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Introduction

Recent progress in microelectronic and wireless communications have enabled the de-

velopment of low cost, low power, multifunctional sensors, which has allowed the birth

of new type of networks named WSNs [2]. Nodes of such networks can be positioned,

randomly or following a predetermined scheme, over a given area; can both collect data

and, at the same time, act as communication centers.

WSNs can be exploited in an huge variety of applications and scenarios [3, 4]. Some

of the application areas are health [5, 6], security [7, 8], logistic and environmental

monitoring [9, 10]. Doctors can analyze remotely physiological data about a patient,

anti-intrusion system can be set up and even data about potential dangerous natural

events, like earthquakes or landslides, can be collected in real time.

At the same time WSNs do not have unlimited energetical and computation power

and nodes may fail, i.e. they can go out of order. Other constrains are due to the

noisy radio channel used by nodes to communicate and to irregular, sometimes even

unknown a-priori, network topologies.

To face these constrains is essential to organize the networks nodes in a cooperative

way; traditional algorithms and protocols for ad hoc networks can not be well suited

for WSNs [11]. On the contrary, for WSNs, cooperation is necessary to realize more

complex functions and to optimize the performance.

This thesis adresses the problem of localization, and analyzes its crucial aspects,

within the context of cooperative WSNs. The three main issues discussed in the fol-

lowing are: network synchronization, position estimate and tracking.
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1. INTRODUCTION

Time synchronization is a fundamental requirement for every network. Log file ac-

curacy, auditing and monitoring, network fault diagnosis and recovery, file timestamps,

directory services, access security and authentication, distributed computing, scheduled

operations and real-world time value are some key-areas where time synchronization

directly affects network operations. The problem of time synchronization is even more

relevant in WSNs, where the absence of a reliable channel, as well as poor node oscilla-

tors performance, can introduce serious misalignment between the clocks of the various

nodes. In particular for WSNs, in order to guarantee reliable services, it is fundamen-

tal to minimize the synchronization error. Sensed data without time information are

often useless [1]. Time synchronization is also important for basic mechanisms of the

network (e.g., routing, wake-up procedures, Medium Access Control (MAC)) to work

efficiently. In this context, a new approach based on the estimation theory is proposed

to evaluate the ultimate performance limit in network time synchronization. In par-

ticular the lower bound on the variance of the average synchronization error in a fully

connected network is derived by taking into account the statistical characterization of

the Message Delivering Time (MDT) .

Self-localization capability is a highly desirable characteristicv of WSNs. In environ-

mental monitoring applications such as bush fire surveillance, water quality monitoring

and precision agriculture, the measurement data are meaningless without knowing the

location from where the data are obtained. Moreover, location estimation may enable a

myriad of applications such as inventory management, intrusion detection, road traffic

monitoring, health monitoring, reconnaissance and surveillance.

Sensor network localization algorithms estimate the locations of sensors with ini-

tially unknown location information by using knowledge of the absolute positions of

a few sensors and inter-sensor measurements such as distance and bearing measure-

ments. Sensors with known location information are called anchors and their locations

can be obtained by using a Global Positioning System (GPS), or by installing anchors

at points with known coordinates. In applications requiring a global coordinate system,

these anchors will determine the location of the sensor network in the global coordinate

system.

In applications where a local coordinate system suffices (e.g., smart homes), these

anchors define the local coordinate system to which all other sensors are referred. Be-

cause of constraints on the cost and size of sensors, energy consumption, implementation
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environment (e.g., GPS is not accessible in some environments) and the deployment

of sensors (e.g., sensor nodes may be randomly scattered in the region), most sensors

do not know their locations. These sensors with unknown location information are

called target or non-anchor nodes and their coordinates will be estimated by the sensor

network localization algorithm [12].

Concerning this issue, i.e. the position estimate problem, two main contributions

are given.

The first is a new Semidefinite Programming (SDP) framework to analyze and solve

the problem of flip-ambiguity that afflicts range-based network localization algorithms

with incomplete ranging information. In rigid graph theory the notion of flip-ambiguity

refers to the erroneous local geometric realization in some parts of the network due

to distance measurement errors [13]. In particular one node position can be mirrored

respect to the axis formed by its neighbors; this error is a major problem when localizing

nodes in WSNs since it can be fastly propagated and consequently it can hugely affect

a large part of the network.

The occurrence of flip-ambiguous nodes and errors due to flip ambiguity is stud-

ied, then with this information a new SDP formulation of the localization problem is

built. Finally a flip-ambiguity-robust network localization algorithm is derived and its

performance is studied by Monte-Carlo simulations.

The second contribution in the field of position estimate is aboutmultihop networks.

A multihop network is a network with a low degree of connectivity, in which couples

of given any nodes, in order to communicate, they have to rely on one or more inter-

mediate nodes (hops). In this scenario it is impossible to determine the exact distance,

required to localize nodes, between the nodes that are aware of their position a-priori

(anchor nodes) and the others (target nodes). This approach is a contrasting alterna-

tive to current distributed self-localization algorithms, which are based on the idea of

”diffusing” the known location of a few anchors to the entire network via a typically

large number of message exchanges amongst neighbors, resulting in high communica-

tions costs, low robustness to mobility, and little (location) privacy to end users. It

is argued that multihop node-to-anchor distance information is sufficient to allow ac-

curate self-localization in multihop wireless networks. Two new distance-based source

localization algorithms, highly robust to distance overestimates, typically present in

multihop networks, are presented and studied.
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1. INTRODUCTION

The last point of this thesis discuss a new low-complexity tracking algorithm, in-

spired by the Fano’s sequential decoding algorithm for the position tracking of a user

in a WLAN-based indoor localization system. Target tracking is one of the non trivial

applications of WSNs which is set up in the areas of field surveillance, habitat mon-

itoring, indoor buildings, and intruder tracking [14]. In this thesis the aim is first to

estimate the indoor user’s position and then to track his movements inside a building

in order to offer location-aware services [15]. The positioning infrastructure consists

of a IEEE 802.11 wireless LAN and of a radio map of the indoor environment, which

is available to the user. The position estimation is performed comparing the signal

strength received by the user’s to the signal strength values stored in the radio map.

By introducing a tracking algorithm, the accuracy of the system is improved, by reduc-

ing the number of position estimates which are less probable or impossible for a given

environment topology.

At the end of each chapter the most promising future research directions are dis-

cussed.
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2

Network Synchronization

In most networks, from the simplest to the most structured and largest, a quite efficient

time synchronization among nodes composing the network is a fundamental require-

ment. Log file accuracy, auditing and monitoring, network fault diagnosis and recovery,

file timestamps, directory services, access security and authentication, distributed com-

puting, scheduled operations and real-world time value are some key-areas where time

synchronization directly affects network operations.

The problem of time synchronization is even more relevant in wireless networks,

where the absence of a reliable channel, as well as poor node oscillators performance,

can introduce serious misalignment between the clocks of the various nodes.

In particular for WSNs, in order to guarantee reliable services, is fundamental to

minimize the synchronization error. In fact, sensed data without time information are

often useless. In additional, time synchronization may help the network work efficiently

in terms of MAC, routing as well as wake-up/sleeping strategies [1].

To this purpose a lot of synchronization algorithms are present in the literature

tuned on different network architectures. One of the most famous is the network time

protocol described in [16], whose purpose is to estimate the clock offset between two

different nodes and which is widely used for clock synchronization on Internet. Other

approaches use a reference node to synchronize the whole network [17, 18], exploit

hierarchical topology [19] or gradient clock synchronization [20].

In general, it is difficult to express the performance of a specific algorithm as well

as to compare different algorithms developed for different scenarios. For these reasons,
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2. NETWORK SYNCHRONIZATION

it is important to understand what are the fundamental limits in time synchronization

given a certain network topology and communication model.

The work [21] presents upper and lower bounds for clock synchronization in the

case of a fully connected network composed of N nodes. It is proved that, even if

the clocks all run at the same rate (non-drifting clocks), an uncertainty (jitter) of

U = Dmax − Dmin in the Message Delivering Time (MDT) makes it impossible to

synchronize the clocks of N nodes any more closely than U(1 − 1
N
), where the Dmax

and Dmin are respectively, the maximum and the minimum MDT among two nodes.

Other bounds are presented in [22], [23] and [24]. However these bounds are based

on worst case analysis, i.e., the MDT is considered as a fixed parameter, and do not

account for the actual statistical behavior of the uncertainty in MDT.

In the following, performance limits of time synchronization are investigated as an

estimation theory problem, where the statistical characterization of the uncertainty is

properly taken into account. The lower bound on the variance of the mean synchro-

nization error of the network is derived. It can be used as a benchmark in comparing

the performance of different algorithms.

First the case of a 2-nodes network is examined then the analysis is extended to a

connected network composed of N nodes. After having introduced the general concept

of lower bound on the time synchronization error variance, the theoretical bound for a

fully-connected network is finally derived.

2.1 2-Nodes Network

The purpose of any time synchronization scheme is to align the nodes logical clocks,

that is, to minimize the clock skew among nodes. This is generally achieved through

message exchange between nodes.

The first step in this analysis is considering the simplest network, composed of only

2 nodes, A and B. The local time of nodes A and B are defined tA and tB respectively.

Furthermore the drift between the two oscillators it is assumed to be negligible during

the observation window. Under these conditions the skew S is defined as:

S = tA − tB. (2.1)

6



2.1 2-Nodes Network

time according

time according

t t

t1 4

2 3

t

request from A answer from B

to node  B

to node A

Figure 2.1: Basic time synchronization procedure: two-way message exchange between a

pair of nodes [1].

Another useful definition is the MDT D(A,B), i.e., the time that occurs for delivering

a message from node A to node B. In general, whatever network type is considered

(wired or wireless), the MDT has to be characterized as a random variable to account

for the transmission randomness due to several factors such as propagation, Medium

Access Control (MAC), Operative System (OS), etc. The variance of D(A,B) is denoted

with σ2
D.

The skew among nodes A and B can be estimated through a classical two-way

message exchange (see Fig. 2.1, where A and B exchange their local timestamp [1]).

After the message exchange, both nodes can calculate an estimate of the skew S given

by

Ŝ = S +
U

2
, (2.2)

where the variable U is the uncertainty defined as

U , D(A,B) −D(B,A). (2.3)

In general, several trials are performed because the randomness of MDT, by taking

the least value or the average value as estimate. It is furthermore assumed that D(A,B)

and D(B,A) are independent identically distributed (i.i.d.) random variables for all pairs

of nodes. It follows:

E[U ] = 0 (2.4)

7
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2. NETWORK SYNCHRONIZATION

and

σ2
U = V ar(U) = 2σ2

D. (2.5)

In order to simplify the notation, the estimation error (noise) is defined as

X ,
U

2
, (2.6)

and hence

Ŝ = S +X, (2.7)

where

E[X] = 0 (2.8)

and

σ2
X =

σ2
U

4
=

σ2
D

2
. (2.9)

2.2 N-Nodes Network

Suppose to have a connected network with N nodes. The network structure can be

represented for convenience with an oriented graph G(N,A), where N is the set of

nodes and A is the set of arches each one representing the skew between a couple of

nodes (see for example Fig. 2.2). The graph is oriented because skews have their own

sign; moreover given any closed path inside the network, the sum of all the skews must

be zero.

The cardinality of both sets is, respectively

|N| = N (2.10)

and

|A| = L. (2.11)

The local time of node n is denoted with tn, with n = 1, . . . , N , and with Si the

skew relative to the ith arch of G(N,A), with i = 1, . . . , L. Supposing the ith arch

involving node n and n+ 1, then the corresponding skew is given by

Si = tn − tn+1. (2.12)

By hypothesis every pair of nodes makes a two way message exchange procedure,

thus obtaining the following measurements:

8



2.2 N-Nodes Network

1

 2

S  N−1

S  1

S 

t  2

t  3t  N

t = 0

1 2 

3 N 

Figure 2.2: N -nodes completely connected network with oriented skews.

