
Alma Mater Studiorum - University of Bologna

DEIS - DEPARTMENT OF ELECTRONICS, COMPUTER SCIENCE AND SYSTEMS

PhD Course in Electronics, Computer Science and Telecommunications

XXII cycle – scientific-disciplinary sector ING/INF05

Integration of symbolic and connectionist AI techniques in the
development of Decision Support Systems applied to

biochemical processes

Candidate:
Davide Sottara

Supervisor:
Prof. Paola Mello

PhD Course Coordinator:
Prof. Paola Mello

Final Examination Year 2010

To my family

A B S T R A C T

There exist complex systems, such as bio-chemical plants, which
require a constant management to be kept in optimal operating
conditions. To this end, automation is the only feasible option:
the tasks involved, ranging from fault detection to diagnosis
to control, can hardly be performed by traditional model-based
controllers alone, but instead require the additional application
of artificial intelligence-based techniques.

AI is a vast field, covering many technologies which can be
roughly classified in “Hard” or “Soft” techniques: the former
typically use a symbolic representation of the data and elaborate
it by logic reasoning; the latter, instead, process information at
a sub-symbolic level, exploiting the interactions of many simple
elaboration units - hence they are also known as connectionist
techniques.

Since different techniques are more suitable for different prob-
lems, a complex management infrastructure is likely to include
more than one module. These modules should be able to interact
in order to exploit the mutual potentialities when processing the
information coming from the managed system. Moreover, this
information is likely to be imperfect - vague and/or uncertain
and/or incomplete - so the modules should be able to deal with
it appropriately.

In this dissertation, we claim not only that taking imperfec-
tion into account is a necessary feature of an “intelligent” mod-
ule interfaced to a real-world system, but also that extending
formal logical reasoning with imperfection allows to obtain a
deeper integration of “Hard” and “Soft” computing techniques
than simply using them together, in cascade or in parallel, ob-
taining strongly hybrid modules which can be simpler and yet
more robust than their pure counterparts.

Moreover, it will be shown that such hybrid modules can be
deployed effectively within an infrastructure which combines
the concepts of service, agent and event in a natural way.

v

S O M M A R I O

Esistono sistemi complessi, quali i reattori bio-chimici, che hanno
bisogno di un monitoraggio costante per essere mantenuti nelle
condizioni operative ottimali. Per far ció, l’automazione é l’unica
strada percorribile: le funzionalitá necessarie, che vanno dalla di-
agnosi al controllo, possono difficilmente essere svolte soltanto
dai controllori tradizionali, basati sui modelli, ma richiedono, in
aggiunta, l’applicazione di tecniche di intelligenza artificiale.

L’AI é un dominio molto vasto, che copre diverse tecnologie
che possono essere divise, con buona approssimazione, in tec-
niche di “Hard” e “Soft” Computing. Le prime usano solita-
mente una rappresentazione simbolica delle informazioni e le
elaborano per mezzo di ragionamenti logici; le seconde, invece,
processano le informazioni ad un livello sub-simbolico, sfrut-
tando le interazioni di molte unitá di elaborazione semplici -
motivo per cui sono anche note come tecniche “connessioniste”.

Dato che tecnologie diverse sono piú adatte per problemi di-
versi, una infrastruttura di gestione complessa includerá proba-
bilmente piú di un modulo al suo interno. Tali moduli dovreb-
bero essere in grado di interagire per sfruttare al meglio le rispet-
tive potenzialitá nel processare le informazioni provenienti dal
sistema gestito. Inoltre, questa informazione é spesso imperfetta
- vaga e/o incerta e/o incompleta - pertanto i moduli dovrebbero
poterla gestire in modo appropriato.

In questa dissertazione, si sostengono due tesi: non solo che
gestire l’imperfezione é una caratteristica necessaria di un mod-
ulo “intelligente” interfacciato ad un sistema reale, ma anche
che introdurre l’imperfezione nel ragionamento formale perme-
tte di ottenere un livello di integrazione tra tecnologie di “Hard”
e “Soft” Computing piú profondo del semplice usarle insieme,
in cascata o in parallelo, ottenendo cosí dei moduli fortemente
ibridi che possono essere piú semplici e allo stesso tempo piú
robusti delle loro controparti “pure”.

Inoltre, si mostra che tali moduli ibridi possono essere usati
efficacemente all’interno di una infrastruttura che combina i con-
cetti di servizio, agente ed evento in modo naturale.

vii

P U B L I C A T I O N S O F T H E A U T H O R

[1] G. L. Bragadin, G. Colombini, L. Luccarini, M. Mancini, P. Mello,
M. Montali, and D. Sottara. Formal verification of wastewater
treatment processes using events detected from continuous sig-
nals by means of artificial neural networks. Case study: SBR plant.
ENVIRONMENTAL MODELLING AND SOFTWARE. ISSN 1364-
8152. doi: 10.1016/j.envsoft.2009.05.013. URL http://dx.medra.

org/10.1016/j.envsoft.2009.05.013. Article in Press. (Cited on
pages 204, 207, 223, 237, 247, and 255.)

[2] Sottara D., P.Mello, L.Luccarini, and G.Colombini. Controllo e
gestione intelligente degli impianti di depurazione. In Europa del
Recupero : le ricerche, le tecnologie, gli strumenti e i casi studio per una
cultura della responsabilitÃ ambientale, pages 156 – 161, S.Arcangelo
di Romagna (RN) – ITA, 5-8 Novembre 2008. Maggioli Editore
(ITALY).

[3] D.Sottara, L.Luccarini, and P.Mello. Strumenti di IA per il con-
trollo e la diagnosi dei processi biologici negli impianti a fanghi
attivi. In Europa del recupero : le ricerche, le tecnologie, gli strumenti e i
casi studio per una cultura della responsabilitÃ ambientale, pages 150

– 155, S.Arcangelo di Romagna (RN) – ITA, 5-8 Novembre 2008.
Maggioli Editore (ITALY).

[4] L. Luccarini, P. Mello, D. Sottara, and A. Spagni. Artificial Intel-
ligence based rules for event recognition and control applied to
SBR systems. In Conference Proceedings of the 4th Sequencing Batch
Reactor Conference, pages 155 – 158, ROMA – ITA, 7-10 April, 2008.
s.n. (Cited on pages 203, 239, and 247.)

[5] P. Mello, M. Proctor, and D. Sottara. A configurable RETE-OO en-
gine for reasoning with different types of imperfect information.
IEEE Transactions on Knowledge and Data Engineering (TKDE) - Spe-
cial Issue on Rule Representation, Interchange and Reasoning in Dis-
tributed, Heterogeneous Environments, 2010. Article in Press. (Cited
on page 118.)

[6] M. Nickles and D. Sottara. Approaches to Uncertain or Impre-
cise Rules - A survey. In G. Governatori, J. Hall, and A. Paschke,
editors, Rule Interchange and Applications, International Symposium,
RuleML 2009, Las Vegas, Nevada, USA, November 5-7, 2009. Proceed-
ings, volume 5858 of Lecture Notes in Computer Science, pages 323–
336. Springer, 2009. ISBN 978-3-642-04984-2. (Cited on page 103.)

[7] D. Sottara and P. Mello. Modelling radial basis functions with ra-
tional logic rules. In E. Corchado, A. Abraham, and W. Pedrycz,

ix

http://dx.medra.org/10.1016/j.envsoft.2009.05.013
http://dx.medra.org/10.1016/j.envsoft.2009.05.013

editors, Hybrid Artificial Intelligence Systems, Third International
Workshop, HAIS 2008, Burgos, Spain, September 24-26, 2008. Proceed-
ings, volume 5271 of Lecture Notes in Computer Science, pages 337–
344. Springer, 2008.

[8] D. Sottara, L. Luccarini, P. Mello, S. Grilli, M. Mancini, and G.L.
Bragadin. Tecniche di intelligenza artificiale per la gestione e il
controllo di impianti di depurazione. caso di studio: SBR in scala
pilota alimentato con refluo reale. In Luciano Morselli, editor,
Ambiente: tecnologie, controlli e certificazioni per il recupero e la valoriz-
zazione di materiali ed energie. ECOMONDO X Fiera Internazionale
del Recupero di Materia ed Energia e dello Sviluppo Sostenibile. Rimini.
8-11 novembre 2006, volume 1, pages 106 – 111. Maggioli Editore
(ITALY), 2006. ISBN 88-387-3887-1.

[9] D. Sottara, L. Luccarini, and P. Mello. AI techniques for Waste
Water Treatment Plant control. Case study: Denitrification in a
pilot-scale SBR. In B. Apolloni, R. J. Howlett, and L. C. Jain, ed-
itors, Knowledge-Based Intelligent Information and Engineering Sys-
tems, 11th International Conference, KES 2007, XVII Italian Workshop
on Neural Networks, Vietri sul Mare, Italy, September 12-14, 2007. Pro-
ceedings, Part I, volume 4692 of Lecture Notes in Computer Science,
pages 639–646. Springer, 2007. ISBN 978-3-540-74817-5. (Cited on
pages 203 and 239.)

[10] D. Sottara, P. Mello, and M. Proctor. Adding uncertainty to a
RETE-OO inference engine. In N. Bassiliades, G. Governatori,
and A. Paschke, editors, Rule Representation, Interchange and Rea-
soning on the Web, International Symposium, RuleML 2008, Orlando,
FL, USA, October 30-31, 2008. Proceedings, volume 5321 of Lecture
Notes in Computer Science, pages 104–118. Springer, 2008. ISBN
978-3-540-88807-9.

[11] D. Sottara, G. Colombini, L. Luccarini, and P. Mello. A Pool of
Experts to evaluate the evolution of biological processes in SBR
plants. In E. Corchado, X. Wu, E. Oja, Á. Herrero, and B. Baruque,
editors, Hybrid Artificial Intelligence Systems, 4th International Con-
ference, HAIS 2009, Salamanca, Spain, June 10-12, 2009. Proceedings,
volume 5572 of Lecture Notes in Computer Science, pages 368–375.
Springer, 2009. ISBN 978-3-642-02318-7. (Cited on pages 203, 205,
207, and 247.)

[12] D. Sottara, G. Colombini, L. Luccarini, and P. Mello. A wavelet
based heuristic to dimension neural networks for simple signal
approximation. In Bruno Apolloni, Simone Bassis, and Carlo F.
Morabito, editors, Proceeding of the 2009 conference on Neural Nets,
WIRN 2009, Vietri sul Mare (SA), Italy, May 28-30, 2009, pages 337–
344. IOS Press, 2009. ISBN 978-1-60750-072-8. (Cited on page 204.)

[13] D. Sottara, L. Luccarini, G.L. Bragadin, M.L. Mancini, P. Mello,
and M. Montali. Process quality assessment in automatic manage-

x

ment of wastewater treatment plants using formal verification. In
International Symposium on Sanitary and Environmental Engineering-
SIDISA 08 -Proceedings, volume 1, pages 152/1 – 152/8, ROMA –
ITA, 24-27 june 2008 2009. ANDIS.

[14] D. Sottara, A. Manservisi, P. Mello, G. Colombini, and L. Luc-
carini. A CEP-based SOA for the management of wastewater
treatment plants. In EESMS 2009. IEEE Workshop on Environmental,
Energy, and Structural Monitoring Systems, 2009. Proceedings, pages
58–65, 25/09/ 2009. doi: 10.1109/EESMS.2009.5341314. URL
http://dx.medra.org/10.1109/EESMS.2009.5341314.

[15] D. Sottara, P. Mello, L. Luccarini, G. Colombini, and
A. Manservisi. Controllo intelligente in linea per una gestione
efficiente e sostenibile degli impianti di trattamento reflui. Caso
di studio: SBR in scala pilota. In Ecodesign per il pianeta: soluzioni
per un ambiente pulito e per una nuova economia, pages 655 – 660,
S.Arcangelo di Romagna (RN) – ITA, 28-31 Ottobre 2009. Maggi-
oli Editore (ITALY).

[16] D. Sottara, P. Mello, and M. Proctor. Towards modelling defeasi-
ble reasoning with imperfection in production rule systems. In
G. Governatori, J. Hall, and A. Paschke, editors, Rule Interchange
and Applications, International Symposium, RuleML 2009, Las Vegas,
Nevada, USA, November 5-7, 2009. Proceedings, volume 5858 of Lec-
ture Notes in Computer Science, pages 345–352. Springer, 2009. ISBN
978-3-642-04984-2. (Cited on pages 170 and 171.)

[17] N. Wulff and D. Sottara. Fuzzy reasoning with a RETE-OO Rule
Engine. In G. Governatori, J. Hall, and A. Paschke, editors, Rule
Interchange and Applications, International Symposium, RuleML 2009,
Las Vegas, Nevada, USA, November 5-7, 2009. Proceedings, volume
5858 of Lecture Notes in Computer Science, pages 337–344. Springer,
2009. ISBN 978-3-642-04984-2. (Cited on page 179.)

xi

http://dx.medra.org/10.1109/EESMS.2009.5341314

A C K N O W L E D G M E N T S

I wish to thank all the people who have supported, encouraged and
helped me during this PhD. I would like to begin with my supervisor,
Prof. Paola Mello, for all the support, the advice and the guidance dur-
ing these years. I would also like to thank Luca Luccarini for the trust
placed in me, and because without his vision this project would never
have started, nor would have been carried on despite all the difficul-
ties. Much credit also goes to Mark Proctor, for all the enlightening
discussions at the most improbable times and places, and to Gabriele
and Alberto for their help in hard coding and bug fighting.

More than a simple thank you goes to all the people I’ve had the
pleasure to work with: at DEIS, at ENEA, at Newcastle and the DROOLS
team all over the world. The list would simply be too long to appear
here, so excuse me if I don’t cite every one of you.

I would like to acknowledge the role of the companies who sup-
ported and sponsored this reasearch activity. Other than the University
of Bologna and the National Agency ENEA, first and foremost credit
goes to HERA s.p.a. for all the resources, both monetary and material
they provided. My thanks also go to JBoss and SPES for the technolog-
ical and logistic support. Part of the project has also been supported
by the Italian MIUR PRIN 2007 project No. 20077WWCR8.

Al di lá della importante esperienza culturale e lavorativa, devo
ringraziare di cuore tante persone sul piano umano, perché credo che
quanto ho guadagnato sul piano personale in questi anni, grazie a tutti
voi, valga immensamente di piú. Paola, Luca, Mark, voi siete tra i primi
anche da questo punto di vista. Eppure, il primo ringraziamento va
alla mia famiglia, che mi ha supportato e sopportato, per non avermi
fatto mai mancare nulla, in primis il vostro affetto. Devo ringraziare
tutti gli amici, vecchi e nuovi. Coloro che conosco da una vita, per-
ché negli anni il rapporto si é rinsaldato invece che dissolversi. Tutti i
ragazzi e le ragazze che nel sono passati dai laboratori di via dei For-
naciai, perché non siamo stati solo colleghi. Gli amici dell’universitá,
trovati, talvolta persi di vista e poi ritrovati. La compagnia di New-
castle: I miss you lads and lasses! I ragazzi del Judo, la cui amicizia
supera i muri della palestra - e grazie di tutto anche a te, maestro
Giorgio, sei sempre nel mio cuore. E onore alle PaC, immancabili com-
pagni d’avventura. Chiudo con una menzione speciale per un paio di
persone speciali. Non faccio nomi, che non mi piace fare preferenze
tra le tante persone con cui posso dire di avere un rapporto di amicizia
nel senso piú vero e profondo del termine. In cuor vostro sapete a chi
mi riferisco. Tuttavia... - Ale, Fante, non me ne vogliate, ma grazie per
esserci sempre stati, fosse per divertirsi o per confidarsi, e soprattutto
grazie perché se sono qui é anche merito vostro.

xiii

C O N T E N T S

1 introduction 1

1.1 Background 3

1.2 Contributions of the Dissertation 4

1.2.1 Creating an (imperfect) bridge between symbolic
and sub-symbolic systems 4

1.2.2 Enhancing the RETE algorithm with imperfec-
tion 5

1.2.3 Developing a complex, strongly hybrid manage-
ment system 5

1.3 Organization of the Dissertation 6

1.3.1 Artificial Intelligence Techniques 7

1.3.2 Monitoring and Control from an AI perspec-
tive 7

1.3.3 A Hybrid Rule Engine 7

1.3.4 Case Study: a Hybrid EDSS 8

i artificial intelligence techniques 9

2 dealing with imperfect information 11

2.1 Properties of Imperfect Information 12

2.1.1 Sources of Imperfection 12

2.1.2 Types and Causes of Imperfection 13

2.1.3 Models of Imperfection 14

2.2 Relations between different types of Imperfection 24

2.2.1 A Comparison of Imperfection Types 24

2.2.2 Reconciling the differences 26

2.3 Conclusions 30

3 ai techniques 33

3.1 Hard Computing 33

3.1.1 Premise - Formal Logic 34

3.1.2 Rule-Based Systems 36

3.1.3 Case-Based Reasoning 38

3.2 Soft Computing 39

3.2.1 Neural Networks 39

3.2.2 Clustering Algorithms 47

3.2.3 Bayesian Networks 48

3.2.4 Fuzzy (Logic) Systems 51

3.3 Conclusions 55

4 hybrid techniques 57

4.1 Features of pure AI tools 57

4.1.1 Relevant Properties 58

4.1.2 A Comparison of some Algorithms 59

4.2 Hybrid Systems 62

4.2.1 Properties of Hybrid Systems 62

4.2.2 Common Hybrid Architectures 65

xv

xvi contents

4.3 Conclusions 67

ii monitoring and control from an ai perspective

69

5 automated management of complex systems : state

of the art 71

5.1 Automatic Management 72

5.2 Automatic Management of WWTP: Motivations 75

5.2.1 Waste-Water Treatment Plants 76

5.2.2 Plant automation 77

5.3 Basic Control technologies 79

5.3.1 Model-Based Controllers 81

5.3.2 Artificial Intelligence-based Controllers 82

5.4 Advanced Management Architectures 84

5.4.1 Remote Management Infrastructures 84

5.4.2 Decision Support Systems 85

5.4.3 Complex Architectures: Services, Events, Agents 87

5.4.4 Combining Events, Services and Agents with
Imperfection 96

5.5 Conclusions 99

iii a hybrid rule engine 101

6 business rules management systems 103

6.1 State of the Art 104

6.2 A Comparison of Mainstream BRMS 105

6.2.1 BRMS Features 105

6.2.2 Results and Considerations 106

6.3 Drools 110

6.3.1 Drools Expert 110

6.3.2 Drools Fusion 111

6.3.3 Drools Flow 112

6.3.4 Drools Guvnor 113

6.4 Conclusions 113

7 enhancing a rule-based system with imperfection 117

7.1 Reaction Rules 119

7.2 Generalizing the Inference Process 119

7.3 Language Extensions 121

7.3.1 Drools DRL 122

7.3.2 Drools Syntax Extension 123

7.3.3 Imperfect Rule Structure 126

7.4 RETE Enhancements 130

7.4.1 Network Construction 130

7.4.2 Run-time Evaluation 132

7.4.3 Summary 144

7.5 Implementation Notes 145

7.5.1 Eval Trees 146

7.5.2 Degree Factory 148

7.5.3 Complexity Analysis 148

contents xvii

7.6 Conclusions 150

8 applications of imperfect logic 151

8.1 Imperfect Logic Applications 152

8.1.1 Boolean Logic 152

8.1.2 MYCIN Certainty Factors 153

8.1.3 Many-valued logics 155

8.1.4 Possibilistic Logic 161

8.1.5 Learning by Induction 161

8.1.6 Probabilistic logics 166

8.1.7 Dealing with Exceptions 169

8.2 Hybrid Applications 172

8.2.1 Embedding a fuzzy ontological reasoner 179

8.2.2 A simple Bayesian network 181

8.2.3 The SOM training algorithm 183

8.3 Conclusions 192

iv case study : a hybrid environmental decision sup-
port system 195

9 sequencing batch reactors - optimization 197

9.1 Background : Sequencing Batch Reactors 198

9.2 Process Observation 201

9.3 SBR Management: State of the art 202

9.4 Offline Management 205

9.5 Conclusions 207

10 designing a complex edss 211

10.1 Related Works : Complex Managed Domains 212

10.2 Architecture 213

10.2.1 Enterprise Service Bus 213

10.2.2 Rule-Based agents 216

10.2.3 (Dynamic) Content-Based Routing 217

10.3 Case Study 221

10.3.1 Event Model 222

10.3.2 General Purpose Services 223

10.3.3 Data/Event Processing Agents 225

10.4 Conclusions 247

10.4.1 Summary : Default Event Flow 247

10.4.2 Considerations 247

v conclusions and future works 251

11 conclusions and future works 253

11.1 Conclusions 253

11.1.1 Results in the Development of (Production) Rule-
Based Systems 253

11.1.2 Results in the Development of (Environmental)
Decision Support Systems 254

11.2 Future Works 255

bibliography 259

L I S T O F F I G U R E S

Figure 1 An ontology for the representation of Imperfect
information 13

Figure 2 Example: bma, bel and pl on 2Ω={A,B,C}
20

Figure 3 The fuzzy set Tall 23

Figure 4 Simple Degrees 26

Figure 5 Real-valued function of a perfect input 29

Figure 6 Membership function of a possibilistic input 29

Figure 7 Separation between Knowledge and Inference 36

Figure 8 RETE Example 38

Figure 9 Case-Based Reasoning 39

Figure 10 Generic Artificial Neuron 40

Figure 11 Simple 3-4-3 Feed-Forward Network 41

Figure 12 2d Self-Organizing Map in a 2D space 45

Figure 13 Bayesian Network: Markov Blanket (in blue) for
X2 49

Figure 14 Propagation in polytrees 51

Figure 15 Fuzzy Partition Example 53

Figure 16 Classification criteria for hybrid systems 64

Figure 17 AI-driven management vision 73

Figure 18 Basic Plant I/O 79

Figure 19 Feedback control with PIDs 81

Figure 20 Feedback control with Adaptive Controller and
PID 83

Figure 21 Remote Management Platform 85

Figure 22 Decision Support System Architecture 85

Figure 23 Service-Oriented Architecture 89

Figure 24 Integrating Agents, Services and Events 98

Figure 25 RuleML Modules Hierarchy (from [2]) 108

Figure 26 AST Example I 127

Figure 27 AST Example II 129

Figure 28 AST Example III 129

Figure 29 AST Node numbering 132

Figure 30 Extended RETE Example 133

Figure 31 Imperfect Evaluator Hierarchy (excerpt) 136

Figure 32 Eval Tree Construction 142

Figure 33 Evaluator Eval 145

Figure 34 Operator Eval 146

Figure 35 Centralized Factory and Degrees 149

Figure 36 Undercutting Defeater 171

Figure 37 Rebutting Defeater 171

Figure 38 Defeated Rule 173

Figure 39 NN Invocation 174

Figure 40 NN Hybridization 174

xviii

Figure 41 NN Emulation: Hybridization 175

Figure 42 Fuzzy Partitions 178

Figure 43 Rule/Ontology Hybridization 181

Figure 44 A Simple Bayesian Network 183

Figure 45 Hybridization Analysis 183

Figure 46 SOM with linear dataset 191

Figure 47 SOM with quadratic dataset 191

Figure 48 SOM with partial relevance 191

Figure 49 SOM Hybridization 191

Figure 50 SBR Cycle 200

Figure 51 Evolution of pH, ORP and DO during an SBR
process 203

Figure 52 Petri Net model of an (optimized) SBR Cycle 205

Figure 53 Combining Possibilistic Estimations 206

Figure 54 Hybridation Analysis 206

Figure 55 Basic Event Hierarchy 207

Figure 56 Track Study 210

Figure 57 Data-centric Architecture 213

Figure 58 Service-centric Architecture 213

Figure 59 Agent Architecture 217

Figure 60 Dynamic Content-Based Router 218

Figure 61 EPN-equivalent interactions between SBR agents 222

Figure 62 Event Model - Excerpt (UML) 224

Figure 63 Original (grey), filtered (blue) and derivative (red)
signals 227

Figure 64 Preprocessing Agent Hybridization 227

Figure 65 Approximation Features 228

Figure 66 Trend Change Detector Hybridization 230

Figure 67 [N−NO−
3] : predicted vs real values 232

Figure 68 [N−NH+
4] : predicted vs real values 232

Figure 69 OnTrack Flow 233

Figure 70 Example: Approximation using RBF model 234

Figure 71 Example: Approximation using GPM model 235

Figure 72 Trainer Agent Hybridation (w.r.t. to Predictor) 236

Figure 73 Predictor Agent Hybridation 236

Figure 74 Anoxic Sub-Phase Fuzzy Partition 237

Figure 75 Anoxic Phase - SOM Layout (PCA projection) :
colors correspond to pre, inter, post sub-phases 238

Figure 76 Tracking Agent Hybridation 241

Figure 77 Correlation between the Duration of an Aerobic
and following Anoxic Phases 246

Figure 78 SBR Process Flow : Switch 246

Figure 79 Conceptual Event Flow 248

xix

Figure 80 Use of (hybrid) AI techniques by the EPAs 249

L I S T O F T A B L E S

Table 1 Effects of Imperfection in I/O 30

Table 2 AI techniques and Imperfection management 55

Table 3 Comparison of individual AI techniques 62

Table 4 Common hybrid architectures 65

Table 5 Typical control variables in a WWTP 80

Table 6 An intelligent agent’s intentional stances 94

Table 7 Drools Expert features 111

Table 8 Drools Fusion features 112

Table 9 Drools Flow features 113

Table 10 Drools Guvnor features 114

Table 11 Mainstream BRMS Features 115

Table 12 Drools Chance features 118

Table 13 DRL alternative connective forms 125

Table 14 Drools Chance Configuration Options 145

Table 15 Drools Chance - DRL attributes 146

Table 16 Configuration for Boolean logic 153

Table 17 Configuration for Certainty Factors 154

Table 18 Canonical T-norms 155

Table 19 Canonical R-implications 155

Table 20 Canonical reciprocal R-implications 156

Table 21 Canonical T-conorms 156

Table 22 Canonical S-implications 156

Table 23 Configuration for many-valued logic 158

Table 24 Configuration for interval-valued logic with con-
fidence 159

Table 25 Configuration for possibilistic logic 162

Table 26 Configuration for Bayesian Logic Programs 168

Table 27 Configuration for Defeater Rules 171

Table 28 Configuration for Bayesian logic 184

Table 29 Pilot Plant Static Configuration 201

Table 30 SBR Signals 209

A C R O N Y M S

bma basic mass assignment

xx

List of Tables xxi

AI Artificial Intelligence

API Application Programming Interface

AR Associative Rules

ASM Activated Sludge Model

AST Abstract Syntax Tree

BDI Belief - Desire - Intention

BLIP Business Logic Integration Platform

BLP Bayesian Logic Program

BN Bayesian Network

BNN Bayesian Neural Network

BNR Biological Nutrient Removal Plant

BPMN Business Process Modelling Notation

BRMS Business Rule Management System

CART Classification and Regression Tree

CBR Content-Based Router

CF Certainty Factor

CL Clustering and Classification Algorithm

CBR Case-Based Reasoning

CE DRL Conditional Element

CEP Complex Event Processing

DB Data Base

DO Dissolved Oxygen

DSS Decision Support System

ECA Event, Condition, Action

EDA Event-Driven Architecture

EDSS Environmental Decision Support System

EM Expectation-Maximization

EPA Event Processing Agent

EPN Event Processing Network

ES Expert System

ESB Enterprise Service Bus

FE Fuzzy Engine

FF-NN Feed Forward Neural Network

FLP Fuzzy Logic Programming

xxii List of Tables

FOL First Order Logic

FS Fuzzy System

GIS Geographic Information Systems

GPM Gaussian Process Modelling

HC Hard Computing

HS Hybrid System

ICA Instrumentation, Control and Automation

IDM Imprecise Dirichlet Model

KB Knowledge Base

KBS Knowledge-Based System

LHS Left-Hand Side

LP Logic Programming

LTI Linear, Time-Invariant

MAS Multi-Agent System

MBR Membrane Bio-Reactor

MP Modus Ponens

MSE Mean Square Error

MVL Many-Valued Logic

N/C Name/Category

NFS Neuro-Fuzzy System

NLN Neural Logic Network

NN Neural Network

NAF Negation As Failure

ORP Oxidation / Reduction Potential

P-DEN Pre-Denitrification Treatment Plant

PID Proportional Integral Derivative

POJO Plain Old Java Object

PLC Programmable Logic Controller

PRS Production Rule System

RBF Radial Basis Function

RBS Rule-Based System

RHS Right-Hand Side

RTC Real-Time Control

SC Soft Computing

List of Tables xxiii

SCADA Supervisory Control And Data Acquisition

SBR Sequencing Batch Reactor

SOA Service Oriented Architecture

SOM Self-Organizing Map

TBM Transferable Belief Model

TMS Truth Maintenance System

WM Working Memory

WME Working Memory Element

WS Web Service

WWTP Waste Water Treatment Plant

1
I N T R O D U C T I O N

Contents
1.1 Background 3
1.2 Contributions of the Dissertation 4

1.2.1 Creating an (imperfect) bridge between
symbolic and sub-symbolic systems 4

1.2.2 Enhancing the RETE algorithm with
imperfection 5

1.2.3 Developing a complex, strongly hy-
brid management system 5

1.3 Organization of the Dissertation 6
1.3.1 Artificial Intelligence Techniques 7

1.3.2 Monitoring and Control from an AI
perspective 7

1.3.3 A Hybrid Rule Engine 7

1.3.4 Case Study: a Hybrid EDSS 8

The main thesis defended in this dissertation is that while there
exists a dicothomy between “Soft” and “Hard” Artificial Intelligence
Computing Techniques, they are not alternatives, but complementary,
and they can not only be combined, but integrated - i.e. blended into a
functioning and unified whole1 - at different levels to develop hybrid
systems which outperform their single components when dealing with
complex problems.

Historically, different AI-based technologies have had periods of great
diffusion, followed by other periods in which they were almost forgot-
ten and replaced by other more popular ones. Just to cite some, one
can think of the rise of Neural Networks in the 40s, their decline in the
70s and their new popularity in the 80s. Similar considerations apply
to expert systems, which possibly lived their golden age in the 70s and
the 80s, or fuzzy systems, which were the object of many controversies,
until only recently have become widely accepted. The problem is that
there exist many classes of tools claiming to be “intelligent”, so that
they can solve efficiently and effectively complex problems for which
standard algorithmic or numeric techniques are not sufficient, and ev-
ery class contains dozens of variants. This poses a problem for devel-

1 Merriam-Webster Dictionary

1

2 introduction

opers and users alike: the worst choice an engineer can do to solve a
problem is to choose a tool because of its popularity, or because it has
solved many other problems.

When one looks at them in greater detail, it turns out that each tech-
nology has benefits and drawbacks, making it more suitable for cer-
tain classes of problems and less suitable for others. Many real-world
problems, however, are complex: they can be decomposed in a set of
sub-problems which are intercorrelated, so that they can be solved in-
dependently only in rare cases. To give an idea of the main case study
addressed in this dissertation, consider the problem of “optimizing a
bio-chemical plant”: to do so, it is first necessary to define what optimiz-
ing means, but then the solution will likely involve different tasks such
as estimation (of the unobservable variables defining the process state),
prediction (of the evolution in time of the process), diagnosis (of mal-
functionings), control (of manipulable variables), learning with adap-
tation (to variable environmental conditions) and so on, all of which
involve different types of knowledge on the domain and appropriate
policies.

When dealing with such problems, it is almost impossible that there
exists one single tool capable of dealing appropriately with all the is-
sues: complex solutions, then, are often hybrid, as they integrate different
technologies to cope with different challenges. Many of the existing hy-
brid systems, however, are more properly hybrid tools: they are com-
binations of hardly more than two basic tools, and still designed for
very specific problems. Moreover, the level of integration varies from
full integration, where data and structures are shared, to (more often)
the simple application of individual modules, cascaded or connected
in parallel.

What seems to be lacking, instead, is a framework for large scale
hybridization, where tools can interact, integrate or even emulate each
other as needed. With perhaps a bit of ambition, the ultimate goal
remains the human intelligence. Humans are capable of performing
quite different intelligent tasks, to the point that there exist several def-
initions of intelligence. Some of them - reasoning, for example - are
“conscious”, i.e. they require awareness and involve an explicit rep-
resentation of the information processed and the actions performed,
to the point that they can be communicated or described. Some others,
like learning or recognizing shapes, are “unconscious”: they take place
at lower levels, relying on mechanisms that are not evident, but instead
seem almost automatic. There is a strong analogy between this distinc-
tion and the separation of AI techniques in “Hard” and “Soft” com-
puting, with the former being conscious and the latter unconscious. In
humans, however, there is a strong feedback between conscious and
unconscious processes, to the point that the flow of “control” often
shifts seamlessly from one level to the other; moreover, the boundary
is not neat, as there are tasks that can be performed at both levels, and
the levels can sometimes emulate each other. Consider, for example,
the problem of multiplying two numbers. The product of simple num-

1.1 background 3

bers is usually performed associatively (i.e. in an unconscious man-
ner); when complexity increases, people usually shift to an explicit ap-
proach, but children tend to do so even for simple cases, while there ex-
ist people capable of performing unconscious multiplications of (very)
large numbers!

This background motivates the research of strongly hybrid architec-
tures, where different AI techniques can not only interact, but integrate
each other at different levels of abstraction, matching the complexity
of the problems they have to solve. This work, then, will discuss in
detail the already cited complex problem of the management of a bio-
chemical process plant, in particular studying the case of activated
sludge waste water treatment plants, showing the benefits of develop-
ing and applying a hybrid architecture to it.

1.1 background

The project that will be discussed in this dissertation was born out
of the cooperation of different parties with different goals and inter-
ests. The detrimental effects of water pollution, together with the strict
normatives on water discharge, have increased the strategic relevance
of water treatment plants. Water treatment, however, is an expensive
and fault-prone process which could require constant monitoring and
management to be kept at full efficiency. Tese reasons motivated the
start of a research project on plant optimization and control within
the PROT-IDR section of ENEA2, the (former) National Agency for
the Energy and Environment. At first, the participation in two Euro-
pean Projects (TELEMAC3 and EOLI4) led to the definition of some
analytical techniques and management policies, tested on pilot- and
laboratory-scale plants, in addition to the development of a remote
data acquisition and control interface tool, which now has become a
product commercialized by SPES5. Successively, the studies have been
carried out in cooperation with HERA6, the local multiutility for wa-
ter, energy and environmental services and owner of several full-scale
treatment plants.

While much had been done from the point of view of data acqui-
sition, and several criteria had been found which could potentially
exploit the data coming from the plants, these policies were not ef-
fectively translated into an automatic management system, but rather
into a remote one, with little support for “intelligent” automation and,
even then, with practically no infrastructure for the interaction be-
tween modules.

My work, then, has been focused two goals: the use of AI for the
development of modules implementing the theoretical control policies

2 www.enea.it
3 www.ercim.eu/telemac/
4 www.inma.ucl.ac.be/EOLI/
5 www.spesonline.com
6 www.gruppohera.it

4 introduction

and the development of an adequate management infrastructure. The
two are not independent, since to achieve the desired level of integra-
tion between AI techniques it was necessary to condition the structure
of the architecture, which in turn exploits some features of an intel-
ligent system. In designing and developing the systems, a few addi-
tional constraints have been taken into account: the real-world finality
of the application suggested the use of mainstream, yet open-source
softwares, to ensure a good degree of reliabilty and support. In partic-
ular, the choice has fallen on JBoss’7 products: the JBossESB communi-
cation middleware and the Drools business logic integration platform,
both of which will be discussed extensively. The former has been cus-
tomized in some parts and used for the infrastructure; the second, in-
stead, has been used as the core logic and integration component for
the development of hybrid AI modules. This required a significant en-
hancement of its core engine, part of which was done during a stay
at the University of Newcastle, where the components are developed.
This extension, which is now implemented in a test prototype, will
soon likely be integrated as an optional module in the main release.

1.2 contributions of the dissertation

In greater detail, the innovations introduced by this dissertation are:

1.2.1 Creating an (imperfect) bridge between symbolic and sub-symbolic
systems

Analyzing the concrete problem domain, it turns out that most of - in
not all - the information to be processed is affected by some form of
imperfection, be it uncertainty, vagueness, confidence or a combination
thereof. After defining the concepts, it will be shown that imperfection
can even be beneficial in terms of consistency robustness, provided
that it is dealt with in a coherent manner, using the appropriate tech-
nique.

After that, several AI techniques, which are commonly applied to
deal with problems like the ones emerging from automatic (plant) man-
agemenet will be described, showing their applicability as well as their
limits, and analyzed using functional criteria such as interpretability
and flexibility. This will show that soft and hard computing are com-
plementary, both in the classes of problems they can solve and in the
properties they exhibit in doing so. Moreover, it will be discussed that
imperfection is a fundamental factor in choosing the appropriate tool
to solve a problem, so it should be taken into account both at design
time and at run time.

Most importantly, it will be argued that imperfection has a crucial
role in integrating symbolic and connectionist tools. In fact, the bound-
ary between the two classes becomes less strict, provided that a sym-

7 www.jboss.org

1.2 contributions of the dissertation 5

bolic system is enhanced with the support for imperfect reasoning, and
that a sub-symbolic system is given a logic interpretation, which, due
to the nature of this class of tools, can’t but be imperfect.

1.2.2 Enhancing the RETE algorithm with imperfection

Despite its usefulness, especially when trying to achieve strong hy-
bridization, symbolic reasoning systems do not support imperfection
natively (in fact, many optimization they exploit are based on the op-
posite, unrealistic assumption of perfect information). Analyzing the
most widely used algorithm for the development of forward-chain rule
engines, RETE, it was found that it actually can execute imperfect rea-
sonings in a native way, provided that:

• The underlying inference mechanism is generalized appropri-
ately.

• The rule language is extended to include new features, both to
increase the expressiveness of the language and to specify con-
figuration meta-data to condition the behavior of the engine.

• The engine itself is enhanced, extending the default structure
with new functionalities and adding some new ones altogether.

A RETE-based engine has many advantages, both in terms of perfor-
mance and expressiveness. Drools itself uses RETE for its core, but
comes with a set of additional features and components which are
shared only by main commercial equivalent tools. The possibility of en-
hancing the core of Drools allowed to exploit the novel features while
still having all the additional benefits at disposal.

