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PRESENTAZIONE DELLA TESI DI DOTTORATO 

di CLAUDIA BOLDRINI 

 

Lo studio presentato in questa Tesi di Dottorato si inserisce nell’ambito della 

trattazione analitica della Meccanica della Frattura.  

Il tema principale del lavoro svolto è la risposta elettro-elasto-statica alla frattura 

di un mezzo piezoelettrico fessurato, in regime di carico tensionale ed elettrico 

biassiale all’infinito. 

Per la trattazione analitica è stato adattato al caso piezoelettrico un formalismo, 

analogo a quello di Stroh, che era precedentemente stato utilizzato per il più 

semplice caso dei materiali ortotropi [Piva, 1987; Piva e Viola, 1988]. Questo 

metodo, attraverso l’applicazione del teorema spettrale dell’algebra sulla matrice 

fondamentale, permette di esprimere le equazioni governanti il problema elastico 

mediante dei potenziali complessi. In seguito, con l’imposizione delle condizioni al 

contorno (meccaniche ed elettriche) sui bordi del crack, ci si riconduce a un 

problema di Hilbert, la cui soluzione è nota. 

Un primo aspetto, ampiamente discusso in letteratura, che è stato affrontato in 

questa ricerca è stato la definizione delle opportune condizioni al contorno 

elettriche da imporre ai bordi della discontinuità (fessura). In questa tesi sono 

state analizzate le soluzioni per tre diversi modelli di fessura (crack permeabile, 

impermeabile e semi-permeabile al campo elettrico), ed i risultati ottenuti sono 

stati confrontati per cercare di quantificare quale sia l’importanza della corretta 

scelta del modello da applicare, verificando che in molti casi questo è un aspetto 

tutt’altro che trascurabile. 

Un altro aspetto analizzato con attenzione è stato l’influenza dell’applicazione di 

un carico biassiale, ed in particolare l’effetto del carico collineare alla direzione del 



iv 

 

crack. Mentre il caso di un carico biassiale è stato ampiamente trattato in 

letteratura per quanto riguarda il caso dei materiali isotropi [ad esempio 

Carpinteri et al., 1979; Eftis et al., 1990] od ortotropi [ad esempio Lim et al., 

2001; Carloni et al., 2003], esso non è stato quasi mai considerato per la frattura 

nei materiali piezoelettrici. Il carico collineare compare solo nell’espressione dei 

termini non singolari della soluzione del problema elettroelastico. La tendenza 

prevalente è di considerare solo la parte asintotica della soluzione nell’analisi del 

campo tensionale nell’intorno della fessura, dal momento che questa è 

inversamente proporzionale alla distanza r dal tip del crack e quindi 

predominante nelle sue immediate vicinanze. L’eliminazione dei termini non 

singolari dalla soluzione implica però il trascurare la possibilità che anche una 

forza parallela alla direzione del crack possa esercitare un’influenza sul campo 

elettroelastico riscontrato nei pressi della discontinuità. Nella nostra analisi i 

termini non singolari sono stati ritenuti, ed attraverso una simulazione numerica 

del comportamento di diverse ceramiche piezoelettriche i risultati così ottenuti 

sono stati confrontati con quelli asintotici. Per valutare la possibile propagazione 

della fessura all’interno del materiale sono stati utilizzati due diversi criteri: il 

criterio della massima tensione circonferenziale [Erdogan e Sih, 1963], ed il criterio 

della minima densità di energia di deformazione [Sih, 1973]. Un interessante 

risultato ottenuto è la dimostrazione che la presenza di un carico collineare può 

avere conseguenze macroscopiche per quanto riguarda lo studio dell’angolo di 

diramazione della fessura. Infatti, secondo entrambi i criteri suddetti, 

l’applicazione di un carico sufficientemente elevato parallelo al crack provoca una 

brusca diversione dall’orizzontale della direzione di estensione della lesione, pur in 

condizioni di carico simmetrico (cioè in assenza di forze tangenziali applicate). 

Dallo studio analitico si evince quindi che l’effetto della biassialità del carico non 

è assolutamente trascurabile nello studio dei problemi di frattura; sarebbe 

importante avvalorare i risultati analitici con prove sperimentali. 

Nella seconda parte di questa tesi sono riportati i risultati di una ricerca 

sperimentale a cui ho collaborato durante un periodo di soggiorno come Visiting 
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Researcher presso il Department of Mechanical Engineering, The City College of 

New York, nell’A.A. 2008/09. 

L’obiettivo del progetto di ricerca (tuttora in corso) è la validazione di una 

tecnica self-sensing per la rilevazione di danni da delaminazione in elementi  

strutturali laminati compositi. La tecnica utilizza la resistenza elettrica 

trasversale di un laminato composito come principale parametro per 

l’individuazione della presenza e propagazione di un crack interlaminare. Il 

principio alla base è che la presenza o la propagazione di un crack di 

delaminazione ingeneri una diminuzione della conduttività elettrica trasversale 

nella zona in prossimità del danno, con conseguente aumento della resistenza.  

La tecnica tradizionale prevede sensori a due terminali, che sono utilizzati sia per 

applicare la corrente elettrica, sia per misurare la differenza di potenziale e 

conseguentemente la resistenza. Il limite di questo metodo è che la resistenza così 

misurata non è solo quella del materiale che si vuole testare, ma anche quella del 

filo attraverso cui viene fatta passare la corrente e dell’elettrodo stesso. In 

particolare nel caso di una non perfetta connessione dell’elettrodo al materiale, 

l’errore così introdotto può non essere trascurabile. Per ovviare a questo problema 

è stata proposta una seconda tecnica a quattro elettrodi, dove i primi due sono 

utilizzati per il passaggio della corrente ed i secondi due, posti nelle immediate 

vicinanze, per la misurazione della resistenza, permettendo di eliminare dalla 

misura l’impedenza dei cavi. 

La ricerca ha lo scopo principale di capire i limiti di applicazione e la potenzialità 

del metodo e di esplorarne le possibilità di utilizzo industriale. Una tecnica di self-

sensing potrebbe ridurre o eliminare l’utilizzo di sensori quali MEMS o 

piezoelettrici, correntemente utilizzati nel monitoraggio automatico dell’integrità 

strutturale. I dati ricavati dimostrano quasi sempre che all’avanzare della 

delaminazione lungo il provino corrisponde un aumento del valore registrato della 

resistenza, indicando che la tecnica self-sensing può essere una promettente 

metodologia di diagnostica strutturale. 
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Tutti i test sono stati effettuati presso il Laboratorio di Meccanica dei Materiali 

del City College of New York. Alcuni dei risultati dei test sono stati presentati al 

convegno International Conference on Integrity, Reliability and Failure, tenutosi 

a Porto, 20-24 Luglio 2009. 
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Outline 

 

 

Piezoelectrics present an interactive electromechanical behaviour that, especially 

in recent years, has generated much interest since it renders these materials adapt 

for use in a variety of electronic and industrial applications like sensors, 

actuators, transducers, smart structures. Both mechanical and electric loads are 

generally applied on these devices and can cause high concentrations of stress, 

particularly in proximity of defects or inhomogeneities, such as flaws, cavities or 

included particles. A thorough understanding of their fracture behaviour is crucial 

in order to improve their performances and avoid unexpected failures. Therefore, 

a considerable number of research works have addressed this topic in the last 

decades. 

Most of the theoretical studies on this subject find their analytical background in 

the complex variable formulation of plane anisotropic elasticity. This theoretical 

approach bases its main origins in the pioneering works of Muskelishvili and 

Lekhnitskii who obtained the solution of the elastic problem in terms of 

independent analytic functions of complex variables. 

In the present work, the expressions of stresses and elastic and electric 

displacements are obtained as functions of complex potentials through an 

analytical formulation which is the application to the piezoelectric static case of 

an approach introduced for orthotropic materials to solve elastodynamics 

problems. This method can be considered an alternative to other formalisms 

currently used, like the Stroh’s formalism. The equilibrium equations are reduced 

to a first order system involving a six-dimensional vector field. After that, a 

similarity transformation is induced to reach three independent Cauchy-Riemann 

systems, so justifying the introduction of the complex variable notation. Closed 

form expressions of near tip stress and displacement fields are therefore obtained. 

In the theoretical study of cracked piezoelectric bodies, the issue of assigning 

consistent electric boundary conditions on the crack faces is of central importance 

and has been addressed by many researchers. Three different boundary conditions 

are commonly accepted in literature: the permeable, the impermeable and the 

semipermeable (“exact”) crack model. This thesis takes into considerations all the 
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three models, comparing the results obtained and analysing the effects of the 

boundary condition choice on the solution. 

The influence of load biaxiality and of the application of a remote electric field 

has been studied, pointing out that both can affect to a various extent the stress 

fields and the angle of initial crack extension, especially when non-singular terms 

are retained in the expressions of the electro-elastic solution. 

Furthermore, two different fracture criteria are applied to the piezoelectric case, 

and their outcomes are compared and discussed. 

 

The work is organized as follows: 

Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. 

Chapter 2 describes plane elasticity formalisms for an anisotropic continuum 

(Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic 

case the alternative formalism we want to propose. 

Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and 

electro-elastic equations. 

Chapter 4 introduces the proposed method for obtaining the expressions of 

stresses and elastic and electric displacements, given as functions of complex 

potentials. The solution is obtained in close form and non-singular terms are 

retained as well. 

Chapter 5 presents several numerical applications aimed at estimating the effect 

of load biaxiality, electric field, considered permittivity of the crack. Through the 

application of fracture criteria the influence of the above listed conditions on the 

response of the system and in particular on the direction of crack branching is 

thoroughly discussed. 

Finally, Appendix A lists a few mathematical definitions and concepts useful for  

understanding some algebraic steps of the analysis, and Appendix B reports the 

explicit form of the fundamental matrix of the electro-elastic problem. 
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NOMENCLATURE 

 

a   Griffith crack semilength 

B   Biot’s generalized free energy 

ijks
c   elastic constants of material 

vC  specific heat per unit mass 

i
D ,

i
D

  components of electric displacement and of electric displacement 

applied at infinity 
0

yD   electric displacement at the crack surfaces 

sij
e   piezoelectric constants of material 

s
E ,

s
E

   components of electric field and of electric field applied at infinity 

bif   body force 
( ) ( ),k k

j j
g h  real and imaginary parts of element ( )k

j
f  of eigenvector ( )k

f  

g   Gibbs function 

G   Energy Release Rate 

I
K ,

II
K ,

D
K  stress intensity factors (Mode I, Mode II and electric) 

,
k k

p q   real and imaginary parts of eigenvalues 
k

  

bq   electric charge density 

/r a  ratio of distance from crack tip on crack semilength 

s  entropy density 

1
/

xx yy
s  

 
  ratio of collinear on perpendicular remote loads 

2
/

xy yy
s  

 
  ratio of tangential on perpendicular remote loads  

S  Sih’s Energy Density 
a

T  absolute temperature 

,u v   elastic displacement components 

m  pyroelectric coefficients 

ks
   strain tensor components  

is
   dielectric constants of material 

c
   permittivity of the medium inside the crack 

k
   eigenvalues 

   electric potential 

   mass density 



6 

 

ij
 ,

ij


  components of stress tensor and of mechanical loading applied at 

infinity 


   hoop stress 

 k k
z  complex potentials  1,2,3k   

, a b   Stroh’s eigenvectors 

(1) (2) (3)
, ,f f f  eigenvectors corresponding to eigenvalues 

1 2 3
, ,    

1 2
,t t   generalized stress vectors 

1 2
,

 
t t   remote loading vectors 

(1) (2)
,Γ Γ  generalized strain vectors 

( )zΛ   analytic vector null at infinity 

U   generalized displacement vector 

U   Airy’s stress function 

( , )r    polar coordinates originating at the crack tip 
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CHAPTER 1 

 

 

BASIC CONCEPTS OF FRACTURE MECHANICS 

  

 

 

1.1  Introduction 

 

It is common knowledge learned from experience that cracks can be very 

detrimental to strength, even when small. Cracks running rapidly through hard 

structural materials (metal, rocks, concrete) are also within common experience. 

The cracking or complete fracture is often so rapid that it is difficult to detect 

with eyes the sudden extension from some small initial defect, notch hole or other 

irregularities. Such irregularities are extremely important because they modify the 

state of stress in their immediate neighbourhood, usually introducing a local 

intensification. 

Until the material in question does not fail, the calculation of the fields of stress 

and strain around the crack can be carried out by solving a boundary value 

problem in some kind of idealized body. The calculation of stress and strain in 

the vicinity of a crack in the process of extending requires consideration of a 

sequence of ordinary boundary value problems, as well as of some additional 

conditions in order to know when the boundary undergoes a change. 

The two basic problems in Fracture Mechanics are therefore the evaluation of 

stress and strain fields around the crack tip and the knowledge of the conditions 

under which a crack can extend into a medium [1].  

 

1.2  Modes of fracture and stress intensity factors  

 

Some basic definitions of Fracture Mechanics are now introduced, referring for 

simplicity to an isotropic material, and along with Williams’s method [2,3], that 

sought the solution of the fracture problem expressing it in terms of Airy’s bi-
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harmonic stress function. For brevity we will report the results only, referring to 

the work in bibliography for further details. 

Consider first a crack of length 2a , embedded in an isotropic elastic continuum 

plate subjected at infinity to biaxial load (Fig. 1.1). A plane state of strain is 

considered. 

 

2a

 
Fig. 1.1 – Geometry of the crack problem 

 

It can be useful to consider also a polar coordinate system centred in the right tip 

of the crack. We will also suppose the crack faces to be free from applied stresses, 

which means applying the boundary conditions: 

     0rr, r,         (1.1) 

The general loading condition illustrated in Figure 1.1 can be decomposed into 

the sum of a symmetric (Figure 1.2) and an anti-symmetric (Figure 1.3) load, 

which yield symmetry and anti-symmetry conditions on the stresses as well. 

 

1.2.1. Symmetric plane problem (Mode I) 

Stress components must comply to the symmetry conditions: 

 

   

   

   

r r

r r

r, r ,

r , r ,

r , r ,

 

 

   

   

   

 

 

  

 (1.2) 

xy 
 

yy T    

 

 

 

xx kT    

y  

 

 

 x

 

 

 

 

r
 

 

 

 


 

 

 

 



9 

 

The general solution of the differential system is a linear combination of the 

particular solutions: 

    1

1

n

n

n

r, r f
 






U  (1.3) 

where  r,U  is Airy’s stress function. This yields the following expressions for 

the stress components: 

 

   

 

 

1
2

1

1
2

1

1
2

1

1
2

1
2 2

2

n

r n n

n

n

n

n

n

r n

n

n
r f f

n n
r f

n
r f





  

 

 

 



 



 



  
    

  

  
   

  

 
   

 







 (1.4) 

 

 

2a

 
Fig. 1.2 – Symmetric problem 

 

Equations (1.4) show that the first terms of the series (for 1n  ) present an 

inverse square root singularity of the radial distance from the crack tip. In the 

vicinity of the crack tip, for 1r  , the asymptotic representations of stress fields, 

in Cartesian coordinates, are therefore [4,5,6]: 

 

3
cos 1 sin sin

2 2 22

3
cos 1 sin sin

2 2 22

3
sin cos cos

2 2 22

I
xx

I
yy

I
xy

K

r

K

r

K

r

  




  




  




 
 

 

 
 

 
 (1.5) 

yy T    

 

 

 

xx kT    

y  

 

 

 
x

 

 

 

 

r
 

 

 

 


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where the relations between Cartesian and polar coordinates: 

 

 

2 2

2 2

2 2

cos sin sin2

sin cos sin2

sin2 cos sin
2

xx r r

yy r r

r
xy r

 

 




      

      

 
    

  

  


  

 (1.6) 

have been used, and where 
IK  is a constant. From equation (1.5)-2, for 0   and 

switching to the variable  x x a   , one obtains the definition of 
IK : 

      
0

lim 2 0 lim 2 0I yy yy
r x a

K r r, r x a ,    
 

    (1.7) 

which is called stress intensity factor for the first (opening) mode. 

It is to be noted that the applied collinear load 
xx   does not appear in the 

asymptotic representations of the stress fields (1.5). 

 

1.2.2. Anti-symmetric plane problem (Mode II) 

For the anti-symmetric problem, symmetry conditions for the stress components 

are: 

 

   

   

   

r r

r r

r, r ,

r , r ,

r , r ,

 

 

   

   

   

  

  

 

 (1.8) 

2a

 
Fig. 1.3 – Anti-symmetric problem 

 

Through the boundary conditions (1.8) and (1.1), superposing the particular 

solutions and considering only the first terms of the series, that present inverse 

square root singularities of r , one gets for the stress components, in Cartesian 

coordinates: 

xy    

y  

 

 

 
x  
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3
sin 2 cos cos

2 2 22

3
cos sin cos

2 2 22

3
cos 1 sin sin

2 2 22

II
xx

II
yy

II
xy

K

r

K

r

K

r

  




  




  




 
  

 

 
 

 

 (1.9) 

where 
IIK  is a constant. From equation (1.9)-3, for 0   and switching to the 

variable  x x a   , one obtains the definition of 
IIK : 

      
0

lim 2 0 lim 2 0II xy xy
r x a

K r r, r x a ,    
 

    (1.10) 

which is called stress intensity factor for the second (sliding) mode. 

 

1.2.3. Anti-plane problem (Mode III) 

There is a third basic fracture mechanism, characterised by the presence of only 

two stress components: 

    0xx yy zz xy zx zx zy zyx, y , x, y              (1.11) 

For this mechanism, caused by out-of-plane shear, Williams obtained: 

 

sin
22

2

III
rz

III
z

K

r

K

r














 (1.12) 

where: 

    lim 2 0III z
x a

K r x a ,  


   (1.13) 

is called stress intensity factor for the third (tearing) mode. 

 

The superposition of the three modes describes the general case of fracture. 

In particular for the plane case, of major concern in this study, we have [7]: 

    I II

2 2
ij

I II
ij ij

K K
f f

r r
  

 
   (1.14) 

The whole (asymptotic) stress field at the crack tip is known when the stress 

intensity factors are evaluated [7]. This asymptotic representation gives a 

sufficiently accurate description of the problem in the vicinity of the crack, 

although some authors [8-14] have noted that retaining the second terms of the 

series can be extremely important to study the effect of biaxial load. 

The stress components are proportional to the external load, they vary with the 

square root of the crack size and tend to infinity at the crack tip. 

Analogous expressions for displacement components can be deduced. 
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The elastic solution does not prohibit that the stresses become infinite at the 

crack tip. In the reality this does not occur: plastic deformation takes place. An 

evaluation of the size of the crack tip plastic zone can be obtained using the yield 

criterion [15,16]. 

It should be noted that in this work attention will be focused on the elastic 

behaviour of a cracked plate, thus, outside the plastic zone. 

 

1.3  Fracture criteria for crack initiation  

 

A fracture criterion is a constitutive equation stating the critical condition of a 

crack on the verge of branching. Among the local criteria generally used to 

predict the critical stress conditions and the angle of incipient fracture, the 

Maximum Normal Stress Criterion [17,18] and the Strain Energy Density Theory 

[15,16,19,20] will be discussed. 

Note that the abovementioned criteria refer to the study of crack initiation. This 

means that the attention is focused on the incipient crack propagation. 

In what follows the fracture criteria are applied to isotropic materials. 

 

1.3.1 Maximum Circumferential Tensile Stress Theory 

For isotropic materials, the circumferential stress  , defined as: 

 2 2

11 22 12sin cos sin 2          (1.15) 

can be studied to analyse the crack extension angle, for plane problems. 

According to this criterion, crack extension occurs in the direction of the 

maximum circumferential stress   evaluated at a small distance 
0r  from the 

crack tip, sufficient to be outside the plastic zone [16]. Designating the polar 

angle that defines the direction of extension as 
0 , the following conditions must 

be satisfied for the circumferential stress to be maximized: 

 
0

0      (1.16) 

  
0

0  








 (1.17) 

  
0

2

2
0  








 (1.18) 

The crack extension begins as soon as the following situation is reached: 

 
0

02

ICK

r
  


   (1.19) 
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where 
ICK  is the critical value of the stress intensity factor 

IK  which is defined 

at the onset of crack initiation. This is a material parameter and is also referred 

to as the fracture toughness of the material. 

 

1.3.2 Strain Energy Density Theory 

Referring to the problems of fracture mechanics, the strain energy per unit of 

volume can be expressed as [15,16,19,20]: 

 
d

d

W S

V r
  (1.20) 

S  is the strain energy density factor and it is related to the stress intensity 

factors as follows: 

 2 2

11 12 222I I II IIS a K a K K a K    (1.21) 

where the coefficients 
ija  are defined by: 

   11

1
3 4 cos 1 cos

16
a   


       (1.22) 

    12

1
2sin cos 1 2

16
a   


      (1.23) 

      22

1
4 1 1 cos 1 cos 3cos 1

16
a    


         (1.24) 

and   is the second Lamé constant of elasticity. 

Note that the strain energy density criterion allows to consider all the three 

modes of fracture together [15], and so it can be used to predict crack initiation in 

spatial problems, despite of the first criterion. 

The fundamental hypotheses of crack extension according to the Strain Energy 

Density Theory can be summarized as follows. The crack will spread in the 

direction of the minimum strain energy density, and the critical value of S  (say, 

crS ) governs the onset of the crack propagation. Summarizing, the crack begins to 

propagate in the 
0  direction when the following conditions are satisfied: 

  
0

0S  








 (1.25) 

  
0

2

2
0S  








 (1.26) 

 
0 crS S    (1.27) 

The critical value of S  is a material parameter and for the isotropic case it is 

related to 
ICK . 
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CHAPTER 2 

 

 

PLANE ELASTICITY FORMALISMS FOR ANISOTROPIC 

MATERIALS 

 

 

 

2.1  Introduction 

 

In this chapter, the displacement components iu  and the generalized stress 

vectors 1t  and 2t  for anisotropic materials in plane deformation conditions are 

defined through Stroh’s formalism [1-3]. The Stroh’s formalism can be traced to 

the work of Eshelby-Read-Shockley (1953) [4], which therefore will be presented 

first. Furthermore, in the simplified case of an orthotropic material, an 

alternative formalism is introduced, and the relations between this last 

formulation and Stroh’s one are outlined. 

 

2.2  Eshelby-Read-Shockley’s formalism 

 

In a Cartesian coordinate system  1 2 3, ,x x x  let iu  and ij   , 1,2,3i j   be the 

displacement and stress components in an anisotropic elastic material, 

respectively. 

Hooke’s law and the equilibrium condition can be expressed in index form as: 

 
,

k
ij ijks k s ijks

s

u
c u c

x



 


 (2.1) 

and: 
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2

, , 0k
ij j ijks k sj ijks

s j

u
c u c

x x



  

 
 (2.2) 

where addition on repeated index is implicit, and where the stiffness tensor 

components ijksc  satisfy the symmetry conditions: 

 , ,ijks jiks ijks jisk ijks ksijc c c c c c    (2.3) 

For two-dimensional deformations where 
iu   1,2,3i   only depend on  1 2,x x , a 

general solution for the homogeneous second-order differential equation system 

(2.2) is a function of one composite variable which is a linear combination of 

variables 1x  and 2x . 

Let us assume: 

    1 2 1 2, , , 1,2,3i i iu u x x a f z z x px i      (2.4) 

where f  is an arbitrary function of z , p  and ia  are constants to be determined, 

and the coefficient for 1x  in the linear combination was chosen to be unity. In 

matrix form: 

  f zu a  (2.5) 

Differentiation of  in 1x  and 2x  yields: 

    
1 2

' , 'k k
k k

u u
a f z pa f z

x x

 
 

 
 (2.6) 

or: 

    1 2 'k
s s k

s

u
p a f z

x
 


 


 (2.7) 

where si  is the Kronecker Delta. From (2.7): 

     
2

1 2 1 2 ''k
j j s s k

j s

u
p p a f z

x x
   


  

 
 (2.8) 

and so equilibrium is satisfied when: 

   1 2 1 2 0ijks j j s s kc p p a      
 

 (2.9) 

where sum is implicit on repeated indexes. Expliciting (2.9): 

 

  

   

3 2

1 2 1 2

1 1

3
2

1 1 2 2 1 2

1

0

: 0

ijks j j s s k

j s

ijk j j ijk j j k

j

c p p a

c p c p p a

   

   

 



   
 

    
 




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   2

1 1 2 1 1 2 2 2: 0i k i k i k i k kc c c p c p a       (2.10) 

and passing to the matrix form: 

   2T p p    
 

Q R R T a 0  (2.11) 

where the elements of the three 3x3 matrices are defined as follows: 

 1 1 1 2 2 2, ,ik i k ik i k ik i kQ c R c T c    (2.12) 

One can verify that matrices Q  and T  are symmetric, as the equalities 1 1 1 1i k k ic c  

and 2 2 2 2i k k ic c  hold, and positive-definite, in order for the energy of elastic 

deformation to be positive. For the homogeneous system (2.11) to admit solutions 

different from the trivial one, it must be: 

   2det 0T p p    
 

Q R R T  (2.13) 

which is a sixth-grade equation in the eigenvalue p  and yields three pairs of 

complex conjugate roots. Being p ,  1,2,....,6  a  the eigenvalues and the 

correspondent eigenvectors solutions of the 6-grade equation, one can assume: 

 Im 0 for 1,2,3p    (2.14) 

 3 3 1,2,3p p      a a  (2.15) 

where the overbar denotes the complex conjugate. 

The components of the stress vector can be obtained through (2.1); one gets: 

        1 1 1 1 2' ' ' 1,2,3i i k k i k k ik ik kc a f z c pa f z Q pR a f z i       (2.16) 

and: 

        2 2 1 2 2' ' ' 1,2,3i i k k i k k ki ik kc a f z c pa f z R pT a f z i       (2.17) 

One can define the generalized stress vectors as: 

      1 11 21 31 '
T

p f z    t Q R a  (2.18) 

      2 12 22 32 '
T T p f z    t R T a  (2.19) 

The components of the displacement vector can be obtained through (2.5) by 

superposing six solutions. With the assumption that the six eigenvalues, and 

consequently the six eigenvectors, are distinct, and from (2.14) one gets: 

    3 3 1,2,3f z f z          u a u a  (2.20) 

The general solution is obtained through superposition of (2.20): 
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    
6 3

3

1 1

f z f z     
 



 

   
  u u a a  (2.21) 

Likewise, the general solutions for the stresses can be written as: 

        
3

1 3

1

' 'p f z p f z     






    
 t Q R a Q R a  (2.22) 

        
3

2 3

1

' 'T Tp f z p f z     






    
 t R T a R T a  (2.23) 

 

2.3 Stroh’s Formalism 

 

From equation (2.11) one obtains: 

    T p p p   R T a Q R a  (2.24) 

One can define a vector b  such as: 

    
1T p p
p

    b R T a Q R a  (2.25) 

whose components are: 

    
1

i ki ik k ik ik kb R pT a Q pR a
p

      (2.26) 

where the sum on index 1,2,3k   is implicit. The components of the stress 

vectors can now be expressed as: 

    1 2' ' 1,2,3i i i ipb f z b f z i      (2.27) 

Introducing the stress functions: 

  i ib f z   (2.28) 

expressions (2.27) can be written as: 

    1 ,2 1 2 2 ,1 1 2

2 1

i i i i i ib f x px b f x px
x x

   
 

              
 (2.29) 

It is sufficient therefore to consider the stress functions i , because stresses can be 

obtained by differentiation. Since 21 12  , we have: 

 1,1 2,2 0    (2.30) 

and so, from (2.28): 

 1 2 0b pb   (2.31) 
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Vectors b  are correlated to vectors a  via the relation (2.25), so for them as 

well the position 3  b b  with 1,2,3   holds. The general solution of the plane 

problem can be obtained through superposition of the six particular solutions 

associated to the six eigenvalues p , in the form: 

    
3

3

1

f z f z    






  
 u a a  (2.32) 

    
3

3

1

f z f z    






  
 Φ b b  (2.33) 

Relations (2.32) and (2.33) express the Stroh’s Formalism, and vectors a  and 

b  are called Stroh’s eigenvectors. The stress vectors can be obtained by 

differentiation of (2.33). The only stress component missing is 33 , which can be 

determined in terms of other stress components using the condition for 33 0  . 