Yi = Si +Xi i = 1, . . . , L (2.13)

where Xi is the corresponding observation error. The measurements vector1 is defined

as

Y , [Y1, Y2, . . . , YL]
T , (2.14)

and the skews vector

S , [S1, S2, . . . , SL]
T . (2.15)

Based on the measurements vector Y , a time synchronization algorithm attempts

to derive the estimation Ŝj of Sj.

The estimate error εj is defined as the difference between the skew estimate Ŝj and

the actual skew Sj , i.e.,

εj , Ŝj − Sj. (2.16)

As a consequence, εi is in general different from Xi. As it will be clearer later, it is

important to note that only the firsts N − 1 measurements are independent, whereas

1operator T denotes the transpose.

9
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2. NETWORK SYNCHRONIZATION

the last L − (N − 1) measurements are linear combination of the first N − 1. The

average estimate error of the network is

ε ,
1

L

L∑

i=1

εi. (2.17)

Now the purpose is to provide a lower bound on the variance of the average estimation

error in (2.17).

To this aim we introduce the Incidence Matrix (IM) M of the graph G(N,A) that

was first defined by the physicist Kirchhoff [25]. The IM of a graph has a row for each

node and a column for each arch, and each element Mv,e ∈ {−1, 1, 0} [26]. In particular,

• Mv,e = −1 if arch e is incident upon node v

• Mv,e = 1 if arch e starts from node v

• 0 in other cases.

Kirchhoff in [25] demonstrated that the rank of the IM is

rank(M) = N − 1. (2.18)

In [27] it is shown that it is possibile to choose a reference node in G(N,A) and

eliminate the corresponding row in the IM, obtaining a Simplified Incidence Matrix

(SIM) Q. Introducing the time vector T ,

T , [t2, . . . , tN ]T , (2.19)

i.e., the vector with all the local times of nodes except for the reference node, the

following relationship exists:

QT · T = S. (2.20)

Therefore, according to (2.20), the measurements can be represented as follows:

10



2.2 N-Nodes Network





Y1 = S1 +X1

Y2 = S2 +X2

. . .

YN−1 = SN−1 +XN−1

. . .

Yj = (
∑N−1

i=1 wj,iSi) +Xj for j = N, . . . , L

(2.21)

where wj,i accounts for the linear dependence of Sj (with j ≥ N) on {Si}N−1
i=1 . From

(2.21) it is evident that it is sufficient, for a complete characterization of the problem,

to obtain the estimate

ŜN , [Ŝ1, Ŝ2, . . . , ŜN−1] (2.22)

of the first N − 1 skews

SN , [S1, S2, . . . , SN−1]. (2.23)

The last L − (N − 1) estimations can be obtained as linear combination of the firsts

N − 1.

It is shown in [27] that the SIM can always be put in the following canonical form:

Q = [I |W ], (2.24)

where I is an [(N − 1)x(N − 1)] identity matrix and W is a [(N − 1)x(L-(N − 1))]

weight matrix.

Thus the Q is:

Q =




1 0 . . . 0 | wN,1 . . . wL,1

0 1 . . . 0 | wN,2 . . . wL,2

. . . . . . . . . . . . | . . . . . . . . .
0 0 . . . 1 | wN,N−1 . . . wL,N−1


 . (2.25)

The average estimation error (2.17) can therefore be expressed as

ε =
1

L





N−1∑

i=1

εi +
L∑

j=N

N−1∑

i=1

wijεi



 . (2.26)

11



2. NETWORK SYNCHRONIZATION

2.3 Theoretical Performance Limit on the Time Synchro-

nization Error Variance

A lower bound on the covariance of any estimator is given by the Cramer Rao Lower

Bound (CRLB)1 [28]

EY

[
(ŜN − SN )T (ŜN − SN )

]
≥ J−1, (2.27)

where J is the Fisher Information Matrix (FIM) which ijth element is given by

Ji,j = EY

[
δ ln pY (y)

δsi

δ ln pY (y)

δsj

]
for i, j = 1, . . . , N − 1. (2.28)

Note that J is a [(N − 1)x(N − 1)] matrix since it is sufficient to estimate only the

first N − 1 independent skews as previously remarked.

Considering Xi being independent Gaussian random variable, it follows that also

the Yi is Gaussian. Under these hypothesis it is possible to define the correspondent

probability density function of Y :

pY (y) =
1

(
√

2πσ2
X)L




N−1∏

i=1

e
−

(Yi−Si)
2

2σ2
X

L∏

i=N

e
−
(Yi−

∑N−1
j=1

wi,jSj)
2

2σ2
X


 . (2.29)

The (2.29) can be expressed in the log-scale:

ln pY (y) = k +
1

2σ2
X


−

N−1∑

i=1

(Yi − Si)
2 −

L∑

i=N

(Yi −
N−1∑

j=1

wi,jSj)
2


 , (2.30)

where the constant k can be neglected for what follows.

By comparing (2.21), (2.25), and (2.30) it is easy to show that the elements of J

are given by the product between the Q and its transposed QT , i.e.,

J =
1

σ2
X

Q ·QT . (2.31)

The resulting FIM is

1The notation V ≥ W means that the matrix V −W is positive semi-definite.
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2.4 Theoretical Performance Limit on a Fully Connected Network

J =
1

σ2
X



1 +

∑L
i=N wi,1 . . .

∑L
i=N wi,1wi,N−1

. . . . . . . . .∑L
i=N wi,N−1wi,1 . . . 1 +

∑L
i=N wi,N−1


 . (2.32)

2.4 Theoretical Performance Limit on a Fully Connected

Network

In this section the case of a fully connected network with N nodes is examined. Under

this further hypothesis, it is possible to give a description of Q.

For a fully connected network, with L = |A| , N(N−1)
2 , the sum of the weights of

the jth row is

mj =

L∑

i=1

wi,j = 1 + wj = j (N − j), (2.33)

where

wj =

L∑

i=N

wi,j = j (N − j) − 1 (2.34)

includes only the weights of the right-side of each row.

Using (2.33) and (2.34), for the diagonal elements it is easy to see that

Jjj =
1

σ2
X

(
1 +

L∑

n=N

wn,j

)
=

1

σ2
X

mj = j(N − j), (2.35)

whereas for the off-diagonal elements the expression is

Jij =
1

σ2
X

(
L∑

n=N

wn,iwn,j

)
= j(N − i) for i 6= j. (2.36)

Finally, the FIM for a completely connected network is

J =
1

σ2
X




(N − 1) (N − 2) . . . 2 1
(N − 2) 2(N − 2) . . . 4 2
(N − 3) 2(N − 3) . . . . . . . . .

. . . . . . . . . . . . . . .
3 6 . . . (N − 3)2 (N − 3)
2 4 . . . (N − 2)2 (N − 2)
1 2 . . . (N − 2) (N − 1)




. (2.37)

13



2. NETWORK SYNCHRONIZATION

which results to be a [(N − 1) x (N − 1)] symmetric matrix.

The reciprocal of the FIM is

J−1 =
σ2
X

N




2 −1 0 0 . . . 0 0 0
−1 2 −1 0 . . . 0 0 0
0 −1 2 −1 . . . 0 0 0
0 0 −1 2 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1 0 0
0 0 0 0 . . . 2 −1 0
0 0 0 0 . . . −1 2 −1
0 0 0 0 . . . 0 −1 2




. (2.38)

The fact that J is not completely diagonal means that the skews estimates are not all

uncorrelated each other.

Using (2.33) and (2.34), the average estimation error (2.26) for a fully connected

network can be further simplified to

ε =
1

L

N−1∑

i=1

(N − i) i εi. (2.39)

The variance of the estimate error is given by

Var(ε) = E[ε2] =
1

L2

N−1∑

i=1

(N − i)2 i2 E[ε2i ] + 2
1

L

N−1∑

i=1

N−1∑

j=i+1

(N − i) i (N − j )j E[εiεj].

(2.40)

Equation (2.40) can be bounded by the CRLB as follows

Var(ε) ≥ 1

L2

N−1∑

i=1

(N − i)2 i2 J−1
ii + 2

1

L

N−1∑

i=1

N−1∑

j=i+1

(N − i) i (N − j) j J−1
ij , (2.41)

where J−1
ij is the ijth element of the J−1. According to (2.38) it is possible to reduce

the second term deleting all the null terms of the sum in (2.41). Since

J−1
ii =

2

N
σ2
X (2.42)

and

J−1
ii+1 = − 1

N
σ2
X (2.43)
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Figure 2.3: Lower bound on the normalized (σ2

X
= 1) average estimation error variance

as a function of the number of nodes.

the resulting bound is

Var(ε) ≥ 1

L2

2

N
σ2
X

{
(N − 1)2 +

N−2∑

i=1

[
(N − i)2i2 − (N − i)i(N − i− 1)(i + 1)

]
}
.

After some algebraical steps (2.44) can be further reduced to

Var(ε) ≥ σ2
X

4(1 +N)

3(N − 1)N2
, (2.44)

which gives the lower bound on the average estimate error of skews in the synchroniza-

tion process.

For large number of nodes (i.e., N � 1), (2.44) can be approximated by

Var(ε) ≥ σ2
X

4

3N2
. (2.45)

In Fig. 2.3 the lower bound (2.44), normalized to σ2
X , is plotted as function of the

number of nodes. Differently to what predicted by bounds based on worst cases (as in

[22, 23, 24]), it can be noted that in a fully connected network the time synchronization

accuracy increases with the number of nodes. This is due to the positive effect of the

L − (N − 1) dependent observations. They introduces a negative covariance (− 1
N
σ2
X)
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2. NETWORK SYNCHRONIZATION

that reduces the mean synchronization error as N increases. It is important to note

that the network synchronization error variance is lower than the error variance (σ2
X)

of the single couple of nodes. This means that maximizing the network connectivity is

beneficial for time synchronization.

2.4.1 Future Research Directions

The very next step in this field is the developing of similar limits for different net-

work topologies. In particular straightforward is the extension of the analysis to the

star-topology and the tree-topology. The developing of new network synchronization

algorithms, with performances close to the CRLB, is the final goal of this work.
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3

Position Estimate in Wireless

Networks

Localization algorithms for WSN have been widely proposed and studied, expecially in

the last years, given the huge variety of localization-aware applications [29]. The goal

of position estimate is to determine the physical coordinates of a single or a group of

sensor nodes. These coordinates can be global, meaning they are aligned with some

externally meaningful system like GPS, or relative, meaning that they are an arbi-

trary “rigid transformation” (rotation, reflection, translation) away from the global

coordinate system. Anchor nodes (also frequently called beacon nodes) are a necessary

prerequisite to localize nodes (target) within a network in a global coordinate system.

Anchor nodes are simply ordinary sensor nodes that know their global coordinates a

priori. This knowledge could be set by network manager or acquired through some

additional hardware like a GPS receiver. At a minimum, three non-collinear anchor

nodes are required to define a global coordinate system in two dimensions. If three

dimensional coordinates are required, then at least four non-coplanar beacons must be

present [30].

Following the classification introduced by Dardari et al. [1] it is possible to classify

the position estimation techniques in the following four categories:

• Anchor-based : dome nodes know their location a-priori. In a single-hop or mul-

tihop fashion all the others nodes obtain a distance estimate to anchors.

17



3. POSITION ESTIMATE IN WIRELESS NETWORKS

• Anchor Free: there are no node with the a-priori knowledge of their position.