1.2.3 Developing a complex, strongly hybrid management system

The flexibility of the engine will be demonstrated using it to implement
many different examples, which are representative of some common
problems solved using AI. The engine will be used both as a stand-
alone component and in a hybrid version with other sub-symbolic
tools at different levels of integration, from cascading to full emula-
tion. In order to show its real usefulness, however, a more realistic
application will be implemented as well.

Modern complex systems use architectural patterns which are be-
coming standard best practices: in particular, many complex problems
nowadays are solved using (Web) Service-Oriented Architectures. En-
terprise applications are commonly built using an enterprise service
bus and a rule engine, leveraging advantages such as flexibility, re-
liability, reusability and expandability. Some systems also introduce
additional concepts, such as process or event; in fact, Drools supports
them natively. Actually, all these concepts can be conveniently applied
in the development of a management system for a water treatment

6 introduction

plant, but it will also be shown that imperfection-aware, strongly hy-
brid, AI-based components can be a fundamental added value.

1.3 organization of the dissertation

The dissertation is divided in four parts, as follows:

1. Artificial Intelligence Techniques

2. Monitoring and Control from an AI perspective

3. A Hybrid Rule Engine

4. Case Study: a Hybrid Environmental Decision Support System

The first two parts are more survey-oriented and give an overview
of the state of the art in different fields, albeit from a point of view
functional to the development of the system presented in the third
and fourth part of the work, which constitutes the concrete applicative
contribution of this work. In particular, the first part introduces the
concept of imperfect information and shows how it can be managed
appropriately using AI techniques, stressing the differences between
the various types, but also the points of contact between them. This
is first done from a theoretical point of view, but then the analysis is
applied to concrete technologies, emphasizing their imperfect nature
and showing how it can be exploited. The second part introduces the
problem of the control and management of complex systems, systems
for which the canonical model-based control schemas are not applica-
ble, so advanced AI-based architectures are required instead. The third
part describes the properties of the hybrid rule engine, showing the
new language features and the revised internal structure. Finally, the
last part will discuss how to apply imperfect reasoning to a concrete
case study - the implementation of a complex management architec-
ture -, outlining the advantages in doing so.

The rationale behind this sequence is as follows: handling imper-
fection is the key to develop strong hybrid systems, so it is defined
in the first place. The evaluation of the benefits and the drawbacks
of the presented AI tools, in fact, depends also on their capacity (or
lack thereof) of handling imperfection. Knowing the properties of AI

technologies is necessary to understand the structure of the control in-
frastructures commonly applied to complex (water treatment) systems.
From an analysis of the most advanced existing solutions, it turns out
that there is still a great margin of improvement: while in other fields
architectures such as the ones based on services and/or events have
been succesfully adopted, applications to water treatment are scarcer;
moreover, none supports imperfection in a comprehensive way8. From
a brief survey of the mainstream middleware components, both open
source and commercial - it turns out that this lack of support is struc-
tural, so the only option was to add it explicitly, enhancing an existing

8 fact which seems to hint that AI tools are not always used at their full poten-
tialities

1.3 organization of the dissertation 7

engine. The enhancements greatly expand the potentialities of the en-
gine, hinted at using several example applications and implementing
a realistic one, applied to a water treatment plant, which significantly
improves the structure and functionalities of the existing ones.

The contents of each chapter are given in detail below.

1.3.1 Artificial Intelligence Techniques

• Chapter 2 defines the concept of imperfect information, discussing
the differences between uncertainty, vagueness and inconsistency.
It also introduces the canonical techniques used to deal with im-
perfection, namely the probabilistic and possibilistic/fuzzy ap-
proaches, showing that their adoption can be much more benefi-
cial than a naive approach which ignores the imperfection alto-
gether.

• Chapter 3 introduces several AI techniques, both from the field
of hard and soft computing, which will be applied in the realiza-
tion of the case study architecture. For each different approach,
its capability (or lack thereof) of handling imperfect information
is outlined.

• Chapter 4 defines the concept of hybrid AI system, giving some
criteria to classify them. It also lists the most common hybrid
architectures which can be found in literature and real-world
implementations.

1.3.2 Monitoring and Control from an AI perspective

• Chapter 5 presents the vision of an integrated architecture for
the automatic management of a complex system, introducing -
and at the same time delimiting the context to - the main case
study: waste-water treatment plants. The opportunities and the
challenges for the automation of a plant are discussed, followed
by an overview of the possible architectures which outlines the
benefits and drawbacks of each one. The overview starts from
the simpler and more focused techniques, such as PID controllers
implemented using PLC hardware, moving to full-fledged Deci-
sion Support Systems. It turns out that an ideal DSS, to be suf-
ficiently scalable, flexible and maintainable, should not be built
as a monolithic application, but using a combination of service-,
event- and agent-based architectures.

1.3.3 A Hybrid Rule Engine

• Chapter 6 analyzes the existing BRMS, the candidate technology
to form the main building block of a complex management ar-
chitecture. The relevant functionalities include the support for

8 introduction

workflows, events and imperfection: while the former are com-
mon in commercial systems, the latter is not (with a few limited
exceptions).

• Chapter 7 shows the modifications made to an existing RETE-
based rule engine, Drools, necessary to have it support differ-
ent forms of imperfect reasoning. To this end, a generalized and
highly configurable inference process has been implemented and
embedded in the underlying RETE network.

• Chapter 8 shows the potentialities of the hybrid engine, present-
ing several examples of possible applications. They are meant to
be “patterns” more than real applications, serving as guidelines
in the development of hybrid systems. They will be used to dis-
cuss what can be done at the symbolic level, using rules, and
what needs to be done (or is better done) at a lower level, us-
ing other connectionist techniques. The examples include “pure”
logic extensions of rules to the non-boolean case, the introduc-
tion of non-monotonic reasoning through induction or excep-
tions, the integration - up to the emulation - and usage of other
soft-computing techniques.

1.3.4 Case Study: a Hybrid EDSS

• Chapter 9 presents a specific WWTP class, the Sequencing Batch
Reactors, which are particularly suitable for control and monitor-
ing purposes. To support this claim, the results of the application
of several AI techniques to the offline analysis of its signals are
shown, many of which were proposed by ourselves.

• Chapter 10 proposes a generic, hybrid, distributed management
system based on rule agents who implement services and/or
handle events. Thanks to the imperfect reasoning engine, the
agents can handle imperfection at rule-level natively. This archi-
tecture is applied to the online control of a SBR plant: to this end,
some specialized, hybrid agents are designed combining differ-
ent AI techniques.

Part I

A R T I F I C I A L I N T E L L I G E N C E T E C H N I Q U E S

2
D E A L I N G W I T H I M P E R F E C T I N F O R M A T I O N

Contents
2.1 Properties of Imperfect Information 12

2.1.1 Sources of Imperfection 12

2.1.2 Types and Causes of Imperfection 13

2.1.3 Models of Imperfection 14

2.2 Relations between different types of Imper-
fection 24
2.2.1 A Comparison of Imperfection Types 24

2.2.2 Reconciling the differences 26

2.3 Conclusions 30

The ideal piece of information coming from the real world is perfect
[277]: it is precise and certain, so that its values are neither ambiguous
nor inaccurate and there is no reason to doubt their validity. Imperfection

In practice, this is just an ideal situation: the quality of the data
collected in a realistic scenario is hardly so high; moreover, an infor-
mation processing system is usually just a model, though as realistic
as possible, which is likely to introduce some additional error during
the computations.

Thus, it is unrealistic to think that the results of a computation are
perfect. One can still build a system and ignore the imperfections, but
the validity of the output would have to be questioned every time:
this could be relatively easy whenever the results are not the expected
ones, but could be impossible and even dangerous in certain situations
(imagine for example an undetected alarm condition).

A much better option is to build a system that can recognize the
quality of the information it processes, deal with it and possibly eval-
uate the quality of its responses. Obviously, the “garbage-in garbage-
out” principle still holds, but there is a continuum of situations be-
tween pure noise and perfect information that can still be exploited. In
fact, despite the negative acception of the term, an imperfect represen-
tation of knowledge may be more concise, robust and less expensive to
obtain than its perfect version. For example, the use of an interval - e.g.
the one given by confidence bounds - in place of a single number is
an inexpensive, yet more expressive way of reporting a measurement.
Consider also the age-related version of the Sorite Paradox: if a person
is young on one day, they will also be young the day after, until the

11

12 dealing with imperfect information

day when they will be old. This is a paradox in classical logic unless a
different adjective is defined for every day in the life of a person, but
is perfectly acceptable in an imperfect logic, where a single property,
“young”, has a truth degree that varies continuously with age.

The drawback is that imperfection may appear in more than one
way, due to different causes, even at the same time. This (lack of) in-
formation has to be processed in a coherent way, because it is part of
the data. The goal of this Chapter, thus, is to give a brief description
of some of the most common sources of imperfection and to introduce
their main theoretical and mathematical models. The AI techniques
discussed in the following Chapters will then be analysed according
to their capacity to deal with which types of imperfect data: a clear dis-
tinction is essential not to make serious mistakes. Data, in fact, may be
characterized by two or more types of imperfection, which should not
be confused. Moreover, when complex systems are built from simpler
modules, such as in the main case study presented in this dissertation,
the output of one block may become the input of another, so imperfec-
tion has to be propagated along with the information.

2.1 properties of imperfect information

Several attempts to describe and classify the various types of imper-
fection in a standard framework exist in literature: among them, the
already cited survey by Smets [277] but also, for example [147] and
[170]. More recently, the W3C Incubator Group on Uncertainty1 Reason-
ing for the Web has defined an ontology (see [3]) for the representation
of imperfect information on the Web. The classification presented in
this chapter derives principally from a combination of the first and last
work: an adapted version of the original ontology is shown in Figure
1.

2.1.1 Sources of Imperfection

Before it is possible to model imperfection, one has to take into account
its origin. At a very abstract level two distinctions can be made:

aleatory vs epistemic Sometimes the imperfection is inherent in
the state of the world, other times it is due to a limited knowl-
edge of the observer. This distinction could lead to a philosophi-
cal debate between idealism and determinism: would it possible
to determine the outcome, say, of a coin toss for an observer with
complete knowledge of the state of the universe? From a practi-
cal point of view, instead, it is more important to distinguish be-
tween knowledge that could be completed and information that
can’t be acquired.

1 Notice that here the term Uncertainty is used in the wider sense of Imperfec-
tion

2.1 properties of imperfect information 13

Imperfection

Nature Derivation Type Model

Aleatory
Episthemic

Subjective
Objective

Uncertainty
Vagueness

Inconsistency

FuzzySets
RoughSets

Possibility
Belief

Probability

Figure 1: An ontology for the representation of Imperfect information

objective vs subjective Another property relevant in practice is
the repeatability of the conditions that led to the generation of
the imperfect information. An objective event can be repeated
and thus described and predicted, so it is generally more tractable
than one where the information depends only on the judgement
of an observer.

2.1.2 Types and Causes of Imperfection

Despite much philosophical debate, it is generally accepted that imper-
fection can take on the following major forms (among others):

uncertainty properly called derives from the lack of knowledge
about the actual state of the world. A fact or an event, be it
past, present or future, may be true or false, but the available
information does not allow to decide which is the case. More
generally, the real value of a variable is known to lie in a set of
alternatives, but it can’t be identified uniquely. Objective

UncertaintyAleatory uncertainty is often related to randomness, the impossi-
bility to predict exactly the outcome of an event before it takes
place, such as the number resulting from casting a die. The de-
gree of uncertainty is reflected by the likelihood of the event.
When dealing with epistemic uncertainty, a subjective judge- Subjective

Uncertaintyment has to be adopted: the degree of uncertainty is expressed
by the degree of belief, which in turn can be related to the neces-
sity and the possibility of an event. A typical example is the out-
come of a football match. Notice that the subjective belief can
be supported by an objective likelihood, while the converse is
normally not acceptable. When belief is used as a second-order Confidence
uncertainty measure, for example to state the quality of an obser-

14 dealing with imperfect information

vation together with the analysis of its degree of imperfection, it
can also be called confidence.

Another source of uncertainty is incompleteness: when a piece ofIncompleteness
information is missing, one can only speculate on its possible
state, even if sometimes the deficiency may be irrelevant for the
purpose of the elaborations at hand.

vagueness arises when knowledge is as complete as it can be, but
the terms used to denote it do not allow to identify the enti-
ties which are being referred in a precise and unequivocal way.
When vagueness is due to ambiguity or approximation, there is
more than one possible interpretation. The first more properly
defines situations where it’s difficult to decide between two dif-
ferent alternatives, while the second term is more appropriate
for situations where many similar states are collapsed into a
unique class: for example, consider a temperature which is known
to lie somewhere in between 20 and 25 degrees. Sometimes, in-Fuzziness
stead, a single concept, such as “age”, takes a specific value, but
the boundaries of its definition are relaxed - usually fuzzified - in
some way: for example, “young”.

inconsistency is a property of a set of facts with conflicting infor-
mation, such that there is no possible world it can describe (e.g.
a person is reputed to be younger than 15 but has a driving
license). Conflicts have to be resolved, usually removing, ignor-
ing or modifying part or all the conflicting information. Inconsis-
tency may be a symptom of incorrect or noisy information, evenIncorrect vs

Inaccurate if sometimes erroneous information does not lead to any (appar-
ent) inconsistency. When the errors are small and not relevant,
however, the information is better defined inaccurate.

2.1.3 Models of Imperfection

In literature there exist several theories dedicated to the modelling
of imperfection, but each one usually deals with one specific type of
imperfection. Since a complete discussion is not among the goals of
this work, this section will just give a brief introduction of the most
relevant ones, outlining the purpose and the domain in which they are
applicable. The next Section, instead, will discuss the similarities, the
differences and the points of contact of different theories, hinting at
possible ways to combine them.

Probabilistic Approaches to Uncertainty

The canonical model to deal with uncertainty is the theory of probabil-
ity. The field is actually split in two branches, one focused on objective,
random variables, the other dedicated to the study of subjective belief.

2.1 properties of imperfect information 15

probability theory Probability is a way to measure, i.e. to as-
sign a quantitative description, to the uncertainty about the state of the
world. It can be used by an agent who has limited knowledge about an
event, either because it has not been observed precisely, and thus some
data are missing or incomplete, or because it has not happened yet. In Random Variables
particular, a random variable X models a property which value is not
known with certainty, but which can take any one of the values in a
set Ω ⊆ U included in a “universe of the discourse”. An event causes
the variable to be assigned a specific value at a certain point in time
(e.g. the outcome of a coin toss may assign heads or tails to the vari-
able which models the side the coin landed on), but obviously until
the event takes place and has been observed, the value of the variable
can’t be known. The agent, however, can assign a probability to each
possible outcome which models the different degrees of belief at which
a values is considered (or expected) to be the “real” one. In fact, the set Probability

DistributionΩ is associated to a probability distribution, a non-negative, normalized
function f : Ω 7→ [0, 1] which assigns a probability to each candidate
outcome. Notice that one is not always necessarily interested in atomic
events (i.e. p(X = xi)), but it is possible to estimate more complex sit-
uations such as p(X ∈ A ⊆ Ω). Since for mathematical convenience
a random variable can only take real values, in many cases an encod-
ing in necessary (e.g. mapping heads to 1 and tails to 0 in the coin
example).

The laws of probability are traditionally governed by Kolmogorov’s Probability Axioms
axioms. Given two outcomes A and B ∈ Ω2:

p(A) ∈ [0, 1]

p(∅) = 0

p(Ω) = 1

p(A∪B) = p(A) + p(B)⇔ A∩B = ∅

from which one can derive the product rule for the conditional prob-
ability p(A∩B) = p(A) · p(B|A) which is at the core of Bayes’ theorem Bayes’ theorem

p(A|B) =
p(B|A) · p(A)

p(B)
(2.1)

A random variable is usually described by its moments: the most
common are the expected value E[X] =

∑
i:xi∈Ω xi · p(xi) and the vari- Mean and Variance

ance E[(X − E[X])2] =
∑
i:xi∈Ω(xi − E[X])2 · p(xi). The first gives an

idea of the value which the variable will take on average, while the
second is necessary to estimate the dispersion of the outcomes around
this value. The expected value alone, in fact, may not have a physical
meaning, like in the case of the coin toss, where the expected value of
0.5 does not correspond to any possible outcome. Moreover, a variable
with low variance is much stabler and thus more predictable than one
with high variance.

2 when the variable is obvious, it will be omitted

16 dealing with imperfect information

Other than these factual points, there is actually much debate on
what probability is [269] and especially how it should be estimated
[289]. In fact, probabilities can be interpreted in terms of:

• Frequency: when the uncertainty is due to randomness in an
aleatory but repeatable process, the probabilities can be mea-
sured objectively in terms of relative frequencies. In particular,
p(A) is taken to be the number of time the outcome has turned
out to be compatible withA divided by the total number of times
the experiment was repeated. While rigorous, this approach ob-
viously fails when the events are not repeatable (and even then,
one must pay attention to carry out the experiments in similar
conditions).

Moreover, the estimate becomes effectively reliable as the num-Repeated Trials
ber of trials goes to infinity. If one models the experiments using
random characteristic variables, i.e. Xj = 1 if the j-th experiment
was compatible with A, 0 otherwise, the probability p(A) is the
expected value of the sum

∑
j Xj. The law of large numbers then

guarantees that the convergence is almost sure, i.e. that the prob-
ability that computed values is not correct is negligible.

• Betting Behaviour: this opposite approach is more suitable for
non-repeatable events, where the subjective disposition of the ob-
server is crucial. The underlying metaphor is the one of a bettingSubjective

Disposition game, where one has to spend a reasonable amount of utility (of-
ten measured in terms of currency), knowing that a unit will be
won if event A takes place, but the original amount will be lost
otherwise. A rational agent would not bet an amount superior
to the equivalent of the probability p(A) itself. On the converse,
one can take the subjective probability to be equal to the max-
imum acceptable bet, so the probability assignment is totally a
matter of personal preference.

• Evidence: in many cases, however, the subjective belief can be
supported and/or modified by some available, objective evidence.
At the limit, the result of a sequence of repeated trials can be
considered the optimal piece of evidence when trying to assign
a probability to an event. Such an observer implicitly accepts the
frequency principle proposed in [143].

Some authors stress the difference between subjective and objectiveBayesian probability
probability, at the point that the former is more properly called belief
and the notation bel(A) and p(A) is used to distinguish between the
two types. Obviously, where appropriate, bel(A) = p(A). Belief is at
the center of the Bayesian approach (see [57] for a comprehensive pre-
sentation with several applicative cases). The actual state of knowledge
is encoded by some parameter θ, so every prediction is conditioned by
their values: bel(A) = bel(A | θ). As observations ω are made, the
knowledge is updated using Bayes’ theorem: the posterior bel(θ|ω) de-
pends on the product of the prior bel(θ) and the conditional bel(ω | θ).

2.1 properties of imperfect information 17

For this reason, in Bayesian frameworks great importance is held
by conjugate distributions, families of parametric distributions closed
with respect to belief update, i.e. that retain the same form after being
combined using Bayes’ theorem. One of the most widely used is the
Gaussian, but many others exist [57]:

bel(x|µ,σ) =
1√
2πσ2

e
−

||x−µ||2

2σ2

imprecise probabilities and the imprecise dirichlet

model Probabilities can be used to measure uncertainty on the out-
come of an event, but there are situations where it is not possible to
estimate a distribution with precision, so probabilities become uncer-
tain themselves. A possible way to deal with this uncertainty is to use
interval bounds in place of precise real values, so p(x) is not deter-
mined unequivocally, but assumed to lie in a range [pl(x),pu(x)].

The underlying theory was developed by P. Walley [294], stressing
the subjective, behavioural aspect of assigning probabilities to events.
In this framework, a random variable X is associated to a gamble, a Betting behaviour:

previsionsfunction g(X) : Ω 7→ < which assigns a gain, measured in terms of
utility units (a generalization of currency), to each possible outcome.
A betting agent will earn (or lose) an amount equal to g(A), assuming
that event A takes place, i.e. the variable X actually assumes one of the
values in A. Thus, the lower prevision Pl(gX) is defined as the maximum
price the agent would be willing to pay to accept the bet avoiding sure
loss. For example, suppose that Ω = {a,b, c} and g(a) = 10,g(b) =

2,g(c) = −5: an acceptable price to “enter the game” would obviously
depend on the agent’s belief regarding the possible outcome of the
gamble. If an agent believed that a would surely happen, they could
be willing to pay up to Pu(gX) is the maximum acceptable selling price.
In the example, an agent could even be willing to sell the gamble at
negative rates (i.e. pay up to 5) according to the expectation concerning
c3.

The definition of avoiding sure loss leads to that of coherence [293],
which does not allow the existence of a combination of gambles mak-
ing it acceptable to buy another gamble at a price greater than its lower
prevision.

The notion of coherent prevision is more general than that of proba- Probabilities as
gamblesbility, and in fact includes it. It is sufficient to consider the characteristic

gamble of an event A, where one wins 1 unit if A takes place and loses
the bet utility otherwise: the probability p(A) is exactly the fair price
one would pay to accept the gamble if the odds were known with pre-
cision. When this is not the case, the upper and lower prevision (which,
in this case, are effectively the upper and lower probabilities ofA) show
the agent’s disposition, induced by their subjective belief, towards the
outcome of the event. More generally, even the belief/plausibility and

3 so beware of extremely convenient gambles!

18 dealing with imperfect information

necessity/possibility pairs introduced in the following sections can be
considered specific cases of coherent previsions.

An interesting case study, useful to define probability bounds forImprecise Dirichlet
Model multinomial data while still using a Bayesian approach, is the Impre-

cise Dirichlet Model (IDM, [292],[54]). A Dirichlet model is appropri-
ate to describe events with a finite number of possible outcomes (i.e.
|Ω| = N < + inf. The Dirichlet distribution is a second-order distribu-
tion, which gives the likelihood p(p|β) of any probability distribution
p = {p(ω1), . . . ,p(ωN)} on Ω, given the values of a vector of parame-
ters β modelling the belief of the observer:

DirichletN(p|β) =

Γ

N−1∑
j=0

βj +N

N−1∏
j=0

Γ
(
βj + 1

)
N−1∏
j=0

p
βj
j (2.2)

The parameters βj have a precise frequentist interpretation: they are
the actual number of observations of the jth event over a total num-
ber of observations Btot =

∑N−1
j=0 βj. If the parameters are be fixed

on a subjective basis, one can speak of “observation-equivalents”. The
unique maximum of distribution 2.2 yields the maximum likelihood
distribution pml, which coincides with the frequentist one as the num-
ber of observations grows, since it can be shown that the overall vari-
ance along the N coordinates is bounded by a constant which tends to
0 as Btot goes to infinity:

pml =
β

Btot

N−1∑
j=0

σ2j 6
N(N− 1)

N2(Btot +N+ 1)

As observations are made, the conditioning of the posterior distri-
bution just requires an update of the counters βj. One usually starts
with a prior number of observation-equivalents BD and a prior prob-
ability distribution dj (for example, a uniform distribution such that
dj = 1/N). The total number of observations Btot is given by the sum
of BD and the number of samples BO. Defined δj the fraction of real
observations assigned to category j, one can define a probability distri-
bution and its empirical bounds:

pl(ωj) =
δ(j)BO
BO +BD

6
δ(j)BO + djBD

BO +BD
6
δ(j)BO +BD
BO +BD

= pu(ωj)

The lower bound is based purely on real observations, while the
upper bound assigns admits that all the prior belief could have been
assigned to any one class indifferently. As BO increases, the effect of
the priors is diminished and the bounds are tightened.

dempster-shafer theory and tbm A probability distribu-
tion assigns a probability to each element ω ∈ Ω. Sometimes this

2.1 properties of imperfect information 19

kind of assignment fails to capture the belief of an observer, since it
does not allow to assign a belief to a set of possible outcomes without
making any distinction between them. This scenario, instead, is quite
common when observations are uncertain and don’t allow to distin-
guish clearly between elements. Historically, this issue has been stud-
ied by Dempster-Shafer’s theory of belief and plausibility functions
[268]. In this framework, a basic mass assignment m (bma), is defined on Mass assignments,

Belief and
Plausibility

the power-set 2Ω. This function has all the characteristics of a proba-
bility distribution; moreover, the sets A for which m(A) > 0 are called
focal elements. The value of m(A) measures the belief that a random
variable X has one of the values in A, without saying anything about
the belief about any of them individually. In particular, assigning mass
to Ω itself models a condition of total ignorance, while assigning mass
to ∅ is usually a symptom of inconsistency in the available informa-
tion since X can’t take any value in Ω (a contradiction). An example
is shown in Figure 2, where each node of the lattice is annotated with
its mass, while bel and pl are in the lower and upper part of the circles
respectively. Given a bma, it is possible to define two quantities, belief
bel(A) and plausibility pl(A), which may understood as the lower and
upper bounds, respectively, of a subjective probability p(A):

bel(A) =
∑
∅6=B⊆A

m(B) pl(A) =
∑

B∩A 6=∅
m(B)

In fact, bel takes into account only the mass which certainly supports
an event A, while pl takes into account any event which might possibly
involve A. The relation, valid for previsions in general, holds: bel(A) =

1 − pl(¬A). Notice that the functions are strictly interrelated, since,
given bel, it is possible to reconstruct the underlying bma: m(A) =∑
B⊆A(−1)|A−B|bel(B).
A basic mass assignment m0 can be used to model the uncertain Belief combination

belief of an agent, summarizing all his available knowledge. When
new information is acquired, it updates the agent’s belief. The only
requirement is that this additional knowledgem1 is encoded using the
bma it alone would induce on the agent. Two basic mass assignments
can be merged using the well-known Dempster-Shafer’s combination
rule:

m(A) =
1

1−
∑
B∩C=∅m0(B) ?m1(C)

∑
B∩C=A 6=∅

m0(B) ?m1(C)

In the original rule, ? is the product, but it is not the only possible oper-
ation. In fact, several combination rules exist, some of them including
a “discounting” pre-processing which takes into account the reliabil-
ity of the sources: a discussion of the benefits and drawbacks of other,
different rules can be found, for example, in [267] and [276].

Smets’ Transferable Belief Model [275] extends this scenario: infor-
mation coming from different sources is performed at credal level us-
ing bmas, but eventually decisions are taken at probabilistic level. This

20 dealing with imperfect information

0

0

{∅}/0

0.3

0

{B}/0

0.2
0.2

{A}/0.2

0.8
0.5

{C}/0.5

0.5

0.2

{A,B}/0

1.0
0.7

{A,C}/0

0.8

0.8

{B,C}/0.3

1.0
1.0

{A,B,C}/0

Figure 2: Example: bma, bel and pl on 2Ω={A,B,C}

requires the conversion of a generic bma into a Bayesian one, i.e. a
probability distribution on Ω. The original model used the pignistic
transformation, according to which a mass is shared equally between
the elements of a set:

mB(ω) =
∑
A3ω

m(A)

|A|

To conclude this introduction, notice that the Imprecise DirichletIDM and TBM
model can be extended to take into account belief and plausibility. So
far, it has been assumed that an experiment returned a definite out-
come, so that it was always possible to count the number of occur-
rences of each element ωj during the repeated trials. An uncertain
observation could not allow to identify a precise outcome ω, but if a
subset J ∈ 2Ω can be identified such that it surely includes the real out-
come (at worst, Ω itself), the TBM can be applied. In practice, one can
define the belief, pignistic and plausibility functions, κ, δ and λ respec-
tively, which assign a different weight to each element ωj depending
on J :

κj(J) =

{
1 if J = {j}

0 else
λj(J) =

{
1 if j ∈ J
0 else

2.1 properties of imperfect information 21

δj(J) =

{
1
|J| if j ∈ J

0 else

These in turn can be used to define a pignistic probability and its
upper and lower bounds in case of uncertain observations:

T∑
t=0

κj(J(t))BO

BO +BD
6

T∑
t=0

δj(J(t))BO + djBD

BO +BD
6

T∑
t=0

λj(J(t))BO +BD

BO +BD

confidence The intuitive, but vague, notion of confidence does
not correspond to a well defined theoretical model. Instead, it has
sometimes been used naively in place of more formal frameworks,
like in early expert systems. Its proper role, however, is that of a
second-order measure of uncertainty [296], used together with another
more structured approach. Confidence is usually measured using a
real value χ ∈ [0, 1] and can be assigned like a weight to any piece of
information. It becomes useful when knowledge coming from different
sources has to be merged: in particular, when the data are inconsistent,
confidence can be used to solve the conflicts. Examples of this appear
in non-monotonic reasoning (e.g. [242]), but also in the TBM, where
the fusion of bmas can include a discounting step in which the the
discount coefficient can be determined by confidence itself. Moreover,
the problem of evaluating the degrees of confidence is not trivial, and
may vary on a case-by-case basis. Notice, for example, that the IDM

includes a natural candidate definition of confidence: the ratio BO
BO+BD

is a non decreasing value which increases with the number of observa-
tions. Moreover, the variance of the estimated probability distributions
tends to 0 as χ → 1. In fact, the approach in [296] can be considered a
binomial IDM.

Possibilistic Approaches to Vagueness

While probabilistic techniques deal with uncertainty, the methods used
to treat vagueness are based on the theory of fuzzy sets and its devel-
opments.

fuzzy sets Traditional sets can be defined extensionally, by num-
bering their elements, or intensionally, by providing a boolean charac-
teristic function which evaluates to 1 if an element is member of the set
or to 0 otherwise.

Fuzzy sets [309] generalize this notion. A fuzzy set S on a universe
U is composed of elements x ∈ U which have a gradual degree of
membership ε ∈ [0, 1] in the set. If the set is defined intensionally, the Fuzzy membership
characteristic function is called more properly membership function and
usually denoted by µS : U 7→ [0, 1]. A higher value means a higher de-
gree of compatibility between x and any ideal member (or “prototype”)
of the set. In particular, the set of full members S ⊇ CS = {x | µS(x) = 1}

22 dealing with imperfect information

is called the core of S, while the support of S is the complementary of
the set of full non-members, i.e. {x | µS(x) > 0}.

A fuzzy set can be cast to a traditional, crisp set by taking its α-α-cuts
cut : Sα = {x | µS(x) > α}. As the parameter α increases, one obtains a
family of nested subsets of the support of S. The operation is invertible,
as one can define the membership of an element by taking µS(x) =

supα : x ∈ Sα.
The theory of crisp sets can be generalized to fuzzy sets by definingOperations on fuzzy

sets the fuzzy counterparts of the operations of negation ¬, intersection ∩
and union cup. In particular, when A and B are fuzzy sets:

µ(¬A) = 1− µ(A)

µ(A∩B) = min{µ(A),µ(B)}

µ(A∪B) = max{µ(A),µ(B)}

The definitions above preserve commutativity, distributivity, idem-potency
and other desirable properties of an algebraic structure, including De
Morgan’s laws, but do not respect the law of the excluded middle, but
this is perfectly acceptable in a context where a person, for example,
can be at the same time young and not young (e.g. a 25-years old stu-
dent), even if only up to a limited degree, since µ(A∩¬A) < 0.5.

Fuzzy sets are a convenient way to define concepts expressed usingSemantics of fuzzy
sets vague linguistic descriptions, such as “Old”, “Tall” and “High”, and

reason with and over them. Often, the evaluation of the membership
function associated to a set relies on some quantitative feature of the
object to be tested. For example, the function µTall(Person x) is likely
to rely on the height of the people it tests, at the point that it should
be more explicitly written µTall(x | x.height). Notice that the features
are assumed to be known with certainty, so that µ can be evaluated
precisely. In fact, fuzzy sets deal with vaguely-bounded concepts by
assigning a graded, partial degree of truth to a statement such as “x is
Tall”, but once x is known and “Tall” is defined, no more imprecision
actually exists. This situation is actually quite different from a scenario
where one does not know the height (or, more generally, the value of
the necessary features) with precision, and even more from the case,
apparently similar, where one only knows that a person is tall in some
degree and needs to estimate the value of its height. Fuzzy sets can
be based on other semantics than similarity ([108]): in fact, the latter
case is handled by the theory of possibility introduced in the next
paragraph, while the former requires more complex representations
than a simple real-valued membership degree, some of which will be
presented in Section 2.2.

possibility theory Possibility [111] is another - possible - ap-Boolean Possibility
Theory proach to dealing with imperfection, in particular with incomplete

knowledge, and can be derived from a (modal) logic point of view,
at least in its original form. While probability may be used to quantify
their belief on the actual state of a partially known world, possibility
may instead be used to assess its definite provability. This theory is

2.1 properties of imperfect information 23

100 125 150 175 200
0

0.25

0.5

0.75

1
tall

Person [height (cm)]

µ(x)

Figure 3: The fuzzy set Tall

founded on two concepts, Necessity N(A) and Possibility Π(A): the for-
mer describes events that must happen, the latter event that may do
so. A necessary event is one that is expected to happen, since its truth
can be proved according to the knowledge in possess of an agent; a
possible one is not expected not to happen, since its falsity can’t be
proved with certainty.

From this point of view, necessity and possibility are boolean vari-
ables such that, given a statement or unitary event x, N(x) = 1 ⇒
Π(x) = 1 and N(x) = 1− Π(¬x) (hence also Π(x) = 0 ⇒ N(x) = 0):
intuitively, a necessary fact is also possible, but if a fact is necessary
then its negation is not possible. Hence, four states are possible:

• N = 1,P = 1 : an agent is certain of the truth of a fact

• N = 0,P = 0 : an agent is certain of the falsity of a fact

• N = 0,P = 1 : an agent is uncertain about a fact, which could be
true but needs not to

• N = 1,P = 0 : an agent’s knowledge is inconsistent, since an
impossible event is expected to be true.

The definitions can be generalized from atomic facts to events by
taking Π(A) = supx∈A Π(x) together with Π(Ω) = 1. This definition
leads to the following composition rules, from which it results that one
can’t generally obtain definite values for N and Π, but only lower and
upper bounds:

N(A∪B) > max{N(A),N(B)} Π(A∪B) = max{Π(A),Π(B)}

N(A∩B) = min{N(A),N(B)} Π(A∩B) 6 min{Π(A),Π(B)}

On the other hand, given a set Ω, the evaluation of Π(x ∈ Ω) for
each gives a Possibility distribution. If one substitutes the original defi- Fuzzy Possibility

Theorynition of impossibility to prove the contrary with a fuzzier notion of
how acceptable is for a value x to be the actual one in a given situa-
tion, one gets a fuzzy-based possibility theory as proposed by Zadeh

24 dealing with imperfect information

in [306] and furthered by Dubois and Prade [117] (the dual notion of
necessity can be related to a fuzzy degree of surprise in not seeing
an event happen). In this context, a fuzzy set S can be considered a
possibility distribution on its domain, given the fact that the actual
(unknown) value belongs to S set in some degree. For example, one
could know that a man x is tall in a degree greater or equal than some
value α: his actual height is not known with certainty, but S (or, more
properly, its α-cut) defines a possibility distribution πTall(h|x) stat-
ing, for each candidate value h, how acceptable it would be, should
it be chosen as the real value. Notice that this is the dual case of the
fuzzy membership evaluation, where the quantitative feature (e.g. the
height) is known with precision and the membership has to be com-
puted: the implicit equivalence µS(x|h) = πS(h|x) is stated by Zadeh’s
equivalence principle.

2.2 relations between different types of imperfection

The goal of this Section is to remark the differences as well as the
points of contact between the main models of imperfection, namely
fuzziness, probability/belief and possibility. As usual, only a few key
points will be discussed, since whole works exist dedicated to the spe-
cific topic, such as [110] and [111].

2.2.1 A Comparison of Imperfection Types

Fuzziness models partial grades of truth, evaluated with full knowl-
edge of the necessary information. The only uncertainty can arise when
trying to decide whether a fuzzy property can be considered true in
a boolean sense, since a threshold has to be chosen, but otherwise the
state of the world is certain.

Probability is applied in conditions of uncertainty, where an agent
lacks information about the state of truth of some fact, which is boolean
and not gradual: it measures their disposition in believing the world
to be in a specific state, despite the inability to know it for sure.

Possibility, in a way, measures the “prejudice” - or lack thereof -
of an agent towards any candidate actual situation, given his present
state of incomplete knowledge, so, like probability, is not defined at a
different conceptual level than truth degrees.

Two quite famous examples can be used to explain the differenceProbability vs
Fuzziness between the three concepts. In the first ([56]), a thirsty person is offered

two bottles, a fuzzy one and a probabilistic one. The former is a bottle
of fresh water with truth degree 0.9, for example because it is not
exactly fresh water, but a mixture made for 9 parts of water and 1 of
something else; the latter is a bottle full of fresh water with probability
90%, or, with 10% probability, a bottle full of something else. While it
is true that the expected amount of non-water from the second choice
is equal to the amount present in the first, in one case the person is

2.2 relations between different types of imperfection 25

certain to drink but a few drops of that something else, while in the
other they will either drink none (a likely case) or all.

The distinction between possibility and probability is shown clearly Probability vs
Possibilityby Zadeh in [306], considering the number of eggs that an agent, Hans,

could eat for breakfast. A probability distribution assigns a weight to
each value, but what is effectively important is the ratio of these values
(the odds), in order to distinguish the more from the less likely when
trying to identify the actual value. Possibility, instead, is concerned
with the individual values. Indeed, what is impossible (i.e. p = 0) must
remain impossible (i.e. Π = 0), but a possible event may be improbable,
as stated by Zadeh’s possibility/probability consistency principle.

As already noted, instead, fuzziness and possibility have a dual role: Possibility vs
Fuzzinessthe former gives a qualitative label (but evaluated using a quantitative

truth degree) to a quantitative feature; the latter tries to limit the set of
values compatible with a vague definition.

degrees More confusion could be induced by the use of the term
“degree”. In fact, the same word can be applied to quite different con-
cepts, all of which share the property of being gradual:

• Degree of truth: measures the compatibility of an entity with a
prototype defined using some criterion.

• Degree of probability: measures the ratio of favourable events
over a total number of cases.

• Degree of belief: measures an agent’s opinion in assuming a
property to be true.