In many plane problems the arbitrary functions f  have the same shape. We 

may therefore assume: 

        3, 1,2,3f z f z q f z f z q            (2.34) 

where q  are arbitrary complex constants. The second equation is necessary for 

obtaining real form solutions for u  and Φ , when superposing f .  Expression 

(2.32) becomes: 

 

   

       

 

 

 

3

1

11 21 31

12 1 1 22 2 2 32 3 3

13 23 33

11 21 31 1 1

12 22 32 2 2

13 23 33 3 3

0 0

0 0

0 0

f z q f z q

a a a

a f z q a f z q a f z q

a a a

a a a f z q

a a a f z q

a a a f z q

    


   
 

     
     

         
     
     

    
    

     
    
    

u a a

conjugate terms

co njugate terms

 (2.35) 

and in matrix form: 

  2Re kf z     u Adiag q  (2.36) 

where A  is the 3x3 matrix whose columns are eigenvectors a . Analogously 

(2.33) becomes: 
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  2Re kf z     Φ Bdiag q  (2.37) 

where B  is the 3x3 matrix whose columns are eigenvectors b . 

For a given problem it is necessary to determine the unknown function  kf z  

and the complex vector q . 

The eigenvalues p  and the eigenvectors a  and b  depend on the elastic 

stiffnesses 
ijksc  only. Therefore, p , a  and b  can be regarded as material 

constants even though they are complex-valued. 

 

2.4 Ortogonality and closure relations 

 

What distinguishes the Stroh’s formalism from others is that the vectors a  and 

b  for different   are related. The complex matrices A  and B  possess some 

peculiar properties [5,6].  

From equations (2.24) and (2.25) one gets: 

 p  Qa Ra b  (2.38) 

 T p  R a b Ta  (2.39) 

which in matrix notation become: 

 
T

p
     

     
     

Q 0 a R I a

R I b T 0 b
 (2.40) 

where I  is the 3x3 identity matrix. On the basis that T  is positive definite and 

therefore 1T  exists, it can be demonstrated that: 

 
1

1





    
    

     

R I I 00 T

T 0 0 II RT
 (2.41) 

Pre-multiplying both sides of (2.40) by the first matrix on the left of (2.41) gets: 

 
1 1

1 1T
p

 

 

        
        

         

Q 0 a R 1 a0 T 0 T

R 1 b T 0 b1 RT 1 RT
 

  
1 1

1 1
:

T
p

 

 

      
     

        

0 T Q a 0 T R a b

1 RT R a b 1 RT T a
 

 
1

1

( )
:

( )

T

T
p





    
   

      

aT R a b

bQ a RT R a b
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1 1

1 1
:

T

T
p

 

 

     
    

      

a aT R T

b bRT R Q RT
 (2.42) 

Defining: 

 1 T 1 1 T

1 2 3, ,      N T R N T N RT R Q       

(2.43) 

and: 

 1 2

T

3 1

 
  
 

N N
N

N N
 (2.44) 

the following standard eigenrelation is obtained: 

 p ,
 

   
 

a
N ξ ξ ξ

b
 (2.45) 

The 6x6 matrix N  is called the fundamental elasticity matrix. Since N  is not 

symmetric, ξ  is a right eigenvector. Denoting by η  the left eigenvector, the 

following eigenrelation holds: 

 T pN η η  (2.46) 

Introducing the 6x6 constant matrix: 

 
T 1

,
 

   
 

0 I
I I I I

I 0
 (2.47) 

it can be shown that IN  is symmetric, or: 

 T T( ) IN IN N I  (2.48) 

From (2.45) we have: 

 pINξ Iξ  (2.49) 

and by (2.48): 

 ( ) ( )T pN Iξ Iξ  (2.50) 

The left eigenvector has therefore the form: 

 
 

   
 

b
η Iξ

a
 (2.51) 

It is known that the right and left eigenvectors corresponding to different 

eigenvalues are orthogonal to each other, i.e. for p p   the following relation 

holds: 
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 0  η ξ  (2.52) 

The vector ξ , and hence the vector η , are unique up to an arbitrary multiplier. 

It is convenient to normalize them such that: 

 1 2 6, , , ,...,      η ξ  (2.53) 

or: 

 

1

2

1 2 6

6

T( , , ..., )





     






   



 
 
   
 
  
 

η ξ  (2.54) 

where   is the Kronecker delta. This condition yields: 

 
1 1 2 2 3 3 1 1 2 2 3 3

1
T T TT T T     η ξ η ξ η ξ η ξ η ξ η ξ  (2.55) 

and all other products equal to zero. Introducing two 6x6 matrices such as: 

 1 2 3 1 2 3( , , , , , )U ξ ξ ξ ξ ξ ξ  (2.56) 

 1 2 3 1 2 3
ˆ( , , , , , ) V η η η η η η 1U  (2.57) 

one can express the orthonormality conditions (2.54) as: 

 T V U I  (2.58) 

Now, since; 

 

1 11 1

2 22 2

3 33 3

1 4 1 4

2 5 2 5

3 6 3 6

ba

ba

ba
,

b a

b a

b a

  

  

  

 
    

   

   







 

 

 

      
      
      
         
              
          
      
      

              

ba
ξ η

ab
 (2.59) 

matrix U  gets the shape: 

 

1 2 331 2

1 2 331 2

11 3111 31

13 3313 33

13 3313 33

, , , , ,

a a a a

a a a a

b b b b

          
            

            

 
 
   
    
   
 
 
 

aa a a a a
U

bb b b b b

A A

B B

 (2.60) 

and analogously matrix V : 
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1 2 331 2

1 2 331 2

, , , , ,
            

              
              

bb b b b b B B
V

aa a a a a A A
 (2.61) 

and thus: 

 
T T

T

T T

 
  
 
 

B A
V

B A
 (2.62) 

The orthogonality relations (2.58) assume the aspect: 

 
T T

T

T T

    
          

B A I 0A A
V U

0 IB BB A
 (2.63) 

or: 

 
T TT T

T TT T

   

   

B A A B I B A A B

B A A B 0 B A A B

 (2.64) 

From (2.63) one can deduce that matrices U  and V  are the inverses of each 

other, and hence their product commute: 

 
T T

T T

T T

    
           

B A I 0A A
V U UV

0 IB B B A
 (2.65) 

from which we obtain the relations: 

 
T TT T

T TT T

   

   

A B A B I B A B A

A A A A 0 B B B B

 (2.66) 

that are the closure relations. Equations (2.66) imply that the real part of TAB  is 

/ 2I , while TAA  and TBB  are purely imaginary. The eigenrelation (2.45) can be 

written as: 

 1 2 3 1 2 31 2 3 1 2 3( , , , , , ) ( , , , , , )N ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ P  (2.67) 

where: 

 1 2 3 1 2 3( , , , , , )p p p p p pP diag  (2.68) 

We get: 

 N U U P  (2.69) 

that through (2.65) can be diagonalized as: 

 TN U P V  (2.70) 

The derivations presented so far assume that the eigenvalues p  are distinct, or 

that anyway six independent eigenvectors ξ  exist. 
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2.5 The case of orthotropic materials 

 

In the case of an orthotropic material, and for a plane problem, the matrix of 

elastic constants is simplified as follows: 

 

11 12

12 22

44

55

66

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c c

c c

c

c

c

 
 
 
 
 
 
 
 

C  (2.71) 

Consequently, matrices Q ,R  and T  defined in the Stroh’s formalism become: 

 
11 12 66

66 66 22

55 44

0 0 0 0 0 0

0 0 , 0 0 , 0 0

0 0 0 0 0 0 0

c c c

c c c

c c

     
     

       
     
     

Q R T  (2.72) 

and: 

  
 

 

2

11 66 12 66

2 2

12 66 66 22

2

55 44

0

0

0 0

T

c p c c c p

p p c c p c p c

c p c

  
 

      
  

Q R R T  (2.73) 

The characteristic equation is: 

       
22 2 2 2

55 44 66 22 11 66 12 66 0c p c c p c c p c c c p      
 

 (2.74) 

Posing  

 2

2

1
p


  (2.75) 

yields: 

 
 

2

44 55

24 2 2

11 66 66 11 22 12 66 22 66

0

0

c c

c c c c c c c c c



 

  



        

 (2.76) 

Dividing the second equation by 11 66c c  and with the positions: 

 66 12 66 12 6622
1 1 1 1 1 2 1

11 66 11 66

, , 2 , 2 , 2 4 ,
c c c c cc

a a
c c c c

       
 

       

 (2.77) 

equation (2.76)-2 becomes: 

 4 2

1 22 0a a     (2.78) 



27 

 

Equation (2.78) has no real solution. It is necessary to distinguish two cases: the 

four eigenvalues are imaginary or complex conjugate. 

 

2.5.1. Imaginary Eigenvalues 

This case happens when: 

 2

1 2 10, 0a a a    (2.79) 

The four imaginary eigenvalues are: 

 1 21 1 2 2 3 4i , i , ,k k          (2.80) 

with 

    2 1 2 2 1 2

1 1 1 2 2 1 1 2,k a a a k a a a       (2.81) 

positive constants. 

 

2.5.2. Complex conjugate eigenvalues 

This case happens when: 

 2

1 2 0a a   (2.82) 

One gets: 

 2 2

1 1 2 1ia a a      (2.83) 

 2 2

1 1 2 1ia a a     (2.84) 

and the two pairs of conjugate roots are: 

 
2 2

1,1 1 2 1 1,2 1 2 1

2 2

2,1 1,2 1 2 1 2,2 1,1 1 2 1

+i , i ,

i , i

a a a a a a

a a a a a a

 

   

      

         

 (2.85) 

If we impose 2 i

1 2 1 2+i ea a a a     and 2 -i

1 2 1 2i ea a a a      we can obtain: 

 

i
24 4

1 2 2 1 2

-i
24 4

2 2 2 1 2

3 1 4 2

e cos sin
2 2

e cos sin
2 2

,

a a i i

a a i i





 
  

 
  

   

 
     

 

 
        

 

 

 (2.86) 

where: 
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1 2 1 2

2 1 2 14 4
1 2 2 2cos , sin

2 2 2 2

a a a a
a a

 
 

    
      

   
   

 (2.87) 

Furthermore, the first equation of (2.76) yields: 

 44
3 3

55

,
c

ik k
c

     (2.88) 

From the system (2.73), six eigenvalues (either imaginary or complex conjugate) 

have been found; these can now be ordered considering first those with positive 

imaginary part: 

Case 1) 

 
1 2 3 4 1 5 2 6 3

1 2 3

, , , , ,
i i i

p p p p p p p p p
k k k

       (2.89) 

Case 2) 

 
i -i
2 2

1 2 3 4 1 5 2 6 3
4 4

32 2

1 1
e , e , , , ,

i
p p p p p p p p p

ka a

 

      

 (2.90) 

We now consider for the sake of simplicity the first case only, and proceed with 

the calculations of the correspondent eigenvectors. Through equations (2.74) for  

1,2j  : 

 

 

 

2

11 66 12 66 1

2

12 66 66 22 2

2

55 44 3

0

0 0

0 0

j j j

j j j

j j

c p c c c p a

c c p c p c a

c p c a

    
  

    
     

 (2.91) 

From the third equation, being  2

55 44 0jc p c   for 1,2j  , it is obviously yielded 

3 0ja  . The first and the second equation can be outlined in the shape: 

 
 

 

2

1 2

2

1 1 1 2

1 2 0

2 1 0

j j j j

j j j j

p a p a

p a p a

 

 

  

  
 (2.92) 

so we can set: 

 

 2

1

1

1

2 , 1,2

0

j j

j j j

p

p j

 

 

 
 

   
 
 
 

a  (2.93) 
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and then choose the arbitrary factor 1j   . With this position the first equation 

becomes the characteristic one and the second is always satisfied. For 3j   the 

system is: 

 

 

 

2

11 3 66 12 66 3 31

2

12 66 3 66 3 22 32

2

55 3 44 33

0

0 0

0 0

c p c c c p a

c c p c p c a

c p c a

    
   

     
     

 (2.94) 

whose solution is 31 32 0a a  , 33 3a   with 3  arbitrarily chosen constant.  

Stroh’s matrix A  is then: 

  

   2 2

1 1 1 2

1 2 3 1 1 1 2

3

1 1 0

2 2 0

0 0

p p

p p

 

 



    
 

   
 
  

A a a a  (2.95) 

From the definition of vectors jb  one gets: 

  
66 66 1

12 22 2

44 3

0

0

0 0

j j

T

j j

j j

c p c a

p c c p a

c p a

   
  

     
  

   

b R T a  (2.96) 

thus Stroh’s matrix B  can be written as: 

  
   66 1 11 12 66 2 21 22

1 2 3 12 11 22 1 12 12 21 22 2 22

44 3 33

0

0

0 0

c p a a c p a a

c a c p a c a c p a

c p a

  
 

    
 
 

B b b b  (2.97) 

or, by setting the arbitrary factor 
3

44 3

1

c p
  : 

  
   66 1 11 12 66 2 21 22

1 2 3 12 11 22 1 12 12 21 22 2 22

0

0

0 0 1

c p a a c p a a

c a c p a c a c p a

  
 

    
 
 

B b b b  (2.98) 

From Stroh’s matrices A  and B , through relations (2.36) and (2.37) it is possible 

to calculate the displacement vector u  and the generalized potential vector Φ , 

and from this through relation (2.29) one gets the stress components. 
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2.6 Alternative formalism 

 

A formalism alternative to the Stroh’s one for the orthotropic case is now 

outlined [7-9]. We can define two vectors of generalized strain components: 

 (1) 31 2

1 1 1 1

T

uu u

x x x x

    
    

      

u
Γ  (2.99) 

 (2) 31 2

2 2 2 2

T

uu u

x x x x

    
    

      

u
Γ  (2.100) 

and express the stress vectors in the form: 

   (1) (2)

1 11 21 31

T
    t QΓ RΓ  (2.101) 

   (1) (2)

2 12 22 32

T T    t R Γ TΓ  (2.102) 

For the equilibrium to be satisfied it must be: 

 1 2

1 2x x

 
 

 

t t
0  (2.103) 

or: 

 

(1) (2) (1) (2)

1 1 2 2

(2) (1)

1 2

T

x x x x

x x

    
   

   

   

  

Γ Γ Γ Γ
Q R R T 0

Γ Γ
0

 (2.104) 

where the second equation is the condition of equality of crossed derivatives 

(Schwartz condition). 

The system of equations obtained can be written in matricial form as: 

 
 1 1(1) (1)

(2) (2)
1 2

T

x x

      
     

      

Q R R Q TΓ Γ
0

Γ Γ-1 0
 (2.105) 

If we define the vector    (1) (2)

1 2 3 4 5 6, , , , , ,
TT

      Φ Γ Γ , the system (2.105) 

can be written as: 

 
1 2x x

 
 

 

Φ Φ
D 0  (2.106) 

with: 
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1 1

0 2 0 0 0

2 0 0 0 0

0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 

 



 
 
 
 

  
 

 
   

D  (2.107) 

where: 

 66 12 66 12 6622 44
1 1

11 66 11 66 55

, , 2 , 2 ,
c c c c cc c

c c c c c
    

 
      (2.108) 

In fact, remembering the definition of matrices Q , R  and Τ , we have: 

  

12 66

1111
12 66

1 12 66
12 66

66 66

55

1
0 00 0

0 0
1

0 0 0 0 0 0

0 0 0
1 0 0 0

0 0

T

c c

cc
c c

c c
c c

c c

c



   
   
    
    

       
    

    
    

  

Q R R

 (2.109) 

and 

 

66

1111
66

1 22
22

66 66

44

44

55 55

1
0 00 0

0 0
1

0 0 0 0 0 0

0 0
1

0 0 0 0

c

cc
c

c
c

c c
c

c

c c



  
  
   
   

     
   

    
     

   

Q Τ  (2.110) 

Developing the system (2.106) one gets the three differential equations governing 

the elastic problem in the case of orthotropic materials: 

 

2 2 2

1 2 1

2 2

1 1 2 2

2 2 2

1 1 2
1 12 2

1 1 2 2

2 2

3 3

2 2

1 2

2 0

2 0

0

u u u

x x x x

u u u

x x x x

u u

x x

 

 



  
  

   
  

  
   

 
  
 

 (2.111) 

and the three conditions of equality of crossed derivatives: 

 
2 22 2 2 2

3 31 1 2 2

1 2 2 1 1 2 2 1 1 2 2 1

0, 0, 0
u uu u u u

x x x x x x x x x x x x

    
     

           
 (2.112) 
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Developing the algebraic calculations for the characteristic equation of the system 

  det 0 D I  (2.113) 

the following equation is found: 

   4 2 2

1 22 0a a        (2.114) 

where 

 1 1 1 2 12 4 ,a a        (2.115) 

Equation (2.114) yields six complex roots. Considering the simpler case for which 

the first part of the equation has four imaginary roots, the eigenvalues can be 

ordered considering those with positive imaginary part first, in this way: 

 1 1 2 2 3 3 4 1 5 2 6 3, , , , ,ik ik ik               (2.116) 

with 44
3

55

c
k

c
  .  

The six relative eigenvectors are 

 
    

 

( ) 2 2 2

1 1 1 1

(3)

3

2 0 2 0 , 1,2

0 0 0 0 1

T
j

j j j j j

T

ik k k k i k j

ik

        

  

V

V

 (2.117) 

and the correspondent conjugates. Considering the first three eigenvectors, it is 

possible to build the matrix: 

  (1) (1) (2) (2) (3) (3)Im Re Im Re Im ReW V V V V V V  (2.118) 

that induces the trasformation (spectral theorem): 

 

1

1

21

2

3

3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k

k

k

k

k

k



 
 
 
 

   
 

 
  
 

W DW E  (2.119) 

Pre-multiplying (2.106) by 1
W  and considering that 1 1 W D EW , the system 

becomes: 

 
1 2x x

 
 

 

Ψ Ψ
E 0  (2.120) 
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where: 

 1Ψ W Φ  (2.121) 

Now, defining the vectors: 

      (1) (2) (3)

1 2 3 4 5 6, ,
T T T

        Ψ Ψ Ψ  (2.122) 

the system (2.120) can be split into three sub-systems: 

 
( ) ( )

1 2

, 1,2,3
j j

j j
x x

 
  

 

Ψ Ψ
K 0  (2.123) 

where: 

 
0 0 1

, 1,2,3
0 1 0

j

j j

j

k
k j

k

    
     

  
K  (2.124) 

With the change of variable 2
j

j

x
y

k
 , the sub-systems can be reformulated in the 

shape: 

 
( ) ( )

1

0 1
, , 1,2,3

1 0

j j

j

j
x y

  
    

   

Ψ Ψ
S 0 S  (2.125) 

which are the Cauchy-Riemann conditions for complex potentials of the type: 

      ( ) ( )

1 1 2 1, , , 1,2,3j j

j j j jz x y i x y j      (2.126) 

of the complex variables: 

 1 1 2

1
,j j j j

j

z x iy x p x p
k

      (2.127) 

From equation (2.121) we obtain the elements of vector Φ  in the following shape: 

 
6

1

, 1,2,...,6i ik k

k

W i


     (2.128) 

If one writes the eigenvectors as ( ) ( ) ( )j j ji V g h  for 1,2,3j  , then gets (1)

1i iW h , 

(1)

2i iW g , (2)

3i iW h , (2)

4i iW g , (3)

5i iW h , (3)

6i iW g , and: 

 
(1) (1) (2) (2) (3) (3)

1 2 3 4 5 6

(1) (1) (2) (2) (3) (3)

1 1 2 2 3 3Re Im Re Im Re Im

i i i i i i i

i i i i i i

h g h g h g

h g h g h g

             

           

 (2.129) 

In compact form  i j : 

      
3 3

( ) ( ) ( )

1 1

Re Im Imk k k

j j k k j k k j k k

k k

h z g z V z
 

               (2.130) 
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and developing the calculations for the elements of vector Φ : 

 

       

   

       

   

2 2 2 2

1 1 1 1 1 2 1 2 3 1 1 1 1 2 1 2 2

2 2 2 2

2 1 1 2 2 4 1 1 1 2 2

3 3 5 3 3

2 2 2 2

4 1 1 2 2 1 4 1 1 1 2 1 2

5 1 1 1 2 3 1 1 1 2 2

6 6 3

Re Re

2 2 Im Im

Re

Im Im

2 2 Re Re

Im

k a k k a k k a k k a k

k k k k

k k

k a k a k a k a

k k k k

 

 

            

          

      

            

          

    


 (2.131) 

Through the relation (2.130) one obtains: 

      (1)
11 2 3 1

1

2

T
z z

i
      
 

Γ FΩ F Ω  (2.132) 

      (2)
24 5 6 2

1

2

T
z z

i
      
 

Γ F Ω F Ω  (2.133) 

with: 

 

   2 2(1) (2) (3)
1 1 1 2 1 21 1 1

(1) (2) (3) 2 2

1 2 2 2 1 1 1 2

(1) (2) (3)

3 3 3 3

0

2 2 0

0 0

ik k ik kV V V

V V V k k

V V V ik

 

 

   
  

     
       

F  (2.134) 

 

   2 2(1) (2) (3)
1 1 2 14 4 4

(1) (2) (3)

2 5 5 5 1 1 1 2

(1) (2) (3)

6 6 6

0

2 2 0

0 0 1

k kV V V

V V V i k i k

V V V

 

 

   
  

     
       

F  (2.135) 

Considering that matrices Q ,R  and T  are real, the generalized stress vectors are 

expressed as: 

 

 

       

      

     

(1) (2)

1 11 21 31

1 21 2

1 21 2

11 1

1 1

2 2

1

2

1
Im

2

T

z z z z
i i

z z
i

z z z
i

     

       
   

      

       

t QΓ RΓ

QFΩ QF Ω RF Ω RF Ω

QF RF Ω QF RF Ω

G Ω G Ω G Ω

 (2.136) 

and analogally: 

    (1) (2)

2 12 22 32 2Im
T T z        t R Γ TΓ G Ω  (2.137) 

where matrices 1G  and 2G  are defined: 
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1 1 2 2 1 2, T   G QF RF G R F TF  (2.138) 

We have: 

     1 1 1 1 1Im Im Re Im Re Im Re Im Im Rez i i          G Ω G G Ω Ω G Ω G Ω

 (2.139) 

The explicit forms of the stress components of vector 1t  are then: 

 

       

    
 

2 2

11 1 11 1 1 1 12 1 1 2 11 1 2 1 12 2 2

2 2 2 2

21 66 1 1 1 1 1 1 1 2 2 1 2 2

31 55 3 3 3

2 Re 2 Re

2 Im 2 Im

Re

k c k c z k c k c z

c k k z k k z

c k z

    

    



           
   


                


  



 (2.140) 

and analogally, for the stress components of vector 2t : 

 

    

       

 

2 2 2 2

12 66 1 1 1 1 1 1 1 2 2 1 2 2

2 2

22 1 12 1 1 1 22 1 1 2 12 1 2 1 22 2 2

32 44 3 3

2 Im 2 Im

2 Re 2 Re

Im

c k k z k k z

k c k c z k c k c z

c z

    

    



                
               


 


 (2.141) 

The displacement components  1 2 3

T
u u uu  can be obtained directly by 

integration in 1x  of the vector (1)

1x

 
  

 

u
Γ . Neglecting a rigid displacement, and 

being  zω  the primitive of  zΩ , we get: 

      11 1

1
Im

2
z z z

i
       

u Fω F ω Fω  (2.142) 

Since: 

      1 1 1Im Re Im Im Rez z z   Fω F ω F ω  (2.143) 

remembering the explicit form of matrix 1F , the displacement components are: 

 

       

   

 

2 2

1 1 1 1 1 1 2 1 2 2 2

2 2

2 1 1 1 1 2 2 2

3 3 3 3

Re Re

2 Im Im

Re

u k k z k k z

u k z k z

u k z

   

  



    



     


 

 (2.144) 

If the complex potentials are formally equals, or, in other words, they differ only 

by a (complex) multiplying factor ir , then their expression can be simplified as: 

     , 1,2,3,i i i i iz r z i r      (2.145) 
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and the expressions of the stress and displacement vectors become: 

   1 1Im iz   t G diag r  (2.146) 

   2 2Im iz   t G diag r  (2.147) 

   1Im iz   u Fdiag r  (2.148) 

 

2.7 Relations with Stroh’s formalism 

 

The relations (2.146), (2.147), (2.148) defining stress and displacement 

components through the alternative formalism are compared in this paragraph 

with Stroh’s relations (2.36) and (2.37). 

The shape of Stroh’s first matrix A  is: 

 
 2

1 1

2 1

0
1

, 1,2, 0 , 3
2

j j j

j

j j j
j

a p
j j

a p

 

 


 
    

    
   

 

a  (2.149) 

Given the arbitrariness of j  we set: 

 
3

3

3 3

1,2j j

j

i
k j

p

k





    

 

 (2.150) 

so that the matrix is: 

  

   2 2

1 1 1 2 1 2

2 2

1 2 3 1 1 1 2

3

0

2 2 0

0 0

k k k k

i k i k

k

 

 

  
 

   
 


  

A a a a  (2.151) 

and from a comparison with (2.134) one gets: 

 1i A F  (2.152) 

or: 

 1Re ImA F  (2.153) 

Regarding the stress components, let’s consider matrices 1G  and 2G , whose 

explicit forms are: 
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   

   

2 2

1 11 1 1 1 12 2 11 1 2 1 12

2 2 2 2

1 1 2 66 1 1 1 1 66 1 2 2 1

55 3

2 2 0

2 2 0

0 0

ik c k c ik c k c

c k k c k k

ic k

   

   

       
    

            
    

 
  

G QF RF

 (2.154) 

 

   

   

2 2 2 2

66 1 1 1 1 66 1 2 2 1

2 2

2 1 2 1 12 1 1 1 22 2 12 2 1 1 22

44

2 2 0

2 2 0

0 0

T

c k k c k k

ik c k i c ik c k i c

c

   

   

         
    

            
    

 
  

G R F TF

 (2.155) 

Taking into account the positions (2.89) matrix B , explicited in (2.97), becomes: 

 

   

   

2 2 2 2

66 1 1 1 1 66 1 2 2 1

2 2

1 12 1 1 1 22 2 12 2 1 1 22 2

44

2 2 0

2 2 0

0 0

ic k k ic k k

k c k i c k c k i c i

ic

   

   

       
    

            
    

 
  

B G  (2.156) 

thus it is again: 

 2Re ImB G  (2.157) 

Vectors jb  can also be obtained through: 

  
1

j j j

j

p
p

  b Q R a  (2.158) 

and remembering the relation 
1

j

j

ik
p

   matrix B is explicited in the form: 

 

   

   

2 2 2 2

1 11 1 1 12 1 2 11 1 2 12 1

2 2 2 2

66 1 1 1 1 1 66 2 1 2 2 1

2

55 3

2 2 0

2 2 0

0 0

ik c k c ik c k c

c k k k c k k k

ic k

   

   

       
    

          
    

 
  

B  (2.159) 

From relation (2.29) the first generalized stress vector is obtained as: 

   1 2Re jf z
x x

    
   

t Bdiag q
 


    (2.160) 

where the complex variable is: 

 1 1 2j j

j

i
z x iy x x

k
     (2.161) 

Then: 
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    1 2Re 2Imj j

j j

i i
f z f z

k k

      
           

            

t Bdiag q Bdiag diag q  (2.162) 

and one can immediately see: 

 

   

   

2 2

1 11 1 1 1 12 2 11 1 2 1 12

2 2 2 2

66 1 1 1 1 66 1 2 2 1 1

55 3

2 2 0

2 2 0

0 0
j

ik c k c ik c k c

i
c k k c k k

k
ic k

   

   

       
    

                       
  

Bdiag G

 (2.163) 

It is demonstrated that Stroh’s formalism and the alternative formalism are 

formally equivalent. Both theoretical approaches find their main origins in the 

fundamental works of Muskelishvili [10] and Lekhnitskii [11], who introduced 

formulations of plane elasticity in terms of functions of complex variables. 
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CHAPTER 3 

 

 

LINEAR THEORY OF PIEZOELECTRICITY 

 

 

 

3.1  Introduction 

 

Piezoelectric material is such that when it is subjected to a mechanical load it 

generates an electric charge. This effect is usually called the “piezoelectric effect”. 

