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Introduction

A phase transition is a natural physical process. It has the characteristic
of taking a given medium with given properties and transforming some or all
of that medium, into a new medium with new properties. Phase transitions
occur frequently and are found everywhere in the natural world. In ther-
modynamics, a phase transition is the transformation of a thermodynamic
system from one phase to another. There are several of phase transitions.

Some examples are:

e The transitions between the solid, liquid, and gaseous phases of a single

component, due to the effects of temperature and/or pressure.

e The transition between the ferromagnetic and paramagnetic phases of

magnetic materials at the Curie point.

e Changes in the crystallographic structure such as between ferrite and

austenite of iron.

e The emergence of superconductivity in certain metals when cooled be-

low a critical temperature.

Phase transitions happen when the free energy of a system is not sufficiently
smooth for some choice of thermodynamic variables, this generally stems
from the interactions of an extremely large number of particles in a system,
and does not appear in systems that are too small. The first attempt at clas-
sifying phase transitions was the Ehrenfest classification scheme. Under this

scheme, phase transitions were labeled by the lowest derivative of the free
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energy that is discontinuous at the transition. First-order phase transitions
exhibit a discontinuity in the first derivative of the free energy with a ther-
modynamic variable. The various solid/liquid/gas transitions are classified
as first-order phase transition because they involve a discontinuous change
in density (which is the first derivative of the free energy with respect to
chemical potential). Second-order phase transitions exhibit discontinuity in
a second derivative of the free energy. These include the ferromagnetic phase
transition in materials such as iron, where the magnetization, which is the
first derivative of the free energy with the applied magnetic field strength,
increases continuously from zero as the temperature is lowered below the
Curie temperature. The magnetic susceptibility, the second derivative of the
free energy with the field, changes discontinuously. Under the Ehrenfest clas-
sification scheme, there could in principle be third, fourth, and higher-order
phase transitions. The Ehrenfest scheme is an inaccurate method of classi-
fying phase transitions, for it does not take into account the case where a
derivative of free energy diverges. For instance, in the ferromagnetic transi-

tion, the heat capacity diverges to infinity.

In the modern classification scheme the first-order phase transitions are
those that involve a latent heat. During such a transition, a system either
absorbs or releases a fixed amount of energy. During this process, the tem-
perature of the system will stay constant as heat is added. Because energy
cannot be instantaneously transferred between the system and its environ-
ment, first-order transitions are associated with "mixed-phase regimes” in
which some parts of the system have completed the transition and others
have not. They are difficult to study, because their dynamics are violent
and hard to control. However, many important phase transitions fall in this
category, including the solid/liquid/gas transitions. The second-order phase
transitions have no associated latent heat. Examples of second-order phase
transitions are the ferromagnetic transition, superconductor and the super-

fluid transition.
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Phase transitions often take place between phases with different symme-
try. Consider, for example, the transition between a fluid (i.e. liquid or gas)
and a crystalline solid. In a fluid, which is composed of atoms arranged in a
disordered but homogeneous manner, each point inside has the same proper-
ties as any other point. A crystalline solid, on the other hand, is made up of
atoms arranged in a regular lattice. Each point in the solid is not similar to
other points, unless those points are displaced by an amount equal to some
lattice spacing. Generally, we may speak of one phase as being more sym-
metrical than the other. The transition from the more symmetrical phase
to the less symmetrical one is a symmetry-breaking process. The presence
of symmetry-breaking is important to the behavior of phase transitions. It
was pointed out by Landau that, given any state of a system, one may un-
equivocally say whether or not it possesses a given symmetry. Therefore, it
cannot be possible to analytically deform a state in one phase into a phase
possessing a different symmetry. The order parameter is normally a quantity
which is 0 in one phase, and non-zero in the other. It characterizes the onset
of order at the phase transition. It can be understood as a measure of the
degree of order in a system; the extreme values are 0 for total disorder and

1 for complete order.
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Chapter 1

The phase-field transition

system

1.1 Stefan problem

The Stefan problem is probably the simplest mathematical model of a
phenomenon of change of phase. It is named after Jozef Stefan, the Slovene
physicist who introduced the general class of such problems around 1890, in
relation to problems of ice formation. This question had been considered
earlier, in 1831, by Lamé and Clapeyron. When a change of phase takes
place, a latent heat is either absorbed or released, while the temperature
of material changing its phase remains constant. Physically, one defines the
melting temperature at equilibrium, Ty, € IR, as the value of the temperature
at which solid and liquid may coexist in equilibrium separated by a planar
interface. If a material occupies a region () existing in two phases, liquid
(€1) and solid (£2), one could define the function u(t,z) = T'(t,x) — Ty be
a reduced temperature, where T'(t,z), (¢t,z) € [0,T] x Q is the temperature
of the material in the point x at the time t.

In the classical Stefan problem the temperature at interface, I', between

solid and liquid region is assumed to be T}, i.e., u = 0, hence
I'(t)={zeQ: u(t,x) =0}. (1.1)

1
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Figure 1.1: solid and liquid regions

Moreover, if u(t,z) > 0, the point lies in the liquid region, x € €, while
u(t, ) < 0 implies = € Q5 the point be in solid phase.
The reduced temperature u(t,z) must then satisfy the heat diffusion
equation
u = kAu (1.2)

in both €y and €2y, to simplify the thermal diffusivity & is assumed to be the
same constant for the two region. If one defines the unit normal n at each
point of I' (in the direction solid to liquid), across the interface, the latent

heat of fusion [ must be balanced by the heat flux
1v-n=k(Vus—Vur)-n, zel, (1.3)

where k(Vug — Vuy) - n is the jump in the normal component of the tem-

perature times the thermal conductivity, v(¢, x) is the local velocity and the

density factor on the left side (the latent heat equation) has been set equal

to one. To solve the mathematical problem one needs initial and boundary
conditions for u(t, x)

u(0,z) = ug(x), (1.4)

u(t,z) = up(t,z) x€0Q, t>0. (1.5)

The mathematical problem to find w and I'(¢) in suitable spaces satisfying

the above equations is called Stefan problem. The interface I'(¢) is often

called the free boundary. We stress the fact the Stefan condition is merely a

law of energetic balance. Oleinik in [22] studied the classical Stefan problem
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introducing the enthalpy or H-method. The idea is to define the function
H(u) by

l +1 u>0
Hu)=u+ge, ¢ (1.6)
-1 u<0

The balance of heat equation can be write in the single equation

0

aH(u) = kAu, (1.7)

and then we can find the heat-diffusion and the latent heat equations as
weak formulation. This model is not able to describe deeply the physics of
the phase transition, indeed it can not observe the existence of supercooling
or superheating phenomenons. The phenomenon by which liquid is below
its freezing point, without it becoming a solid, is called supercooling. The
analogous phenomenon for a solid is called superheating. Supercooling and
superheating are equilibrium phenomenons and are not merely a transient
effects, their origin for a pure substance is in the effect of finite size of the
interface between the solid and liquid. The classical Stefan problem neglects
the thickness of the interface and treats the physics at a purely continuum
level. In order that a molecule through the solid region and it moves in lig-
uid region, a certain amount of energy is required, indeed the molecule, at
surface, must overcome the binding energy of the crystal lattice and become
part of liquid with lower binding energy. Thus the amount of energy required
to produce this transition depends on the number of nearest neighbors in the
crystal structure and on the number of nearest neighbors of an atom on the
surface. In the case of a curved interface, the molecule on the surface has
fewer nearest neighbors, since some are missing due to curvature. Hence, the
transition will require less energy. It is clear physically that the equilibrium
temperature, u, between solid and liquid, must be proportional to the curva-
ture of interface, with proportionality constant involving the surface tension.

From statistical mechanics the above idea leads to the Gibbs-Thompson re-
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Figure 1.2: finite thickness &

lation, expressed by the following formula

g

u(t, ) = —-

x (tz)el, (1.8)

whenever one has an curved interface between two phases in equilibrium,
where As is the difference in entropy per unit volume, y is the sum of the
principal curvatures. The Gibbs-Thompson relation arises specifically from
the finite thickness of the interface. This means that the change of phase
is occurring continuously within a finite range. Thus, if the interface is
moving, one cannot expect the heat equation for a homogeneous medium to
hold exactly within this region as it would for a sharp interface. That, from
enthalpy method, means one has a phase function ¢ which is a step function
for a sharp interface, while, for a interface with finite thickness, the phase
function should be a smooth function from the value -1 (solid) to +1 (liquid).
Then the equation (1.6) should be adapted with a smooth function and not a
step function ¢, in this case, the phase function is essentially a local average

of the phase.

1.2 Phase-field equations (Caginalp model)

A mean field theory is a model, in statistical mechanics, in which atoms
are assumed to interact with a mean field created by other atoms. One
of the most important field theory, to describe the phase transition, is the
Landau-Ginzburg theory [16]. Lev Landau was a prominent Soviet physicist

who made fundamental contributions to many areas of theoretical physics.
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His accomplishments include the co-discovery of the density matrix method
in quantum mechanics, the quantum mechanical theory of diamagnetism,
the theory of superfluidity, the theory of second order phase transitions, the
Ginzburg-Landau theory of superconductivity, the explanation of Landau
damping in plasma physics, the Landau pole in quantum electrodynamics,
and the two-component theory of neutrinos. He received the 1962 Nobel Prize
in Physics for his development of a mathematical theory of superfluidity. Vi-
taly Lazarevich Ginzburg was a Russian theoretical physicist, astrophysicist,
Nobel laureate, a member of the Russian Academy of Sciences and one of
the fathers of Soviet hydrogen bomb. In their theory the free energy may be

written as

[543 - 17 - 2up)do (19)

where the interaction term involves (V)?, € is a length scale and, from a
molecular point of view, is a measure of the strength of the binding, §(¢?—1)?
is a prototype double well potential common to quantum field theory models.
This double well potential indicates a lower free energy associated with the
values ¢ = %1 (pure solid or liquid) than the intermediate values correspond-
ing to transitional states. It is possible to modify the potential in many ways
to incorporate different physics. The term —2u(p, in the above equation, may
be understood as the part of energy corresponds to the temperature times
change in entropy. From the free energy, the Euler-Lagrange equations imply
the identity

1
O:§2Ag0+§(90—g03)+2u (1.10)

and combining this equation with the time independent heat balance equa-

tion and with appropriate boundary conditions, the following model may
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describe a system in equilibrium
((0=80p+3(p-¢%) +2u,
0 = Au,

(1.11)
u(r) =uy, x € 0,

[ ¢(7) = pa, €N

For the non-equilibrium or time dependent situation ¢ will not minimize the
free energy but will be differ by a term proportional to ¢, for a coefficient 7,
it means the relaxation time. For the heat balance the above equation will
be coupled with (1.7) and adding also initial conditions we have the phase

field system, known better like Caginalp model
(

T = EAp + 5(p — ¢°) + 2u,
U + %g&t = kAu,

(1.12)
U(ZE) = Uy, YIS GQ, QO(IL') = Yo, 2SS OQ’

| u(0,2) =up(z), weQ, p(0,7) = po(x), ze€.

These equations have been studied by numerical computation, with physical
reasonable results. The effect of surface tension is to act to as a stabilizing
force, it is proportional to &. Then by adjusting £ one may observe the
competition between supercooling which tends to promote instabilities and
surface tension which tends to suppress them.

Caginalp, in paper [10], built and studied the model using invariant set
theory to obtain a priori bounds on sup|u| and sup|y| in system (1.12) for
suitable values of 7 and £&. When combined with classical methods, this
leads to a global existence of solution. The basic idea is to examinate the

flow in (u, ) space as a function of time. The aim is to find regions such
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that the flow at the boundaries of the region is directed inward. The ideas
about invariant sets also provide insight into the physical situation and the
numerical calculations. They provide a criterion for determining the interface
region, and indicate values of 7, & for which various values of ¢ will be
stable points. The invariant regions depend on the ratio §, but not on &
ans 7 individually. One of the questions of interest is the behavior of these

equations in the limit of small £ ans 7 but with ratio bounded as

2
Cl§_§027
T

where C, (5 are two constants.

1.3 Asymptotic limits of the phase-field equa-

tions

One can obtain any of major sharp-interface models as limiting cases of
a particular continuous representation of phase transitions which is based on
microscopic considerations. Furthermore, the distinctions in the macroscopic
sharp-interface models arise from the scaling relationships in the microscopic
parameters of the continuous or phase-field model. The classical Stefan model
neglects the physical effect of surface tension as stabilizing factor, as noted
by Gibbs it acts by changing the temperature according the relation (1.8).
Coupling the Stefan model with the (1.8), the interface is no longer defined
simply by (1.1) but must be ”tracked”. In some applications, such as lin-
ear stability analysis, this is quite convenient; in others such as numerical
computations it present difficulties. In addition to the surface tension effect,
metallurgist observed that the temperature at the interface should be reduced
beyond the ”supercooling” exhibited by (1.8). The most relevant model to

understand this phenomenon has been the linear velocity dependence
Aslu(t,z)] = —ox(t,z) — aov(t, z), (1.13)

where « is an adjustable parameter. The Stefan model coupled with the

(1.13) equation is called modified Stefan problem, it can be studied to obtain
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a more realistic description of interface. The most interesting aspect of the
differences between classical Stefan model, alternative model [(1.2), (1.3),
(1.8)] and modified Stefan model is manifested in the stability properties of
the interface. The interface in the classical problem is notoriously unstable.
The Gibbs-Thompson condition restricts the magnitude of the curvature and
thereby the extent of the instability, but, if the temperature is restricted via
initial and boundary conditions, a large surface tension is not compatible
with a large curvature. Also the parameter «, in the last equations has,
in some sense, a stabilizing influence, indeed it reduces the amplitude of
unstable modes. Thus, it is clear that the three problems posed will lead
to very different behavior of the interface. A reliable analysis (numerical
or analytical) for a particular material is only possible if the appropriate
choice of the models made. This in turn depends mostly on parameters
in the models. If one accept the idea that temperature, at the interface,
need not to be zero, then there is the problem how one could distinguishes
the two phases. The macroscopically measurable quantity that differs in two
phases, ¢, is called order parameter or phase field. However, the key question
is determining it. One needs the implementation of a second equation that
coupling with the inhomogeneous heat equation could be describe the physics
of the problem. Using the Landau-Ginzburg theory of phase transitions one

can obtains the system

( up + %got = kAu,

al’p; = EAp + 2g(p) + 2u, (1.14)

L U(O,ZE) = UO(aj)v 30(0,37) = 900(3:)7 T €,

where g is the non linear function g(¢) = 3(p — ¢?), derivative of symmetric
double-well potential, its minimum are at 1. For the above problem one
could have several kind of boundary conditions. The asymptotic analysis,
Caginalp used in [11] to understand the role of parameters and system be-

havior with respect to their different scales, does not depend crucially on the
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boundary conditions, which one needs add to the above system to solve it.

The interface for (1.14) is specified as
Fit)={zeQ: ot z) =0} (1.15)

Within this formulation interfacial conditions can be derived from the model
as a consequence of the microscopic physics built.

We note that under rather general conditions there exist a unique global
solution to (1.14) in arbitrary dimension, the situation is quite different for
the other problems, for examples the existence theory for the classical Stefan
problem is limited to one or two dimensions and for the modified problem
there is no existence theory. Caginalp showed that all sharp interface prob-
lems discussed in [11] arise as particular limits to phase-field system (1.14) in
the asymptotic analysis as &, a and « approach zero. He, however, showed
that scaling of the parameters (particularly a) is crucial in limiting behavior
of the equations. In particular, one obtains distinct limits with very different
behavior as a consequence due to the physical implications of this scaling.
Hence, one can use a single set of equations to study (numerically) such
diverse phenomena as fluid interface and solidifications problems.

It is useful to indicate, in general, the essential strategy to study the
asymptotic limits.

Let r be the coordinate normal to the interface I' (r is the distance to
the interface if it is in the liquid region, negative if it is in the solid region)
and let ¢ the largest and the smallest roots, respectively, of % g(p)+2u = 0.
Suppose that ¢ varies much more rapidly across the interface than u and it
attains ¢, a short distance toward the liquid side and ¢_ on the solid side

and ¢ be in the form ¢(r — vt). Under the following conditions:
e2=¢%, o fixed, & a—0, p=r/e,

we may write the second equation in (1.14) using the prototype g(¢) =
%(dD - ¢3)7 as

—ave¢p%¢pp+sk¢p+...+%(¢—¢3)+2au, (1.16)
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where terms of order €2 in this expansion have been omitted. If there exists

an expansion of the form ¢ = ¢° + ¢! + ..., then the above relation implies
that the O(1) balance is
1
0 0 0\3) _

subtracting the two relation one has the O(e) equation (provided as™! is

O(1) or smaller)

L' = ¢, + %(1 —3(¢°)*)¢" = e(—awg) — k¢ — 2(a/e)u) = F,  (1.18)

noting that the derivative of the O(1) solution satisfies the homogeneous

equation, Lgbg = 0, one has the solvability condition

0= (F.df) = /_ (el — ke — 2(a/e)u)dp, (1.19)

since [*° @9 = ¢4 = ¢_ = 2, one has from the above equation the identity
3 5
du(t,z) = ——ook + —aogv (1.20)
a a

on I', where oo [*_(¢9)%dp = %, hence ea™" = €a~Y? is a important scaling
factor. The second equation in (1.14) was derived from 7y, = 6F /dp, where
F is the free energy given by

F= /Q{%ﬁ(wf + 8—1a(<p2 = 1)* = 2up}dr, (1.21)

The surface tension o is given by

Flp) = 5F(py) = 3F(0-) _ Flpo)
A A

where A is the area of interface. To calculate this to first order, one multiplies

(1.17) by ¢ and integrating

o (1.22)

0= [ €6+ 560" = (P (1.23)

Then one may approximate the free energy in the surface tension and obtain

o f(jfo) = /Z E2(p%)2dr = 2/2@2)2@. (1.24)
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Thus, being, the difference in entropy density,

_ 9F(e4) + OF ()

As = —u 7 du__ 4, (1.25)

where V' is the volume the relation (1.13) follows as an O(1) statement within
this heuristic derivation, provided ea~! = £éa='/? = O(1) or smaller, however,
if £a=1/? approaches zero, then one obtains the usual u = 0 Stefan condition
(on T') and of a approaches zero while £a='/2 = O(1) one has the limit
(1.8). In each of the scaling, the interface width is € and the solution ¢ is
approximated by (1.17). Hence far from the interface ¢ is constant for each
so that the heat equation is valid. Across the interface, as € approaches zero,
one obtains, as a result of integration, the latent heat condition (1.3). It is
clear that there is a crucial interplay between ¢ = £a'/? and ea™' = a2
in the roles of interface thickness and interface tension. At a deeper level of
physics, one has a competition between the atomic forces, represented by &
and the well depth, represented by a~!. One can regard it as a representation
of the energy barrier between the two phases which depends on the particular
microscopic considered. On a more fundamental level, the Landau-Ginzburg
free energy incorporates the subtle concept of the correlation length, which
is a measure of the distance within which atoms influence one another on
a probabilistic basis. The correlation length concept provides yet another
approach to understanding the different macroscopic limits. The heuristic
calculations above suggest the following limit which one may verify explicit
(see [11]).