• Degree of possibility: measures an agent’s disposition towards
accepting a situation to be true.

• Degree of confidence: measures the strength of an agent’s rely
upon a statement.

To make things worse, the same basic model, a real number in L =

[0, 1] is suitable for any of the types of degree just listed. However,
a real number is appropriate only if the value of the degree is known
with certainty. When this is not the case, one has to model an imperfect
piece of information on Ω = L, so any imperfect (meta) model could
theoretically be used.

• Real numbers ε ∈ L: the standard representation, suitable to
model any one degree.

• Intervals [τ, 1−ϕ] ∈ L× L: interval ranges are obviously used
for upper and lower previsions, so imprecise probabilities as
well as belief/plausibility and necessity/possibility pairs rely
on this representation, even if with different semantics. Inter-
vals can also be used to model fuzzy degrees of truth: moreover,
they emerge naturally when type-II fuzzy sets are used [310],
[201]. A type-II fuzzy set is defined by an imperfect membership
function µ : Ω 7→ L× L which evaluates to an interval instead of
a precise degree for any given object.

26 dealing with imperfect information

• Fuzzy numbers: A fuzzy number is a possibility distribution
on (a subset of) < (e.g. see [118]). A fuzzy number models the
concept of “approximately” ε, admitting more than one possible
value (at different degrees). A fuzzy interval can be considered
a special case of fuzzy number with uniform possibility equal to
1 for all values between the lower and upper bound.

• Fuzzy degrees: A fuzzy degree is one of the values of a linguis-
tic variable used to model the concept of partial truth, such as
true, approximately true or almost false. A fuzzy degree is
connected to a fuzzy set, which in turn can be considered a fuzzy
number.

• Belief structures: in complex cases, where the actual value of a
degree has to be decided using evidential information, the TBM

could be used, defining a belief structure on 2L.

ε

τ

ϕ ≈ ε

Figure 4: Simple Degrees

Remarkably, these complex implementations can model any class
of degrees, so for example a fuzzy degree can be used to describe an
ill-known probability value. This allows to build higher-order imper-
fection models, such as the already discussed imprecise probabilities,
which use intervals instead of precise values. The membership func-
tion of a type-II fuzzy set is a fuzzy set itself, but the idea can be
generalized recursively to type-n sets [263]. Another relevant example
is given in [97], where a TBM is implemented using imperfect degrees.

2.2.2 Reconciling the differences

As shown in the previous Section, the different types of imperfection
can be combined, even in complex ways, but hardly subsume each
other, unless very strong and specific assumptions are made. Actu-
ally, there exist several works in literature where the topic is debated
(e.g. [182], [110], [116], [86], [212], [50], in addition to the already cited
works of Smets and Dubois and Prade), some more well-founded than
others, and possibly the question is not closed to this date.

The discussion exists at two levels, a “strong” and a “weak” one: the
former is more theoretical, and arguments to what degree one model
of imperfection can be encompassed by another; the latter, instead, is
more practical and tries to determine which model is more appropriate
for different classes of problems.4

For example, it is possible to define the fuzzy set Probable overFuzzy Probability

4 In my humble opinion, the former remains open for discussion.

2.2 relations between different types of imperfection 27

the domain of events: the membership of an event A, then, can be
assumed to be equal to p(A), but this is just a qualitative description of
a property based on a well-known, quantitative feature, i.e. the degree
of probability, pretty much like the set Tall is defined over the height
of people. A general way to transform a partial degree of truth into a
probability could be expressed by the predicate logic formula5:

∀X,P∃Y : Holds(P, Y) ∧ Similar(X, Y)⇒ Probable(Holds(P,X))

Similar is a place-holder for a generic fuzzy property which evaluates
to a partial truth according to the compatibility between an object X
and a prototype Y; Holds is a boolean property stating that a certain
property P is true for Y. When the latter is true, the degree of similarity
between X and Y is taken to be equal to the membership of Holds(P,X)
in the set of probable events, i.e. to be equal to the probability that P
is true for X. This axiom is arbitrary (albeit in some contexts it could
be considered reasonable) because it is based on the strong assump-
tion that the limit of similarity, equality, is a sufficient condition to
ensure that a property holds, while only identity guarantees it. More-
over, assuming that probability increases with similarity also implies
that probability decreases the less compatible X and Y are: but even so,
it could be possible (albeit improbable) for P to hold fully even for an
object X which is very different from Y.

At the same time, the attempts to define a membership degree in
term of a frequentist probability, i.e. to consider ε = µS(x) equal to
the percentage of people who would accept x to be member of a crisp
version of S ′, have been strongly criticized (e.g. see [56]). To obtain a
crisp set S ′, an α-cut is required: for n people out of N, with ε = n/N,
to assign x to S ′, it is necessary that n people choose a threshold alpha
lesser or equal than ε, while the other N− n choose a value greater
than ε. This means that, for any person, p(α 6 ε) = ε, i.e. that the
prior distribution for α is uniform or, in other words, that there is
not preferable threshold for mapping a partial truth degree onto an
absolute one.

Things may be different if one considers subjective probabilities, i.e. Belief in Fuzzy
Degreesan agent’s belief, instead of frequentist ones, i.e. chance. While the

truth degree of a fuzzy property S can be evaluated unequivocally
when the membership function µ and the argument x are known, there
remains the question of how µ was determined in the first place. In a
recent work ([86]), Coletti and Scozzafava show that the membership
µS(x) could be interpreted as an agent’s partial belief in the truth of x
having property S. It could be argued that for an agent who accepts the
definition of S (i.e. the membership function), their belief is induced by
µ, but for an agent who is defining µ, it is this one which is induced by
the agent’s disposition. Nevertheless, in this second case the member-
ship µ(x) behaves like a subjective belief (i.e. a probability) conditioned
by the knowledge of x.

5 A comprehensive discussion of the relation between logic and imperfection
will be the topic of the second part of this work

28 dealing with imperfect information

Despite the theoretical controversies, however, the problem of “weak”
reconciliation is trivial: since imperfection may manifest in different
forms, and different techniques have been optimized to deal with each
one, the design and implementation of an efficient information elabo-
ration system robust with respect to imperfection should always apply
the most appropriate technique. Most practical cases can be assimi-
lated to the computation of some function φ : X 7→ Y, so that, givenImperfect Function

Evaluation an input x ∈ X it necessary to find a value y ∈ Y such that y = φ(x).
Candidate φ may include characteristic functions χS(x), membership
functions µS(x), real-valued functions f(x) and (conditional) probabil-
ity distributions p(y|x), so this model is general enough to evaluate any
type of imperfect information. In turn, the input x may be imperfect in
some way: in fact, it could be specified using a possibility distribution
(fuzzy or not) πX(x) or by a probability distribution pX(x)6. Thus, the
evaluation of φ requires a generalized composition principle which
takes into account both the imperfection associated to the input and
the one introduced by the function:

y = φ(X) ? (X = x)

Depending on the combination, the composition principle becomes:

perfect input

When x is perfectly known, the output is precisely determined,
regardless of its semantics.

possibilistic input vs characteristic function

The possibility distribution entails both

Π(x ∈ S) = sup
x|χ(x)=1

{Π(x)}

and
Π(x /∈ S) = sup

x|χ(x)=0

{Π(x)}

i.e. both the possibility that x belongs to S and the possibility
that x does not belong to S. The two values are sufficient, since
N(x ∈ S) = 1−Π(x /∈ S) (resp. for N(x /∈ S)).

possibilistic input vs membership function

The composition operation ? is equivalent to a logical conjunc-
tion: the input has to be equal to x and x must be a member
of S. The possibility distribution over the input effectively limits
the domain to a fuzzy subset of X, so one gets a truth interval
degree bounded by

NS = inf
x

min(µ(x), 1− π(x))

and by
ΠS = sup

x
min(µ(x),π(x))

.

6 for simplicity, only continuous variables will be considered

2.2 relations between different types of imperfection 29

y

xx?

f(x?)

Figure 5: Real-valued function
of a perfect input

µ(x)

x

π(x)

µu

µl

Figure 6: Membership function
of a possibilistic input

possibilistic input vs real-valued function

The distribution π(x) induces a possibility distribution in output.
For y to be possible, there must exist a possible x such that y =

f(x), so :
Π(y) = sup

x|y=f(x)

{π(x)}

. The dual notion of necessity is associated to the impossibility
that the input is mapped onto a value different from y, which
translates into:

N(y) = 1− inf
x|y6=f(x)

{π(x)}

possibilistic input vs probabilistic output

For each value y, one gets a second-order possibility distribution
on [0, 1, i.e. the possibility that any value alpha ∈ [0, 1] is the
actual value of p(y). This value

Π(α) = Π(p(y) = α) = sup
x|p(y|x)=α

{π(x)}

. As usual when possibility is involved,

N(α) = N(p(y) = α) = inf
x|p(y|x) 6=α

{1− π(x)}

.

probabilistic input vs characteristic function

In this case, it is possible to compute the probability that x be-
longs to S, integrating the probability distribution over the part
of space that overlaps with the domain of S:

p(x ∈ S) =

∫
x | χ(x)=1

p(x)dx

probabilistic input vs membership function

When x is uncertain, it is impossible to determine a unique mem-
bership degree, but a lower and an upper bound can be obtained
considering only the possible input values

µl = inf
x|p(x)>0

µ(x)

30 dealing with imperfect information

and
µu = sup

x|p(x)>0

µ(x)

. The expected membership value can also be computed: E[µ(x)] =∫
µ(x) ·p(x)dx. Considering µ a generic real-valued function, the

following case also applies.

probabilistic input vs real-valued function

A real-valued function of a random variable induces a probabil-
ity distribution on the output space. Assuming that pX is the
probability density on X, the corresponding pY on Y can be
found, under some mild constraints, computing the inverse of
f and using the well-known formula:

pY(y) = pX(f−1(y))

∣∣∣∣df−1(y)dy

∣∣∣∣
probabilistic input vs probabilistic output

When the input and joint distribution are known, it is possible
to compute the general output distribution

p(y) =

∫
X
p(y|x) · p(x)dx

Table 1 summarizes the results:

χ(x) µ(x) f(x) p(y|x)

x χ(x) µ(x) f(x) p(y|x)

π(x)
Π(x ∈ S)
Π(x /∈ S)

[NS,ΠS] [N(y),Π(y)]
[N(p(y)),

Π(p(y))]

p(x) p(x ∈ S) [µl,µu]

E[µ]
p(y) p(y)

Table 1: Effects of Imperfection in I/O

2.3 conclusions

While far from being a comprehensive list of all the existing literature,
this Chapter tried to give an overall picture of the different types of
imperfection which can affect information, which at the greatest level
of abstraction can be assimilated to vagueness and/or uncertainty. This
is not necessarily a negative quality of information (and in most real-
world systems it can’t be avoided anyway), but the worst thing an
information processing system can do is ignore it. Instead, it should
be considered an alternative type of information, albeit less desirable
than the pure one, and processed in a coherent way.

2.3 conclusions 31

There exist several models of the different types of imperfection,
some of which are alternative, while others are complementary. How-
ever, each model has been studied within a theoretical framework
which provides the techniques necessary to elaborate and propagate
the imperfection. These theories have important differences, but also
several points of contact which allow to use them in a way that is not
necessarily mutually exclusive, depending on the contingent necessi-
ties of the applicative context.

In conclusion, it is reasonable to assume that imperfection is an in-
trinsic feature of the real world, which also pervades the way humans
think and act. So, artificial intelligence-inspired information process-
ing systems should not treat their data as if they were perfect. In the
next chapters, it will be shown that most AI tools can handle at least
one type of imperfection natively, or can be extended to do so. Even-
tually, it will be shown how the combination of different techniques,
empowered with imperfection-handling capabilities, actually facilitates
the development of complex yet robust “intelligent” systems.

3
A I T E C H N I Q U E S

Contents
3.1 Hard Computing 33

3.1.1 Premise - Formal Logic 34

3.1.2 Rule-Based Systems 36

3.1.3 Case-Based Reasoning 38

3.2 Soft Computing 39
3.2.1 Neural Networks 39

3.2.2 Clustering Algorithms 47

3.2.3 Bayesian Networks 48

3.2.4 Fuzzy (Logic) Systems 51

3.3 Conclusions 55

This chapter is dedicated to introducing some of the most popular
AI techniques, both from the field of Soft and Hard Computing. Since
the topic is vast and a comprehensive description is not a goal of this
thesis, for each technology only a brief and partial introduction will be
given. Instead, the discussion will be focused on how each technique
models uncertainty and/or vagueness. The accuracy of the analysis
will also be greater for the ones which have actually been applied to
the problems discussed in the following chapters.

3.1 hard computing

Hard Computing is a term coined for the “traditional” approaches in AI,
as opposed to the class of Soft algorithms described later in this Chap-
ter. To give a positive, essential definition, Hard Computing denotes all
perfect Artificial Intelligence techniques. It is based on the ideas of cor-
rectness and completeness: given a problem, an intelligent solver should
be able to find all and only the feasible solutions in a finite time 1.
HC systems tend to prefer a symbolic approach: an abstract model of Symbolic Systems
the problem is built assigning a symbol to each real world entity, then
solutions are searched by manipulation of the symbols according to
some predetermined rules. The search process is based on boolean log-
ical reasoning: the problems which have traditionally been addressed

1 a requirement which could be criticized for being neither sufficient nor neces-
sary to consider an algorithm “intelligent”, but only “smart”

33

34 ai techniques

include theorem proving, planning, natural language processing and
games [258]. The main advantages of HC systems are their declarative
and modular approach: they knowledge they model applies to various
domains on a case-by-case basis, but is seldom procedural; moreover
they are usually monotonic, so that knowledge can be expanded as new
information is acquired without backward compatibility issues.

3.1.1 Premise - Formal Logic

Most HC techniques are based on formal logic, a special case of formal
language. A formal language is a class of expressions, sequences of sym-
bols belonging to an alphabet, which must respect some grammatical
constraints. In formal logic, the expressions - or formulas - model state-
ments about the world: the language, then, is extended with inference
rules which allow, given a set of formulas subject to some specific con-
straints, to obtain new formulas of the language by mere syntactical
manipulation. These transformations are meant to model the logical2

reasoning a human would perform. In particular, First-Order Predicate
Logic (FOL) is a formal logic which can be used to reason on the prop-
erties of the world, but not on logic itself.

The “world” an intelligent being would reason about is a set of en-
tities Ω = {x1 . . . xN}, which can be biunivocally mapped on a set of
symbolic constants K such that each c ∈ K refers to one and only one
individual x ∈ Ω [144]. The association between a constant and its en-
tity is called evaluation or interpretation and will be denoted by || · ||, soEvaluation
that xj = ||cj||. Whenever and entity can’t be identified univocally, a
variable X or a list of variables X will be used: a variable still refers to
an entity, i.e. ||X|| = x?, but this entity may change every time the eval-
uation is performed. An entity can also be referred through a function
f(·), a construct which takes n terms as arguments and uses them to
identify the entity to refer. Constants, variables and functions can be
terms, so xf = ||f(t1, . . . , tn)|| = f(||t1||, . . . , ||tn||).

fol language Terms ti can be used to build well-formed formu-
las according to the grammatical constraints:

• Predicates : p(t1, . . . , tn) is an (atomic) formula, where p is an
n-ary predicate symbol.

A predicate expresses a relation that may hold or not between its
term arguments: ||p(t1, . . . , tn)|| = p(||t1||, . . . , ||tn||) ∈ true, false

• Equality : tj == tk is a formula. == is actually a special predi-
cate, such that if == (tj, tk) holds, then x = ||tj|| = ||tk||.

• Negation : if ϕ is a formula, then ¬ϕ is a formula. The logi-
cal negation inverts the truth degree of a formula, so whenever
||ϕ|| = true then ||¬ϕ|| = false and vice versa.

2 in the sense of Aristoteles

3.1 hard computing 35

• Connectives : if ϕ and γ are formulas, then ϕ∨ γ is a formula.
The semantics of ∨ is that of a logical disjunction, so its eval-
uation corresponds to the well-known truth table of the “or”
operator (i.e. true when either operand is true).

The other traditional connectives can be defined from ¬ and ∨:

– Conjunction : ϕ∧ γ
.
= ¬(¬ϕ∨ ¬γ)

– Equivalence : ϕ ≡ γ .
= (ϕ∧ γ) ∨ (¬ϕ∧ ¬γ)

– Exclusive disjunction : ϕ 6= γ
.
= ¬(ϕ ≡ γ)

– Implication : ϕ→ γ
.
= ¬ϕ∨ γ

A logical connective can be considered a truth-functional pred-
icate, e.g. ∨(ϕ,γ), which evaluation is a function of the evalua-
tions of its operands.

• Quantifiers : if X is a variable and ϕ(X) a formula containing
X, then ∀X : ϕ(X) is a formula. The interpretation of this new
formula is obtained by testing ϕ using all its possible values:
minX\c∈K ||ϕ(c)||.

The dual quantifier ∃ is defined as ¬∀¬.

inference Of all formulas, particular relevance is given to the
universally quantified implications: ∀X, Y : ϕ(X) → γ(Y), which is
the basic component of the canonical deductive inference rule, modus
ponens:

ϕP(A) , ∀X, Y : ϕ(X)→ γ(Y)

γC(B)
(3.1)

Deduction is not the only inference process allowed in FOL: others
such as abduction, induction, chaining, merging and reductio [158] can
be used. In general, the inference rules operate on a theory T , a collec-
tion of formulas, eliciting new knowledge in the form of new formulas.
Properly, T entails a valid formula ϕ if any evaluation || · || under which
T is true also gives ||ϕ = true||. The inference process is correct if no
invalid formula is entailed and complete if all valid formulas can be en-
tailed. Moreover, a formula is decidable if either ϕ or ¬ϕ can be entailed
[138]. The actual “reasoning”, i.e. the application of the inference rules
to a theory, is performed by a dedicated, general purpose component
called inference engine. The separation between knowledge and reason- Inference Engine
ing is shown in Figure 7: knowledge is then roughly divided in rules
and facts, while the engine relies on two memories, a short term and a
long term one. While there is not always a biunivocal correspondence,
facts may be contingent and be meaningful only for a limited time,
whereas the validity of rules and other facts spans over several rea-
soning sessions, so the engine may treat them differently to improve
performance.

The different choices of language and engine define the various HC

approaches in building an intelligent application. Roughly speaking,
systems can be divided in two main classes, Logic Programming and
Rule-Based Systems, but only the latter will be discussed. In any case,

36 ai techniques

Theory

Facts Rules

Engine LTM

STM

Figure 7: Separation between Knowledge and Inference

notice that the provided definition of FOL is perfect. The interpretation
of a formula is univocal since every term identifies one and only one
entity, and a formula is either true or false, so there are neither de-
grees of uncertainty, nor of partial truth. Hence, no HC application
supports imperfection natively - even if imperfection-aware reasoning
can be built to reason over it, but not with it.

3.1.2 Rule-Based Systems

In a wide sense, “Rule-Based System” (RBS) is a label which can be
applied to many logic-inspired artificial systems. However, it is often
used to denote those system which should be more properly called
Production Rule Systems (PRS), to the point that the two are used inter-
changeably.

A PRS considers an implication ϕ → γ from a different point ofRules in PRS
view. Assuming modus ponens is a valid inference rule, the knowledge
of a formula ϕ ′ matching with ϕ allows to conclude γ ′, a formula
which depends on γ and the unification of ϕ ′ and ϕ. This act can
be encoded by a (production) rule, a syntactic construct which can be
used to guide the reasoning process of an appropriate engine. A rule
is usually written in any one of the forms “if ϕ then γ”, “when ϕ then

γ” or, in a compact way,

ϕ⇒ γ

notations which stress the role of ϕ as premise and γ as conclusion.
PRSs are usually implemented using forward-chaining engines: at theChaining in PRS

opposite of logic programming, inference is data-driven and reactive.
This is not always true, since PRS are compatible with backward chain-
ing - or, better, with hybrid chaining systems where forward and back-
ward chaining are both used. Using BC!, rules are analysed and only
the ones capable of producing the current goal are considered. Using
FC!, instead, a new fact ϕ ′ is matched with the premise of all the avail-
able rules: if the match is successful, that rule becomes active and is put
into an agenda. A conflict-resolution strategy is then applied to chooseConflict Resolution
one of the active rules and fire it, applying the consequences defined
by the rules itself. The consequences may include the generation of

3.1 hard computing 37

new facts which could activate other rules: they are likewise put in the
agenda to be fired subsequently. Common conflict-resolution strate-
gies rely on factors such as refractoriness, recency, specificity and salience
[158].

Production Rule engines do not impose strict constraints on the Consequences and
Side Effectsform of the rules, so they usually support full first order logic, in-

cluding equality and function interpretation. Actually, in PRS often the
consequence is not even a logical formula, but a sequence of generic
actions, which may non necessarily include the generation of new facts.
In this case, the role of the logical implication in a rule is diminished
if not forgotten at all: in “pure” PRS the act of writing a rule itself is
equivalent to stating the truth of the underlying, universally quanti-
fied implication. In “pragmatic” PRS, instead, rules may have a more
general semantics, to the point that several types of rules have been
identified (see [117] and Section 8.1.3).

The possibility of introducing non-logical side effects among the
consequence of a rule may spoil the declarative nature of the rule-
based approach, but is nevertheless an advantage in the realization
of real-world applications, which may require to implement concrete
actions as well as theoretical reasoning.

The RETE Algorithm

There are two possible approaches for the implementation of a rule en-
gine: it can be designed to be a rule language interpreter or a compiler.
The popular RETE algorithm [134] and its improved versions [104] use
the latter method to optimize the rule evaluation process in presence of
large theories where many rules share common parts in the premises.
To do so, a theory is compiled into a network - a directed, acyclic graph
- whose nodes evaluate predicates (also called constraints) and cache in-
formation locally: each node evaluates only one predicate, but nodes
can be shared between rules. The network topology and structure it-
self holds the long-term knowledge of the system; the facts, instead,
are inserted in the engine and stored in the working memory, a term Working Memory
which defines the node memories as a whole. For this reason, facts in
this context are also called working memory elements (WME).

The formulas RETE can process are conjunctive normal forms of bi-
nary predicates, but modern RETE-based systems use object-oriented
versions of the algorithm where WME are actually POJOs, so a premise
has a form similar to:

== (X.class, Type1) ∧ · · ·∧ pj(X.fieldj, c) ∧ . . .

∧

== (Y.class, Type2) ∧ · · ·∧ qk(Y.fieldk,X.fieldz) ∧ . . .

∧ . . .

Simple constraints expressed on the same type of objects define a
pattern: the first is always a type check, followed by constraints on the Patterns

38 ai techniques

individual fields. So, for example, 〈Persons with age > 18〉 and 〈Cars
with color = red and price> 105〉 are patterns matched by adult peo-
ple and expensive red cars. Each of these binary predicates, which
involve one of the fields of an object and either a literal or another
field of the object, is evaluated by an α-node: all the α-nodes defin-α Network : Select
ing the same pattern, in turn, are linked together in a chain ending
in a local α-memory which stores all the objects matching that pat-
tern. When a rule involves more than one pattern, join nodes performβ Network : Join
all the possible combinations, creating lists of objects - called tuples -
and filtering them through β-nodes. The β-nodes evaluate constraints
which involve two objects, typically because the value of the field of
one is compared to the value of a field of the other. The accepted, par-
tially formed tuples are stored in β-memories: the join nodes, in fact,
assemble the tuples by adding an object taken from their “right” α-
memory to a tuple extracted from their “left” β-memory. Eventually, a
full tuple which matching all the constraints in the premise of a rule
reaches a terminal node, where an activation is generated and sent to
the agenda to be scheduled for firing. To make things clearer, the net-
work resulting from the application of the algorithm to the abstract
formula above is drawn in Figure 8. The structure, which is affine to
a SELECT-JOIN sequence of operations in a relational database, de-
termines the efficiency of the algorithm: in fact, when a new object
reaches an α-memory, it can be joined with all possible partial tuples
without having to re-evaluate them from the beginning (resp. when-
ever a partial tuple reaches a β-memory). The main drawback of this
approach is the increased memory occupation, which increases expo-
nentially with the maximum number of patterns in a rule.

Type1

p(T1.fld,k)

α

β

Type2

α

q(T1.f1,T2.f2)

Figure 8: RETE Example

The properties of PRS and the RETE algorithm will be analysed and
discussed in much greater detail in Chapter 7.

3.1.3 Case-Based Reasoning

Case Based Reasoning (CBR) is a problem-solving approach based on
a simple consideration: certain problems are recurrent, so the solution

3.2 soft computing 39

for a problem should be remembered and, should the same problem
be faced again, recalled and used, instead of rebuilding it again from
the beginning, according to the conceptual schema shown in Figure
9. A description of CBR and a review of its main applications can be
found in [95].

Retrieve Adapt

Store

Problem Solution

Case Base

Figure 9: Case-Based Reasoning

3.2 soft computing

“Soft Computing” (SC) is a general term that encompasses a wide range
of AI techniques, from neural networks (NN) to fuzzy logic (FS), from
probabilistic reasoning to genetic algorithms, and more. According to
[311], such techniques are more tolerant and robust than their hard
computing counterparts in presence of any of the possible kinds of
imperfection (see Chapter 2) which may appear in the information
they have to process. In fact, SC systems encode data in a quantitative,
non symbolic way which is also closer and more suitable to represent
uncertainty and vagueness.

3.2.1 Neural Networks

Artificial Neural Networks (NN) have been created with the goal to em-
ulate the behaviour of the human brain in terms of memory and rea-
soning. The brain is assumed to be composed of billions of elementary
cells, the neurons, connected by links which propagate information
using electrical pulses.

Using a simplified version of this model, the artificial neuron shown Artificial Neurons
in Figure 10 was created by McCulloch and Pitts in 1943 [199]. The
“dendrites”, each one associated to a parameter wj:1..N, propagate a
weighted version of the N inputs, xj:1..N, to the neuron, where they
are combined by a transfer function. This function usually performs
a simple sum of the weighed inputs, i.e. z =

∑N
j=0wj · xj, adding

the contribution of a (N+ 1)-th input, called bias. The output y of the
neuron, then, is given by an activation function, σ, such that:

y = σ(z) = σ

 N∑
j=1

wj · xj +w0

40 ai techniques

In natural neurons, the output is propagated along the “axon”, which,
through connections called “synapses3”, are linked to the dendrites of
other neurons. The original activation function σ is a step function with
a threshold controlled by the bias (i.e. y = 1 ↔ z > 0, 0 otherwise), so
neurons are said to fire when they are sufficiently excited by the input
stimuli.

σ

Σ

y

xN

. . .

x1

wNw1

w0

Figure 10: Generic Artificial Neuron

Given its elementary structure, a single neuron, either artificial or
natural, has very limited computational capabilities. To perform com-
plex (and meaningful) tasks, a neural network requires a large number
of interconnected neurons working in parallel. While the capabilitiesArtificial Neural

Networks of natural neural networks are far from being well understood, it is
known that an artificial neural network with an appropriate size and
topology can approximate an arbitrary, non-linear function f : <N 7→
<M, provided that the weights, globally denoted by w, are set accord-
ingly. In fact, N dedicated input neurons are used to sample the inputs
x ∈ <N from the environment. The input is then processed by the
other neurons in the network to return the output y ∈ <M. A relevant
advantage of NNs is that the optimal values of the parameters w can
be learned from the data themselves without having an explicit knowl-
edge of the underlying process, i.e. the function f to be approximated.
This makes NNs a convenient tool for problems such as regression, clas-NN Applications
sification, recognition, control and prediction. However, the construc-
tion and training of a neural network is a delicate process since the
designer has many degrees of freedom, which range from the choiceNN Design
of the form to encode input and output with, the type of activation
functions (often linear and sigmoidal functions), the number of neu-
rons and their interconnection topology and the training procedure.

Several types of networks with different architectures and config-
urations exist in literature, often specialized and optimized for some
particular task. This section will focus in greater detail on the ones that
have been applied and whose results will be found in Chapters 8 and
10; a very detailed description can instead be found in [149].

3 for this reason, the weights are sometimes called synaptic weights

3.2 soft computing 41

Feed-Forward Networks

In Feed-forward Net works (FF-NN), neurons are arranged in three or
more layers: each layer (except the last one) is fully connected to next
one. FF-NNs are universal function approximators, so they can be used
to model any generic function f : <N 7→ <M. In most cases, three
layers are sufficient: theN input neurons in the first layer are connected
to the H neurons in the hidden layer. These, in turn, are connected to
M output neurons, which return the aggregate values:

ym(x) = g

 H∑
h=1

wm,h · σ

 N∑
j=1

wh,j · xj +wh,0

+wm,0

 (3.2)

x1

x2

x3

y1

y2

y3

Hidden
layer

Input
layer

Output
layer

Figure 11: Simple 3-4-3 Feed-Forward Network

σ is usually a sigmoidal activation function, while g is typically lin-
ear or sigmoidal: the former is preferred if the network is used to solve
a regression problem, while the latter is used for classification-oriented
ones. Like the size of the layers, the functions are fixed at design time;
the model parameters - the weights w - are instead adapted to mini-
mize the training error, which is usually the mean square error (MSE)
computed on the training set T = 〈xi, ti〉i:1..|T |:

ε(T) =
1

|T |

|T |∑
i=1

||y(xi) − ti||
2 (3.3)

The goal of the training procedure is to find the optimal a-posteriori
weights wopt minimizing the error ε(T). In particular, provided that
enough data are available, the training set can be partitioned into three
subsets: the training set proper, the validation set and the test set. The
error expression computed on the first set is used, differentiated, by
many training algorithms, such as back-propagation or conjugate gra-
dient descent [59], which are iterated until the MSE on the validation
set falls below a chosen threshold or remains stable. Eventually, the
MSE on the test set is assumed to be a performance indicator of the
trained network. Bayesian FF-NN

42 ai techniques

The training of FF-NNs, however, has also been analysed from a
Bayesian point of view [189]. The data T can be assumed to be samples
from an unknown function f with additive Gaussian noise γ = ν(0,β),
so the probability p(y|x, w) is Gaussian with mean y(x). The likelihood
of the training data p(T |w) is then a product of Gaussian functions: if
the prior distribution of the weights p(w) is taken to be Gaussian with
mean zero and variance α, the posterior p(w|T) becomes Gaussian as
well. It can be shown (see for example [57]) that the maximum likeli-
hood weights wopt minimize the error expression 3.4.

|T |∑
i=1

(y(xi, w) − ti)
2 +

α

2
·
∑
j∈w

w2j (3.4)

The weights wopt obtained by Bayesian analysis minimize the MSE,
with the addition of a component, derived from the prior on the weights,
corresponding to the “regularization term”which is commonly used to
smooth the output of the network [149].

elman networks Feed-forward networks are stateless combina-
torial machines: they can approximate arbitrary non-linear functions,
but are inadequate to deal with even the simplest dynamic systems.
Such systems are usually described using state-space equations: one
possible model is

s(t+ 1) = f(x(t), s(t))

y(t) = C ∗ s(t)

The output depends on the internal state, which in turn is the result
of a combination of the input and the previous value of the state itself.
Elman networks can be used to approximate this class of models: theirSimple Recurrent

Networks structure is similar to that of a FF-NN, but the hidden layer is fully con-
nected to itself using a time-delay link. The output s of the neurons
in the hidden layer is equivalent to the internal state of a dynamic sys-
tem, in fact the sigmoidal functions in the hidden layer approximate its
transfer function, which can be non-linear. The weights of the synapses
connecting the hidden layer to the linear output neurons, instead, form
the observation matrix C.

Radial Basis Functions Networks

A Radial Basis Function (RBF) Network is an interpolation technique
which can be implemented with a neural model. Even if its purpose is
less general than other types of networks, its advantages include:RBF Properties

• Regularity: the resulting function is continuous (i.e. ∀x,y, δ :

||x − y|| < δ ⇒ ∃δ : ||f(x) − f(y)|| < ε(δ)) and smooth (i.e. ε/δ
is not large)

• Determinism: the training algorithm leads to a global optimum

3.2 soft computing 43

Such networks model an unknown function f : <n 7→ <m, which
is known only through some distinct samples 〈xj, yj〉j:1..J. A RBF uses
a combination of radial functions φj, functions with a center µj ∈ <n

such that their value in a given point depends only on its distance
from the center: φj(x) = φ(||x − µj||). Notice that, even if the euclidean
distance || · || has been used, any distance measure could be adopted.

The network uses three layers: an interface input layer with n neu- RBF Network
Architecturerons, a hidden layer with J neurons, one for each training pair, and a

linear output layer made of m neurons. The activation functions of the
hidden neurons are radial, with the inputs of the training pairs being
used as centres (i.e. µj = xj). The interpolating model f?, then, can be
expressed by equation 3.5:

f?(x) =

J∑
j=1

wj ·φ(||x − µj||) (3.5)

Given the training set, J equations of type 3.5 can be written: the so-
lution of the resulting linear system gives the optimum hidden-ouput
weight vector wopt (when m > 1 a linear is solved for each compo-
nent).

generalized rbf The RBF is an interpolator, which means that
the learned function f? passes through all the training points: when
the data are many and noisy, this level of over-fitting is not a desirable
property. In such cases, generalized RBF are simpler, smoother and thus
more adequate models. A generalized RBF uses K� J functions which
are not constrained to be centred on the training data. The functions
are usually - but not necessarily - localized, i.e. they have a compact sup-
port: ∀ε∃ρ : ||x − µ|| > ρ ⇒ φ(x) < ε, so the input space is effectively
partitioned between the functions. This property, while not required,
is useful to give an interpretation to the output of the network.

In literature, several classes of function have been used used [71],
such as thin-plate splines, multiquadrics and inverse multiquadrics,
but most implementations use multivariate Gaussian basic functions : Gaussian Basis

Functions
φj(x) ∝ e−(x−µ)TΣ−1

j (x−µ)

Such functions introduce an additional parameter, the spread or scope
matrix which controls the topology of the support of each function.
This is effectively changes the definition of distance in the input space,
adding more parameters.

In fact, when less than J functions are used, even the position of
the centres are no longer determined and must be chosen during the
training procedure . Several approaches exist, but the most common RBF Training
are:

two-phase training : With this strategy, the centres are chosen
first and fixed; during a second phase, the weights are opti-
mized. The centres can be selected at random from the train-
ing data or, better, chosen using a clustering algorithm or even

44 ai techniques

a SOM (see Section 3.2.1 and [260]). When the functions have
been positioned, equation 3.5 can be used to create an under-
determined linear system. It solution, which can be obtained by
pseudo-inversion of the coefficient matrix, yields a weight vector
which is optimal in the least squares set [149].

gradient descent : This supervised approach expresses the quadratic
approximation error (see Eq. 3.3) as a function of the network
parameters, µ,w and possibly Σ, then uses the gradient descent
technique to optimize them all at the same time.

bayesian rbf . Interpolation problems can be considered a sub-
class of regression problems, which are usually formalized and then
solved from a Bayesian point of view. Like with feed-forward networks,
where the optimization and probabilistic approaches lead to similar re-
sults, even RBF networks have a Bayesian justification [149],[57].

In a regression problem, the input data are noisy samples yj =

xj+ 3j of an unknown function f : <n 7→ <m. The solution is given
by a function f? which takes into account all the available information,
returning the expected output for a given input: f?(x) = E[y|x]. Con-
sidering one output dimension at a time, applying the definition of
expectation and Bayes’ theorem, one gets:

f?(x)(m) =

∫+∞
−∞ y(m) · fX,Y(x,y(m))dy

fX(x)

To be computed, f? requires the single and joint probability density
functions fX and fX,Y , which are unknown but can be estimated from
the data points using kernel functions . A kernel K(x) is a continuous,Kernel estimation
symmetric, bounded function with a single maximum in the origin
that satisfies

∫
<n K(x)dx. Using kernels, the estimator becomes4:

f?(x)(m) =

J∑
j=1

y
(m)
j ·K

(
x − xj
h

)
J∑
k=1

K

(
x − xk
h

) (3.6)

Equation 3.6 has a dual interpretation: the output y is a weighted aver-
age of the training data but, assuming that the kernels are spherical (i.e.
K(x) = K(||x||), the weights themselves can be considered (normalized)
radial basis functions. Notice that, like for generalized RBF, less than
J kernels can be used, provided that the centres are chosen appropri-
ately.

4 The additional parameter h is a smoothing parameter that controls the scope
of the kernel

3.2 soft computing 45

Self-Organizing Maps

Unlike other networks, where neurons cooperate to memorize an input-
output relation, Self-Organizing Maps (SOM) [172] are based on compet-
itive learning . All the neurons are fed with the same input, which Competitive

Learningis usually a D-dimensional vector of numerical features. Through its
D synaptical weights, each neuron memorizes a reference value, rep-
resented by a D-dimensional vector as well: the neuron’s activation
depends on the distance between the input value and the stored value.
The distance, defined on the input space, can be any symmetric, non-
negative function preserving the triangular inequality: often the eu-
clidean distance is chosen, but others such as l-norms or the Maha-
lanobis distance [191] can be used. The activation, in particular, is in-
versely proportional to the distance, so a neuron is the more active the
more its stored pattern is similar to the actual input.

Figure 12: 2d Self-Organizing Map in a 2D space

The neuron with the highest activation is called winner neuron and,
if the so-called winner-takes-all approach is adopted, it inhibits the acti-
vation of the other neurons using appropriate synaptic links. The SOM

has a single main layer (plus the input layer), fully connected by these
inhibitory synapses, but the network relies on another, more impor-
tant structure . The neurons are placed at the nodes of a lattice graph, SOM Structure
an ordered d-dimensional structure (d < D) which edges are modelled
by additional links. Typically, d = 1 or d = 2, so the network is more
properly a chain or a grid. A neuron, then, can have spatial neighbours,
determined by the similarity between the stored patterns, and topolog-
ical neighbours, depending on the structure fixed at creation time.

A SOM , thus, can be used to cluster a set of data, selecting an appro- SOM Applications
priate set of prototypes which approximate the underlying distribution
of the data by positioning on the principal curves of the data set ([99]).
For this reason, SOMs are used in many contexts for data quantization
and recognition. Unfortunately, like with FF-NNs, the initial choice of
the number of neurons and the value of the training parameters are
critical to ensure the accuracy and the regularity of the final represen-
tation. Several extensions have been proposed to overcome these lim-
itations, including but not limited to Vi-SOM [302], Neural Gas [195]
and Regularized SOM [140].