Only relative/virtual coordinates can be obtained.

• Range-based : distance/angle information are obtained through measurements.

• Range-free: connectivity is the only information used.

3.1 The Flip-Ambiguity Problem

Flip-ambiguity is one of the most significant potential problems faced by network local-

ization algorithms. This problem arises when the connectivity available in the network

is insufficient to ensure that no node to be localized admits multiple location estimates

that are equally likely, as per the cost-function that defines the localization algorithm

itself.

Consider the example in Fig. 3.1: a typical realization of a WSN suffers, due

to the lack of connectivity, a flip-ambiguity. The firsts two target nodes are able to

estimate their own position without ambiguity. Target at (0.5, 0.5) is connected to

3 anchor nodes and its position can be estimated with a classic trilateration. The

second target at (0.35, 0.65) is connected to 2 anchor nodes and to a target whose

position is already determined, so also its location can be estimated. The last target

at (0.8, 0.2) is connected to one anchor node and an ”already-localized” target node;

the connectivity is not sufficient to avoid flip-ambiguity. Consider the cost function

typical of any steepest-descend localization algorithm: the problem is now clarified by

the existence of two local minima, one in the real position of the target and the second

in the mirrored position.

The typical effect of such multiple and equivalent solutions is that optimization

methods employed to find the location estimates are unable to distinguish amongst

possible different topological configurations that yield equal cost-values, often resulting

in catastrophic errors [31].

Due to its nature, there is little hope to find a solution at a reasonable level of

complexity to such a problem through the development of new optimization methods.

Arguably, this explains the predominant approach found in current related literature

which is to identify and eliminate flip-ambiguous nodes from the set of targets to be

localized [32, 33].
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Figure 3.1: A typical occurrence of flip-ambiguity problem within a WSN and the cost

function of a classic steepest-descent algorithm.

In other words, the currently common approach amounts to avoid the flip-ambiguity

problem and attempt to minimize the location error of the less problematic nodes at the

expense of the ones that are harder to localize. While such an approach does improve

the performance of localization algorithms – as measured by the errors over the nodes

effectively localized – the underlying principle of simply leaving flip-ambiguous nodes

without any location estimates may be unacceptable in many applications.

This chapter illustrates a new approach whose aim is to solve, rather than avoid,

the flip-ambiguity problem by developing a technique that produces location estimates

for all nodes in the network while minimizing the harmful effect of flip-ambiguity.

To this end, the related analysis starts employing the unique localizability test

constructed out of a Semidefinite Programming (SDP) formulation of the network lo-

calization problem [34] to study the statistical occurrence of flip-ambiguous nodes. The

study reveals that in the majority of situations the number of flip-ambiguous nodes is

much smaller than the total number of nodes to be localizable, suggesting that suffi-

cient information remains in the connectivity of non-uniquely localizable networks to
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3. POSITION ESTIMATE IN WIRELESS NETWORKS

enable flip-ambiguous nodes to be localized as well.

The second step is to study the relationship between unique localizability and con-

straints that can be imposed over unmeasured distances so as to enable a stable solution

to be obtained from the SDP-based localization algorithm. This leads to an impracti-

cal (Genie-aided) SDP formulation of the network localization problem which is found

indeed to be capable of localizing, with a small average error, all nodes out of network

afflicted by flip-ambiguity.

Finally, a concrete solution is obtained by relaxing the unfeasible conditions of

the Genie-aided approach and combination with a refining post-processing [35]. An

exhaustive Monte Carlo analysis of the performance obtained with the proposed method

confirms its ability to resolve flip-ambiguity, at the expense of a negligible increase in

localization error.

3.1.1 Localizability Test and Edge-bounding

The localization problem is here studied and discussed for networks lying in the two-

dimensional space (η = 2), which can be studied using the unique-localizability test

provided in [34].

In the following, a network is understood as a set of N interconnected nodes ran-

domly deployed with uniform distribution inside a square of unitary1 length (` = 1).

Nodes whose locations are know exactly and a priori will be referred to as anchors,

while the remaining nodes will be called targets.

The total number of nodes N of a network is referred also as its size, and all

networks studied will contain nA ≥ 3 anchor nodes, such that for any realization there

are T = N − nA target nodes.

The scaled Unitary Disk Graph (UDG) model is adopted, so that a pair of target

nodes at locations (column vectors) xi and xj , is said to be connected if and only if

(iff) their distance

dij , ‖xi − xj‖ =
√

〈xi − xj,xi − xj〉 ≤ R i, j = 1, . . . , T, (3.1)

where ‖ · ‖ denotes the Euclidean norm, 〈·〉 denotes inner product, and R is a given

connectivity range. Likewise, an anchor at the location ak is connected to a target

1This is without loss of generality and amounts to a normalization of all distance quantities.
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3.1 The Flip-Ambiguity Problem

located at xj iff dkj , ‖ak −xj‖ ≤ R, with j = 1, . . . , T and k = 1, . . . , nA. All known

distances dij and dkj are error-free.

It will be assumed that all dij ≤ R and dkj ≤ R are known choosing R =
√
2, i.e. R

is equal to the diagonal of squared area, of unitary length, of nodes deployment. Since

the location of all anchors and their mutual distances are known, anchors are, to all

effect considered to be interconnected.

For each network as described above there is an associated graph G([A;X],H),

where A , [a1, · · · ,anA
] is the anchor node coordinate matrix carrying the column

vectors with the location of all anchors, X , [x1, · · · ,xT ] is the target node coordinate

matrix carrying the column vectors with the location of all targets, and H is the IMs

defined below.

H
[N×

N·(N−1)
2

]
,

[
HA HT 0

0 EA ET

]
(3.2)

In the above, HA and ET are the nA-by-
nA·(nA−1)

2 and T -by-T ·(T−1)
2 Incidence

Matrix (IM) of the sub-graphs containing only anchor nodes, and only target nodes,

respectively.

In turn, HT is a block-diagonal matrix with the structure:

HT ,




b1 0
. . .

0 bnA


, (3.3)

where each 1-by-T block bk is a row vector whose j-th element bkj is 1 iff the k-th

anchor is connected to the j-th target.

Finally, the matrix EA is formed by appended diagonal matrices such that

EA ,
[
D1 · · · DnA

]
, (3.4)

where the j-th element of each T -by-T diagonal matrix Dk is −1 iff the k-th anchor is

connected to the j-th target.

The target-to-target and anchor-to-target squared-norms (or squared-distances) can

be concisely written as

‖xi − xj‖2 = e
T
ijX

TXeij = d2ij , (3.5)

‖ak − xj‖2=
[
a
T
k e

T
j

][
Iη

XT

][
Iη X

][ak

ej

]
=d2kj, (3.6)
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∀k ≤ nA; i, j ≤ T,

where eij is the column vector of ET whose i-th and j-th elements are 1 and −1,

respectively, while ej is the column vector of EA whose j-th element is −1.

Define the matrix

Z ,

[
Iη X

XT Y

]
. (3.7)

Then, the network localization problem can then be stated as follows

find X ∈ R
η×T ,Y ∈ R

T×T

such that e
T
ijYeij = d2ij ,[
a
T
k e

T
j

]
Z

[
ak

ej

]
= d2kj,

Y = XTX,

(3.8)

∀k ≤ nA; i, j ≤ T.

The SDP variation of the network localization problem formulated above is obtained

[34] by relaxing (see app.A for further details) the equality constraint Y = XTX into

the positive semidefinite condition Z � 0. Under such relaxation and with elementary

algebra introduced to eliminate the variables X and Y we arrive at

maximize 0
subject to Z1:η,1:η = Iη

tr(CTZ) = d2ij,

tr(CAZ) = d2kj ,

Z � 0,

(3.9)

where Z1:η,1:η is the η× η first-minor of Z and the constants CT and CA are defined as

CT ,

[
0[η×1]

eij

] [
0[1×η] e

T
ij

]
, (3.10)

CA ,

[
ak

ej

] [
a
T
k e

T
j

]
. (3.11)

The unique localizability theorem by So and Ye [34] can now be invoked.

Theorem 3.1.1 (Unique Network Localizability) A network represented by the graph

G([A;X],H) is unique localizable iff rank(Z) = η.

Proof See [34].
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Figure 3.2: Distribution of the number of flip-ambiguous target nodes α for networks of

different sizes N = {10, 15, 20, 25}.

Corollary 3.1.2 (Identification of Non-localizable Nodes) All flip-ambiguous nodes of

a non-uniquely localizable network G([A;X],H) can be identified.

Proof Biswas and Ye [36] demonstrate that the trace of the difference matrix Y−XTX

can be used as a measure of the quality of localization. The smaller the trace, the higher

accuracy of the estimation. In particular, the j-th diagonal element of Y − XTX is

proportional to the accuracy of the position estimation of the j-th target node.

Using Corollary 3.1.2 we are able to study the statistics of the number of flip-

ambiguous nodes in randomly generated networks of different sizes. Notice that in

the context under consideration, since all known distances dij and dkj are error-free,

the only reason for a node not to be localizable is due to flip-ambiguity. If the j-

th diagonal element of Y − XTX is greater than 0, the corresponding node is flip-
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3. POSITION ESTIMATE IN WIRELESS NETWORKS

ambiguous. To illustrate typical results obtained with a Monte Carlo analysis (10000

network realizations for each network size), histograms of the number of flip-ambiguous

nodes α for various N are shown in Fig. 3.2. It is important to recall that in all cases

considered the number of anchors is the minimum possible, i.e., nA = 3.

As can be seen, the study shows that the number of flip-ambiguous target nodes that

make a network non-uniquely localizable is, in the majority of cases, a small number,

that is, α � N . For example, for networks of sizes N = 10, it is found that α = 1

approximately 45% of the realizations and α ≤ 2 over 60% of the realizations. Likewise,

for N = 25, α ≤ 3 also for approximately 60% of the realizations. In all cases, it is

evident that the number of ambiguous nodes is typically only a small fraction of the

total number of nodes in the network.

This observation, which albeit empirical is solidly legitimized by the unique local-

izability test, suggests that the prevailing approach in the literature related to the

flip-ambiguity problem in network localization [37], [38] may be too pessimistic. In-

deed, current techniques aim to avoid, rather than solve, flip-ambiguity, by eliminating

ambiguous targets from the topology over which localization is attempted. The ap-

proach is justified by the well-known fact that flip-ambiguity may lead to catastrophic

localization errors, but has the drawback of leaving the remaining nodes without any

location estimate, which may be unacceptable in many applications.

The results obtained from Corollary 3.1.2, however, motivated us to investigate a

technique to resolve flip-ambiguities, ultimately enabling the localization of all nodes

in the network. The mathematical rational behind such a technique, which is latter

presented in subsection 3.1.3, is described in the sequel.

3.1.2 Localization with Genie-aided Edge-Bounding

Consider the randomly deployed set of nodes as described in subsection 3.1.1. The

median distance between two nodes lying in an `-by-` square was shown in [39] to be

d̄2 = 0.512`. (3.12)

Applying this result to the case where N nodes lye in the square, and using ` = 1

yields

d̄N = 0.512
√

2/N. (3.13)
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Consider the network G([A;X],H) formed by such nodes under a connectivity range

R. In the unitary square, a connectivity range RMax =
√
2 ensures that the network is

fully connected and thus, uniquely localizable. For R < RMax, the unique localizability

of G([A;X],H) clearly depends on the relationship between the connectivity range R

and average pairwise distance d̄N , which for N = 10 and N = 25, for instance, are

d̄10 ≈ 0.23 and d̄25 ≈ 0.15, respectively.