Proposition 1.3.1. In the limit &, a — 0 with o and Ea™'/? fized, there
exists a formal asymptotic solution of the phase-field model (1.14) which is
governed by the modified Stefan problem (1.2), (1.3) and (1.13).

It is possible to verify this by setting

a=&a ' e =8, fle)=clgp)
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STEFAN-TYPE MODELS AS LIMITING CASES
OF THE PHASE FIELD EQUATIONS

Phase field equations
up + % ¢ = KAu

HELE-SHAW AND CAHN-ALLEN MODELS AS LIMITING CASES
OF THE PHASE FIELD EQUATIONS

Phase field equations
up + é @ = KAu

at?e = £2406 +a'g(4) + 2u

Hele-Shaw model

Scaling limit: Au=0
£E—0 Ke~§82| <> £
vult = =
o —0 a~¢2 Vul =5 v }onr
Asu= -0ox
Hele-Shaw model
Scaling limit: Au=0
§—0 Ke2-§2| <> -
a=fixed a~§? [vul’ - ?L Y }
onTI'

Asu=-0x-aov

at? = £2a¢ + a'g(e) + 2u
NI Classical Stefan model
Scaling limit: vz Kau
> a & —0 a=fixed L\:“ K(Vug-vuL)- &
Ve = s—Vur)-
ta 0 ue 0 } onT
. . Modified Stefan model
Scaling limit: w= KAu
> af—0 a=fixed P K(Vug—vuL) - A
£a =fixed = s— VL }on r
Asu= —0x-aov
Alternative modified
Scaling limit: Stefan model
> a,{, a—0 u= Kau
£a"2 =fixed Lv=K(Vug-vu.)-n }on r
Asu= —-0x

Scaling limit:
£—0 and =
u=0 initial and

boundary conditions

Cahn-Allen model

at? =200 +a'g(e)

Figure 1.3: several scaling limits

and rewriting the system as

Uy + é(,Dt = kAu,

aeipr = 1A + f(p) + 2uey,

Proposition 1.3.2. In the limit £, a, a — 0 with £a=/? fized, there exists a
formal asymptotic solution of the phase-field model (1.14) which is governed
by the alternative modified Stefan problem (1.2), (1.3) and (1.8).

We consider the same basic limit as in previous proposition but allow «

to approach zero. Physically this means that the (dimensionless) relaxation

time 7 is small in comparison with &£2.

Proposition 1.3.3. In the limit &, a, €a™"? — 0 there exists a formal

asymptotic solution of the phase-field model (1.14) which is governed by the
classical Stefan problem (1.2), (1.3) and (1.1).

In this case we’ll set

a=0, a=&c;? £€—0
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and multiplying by ¢, setting &2 = £ and f(p) = c3g(y)

U + égot = kAu,

agSp; = 22N + f(p) + 2ué?,
Using the parameter ¢, = £? we rewriting the system as

2
C
epur + Fpr = Au,

agrpy = et A+ f(p) + 2uép,

one may obtain also Hele-Shaw type problems (see figure 1.3 [11]), as ex-

pressed in the next proposition

Proposition 1.3.4. In the limit £ — 0 with a = £2c;?, k=£¢72, 1 = £ 2¢,?
and o, ¢ fized, there exists a formal asymptotic solution of the phase-field
model (1.14) which is governed by the Hele-Shaw models.
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Chapter 2

Existence and regularity of a

solution

2.1 A model for continuous casting process

Our goal in this work is to develop a model to study the industrial
process, called continuous casting. Continuous casting is the process whereby
molten metal is solidified into a ”semi-finished” billet, bloom, or slab for
subsequent rolling in the finishing mills. This process is used most frequently
to cast steel, aluminum and copper. After undergoing any ladle treatments,
and arriving at the correct temperature, molten metal is transported to the
top of the casting machine. Metal is drained into the top of an open-base
copper mold. The mold is water-cooled and oscillates vertically (or in a near
vertical curved path) to prevent the metal sticking to the mold walls. In the
mold, a thin shell of metal next to the mold walls solidifies before the metal
section, now called a strand, exits from the base of the mold into a spray-
chamber. The bulk of metal within the walls of the strand is still molten.
The strand is immediately supported by closely-spaced, water cooled rollers.
To increase the rate of solidification, the strand is also sprayed with large
amounts of water as it passes through the spray-chamber. Final solidification

of the strand may take place after the strand has exited the spray-chamber.

15
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Figure 2.1: continuous casting process

That is well illustrated in the figure 2.1.

The phase-field model is the right tool to analyze this industrial process,
it is able to understand the full complexity of phenomenon, to observe the
supercooling and the superheating effects in the strand, indeed. And using
non-homogeneous Cauchy-Neumann boundary conditions w(t, z), depending
on two variables, we are able to include a broad class of complex phenomena
at 0€), untreated until now in literature. Indeed this new case can be involved
as boundary control, like in studying the effects of the cooling spray on the
solidification process, in a wide variety of industrial applications.

In literature, Caginalp’s model is studied mainly with homogeneous
Neumann-Neumann boundary conditions, so the first step will be define the
model and deduce the existence and regularity of solution in our case.

On a bounded domain Q C IR", n = 1, 2, 3, with a C? boundary 9
and for a time T' > 0, setting @ := [0, 7] x Q and X := [0,T] x 9%, we will
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consider the phase-field transition system in the following form

ou L0y
— 4+ -——=kA
pcat+28t kA on @,
(2.1)
dp 2 1 3
— =£°A —(p — 2
To —SApt o (0—¢)+2u  on Q,
with the non-homogeneous Cauchy-Neumann boundary conditions
% +hu=w(t,z) on X,
(2.2)
g—f =0 on X,
and the initial conditions
u(0,x) = up(x) on €, (2.3)
©(0,z) = po(z)  on

where

u represents the reduced temperature distribution on @,

@ is the phase function used to distinguish between the states of a

material which occupies the region Q at each time ¢ € (0,77,

f e LP(Q), g € LYQ) are given functions; also can be interpreted as

distributed control,

21—, . . :
w e W, * *(X) is a given function: the temperature of the sur-

rounding at 02 for each time ¢ € (0,7 (the boundary control),

2 2

Uy € Wp%;(Q), Yo € W;T(Q), provided % + hug = w(0,x) and
% =0 on 012,
ov

p, q are given numbers which satisfy

¢>p>2. (2.4)
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And the positive parameters p, ¢, 7, &, £, k, h, a have a physical meaning,

namely:

e p is the density,

c is the casting speed,

T is the relaxation time,

¢ is the length scale of the interface,

¢ denotes the latent heat,

k the heat conductivity,

h the heat transfer coefficient,

e a is a probabilistic measure on the individual atoms.

Basic tools in our approach are the Leray-Schauder degree theory and
properties of the Nemytskij operator [12], as well as the LP-theory of linear
and quasi-linear parabolic equations [15]. We also use the Lions and Peetre
embedding theorem [17] to ensure the existence of a continuous embedding

WrHQ) C L*(Q), where

(

o1 2
o0 lfg—n—_~_2<0,
= { any number > 3p if %— n%Q =0, (2.5)
p(n+2) e 1 2
| 7+ 2-2 T >0

For a given positive integer k& and 1 < p < oo we denote by W2*(Q) the

Sobolev space on ()

ng’k(Q): {yEL”(Q) : y € LP(Q), for 2r+s§k}.

otr Ozs

We shall use the Sobolev spaces W;(Q), W,ﬁ’l/ 2(Q) with non integral [ for the
initial and boundary conditions, respectively (see [15, p. 70 and p. 81]). Our
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main results in studying the existence of solution in problem (2.1)-(2.3) is

the following

Theorem 2.1.1. Problem (2.1)-(2.3) has a unique solution (u,y) with u €
W2HQ) and ¢ € W2H(Q), where v = min{p, u}. In addition (u, ) satisfies

2

3_,
|2 + : <cC {1 + ||u _ + ! 2.6
| ||W§1(Q) ||90||W31(Q) = I 0||W2 0 ||S00||W;,%(Q) (2.6)

2
» P

el o gy + 1@+ lglliece) )
where the constant C depends on || (the measure of Q), T, n, p, q and
physical parameters.

Moreover, given any number M > 0, if (u1,p1) and (ug, ps) are so-

lutions of (2.1) for the same initial conditions, corresponding to the dates

(flaghwl)a (f2)927w2) € LP(Q) X LQ(Q) X WPQ_I/pJ_l/Qp(Z); T’BSPQCtivel?J;
such that ||o1|| v (), |¢2llLv@) < M, then the estimate below holds

lin — wsllzigy + o = eallwzrgy <C {Ilfi = Pl (27)
o= ool + on = wall g
where the constant C depends on ||, T, M, n, p, q and physical parameters.

The nonlinear part in (2.1), 5-(p — ¢*), verifies the assumptions (Hy)-
(Hs) in [20], precisely:

Ho) (o — @)@l 1o <1+ [p*! — o]
H;) There is a constant ay € IR such that
(1 = ©7) — (L2 — 3)] (o1 — 2) < ar(pr — ), Veor, 90 € R.

H,) There are a function F : Q x IR> — IR and a constant by > 0 verifying,
V(t,x) € Q, ¢1,¢92 € IR, the relations:

(1 — ¢ — (02 — 3))" < F(t, 2, 01, 09) (1 — 92)°,

F(t,l’,g@l, 902) S bO(l + |(p1|4 + |(102|4)
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1
To verify (Hy)-(H,), we note that 2—((,0 — ¢?) could be obtainded in the
a
1
next example (see Example 1.1. in [20]) considering r = 3, 1)y = 0, 1)y = 2%
a
1 1
= — ie F(2)= —(2—2%).
a=gie (2) 2a(z 2°)
Example 2.1. Fix a number p with
2
p > max{2, %} (2.8)
Let F': IR — IR be any function of the following form
F(z) =¢(z) —alz|" "2, VzeR, (2.9)
with costant a > 0, r > 2 satisfying
n+2
< — if 2—-2p>0
nt2_2p i n+ D )
and ¢ € C'(IR) which fulfils the properties
1W'(2)] < B(1+]2]"7?%), VzeR, (2.10)

(1/1(Z1) - 77Z)(22)>(Zl — ) < (71— %)% Yz, m€ R (211)

for costants 3, v > 0. There exist numbers r as required because due to
(2.8), 2 < (n+2)/(n+ 2 — 2p) whenever n + 2 —2p > 0.
We note that (2.10) implies by integration that ¢ satisfies the growth
condition
() <ol + 27, Vae R, (2.12)

with a constant 79 > 0. By (2.9) and (2.12), one finds some «q such that
(Hp) is satisfied with 0 = «. Using (2.9), (2.11) and the fact that function
f(t) = |t|"~'t is increasing, we see that (H;) is verified for ; = 7. Finally,
from (2.9), (2.10) and Mean Value Theorem we have

2 1 9 a
(F(Zl) - F(Z2)) > §(¢(21) —(22))" + 5

2 _
(|Z1|T_1Z1 - |Z2|T_12’2> < F(2’1, 22)(21 - 2’2)2, Vzi, 22 € R
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where

27,2

F(z1,29) = 1 sup (2//((1 — 1)z _tz2))2_'_

2 2,.2

2 t€[0,1]
~ o’r .
7(1 + |27+ [z 72 + 5 (1] + 22))?

S 50(1 + |Zl|2(r_1) + |ZQ|2(T_1)), VZL Z9 € R

IN

for some costant B > 0, which ensures that (H;) is satisfied. A possible
choice in (2.9) is ¥(z2) = ¥1(2) + ¥a(2), Vz € IR, with ¢y € C'(IR) non
increasing, satisfying (2.10), and 1, € C''(IR) Lipschitzian on IR.

The result in Theorem 2.1.1 was proved in more general nonlinear case by
Moroganu and Motreanu [20] with homogeneous boundary conditions % =
% = 0. The idea of the proof is the same. We treat separately the non-
linear equation in ¢ and linear equation in w in system (2.1). Defining an
homotopy for each problem, and thanks to LP-theory and Leray-Schauder
degree theory one get the existence of the solution ¢ in the first problem.
After, following the same way, and using the estimates got in ¢, we deduce
the existence and the esimates for u, too.

In the following we will to denote by C' several positive constants.

2.2 An auxiliary equation

We consider the nonlinear equation in Caginalp’s model:

( Dy 2 o 1 3 -
Tg—ﬁAw—%(so—@)Jrg(t,x) on @,
398 on ¥, (2.13)
ov
\ (0, ) = po(z) on ),

2

where g € LP(Q) and ¢g € W;_E(Q) verifies % =0 on OS2

2(r—
sup ((1 —t)z — tzg)

0



22

2. Existence and regularity of a solution

Theorem 2.2.1. There exists a unique solution ¢ € W} (Q) for (2.13) and
@ satisfies

2
etz < € {1+l 7y Hlalo ), (2.14)
q

where the constant C' depends on ||, T, n, p, q and physical pammeters
If p1, @o are two solutions of (2.13) corresponding to v}, pi € Wq E(Q)

and gy, ga, respectively, such that
”901HW§71(Q) < M, HSOQHWEJ(Q) <M, (2.15)
then

ler = p2lly2ig < C {||90(1) - <P(2)||W27§ +[lg1 — §2||LP(Q)}: (2.16)
q

(@)
where the constant C depends on ||, T, M, n, p, q and physical parameters.

Proof. We will apply the Leray-Schauder degree theory. To this end let us
define the nonlinear operator T : L3(Q) x [0,1] — L*(Q) as

T(w,\)=p=0p N YvelL®Q), VY\cl01], (2.17)

where ¢ is the solution of the linear problem

)
Taa—f—fA =A (U_U)+g(t>$) on Q’
%% o (2.18)
v

[ #(0,2) = Apo(2) on. (2.

According to Hadamard’s well-posedness conditions we must check

that:
i. a solution exists,

ii. the solution is unique,
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iii. the solution depends continuously on the data, in particular the initial

and boundary values.

First, let us verify that T is well-defined (problem (2.18) has a solution).
We can derive that Vo € L*(Q), o (v — v®) € LP(Q). Then 5-(v — v3) +

7 2a 2a
g(t,z) € LP(Q). Using now LP-theory of parabolic equations [15, p. 341-342],

the solution ¢ to problem (2.18) exists and is unique with

p=p, ) eW2(Q) VvelL™Q),VAel01] (2.19)

) 1 2
Since 3p < 20 F2) 1
n+2—-2p p n+2

p > 3p in any case; indeed 3p > n+2 (see (2.4) and Q@ C R", n € {1, 2, 3}).

> 0 according to (2.5), we can take

Consequently, we have the continuous inclusions

Wy Q) € LM(Q) € L7(Q). (2.20)

Summing up the latest results it means that the operator T is well defined
and it maps L*’(Q) into L*?(Q).

We now check the continuity of 7. Let v, — v in L*(Q) and A\, — \ in
[0, 1]. Denote @} = T(vn, \n), @ = T(v,, A) and ¢* = T'(v, \). From (2.17)
and (2.18) we obtain

(

9
T (ppm — @) — EA (g — )

= (A= N[5 (0 —v3) +3(t7)|  on Q,

(2.21)
9 An A
5, (P —¢n) =0 on X,
L (epm =) (0,2) = (Aw = N)po() on €.
From LP-theory and (2.4), we have
n A
led = @Ml < ClAn - )\l{HonW;g(Q) (222)

+ Jlon = s + lgllioe
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Having v,, bounded in L*(Q), we derive that v, — v3 is bounded in LP(Q)
(see [12]). So we get [[op" — ¢plly21g) — 0 as n — oo. Again from (2.17)
and (2.18) we obtain

(0
7o (P =9 = EAMp — ¢V
= MElwn -0+ @ =)} o Q
(2.23)
a A A
5y (Pn—¥7) =0 on ¥,
L (on —9M)(0,2) =0 on .
As above, the LP-theory gives the estimate
Ie) = Pz < C{lE =) + 0 =Dl (229)

and the continuity of Nemytskij operator (see [12]) allows to conclude that
||%0?L_S0/\||W§»1(Q) —0 as n— oo

Using the continuous embedding (2.20) and (2.22)-(2.24), we derive the
continuity of the mapping 7" defined in (2.17).

Furthermore, the mapping 7" is compact, we need the compactness to
say that the Leray-Scauder degree of the map is invariant in A. This can be

seen by writing it as the composition
T:L*(Q) x [0,1] = W2'(Q) — L*(Q),

where the second inclusion is compact since p > 3p [17, p. 24].

We show now that there exists § > 0 such that (see (2.17))

(. A) € LP(Q) x [0,1], o =T(,A) = l¢llmsriq) <. (2.25)
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Let ¢ € L?(Q) solving the problem
r o ) B
Tor P Ehp= A{ (p—¢p )+9(t,l‘)} on @,
9 0 =0 on X, (2.26)
v
¢(0,2) = Apo(z) on .

\

Multiplying the first equation in (2.26) by |¢|*’ ¢, integrating over Q; :=
(0,t) x Q, t € (0,7] and using Young’s inequality and Green’s Theorem, we
get

—/|<,0 (t, )|’ 2dz + 3(p —1)/|Vg0| l*P~* dsdx (2.27)
Q¢
< 3p_2/|s0 ()P~ 2d:v+—/s0 @)@ dsdx
Q¢

”‘/\Z_Qe_pHgHip(Q) + A

6?1/|<p|3p dsdzx.
Qt

By Hy and Young’s inequality, from (2.27) we obtain

A 3p 1 / 3p—2
— dsdx + t, )|’ “dx 2.28
5 Qj; [ 52 |p(t, )] (2.28)
Q
1
+ 3= 1) [ V6Pl dsdo < 2 [ (@)
Q1 Q

1 1 1 1
+ A (—IQIT + —e‘sp—IQIT + —6‘p||§||ip )
3p p

1
+ )\_3p ep = /|go|3p dsdz.