46 ai techniques

Neural Networks and Imperfect Information

Given the variety of neural-inspired architectures, there are several
problems that can be solved choosing an appropriate network. Like
other soft computing techniques, they can deal with several types of
imperfect information in a robust and coherent way: in fact, they are
necessarily imperfect. First of all, the inputs are seldom certain and pre-
cise - this is usually one of the conditions which leads to choosing a
neural network in place, for example, of rules or mathematical models
- but usually affected by noise which can’t always be cancelled; sec-
ondly, the models they learn are actually approximations rather than
accurate representations.

However, when carefully designed, neural networks are graceful:
the effects on the output due to the imperfection of the input are lim-
ited and can usually be quantified, provided that an analysis of the
structure and the parameters of the network itself is performed. Unfor-
tunately, this additional knowledge is sometimes discarded or ignored:
while this could be justifiable when a definite, perfect answer is to be
given to the client (be it another software module or a human user),
the end-user should be able to access all the available information and
decide what do with it.

Consider, for example, a classification problem such as character
recognition: given the description of an object through a set of N fea-
tures, it must be assigned to one of M categories. This is a function
approximation problem - the functions to be learned are the character-
istic functions of theM sets - so it can be solved by an adequately sized
N−H−M feed-forward network with sigmoidal activation functions
in the output layer and trained with feature vectors paired to charac-
teristic vectors, i.e. vectors where all components are 0 except for one,
corresponding to the desired class, set to 1. The output y(x) of the
network for a new input x will hardly be a characteristic vector, but
it can be converted into one using the softmax activation function in
the third layer (for example, see [196]), or simply by setting to 1 the
j-th component such that j = argmaxk{y[k]}. The output of such a net-
work, instead, can be interpreted as the posterior probabilities of each
class given the input features: while assigning the object to the class
with the greatest (probability) value is a strategy optimal in a Bayesian
sense (see [312], which also includes a survey of several applications),
the actual value of the probability is an useful piece of information
worthy propagating.

Similar situations arise when using Self-Organizing Maps: the win-
ner neuron can be used to infer some properties of the input data, but
being the closest neuron according to some distance function δ is only
a qualitative information which does not guarantee that the pattern
and the neuron are actually similar. To avoid such situations, a quan-
titative activation degree can be associated to the neurons, for example
using a Gaussian function of the pattern-neuron distance, which better
models and explains the association.

3.2 soft computing 47

In other cases, neural networks are used as predictors: NN are not
good extrapolators, but prediction tasks usually require to analyse
data with different characteristics than the ones the network have been
trained on. In this case, a prediction should always be accompanied by
a confidence estimate in order to judge the quality of the estimate,
especially if an important decision is to be made: stock market and
weather forecasts are some of the less critical examples. Bayesian Neu-
ral Networks ([57]) do not just return a punctual value, but a proba-
bility distribution for the output which is function of the network pa-
rameters, in turn conditioned on the training set and some additional
information such as noise variance. Other researchers, like [270] and
[121], have instead proposed methods to estimate confidence intervals
for the output.

Thus, neural networks can give additional information beyond their
primary outputs: such knowledge should not be lost, but propagated,
especially when a network is used as a building block of more complex
systems (see Chapter 4). Chapters 9 and 10 will show some case studies
where the uncertainty produced by NN is actually exploited to build
more robust systems.

3.2.2 Clustering Algorithms

The term “Clustering” can be applied to several data mining techniques Clustering
[159] used to identify an internal structure within a large set X com-
posed of J data xj:1..J (also called patterns, or samples, or feature vec-
tors, depending on the context). While they have many applications
[248], their description is not relevant here and will be omitted, even
if the SOM can be considered an example of this category as well as a
NN.

In a nutshell, the goal of a clustering algorithm is to partition the
data set in N clusters, subsets Ck:1..N ⊆ X such that, given a similarity
measure S(·, ·) between two patterns, maximizes S(xj1, xj2) if the two
belong to the same cluster and minimizes it otherwise.

Clusters can be defined in terms prototypes cK, a pattern which fea-
tures approximate the average values for the members of that cluster;
in alternative rules or constraints on the values of the features can be
used to define their borders (e.g. like in classification trees). Instead, it
is relevant to notice that there exist several imperfect versions of this
idea. Defined a numeric variable uj,k ∈ [0, 1] that expresses whether xj Clustering

Modalitiesbelongs to Ck:

• Hard Clustering: a pattern can belong to one single cluster

∀ j :

(
∃! k? : uj,k? = 1 ∧

∑
k

uj,k = 1

)

• Fuzzy Clustering: a pattern can be partially member of a cluster,
meaning that it does not completely match the prototype of the

48 ai techniques

ideal member of the cluster, or that it lies near the (fuzzy) border
between two or more clusters.

∀ j :
∑
k

uj,k = 1 uj,k = µCk(xj)

• Probabilistic Clustering: a pattern belongs to a single cluster,
but it is not possible to decide which one with certainty, so a
probability is assigned to each cluster. The numerical constraint
is equal to the fuzzy case, but with a different meaning.

∀ j :
∑
k

uj,k = 1 uj,k = p(xj ∈ Ck)

• Possibilistic Clustering: the algorithm evaluates the possibility
that a pattern belongs to a cluster, given the value of its features.
It must be possible for it to belong to at least one cluster.

∀ j : ∃ k : uj,k > 0 uj,k = π(Ck|xj)

3.2.3 Bayesian Networks

Bayesian Networks (BN) [237] are probabilistic graphical models which
can be used to encode the relations of mutual (in)dependence between
an ordered set of random variables Xj:1..N. In general, the joint distri-
bution p(X) depends on the conditional distributions:

p(X) =

N∏
j=1

p(Xj|Xk:1..(j−1)) (3.7)

BNs, instead, exploit the notion of statistical independence: two variables
Xi and Xj are independent if and only if p(Xi|Xj) = p(Xi), meaning
that knowledge on the actual state of Xj does not alter the available
knowledge on Xi. Moreover, the related notion of conditional indepen-
dence can be defined and used: two variables Xi and Xj are condition-
ally independent given a third variable Xk if and only if p(Xi|Xj,Xk) =

p(Xi|Xk).
In concrete applications, then, Equation 3.7 usually takes a simpler

form, since not all possible mutual influences are relevant and need
to be considered. Unfortunately, deciding which variable depends on
which is a problem that depends on the context being modelled, but
once the dependencies have been established (usually with the help of
an human expert or learned from data [150]), it is possible to build a
directed acyclic graph G = 〈E,V〉 to encode such structure. First, anConstruction of

Bayesian Networks ordering on the variables is imposed such that if Xi depends on Xk,
then i > k; then the vertex set V is built assigning each variable Xj to
a node Vj; finally, for each pair of variable Xj and Xk such that Xk is
not independent on Xj, an edge ej,k is created to connect Vj and Vk. In

3.2 soft computing 49

the resulting graph, then, a variable depends only on its node’s parent
nodes’ variables:

p(X) =

N∏
j=1

p(Xj|ej,k ∈ E) (3.8)

Moreover, a node’s parents, its children and the parents of its children
form its Markov Blanket: a variable is conditionally independent of any
other variable given the state of the variables in its Markov Blanket.

X4

X1 X2

X3 X5

X6 X7

X8

X9

Figure 13: Bayesian Network: Markov Blanket (in blue) for X2

Once the structure of a BN has been established, it is necessary to fix
the values of its parameters. If the random variables are discrete, such
as in the common case where they are actually boolean, each node Vj
is associated to a conditional probability table stating the probability
distribution of Xj for any possible combination of the values of tis
parents. This causes the number of the entries of the tables to increase
exponentially with the number of parents, so alternatives have been
proposed to use more compact representations.

One possible approach is parameter sharing: some conditional prob- Specialized Bayesian
Networkabilities are constrained to have the same value, thus reducing their

effective number. The noisy-OR gate introduced in [237] assumes that
the variables are binary and that the edges model not just probabilistic
influences, but causal relations. Moreover, only one cause is allowed
to be true at any given time, so the conditional probability table re-
duces to : p(Xj = 1|Xk = 1,Xi|ei,j∈E,i 6=k = 0). When all the variables
are Gaussian, uni- or multi-variate, a linear-Gaussian model can be
adopted [57]: in this case, the mean and variance are given by a linear
combination of the states of the parent nodes.

Despite the difficulties in learning their structure, BN are widely Applications of
Bayesian Networksused for many tasks [151] in fields such as medicine, law, image pro-

cessing, finance and more. Just to cite some more specific classes, in
probabilistic classification networks [136], the output categories are
mapped onto nodes which depend on the input features, but the net-
work also allows to model probabilistic influences between the inputs
themselves. BN are also often used for for regression/prediction and

50 ai techniques

diagnosis (e.g. see [30],[215]), especially in the medical field, where
the capability of a network propagate information in both directions
makes them a convenient deductive and abductive tool.

Inference in Bayesian Networks

Inference in BN is the process of propagating the belief consistently in
all the network’s nodes: that is, to update the conditional probability
distribution of each variable according to the state of the ones it is
depending on. The underlying principle is stated by Bayes’ theorem:

p(Xj | Xk) =
p(Xk | Xj) · p(Xj)

p(Xk)
(3.9)

The posterior probability of Xj conditioned by the knowledge on Xk
can be computed multiplying the prior probability p(Xj) by the likeli-
hood of Xk given Xj and then normalizing the result. Notice that the
roles of Xj and Xk can be exchanged so, even if a preferential influ-
ence direction has been established, for example by deciding that one
random variable is the cause and the other is the effect, even the “sub-
ordinate” variable can modify the belief on the state of the principal
one. In Bayesian Networks, this justifies the fact that information can
be passed along the edges in both directions, slightly complicating the
task of propagating the available knowledge.

While there exist algorithms that solve this problem, a particularly
efficient solution can be found if the network has a simple structure
with no loops: in fact, some general purpose algorithms first try to
eliminate the loops in the network, then apply the more specific proce-
dure [237], [57].

If the network has at worst the structure of a poly-tree, the propa-
gation of information in a BN can be implemented using a message-
passing model: each node stores the current probability distributionMessage Passing
p(Xj) of its variable and informs its parents and children whenever
it changes. In particular, it sends a message λXj to the former and a
message πXj to the latter. Thus, the computation does not involve the
whole network at a single time, but is a combination of local processing
and interaction between the nodes. In order to map one variable’s dis-
tribution to another, the conditional are used, denoted using the sym-
bolΦj,K = p(Xj | Xk∈K), so p(Xj) = Φj,K ?p(XK).Φ and ? are assumed
to have a dual nature, so that p(Xk∈K) = p(Xj) ?Φj,k. If the variables
are discrete, π and λ can be encoded using (column) vectors, while Φ
becomes a matrix such that Φj,k[a,b] = p(Xj = Xj[a] | Xk = Xk[b])

5

and ? is the standard row-by-column matrix product, but extracting
Φj,k from Φj,K for a given k is not immediate (see 8.2.2).

Eventually, the propagation algorithm in poly-trees will be presented.
Propagation in chains and trees is a specialization of the more general

5 [·] is the vector indexing notation

3.2 soft computing 51

case, so it will be omitted. The algorithm, instead, is cited to better
understand the particular implementation given in 8.2.2.

poly-trees propagation A node can receive messages both
from parents and from children: whenever a message is received, the
local belief is computed using the information in the local conditional
Φj,j−1 (the merge operation · is the standard element-by-element mul-
tiplication, followed by division for an appropriate normalization con-
stant).

p(Xj) =

 ∏
k|ej,k∈E

λXk

 ·
Φj,j−1 ?

∏
k|ek,j∈E

πXk

 (3.10)

Xj

πXj

πXj−1

Xj−1

πXj−2

Xj−2

λXj+1

Xj+1

λXj+2

Xj+2

Figure 14: Propagation in polytrees

Afterwards, update messages are computed using a simple general
principle: the local information p(Xj) is propagated to both parents
and children, after having been “discounted” of the contribution com-
ing from the target node. Hence, the forward message sent to the chil-
dren becomes:

πXj(k) =
p(Xj)

λXk
=

 ∏
i|ej,i∈E,i 6=k

λXi

 ·
Φj,j−1 ?

∏
k|ek,j∈E

πXk

Likewise, the backward message for parents depends on the desti-

nation as well:

λXj(k) =
∏

i|ej,i∈E
λXi ?

Φj,j−1 ?
∏

i|ei,j∈E,i 6=k
πXi

3.2.4 Fuzzy (Logic) Systems

The concept of fuzziness and the role of fuzzy sets in dealing with
vagueness have already been introduced in Chapter 2. This section, in-
stead, will focus on Fuzzy Sytems (FS), a specific soft-computing tech-

52 ai techniques

nique which exploits fuzzy sets and fuzzy logic to model complex non-
linear relations in a robust and yet intuitive way. According to [216],
the fuzzification of classical logic has the goal of

. . . addressing the vagueness phenomenon . . . , modelling it with truth
degrees taken from an ordered scale . . . , preserving as many properties of

classical logic as possible.

In practice, there are two possible approaches: one, more mathemati-
cally oriented, can be called fuzzy logic “in a narrow sense” and stud-
ies the properties of graded, many valued logics from a formal point
of view. The other, fuzzy logic “in a broader sense”, is closer to L.
Zadeh’s original definition and uses a softer approach. The first will
be discussed in greater detail in Section 8.1, while this section will be
dedicated to the latter (even if examples of both types will be presented
in Chapter 8).

Like the other Soft Computing techniques introduced in this Chap-
ter, FS are versatile function approximators: for this reason, they can be
used in applications varying from automated control to image process-
ing and pattern recognition [47]. Fuzzy controllers alone, in particular,
have become a relevant research field, because they can be applied to
non-linear systems, where the well-known techniques for linear, time-
invariant systems can’t be used. Their wide diffusion can possibly be
ascribed to their relative simplicity (even if a good FS requires a care-
ful design, involving the tuning of several sensitive parameters) and
robustness, coupled with rules which are easy to understand.

fuzzy variables and partitions A many-input function
maps a multi-variate vector xi:1..N of some domain X = X1×· · ·×XN to
a unique output y ∈ Yout: in the specific case of real-valued functions,
X ⊆ <. Fuzzy logic systems, instead, map vague concepts, such as
tall, fast and low, onto other vague concepts.

In [310], Zadeh introduced the concept of fuzzy linguistic variable. ALinguistic Variables
linguistic variable λ has a finite domain Λ composed by terms, repre-
sented using the natural language, which are suitable to qualitatively
describe the value of an implicit, correlated quantitative variable xwith
domain X. For example, the linguistic variable Age could have a do-
main Λ = {young, mature, old}. A suitable hidden variable x, in this
case, would be the age measured in years, so Xage = [0, 100].

Each possible linguistic value λj ∈ Λ is associated to a fuzzy set Aj.
Together, the sets define a fuzzy partition of ∆:

∆ 3 ∀x :
∑
j

µAj(x) = 1

For example, a 25-year old person could be young with degree 0.7Fuzzification
and mature with degree 0.3; another example of a more generic fuzzy
partition is shown in Figure 15. The sets usually cover all the domain
(∀x : ∃j? : Aj? > 0), but in most practical cases a point is covered by no
more than two different sets.

3.2 soft computing 53

0 25 50 75 100
0

0.25

0.5

0.75

1
very low low medium high very high

∆

µ(x)

Figure 15: Fuzzy Partition Example

When a domain U is multi-variate, linguistic variables, each one
with its domain and fuzzy partition, can be combined to describe a
vector x using a conjunctive sentence such as “x1 is A(1)

j and . . . and

xN is A(N)
j ” or, in a more compact form, ∧iA

(i)
j (xi).

Such a sentence has a dual interpretation [307]: the first is the eval- (De)fuzzification
uation of the compatibility of a vector x with the composite fuzzy set
given by the Cartesian product of the values of the linguistic variables.
This operation, known as fuzzification, returns a fuzzy membership
degree in [0, 1].

The second yields a possibility distribution π over X, conditioned by
the knowledge that the coordinates of a vector x can’t be identified
with certainty, but belong to a given fuzzy set in some degree ε. The
possibility degree of each value x is equal to its membership in the set,
reshaped using ε: if a precise value is to be chosen, a defuzzification
operation g has to be applied. Common choices for g include comput-
ing the center of gravity of the distribution, its center of mass, or its
mean: a comprehensive discussion can be found in [179] and [261].

Fuzzification Defuzzification

ε = µ∏
iA

(i)
j

(x) x = g(π(x|ε∏
iA

(i)
j

))

fuzzy rules A function f : <N 7→ < can be approximated by first
fuzzifying its domain and its range, then matching the resulting input
and output sets using rule constructs. The concept of “fuzzy rule” has Mamdani Fuzzy

Systemsmany interpretations [117], but most implementations of fuzzy con-
trollers and similar systems use Mamdani’s inference schema, which
is the one recalled here (see also [106]). Mamdani’s approach uses con-
junctive rules, which test the compatibility of some numeric input xi
with the value A(i)

j of a linguistic variable. The individual checks are
joined to form the premise of a rule using the logical connective and

(∧):
r :
∧
i

(xi is A
(i)
j) ⇒ Y is B

54 ai techniques

Taking P =
∏
iA

(i)
j , the rules can be written in the more compact

form: P(X) ⇒ B(Y). A rule has different meanings: first of all, it gives
a qualitative description of the local behaviour of the function f. Then,
any vector xP with full membership in P has the possibility of being
mapped by f (which is unknown) onto any range value y with degree
B(y). Finally, values in the neighbourhood of, and thus similar to, xP
will be mapped onto values similar to yP = f(xP).

Assuming that ki:1..N is the cardinality of ∆i, the fuzzy partition ofPremise
the ith coordinate, up to

∏
i:1..N ki rules can written. An input vector x

is fed in parallel to all the rules: each one of its coordinates is fuzzified
using the various fuzzy sets associated to the linguistic values and the
resulting membership degrees are composed using an operator which
usually (but not necessarily) returns the minimum of the degrees, so
that εP = mini:1..N µi. It is implicitly assumed that the different com-
ponents are non-interactive ([310]), which is a reasonable assumption in
many practical cases. After that, generalized modus ponens is applied,
composing the premise with the implication to obtain the conclusion:

P?(x),P(X)→ B(Y)

B?(Y)
(3.11)

Notice that the inputs may not only be the quantitative values x
(e.g. age = 25), but also their qualitative, linguistic counterpart P? (e.g.
age = young), so, in order to apply the inference rule 3.11 one has to
find the generalized degree of compatibility between the input and
the premise of a rule. In the first case, it is the already cited evaluation
of the membership function, in the latter the two fuzzy sets have to
be intersected, so that the resulting degree is the maximum of the
intersection of their possibility distributions. So, for each rule r:

εr = πr(x) = sup
x

min
i

[
min
xi

{A
?(i)
j (xi),A

(i)
j (xi)}

]
After the premise degree εr has been computed, it is combined with

a degree ε→ associated to the implication itself. This value is taken toImplication
be Br(Y) (the fuzzy set appearing on the right side of rule r), so that,
applying modus ponens, one gets the contribution to the possibility
distribution of Y given by rule r:

πr(Y) = min{εr,B(Y)}

The rules, then, return a degree for each linguistic value Bj associ-Conclusion
ated to the output range: if more than one rule entails the same value,
the degrees are combined using an or-like operator. The final degrees
are used to cut the fuzzy sets, then the distributions are joined so that:

B?(Y) = max
r

{πr(Y)}

The distribution π(Y) can be used as an input to other chained rules,
or defuzzified to obtain a precise value y(x). However, there exists a
specific class of fuzzy systems, called Fuzzy Additive Systems, whichFuzzy Additive

Systems

3.3 conclusions 55

bypasses this step by allowing quantitative conclusions in the rules, i.e.
P(x) ⇒ (Y = br). In this case, B?(Y) is computed by taking a linear
combination of the range values br, weighted using the rules’ activa-
tion degrees εr. A function g, usually a sigmoidal one, can optionally
be used to normalize the output.

3.3 conclusions

The term AI is a label which can be applied to a vast class of algo-
rithms, each one with different properties. Even though most of them
can ultimately be interpreted in terms of function approximation or
search in a state space, the specific properties of each one make them
more appropriate for a class of problems rather than another. Thus,
the knowledge of the benefits and drawbacks of each tool is essential
when choosing which one to use for a given problem.

Output

Vague Perfect Uncertain

In
pu

t

Vague
FS
NN

Perfect
NN
CL

RBS
CL

CBR

NN
CL

Uncertain BN

Table 2: AI techniques and Imperfection management

Rule-Based Systems are better used when perfection is a require-
ment, while Bayesian Networks and Fuzzy Systems are better options
when the data are affected by uncertainty or vagueness, respectively.
While they are symbolic or, at least, can have a symbolic component,
Neural Networks are essentially sub-symbolic techniques with a higher
degree of flexibility and can be used for various purposes with various
types of information. It must be credited, however, that the term “Neu-
ral Network” actually applies to a wide class of systems. Nevertheless,
the tools presented in this Chapter remain focused and tailored for
specific tasks. In the next Chapter, it will shown that more complex
problems can be solved more effectively and efficiently by combining
two or more techniques.

4
H Y B R I D T E C H N I Q U E S

Contents
4.1 Features of pure AI tools 57

4.1.1 Relevant Properties 58

4.1.2 A Comparison of some Algorithms 59

4.2 Hybrid Systems 62
4.2.1 Properties of Hybrid Systems 62

4.2.2 Common Hybrid Architectures 65

4.3 Conclusions 67

The algorithms presented in Chapter 3, taken individually, have
been successfully applied in several contexts, but also suffer from some
drawbacks. The fact itself that so many techniques exist and are widely
used proves that an approach can be more efficient and/or effective
than others for a given problem.

Nevertheless, in many cases the combination of two or more meth-
ods can further improve the performance of a solution: the idea is obvi-
ously to overcome the limitations of the single modules while exploit-
ing the advantages as much as possible. Such systems, called Hybrid, Hybrid systems
are more complex than standard ones and require a careful design, but
usually achieve better performances. The literature is full of examples:
various examples can be found in [211] and [272], and others, specif-
ically applied to bio-chemical processes, will be discussed in Chapter
5.

This Chapter, instead, is divided in two parts. The first is focused on
analysing the desirable properties of an “intelligent” algorithm, dis-
cussing whether and how the techniques previously introduced pos-
sess them, while the second part is dedicated to the characteristics of
an hybrid architecture. Such criteria will then be used in Chapter 8

to analyse the applications that can be built using the extended rule-
based engine, itself presented in Chapter 7.

4.1 features of pure ai tools

In literature there are few standard criteria to analyse and compare the
various AI algorithms and even fewer objective ways to evaluate them.

57

58 hybrid techniques

Comparisons, then, are often based on experience and open to much
debate.

4.1.1 Relevant Properties

A comprehensive set of features is discussed in [211], where Adaptation,
Discovery, Explanation, Flexibility and Learning are chosen. Additionally,
Gracefulness will be considered.
Learning measures the effectiveness of an algorithm in extracting a de-Learning
sired, generalized relation from a set of training data. In many cases an
intelligent system can’t be instructed (i.e. programmed) directly with
the knowledge necessary to perform a required task, either because it
is not available to the programmer or because some relevant param-
eters have to be tuned case by case. Some systems, however, can be
trained to improve their performance, using the raw data themselves
as input. Learning can be supervised or not, depending on whether
a specific target output is given for every input during the training
phase; moreover, the procedure can be reinforced by the presence of an
external entity which evaluates the output of the system and condi-
tions the training accordingly. Typical problems that involve learning
include, and are not limited to, pattern matching and classification
[119], regression and model approximation.

The main problem of learning is the validation of the acquired knowl-
edge, especially if a completely unsupervised procedure is used: the
learned model, in fact, is not guaranteed to be correct, if meaningful
at all, and must be tested appropriately. (The completeness, instead,
usually depends on how much the training data cover the possible
input space: notice that the required amount of data grows exponen-
tially with the size of the input space, a phenomenon known as Curse
of Dimensionality [52]).

A system is effective at discovery if it is capable of extracting soundDiscovery
models from the inputs it is trained on. The learning of an undesired
model can be due to several reasons: the training samples may be in-
sufficient, or noisy, or may be biased in some way and not be represen-
tative of the average inputs. Sometimes, moreover, the training may
be eccessively focused on the training data (overfitting): in any case,
the performance of the system is likely to be poor since the internal
representation is not correct.

An intelligent system, instead, is flexible if it has discovered a modelFlexibility
capable of returning acceptable, if not optimal, results even in presence
of inputs that are somewhat different from the ones it has been trained
on. The data may be novel, but often the difference is due to some
imperfect, imprecise or incomplete values, as discussed in Chapter 2.
In order to be robust, a flexible system requires good generalization
capabilities.

An adaptive system, instead, is even capable of revising its ownAdaptation
internal knowledge as the input data it processes change significantly
in time (e.g. the process it monitors is nonstationary). Such systems

4.1 features of pure ai tools 59

usually perform some kind of continual training, even during their
normal functioning.

The correctness of the output itself, however, is not always the only
requirement: efficiency apart, some intelligent system are also self- Explanation
explanatory. Such systems provide not only a result, but also some
kind of justification on how that result was obtained. This feature
usually increases the complexity, but provides a significant additional
amount of information. Moreover, explanation is a convenient way to
ensure that the learning process has led to a meaningful model, since
it does not require the analysis of the internal structure of the tool.

Eventually, one can consider the level of gracefulness of a system. A Gracefulness
sound system is expected to return a correct result, at least for inputs
similar to the training data; a flexible one could return a correct result
in presence of totally novel inputs; but no system can return a sensible
result when it processes totally corrupt or meaningless data. A graceful
system, however, returns and possibly explains a result whose degree
of uncertainty or vagueness is function of the imperfection of the input.
This ensures that the quality of the answers does not drop abruptly to
unacceptable levels, but degrades in a predictable way.

4.1.2 A Comparison of some Algorithms

The features described in subsection 4.1.1 can be used to analyse the
AI techniques discussed in Chapter 3.

rule-based systems are built using rules, which encode knowl-
edge in a human-readable way, so their results can be easily
understood and explained to a human user: even MYCIN [70],
the first rule-based expert system, included a basic explanation
module which showed the chain of derivations used to entail a
given conclusion. This basic approach has successively evolved
into more complex explanation systems, which do not limit to
paraphrase the rules involved in the inference, but provide addi-
tional detail, including corollary information, and allow interac-
tion with the user [49]. More recently, explanation sub-systems
have started to be enriched with argumentation systems [208],
which allow to take into account both supporting and contrast-
ing elements for a given statement [55]. RBSs excel at explanation,
but on the other hand, they are quite weak from the other points
of view. While rules can be learned from data, for example us-
ing ILP! [], and measures such as coverage and support [] can
be used to estimate the quality of the discovered relations, they
are static logic constructs, so they are neither adaptive nor grace-
ful. Rules can gain some flexibility by relaxing the number and
type of conditions, usually at the expense of some specificity, but
eventually a system has to decide whether to apply a rule or not.
If comparisons and/or thresholds are involved, even a minimal
variation in the input data may cause the system to behave in
totally different ways.

60 hybrid techniques

case-based reasoning involves dedicated modules for case match-
ing, retrieval, adaptation and storage: in order to analyse one
such system, one should analyse the individual models. CBR sys-
tems are, by definition, adaptive and explanatory, since new situ-
ations are dealt with tuning the strategies adopted for past ones,
which can be used to justify the responses. A case base, in fact,
is not learned from large amounts of data, but programmed ex-
plicitly and then expanded integrating new cases constructed
at run-time. A CBR tool, then, has basic learning capabilities (at
least with respect to other tools): the main problem of the storage
module is that it could focus on possible rather than probable or
useful cases. This seriously impairs the system’s discovery abil-
ity: remedies include ranking to retrieve more relevant cases first
and deletion strategies to remove unnecessary cases [278]. The
degrees of flexibility and gracefulness, instead, depend on the
matching and retrieval strategies, which use different indexing
techniques (e.g. see [27]) to find the appropriate cases, even in
presence of partial matches.

neural networks are possibly the most effective learning tool: even
a network with a basic topology, such as the 3-layer feed-forward
network trained with back-propagation, can approximate an ar-
bitrary model between two numeric domains. For more complex
problems, several other configurations exist, such as time-delay
networks, networks with feedback, completely connected net-
works, Provided they are dimensioned and trained appropri-
ately (not always an easy task [206]) FF-NN are excellent interpo-
lators: their flexibility is limited only by their poor performance
at extrapolation. Likewise, techniques such as regularization can
be used to control the smoothness of the learned approximating
function, which implies a high level of gracefulness. Adaptive-
ness, instead, can be achieved using a sequential training mode,
allowing new data to be learned as they appear. FF-NNs, however,
are “black-box” models: in general, such networks have almost
no explanation capabilities, so there is no way to justify a result.
Even worse, it is impossible to ensure that the learned model cor-
responds to the correct, or at least to a meaningful one. In fact,
the performance of a network is typically evaluated on a sub-
set of the same raw data from which the training set has been
extracted.

radial basis functions are another type of universal function ap-
proximator. The particular type of kernel functions and the fixed
topology always1 allows to find the best set of parameters that
solves the training problem. RBFs, thus, are graceful and flexi-
ble interpolators (and poor extrapolators). With respect to other,
more general NNs, however, they can learn only a limited class
of models: for example, they can’t model stateful systems since

1 assuming the training data are linearly independent

4.1 features of pure ai tools 61

feedback is not provided for. Likewise, the batch training modal-
ity limits adaptiveness since the whole the training set has to
be used every time the parameters require some tuning. Given
the localized nature of the individual basis functions, however,
it is usually possible to assign the responsibility of an output to a
limited number of kernels, so a very limited form of explanation
can be provided to the user.

fuzzy systems have a dual nature of qualitative rule-based systems
and quantitative function approximators. They are built using
rules, so they are usually authored manually rather than learned,
but this also makes them explainable. Unlike crisp RBSs, the con-
straints in the head and the body are vague: this is actually a
great benefit since it increases the flexibility and the gracefulness
to a level that can’t be achieved using a comparable number of
standard rules (see for example [176]). Fuzzy systems, in fact,
are very popular because they combine ease of use with robust-
ness. However, they have to be designed by hand, a process more
complex than simply writing the rules: in fact, the domains have
to be partitioned choosing an adequate number of fuzzy sets
and the shape of their membership functions. These parameters
determine the approximating model univocally and have to be
modified manually every time the model requires some change.

bayesian networks are strongly focused on probabilistic relations
between entities, but are nevertheless one of the most balanced
tools available. There exist algorithms to learn the structure and
the parameters of a network from data [210], which make BNs
attractive from the point of view of learning and discovery. The
interchangeable role of inputs and outputs, together with the
correctness of the probabilistic inference ensured by the propa-
gation algorithm, makes them flexible and graceful as well. Both
the structure and the conditional probabilities can be exploited
to give qualitative and quantitative explanations for a conclu-
sion, showing a which entities influence it and how much (a
review of the explanation techniques can be found in [177]). The
main drawback of a BN is its scarce adaptivity, since once a struc-
ture has been fixed, it is hardly updated.

clustering and classification algorithms are actually a vast
family of algorithms, with different properties. A clustering algo-
rithm is usually designed to identify, isolate and model classes
of homogeneous individuals within larger sets of raw data; a
classification algorithm, instead, tries to assign an element to
a set according to the value of some features. Hence, they are
learning-oriented algorithms with strong discovery capabilities.
Other properties are more difficult to evaluate in general, since
they depend strongly on the specific algorithm. For example,
gracefulness and flexibility are very low in the standard k-means
algorithm [190], but are much higher when a probabilistic algo-

62 hybrid techniques

rithm such as the EM is adopted [57]. Likewise, the degree of
adaptivity depends on the possibility to perform an incremen-
tal learning [159]. Being completely data-driven, however, these
techniques are usually unable to explain why the data have been
partitioned or assigned in a certain way, except for providing the
value of one or more quantitative indicators that have been opti-
mized by the algorithm itself.

Learn Discover Adapt Flexible Explain Graceful

CBR ?? ? ? ? ? ?? ? ? ? ??

RBS ?? ?? ? ? ? ? ? ? ?? ?

NN ? ? ?? ?? ? ? ? ? ? ? ? ? ? ?

RBF ? ? ? ? ? ? ?? ? ? ? ?? ? ? ?

FS ? ? ?? ? ? ? ? ? ? ? ? ??

BN ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

CL ? ? ? ? ? ?? ?

Table 3: Comparison of individual AI techniques

Being a generalization, some of the evaluations could be argued on,
even if they agree substantially with the ones given in [211], but it
is undeniable that no system alone possesses all the desirable proper-
ties. This fact justifies the existence of hybrid systems, where different
techniques are integrated to exploit the benefits of all the components,
while trying to cancel or mitigate the drawbacks.

4.2 hybrid systems

To be considered “hybrid”, a system needs only to be built using two
or more different AI techniques. So, there are many possible combi-
nations, depending no only on the number and type, but also on the
interconnection strategies. The goal of this section, then, is to introduce
some classification criteria useful to describe the characteristics of an
HS. After that, a brief overview of the most common architectures will
be given.

4.2.1 Properties of Hybrid Systems

The simplest classification divides HS in homogeneous and heterogeneous:Classification by
technique the former are built using modules of the same kind (e.g. two or more

NN), while the latter use different techniques.
Another criteria ([200]) is based on the degree of coupling betweenClassification by

coupling the different parts. Loosely coupled systems are formed by separate mod-
ules, connected sequentially or in parallel, and communication, if any
is required, is unidirectional. In tightly coupled systems, the individ-
ual modules share data and bidirectional interactions are possible, al-
though there is only one control flow. In fully integrated systems, in-

4.2 hybrid systems 63

stead, the modules share data and knowledge, at the point that the,
from an external point of view, it becomes difficult to define a neat
boundary between them.

Goonatilake and Khebbal ([139]) divide the systems in function-replacing, Classification by
designwhich implement one sub-part or module of a system with a different,

more efficient technique, and intercommunicating, where the problem
is divided in sub-tasks, each one solved using the most convenient ap-
proach. Polymorphic systems, instead, are architectures capable of em-
ulating different computational models within the same framework.

In [168], Khosla and Dillon use another schema , not unrelated to the Classification by
structureothers. Combination systems are built from separate modules; transfor-

mation systems adapt and convert information from one representation
to another, so that it can be processed using different techniques; in fu-
sion systems the sub-parts of a module are designed using more than
one approach. Finally, associative systems exploit all of fusion, transfor-
mation and combination.

A more detailed classification is given in [273]. This schema, sum- Overall
classificationmarized in charts like the example one in Figure 16, will be applied to

describe the other hybrid systems discussed in this dissertation. The
analysed categories are:

• Fusion Grade : the degree of interconnection between the mod-
ules

low : the modules do not interact.
moderate : the modules work in parallel on the same inputs

and/or produce the same outputs.
high : the modules share data and mutually influence the pro-

cessing operations.
very high : the modules share data (including knowledge) and

structure.

• Fusion Structure : the interconnection topology

independent (&) : the modules are not connected.
parallel (/) : the modules share inputs.
cascade (−) : the output of a module is connected to the input

of another.
feedback (\) : a module is used to close a loop with the out-

put of another’s.
design (=) : the parameters of a module are tuned using an-

other.
augmentation (+) : a module works in parallel with a hybrid

cascade of two modules.
assisted (//) : a module processes an input and the output of

a feedback loop fed with the same input.

• Fusion Time : the moment in the system life-cycle the fusion is
performed

off-line : fusion is performed at development time.

64 hybrid techniques

on-line : fusion is performed at run-time.
both : fusion is performed at different moments.

• Fusion Level : the layer in the architecture where fusion takes
place at

pre-processing : preliminary operations, such as filtering and
validation.

transformation : extraction of meaningful information that
can be processed (e.g. feature extraction, mappings, etc.).

model : proper elaboration.
post-processing : operations to be performed on the output,

usually for presentation purposes.

• Fusion Incentive : the motivation behind the application of the
fusion

independent : different techniques are required for different
sub-tasks.

concurrent : a pool of modules solve the same sub-task in
parallel.

complementary : different components are use together to
improve performance.

cooperative : different components are used for problems
that would not be able to solve individually.

Grade

Level

Incentive

Time

Structurepre-processing
transformation

model

post-processing

independent

concurrent

complementary

cooperative

low

moderate

high

very high

offline

online

both

¶llel\ − = + //

Figure 16: Classification criteria for hybrid systems

4.2 hybrid systems 65

4.2.2 Common Hybrid Architectures

The literature is full of examples of hybrid systems, to the point that
several books have been published on the topic. If one just considers
loosely coupled systems, the examples would be too many to analyse,
if not to cite. Hence, the discussion will focus only on relevant classes
of strongly coupled systems, some of which have even been given stan-
dard names in literature, and especially on the ones that will appear in
the following chapters. These systems are summarized in Table 4. The
list is far from being exhaustive: in fact, it considers only systems built
using two different techniques, where one has a predominant role. The
primary system defines the functionality of the system, while the sec-
ondary enhances the functionalities, either by improving some core
function or even adopting a polymorphic behaviour. Systems built
using three or more techniques and systems build for specific appli-
cations, instead, will not treated. Notice also that this work ignores
genetic algorithms, which are instead a common building block of HS.
Genetic algorithms, however, are used mostly off-line, at design time
for optimization/learning purposes and thus are scarcely relevant for
the architectures this dissertation is centred on.

Secondary

BN CBR RBS FS NN RBF CL

Pr
im

ar
y

BN ? f-BN

CBR ? r-CBR f-CBR

RBS BLP c-RBS ? MVL NLN AR

FS FE ? NFS NFS

NN (BNN) f-NN ?

RBF ? SOM

CL CART f-CL NN SOM ?