Here it is interesting to find a pair of connectivity ranges RU and RL = RU −∆R

such that the network is uniquely localizable under RU and not under RL. In order to

find the edge bounds RU and RL, consider the decreasing sequence

RMax > RMax −∆R > · · · > RU > RL,

where ∆R � RMax− d̄N . For the cases to be studied here (10 ≤ N ≤ 25), RMax− d̄N &

1.2, so that it is enough to set ∆R = 0.05 in order to obtain sufficiently tight bounds.

Let HU and HL be the incidence matrices corresponding to the uniquely localizable

and the non-uniquely localizable networks obtained with RU and RL, respectively. By

comparing HU against HL, one is able to identify the set of distances d̃ij which, if not

measured, results in the network not being uniquely localizable. Thus define

H̃ , HU −HL =

[
0 H̃T 0

0 ẼA ẼT

]
, (3.14)

C̃T ,

[
0[η×1]

ẽij

] [
0[1×η] ẽ

T
ij

]
, (3.15)

C̃A ,

[
ak

ẽj

] [
a
T
k ẽ

T
j

]
, (3.16)

where ẽij is the column vector of ẼT whose i-th and j-th elements are 1 and −1,

respectively, while ẽj is the column vector of ẼA whose j-th element is −1.

Now the network G([A;X],HL), despite failing the unique localizability test of

Theorem 3.1.1, can be localized using the SDP formulation of the network localization
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given in (3.9), augmented by additional constraints. Specifically,

maximize 0
subject to Z1:η,1:η = Iη

tr(CTZ) = d2ij,

tr(CAZ) = d2kj ,
. . . . . . . . . . . . . . . . . . . . . .

R2
L < tr

(
C̃TZ

)
≤ R2

U,

R2
L < tr

(
C̃AZ

)
≤ R2

U,
. . . . . . . . . . . . . . . . . . . . . .
Z � 0.

(3.17)

The algorithm summarized above is referred to as a flip-ambiguity-robust SDP-

based network localization algorithm with edge-bounding via a Genie. This is in allusion

to the fact that in practical situations, the bounds RL and RU, as well as the incidence

matrices HU and HL cannot be known.

In any case, this theoretical exercise offers insight on the potential of resolving flip-

ambiguity through the combination of semidefinite programming and edge-bounding,

motivating the feasible solution dealt with in the next subsection. To illustrate, the

performance of the algorithm summarized by (3.17) are studied in Figs. 3.3 through

3.5. To this end, define the mean location error for a network of size N with nA anchors

as

ε̄(N ;nA) ,
‖X̂−X‖
N − nA

, (3.18)

where X̂ is the estimate of X.

Next, Fig. 3.3 compares the mean location error as a function of the network size

obtained with the unconstrained SDP algorithm of (3.9) against the corresponding

error obtained with its flip-ambiguity-robust counterpart. Two curves are shown for

each technique, one representing the average situation (α ≤ T ), where any number

of target nodes may be subject to flip-ambiguity, and another representing the best

possible situation (α = 1), where only one target node is not localizable (see subsection

3.1.1).

Notice that the location error generally decreases with the network size, which is

explained by the fact that the probability of a large number of flip-ambiguous nodes

α → T decreases with N (see subsection 3.1.1).
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Figure 3.3: Mean location error for different α as a function of network size.
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Mean Location Error with SDP
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Figure 3.4: Mean location error for unconstrained SDP in the least ambiguous scenario

(α = 1) versus SDP with Genie-aided edge-bounding in the most ambiguous scenario

(α = T ).
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Figure 3.5: Cumulative density function of the mean location error for different number

of α.

In any case, the figure clearly demonstrates that the (potential) improvement pro-

vided by the edge-bounding technique is very substantial.

This can be better illustrated by comparing the performances of the unconstrained

SDP in the average situation (α ≤ T ) against the edge-bounded SDP in the worst cases

(α = T ), which is done in Fig. 3.4.

Finally, in Fig. 3.5, the Cumulative Density Functions (CDFs) of the mean location

error ε̄ obtained with the unconstrained and ambiguity-robust solutions, for a fixed

network size, are compared. The figure illustrates the fact that in the presence of

scenarios with flip-ambiguity, the performance obtained with the edge-bounded SDPs in

typical conditions is close to that obtained in the best-possible non-uniquely localizable

conditions, that is, when only one target node is flip-ambiguous. In contrast, the

unconstrained SDPs performs nearly as bad, regardless regardless of the number of

flip-ambiguous target nodes.

As a final remark to this subsection, it is possible to point out that the edge-bounded
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3.1 The Flip-Ambiguity Problem

SDPs-based flip-ambiguity-robust localization algorithm does not turn a non-uniquely

localizable network into a uniquely localizable one, since the solution of obtained from

(3.17) does not lye generally on the η dimensional space. Instead, what occurs is that

a solution is obtained in a space of higher dimension, but whose projection onto the

η-dimensional space is less likely to exhibit flipped estimates of node locations. Notice

that this is not uncommon in SDP-based approaches, as discussed in detail e.g. in [35].

The fact that the solutions of (3.17) do not generally lye in R
η×T is reflected on

the non-zero location errors, which are encountered despite the assumptions of perfect

distance estimates (for the distances that are measured).

3.1.3 Localization with Shortest-path Edge-bounding

The results in the preceding section, obtained with the SDP network localization aug-

mented by constraints on a few additional unmeasured distances d̃ij illustrated the

remarkable potential of the edge-bounding approach, but are obviously impractical

since the information required, specifically d̃ij and RU, cannot be obtained in practice.

Inspired by those results, it is now easy to design an algorithm that captures the essence

of the edge-bounding approach and is implementable.

To this end, it is possible to introduce the additional constraints not only to a few,

but to all unmeasured distances and replace the constant and unknown tight upper-

bound RU by the shortest paths between (computed using the Dijkstra’s algorithm

[40]) any two points whose distance was not measured. This approach, that can be

referred to as Constrained SDP (CSDP), leads to

maximize 0
subject to Z1:η,1:η = Iη

tr(CTZ) = d2ij ,

tr(CAZ) = d2kj,
. . . . . . . . . . . . . . . . . . . . . .

R2
L < tr

(
C

†
TZ
)
≤ d†2ij ,

R2
L < tr

(
C

†
AZ
)
≤ d†2kj,

. . . . . . . . . . . . . . . . . . . . . .
Z � 0,

(3.19)

where d†kj and d†ij are the shortest-path distances from the k-th anchor to the j-th

target node, and between the i-th and the j-th target nodes, respectively.
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Figure 3.6: Mean location error as a function of network size for SDP with Genie-aided

edge-bounding versus Fully constrained SDP and versus Fully constrained SDP+SMACOF.

LetHF be the incidence matrix corresponding to the fully connected network. It follows

H† , HF −HL =


0 H

†
T 0

0 E
†
A E

†
T


, (3.20)

C
†
T ,



0[η×1]

e
†
ij



[
0[1×η] e

†T
ij

]
, (3.21)

C
†
A ,



ak

e
†
j



[
a
T
k e

†T
j

]
, (3.22)

where e
†
ij is the column vector of E

†
T whose i-th and j-th elements are 1 and −1,

respectively, while e
†
j is the column vector of E†

A whose j-th element is −1.

The performance of the algorithm described above can be further improved by

feeding the solution obtained from the semidefinite program given in (3.19) into a good

steepest-descent algorithm. This relates to the remark made on the last paragraph of

the preceding subsection and results from the fact that the semidefine solution does
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Figure 3.7: Cumulative density function of the mean location error for realizations of

SDP and, inside the inner rectangle, a closer-up view of the curves.

not lye in η-dimensional space (see [35] and references thereby). Here SMACOF [41] is

selected for such a refining algorithm.

Fig. 3.6 compares the mean location error obtained from (3.19), both with and

without SMACOF-based refining against that of the algorithm described in section

3.1.2. It is found that the performance of the “raw” CSDP-based solution is slightly

worse than that of the algorithm with a Genie. It is remarkable, however, that the

performance of the feasible technique is not far off from the unfeasible one. Further-

more, it can the seen that the performance of the feasible solution after refinement via

SMACOF is in fact better than that of the algorithm with a Genie and no refinement.

Finally, the CDFs of the mean location errors corresponding to the three schemes

compared in Fig. 3.6 are plotted in Fig. 3.7. This final figure reveals that, in percentile

terms, the feasible variation of the edge-bouded CSDP-based network localization al-

gorithm with flip-ambiguity robustness is, to all effect, as good as the Genie-aided

counterpart, and that the complete solution (including SMACOF refining) is even bet-
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ter. Fig. 3.7 also shows that in over 80% of trials, for instance, the proposed technique

is capable of maintaining the mean location error at the fraction of 1% of the largest

dimension of the network, despite the flip-ambiguity problem that afflicts the networks

studied.

3.1.4 Future Research Directions

Results obtained in this chapter, although very important, are empirical. Next step

will be a deeper analysis of the flip-ambiguity problem in order to give a mathematical

description of this issue. The final aim is to obtain bounds on the performance of the

CSDP.
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3.2 Multihop Localization Algorithm

In typical multihop networks, it is not realistic to assume that all nodes can estimate

their position by their own. On the opposite, the majority of sensors in the network, to

perform localization, is forced to cooperate with the small fraction that has an a-priori

knowledge of its position.

The nodes have a limited radio range R, and the network is quite far to be fully

connected: for this reason only few nodes, between the set of not localized, are linked

to one or more that a-priori know their position. On the contrary, the majority of the

nodes has none of them between their neighbours. Here a crucial problem is collecting

target-to-anchor distances: this imply to define a metrics that can avoid or reduce bias

[42] and error propagation.

In typical distributed cooperative algorithms currently considered for self localiza-

tion in autonomic multihop network, nodes estimate their own location by iteratively

collecting information on the location of and distances to neighboring nodes [43, 44, 45].

While such a message-passing concept is solidly based on sequential Bayesian inference,

a characteristic problem of those algorithms is that the communication cost or complex-

ity – measured in terms of the number of message exchanges required for convergence

[46] – grows geometrically with the number N of nodes in the network. In addition

to the resulting low efficiency, when the number nA of nodes with known location (an-

chors) is small compared to the network size (nA � N), convergence time easily exceeds

typical network coherence times causing the localization algorithm to diverge. Last but

not least, an inherent disadvantage of such algorithms is that cooperation comes at the

cost of non-anonymity, since nodes must disclose their location to neighbors.

The aim of this section is to demonstrate that the aforementioned drawbacks are

not a necessity of distributed cooperative localization algorithms in order to achieve

good localization performances.

The multihop localization is not a totally new idea. The Ad hoc Potisioning Algo-

rithm (APS), proposed by Niculescu and Nath [47, 48, 49], is drawn to be and extension

of GPS [50] for indoor environments. It is based on classical multilateration, and the

problem that addresses to solve is how to obtain, for every node, the distances to a

sufficient number of landmarks to perform a GPS-like trilateration. Several methods

of hop to hop distance propagation are studied, like DV-hop propagation method and
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DV-distance propagation method. In the first case a classic distance vector exchange is

performed, so that every node knows, in terms of hops, its distance from all the other

nodes. Then, exploiting their a-priori knowledge of reciprocal locations, anchor nodes

estimate the average hop-size and the table of distances is updated. Classic multilat-

eration is finally performed with these updated distances. DV-distance propagation

method is similar to the previous one, with the only difference that distance between

neighbouring nodes is propagated in meters rather than in hops.

A very similar solution to APS is the Robust Positioning algorithm proposed by

Savarese [51], but the author proposes a heuristic approach to detect “problematic”

network topologies. It is a two-phase algorithm, composed by Hop-TERRAIN, based

on the same concepts of DV-hop, and an iterative, local, refining phase.