2a  3p

Taking € small enough, inequality (2.28) yields

MR ) < CURL T, p,0) (14 ool Z ey + 1allingy ) - (229)



26

2. Existence and regularity of a solution

Applying LP-theory to problem (2.26) and the embedding W, 2/ 10) c
Wa=2/P(Q) (see (2.4)), we see that

elhz @) < CURLT, M.p,) x (2:30)
% (Igollyz-gy + A = #Pllisiar + 13llec@) ) -

Taking into account Lemma 1.1 in [20] and (2.29), we deduce that

Me =l < AOP/(l + |pP) dtde < 2771 CP(IQUT + N[l )
Q
< O Tonp.a) (1+ ool iq) + 131l ) -

Then (2.30) becomes
”SOHWZ?J(Q) S C(’Q’aTa Manap>Q7a) X (231)

3-2 _
x (1 +llollyz-2ra gy + lolataqqy + ngm) .
The continuous embedding in (2.20) ensures that

I¢llm@ < Clivllyza o) (2.32)

Combining (2.31) and (2.32) we see that the claim in (2.25) holds true.
Denoting
Bs = {90 € L7(@Q) : llellw@ < 5}>
relation (2.25) ensures that

provided that 6 > 0 is sufficiently large.
Property (2.33) and thanks T'(-,\) : L3(Q) — L*(Q) to be compact,
allow to consider the Leray-Schauder degree [12]

deg (de3p<Q) ~T,B;, o) YA€ [0,1], (2.34)
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where Idp represents the identity of the space B (see [23, p. 15]). The
homotopy invariance of the Leray-Schauder degree enables us to write the

equality
deg (ng,p(Q) —T(-,0), Bs, o) — deg (mLSP(Q) —T(-,1), Bs, o). (2.35)

Choosing 0 > 0 large enough so that the ball Bs contain the unique solution
of the linear equation ¢ — T'(¢,0) = 0, it follows that

deg (JdLgp(Q) - T(-,O),B(;,O> ~ 1. (2.36)

From (2.35) and (2.36) we can conclude that problem (2.13) has a solution
¢ € W2'(Q). The estimate (2.14) is a consequence of (2.31).

Next we will establish the stability result (2.16) which gives us the
uniqueness of the solution of (2.13) as a corollary. By hypothesis, ¢1, po €
W2 (Q) solve problem (2.13) corresponding to gi, g» and ¢, ¢, respectively.
Thus @1 — @, € W2'(Q) and it satisfies

p

0
7&(801 — ©2) — EA (1 — ¢2)

- {La[(gpl —2) = (¢} — 3] + (31 — 92)} on Q,

(2.37)
0
@(% —a) =0 on X,
L (1 — 2)(0,7) = ) — ¢} on Q.

Multiplying (2.37).1 by |1 — w2[P~2(¢1 — p2), integrating over Qy, t € (0,T],

and using Green’s formula and Cauchy-Schwartz inequality, we obtain

1
; / (2, t) — ol O do + (p— 1) / V(o1 — ) Plr — olP dsda
Q Qt

-1 1
b b /|901—802|p dsdx

1 2p
< = 1 _ 2 pp + " A 5 pp +
= pH% wollz @, 191 — g2lI7 @) PR

+ [ [ter=ea) = (6t = D]lor = ab (o1 = o) dsda, Vi€ (.71,
Q¢
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Due to assumption (H1) and by means of Gronwall’s inequality, it results

e = @allsuey < CT.0) (b = GBlliniey + 191 — Bollingy) - (238)

According to (2.20), we have @1, ¢, € W2'(Q) C L*(Q) C L*(Q), which

yields that 5-[(p1 — @2) — (¢} — ¥3)] € LP(Q). So we may apply the LP-
theory to the linear problem (2.37) which, in conjunction with the embedding
We?9(Q) € W2 P(Q) (see (2.4)), gives the estimate

ler = alltaag < CURL T (6} = GlE 0 aag (239
+ 1 = p2) = (8 = @Dy + Il gzum@).
The inequality p > 3p allows us to fix a number m such that

2<p< Hp

<p<———— <3p<m<p 2.40
pu+p—3p (2.40)

Consequently, the next sequence of embeddings holds

W2HQ) C LM(Q) € L™(Q) C L*(Q) C IP(Q) C L*(Q). (2.41)

From (H2), (2.41) and Hoélder’s inequality it is seen that

e — @2) (¢ = oD@ < NE (1, 02) o1 — ool (2:42)

1

F (p1,92) |901 — poff dtd-T)p

IN

Q

1
/F 1, p2) T dtdl‘) “ller = 2llm @),
Q
where we denoted ng := mp/(m — p). The computation above makes sense
because F(py, p2)? € LY(Q). Indeed, taking into account the growth con-
dition in (H2), F(¢1,p2) € L2%(Q) whenever 1, gy € L*(Q), and by (2.41)
it is true that

> 2. (2.43)
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Then, the inequalities in (2.43) lead to the claim above. Combining (2.39)

and (2.42), we arrive at

Il = eallwzrgy < CURLT )65 = #illyz-2raq (2.44)
n 1/2 — —
+ 1En el o o1 = e2llin + 18 = Bellzvia)

In addition, we have (see (Hz))

0

(1+ Il +leal*) * < CE(T+100)P™ + o). (2.45)

The relation above, inequality (2.43) and estimate (2.44) imply

lor = el < CURT0) b = GRllyz-2roggy + 191 = Bllisiey
+ CUQL T ) (1+191l3amaq) + 230 ) ) 01 = #2llimia)]
< €U0 T,n,p)|llgh = Rl + 11— Bllie)
+ (119121 + 1222 ) ) I — @2lline)|
< (|9, T,n,p)(1 +2M?)
x(llog = @ollyz-2raq) + ller = e2llim@ + 191 = Gellzn@)-  (2:46)

By the embeddings in (2.41), the interpolation inequality (see Lions [17, p.
58]) yields that Ve > 0, 3C(¢) > 0 such that

lllzn@) < ellvllwzag + CENlvll@, Yo e W Q). (2.47)
From (2.46), (2.47) and (2.38), we derive that
(1 - EO(‘Q|7T7n7 M,p)) ||901 - 902”1/[/3’1(@) (2'48)
< C(’Q’7 Tn, M,p) <H90(1) - @gHU’(Q) + Hgl - §2HL1’(Q)

+ C’(&?)C(|Q|,T,n, M,p) (Hgo(l) - (pg)ng—Q/‘l(Q) + ”gl - g2||LP(Q)) :

For ¢ > 0 with 1 —C(|Q],T,n, M,p) > 0, (2.48) implies estimate (2.16) and
thus the Theorem 2.2.1 is proved. O
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2.3 Proof of Theorem 2.1.1

We introduce the homotopy H : LP(Q) x [0,1] — LP(Q) as follows

H(v,\)=u, V¥V (v,\) € LP(Q)x]0,1]

where u is the unique solution of the linear problem

(

pc%—kAu:)\{—ga—gp—l—f(t,x)} on @,

ot 20t
% + hu = w(t, z) on X,
\ u(0,x) = ug(x) on {2,

(2.49)

(2.50)

with ¢ representing the unique solution of the nonlinear parabolic boundary

value problem

(122 _enp— Lo- ) +olta) o Q
T p=5(0—p o(t,x) +g(t,x n Q,
g—fzo on X,
| #(0,2) = o(x) on €.

(2.51)

We recall that f € LP(Q) and g € L%(Q) are given functions. Since

q > p by hypothesis (see (2.4)), then, taking into account (2.49), we derive

that v + g € LP(Q). Using Theorem 2.2.1 from preview section we have

that there exists a unique solution ¢ € W2'(Q) to problem (2.51). Thus
—Loi+ f(t,x) € LP(Q). The LP-theory guarantees that the linear parabolic

problem (2.50) has a unique solution v € W2>'(Q). Hence the mapping

introduced in (2.49) is well defined.

We shall prove now the following technical lemmas

Lemma 2.3.1. The mapping H : LP(Q) x [0,1] — LP(Q) in (2.49) has the

following properties:
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i) H(-,\) : LP(Q) — LP(Q) is compact for every X € [0,1];

ii) for every e > 0 and every bounded set A C LP(Q) there exists 6 > 0 such
that
[1H (v, A1) = H(v, X[ r(@) < &

whenever v € A and | A\ — Ao| < 4.

Proof. 1) To check the continuity of H(-,\), YA € [0,1] at the point v €
LP(Q), we consider uw = H(v, ) and u = H (v, \) for any v € LP(Q). Relation
(2.49) and problem (2.50) allows to write

(0 o,
oo (u—7) ~ kA1) =\ Do —§)  on @
DN e ) — 0 5 (2.52)
5 (u—1u)+ h(u—1a) = on X,
(u—1u)(0,2) =0 on (.

\

LP-theory applied to the linear problem (2.52) says us that there is a constant
C > 0 such that

(2.53)

_ 0 _
Il < € 602

Applying Theorem 2.2.1 to problem (2.51) choosing ¢; = ¢, v2 = @, @} =

¥t = o and gy = v+ g, g2 = T+ g, we get

I = Bllyzr ) < Cllv — sy (2.54)
By (2.53) and (2.54) we obtain the estimate

lu =@l r (@) < Cllv — 0| r()- (2.55)

From the above inequality we can derive the continuity of the map H(-, \)

at u, for each A € [0, 1]. We have that H(-, \) is expressed as the composition

LP(Q) — Wi (@) € L"(Q) € LM(Q), (2.56)
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where the second map is a compact inclusion by Lions-Peetre embedding
Theorem [17]. Therefore the map H(-, \) is compact.

ii) Fix € > 0 and a bounded set A C LP(Q). Consider (u1, A1), (uz,A2)
solving (2.50) where in (2.51) we take any v € A. Then we have

.
0
pca<’u,1 — UQ) - kA(UJ - /U/Q)
0,
- _55()\1901 = Aapp) + (M = A)f(t ) on @
(2.57)
0
@(Ul —ug) + h(u; —up) =0 on Z,
\ (w1 —u2)(0,2) =0 on {2

Applying now Theorem 2.2.1 to problem (2.51) choosing ¢} = ¢Z = ¢y and
g1 =M(v+9), g2 = A2(v+ g), we obtain

l1 = @allwzrq) < ClA = Aollv + gllri@) < C(A) A = Ao (258)

By LP-theory applied to the linear problem (2.57) we get

0
lur = wallyzi(g) < C{’)\l - Az’( HE%

3

Lr(Q)

1 fllr@) (259

Lr(Q)

+ A

0
E(@l - 902)

Estimate (2.14) assures that || 2¢1[/1s(q) is uniformly bounded with respect
to v, because A is bounded. Then, from (2.58) and (2.59) we can conclude

Jur — uslly21 ) < CA) A = A9 (2.60)
and so the assertion i) is verified. ]
Lemma 2.3.2. There exists a number § > 0 such that

H(u, )\) =u - HuHLp(Q) < 0. (2.61)
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Proof. The assertion is equivalent to (2.50) where ¢ is the unique solution of
the nonlinear parabolic boundary value problem (or, the solution of problem
(2.51) with v = u)

Oy 2 . 1 3
Tat—SAw—2J¢—¢)+QU+Mt@ on @,
8_"0 =0 on X, (2.62)
ov

| 0(0,2) = pola) on 9.

Analyzing the nonlinear problem (2.13) we see that g = 2u + g € LP(Q).
Applying Theorem 2.2.1 to problem (2.62) we have that a unique solution
¢ € W2H(Q) exists. In addition, estimate (2.14) is valid for § = u + g.
Consequently, the continuous inclusion Wg’l(Q) C LP(Q) implies that

32
ledire < Cllelwzig < C{1+ el 2y (269

+ Nl + lgll |
where C' > 0 is a constant which depends on ||, T, n, p and physical
parameters.
Multiplying (2.50); by |u|P~?u and integrating over Q;, Fubini’s Theo-

rem, Green’s formula and Young’s inequality lead to

re [ JulPde+k(p—1) / \Vul*lulP~? dsdx + kh/ |ulP dsdy (2.64)
boo Q¢ pM
pC ¢ 2@—1%/
< = & P P
= [uollZr () + QPQ/ |oe|P dsdx + » ) |ul? dsdx

1
+ - / |f|P dsdx + k‘/w|u|p_2u dsdy,  for all t € (0,T].
th pon
The Holder’s and Cauchy’s inequality, applied to the last term in (2.64), give
us

kh -1
k/w\u]pzu dsdy < —/|u]p dsdy + p—h/|w]p dsd-y. (2.65)
p p
Et 2t

3t
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Combining (2.64) with (2.63) and (2.65), it turns out that

% [ |ulP dz+k(p—1) / IVul*|ulP~? dsdx (2.66)
. Qt
1 pc »
+ kh(1=2) / ul? dsdy < Zuo]
p3M

l 3-2 l
+ it leol s+ lale f+ [5C+
{1+l Fy  +llla )} + [0+ 2

x /up dsdz + CllfIlpgn + Clollys,, V€ (0,71,
Qt

By Gronwall’s lemma, 2.66 and (2.1) we derive the estimate

3—2
P

2
Wq

lilie < {1+ ol + ol (2.67)

2
q

+ v + llza@ + ol

which ensures that a constant 0 > 0 can be found such that the property
expressed in (2.61) is true. O

Proof. of Theorem 2.1.1 Denoting Bs := {u € LP(Q) : ||lullzrg) < (5},
Lemma (2.3.2) ensures that there exists § > 0 such that

H(u,\) #u  Yu € dBs, VA€ |[0,1]. (2.68)
Lemma (2.3.1) allows to consider the Leray-Schauder degree (see [12])
deg (Jde(Q) — H(-,\),Bs, o) YA € [0,1]. (2.69)

The homotopy invariance of the Leray-Schauder degree enables us to write

the equality
deg (1de(@) — H(-,0), By, o) — deg (Ide(Q) ~H(,1), Bs, 0). (2.70)
Observing that H(-,0) = 0, it follows that

deg (Idyo(g) — H(-,0), Bs,0) = deg (Idp(q), By, 0) = 1. (2.71)
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From (2.70) and (2.71) we conclude that problem (2.50) has a solution u €
W2H(Q). This solution is determined by the unique solution ¢ of (2.62).

Since one has W>'(Q) C L*(Q), we can apply Theorem 2.2.1 for g =
u+g € L”(Q), v = min{p,u}. This ensures the existence of a solution
(u, ) € WPHQ) x W2'(Q) of problem (2.1).

Moreover, estimate (2.14) in Theorem 2.2.1 yields that

3.2
etz <€ {110y e + o} @72

()

2 =

In writing (2.72) we used the embedding W;_E(Q) C WVQ_”(Q). The LP-
theory applied to (2.1) (unknown u), combined with the estimates (2.14)
(expressed by relation (2.63)), implies the estimate

HuHW?’lQ < O 314 Juoll -2 (2.73)
P ( ) W, p(Q)
14
+ el + 1@+ ol spomg

+ ol
2
Q) ’ W;

IN

2
P

C {1+ lluoll_.-
W,

p

+ £l + 9l + uwHW;;,I%(E)}.

On the basis of interpolation inequality for the embeddings

W2(Q) € L'(Q) € 1'(Q) (2.74)

and relations (2.4), (2.67), (2.72), (2.73), we deduce the estimate (2.6).

Finally, let us verify the estimate (2.7). To this end we consider (uy, ¢1),
(uz, p2) as in statement of Theorem 2.1.1. We already established that
uy, uy € WrHQ) and @1, v € W2PH(Q). Subtracting the equations in
(2.1) corresponding to (uy, 1), (u2, ¢2) and using (2.4), (2.16), we find (see
(2.63))

11 = @2illr@) < Cller — wallyz g (2.75)
< {llur = wllv@ + g1 = g2ll o }-
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The LP-theory combined with the above relation shows that

lir = wllyzeg < C{ller = e2)llria) (2.76)
= Plo@ e —wal sy
< {llu = usllzvo + 12 = Falloro
+ o= gllisar + lwn =l oy

On the basis of the interpolation inequality (see (2.74)), we obtain the fol-

lowing relation (¢ > 0)
Jur — uallr @) < ellur — ually21 ) + Cellur — uzl|Lr(q)- (2.77)
From (2.75)-(2.77) one deduces that

(1 — 28w — u2||Wp2’1(Q) + o1 — SOQHWEJ(Q) (2.78)
{llur = wsll o) + 12 = Fellurie)

IN

+ g1 — gallLa(q) + [lwr — wQHWE;’lgp(z)}'

In order to estimate |lu; — ua|zr(g) in (2.78), we note that u; — us solves the

problem
(0
pca(ul —ug) — kA(u; — ug)
0,
=—gppi—w)+(fi-f) on@Q
(2.79)

5(”1 — ug) + h(ug — ug) = wy — wy on X,
(ur —u2)(0,2) =0 on €.