Table 4: Common hybrid architectures

Given the symbolic nature of the knowledge they encode, RBS and
CBR have been used together in several systems. Some authors have Hybrid CBR
used rules to enhance the case-based reasoners, if not to encode cases
directly; others have used the opposite approach, using cases to im-
prove the performance of rule-based inference (e.g. in [178] cases are
used to deal with exceptions). A comprehensive overview, together
with a specific classification scheme, can be found in [247]. Other CBR

systems [161] have embedded sub-symbolic systems such as NNs and
other clustering algorithms in their match and retrieval modules. As
already discussed, the role of similarity in case retrieval makes the bor-
der between the fuzzy and the crisp versions of CBR quite vague: fuzzy
CBR, then, can be further integrated with fuzzy rules [156] .

The integration of Rule-based systems with sub-symbolic systems is Hybrid RBS
less common, despite the fact that one of the most widely used rule
engine architectures, the RETE algorithm [134], is based on a dataflow

66 hybrid techniques

network. Actually, RBSs are used in independent, cascaded or parallel
hybrid architectures, but tighter forms of coupling are less common.
An interesting example can be found in [103], where a “neural” model
is used to implement a symbolic engine, while RBS using associative
rules can benefit from the application of clustering algorithms [180].
The capability of an engine to be used as a polymorphic hybrid system,
instead, depends on its supporting non boolean logics. Fuzzy logic is
quite common, but is usually implemented in dedicated, “fuzzy en-
gines” (FE). More general purpose engines, instead, also support vague-
ness in the form of many-valued logic [144], possibilistic logic [115]
or probabilistic logic [146]. (An engine capable of supporting all such
types of logic will be discussed in Chapter 7). Recent developments in
Bayesian logic programming [167] (BLP) have contributed to reduce the
gap between RBSs and BNs.

Fuzzy systems , instead, are hardly considered rule-based systems,Hybrid FS
possibly because the rules have a fixed, basic structure: the premises
are conjunctions of possibly negated propositional atoms which entail
one or more simple conclusions, while chaining is seldom required.
The critical point in their design, instead, is the choice of the num-
ber, type and shape of fuzzy sets. In many hybrid systems the mem-
bership functions are tuned and evaluated automatically using some
other tools such as a genetic algorithm or, like in neuro-fuzzy systems
(NFS), by a FF-NN or a RBF.

Fuzzy Neural Networks (FNN!) , instead, are proper neural networksHybrid NN
whose outputs are interpreted as fuzzy values: in fact, the networks
approximate membership functions. The component that is often re-
placed in NNs, instead, is the training module: again, genetic algo-
rithms are popular, but the Bayesian neural networks described in
Chapter 3 and in [189] (BNN) use a Bayesian approach for training. No-
tice that they should not be confused with a hybrid between a Bayesian
network and a neural network.

Bayesian Networks , like other tools with learning capabilities, canHybrid BN
be trained using genetic algorithms. BNs with support for fuzzy con-
cepts, are an interesting tool supporting both uncertainty and vague-
ness, but have appeared only in recent works [225, 133]. Nevertheless,
the complexity of specifying the conditional probability tables makes
the BN promising candidates for fusion hybrid systems. The linear-
Gaussian models cited in Section 3.2.3 and discussed in [57] are similar,
if not equivalent, to neural models embedded in the main network as
local modules to perform the numerical computations necessary to ap-
proximate the evaluation of the conditional probability. Likewise, the
noisy-OR and its generalization to graded variables shown in [101]
could be adapted easily to fuzzy truth degrees.

A brief analysis of hybrid clustering/classification algorithms, in-Hybrid CL
stead, is more complicated since CL includes many techniques with
different properties. Several algorithms associate an element to a clus-
ter or to a class with a partial degree of membership that can be in-
terpreted as probability or similarity, depending on the algorithm as-

4.3 conclusions 67

sumptions and semantics. Notice, however, that other general-purpose
tools can be used for classification and/or clustering purposes: CART

trees such as the ones learned by the C4.5 algorithm ([249],[119]) are
rule-based classifiers, while FF-NN are widely used for classification, ex-
ploiting their ability to approximate a characteristic function. Another
type of neural network, the Self-Organizing Map [172], is widely used
for clustering problems, and can be used in combination with RBF: the
SOM is useful to initialize the position of the basis centres, while the
RBF quantifies the degree of similarity between an input data and each
prototype neuron (including the “winner”) in the SOM, which can also
be considered the degree of membership in a fuzzy cluster associated
to the prototype itself.

4.3 conclusions

Hybrid Systems are powerful tools that can achieve performances su-
perior to those of their components, to the point that in the next Chap-
ter it will be shown that a difficult problem such as the automatic
management of a complex system can hardly be solved using a single
technique. The main drawback is that a hybrid system requires a care-
ful design since the possible combinations and the associated degrees
of freedom increase accordingly.

However, it seems that not all combinations are equally present in lit-
erature. The order of the rows and columns in Table 4 has been chosen
to separate symbolic and connectionist methods, with fuzzy systems
in the middle. The emerging block structure shows that systems of
the same kind are more likely to be fused together, probably because
it is easier to interface systems that represent information using sim-
ilar principles. This is less true when different modules are cascaded
or used in parallel, since transformation adapters can be built most
of the times, but stronger forms of integration are difficult to obtain.
Undoubtedly, combining the different ways to encode knowledge is
a major problem. The boundary between the two families, and the
further benefits that could be gained using a functional - or even poly-
morphic - coupling of symbolic and connectionist systems will thus be
discussed in the last part of the work.

Part II

M O N I T O R I N G A N D C O N T R O L F R O M A N
A I P E R S P E C T I V E

5
A U T O M A T E D M A N A G E M E N T O F C O M P L E X
S Y S T E M S : S T A T E O F T H E A R T

Contents
5.1 Automatic Management 72
5.2 Automatic Management of WWTP: Motiva-

tions 75
5.2.1 Waste-Water Treatment Plants 76

5.2.2 Plant automation 77

5.3 Basic Control technologies 79
5.3.1 Model-Based Controllers 81

5.3.2 Artificial Intelligence-based Controllers 82

5.4 Advanced Management Architectures 84
5.4.1 Remote Management Infrastructures 84

5.4.2 Decision Support Systems 85

5.4.3 Complex Architectures: Services, Events,
Agents 87

5.4.4 Combining Events, Services and Agents
with Imperfection 96

5.5 Conclusions 99

This Chapter will discuss the motivations the automatic manage-
ment of a “complex” system: an entity, not necessarily artificial, com-
posed by several parts interacting in a way that is not trivial to un-
derstand. This definition is so general that it can encompass almost
any real-world system, but this analysis will be focused on a very spe-
cific type of complex systems, namely the activated sludge waste-water
treatment plants (WWTPs), where polluted water is processed by micro-
organisms in particular chemical and physical conditions, in order to
remove the undesired substances. Despite the specificity of their tasks,
such plants are a relevant example of complexity, since they can be con-
sidered from the biological (due to the presence of bacteria, or biomass),
mechanical, hydraulic and electronic point of view at the same time.
Nevertheless, many of the considerations made for WWTPs will be pre-
sented in a general way, so that they could be applied to a wide class
of similar contexts.

In particular, the structure of the Chapter is as follows:

71

72 automated management of complex systems : state of the art

• A brief analysis of the concept of management, which, despite
its apparent obvious meaning, includes a complex variety of
themes itself.

• A practical motivation of the benefits of the automatic manage-
ment of WWTPs, which somehow justifies their choice as a case
study.

• An overview of the applicable technologies: in particular, math-
ematical model-based approaches will be compared to the AI

techniques introduced in the previous chapters, outlining the
benefits and the drawbacks of each solution, supported by some
experiences found in literature.

• A study of the existing architectures which can, or have been,
used to integrate different management modules

The discussion will, as usual, not be limited to a passive survey,
but to a critical analysis of the existing architectures, showing their
limits but also highlighting the opportunities which can be exploited
to improve them, as this work has done.

5.1 automatic management

In Systems Theory, a complex system is an entity composed of inter-Dynamical Systems
connected parts that, as a whole, exhibit one or more properties not
obvious from the properties of the individual parts. A dynamical sys-
tems, in turn, changes it time: at any given moment, it has an internal
state which determines its behaviour. This state is the result of an evo-
lution (or transition) of its past internal states, possibly influenced by
inputs and/or disturbances coming from the external world. Sometimes
this state may be observed, at least partially, and possibly controlled, i.e.
driven towards a desired value by means of some action.

Controllability is obviously a desirable property, since it allows a“Hard” Control
system, artificial or natural, to be not only predictable, but also decid-
able, at worst after an initial transitory time during which the output of
the system shifts from its “natural” (free) values to the constrained ones.
Typical control problems can be divided in tracking, where a variable is
forced to follow a given trajectory, and positioning, where a variable is
forced to maintain a given value, even in presence of disturbances. The
definitions are natural when the variable is the position of an object,
but they generalize easily. In fact, a whole discipline, control theory, has
been developed from the second half of the XIX century and applied
in almost every field of engineering.

This theory, however, is perfect in the sense of Chapter 2, in fact it re-
quires a precise and certain knowledge of several pieces of information
regarding the system to be controlled. First of all, the laws governing
its internal behaviour are to be known; second, at any moment its in-
ternal state must be determined to compute the difference between
its actual and desired value; last, the necessary control action has to

5.1 automatic management 73

be computed and applied precisely. In practice, this is rarely accom-
plished for several reasons:

• The available models of a system are usually approximations of
the real laws, which often are too complex to identify precisely
(or mathematically intractable)

• Observability and controllability are not guaranteed for all sys-
tems

• Disturbances, noise and errors are not always predictable and
tractable: moreover, not all systems are robust and capable of
absorbing their negative effects

• Some systems can become unstable under some conditions

For such reasons, automatic control is not the exclusive domain of
control theory, but is also a relevant field for researchers in AI. Various AI “Soft” Control
techniques such as the ones introduced in Chapter 3 have been used,
both as an alternative to model-based controllers and together in hy-
brid control systems. Artificial intelligence, however, has tools suitable
for even more general classes of problems.

In fact, control can be considered a specific part in the broader con-
text of (automatic) system management. The term management will be
used to describe a set of correlated actions tasks which, altogether, have
the purpose of optimizing the operating conditions of a complex sys-
tem. The actions, which are sometimes improperly referred to using Vision
the term control itself, are based on our own extension of the approach
found in [220] and sketched in Figure 17.

System

Observation Control

Detection Reaction

Diagnosis Prevention

Support Intervention

Operator

Figure 17: AI-driven management vision

An (intelligent) management system can operate at different levels
of abstraction: the lower the level, the simpler but also the quicker the
elaborations, usually carried out at a sub-symbolic level; moving to-
wards higher abstractions, instead, the information processed becomes

74 automated management of complex systems : state of the art

more structured, up to the point where there can be an explicit inter-
action with a human user. For each level, there are two functionalities:
an analytical one and an applicative one. The former are:Generalized

Observation
observation Like in proper control theory, data have to be collected

from a system in order to know its status. When quantitative val-
ues are acquired, observations are more appropriately defined
measurements, which can be performed using sensors or probes.
Repeated measurements at regular times can also be called sam-
ples. Independently of the used method, the data should be val-
idated and stored, using a standard format, in an accessible lo-
cation. The complexity and accuracy of this pre-processing is
usually a compromise between ensuring the correctness of the
observation and making the data available to the elaboration sys-
tem quickly (consider, for example, hard real-time systems).

detection Modules working at this level have to process the ob-
served, raw data to extract important information. When per-
formed in real time, notifications can be generated in the form
of events, structures signifying that a possibly important change
has happened at a certain time. Alarms, for example, are crit-
ical events generated as a consequence of the detection of an
anomaly in the observed data.

diagnosis This block has the delicate task of analysing the actual in-
ternal status, possibly taking into account some or all the events
detected by the lower level. Its purpose is to determine the causes
of any change in the operating conditions, especially whenever
they could affect the performance of the system. The isolation
and identification of all failures obviously falls in this category.

support This interface translates and presents the processed infor-
mation in a human-readable way. It may also be needed to re-
quest actions which can’t be applied automatically, such as the
replacement of a defective component. To do so, appropriate
symbolic or graphical languages have to be used, together with
a possibly remote communication infrastructure, such as a net-
work terminal.

Every analytic block has an effective counterpart. While analysis is
mainly a bottom-up process, where each level provides more refined
information to the one above - up to a possible human supervisor -
commands proceed top-down: a high-level order, in fact, is usually
translated into simpler instructions. Notice, that every decision blockGeneralized Control
is connected to the action block on the same level: this allows to by-
pass the higher levels and implement reactive behaviours when needed.
However, no command can usually be imparted from a lower level to
a higher one.

intervention This interface allows the supervisor to give additional
inputs or to impart commands to the management system, at all

5.2 automatic management of wwtp : motivations 75

levels. It can be used to interact with the system, but also to
override its behaviour.

prevention This block is responsible for implementing all medium-
and long-term policies. Its main purpose, whence the name, is
to prevent failures and, more generally, undesired operating con-
ditions. Typical actions could include the scheduling of mainte-
nance procedures or the updating of some working parameters
to reflect an environmental change.

reaction At this level, all reactive, short-term policies are imple-
mented. The actions are usually simple, dealing with contingent
necessities which, however, may have to be solved quickly. An
example is choosing the appropriate reaction in presence of an
alarm, such as the decision to open a security valve, but also
computing the regulation necessary to compensate a set-point
error.

control In this block, the commands (e.g. the commutation of a
switch) are converted into input signals for the managed system.
These commands may also be actions performed on the system
itself by physical (electronic, mechanical, hydraulic, . . .) compo-
nents, generally called actuators.

Proper real-time control (RTC) in the sense of (perfect) control theory
takes place in the lower levels, but is not the only possible implemen-
tation of reactive policies. This architecture, while rather abstract, has
been used as a guide-line in the development of the management in-
frastructure that will presented in the last part of this thesis, which
is an example of several alternative control policies. Before discussing
the relationships between AI-based techniques and this schema, how-
ever, the next section will introduce the main context which this work
has been applied to.

5.2 automatic management of wwtp : motivations

Water is a precious and scarce resource, but easily contaminated by
other undesired substances, universally called pollutants, ranging from
nutrients (carbon and nitrogen compounds) to chemical substances,
including heavy metals and toxics, to pathogens such as bacteria and
other micro-organisms. The type and concentration of pollutants de-
termines the quality of the water, usually measured using parameters
such as the concentration of the cited, undesired substances, but also
chemical and physical parameters such as pH, redox potential, electri-
cal conductibility, turbidity. Depending on the desired final use, the Water Quality

Parametersvalues of these parameters are analysed directly or combined into syn-
thetic water quality indexes (e.g. see [142]): unfortunately, the admissible
ranges of the parameters are subject to the directives1 of the differ-
ent countries and the validity of the indexes is often questioned [175],

1 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0271:EN:NOT

76 automated management of complex systems : state of the art

so there are no absolute, universally accepted criteria to define water
quality. Not surprisingly, recent attempts to define quality indexes are
trying to take into account the inherent imperfection, for example ex-
pressing them in fuzzy terms [288].

5.2.1 Waste-Water Treatment Plants

In the specific case of waste water, i.e. water discharged into sewers
after domestic, industrial or agricultural use, there exists the general
problem of reducing the amount of nutrients present in the water, to
avoid the phenomenon of eutrophication, which would alter the flu-
vial and/or marine ecosystems where the water is discharged. The
treatment is performed in dedicated plants, which exploit one of a
few existing techniques. In the context of this thesis, only the activated
sludge plants will be recalled, and even then only the basilar concepts
necessary to understand the need and the potential for automation
will be discussed: an interested reader can consult any book on the
topic, such as [153].

Biological Treatment Processes

The treatment process aims at reducing the concentrations of ammo-
nium ([NH+

4]) and organic matter (carbon C compounds), which com-
pose the main fraction of pollutants, especially in the case of urban
waste-water. In activated sludge plants, the water is mixed with sludge
in one or more reaction tanks, where the pollutants are consumed by
different families of bacteria living in the sludge, provided that ade-
quate environmental conditions are maintained. In particular, nitrogen
removal involves two main reactions:

nitrification The reaction converts ammonium NH+
4 into nitrate

NO−
3 , passing through the intermediate form of nitrite: NH+

4 →
NO−

2 → NO−
3 . The overall reaction is2:

NH+
4 + 1.86O2 + 1.98HCO−

3 →
0.02C5H7NO2 + 0.98NO−

3 + 1.88H2CO3 + 1.04H2O
(5.1)

The balance shows that almost all available ammonium is con-
verted to nitrate, while a small fraction - about 2% - is consumed
by the bacteria which perform the reaction for their growth. No-
tice that the reaction requires oxygen to be available. In fact, the
environmental conditions necessary for it to take place include:

• Presence of oxygen: [O2] ≈ 3mg/l [301]. This is possibly the
most critical condition to be maintained: a low oxygen con-
centration inhibits the process, but keeping the concentra-
tion high is rather expensive, since adequate mechanisms

2 assuming C5H7NO2 as substrate, other types of organic matter lead to slightly
different stoichiometric coefficients

5.2 automatic management of wwtp : motivations 77

are required to blow air in the tank. A typical blower may
consume up to 700 KWh/day3

• pH in the range 7÷ 9
• Temperature around 15− 25°C
• Absence of substances toxic for the bacterial populations

denitrification The second stage of reaction involves the trans-
formation of nitrates and organic matter into gaseous nitrogen,
which is released in the atmosphere, according to the reaction:

0.07C18H19O9N + NO−
3 +H+ →

0.5N2 + 1.21CO2 + 0.07HCO−
3 + 0.07NH+

4 +H2O
(5.2)

Like nitrification, denitrification requires appropriate conditions,
which are compatible with the ones required for nitrification,
except for one:

• pH in the range 7÷ 9
• Temperature around 15− 25°C
• Absence of substances toxic for the bacterial populations
• Absence of oxygen: [O2] ≈ 0mg/l.

Clearly, the two reactions can not take place in the same tank at the
same time, since the aerobic environment required by the former is
incompatible with the anoxic one needed for the latter to take place.
To deal with this problem, different plant configurations can be used.

Common Plant Configurations

Unfortunately, the “logical” sequence nitrification-denitrification is not
feasible in real plants: the organic matter required for denitrification
enters the tank along with the water, but, should aerobic conditions
be applied first, it would be oxidized along with ammonium, leaving
none for the denitrification. Moreover, since water and sludge have to
be mixed for reactions to happen, they have to be separated later in a
dedicated settling tank: the cleared water is then discharged, while the
sludge is reintroduced in the main tank by (sludge) recirculation. Real
plants also apply other treatments, both before (e.g. filtering and grit-
ting) and after the reaction (e.g. disinfection). This complexity leads to
different possible plant configurations, including single BNR reactors,
two-tank P-DEN reactors, membrane bio-reactors (MBR) and others. The
plant class relevant for this work, Sequencing Batch Reactors, will be
described in Chapter 9.

5.2.2 Plant automation

WWTPs are natural candidates for automation. According to [221], an
adquate instrumentation could be used to implement the strategies

3 data coming from a real plant near Bologna, Italy

78 automated management of complex systems : state of the art

and policies necessary to handle most processes and problems in a
plant, sometimes even increasing the capacity of biological nutrient
removal by 10-30%.

The advanced knowledge acquired on the relationships between theMotivations
operational parameters in a treatment system and the biochemical re-
actions (and thus its performance), gives new possibilities to control
them, in order to improve the quality of the effluent while keeping the
operational costs as low as possible. Another relevant factor is energy
efficiency: waste-water treatment industry is a competitive sector and
energy costs typically consume from 15 to 30% of a treatment plant’sEnergy Savings
operation and maintenance budget. An energy - management program
may act on demand-site opportunities, including process modifica-
tions, aeration control and power-demand shift.

In order to exploit these relationships, the investments in Instrumen-
tation Control Automation (ICA) may reach 20-50% of the total within the
next 10-20 years. To this date, instead, ICA technologies are not widely
applied, and even then the probability to find a plant equipped with
advanced instruments seems to be proportional to its size. The rea-
sons behind this fact vary between different countries: most of them
are related to poor legislation, lack of acceptance within the treatment
industries, lack of collaboration between stakeholders and organisa-
tions, economy and unreliable measuring devices; but probably the
most fundamental barrier for a widespread acceptance of new con-
trol strategies is that existing WWTPs are not designed for real-time
control [221]. In fact, the extent of control (number and type of con-
trolled variables, complexity of the strategies, . . .) that is cost efficient
is dependent on size of plant. Considering Danish WWTPs, for example,
the typical operating costs of small plants (< 10000 person-equivalent)Operating Costs
are in the range of 0.3 ÷ 0.7e/m3 of treated water. For plants over
250.000 person-equivalent, the corresponding costs are 0.1÷ 0.3 e/m3
of treated water. The difference in operation costs is dependent on the
relative higher load variations at small plants than at larger plants, but
also on the fact the instrumentation installed on smaller WWTPs is less
effective, if present at all.

Likewise, it is probably an exaggeration to state that in the rest
of the European Union most WWTPs (> 10000 person-equivalent) are
equipped with SCADA (Supervisory Control And Data Acquisition) sys-
tems and, even when present, they are used mainly for mere data ac-
quisition and only rarely for the control of the operating conditions
[203]. In presence of failures, success depends on the plant staff’s abil-
ity to quickly identify the problem, diagnose it and start appropriate
recovery actions. An intelligent management system, instead, could
behave like a “virtual expert operator”, monitoring the processes con-
tinuously 24/7 whereas it is practically infeasible for human operators,Full-time

Management and it could try to optimize the yield and detect faults at an early stage,
possibly even correcting them. Moreover, the collected data, properly
validated and classified, could be used to build a knowledge base de-

5.3 basic control technologies 79

scribing the various operating conditions of a given plant: this knowl-
edge could be used to further improve its overall performance.

Nevertheless, there is a great potential for the applicability of au-
tomation technologies to treatment plants, and much research has been
done in the last 30 years, sometimes with important results. The next
section, then, will be dedicated to an analysis of the existing solutions,
outlining their benefits and the limitations.

5.3 basic control technologies

The automatic management of a complex system is a critical task,
which requires an adequate infrastructure. The necessary, but hardly
sufficient, condition is the presence of some kind of interface which al-
lows to observe the state of the process and act on the plant. The trivial
structure is shown in Figure 18:

PlantProbes Actuators

Figure 18: Basic Plant I/O

The variables sampled in a plant may be divided in two classes: the
direct ones, which measure the state of the process and the biomass,
and the indirect ones, chemical and physical environmental parameters
which influence - and are influenced by - the process itself.

The former include the actual concentrations of the substances in-
volved in the chemical reactions, either on an individual basis as oxy- Direct Indicators
gen ([O2]), ammonium ([NH+

4]), nitrate ([NO−
3]) and nitrite ([NO−

2]), or
collectively as total carbon (COD or TOC), nitrogen (TKN) or biomass
compounds (SSV or SST). The most common indirect signals, instead, Indirect Indicators
include pH, redox potential (orp!), temperature, conducibility and tor-
bidity, in addition to the various flow rates measured in the pipes.
The exact definition of each measure and the characteristics of the nec-
essary hardware are not relevant for this work and will be omitted:
additional information can be found, for example, in [220] and [256].

Most data can be acquired through manual analysis or using an ad-
equate on-line sensor: while the first method is relatively inexpensive
(but seriously time-consuming), the second can provide much more
information, at the rate of several samples per minute, but for higher
costs. Laboratory analysis can be sufficient for mere monitoring pur-
poses, but real-time control is possible only through the use of in-line
sensors. This poses a serious managerial problem: direct variables can Hard and Soft

Sensorsgive a complete knowledge of the process status, but the necessary
probes usually have a cost which is one or two orders of magnitude
greater than the ones for indirect signals (≈ 104 vs ≈ 102 e). While the
cost could be sustainable in large plants, it is clearly an issue for small

80 automated management of complex systems : state of the art

scale plants: this advocates the use of soft sensors (e.g. [76]), software
algorithms which use the indirect indicators, collected using cheaper
instruments, to estimate the value of the relevant variables. Not sur-
prisingly, this is a source of imperfection which has to be taken into
consideration. An example of imperfect soft sensor will be discussed
in Chapters 9 and 10.

Different control strategies can be used to force one or more of these
status variables (also summarized in Table 5) to assume the desiredControl Variables
values. Some of them are easily controllable in the classical sense, by
manipulation of some other variable through an appropriate actuator.
For example, the pH and the oxygen concentrations can be kept equal
to a desired set point by adding (removing) alkalinity or increasing
(decreasing) the air flow rate. Other variables, instead, can still be con-
trolled to some extent, but may require the adoption of long-term poli-
cies whose outcome is often affected by a degree of uncertainty. For
example, the concentration of volatile solids in the tank, an indicator
of the amount of active biomass, can be influenced using load and
retention policies which favour the growth of the bacteria.

In general, the manipulable variables in a plant are less than the ob-
servable ones, and some of them are rather expensive. Most controllers,
then, act on the recirculation rates between the different tanks: this
allows to expose the water to different conditions (i.e. let different
reactions take place) for a chosen time period. In order to force the
necessary conditions not to inhibit the reactions, however, it may be
necessary to add substances such as oxygen, alkalinity, carbon or even
heat. The non-trivial operating costs stress the importance of choosing
an optimal and useful control strategy [132], [279].

Plant Variables

Observable Manipulable

Direct (Individual):

[NO−
2]

[NO−
3]

[NH+
4]

[O2]

Direct (Collective):

COD / TOC / TKN

SST / SSV

Indirect:

pH

Redox potential

Temperature

Conductibility

Turbidity

Air flow

Internal recirculation rate

Sludge recirculation rate

Carbon dosage

Alkalinity dosage

Table 5: Typical control variables in a WWTP

5.3 basic control technologies 81

5.3.1 Model-Based Controllers

When dealing with treatment plants or, more generally, with complex Benefits of Using
Modelsdynamical systems, an automatic management system may be a worth-

while investment, with returns in terms of increased efficiency, higher
reliability and lesser operative costs. Nevertheless, like any other en-
gineering product, a management system has to be designed, imple-
mented, tuned and tested: in such cases, the best practice is to build
a model of the system to be managed. A (mathematical) model is an
abstraction of a real system capable of simulating its behaviour in a
wide variety of contexts. The model, unlike the real system, can be
analyzed and studied in all its parts: in fact, the utility of models has
been proven for several purposes [220], at various stages, including
design [254], control [160], diagnosis and prediction [81].

activated sludge models For the specific case of WWTPs,
there exist a set of three standardized models ASMx [154], plus a num-
ber of variants. These models are highly non-linear and involve a num-
ber of parameters: for example, the ASM n1 uses 9 differential equa-
tions of 13 state variables; moreover, it requires a non-trivial calibration
procedure [239].

Obviously, water treatment plants are not linear, time-invariant sys-
tems, so simple control schemas tend to fail due to the difficulty to
implement them, even if some applications do exist [287]. The sim-
plest solution, then, is to apply a linearisation procedure to simplify
the model [274] and treat it as if it were a LTI system.

While model-based control is not an alternative, but rather a comple-
mentary approach to AI-based control, it will not be discussed further.

PID Controllers

LTI systems are often controlled using the proportional-integral-derivative
(PID) control schema [266], a particular implementation of the feedback
control schema shown in Figure 19.

PlantProbes Actuators

PID

Figure 19: Feedback control with PIDs

This simple schema assumes that the controlled variable can be con-
tinuously observed, so it is possible to compute the error e(t) by dif-
ference of the actual output y(t) and the desired output s(t), given as

82 automated management of complex systems : state of the art

input to the controller. The PID manipulates the actuators through a
signal given by:

u(t) = Kp · e(t) +Ki ·
∫t
0
e(τ)dτ+Kd ·

de(t)

dt

The gain parameters Kp, Ki and Kd have to be tuned accurately, to
ensure an acceptable response time while keeping the controlled sys-
tem stable at the same time. PIDs work best when applied to LTI which
model is well-known, but unfortunately WWTPs as a whole are neither
linear nor time-invariant. While it is still possible to partially overcome
the non-linearity of the system [291], more often different, simpler con-
trollers are applied to specific sub-tasks, such as keeping the oxygen
concentration to a desired set-point [124] [304], or optimizing the chem-
ical dosage in post-treatment [100]. Moreover, the time-variance of the
plant poses the problem of updating both the set-points and the gain
parameters as the environmental conditions change [209].

5.3.2 Artificial Intelligence-based Controllers

The complexity of systems like WWTPs manifests in the difficulty of de-
signing a good controller, not to mention the calibration of an model of
the original system itself. Moreover, its intrinsic time-variance would
hamper the validity of the measurements required to tune its param-
eters, making the model inaccurate in a relatively short time. If one
takes into account the disturbances, which may be quite relevant and
unpredictable (i.e. a toxic discharge, or a strong rainfall), the plausible
scenarios become much less precise and certain than the ideal situation
modelled my the mathematical equations. Even when using models, it
is necessary to take this uncertainty into account [132], but not surpris-
ingly many researchers have tried alternative approaches, in particular
applying Soft Computing techniques such as the ones introduced in
Chapter 3, hoping to exploit their robust approximation capabilities.
SC algorithms may be used in place of mathematical models, but some-
times they are also used in combination with controllers such as the
PID, adopting the schema shown in Figure 19 or even a more complexAdaptive Control
one [164]. The upper level adjusts the se-points and the parameters of
the lower level, while this one commands the actuators to minimize the
error. This is actually an example of cascaded, online, cooperative hybrid
AI system.

neural networks Neural Networks are appealing tools to deal
with complex, ill-known non-linear systems. Their “black-box” nature
allows to approximate a non-linear function without having any ex-
plicit knowledge on it, but a large set of samples for the training, val-
idation and test. In fact, there exist several works combining different
sets of variables: a complete survey can be found in [42]. From an
analysis of the recent literature, it emerges that the multilayer feed-
forward network is the most common architecture, and that NNs have

5.3 basic control technologies 83

PlantProbes Actuators

Regulator

Supervisor

Figure 20: Feedback control with Adaptive Controller and PID

been used for general modelling ([295],[207],[290]), but also for predic-
tion ([35],[148],[76]) and to implement control blocks even in more ad-
vanced schemas than the simple feedback loop ([240],[43]). The overall
impression, however, is that despite the many, more or less successful
attempts, most of them have been carried out in controlled environ-
ments such as laboratory-scale pilot plants, where the disturbances are
limited and the seasonal variations are rarely taken into account. This
removes much of the variability associated to a real-world complex
system: the regularity in the input data causes the networks to behave
like interpolators (a task they are capable of performing), whereas in a
realistic context they would have to act more like extrapolators (a task
they regularly fail at), unless they were constantly retrained to adapt
to the changing conditions, or a data set sufficient to cover all the pos-
sible cases had already been collected to train it in the first place. This
dependency on large amount of data, whose collection is an expensive
and time-consuming process, is possibly the main limiting factor to the
use of simple neural models in real applications of some complexity.

fuzzy controllers The main alternative to mathematical mod-
els and neural networks is the use of fuzzy logic systems. Unlike neu-
ral networks, they require an initial knowledge of the underlying func-
tion they are to approximate, be it the model of the system or the
controller’s policy. In fact, in standard fuzzy control architectures the
fuzzy partitions of the input and output domains are not learned from
data, but generated manually by the designer, even if they can be tuned
afterwards. This is usually not a drawback, since it allows to build con-
troller acting in a way that results “familiar” to the human operators,
and thus more acceptable.

The main purpose of fuzzy logic systems is to act as controllers,
which have often been applied to the regulation of the oxygen concen-
tration in the aeration tank ([128], [130],[285]), but this is not the only
existing application: there are examples not only for the control of
other variables (e.g. [286]), but also for approximation and prediction
(e.g. [87]). A survey on the topic can be found in [38].

Like neural networks, fuzzy logic systems can be used at both levels
of the architecture shown in Figure 20, implementing either the super-
visor or the controller. Actually, there exist hybrid schemas where NN

84 automated management of complex systems : state of the art

and FS have been used in all the possible combinations (e.g. [224]), even
with the use of PIDs at the lower level (e.g. [72], [255]).

5.4 advanced management architectures

While automated controllers have given relatively good results, espe-
cially in laboratory, it is evident that a PID or a neural network is hardly
sufficient to capture all the complexity of a water treatment plant, and
neither to satisfy all the needs outlined in Section 5.2. Indeed, con-
trollers, can and should be used, but their role is that of specific mod-
ules integrated in a larger architecture, more adherent to the ideal one
shown in Figure 17.

5.4.1 Remote Management Infrastructures

The next advanced management schema gives a relevant role to the
plant operators, who act as supervisors of the behaviour of the con-
trollers. The operations of detection, diagnosis and the appropriate
consequences are not actually automated, but carried out by the hu-
man personnel. Unfortunately, it is infeasible to keep an operator full
time on a hazardous plant, especially if the plant is small and located
in remote areas. Nowadays, however, it is relatively cheap to trans-
mit the information acquired on the plant to a remote location, from
where the operators can monitor several plants at the same time. A bi-
directional communication line also allows to send some commands
back, reducing the number of interventions that must be effectively
performed on site (e.g. the replacement of a defective component).

Modern remoting platforms usually are based on web applications.Remote Web
Interfaces Data are collected and stored in a database: clients needing them send

a request to a centralized server which formats them using the HTML

language and extensions thereof, so that they can be viewed using a
browser interface.

Such platforms are mature, so they are not much a filed of research
(although their application to novel contexts, including some envi-
ronmental ones, still is: [250], [298], [135]), but rather a market for
small and large companies. Obviously, commercial implementations
are more sophisticated: databases are replaced by more robust data
warehouses; the communications are secure and reliable; interaction
with the system is regulated using some form of authentication; fi-
nally, integration with other information systems such as GIS can be
provided.

While such architectures are designed for automatic control and re-
mote management, they are still “hollow” from the point of view of
automated management. Even if they can usually be extended with
dedicated business logic, in practice the operative decisions regarding
the application of medium and long term policies, as well as the han-
dling of the anomalous operating conditions are still delegated to the
human operators.

5.4 advanced management architectures 85

PlantProbes Actuators

Controller

Database

User Interface

Figure 21: Remote Management Platform

5.4.2 Decision Support Systems

When artificial intelligence techniques are used to implement analysis,
diagnosis and decision tasks, thus emulating the behaviour of a plant
manager, and such modules are integrated in a (remote) management
structure as shown in Figure 22, one can properly speak of (Environ-
mental) Decision Support Systems, or (E)DSS.

PlantProbes Actuators

Controller

SupervisorDatabase

User Interface

DSS

Figure 22: Decision Support System Architecture

The term DSS is quite general [246] and can be applied to any tool ca-
pable of aiding a human agent in making a decision, independently on
how the tool is implemented, but here the attention is focused on the
DSS which are knowledge-based and hybrid, i.e. those relying on different
AI and statistical techniques. The role of DSS is usually suitable for an DSS vs ES
Expert System, but not all decision support systems embed an expert
systems, nor all expert systems have decisional purposes. In this work,
however, the terms will be used almost interchangeably: the DSS found
in literature which will be discussed shortly after and the one which
was implemented as a part of this thesis rely heavily on knowledge.
While it is true that they can interact with human users and influence

86 automated management of complex systems : state of the art

their decisions, they also act as automated plant managers and so they
have to take their own decisions - a task which requires a noticeable
expertise. It would be wrong, however, to consider the term “Expert
System” in its original acception of static, hard rule-based system. In-
stead, from now on, ES will be implemented using hybrid hard/soft
computing techniques.

The architecture shown in Figure 22 is in fact an abstraction fitting
quite a few relevant examples that can be found in literature, such as
[67], all of which include a hybrid, modular core. Most authors agree
that the variety of information and tasks the DSS has to solve are better
dealt with using different techniques at different levels of integration,
from independent to cooperative (see Section 4.2).
In [162], the modules have a very fine granularity and perform simple,
basic tasks. They are more properly called components, a term derivingComponent

orchestration from the specific implementation. The behaviour of the system is speci-
fied using use cases, a design choice that mixes the cases of CBR and the
scenarios of SOAs. When the triggering preconditions are met, a pre-
defined sequence of elaborations is executed, where the components
invoke each other. Some of the components, moreover, employ fuzzy
logic to be more robust in case of possible imperfections in the input
data. While impeccable from the software engineering point of view, it
remains a monolithic architecture which components are indeed mod-
ular and reusable, but hardly outside the container in which they have
been developed. This, together with the use of proprietary or obsolete
software tools, is the main limitation of this DSS which, nevertheless,
applied promising concepts.
The architecture shown in [163] is interesting for several reasons. First,
the methodology it proposes is easily generalizable to other contexts.
Second, it combines many hard and soft computing techniques with
different goals, from neural networks (used for prediction and approx-
imation) to genetic algorithms for optimization to (fuzzy) rules for di-
agnosis and control: the underlying principle is trivial - a specific prob-
lem should always be solved using the best available tool. This, how-Supervised Pools
ever, poses the problem of reconciling different modules which may
encode the data in different ways. The proposed architecture is hierar-
chical: the output of a prediction module is used by a planner/sched-
uler to determine the necessary mid-term policies, which in turn are
applied by a control/diagnosis module commanding the various con-
trollers proper. This can be considered an online, cascaded, cooperative
hybrid system.
The methodology and the concrete implementations proposed in [241]
and [88], instead, adopt a parallel integration. The different DSS mod-
ules, which range from fuzzy case-based reasoning to decision trees to
neural networks to embedded mathematical models, operate in paral-
lel for diagnostic, predictive and planning purposes. Their results are
combined by a dedicated supervisor module which, in case of conflict,
uses a simple ranking criterion. This null approach to interaction is
possibly the main drawback of this solution. Moreover, the implemen-

5.4 advanced management architectures 87

tation of [88] is based on a proprietary environment which makes it
hard to integrate with other external systems. Such issues have been
partially solved in [75], where a similar architecture is integrated with
a domain ontology. An ontology is a formal representation of a set of Use of Ontologies
concepts within a domain and the relationships between those con-
cepts: in the specific case, the ontology WAWO has been defined on
the domain of WWTPs. This ontology is used to resolve some of the
apparent conflicts - the ones which could be considered “misunder-
standings” - between the outputs of the modules. This is possibly the
first DSS using ontologies in its development.
A similar proposal can be found in [45], with a difference: the modules
composing the DSS block are not dictated by functionality, but each of
them is dedicated to the management of a single sub-part of the plant.