Conversely, when piezoelectric material is stressed electrically by a voltage, its 

dimensions change. This phenomenon is known as the “inverse piezoelectric 

effect”.  

The piezoelectric effect was first discovered more than one century ago by Pierre 

and Jacques Curie [1], who found that certain crystalline materials generated an 

electric charge proportional to the mechanical stress in their experiments to 

demonstrate a connection between macroscopic piezoelectric phenomena and 

crystallographic structure. The experiment consisted of a conclusive measurement 

of surface charges appearing on specially prepared crystals (tourmaline, quartz, 

topaz, cane sugar and Rochelle salt among them) which were subjected to 

mechanical stress. Pierre and Jacques Curie presented papers on this discovery [1] 

at the Meeting of Société Mineralogique de France on 8 April 1880 and at the 

Académie des Sciences during the meeting of 24 August 1880. In the scientific 

circles of the day, this effect was considered quite a discovery, and was quickly 

dubbed “piezoelectricity” in order to distinguish it from other areas of scientific 

phenomenological experience such as pyroelectricity (electricity generated from 
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crystals by heating). The Curies asserted that there was a one-to-one 

correspondence between the electrical effects of temperature change and 

mechanical stress in a given crystal, and that they had used this correspondence 

not only to select the crystals for the experiment, but also to determine the cuts 

of those crystals. To them, their demonstration was a confirmation of predictions 

which followed naturally from their understanding of the microscopic 

crystallographic origins of pyroelectricity. The Curies did not, however, predict 

that crystals exhibiting the direct piezoelectric effect (electricity from applied 

stress) would also exhibit the inverse piezoelectric effect (stress in response to 

applied electric field). One year later this property was theoretically predicted on 

the basis of thermodynamic consideration by Lippmann [2], who proposed that 

converse effects must exist for piezoelectricity, pyroelectricity etc. Subsequently, 

the inverse piezoelectric effect was confirmed experimentally by the Curies [3], 

who proceeded to obtain quantitative proof of the complete reversibility of 

electromechanical deformations in piezoelectric crystals.  

Other papers by Pierre and Jacques Curie [3-6] reported a series of results from 

experiments on quartz and tourmaline, and suggested some laboratory 

experiments that could use the piezoelectric effect for measuring forces or 

pressures and high voltages by means of a “manomètre à quartz” and an 

“electromètre à quartz”. The most famous device was the “quartz 

piezoélectrique” utilized to produce known electric charges for the measurement 

of voltages, currents, capacitances, etc. This piezo-quartz instrument played an 

important role in Marie Curie’s later work on radioactivity. 

These events and publications might be viewed as the beginning of the history of 

piezoelectricity. Based on them, Woldemar Voigt [7] developed the first complete 

and rigorous formulation of piezoelectricity in 1890. Since then, several other 

books on the phenomenon and theory of piezoelectricity have been written. 

Among the books are the references by Cady [8] and Parton and Kudryavtsev [9]. 

The first of these [8] treated the physical properties of piezoelectric crystals as 
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well as their practical applications, and the second [9] gave a more detailed 

description of the physical properties of piezoelectricity.  

During the past half-century, piezoelectric device development has made 

significant progress. In 1951, several Japanese companies and universities formed 

a “competitively cooperative” association, established as the Barium Titanate 

Application Research Committee. This association set an organizational precedent 

for successfully surmounting not only technical challenges and manufacturing 

hurdles, but also defining new market areas.  

Persistent efforts in material research created new piezoceramic families. The 

most common industrially produced piezoelectric materials are lead zirconate 

titanate (PZT).  

A piezoelectric ceramic has a crystal structure generally composed of a small 

tetravalent metallic ion (most commonly Titanium or Zirconium) in a lattice of 

bivalent metallic ions (Lead, or Barium) and Oxygen ions. Above a critical 

temperature (said Curie temperature) every crystal exhibits cubic symmetry  

with no dipole moment, while below that temperature, the crystals present a 

tetragonal or rhombohedric  symmetry producing a dipole moment. Adjacent 

dipoles form domains of local polarization, whose random directions however tend 

to nullify their macroscopic effect. 

If the material is subjected to an electric field strong enough, with a temperature 

slightly below the critical one, poled domains align with the applied field, and 

they tend to maintain this alignment even after the removal of the electric 

stimulus. This procedure is called permanent polarization treatment (Figure 3.1). 

When a poled ceramic is mechanically stressed, the dipole moment is modified 

and generates an electric potential difference (mechanical energy is converted into 

electrical energy). In particular, a stress of compression applied along the 

polarization direction generates a voltage with same polarity, whereas a tension 

returns a voltage with opposite polarity (Figure 3.2).  

 



44 

 

 

 

Fig. 3.1 – Polarization treatment of a piezoelectric ceramic 

 

 

Fig. 3.2 – Direct piezoelectric effect 

 

For the inverse effect, depicted in Figure 3.3, a same-polarity voltage applied 

along the polarization direction causes a stretch, and an opposite-polarity voltage 

causes a contraction (electrical energy turned into mechanical energy). 

A cyclic application of stress or difference of potential gives a cyclic response. 
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Fig. 3.3 – Inverse piezoelectric effect 

 

With these materials available, Japanese manufacturers quickly developed several 

types of piezoelectric signal filters, which addressed needs arising in television, 

radio and communication equipment markets; and piezoelectric igniters for 

natural gas/butane appliances. As time progressed, the markets for these 

products continued to grow, and then similarly valuable ones were found. Most 

notable were audio buzzers (smoke alarms), air ultrasonic transducers (television 

remote controls and intrusion alarms) and devices employing surface acoustic 

wave effects to achieve high frequency signal filtering. 

The commercial success of the Japanese efforts attracted the attention of industry 

in many other countries and spurred new efforts to develop successful 

piezoelectric products. There has been a large increase in publication rate in 

China, India, Russia and the USA. The search for perfect piezo product 

opportunities is still in progress. Judging by the increase in worldwide activity 

focusing on using a large number of very precise piezoelectric sensors and 

actuators for active control in communications, navigation and packaging 

systems, and from the successes encountered in the last fifty years, it is expected 

that piezoelectricity will enjoy a continuing role in both fundamental and 

technical applications in the future. 
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As with most ceramics, a significant disadvantage of these materials is their 

brittleness. Stress concentration in proximity of defects or inhomogeneities, such 

as flaws, cavities or included particles, can contribute to critical crack growth and 

subsequent mechanical failure or dielectric breakdown. Their performances can be 

significantly improved getting a complete understanding of their damage process: 

a thorough understanding of their fracture behaviour is crucial in order to 

improve their performances and avoid unexpected failures. Therefore, a 

considerable number of research works have addressed this topic in the last 

decades. 

Application of the concepts of fracture mechanics to the failure of cracked 

piezoelectric ceramics is found in several papers [10-16], and a thorough review of 

the literature can be found in [17]. 

 

In this chapter, the linearized piezoelectricity formulations described in [8-9] 

which will be needed in later chapters, are briefly summarized. The basic 

equations of linear electroelasticity are first reviewed, followed by a brief 

discussion on the physical constants. An analytical solution procedure in 

anisotropic electro-elasticity is considered. Then the properties of transversely 

isotropic piezoelectric materials are described. Finally, some boundary conditions 

in electroelasticity theory are outlined. 

 

3.2  Basic equations of Linear Thermopiezoelectricity 

 

Of concern in this work is the study of the elastostatic fracture response of a 

cracked piezoelectric body.  

In this section we recall briefly the three-dimensional formulation of linear 

piezoelectricity that appeared in [8-9]. Here, a three-dimensional Cartesian 

coordinate system is adopted where the position vector is denoted by x  (or ix ). 

In this thesis, both conventional indicial notation ix  and traditional Cartesian 
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notation ( x , y , z ) are utilized. In the case of indicial notation we invoke the 

summation convention over repeated Latin indices, which can be of two types 

with different ranges: , , 1,2,3i j k   for lower-case letters and , 1,2,3,4M N   for 

upper-case letters. Moreover, vectors, tensors and their matrix representations are 

denoted by bold-face letters. The three-dimensional constitutive equations for 

linear piezoelectricity can be derived by considering the full Gibbs function per 

unit volume, g , defined as [9]: 

 a

m mU Eg D T s    (3.1) 

where U , s , 
mD  and 

mE  are the internal energy density, entropy density, electric 

displacement and electric field, respectively, 
0

a
T T T   is the absolute 

temperature, where 
0

T  is reference temperature and T  a small temperature 

change: 
0

T T . 
iE  is defined by 

 ,i iE    (3.2) 

in which   is the electric potential, and a comma followed by arguments denotes 

partial differentiation with respect to the arguments. From the exact differential 

 ij ij m mdg d D dE sdT     (3.3) 

where ij  and ij  are respectively stress and strain, while ij  is defined by 

  , ,

1

2
ij i j j iu u    (3.4) 

in which 
iu  is the elastic displacement, we obtain: 

 
, ,,

, , .ij m

E ij m TT E

g g g
s D

T E 




    
      
            

 (3.5) 

When the function g  is expanded with respect to T , ij  and 
mE  within the scope 

of linear interaction, we have: 

 
1

2
ij m kl n

ij m kl n

g T E T E
T E T E

 
 

       
              

 (3.6) 

The following constants can then be defined: 
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ij kl n m ETT E

T E

mij ij m

ij m ij mT E

Cg g g
c

E E T T

g g g
e

E T T E













 

 
 

       
         

         

       
          

             

 (3.7) 

where ( , )T E

ijklc  are the elastic moduli measured at constant electric field and 

temperature, ( , )T

nm

  the dielectric constants measured at constant strain and 

temperature,   is the mass density, ( , )E

vC   is the specific heat per unit mass, ( )T

mije  

the piezoelectric coefficients measured at constant temperature, ( )E

ij  the thermal-

stress coefficients measured at constant electric field, and ( )

m

  the pyroelectric 

coefficients measured at a constant strain. 

When the function g  is differentiated according to equation (3.3), and the above 

constants are used, we find 

 
0

,

,

.

v
ij ij m m

ij ij ijkl kl mij m

n n nij ij nm m

C
s T E

T

T c e E

D T e E


  

  

  

  

   

  

 (3.8) 

A set of these three equations is the constitutive relation in the coupled system. 

It should be noted that the superscripts appearing in equations (3.7) have been 

dropped here. To simplify the subsequent writing they will be omitted in the 

remaining part of this work. Using the notation defined above, the Gibbs function 

per unit volume can now be expressed as: 

 2

0

1 1

2 2 2

v
ijkl ij kl ij i j ijk i jk m m ij ij

C
g c E E T e E TE T

T


             (3.9) 

Having defined the material constants, the related divergence equations and 

boundary conditions can be derived by considering the modified Biot’s variational 

principle [18]: 

    
0

2 0bi i b i i s n

V V S

T
B F dV f u q dV T u q h dS

T


    

 
       

 
    (3.10) 

where V  and S  are the domain and boundary of the material, bif  and bq  are the 

body force per unit volume and electric charge density, iT , sq  and nh  are the 
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applied surface traction, charge, and prescribed surface heat flow, respectively, B  

and F  are Biot’s generalized free energy density and the dissipation function, 

which are defined by [18]: 

 
0 , ,

0

1
,

2
i i ij i jB U T s g E D Ts F k T T

T
       (3.11) 

in which ijk  is the heat conduction coefficient. 

The variational equation (3.10) provides the following results: 

 , , 00, , ,ij bi i i b i if D q h T s        (3.12) 

 , ,ij j i i i s i i nn T Dn q hn h      (3.13) 

where 
in  is the outer unit normal vector to S , and 

ih  is heat flow. Equations 

(3.12) are the elastic equilibrium equations, Gauss’s law of electrostatics, and 

heat conduction equation, respectively, and equations (3.13) are boundary 

conditions. 

 

3.3  Fundamental electroelastic relations 

 

In order to identify directions in a piezoelectric element, three axes are used. 

These axes, termed 1, 2 and 3, are analogous to X , Y  and Z  of the classical 

orthogonal set of axes. The polar axis, or axis 3, is taken parallel to the direction 

of polarization within the ceramic. This direction is established during 

manufacturing by a high DC voltage that is applied between a pair of electrode 

faces to activate the material 

The discussion is now focused on an electromechanically coupled system. In the 

preceding section was showed how the thermal system, as a third system, affects 

to a greater or lesser degree the elastic, dielectric, and piezoelectric constants. It 

is therefore necessary to specify the thermal condition, i.e. whether it is 

isothermal or adiabatic. Since most electromechanical measurements are made 

under an alternating field or stress, the observed constants are adiabatic. On the 

other hand, discussion of phase transformation in solid-state physics requires 
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knowledge of isothermal constants. In fact, the distinction is rarely mentioned 

because electric-to-thermal and mechanical-to-thermal couplings are rather weak, 

except in a few special cases. 

At constant temperature, equations (3.8) are reduced to: 

 ij ijkl kl mij mc e E    (3.14) 

 n nij ij nm mD e E    (3.15) 

In this thesis it was chosen to use equations (3.14) and (3.15) to describe the 

coupled interaction between elastic and electric variables. Nonetheless, there are 

four equivalent constitutive representations commonly used in the stationary 

theory of linear piezoelectricity. Each type has its own different set of 

independent variables and corresponds to a different thermodynamic function, as 

listed in Table 3.1. While all equations are actually tensorial, the indices have 

been omitted for brevity. It should be pointed out that an alternative derivation 

of formulae is merely a transformation from one type of relation to another. Some 

relationships between various constants occurring in the four types are given as 

follows [19]: 
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D E E D E

ijkl ijkl mij mkl ijkl ijkl mij mkl nij nm mij nkl klij

E D D

nij nm mij nkl klij nij nm mij nkl klij nij nm mij nkl klij

g h g h

c c e h f f d g d g e f

e h d c g d h f h e g c

   



  

      



  

    

     

     

 (3.16) 

The material constants can be reduced by the following consideration. According 

to definition (3.4) we may write ij ji  . It follows that: 

 ijkm ijmkc c  (3.17) 

Further, from ij ji   we have: 

 , .ijkm jimk kij kjic c e e   (3.18) 
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Table 3.1. Types of fundamental electroelastic relations. 

Independent variable Piezoelectric relation Thermodynamic function 

,γ E  
E



  


 

σ c γ eE

D eγ ε E
 

Electric Gibbs energy 

0

1 1

2 2

T E Tg   γ c γ E ε E eγE  

,γ D  

D



  


  

σ c γ hD

E hγ β D
 

Helmholtz free energy 

1 0g g ED 

,σ E  
E



  


 

γ f σ dE

D eσ ε E
 

Gibbs free energy 

2 0g g σγ  

,σ D  
D



  


  

γ f σ gD

E gσ β D
 

Elastic Gibbs energy 

3 0g g  ED σγ  

 

 

3.4  Stroh’s Formalism in the piezoelectric case 

 

For two-dimensional deformations in a general anisotropic piezoelectric material, 

one of the most used solution procedure in the literature is the Stroh’s formalism 

[20]. We will start the outline of the method by noting that posing 
4U  , 

equations (3.14) and (3.15) can be re-written as follows: 

 ij ijks k,s sij 4,sζ = c U +e U  (3.19) 

 
i iks k,s is 4,sD = e U - ε U  (3.20) 

The analysis will be limited to the bi-dimensional (plane) problem, for which: 

  1 2, 1,2,3,4j jU U x x j   (3.21) 

and we will consider volume forces and free charges to be absent. 

Let us assume: 

  j jU a f z  (3.22) 

or, in matrix notation: 

   1 2f z z x px  U a  (3.23) 
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where f  is an arbitrary function of z  and p  and ja  are constants to be 

determined. The following relations can be obtained differentiating once and 

twice the displacement components: 

    '
k,s s1 s2 kU = δ + pδ a f z  (3.24) 

     ''
k, js j1 j2 s1 s2 k k,sjU = δ + pδ δ + pδ a f z =U  (3.25) 

where sjδ  is the Kronecker delta. 

Through (3.24) and (3.25), and given the arbitrariness of f , the constitutive 

relations (3.19) and (3.20) become: 

     4 1 2
'

ij ijks k sij s sζ c a e a δ pδ f z    (3.26) 

     4 1 2
'

i iks k is s sD e a ε a δ pδ f z    (3.27) 

and the equilibrium and Maxwell equations: 

 4 0ij , j ijks k,sj sij ,sjζ c U e U    (3.28) 

 
4 0i ,i iks k,si is ,siD e U ε U    (3.29) 

 can be written: 

    4 1 2 1 2 0ijks k sij j j s sc a e a δ pδ δ pδ     (3.30) 

    4 1 2 1 2 0iks k is i i s se a ε a δ pδ δ pδ     (3.31) 

Expliciting in (3.30) the sums on indexes s  and j  respectively, we get: 

      2
1 1 4 1 2 2 2 4 1 2 0ijk k ij j j ijk k ij j jc a e a δ pδ c a e a pδ p δ       (3.32) 

and: 

        2

1 1 1 1 4 2 1 1 2 4 1 2 2 1 4 2 2 2 2 4 0i k k i i k k i i k k i i k k ic a e a p c a e a c a e a p p c a e a       

 (3.33) 

and gathering 
ka  and 

4a : 

    2 2
1 1 2 1 1 2 2 2 1 1 1 2 2 1 2 2 4 0i k i k i k i k k i i i ic p c c p c a e p e e p e a          

   
 (3.34) 

Indexes i  and k  assume the values 1, 2, 3. 

If now we introduce the three-dimensional vectors: 

 

1 1

2 2

3 3

ij i j

ij ij i j

ij i j

e e

e e

e e

   
   

    
   
   

e  (3.35) 
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equation (3.34) can be expressed in compact form as: 

    2 2

11 12 21 22 4 0e e eT e ep p p p a            
Q R R T a e e e e  (3.36) 

where  1 2 3

Te a , a , aa  and: 

 1 1 1 2 2 2

e e e

ik i k ik i k ik i kQ c , R c , T c    (3.37) 

Matrices e
Q  and eT  are symmetric and positive definite. 

Now, expliciting in (3.31) the sums on indexes i  and s  respectively, we get: 

        2 2

1 1 2 2 1 2 1 4 1 2 2 4 1 2 0ks k s s ks k s s s s s s s se a p e a p p a p a p p                

 (3.38) 

 2 2

1 1 1 2 2 1 2 2 11 4 12 4 21 4 22 4 0k k k k k k k ke a e a p e a p e a p a a p a p a p            (3.39) 

and summing in k  as well: 

 
 

   

111 1 112 2 113 3 121 1 122 2 123 3 211 1 212 2 213 3

2 2

221 1 222 2 223 3 11 12 21 22 4 0

e a e a e a p e a e a e a e a e a e a

p e a e a e a p p a   

        

         

 (3.40) 

or: 

    2 2
11 12 21 22 11 12 21 22 4 0T T T T ep p p p a             

  
e e e e a  (3.41) 

On the basis that e
Q , eR  and eT  are all 3x3 matrices, relations (3.39) and (3.41) 

can be compacted into: 

   2 0Tp p    
 
Q R R T a  (3.42) 

where    4 1 2 3 4

T Te a a a a a a a   and: 

 
11 12 22

11 11 12 12 22 22

e e e

T T T
, ,

  

     
       

       

Q e R e T e
Q R T

e e e
 (3.43) 

4x4 matrices. 

Now we can define vector b  as: 

    
1T p p
p

    b R T a Q R a  (3.44) 

and the generalized potential: 

    1 2 3 4

T
, , , f z    Φ b  (3.45) 

Equations (3.26) and (3.27) assume the shape: 

 1 2 2 1 1 4 2 2 4 1 1 2 3i i , i i , , ,D D i , ,             (3.46) 
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It suffices therefore to consider the functions   because the stresses ij  and the 

electric displacements 
iD  can be obtained by differentiation. 

From equations (3.46) the following relations can be introduced: 

 
   

   

1 1 1 11 21 31 1 2

2 2 2 12 22 32 2 1

T T

i ,

T T

i ,

,D , , ,D

,D , , ,D

   

   

   

  

t Φ

t Φ
 (3.47) 

and since 1221   we get: 

 
11 2 2 0, ,    (3.48) 

As in the case of anisotropic materials, eigenvalues p  cannot be real. The four 

pairs of complex conjugates, and the associated eigenvectors, can be ordered as 

follows: 

 
 +4

1 2 3 4 4

Im > 0,  = 1,..,4

 = (  ,  ,  ,  ) ,  = 1,..,4T

p p p

a a a a

  

     







a a a
 (3.49) 

Assuming for vectors b  as well the position: 

 4  = 1,..,4  b b  (3.50) 

the general solutions for U  and Φ  are obtained by superposing the eight 

solutions in the form of equations (3.23) and (3.45): 

      
8 4

4
1 1

f z f z f z      
 


 

     U a a a  (3.51) 

    
4

4
1

f z f z   





   Φ b b  (3.52) 

In most applications f  assume the same functional form, so that we may write: 

        4f z f z q , f z f z q         (3.53) 

where q  are complex constants to be determined. The second equation is for 

obtaining real solutions for U  and Φ . Expressions (3.51) and (3.52) can then be 

compacted as: 

 
 

 

2Re

2Re

f z

f z





     

     

U Adiag q

Φ Bdiag q
 (3.54) 

where: 

    1 2 3 4 1 2 3 4, A a a a a B b b b b  (3.55) 
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Eigenvalues p  and eigenvectors a  and b  are called Stroh’s eigenvalues and 

eigenvectors. Through (3.47) we also get: 

 
 

 

1

2

2Re

2Re

p f z

p f z

 

 

      

     

t Bdiag q

t Bdiag q
 (3.56) 

In order to conclude the extension of Stroh’s formalism to the piezoelectric case, 

it can be said that, although from (3.43)-3 it is clear that matrix T  is symmetric 

but not positive definite (for the presence of the element 
22 ), it is easy to 

demonstrate that it is still non-singular, so that 1T  exists. Following the same 

algebraic procedure outlined for anisotropic materials, relation (3.44) can then be 

reduced to: 

  
T

p , Nξ ξ ξ a b  (3.57) 

where N  is a matrix whose elements are still matrices defined as: 

 1 T 1 1 T T

11 1 12 2 21 3 22 4 1N , N , N , N            N T R N T N RT R Q N N

 (3.58) 

Relation (3.57) outlines the 8-dimensional Stroh’s formalism for piezoelectric 

materials. Orthogonality and closure relations formally equal to those for 

anisotropic materials can be obtained. 

 

3.5  Transversely isotropic piezoelectric materials 

 

Polarized piezoelectric materials (like PZT ceramics) are generally transversely 

isotropic.  

For their representation, it is useful to introduce the so-called two-index notation 

or compressed matrix notation [21]. Two-index notation consists of replacing ij  or 

km  by p  or q , where , , ,i j k m  take the values 1-3, and ,p q  assume the values 1-

6 according to the following replacements: 11 1 , 22 2 , 33 3 , 23 or 32 4 , 

13  or 31 5 , 12  or 21 6 . Relations (3.14) and (3.15) then become: 

 p pq q kp kc e E    (3.59) 

 i iq q ik kD e E    (3.60) 



56 

 

in which: 

 
, ,

2 , .

ij

p

ij

i j

i j


 








when

when
 (3.61) 

For a transversely isotropic material with 
3x  in the poling direction, the related 

material matrices are: 

 

11 12 13

12 11 13

13 13 33

44

44

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

c c c

c c c

c

c

c

 
 
 
 

  
 
 
 
  

c  (3.62) 

 
15

15

31 31 33

0 0 0 0 0

0 0 0 0 0

0 0 0

e

e

e e e

 
 


 
  

e  (3.63) 

 
11

11

33

0 0

0 0

0 0







 
 


 
  

ε  (3.64) 

with  66 11 12 2c c c  . 

It is clear that a material with this type of symmetry is described by 10 

independent material constants. 

In the MKS system the constants and variables mentioned above are measured in 

the following units: ijc   
-2Nm ,  ije    

-1 -2N Vm Cm , ij
     2 -1 -2 -2C N m NV . 

For poled barium-titanate  3BaTiO  and lead-zirconate-titanate (PZT), these 

physical constants are of the orders: 1110ijc -2Nm , 10ije -2Cm , 810ij

 -2NV . 

Substitution of equations (3.2) and (3.4) into (3.59) and (3.60), and later into 

(3.12), results in: 

      
22 2 2 2 2

31 1 1 2

11 66 44 12 66 13 44 31 15 12 2 2

1 2 3 1 2 1 3 1 3

0
b

uu u u u
c c c c c c c e e f

x x x x x x x x x

    
         

        
 

      
22 2 2 2 2

32 2 2 1

66 11 44 12 66 13 44 31 15 22 2 2

1 2 3 1 2 2 3 2 3

0
b

uu u u u
c c c c c c c e e f

x x x x x x x x x

    
         

        
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   
2 2 2 2 2 2 2 2

3 3 3 1 2

44 44 33 13 44 13 44 15 15 33 32 2 2 2 2 2

1 2 3 1 3 2 3 1 2 3

0
b

u u u u u
c c c c c c c e e e f

x x x x x x x x x x

         
          

         

   
2 2 2 2 2 2 2 2

3 3 3 1 2

15 15 33 15 31 15 31 11 11 332 2 2 2 2 2

1 2 3 1 3 2 3 1 2 3

b

u u u u u
e e e e e e e q

x x x x x x x x x x

  
  

       
         

         

 (3.65) 

for transversely isotropic materials. This type of material will be adopted in the 

remaining chapters. 

Besides these equations, Maxwell’s equations of electrostatics also hold. These, in 

absence of free charges, are: 

 , , 0i i i iE D    (3.66) 

where   is the electric potential. 

