo. Thematic accessibility in discontinuous dependencies. In
E. Engdahl and M. Reape, editors, Parametric Varition in Germanic and
Romance: Preliminary Investigations, pages 87–99. ESPRIT Basic Research
Project 3175, Dynamic Interpretation of Natural Language, DYANA De-
liverable R1.1.A, ECCS, University of Edinburg, 1990.

Y. Savateev. The derivability problem for lambek calculus with one di-
vision, 2006. URL http://www.phil.uu.nl/preprints/ckipreprints/
PREPRINTS/preprint056.pdf.

S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and implementation
of deductive parsing. Journal of Logic Programming, 24:3–36, 1995.

http://www.phil.uu.nl/preprints/ckipreprints/PREPRINTS/preprint056.pdf
http://www.phil.uu.nl/preprints/ckipreprints/PREPRINTS/preprint056.pdf

BIBLIOGRAPHY 199

K. Sikkel. Parsing schemata. PhD thesis, Dept. of Computer Science, Univer-
sity of Twente, Enschede, NL, 1993.

K. Sikkel. Parsing schemata and correctness of parsing algorithms. Theoret-
ical Computer Science, 199, 1998.

Edward Stabler. Derivational minimalism. In Christian Retoré, editor, Logi-
cal Aspects of Computational Linguistics, pages 68–95, Berlin, 1997. Springer.
LNAI 1328.

M. Steedman. Information structure and the syntax-phonology interface.
Linguistic Inquiry, 31(4):649–689, 2000a.

M. Steedman. The Syntactic Process. The MIT Press, 2000b.

H.-J. Tiede. Lambek calculus proofs and tree automata. In Michael Moort-
gat, editor, LACL, volume 2014 of Lecture Notes in Computer Science,
pages 251–265. Springer, 1998. ISBN 3-540-42251-X. URL http://link.
springer.de/link/service/series/0558/bibs/2014/20140251.htm.

H-J. Tiede. Counting the number of proofs in the commutative Lambek
calculus. In J. Gerbrandy, M. Marx, M. de Rijke, and Y. Venema, editors,
JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th
Birthday. Amsterdam University Press, Amsterdam, 1999.

E. Vallduvi. The Informational Component. PhD thesis, University of Penn-
sylvania, Philadelphia, 1990.

J. van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic.
The MIT Press, 1991.

J. van Eijck. Computational semantics and type theory, 2003. URL http:
//homepages.cwi.nl/∼jve/cs/.

J. van Eijck. Deductive parsing in haskell, 2004. URL http://homepages.
cwi.nl/∼jve/papers/04/parsing/DP.pdf.

J. van Eijck. Deductive parsing with sequentially indexed grammars, 2005.
URL http://homepages.cwi.nl/∼jve/papers/05/sig/DPS.pdf.

W. Vermaat. The logic of variation. A cross-linguistic account of wh-question
formation. PhD thesis, UiL-OTS, Utrecht, 2005.

K. Vijay-Shanker. A study of tree adjoining grammars. PhD thesis, Department
of Computer and Information Science, University of Pennsylvania, 1987.

http://link.springer.de/link/service/series/0558/bibs/2014/20140251.htm
http://link.springer.de/link/service/series/0558/bibs/2014/20140251.htm
http://homepages.cwi.nl/~jve/cs/
http://homepages.cwi.nl/~jve/cs/
http://homepages.cwi.nl/~ jve/papers/04/parsing/DP.pdf
http://homepages.cwi.nl/~ jve/papers/04/parsing/DP.pdf
http://homepages.cwi.nl/~ jve/papers/05/sig/DPS.pdf

200 BIBLIOGRAPHY

K. Vijay-Shanker and D. J. Weir. Polynomial time parsing of combinatory
categorial grammars. In ACL, pages 1–8, 1990.

P. Wadler. The essence of functional programming. In R. Sethi, editor,
Proceedings of the 19th Annual Symposium on Principles of Programming
Languages, pages 1–14, Albuquerque, January 1992. ACM Press. ISBN
0-89791-453-8 /0-89791-453-8.

D. H. Younger. Recognition and parsing of context-free languages in time
n3. Information and Control, 10:189–208, 1967.

W. Zielonka. Axiomatizability of Ajdukiewicz-Lambek calculus by means
of cancellation schemes. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 27:215–224, 1981.

	I Categorial Grammars
	Introduction
	Categorial linguistics
	Semantics
	Logical syntax

	Categorial parsing
	Products

	Non-associative Lambek calculus
	Overview

	Formal Background
	Languages
	Grammars
	Deductive systems

	Context-free grammars
	Categorial grammars
	Lambda terms
	Typed lambda calculus
	Lambda calculus in Haskell

	The Lambek calculus
	Product types
	Linguistic analysis in NL

	Multi-modal Type-logical Grammars
	Formal properties of categorial grammars

	Automated Reasoning
	Problems
	Deductive parsers
	Bottom-up parsers
	Basic categorial grammars
	Product rules

	Earley style parsing
	Earley system for CF

	Implementations
	Agenda-driven, chart-based procedure
	Tabular parsing
	Tabular CYK

	Parses
	Parse forest
	Parse forests for AB grammars

	From AB to AB
	Currying
	Uncurrying

	Parsing approaches for Lambek systems
	Conclusion

	II The Non-associative Lambek Calculus
	A Case Study: Cliticization
	Information Structure
	Hendriks' approach
	Clitics and pregroups

	Italian clitic cluster and core clause
	Notation for cases
	Formal treatment
	Clitic attachment

	Clitic left-dislocation
	Redundant arguments
	Proposals
	Non-relevant reasoning
	A lexical solution

	Conclusion

	Normal Derivations in NL
	Alternative formulations of NL
	Normal derivations
	Automatic construction of normal derivations
	Expansion and reduction
	Remarks on expansions and reductions

	Proof terms
	Connection to parsing
	Conclusion

	Normal Derivations and Ambiguity
	Eliminating redundancies
	Unique normal derivations
	Enumerating readings
	Conclusion

	A look at cut elimination
	Admissibility of Cut
	Main cuts
	Permutations
	Cycles

	Conclusion

	Conclusion