\

Using 2.16, from 2.79 we obtain (see 2.67)

ler—sllyz1 gy < CYIi= Falliri)+ 91— g2llzoc@) +lwr —wallpogsy . (2:80)
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Taking € > 0 small enough, from (2.78) and (2.80) we get (2.7). The unique-
ness of solution (u, ¢) follows from relation (2.7) by taking f1 = fa, g1 = go,
w1 = wo. Thus we got the proof to the Theorem 2.1.1. O



38

2. Existence and regularity of a solution




Chapter 3

Fractional steps scheme

3.1 Convergence of the approximating scheme

We’ll prove now the convergence and the weak stability of an iterative
scheme of fractional step type for the phase-field transition system. The
advantage of such method consists in simplifying the numerical computation
necessary to be done in order to approximate the solution of a nonlinear
parabolic system. This kind of approximating scheme was studied for the
phase field system in [18] with homogeneous boundary conditions and was
extended in [9] to the non homogeneous case. In order to approximate the
nonlinear problem, with f = g = 0, for every € > 0 let’s associate to (2.1)-

(2.3), the following approximating scheme:

14
pc u; + §gof = kAu® in Q5 = (ie, (i+ 1)e) x Q,
(3.1)
1
Tep = EAGT o9t H 20" in @
with the boundary conditions
ou® . .
5 + hu® =w(t,z) in X = (ig, (i + 1)e) x 09,
v
(3.2)
852 —0 in ¥,

39
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and with the following initial conditions

uf (ie, ) = u® (ie,x) u(0,2) =up(xz) in Q

(3.3)
¢ lie, 7) = 2((i + D, ¢ (ie, 2)) in 0
where z(-, ¢° (ie, x)) is the solution of Cauchy problem:
1
Z'(s) + %23(5) =0 s € (ig, (i + 1)e),
(3.4)

2(ie) = ¢ (ie,x) @7 (0,%) = po(2),

for i = 0,1,--- M. — 1, with M. = [I} = (M. = 1)e,T] x Q,
¢ (ie, ) =limp*(t, z) and ¢ (i€, 7) = lim o*(t, 2).
Also this time, we can deduce the existence of solution for problem (3.1)-

(3.3) from LP-theory (see Appendix A). In the next proposition, we recall an

existence and regularity result regarding the following case

0
Proposition 3.1.1. Let ug, 0o € WL(Q) satisfying % + huy = w(0,x),
v
Do

- = 0 and w € WY([0,T]; L*>(0K2)). Then the linear system (5.1)-(3.3)
v

has a unique solution u®,p° € Wh2(Q%) N L>®(Q5) on every time interval
lie, (i + 1)e], i =0,1,..., M. — 1.

The sketch proof of Proposition (3.1.1) can be found in [18].
The convergence of the iterative scheme will be proved in the following

theorem

Theorem 3.1.2. Assume that ug, o € WL (Q) and w € W([0,T]; L*(0%2))

0 0
ﬂ—|—hu0 = w(0,x), g2 _ . Furthermore, Q C IR" (n=1,2,3)

ov ov
is a bounded domain with a smooth boundary. Let (u, %) be the solution of

satisfying

the approzimating scheme (3.1)-(3.83). Then, for e — 0, one has
(1), (1)) — (u*(£). " (1)) strongly in L2(Q) for any t € (0,T], (3.5

where u*, o* € WY2([0,T]; L*(Q)) N L*([0,T]; H*(Y)) is the solution of the
nonlinear system (2.1)-(2.3), with f = g = 0.
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We shall prove some lemmas concerning the Cauchy problem (3.4).

Lemma 3.1.3. If ¢° (ie,z) € L=(Q), i =0,1,..., M, then z(ie,z) € L=(Q).

Proof. We observe that the problem (3.4) can be solved directly, by sepa-

ration of variables. Indeed, we write it in the form (1/2z%) = 1/2a and,

integrating on (0, ¢), we obtain

and therefore

(e, 1) < (gpi(z’g,x))Q, a.e. x € Q.

Hence z(e,x) € L*>®(Q)) as claimed.
Lemma 3.1.4. For:=0,1,..., M. — 1, the estimate below holds
VS (i, 2) || 2) < IVeD (ig, )| 220
Proof. Denote 0(t,z) = Vz(t,x). From (3.4) we obtain
0; + i&z =0, on(0,¢e),
2a

6(0) = V¢© (i, ).
The solution of (3.9)-(3.10) is given by
0(c) = e Jo 2270t g ()
from which we easily get (3.8).

Lemma 3.1.5. The following estimate holds

2(g,z) — ¢° (ie, z) || 2(q) < €L,

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

where L > 0 is a constant depending on Q, ||¢° (ic, z)| ) and on the

parameter a.
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Proof. By (3.4), using (1/2a)z3(t)(2(t) — 2(0)) — (1/2a)2(0)(z(t) — 2(0)) > 0,

we have L .
—— — LR — — : 12
5 12(0) = 2O < —-2(0) (=() ~ 2(0)) (312
Integrating over (0,¢) we obtain
€
2(6) — 2(0)] < = |*(0)] (313
and therefore the lemmas was proved. O

Proof. of theorem 3.1.2. We observe first that Lemma 3.1.3 and Lemma
3.1.4 ensure that z(e,z) € WL (Q). Applying now Proposition 3.1.1 to the
problem (3.1)-(3.4) for i = 0 we obtain the existence of a solution u®, ¢° €
W2L(Q5) N L>(Q5). Reasoning iteratively after i, we may conclude that
©° (ie,x) € L>®(Q2), 1 =1,2,..., M. — 1, and that the problem (3.1)-(3.4) has
the solution u®, ¢ € W>1(Q%) N L>(Q5), i = 0,1,..., M. — 1.
Let us next establish a priori estimates for the solution u®, ¢° on to each
c,1=0,1,..., M.—1. It is useful derive them directly also if we could obtain
them from a prior: estimates to linear parabolic equations in LP-theory (see
Appendix A).
Multiplying (3.1); by 7u® and (3.1); by ¢, using integration by parts,

Green’s formula, yields

2 4
gcgt </(u5)2dx> + Q/u‘E sdx + —]€/|Vu8 2dx (3.14)

Q
4kh /
+— = — [ vw(t,x)dy,
E
/(npt /|V °1? d:c — / “pjdr = —/ p;dr.  (3.15)

Q

4k
The Hélder’s and Cauchy’s inequalities applied to the term 7 / u“wdy in

G)
(3.14) give us:
4k 4kh k
- 3 < - 2 _ 2 .
7| w(t, z)dy < 7 (u®)“dy + m v (t,x)dy

o0 o0 o0
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Thus, adding (3.14)-(3.15) and making use of the last inequality, after some

simple calculus we obtain:

2pc 0 Ak
5 9t (/(us)Qd:Q +7/]Vu5\2dx+7'/(<pf)2d:c (3.16)
Q2 Q

1
S 7 <_ 2 o £ € )
+2 P /IW) 2 dﬂf /w (t,w)d7+2a/s& pidx
Q

If we now multiply (3.1)2 by ¢° and then we integrate over €2, by Green’s
formula we get
79 £\2 2 |2 e 1 £\2
5@(/((’0) dx)—l—:f /]Vgp | dx:2/u<pd:v+2—a/(g0) der. (3.17)
Q Q Q Q
Adding the relations (3.16)-(3.17) and performing same computations imply-
ing Buniakovsky-Schwarz’s and Cauchy’s inequalities, we deduce that:

2pc

"y ore) 15 o
+ /|Vu€|2dx+§ /|w 2da

2 — —
/ dx+2@t /|Vg0|dx
Q

< (uf) do + (1 +%+i>/< )d:c—i—%/wQ(t,x)dfy.

dat
Q o0

ol

Integration over (0,¢) and by parts of (3.18) gives now

2pc . T\ & 4k [ €
L WO + S @l + [ IV Bads (319
0

3 £
1> T £ 52 (>
+ @ / IV s + 5 [ It Bxads + S 196 )l
0

2pc
l

+ C/(HUE(S)IIiz(er||905(8)H%z(n))d8+C|!w||iz<zg)‘

IN

T £2
2 ol + o3z + S5 V0l
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Similarly, for Q5, i = 1,2, ..., M. — 2, we obtain from (3.18):

2pc . T .
— (@ + 1)8)||iz(m+§||<pi((2+1)€)l|iz<m (3.20)
i (i+1)e (i+1)e
4
o AR
i€ i€
(i+1)e

T (> 52 1> N
b 2 [ MeiBads + SV (G + Do)l
2pc, .. 9 LT ? e (N2
2 u i) gy + S I ey + 5 190 )

(i+1)e

+ C / ([ () 1Z2() + 1 ()l 22 () ds + Cllwl Lz (s -

IA

and for Q5 _;, we get

2pc T
(D + Sl Dl (321
" T T
5 IV eds € [ IV s
(Mzs*l)E (Mgfl)s
. 2
Z 112 d f_ \V4 (T 2
+ 5 107 1720y ds + 5 VO (T) |72
(M:—1)e
2pc T
< 7||U€((Me — 1e)172(q) + §||903((Me — Do)z
2

+ §||thi((Ma —1)e) 2 + O”w”%Q(Zm_l)’

T

+ 0 [ () + 1676 e ) s

(M:—1)e

Let’s remember at this point that, corresponding to Cauchy problem (3.4),

we have the following inequality (see proof of lemma 3.1.3):

T e Ty e
195 (@)lia) < Sl ()@, (3.22)

fori=1,2,--- M, —1.
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If we now consider the inequalities given by (3.8) and (3.22), from (3.20)
we constant that (for i =1,2,---, M, — 2):

T £ . §2 g -
B + Sllet i+ De) |72y + S IVei(G+ 1)e) 720 (3.23)
1, Ty ey 2 52 € (/s 2
< + 5l (@ + D)e)lz2g@) + S IVEZ((E+ Do) T2
2 T e [ 2 52
< Bie+ S llei ) + HV(:O+<28)HL2(Q
where
5 m (i4+1)e
PC crrs €
BL = L+ 109 ey + [ IV s
(i+1)e (i+1)e

)
+¢ [ 19 Baads+ 3 [ eflaads
] i€

(i+1)e

B2 = ¢ [ {Iea + 1O bs

i€

pe, oo
‘*‘THUE(%)H%‘Z(Q) + CHwH%%zg)-

Adding (3.19), (3.21), (3.23) and performing some simply calculus we derive

(M.-c=T)
T
e D) ey + Ll (D)) + / V2 s
Mg—1 (i+1)e
Lo / IV 22 s + Z / 6 s + S 196 (T

2

IA

2pc
HU0HL2(Q 5”%”%2(9) + §HV900||%2(Q)

+C / (1 ) By + 11" (5) sy ) s + Clleo s
0
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Continuing by applying Gronwall-Bellman’s inequality, we finally obtain:
T T
T €2 4k (12 2 (12
9 H%HL?(Q)CIS + va [Vu HLZ(Q)dS +& [V HL?(Q)dS <, (3.24)
0 0 0

for all € > 0, where C' does not depend on M, and «.

Multiplying now (3.1); by ug, integrating over [ig, (i+1)e], i = 0,1,--- | M.—

1, and, using Holder’s inequality, Cauchy’s inequality as well as Green’s for-

mula, we get the estimate:

pc/(ut) drds + — /]Vu 2dx k2h (uf)*dry

Q5 o0
< k/ut (t,x)dvyds + —/ ©)? drds + —/ u)? dads.
ZE L Qs

Summing after ¢ and making use of (3.24), the last inequality leads to:

B wra 32

o0

pc

2

QO

(uf)? dwds + = /]Vu *dx +

< C’+k/ufw(t,x)d7d8.
>

k/ufwdfyds = k/%(usw)dfyds — k/usw’dfyds

5 5 5
and (using Cauchy-Schwartz’s and Hélder’s inequalities)

kh k
k/uswdy < Z/(u5)2d7+ﬁ/w2d%

o0 o0 G)
€,y k €\2 k "2
k| v w'dyds < 5 (u®)*dyds + 3 (w')*dryds.
> b 2

Using now the Gronwall-Bellman’s inequality, from (3.25) we find the esti-

mate:

t
k kh
%//(uf)Qda:ds t3 / |Vue|2dz + vE (uf)*dy < C, (3.26)
0 0 Q o9
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for all € > 0, where the constant C' > 0 does not depend on M, and €.

By virtue of estimate (3.11), summarizing for ¢ = 0,1,--- , M. — 1, we
get
M.—1
> s ie,2) = o (ig, @)l 2y < TL = C, (3.27)
i=0

where C' does not depend on M, and ¢.
Combining (3.24) and (3.26)-(3.27), we get

T T

T

Voo IOt [0 B (3:28)
0 0

+ /(yws(t,x)\? IV () )dedt < O Ve >0,
Q

where X; ¢° stands for the variation of ¢° : [0, 7] — Lo(€2). Since the injection
of LQ(((Z)) into H~1(Q) is compact and the set {$(¢)} is bounded in Ly(£2) for
every t € [0, T], by an infinite dimensional version of Helly-Foiag theorem (see
for instance [6], Remark 3.2, p. 60), we conclude that there exists a bounded
variation function ¢*(t) € BV ([0,T]; H*(2)) such that, on a subsequence

also denoted °(t), we have
@ (t) — ¢*(t) strongly in H 1(Q) for every t € [0,T]. (3.29)
From (3.28) we may assume that
©° — " weakly in L*(0,T; H'(Q2)). (3.30)

Now, since the embedding of H'(f2) into Ly(£) is compact, for every A > 0
there exists C'(A\) > 0 such that (see references in [19] on this topic)

l°() = "Dl 2@ < Al () = @™ (Ol @) + CA7 () = " (Ol -1,

Ve >0and Vt € [0,T], where C(\) — 0 as A — 0.
Together with (3.29) and (3.30), this last inequality leads to

£

©° — " strongly in L*(Q)  for any t € [0,T]. (3.31)
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From (3.1);, (3.1)2 and (3.28) we have, respectively:

/t/(AuE(s,x))2dxds <C Vte (0,7,

t
//(Agpa(s,x))2dxds <C Vvte(0,T].
0 Q
Then we obtain the estimates:
[ 220, 12(0)) < C,

10" || 2o,y 12 2y < C-

(3.32)

(3.33)

Thus, because the embedding H*(Q2) € H'(Q) is compact, it turns out that

the sequence {uf} is compact in L*(0,7T; H'(Q2)). Therefore, on a subse-

quence, again denoted u®, from (3.28) and (3.32) we have
u® —u*  strongly in L2([0,T]; H(2)),

weakly in  L2([0, T]; H%()),

£

ui —uj  weakly in L*([0,T]; L*(Q)),

and, by the Ascoli-Arzela theorem
u® — u*  strongly in C([0,T7; L*(Q)).
(3.31)-(3.34) cleary also implies that

Au, — Au” weakly in L*(0,T; L*(Q2)),
Ap, — Ap* weakly in  L*(0,T; L*(12)).

(3.34)

(3.35)

(3.37)

From (3.31) and (3.35) we may conclude that (3.5) holds and so the

Theorem (3.1.2) was proved.

]
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We verify now that u*, ¢* satisfy the phase-field system (2.1)-(2.3). Let
s < t be two arbitrary points of [0,7] such that ic < s < (i 4+ 1)e < ... <
je < t. Consider the problem

(
ToF — EAQT — ot =20 on (),
0p° .
5 = 0 on % (3.38)
\ ©° = g on (.

In a usual way, from the above relation we obtain

2 k+1
/Q|908_((k‘ + 1)e) — ¢ (ke)? d:v+§2/ /lVgp 1> dtdx  (3.39)

52 (k+1)e (k+1)e
< = wa 2 dxdt + C ©°)? dtdx
+ +
ke Q
k+1
+ / / {(u = )?} dtda.
ke

Taking into account Lemma 3.1.3 and Lemma 3.1.4, the last inequality be-

comes

Z I ((k+1)e) - soi(ks)lliz(m <C- (3.40)

/k EkH)E / ((u 2} dtda.

on the other hand, using lemma 3.1.5 we get the estimate

j—1
Z 5 (ke) — ¢ (ke) |72y < O — 1)eL. (3.41)
Hence
le°@) = & ()2 < lle™(s) — 2 (ig)ll 2o (3.42)
j—1
+ llef (je) = & (D)2 + D 9% (ke) — ©F (ke)[I320y
k=i

+ ZH‘P ((k+1)e i(kg)”%mz)
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Along with (3.40) and (3.41) the last inequality implies

[e5(t) — ¥ (s)]lr2) (3.43)

(] )

and therefore ¢* : [0,T] — L*(Q) is absolutely continuous and consequently

almost everywhere differentiable on [0, 7. Hence ¢ (¢) exists a.e. on (0,7).

Let v € L°(Q) be an element arbitrary but fixed. By (3.39) we have

J

T (1) = ¢(9),9°(s) —0) +7 Y (¢°((ke) = @5 (ke), ¢ (ke) — 0)

k=i+1
S 5 / A(,O QO — v dT+—/ 90 —1) dT
+ / (2u®, p° —v) dr, Yv € L%(Q), (3.44)

where (-,-) stand for the inner product of L*(Q) and also for the duality
between H}(Q) and H(Q).

We denote by F' : D(F) = L%(Q) C L*(Q) — L*(Q) the operator z —
—5-2%. Then —F = 0|5 [, z*dx] is m-accretive, so that F' is m-dissipative.

Denote by e~ ** the semigroup generated by —F [18]. Then (see 3.4)
2(t) = e Fly® (ie) for t€(0,T), i=0,1,...,M. — 1. (3.45)

Thus

(07 (ke) — ¢ (ke), % (ke) —v) =
= (¢ (ke) — e 75" (ke), ¢ (ke) — v)+
(7 (ke) — e 597 (ke), e 79" (ke) — o= (ke)).

We set S.y := y — e Ty and then (3.45), taking into account the above
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relation and the monotonicity of S., becomes

J

T () — ©(s), () —v) + T D> (S.), 4" (ke) — ) (3.46)
k=i+1
< 3 IS () + € / (A, ¢ —v) dr +
k=i+1
+ % (%, " —v) dr
+ /t(2u5, ©° —v)dr, Vuve L*Q). (3.47)

By lemma 3.1.5 we have [|Sc¢ (ke)||72q) < €°L* and therefore

J
> 18 (ko) 20y < €25 — 1)L = 4,
k=i+1
where 0, — 0 for ¢ — 0.
Now, we define

& (1) = ¢ (ke).  for 7€ (ke,(k+1)e).

Then

t
° (ke) —U) :/ (SEU,npe(T)—v> dr.
k=i+1 s <

Since || (ke)||r2@ < C, then ||[@°(7)|| 12 < C and therefore the above

integral is well defined. Using theorem 3.1.2 we obtain

J t
lim e (S;U7<p€(k€) — v) = / (—Fv,¢*(1) —v) dr, (3.48)
—i+1 s

e—0

Vo € L5(€Q). By (3.29) and (3.37) we have

Jo (FAGF, 9 —v) dr — [J (=Ap*(7), ¢"(r) —v) dr
(3.49)

Jo (65,05 =) dr — [] (0%, ¢*(r) —v) dr
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Taking into account (3.48), (3.49) and passing to the limit for ¢ — 0 in (3.46)

we have

t

), 0" (s) —v) + ’T/ (—Fv),¢*(1) —v) dr  (3.50)

S

(P (t) — ¢ (s),
_ e / (Ag*(r), 0" (7) — v) dr
1 t

+ (@"(7),¢" (1) —v) dr

2a J,

t
< / (2u*(T) + g, 0" (1) —v) dr, Yo e L5(Q). (3.51)
Dividing (3.50) by ¢t — s and letting s tend to zero we see that

(re"®) = £8P — -6 (0) ~ Fo,(t) —v) (3.52)
< (2u(t) 4+ g(t), " (t) —v), ae. t€[0,T], Yve LQ).