 

3.6  Two-dimensional problems 

 

3.6.1. Plane problem 

According to matrices (3.62), (3.63) and (3.64), the 
1 2x x  plane is the isotropic 

plane, and one can employ either the 
1 3x x  or 

2 3x x  plane for the study of the 

plane electromechanical problem. Choosing the former, we have: 

 

1 11 13 31 1

3 13 33 33 3

5 44 15 5

1 15 11 1

3 31 33 33 3

0 0

0 0

0 0 0

0 0 0

0 0

c c e

c c e

c e

D e E

D e e E

 

 

 





     
     
        

    
         
          

 (3.67) 

or inversely: 

 

1 11 13 31 1

3 13 33 33 3

5 44 15 5

1 15 11 1

3 31 33 33 3

0 0

0 0

0 0 0

0 0 0

0 0

f f g

f f g

f g

E g D

E g g D

 

 

 





     
     
        

    
         
          

 (3.68) 

in which ijf  is the elastic compliance tensor of the material, ijg  is the 

piezoelectric tensor and ij  is the dielectric impermeability tensor. When the 

constitutive equations (3.67) are substituted into equations (3.12) one obtains: 
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   

 

 

22 2 2

31 1

11 44 13 44 31 15 12 2

1 3 1 3 1 3

2 2 2 2 2

3 3 1

44 33 13 44 15 33 32 2 2 2

1 3 1 3 1 3

2 2 2 2 2

3 3 1

15 33 15 31 11 332 2 2 2

1 3 1 3 1 3

0

0

b

b

b

uu u
c c c c e e f

x x x x x x

u u u
c c c c e e f

x x x x x x

u u u
e e e e q

x x x x x x



 

 
 

  
      

     

    
      

     

    
     

     

 (3.69) 

 

3.6.2. Antiplane problem 

In this case only the out-of-plane elastic displacement 
3u
 
and the in-plane electric 

fields are non-zero: 

  1 2 3 3 1 20, ,u u u u x x    (3.70) 

    1 1 1 2 2 2 1 2 3, , , , 0E E x x E E x x E    (3.71) 

Thus, the constitutive equations (3.59) and (3.60) simplify to: 

 

44 154 4

44 155 5

15 111 1

15 112 2

0 0

0 0

0 0

0 0

c e

c e

eD E

eD E

 

 





    
    

       
     
         

 (3.72) 

The governing equations (3.65) become: 

 

2 2 2 2

3 3

44 44 15 15 32 2 2 2

1 2 1 2

2 2 2 2

3 3

15 15 11 112 2 2 2

1 2 1 2

0
b

b

u u
c c e e f

x x x x

u u
e e q

x x x x

 

 
 

   
    

   

   
   

   

 (3.73) 

or: 

 
44 15 3

15 11

2 2

3

2 2

3

0
b

b

c e f

e q

u

u 





  

 

 

 
 (3.74) 

where    2

,11 ,22
    is the two-dimensional Laplacian operator. 

 

3.7  Electric boundary conditions 

 

In the theoretical study of cracked piezoelectric bodies, the issue of assigning 

consistent electric boundary conditions on the crack faces is of central importance 

and has been addressed by many researchers. Three different boundary conditions 
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are commonly accepted in literature: the permeable crack model proposed by 

Parton [22], the impermeable crack model assumed by Deeg [23], Suo et al. [10] 

and Pak [24], and the semipermeable (“exact”) model, presented by Hao and 

Shen [25]. Under Parton’s condition, the electric potential and the normal 

component of the electric displacement are continuous across the traction-free 

crack: 

 , ,n nD D       (3.75) 

where the superscripts “+” and “-” denote the upper and the lower side of the 

crack surface, respectively, and the subscript “ n ” indicates the component 

normal to the crack surface. This model was used for example in [26-27]. 

The impermeable condition was introduced on the basis that relations (3.75) can 

be acceptable for very slender slits for which the width of the flaw is negligible, 

whereas when a cracked body is subjected to traction the crack opens and 

generally some type of fluid (air) or vacuum fill the void, and therefore there will 

clearly be a potential drop across the lower capacitance crack. Since the dielectric 

constant of air or vacuum is some orders of magnitude lower than that of the 

ceramic, it can be approximated to zero, and the normal component of the 

electric displacement vanishes across the cavity: 

 0n nD D    (3.76) 

This model was adopted by Sosa [10], Zuo and Sih [28], among others. 

The third condition takes a finite value of the permittivity of the medium inside 

the crack into account (
c ) and considers the crack opening displacement:  

    ,n n n n n cD D D u u               (3.77) 

This situation extrapolates between the impermeable and the permeable cases, 

reducing to the one or the other if the permittivity of the medium or the gap 

between the slit faces are assumed to be zero, respectively. 

Several researchers adopted the exact boundary conditions in their analysis 

(McMeeking [29], Landis [30], Ou and Chen [31], Wippler et al. [32] and others). 

Furthermore, many interesting works compared the effect of the various 
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boundary conditions on the crack behaviour: Dunn [33] and Zhang et al. [34] 

considered elliptical flaws under different conditions, Xu and Rajapakse [35] 

regarded arbitrarily oriented elliptical voids and linear cracks, Wang and Mai [36] 

and Wu and Wu [37] carried out FEM analysis in order to verify the assumptions 

under consideration. 
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CHAPTER 4 

 

 

ANALYTICAL SOLUTION FOR A CRACKED PIEZOELECTRIC 

BODY 

 

 

 

4.1  Introduction 

 

The most original contribution of this thesis to the fracture mechanics of 

piezoelectric materials is outlined in this chapter, which describes an analytical 

method for seeking the electro-elastic closed-form solution of the static problem of 

a crack in a piezoelectric plate subjected to biaxial loading at infinity, and in the 

next chapter, which reports several numerical applications and illustrates the 

results. 

The novel procedure involves a transformation of similarity, induced by the 

fundamental matrix through the application of the spectral theorem of linear 

algebra, that enables to express the equations governing the problem in terms of 

Cauchy’s complex potentials. The application of the mechanical boundary 

condition of stress-free crack and of one of the three considered electric boundary 

conditions (impermeable, permeable or semipermeable) leads then to the 

formulation of Hilbert problems whose solutions allow to obtain the generalized 

stress and displacement components. 

The proposed analytical formulation is the application to the piezoelectric static 

case [1-3] of an approach introduced by Piva [4], Piva and Viola [5], Viola et al. 
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[6] in solving elastodynamic crack problems in orthotropic media. This method 

can be considered an alternative to other formalisms currently used, like the 

Stroh’s formalism introduced in anisotropic elasticity [7-8], outlined in Chapter 2, 

and extended to piezoelectric media as illustrated in Chapter 3 [9]. Both 

theoretical approaches find their main origins in the fundamental works [10-11] 

where plane elasticity in terms of functions of complex variables was  formulated. 

However, the present derivation of the basic equations does not require any “a 

priori” assumptions about the displacement vector as in Stroh’s approach. 

 

4.2 Alternative formalism applied to the piezoelectric case 

 

In contract form, equations (3.59) and (3.60) become: 

 T
 σ Cγ e E  (4.1) 

  D eγ εE  (4.2) 

Considering generalized plane strain conditions (
22 23 12

0     ), the systems 

(4.1) and (4.2) can be reduced to: 

 

31

11 11 13 31

1 3 3

31

33 13 33 33

1 3 3

3 1

13 44 15

1 3 1

uu
c c e

x x x

uu
c c e

x x x

u u
c e

x x x










 
  

  

 
  

  

  
  

  

 
 
 

 (4.3) 

and: 

 

3 1

1 15 11

1 3 1

31

3 31 33 33

1 3 3

u u
D e

x x x

uu
D e e

x x x







  
  

  

 
  

  

 
 
  . (4.4) 

With the substitutions 
1

x x , 
3

x y , 
1

u u , 3 vu  , and introducing the 

generalized strain vectors (1)
Γ  and (2)

Γ  defined as: 
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1 4

(1) (2)

2 5

3 6

, ,

uu

yx

v v

x y

x y

 



  
 

     
 

 
 

 

  
  
     
     
     
         
  
     

Γ Γ  (4.5) 

and the generalized stress vectors 
1

t  and 
2

t  defined as: 

 
1 2

, ,

xx xy

xy yy

x y
D D

 

  

  
  
  
     

t t  (4.6) 

the constitutive equations can be expressed as: 

 
11 1 13 31 4

44 15 2 44 5

15 11 3 15 6

0 0 0

0 0 0

0 0 0

xx

xy

x

c c e

c e c

D e e







 

   

  

         
         
         
                  

 (4.7) 

 
44 15 1 44 4

13 2 33 33 5

31 3 33 33 6

0 0 0

0 0 0

0 0 0

xy

yy

y

c e c

c c e

D e e







 

   

  

         
         
         
                 

 (4.8) 

or, in contract form: 

 (1) (2)

1
 t AΓ BΓ  (4.9) 

 (1) (2)

2

T
 t B Γ CΓ  (4.10) 

The equilibrium equations for generalized plane strain conditions are: 

 

0

0

xyxx

xy yy

x y

x y



 


 

 

 
 

 

 (4.11) 

and the Maxwell equation for the electric displacement gives: 

 0
yx

DD

x y


 

 
. (4.12) 

Introducing equations (4.7) and (4.8) into (4.11) and (4.12) one obtains the 

following relations: 
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44 15 13 44 33 332 2 2 2
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 (4.13) 

or, in contract form: 

 (1) (1) (2)

,1 ,3 ,3
( )

T
   AΓ B B Γ CΓ 0  (4.14) 

in which the condition of equality of crossed derivatives (Schwartz equality) has 

been used: 

 (2) (1)

, ,
0

x y
 Γ Γ  (4.15) 

The system constituted by equations (4.14) and (4.15) can be expressed with the 

fundamental relation: 

 
, ,x y
 Γ DΓ 0  (4.16) 

where (1) (2)
( , )

T
Γ Γ Γ  and 

 1 1T 



 
 
 

A B B A C
D

-1 0
 is a 6x6 matrix with the 

following explicit form: 
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D  (4.17) 

with entries given by: 

 

2

15 1544

1 2 3 1

11 11 11 44 44 11 11

2 2

33 33 15 33 15 33 33 15 33 15

2 3

44 44 11 11 44 44 11 11

15 44 33 15 33 44 33 15 33 44

1 2 3

11 11 11

13

, , , ,

, ,

, , ,

p p p p p

p p

p

c e c c e e ec

c c c c c

c c e e e e e e e

c c c c

c e e c c e e c e e c

c c

   
 


 

   


  

  

     

     

  
  



2

15
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 (4.18) 

The discussion of the system (4.16) is performed through the calculation of the 
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eigenvalues of D.  The characteristic equation,  det 0 D I , gives: 

 6 4 2
0p q r       (4.19) 

where: 

 
2 3 3 1 2 1 1

2 3 2 3 3 2 3 1 1 3 2 2 1 1 3 2 2

3 2 3 2 3

( ) ,

( ) ( ) ( ) ( ) ,
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p

q

r

      

                

    

    

       
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 (4.20) 

From equation (4.19) one obtains three pairs of complex conjugate eigenvalues, 

each corresponding to a six-dimensional eigenvector. Taking into account the 

three eigenvalues with positive imaginary part: 

 , 0, 1,2,3
k k k k

p iq q k      (4.21) 

it is possible to create a matrix T whose six columns are respectively the 

imaginary and real components of the three related eigenvectors 

 ( ) ( )
1, 2,3

k k

k
f g ih k   : 
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

 (4.22) 

The above matrix can induce a transformation of similarity on D such that: 

 

1 1

1 1
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3 3
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0 0 0 0
.
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S T DT  (4.23) 

Pre-multiplying equation (4.16) by 1
T , with the position 1

T Γ Ψ , 

 1 2 3 4 5 6

T

      Ψ , the previous equation can be written as: 
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or, in contract form: 

 
, ,x y
 Ψ SΨ 0  (4.25) 

The above system can be split into three sub-systems: 
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Let’s introduce now the following transformations: 
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  
 

  
 

and  (4.29) 

that in contract form become: 

 
2 2 2 2

.
j j

j j

j j j j

p q
x y y

p q p q
   

 
and  (4.30) 
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The functions 
j

  are dependant on the variables  ,x y . Operating a change of 

variables, we have: 

 

1 1 1 1 1

1 1

1 1 1 1 1

1 1

x x x

y y y

 

 

 

 

    
 

    

    
 

    

 (4.31) 

From relations (4.29): 

 

1 1

1 1 1 1

2 2 2 2

1 1 1 1

1, 0 ,

, ,

x x

p q

y p q y p q

 

 

 
 

 

 
  

   

 (4.32) 

and thus equations (4.31) become: 

 

1 1

1

1 1 1 1 1

2 2 2 2

1 1 1 1 1 1

x

p q

y p q p q



 

 


 

  
  

    

 (4.33) 

leading to the system: 

 

1 1 1 1 1 1 2 1 2

1 12 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 2 1 2

1 12 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1

0

0

p q p q
p q

p q p q p q p q

p q p q
q p

p q p q p q p q

    

    

    
      

        

    
      

        

   
   
   

   
   
   

 (4.34) 

whose matrix form is: 

 

2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

2 2

2 21 1 1 1 1 1

2 2 2 2 2 2 2 2

1 11 1 1 1 1 1 1 1

1
0

0
1

p p q p q q

p q p q p q p q

p q p q p q

p q p q p q p q

 

 

 
 

     
 

 
 

    

      
      

       
         

      
      

 (4.35) 

The inverse matrix of 

2

1 1 1

2 2 2 2

1 1 1 1

2

1 1 1

2 2 2 2

1 1 1 1

1

1

p p q

p q p q

p q p

p q p q


 



 
 

 
 
 
 
 
 

K  is: 

 

2

1 1 1 1

2 2 2 22 2

1 1 1 1 11 1 1

2 2

11 1 1 1

2 2 2 2

11 1 1 1

1

1

q p q p

p q p q qp q

pq p q q

qp q p q



 
 

 

 

   
   
   
   
   

  

K  (4.36) 
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Pre-multiplying equation (4.35) by 1
K  one gets: 

 

1 1

1 1

2 2

1 1

0 1

1 0

 

 

 

 
 

 

 

   
   

 
   

 
    
   
   

0  (4.37) 

or: 

 

1 1

1 1

2 2

1 1

0 1

1 0

 

 

 

 


  

 

   
   

 
   

 
    
   
   

 (4.38) 

which are the Cauchy-Riemann conditions for complex potentials: 

 

1 2

1 1

2 1

1 1

 

 

 


 

 
 

 

 (4.39) 

With the very same procedure one can obtain the Cauchy-Riemann conditions for 

the other sub-systems: 

 

3 3

2 2

4 4

2 2

0 1

1 0

 

 

 

 


 

 

   
   

 
   

 
    
   
   

 (4.40) 

 

5 5

3 3

6 6

3 3

0 1

1 0

 

 

 

 


  

 

   
   

 
   

 
    
   
   

 (4.41) 

It can be demonstrated that the Cauchy-Riemann equations (4.38), (4.40) and 

(4.41) are valid for analytic functions like: 

 
1 1 1 1 1 2 1 1

2 2 3 2 2 4 2 2

3 3 5 3 3 6 3 3

( ) ( , ) ( , )

( ) ( , ) ( , )

( ) ( , ) ( , )

z i

z i

z i

   

   

   

    

    

    

 (4.42) 

of the complex variables: 

 
2 2

, 1, 2,3
j j

j j j

j j

p iq
z i x y j

p q
 

 
    



 
 
 

 (4.43) 
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The relation 1
T Γ Ψ  is equivalent to the relation Γ TΨ , which is the contract 

form of the system: 

 

(1) (1) (2) (2) (3) (3)

1 1 1 1 1 1 1

(1) (1) (2) (2) (3) (3)

2 2 2 2 2 2 2

(1) (1) (2) (2) (3) (3)

3 3 3 3 3 3 3

(1) (1) (2) (2) (3) (3)

4 4 4 4 4 4 4

(1) (1) (2) (2) (3) (3)

5 5 5 5 5 5 5

(1) (1) (2) (2

6 6 6 6 6

h g h g h g

h g h g h g

h g h g h g

h g h g h g

h g h g h g

h g h g














 
 
 
 
 
 
 
 
 

1

2

3

4

5

) (3) (3)

66 6
h g













   
   
   
   
   
   
   
   
    

 (4.44) 

The introduction of the complex potentials (4.42) allows us to reformulate system 

(4.44) in the form: 

 

(1) (2) (3)

1 1 1 1

(1) (2) (3)

2 2 2 2

1(1) (2) (3)

3 3 3 3

2(1) (2) (3)

4 4 4 4

3(1) (2) (3)

5 5 5 5

(1) (2) (3)

6 6 6 6

Im

f f f

f f f

f f f

f f f

f f f

f f f







 








  
  
    
     
     
        
  
    

 (4.45) 

or: 

 
3

( )

1

Im ( ) , 1, 2,3, 4,5,6
k

j j k k

k

f z j


       (4.46) 

where the definition of the eigenvectors of matrix D, ( ) ( ) ( )k k k

j j j
f g ih  , has been 

used. 

 

4.3  The problem of a static crack in a piezoelectric body 

 

A Griffith crack in a piezoelectric medium, poled along the y  axis, under the 

action of remote loading is considered. The crack is of length 2a  and free from 

electro-mechanical loading, as represented in Fig. 4.1. 

The loads applied at infinity are the following: 

         , , , ,xx xy xy yy yy x x y yxx D D D D                   

The generalized stress vectors and the vectors of the loads at infinity are: 

 
1 2

( , , ) , ( , , )
T T

xx yx x xy yy y
D D    t t  (4.47) 
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1 2

( , , ) , ( , , )
T T

xx yx x xy yy y
D D   

       
 t t  (4.48) 

 

 

 

Fig. 4.1 – Griffith crack of length 2a , free from applied loads, in a piezoelectric solid 

 

One can represent the analytic potentials as the sum of two terms: one constant 

0
  and another vanishing at infinity ( )z : 

 
0

( ) ( ) , 1,2,3
k k k

z z k     (4.49) 

This allows us to re-write the system (4.45) in the form: 

 

(1) (2) (3)

1 1 1 1

(1) (2) (3)

2 2 2 2

01 1(1) (2) (3)

3 3 3 3

02 2(1) (2) (3)

4 4 4 4

03 3(1) (2) (3)

5 5 5 5

(1) (2) (3)

6 6 6 6

( )

Im ( )

( )

f f f

f f f
z

f f f
z

f f f
z

f f f

f f f




  


   


  





  
  
    
     
     
        
  
    

. (4.50) 

System (4.50) can be splitted in two: 

  

(1) (2) (3)

1 1 1 1 01 1

(1) (2) (3)

2 2 2 2 02 2

(1) (2) (3)

3 3 3 3 03 3

0

( )

Im ( ) Im

( )

( )

f f f z

f f f z

f f f z

z

   

     

   

     
           
          

EΩ EΛ  (4.51) 

  

(1) (2) (3)

4 4 4 4 01 1

(1) (2) (3)

5 5 5 5 02 2

(1) (2) (3)

6 6 6 6 03 3

0

( )

Im ( ) Im

( )

( )

f f f z

f f f z

f f f z

z

   

     

   

     
           
          

FΩ FΛ  (4.52) 

where 

(1) (2) (3)

1 1 1

(1) (2) (3)

2 2 2

(1) (2) (3)

3 3 3

f f f

f f f

f f f



 
 
 
 
 

E  and 

(1) (2) (3)

4 4 4

(1) (2) (3)

5 5 5

(1) (2) (3)

6 6 6

f f f

f f f

f f f



 
 
 
 
 

F . The two matrices are linked 

by the relation ( 1/ )kdiag  F E . 

Poling 

a  a  

  
  x  

y
 

xD

 

xy 

 

yy 

 

xx 

 

yD
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Introducing these two systems into equations (4.9) and (4.10) gives: 

    1 0Im Im+ + ( )z       t AE BF Ω AE BF Λ  (4.53) 

    T T

2 0
Im + Im + ( )z       t B E CF Ω B E CF Λ  (4.54) 

and, with the positions: 

 ( ), ( ),
T

   G AE BF H B E CF  (4.55) 

the two equations become: 

        1 0 1
Im ( ) Im Im ( ) Im ( )z z z


    t GΩ GΩ GΛ t GΛ  (4.56) 

        2 0 2
Im ( ) Im Im ( ) Im ( )z z z


    t HΩ HΩ HΛ t HΛ  (4.57) 

The stress distribution will be known once determined the analytical functions 

0
( ) ( )

k k k
z z    in the particular conditions of the problem considered. 

The generalized displacement vector can be obtained integrating, for example, 

equation (4.51); neglecting a rigid displacement one obtains: 

        0
Im ( ) Im ( ) Im ( ) Im ( )

u

v z z z z




     

 
 
 
  

U Eω Eω Eλ U Eλ  (4.58) 

where ( )
k

z  is the primitive of ( )
k

z : 

 
0 0

( ) ( ) ( ) ( ) ( )
k k k k k k

z z dz z z z z          . (4.59) 

For the continuity of stress the static boundary condition on the x  axis is: 

 
2 2
( ,0) ( ,0)x x x

 
  t t  (4.60) 

that from equation (4.57) is equivalent to the relation: 

 ( ) ( ) ( ) ( )x x x x x
 

       
   HΛ HΛ HΛ HΛ  (4.61) 

where the superscripts + and – denote the values of the stress components on the 

upper and lower edge of the x  axis, that is, the limits for z x  and 0y


 . 

By definition the following equality holds: 

 ( ) ( )z z    (4.62) 

moreover, since when the complex variable z  tends to 0x  on the side 0y  , its 

conjugate z  tends to x  on the side 0y   (and vice versa), like represented in Fig. 

4.2, one can state: 
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    z z


     
     (4.63) 

 
Fig. 4.2 – Representation of the complex variable z  and of its conjugate z  

 

The previous relations lead to: 

    x x


    
     (4.64) 

that modifies relation (4.61) into: 

        x x x x x
 

          HΛ HΛ HΛ HΛ  (4.65) 

Keeping in mind the condition   0 Λ , from Liouville’s theorem, which states 

the constancy of an analytical function  f z  limited for every z C , the following 

derives: 

     ,x x x   HΛ HΛ 0  (4.66) 

or 

     ,x x x   HΛ HΛ  (4.67) 

holding for the three crack models (permeable semipermeable and impermeable to 

an electric field). 

Now the solution can be sought and particularized in the three cases. 

 

4.3.1. The impermeable crack 

With this assumption the Griffith crack is considered to be electrically 

impermeable and so the electric field inside the crack is neglected. The boundary 

condition is: 

  
  x  

y
 

z  

z  

0x  
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 0
y y

D D x a
 
    (4.68) 

Let’s assume the crack to be traction free: 

 
( ,0) ( ,0) 0

( ,0) ( ,0) 0

yy yy

xy xy

x x
x a

x x

 

 

 

 

 


 
 (4.69) 

In contract form these conditions can be written as: 

 
2 2
( ) ( )x x x a

 
  t t 0  (4.70) 

Through equation (4.57), the latter relation becomes: 

 
2

2

1
( ) ( )

2

1
( ) ( )

2

x x x a
i

x x x a
i

  

  

   

   

 
 

 
 

t HΛ HΛ 0

t HΛ HΛ 0

 (4.71) 

From equations (4.64) and (4.67) one obtains: 

 
( ) ( ) ( )

( ) ( ) ( )

x x x x

x x x x

 

 

    

    

HΛ HΛ HΛ

HΛ HΛ HΛ

 (4.72) 

and the introduction of relations (4.72) into equations (4.71) allows to express the 

condition of absence of stress on the crack boundary in the form of a Hilbert 

problem: 

 1

2
( ) ( ) 2x x i x a

   
   Λ Λ H t  (4.73) 

In terms of vector components, the problem (4.73) can be split into: 

 1

2
( ) ( ) 2

k k k
x x i x a

   
      H t  (4.74) 

More precisely, equation (4.74) identify a Plemelj problem (APPENDIX A). The 

solution can be derived from the general relation [12]: 

 
( ) ( )

( ) ( ) ( )
2 ( )( )

k
L

z g x dx
z z P z

i x x z



   

 
  (4.75) 

where ( )z , the canonical function of the problem, in this specific case has the 

form: 

 
2 2

1
( )z

z a
 


 (4.76) 

while its upper and lower limits on the x  axis are: 

 
2 2

( )
i

z
x a

 
 


 (4.77) 
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2 2

( )
i

z
x a



 


 (4.78) 

The solution of the problem assumes the following aspect: 

 
2 2

1

2
2 2 2 2

1 1
( ) 2 ( )

( )2
k kL

i a x
z i dx P z

x zi z a z a

   
   

 

 
   

  
 H t  (4.79) 

Since   
2 2

2 2
, ( , )

( )

a

a

a x
dx z z a z a a

x z





     


  one obtains: 

  1

2
2 2 2 2

1
( ) 1 ( )k

k k

k

z
z i P z

z a z a

 
   

 

 
 
  

H t  (4.80) 

For what concerns the polynomial ( )P z , by definition ( ) 0 Λ , or in other words 

1
( )z A




Λ , so ( )P z  must inevitably reduce to a constant; it is furthermore 

demonstrable that for a tension free crack ( ) 0P z  cost  holds. The solution to 

the Hilbert problem results to be: 

  1

2
2 2

( ) 1k

k k

k

z
z i

z a

 
  



 
 
  

H t  (4.81) 

In matrix form equation (4.81) can be written as: 

 1

2
2 2

( ) k

k

z
z i

z a

 
 



  
  
    

Λ diag 1 H t  (4.82) 

The introduction of the latter equation into the expression of the generalized 

stress vector (4.57) gives: 

 

  1

2 2 2 2
2 2

1

2
2 2

Im ( ) Re

Re

k

k

k

k

z
z

z a

z

z a

   

 

     





    
   
      

    
   
      

t t HΛ t H diag 1 H t

H diag H t

 (4.83) 

while the other generalized vector becomes: 

 

  1

1 1 1 2
2 2

1 1

1 2 2
2 2

Im ( ) Re

Re Re

k

k

k

k

z
z

z a

z

z a

   

    

     


  


    
   
      

    
      
      

t t GΛ t G diag 1 H t

t GH t G diag H t

 (4.84) 
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One can verify that the solution is in compliance with the boundary condition 

(4.70), in fact with the position 
2 2

( ) k

k

k

z
f z

z a



, from equation (4.83) it derives: 

    
1

1 1

2 2 2

1
( ) Re ( ) ( ) ( )

2
x f x f x f x


       

            
t Hdiag H t Hdiag H Hdiag H t

 (4.85) 

for x a  one gets: 

 
2 2

( ) ( )
ix

f x f x
a x

 
   


 (4.86) 

and therefore: 

 
1

1

2 2

1
( ) ( )

2
x f x x a


   

    
 

t HH HH t 0  (4.87) 

as it was to be verified. 

By means of integration of function (4.82) one obtains the primitive: 

 2 2 1

2
( )

k k
z i z a z

 
    

  
λ diag H t  (4.88) 

and substituting ( )zλ in the expression of the generalized displacement vector 

(4.58) gives: 

       2 2 1 1

2 2
Im ( ) Re Re

k k
z z a z

     
      

 
U U Eλ U Ediag H t Ediag H t

 (4.89) 

Now it is possible to calculate the displacement discontinuity across the crack. 