Ad-Hoc Localization System (AHLoS), proposed by Savvides [52, 53], has the same

distance propagation method as DV-distance, but localization is performed with Min-

Max technique as proposed by Parker [54].

Another Multihop Localization Algorithm (MLA), based on multilateration, is in-

troduced by Will [55]. Here each target computes the distances between itself and all

the anchors, and only the shortest paths are stored. Finally 4 anchors are selected and

multilateration is performed.

To reduce the overestimate in target-to-anchor distances is the aim also of Wong

[45], whose solution is very similar to DV-hop but introducing the concept of density

awareness to dynamically estimate distances in non-uniformly-distributed networks. A

kind of awareness of the network is exploited also by Wei with his COTA framework

[56], whit the usage of confidence tags to improve localization.

Here a self-localization algorithm is described in which any node seeking to find

its own location simply collects the multihop distances between itself and a sufficient

number of surrounding anchors, which can be performed efficiently, e.g. via distributed

tree-based discovery algorithms [46] or geographic routing [57]. While the scheme is

distributed (nodes find their own location) and cooperative (neighboring nodes must

relay packets towards/from anchors), fundamental differences with respect to current

distributed cooperative self-localization algorithms are: a) nodes do not repeatedly up-

date/exchange location information with neighbors (with clear benefits for the security

of the network [58]), but rather forward inquires on the location of anchors to the an-

chors themselves, via multihop routing; b) nodes do need not disclose their location to
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(a) Randomly deployed and

connected network.

Target

(b) BFS-like tree built from the

target.

Anchor 1

(c) BFS-like tree built from the

anchor node 1.

Anchor 2

(d) BFS-like tree built from the

anchor node 2.

Anchor 3

(e) BFS-like tree built from the

anchor node 3.

(f) Network connectivity model

used during the simulations.

Figure 3.8: A typical realization of network connectivity (a), a typical BFS-like tree

built by the target (b), typical BFS-like trees built by anchor nodes (c,d,e), and a typical

multihop network model (f).

neighbors, and instead simply add each estimated hop distance to the routes length;

c) the algorithm is not iterative, such that its “convergence” time equals the delay

associated with the slowest route to the anchors.

3.2.1 Network Scenarios and Model

A typical example of a multihop network is represented in Fig. 3.8(a). Here, the

network is understood as a set of N interconnected nodes randomly deployed. Only

the location of a small fraction (nA � N) of nodes is known exactly a priori. These

are referred to as anchors (marked by black dots) and A , [a1, · · · ,anA
] is the node

coordinate matrix carrying the column vectors with their corresponding locations. The

coordinate matrix of the remaining nodes, X , [x0, · · · ,xN−nA−1] is unknown. The

i-th node xi can however perform ranging measurements to any neighbor xj , obtaining
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a noisy estimate d̃ij (measurement) of their mutual distance dij, defined as

dij , ‖xi − xj‖ =
√

〈xi − xj ,xi − xj〉, (3.23)

where ‖ · ‖ denotes the Euclidean norm and 〈·〉 denotes inner product.
Without loss of generality it is possible to focus on the localization of the node x0,

which will be referred to as the target and is depicted by a white square in Fig. 3.8. In

the distributed scenario, the target node wants to estimate its own location computing

the distances between itself and a sufficiently large subset of anchors (nA ≥ 3). Since

the target is not directly connected to the anchors, it has to determine those distances

through the lengths of the multihop paths to the anchors.

For convenience (and no consequence in the analysis), it will be assumed that each

target-to-anchor path has nHi
hops. The estimated multihop distance from a target at

x0 to an anchor at ai is therefore

p̃0i ,

nHi∑

k=1

d̃k−1 k, (3.24)

where (x1, . . . ,xnHi−1
) are the nodes involved in the path and d̃nHi−1 nHi

is the measured

distance between anchor ai and the last node of the path xnHi
−1.

Since the connectivity of a wireless network can not be determined a priori, due to

traffic load, packet collisions and similar challenges, it will be assumed that such paths

are the result of a distributed version of the well known Breadth First Search (BFS)

algorithm [46], taking into account packet losses and collisions, which is referred to

as BFS-like algorithm. Consequently, as can be observed from the examples in Figg.

3.8(b)-3.8(e), the branches of the resulting trees are not determined by the shortest

paths between the root and the leaves, but rather by less “straight” paths generally

growing from the root towards the leaves.

Fig. 3.8(b) illustrates paths obtained in connection to a distributed self-localization

scheme, where the target builds its own BFS-like tree in order to find paths to all

anchors. In contrast, Figg. 3.8(c)-3.8(e) illustrate the paths obtained in connection

with a centralized systemic localization scheme, where anchors (assumed to be con-

nected to a central station) build their own independent BFS-like trees. Obviously in

both cases multihop target-to-anchor distances will be estimated under similar circum-

stances, namely, through irregular routes which result typically in p̃0i � d0i.
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Figure 3.9: Linearized mean location error of SMACOF algorithm for networks with

different nHi
. Variance, max and min error are shown for every network size.

With basis on the latter, the performance of localization algorithms will be studied

with target-to-anchor distances constructed using a model illustrated in Fig. 3.8(f), in

which the target is located at the center of a circle of unitary1 diameter (d = 1) where

the anchors lye (randomly placed). The route from the target to the anchor at ai is

built by randomly selecting nHi−1 nodes uniformly distributed inside a cone centered

at ai.

3.2.2 A Typical Localization Algorithm in the Multihop Scenario

This subsection it will briefly review a classical localization algorithm, namely the SMA-

COF technique [41], known for its accuracy and efficiency, and studied its performance

under the conditions described in subsection 3.2.1.

This algorithm attempts to find the minimum of a non-convex function by track-

ing the global minimum of the so-called majorized convex functions T(Q̂(m), Q̂(m−1))

which is successively constructed from the original objective and the previous solution

1This is without loss of generality and amounts to a normalization of all distance quantities.
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Figure 3.10: Cumulative density functions of the mean location error obtained with

SMACOF for network with different number of hops and with nA = 4. From the left to

right: nHi
= 1, 4, 7, 10.

obtained in the iterative procedure [59], and where Q̂(m) is the estimate of Q = [x0;A]

after the m-th iteration.

Let

pij = ‖ai − aj‖, (3.25)

and denote all estimated quantities by the corresponding letter topped with a .̂ Then,

it follows:

T(Q̂(m), Q̂(m−1)) = c+ tr
(
Q̂(m)TUQ̂(m)

)

−2 · tr
(
Q̂(m)TB(m)Q(m−1)

)
,

(3.26)

where c is a constant that can be neglected, the entries of U are given by

uji =

{
nA , i = j,
−1 , i 6= j,

(3.27)
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while diagonal and above-diagonal elements of the symmetric matrix B(m) are given by

b
(m)
ji =





nA+1∑
k=2

p̃0k

p̂
(n−1)
0k

, i = 1, j = 1,

nA+1∑
k=1
i6=j

pj−1k

p̂
(n−1)
j−1k

, i = j, j 6= 1,

− p̃0 i−1

p̂
(n−1)
0 i−1

, i ≥ j, j = 1,

−pj−1 i−1

p̂
(n−1)
j−1 i−1

, i ≥ j, j 6= 1.

(3.28)

At them-th iteration the global minimum Q̂
(m)
min of the majored function T(Q̂(m), Q̂(m−1))

is computed via the Guttman transform [60],

Q̂
(m)
min = U†B(m)Q̂

(m−1)
min , (3.29)

where † denotes the pseudoinverse.

Fig. 3.9 illustrates the (linearized) mean location error ε̄, its variance, its maximum

and its minimum value, for a network with nA = 4, varying the number of hops nHi
.

As can be seen, ε̄ is directly proportional to nHi
. To increase the number of hops

means also to increase the variance between the real target-to-anchor distances and the

multihop paths. As consequence, there is a higher target-to-anchor distances estimate

error. For a network characterized by nHi
= 2, ε̄ ≈ 0.5, i.e., the mean location error is

half of the size of the considered scenario.

The linear dependence of the mean location error from the number of hops can be

seen also from Fig. 3.10, which illustrates the CDF of ε̄ for networks with nA = 4 but

different nHi
. The four CDFs, obtained respectively for 1, 4, 7 and 10 hops, are almost

equispaced on the horizontal axis, meaning that to equal increase of nHi
corresponds

equal increase of ε̄.

It follows that a classic localization algorithm like SMACOF is not suitable for

scenarios with not-negligible target-to-anchor distances estimate error, which is typical

of the multihop scenario. The result is a totally inaccurate estimate of target location.

These considerations motivate the decision to use, in the context of the multihop

localization, algorithms more resilient and robust to the target-to-anchor distances

estimate error.
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3.2.3 Localization in Multihop Networks: Constrained SDP

Following the conclusion of the previous section, here are introduced and described two

algorithms able to guarantee accurate localization performances even in presence of a

not negligible target-to-anchor distances estimate error.

The first, Constrained SDP (CSDP), is based on the well known theory of the

Semidefinite Programming (SDP). The second, Distance Contraction (DC), is devel-

oped on the base of the Least-Square (LS) localization algorithm [61].

The target-to-anchor squared-norms (or squared-distances) can be written as

‖ai − x0‖2=
[
a
T
i −1

][
I2

x
T
0

]
[
I2 x0

][ ai

−1

]
=d20i, (3.30)

where I2 is a 2-by-2 Identity matrix.

Define the matrix

Z ,

[
I2 x0

x
T
0 y

]
. (3.31)

Then, the multihop localization problem can be stated as follows

find x̂0 ∈ R
2×1, y ∈ R

such that
[
a
T
i −1

]
Z

[
ai

−1

]
= d20i,

y = x̂
T
0 x̂0,

(3.32)

The SDP variation of the network localization problem formulated above is obtained

[34] by relaxing the equality constraint

y = x̂
T
0 x̂0

into the positive semidefinite condition

Z � 0.

Under such relaxation and with elementary algebra introduced to eliminate the vari-

ables x̂0 and y it possible to arrive at

maximize 0
subject to Z1:2,1:2 = I2

tr(CAZ) = d20i,

Z � 0,

(3.33)
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where Z1:2,1:2 is the 2× 2 first-minor of Z and the constants CA is defined as

CA ,

[
ai

−1

] [
a
T
i −1T

]
. (3.34)

As remarked in the previous section, the knowledge of d0i is not available. It is

necessary now to transform the equality of equation (3.33) in a set of two inequalities,

using 2 constrains.

As lower bound it can be put simply 0, since it is known that two nodes can not

occupy the same physical location, while as upper bound we can use the estimated

target-to-anchor distances p̃0i. Finally the problem becomes:

maximize 0
subject to Z1:2,1:2 = I2

. . . . . . . . . . . . . . . . . . .
0 < tr(CAZ) ≤ p̃0i,
. . . . . . . . . . . . . . . . . . .
Z � 0.

(3.35)

3.2.4 Localization in Multihop Networks: Distance Contraction

The DC algorithm is described in detail in [61], and is designed to minimize the effect of

biased measurements in source localization problems under Non-Line-Of-Sight (NLOS)

conditions. The inherent properties of the algorithm are, however, suitable to the

multihop localization problem considered here.

In particular, the DC algorithm is a reformulation of the distance-based LS lo-

calization problem in which distances are contracted (subtracted by an empirically

determined sufficiently large) by coefficients structured in relation to the null-space of

the Grammanian matrix (or equivalently the relative angular matrix) describing the

geometry in the problem (see [61]). The effect of the contraction is that the solution is

found within a feasibility region I where the LS cost function is ensured to be convex.

The limitation of the algorithm, however, is that it can only be applied to targets within

the convex-hull defined by the anchors.