Using now the maximal monotonicity of F', we infer from the above relation

that
1

r O 1) ~ AP0 — o (¢1(0) — (' (D)) ~ 2u'(1) = g(t) a1 € [0.T]

Hence ¢*(t, ) satisfies (2.1)a, (2.2)2 a.e. t € [0, 7).
By 3.1; we get

l

3 /0 (W (1), de™(t)) + /Q (uf — kAU dadt = /Q fi dadt,

Vi € L?(0,T; HY(R2)). Taking into account (2.6) (p = 2), (3.36), we may

pass now to the limit in the last equality, for £ — 0, and, By Helly’s theorem

[

3 /0 (W(t), de™(t)) + /Q (uf — kA dedt = /Q Fo dedt

Vi € L*(0,T; H'(2)). Since ¢* is absolutely continuous from [0, 7] to L?(£2)
(3.43) the first Stieltjes integral can by written as fOT(w(t), @5 (t)) dt and so
the above relation yields

uy (t) + ég@f(t) —kAu*(t) = f ae tel0,T]. (3.53)
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By trace theorem (the map u® — uflspq is continuous from H'(Q) into
HY?(0Q) C L*(09)) we may conclude from the last equality that w*(¢,x)
satisfies (2.1)1, (2.2); a.e. t € [0,T]. Therefore (u*, p*) is a strong solution
to (2.1)-(2.3). Particular, again by trace theorem and because we actually
proved the convergence of solution in H?*(Q), Vt € [0,7T], we obtain that

boundary conditions are satisifed, too.

3.2 A numerical algorithm and numerical re-

sults.

In this Section we are concerned with the numerical approximation of
the solution corresponding to (3.1) by finite element method (fem). The
finite element method is a general method for approximating the solution
of boundary value problems for partial differential equations. This method
is derived from the Ritz (or Galerkin) method, characteristic for the finite
element method being the chose of the finite dimensional space, namely, the
span of a set of finite element basis functions. The steps in solving a boundary

value problem using fem are:

PO. (D) The direct formulation of the problem;

P1. (V) A variational formulation for problem (D);

P2. The construction of a finite element mesh (triangulation);

P3. The construction of the finite dimensional space of test function, called

finite element basis functions;
P4. (V,,) A discrete analogous of (V);
P5. Assembly the linear system of equations;

P6. Solve the system obtained in P5.
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Let e = T/M be the time step size (M. = M). Using an implicit (back-
ward) finite difference scheme in time and fem for Q C IR?, the corresponding
discrete equations are (see [9]):

Rui + LByl + ekhFRu}l = B(pVu, " + Lol + ekw'™),
(3.54)
St — 26 Bul = B, !,

where ul, ¢!, i =1, M, | = 1,nn, are unknown vectors for time level 1.

From the initial conditions we have
U? = up(NVy), @? = @o(Ny) [ =1,nn, (3.55)

and therefore the numerical algorithm to compute the approximate solu-
tion by fractional steps method can be obtained from the following sequence

(7 denotes the time level)

Begin frac_fem2D
i:=0 — Compute u), Y, | = 1,nn from (3.55)
For¢:=1to M do
Compute z; = 2(-, NV}), | = 1,nn from (3.4);

o=z, 1 =1,nn;
Compute u!, @i, [ = 1,nn, solving the linear system (3.54);
End-for;
End.

The convergence result established by Theorem 3.1.2 guarantee that
the approximate solution (uf, ) computed by the conceptual algorithm
frac_fem2D is in fact the approximate solution of nonlinear parabolic sys-
tem (2.1)-(2.3).

We shall present now the numerical experiments implementing the con-
ceptual algorithm frac_fem2D. In Figure 3.1 it can be seen the mesh in the

x1 and x5 - axis directions of a rectangular profile.

Figures 3.2-3.3 represents the approximate solutions «™, M = 20 and

M = 40, respectively. The shape of the graphs shows the numerical stability
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The approximate temperature u
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Figure 3.3: The approximate temperature u*°

and accuracy of the results obtained by implementing the fractional steps
method (3.1)-(3.3); the most interesting aspect that we can observe analyzing
the Figure 3.3 are the presence of supercooling and superheating phenomena
(presence of solid fractions in the liquid, for example). Figures 3.2-3.3 may
represent and ”simulate” the cross section of a billet exiting from the copper

mold’s base, in the casting machine.



Chapter 4

Optimal control problem

4.1 Functional costs j(w) and j°(w).

Let @ ¢ R" (n = 1, 2, 3) be a bounded domain with a sufficiently
smooth boundary 02 and let T > 0. Consider the following nonlinear optimal
control problem (Q = (0,7] x §2, ¥ = (0,7T] x 0%):

(P) Minimize

](U)) = (90<t’x) —-1- (51>2 " XQo dtdx

N —

+
Sy

((ultsz) = 52)*)? - xa, dedo -+ 5 [ wi.o) dbay

%

on all (u,) satisfying the system (2.1)-(2.3), with (f = g = 0). 01,09 in
problem (P) are positive numbers that can be used to distinguish between

the states of the material 2 at each time ¢t € (0, 7], namely:
e the pure liquid region {u(t,x) > 5 and p(t,z) > 1+ d;},
e the pure solid region {u(t,x) < —dy and p(t,z) < —1 — 6},
e the separating region given by

O ={z e |u(t,z) <, |p(t,z) <1+61, 61,0, >0}

57
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So, the positive numbers in (P) come from above definitions of pure lig-
wid, pure solid and separating regions. Moreover, this kind of cost functional
can be involved in the numerical investigations concerning the solidification
process, as: compute the minimum effort (the optimal value w(t, z) € U) to
guide, in T" time, the region @)y C (), which at beginning contains the both
states, to a pure solid state.

It is known, from the second chapter, that for each ug, @y € WL (Q)

0 0
satisfying % + huy = w(0, x), % =0 and w € WL (X)), system (2.1)-(2.3)

has a unique solution u, ¢ € W, where

W = W2 ([0, T); L(©)) 1 L*([0, T]; H*(%)).

A similar problem where the boundary control structure is w(t)g(z) was
analyzed in [19]. Works devoted to the distributed optimal control problem
governed by the phase field transition system with the distributed control act-
ing on €2 (without state constraint) are due to Heinkenschloss and Troltzsch
[13] and Hoffmann and Jiang [14]. An optimal control problem with the dis-
tributed control acting on a subset w C 2 and with the state constraint, also
governed by the phase field transition system, was discussed in the paper
[21].

One of the great difficulties regarding the numerical approach of problem
(P) comes from the fact that the state is governed by a nonlinear law. In
order to remove this inconvenience, a new numerical method to approximate
the state was developed in the work [9]. On the basis of this idea, we can
associate to the nonlinear system (2.1)-(2.3) the approximating scheme (3.1)-
(3.3).

Then, corresponding to problem (P), we consider the approximating

optimal control problem:
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(P°) Minimize

(p°(t,x) — 1 — 51)2 - XQpdtdx

(0t 0)=8a) P oxaydde +  [u? b, )by
>

The main result in the present chapter says that problem (P) can be
approximated for e — 0 by the sequence of optimal control problems (P*)
and so the computation of the boundary control w(¢, z) can be substituted by
computation of an approximate control of (P¢) (see Theorem 4.3.1). Besides
the existence of an optimal control in problem (P¢), necessary optimality
conditions for this problem, needful for numerical approach, will be proved
in the last Section and will be used in next chapter to develop a software in

1D-case.

4.2 The existence in problem (P) and (F°)

The existence of an optimal control in problem (P) and (P¢) are proved
in the present section. First we shall recall a result about the existence
of a solution (u,¢) to the non linear parabolic system (2.1)-(2.3) and we’ll
introduce some estimates, for later use.

In the second chapter, we studied system (2.1)-(2.3) and we got that a
solution (u, ¢) exists and is unique, with v € W>'(Q) and ¢ € W>H(Q), In
addition (u, @) satisfies the estimate (2.6).

Now we consider the case p = 2 and ug, po € WL (Q). So, regarding the

existence, we have:

)

Proposition 4.2.1. Let ugy, oo € WL (Q) satisfying O + hug = w(0, ),

ov
% = 0 and given w(t,x) € W([0,T]; L?(0R)). Then system (2.1)-(2.3)

has a unique solution (u,p) € Wi (Q) x Wi (Q) which fulfills the following
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estimates:
lllwzrgy + Iz < C {luollwe@ + loollwe@  (41)
+ le\wu[o,ThLZ(am)}-

Proof. Taking into account WL (Q) C W}(Q), Proposition 4.2.1 is an imme-

diate consequence of Theorem 2.1.1 O

From the above inequality we can soon deduce the following estimates:

eell72 012200 + el Zzqo 2 () < C, (4.2)
I 1 F1 0y + lu@)Fg) < C ¥t [0,T], (4.3)
H(:OH%Q([O,T];HQ(Q)) + HUH%Q([O,T};HQ(Q)) <C. (4.4)

Proposition 4.2.2. For ug, @y and p as in proposition 4.2.1, problem (P)

has at least one solution (u*,p*, w*).

Proof. Consider j(w) : W—-R given by
. 1 w
jw) = 5 [ (e (ta) ~ 1= 52 xq, drda (4.5

1
(" (t.2) = 2)*)* xgy dtds + 5 [ w(t,0) dey
b

+

o2 T

where (u", ¢") is the solution of (2.1)-(2.3) corresponding to w € W,

W = W0, T]; L*(8Q)) N L>(%).
Let 0 < d=inf {j(w), we€ /W} and let {w,} C W be such that

1
d < j(w,) S d+=. (4.6)

It is obvious that the sequence {w,} is bounded in W because it is
a subset of L*(X). Therefore, we can select subsequences of {w,}, still

denoted by itself, such that

—

w, — w* weak star in W.
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Let (uy, ¢,) be the solution of problem (P) corresponding to w,, i.e.,

( aautn + gagtn = kAu, in @,
T% = &&Ap, + %(@n on) +2u, in Q,

\ a(;f/n + hu, = wy(t, x) in X, (4.7)
aai” =0 in ¥,
\ un(0,2) = uo(x)  ©n(0,2) = @o(x) on .

Taking into account (4.2)-(4.4) and the Sobolev embedding theorem, we

have (on a subsequence, again denoted {n})

Uy — u* weakly in L*(0,T; H*(Q)),
and strongly in  L*((0,7); H'(Q2)),
ou, ou* . 5
i weakly in L*(0,T; L*(Q)),
Au, — Au*  weakly in L*(0,T; L*(Q)),
Op — weakly in L3(0,T; H*(9)),
and strongly in  L2?((0,7T); HY(Q)),
a;” - aa"‘; weakly in L2(0,T; L*(Q)),
Ap, — Ap*  weakly in L*0,T; L*(Q)),

and, by the Ascoli-Arzéla theorem
u, — u* strongly in C([0,T]; L*(Q)),
0, — ©* strongly in C([0,T]; L*(2)).
By Sobolev’s embedding theorem (H'(Q) C L%(Q), Q C IR", n < 3) and

thanks to the relations of convergence established above, we obtain

162 + o™ + (€l L20 2 () < C,
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which implies
[~ i
Q
*\6 1/3 2 * *\2|2 2/3
< [/Q(son—so ) dfvdt} [/Qlwnﬂons& + (") [ ddt

T
< [ lou- @ Buait
0
This indicates that
e — (¢*)®  strongly in L*((0,T); L*(2)).

So, letting n tend to +o00 in (4.7) we get

( Ou* L Op* . ,
PC oy +§ 5 = kAu in Q,
agp* 2 * 1 * *\3 * .
Ty =AY+ o (0" = (¢T)) + 20 i @,
o + hu* = w*(t, z) in X (4.8)
ay Y Y
%“; —0 in %,
u*(0,z) = ug(x) ©*(0,2) = @o(z) on €.

\

Thus, the uniqueness of solution for (4.8) implies that (u*,¢*) is the
solution of problem (2.1) corresponding to w* € W. Since J is continuous,
then by (4.6), we see that d = j(w*) and the proof of Proposition 4.2.2 is
completed. O

As regards the existence in problem (P¢), we have

Proposition 4.2.3. For ug, @9 and w as in Proposition 4.2.1, problem (P¢)

has at least one solution (ul, ok, wk).

Proof. In the proof of Proposition 4.2.3 (see [19]) one uses the estimates
established in [9], the Sobolev embedding theorem, the Ascoli-Arzéla theorem
and the continuity of j°(w). We don’t give the details. O
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4.3 The convergence of problem (F°)

The convergence result, proved in the next theorem, of the optimal so-
lution of problem (P¢) to the optimal solution of problem (P), as ¢ — 0, is

the main result of this chapter.

Theorem 4.3.1. Let {w!} be a sequence of optimal controllers for problems
(P). Then

lir% inf j°(w*) = j(w") (4.9)
and
i j(w) = j(w'). (1.10)

Moreover, every weak limit point of {w!} is an optimal controller for problem
(P).

Theorem 4.3.1 amounts to saying that (P°) approximates problem (P)
and an optimal controller {w!} of (P?) is a suboptimal controller for problem
(P).

The main ingredient in the proof to Theorem 4.3.1 is the following

lemma.

Lemma 4.3.2. If {w!} is a sequence of optimal controllers for problems (P*)
then there exists {e,} — 0 such that

wl — w* weak star in  L®(X),
wi, —@"  strongly in L*((0,T); H'(9)),
ul —ut strongly —in L*((0,T); H'(Q)),

where (uf , ok ,wk ) = (ugf”, cpgf",w:n) and (u*, o*, w*) = (", ", w*) are

the solutions to (3.1) corresponding to w = w? and to (2.1) corresponding

to w = w*, respectively.

Proof. For {w?} independent of € this lemma was proved in [9]. The exten-

sion in the lemma is standard. ]
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Proof. of Theorem 4.3.1. Let {w}} be an optimal controller for problem (P*)
and let (uf, ¢, w!) be the corresponding solution of (3.1) with w = w}. By
virtue of Lemma 4.3.2 it results that there exist w* € L*>°(3) and {e,} such
that

wi — w* weak star in  L>®(X),
prer — @ strongly i L2((0,T): H'(Q)),
Y strongly in L*((0,T); H'(2)),

*

where (u?f", cpgf" ,w ) is the solution to (3.1) corresponding to w = w} and

(u®”, ¥, w*) is the solution to (2.1) corresponding to w = w*. Since:

1
o=y [(oltin) = 1= 80 xg, dids,
Q

((u(t, T) — (52)+)2 X, dtdz,

are convex continuous functions, it follows that these are weakly lower semi-
continuous functions (from L*(Q) — R, L*(Q) — IR and L*(X) — IR,
respectively). Hence

J(w*) <liminf j (w} ). (4.11)

Let w* be an optimal controller for problem (P). Since w} is an optimal

controller for problem (P°") it follows that
J7(wZ,) < g7 ().

£

But ¢ — ¢, u? — u® strongly in L*((0,7); H'(€)) and so the term in
the right side give us
lim 5% (&%) = j(@"). (4.12)

n—oo

From (4.11) and (4.12) we obtain

j(w*) < liminf j* (w? ) < jo(w? ) < j(@*) < limsup j (%) = j(D*).

— En
n—oo n—oo
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Hence

lim inf j° (w?, ) = j(@") = j(w")

€
en—0 n

and then (4.9) holds.
To prove (4.10) we set: . = u“, . = ¥ (w* optimal in (P¢)). We

have on a subsequence {¢,}

w —w’  weakly L>(%),

Pe, = strongly in L*((0,T); H'(2)),

e, — U strongly in  L?((0,T); H'(Q)),

n

where (u, o, w°) satisfy (2.1), i.e., (u, @) = (u*’,¢""). We have therefore
j(w®) <inf P

and, since {e,} was arbitrary choose, (4.10) follows.

Now, since w? is an optimal controller for problem (P¢) it follows that
J (wl) < jf(w) YwelU.
But, as we seen above (relation (4.11)),

j(w") < liminf j*(w?)

e—0

and thus, along with above inequality, we may conclude that

jw*) <limj*(w) VYwel.

e—0
Hence
jw*) <jlw) Yweld

i.e., the weak limit point w* is a suboptimal controller for problem (P). This

completes the proof of Theorem 4.3.1. O]
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4.4 Necessary optimality conditions in (PF)
Let (uf, ¢, w) be the solution of (3.1) and let @ € L*(X) be arbitrary

but fixed and A > 0. Set w* = w + A\ and let (u*€, ™) be the solution of

(3.1) corresponding to w?. First of all we easily can derive from above that

w* —w  strongly in  L*X) as A —0.