With the position 2 2
( )

k k
h z z a   one gets: 

    1 1

2 2
( ,0) Re ( ) Rex h x x

      
    U U Ediag H t EH t  (4.90) 

    1 1

2 2
( ,0) Re ( ) Rex h x x

      
    U U Ediag H t EH t  (4.91) 

 1

2
( ,0) ( ,0) ( ,0) Re ( ) ( )x x x h x h x

     
        U U U Ediag H t  (4.92) 

Since: 

 2 2
( ) ( )h x h x i a x x a

 
      (4.93) 

the discontinuity across the crack results: 

 1 2 2 2 2

2 2
( ) 2 Im( ) 2x a x a x

  
     U EH t Rt  (4.94) 

where 1
Re i


   R EH .   
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Fig. 4.3 – Polar coordinates originating at the crack tips for the complex variable z  

 

With reference to Fig. 4.3, from the rules of vectorial sum: 

 1 2

1 2
,

i i
z a e z a e

 
      (4.95) 

and therefore: 

 
1 2

2 2

1 2
( )

i

h z e

 

 


 
 
   (4.96) 

Across the crack, that is for x a , if 0z x i


   then 
1 1

0 and    , whereas if 

0z x i


   then 
1 1

0 and     , and the foregoing value of the discontinuity 

(4.94) derives. One can also notice that outside the crack width the function 

results to be continuous, in fact with the same arguments it is: 

 
2 2

2 2

( ) ( )

( ) ( )

h x h x x a x a

h x h x x a x a

 

 

     

   

 (4.97) 

The expression of the generalized stress allows to determine the stress intensity 

factor vector, defined by the relation: 

 2lim 2 ( ) ( ,0)
x a

x a x


 K t  (4.98) 

From equation (4.83), calculated at the vicinity of the right tip, on the x  axis: 

 2 22 2
( ,0)

x
x x a

x a

 


t t  (4.99) 

Thus, the three dimensional vector K  in the impermeable case assumes the 

aspect: 

 
2( )a a K t  (4.100) 

or, in explicit form: 

a  a  

1  

x  

2  

2  

1  

z  

y  
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( )

1

( )

imp 2

( )

3

( )

( ) ( )

( )

a
xy II

a

yy I

a

Dy

aK a K

a K a a K

K a Ka D

 

 









    
    

      
         

K  (4.101) 

where ( )a

II
K  and ( )a

I
K  are, respectively, the stress intensity factor for Sliding Mode 

and for Opening Mode, and ( )a

D
K  is the intensity factor for Electric Displacement 

Mode, as introduced for analogy in [13]. 

 

4.3.2. The permeable crack 

For a traction free, permeable crack, the following boundary conditions hold: 

 
( ,0) ( ,0) 0

( ,0) ( ,0) 0

yy yy

xy xy

x x
x a

x x

 

 

 

 

 


 
 (4.102) 

 
( ,0) ( ,0)

( ,0) ( ,0)

y y

x x

D x D x
x

E x E x

 

 


 


 (4.103) 

From equation (4.57) valued on the x  axis it derives: 

 
2 2

2 2

( ) ( ) 2 ( ,0)

( ) ( ) 2 ( ,0)

x x i x
x

x x i x

   

   

  
 

  

  

  

HΛ HΛ t t

HΛ HΛ t t

 (4.104) 

and inserting relation (4.64) produces: 

 
2 2

2 2

( ) ( ) 2 ( ,0)

( ) ( ) 2 ( ,0)

x x i x
x

x x i x


  


  

  
 

  

  

  

HΛ HΛ t t

HΛ HΛ t t

 (4.105) 

Through relation (4.67), equations (4.105) lead to the condition: 

 1

2 2
( ) ( ) 2 ( ,0)x x i x x

    
      Λ Λ H t t  (4.106) 

From boundary conditions (4.102) and (4.103) it is evident that the only 

component of the generalized stress vector on the edges of the crack is the electric 

displacement 
y

D  (the others are null): 

 2

0 0

( ,0) 0 0

1

y y

y

x D D x a

D

   

   
   
   
     

t k  (4.107) 

and so equation (4.106) can be written as: 

 1
( ) ( ) 2Λ Λ H Jx x i x a

  
     (4.108) 

where: 
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2

J t k
y

D


   (4.109) 

In analogy with the impermeable crack case, equation (4.108) is a Hilbert 

problem, whose solution is: 

   1 1

2 2
( ) ( )Λ diag 1 H J diag 1 H Jk

k

k

z
z i i f z

z a

 
   



  
  
    

 (4.110) 

where 
2 2

( ) k

k

k

z
f z

z a



. 

Substituting the solution of the Hilbert problem (4.110) into equations (4.57) and 

(4.56) respectively permits to find the expressions of the generalized stress 

vectors: 

   1

2
Re ( )t k Hdiag H J

y k
D f z


      (4.111) 

  1 1

1 1 Re Re ( )GH J Gdiag H Jt t
k

f z
 

          (4.112) 

The primitive of function (4.110) is: 

      1
( ) ( )λ diag diag H J

k k
z i h z z


   (4.113) 

where 2 2
( )

k k
h z z a  . Combining equation (4.113) with equation (4.58) produces: 

   1
Re ( )U U Ediag H J

k k
h z z

 
    (4.114) 

The unknown electric displacement on the crack surface 
y

D  that appears in the 

vector J  can be determined in relation to the applied loads. For this purpose, 

let’s split the matrix relation (4.106) into three equations: 

 

   
   
     

1

2

3

2

2

2

xy

yy

y y

i

i x a

i D D





  

  

  

  

   

  







H Λ Λ

H Λ Λ

H Λ Λ

 (4.115) 

where the notation   , 1, 2,3
k

k   indicates the k-th row of the matrix. It is now 

necessary to introduce the second of the boundary conditions (4.103): 

 
,

( ,0) ( ,0) ( ,0) 0
x x x

E x E x x x
 

       (4.116) 

that since (1)

1 2 3 , , ,
( , , ) ( , , )

T T

x x y x x
U U     Γ  becomes: 

 (1) (1) (1)

3 3 3
( ,0) ( ,0) ( ,0) 0x x x x

 

               Γ Γ Γ  (4.117) 

From equations (4.51): 
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(1) (1)

(1) (1)

1
( ) ( ) ( )

2

1
( ) ( ) ( )

2

x x x
i

x x x
i

  



  



  

  

 
 

 
 

Γ Γ EΛ EΛ

Γ Γ EΛ EΛ

         x    (4.118) 

introducing relations (4.64) and (4.67): 

 

1
(1) (1)

1
(1) (1)

1
( ) ( )

2

1
( ) ( )

2

x x
i

x x
i


  




  



  

  

 
 

 
 

Γ Γ EΛ EH HΛ

Γ Γ EΛ EH HΛ

         x    (4.119) 

and subtracting, one obtains: 

   
1

(1) 1
( )

2
x x

i


 

      
  

Γ E EH Η Λ Λ  (4.120) 

Since: 

 
   

 

1 1 1
1 1 1

1

2 Im

2 Re 2

i

i i i

  
  



      

   

E EH Η EH H EH Η EH EH Η EH Η

EH Η RH

 (4.121) 

where 1
Re( )i


R EH , equation (4.120) becomes: 

  (1)
( )x x

 
     Γ RH Λ Λ  (4.122) 

and (4.117) assumes the form: 

       
33

( ,0) 0x x
   
       RH Λ Λ R H Λ Λ  (4.123) 

From the condition ( ) Λ 0  it derives: 

    
3

( ) 0x x  R HΛ  (4.124) 

On the crack edges one gets: 

 

 

 

3

3

1

3

3

1

( ) 0

( ) 0

k k
k

k k
k

R x x a

R x x a









 

 





H Λ

H Λ

  (4.125) 

Adding the components of equations (4.125) leads to the expression: 

    
3

3

1

( ) ( ) 0
k k

k

R x x x a
 



   H Λ Λ  (4.126) 

Through the combination of relations (4.126) and (4.115) one obtains the 

equation: 

 
31 32 33

2 2 2 ( ) 0
xy yy y y

iR iR iR D D 
  

      (4.127) 
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thus, the expression of the electric displacement results: 

 31 32

33

xy yy

y y

R R
D D

R

 
 




   (4.128) 

Now it is possible to determine the stress intensity factor vector, defined by the 

relation (4.98). At the right crack tip from equation (4.111) it is: 

 
2 2

2 2
( ,0) ( )

y y

x
x D D x a

x a


   


t k t k  (4.129) 

and therefore: 

 
perm

( )

( )

xy II

yy I

Dy y

a K

a a K

Ka D D

 

 









 



   
   
   
      

K  (4.130) 

Relation (4.128) permits to find a link among the three components of stress 

intensity factor: 

 31 32

33

II I

D

R K R K
K

R


   (4.131) 

 

4.3.3. The semipermeable crack 

For the semipermeable crack model, the boundary conditions coincide with those 

for the permeable one. They are: 

 
( ,0) ( ,0) 0

( ,0) ( ,0) 0

yy yy

xy xy

x x
x a

x x

 

 

 

 

 


 
 (4.132) 

 

( , 0)
( ,0) ( ,0)

( ,0)

( ,0) ( ,0)

y y y c

x x

x
D x D x D

V x x

E x E x




 

 


   

  



 (4.133) 

where 
c
  is the dielectric constant, or permittivity, of the medium contained 

inside the crack cavity. ( ,0)x  and ( ,0)V x  can be obtained from equation 

(4.114) that, combined with (4.93), allows to calculate the discontinuity: 

 2 2
2

U

V a x





    



 
 
 
  

U RJ  (4.134) 

One gets: 
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 
 

31 32 33

21 22 23

( ,0)

( ,0)

xy yy y y

xy yy y y

R R R D Dx
x a

V x R R R D D

 

 

  

  

  
 

   
 (4.135) 

Substituting the latter expression into the first of equations (4.133): 

 
 
 

31 32 33

21 22 23

xy yy y y

y c

xy yy y y

R R R D D
D

R R R D D

 


 

  

  

  
 

  
 (4.136) 

 a quadratic equation dependent on the unknown quantity 
y

D  is found: 

     2

23 33 2 22 3
( ) 0

y c y c
R D R D 

 
   R t R t  (4.137) 

One must choose the solution to the quadratic equation that gives rise to a real 

root (the value of 
y

D  must be a real number). Furthermore, the solution has to 

respect the condition 0V  ; in other words it must result: 

 
  22

23

y
D

R




R t

 (4.138) 

Now, one may notice that from relation (4.133)-1, in case of a purely electric 

applied load (i.e. 0
xy yy

 
 
  ), an inconsistency would rise: the electric 

displacement results 33

23

y c

R
D

R
  , independent on the electric field applied, and 

this is clearly not reasonable. This derives from having considered the crack as 

one-dimensional, while it actually has a thickness. The problem can be overpassed 

by considering the flaw to have an elliptical shape (with a small /b a  ratio); the 

relation deriving from this hypothesis is: 

 33

33
/

c

y y

c

R
D D

R b a









 (4.139) 

valid for 
2

(0,0, )
y

D
 
t . If 0

c
   (impermeable crack) equation (4.139) gives 

0
y

D  ; if 
c
    (permeable crack) it gives 

y y
D D


 . 

 

4.4  Representation of the solution in polar coordinates 

 

Allow a polar coordinate system ( , )r   with origin in the crack tip x a , as 

represented in Fig. 4.4. 
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Fig. 4.4 – Relation between Cartesian and polar coordinates for a complex variable z  

 

Operating a transformation from the complex coordinates defined in Section 4: 

  
2 2

1, 2,3k k

k k k k k

k k

p iq
z i x y x r is y k

p q
 

 
       



 
 
 

 (4.140) 

where: 

 
2 22 2 2 2

, ,k k k k

k k

k k k kk k

p p q q
r s

p q p q 

 
   

 
 (4.141) 

to polar coordinates, one gets: 

 

     

  
cos sin

1 cos sin sin 1, 2,3

k k k k k

k k

z x r is y a r r is r

r
a r is k

a

 

  

       

    
 (4.142) 

Allow the position: 

  cos sin sinki

k k k

r
e r is

a


       (4.143) 

and consider the real and imaginary parts of the two complex number in equation 

(4.143) must be equal, in order to obtain the relations: 

 
 cos cos sin

sin sin

k k k

k k k

r
r

a

r
s

a

   

  

 



 (4.144) 

that, squared and summed, give: 

 

 

2

2 2 2 2 2 2

2

2 2 2 2

cos sin 2 cos sin sin

cos sin 2 sin

k k k k

k k k

r
r r s

a

r
r r s

a

     

  

    

   

 
    

 

 
    

 

 (4.145) 

Now, posing: 

a  a
x  

y
 

r  

  

kz
 

k
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  
1

2 2 2 2 2( ) ( ) cos sin 2 sin
k k k k k k

r
c c r r s

a
             (4.146) 

from equation (4.142) one can write: 

 ( ) 1,2,3ki

k k k
z a rc e a k


       (4.147) 

where: 

 1 1sin sin
tg tg

cos cos sin

k k

k

k k

s

r

 


  

 
 



   
   
   

 (4.148) 

and: 

 ( ) ki

k k k
rc e z a


     (4.149) 

With the new variables, function ( )
k

f z  gets the aspect: 

 
2 2

( )
2

2 1
2

k k k

k

k k kk
k

z a a
f z

az a
a

a

 

  


 
  




 (4.150) 

The Taylor series of 

1

2

1
2

k

a





 
 
 

 in the interval 1
2

k

a


 , up to the second term, 

results: 

 

1

2 1
1 1 ...

2 2 2

k k

a a

 


   
   
   
   

 (4.151) 

thus: 

 ( ) 1 1
4 2 2 42

k k k k

k

kk

a a
f z

a a aa

   




    

    
    

    
 (4.152) 

For 2 1k a  , that is, in the vicinity of the crack tip, the following 

approximation is valid: 

 
2

1 1
( )

2 4 2 2 4 2

cos sin ( , )
2 2 ( ) 2 ( ) 2 2

k

k k k k

k

k

i
k k

k

k k k

a
f z

a a a a

a a a
e i f r

rc rc



   



 


  



    

    
 
 
 

 (4.153) 

The same reasoning can be applied to ( )
k

h z : 

 

2 2

2

( ) 2 1
2

2 2 ( ) 2 ( ) cos sin ( , )
2 2

k

k

k k k

i
k k

k k k k

h z z a a
a

a arc e arc i h r






 
   

    

    
 
 
 

 (4.154) 
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Substituting equations (4.153) and (4.154) respectively into the expressions of 

generalized stresses and displacements, one gets their representations at the crack 

tip. 

For the impermeable crack case, considering 
imp 2

( )a a


K t , one obtains for the 

stress vectors from equations (4.83) and (4.84): 

 

2
1 12

2 2 2

2
1

imp

Re Re
2 ( ) 2( )

1
Re ( )

2 ( )

k

k

k

i

i

k k

i

k

a e a
e

rc rc

e
a

r c







 

 




   





  



   
        
                    

   
   
   
      

t H diag H t H diag H t

H diag H K

 (4.155) 

 

1 1

1 1 2 2
2 2

1 12
1 2 2

Re Re

Re Re
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k

k

k

i

k

z

z a

a
e

rc





    


    

   


  

    
      
      

    
      

    

t t GH t G diag H t

t GH t G diag H t

 (4.156) 

and for the generalized displacement vector, from equation (4.89): 

 1 12

2 2

2
Re ( ) Re 1 ( )

k

k

i
i

k k

r r
c e c e

a a a a




 



   
   

      
           

U U
Ediag H t Ediag H t

 (4.157) 

that, neglecting a rigid displacement and considering that /r a  predominates 

/r a  when / 1r a  ,  can be approximated as: 

 1 12 2
2 imp

2
Re 2 ( ) Re ( ) ( )

k k
i i

k k

r
rac e c e a

 

 


  
 

      
      

      
U Ediag H t Ediag H K

 (4.158) 

For the permeable and semipermeable crack cases, developments are formally 

equal, keeping present the different expression of the stress intensity factor vector 

(4.130). From relations (4.111) and (4.112): 

2
1 12

2
Re Re

2 ( ) 2( )
t k H diag H k H diag H JJ

k

k

i

i

y y

k k

a e a
D e D

rc rc




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


 

    

   
        
                    
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e
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

 




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k H diag H K  (4.159) 
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    
   
          
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2

perm1 1
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K
t GH t G diag H
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k
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c r



 



   
  

   
          
      

 (4.160) 

and from relation (4.114): 

 12
perm

2
Re ( ) ( )

k
i

k

r
c e a









  
  

  
U Ediag H K  (4.161) 

Note in the expressions of stress components that also non-singular terms are 

included: they affect only the collinear stress component xx . In fact, the 

generalized stress vector 
2

t  is proportional to the inverse of the square root of  

the distance r  from the crack tip, while the generalized stress vector 
1

t  is 

composed of a part dependent on the ratio 1 r , that is on the position of the 

point where stresses are calculated, as well as of the terms 
1

t
  (later in the text 

referred to as NST 1) and 1

2
Re GH t

 
     (referred to as NST 2), which are 

constant given the remote loading and the material characteristics. 

It is clear that, the closer to the crack tip one calculates the fields, i.e. the smaller 

r  is, the bigger the importance of the term where r  appears at the denominator 

(inverse square root singularity) will be compared to that of the other terms 

(non-singular terms). For this reason, in many previous works the influence of 

non-singular terms has been neglected, and the asymptotic term only has been 

used to represent the generalized stress vector 
1

t : 

 
2

1

1
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Re

( ) 2

ki

k

e a

c r



 






   
   
   
      

K
t G diag H  (4.162) 
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Such an approximation holds only in the very proximity of the crack tip, and 

totally omits considering the influence of the stress collinear to the crack line. In 

other words, it neglects the biaxiality of the applied load [14-19]. We will examine 

further in this thesis (Chapter 5) the influence that non-singular terms exert on 

the fracture quantities and on the crack extension. 

To avoid the stress singularity at the crack tip, stresses must be calculated at 

some small radial distance r  from the end of the crack. Such a distance 0 1r   

can be seen as “critical” for the material under study. This problem is bypassed 

in the asymptotic representation since all the involved quantities are proportional 

to the factor 2a r , and thus it is not necessary to specify its value. On the 

contrary, the non-singular representation cannot prescind from the determination 

of the ratio r a . In accordance with many related works (see [14-19] and, about 

the extension of the fracture process zone in ferroelectrics, Ricoeur and Kuna 

[20]), a characteristic dimensionless distance 210r a   has been taken into 

account. In some of the numerical applications, results obtained for this distance 

value have been compared with others obtained for the ratio 110r a  . 
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CHAPTER 5 

 

REPRESENTATION OF RESULTS – NUMERICAL 

APPLICATIONS 

 

 

5.1  Representations of stress and displacement fields 

 

In this section graphic representations of the principal fracture quantities are 

shown, under various remote loading conditions and parameters. We will refer to 

PZT-4 and PZT-5H piezoelectric ceramics, whose elastic, piezoelectric and 

dielectric constants are reported in Table 5.1 and Table 5.2 respectively, and to 

the impermeable crack model. Furthermore, with a view to experiments, where it 

is easier to impose an electric field in the medium than an electric displacement 

field, the electric loading 
x

E
  and 

y
E

  instead of 
x

D
  and 

y
D

  will be considered. 

The relation between the two far-field electric loadings, for impermeable case, is 

as follows:  

  15 11

44

1
x xy x

D e E
c

 
  
    (5.1) 

       2 2

31 33 33 13 33 11 31 13 31 33 33 11 31 33 13 33

1
2

y xx yy y
D e c e c e c e c e c e c e e c E  

   
        


    (5.2) 

where: 

 
2

15

44

11

e
c


   (5.3) 

and 

 2

11 33 13
c c c    (5.4) 
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Fig. 5.1 – Field of the stress component yy  in the vicinity of the crack (values in Pa) 

 

Fig. 5.2 – Field of the stress component xy  in the vicinity of the crack (values in Pa) 

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        
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Fig. 5.3 – Field of the stress component 
xx  in the vicinity of the crack (values in Pa) 

 
Fig. 5.4 – Field of the electric displacement component 

xD  in the vicinity of the crack 

(values in C/m2) 

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        
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Fig. 5.5 – Field of the electric displacement component yD  in the vicinity of the crack 

(values in C/m2) 

 
Fig. 5.6 – Field of the hoop stress   in the vicinity of the crack (values in Pa) 

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        
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Fig. 5.7 – Field of the displacement u  in the vicinity of the crack (values in m) 

 
Fig. 5.8 – Field of the displacement v  in the vicinity of the crack (values in m) 

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        
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Fig. 5.9 – Field of the electric potential   in the vicinity of the crack (values in V) 

 
Fig. 5.10 – Stress component yy , asymmetric loading conditions (values in Pa) 

10MPa , 0, 10MPa , 2kV/cmxx xy yy yE        

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         
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Fig. 5.11 – Stress component xy , asymmetric loading conditions (values in Pa) 

 
Fig. 5.12 – Stress component 

xx , asymmetric loading conditions (values in Pa) 

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         
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Fig. 5.13 – Field of the hoop stress  , asymmetric loading conditions (values in Pa) 

 
Fig. 5.14 – Field of the electric displacement 

xD , asymmetric loading conditions (values 

in C/m2) 

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         
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Fig. 5.15 – Field of the electric displacement yD , asymmetric loading conditions (values 

in C/m2) 

 
Fig. 5.16 – Field of the displacement u , asymmetric loading conditions (values in m) 

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         
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Fig. 5.17 – Field of the displacement v , asymmetric loading conditions (values in m) 

 
Fig. 5.18 – Field of electric potential  , asymmetric loading conditions (values in V) 

 

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         

0, 20MPa , 10MPa , 3kV/cmxx xy yy yE         
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Both sets of figures (Fig. 5.1 – 5.9 for PZT-4 and 5.10 – 5.11 For PZT-5H) 

represent iso-stress and iso-displacement curves in the vicinity of the crack. It can 

be noted how in all figures depicting stress fields and electric displacement fields 

the presence of inverse square root singularities at the crack tips is qualitatively 

evident. 

 

5.2  Influence of non-singular terms on the fracture behaviour 

 

As far as the influence of load biaxiality and the effect of non-singular terms on 

the fracture response of cracked isotropic or orthotropic bodies is concerned 

several papers have been published: one can cite [1-5] among others. However, to 

the best of the author’s knowledge, little work has been done so far to investigate 

the effect of the biaxial loading, and in particular of the collinear load which 

enters the so-called non-singular terms of the stress field formulation, on cracked 

piezoelectric media [6-7]. 

In the next sections of this thesis, by considering the presence of non-singular 

terms in the analytical solution, the influence of the remote load collinear to the 

crack on the stress and displacement fields, calculated at a given distance r  from 

the tip, is examined thoroughly. 

 

5.2.1.  Stress components 

We will examine in this section the effect on the electro-elastic solution of the 

choice of taking into account not only the asymptotic expressions of the principal 

fracture quantities, but also the non-singular terms, when they appear. 

Expressions (4.156) and (4.160) outline the first stress vector 
1

t  in the 

impermeable and permeable/semi-permeable cases respectively. One can note that 

the two non-singular terms NST1 and NST2 are discordant in sign; in fact, NST1 

depends on 
1

t
  and contributes accordingly to the asymptotic term, while NST2 

depends on 
2


t  and contributes contrarily. 
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Figure 5.19 and 5.20, that refer to a piezoelectric ceramic PZT-4, show the 

contributions of the two non-singular terms separately, together, and compared to 

the asymptotic value, on the collinear stress field 
xx

 , for two different values of 

the ratio r a  ( 2
10

  and 1
10

 ). The two contributions taken separately have a 

bigger effect on the result than when evaluated together.  

 

 

 
 

Fig. 5.19 – Asymptotic and non-singular trend of stress component xx  vs polar angle  , 

for a ratio 210r a   (a) and 110r a  (b), in the impermeable crack case 
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Fig. 5.20 – Asymptotic and non-singular trend of stress component xx  vs polar angle  , 

for a ratio 210r a   (a) and 110r a  (b), for a higher value of collinear load 

(impermeable) 

 

In the first loading condition ( 10MPaxx   , 0xy   , 10MPayy   , 0y xE E   ), the 

non-singular results are slightly inferior to the asymptotic ones. In the second 

considered condition ( ,25MPa 0, 10MPa, 0xx xy yy y xE E           ), the effect of 

NST1 becomes predominant on the effect of NST2, and the two contributions 

evaluated together produce an increase in the value of the results. One can say 

that when collinear loads are predominant the asymptotic solution will generally 

provide an underestimation of the results, and vice versa. 
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As it was expected, results are of lower value and the effect of non-singular terms 

is more noticeable for a higher ratio r a . In other words, the error introduced by 

considering the asymptotic representation of 
xx

  increases with the distance from 

the crack tip of the point where stresses are calculated. 

When the remote loading is constituted of perpendicular and tangential loads, the 

asymptotic representation of 
xx

  is always overestimating, as shown in Figures 

5.21 (PZT-4), since only NST 2, taken with the sign discordant with that of the 

singular term, has an effect on the stress field of the considered stress component. 

 

 

 
Fig. 5.21 – Asymptotic and non-singular trend of stress component xx  vs polar angle  , 

for a ratio 210r a   (a) and 110r a  (b), asymmetric loading conditions (impermeable) 
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Fig. 5.22 – Asymptotic and non-singular trend of stress component 

xy  vs polar angle  , 

for a ratio 210r a   , for asymmetric loading conditions (impermeable) 

 

As a check, in Figure 5.22 the second component 
xy

  of the stress vector 
1

t  is 

depicted: the singular and non-singular representations correspond, as NST1 and 

NST2 nullify each other; as expected, the solution coincides to the one obtained 

by the first component of the stress vector 
2

t . 

 

Elastic constants  
10 2

(10 N / m )  

Piezoelectric constants 
2

(C / m )  

Dielectric constants 
10

(10 C / Vm)
  

11
c 13.9  

13
e 6.98   

11
60   

12
c 7.78  

33
e 13.8  

33
54.7   

13
c 7.43  

15
e 13.4   

33
c 11.3    

44
c 2.56    

Table 5.1 – Constants of PZT-4 piezoelectric ceramic 

Elastic constants  
10 2

(10 N / m )  

Piezoelectric constants 
2

(C / m )  

Dielectric constants 
10

(10 C / Vm)
  

11
c 12.6  

13
e 6.5   11 151   

12
c 5.5  33e 23.3  33 130   

13
c 5.3  15e 17   

33
c 11.7    

44
c 3.53    

Table 5.2 – Constants of PZT-5H piezoelectric ceramic 
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5.2.2. Electric displacement 

For a positive electric field applied at infinity in the x - direction, the singular 

solution underestimates the values of the electric displacement 
x

D , as illustrated 

in Figure 5.23, for both the impermeable and permeable crack models. 

 

 
Fig. 5.23  – Asymptotic and non-singular trend of electric displacement xD  vs polar 

angle  , for a ratio 210r a   

 

5.2.3.  Hoop stress 

The influence of non-singular terms will be investigated also on the 

circumferential stress  , defined by the relation: 

 2 2
sin cos sin 2

xx yy xy
          (5.5) 

which will be later adopted as a fracture parameter as outlined in the maximum 

circumferential stress criterion, proposed by Erdogan and Sih [8]. 

The circumferential stress 


 , with the contributions of the two non-singular 

terms 
1

t
  (NST 1) and 1

2
Re GH t

 
     (NST 2), is represented in Figure 5.24 for 

two different values of the ratio r a  ( 2
10

  and 1
10

 ); the dissimilarity among the 

curves increases with the distance from the crack tip, and the considerations on 

the signs of the two contributions can be repeated. 
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Fig. 5.24 – Asymptotic trend of hoop stress   vs polar angle   compared with the 

trends comprehensive of non-singular term effects, for a ratio 210r a   (a) and 110r a 

(b), in the permeable crack case 

 

 

5.3  Influence of load biaxiality 

 

5.3.1.  Stress components 

We have seen how considering only the singular behaviour of a cracked mean 

equals to neglecting the biaxiality of applied loads. Now we will examine the 
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do so, let us define two biaxial load parameters 1 xx yys    , ratio of collinear to 

perpendicular loads, and 2 xy yys    , ratio of tangential to perpendicular loads. 

The effect of the biaxial load parameter 1 xx yys     on the stress component 
xx

  

is shown in Figures 5.25 and 5.26 for a PZT-4 ceramic for two different values of 

r a .  