Here it is utilized a simplified version of the DC algorithm, which can be described

as follows. First the feasibility region I is constructed from the intersection of the

following inequalities:

(p̂0i − p̃0i) ≤ 0, ∀i, (3.36)
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then it searches, for every anchor at ai, its nearest point such that āi ∈ I. The

contracted distances are computed as follows:

p̄0i = ‖āi − x̂0‖. (3.37)

Finally the cost function to minimize becomes:

f(A, x̂0) =

nA∑

i=1

(p̄0i − p̂0i)
2 . (3.38)

3.2.5 Performances Comparison and Discussion

The same set of data used to run simulations for SMACOF in subsection 3.2.2, is now

used to evaluate the performances of both CSDP and DC algorithms.

Fig. 3.11 illustrates the mean location error ε̄, for networks with nA = 4 anchors,

varying the number of hops nHi
. As it has been remarked before, the error on target-

to-anchor distances estimate is proportional to nHi
. It is evident that DC can perform

accurate localizations regardless the variation of the hops, i.e., this algorithm is robust

to the error that makes SMACOF useless in this scenario. The degradation of the

performance proportional to nHi
affects also the CSDP algorithm, even if not like

SMACOF. Nevertheless CSDP proves to be efficient especially for a small number of

hops (nHi
≤ 3), which is a typical case for wireless multihop networks. Under such

conditions it even outperforms DC.

Mean location error of both algorithms for network with nHi
= 4, varying nA, are

presented in Fig. 3.12. It can be noted that the minimum number of anchor nodes

(nA = 3) is sufficient to guarantee accurate performances. There is no substantial gain

increasing nA: from 3 to 8 anchor nodes the mean location error is reduced of 10% for

DC and only of 5% for CSDP.
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Figure 3.11: Mean location error as function of the number of hops nHi
for networks

with nA = 4 anchor nodes.
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Figure 3.12: Mean location error as function of the number of anchor nodes nA for
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different number of hops.
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Finally Fig. 3.13 illustrates the CDF of the mean location error obtained for a

network with nA = 4 and varying the number of hops: nHi
= 1 in the first case (white

markers) and nHi
= 9 in the second (black markers). The effect of the number of hops

on performances already highlighted in Fig. 3.11, is here even more evident. While for

the CSDP the differences between the two CDF curves are substantial, in the case of

DC they are almost perfectly matching.

After the simulation session, DC has proved to be a really robust and efficient algo-

rithm, but with two main drawbacks. It can localize only targets inside the convex-hull

determined by anchor nodes, and furthermore it can localize only one target per time.

In particular the latter drawback can be annoying for the centralized systemic localiza-

tion scheme (Figg. 3.8(c)-3.8(e)), where the central unit has to run the algorithm as

many times as the number of targets to localize.

On the contrary, CSDP can localize more than one target per time and even outside

the convex hull. This complementary suggests a possible combined approach for the

two algorithms. CSDP can be used to obtain a first location estimate. If the target

results to be inside the convex-hull, and if the medium number of hops is greater than

3, then DC can be run to refine the estimate.

3.2.6 Quantitative Comparison

This subsection provides a quantitative comparison of the MLAs, employing the well-

known “three-sequences framework” introduced by Langendoen [62] to analyze the

behaviour of the various solutions and to select the most general and useful algorithms.

The three-sequences are:

• Distance Collection: target-to-anchor measurements are collected;

• Position Estimation: a first estimation of target positions is provided;

• Refining : localization improvements (optional).

Langendoen analysis shows that between the MLAs present in literature no one

is always able to outperform other solutions. Classic MLAs (as those cited in the

introductions of this chapter) are instead very ad-hoc solutions, that can provide good

performances only under particular scenarios and conditions.
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Is therefore interesting use this analysis to understand what are the weak aspects

of classic MLAs and, on the contrary, to justify the robustness of new solutions like

Constrained Semidefinite Programming Localizaton Algorithm (CSDPLA) or DC.

The key-concept is that minimizing the error in target-to-anchor distances estima-

tion is not the right approach. In general, due to the lack of connectivity it is not

possible to have a negligible error: as a consequence the traditional localization al-

gorithms are not well suitable for multihop networks. It is in fact demonstrated by

Whitehouse [63, 64], that small variations in the ranging model in multihop networks

can lead to large variations in localization error. Since a perfect ranging model has not

been proposed for largely irregular topology like the multihop networks, most likely

there will not be acceptable localization errors.

3.2.6.1 Phase I: Distance Collection

CSDPLA uses the same distance collection technique than DV-distance algorithm. Re-

calling the noisy measurement (3.23) of the mutual distance between a pair of nodes

at xi and xj , follows that the estimated multihop distance from a target at x0 to an

anchor at ai is therefore

p̃0i ,

nHi∑

k=1

d̃k−1 k, (3.39)

as in (3.24).

It is quite obvious that

p̃0i ≥ p0i, (3.40)

where p0i is the Line of Sight (LOS) distance between target at x0 to an anchor at ai,

and equality is valid only iff all the intermediate nodes lye on the line between them.

The estimation error on each path is proportional to the number of hops involved, as

demonstrated in [65].

Disequation shown in (3.40) is not anymore valid for DV-hop. Equation (3.24)

becomes

p̃0i , nHi
c̄i, (3.41)

where c̄i is estimated average length of a single hop in the path to the i-th anchor.
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Defining aj the location of the farthest anchor node from the one in ai, the single

hop length is estimated as follows:

c̄i ,
‖ai − aj‖
nHi

+ nHj

=

√
〈ai − aj,ai − aj〉

nHi
+ nHj

. (3.42)

This technique can lead, for some irregular topologies, event to underestimated

target-to-anchor distances. In this case there is no more proportionality between the

number of hops and the relative estimated distance error. This averaging-technique has

positive effects for quasi-isotropic networks even with a high number of intermediate

hops; on the contrary the performances are affected by highly irregular topologies or

by targets lying outside from the convex hull defined by the anchor nodes.

3.2.6.2 Phase II: Position Estimation

In their original formulation, DV-hop and DV-distance use lateration techniques, like

GPS [50] to perform Position Estimation. However, Li [66] has shown how, without the

knowledge of the statistical signal model, Multidimensional Scaling (MDS) techniques

are more efficient than Maximum-Likelihood Estimators (MLEs) like GPS. For this

reason, for both DV-hop and Dv-distance algorithms, the SMACOF technique has

been employed. As described in section 3.2.2, SMACOF is an MDS algorithm known

for its accuracy and efficiency [59].

As previously remarked, main difference between CSDPLA and the classic MLAs is

Position Estimation-phase. CSDPLA employs the SDP theory, founding a solution (i.e.

target position) in a multidimensional space and projecting it onto the bidimensional

space. This is the fundamental reason why CSDPLA is less sensitive to measurement

errors coming from the Distance Collection-phase. Mathematical details have been

provided in section 3.2.3.

3.2.6.3 Phase III: Refinement

Niculescu and Nath [47] do not employ a Refinement-phase, as on the contrary done

by Savarese [51], whose solution is very similar to DV-hop. In this last case, only inter-

node distances are considered, and local laterations are performed: all node position

estimates are pushed toward local minima. This phase is therefore unnecessary with

SMACOF, since nodes position are already estimated within local minima.
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Figure 3.14: Mean location error as function of the number nDi
of intermediate nodes.

On the contrary, for CSDPLA a local refinement, based on solutions like SMACOF,

is possible [67]. Since the aim of this subsection is to give a quantitative comparison

of MLAs,the Refinement-phase is not performed neither for CSDPLA, clarifying how

it outperforms other solutions “as it is”.

3.2.6.4 CSDPLA, DV-distance and DV-hop Simulation Comparison

In order to capture the performances under different network topologies, two different

simulation scenarios, always according to the model in Fig. 3.8(f) and with a Gaussian

Noise on ranging measurements with variance σ2 = 0.1, have been implemented.

In the first case, the performances of DV-distance, compared to CSDPLA, have

been analyzed. The DV-distance algorithm is very sensitive to the accumulation of

error in multihop distances collection. To highlight this drawback, a network where all

the anchors lye exactly on a circle, randomly placed, has been chosen, and the target is

randomly placed around the circle center. The number of intermediate hops is the main

simulation parameter: more the intermediate hops, more the error in target-to-anchor

distances estimation.

As can be observed by Fig. 3.14, DV-distance algorithm suffers an heavy depen-

48

./3_localization/figures/SMACOF_vs_CSDP.eps


3.2 Multihop Localization Algorithm

0.2 0.10 0.20 0.30 >0.30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean Location Error

DV-hop versus CSDPLA

ε̄

d̄tb

DV-hop

CSDPLA

Figure 3.15: Mean location error as function of the distance d̄tb of the target from the

barycentre of the network.

dence from the error in target-to-anchor distances estimation. Even with only one

intermediate node the mean location error in position estimate is not negligible (more

than the 25% of the scenario dimension), and for three hops, i.e. a very common realiza-

tion for WSNs, the mean location error is 0.75, totally unacceptable. On the contrary,

the dependence of CSDPLA from the number of intermediate hops is less relevant, and

for nHi
= 8 the mean location error is the same than DV-distances for nHi

= 1.

DV-hop algorithm performs instead very well for isotropic topologies like those

considered in the previous scenario. This solution does not suffer error accumulation in

distances collection and the performances are not related to the number of intermediate

hops. In order to capture the failures of this algorithm, the anchor positions have been

changed; now anchor nodes are randomly placed on three different circles centred on

the same point, causing a variation in the isometry of the network. The distance d̄tb

of the target, always randomly placed around the circles center, from the barycentre

of the network has been computed. This parameter d̄tb can be used to classify the

isometry of the network: greater the distance, more non-isometric the topology.

Results in Fig. 3.15 show how DV-hop suffers the dependence from the topology,

while the performances of CSDPLA are related only to nHi
and totally insensitive to
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d̄tb. In the normalized scenario (the mean diameter of the three circles is d = 1), if

the distance of the target from the barycentre of the network is 0.2 or less, the mean

location error of DV-hop is 0.15, almost the same that for CSDPLA. Increasing the

value of d̄tb, the performances of DV-hop deteriorate rapidly. Even in this scenario, as

in the previous, CSDPLA can easily outperforms traditional MLAs.

3.2.7 Future Research Directions

Next activity in the framework of MLAs will be the performance comparison with the

traditional message-passing algorithm. It is indeed useful to quantify the advantages of

these new MLAs compared to the message-passing family both in terms of reduction of

messages exchanged over the network and time-computation. The second action point

focused on obtaining a bound on the performance of these new MLA and last, but not

least, is the extension of MLA to the anchor-free networks.
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Tracking

Target tracking is one of the non trivial applications of WSNs which is set up in the

areas of field surveillance, habitat monitoring, indoor buildings, and intruder tracking

[14].

In these fields the open challenges are multiple and related to energy efficient,

computational cost, security aspects and above all reliability of the system. To track

a target is even more complex than simply localize it, since the system must have a

“memory” to store data, and at every instant the decision about the position must

be taken according to the previous. It is clear that this memory introduces a relevant

complexity in the system respect to the localization, and this complexity can have

very negative effects. With the computation cost also the response-time of the system

can grow dramatically, the energy consumption can be unacceptable for WSNs and

the hardware requirements to face all these problems can cause increase the cost of a

network.

A basic distinction between tracking systems is done: active [68], like the one pre-

sented in the following, and passive systems. In active systems, the target collaborates

with the external system to its localization and tracking, in order to get access to some

kind of services. On the contrary, in passive system, the targets do not want, or simply

can not, cooperate with the network.
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4.1 Active Tracking

In the last ten years the necessity of cheap and accurate indoor localization techniques

has grown enormously. In many scenarios, museums, big shops, hospitals, hotels or

big public buildings, the real time knowledge of the user’s location can be helpful to

provide a better service.