Corresponding to (u™¢, oM w?), for i =0,1,--- , M. — 1, we have
14
peup” + égpi"a = kAu™*® in Q¢
(4.13)

1
et = ECAPM + M 2 i O

with the boundary conditions

8 A\E
Y b =wd o 3,
v
(4.14)
a A\E
g}/ =0 on i,
and the initial conditions
ANE [+ ANE [+ AE
uy (e, x) = ul(ie,x), w2 (0,x) =up(r) on Q,
(4.15)
P2(ie, 7) = (e, ¢ (ie, 7)) on
where z* is the solution of the Cauchy problem:
A ! 1 A 3 . .
(zMs)) + %(z (s))"=0 s € (ig, (i + 1)e),
(4.16)

i) = ™M (ie, z) ©M(0,2) = o).
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Subtracting (3.1) from (4.13)-(4.15) and dividing by A > 0, we get

( whE —uE Y, Xe_ e
pe(257), +4(25),
= kA(“A’E;“E) on 5,
(4.17)
T( 2>\,s_ 2e) _ €2A( 2)\,5_@e> _'_ L( 2/\,s_ 26)
X . ) 2a X
AEe__ €
\
satisfying the boundary conditions
( e e
A(2) e
A e
ov A A
(4.18)
a( 2)\,5/\_ 25)
—= =0 e
\ 5 on X%,
and the initial conditions
( uiﬁ(is,x);uj_(is,x) _ ui’e(is,z);ug_(is,x)7 on Q,
u™ (0, x)—us(0,2) = 0 on (4.19)
el (i) —2(ep(iex) _ @i —ef on Q,

\ A A
fori =10,1,---, M. — 1. Letting X tend to zero in (4.17)-(4.19) we get the
system in variation (4.20)-(4.22) below

peis + £55 = kAT on @,
(4.20)
TE; = AP+ 507+ 20 on @,
satisfying the boundary conditions
a~5
L hiF=w  on X
v
(4.21)
og®

By 0 on X,
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and the initial conditions

u’ (ie, x) = 4° (ie, x)

@5 (ie,2) = n((i + 1)e, x)
fort=0,1,--- , M. — 1, where

and

@ (0,2) =0  on £,

(4.22)

on (2,

AMe, M (ie, x)) — 2(e, ¢ (ie, 1))

a((i+e,x) = lim

A

= z(e,¢" (ie,x))¢" (ie, z) + Z(e, ¢° (ig, x)),

with 7(-) the solution of Cauchy problem

7(8) + - 22n(s) = 0

2a

n(ie) = ¢= (ie, r)

that is

s € (ie, (i + 1)e),
(4.23)

%= (0,2) =0,

(i+1)e

(i +1)2) = exp(~ / %z(t, V)@ (e, ).

i€

(4.24)

We now introduce the adjoint state system. For this, the equations (4.20)
can be written in the form:

9 (i s
< —A
() =)

in Qf
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where
1 1 1
1 _ = _ 2 _
pe (kA 7'> 27pc (f At Za)
A= 9
2 174 1
; (ea+5)
0 0
D(4) = {(@D,v) € (@) x Q) 2 4 e 12(00), 21 - o}. Then,
we can deduce
/¢ 2
1
x(ka-7) -

aEaty)  sEary)

D(A*) = {(w,w € H?(Q) x H*(Q); —%ﬁ+h¢ =0, a—z = %aﬂ}. Thus

the adjoint state system is

le.
k 14 2 .

Pi+ —Ap — —p + =" = (v —02)" - xq, In @
pc TpC T

op°
ov

+ hpe =0 on Ef, (425)

p((i+1)g,x) =0, P (T,z) =0 on
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( z—: 652 A A g a
% 27 pc b 4a7pcp
2 1
—A £ T € _ 1 — . : €
+ A —d =y o) Xg, in @f,
dq°  2pcOp° 5
o o o S0 (4.26)
(i+1)e
3
¢ (G ea) —exp( [ 5 ar)
a
L X G((i+ 1)), ¢ (T,z) =0, on €,

for i = M, — 2, M. —3,...,1,0, where z(t,-) is the solution of (3.4).

Let us introduce the cost functional

1

Ji(w) = J*(w) + 5 u(w)

where I/(w) is the indicator function of the set U. If w} is an optimal
controller of problem (P¢) then

Jr(ws + Aw) — ji(wr)

>0, VA0
) =t VA=

Letting A tend to zero in above inequality, we get

/(gpE —1-8) - xqg, ¢ dtdx + /(us —89)" - xg, U dtdr (4.27)
Q Q
+ /w;k w dtdy + I, (wk,w) > 0, V€ Ty (w?).
s

Multiplying (4.25); by @ and (4.26); by ¢°, using integration by parts

and Green’s formula, we derive
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l
/piﬂadt dr + Ll p"Autdt dv — — [ pfusdt dx (4.28)
pc Tpc
Q;

n / 5dtdx+—/ 8“ 8p~€)dtd

_ / (u — 82)* - xqy T dida,

QF
/ pfdt du — (e / “A@Tdt dx (4.29)
4P 27 pe p Ay .
Qs Q5
14 0g? op° _OFF
— cpodt d —F — dt d
4a7pc/ ij2 /(81/(’0 p@ ) 7
Q e
£ / op°  _O¢ £ / .
= f—— — dt d FAQSdE d
+ T <q ov 7 ov ) R e o
e Qs

1 € =& > ~€
+ %/qapdtdx:/(ap —1—-01)xq, ¢ dtdx.

€

Now we multiply (4.21); by p®, (4.25)5 by 4° and, by subtraction we get

8p 8115
61/ v

Pp° = —p . (4.30)

Adding (4.28)-(4.29) and taking into account (4.21)s, (4.22)4, (4.30), we ob-

tain
/pfﬂsdt dr + /qt O°dt dor + — /p wdt dry

Q3 Q5
k 0€? 14 14
Auf AP® — 0 — —ut|dt d
+/ [pV 27'pc 7 4a7pc¢ Tpcu ] .
QE

2 1 2
—|—/q€ F—A@E + —@°+ —ff] dt dux,
T 2at T
QF
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= /(u6 —89)" - xq, U dtdx + /(gp8 —1—01) - xq, ¢ dtdz,
Q5 Q5
i.e., on the basis of equations in (4.20), from the last equality we can derive
that
/(piff + 075 + ;¢ + ¢ @) )dt dx + % /p%dt dry
Q5 e
= /(us —89)" - xg, U dtdr + /(goe —1=101) xq, ¢ dtdz.
Q5 Q5
T
By Fubini’s theorem, integration by parts formula, [(fg' + f'g)dt = fg |,

0
and relations (4.22), (4.25), the latter leads to

k
— [ pPwdt dy = /(us —82)" - xq, @ dtdr + /((,05 —1—-141) - xq, ¢ dtdz
pc
¥e Qs o5
and then (4.27) becomes
k
— /pE’LlNJ dtdy + /w:ﬁ) dtdry + I, (w},w) > 0 Vo € Ty (w?)

pc
b b

or

V(W) >0 Ve Ty(w?).

k 5 *  ~
(p_cp +w8’w)L2(E)><L2(E)

The last inequality is equivalent to
—r(t,z) € 0l (w}) ap.t. (t,z) €,
k
where r(t,x) = —p°(t,z) + w(t, x), and thus we can conclude that
pc
R, if r(t,x) >0,
wi(t,z) = (4.31)
0, if r(t,z) <O.
Summing up, we have proved the following maximum principle for problem
(P?)
Theorem 4.4.1. Let (u™*, ™, wk) be optimal in problem (P?). Then the

optimal control is given by (4.31) where (p®,q°) satisfy along with u*™*, p**
the dual system (4.25)-(4.20).



Chapter 5

An inverse problem governed
by a phase-field transition
system. Case 1D

5.1 An inverse problem

Denote by Q = (0,b;) C IR, 0 < by < +oo. Let T > 0 and (see Figure
5.1):
Qo={t,2) e Q=(0,T)xQ, ot) <z <b},
Yo={(t,x) € Q, t =07 (x)},
Y =(0,T) x {b1}.

Consider the following nonlinear parabolic system in one space dimension:

pec Uz + %9075 = kg, n Q07 (5 1)
TPt = a0 + 3, (9 — ¢°) + 2u in Qy,
subject to non-homogeneous Cauchy-Neumann boundary conditions:
Uy + hu = w(t), 0, =0 on X, (5.2)
u; =0, 0, =0 on X, (5.3)

73
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b

\ 4

f(oo)

Figure 5.1: Geometrical image of the elements in inverse problem (F;,,)

and initial conditions:

u(0,7) = up(w), ¢(0,7) = po(x) on o = [bo, bi], (5.4)

where, as usual, u is the reduced temperature distribution, ¢ is the phase
function used to distinguish between the phase of €, uy, ¢o : 2 — IR are
given functions, w : [0,7] — IR is the boundary control (the temperature

surrounding at z = b),
weU:={vel>(0,T]), —R<v(t)<0 ae te[0,T)},

and the positive parameters p, ¢, 7, &, ¢, k, h, a, have a physical meaning
(see page 18).

Assume that separating region between solid and liquid at the moment
t is given by the equation z = o(t) (denoted by t = 0~ 1(x) = f(z)) that is a
function of class C2(€);) such that (see Figure 5.1) Q; = {z € Q, f(z) <t}
is increasing in ¢, |V f(z)| # 0 for all z € Xy, Af(z) > 0 and, f(by) =0, 0 <
by < by.
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As regards the existence, we proved in this work that under appropriate
conditions on g, ¢o and w, the state system (5.1)-(5.4) has a unique solution
u, o€ W =W2(Q) N L*(Q).

Consider the following inverse problem:

(Pow) Given ¥ find the boundary control w € L*([0,T]) such that Qg is in
the liquid region, Q1 = Q \ Qo is in the solid region and a neighborhood

of X 1s the separating region between the liquid and the solid region.

where we setted
Qo= {(t,x) €Q, f(x) <t<T}.

This inverse problem is in general "ill posed” and a common way to treat
it is to reformulate it as an optimal control problem with an appropriate cost
functional. Consequently, we will concern in this section with an optimal

control problem associated to the inverse problem (F;,,), namely:
(P) Minimize

](’LU) = (@(ta CL’) —-1- 51)2 " XQo dtdx

N | —
@\

((u<t7 33) — (52)+)2 “XQ, dtdxr +

DN | —

/T w?(t) dt,

on all (u, ) solution of the system (5.1)-(5.4) and for allw e U. >0

1S a gwen constant

_l’_
() e
S

In the statement above we denoted by u™ the positive part of u, i.e.

n u, if u>0,
Uu =
0, if u<O0,

We point out that problem (P) is an optimal problem with boundary
control w(t) depending on time variable ¢ € [0, 7], we studied it, in previous

chapter, in a more general case (w(t,z), n € {1, 2, 3}). The study about
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this particular case is dictated by the industrial experiment that we want
simulate in the last section of this chapter (casting wire).
We associate to the nonlinear system (5.1)-(5.4) the following approxi-

mating scheme (¢ > 0):

peus + £§ = kug, in Q={(t,x)eQ, e<t<T},

TE; = 20, + 9" +2u° in QF, :

(5.5)
under the boundary and initial conditions:

uo, + hu® =w(t), ¢, =0 on X°=[,T] x{b}, (5.6)
u, =0, =0 on X5={(t,x)eQ, e<t<T}, (5.7)
u(e,x) =uo(z) ¢(e,2) = 2(e, 9% (e,2)) on (.. (5.8)

where z(e, ¢° (¢,x)) is the solution of the Cauchy problem:

2'(s) + i,23(5) =0 s e (0,¢),

2a (5.9)

2(0) =¢2(e,2)  ¢2(0,7) = po(),

and ¢ (e,2) = limy . ¢°(t,x), ¢° (e, 2) = limy. p°(t, ).

The convergence and weak stability of the approximating scheme (5.5)-
(5.4), in a more general case (w(t,x) in place of w(t)), was studied in the
third chapter.

Corresponding to the approximating scheme (5.5)-(5.4), we will consider

the approximating optimal control problem:

(P?) Minimize L(w) = g/[(ue(t,x) - 62)+}2 “Xq, dtdx
Q

DO | —

1
+= /((p’s(t,x) —1-8)% xq, dtdr +

T
5 / w(t) dt,
Q 0

on all (uf, p°) solution of (5.5)-(5.4) corresponding to w € U.
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As in the previous chapter, problem (P) can be approximated for ¢ — 0
by the sequence of optimal control problems (P¢) and so the computation of
the approximate boundary control w(t) can be substituted by computation

of an approximate control of (P?).

5.2 The convergence of problem (FP°)

Theorem 5.2.1. et {w!} be a sequence of optimal controllers for problem
(P¢). Then

hH(l) inf Li(w) =inf {Lo(w); w e U} (5.10)
and
lir% Lo(w?) =inf {Lo(w); w € U}. (5.11)

Moreover, every weak limit point of {w!} is an optimal controller for problem

(P).

Remark. Theorem 5.2.1 amounts to saying that (P¢) approximates problem
(P) and, an optimal controller {w}} of (P¢) is a suboptimal controller for
problem (P).

The main ingredient in the proof of the Theorem 5.2.1 is the following

Lemma.

Lemma 5.2.2. If {w’} is a sequence of optimal controllers for problems (P*)
then there ezists {,} — 0 such that

wl — w" weak star in  L™(X), (5.12)
ui  — u* strongly in  L*((0,T); H(Q)), (5.13)
o — " strongly in  L*((0,T); H(Q)), (5.14)

where (uf ,of wi) = (uéﬂf“,goévf”,w:n) is the solution to (5.5)-(5.8) cor-
responding to w = wk and (u*,p*,w") = (u", ", w*) is the solution to

(5.1)-(5.4) corresponding to w = w*.
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Proof. of Theorem 5.2.1. Let {w}} be an optimal controller for problem (P¢)
and let (u, ¢, w?) be the corresponding solution of (5.5)-(5.8) with w = w.
Lemma 5.2.2 above allows us to conclude that there exist w* € L*°([0,T])
and {e,} such that relations (5.12)-(5.14) are valid.

Since:

u — g/((u(t,x) — 52)+)2 “XQ, dtdx,
Q

1
o=y [(oltin) = 1= 80 xg, dida,
Q

1
w — §/w2(t) dt

0
are convex continuous functions, it follows that these are weakly lower semi-

continuous functions. Hence

Lo(w*) < liminf Lg* (w} ). (5.15)

Let w* be an optimal controller for problem (P). Since w? is an optimal
controller for problem (P°") it follows that

Ly (w? ) < Lo(w®).

en/ —

But (see (5.13) and (5.14)) uZ — u™ ¢ — ™ strongly in L*((0,T); H'(Q))

En

and so, the latter inequalities implies

lim L (0°) < Lo(w®). (5.16)

n—oo

From (5.15)-(5.16) we get

Lo(w") < liminf Lg" (w? ) < limsup L™ (w? ) < Lo(w™).

n—0oo n—o0

Hence

liminf L™ (w? ) = Lo(w*) = inf{Lo(w), w € U}

en—0 n

and then (5.10) holds.
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To prove (5.11) we set: @, = u“<, . = ¢ (we recall that w* is choose

to be optimal in (P¢)). On a subsequence {e,} we have

w? — w’  weak star in L>=([0,T)),
Ue, — U strongly in L((0,T), H()),
Pen, — P strongly in L2((0,T), H (),

0

where (u, ¢, w°) satisfy (5.1)-(5.4), i.e., (u,¢) = (u*’,©""). Therefore, we
derive
Lo(w®) <inf P
and, because {¢, } was choose arbitrarily, (5.11) follows.
Now, taking into account that w? is an optimal controller for problem
(P?), it follows that
Li(w?) < Li(w) Yw eU.

On the other part, on the basis of relation (5.15), we can put
Lo(w*) < lirerl_}orlf Lg(w?)
and thus, along with previous inequality, we may conclude that

Lo(w*) <lim Lg(w) Vw €U.

e—0
Consequently
Lo(w*) < Lo(w) Yweld

i.e., the weak limit point w* is a suboptimal controller for problem (P). This

completes the proof of Theorem 5.2.1. ]

5.3 Necessary optimality conditions in (P°)

Let (uf, 9% w) be the solution of (5.5)-(5.8) and let w € L*>[0,T]) be
arbitrary but fixed and A > 0. Set w* = w + M and let (u*<, ¢*¢) be the
solution of (5.5)-(5.8) corresponding to w?, that is:

A £ Ae _ AE : €
{ peuy” + 5oy = kug; in QF,

5.17
Ot =N+ P 2 i Q5 47
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subject to non-homogeneous Cauchy-Neumann boundary conditions:

e Ae A e €
uy® + hu™® = w?, 0 c =0 on X°,

T

uy© =0, pr°=0  on X,
and initial conditions:

(e, 1) = ug(x), ©)°(e,x) = 2Me, po(z))  on Q,

where 2*(g, po(z)) is the solution of the Cauchy problem:

1

(z’\(s))/ + —(z)‘(s))3 =0

5 s € (0,¢),

AN0) = @2 (e, 2) P27(0, ) = o(x).

(5.18)
(5.19)

(5.20)

(5.21)

Subtracting (5.5)-(5.8) from (5.17)-(5.20) and dividing by A > 0, we get

( e € e e e e
uME—u L etE—p uME—y .
}C< A >t 2< A >t k( A ) 1 E(g)’
xrxr

i s0>\,es_spe u)\,e_ue . e
L () () i Q5

with the boundary conditions on X»*

uME—u® uMi—ut _ wr—w €
ANe__ A€
(“0 S ) =0 on XFf,
T

9
on X

uME —y® 5
( 5 )x:O on X,
) ~0 on X,

and the initial conditions

u)"f e,x)—uf(e,x

{—(’))\ (’)——O on £,
A’E(& ) g (67 ) Z>‘( ) ( )) Z( ) ( ))
P+ 5 + = &,pol® X £:0 on §..

(5.22)

(5.23)

(5.24)

(5.25)



5.3 Necessary optimality conditions in (P?)

81

Letting A tend to zero in (5.22)-(5.25) we get the system in variation
(5.26)-(5.29) below

pet; + 57 = kg, in- ¢,
(5.26)
TE] = 205, + 59" + 205 in Q,
u, +hu"=w  on XF, (5.27)
o5, =0 on XF,
is =0 55,
e o = (5.28)
7=0 on 5,
1%5(5,33) =0 on €. (5.20)
¢ie,x) =nle,x)  on Q.
uz\,e — Ut
where 4° = lim ———, etc., and
—0 )\
Mg, 0(2)) — z(e, po(2))
new) = lim : -
= e o) - (e, 2) + Z(e, po()) = Z(e, po(x))
with (-, z) the solution of Cauchy problem
W (s,2) + —22(s,0)n(5,2) =0 s € (0,),
2 (5.30)

n(0,2) = ¢° (g, 2),
that is

£

3
n(s,z) = exp(— / 2—2(75, ~)2dt> ¢ (g, ). (5.31)
a

0
We now introduce the adjoint state system. For this, the system (5.26)

can be written in the form:

©)-) e

where
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i(kA_é) a prc (£2A+%>

{eard)

RER .