 

 

 

 
 

Fig. 5.25 – Stress component xx  vs polar angle   for different values of biaxial load 

parameter 1s  and 210r a  , when the effect of non-singular terms is considered (a) and 

not considered (b) 
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Fig. 5.26 – Stress component xx  vs polar angle  , for different values of biaxial load 

parameter 1s  and 110r a  , when the effect of non-singular terms is considered (a) and 

not considered (b) 
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Fig. 5.27 – Stress component xx  vs polar angle  , for different values of biaxial load 

parameter 2s   

 

Figure 5.27 depicts the dependence on the biaxial load parameter 2 xy yys     of 

the stress 
xx

 : as already seen, the asymptotic representation of 
xx

  is always 

slightly overestimating, and the difference between the two solutions is negligible 

for all values of 
2s . 
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The dependence of 
xy

  and 
yy

 on the parameter 
1

s  in the presence of 

mechanical-only applied loads is practically negligible, and due to a slight 

piezoelectric interaction. 

 

 
Fig. 5.28 – Remote tangential load effect on the stress component xy  vs angle θ at the 

crack tip in the impermeable crack case 

 

 
Fig. 5-29 – Remote tangential load effect on the stress component yy  vs angle θ at the 

crack tip in the impermeable crack case 
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5.3.2.  Hoop stress 

Figures 5.30 and 5.31 show the effect on the hoop stress of the biaxial load 

parameter 1 xx yys    . These graphs show that when asymptotic values are 

considered the trends of 


  vs the polar angle are very similar to each other, and 

always present their maximum for 0  .  

 

 

 

Fig. 5.30 – Biaxial load parameter 1s  effect on the hoop stress   vs polar angle   

when the effect of non-singular terms is considered (a) and not considered (b), in the 

impermeable crack case (PZT-4) 
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On the contrary, when non-singular terms are considered, for high values of 
1s  

the maximum value of 


  is not anymore found in correspondence of the crack 

axis direction, but its position varies depending on the entity and sign of biaxial 

load. The effect is more evident but qualitatively of the same kind when stresses 

are evaluated at a further distance from the tip of the crack. 

 

 

 
Fig. 5.31 – Biaxial load parameter 1s  effect on the hoop stress   vs polar angle   for 

110r a  , when the effect of non-singular terms is considered (a) and not considered (b), 

in the impermeable crack case (PZT-4) 
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Fig. 5.32 –Effect of the biaxial load parameter 2s  on the hoop stress   vs polar angle 

  in the impermeable crack case 

 

From Figure 5.32 it can be seen that the effect of the biaxial load parameter 

2 xy yys     on 


  is more negligible but still present both for what concern the 

values and the position of the maxima. 

 

5.3.3. Electric displacements 

In this section the effect of variations of the biaxial loading parameters on the 

electric displacements in the x - and y -direction is represented, for a PZT-4 

piezoelectric ceramic. 

Figures 5.33 and 5.34 show the trends of the electric displacement component 
xD  

for different values of 
1 xx yys     and 

2 xy yys    , for the impermeable, semi-

permeable and permeable crack models, in the case of mechanical-only remote 

applied loading.  

One can see that asymptotic and non-asymptotic results coincide for every value 

of the applied collinear load (i.e. of the parameter 
1

s ), while the same is not true 

when the parameter 
2

s  is considered.  
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Fig. 5.33 –Effect of the biaxial load parameter 1s  on the electric displacement xD  vs 

polar angle   in the impermeable (a), semi-permeable with 1   (b) and permeable (c) 

crack models ( 210r a  ) 
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Fig. 5.34 –Effect of the biaxial load parameter 1s  on the electric displacement xD  vs 

polar angle   in the impermeable (a) and permeable (b) crack models ( 210r a  ) 

 

 

It should be noted that in the permeable case 
xD  is actually not affected at all 

from the collinear load. 
xD  results to be an increasing function of 

2
s , and the 

values of the collinear electric displacement differ only imperceptibly from the 

permeable to impermeable cases (and therefore to the semi-permeable). 

The behaviour of the three crack models is qualitatively the same when only 

mechanical loads are applied, and the semi-permeable model is, as it was 

expected, middle way between the two extreme cases. 
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Fig. 5.35 –Effect of the biaxial load parameter 1s  on the electric displacement yD  vs 

polar angle   in the impermeable (a), semi-permeable with 1   (b) and permeable (c) 

crack models ( 210r a  ) 
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Fig. 5.36 –Relation among applied loads at infinity 

 

 
Fig. 5.37 –Effect of the biaxial load parameter 2s  on the electric displacement yD  vs 

polar angle   in the impermeable and permeable cases ( 210r a  ) 

 

 

Figures 5.35 illustrate the trends of the electric displacement component yD  for 

different values of 
1 xx yys    , for impermeable, semi-permeable and permeable 

crack models (mechanical-only applied loading). yD  results to be a decreasing 

function of the applied collinear load, for every crack model. The dependency of 

electric displacements on 
xx


  comes from relation (5.2), linking the remote 
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electric displacement to other applied loads: plotting 
y

D
  against collinear load at 

infinity, given other loads, one sees that the trend is decreasing (Fig. 5.36). 

The trends of the electric displacement 
y

D  for various values of biaxial loading 

parameter 
2

s  (Fig. 5.37) is qualitatively similar to those of the stress 
yy

 , 

presenting three constant values, one corresponding to the direction collinear to 

the crack ( 0  ), the other two being symmetric with respect to it. The 

difference between impermeable and permeable (and thus semi-permeable) 

behaviour is very limited when the remote loading is purely mechanical. 

 

5.3.4. Elastic displacements 

The elastic displacement fields of a PZT-3 ceramic are shown in Figure 5.38, for 

different loading combinations governed by the biaxial loading parameters 
2s .  

The two representations of u  are similar in trend, although the asymptotic one 

overestimates the other. 

It is inferred that the vertical displacement v  is an increasing function of the 

parameter 
2s  in the non-singular representation, while this is not true as far as 

the asymptotic solution is concerned. 

 

5.4  Influence of the applied electric field and of the permittivity of the 

crack on the fracture quantities 

 

5.4.1.  Stress components 

The stress components referred to a PZT-5H ceramic have been plotted in the 

presence of a biaxial load for different values of 
y

E
  in order to estimate the 

influence of the remote electric loading on the fracture quantities. Since the 

piezoelectric effect induces stresses of about one order of magnitude inferior to the 

mechanical effect, it is to be noted that the reference applied load has been 

reduced to an entity of 1 MPa, in order for the influence of the electric field to 

result evident. 
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Fig. 5.38 –Effect of the biaxial load parameter 2s  on the elastic displacements u  (a) and 

v  (b) vs polar angle   asymptotic and non-singular representations ( 210r a  ) 

 

 

The four pairs of figures 5.39, 5.40, 5.41 and 5.42 refer to the three stress 

components and to the circumferential stress. The effect of the electric field on 

stresses is noticeable in the case of impermeable crack while is not present in the 

case of perfectly permeable crack.  
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Fig. 5.39 –Effect of the applied electric field on the stress component xx  vs polar angle 

  in the impermeable (a) and permeable (b) crack models  

 

 

The effect of a positive field is to lower the amplitude of the curves for what 

concerns the collinear and tangential stresses, whereas the opposite result is 

produced on the perpendicular stress. The electric field does not modify the 

magnitude of the maximum value of circumferential stress.  
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Fig. 5.40 –Effect of the applied electric field on the stress component xy  vs polar angle 

  in the impermeable (a) and permeable (b) crack models  

 

 

5.4.2. Electric displacements 

Figure 5.43 illustrate how the electric displacement curves are affected by the 

application of electric fields in the y -direction. One can state that there is no 

difference between the asymptotic and non-asymptotic representations, and that 

the effect of the applied electric field tends to vanish going from the impermeable, 

through the semipermeable, to the permeable crack model.  
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Fig. 5.41 –Effect of the applied electric field on the stress component yy  vs polar angle 

  in the impermeable (a) and permeable (b) crack models  

 

Figure 5.44 show the effect of an electric field applied in the x -direction, that is 

completely neglected in the asymptotic solution and affects only this electric 

displacement component. 
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y
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y
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zero on the crack faces (that is, for    ), accordingly to the electric boundary 

conditions. Those conditions do not hold when other crack models are considered. 

The same behaviors of different crack models can be observed in Figure 5.46, 

which reports the entity of the electric displacement 
y

D  at     and     

plotted against the relative permittivity of the medium inside the crack (in 

logarithmic scale), for different values of applied electric field. It is inferred that 

y
D  is an increasing function of the field for all crack models. 

 

 

 
Fig. 5.42 –Effect of the applied electric field on the hoop stress   vs polar angle   in 

the impermeable (a) and permeable (b) crack models  
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Fig. 5.43 –Effect of the applied electric field yE  on the electric displacement xD  vs polar 

angle   in the impermeable (a), semi-permeable with 1   (b) and permeable (c) crack 

models ( 210r a  ) 
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Fig. 5.44 –Effect of the applied electric field xE  on the electric displacement xD  vs polar 

angle   in the impermeable (a), semi-permeable with 1   (b) and permeable (c) crack 

models ( 210r a  ) 
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Fig. 5.45 –Effect of the applied electric field yE  on the electric displacement yD  vs polar 

angle   in the impermeable (a), semi-permeable with 1   (b) and permeable (c) crack 

models ( 210r a  ) 
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Fig. 5.46 –Influence of the permittivity of the medium inside the crack on the electric 

displacement yD  at 0   (a) and    (b), for different values of the applied electric 

field yE  ( 210r a  ) – PZT-4 
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5.5  Application of two fracture criteria 

 

5.5.1.    Maximum Circumferential Stress Criterion 

 

The maximum circumferential stress criterion, as proposed by Erdogan and Sih 

[8], is chosen here as the means to demonstrate how the inclusion of non-singular 

terms, that is, the consideration of load biaxiality, can alter the predicted 

direction of incipient crack branching. 

This criterion utilizes as a fracture parameter the circumferential stress  , 

depicted in Fig. 5.47 and defined by the relation: 

 2 2
sin cos sin 2

xx yy xy
          (5.6) 

 

 

 

 

 

 

 

 

 

 

Fig. 5.47 – Relation between Cartesian stress components and circumferential stress 

  

 

According to this criterion, crack extension will take place initially along the 

direction, identified by the polar angle  , perpendicular to that one where the 

tensile stress attains maximum value, once this reaches a critical value, 

characteristic of the material under study. 

Designating the polar angle that defines the direction of extension as 0 , the 

following conditions must be satisfied for the circumferential stress to be 

maximized: 
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0

0      (5.7) 

  
0

0  








 (5.8) 

  
0

2

2
0  








 (5.9) 

The crack extension begins as soon as the following situation is reached: 

 
0 cr       (5.10) 

The criterion is formulated in terms of stresses, and the material parameters do 

not appear. For this reason, the application of this criterion can be seen as 

questionable for piezoelectric materials, but it will be accepted as a simplified 

means to interpret the effect of far-field biaxial loading on crack branching. 

We have already seen in the section where the influence of load biaxiality was 

analysed how the inclusion of non-singular terms in the expressions of stress 

components has the result of modifying the shape of the curves depicting the 

hoop stress, particularly for high values of applied collinear load (see Fig. 5.30 

and 5.31). This effect acquires a great importance when the maximum hoop stress 

criterion is adopted to predict the crack extension angle. 

When non-singular terms are considered, for high values of 
1s  the maximum value 

of 


  is not anymore found in correspondence of the crack axis direction, despite 

the symmetry of the loading condition.  

This means that a prediction on the crack branching angle through the maximum 

hoop stress criterion based on the asymptotic solution of the electro-elastic 

problem would infer results disaccording with those got through the complete 

solution, if the collinear applied load was high compared to the other loads. These 

outcomes are in accordance with those obtained by some other authors, who 

carried out the analysis for isotropic and orthotropic cracked plates, finding 

significant biaxial loading effects on the direction of initial crack extension 

investigated through the maximum stress ratio theory [1-6,9]. 

For a better understanding of the influence of the collinear load on the stress field 

at the vicinity of the crack tip, the iso-stress curves referred to the hoop stress 
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
 , obtained for the same material (piezoelectric ceramic PZT-4) and loading 

combination of Figures 5.30 and 5.31, and 
1 4.5s  , are mapped in Figure 5.48 for 

210r a   and Figure 5.49 for 110r a  .  

Figure 5.50 illustrates the locus of the values of the polar angle   which 

correspond to the different maximum values of the function of the circumferential 

stress 2 2
sin cos sin 2

xx yy xy
         , in relation to the ratio 

1 xx yys     of the 

remote collinear load to the remote perpendicular load. The result is in agreement 

with Figures 5.30-5.31 and 5.48-5.49. In fact, one can see that the graph referring 

to the asymptotic solution is a straight line showing a constant angle 0   (since 

the loading combination is symmetric). On the contrary, the curves that take into 

account the effect of non-singular terms at two different distances from the crack 

tip, divert abruptly from the horizontal when the biaxial loading parameter 
1s  

reaches the value of about 3 (about 2 for 110r a  ). This means that, for the 

material under analysis, when the collinear load is three or more times higher 

than the perpendicular one, the hypothetical incipient branching angle 
0  is 

different from 
0 0  . The same qualitative behaviour has been found in other 

piezoelectric ceramics taken into consideration in our numerical applications, with 

some differences in the values of loading parameter that trigger the deviation. 

In Figure 5.51 the locus of the polar angle correspondent to the maximum hoop 

stress is plotted as a function of the biaxial loading parameter 
2 xy yys     of the 

remote tangential load to the remote perpendicular load. As already seen in 

Figure 5.32, the variance between asymptotic and non-asymptotic results is more 

modest, so the error introduced with the simplified solution is negligible at the 

vicinity of the crack tip. For a remote loading almost purely tangential (high 
2s ) 

the incipient branching angle tends to 70° (in accordance with what pointed out 

in the above cited work of Erdogan and Sih [8]).  
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Fig. 5.48 – Iso-stress curves for hoop stress   in the vicinity of the crack tip, when the 

solution is evaluated at 210r a   

 
Fig. 5.49 – Iso-stress curves for hoop stress   in the vicinity of the crack tip, when the 

solution is evaluated at 110r a   
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Fig. 5.50 – Locus of polar angles corresponding to the maximum values of hoop stress 

 , in relation to the biaxial loading parameter 1 xx yy
s  

 
 , in the asymptotic and non-

singular representations 

 

Fig. 5.51 – Locus of polar angles corresponding to the maximum values of hoop stress 

 , in relation to the biaxial loading parameters 2 xy yy
s  

 
 , in the asymptotic and non-

singular representations 
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neglecting the biaxiality of the applied load and its effects. It appears evident 

that a local failure criterion is dependent on a parameter related to the biaxial 

load as well. 

 

5.5.2. Minimum Crack Energy Density Criterion 

 

More than thirty years ago, the volume energy density was proposed by Sih [10-

11] as a fracture criterion, and the energy density factor S as the fundamental 

parameter in this theory. According to this theory, the stationary value of S  

corresponding to the maximum of minimum values is assumed to coincide with 

the direction of crack initiation, and crack extension occurs when 
minS  reaches a 

critical magnitude 
cS  that can be seen as an intrinsic material characteristic. 

Lately, a number of works have suggested the extension of this criterion to the 

piezoelectric case: one can cite [12-24]. We will as well adopt this criterion to 

analytically study the fracture behaviour of a cracked piezoelectric ceramic. 

Similarly to the linear elastic case [10-11], the energy density for a linear 

piezoelectric material in the unit volume element dV  of a general three-

dimensional system can be defined as: 

 
d 1 1

d 2 2
ij ij i i

W
D E

V
    (5.11)

and has the physical meaning of the work done during electromechanical 

deformation. 

The increment of energy dW  becomes increasingly high as the considered unit 

volume approaches a defect, because the local stress and strain can be many 

times greater than the global average. The two terms on the right side are 

generally referred to in the literature as the mechanical and the electrical portions 

of the energy stored in dV : 

 
d 1 d 1

,
d 2 d 2

ij ij i i

M E

W W
D E

V V
 

   
    

   
 (5.12) 
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However, it should be noted that the electrical-mechanical interaction is present 

in both terms, as one can verify with the substitution in (5.11) of the constitutive 

relations: 

 

d 1 1

d 2 2
d 1 1

d 2 2

ij ijks ks ij sij s

M

ij sij s i ij j

E

W
c e E

V
W

e E E E
V

  

 

 
  

 
 

  
 

 (5.13) 

or the inverse constitutive relations: 

 

d 1 1

d 2 2
d 1 1

d 2 2

ij ijks ks ij sij s

M

ij sij s i ij j

E

W
H g D

V
W

g D D D
V

  

 

 
  

 
 

  
 

 (5.14) 

What is meant by mechanical and electrical energy is indeed ambiguous because 

the unique coupling effect peculiar of piezoelectric materials renders the 

separation of the two phenomena not possible. Thus, the neglect of one or the 

other does not imply that the mechanical or the electrical part is actually 

excluded from the analysis. 

The right-hand terms of equations (5.14) can be obtained from the formulations 

of the stress fields (4.159) and (4.160) to yield an expression involving energy 

singular and non-singular terms such that: 

  
d

d

s
ns

SW
S r

V r
   (5.15) 

where r  is the angular distance from the crack tip. One can define the energy 

density factor S  as a function of the applied mechanical and electrical loads and 

of the considered polar coordinates r  and  , as: 

  
d

d
s ns

W
S S r S r r

V
    (5.16) 

According to the energy density fracture criterion, at the crack tip the location of 

the maximum of S  relative minimum values corresponds to the radial direction of 

potential extension of an existing damage. Crack initiation is triggered when the 

quantity  
min

d dW V  reaches a critical value  
c

d dW V , characteristic of the 

material under study, while rapid (unstable) crack extension leading to failure 
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takes place when both  
min

d dW V  and the crack growth increment 
cr  become 

critical: 

 c c

c

d

d

W
S r

V

 
  

 
 (5.17) 

As already mentioned, the energy density criterion does not require an “a priori” 

knowledge of the direction of incipient crack branching, which is instead predicted 

by minimizing the function. The necessary and sufficient conditions for 

identifying the angle 
0  where the S  factor is minimum are: 

 
0

0
S

  





 (5.18) 

 
0

2

2
0

S

 








 (5.19) 

Since in the formulation of the energy density (5.15) non-singular terms are 

retained, the S  factor is also dependent on the radius, and an appropriate value 

r  should be determined experimentally for the material considered in the 

analysis. We considered in our study a crack semilength 1a  cm  and a 

characteristic distance 110r  mm  (such that 210r a  ). 

Many authors [12-24] consider the energy density criterion to be preferred rather 

than the traditional Griffith’s Energy Release Rate approach when analysing 

piezoelectric fracture, because of a better agreement of theoretical results with 

some empirical outcomes.  

Griffith’s theory uses the Energy Release Rate, or the energy dissipated during 

fracture per unit of newly created fracture surface area, as the parameter 

governing the fracture behaviour. This quantity is central in Fracture Mechanics, 

because the energy that must be supplied to a crack tip for it to propagate must 

be balanced by the amount of energy dissipated due to the formation of new 

surfaces and to other dissipative processes such as plasticity. Griffith’s Energy 

Release Rate failure criterion states that a damage will grow when the local 

energy stored is greater than, or equal to, the amount necessary for the creation 

of a unit area (or length of crack for bi-dimensional problems), which is a critical 
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value 
cG . 

cG  is called fracture energy and is considered to be a material property, 

independent of the applied loads and the geometry of the body. 

It is possible to calculate the Energy Release Rate G for crack branching (ERR), 

for example from the specific energy flux at the tip x a  (Freund, 1972 [25]). The 

formula gives: 

 
2
( ,0) ( , )

4

T
G r r


   t U  (5.20) 

This theory was widely used in fracture mechanics of brittle elastic materials as a 

main crisis criterion. In an attempt to define such a criterion, able to predict the 

critical load that triggers crack extension and the system response to different 

conditions, for piezoelectric materials, the energy release rate concept has been 

extended to these materials and widely used as a main fracture parameter for 

many years. However, as pointed out in several works [26-28], this criterion 

contradicts available experimental results, failing to predict the effect of applied 

electric field. In particular, the influence of applied electric field on the crack 

growth enhancement and retardation cannot be correctly assessed when the 

energy release rate approach is used. 

During experimental tests conducted on cracked piezoelectric bodies, it was 

observed [29] that a positive electric field tends to open the crack and reduce the 

critical load while a negative field increases it. Theoretical results obtained 

following the ERR theory, instead, imply that crack initiation and extension are 

always impeded by the presence of an electric field, regardless of its direction [24, 

30-32].  

In fact, as displayed in Figure 5.52 for a PZT-4 ceramic, when mechanical load is 

applied only in the direction perpendicular to the crack (red curve), the addition 

of any electric loading, has the consequence of diminishing the value of G  

associated to the impermeable model, regardless of its sign. This implies that if 

prior to the application of the field the energy content of the system was about 

the critical threshold, after it would be less; in other words, as the absolute value 
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of applied yE  is increased, a propagating crack would tend to arrest or fracture 

crisis would be diverted. These theoretical results contradict experimental 

observations, which showed that crack growth is enhanced by the application of 

an electric field parallel to the material polarization (positive) and retarded by a 

field in the opposite direction [26,27]. The same figure depicts also the influence of 

biaxial (collinear) load applied at infinity. The effect of a positive 
1

s  is to right-

shift the ERR curve with no appreciable variation of its value, and vice versa, 

but the trends remain unchanged. 

In presence of a tangential remote loading (Figure 5.53), the ERR in an 

increasing function of the applied load irrespectively of its sign, but again the 

application of an electric field has the effect of diminishing the value of G , in 

disagreement with experimental tests. 

In order to bypass this discrepancy, some researchers (Park and Sun [26-27]) 

proposed to use only the mechanical part of the energy release rate as a fracture 

parameter, but many others objected that this approach is physically inconsistent 

(see for example Zhang et al. [28] and McMeeking [33]).  

 

 
Fig 5.52 – Effect of the applied electric field and of the biaxial load parameter 
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s  on the 

trends of the Energy Release Rate curves (impermeable case) 
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Fig 5.53 – Effect of the applied electric field and of the biaxial load parameter 

2
s  on the 

trends of the Energy Release Rate curves (impermeable case) 
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always a positive quantity. On the contrary, the energy release rate G  becomes 

negative for applied electric field high enough (positive or negative). All the 

numerical applications in this paper are referred to a PZT-4 piezoelectric ceramic. 

 

 

 

 
Fig. 5.54 –Applied electric field influence on the Energy Density Factor and Energy 

Release Rate, for the three crack models  ( 2
10r a

 ) 

 
Fig. 5.55 –Applied electric field influence on the Energy Density Factor and Energy 

Release Rate, for the three crack models, with biaxial mechanical load ( 2
10r a

 ) 
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Fig. 5.56 – Influence of the permittivity of the crack on the Energy Density Factor vs 

polar angle  

 
Fig. 5.57 – Influence of the permittivity of the crack on the Energy Density Factor vs 

polar angle, biaxial load  
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Fig. 5.58 – Crack permeability influence on the Energy Density Factor for different 

mixed mode loading conditions 

 

 

In Figure 5.57 a collinear load has been added to the previous remote loading 

condition: the order of relative entities of the energy density referring to the three 

crack models is reversed, according with Fig. 5.54 and 5.55. 

More generally one can affirm that, for the material and loading conditions under 

study, when a positive electric field is applied at infinity, the actual value of minS  

is less than that obtained in the approximation of impermeable crack, and larger 

than the one obtained in the case of perfectly permeable crack, and the opposite 

0,xx xy    10MPa,yy   0xE   

1kV/cm
y

E


   

0
y

E


  

1kV/cm
y

E


  

2kV/cm
y

E


  

minS  

)a  

r  

2kV/cm
y

E


   

0,xx   5MPa,xy    

10MPa,yy   0xE   

1kV/cm
y

E


   

0
y

E


  

1kV/cm
y

E


  2kV/cm
y

E


  

minS  

)b  

r  

2kV/cm
y

E


   



145 

 

occurs when 0yE   is applied. A collinear applied load can have the effect of 

modifying these values. This is shown in Figure 5.58 a-b which plot minS  versus 

the relative permittivity of the medium inside the crack considered in logarithmic 

scale ( 410r
  and 410r   correspond to the impermeable and permeable 

boundary conditions, 1r   identifies a crack filled with air or vacuum) with 

monoaxial and biaxial load.  

It should be highlighted that, as underlined in [18, 19], the piezoelectric fracture 

load is underestimated by the assumption of impermeable crack subjected to 

positive field and vice versa, for the examined values of applied electric loading. 

Figures 5.59, 5.60 and 5.61 represent the curves of the energy density factor for 

different loading combinations, governed by the loading parameters 1 xx yys    , 

2 xy yys     and 2
m C

E y yy
s E 

 
    .  

 

 

 

Fig. 5.59 – Influence of the biaxial load parameter 1 xx yy
s      on the normalized 

Energy Density Factor vs polar angle in the impermeable case  ( 2
10r a

 ) 
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Fig. 5.60 – Influence of the biaxial load parameter xy yy
s   

2   on the normalized 

Energy Density Factor vs polar angle in the impermeable case  ( 2
10r a

 ) 

 

Fig. 5.61 – Influence of the electric load parameter E y yy
s E     on the normalized 

Energy Density Factor vs polar angle in the impermeable case  ( 2
10r a

 ) 

 

 

The value of *S  and the position of the maximum of relative minimum are, 

generally speaking, very sensitive to the biaxial load and to the electric field 

applied. Some interesting considerations can be drawn from these figures. In 

particular, Figure 5.60 shows that the maximum of the minimum values increases 
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with the shear mechanical load (regardless of its sign), whereas from Figure 5.59 

one can note that to an increase in 
1s  initially corresponds a decrease in the 

energy density factor and vice versa. 

The effect of a positive applied electric field (Figure 5.61) is always to augment 

the value of *S  while the application of a negative yE  causes initially a decrease 

of the energy density, that then starts to rise again for sufficiently low electric 

field values. The same effect was shown in Figure 5.54. 

Another important issue arising from the analysis of Figure 5.59-5.61 is that the 

biaxial or mixed mode load can influence the position of 
minS , thus determining, 

at least theoretically, a deviation in the crack branching direction. This happens 

for any applied tangential load and for sufficiently high applied collinear loads 

and low (negative) electric loads. 

In Figure 5.62, as an example, the influence of tangential loading on the angle 
0  

of incipient crack branching is estimated, as predicted by the crack energy 

density criterion (CED). The above angle is compared to that one obtained by 

means of another direction-sensitive approach, namely, the maximum 

circumferential stress criterion (MCS), as proposed in [8]. 

As Figure 5.62 depicts, the two theories are quite in agreement, showing similar 

curves and asymptotic trends in the range of -70° to -75° (Erdogan and Sih 

predicted a branching angle of about -70° for pure tangential load). 
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Fig. 5.62 – Prediction of the incipient branching angle through the Crack Energy 

Density criterion (CED) and the Maximum Circumferential Stress criterion (MCS), in 

relation to the biaxial loading parameter 2 xy yy
s    , impermeable case ( 2

10r a
 ) 
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Conclusions 

 

In this thesis the closed-form solution of the static crack problem in a 

piezoelectric medium arbitrarily loaded at infinity was yielded through a simple 

analytical method. Our approach can be regarded as alternative to other 

formalisms generally used for deriving the complex variable formulation of the 

electro-elastic fields.  

The effect of the application of an electric field, of the considered electric 

boundary conditions and of the permittivity of the medium inside the crack have 

been discussed thoroughly. 

The influence of biaxial load has been analyzed, observing that non-singular 

terms significantly affect the stress component collinear to the crack, as well as 

the electric and elastic displacements and the circumferential stress. Inclusion of 

non-singular stress terms along with the maximum circumferential stress or the 

minimum energy density criteria results in marked differences in the predicted 

direction of crack extension. In particular, the incipient branching angle is found 

to draw away from the crack axis as the load parallel to the crack increases, 

despite the symmetry of the loading condition. The results of the analysis show 

that the influence of non-singular terms is in general not negligible, and that the 

omission of the non-singular stresses means neglecting the biaxiality of the 

applied load. It appears evident that a local failure criterion is dependent on a 

parameter related to the biaxial load as well. Moreover, the critical conditions of 

stress and electric quantities have been evaluated at a small and specified radial 

distance from the crack tip; such distance should be a material property, as 

pointed out in many works [e.g. 1-2, 5-7, 9], but it is still under discussion. 