Indoor positioning systems based on IEEE 802.11 wireless networks gained a large

attention in the few past years, due to their remarkable advantages in terms of costs and

flexibility with respect to positioning systems based on ad-hoc infrastructures. Various

localization techniques are summarized in [69], as well as some of the most interesting

application contexts. The simplest and diffused approach with Wireless Local Area

Network (WLAN) infrastructure is based on measure of the signal strength to derive

user’s position [70]. An improvement can be obtained with the Joint Clustering tech-

nique [71], that uses the clustering of locations to reduce the computational cost of the

algorithm. Another technique is the statistical approach through Bayesian filters as

proposed in [72]. The Bayesian filters offer a powerful mathematical tool for the loca-

tion problem within a wireless sensor network and could be considered a near optimal

solution for indoor positioning problems. However as shown in [73], in order to set-up

a positioning system based on a Bayesian filter, it is necessary to determinate both a

well-accurate mobility model, and a perception model. Furthermore as will be shown

in the following, it is not easy to determine exactly these two models and all the related

parameters: a long and time-expensive tuning phase is required and an imperfect choice

of the models can significantly affect the precision of the positioning system.

In this section, it is introduced a new tracking algorithm which provides a good

trade-off between complexity and performance. The proposed algorithm is inspired

by the sequential decoding algorithm proposed in [74] and permits a fine adjustment

(tuning) of some parameters to face the different user’s mobility characteristics.

4.1.1 Positioning Based on Measures of Signal Strength

A widely-diffused approach consists of collecting samples of the power of the signals

emitted by each of the N Access Points (APs), in a set of M points of the indoor

environment. The samples are then organized in a database with M entries, and each

entry is a vector of N Received Signal Strength Indicators (RSSIs). Such a database
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(radio map of the environment) will constitute the signal space used by the generic user

during the positioning phase [70].

Define

B(i) =
(
B

(i)
0 , B

(i)
1 , . . . , B

(i)
N−1

)

the received signal strength profile for the ith entry. The element B
(i)
j is the power

(measured in dBm) of the signal due to the jth AP and received at the ith position of

the radio map database. The radio map

B =
{
B(i)

}M−1

0

is therefore given by the collection of the received signal strength profiles corresponding

to the M points of the indoor environment. Assume the radio map is available at the

generic user. Denoting by

R(n) = (R0(nTs), R1(nTs), . . . , RN−1(nTs))

the signal strength profile measured by the user at time nTs (where n is integer and Ts

is the sampling period), and location S, the purpose of the algorithm is to produce an

estimate of S based on the identification of the database entry B(i) which best matches

the received signal strength profile. The associate position Si is taken as an estimate

of S.

Basic algorithms use the Nearest Neighbor(s) in Signal Space (NNSS) technique

to pick the radio entry that best matches the received vector profile [69, 70]. The

Euclidean distance between R(n) and each entry of the radio map is computed; the

point corresponding to the entry at minimum Euclidean distance is then chosen as

estimated position. Although the algorithm proposed in [70] provides a simple approach

to the user’s position estimation, the main limits of its first release are due to:

• the necessity of an updated radio map, which requires a large amount of work by

the positioning system manager;

• the absence of a user’s position tracking mechanism.

While the first issue can be partially faced by the use of proper propagation models,

able to predict the received signal strengths for a given position, the second issue

requires the definition of a tracking algorithm with a reasonable trade-off between the
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computational complexity and the performance improvement. It is in fact quite obvious

that the position of a generic user at time nTs is related to his position at the previous

time instant (n − 1)Ts (i.e., the user’s position is evaluated every Ts seconds or, in an

event based approach, at each event). Therefore, the knowledge of the user’s position

at time (n− 1)Ts can be exploited to improve the accuracy of the position estimation

at time nTs. Moreover, a tracking algorithm can take advantage from the physical

constraints (e.g., the walls) imposed by the real environment to the user’s mobility.

4.1.2 Positioning Environment and Infrastructure

The tests have been carried out at the building of the University of Bologna at Cesena,

as indicated in Fig. 4.1. There are 23 rooms of different size and a ’U’ hallway. It has

been mapped 2 or 4 points for every room depending on its size. Other 14 points have

been mapped in the hallway, for a total of 74 points, corresponding to 74 radio map

entries. This scenario is heterogenous also for the different types of furniture and the

size of various walls.

It has been used 4 APs, operating in infrastructure mode and IEEE 802.11b/g-

compliant, symmetrically disposed in the hallway: two on the main side, one on the

left and the other on the right. The radio entries were collected using a laptop with an

integrated Network Interface Card (NIC) 802.11b/g compliant.

The sampling phase, which leads to the construction of the radio map, lasted several

days, in order to get accurate measurements. In fact, radio scenarios can be very

different also during different hours in the same day: for example a crowd along the

hallway or inside the office can significantly modify the received power levels.

For the algorithms test and implementation, the dynamic link library provided in

[75] has been modified in order to acquire the RSSIs.

4.1.3 A New Tracking Algorithm

The new tracking algorithm presented in this section is based on a time-varying trellis

description of the indoor environment, where each state (node) of the trellis corresponds

to a physical location (entry of the radio map).

The possibility of using event-driven transition instead of time-driven transition has

been considered. This solution can reduce remarkably the complexity of the tracking
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Figure 4.1: Testbed scenario with dots corresponding to entries in radio map and with

APs locations.

algorithm: in such a case, the system is allowed to change its internal state only if there

is a significant variation in the RSSI.

Define

B(i) =
(
B

(i)
0 , B

(i)
1 , . . . , B

(i)
N−1

)

being the received signal strength profile for the ith entry and the radio map

B =
{
B(i)

}M−1

0
.

The transition between two generic states, denoted by Si and Sj, is allowed if and

only if Si and Sj correspond to physically-adjacent locations that are not separated by

obstacles (e.g., walls). Therefore, define

Si ∈ N (Sj) ,

where N (Sj) is the set of locations reachable from Sj (neighborhood of Sj in the fol-

lowing).

Note that the complexity of the tracking algorithm would inevitably deal with the

trellis dimensions (e.g., number of states, number of transitions to be considered, etc.)

that is generally so large to prevent practical implementations. The main idea which
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Figure 4.2: Trellis growth and expurgation.

resides in the proposed algorithm consist of a trellis-reduction (expurgation) procedure

which dynamically eliminates the less probable states at a given time instant. Therefore,

the trellis-reduction results in a low-complexity tracking algorithm that could be easily

implemented. Define now T(n) the set of states present in the n−th section of the

trellis, prior to the trellis expurgation. The trellis-reduction procedure will produce the

L(n) most probable states from T(n). The expurgated set of states (referred as active

states) is denoted by T
∗(n). Obviously, T∗(n) ⊆ T(n) and |T∗(n)| = L(n).

4.1.3.1 Initialization

The initialization proceeds as follows. T(0) consists of the set of M possible states,

corresponding to the M entries of the radio map. It is assumed that there is no a-

priori knowledge on the initial user’s location. Once the RSSIs vector R(0) is received,

the Euclidean distance dj(0) between R(0) and the j−th entry of the radio map is

computed as

dj(0) =‖ R(0) −B(j) ‖, (4.1)

for j = 0 . . .M − 1. The expurgated set T
∗(0) is then produced, selecting the L(0)

entries at the lower distances. The choice of the initial number of active states, L(0),
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is a design parameter. Moreover denote by µj(n) the accumulated metric for the jth

state at the time nTs. At the initialization we set µj(0) = 0 ∀j.

4.1.3.2 Trellis Construction

The tracking algorithm proceeds with a recursive trellis growth. Assume T
∗(n) to be

the set of active states at time nTs. The set of states (prior to the expurgation) at

(n+ 1)Ts is obtained as

T(n+ 1) =
⋃

i

N (Si(n)) , (4.2)

where the union is over i such that Si(n) ∈ T
∗(n). Hence, T(n + 1) is given by the

union of all the neighbors of the active states at time nTs. The edges linking the nodes

in T∗(n) and the nodes in T(n+ 1) are drawn according to the topology of the indoor

environment, i.e., the states Si(n) ∈ T
∗(n) and Sj(n + 1) ∈ T(n + 1) are connected if

and only if Sj(n+ 1) ∈ N (Si(n)).

4.1.3.3 Trellis Expurgation

Consider the case in Fig. 4.2. Once T(n + 1) has been determined, the Euclidean

distance dj(n+1) is computed between RSSIs vector R(n+1) and the radio map entry

B(j), for each active state Sj(n+ 1) ∈ T(n+ 1), as

dj(n + 1) =‖ R(n+ 1)−B(j) ‖ . (4.3)

Define now the Euclidean distance threshold D. The threshold D represents the max-

imum Euclidean distance between the received RSSIs vector and the radio map en-

try (related to the actual position) which is considered ”likely”. The expurgation of

T(n+1) proceeds therefore by eliminating the states whose Euclidean distance exceeds

the threshold D. Thus,

T
∗(n+ 1) = {Sj(n + 1) ⊆ T(n + 1) : dj(n+ 1) ≤ D} .

4.1.3.4 Accumulate Metric Computation and Paths Storage

Consider a generic active state at time (n + 1)Ts, Si(n + 1). The incoming edges in

Si(n+ 1) come clearly from any Sj(n) such that Sj(n) ∈ T∗(n) ∩N (Si(n+ 1)).
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The accumulated metric µi(n+ 1) of the active state Si(n+ 1) is computed as

µi(n+ 1) = min {µj(n) + wjidi(n+ 1)} , (4.4)

∀j such that Sj(n) ∈ T∗(n) ∩ N (Si(n + 1)), and where wji represents the transition

weight between the states Sj and Si. The term wjidi(n + 1) is the transition metric

between the states Sj(n) and Si(n + 1). The transition weights wji must be selected

to take the user’s mobility characteristics into account. Consider the example of a user

with low mobility. In that case, wii (i.e., the weight associated to the permanence of

the user in the ith location) should be much lower than any other transition weight.

Together with the accumulate metric computation, the algorithm stores the survivor

paths for each active state in the current time instant. It is now introduced the operator

P(k) (Si(n)) which returns, for a generic active state Si(n), the kth precursor on the

survivor path which ends in Si(n). Therefore, P(k) (Si(n)) will be the active state at

the time instant (n− k) belonging to the survivor path terminated by Si(n).

4.1.3.5 Position Estimation - The Proposed Algorithm

The user’s location estimate at time nTs is evaluated as follows. Assume Si(n) is the

state belonging to T∗(n) with the lowest accumulated metric, µi(n). The decision about

the user’s position is delayed of m time intervals and corresponds to

Ŝ(n) = P
(m) (Si(n)) . (4.5)

The choice of the parameter m must be adjusted taking into account the typical user’s

speed, the maximum latency that can be tolerated for a real-time service and the

position estimation accuracy. On one hand, large values of m would in fact introduce

large delays and may lead to obsolete position estimates for users characterized by a

sufficiently high speed. On the other hand, a large value ofm is an appealing solution for

the algorithm performance improvement, since it permits to perform a decision, about

the position of the user at time (n −m)Ts, taking into account the RSSIs samples on

both the intervals [0, (n −m)Ts] and [(n −m+ 1)Ts, nTs].

An improvement of the previously-presented algorithm can be obtained by a mod-

ified accumulated metric computation. In particular, through several tests it has been

observed the presence of error propagation phenomena for several position estimations,
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after a moderate/long fading event. In order to limit the effects due to fading corre-

lation, our algorithm computes the accumulated metrics taking into account only the

last h transition metrics of the associated paths.