(here Ay = ¢,,). Then

A" =

“p(€2rg)  (eary)

and thus, the adjoint state system is

(0, (2)-(£50)

Ope 0
1.e.
( € ﬁ o L 2 e _ c_4 + . . e
pi+ pcpm pcp +-q Bu® —d02)" - xqo,  In QF,
pi + hp = O, on 25, (532)
pi(5,1'>20, ZL'EQT,
\ pe—(T7 .73) =0, x € Qrp,
4 652 52
e _ e e > €
% QTpCpM 4ancp + T oz
+ﬂq€:(§06_1_51)'XQ07 in an
14
E 28
} 4= 5P on =5 (5.33)
=0, on X,
Q—( _exp(IQi )qi_(é,l’),
L 7<T, .Z') = 0, S QT,
Let us introduce the cost functional
1

Li(w) = Lg(w) + §Iu(w)
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where, as usually, I;;(w) is the indicator function of the set U.
If w* is an optimal controller of problem (P¢), then

L5 (w* + M) — L (w*

)
>0 YA>0.
\ = >

that leads to (letting A tend to zero)

5/ a (v — M)t xo, dtdm—}—/ & (p° —1—101) - xq, dtdz (5.34)
Q

T
+ /w* W dt+ I (w*,9) >0 Vi € Ty(w*).
0

Multiplying (5.32); by @ and (5.33); by ¢, using integration by parts

and Green’s formula, we get

k 14
/piffdt dx + pius,dt dv — — [ pfutdt dx (5.35)
pc T,OC

€
0

+ / edtdx—i——/pu—px dt dry

= ﬁ/(uE — 89)" - xg, U dtdr,

Q5
~€ 862 g £ ~E
g ptdt do — P P dt dr — P @tdt dx (5.36)
271 pc datpc
Q5 @5
0€?

€ ~g £ ~¢ 52 € ~€ ~€ €
5 /(W —p %)dt dy + — (q Dy — P qx) dtdry
TpC T
€ €

2
+ g—/qul,gcaltd:v—l——/ o°dt dx
-

= /(905 —1—=01) xq, ¢ didx.
Qs
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Now we multiply (5.27) by p°, (5.32)s by @°, by subtraction we get

pou —uLp® = —pw. (5.37)

Adding (5.35)-(5.36) and taking into account (5.27)s, (5.33)a, (5.37), we
obtain
£ ~E £ ~€ k £ ~

/ptudtd:v + /qtgo dtdx%—E/pwdtdv
Q5 o ze

k 02 14 14

+ /pE s, - § - P — — i |dt do
pc 21 pc datpc TpC

+ /((p6 —1-08)-xq, ¢ dtdz,
Q5

i.e., making use of equations in (5.26), the last relation leads to

k

/(pfff + P75 + ;@ + @) dt dx + — /peﬁ)dt dy =
pe

Q5 e

= ﬂ/(u8 —8)" - xg, U dtdr + /(ng —1—-5)-xq, ¢ dtdz,
Q5 Q5
By Fubini’s theorem and definition of distributional derivative, the latter

relation give us
Ll /pewdt dy = ﬁ/(u6 —02)" xq, U ditdx + /(cp6 —1-61) - xq, ¢° dtdz,
pc
ze Q5 %
and then (5.34) becomes

T
k
— [ pPw dtdy + /w*ﬁ) dt + I, (w*,w) > 0 Ve Ty(w")
pc

e 0
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or

/% (5,b2) + w'(s)]@(s) ds + Ly(w*, @) >0 Vi € Ty(w").

The last inequality is equivalent to

—r(t) € 0Ly (w*) a.p.t. (t,z)€[0,T],

where r(t) = ﬁpa(t, b1) + w(t), and thus we can conclude that

0, if r(t) >0
—-R, if r(t) <0.
Summing up, we have proved the following maximum principle for prob-
lem (P°)

Theorem 5.3.1. Let (u™=, ™ w*) be optimal in problem (P¢). Then the
optimal control is given by (5.38) where (p®,q°) satisfy along with u*™¢, p**
the dual system (5.32)-(5.33).

Now we will present a numerical algorithm of gradient type in order to

compute the approximating optimal control stated by Theorem 5.3.1.

AlgorithmInvPHT1D (Invers PHase Transition case 1D)

P0. Choose w® € U and set iter= 0; Choose & > 0;
P1. Compute z(e, ) from (5.9);

P2. Compute (u®"" %) from (5.5)-(5.8);

P3. Compute (p&"" ¢="") from (5.32)-(5.33);

P4. Fort e [0,7], compute

iter e,iter iter
t)=— - p> t,b ;
r () pc p (7 1)—|—U} )

P5. Set
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R if riter(4) >0,
witer(t) _
0 if riter(t) < 0.

P6. Compute Ay, € [0, 1] solution of the minimization process:

min {L5(Aw™ + (1 — @™, X € [0,1];

Set witer+1 — )\iterwimr + (1 _ /\iter)wite'r;
P7. If | wt — i || < 5 /* the stopping criterion */ then

STOP else iter:= iter+1; Go to P1.
The “stopping criterion“ in P7. may be replaced with the following one:

| Zj(wert) = L) || <

where 7) is a prescribed precision.

5.4 Numerical experiments

Given the values ¢, T' (¢ << T') and considering M as the number of

equidistant nodes in which is divided [e, T, we set
ti=e+(@—1)-dt i=1,2,....M, dt=(T—-¢)/(M—-1).

Let by = VT = /s and choose jbp = M + 1. We consider now )y =
[bo, b1] C IRY (by >> T) and we introduce over it the grid with N equidistant

nodes
On the subinterval [0, by) we take the set of nodes obtained as follows

ye=by—Vt;, k=M-—i+1, i=1,2,...,M.
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Thus, on the entire domain 2 = [0, b;] we will consider in our numerical

experiments the following set of points:

[yl,yQ,---7yM,Jf1 - ijmx?""ax]\fL

1.e.

[0="bo — Vtar, bo — /ta—1, -, bo — /&, by, bo + da, ..., bi].

\ 4

0 Xioo-m Xpp-; Kot X, Xy X

Figure 5.2: The discrete form of Qy, 3o, and ¥ in (Py,,)

The Figure 5.2 show the discrete form of @)y, X and X, originally intro-
duced in Figure 5.1.
For each time-level 4, the mesh’s of Q;,, i = 1, M, consists in (£2;, = Q.):

and then the unknowns vectors, denoted by 4, @', are

_ i

U = (Wjpy—is Wiy i1 - - s Wings Ujpg 15 - - - » UN)

—1

i __ (i i i i i
¥ = (%’bo—ia Pibg—i+1r - -+ Pibgr Pibo+1r - - - , PN

The state (u®,¢°) in (5.5)-(5.8) will be approximated by the matrix
( u; gp; ) , where
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Q;[-I — ——t + B

i 0 N K Xibﬂ L A

Qt . + — 4 >
0 K R Xy Ky \

Figure 5.3: The mesh €2,

ug =u(t;, x;)
i = ©°(ti, z5)

Using a standard implicit scheme, the system (5.5) is discretized as

i=T1,M, j=7jby—1,N.

| dt . da (.
—k— -’ 2h—) Ut — ks -l —t 5.39
(d:x)Q Ujt1 + (pc+ (dx)2) u; (d:r)2 uy—l+2903 ( )
) ¢ ) _ -
= peuy oot i=1L M, j=jb =i N,
. dt . a dt.
—2dt - uf — §QT-¢3+1+(T+252 - =) (5.40)

dt , . _
2 7 i—1 . . 0 ;
— gwwjil_—Tgﬁj Z_—].,lw, j_—jbO—Z,N.

From (5.6)-(5.3), using central differences and taking uly,, = ul, we
obtain, for ¢ = 1, M:

uy ;=142 -dx-h)uly -2 dv-w' (on X°), (5.41)
90§V+1 = Spg\fv Spj‘bo—i—l = Soé'bo—i (on X and X55), (5.42)
u;’bofifl = ué’bofi (on X5), (5.43)

where w' = w(t;), i =1,2,..., M.

From the initial conditions (5.8) we have

U?IUO(.TJ‘) j:ij07N7
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and, involving the separation of variables method to solve the Cauchy prob-

lem (5.9), we derive

ar
ar +e- ¢ (0,2;)

0 = 2(e, 7 (0,1;)) = soi(@xj)\/

Replacing (5.41)-(5.43) in (5.39)-(5.40) and setting

dt 14
c=—k (@) Cy = pc — 2cy, 0325,
dt dt
_ _ 2 _
cy = —2-dt, 05——5-(dm)2, 06—7'—205—%,

the system (5.39)-(5.40) can be rewritten, in the matrix form, as

A A —1 b 1—1 _
A B v i =1, (5.44)
Ao Ag @' bo'™

where Ayy, Aia, Az, As, having the same dimension: M + N-jbo+i + 1,

are given by

51 C1 0
C3 0
Cit Cp C1 - 0 0
0 C3
All - A12 - .
C @ Cc
1 2 1 0 0 cs
0 0 0o --- 0 1 +c1 Cin
cy 0O 0 cs c5 0 0 0
0 ¢y Cs Cg Cs
A21 = A22 - :
O 0 --- Cq 0 0o 0 o0 --- C; Cg Cs
0 0 -+ 0 ¢4 0 0 0 --- 0 ¢ ¢

where ¢, =¢; + ¢y, iy =¢ — (1 +2-dx - h), ¢ = ¢5 + ¢, and

it preoui et j=jbg—1, N —1,
U =
pre-ut ez oyt +2-drwt
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bl =@, =T =T,

The adjoint state (p°, ¢°) in (5.32); and (5.33); is approximated by the
matrix < P g ) , where

i. = & ti7 €T, —_
v =rlters) L _p = =i N .
q; = ¢ (ti, 7;)
Following the same way as in the case of the state system, the discrete

systems corresponding to equations (5.32); and (5.33); are

ko dt < 14 ko dt ,
—_— - P, = —dt+2——=+1) P 5.45
pc (dx)? Pin (pCT i pc (dz)? * ) Pi (5.45)
Kk dt ;
pc (dx)2 p] 1 + dt QJ

— z—i—l +ﬂdt( i+l 52) - XQo

€2 dt , €2 dt l ,
S B 1) 2 - dt) - p’ 5.46
2pcT (dx)? p]+1+< 2pct (dx)?  4pera > Pi (5-46)
e w ea
2pcr (dx)? Pi1 7 (dz)? G+
£ dt
— (g mdt 1) g
( T (dz)? 2 - 9
52 dt i i+1 i+1 -1 5
+ o g = —q; + (¢ —01) - XQo
fori=M —1,0, j=jby, N, where (ut")" = (u¥)(ti1, 7;).
From (5.32), we obtain
(2°):  py—py_i+dz-h-py =0 i=M-1,M~-2,...,1,0, (5.47)

and from (5.33)2 we derive

¢ o ,
(X): 2_’Oc<q5\f_q§\771):p§\f_p§\/fl i=M-1,M-2,...,1,0. (5.48)
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Implying now (5.32)3 and (5.33)3, we get
(X5) : p;bg—i—l = pz‘bo—m Q;‘bo—i—l = qj’bo—i i=M-1,...,0. (5.49)
From the final conditions (5.32), and (5.33)4 we have
py' =0 ¢ =0, j=jbo— M, M, (5.50)

and, fori =M —1,M —2,...,1,0,
. / 3 .
;= eXP(/ %ZQ(L -)dt )qi,j, @' =q" (5.51)
0
Replacing (5.47)-(5.49) in (5.45)-(5.46) and setting

ciy =k -dt/(pc- (dx)?), c12 = 2-dt/T,
cro="L-dt/(pet) +2- 11 + 1,
c13 =& dt/(T - (dx)?, c1a = —L - c13/(2pc),

c15 = —2-c1y — L dt/(4pcTa) c16 = —2 - c13+dt/(27a) + 1.
then (5.45)-(5.46) can be rewritten, in matrix form, as
B B =i b i+1
11 12 p' _ p' 1 (5.52)
By Ba 7 bg'*
where By, Bia, Bai, Bag, (having the same dimension M + N — jbg +
i+ 1,) are given by

ciot+ten ¢ 0 --- 0 0
C11 Ci0 (11
By =
0 0 0 - e C10 C11
0O -+ 0 —1+4c¢y cot+cll+dr-h+1
cio O 0
0 c1o - 0 0
By = :
ci2 0
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ciut+ci5 ca 0

Ci4 Ci5 Ci14
By =
C14 C15 C14
0 014—1 614+Cl5+dl"h+1
ciz+ce ¢z 0
c13 cig ci3 -+ 0 0 0
By =
C13 C16 C13
0 0 0 -+ 0 ciz—g C3+clb6+55+do-h
and
bpi—H - _p;‘—H + ﬁdt(u;+l - 52)+ " XQo> j = ]bO - i? N7
bqi—H — _q;+1 + (90;'+1 - (51 - 1) " XQo> ] = ]bO - ZvN - 17

—gN (N =0 = 1) xg, — da - b pid
We illustrate now some pictures, about numerical experiments, got through
the implementation in MATLAB of the algorithm InvPHT1D.

05F

05F

Figure 5.4: The initial condition g
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05

05F

Figure 5.5: The solution z(g,-) of Cauchy problem (5.9)
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Figure 5.6: The approximate solution u° and u™
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0ar

051

Figure 5.7: The approximate solution o™
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Figure 5.8: The initial control w° and optimal control w!°
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Figure 5.9: The values of functional j¢(w)
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Conclusions

Our goal, in this work, was to study an application of the Caginalp model
to an industrial solidification process of a molten metal, called countiuous
casting. This application pushed us to develop the theory of the phase-field
transition system for non-homogeneous Cauchy-Neumann boundary condi-
tions, so that we developed a result about the existence and the regularity of
the solution in this case. The non homogenous boundary condition could be
understood as boundary controls. To calculate the minimum effort to drive
in T' time a material, occupying a region (), which at the initial moment is
in both the states, to a pure solid state, we coupled the system (2.1) — (2.3)
with a functional cost j. A great difficulty to solve problem (P) comes to
the fact that the state is governed by a non linear law. We used a product
formula approach to solve this inconvenience. Thus we associated to the non
linear system (2.1)-(2.3) an approximating scheme of fractional steps type
(3.1)-(3.3) and involving its solution in the functional cost j we got an ap-
proximating problem (P¢) for (P). We proved that an optimal control for
(P7) is a suboptimal control for problem (P). We got also necessary opti-
mality conditions for (P¢) and we used them to develop a MATLAB software
that simulate the 1D-case of the solidification process, (casting wire). The
possible applications suggest us many way in which we could develop this

work, as:
e Develop the software in the 2D-case,

e Implement the Fast Fuorier Transform in the software to calculate the

approximate solution (u®, ¢, w*®),
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e (Calculate the minimum time 7" to get the full solidification process,

e Implement, for several apghcatlons as nonlinear boundary conditions,

a Stefan-Boltzmann law — + a(u* — @*) = 0.

ov



Appendix A

Linear parabolic partial

differential equations

For the case of a second-order parabolic equation!, by a non-singular

change of variables, it can be reduced to the form

n

Uy — Z Aijlg,e; + Z Aty +au = f (A.1)
ij=1 i=1
with a positive-definite form ) | a;;&;€;. A typical representative of a parabolic

equation is the heat equation

Uy — Z Ugyz; = 0 (A.2)
ij=1
the main properties of which are preserved for a general parabolic equations.
The following problem are fundamental in studing the equation of parabolic
type (A.1).
The Cauchy-Dirichelet problem: To find a function u(t, x) that satisfies
(A.1) for z € IR", t > 0 and satisfies the initial condition

Uco = 6(x), zE R

1Springer Online Reference Works
http://eom.springer.de/1/1059380.htm
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The first boundary value problem in which (A.1) is specified in a cylinder
Q::=10,T] x Q,

where Q C IR". It is required to find a function u satisfying the initial
condition

Uli—o = ¢(x), x € €,
and the boundary condition
Ul zean = ¥(t, x) t e [0,7]. (A.3)

The second and third boundary value problems differ from the first only in

condition (A.3), which is replaced by the second boundary value condition

Oul =N agun = v(te),  te[0,T) (A1)
v z€oQ ij=1
or the third
ou
— +ou =(t,x), t€[0,7]. (A.5)
<8V ) S

where v;, 1 <17 < n are the componet of the outward normal v.

The classical formulation of these problems requires that the solution
is continuous in the closed domain, that the derivatives with respect to the
spatial variables up to the second order are continuous inside the domain,
and in the case of the second and third boundary value problems that the
first derivatives are continuous up to the lateral surface of the region 2. For
the Cauchy-Dirichelet problem, or if €2 is unbounded for the boundary value
problems, it is also required that the growth of the solution w is specified, in
a suitable way, as |z| — oco. For example it could be bounded.

Suppose that equation (A.1) is uniformly parabolic (supRe \,, < —d)
and that the coefficients of the equation, the initial and boundary conditions
and the boundary domain are smooth enough. Then the solution of the
Cauchy-Dirichelet problem and the first boundary value problem exist and

are unique. If a < 0, ¢ > 0 and if some necessary compatibility conditions



A Linear parabolic partial differential equations 101

are satisfied, then a similar result also hold for the second and the third
boundary value problems.

Uniqueness in these problems follows from the mazimum principle. Sup-
pose that the coefficients in (A.1) are continuous in Q7 and that €2 is bounded,
let:

L:=0Qr\{(t,x): z€Q, t=T}

and let

M = maxa, N = max f.
Qr Qr

Then for any solution of (A.1)
ue C(Qr)UC*(Qr\T)
the following estimate holds
lu(t, )| < eM{Nt + max lul}, (t,z) € Qr.

For the boundary value problems we recall now an existence result. If
p > 1, the coefficients a;; are bounded continuous functions in @, while
ZLOSC(Q) (see [15,
p. 343]). Suppose, further, that the quantities | a;| ZLOTC(Qt,HT) and |a|

the coefficients a; and a have finite norms ||al-]|l]ff(Q) and |a|

loc

L3(Qt,t+r)
2
tend to zero for 7 — 0. Let 9Q € C?. Then for any f € LP(Q), ¢ € sz ")

1

2-5.1-5 e . L
and ¢ € W, *° *(X), satisfying the compatibility condition

Pla = ¥li=o-

the boundary value problem has a unique solution u € ng(Q) It satisfies

the estimate (see [15])

HMW@W@SCﬁHﬂhmm+HWuéfmY+WMWf;P% 2

()

2
p
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Appendix B

Compute the integral value on

Qo

% addpath d:\Benincasa\LUCRARE_3\Programe_Matlab
J =20; L1 = 0;

J1=0; J2=0; J3=0;

dt = (T-eps)/(M-1);
L1 = .6xup(1,1).72 + .b*xup(1,N+1).72 ...
+.5%fip(1,1).72 + .6xfip(1,N+1).72
+ sum(up(1,2:N)."2) + sum(fip(1,2:N)."~2);
L1 = L1x.5;
for i=2:M-1
Ni = MpN - jbO + i + 1;
L1 = L1 + .B*up(i,1).”2 + .Bxup(i,Ni)."2 ...