Further analytical and experimental work is needed for defining a reliable fracture 

criterion that may predict the failure of piezoelectric structures and devices 

subjected to biaxial electro-mechanical loading. 
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APPENDIX A 

 

MATHEMATICAL DEFINITIONS, THEOREMS AND HILBERT 

PROBLEM 

 

 

A.1  Positive sense of description of a curve 

 

Consider a region R  having one or more non-intersecting contours 0 nC ,...,C  as its 

boundary. The positive sense of description of each contour is conventionally 

taken to be that for which the region R  lies to the left, as indicated in Figure A1.  

 

 

Fig. A1 – Convention on the positive sense of description of contours 

 

 

A.2  Cauchy’s theorem 

Given a function f ( z )  analytic in the region  R and continuous on its contour C, 

then:  

 ( ) 0
C

f z dz   (A.1) 
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A.3  Cauchy integrals 

 

Let D
   be a simply connected region bounded by the contour ( )C C  , positive 

anticlockwise, and denote the open region exterior to D
  by D

  (Figure A2). 

 

 
 

Fig. A2 – Simply connected region bounded by C = C(σ)  

 

If ( )f z  is a complex function holomorphic (analytical) in D
  

 and continuous on 

C , the following equalities hold: 

 
1 ( )

( )
2 C

f d
f D

i

 
 

  


 


  (A.2) 

 
1 ( )

0
2 C

f d
D

i

 


  


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
  (A.3) 

If ( )f z  is a complex function holomorphic (analytical) in  D

   and 

continuous on C , the following equalities hold: 

 
1 ( )

( )
2 C

f d
f D

i

 


  


  


  (A.4) 

 
1 ( )

( ) ( )
2 C

f d
f f D

i

 
 

  


   


  (A.5) 

Relations (A.2)-(A.5) are termed Cauchy integrals. 

 

A.4  Hölder condition 

 

A function f ( t )  defined on a curve L  (open or closed) is said to satisfy a Hölder 

condition on L  if for any two points 1 2,t t L the following holds: 

C  

D  

D
 

  

x  

z  

iy  
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2 1 2 1

( ) ( ) , 0 1.f t f t A t t


      (A.6) 

The positive constants A  and   are termed respectively Hölder costant and 

index. 

If a function satisfies the Hölder condition on a curve L  then it is continuous on 

L  and it can be indicated with ( ) ( ) o ( ) ( )f t H L f t H L


  . 

 

A.5  Sectionally continuous and sectionally holomorphic functions 

 

Assume L  to be a curve with a given direction in the complex plane. About any 

point L   (different from the end points) it is possible to define a 

neighbourhood: 

  , ;0D L z z L z


        (A.7) 

and the respective right ( )D L
 

 
    and left neighbourhoods ( )D L

 

 
   . 

   
 

Fig. A3 – Sectionally continuous functions 

 

A complex function F( z ) continuous in any neighbourhood D L

  of L , defined 

as: 

 
( ) ,

( )
( ) ,

F z z
F z

F z z





 

 
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


 (A.8) 
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and for which: 

 
lim ( ) ( )

,
lim ( ) ( )

z

z

F z F

L
F z F










 



 





  







 (A.9) 

is said to be sectionally continuous.  

The values ( )F 
  and ( )F 

  are termed left and right limits of F( z ) on L . It is 

demonstrable that these limits are continuous functions and consequently the 

discontinuity ( ) ( ) ( )g F F  
 

   is as well a continuous function. In other words 

a function is sectionally continuous in a neighbourhood of L  if it is continuous in 

the neighbourhood and if its right and left limits exist at all interior points of L . 

At the end points of a curve it is as well possible to define a neighbourhood: 

  , ;0
c

D L z z L z c        (A.10) 

and the function F( z ) is said to be continuous in c   if: 

 lim ( ) ( ) ( ) ( )

c

z c

z D L

F z F c F c F c
 



 

    (A.11) 

A function F( z ) is said to be sectionally holomorphic in a region R  cut along an 

arc L  if: 

1. it is holomorphic for all z R L  , 

2. it is sectionally continuous in the neighbourhood of L , 

3. it is such that at an end c  of the arc L : 

 ( ) , 0 , 0 1
A

F z A
z c


   


. (A.12) 

 

A.6   Index of a function 

 

Let L be a simple contour and ( )G   a function continuous on L . The index of 

the function ( )G   is defined as: 

 
 arg ( )

Ind ( ) ,
2

L
G

G


 


   (A.13) 

where  arg ( )
L

G   is the variation arg ( )G   undergoes when   circulates 

positively around the contour. Since one has: 



  
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 log ( ) log ( ) (arg ( ) 2 ), ZG G i G k k        (A.14) 

and ( )G   gets back to its initial value after a whole circulation, one can write: 

    log ( ) arg ( )
L L

G i G  , (A.15) 

    
1 1

log ( ) log ( )
2 2L

L

G d G
i i

  
 

    (A.16) 

Due to its continuity, the variation of the argument of ( )G   along a whole 

circulation is a multiple of 2π.  

 

A.7 Classes of finite order functions 

 

A function ( )f z  is said to be of order k in a point 0z z  if, in a neighbourhood of 

such point, it can be represented by the Laurent expansion: 

 1
0 1 01

0 0

( ) ... ( ) ... , 0;
( ) ( )

k k
kk k

a a
f z a a z z a

z z z z

  


       
 

 (A.17) 

that is if ( )f z  has in 0z  a pole of k -order  if 0k  , a zero of ( )k -order if 0k  , 

or is analytic in 0z  if 0k  . 

A function ( )f z  is said to be of order k at infinity if in a neighbourhood of z   

it can be represented by the Laurent expansion: 

 1

1( ) ... , 0;k k

k k kf z a z a z a

     (A.18) 

if 0k  , z   is a pole of order k, if 0k   z   is a zero of order ( )k , if 0k   

it is 0( )f a  . 

The following classes of functions are defined: 

0 :A  Class of analytic functions of zero order and finite at infinity ( 0( ) 0f a  

). 

1 :A

  Class of analytic functions of zero order and null at infinity ( ( ) 0f   ). 

, 2 :rA r

   Class of analytic functions of (-r) order at infinity, which have at 

infinity a zero of order r .  

, 0 :nA n   Class of analytic functions of order n  at infinity. These functions have 

at infinity a pole of order n  and in a neighbourhood of z   can be represented 

in the form: 
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 ( ) ( ) k
n k

k n

a
f z P z

z





   (A.19) 

where 1

1 1 0( ) ... ,n n

n n nP z a z a z a z a

      with 0na  . 

 

A.8 Formule di Sokhotski-Plemelj  

 

The problem is to study the existence of Cauchy’s integral limit values on a curve 

L: 

 
1 ( )

( ) ,
2

L

f t dt
F z z L

i t z
 

  (A.20) 

when  z  tends to a point on the contour of integration. 

It is possible to demonstrate that if ( )f t  satisfies the Hölder condition (i.e. 

( ) ( )f t H L ) , the left and right limit values, defined as: 
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 (A.21) 

exist and the following relations hold: 

 ( ) ( ) ( )F F f     , (A.22) 

 
1 ( )

( ) ( )
L

f t dt
F F

i t
 

 

  
 , (A.23) 

or: 

 
( ) 1 ( )

( )
2 2

L

f f t dt
F

i t




 

  
 , (A.24) 

 
( ) 1 ( )

( )
2 2

L

f f t dt
F

i t




 

   
 . (A.25) 

Relations (A.22) e (A.23) are said Sokhotski-Plemelj formulae; they still hold if 

applied to the union of two or more curves. 
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A.9 Hilbert problem on a closed contour 

 

Let L be a regular closed contour  in C and D+ and D- the inner and outer 

regions. The Hilbert problem for L consists in determining the sectionally analytic 

function ( )z , z C , of finite order at infinity, that satisfies the boundary 

condition: 

 ( ) ( ) ( ) 0, (homogeneousproblem)G L          (A.26) 

or the boundary condition: 

 ( ) ( ) ( ) ( ), (non-homogeneousproblem)G g L           (A.27) 

( ), ( )G g   are functions of the complex variable L  , hölderian on L, and

( ) 0G   . 

 

A.9.1 Plemelj problem 

Let us initially consider the Plemelj problem, obtained from (A.27) by posing 

( ) 1G   . 

One must seek the sectionally analytic function ( )z  knowing its discontinuity 

( )g   on the closed curve: 

 ( ) ( ) ( ),g L         (A.28) 

Since ( )g   satisfies the Hölder condition on L, from Sokhotski-Plemelj formulae 

we have that the function: 

 
1 ( )

( ) ,
2

L

g t dt
F z z L

i t z
 

  (A.29) 

satisfies the condition (A.28): 

 ( ) ( ) ( ),F F g L       . (A.30) 

Subtracting (A.30) from (A.28) one gets: 

 ( ) ( ) ( ) ( ),F F L             (A.31) 

that shows that the function  

 ( ) ( ) ( )H z z F z   (A.32) 

is analytic on C. 
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The order of ( )H z  at infinity must equal the order of ( )z , thus if ( ) nz A   one 

can write: 

 ( ) ( ), ,mH z P z z C    (A.33) 

where Pm is an arbitrary polynomial of rank m n , and the general solution of the 

Hilbert problem takes the form:  

 
1 ( )

( ) ( ) ,
2

m

L

g t dt
z P z z L

i t z
   

  (A.34) 

where the coefficients 
0 ,...., ma a  are 1m  complex constants. 

 

A.9.2 The homogeneous Hilbert problem 

Let us now solve the homogeneous problem (A.26): 

 ( ) ( ) ( ) 0,G L         . 

It is necessary to distinguish various cases depending on the value of the index   

of the function  ( )G   on L. 

i) 0   

In this case the function log ( )G   is monodrome (single-valued function). 

Consider the logarithm of (A.26): 

 log ( ) log ( ) log ( ),G L         , (A.35) 

that can be written as: 

    log ( ) log ( ) log ( ),G L   
 

     . (A.36) 

Since the logarithm of an analytic function is itself analytic, we found the 

formulation of a Plemelj problem for the sectionally analytic function 

 ( ) log ( )z z   .  

By taking ( ) 0    we get the solution in the form: 

 
 log ( )1

( ) ,
2

L

G t dt
z z L

i t z
  

 , (A.37) 

and thus 

 
 ( )

log ( )1
( ) exp ,

2

z

L

G t dt
z e

i t z


 

    
 

  (A.38) 



161 

 

satisfies the Hilbert problem (A.26) when 0  , and it is such that ( ) 1   . If 

it is required that 0( )z A  , one can observe that ( )z  satisfies the condition: 

 ( ) ( ) ( ),G L        , (A.39) 

and thus from (A.26) and (A.39) one gets: 

 
( ) ( )

,
( ) ( )

L
 


 

 

 

 
 

 
 (A.40) 

The function 

 
( )

( )
( )

F z








 (A.41) 

is such that ( )F z c  (complex constant), so the required solution is: 

 ( ) ( )z c z   . (A.42) 

If the condition ( ) 0    is required, it results 0c   and the solution is ( ) 0z  ; 

if on the other hand ( ) , 0mz A m   , from (A.41) it derives ( ) ( )mF z P z  and 

 ( ) ( ) ( )mz P z z    (A.43) 

 

 

ii) 0   

In this case the function log ( )G   is polidrome (multiple-valued). Let us consider 

a point 0z D , the function: 

 0( ) ( ) , , 0h z L        (A.44) 

has index    on L , and thus the function: 

 0 0

( )
( ) ( ) ( ) , ,

( )

G
G z G L

h


   



     (A.45) 

has index 0 . 

We can write the problem in the form: 

 0 0( ) ( )( ) ( ),G z L           (A.46) 

and defining a new sectionally analytic function 

 
0

( )
( )

( ) ( ) ,

z z D
z

z z z z D





 
  

  
 (A.47) 

the problem becomes homogeneous of index zero for ( )z : 
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 0( ) ( ) ( ),G L        . (A.48) 

If the solution 0( )z A  , ( )z  must be of order   at infinity, and posing: 

 
 0

0

log ( )1
( ) exp ,

2
L

G t dt
z z L

i t z

 
   

 
  (A.49) 

the solution becomes: 

 0( ) ( ) ( )z P z z    (A.50) 

where P  is a polynomial of rank  . 

For ( )z  one obtains: 

 
( )

0

( )
0 0 0 0

( ) ( ) ,
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

z

z

z z e z D
z P z P z

z z z z z z z z e z D
   

 

    

    
     

       

 (A.51) 

where 
   0 0log ( ) log ( ) ( )1 1

( )
2 2

L L

G t dt t z G t dt
z

i t z i t z 


  

   . 

In compact form one can write: 

 ( ) ( ) ( )z P z z    (A.52) 

with: 

 
( )

( )

0

( ) ,
( )

( ) ( ) ,

z

z

z e z D
z

z z z e z D

  

   

  
  

   
. (A.53) 

 

iii) 0   

In this case the function ( )z  has in z   a zero of order  , and the problem 

has the null solution only. 

Function (A.53) is termed the canonical or fundamental function of the 

homogeneous problem, and satisfies the following: 

 - ( ) ( ) ( ),G L        , 

 - ( ) 0,z z C    , 

 - ( )z A 



  . 

 

A.9.3 The non-homogeneous Hilbert problem 

The non-homogeneous Hilbert problem is: 
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 ( ) ( ) ( ) ( ),G g L           (A.54) 

From the characteristics of the canonical function: 

 
( )

( ) ,
( )

G L


 







 


 (A.55) 

thence: 

 
( ) ( ) ( )

,
( ) ( ) ( )

g
L

  


  

 

  

 
  

  
, (A.56) 

and defining the function 

 
( )

( )
( )

F z








 (A.57) 

(A.56) becomes: 

 
( )

( ) ( ) ,
( )

g
F F L


  



 


  


 (A.58) 

which is a  Plemelj problem for ( )F z . 

The solution is always in the form: 

 
( )

( ) ( )
( ) ( ) ( ) ( ) ( )

2 ( )t

L

z g t dt
z z F z z P z

i t z


 


    

   (A.59) 

where ( )P z  is a polynomial of rank   which depends on the order of ( )z . 

 

A.10 Hilbert problem for an open boundary 

 

Let us consider an open boundary L ab , the problem consists in the 

determination of a sectionally analytic function ( ),z  z C L  , of finite order 

at infinity, such as: 

 ( ) ( ) ( ) ( ), , ( , ),G g L a b             (A.60) 

with  ( ), ( ) ( ), ( ) 0,G g H L G L       . 

We will consider the case ( ) cost., k CG k    . 

The discussion can be extended to the case that the boundary L  consists of N

disconnected arches: 
1

,
N

k k k k

k

L L L a b


  . 
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A.10.1 Hilbert problem for an open contour 

The solution must satisfy the relation: 

 ( ) ( ), , ( , ),k L a b k C          . (A.61) 

One can write: 

 log log , arg , 0 2k k i k         (A.62) 

and calculate the integral: 

 
1 log

( ) ,
2

L

k
z dt z L

i t z
  

 . (A.63) 

It results: 

 
log log

( ) log ,
2 2

L

k dt z b k
z

i t z z a i
 

 

 
    

  
 . (A.64) 

The complex number   can be formulated as: 

 
log

, ,
2 2

k
i


    

 
      (A.65) 

with 0 1  ,    . 

Using Sokhotski-Plemelj formulae (A.22) and (A.23) the two limit values of the 

function on L  can be calculated: 

 ( ) ,
L

dt
i L

t
   



   


, (A.66) 

 ( ) ,
L

dt
i L

t
   



    


. (A.67) 

Eliminating the logarithm, one can pass to the function ( )z , whose limits are: 

 ( ) exp ( ) exp ,
L

dt
i L

t
    



 
 

          
 , (A.68) 

 ( ) exp ( ) exp ,
L

dt
i L

t
    



 
 

           
 , (A.69) 

and for which the following relation holds: 

  
( )

exp 2 exp(log ) ,
( )

i k k L


  







   


 (A.70) 

which is the condition (A.61). The function  

 ( )

i
z b z b

z
z a z a

 
    

     
    

 (A.71) 
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lacks the requirement of being sectionally analytic on the contour, not verifying 

the condition (A.12): 

( ) , 0, 0 1
A

F z A
z c


   


 

at both ending points. 

Various classes of particular solutions to the problem exist: 

1. Class 2 ( , )h h a b  of functions limited in both ending points of the arch; 

2. Class 1 1( )o ( )h a h b  of functions limited in ( )z a b  and having an integrable 

singularity at the other ending point (the aforesaid function ( )z  belongs 

to this class); 

3. Class 0h  of functions having integrable singularities at both ending points. 

 

i) Procedure for obtaining a solution of class 2h  

One can define the function: 

 2( ) ( ) ( ) ( )p qz z a z b z      (A.72) 

where ( )z  is the function defined in (A.71), and the two integers p and q are 

such that: 

 
0 1,

0 1.

p

q





  

  
 (A.73) 

Since 0 1  , it is clear that conditions (A.73) hold only for 1p   and 0q  , 

thus, (A.72) takes the form: 

 1 1

2 ( ) ( ) ( ) ( ) ( )

i
z b

z z b z a z b z a
z a



     
       

 
, (A.74) 

and it is demonstrable that it satisfies all the requirements for being a class 2h  

canonical solution.  

The behaviour at infinity can be understood from its Laurent expansion in the 

neighbourhood of z  . It is: 

 
2 2

( ) 1
( ) 1 ,

b a a
z z O

z z

   
     

    

 (A.75) 

and so one can infer that 2  has at infinity a first order pole. 
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ii) Procedure for obtaining a solution of class 1h  

One can define the function: 

 ,

1 ( ) ( ) ( ) ( )a b p qz z a z b z      (A.76) 

where ( )z  is the function defined in (A.71), and the two integers p and q are 

such that: 

 
1

0 1
, for class ( )

1 0

p
h a

q





  

   
, (A.77) 

 
1

1 0
, for class ( )

0 1

p
h b

q





   

  
. (A.78) 

Since 0 1  , from (A.77) it results 1, 1p q   , whereas from (A.78) one gets 

0.p q   Thus, the canonical functions are respectively: 

 1 1 1 1

1 ( ) ( ) ( ) ( ) ( )

i

a z b
z z b z a z b z a

z a



       
       

 
 (A.79) 

 1 ( ) ( ) ( )b z z b z a      (A.80) 

It is easy verifying that 0A . 

iii) Procedure for obtaining a solution of class 0h  

Integers  p and q are defined as: 

 
1 1

,
1 0

p

q





   

   
 (A.81) 

so it derives 0, 1p q   , the particular canonical function becomes: 

 1 1

0 ( ) ( ) ( ) ( ) ( )

i
z b

z z b z a z b z a
z a



       
       

 
 (A.82) 

and one can verify that 0 1( )z A

  , that is, it has a first order zero at infinity. 

  

A.10.2.  Homogeneous problem general solution for an open contour 

Given a generic particolar canonical function ( )z  of problem (A.61), one gets: 

 ( ) ( ),k L  
 

    . (A.83) 

Combining (A.61) and (A.83): 

 
( ) ( )

,
( ) ( )

L
 


 

 

 

 
 

 
 (A.84) 

one can define the function: 
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( )

( ) ,
( )

z
z

z


 


 (A.85) 

for which: 

 ( ) ( ), L      , (A.86) 

that therefore results to be analytical in C  (or in C  if it is finite at infinity). 

For Liouville’s generalized theorem, ( )z  can be represented by a polynomial of 

appropriate rank: 

 ( ) ( )kz P z   (A.87) 

and the homogeneous Hilbert problem general solution becomes: 

 ( ) ( ) ( )kz z P z    (A.88) 

The polynomial rank depends on the class ( )z  belongs to: for example, if 

( ) nz A  , 1n  , the polynomial rank will be equal to 1, , 1n n n  , respectively, 

if ( )z  belongs to 2h , 1h  or 0h  class. In particular, if 1( )z A

  , the only possible 

solution is of 0h  class, and the polynomial becomes a constant (differently, ( )kP z  

should have negative rank). 

 

A.10.3.  Non-homogeneous problem general solution for an open contour 

Given a generic canonical function ( )z  one has: 

 
( )

,
( )

k L










 


 (A.89) 

and, substituting into (A.60), one obtains: 

 
( ) ( ) ( )

,
( ) ( ) ( )

g
L

  


  

 

  

 
  

  
, (A.90) 

which, with 
( )

( )
( )

g
h










, is a Plemelj problem for the function 
( )

( )
( )

z
z

z


 


: 

 ( ) ( ) ( ),h L        . (A.91) 

The Plemelj problem solution is: 

 
1 ( )

( ) ( )
2 L

h t dt
z P z

i t z
  

  (A.92) 

and so the Hilbert problem solution is: 
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( ) ( )

( ) ( ) ( )
2 ( )( )

L

z g t dt
z z P z

i t t z 


  

 
  (A.93) 

The canonical function ( )z takes the form correspondent to the required class. 

 

A.11 Hilbert problem for a segment on the real axis 

 

Let us suppose the function has singularities in both ending points of the 

segment, and therefore belongs to class 0h . The canonical function is: 

 1
0( ) ( ) ( )z z b z a       (A.94) 

with i    , 
1

2 2
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Let us indicate with  ; 0 ,L z z x i a x b         the upper edge of the segment 

and with  ; 0 ,L z z x i a x b         the lower edge. Posing: 
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(A.95) becomes: 
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The limit values for z z , z z  can be respectively obtained for 1 20,     

and for 1 2  , 2  , resulting: 
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Fig. A4 – Hilbert problem for a segment on the real axis 
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APPENDIX B 

 

MATRIX D IN EXPLICIT FORM 

 

 

 

The explicit form of the fundamental matrix governing the electroelastic problem 

is given in this Appendix. The shape of the matrix as obtained in Chapter 4 is: 
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where: 
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We calculate the inverse of matrix A: 
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with 
2
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=
e

c


 . 

Now the submatrices are obtained: 
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Now D can be built: 
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FOREWORD 

 

This annex describes some of the outcomes of an experimental project to which the 

PhD candidate collaborated between 2008 and 2009 during her stay as a Visiting 

Researcher at The City College of New York, Department of Mechanical 

Engineering. The official title of the project, that started in 2006 and is currently 

still ongoing, is COMPOSITE STRUCTURAL DAMAGE SELF-SENSING VIA ELECTRICAL 

RESISTIVITY MEASUREMENT - PHASE IIA-3, and the sponsor is the National Science 

Foundation (NSF) through Global Contour Ltd., Rockwell, TX. 

The aim of the project is to test a new technique of composite structural self-

diagnostic (CSSD), based on electrical and mechanical properties of composite 

materials, for detecting the presence or extension of interlaminar damage in 

laminated composites.   

Principal investigators are Prof. F. Delale and Prof. B. Liaw from The City College 

of New York, and Dr. J.C. Chung from Global Contour. The PhD candidate took 

part in every step of the research, from the preparation of the specimens with 

electrodes and strain gauges, to the machine testing, and processing of the data. 

All the experiments have been carried out at the Laboratory of Solid Mechanics and 

Materials of The City College of New York. 

 



176 

 



 

177 

 

 

STRUCTURAL SELF-SENSING FOR DAMAGE IN COMPOSITE 

MATERIALS 

 

 

 

1. Introduction 

 

Damages in composite materials can be detected using several techniques. 

In this work, we will highlight a new technique, composite structural self-diagnostic 

(CSSD), based on electrical and mechanical properties of composite materials, which 

can detect the presence or extension of damage. 

The Phase II project currently in progress aims to capitalize on the Phase I success 

of innovative self-sensing of composite structural damage and strain utilizing the 

electrical conductivity (resistivity) of carbon (graphite)-reinforced composite 

materials for structural health monitoring (SHM) of composite structures. The on-

going Phase II technology is for full-scale development (FSD) of composite structural 

self-diagnostic (CSSD) system/technique. The technology is concentrated on the 

development of system hardware/software and implementation procedures, such as 

microchip-based Nodal Electrical Resistivity Acquisition Circuitry (NERACTM), 

composite structural self-monitoring computer hardware and software, and data 

acquisition technique and diagnostic procedures for field implementation.  

The CSSD technology developed up to date is well described in the Phase I final 

report [1], and the CSSD self-sensing system/technique full-scale development (FSD) 

approach is detailed out in Global Contour’s NSF Phase II proposal [2]. Following is 

a brief recap of the composite self-sensing technology development status for readers’ 

convenience. 

Most in-service structures, such as aircraft, rotorcraft, ground vehicles and civil 

structures, require periodic inspection/maintenance to monitor their structural 
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integrity so that their life expectancy can be prolonged and more importantly, 

catastrophic failure can be prevented. However, schedule-driven time-based 

maintenance (TBM) can be time-consuming, labor-intensive and expensive. More 

significantly, this type of non-continuous monitoring may miss the window of 

opportunity for catastrophic prevention if a certain incipient warning sign was 

undetected between the inspection/maintenance schedules due to human error. 

To overcome this problem, various scientifically advanced techniques have been 

proposed for continuous, automated structural health monitoring, so-called 

condition-based maintenance (CBM) during the past decade [5-7]. Practically, newly 

developed CBM require the use of third-party embedded sensors, such as MEMS, 

PZTs, fiber optic sensors, etc., which tend to compromise the structural integrity of 

the hosting structural component. 

Carbon fiber composites are basically piezoresistive and electrically conductive. 

Thus, the material characteristics provide damage and strain self-sensing capabilities. 

Self-sensing means the material itself functions as sensor, and thereby, eliminates 

cumbersome third-party sensor embedding, which presents technical barriers to the 

aircraft manufacturers as well as economic burden to airlines.  

The basic principle is that damage such as fiber breakage or delamination between 

laminae causes a decrease of the electrical conductivity in the affected region, leading 

to a resistance change measured using electrode pairs. In self-sensing, electrical 

contacts (electrodes) play an extremely important role in electrical resistance signal 

acquisition from flight critical composite aircraft structures. The electrodes must be 

functionally effective, durable and protected from flight environmental hazards. The 

development of such an electrode material, installation/maintenance processes is 

proposed for this Phase IIA project. 

The use of change in electrical resistance for monitoring fracture process can be 

dated back to decades ago (e.g., [3]). Due to carbon fiber’s inherent nature of 

piezoresistivity and electrical conductivity (
52*10 m   ), this technique has been 

applied by many researchers for the study of carbon-based composites. Chung and 
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her associates [4-16] have conducted extensive research in the area of self-

sensing/self-monitoring/self-diagnosing of carbon-based composites. The matrices of 

these composites were made of carbon [5], polymers [6-12], cement [13,14] or concrete 

[15,16] whereas the reinforcements were either short (discontinuous) or long 

continuous carbon fibers. In addition to standard tensile loading, they have also 

studied the effect of temperature [7-9,16] and fatigue [12]. Both two- and four-probe 

methods were applied in their studies. Other notable studies in this area are listed in 

References [17-47]. 

Phase II research and development work is focused on technology FSD and necessary 

CSSD system/technique for commercialization preparation. The technology FSD 

work will involve largely self-sensing methods development and system 

hardware/software development for field applicable self-sensing technology 

implementation. The composite material to be used for phase II work is 

IM7-G/8552, which is commonly used for high performance aircrafts such as 

Boeing 7E7 passenger jet and Lockheed-Martin F-35 Joint Strike Fighter. 