5.4.3 Complex Architectures: Services, Events, Agents

So far, the blocks of a management architecture have been discussed,
but little has been said on how to integrate them and make them in-
teract. Moreover, the analysis of the DSS block shows that the actual
number of its internal modules and roles involved can be large, grow-
ing with the number of the plants and the complexity of the tasks
necessary to manage them. From an engineering point of view, a real
implementation of such an articulate system can’t rely on ad-hoc so-
lutions [98], but requires the use of well-defined, reliable and, most of
all, standard principles and tools. In fact, the resulting system should
be robust, but also flexible and extensible enough to be adapted to dif-
ferent contexts quickly, without having to rebuild it from scratch. For
this reason, it is important that as many modules as possible can be
reused and reconfigured quickly.

The DSS introduced so far are modular in nature, but the interaction
between modules does not seem a primary topic4. While their internal
structure is hybrid and modular - albeit often parallel and concurrent,
with little interactions between the parts - their external structure is
monolithic. The DSS has a definite interface used by other blocks such
as the data storage and the user interface, but otherwise it is a black
box. In fact, this is not the only option. To this end, the benefits and
limitations of modern mainstream architectural solutions will be con-
sidered.

Service-Oriented Architectures

A Service-Oriented Architecture (SOA) is a design paradigm for large
software systems, based on the vision of Service-Oriented Computing
[227]:

The visionary promise of Service-Oriented Computing
is a world of cooperating services where application com-

4 at least, in the works where they are described

88 automated management of complex systems : state of the art

ponents are assembled with little effort into a network of
services that can be loosely coupled to create flexible dy-
namic business processes and agile applications that may
span organizations and computing platforms.

The architecture is centred on the concept of service: a capability ofServices
a (software) entity which is offered as a functionality to the external
world, so that it can be used by other entities needing it, but which
would not be able to implement it on their own. An application, then,
is composed of several self-contained modules, each of them exposing
a collection of capabilities - here called actions - which can be exploited
by other modules or external clients. For a service to be usable in prac-
tice, the granularity of its actions should not be too fine, nor too coarse,
in order to obtain a good trade-off between re-usability, flexibility and
performances [280]. Services may have different roles, which can be
roughly divided in [125]:

entity An entity service models the entities involved in an applica-
tion: its actions mimic the functionalities of the modelled objects.

task A task service provides a business logic functionality, specific of
the applicative domain.

utility An utility service provides a generic, reusable functionality,
which is not tied to any application in particular but useful in
many.

The design of a SOA and its services is inspired by some basic prin-Service design
principles ciples [125], such as re-usability, abstraction, loose coupling, composability,

discoverabilty and negotiability.
The adoption of such principles usually requires a larger initial in-

vestment since the development of the modules of an application is
more expensive in terms of time and complexity, but a convenient re-
turn is expected when the application has to be extended, or a new
one has to be developed reusing many of the available components.
A service-oriented application, then, generalizes the concept of client-
server interaction by decoupling the interactions and the roles. In fact,
in a SOA three main roles are involved:SOA Roles

service provider encapsulates a business function (or a set thereof),
exposing a corresponding usage contract; it can interact with the
service registry in order to publish its contract.

service registry maintains a list of known service contracts to-
gether with their location. It is actually a well-known service
provider itself (its location is known to all other services), whose
capabilities allow to search for a certain functionality (discovery),
returning the location of a service able to accomplish it.

service consumer is the entity which requires a certain functional-
ity. In general, it does not know where a service able to perform
the requested action is located, but it can perform a lookup ac-
tion to find a suitable service. After retrieving the contract and

5.4 advanced management architectures 89

location of a candidate provider, it can finally interact with it
by invoking the desired functionality and obtaining a result (if
any).

Registry

Register

Lookup

Service

Actionj

Consumer

...

1.Publish2.Discover

3+.Interact

Figure 23: Service-Oriented Architecture

orchestration and choreography The role of service con-
sumer could be played by a human user but also by another service SOA Interaction

Modelsprovider, according to the principle of compositionality, giving birth to
complex collaborative distributed business applications. Loose coupling
even allows different organizations to implement and provide their
own services, whose interaction can be mutually beneficial.

Two different complementary approaches can be followed to real-
ize/perceive a service composition [238]:

• Orchestration perceives the collaboration by the point of view
of a single entity, who defines an applicative scenario (business
process) were interactions between internal and external services
can take place, delegating the realization of some activities to
such services. The execution is controlled by the generating en-
tity: it acts as an orchestrator, coordinating the other services and
correlating the results obtained from them. The invoked external
services are unaware that they are participating in a collabora-
tion. The orchestration itself could be exposed as a single func-
tionality on the network, making it possible of realizing even
more complex “nested” orchestrations.

• Choreography models the collaboration from a global, objective
point of view, independently from the perception of the single
interacting services. Unlike orchestration, its focus is not on ex-
ecutability, but rather on capturing the public contract which

90 automated management of complex systems : state of the art

provides the necessary rules of engagement to make all the in-
teracting parties collaborate correctly.

While orchestration is useful when a single party is interested in ag-
gregating the capabilities of a set of internal/external services, chore-
ography helps when the collaboration must be achieved by taking into
account the mutual requirements of interacting parties, without assum-
ing a unique center of control.

soa implementations In order to effectively make heteroge-
neous service providers and consumers interact, the three fundamen-
tal operations as well as the published service contracts require stan-
dardized languages and protocols. Nowadays, many applications areWEB SOAs
based on SOAs: even if the paradigm poses no constraints on the im-
plementation, many rely on WEB-services. In a WEB-service-oriented
architecture, the world-wide web and its related standards are used as
communication and transport infrastructure, so services interact using
well-known languages such as HTTP, XML, SOAP [62], WSDL [84] and
UDDI [53].

The web implementation is preferred when services are provided
by different companies. When applications are developed within the
context of an enterprise, the communication middleware is often im-Enterprise SOAs
plemented using an Enterprise Service Bus. In a nutshell, an ESB is
a message-oriented middleware (MOM!) [262] optimized for support-
ing services and the communications between them, ensuring that the
messages from sent one service to another are delivered in an efficient
and reliable way. Concrete ESB implementations usually offer more and
more sophisticated functionalities, such as adapters allowing to accept
“messages” in external formats (e.g. HTTP/SOAP, SQL, FTP, . . .) and
embed some native utility services such as security and authentication,
data transformation, service registry and more. Examples of SOAs built
on top of ESBs include [219] and [96].

Complex Event Processing Architectures

Complex Event Processing (CEP) is an emerging approach based on the
concept of event, a record signifying a change of state in a system atEvents: Form and

Significance a certain time [186]. In particular, an event has a form, i.e. the sym-
bolic data structures used to represent the actual activity in the real
world, the significance. For example, the act of a temperature exceed-
ing a safety threshold at time T could be an event, represented by a
typed structure AlarmEvent holding, for example, a DateTime field, a
String with the id of the temperature probe and a Double equal to the
measured value.

Most real-world systems can be viewed as event sources: some note-
worthy examples are stock markets in finance, plants in chemistry and
human bodies in medicine, just to cite some. The peculiarity of such
systems is that they generate dozens of different events every minute -
possibly even every second - but often only a few of them are actually

5.4 advanced management architectures 91

relevant. In the previous example, every temperature measurement,
sampled with a given frequency, can be considered an event (in the
specific case, an observation), but for the purpose of detecting alarm
conditions, only the ones above the safety threshold would be of some
importance. The challenge, then, is to filter, sort and analyse the events,
possibly aggregating them in higher order events at different abstrac-
tion levels, so to extract and model only the information that is really
relevant for an application.

To this end, one can exploit the different possible (cor)relations be- Event Relations
tween the events, namely:

• Time: the time at which an event takes place, measured by a
clock c is converted into a timestamp which allows to define an
ordering relation before (6c) on the set of events. 6c is a total
order, so, for any pair of events e1 and e2, either e1 6c e2 or
e2 6c e1 holds. In fact, it is common to refer to a sequence of
events with the term “stream”. Notice, however, that this relation
can be defined only if all the timestamps are marked using the
same clock or a set of perfectly synchronized clocks; otherwise
two events may not be comparable.

• Cause: even if the notion of cause-effect is less clear than the
notion of time, it is possible to define a weaker notion of com-
putational causality: e1 is a cause of e2 if and only if e2 could
not have happened without e1, i.e. ¬e1 ⇒ ¬e2. This relation
induces a partial order on the set of events, since independent
events exists.

The two previous relations are actually typical of any event-processing
system. Complex event processing introduces a third:

• Aggregation: an aggregated event signifies an activity consisting
of the activities of a set of events e1, . . . , en, its members. Mem-
bership, too, is a partial order on the set of events. Notice that a
complex event can be a member of a higher-level complex event,
thus forming an event hierarchy

Aggregate events are complex, high-level events. A complex event is
always (computationally) caused by its members, but it is not usually
temporally comparable to them. In fact, a complex events E lasts over
the time interval T(E) wrapping all its members:

T(E) = [min
j:ej∈E

{T(ej)}, max
j:ej∈E

{T(ej)}]

so its timestamp is better replaced by a pair of timestamps delimit-
ing the interval. An interval can be defined using any two quantities
among start time, finish time and duration. The use of intervals ex-
pands the class of relations which can be defined between events, in-
cluding concepts such as before, after, during: in fact, the operators
form an algebra [34] on the set of events.

92 automated management of complex systems : state of the art

event matching The first step in event processing is the detec-
tion of relevant events. The concept of relevance is obviously relative
to an applicative context, so it must be possible for a developer to de-
fine the conditions under which an event is of some importance. The
canonical way is to define one or more event patterns, templates which
match the sets of events one wants to select: a template, then, acts like
a filter, extracting the desired events from the main stream.

Event matching is a particular case of pattern matching [119], whereRule-Based
Matching the features to be compared are the generic data structures within

an event’s form, which can be a mixture of qualitative and quantita-
tive variables, including start and finish time. Using the approach de-
fined in [186], objects (in the sense of object-oriented programming)
are used as forms, so patterns are defined in terms of constraints on
the event’s class and fields. Such constraints can be combined using
logical connectives to form complex patterns: for example, the pattern
“all temperature samples over 25 °C in the last ten minutes” is trans-
lated into the conjunction of the simple constraints class == Sample,
type == temperature, value > 25 and timestamp > (now()-10m), as-
suming the intuitive meaning for the fields. A constraint can also in-
volve more than one event and thus be used to define patterns over
sets of related events. The logic-oriented approach is not necessarily
the only way to perform event matching - in fact, any pattern match-
ing algorithm could be applied, while in [64] an automata-based solu-
tion is adopted - but is surely the most common [230]. Moreover, this
class of problems is exactly the one the RETE algorithm discussed in
Chapter 3 was designed to solve.

event processing Once events have been selected and extracted
from the stream, they can be processed by computational units which
can be called Event Processing Agents. An EPA is associated to one orEvent Processing

Agents more event patterns and processes only events matching any one of
them. In particular, EPA can be roughly classified into:

• Filters : a filter divides a stream in two. An input event is as-
signed to either output stream, according to whether it matches
a pattern or not.

• Constraints : a constraint is conceptually similar to a filter as
it matches each incoming event ej with its associated pattern.
However, it does not propagate the event, but generates a higher-
level event (caused by the simpler one) if e matches the pattern,
or discards it otherwise.

• Maps : a map combines one or more relevant events, related by
pattern-defined constraints, into aggregate events and thus is a
building block of event hierarchies.

If patterns are defined in logical terms, an EPA is actually a miniature
reactive rule engine (see Chapter 6) which executes the required ac-
tions as a consequence of the triggering of its rules.

5.4 advanced management architectures 93

event networks The events generated by one EPA can be passed
as input to another EPA, forming Event Processing Networks [186]. The Event Processing

NetworksEPAs form the nodes of an EPN, while edges correspond to communica-
tion channels between agents where events are transmitted when they
are generated from an external source or by the triggering of a rule.
In the first case, the sources can also be distributed, so a network can
collect and integrate events generated in various locations. An EPN can
then be used to build an event hierarchy, moving from lower to higher
levels of abstraction as the events are processed and refined by the
agents. Moreover, the use of filters and constraints can speed up the
overall processing, since irrelevant events are discarded as soon as they
are recognized not to be relevant; more interesting events, instead, are
routed to all and only the agents which can process them. A concrete
case of EPN will be discussed in Chapter 10.

cep architectures Being a relatively novel concept, not many
real-world CEP applications exist, and even then sometimes they are
not published for strategic reasons ([204]). Nevertheless, almost all
mainstream BRMS are including complex event processing among their
functionalities (see Chapter 6) and some dedicated frameworks are be-
ginning to appear [222]. CEP-oriented architectures can be applied to
any system, provided that the observation interface is configured to
generate events whenever it detects a state change in the observed sys-
tem: notice, however, that simple adapters can be used to integrate any
legacy infrastructure which does not support events natively.

Given its event-oriented, reactive nature, CEP is an appealing tech- CEP and WWTPs
nology for general monitoring and management applications, and all
the more when complex systems such as WWTPs are the application’s
target. To this date, only a few very specific applications exist ([264]),
and even then they are not cast in the context of CEP, even if they sat-
isfy all the conceptual requirements. The schema in figure 17, instead,
can easily be fit in the context of CEP: a plant is a system whose state
changes continually as the reactions take place and the electrical and
mechanical components function. Each sample collected by a probe,
as well as every action performed by an actuator, can be considered a
low level event: the detection layer performs the event matching and
processing, possibly triggering higher level events which, in turn, can
be recorded, used for diagnostic purposes and/or notified to the (re-
mote) user. The reactive nature of event processing, moreover, is suit-
able to perform control and more general intervention actions. It can
be argued that not all management tasks are reactive in nature, but
may include planning and pro-action, so CEP would not be the killer
technology for management applications. Nevertheless, it is an option
which becomes even more effective when appropriately integrated in
a broader context, as will be shown in the last part of this work.

94 automated management of complex systems : state of the art

Agent-Based Architectures

Multi-agent systems (MAS) [300] are another vast class of complex soft-
ware systems founded on the concept of agent. An agent is [218]

. . . a component of software and/or hardware which is
capable of acting exactingly in order to accomplish tasks
on behalf of its user . . .

This definition is rather abstract: in fact, there is no general agree-
ment on what an agent exactly is, except that it should be an active and
autonomous entity, i.e. possessing a private execution flow and an ade-
quate interface allowing it to interact with the external world an other
agents, both in a reactive and in a proactive way [299]. MAS are a suit-Multi-Agent

Systems able paradigm to deal with complex problems, large in terms of data
and operations involved: the necessary tasks are divided among the
agents, so that each one can try to solve a limited, simpler part of the
whole. Moreover, the parallel elaboration increases the overall perfor-
mance, while the interaction capabilities allow the agents to cooperate
and share intermediate results.

intelligent agents There exists countless types of agents, clas-
sified according to different criteria which evaluate properties (e.g. mo-
bility [233], proactiveness [171], rationality [5] . . .) and goals (e.g. infor-
mation collection rather than interface). This work, however, is focused
on intelligent agents [299], agents with and internal knowledge of the en-
vironment where they act and whose actions are directed towards the
fulfilment of some private goal.5

The intentional stances of an agent can be divided in two categories,
information attitudes and pro-attitudes, summarized in Table 6 The for-
mer include knowledge, static and objective information, and beliefs, con-
tingent information on the actual state of the world. The latter are more
“emotional” dispositions which guide the agent’s choice of actions.

Intentional stances

Information Disposition

Knowledge

Belief

Desire

Intention

Commitment

Obligation

. . .

Table 6: An intelligent agent’s intentional stances

The exact number, type and implementation of stances define the
theoretical framework in which the agents are developed. For exam-
ple, one of the most widely used agent models, BDI [251], is based on

5 This is more properly an intentional definition of intelligent agent, and not
necessarily the best one.

5.4 advanced management architectures 95

belief, desire and intention alone. In [141], instead, also obligations are
included as primitive notions. The nature of an agent is then fully de-
termined when one decides how the stances are combined and fixes
the underlying architecture, including the reasoning capabilities. No-
tice that this belief is “perfect”, i.e. it is usually intended in a sense
closer to that of modal logic, which is a crisp version of possibilistic
logic - and not in its uncertain sense. In particular, there exist a dedi-
cated logic, BDI logic [252].

Agents can then be classified in deliberative, reactive and hybrid. The Reactiveness vs
Proactivenessformer use an explicit symbolic representation of their beliefs and use

it achieve their goals (desires), usually through some planning process
influenced by their intentions; reactive agents react in response to ex-
ternal stimuli, according to some policy usually encoded using sub-
symbolic techniques. Hybrid agents, instead, combine both behaviours.
They have a case base of pre-configured strategies which are quick to
retrieve (e.g. using a CBR module, or condition-action rules6), even if
potentially sub-optimal. Actual planning, then, takes place only when
an agent has the time and resources to do so ([48]). Notice that this
notion of hybrid agent is compatible with the more general notion of
hybrid AI system.

Given their symbolic nature, logic programming-derived systems
are often used in the development of intelligent agents ([58], [141]), but
other AI tools can be applied, in particular the associative and reactive
ones such as neural networks, CBR and (fuzzy) forward-chaining rule-
based systems [46].

agent interaction The “intelligence” of an agent-based appli-
cation does not depend only on the nature and degree of intelligence
of its component agents: for example, the well-known optimization
techniques based on natural metaphors, such as colonies [105], are
rightfully considered AI applications, even if the “agents” involved are
rather primitive. Intelligence, instead, is an emerging behaviour which
depends on the complex sequences of interactions which take place be-
tween the agents. In particular, there are two possible ways for agents
to interact:

• Direct: an explicit message is passed between the agents. It is es-
sential that the agents “speak” a common language: there exist
two main language standard proposals, FIPA-ACL and KQML
which define the message types and syntax. In addition to that,
the agents must share the same set of concepts: to do so, ontolo-
gies are used [28] to ensure that there is no ambiguity in the
terms used by two independent agents.

• Indirect: the agents interact through the environment. An agent
desiring to leave a message alters the state of the environment,
so that the change can be detected by other agents through their
sensors [165]

6 see Chapter 7

96 automated management of complex systems : state of the art

An exchange of messages between two or more agents should be ruled
by means of specific protocols. Much research is being carried out on
the languages which can be used to define the protocols, as well as the
runtime execution, verification, monitoring and analysis of interactions
[205].

environmental agent-based applications Many envi-
ronmental applications have been implemented using MAS: even some
of the DSS introduced in Section 5.4.2 can be considered agent-based
systems. Water treatment seems to be the main application for MAS

(e.g. see [94]), followed by air pollution and meteorology [40] and for-
est fire prevention, but there exists even other case studies [89] (a com-
prehensive and recent survey can be found in [41]). In the above sys-
tems, the notion of agent is used in a wide sense and not necessarily
with the meaning of intelligent agent. In [39], a methodology involv-
ing both belief-oriented reactive (“information carrier”) and planning
(“decision making”) agents is proposed, while [94] uses generic agents
communicating through a blackboard. In general, from [41] it is clear
that different types of agents, from simple reactive, to planners to learn-
ers, have been used for specific environment-related tasks.

In fact, another (very general, actually) definition of agent [258]
states exactly that “An agent is anything that can be viewed as perceiving
its environment through sensors and acting upon that evnironment through
effectors”. Nevertheless, this is a fitting vision for a management archi-
tecture: a single agent is unlikely to be able to handle all the complexity
of systems such as WWTPs, but MAS may, provided that they can coor-
dinate their work efficiently, either through a supervisor entity such
as the ones cited in Section 5.4.2, but also interacting using a common
language and especially a common ontology [74]

5.4.4 Combining Events, Services and Agents with Imperfection

So far, three advanced paradigms - SOA, CEP and MAS - have been pre-
sented as candidate models for the development of an automatic man-
agement system: in fact, there exist several real-world cases where each
one has been applied with various, but nevertheless good, degrees of
success. However, the three different approaches are not alternative,
but clearly complementary. In one of his white papers, Luckham ([184]
and [185]) clearly states that:

An event driven architecture (EDA) is a service oriented
architecture (SOA) in which all communication is by events
and all services are reactive event processes (i.e., react to
input events and produce output events).

A SOA stresses the role of modularity and the strong separation be-
tween an interface and its implementation, but poses no constraints
on what a service should do and how it should be done. Nothing, then,
prevents the creation of a specialized class of event-processing services,

5.4 advanced management architectures 97

invoked whenever the relative events actually happen. At the same
time, services can generate events as a part of their execution. How-
ever, there is one important difference in the interaction modality: a
service invocation usually involves a handshake protocol between the
consumer and the provider, negotiating the quality of the service. The
protocol is driven by the service consumer - from now on, called client
- which is the party interested in getting the results back. When events
are involved, instead, the source is never interested in knowing who
will process the event, nor in getting a response back: it is instead re-
sponsibility of the event consumer - from now on, called the handler -
to request that an event be delivered to him. This is not a limitation:
the subscription is a specific service request, while the subsequent event
notifications can be implemented using one-way, asynchronous invo-
cations. On the other hand, should some information be returned, it
is always possible to generate a response event for the original source
to intercept. Thus, an event processing protocol is a special case of cas-
caded service invocations, even more loosely coupled than a pure SOAs
would use. In this framework, then, the role of agents is clear: SOA are
implementation agnostic, so an agent is a natural candidate for the
implementation of a service. The agent exposes some of its capabili-
ties through the service interface, so it can be called either directly “by
name” (e.g. using an ACL) or “by role”, through a service invocation
protocol7. Depending on the application, agents can be intelligent or
not; when event processing is involved, however, EPAs should be intel-
ligent and reactive (or hybrid). Moreover, if Luckham’s original vision
is adopted, an EPA should also be rule-based [186].

Adopting this point of view, it is trivial to extend Luckham’s vision:

A hybrid event-driven, service-oriented architecture is
a SOA in which part of the communication regards event
notifications, and all services are backed by intelligent
event-processing agents.

The idea is sketched in Figure 24, where two agents implement two
services. As usual, the role of service client and service provider de-
pends on the context. One of them is also an event source: the events
it generates are processed by the second, who handles them using one
of the actions he is capable of.

The hybrid complex architecture fits perfectly with the ideal schema Fitting Vision with
Designof Figure 17. Whenever it is applied to the development of an auto-

matic management platform, the changes observed in the managed
system generate low-level events which are then analysed and com-
bined into more complex events. These events are propagated to the
higher level of the architecture, according to a correspondence between
level of abstraction and management role. In fact, agents operating at
the detection level are mostly reactive, while agents involved in diagno-

7 This is actually a natural metaphor in everyday life: for example, you can either
ask for the aid of John Doe, because you know him to be a skilled technician,
or you can look in the white pages for a technician, then John Doe will answer

98 automated management of complex systems : state of the art

Service Provider, Event Handler

Service1
A1,j

Service Client, Event Source

Service2
A2,k

Synchronous

Asynchronous

Events

Figure 24: Integrating Agents, Services and Events

sis and intervention are hybrid, with long-term reasoning capabilities.
The deliberative taks may be require different actions than simple plan-
ning, actions which can conveniently be provided by other specialized
agents acting as service providers.

the role of imperfection Despite all the reasons suggesting
the adoption of a hybrid complex architecture, one should not ignore
an important detail when designing a management system : like any
other form of information encoding, events may be affected by imper-
fection. This can manifest in different ways, including:

• If some events are partially unobservable, there may be uncer-
tainty due to the missing data.

• Events may be reported with imprecision, e.g. because the mea-
surements are unreliable or afflicted by error.

• In presence of anomalies, the information carried by a given
combination of events may be conflictual.

• The conditions used to create a complex event from simpler ones
may not be certain (i.e. when detecting the insurgence of a dis-
ease from its symptoms).

• . . .

Moreover, additional imperfection can be generated by the manage-
ment process itself, in addition to the amount inherited from the input:

• It may be convenient (if not necessary) to express some con-
straints - especially the temporal ones - with some degree of
vagueness (e.g., event A happens “more or less at the same time”
of event B).

5.5 conclusions 99

• Policies too complex to be applied, especially in real-time tasks,
may have to be approximated to be simplified

• Any event-based prediction is intrinsically uncertain, so policies
based on such predictions are not guaranteed to be successful.

• . . .

As pointed out in Chapter 2, imperfection can even be considered
a beneficial property of data, provided that it is possible to isolate
and evaluate it. For sure, given its intrinsic presence in the data ac-
quired from the managed system, the agents must not ignore it, or
their actions risk to be founded on an idealized, unrealistic model. This
poses a relevant design and implementation problem: event-processing
agents are usually rule-based, but no mainstream rule-based system
alone can handle imperfection in the proper way (with the exception
of fuzzy rules). In order not to lose the benefits of such an implemen-
tation - namely the unified, declarative approach - the only alternative
was to develop a rule engine capable of handling imperfection in a
native way.

5.5 conclusions

The automatic management of a complex system such as a WWTP can
lead to several benefits: in the specific case, there are both environmen-
tal and economic advantages, since the quality of treated water can
be increased while, at the same time, lowering the energetic and mone-
tary costs. The automation of a plant, however, goes beyond the classic,
perfect notion of automatic control, since it also includes tasks such as
fault detection, diagnosis, planning and, globally, decision support and
self-adaptation.

Such variety of non-trivial problems can hardly be solved by a single
“killer” technology: instead, it has been shown that a combination of
mathematical and statistical tools, together with various AI techniques
can be largely more effective since each sub-problem can dealt with
using the most appropriate technology.

The integration of the various modules, then, requires a complex ar-
chitecture in order to be efficient, scalable and extensible. An elegant
solution could be an architecture where knowledge-based agents offer
their services to other entities, while also handling (complex) events,
but the construction of the intelligent agents requires a suitable en-
gine to process the beliefs and the knowledge of the agents themselves.
Moreover, this knowledge would be imperfect: the reasoning processes
should not ignore this, but unfortunately no engine exists capable of
doing so in a general way. Hence, the next part of the work will be
dedicated to the design and implementation of an engine with the re-
quired capabilities: this, in turn, will become the main building block
of a hybrid “intelligent” management system.

Part III

A H Y B R I D R U L E E N G I N E

6
B U S I N E S S R U L E S M A N A G E M E N T S Y S T E M S

Contents
6.1 State of the Art 104
6.2 A Comparison of Mainstream BRMS 105

6.2.1 BRMS Features 105

6.2.2 Results and Considerations 106

6.3 Drools 110
6.3.1 Drools Expert 110

6.3.2 Drools Fusion 111

6.3.3 Drools Flow 112

6.3.4 Drools Guvnor 113

6.4 Conclusions 113

In Chapter 5 it has been pointed out that rule-based systems have
an important role in (complex) event processing and, more generally,
in the development of reactive/hybrid intelligent agents. When the
agents are used for control and management tasks, the RBS should be
able to handle imperfection in a native way. If so, it would be possi-
ble to have a unified agent model to use in the development of the
different modules, whereas at the current state of the art several dif-
ferent implementations are required, ranging from CBR to FS to NNs.
On the other hand, the complexity of the system and the final goal,
which remains the development of a real-world EDSS and not a theo-
retical prototype, suggests the use of a mainstream rule engine instead
of a custom solution. The reasons are, obviously, the necessity of a
mature, standard-oriented product with a sufficient level of reliabil-
ity and continuously maintained. Furthermore, mainstream products
often provide corollary services and functionalities that could be ex-
ploited in the development instead of having to implement everything
from start. With this goal in mind, the first step was take is a deeper
analysis of the state of the art of the existing rule-oriented development
tools, in order to find the most suitable one for the use in a real-world
project. In particular, much of the data presented in this Chapter are
derived from a recent survey, whose results were partially published
in [6]. Other than drawing a picture of the current situation, the survey
is particularly focused on how the different available products handle
imperfection.

103

104 business rules management systems

6.1 state of the art

Nowadays, there exist few “pure” rule engines (with the notable excep-
tion of Prolog engines). In the second half of the XX century RBS have
been widely used to build Expert Systems, mainly applied to diagno-
sis and interpretation problems [120]. Unfortunately, ES have been ap-
plied to domains where the traditional algorithmic approaches failed
mostly due to their inherent imperfection, but early ES like MYCIN [69]
had only a very limited (and sometimes with unclear or misused in-
terpretations [93]) notion of imperfection which mined their perfor-
mance. In the years, then, rule-based expert systems have have beenRBS and Expert

Systems applied less frequently as stand-alone entities to solve artificial intel-
ligence problems. In fact, in the 90s there has been a decline in the
number of canonical, rule-based expert systems, which have been re-
placed by hybrid expert systems. Roughly speaking, the hybridation
has followed two courses, not necessarily mutually exclusive: the HC

techniques used in the implementation have been integrated - if not
completely replaced - by SC methods, whose robustness and flexibility
has already been discussed in Chapter 3. For example, several Neural
[157] or Neuro-Fuzzy expert systems have been developed. On the other
hand, ES have found other fields of application in the industry, where
they have undergone an integration process with enterprise informa-
tion systems such as databases and data mining tools in distributed
environments [259]. In this context, to this date the most popular ap-
plications seem to be:Modern RBS

Applications
• Reasoning over Semantic Web ontologies enhanced with rules

[36]

• Processing business rules in enterprise contexts [257]

The first application is not relevant in this thesis, so the discussion will
be focused on the latter. Rules have been used to model the behaviour
of information systems because of the flexibility, uniformity and con-
sistency of the approach, together with the possibility to expand a
knowledege base ([198]). Moreover, rules are easy to understand even
for non technical people - in fact, they often model a domain expert’s
empirical knowledge - but at the same time they are written in a for-
mal language that allows meta-reasonings to be performed over them.
When complex processes are involved, the declarative approach be-
comes convenient as it separates the behaviour specification from the
concrete implementation. To be actually usable in an enterprise project,
where several actors with different backgrounds are likely involved,
rule engines have evolved into more complex Business Rule Manage-
ment Systems, which integrate the engine proper with additional fea-
tures such as guided authoring tools, versioning management and re-
mote repositories. Moreover, while BRMS have been traditionally used
to orchestrate services in enterprise SOAs, the recent advent of CEP as
a complementary paradigm has urged the engine developers to inte-

6.2 a comparison of mainstream brms 105

grate event-processing capabilities, in order to offer tools for the devel-
opment of integrated architectures such as the one shown in [229].

6.2 a comparison of mainstream brms

This section will be dedicated to a comparison of the main existing
BRMS. Given the vast number of tools, engines, shells, frameworks and
similar, it is impossible to consider them all, so the discussion will nec-
essarily be limited to mainstream projects, i.e. general purpose tools
supported by a community (to whatever extent). This excludes several
student projects and many ad-hoc engines built for specific applica-
tions, none of which are suitable to become general purpose building
blocks in complex applications.

Notice also that, even if the support for imperfection is a most rele-
vant feature, pure logical reasoners and other implementations of prob-
abilistic and possibilistic frameworks which are not rule engines in the
usual sense will not be taken into account because they are too nar-
rowly focused. Other than a minimal support base, a tool must sup-
port at least one rule language with an expressiveness at least equal to
that of propositional logic and possibly have at least one other relevant
feature.

To this date, the mainstream BRMS include (but likely are not lim-
ited to) InRule [9], ObjectConnections Common Knowledge [16], Microsoft
BizTalk [4], Fair Isaac’s Blaze Advisor [10], ILOG JRules [14], OpenRules
[17], PegaSystems PegaRules [18], Open Lexicon [15], XpertRule Knowl-
edgeBuilder [25] and JBoss Drools [8].

6.2.1 BRMS Features

When evaluating a BRMS, the support for imperfect reasoning is a very
important factor, but inevitably other aspects have to be taken into
account. Many of the features of a BRMS are stressed by vendors them-
selves to promote their product. They include:

• License : Commercial vs Free/Open Source. Academic products
are always open source, but several companies release a free
version (possibly with some limitations) of their products.

• Runtime : Execution environment. Java and .NET are the most
common to this date.

• Imperfection : Support for non-boolean logics, such as fuzzy
and probabilistic logic. Several tools use confidence factors, an ap-
proximate (and sometimes non completely sound) degree of be-
lief.

• Rule Inheritance : This feature, directly inspired by object-oriented
programming, allows the reuse and specialization of existing
rules, especially in contexts where the rules share common parts.

106 business rules management systems

• Forward/Backward Chaining : Engines operating in FC! mode
are data-driven and reactive, while BC! engines are goal-oriented.
The native propagation method influences the engine efficiency
in different tasks.

• Workflows : Support for Workflows, needed to model business
processes.

• Events : Support for Complex Event Processing, which requires
an explicit notion of time and the ability to use it in the inference
process.

• Editor : Presence of a graphical authoring tool. This determines
the effective usability of the tool by people without a program-
ming background.

• Repository : Presence of a centralized rule repository. This fea-
ture is mostly relevant in enterprises, where collaborative work
is used.

• Language : The language used for the authoring of rules can be
proprietary or adhere to some standard such as RuleML.

• Standard : Even if an engine adopts a proprietary language, it
can be compliant with some rule language standard. This de-
pends on two factors : (i) the expressiveness of the two languages
and (ii) the existence of a translator, embedded in the engine or
provided as an external component.

6.2.2 Results and Considerations

The criteria defined in the previous section allow to compare several
tools available on the market. The results, summarized in Table 11, is
rather clear: full-featured BRMS are mostly commercial products. They
are competitors in a market which, in 2008, was worthy about 285M$
and growing, to the point that a sensitive and highly valued market
survey is performed every year [193]. From a general point of view,
all the products offer comparable functionalities, so one can only spec-
ulate on the reasons behind the different market shares obtained by
each company. They are likely to depend on canonical factors such as
the specific implementation, compatibility with legacy systems, sup-
port and the advantage gained by different times-to-market. No open
source tools, on the other hand, can provide a comparable variety of
features, with the only exception of JBoss Drools and, to a lesser de-
gree, Open Rules. Such tools, usually coming from the academia, are
either discontinued or developed with a specific research goal in mind,
so there is little interest (and, usually, limited resources) to build a com-
plete tool.

6.2 a comparison of mainstream brms 107

Interoperability: the role of RuleML and other Standards

One of the limitations of the different engines is their using proprietary
languages to write logic formulas and rules in particular. The lack of
a common language standard could induce a strategical lock-in effect
for the vendors, but is still a major limitation to the interaction of enter-
prises - or even divisions within the same enterprise - using different
BRMS.

To achieve a good degree of interoperation, standards on rule rep-
resentation and interchange are being proposed in the last few years.
The Rule Interchange Format (RIF) [169] is a proposed W3C standard
format for rule representation and interchange, based on XML.

The Semantics of Business Vocabulary and Business Rules (SBVR) [20]
is instead a natural language-oriented standard, focused on the logical
description of business contexts. It provides a standardized vocabulary
of the entities involved and allows to write rules in a way which is
natural for a non-technical reader and yet compliant with the rigor of
a formal language.

RuleML [2] is an initiative which develops a XML- and RDF- based RuleML
markup language for rules, with Datalog-rules as the core. RuleML
uses a modular approach1 to support different rule-based logics with
different types of complexity and expressiveness, in order to promote
rule interoperability between industry standards. The modular struc-
ture, going from a propositional-like logic where all terms are ground
to a full-fledged FOL with support for both logical negation and NAF,
plus equality and function evaluation is reported in Figure 25 RuleML
supports various kinds of reasoning engines (e.g., forward vs back-
ward chaining, RETE vs Prolog, . . .) and leaves knowledge engineers
the choice of implementation for entities and facts (e.g., objects, plain
symbols, XML trees, . . .). RuleML is supported by various rules en-
gines, such as jDREW and Mandarax. A combination of the current
standard ontology language OWL and RuleML is proposed to the
W3C in form of the Semantic Web Rule Language (SWRL) [23].

Nevertheless, while the proposed standards SBVR and RIF are still
under development, RuleML is still used primarily for academic pur-
poses, so in practice the degree of interoperability between engines
remains limited to this date, even if it is expected to increase signifi-
cantly in the next years.

Imperfection in BRMS

When it comes to the support for imperfection, however, the results are
diametrically opposite - and hardly satisfactory. Fuzzy logic is perhaps
the easiest type of imperfect logic to implement in a rule-based system:
inference in that framework is a simple generalization of the boolean
case. Most importantly, the operators are truth functional, i.e. they just
aggregate the degrees associated to their operands, so the complexity

1 http://ruleml.org/modularization/

108 business rules management systems

datalog

folog

hornlog

dishornlog

hornlogeq

nafhornlog

Equal
lhs
rhs

@oriented
@val

equality

Naf
weak

naf

Neg
strong

neg

slot
@card

@weight

slot
arg
Ind
Data
Var

Skolem
Reify

@index
@type

term

Implies
body
head

Entails
Equivalent

torso
Rulebase

And
Or

formula
@material

@mapMaterial
@mapDirection

@direction
@mapClosure

@closure

oid

desc

Atom
degree

op
Rel

atom

@uri

uri

Forall
Exists

declare
formula

quantifier

repo
resl

rest

 RuleML
Assert
Retract
Query

formula

performative

Expr

Expr
op
Fun
Plex
@in

connective

bindatalog

bindatagroundlog

bindatagroundfact

Binary

negdatalog

nafdatalog

nafnegdatalog

Negation
Datalog

hohornlog

hohornlogeq

framehohornlogeq

SWSL

fologeq

naffologeq

FOL+

naffolog

Hterm
Atom
slot

@minCard
@maxCard

op
Con

Set
InstanceOf
SubclassOf
Signature

Get
SlotProd

frame

holog

Figure 25: RuleML Modules Hierarchy (from [2])

remains limited. However, this still means that a standard rule engine
can’t evaluate fuzzy rules natively without an extension.

Many mainstream BRMSs, both commercial and free, usually embed
a RETE-based algorithm: adding fuzzy logic (or any other type of logic)
to any of these systems would require a refactoring of the internal rule
engine and, possibly, the rule language, neither of which is a trivial
operation.