+ .5*fip(i,1).72 + .5*fip(i,Ni)."2
+ sum(up(i,2:Ni-1).72) + sum(fip(i,2:Ni-1).72);

103
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L1 = Lixdx;

end

L1

L1 + (.5*xup(M,1).72 + .5*xup(M,MpN)."2 ...
+.5xfip(M,1)."2 + .Bxfip(M,MpN)."2
+ sum(up(M,2:MpN-1).72) + sum(fip(M,2:MpN-1).72))*.5;

L1 = Lixdt;

o
I

J + .5xdt*witer(1)”"2 + .5*xdt*witer (M) 2;
J + sum(dt.*witer(2:M-1).72);

o
Il

[
I

J + L1;



Appendix C

Implementation of the
algorithm InvPHT1D

% Implementation of the algorithm InvPHT1D

h

% addpath d:\Benincasa\LUCRARE_3\Programe_Matlab; format short e
h

% PO. Initial values
% POO. Parameters in functional cost
clear

R = 20;

niu = .1;
1.;
deltal= .1;
delta2= 1.;

beta

% PO1. Physical parameters

105
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prho= 7850;

pc = 12.5;

pl = 65.28;

pcsi= .3;

ptau= 1.e+6xpcsi”2;
ph = 32.012;

pk = 7.8e-6;

% P02. Construction of the time and space meshs
T=input (°T=");
eps=input (’eps=’);
M=input (’M=");
dtM = (T-eps)/(M-1);
t=eps:dtM:T;
N=input (’N=");
b0=sqrt (T);
bil=input (’ (b1>sqrt(T)) bi=’);
dx=(b1-b0) / (N-1) ;

x=b0:dx:bl;

for i=1:M
1=M-i+1;
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xt (1)=b0-sqrt (t(i));

end
xMN = [xt x];
for j=1:M-1

dxt(j) = xt(G+1) - xt(j);
end

dxt(M) = x(1) - xt(M);
MpN = M + N;
jb0 =M + 1;

% store the maximum space for: u, up, fi, fip, p, q

u = zeros(1,MpN);
up= zeros(M,MpN) ;

fi= zeros(1,MpN);
fip= zeros(M,MpN);

zeros (M, MpN) ;

o
Il

zeros (M, MpN) ;

Q
I

% P1. Compute z(eps,.) from (1.9)

dx1 = (b1-xt(M))/63;

x1 = xt(M) :dx1:b1l;

fio=[-1.4 -1.256 -1.2 -1.17 -1.15 -1.1 -1.08 -1.0 -.95 -.9 -.85 ...



108 C Appendix

-.88 -.6 .0 .56 -.92 -.26 .8 -.7 .68 .75 .58 -.63 -.59 .69 -.72...
.7 -.59 -.5 .7 -.79 -.87 -.88 .0 .72 -.8 .81 .0 -.89 .0 .7 .55 ...

.68 -.49 .79 .0 -.1 -.8 -.78 -.83 .69 -.8 .68 .6 .7 .69 1. 1.08 1.1 ...

1.15 1.17 1.2 1.25 1.3];

figure(1),
pA subplot(1,2,2);
fiOcs = csapi(x1,fi0’);
fnplt (£i0cs)
title(’ The initial condition fi_0’);

pa = sqrt(pcsi); % .8
pad= 1./(4x*pa);

for j=1:N+1

fihat0(j) = fnval(fiOcs,xMN(M+j-1));

uhat0(j) = (fihat0(j)*fihat0(j)*fihat0(j) - fihat0(j))*pa4d;
end
JuhatO

% Solve the Cauchy problem on [0,eps]

z_eps = fihatO.*sqrt(pa./(pa + eps.*fihat0.72));

hsubplot(1,2,2);

figure(2),

z_cs = csapi([xt(M) x],z_eps’);

fnplt(z_cs)

title(’ The solution of Cauchy problem (1.9)’);
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T

A
h

for j=1:N+1

end

fip(1,j)= z_eps(j);
up(1,j) = uhat0(j);

% P1.1. Choose w~(0)(t) from [0O,R], t\in [0,T]

W

= zeros(1,M);

witer= zeros(1,M);

hw(l) = 1.;
%for i=2:M
w(i) = w(1l) + (-1)"1i%250;

T

%end

for i=1:M
w(i) = 0. + (-1)"i*R;

end

witer

gettime (&tt);

printf ("\n timpul curent

: %d,%d,%d,%4d\n" ,tt.ti_hour,

tt.ti_min,tt.ti_sec,tt.ti_hund);

getch();

itmax

V]

= input(’itmax:’);

zeros(1,itmax);
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for iter = 1:itmax

for j=1:N+1
fip(1,j)= z_eps(j);
up(1,j) = uhat0(j);

end

% P2. SOLVE THE LINEAR SYSTEM (1.5)-(1.8)

c3 = pl/2;
c4d = -2xdtM;
for i = 2:M

Ni = MpN-jbO+i+1; % number of nodes for Omega_i: MpN-(jbO-i-1)

d = zeros(1,2*Ni);

aa= zeros(2x*Ni,2*xNi);

iml i-1;

ipl = i+1;

% the right side in (5.6); j=jbO-i:MpN

for j=2:Ni
d(j) = prhoxpc*up(iml,j-1)+c3*fip(iml,j-1);
end
%d(Ni) = prhoxpckxup(iml,Ni-i)+c3*fip(iml,Ni-i)+2*dx*w(iml);
d(1) = d(2)-1.5;

for j=2:Ni
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jj o= Ni+ j;
d(jj) = ptauxfip(iml,j-1);
end
d(Ni+1) = d(Ni+2)-.6;
hd
pa=28.;
cl
c2
cb
c6

-pk*dtM/ (dxt (M-i+1)*dxt (M-i+1)); % dxt(M-1)!

prho*pc - 2%*ci;
- pcsi~2xdtM/ (dxt (M-i+1)*dxt (M-i+1));
ptau-2*c5-dtM/ (2*pa) ;

aa(1,1)
aa(1,2)

cl + c2;

cl;

aa(1l,Ni+1)
aa(Ni+1,1)

c3;
c4;

aa(Ni+1,Ni+1)
aa(Ni+1,Ni+2)

c5 + c6;

ch;

for j=2:ipl % matrices A_11, ... in (5.6) for j=jb0O-i:jb0; dxt !

cl
c2
cb
c6

-pk*dtM/ (dxt (M+j-i-1) *dxt (M+j-i-1)); %odxt(j)!

prho*pc - 2x*ci;
- pcsit2*dtM/ (dxt (M+j-1i-1)*dxt (M+j-1i-1));
ptau-2*xc5-dtM/ (2*pa) ;

cl;

c2;

aa(j,j-1)

aa(j,j)

aa(j,j+1) = ci;
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aa(j,Ni+j)=c3;
aa(Ni+j, j)=c4;

aa(Ni+j,Ni+j-1) = c5;
c6;

ch;

aa(Ni+j,Ni+j)

aa(Ni+j,Ni+j+1)

end

% matrices A_11, ... in (5.6) for j=jbO+1:MpN; dx !

cl
c2
cb
c6

-pk*dtM/ (dx*dx) ; % dx!

prho*pc - 2%cil;
- pcsi~2%dtM/ (dx*dx) ;
ptau-2*c5-dtM/ (2*pa) ;

aa(Ni,Ni-1)= 1 + c1;
aa(Ni,Ni) = cl + c2 - 1 - 2*dx*ph;

aa(Ni,2*Ni)= c3;
aa(2xNi,Ni)= c4;

aa(2xNi,2xNi-1)= c5;
aa(2xNi,2*Ni) = cb + c6;

for j=ipl+1:Ni-1

aa(j,j-1) = ci;
aa(j,j) = c2;
aa(j,j+1) = ci;
aa(j,Ni+j)=c3;

aa(Ni+j, j)=c4;
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aa(Ni+j,Ni+j-1) = c5;
aa(Ni+j,Ni+j) = c6;
aa(Ni+j,Ni+j+1) = cb;
end
haa

% Compute the solution of (5.6) system

z = zeros(1,2%Ni);

[L,U]= 1lu(aa);

z = U\(L\d”);
%z = inv(aa)*d’;
%z = aa\d’;

Y%rcond(aa) %size(aa), cond(aa),
% uti, fi~i;
for j=1:Ni
up(i,j) = z(j);
fip(i,j)= z(Ni+j);
end
end % next i - primal system

% Grafic up_M, fip_M

viz = 0;
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viz=input (’Reprezentati grafic up & fip 7 (y=1,n=0):’);
if viz ==

grafic_up;

grafic_fip;

viz = 0;

end

% up = positive part of u(i,:)

for i=1:M
Ni = MpN - jb0 + i + 1;
for j=1:Ni
if up(i,j)-delta2+deltal > 0
up(i,j) = up(i,j)-delta2+deltal;
else
up(i,j) = 0.;
end
end

end

fip = fip - deltal - 1;

% Compute the integral value on Qo !!!!

int_Jeps;

vj(iter) = J;

% P3. Solve the dual system (4.16)-(4.17)

pwork = zeros(1,M);
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wwork = zeros(1,M);

pwork(M) = eps;

% the final conditions

p(M,1:MpN) = 0; q(M,1:MpN) = 0;
p(M,MpN) = eps;

cl2 = 2xdtM/ptau;

for i = 2:M
1 = M-i+1;
lpl= 1+1;

N1 = MpN-jbO+lpl; % number of nodes for Omega_l: MpN-(jbO-1-1)

d = zeros(1,2%N1);
aa= zeros(2xN1,2x*N1);

% the right side in (5.14); j=jb0-1:MpN

for j=1:N1
d(j) = -p(1p1l,j+1)+betaxdtM*up(lpl, j+1);

end

for j=1:N1-1
33 = N1+ 3
d(jj) = -qp1l,j+1)+fip(1pl,j+1);

end
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d(2#N1) = -q(1p1,N1+1)+fip(1p1l,N1+1)-dx*ph*p(1lpl,N1+1);

cl1
clo =

cl3 =
cld =
cls =
cl6 =

aa(1,1)
aa(1,2)

aa(1,N1+1)

aa(N1+1,1)
aa(N1+1,2)

aa(N1+1,N1+1)
aa(N1+1,N1+2)

for j=

cl1
cl10

cl13
cl4d
cl15
clé

pk*dtM/ (prho*pcxdxt (M-1+1) *dxt (M-1+1)) ; % dxt(1)!
plxdtM/ (prho*pcxptau) +2*cl11+1;

pcsi~2xdtM/ (ptauxdxt (M-1+1) *dxt (M-1+1)) ;
-pl*c13/ (2xprho*pc) ;

-2%c14-pl*dtM/ (4*prho*pc*ptauxpa) ;
-2%c13+dtM/ (2*ptau*pa)+1;

cl0 + cl11;
cli;

cl2;

cld + cl1b;
cl4,;

cl3 + cl16;
cl13;

2:1pl % matrices B_11, ... in (5.14) for j=jb0-1:jb0; dxt !

= pkxdtM/ (prhoxpc*dxt (M+j-1-1) *dxt (M+j-1-1)); % dxt (!
= plxdtM/ (prhoxpc*ptau) +2*cl1+1;

= pcsi~2xdtM/ (ptawkdxt (M+j-1-1)*dxt (M+j-1-1));
= -pl*c13/(2*prho*pc) ;

= -2xcl14-plxdtM/ (d*prho*pc*ptau*pa) ;

= -2xc13+dtM/ (2*ptau*pa)+1;
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aa(j,j-1)
aa(j,j) =
aa(j,j+1)

cli;

cl0;

cli;

aa(j,N1+j)=c12;

aa(N1+j,j-1)
aa(N1+j,3j)

cl4;
cl5;
cl4,;

aa(N1+j,j+1)

aa(N1+j,N1+j-1)
aa(N1+j,N1+j)
aa(N1+j,N1+j+1)

cl3;
cl6;
cl3;

end

% matrices B_11, . in (5.14) for j=jbO+1:MpN; dx !

cll = pk*dtM/ (prho*pcxdx*dx) ; % dx!
c10 = pl*dtM/(prho*pc*ptau)+2*cli+1;

c13 = pcsi”2*dtM/ (ptauxdx*dx) ;

cl4 = -plxc13/(2*prho*pc);

cl5 = -2%c14-pl*dtM/ (4*prho*pc*ptau*pa) ;
cl6 = -2%c13+dtM/(2xptauxpa)+1;

for j=lpi1+1:N1-1 % matrices B_11, . in (5.14) for j=1p1+1:N1; dxt !

aa(j,j-1) = cli;
aa(j,j) = cl0;
aa(j,j+1) = cli;
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aa(j,N1+j)=c12;

aa(N1+j,j-1) = c14;
aa(N1+j,j) = ci5;
aa(N1+j,j+1) = cl4;

aa(N1+j,N1+j-1) = c13;
aa(N1+j,N1+j) = c16;
aa(N1+j,N1+j+1) = c13;

end
aa(N1,N1-1) = -1 + c11;
aa(N1,N1) = c10+cl1+dx*ph+1;
aa(N1,2%N1) = c12;

T

aa(2xN1,N1-1)= c14-1;
aa(2xN1,N1) = cl4+c1b5+dx*ph+1;

aa(2+N1,2+N1-1) = c13 - pl/(2*prho*pc);
aa(2+N1,2+N1) = c13+cl16+pl/(2*prho*pc)+dx*ph;

haa

Compute the solution of (5.14) system
z = zeros(1,2%N1);

[L,U]= 1lu(aa);

z = U\N(L\d”);

%z = inv(aa)*d’;

%z = aa\d’;
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Y%rcond(aa) Ysize(aa), cond(aa),

houti, fi“i;

for j=1:N1
p(i,j) = z(j);
q(i,j) = z(N1+j);
end

pwork(1l) = p(i,N1);

end J next i - dual system

Jpwork

% P4. Compute new boundary control

% compute r-iter

r = zeros(1,M);
for i=1:M
r(i) = (pk/(prhox*pc))*pwork(i) + witer(i);
end
hr

% compute wwork

for i = 1:M
if r(i) > 0
wwork(i) = 0;%R/iter;
else
wwork(i) = -R/iter;

end
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% P5.

end

end

Y%wwork

% compute witer

for i = 1:M

if rem(i,2) ==

witer(i) = 0; %R-iter; %R-.1;

else
witer(i) = -R+iter;
end

end

Stopping criterion

Y%werr = norm(wwork-witer);
%if werr <= niu

%  break;

% else

%  witer = wwork;

%end

% next iter



Bibliography

1]

2]

R.A. Adams, Sobolev spaces, Academic Press, Orlando, San Diego, New-
York, 1975.

V. Barbu, Optimal Control of Variational Inequalities, Research Notes
in Mathematics 100, Pitman, London, Boston, Melbourne, 1984.

V. Barbu, A product formula approach to nonlinear optimal control prob-
lems, SIAM J. Control Optim., Vol. 26, No.3, p. 497-520, 1989.

V. Barbu, Partial Differential Equations and Boundary Value Problems,
Kluwer Academic Publishers, Dordrecht, Boston, London, Volume 441,
ISBN 0-7923-5056-1, 1998.

V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Sys-
tems, Academic Press (Mathematics in Science and Engineering, Vol.
190), 1993.

V. Barbu and T. Precupanu, Convexity and Optimization in Banach
Spaces, Second edition, Editura Academiei, Bucuresti and D. Reidel

Publ. Co., Dordrecht, Boston, Lancester, 1986.

T. Benincasa, A. Favini and C. Morosanu, A product formula approach to
a nonhomogeneous boundary optimal control problem governed by non-
linear phase-field transition system, PART I, Journal of Optimization
Theory and Applications. (PREPRINT)

121



122

BIBLIOGRAPHY

8]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

T. Benincasa, A. Favini and C. Morosanu, A product formula approach to
a nonhomogeneous boundary optimal control problem governed by non-
linear phase-field transition system, PART II, Journal of Optimization
Theory and Applications. (PREPRINT)

T. Benincasa and C. Morosanu, Fractional steps scheme to approxi-
mate the phase-field transition system with nonhomogeneous Cauchy-

Neumann boundary conditions, Numer. Funct. Anal. and Optimiz., Vol.
30 (3-4), p. 199-213, 2009.

G. Caginalp, An analysis of a phase field model of a free boundary, in
”Arch. Rat. Mech. Anal.”, 92, p. 205-245, 1986.

G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of
the phase-field equations, in ”Physical Review A”, Vol. 39, No. 11, p.
5887, 1 June 1989.

I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,
Clanderon, Oxford, 1995.

M. Heinkenschloss and F. Troltzsch, Analysis of the Lagrange-SQP-
Newton Method for the Control of a Phase Field Equation, Control &
Cybernetics, vol. 28, no.2, p. 177-211, 1999.

K.-H. Hoffmann and L. Jiang, Optimal control problem of a phase field
model for solidification, Numer. Funct. Anal., 13, p. 11-27, 1992.

O.A. Ladyzhenskaya, B.A. Solonnikov, and N.N., Uraltzava, Linear and
quasi linear equations of parabolic type, Prov. Amer. Math. Soc. 1968.

L. D. Landau & E. M. Lifshitz, Statistical Physics, in ” Addison-Wesley
Publishing, Reading”, Massachusetts, 1958.

J.L. Lions, Control of distribuited singular systems, Gauthier-Villars,
Paris, 1985.



BIBLIOGRAPHY 123

[18] C. Morosanu, Approximation of the phase-field transition system via
fractional steps method, Numer. Funct. Anal. and Optimiz. 18 (5&6),
p. 623-648, 1997.

[19] C. Morosanu, Boundary optimal control problem for the phase-field tran-
sition system using fractional steps method, Control & Cybernetics, Vol.
32, No. 1, p. 05-32, 2003

[20] C. Moroganu, D. Motreanu, The phase field system with a general nonlin-
earity, International Journal of Differential Equations and Applications,
Vol. 1, No. 2, p. 187-204, 2000.

[21] C. Morosanu, G. Wang, State constraint optimal control for the phase
field transition system, Numer. Funct. Anal. and Optimiz., Vol. 28 (3-4),
p. 379-403, 2007.

[22] O. A. Oleinkik, A method of solution of the general Stefan problem, in
”Sov. Math. Dokl.”, 1, p. 1350-1354, 1960.

[23] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New
York, 1969.






Acknowledgements

To Prof. Favini and Prof. Morosanu for introducing and supporting me
in this study. To Prof. Parmeggiani and Prof. Venni who supported me in

these years of my PHD.