The goal of CSSD technology is to prevent the catastrophic failures of aircraft and 

rotorcraft by predicting impending failures of flight-critical composite structural 

components without application of third-party embedded sensors such as MEMS, 

PZT and fiber optic sensors. The application of the CSSD technology also reduces 

the maintenance cost of the aircraft and rotorcraft due to automated structural 

health monitoring and diagnostic feature. 
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2. Project Objectives and Tasks 

 

The objective of the proposed Phase IIA-3 project is to develop a piezoresistivity-

based self-sensing technique for fatigue-induced delamination detection in carbon 

fiber composites. Once proven successfully, it is expected that the developed 

technique can be used widely for the flight-ready prognostics of aerospace vehicles. 

Under Global Contour’s SBIR Phase II, both four-probe and two-probe methods are 

being investigated. Four-probe method data acquisition is performed in such a 

fashion that AC or DC current is supplied with two outer probes, and voltage is 

measured with two inner probes. In reality, it is an electric potential measurement 

technique. If the current density is uniform in the material the resistance of the 

composite is obtained independently of the resistance caused by imperfect bonding. 

On the other hand, the two-probe method uses the same probes to supply current 

and measure voltage at the same time. The two-probe technique is a rather direct 

resistivity measurement technique, and it is easily affected by contact resistivity. 

However, if the contact resistivity is alleviated, it presents user-friendlier features for 

diversified applications than the four-probe technique. Under Phase IIA-3 project, 

the following research work has been and is currently performed to develop field-

applicable electrical resistivity data acquisition and damage assessment-

quantification techniques for composite structural self-diagnostic system: 

 

1. Explore commercially available, performance-efficient and environmentally 

durable (low to high temperatures) point electrodes suitable for carbon fiber 

composite self-sensing applications. 

2. Study available procedures for electrode installation by secondary adhesive 

bonding and the protection coating application process of electrode utilizing a 

Mil-Spec or commercial process. 
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3. Install discrete electrodes (called perimetric point electrodes) and acquire 

base-line electrical resistivity data on ASTM-Standard recommended Double-

Cantilever-Beam (DCB) type and End-Notched-Flexure (ENF) type 

composite specimens [1-4]. Both types of specimens are made of 24-layer 

carbon fiber-based aerospace-grade composites with 6”L x 1”W in dimension. 

As recommended, the DCB specimens will have a 3” pre-crack generated by a 

Teflon-insert whereas the END specimens will have a 2” pre-crack, also 

produced by a Teflon insert. 

4. Induce delamination damage due to monotonic loading in the composite 

specimen, and acquire the electrical resistivity data for the damaged 

condition. The in situ delamination damage will also be confirmed by optical 

and acoustic emission (A/E) methods. 

5. The by-product of the tests will be the experimental data of Mode I and II 

interlaminar fracture toughness of the composite. These data will be 

generated using procedures described by ASTM Standard and the composite 

research community [1-4]. They will be very useful for the aerospace industry. 

6. Induce delamination damage due to fatigue loading in the composite 

specimen, and acquire the electrical resistivity data for the damaged 

condition. Again, the in situ delamination damage will also be confirmed by 

optical and A/E methods. 

7. Develop a damage mechanics-based theoretical model (analytical and/or finite 

element analysis technique) to study mechanical properties and electrical 

resistance changes. 

8. Verify experimental results with the proposed damage-mechanics based 

theoretical model for micro-to-mesoscopic analyses; especially damage pattern 

identification (i.e., delamination or other types of damage) through the 

proposed perimetric point electrode technique. 
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The composite material used in Phase IIA and IIA-2 projects was Hexcel IM7-G 

carbon fibers reinforced 8552 epoxy (IM7/8552) unidirectional prepregs with 24 plies 

in a quasi-isotropic lay-up configuration, i.e., [0°/+45°/90°/-45]3S autoclave-cured at 

350°, fabricated by Global Contour’s subcontractor, Sawyer Composites in Fort-

Worth, TX. The IM7 carbon fiber is commonly used for high performance aerospace 

vehicles such as high performance aircraft such as Lockheed-Martin F-22 Raptor, F-

35 Joint Strike Fighter, etc. Phase IIA-2 effort concentrated mainly on the effect of 

quasi-static loading; whereas this proposal will emphasize fatigue loading produced 

by an MTS Universal Testing System. Fatigue-induced composite delamination has 

always been a major concern in the component design of many aerospace vehicles.  

The major technological break-through will be the exploration of commercially 

available electrode material and installation/protection processes suitable for 

practical aircraft composite structural self-sensing on damage and strain. In self-

sensing, the perimetric electrodes play an extremely important role in electrical 

resistance signal acquisition from flight critical composite aircraft structures. The 

electrodes must be functionally effective, durable and protected from flight 

environmental hazards. 

In addition to the MTS monotonic and fatigue loading tests, the feasibility study 

will also be verified by commercially available general-purpose finite element codes 

(e.g., ABAQUS). Once successful, the product may be applicable for aerospace 

composite structures and other industrial infrastructures for assessing damage. Non-

destructive and non-invasive damage-detection via the multifunctional material 

property-based self-sensing technique will be particularly useful for hard-to-find 

defects, such as composite delamination and cracks concealed underneath the lap 

joint of a rivet connection.  

The proposing institution is the City College of the City University of New York 

(CUNY City College). Success of the proposed project will nurture NSF CREST 

research involvement of the advanced technology research and development through 

collaboration between Global Contour Ltd. (SBIR Phase IIB grantee) and the 
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CREST Center for Mesoscopic Modeling and Simulation (CMMS) of CUNY City 

College. 

The previous 2006 Phase IIA-2 project was a second pilot project attempted by the 

Office of Industrial Innovation (OII/ENG) and Human Resource Development 

(HRD/EHR) of NSF. Global Contour-CUNY CREST team was one of four grantees 

that participated in the pilot project, and demonstrated successful accomplishment.  

Phase IIA-3 project activity will accelerate the subject technology FSD, and will 

advance the scientific and technological knowledge base in relation to damage self-

sensing of carbon fiber polymer-matrix composites. Specifically, the proposed activity 

will bring the technology developed in Phase II project to a level that will allow 

field-testing and subsequent commercialization. Phase IIA-3 project will complement 

the activity of the composite self-sensing SBIR FSD by addressing (i) practical point 

electrode application, (ii) damage identification by involving the electrical resistivity 

acquisition, and (iii) applicability of the carbon fiber composite self-sensing technique 

to the detection of composite delamination caused by monotonic or fatigue loading. 

Even though they are central to the implementation of the self-sensing technology in 

practical structures, the afore-mentioned three issues are yet to be addressed fully.  

Furthermore, the theoretical modeling aspect of the work will help provide 

fundamental understanding of the self-sensing behavior. Finally, in addition to 

technical support from Global Contour Ltd, the proposed activity will make use of 

the mathematical modeling and materials testing expertise of the Phase IIA and IIA-

2 investigators from CUNY City College. 
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3. Project Progress 

 

3a) DCB and ENF Composite Specimen Preparation 

 

Although the project started officially on October 1, 2007, a 12”(L)x12”(W)x3/8”(T) 

composite panel needed to be machined into DCB and ENF specimens was received 

from Dr. Jaycee Chung of Global Contour Ltd in February 2008. The delay was 

mainly due to careful selection of proper composite material to ensure its quality to 

be what the project needed and to minimize its cost to fit the budget. 

Per Dr. Chung’s suggestion, the panel was sent for machining into specimens using 

electrical discharge machining (EDM) by Advantage EDM, NJ. The choice of the 

high-precision EDM is due to its minimal material removal. This is important when 

machining the pre-crack in a DCB or ENF specimen. However, the EDM technique 

could not work for this composite panel since it does not contain enough electrical 

conductivity required for EDM to work. 

We next switched to the second best choice for minimal material removal, the water-

jet cutting. The company chosen was Wet Jet Precision, Inc., UT. The composite 

panel was machined into various sizes of DCB, ENF and tensile strip specimens for 

the proposed tests. The machining process consisted of: 

1. Cutting the composite panel into specimens as shown in Figure 1.  

2. Machining the specimens obtained in Step 1 according to the drawing details 

shown in Figure 2. 

3. For DCB, attaching the piano hinges for machine testing (Figure 3). 

As shown in Fig. 2, at the end of the machining process, the total of: 

 8 specimens @ 1’’x6” (with the initial thickness of 3/8”) with a 2” long pre-

crack introduced by water Jet  

 10 specimens @ 6”x1” (with the initial thickness of 3/8”) with a 3” long pre-

crack introduced by water Jet  
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 4 specimens @ 8”x1” in the longitudinal direction with 3/16” thickness 

 4 specimens @ 1”x10” in the vertical direction with 3/16” thickness 

were obtained. 

 

 

 
 

Fig. 1 - Plan for machining the composite panel. 
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Fig. 2 - Specimens configuration 

 

 
Fig. 3 – Model of a Double Cantilevered Beam (DCB) specimen 

 

Piano hinge 
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3b) Preliminary DCB tests 

 

Preliminary static and fatigue debonding detection tests were carried out on DCB 

specimens made of two bonded aluminum 6061-T6 layers. A Teflon insert was placed 

between the two aluminum layers to simulate a 75-mm-long pre-crack; whereas the 

remaining length was bonded using 3M DP-810 adhesive.  

 

3b-i) Quasi-Static DCB Tests 

 

The force-displacement curve of the bonded aluminum DCB test is shown in Figure 

4. Per ASTM D5528-01 Standard [43-46], a loading rate of 0.02 in/min (or 

0.5 mm/min) for the cross-head speed of the MTS machine was used. Whenever 

crack advancement due to delamination was detected, the machine was unloaded 

with a cross-head speed of 0.1 in/min (or 2.5 mm/min). These unloading steps are 

necessary for evaluating Mode I interlaminar fracture toughness GI. The resulting 12-

cycle of displacement vs time record is shown in Figure 5.  

The force and displacement data were used to calculate the Mode I interlaminar 

fracture toughness GI. Figure 6 shows the Mode I interlaminar fracture toughness GI 

data calculated by three different methods: (1) BT: beam theory, (2) MBT: modified 

beam theory, and (3) CC: compliance calibration Method (refer to ASTM D 5528 

Standards for the different calculation methods for the Mode I interlaminar fracture 

toughness) 

Results computed by these three methods give a GI estimated to be around 

3000 J/m2 for the modified beam theory (MBT) and the compliance calibration (CC) 

methods and 2000 J/m2 for the Beam theory (BT). 
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Fig. 4 - MTS force-displacement record of the interlaminar Mode I fracture test of the 

bonded aluminum DCB specimen. 
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Fig. 5 - MTS cross-head displacement vs time record showing 12 loading-unloading cycles 

during the interlaminar Mode I fracture test of the bonded aluminum DCB specimen. 
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Fig. 6 - Interlaminar Mode I fracture toughness of bonded aluminum DCB specimen 

computed by three different methods: (1) BT: beam theory, (2) MBT: modified beam 

theory, and (3) CC: compliance calibration Method. 

 

 

3b-ii) Fatigue DCB Tests 

 

The fatigue load of 0.5 in maximum amplitude and 1Hz frequency was applied for 

900 cycles and then increased to 0.75 in maximum amplitude and 1Hz for 1000 

cycles. A part of the applied load is shown in Figure 7. Finally, using ASTM 6115-97 

standard, the G-N curve was plotted in Figure 8. 
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Fig. 7 - A segment of the MTS cross-head displacement vs time record showing the fatigue 

load applied to the bonded aluminum DCB specimen. 
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Fig. 8 - G-N curve for the fatigue test on the bonded aluminum DCB specimen. 
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3c) Preliminary ENF fatigue tests 

 

As in the preliminary DCB tests, preliminary fatigue tests were carried out on two 

specimens, each made of two bonded aluminum 6061-T6 strips. Again a Teflon insert 

was placed between the two aluminum strips to simulate the 50-mm long pre-crack 

while the remaining length was adhered using 3M DP-810 adhesive. The loading 

pattern is shown in the table below: 

 

Table 1 - ENF-Fatigue test specifications 

 Frequency (Hz) Amplitude (inches) No. of cycles 

Test 1 1 0.1 300 

1 0.2 700 

1 0.3 850 

1 0.4 1100 

Test 2 1 0.2 500 

1 0.3 1000 

1 0.4 3693 

1 0.5 349 

 

The force and displacement data were used to calculate the Mode II interlaminar 

fracture toughness GII. As far as Mode II (ENF) tests are concerned, there are no 

current international standards available to obtain GII, therefore, Bernoulli-Euler 

beam theory was used. Figure 9 shows the Mode II interlaminar fracture toughness 

GII data calculated using the direct beam theory (DBT) from the two tests. From 

the figure, the interlaminar mode II fracture toughness value for both the ENF 

specimen is estimated about 4600 J/m2, which is consistent with the prevailing 

handbook values. 
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Fig. 9 -  Interlaminar Mode II fracture toughness of bonded aluminum ENF specimen 

computed by direct beam theory 

 

3d)  DCB tests on composite specimens 

 

3d-i) Quasi-Static DCB Tests 

 

Three DCB composite specimens were tested for quasi-static interlaminar fracture. 

The same test procedure, as per ASTM D5528-01 Standard, was followed. 

The three composite specimens are named DCB-1, DCB-2 and DCB-3.  Figure 10 

shows one of these composite specimens mounted in an MTS 810 22-kip universal 

testing system through a pair of high-strength steel piano hinges. 

As seen in the photo, four techniques were used for Mode I delamination detection: 

(1) the ASTM recommended optical method, (2) one Physical Acoustics Corporation 

acoustic emission (A/E) sensor glued to the specimen at the free end of the DCB 

specimen, (3) four strain gauges for strain measurement, and (4) the innovative 

piezoresistivity-based self-sensing technique. Figure 11 illustrates the layout of this 

DCB composite specimen with both 2- and 4-probe electrode positions. 
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Mechanical load was then applied from the MTS 810 testing machine through the 

steel piano hinges to the DCB composite specimen. Per ASTM D5528-01 Standard, a 

loading rate of 0.02 in/min (or 0.5 mm/min) for the cross-head speed of the MTS 

machine was used. Whenever crack advancement due to delamination was detected, 

the machine was unloaded with a cross-head speed of 0.1 in/min (or 2.5 

mm/min). The resulting 11-cycle of displacement vs time record is shown in Figure 

12. Figure 13 shows the force-displacement curve recorded by the MTS system 

during the interlaminar fracture tests of the DCB-3 composite specimen. Figure 14 

shows the top view of the DCB specimen with 2- and 4-probe electrode locations as 

well as the 2 strain gauges. Figure 15 shows two in situ fractographs depicting 

delamination crack propagation in the DCB-3 composite specimen at a = 12 mm 

and  20 mm, respectively. 

 

 

 
 

 Fig. 10 - The DCB-3 composite specimen mounted in an MTS universal testing 

system through a pair of piano hinges. The specimen was painted with markers for optical 

detection; glued with one A/E sensor for sound detection; and installed with 2- and 4-probe 

electrodes for resistance detection of delamination. 
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Fig. 11 - Layout of the DCB composite specimen with 2- and 4-probe electrode positions. 

 

 Note:          indicates a strain gauge and 2P, 4P represent the 2-and 4-probe 

electrode locations respectively. 
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     Fig. 12 - MTS cross-head displacement vs time record showing 11 loading-unloading 

cycles during the interlaminar Mode I fracture test of the DCB-3 composite specimen. 
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 Fig. 13 -  MTS force-displacement record of the interlaminar Mode I fracture test of 

the DCB-3 composite specimen. 
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Fig. 14 - Top view of the DCB-3 specimen with 2- and 4-probe electrode locations as well as 

the 2 strain gauges 

 

 

 
 

 

Fig. 15 - In situ fractographs depicting delamination crack propagation in the DCB-3 

composite specimen. 

 

 

(a) a = 12 mm 
 

(b) a = 20 mm 
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As mentioned earlier, A/E signals and self-sensing piezoresistivity changes using 2- 

and 4-probes were also recorded. Figure 16 shows excellent agreement between the 

A/E cumulative counts from the A/E sensors vs the above-mentioned MTS cross-

head displacement record (see Figure 12 above) of the DCB interlaminar fracture 

test. The increases in A/E cumulative count during the loading phases and flat 

during the unloading phases indicate that the industry-proven A/E technique 

“heard” with keen sensitivity the advancement of the delamination crack during the 

loading phases and became “deaf” when the crack stopped to propagate during the 

unloading phases. 

 

 

 
Fig. 16 - Excellent agreement between the A/E cumulative count vs MTS cross-head 

 displacement records of the interlaminar Mode I fracture test of the DCB-3 

composite specimen. 

 

DCB 3: Cumulative Counts vs Time 
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Fig. 17 - Self-sensing resistance records from two sets of 2-probe electrodes (called R1 and 

R2, respectively) vs the two sets of 4-probe electrodes (called R2 and R4, respectively) of 

the same DCB interlaminar fracture test of the DCB-3 composite specimen 
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Fig. 18 - Detection of delamination crack extension a by 2- and 4-probe self-sensing 

techniques 
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As far as the self-sensing technique is concerned, Figure 17 depicts good agreement 

between the self-sensing resistance records from two sets of 2-probe electrodes (called 

R1 and R2, respectively) vs the two sets of 4-probe electrodes (called R2 and R4, 

respectively) of the same DCB interlaminar fracture test of the DCB-3 composite 

specimen. The 2-probe resistance measurement technique was also applied to the 

same 4-probe locations, and the results are also shown (called R2 (2-probe) and R4 

(2-probe) respectively). As shown in Figure 17, the resistance measurements of these 

2- and 4-probe electrodes increased suddenly when delamination occurred during the 

loading phase, and remained relatively constant during the unloading phases; 

indicating that the proposed self-sensing technique is very promising for the 

detection of delamination in composites.  

Figure 18 shows the detection of delamination crack extension a by the 2- and 4-

probe self-sensing techniques. 

Finally, the force-displacement-crack length data were also used to estimate the 

Mode I interlaminar fracture toughness GI of the composite specimens. As shown in 

Figure 19, the result is an almost perfect -shaped R-curve. These Mode I 

interlaminar fracture toughness GI data were calculated by two different methods: 

(1) BT: beam theory and (2) CC: compliance calibration Method. As depicted in 

Figure 19, results computed by these two methods are very agreeable with a GI 

estimated to be around 12000-14000 J/m2 for both DCB 1 and DCB 2 specimens, 

whereas results from the DCB 3 specimen present lower values, around 2000 J/m2 , 

which may be due to specimen impurities. 
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Fig. 19 - Interlaminar Mode I fracture toughness of the three composite specimens 

computed by two different methods: (1) BT: beam theory and (2) CC: compliance 

calibration Method. 

 

 

3d-2) Composite DCB interlaminar fatigue tests 

 

The DCB composite specimens were also tested for interlaminar fatigue fracture. As 

in the case of the quasi-static DCB interlaminar fracture test, four techniques were 

used for delamination detection: (1) the optical method, (2) one Physical Acoustics 

Corporation acoustic emission (A/E) sensor glued to the specimen at the free end of 

the DCB specimen, (3) four strain gauges for strain measurement, and (4) the 

innovative piezoresistivity-based self-sensing technique. As in quasi-static tests, the 

first composite DCB specimen (called Fatigue 1) was soldered with both 2- and 4-

probe electrode, as shown in Fig. 11, and was tested for interlaminar fatigue fracture. 
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It should be noted that the resistances R1 and R3 represent the 2-probes resistances 

at locations 2P1 and 2P2, respectively; whereas the resistances R2 and R4 represent 

the 4-probes resistances at locations 4P1 and 4P2, respectively. 

Mechanical load was applied from the MTS 810 testing machine through the steel 

piano hinges to the DCB composite specimen. The test was displacement controlled, 

with an average displacement of 56.5% of the initial crack detection displacement i.e. 

the displacement when 0a a  (which is thereafter referred to as the reference 

displacement ref ) from the quasi-static DCB test. Table 2 shows the test sequence 

and parameters for the fatigue test. In the table, starta  and finala  represent the initial 

and final crack length, respectively; while f  is the fatigue load frequency and N  is 

the number of fatigue cycles applied. 

 

 

Table 2 - DCB fatigue test sequence and parameters for the composite “Fatigue 1” 

Fatigue Test 

Sequence ave ref/   max ref/   start (mm)a  final (mm)a  
N  

(cycles) 
f  (Hz) 

I 56.5% 75% 0 0 2233 1 

II 56.5% 75% 3 7 15598 1 

III 56.5% 75% 7 7 18615 1 

IV 56.5% 75% 7 7 20120 1 

V 56.5% 80% 7 7 9998 1 

VI 56.5% 80% 7 7 12092 1 

VII 56.5% 85% 7 8 11268 1 

VIII 56.5% 90% 8 15 28794 1 

IX 56.5% 95% 15 20 22092 1 

X 56.5% 95% 20 20 13009 1 

XI 56.5% 100% 20 21 3866 1 

XII 56.5% 100% 21 23 19312 1 

XIII 56.5% 105% 23 24 3967 1 

 

 

As far as the self-sensing technique is concerned, Fig. 20 depicts good sensitivity for 

the self-sensing resistance records from the 4-probe electrodes (called R2 and R4, 
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respectively). The values of the resistance change from the 4-probe electrodes 

highlight the success of the 4-probe electrodes in detecting the crack propagation. 

The 2-probe electrodes (called R1 and R3, respectively) of the same DCB 

interlaminar fracture fatigue test did not show enough sensitivity. Consequently the 

resistance change picked up by the very probes was very small. Figure 21 shows poor 

resistance records from the 2-probe electrodes. 

During the testing, the initial resistance was measured every time we changed the 

load level; due to humidity and other outer conditions, the specimen resistance 

changed during the course of the test. For that reason, we used the resistance 

measured at the beginning of every load level change as the reference for resistance 

change calculations. Figures 22 and 23 show the resistance change by the 2- and 4-

probe electrodes respectively. Figure 24 shows the detection of delamination crack 

extension a  by the 2- and 4-probe self-sensing techniques. As mentioned, optical 

method was also used to detect the crack propagation. Figure 25 shows two in situ 

fractographs depicting delamination crack propagation in the DCB composite 

specimen at 8a   and 21a  mm, respectively. 

 

After the first fatigue test, we decided to change the layout of the specimen and 

carried out the second DCB fatigue test on a composite specimen call Fatigue 2 (see 

Fig. 26). Note that in the layout, 2P and 4P represent the 2- and 4-probe electrode 

locations, respectively. The resistances R1 and R3 represent the 2-probes resistances 

at locations 2P1 and 2P2, respectively; whereas the resistances R2 and R4 represent 

the 4-probes resistances at locations 4P1 and 4P2, respectively. 

Again, the test was displacement-controlled with an average displacement of 75% of 

the initial crack detection displacement (referred to as the reference displacement 

ref ) from the quasi-static DCB tests. Table 3 shows the test sequence and 

parameters for the fatigue test on the DCB composite specimen Fatigue 2. 
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Fig. 20 - Resistance (4-probe electrodes) vs. N for the DCB composite specimen: Fatigue 1 

 

 
Fig. 21 - Resistance (2-probe electrodes) vs. N for the DCB composite specimen: Fatigue 1 
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Fig. 22 - ΔR/R (4-probe electrodes) vs. N for the DCB composite specimen: Fatigue 1 

 

 
Fig. 23 - ΔR/R (2-probe electrodes) vs. N for the DCB composite specimen: Fatigue 1 
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Fig. 24 - ΔR/R vs. Δa for the DCB composite specimen: Fatigue 1 

 

 

 
 

Fig. 25 - In situ fractographs depicting delamination crack propagation in the fatigue test 

for the DCB composite specimen: Fatigue 1 
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Fig. 26 - Layout of the DCB composite specimen Fatigue 2 with 2- and 4-probe electrode 

positions 

 

Once again, as far as the self-sensing technique is concerned, Fig. 27 illustrates good 

sensitivity for the self-sensing resistance records from the 4-probe electrodes (called 

R2 and R4, respectively). The 2-probe electrodes (called R1 and R3, respectively) of 

the same DCB interlaminar fracture fatigue test did not show enough sensitivity; 
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Figure 28 shows poor resistance records from the 2-probe electrodes. The values of 

the resistance change from the 4-probe electrodes highlights the success of the 4-

probe electrodes in detecting the crack propagation during the fatigue test for the 

DCB composite specimen Fatigue 2 whereas the 2-probe technique did show poor 

sensitivity. Figures 29 and 30 show the detection of delamination crack extension a  

by the 2- and 4-probe self-sensing techniques on the DCB composite specimen 

Fatigue 2, respectively. 

 

Table 3- DCB fatigue test sequence and parameters for the composite specimen “Fatigue 2” 

Fatigue Test 

Sequence ave ref/   max ref/   start (mm)a  final (mm)a  
N  

(cycles) 
f  (Hz) 

I 75% 90% 0 0 7200 1 

II 75% 90% 0 0 14400 2 

III 75% 90% 0 3 21600 3 

IV 75% 90% 3 5 43200 3 

V 75% 95% 5 7 43200 3 

VI 75% 95% 7 7 21600 3 

VII 75% 105% 7 14 32400 3 

VIII 75% 105% 14 17 43200 3 

IX 75% 115% 17 22 43200 3 

X 75% 125% 22 26 43200 3 

XI 75% 135% 26 30 32400 3 

XII 75% 145% 30 35 32400 3 

XIII 75% 155% 35 38 32400 3 

XIV 85% 165% 38 45 43200 3 

XV 95% 175% 45 76.2 750 3 
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Fig. 27 - ΔR/R (4-probe electrodes) vs. time for the DCB composite specimen Fatigue 2 

 
Fig. 28 - ΔR/R (2-probe electrodes) vs. time for the DCB composite specimen Fatigue 2 
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Fig. 29 - ΔR/R (2-probe electrodes) vs. Δa for the DCB composite specimen Fatigue 2 

 

 
 

Fig. 30 - ΔR/R (4-probe electrodes) vs. Δa for the DCB composite specimen Fatigue 2 
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4. Summary 

 

In summary, since the inception of this research project, which is in 

collaboration between CCNY and Global Contour Ltd., progress has been made with 

the following accomplishments: 

 

 Preliminary DCB quasi-static tests of aluminum 6061-T6 strips bonded by 3M 

DP-810 adhesive were conducted following the ASTM D5528-01 Standard. 

 

 The familiar -shaped R-curve was obtained for the above tests with a Mode 

I interlaminar fracture toughness GI estimated to be around 3000 J/m2. 

 

 Preliminary DCB fatigue tests of aluminum 6061-T6 strips bonded by 3M 

DP-810 adhesive were conducted to ensure the feasibility of the proposed 

technique. 

 

 Preliminary ENF quasi-static and fatigue tests of aluminum 6061-T6 strips 

bonded by 3M DP-810 adhesive were conducted. 

 

 The familiar -shaped R-curve was obtained for the above tests with a Mode 

II interlaminar fracture toughness GII estimated to be around 4,600 J/m2. 

 

 Mode I interlaminar fracture tests of the DCB composite specimens. 

 

 The familiar -shaped R-curve was obtained for the above tests with a Mode 

I interlaminar fracture toughness GI estimated to be around 12000 - 14000 

J/m2 for two of the specimens. 
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 Two Mode I interlaminar fatigue tests of the DCB composite specimens had 

been tested. The results show that 4-probe technique is more promising than 

the 2-probe technique for composite self-sensing applications. 

 

5. Future Tasks 

 

 Mode I interlaminar fatigue tests of the third DCB composite specimens.  

 

 Mode II interlaminar fracture tests of the ENF composite specimens.  

 

 Mode II interlaminar fatigue tests of the ENF composite specimens.  
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