The principale fuzzy-capable systems, instead, are open source ruleSupport for
vagueness shells, typically originated in an academic context, without many of

the additional features of BRMSs. The most famous are possibly FuzzyShell
[22], FuzzyClips [7] and FuzzyJess [12]; there is also a commercial data

6.2 a comparison of mainstream brms 109

mining tool, Scientio XMLMiner / MetaRule, which claims to have
fuzzy capabilities [21], even if it was not possible to analyse it. Fuzzy-
Jess is one of the most used given its Java-oriented nature: it is actu-
ally a rewriting of FuzzyCLips, itself an extension of the CLIPS en-
gine. FuzzyClips, moreover, has the merit of supporting two types of
imperfection: fuzzy logic and confidence, in the form of certainty fac-
tors2. The first rule-based system to introduce uncertainty in automatic
reasoning, MYCIN ([69]), adopted imperfect rules annotated with cer-
tainty factors to model a sort of quality score. The way of handling the
factors was not theoretically very sound, so later systems used more
structured approaches, even if the idea of using confidence was further
developed (see for example [296]). In FuzzyClips, however, they have
been introduced in a more coherent way, again truth-functional, and
their evaluation proceeds in parallel with the evaluation of the fuzzy
truth degrees of the formulas. Notice, however, that all these fuzzy
shells support fuzzy logic in the broader sense of the term.

In contrast, no mainstream rule engine seems to support probabilis-
tic logics. Whereas Bayesian Networks have become a very popular Support for

Uncertaintytool for handling uncertainty and many mature software packages ex-
ist which implement Bayesian networks, hardly any product already
supports any of the various probabilistic logics, even if recently at least
two projects have been started, namely Balios [166] and BLOG [202].

Imperfect Languages

Even if engines can hardly support imperfection, much more has been
done from the language point of view. The issues related to the intro-
duction of imperfection in rule languages have recently been discussed
in [92]. In this work, an analysis of the different imperfect logic formal-
ism is performed from the point of view of the notations required to
fully express the semantics of each language. Given the different no-
tions of imperfection, it is not surprising to find that different theoret-
ical frameworks have been developed. Roughly speaking, probabilis-
tic logics deal with uncertainty and thus are founded on probability
theory; possibilistic and fuzzy logics are many-valued logics which
handle vagueness natively; non-monotonic logics, instead, cope with
inconsistency in the available knowledge.

The results given by [92] are remarkable since it shows that most
types of imperfect logic - from probabilistic to possibilistic to many-
valued logic - can be encoded simply by allowing predicates and con-
nectives to be annotated using appropriate meta-data. Unsurprisingly,
in presence of imperfection predicates are no longer boolean, but their
evaluation returns a generalized degree, according to the possible se-
mantics given in Chapter 2. Likewise, it is necessary to extend the
concept and the modalities of combination for these degrees, which
becomes more complicated, so the behaviour of the operands imple-
menting the logic connectives has to be redefined. In [92] this is done

2 see Chapter 8

110 business rules management systems

using the meta-attributes @degree and @kind, respectively, to define
the desired imperfect semantics of a logic formula. These extensions
proposed are compatible with RuleML: in fact, they were ideally de-
signed to be included in an additional module, but as of RuleML ver-
sion 0.91, only a partial integration with the core Datalog language
has been completed (in fact, to this date, the RuleML research initia-
tive has been inactive for some time). However, the same extensions
are also compatible with a preliminary version of the W3C Rule Inter-
change Format (RIF) [169], while a different approach, even if limited
to fuzzy logic alone, has led to the fuzzy extension of SWRL, f-SWRL
[226].

6.3 drools

Unlike many other commercial BRMS, Drools [8] is an open source
project maintained by a growing community of developers who ex-
pand its functionalities and test it continuously. Excluding commercial
and merely academic projects, after the dismissal of CLIPS and Jess it
is possibly the only mainstream “living” engine of some importance to
this date, so it deserves a more in-depth analysis. Initially born a RETE-
based rule engine, it is now more properly a Business Logic Integration
Platform which provides a unified and integrated platform for Rules,
workflows and Event Processing, relying on an integrated rule Repos-
itory for cooperative work. Its modular architecture allows to use all
the functionalities or just a limited part, according to the user’s needs.
The characteristics described here are referred to version 5.0, but willDrools 5.0
likely be extended and improved in the following versions.

6.3.1 Drools Expert

The rule engine is the core component of Drools, based on an object-Rule Engine
oriented version of the RETE algorithm (see Chapter 3). The facts are
implemented using POJOs, but the classes can be declared or extended
directly in the knowledge base. As with most RETE-based engines, it
adopts a reactive, forward-chaining propagation policy, even if it sup-Reasoning Modes
ports simple queries (backward chaining will likely be included in the
newer releases). It can work both in stateful and stateless mode: while
the former corresponds to the canonical modality, the latter discards
the facts after evaluating and firing the relative rules. In stateless mode,
the engine is properly reactive: the output depends on the current
inputs alone, so several optimizations can be applied to increase the
performance, whereas the stateful mode allows to implement more
complex reasoning patterns at the cost of an increased latency.

The rules themselves are written in a proprietary language, called
DRL, which will be analysed in greater detail in Chapter 7. It offersRule Language

Expressiveness almost full support for first-order predicate logic (with a few differ-
ences outlined in the relative section), but also includes “hybrid” con-

6.3 drools 111

structs such as the accumulate3 which cross the border between logic-
declarative and procedural semantics. The engine, in fact, is more ap-
plication than pure logic oriented. First of all, the consequence of a
rule can include any type of action, be it logical, procedural or func-
tional, essentially allowing the invocation of any well-formed code
block (written in a Java dialect, in particular). More interestingly, the
engine also supports custom logic evaluators, any module with an Object×
Object 7→ boolean interface capable of evaluating a unary or binary
logic predicate for a given set of arguments. This feature, while not
much publicly documented, will turn out to be essential in the integra-
tion of the rule engine with other, non symbolic techniques.

Although DRL is the main language, there exists several alternative Supported
Languages“syntactic sugar” forms:

• Domain Specific Language (DSL) : the rule language is encap-
sulated within templates expressed using an intermediate form
between the native DRL and the natural language. These masks
facilitate the comprehension of the rules by non-technicians, but
still can be parsed by the compiler.

• Business Rule Language (BRL) : a web-based editor allows to
author rules using a graphically enhanced interface

• Drools XML : there exists a (deprecated) XML-oriented version
of the rule language. Unfortunately, this encoding is not compat-
ible with other standard such as RuleML.

• Decision Tables (DT) : Decision tables are a compact way of
defining complex decisional branches [245], easy to create even
for people lacking proper programming skills. The parser, com-
patible with most common word processors and spreadsheets,
can translate a table into a set of rules.

Drools Expert

Object-oriented RETE engine

Forward Chaining with Queries

Run-time type declaration/extension

Proprietary Language with Syntactic Sugar

First-Order Logic Support

Declarative and Procedural Side Effects

Custom Evaluators

Table 7: Drools Expert features

6.3.2 Drools Fusion

This module adds the support for CEP: RETE networks are optimized Event Engine

3 http://www.jboss.org/drools/documentation.html

112 business rules management systems

specifically for the many-to-many, pattern matching needed by Luck-
ham’s agents [186] and Drools’ language is expressive enough to im-
plement the required logical constraints.

Event types are defined in the knowledge base, as new classes or
tagging legacy types using meta-data: each event has a timestamp -
which is either set when the object is inserted in the working memory
or read from a designated field of the object - and a duration, set to 0
unless otherwise specified. The timestamp and duration are used auto-
matically by a set of temporal evaluators which are an implementation
of Allen’s interval operators [34].

The engine can be configured in two modalities: the cloud mode,Cloud vs Stream
Mode where it acts as a classical rule engine with temporal predicates, and

the stream mode, where it uses a session clock to be explicitly aware of
the passing of time. Events in stream mode are inserted sequentially;
moreover, the declared duration is used to retract an event automati-
cally when (i) it is expired and (ii) the system has determined that it
can no longer contribute to the activation of any rule. This sort of auto-
matic “garbage collection” is used to improve the response time of the
engine, which may be critical when processing events, by preventing
unnecessary joins in the α and β nodes. To further improve the over-
all performances, it is possible to define multiple entry-points, so that
events can be channeled through different paths in the network.

Drools Fusion

Explicit Event Support

Temporal Reasoning (using Allen’s interval algebra)

Session Clock

Automatic Expiration

Multiple Stream Entry-points

Table 8: Drools Fusion features

6.3.3 Drools Flow

Drools Flow introduces the support for rule flows, processes which de-Workflow Engine
scribe the order in which a series of steps need to be executed, using
a flow chart. A workflow is a procedural model of a Business Process
(as opposed to a declarative model, a concept studied in great detail in
[205]), consisting in a collection of nodes that are linked to each other
using connections. Each of the nodes represents one step in the over-
all process while the connections specify how to transition from one
node to the other. The flow is deeply integrated with rules: first, a pro-
cess step can be defined in terms of rules to be evaluated and executed;
then, rules can be used to evaluate the branching conditions during the
process execution. Drools Flow uses a peculiar architecture: the flowFlows-Agenda

Interactions engine does not hold the control and call the rule engine on request.

6.4 conclusions 113

Rather, objects inserted in the working memory are evaluated preven-
tively, leading to rule activations which are placed in the agenda; the
activations, then, are fired in an order controlled by the flow engine.
The two components execute in parallel, using the agenda to synchro-
nize each other. All the transitions are logged, so a limited form of
process auditing and reporting is included in the bundle. The execu-
tion flow can also be influenced by asynchronous events (exploiting
the Fusion module of the rule engine) and include human-performed
tasks. Moreover, the engine can be extended to include custom process
nodes: in fact the goal of the project is to provide an editor and an
engine compatible with different business process specification stan-
dards, like WS-BPEL [24], OSWorkflow4, jPDL [11] and BPMN [6].

Drools Flow

Process Workflows

Rule Integration

Integration of Events and Human Tasks

Domain Specific Processes

Automatic Auditing

Support for BPMN 2.0 (under development)

Transactional and Persistent

Table 9: Drools Flow features

6.3.4 Drools Guvnor

Guvnor is Drools’ business rule repository, implemented as a web ap- Rule Repository
plication deployable on any application server and accessible through
any HTTP-enabled browser. It allows to store rules and the related
resources, organizing them in packages and taking care of the version-
ing of each item. Every package can be considered portion of a remote,
shared knowledge base. The resources may be uploaded from different
sources: in that case, the repository sees that they are properly merged Runtime Package

Integrationand checks the coherence of the resulting package. Guvnor also sup-
ports KnowledgeAgents, dedicated agents which can monitor the repos-
itory, download a package and update it automatically whenever it
changes.

6.4 conclusions

In the last years, rule engines have lost some of their appeal as AI tools
to soft computing techniques, but have found a new, important role in
the management of business processes. The integration of RBS, CEP and
workflows under a unified tool facilitates the development of complex

4 http://www.opensymphony.com/

114 business rules management systems

Drools Guvnor

Runtime Rule-Base Update

Remote Rule and Resource Repository

Web-based administration interface

Graphical Editors for Remote Authoring

Table 10: Drools Guvnor features

enterprise applications: in fact, the development of BLIPs is mostly car-
ried out by dedicated companies, capable of providing the expected
assistance and life-cycle product management, instead of academic re-
search groups. The noteworthy exception is given by Drools, which,
due to its open source and community-driven nature, remains a com-
petitive option even when compared to commercial products, while it
can still be used for research purposes.

The advanced reasoning engine, together with the support for work-
flows and events, make Drools the ideal candidate platform for the
development of hybrid intelligent agents, actors of a complex manage-
ment system in the sense of Chapter 5. Despite all its features, Drools
has two main limitations: it uses a proprietary language and does not
support any kind of imperfect rules. This last drawback is not just a
limitation of Drools: from a market analysis, it turns out that while
there exists countless “toy” engines, most mainstream engines do not
support imperfection at all, or limit themselves to fuzzy logic, whereas
a user interested in dealing with uncertainty has to resort to a BN

package. However, if it were possible to extend an engine to embed
imperfection, the horizon of its possible applications would expand
greatly. The next Chapters, then, will be focused on the analysis of the
integration of imperfection in logic, with the goal of identifying the ex-
tensions necessary for a RETE network to reason with imperfect data.
Afterwards, a Drools-based implementation will be discussed.

6.4 conclusions 115

Ta
bl

e
1

1
:M

ai
ns

tr
ea

m
BR

M
S

Fe
at

ur
es

Ve
nd

or
R

un
ti

m
e

Im
pe

rf
ec

ti
on

In
he

ri
ta

nc
e

FC
/B

C
Fl

ow
s

BR
M

S
C

EP
G

U
I

R
ep

o
La

ng
ua

ge
C

om
pl

ia
nc

e

O
pe

n
So

ur
ce

/F
re

e
Sy

st
em

s

Ba
lio

s
A

ca
de

m
ic

Ja
va

+S
ic

st
us

Ba
ye

si
an

C
P

N
o

F+
B

N
o

N
o

N
o

Ye
s

N
o

BL
P

D
R

-D
ev

ic
e

A
ca

de
m

ic
C

++
D

ef
ea

si
bl

e
N

o
F

N
o

N
o

N
o

ID
E

N
o

C
LI

PS
/X

M
L

O
O

-R
ul

eM
L

D
ro

ol
s

Jb
os

s
Ja

va
Ye

s
(C

ha
nc

e)
Ye

s
F

(B
?)

Ye
s

Ye
s

Ye
s

ID
E

Ye
s

D
R

L
N

o

FR
IL

A
ca

de
m

ic
Sh

el
l

Fu
zz

y
+

C
I

N
o

B
N

o
N

o
N

o
N

o
N

o
Pr

ol
og

-l
ik

e

Fu
zz

y
+

C
LI

PS
A

ca
de

m
ic

C
Fu

zz
y

+
C

F
N

o
F

N
o

N
o

N
o

Sh
el

l
N

o
C

us
to

m

Fu
zz

y
+

Je
ss

A
ca

de
m

ic
Ja

va
Fu

zz
y

+
C

F
N

o
F

N
o

N
o

N
o

Sh
el

l
N

o
C

us
to

m

Fu
zz

yS
he

ll
A

ca
de

m
ic

C
us

to
m

C
++

Fu
zz

y
N

o
F

N
o

N
o

N
o

Sh
el

l
N

o
O

PS
-l

ik
e

H
am

m
ur

ap
iR

ul
es

H
am

m
ur

ap
i

Ja
va

N
o

Ye
s

F
(+

B)
N

o
N

o
N

o
Ye

s
N

o
Ja

va

jD
re

w
(O

O
)

A
ca

de
m

ic
Ja

va
N

o
F+

B
Ye

s
Pr

ol
og

-l
ik

e
R

ul
eM

L/
SW

R
L

M
an

da
ra

x
A

ca
de

m
ic

Ja
va

N
o

B
Ye

s
Pr

ol
og

-l
ik

e
R

ul
eM

L

O
pe

n
Le

xi
co

n
O

pe
n

Le
xi

co
n

Ja
va

N
o

N
o

F
Ye

s
Ye

s
N

o
Ye

s
Ye

s
C

us
to

m

O
pe

nR
ul

es
O

pe
nr

ul
es

Ja
va

+
X

ce
l

N
o

N
o

F
Ye

s
Ye

s
Ye

s
X

LS

Pr
ov

a
A

ca
de

m
ic

Ja
va

or
cu

st
om

N
o

N
o

F+
B

Ye
s

Pr
ol

og
-l

ik
e

A
lm

os
t

al
l

Sw
ee

tR
ul

es
C

oo
pe

ra
ti

on
Ja

va
D

ef
ea

si
bl

e
M

an
y

R
ul

eM
L

+

Ta
ke

A
ca

de
m

ic
Ja

va
N

o
N

o
B

Ye
s

R
ul

eM
L

V
iD

re
A

ca
de

m
ic

W
eb

Se
rv

ic
e

Je
ss

em
be

dd
ed

Ye
s

R
ul

eM
L

C
om

m
er

ci
al

Sy
st

em
s

Bi
zT

al
k

M
ic

ro
so

ft
.N

ET
no

(3
rd

pa
rt

?)
F

Ye
s

Ye
s

Ye
s

Ye
s

X
M

L

Bl
az

e
A

dv
is

or
FI

C
O

(F
ai

r
Is

aa
c)

Ja
va

/.
N

ET
3

-v
al

ue
d

Ye
s

F
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
SR

L
R

ul
eM

L

C
om

m
on

K
no

w
le

dg
e

O
bj

ec
tC

on
ne

ct
io

ns
Ja

va
/.

N
ET

N
o

Ye
s

F
Ye

s
Ye

s
Ye

s

IL
O

G
Jr

ul
es

IL
O

G
Ja

va
N

o
?

F
Ye

s
Ye

s
N

o
Ye

s
Ye

s
BA

L

In
R

ul
e

In
R

ul
e

Te
ch

.N
ET

N
o

F
Ye

s
Ye

s
Ye

s
Ye

s
M

S
D

R
L

O
ra

cl
e

R
ul

es
O

ra
cl

e
Ja

va
N

o
N

o
F

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ja
va

-l
ik

e

Pe
ga

R
ul

es
Pe

ga
Sy

st
em

s
Ja

va
N

o
Ye

s
F+

B
Ye

s
Ye

s
V

is
io

Ye
s

X
M

LM
in

er
+

M
et

ar
ul

e
Sc

ie
nt

io
Fu

zz
y

+
C

F
N

o
F

G
ro

up
s

N
o

Ye
s

Ye
s

G
U

I
X

M
L

K
no

w
le

dg
eB

ui
ld

er
X

pe
rt

R
ul

e
W

in
fu

zz
y

Ye
s

F
Ye

s
N

o
Ye

s
Ye

s
H

yb
ri

d

7
E N H A N C I N G A R U L E - B A S E D S Y S T E M W I T H
I M P E R F E C T I O N

Contents
7.1 Reaction Rules 119
7.2 Generalizing the Inference Process 119
7.3 Language Extensions 121

7.3.1 Drools DRL 122

7.3.2 Drools Syntax Extension 123

7.3.3 Imperfect Rule Structure 126

7.4 RETE Enhancements 130
7.4.1 Network Construction 130

7.4.2 Run-time Evaluation 132

7.4.3 Summary 144

7.5 Implementation Notes 145
7.5.1 Eval Trees 146

7.5.2 Degree Factory 148

7.5.3 Complexity Analysis 148

7.6 Conclusions 150

After the analysis of the existing rule languages and engines, a
rather clear picture emerges. Modern BRMS have several interesting fea-
tures which will prove to be useful, first and foremost the support for
event processing, which makes them appealing candidates to become
core building blocks in the development of “intelligent” rule-based
agents. On the other hand, the imperfect nature of the information to
be processed would better be treated using non-classical logic or soft-
computing algorithms, which the engines embedded in mainstream
BRMS do not support. The only option - other than renouncing to the
benefits of their enterprise features - is then to add support for non-
boolean logic to an existing rule engine, using the only one which has
a sufficient level of maturity while still being open source and thus
extensible (not to mention the convenience in case of application in
concrete projects). So, from now on, all considerations will be applied
to this specific rule engine.

Drools has a set of features comparable to that of commercial BRMS,
but like the other it relies on a boolean rule engine, so it is essentially
a perfect information processing system. In [92] it has been shown that
several types of imperfect extensions of classical logic exist, and that

117

118 enhancing a rule-based system with imperfection

they can be derived from a common language by annotation with the
appropriate meta-data. Ideally, it would be useful to attain the same
level of customization in the rule engine, in order to be able to process
a mixed rule base composed by various types of imperfect rules. It is
true that Drools Expert is expressive enough to reason over imperfec-
tion: the consequence of a rule can analyse the degree of imperfection
of the tuple which activated it and process according to the appropriate
theory, but it would be much more elegant to reason with imperfection
directly. The declaration of a pattern in a rule premise, then, would
define the reactive behaviour of the engine in an ideal situation, when
the available information is perfect, but the engine would try to ad-
here to that even when in presence of imperfect data, approximating
the reasoning and degrading gracefully as the quality of the informa-
tion worsens. The degree of matching between a tuple and a pattern
should be taken into account automatically: the evaluators should as-
sess the degree of imperfection associated to each constraint, then the
individual degrees should be combined according to the logical con-
nectives used in a formula, following the generalized inference pattern
which will be discussed in Section 7.2. Eventually, each rule activation
should be tagged by a degree - be it of truth, belief, confidence, de-
pending on the context - which should be available in the conclusion
part, to be propagated or used to condition the execution of any side ef-
fect. According to Drools philosophy, these additional features would
be wrapped in a package, as shown in Table 12.

Drools Chance

Reasoning with different types of Imperfection

Configurable Imperfect Evaluators

Integration with Sub-Symbolic Algorithms

Full support for Logical Connectives

Granular configurability

Support for Confidence and Exceptions

Support for Induction and Abduction

Table 12: Drools Chance features

This Chapter will discuss the issues related to the development of
this Drools extension. After contextualizing the execution features of
engine, a generalized inference schema will be proposed in Section 7.2,
to encompass different types of rules to emulate different inference
processes compatible with different types of imperfect logic. Section
7.3 will show the additions to Drools’ DRL language, necessary to sup-
port the generalized inference. Finally, Section 7.4 and 7.5 will discuss
the relevant modifications to the underlying RETE engine, both from
a theoretical and from an implementation point of view. The contents
of this Chapter and the following one are an extended version of what
was published in [5].

7.1 reaction rules 119

7.1 reaction rules

When using Drools, it is important to remember that it is a RETE-
based, forward chaining production rule engine. The if/then rules
used in (pure) logical reasoning are general constructs based on im-
plications, which are typically used to derive logical consequences, i.e.
the entailed formulas, from an existing knowledge base. The produc-
tion rules used in production rule engines, instead, have a more be-
havioural connotation: a production rule states the actions that must
be performed when the state of the world matches the given precondi-
tions. In fact, an if/do formulation would better express their seman- Reactive and ECA

rulestics. RETE-based engines can be considered (weakly) reactive produc-
tion rule systems, since their rules are triggered - but not necessarily
fired - by the insertion of new facts in their working memory: Drools
stresses this aspect with its rule syntax, which uses a when/then no-
tation. When the facts are notified in real-time and the rules fire im-
mediately, the engine becomes properly event-oriented and thus fully
reactive. In this case, the rules have an “event-condition-action” (ECA)
semantics, which can be expressed using an on/if/do notation. No-
tice that ECA rules can be used to emulate general production rules
[232] and production rules without side effects can implement forward-
chaining logical reasoning.

reaction ruleml Production, reactive and ECA rules are part
of the standardization iniative of the RuleML group, thanks to a ded-
icated sub-project called Reaction RuleML [26]. It extends the original
RuleML hornlogeq sublanguage, adding the support for various kinds
of production, action, reaction, and KR temporal/event/action logic
rules as well as (complex) event/action messages [228]. It allows to
tag the formulas with meta-data, which could theoretically be used
for degrees, but unfortunately its evolution has proceeded in paral-
lel with that of fuzzy RuleML, so there is no full integration between
the two. Moreover, the standard language is not completely aligned
with Drools rule language due to some limitations of the latter, fact
which remains one of the greatest limitations to the interoperability
and applicability of Drools. Nevertheless, the priority was given to the
integration of Drools with fuzzy RuleML rather than with reaction
RuleML, even if this second research direction has been planned as
well.

7.2 generalizing the inference process

While the standardization of languages is an important result, even
at the cost of some expressive power, is practical usefulness is greatly
diminished by the absence of an engine capable of processing rules
written in that language. In fact, the necessity for a unified imperfect
reasoning framework has been advocated by Zadeh himself in a recent
work [308].

120 enhancing a rule-based system with imperfection

The first step towards this goal is then the unification of the infer-
ence process. It is true that in probabilistic and possibilistic logics the
inference process must be coherent with respect to the degree of belief
on the actual (but ill-known) state of truth of a formula, which can
only be true or false, while many valued logics deal with well-known
sentences whose truth degree is gradual, but it is also true that many
of these logics rely on some kind of deductive mechanism for infer-
ence. The canonical deductive inference rule is modus ponens, but the
definition given in Formula 3.1 is not suitable since it does not take
imperfection into account. A generalized MP expression is:Generalized,

Imperfect Modus
Ponens 〈P(x), ε(x)〉,∀X : 〈P(X)→ C(Y(X)), ε(→)〉

〈C(y(x)), ε⇒(x, ε(x), ε(→))〉
(7.1)

where the form P → C is used instead of the more generic ϕ → γ to
stress the role of premise and conclusion. Notice that, unlike the MP of
fuzzy logic, which is strictly truth functional, this form also takes the
arguments into account for the computation of the degrees.

The inference proceeds in parallel along two paths: the symbolic
level and the degree level. The first determines the arguments of the
conclusion, while the second evaluates the associated degree of imper-
fection. In general, this evaluation is not truth-functional, so the output
symbols may depend on the input ones, and the resulting degree may
depend on both, in addition to the input degrees. An inference process
using MP, then, requires the following steps (which are also a further
generalization of the inference shown for possibilistic logic in [117]):

• Evaluation : First, atomic predicates are evaluated. Each of them
returns a belief/truth/possiblity/probability/. . . degree, accord-
ing to its semantics. The evaluation takes into account the imper-
fection associated to the arguments X:

〈P(. . . ,Aj(x)/εj, . . .), 〈P(X)→ C(Y)〉
C(y)

• Aggregation : As logical connectives aggregate atoms in com-
plex formulas, the operator associated to each connective com-
putes its degree, combining the degrees of its operands. In case
of non truth-functional operators, this operation may require to
evaluate the arguments of the operands, as well.

〈Φ(. . . ,Aj(x)/εj, . . .)/εP, 〈P(X)→ C(Y)〉
C(y)

• Projection (proper) : The premise, taken individually, is a for-
mula with an associated degree: the connection to the conse-
quence is established through the (generalized) implication. The
MP operator, instead, computes the actual consequence. In gen-
eral, it joins the arguments of the premise with those of the impli-
cation and projects them onto the conclusion. Likewise, the con-
clusion degree is a combination of the premise and conclusion’s

7.3 language extensions 121

degrees, possibly conditioned by the value of the arguments (as
dictated by 7.1):

〈P(x)/εP , →(X,Y) ε→〉
C(y)/εC

• Merging : When multiple rules entail the same conclusion, the
individual degrees have to be merged. In the boolean case this
is not necessary, since an entailed conclusion is always certainly
true. In presence of imperfection, each rule may be considered
the source a piece of evidence supporting the overall conclusion.
Hence, the different degrees have to be combined appropriately.

〈P1,→1〉
C1/εC1

, . . . ,
〈Pn,→n〉
Cn/εCn

C(y)/εC

This abstract schema is generic enough to accommodate several
purely logical and even hybrid inference schemas. Being a generaliza-
tion of MP, it clearly fits all truth-functional logics and even probabilis-
tic logics, provided that a strong independence assumption is made,
so that only conditionally independent predicates are combined. The
possibility of expressing conditional probabilities p(A|B) using gen-
eralized implications could be used with Bayesian-like rules: in fact,
the possibility of using generic, non truth-functional operators offers
several options. Despite the many examples which will be shown in
Chapter 8, many others still haven’t been explored yet.

Nevertheless, the proposed inference schema stresses the role of the The Role of→
degree associated to the implication, which is not just limited to com-
puting the arguments of the conclusion. In fact, while in most standard
rule based systems an implication is always assumed to be constant1

for all inputs, here it can have a varying degree which possibly can
depend on the arguments being processed.

The novel component, with respect to classical logic, is effectively
the final merge operation, which has many conceptual affinities with The Role of ∩
(and effectively abstracts) the Dempster-Shafer’s combination rule al-
ready cited in Chapter 2. This sequence of operations defines the guide-
line for the reasoning steps of a configurable inference engine. Since
none of the engines analysed in Chapter 6 is compliant with it, and
implementing it on top of one of them would have led to cumbersome
rules, it was preferred to implement it directly in Drools, enhancing its
core rule engine.

7.3 language extensions

Drools, like its predecessors Clips [7] and Jess [12], uses a language
which is influenced by the language of the first RETE-based expert

1 In many cases, including perfect ones, it is true

122 enhancing a rule-based system with imperfection

Listing 7.1: Generic Drools’ rule

rule "Generic"

a t t r i b u t e "value"

when
//DRL s y n t a c t i c f e a t u r e s

$pat tern : Type ($var : f i e l d == "value"

&& $ jo inVar : i n t F i e l d < 0 || > 1)
e x i s t s AnotherType (j o i n F i e l d != $ jo inVar)

then
System . out . p r i n t l n ("Java side effects") ;
i n s e r t (new Fact ()) ;

end �
sytem shell, OPS [68]. Drools, however, is object-oriented and fully
compatible with Java, in addition to including support for a scripting
oriented Java dialect, MVEL2. This section is dedicated to the analysis
of the features of this language, showing some relevant changes made
to increase its expressiveness. These extensions are general-purpose,
but it will be shown that they become even more relevant when imper-
fection is involved.

7.3.1 Drools DRL

The full specification of Drools’ language can be found in [8], so the
syntax will not be discussed here, but it is nevertheless necessary to
recall the basic terminology in order to avoid ambiguities in the rest of
the work. A rule such as Rule 7.1 is composed by a LHS (the premise)
and a RHS (the conclusion), plus some meta-data in the form of at-DRL glossary
tributes. In the RHS, any Java code can appear, but the keywords insert,
retract and update are reserved for the manipulation of the facts in
the working memory. The LHS, instead, is composed by a conjunction
of conditional elements (CEs). The most common types of CEs are quanti-
fied CEs and patterns3. A pattern is formed by a type (the simple name
of a Java class) and zero or more constraints, possibly combined us-
ing the conjunction (&& or ,) and disjunction (||) logical connectives.
A constraint is formed by a field, possibly bound to a variable, and
an optional restriction. A restriction, composed by an evaluator and an
optional value, can be simple or complex: the latter, in this case, is a
conjunction and/or disjunction of restrictions.

From the point of view of a formal logical language, DRL has the
following properties:DRL Features

• Constants: All primitive (Java) types are supported.

2 http://mvel.codehaus.org/
3 Other CEs exist, but have a less logical and more functional nature

7.3 language extensions 123

• Variables: Both objects matching a pattern and field values can
be bound to variables. A variable can be used in a constraint, but
must be ground by the time it is evaluated.

• Functions: Functions are allowed in restrictions: they are always
interpreted and the returned value is used by the local evaluator.
For example, in Rectangle(height > (sqrt(area))) the eval-
uator > extracts the value of a Rectangle’s field height and com-
pares it to the square root of the rectangle’s area.

• Equality: The equality evaluator == delegates to the method
equals() of the object referenced by the field being tested. If
the method is undefined, equality is evaluated by identity.

• Atoms: Constraints are the atomic “predicates” of DRL: the eval-
uators implement the unary or binary relations between the
value of a field and the value(s) it is restricted to - in fact they are
test-score functions in the sense of Zadeh [308]. However, DRL al-
lows the use of a “syntactic sugar” which complicates things
from the grammatical point of view. The complex restrictions
allow to list multiple restrictions for a single field, without hav-
ing to repeat multiple times. Likewise, the pattern type speci-
fication - which is equivalent to the constraint this.class ==

Type.class - groups the constraints relative to the same pat-
tern, but at the same time creates a division between the pat-
terns and constraints. In fact, it is possible to build complex
formulas at three different levels of (syntactic) abstraction, with
the role of atoms taken in turn by CEs (e.g. Type1(...) and

Type2(...)), constraints (e.g. Type(field1 == 1 && field2 ==

2)) or restrictions (e.g. Type(field (!= 1 && != 2))).

• Connectives: The only connectives are the logical conjunction
&& and the logical disjunction ||. While the two can be nested
arbitrarily between constraints or restrictions, CE-level formulas
are treated differently: they are manipulated until the formula is
in disjunctive normal form. At this point, an individual rule is
created for each alternative: thus, the LHS of a rule is always a
conjunction of CEs.

• Quantifiers: The standard ∀ (forall) and ∃ (exists) are sup-
ported. Moreover, DRL includes the quantifier not, whose se-
mantics is properly that of @, thus implementing a kind of negation-
as-failure.

• Negation: The logical negation not is supported only in restric-
tions, where it negates an evaluator. When used with CEs, not
has the already cited semantics of NAF.

7.3.2 Drools Syntax Extension

The main limitation of Drools language is the lack of full support for
logical connectives, negation above all. Moreover, the results in [92]

124 enhancing a rule-based system with imperfection

suggest that it should be possible to annotate the rules with meta-data
to configure and customize their semantics. These reasons have moti-
vated a direct intervention on Drools’ DRL grammar, with the goal of
expanding its expressiveness while ensuring full backward compatibil-
ity.

Drools’ grammar is complex. The language is not regular [83] and,
as will be shown shortly hereafter, is self-embedded at several levels.
Moreover, it does not even belong to the class of LL(k) languages for
any k: the common prefix in the structure of constraints and restric-
tions makes it impossible to parse the language using only a fixed
lookahead. Consider, for example, two patterns with a common con-
straint, defined using an arbitrarily long sequence of restrictions:

Person (name != "A" && != "B" && . . . && != "Z")
Person (name != "A" && != "B" && . . . && age > 18)

The first ends with a restriction, but the second has a second con-
straint: the two cases become distinguishable only after the parser has
met the evaluator ! = (resp. the field identifier age), i.e. after skipping
an arbitrarily long number of symbols. Nevertheless, Drools uses the
open-source tool ANTLR4 to generate the parser and the lexer for its
language. ANTLR is designed for LL(k) languages: in fact, with the
only exception of the case cited above, DRL is at worst LL(3). The
original parser, then, is LL(k)-compliant, but its behavior is overridden
locally, implementing the adaptive lookahead where necessary.

The necessary language extensions have been implemented in this
context: several minor modifications and additions have been performed,
but the most relevant have involved attributes and connectives. The
grammar shown here is actually a simplified version, deprived of many
purely implementation details. The real grammar is publicly available
in the Drools code repository.

• Negation. Logical negation is unary: its introduction has allowed
to support the more general notion of unary operator, which are
useful, for example, to implement the linguistic hedges used in
fuzzy logic, such as very, more-or-less and similar. The syntax
is :

<unary_op> : : = (’ neg ’ | ’ very ’ | . . .) < a t t r i b s >?

• Connectives. In addition to negation, complete support for the
other canonical logical connectives has been added: implication,
conjunction, disjunction and exclusive disjunction/equivalence.
The connectives can be used to write complex formulas, but the
role of “atom” can be taken by CEs, constraints and restrictions.
Drools supports both prefix and infix connectives:

4 www.antlr.org

7.3 language extensions 125

< p r e f i x _ f > : : = ’ (’ <conn> <formula >* ’) ’
< i n f i x _ f > : : = <formula > (<conn> < i n f i x _ f >) *

The former is allowed only between conditional elements, while
the latter can be used with CEs, constraints and restrictions alike.
Moreover, connectives can be specified using both a symbolic
and a declarative form (see Table 13), which has been provided
for the new connectives as well.

Explicit Implicit

implies =>

or ||

xor ^^

equiv ^=

and &&

Table 13: DRL alternative connective forms

Each connective can be negated, if necessary, and customized
using attributes, according to the following pattern:

< impl ica t ion > : : = <or > < i n f i x _impl >?
< i n f i x _impl> : : = <unary_op> < i n f i x _impl>

| IMPL_CONN < a t t r i b s >? <or >

<or > : : = <xor > < i n f i x _or >?
< i n f i x _or > : : = <unary_op> < i n f i x _or >

| OR_CONN < a t t r i b s >? <xor >

<xor > : : = <and> < i n f i x _xor >?
< i n f i x _xor > : : = <unary_op> < i n f i x _xor >

| XOR_CONN < a t t r i b s >? <and>

<and> : : = <atom> < i n f i x _and>?
< i n f i x _and> : : = <unary_op> < i n f i x _and>

| AND_CONN < a t t r i b s >? <atom>

<atom> : : = <atom_cond_elem>
(* resp . <atom_ constr >

resp . <atom_ r e s t r > *)
| ’ (’ < impl ica t ion > ’) ’

This abstract grammar fragment describes the infix form only,
but is a pattern valid for all three levels of abstraction. From

126 enhancing a rule-based system with imperfection

the same productions, the priority assigned to the connectives is
evident and coincides with the order they are listed in Table 13.

• Attributes. The role of attributes such as @kind and @degree has
already been discussed in Section 6.2.2. Actually, it turns out
that more attributes can become useful to control the behaviour
of the engine. The adopted syntax is as similar as possible to the
one already used for meta-data:

< a t t r i b s > : : = ’@’ ’ [’ < a t t r i b > (’ , ’ < a t t r i b >) * ’] ’
< a t t r i b > : : = ’ kind ’ | ’ degree ’ | . . .

Attributes will be discussed in detail in a later section.

• Custom Restrictions. In order to customize the behaviour of
evaluators as well as that of operators, it was necessary to al-
ter the grammatical definition of restriction:

<atom_ r e s t r > : : = <unary_op> <atom_ r e s t r >
| <core _ r e s t r >

<core _ r e s t r > : : = <evaluator > < a t t r i b s >? <expr >
| ’ (’ < i m p l i c a t i o n _ r e s t r > ’) ’

In a way similar to what has been done for connectives, the
grammar allows to place one or more unary operators before
the evaluator, and to decorate it with attributes afterwards. No-
tice that restrictions are one of the possible classes of “atoms” to
use in complex, embeddable formulas, so an atomic restriction
can be defined in term of a (bracketed) implicative restriction,
according to the general specifications.

Notice that the resulting grammar is not LL(k), but neither was the
original with which it is compatible, so this was not considered an
issue.

7.3.3 Imperfect Rule Structure

After being lexed and parsed by the ANTLR-generated tools, the en-
hanced syntax tree is further processed and manipulated, again using
ANTLR, to obtain the abstract syntax tree (AST). The LHS of each rule isAbstract Syntax

Tree converted into a tree where intermediate nodes model operators and
quantifiers, while leaf nodes correspond to atomic predicates. In order
to discuss the new structure of the AST, consider the following exam-
ples:

ast example i : pattern conditional elements Pat-
terns are fundamental constructs in the definition of rules. With re-
spect to the standard Drools version, the AST section has been rebuilt

7.3 language extensions 127

in a cleaner form. Consider the rule excerpt 7.2 and its corresponding
AST (Figure 26.