A further improvement is introduced as follows. Consider the case where at the

(n − m)th section of the trellis the two active states Sx and Si are present. Their

neighborhoods do not coincide, i.e., some states belonging to N (Sx) are not reachable

from Si, and viceversa. Assume Sj(n) is the state with the lowest accumulated metric

at time nTs, and that P
(m) (Sj(n)) = Sx(n − m). Therefore, the estimated position

at time nTs will be Ŝ(n) = Sx(n − m). Assume now that the state with the lowest

minimum distance at the time (n+1)Ts is Sl and that P(m) (Sl(n+ 1)) = Si(n−m+1).

Obviously, the estimated position at time (n + 1)Ts will be Ŝ(n+ 1) = Si(n −m+ 1).

Since Si /∈ N (Sx), the user transition Sx(n − m) → Si(n − m + 1) is inconsistent,

i.e., it deals with locations that are not physically adjacent. To limit the effect of

inconsistent hops, a further refinement to the proposed algorithm has been introduced.

Assume Si(n) is the state with minimum accumulated metric in T
∗(n) and consider

its qth precursor P(q) (Si(n)). The algorithm imposes that P(q) (Si(n)) belongs to each

survivor path at the nth section of the trellis. To obtain this results, each state Sj(n)

belonging to T
∗(n) for which

P
(q) (Sj(n)) 6= P

(q) (Si(n)) ,

with m ≤ q ≤ h is subject to a further expurgation from T
∗(n). The parameter q has

therefore the role of setting a common precursor for the survivor paths in the last h

time instances.

4.1.4 Algorithm Test

An ad-hoc software has been developed in order to compare the proposed algorithm

both to the RADAR [70] and to the Bayesian filter described in [73]. The test has been

organized as follows:

• During the ”off-line phase” the radio map (consisting of 74 entries) has been

constructed. For each point 4000 samples at the frequency of 10 Hz have been

collected.
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This phase is remarkably time-expensive, also because environmental changes and

temporary changes could make the radio map obsolete or not accurate.

Note that the method of [76] has been used to mitigate the power attenuation

caused by the presence of the user’s body between NIC and AP, which could affect

the measured values of the signal strength (especially if the body obstructs the

LOS path connecting the laptop NIC and an AP). Therefore, during the off-line

phase, for each point the laptop has been turned in the four cardinal directions

every 100 seconds.

This “off-line phase” was necessary also for the Bayesian filter because, notwith-

standing it does not use the radio map, the collected measures are very useful to

calibrate the parameters inside both mobility model and perception model.

• Some routes has been defined in the indoor environment used for the tests. A set

of measured signal strengths has been collected on the above-mentioned routes,

walking at a speed ranging from 1.25 m/s to 1.78 m/s, which captures approx-

imately 70% of people’s constant speed walking [77]. The samples have been

collected with a 10Hz rate, and have been stored into a file jointly with the real

position of the user.

• Finally the Bayesian filter, RADAR algorithm and the new tracking algorithm

have been implemented assuming as input the above-mentioned sample files. This

procedure permits to compare the behavior of the three algorithms in the same

conditions (i.e., same radio map and same on-line samples). The software pro-

duces as output the decision for both the solutions with the frequency of 1 Hz,

i.e., every 10 samples.

4.1.5 Performance Evaluation through On-Field Measurements

The performance evaluation for the presented tracking algorithm has been performed

taking into account two different scenarios. The first case (dynamic scenario, in the

following) was referred to users characterized by high mobility, while a second case

considered (almost) static users (static scenario, in the following). It must be now

remarked that, for the purpose of this section, the attention has been focused on the
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Table 4.1: Cumulative distribution function of the error (in meters) for Bayesian filter,

RADAR and the new tracking algorithm based on-field dynamic measurements.

Error distance CDF Bayesian CDF RADAR CDF tracking

(meters) filters algorithm

0.0 25.1% 15.4% 22.9%

1.8 33.0% 21.4% 35.1%

2.6 38.0% 38.1% 56.0%

3.5 55.9% 56.3% 66.0%

4.4 63.5% 59.0% 69.6%

7.3 90.7% 94.9% 100.0%

21.0 100.0% 100.0% 100.0%

first case, where the tracking algorithm was expected to provide the largest performance

gain respect to other positioning systems.

After some preliminary tests the tracking parameters have been determined, in

order to reach a reasonably good trade-off between complexity and performance . The

number of the initial states of the trellis, L(0), is set to 10, and the threshold D to 50.

The memory length h results to provide good performance when it is set to 5, while the

delay (m) and the point of convergence (q) are set to 2 and 3 respectively. Finally is

defined the cost of each type of transition. A unitary cost (wii = 1) is associated to the

permanence inside an office, as well as a transition between two states in the hallway.

All the other costs are associated to wij = 1.1 for every i 6= j

The Cumulative Density Function (CDF) for the error distance (in meters) of

Bayesian filter, RADAR and the new tracking algorithm for the on-field dynamic mea-

surements, as shown in Tab. 4.1, reveals that the new tracking algorithm produces

a better tracking of the user movement than both the RADAR and the Bayesian fil-

ter approaches. The error is within 2.6 meters in the 56% of locations for the new

tracking algorithm, against only about 38% for both RADAR and Bayesian filter. The

maximum error distance for our algorithm is 7.3 meters against 21 meters for both

RADAR and Bayesian filter. Note that, although the Bayesian filter approach could be

improved by a more accurate tuning of the models and parameters, these results con-

firm the expected performance improvement of our proposed algorithm in the dynamic

scenario.
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Table 4.2: Cumulative distribution function of the error (in meters) for Bayesian filter,

RADAR and the new tracking algorithm based on-field static measurements.

Error distance CDF Bayesian CDF RADAR CDF tracking

(meters) filter algorithm

0.0 24.3% 21.9% 29.0%

1.8 29.0% 28.3% 34.6%

2.6 30.9% 51.1% 59.0%

3.5 36.7% 78.7% 80.0%

4.4 43.0% 81.5% 81.8%

8.7 94.0% 99.2% 100.0%

19.7 99.0% 100.0% 100.0%

35.4 100.0% 100.0% 100.0%

The second test provides a performance estimation for the static case, where the

advantages introduced by the tracking algorithm are expected to be less significant. In

Tab. 4.2, the CDF of the error distance (in meters) for Bayesian filter, the new tracking

algorithm and the RADAR algorithm is reported, assuming static users. Although the

parameters for the new tracking algorithm have been optimized for the dynamic case, it

performs still slightly better than both RADAR and Bayesian filter. The error is within

2.6 meters in the 59% of locations for the new algorithm against 51.1% for RADAR

and 30.9% for Bayesian filter. The maximum error distance for our algorithm is 8.7

meters to be compared with 19.7 m for RADAR and 35.4 m for the Bayesian filter.
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In this thesis cooperative WSNs for localization have been analyzed. The localization

problem has been studied and divided in three main issues: synchronization, position

estimation and tracking, in order to have a deeper knowledge of how cooperation among

nodes composing the network can help in improving the performances.

The first result has been the proposal of a new approach to derive the ultimate

performance limit in time synchronization in WSNs based on the estimation theory [78].

The case of a connected network with a Gaussian MDT jitter has been investigated,

obtaining a lower bound on the variance of the average synchronization error for a fully

connected network. This theoretical limit can be used as a benchmark in comparing the

performance of different time synchronizations algorithms. In particular, it has been

shown that a better performance than single two-way message exchange is obtained as

the number of nodes increases. This means that maximizing the network connectivity

is beneficial for time synchronization.

Very interesting are also the results in the field of position estimate. The employ-

ing the unique localizability test recently proposed in [34] to study the problem of

flip-ambiguity in network localization and motivate a novel formulation of the SDP

localization algorithm that is robust to flip-ambiguity [67].

This marks a departure from the dominant approach to handle the problem found

in current literature, which is to avoid, rather than resolve, flip-ambiguities. Although

the work is preliminary, its results are inspiring and insightful, as it demonstrates the

feasibility of concrete flip-ambiguous solutions with excellent performance.

One topic for future work is the extension of the result through the application of

the strong localizability test so that better capture the effect of small perturbations on

the node locations and their mutual distances. One further step under consideration is

the formulation of a similar approach based on a simpler steepest-descent optimization
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method, for example by translating the edge-bounding technique onto an equivalent

weighing strategy [79].

The second main source of errors in position estimate, beyond the flipping problem,

is the lack of connectivity between anchor and target nodes. To analyze and mitigate

this problem, in this thesis two localization algorithms to obtain accurate performances

in multihop networks only operating with the multihop target-to-anchor distance es-

timates have been proposed [65, 80]. The result permits an huge reduction of the

complexity with respect to the classic algorithms, in which every node needs to collect

location and distance estimates from all its neighbors. This is possible because the new

approach is robust and resilient to the target-to-anchor distances estimate error, that

is proportional to the number of hops, instead of performing message-passing as done

by other schemes.

The gain in the algorithmic complexity reduction is a reduction of the network

traffic, with evident benefits regarding the energy consumption and packet collisions

reduction.

Another advantage of this new approach to multihop localization is the improvement

of the network security. In fact it is sufficient that only anchors send their location all

over the network whereas targets can compute their position estimate without sharing

it with their neighbors.

As last issue, a tracking algorithm has been proposed, implemented and tested [81].

This new low-complexity solution is for the position tracking of users in a WLAN-

based indoor positioning system. The performance of this new algorithm has been

compared with the well-established RADAR algorithm [70] and Bayesian Filters [73].

The on-field results of these tests proved that our tracking algorithm has the best

performance and it can be therefore used with good trade off between accuracy and

complexity for indoor localization.
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Appendix A

Basic Recall of Semidefinite

Programming

The network localization problem stated in (3.8), is a non-convex optimization problem,

difficult to solve. Semidefinite Programming (SDP) technique can be a powerful tool

to solve, after some algebraic manipulations, problems as the one considered.

The basic idea behind SDP technique, an extension of Linear Programming (LP), is

to convert non-convex quadratic distance constraints, as in (3.5) and (3.6), into linear

constraints by introducing a relaxation to remove the quadratic term in the formulation.

Non-negativity constraints on vector variables are replaced by positive semidefiniteness

constraints on matrix variables.

A.0.6 Linear Programming

It is now useful to introduce the standard formulation of LP, a technique for the opti-

mization of a linear objective function, subject to linear equality and linear inequality

constraints.
maximize tr

(
CTX

)

subject to tr
(
AT

i X
)
= b, (A.0.1)

where X represents the n-by-n matrix (to be determined), b is a vectors of (known)

coefficients and C and Ai’s are (known) matrices of coefficients. The expression to be

maximized or minimized is called the objective function (tr
(
CTX

)
in this case). The

equations tr
(
AT

i X
)
= b are the constraints which specify a convex set over which the

objective function is to be optimized.
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A.0.7 Semidefinite Technique

SDP is a subfield of convex optimization concerned with the optimization of a linear

objective function over the intersection of the cone of positive semidefinite matrices

with an affine space. Semidefinite relaxation of (A.0.1) is easily obtaining imposing

X � 0, (A.0.2)

i.e. imposing that matrix X is positive semidefinite. Now the problem, in its standard

form, becomes:
maximize tr

(
CTX

)

subject to tr
(
AT

i X
)
= b,

X � 0.

(A.0.3)

All linear programs can be expressed as SDPs.

In particular, the network localization problem stated in (3.8) does not require to

maximize a particular cost function but, instead, it is only a “feasibility problem”. It is

sufficient only to satisfy all the constraints. For this reason term tr
(
CTX

)
is not more

important and it can be replace by 0.

Finally, the feasibility semidefinite problem becomes:

maximize 0
subject to tr

(
AT

i X
)
= b,

X � 0.

(A.0.4)
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