Listing 7.2: Syntax Example I

when
Person (. . .) // a Person

then �
The pattern CE is split in a conjunction of three formulas, fully restor-

ing the logical, predicate-oriented nature of the AST. The root ∧ has a
relevance which will become even more obvious in the next Sections:
in fact it is the pattern root. There exists a pattern root for each pattern Pattern Root Node
CE, whose children are derived directly from the rule. The type check is
converted in a proper constraint, this.class = Person.class, and ap-
pended to the pattern root; the same happens to the pattern constraints
sub-tree. The last, holds, is a completely novel constraint, whose se- Holds Constraint
mantics depends on the context. In general, its purpose is to associate
a degree to an object as a whole. The insertion of an object in the WM is
equivalent to acknowledging the object’s existence in the model of the
world the engine has. The “existence” of the object - i.e. its presence
in the working memory - can however be imperfect: an agent may not
be certain about it, so that a degree of belief is required. This degree
should not be assigned to the type constraint (nor, obviously, to the
field constraints): in fact, the uncertainty is not about the object being
an instance of a certain class, but about the object itself in the first place.
Likewise, an enabled constraint returning a fuzzy truth degree would
mean that an object has been “partially” put in the WM (not trivially,
setting this degree to false would correspond to a virtual retraction).
Notice that the cases of partial class match, such as Ellipses trying to
match Circles, would still be modelled by having the class constraint
return a fuzzy truth degree.

∧

Holds Person ∧

. . .

Figure 26: AST Example I

ast example ii : intra-ce formulas The extended gram-
mar allows to create arbitrary formulas within patterns, using all the
canonical connectives including the logical negation, as in example 7.3.
Notice the difference between the constraint-level formula, where the
exclusive or is the local root, and the restriction-level formula.

128 enhancing a rule-based system with imperfection

Listing 7.3: Syntax Example II

when
// A Person

Person (
// who i s adult
age > 18 ^^
// or whose name i s n e i t h e r X nor Y
(name == "X" neg || == "Y")
// but not both !

)
then �

Like in the case of patterns, the logical structure of the constraints
is made explicit, splitting each constraint in two parts and joining
them using a conditional conjunctive connective. The second is the con-
straint’s restriction - or the logical composition thereof, but the former
is a novel extension, at least for Drools. In presence of imperfection,
the evaluators in the restrictions act as generalized test-score functionsExtended Evaluators
[308], returning a degree which, as usual, can be a degree of truth,
belief, probability, . . . according to the desired semantics. However, im-
perfection may affect the input of the function as well as its evaluation
(see also Chapter 2): so, the first part of the constraint checks whether
the extracted value is the actual value of an object’s feature. In standard
OO-RETE, the input value is extracted from an object’s field, which is
always certain and precise, but this is not always the case5. Consider,
for example, a Person whose age is assumed to be 25 with degree of
belief 25%: even a boolean restriction such as > 18 must necessarily
reflect this uncertainty in its output.

ast example iii : inter-ce formulas The third case study
7.4 shows that now conditional elements can be nested arbitrarily, us-
ing connectives between them - in the specific case, an implication.

Listing 7.4: Syntax Example III

when
$p : Person (age > 18)
implies
Person (t h i s == $p , weight > 50)

then �
The resulting AST is shown in Figure 28. Notice that the formula

corresponding to the premise is not used directly, but becomes the left

5 Notice that even in “perfect” systems often fields are set to null because of
lack of knowledge

7.3 language extensions 129

∧

H P 6=

|

age > 18

|

name ¬

∨

==“X” ==“Y”

Figure 27: AST Example II

argument of a “modus ponens” connective. The other argument is an Implication and
Modus Ponensimplication: in standard rule-based systems, the very act of writing a

rule implicitly sets it to certainly true for all possible input arguments.
This assumption is too strict when imperfection is involved: the impor-
tance of an explicit premise-conclusion implication, already proven in
[92], will further be stressed in Chapter 8. Roughly speaking, it allows
to control the way the degree associated to the premise is projected
onto the conclusion. (Other than that, the considerations made for the
previous examples apply to the internal constraints).

⇒

→

∧

H $p :P |

age > 18

∧

H P ∧

|

this ==$p

|

wgt > 50

→

Figure 28: AST Example III

130 enhancing a rule-based system with imperfection

7.4 rete enhancements

The extension of the language is only the first step in expanding the
functionalities of Drools. The new DRL, nevertheless, has a greater
level of expressiveness which makes it more similar to the standards
such as RuleML, so the interventions on the engine become even more
relevant in the perspective of a future full integration.

7.4.1 Network Construction

The original RETE algorithm ([134], Chapter 3) compiles the AST of
each rule into a propagation network, sharing nodes whenever possi-
ble. Due to the different structure of the intermediate representation,
however, the compilation algorithm must be modified accordingly. The
AST predicate nodes are mapped onto α or β RETE nodes, depending
on the predicate involving one or two objects. For reasons of compat-
ibility and efficiency, the mapping considers the constraint nodes to
be leaves, so any sub-trees below a conditional conjunctions is embed-
ded directly in a single node. This is not a strict requirement and may
change in a future version. More importantly, the original RETE does
not consider logical connectives since, trivially, only and is used. As
will be discussed in more detail in Chapter 8, the evaluation of a con-
nective may require a complex operator, especially when an imperfect,
non truth-functional logic is used. Thus, connective nodes are com-
piled in operator nodes, placed in the appropriate position within the
network.

The compilation proceeds in two steps. First, an ordering of the ASTRETE Construction
: AST Ordering nodes is computed: each node n is labelled with an incremental index

k according to the sequence they are visited in during a post-order
traversal of the tree. In this type of visit, all the children of a node are
recursively visited, from left to right, before the node itself is visited.
This ensures that whenever n(k ′) depends on n(k ′′) - either because
the latter is a descendant of the former or because n(k ′′) is a pattern
root node and n(k ′) holds a join constraint with its pattern - then
k ′ > k ′′. For example, applying the labelling algorithm to the full
parsing of rule 7.3 returns the numeration given in Figure 29.

Given the ordering, it is possible to deploy the augmented RETE us-RETE Construction:
Node Deployment ing Algorithm 1. Each rule can be analyzed individually: given the se-

quence C[i] = k|n(k) is the i-th pattern node, and defined k∗ = max{C}

the index of the last pattern node, the nodes with k 6 k∗ will be-
come part of the α-network (unless they are join constraint nodes),
while the others will be included in the β-network. Let also F[i] =

k such that n(k) is the first child of n(C[i]) (if n(C[i]) has no children,
take F[i] = C[i]). The nodes in the range F[i] . . . C[i] are connected
sequentially, starting from n(F[i]) (a class constraint node). The last,
n(C[i]) (a pattern node), is connected to an α-memory, αi. However,
if any of the nodes holds a join constraint, it is skipped. The memory
αi is then connected to the right input of a join node Γi. The output

7.4 rete enhancements 131

Algorithm 1: RETE network Construction
Require: Nodes<Id,Node> {Node map}
Require: C {Ids of Pattern Nodes}
Require: F {Ids of Class Nodes}
Require: join, alfa, beta {Generic Nodes}
N← length(C)
curNode← RETE.entryPoint
for i = 1 to N do

patternNode← C[i]

classNode← F[i]

for all j between F[i] and C[i] do
if ! Nodes[j].isJoinConstraint then

attach(curNode,Nodes[j]) {curNode is shifted}
end if

end for
attach(curNode,alfa(i))
join(i).setLeft(beta(i− 1))
attach(curNode,join(i))
for all j < F[i+ 1] do

if ! Nodes[j].isAttached then
attach(curNode,Nodes[j])

end if
end for
attach(curNode,beta(i))

end for

132 enhancing a rule-based system with imperfection

⇒

→

∧

H $p :P |

age > 18

∧

H P ∧

|

this ==$p

|

wgt > 50

→

1 2 3

4

5 6

7 8

9

10

11 12

13

Figure 29: AST Node numbering

of Γi is connected to all free nodes with index less than C[i], to verify
whether the joined candidate tuples are actually valid or not. Then,
all free nodes with index greater than C[i], but less than F[i+ 1], are
connected, since they are typically operator nodes whose operands are
all valid and so can be evaluated. The last node is then connected to a
β-memory, βi, where the tuple computed so far can be stored. The left
input of Γi, instead, is connected to the output of the memory βi−1,
or to a dummy input in case of the first node. The nodes are created
as needed or reused if already existing and correctly sequenced, as for
the standard RETE algorithm. Notice, instead, that the chain of join
nodes does not terminate as usual with a terminal node: a dedicated
node evaluates the degree of implication between the premise and the
conclusion, conditioned on the actual premise tuple (in many cases
it simply returns a constant or even “true”); eventually, the Modus Po-
nens node computes the conclusion degree: only at this point the tuple
is active and ready to be dispatched to the agenda, from where its fir-
ing will be scheduled. Figure 30 shows the result of the compilation.

7.4.2 Run-time Evaluation

The RETE network holds the long-term knowledge of the system in a
compiled form. Once the RETE network has been built, it is used to
compute the degree of match between tuples of objects, which are in-
serted in the WM at runtime, and the premises of the different rules.
For each rule, this degree can be used to condition the execution of
the consequences, provided that it has been modified to take into ac-
count the degree of implication between the premise (the LHS) and the
conclusion (the RHS).

7.4 rete enhancements 133

#

this
enabled

#1,#5

$p

Person

#2,#6

age > 18

#3

∧3

#4

#

weight
> 50

#8
∧2

#9∧3
#10

#

this
== $p

#7

→2

#11

→0

#12

⇒2

#13 #ExIII

Figure 30: Extended RETE Example

This consequence degree, then, is the result of a recursive procedure
which implements the abstract schema described in Section 7.2. The
recursion is properly due to the logical operators, while the elementary
steps are the evaluations of the degrees to which each constraint in the Evaluation
LHS of a rule is satisfied by an object or a tuple6.

A constraint’s satisfaction degree, in turn, is obtained by composi-
tion of the degrees resulting from the evaluation of the restrictions
forming the constraint itself. Thus, the (logical) evaluation is the funda-
mental operation: it involves the equivalent of predicates and connec-
tives, in Drools implemented by restrictions and operators. Moreover,
when an evaluation is truth-functional, so that it limits to a combina-
tion of other degrees, it can be more properly called degree aggregation. Aggregation
It must be remembered that, at least in Drools, more than one atomic
evaluation can take place in the same RETE node. While the novel oper-
ator nodes execute only one evaluation (which is often an aggregation),
α and β nodes can hold complex constraints formed by several restric-
tions. In fact, the difference between α and β nodes depends only on
the number of objects effectively involved, but not on the complexity
of the constraint they are built for.

This is one of the facts that complicates the structure of the con-
straint nodes: in the original algorithm, they had a simple “test-and-
filter” role, where the test involved was a perfect symbolic comparison.
A tuple, then, was propagated along the chain of nodes if and only if
the constraint was satisfied. In RETE-OO, where objects are involved
in place of pure symbols, a restriction may involve a more complex test
than a simple comparison: in the simplest case, a comparison requires
the extraction of a value from a field and the evaluation of an expres-
sion. Drools Expert adds complex restrictions, so boolean aggregations Composite

Restrictions
6 For simplicity, objects will be considered (right) tuples composed by a single

element, so the difference will be ignored from now on, unless relevant

134 enhancing a rule-based system with imperfection

have to be performed locally. However, the real increase in complexity
is caused by the use of imperfection. Properties are no longer true
exclusive-or false, and finding to which degree can be a non trivial op-
eration, involving different sources of information; moreover, it is not
always clear when to propagate a tuple. The simple discard-on-false pol-
icy is not applicable when the degrees allow to model infinitely more
possible truth states - if a degree models a truth state at all rather than
a belief. Thus, the language and semantics extension do not reflect only
on the topological structure of the network, but also on the internal ar-
chitecture of the nodes. Both aspects will be covered.

The nodes are responsible for the evaluation of atomic (restrictions)Imperfect
Evaluation of complex (logical operators) checks. The two types of evaluations

share many similarities, so many of the considerations discussed here
apply to both and differences will be outlined only when necessary. De-
noting by σ the predicate functor, by L the class of degrees used in the
rule, and by x the current set of arguments, an evaluation consists in
finding the degree ε associated to the predicate-like relation π = σ(x).
σ can either be a restriction or an operator: the actual difference is
given by the arguments, which are objects for restrictions, degrees for
truth-functional operators and a combination thereof for generic oper-
ators. Moreover, from the point of view of evaluations, even quantifiers
can be treated like connectives with a variable number of arguments,
so the same considerations apply.

The evaluation of the degree of a generic “predicate” π are can beEvaluation Methods
performed using different approaches:

1. (Factual) επ0 : Prior information, available before the computa-
tion and provided as a fact.

2. (Functional) επσ : Direct evaluation, resulting from the evaluator
associated to a restriction or the operator associated to a connec-
tive.

3. (Logical) επi : Logical entailment by one or more rules ri∈I, with
I indexing the set of rules providing information on the restric-
tion as one of their consequences.

A-priori Evaluation

The enhanced DRL allows to assign a prior degree to an evaluation
with a syntax similar to the one shown in Rule 7.6, exploiting the
equivalent of the @degree attribute proposed for fuzzy-RuleML [92].

Listing 7.5: Restriction with prior degree

when
Type (f i e l d custom @[degree = " . . . "] value)

then �

7.4 rete enhancements 135

This value is static and universal, so it is used every time the restric-
tion is computed, independently of the actual tuple being checked.
Even if presented with a prioristic semantics which could seem spe-
cific for probabilistic reasoning, its possible uses include, but are not
limited to: fixing the result of an evaluation to a constant, setting a
prior probability to be updated in a Bayesian sense or limiting the de-
gree of possibility of a constraint.

Priors can be applied to evaluators and operators: it is remarkable
that the second class also includes implications and, most importantly,
the implication associated to a rule. This allows to model rules where
the connection between premise and conclusion is not perfect, exam-
ples of which will be shown in Chapter 8. Since the rule implication
(and the rule modus ponens, as well) are not visible, a minor lan-
guage addition has been performed, exploiting the existing rule-level
attributes:

Listing 7.6: Implication and MP with prior degrees

rule "Imperfect"

enta i lment @[degree = " . . . " , . . .] // =>
i m p l i c a t i o n @[degree = " . . . " , . . .] // −>

when �
(Custom) Direct Evaluation

The second approach to the evaluation of a property requires to pass
its arguments to a function, which in the specific case is embedded at
the core of evaluators and operators.

As far as evaluators are concerned, Drools offers all the possible
basic comparators (==,! =,>,>=,. . .), as well as more advanced eval-
uators such as contains and even soundsLike (which compares two
strings according to their phonetical representation, despite its not be-
ing fuzzy), but most importantly it allows to define and plug in custom
evaluators.

Custom imperfect evaluators implement the test-score functions pro- Custom Evaluators
posed by Zadeh [308], returning a degree which can be as simple as a
real value or complex like a type-n fuzzy set (see also Chapter 2). The
role of custom evaluator can be played by any entity implementing,
directly or through an adapter, a specific Java interface7, as indicated
by the class diagram in Figure 31.

To use a custom evaluator it is sufficient to provide a factory class
and an implementation class, in addition to registering its identifier (i.e.
the string used in the rules) in the engine configuration. The support
for custom evaluators is essential to build hybrid symbolic-connectionist Hybrid Custom

Evaluators

7 Again, only an idealized version is presented since to date the APIs are not
stable and subject to change

136 enhancing a rule-based system with imperfection

<<abstract>>

ImperfectEvaluator

+ eval(Object left, Object right) : IDegree

parseParams(String params) : void

SomeImperfectEvaluator

+ eval(Object left, Object right) : IDegree

parseParams(String params) : void

SomeImperfectEvaluatorDef

- String[] supportedIds

+ getEvaluator(String evalId, String params, ...) : IEvaluator

IEvaluator

Figure 31: Imperfect Evaluator Hierarchy (excerpt)

systems: this interface is an elegant way to embed any module capable
of evaluating a property of a given pair of objects in the LHS of a rule,
whereas the only other deprecable possibility would have been the ex-
plicit invocation of an external object in the RHS of some other rule.
Notice that most soft computing techniques described in Chapter 3,
like Neural Networks and Bayesian Networks, are suitable candidates
for the role of external evaluator. Moreover, the enhanced rule lan-
guage allows a further degree of customization using attributes: the
attribute @kind, in this context, can easily be applied to select the ac-
tual implementing class; another attribute, @params, has instead been
defined to pass an additional initialization String to the constructor of
the evaluator.

Listing 7.7: Custom Evaluator with Attributes

rule "CustomEvals"

when
Type (f i e l d custom

@[kind = " . . . " , params = " . . . "]
value)

then �

7.4 rete enhancements 137

Obviously, the same considerations can be applied to operators: in
fact, the same attributes were suggested to select and customize the
behavior of operators in the first place [92]. Notice that the proposed
language extension allows to apply attributes to connectives at differ-
ent levels. As already shown, the implicit → and ⇒ (implication and
modus ponens) operators can be exposed using the appropriate rule
attributes.

Listing 7.8: Custom Operators with Attributes

rule "CustomOps"

i m p l i c a t i o n @[kind = " . . . "]
enta i lment @[kind = " . . . "]

when
Type1 (f1 == "X"

&& @[kind = " . . . "]
f2 == "Y" || @[kind = " . . . "] == "Z")

and @[kind = " . . . "]
Type2 () @[kind = " . . . "]

then �
Moreover, notice that even patterns can be decorated using attributes

(e.g. Type2 in example 7.8): the attribute set is actually assigned and
used to configure the implicit pattern root and connective.

Rule Chaining

Being a production system, Drools allows to change the contents of
the WM at run-time. In particular, the actions executed when a rule
fires may include:

• insert : a new fact is inserted in the WM, activating all rules with
a pattern matching the object.

• retract : an existing WME is removed from the WM

• update : an existing WME is updated, re-evaluating all the rules
which potentially match the object.

This allows to chain the execution of rules by fact, since a fact gen-
erated by the firing of one may activate another: what Drools does
not allow, instead, is the logical chaining. Suppose, for example, that a Logical Chaining
rule uses the pattern Person(age > 18) to check whether a person is
adult or not. In a perfect world, the age of all Persons in the WM is
known, but in a realistic context it is possible that the age of one or
more Persons is not known (e.g. the corresponding field is set to null).
However, a person who drives a car is surely of age, so it would be
useful to encode this knowledge in a rule and use it to support the
evaluation of the constraint “age > 18”, as in example 7.9.

138 enhancing a rule-based system with imperfection

Listing 7.9: Logical Chaining Example

rule "Adult"

when
$p : Person (age > @[id =" idAdult "] 18)

then
// e . g . a c t i v a t e vote procedure

end

rule "Driver"

when
$p : Person ()
e x i s t s Car (dr iver == $p)

then
i n j e c t ($p , "idAdult")

end �
To this end, an attribute and two new action keywords have been

added. The attribute @id can be used on any evaluator or operator to
attach an explicit identifier to the corresponding constraint/formula
(if the structure is shared between different rules, it is sufficient to do
it once). Notice that the name of a rule is the identifier of the associ-
ated modus ponens operator. The new consequence actions, instead,
require two arguments: a tuple and an identifier. The semantics is as
follows:

• inject(tuple,id) : adds the consequence degree of the rule it
is called by to the set of degrees used to compute the overall
degree of the evaluation identified by id.

• reject(tuple,id) : like inject, but applies the default logical
negation to the consequence degree before the injection.

The method inject is overloaded to give an additional option: dif-"Overriding"
injections ferent rules may be used to inject the same evaluation, but some of

them may be more relevant (in some context-dependent sense) than
others. This, in turn, should give more weight to their contributions
in determining the overall degree for the injected evaluation. Hence,
the inject method may be used with an additional boolean argument
which distinguishes between “normal” degrees and “high-priority”
ones. This additional feature has been introduced to support, even if
in a limited form, rules with exceptions. Its use will be discussed in a
specific example in Chapter 8, where it will also be discussed how to
overcome the apparent limitation of having only two levels of priority.
The @overriding attribute, instead, can be used to increase the rele-
vance of an evaluator/operator directly, so that it will be given more
relevance than injected or prior contributions.

7.4 rete enhancements 139

Merging Different Sources

In conclusion, it turns out that the result of a given evaluation may
be influenced by multiple sources at the same time. To reconcile the
different contributions and obtain a single degree, a merge function Merge Strategy
∩ : L2+|I| 7→ L is needed, such that:

επ =
⋂

i∈{0,σ}∪I
επi (7.2)

No property other than closure is strictly required on ∩, even if com-
mutativity and associativity can be useful. Notice that in a consistent
boolean rule base, the definition of ∩ is normally redundant, and thus
omitted, because all sources supporting a predicate just return true.

However, rule engines which rely on a Truth Maintenance (Sub)System Relations with TMS
(TMS) [271] use techniques that have many conceptual similarities and
thus can be associated to the merge of information sources. Truth Main-
tenance, in a nutshell, is a feature of non-monotonic reasoning systems
which ensure that the consistency of a knowledge base is maintained
as its contents change in time. The basic functionality a TMS must pro-
vide is to remove (retract) all the logical consequences of a premise
which no longer holds, possibly because it has been retracted itself. In
particular, since a conclusion may be supported by different premises,
the retraction must take place when there exist no more premises sup-
porting a given conclusion. The simplest way to implement this, also
used in Drools, is reference counting: every logically entailed fact in
the WM has a reference to the rule activations which support it. This is
actually a primitive form of degree merge strategy: suppose that the
presence of an object in the WM is modelled by the truth of the con-
straint holds, evaluated for each object. For a logically entailed fact,
the constraint is neither given a prior value, nor evaluated directly, but
instead is injected by the supporting rules’ activations. The standard
behaviour of a basic TMS, then, can be emulated using a merge strategy
which returns true if and only if there exists at least one true injecting
activation, and false otherwise. Currently, the use of the holds con-
straint in an (imperfect) TMS is still under investigation.

Nevertheless, the default merge strategy used in a rule base can be
overridden for any individual evaluation using the dedicated attribute
@merge, as in:

Listing 7.10: Custom Merge Strategy

. . .
Type1 (f i e l d == @[kind = " . . . " , degree = " . . . " ,

merge = " . . . " , missing = " . . . " ,
override = " . . . "] "val")

. . . �

140 enhancing a rule-based system with imperfection

A merge strategy must assume that all degrees are known and have
the same importance: in practice, neither may be the case, so two steps
of pre-processing may be required.

For each evaluation, the set of possible information sources is knownMerging missing
values a priori, but at runtime it is not guaranteed that all of them will ef-

fectively give their contribution. The prior degree may not have been
specified; a functional evaluator may not be able to return a meaning-
ful degree, for example because some of the required data are missing;
eventually, not all injecting rules may have fired by the time the evalua-
tion is performed - this last condition, in particular, is always satisfied
only if strong assumptions are made on the structure of the rule base
and the object insertion order. A sufficient condition is that a partial
ordering can be imposed on the rules, such that it is impossible for a
rule of level n to be activated unless all rules of level n− 1 have already
fired, but this requirement is hardly satisfied by a generic set of rules.
In practice, this means that a degree will be determined, on average,
by a number of actual contributions which is less than the number of
potential contributions. By default, these “missing” values are simply
ignored, but it is possible to override this behaviour using the attribute
@missing: in practice, it allows to set a function which returns a con-
crete degree (whatever it means, according to the adopted semantics)
in place of a missing one.

When prioritized injections and evaluators are used, instead, theMerging values with
priority degrees have to be modified. The task is demanded to a discounting

function, which actually makes the lower-priority degrees less relevant,
ideally replacing them with the neutral element of the merge function.
The specific strategy can be configured using the attributed @override.

Filtering and Propagation

The contemporary presence of logical injections and insertions increases
the reasoning capabilities of the engine, but unfortunately complicates
the propagation of the tuples through the network. When an inserted
object or tuple is propagated, it passes through the α, β and operator
nodes: the evaluators/operators in each node perform the local, direct
evaluation, but the contribution of priors and injecting rules may af-
fect the final result, possibly even after the first passage of the object.
In fact, the activation order of rules can’t be predicted, especially if
they depend on facts coming from external sources. Sometimes, rules
could even be the only source of information for the evaluation of a
constraint, so some form of synchronization between insertions and
injections must be provided [145]: in such cases, in fact, the decision
on whether to propagate or not should be postponed until at least one
injecting rule has fired.

For this reason, the RETE nodes have been extended, adding a con-
figurable filtering strategy which applies the conditions according toPropagation Policies
which one of the following policies is adopted:

• Pass: The object/tuple is forwarded.

7.4 rete enhancements 141

• Hold: The object/tuple is held within the node (waiting for a
possible injection).

• Drop: The object/tuple is discarded.

The filter strategy is truth-functional8: it checks the value of the de-
gree associated to the object/tuple and its support |γ|, defined as the
number of non-null partial degrees over the total number of possible
degrees, which is known and equal to |I| + 2.

Remarkably, the degree tested by the filtering strategy is not neces-
sarily the degree resulting from the evaluation local to the node itself,
but instead the overall degree so far. As objects/tuples traverse the Filtering Criteria
network, every evaluation produces a degree which is wrapped in a
structure called Eval (see Section 7.5.1 for details) and incrementally
added to a stack-like structure associated to the tuple. Simple restric- Eval Stack
tions push their Evals on the stack, while operators arrange the Evals
into a tree structure by popping a number of Evals equal to their arity
from the stack, aggregating them into a composite Eval and eventually
pushing it back on the top of the stack. At any moment, the Eval on
top of the stack is assumed to hold the current overall degree, since it
is either the result of the last simple evaluation or the root of the Eval

tree. In fact, the Eval tree mimics the AST of the premise of the rule
as it is constructed evaluating node after node. The top of the stack,
however, is not always the local Eval because of β constraints, which
are moved into beta nodes placed after the join nodes in the beta net-
work: their restrictions, in fact, can be evaluated only after a tuple has
been formed, but the tree assembling process starts earlier in the alpha
network. Thus, the Eval leaves relative to β constraints are momentar-
ily set to ∅ (“missing” or “unknown”). Some operator nodes in the α
network, then, may have to apply their filtering strategy to the root -
created locally - of an incomplete Eval tree. The β nodes, instead, add
their Eval as a leaf to the current tree, but apply their filtering strategy
to its root. The evolution of the Eval stack for a pair of objects joined
into a tuple is shown in Figure 32. Notice that considering Eval to be
missing may be ininfluential on the overall result: for example, a con-
junction with missing operands will still remain false as soon as just
one of the known ones is false.

Nevertheless, a node always applies the filter strategy to the Eval

on the top of the stack, regardless of whether it was generated by
the node itself or not. The default, perfect filtering strategy simply
chooses Pass when the Eval’s degree is equal to true, while it opts for
Drop otherwise. When, due to imperfection, the Hold policy is chosen,
the tuple remains blocked at the node, in a memory called Γ -memory
(for analogy with α- and β- memories). The nodes are designed us- Early injection
ing the Observer pattern [122], so that they can observe the main Eval

and re-evaluate the filtering policy when its degree changes due to an
(expected) injection.

Notice that an injection may also happen after the tuple has been Late injection

8 the node itself imposes a constraint on the objects!

142 enhancing a rule-based system with imperfection

Figure 32: Eval Tree Construction

Passed through a constraint node, possibly even after it has already
caused a rule to be activated: in this case, the theEval tree is observed
by the Agenda. The injected value is still added to the corresponding
Eval, propagating the changes through the Eval tree up to the root.
For clarity, the synchronization protocol between nodes and Evals is
outlined in algorithms 2, 3 and 4. When a tuple is inserted in a node,
the relative Eval is retrieved (if an early injection has already built
it) or built locally; this, in turn, is used to update the Eval tree and
the filtering strategy is applied. An injection, instead, causes the target
tuple to be retrieved from the Γ -memory (if held) or an Eval to be
created and stored to be retrieved later. In the former case, the Eval

tree is updated and, should the overall degree change, the node is
notified so it can re-apply the filter policy.

Like with all other policies, the actual implementation of the filter
strategy can be customized using attributes. In particular, three at-
tributes have been defined which can influence the final decision on
the propagation of a tuple or an object:

• @filter: Its value selects the desired filter strategy. It can also be
used as a rule attribute, applying it to all nodes created by the
compilation of that rule. A few examples of policies could be:

– Full synchronization: propagate on |γ| = 1, hold otherwise
– Closed World Assumption: propagate on true, discard oth-

erwise.
– Open World Assumption: propagate when not false, discard

otherwise.

• @boolean: The degree returned by the tagged evaluation is effec-
tively converted to a boolean before being used. The actual cast
modality is not defined by the rule, but by the degree: in fact,

7.4 rete enhancements 143

Algorithm 2: Node.onInsert(Tuple t)
Require: filter {Sf strategy}
γ← Γmem.get(t)
if γ = ∅ then
γ← createEval(t,this)
γ.set(εσ,this.eval(t))

end if
t.evalTree.add(γ)
[ε, |γ|]← t.evalTree.eval() {highest ranking degree}
if filter.decide(ε, |γ|) = ’PASS’ then

this.remove(t)
propagate(t)

else if filter.decide(ε, |γ|) = ’HOLD’ then
this.store(t)
γ.attach(this)

else if filter.decide(ε, |γ|) = ’DROP’ then
γ.destroy()
t.destroy()

end if

Algorithm 3: Gamma.onInject(Node n, Tuple t, Rule r, De-
gree ε)
γ← n.Γmem.get(t)
if γ = ∅ then
γ← createEval(t,n)

end if
γ.set(r,ε)
γ.notify() {notifies n on cascade}

Algorithm 4: Node.onNotify(Tuple t, Degree ε, Degree |γ|)
if this.holds(t) then

if filter.decide(ε, |γ|) = . . .) then
... {see Procedure 2}

end if
end if

144 enhancing a rule-based system with imperfection

Listing 7.11: Generic Imperfect Rule - Example

rule "CustomPropagation"

when
$x : Type (f i e l d 1 == @[f i l t e r == " . . . "] "X"

^^
f i e l d 2 == @[f i l t e r == " . . . "] "Y")

Type (t h i s == @[cut] $x ,
f i e l d 3 == @[boolean] "C")

then �
it would be more accurate to say that this attribute forces an
evaluation to return either the representation of true or false ac-
cording to the currently used degree model. For example, should
interval values be used, the evaluation would have to return ex-
clusively [0, 0] or [1, 1]. The use of this attribute has the effect of
ignoring the imperfection in the evaluation.

• @cut: This attribute forces the strict filter strategy locally: the de-
gree is temporarily cast to boolean and, if false, the object/tuple
is discarded. Unlike @boolean, however, the original imperfect
degree is propagated.

Consider, for example, the rule of example 7.11. The exclusive or in
the first pattern advocates the choice of a filter strategy which prop-
agates objects even if they violate a constraint. The join in the second
pattern, instead, is configured so that it allows only pairs composed by
two equal objects. The imperfection in the last constraint, eventually, is
removed for some reason.

7.4.3 Summary

In the end, it turns out that while a generalized language needs just the
addition of two attributes such as @kind and @degree [92], a real imple-
mentation has a larger number of degrees of freedom which require a
larger number of configuration parameters to be controlled. The goal
of this brief section is to collect and summarize them for quick refer-
ence.

The configuration parameters are listed and summarized in Table
14; the different attributes are instead described in Table 15.

This allows to write rules such as the one in example 7.12, which
should be compared with the one in example 7.1. The attributes allow
to configure almost all operators and evaluators in the rule, including
the implication and modus ponens normally considered implicit. This,
together with the possibility of using custom evaluators and operators,
should greatly increase the potentialities of the engine.

7.5 implementation notes 145

Table 14: Drools Chance Configuration Options

Parameter Description

L Partially ordered set of degrees. Its inf is 0 (certainly false)
and its sup is 1 (certainly true), and may include a special
value modelling complete ignorance ?. It must be possi-
ble to cast a degree into a boolean.

{σ} Set of custom evaluators, implementing a test-score func-
tion which returns a value in L

Ω Set of close and coherent operators. May be truth func-
tional. Includes:

⇒ Modus Ponens Inference Rule, used for deduction.

S∩ Degree combination rule. Combines several degrees into
a single one.

S∅ Missing degrees handling policy. Replaces missing de-
grees with meaningful ones or forces the combination
rule to ignore them.

Sk Discount function. Used to lower the weight of less rele-
vant sources when merging degrees.

Sf Propagation and filtering strategy. Controls the propaga-
tion of tuples along the network.

7.5 implementation notes

The various enhancements have been implemented in a prototype which
can be downloaded freely from the SVN repository9. The structure is
generally consistent with the theory discussed in the previous Section,
but involves lots of additional implementation details which have been
omitted. A few strategic choices, however, are important enough to de-
serve a quick introduction. First of all, the Eval structures used to hold,
combine and propagate the degrees will be analysed in greater detail;
second, the main component responsible for the instantiation of the
modules necessary to extend the network and its nodes - the Factory

- will be illustrated; last, a complexity analysis of the modified engine
will be carried out.

∩δ,∅
ε0 ∧

val : true f(val)

ΞO/T
id

Figure 33: Evaluator Eval

9 http://anonsvn.jboss.org/repos/labs/labs/jbossrules/branches/DroolsChance/

146 enhancing a rule-based system with imperfection

Table 15: Drools Chance - DRL attributes

Attribute Description

Identification

id Used to identify an evaluation univocally

Type Selection

kind Used to select an evaluator or an operator’s type

params Used to pass additional parameters for the creation of an
evaluator or an operator

Priors

degree Used to set a prior degree for an evaluation

Merging

merge Used to choose the degree fusion strategy S∩
missing Used to choose the missing value strategy S∅

override Used to choose the discount strategy Sk

overriding Used to increase the relevance of the result of a direct
evaluation

Filtering

filter Used to choose the propagation/filtering strategy Sk

cut Used to impose the strict boolean, “drop-on-false” filter
strategy

boolean Used to force the cast of an evaluation’s result into a
boolean

∩δ,∅
ε0 ∗ ΞO/T

id

Figure 34: Operator Eval

7.5.1 Eval Trees

In order to facilitate the propagation as well as the combination of de-
grees, all the necessary information is stored in a dedicated structure,
called Eval, for quick reference. An Eval can be considered the dual of
a Tuple, but it holds degrees instead of objects.

Formally, an Eval like the one schematized in Figure 33 stores, man-Evals
ages and combines the different contributions to the evaluation of a
constraint (resp. operator) σ for a tuple of objects x. In order to build
an Eval, it is necessary to know the set of rules I which may include
the injection of σ among their consequences. Its fields are:

• The identifier of the evaluation

• A reference to the tuple/object x

7.5 implementation notes 147

Listing 7.12: Generic Imperfect Rule - Example

rule "Imperfect"

i m p l i c a t i o n @[. . .]
enta i lment @[. . .]

when
Type1 (f1 == @[. . .] "X"

neg ^^ @[. . .]
f2 == "Y" || @[. . .] == "Z")

neg and @[. . .]
$ t : Type2 (f i e l d custom @[. . .] "val")

then
// Any a c t i o n here
i n j e c t ($t , "id_Eval") ; �
• An array of |I| + 2 degrees Ξ = [ε0, εσ, εj:1..|I|] ∈ (L∪∅)|I|+2

• An array of priority flags kj:0..|I|+1

• A reference to the merge function ∩ : (L∪∅)|I|+2 7→ L

– A reference to the strategy S∅

– A strategy Sk

• A reference to the operator ? (only for operator evaluations)

The array Ξ[1..|I| + 1] holds the different partial contributions, or the
special symbol ∅ if the corresponding piece of information has not
been obtained, for example because a rule has not fired. In particular,
Ξ[0] is reserved for the prior degree (if specified in the DRL) and Ξ[1]
for the result of direct evaluation. At the moment, the POJO-oriented
nature of Drools does not allow to support objects with imperfect field
values, with the only exception of missing values, so a single slot in the
array is sufficient (methods to overcome this limitation are currently
being studied). The elements of Ξ[i] are combined according to the
strategy S∩, which relies on Sk and S∅ as explained in Section 7.4.2.
The flags kj, in particular, are used to distinguish the high-priority
degrees from the normal ones. Evals also use both the Observer and
Observable design patterns [122]. They are notified when one of the
slots Ξ[i] changes its value, and notify when the output of ∩ changes.
The notified information includes the new value of επ and the ratio
|γ| = |Ξ|/(|I| + 2), i.e. the ratio of available contributions over the total
number of possible ones.

A subclass of Composite [122] Evals is defined for operator con-
straints (see Figure 34): they additionally store the references to a num-
ber of Evals equal to the operator arity. These values, conditioned by
S∅, are aggregated using the operator evaluator ?.

148 enhancing a rule-based system with imperfection

7.5.2 Degree Factory

The number and type of parameters, each one configurable at the level
of individual evaluations using the appropriate attributes, increases
the risk of inconsistencies. While the degrees of freedom seem (and
are) many, the choices are not uncorrelated: for example, once the de-
gree set has been chosen, the choice of the operator set is automatically
conditioned since the operators must be able to process and return de-
grees compatible with the adopted representation; moreover, the same
consideration applies to the various merge and filtering strategies. It
is also infeasible to let the user specify the implementing types di-
rectly in the rule file: in addition to being extremely error-prone, there
would be little or no control on the components used to customize
the engine. To avoid such risks, the compiler relies on an intermedi-
ary Singleton Factory based on the Strategy design pattern[122]. The
instance of this class (outlined in Figure 35) is responsible for building
the degrees (at runtime), operators and strategies (at compile time) -
basically anything whose type can be specified using an attribute. The
factory methods are overloaded in three versions:Factory Interface

• getX() : a zero-argument version which returns the default im-
plementation of a component.

• getX(String type) : a one-argument version, whose value is
taken directly from the corresponding attribute in the DRL, which
returns an instance of the class selected by the argument. If the
type is invalid, incoherent or simply not recognized, the default
implementation is returned instead.

• getX(String type, String params) : a two-argument version,
similar to the previous one, but which passes additional argu-
ments to the constructor/initialization method of the instanti-
ated configuration component.

7.5.3 Complexity Analysis

Eventually, to complete the analysis of the proposed extension, its com-
plexity will be discussed briefly. For this purpose, it is necessary to
consider:

• The number of rules R

• The maximum length of a sequence of α-nodes A

• The maximum length of a sequence β-nodes B

• The maximum number of patterns in a rule C

• The number of objects in the working memory W

The RETE algorithm has a worst case complexity WC that grows ex-
ponentially with the number of patterns in a rule, but the actual cost is
tractable and several optimization techniques improve its performance

7.5 implementation notes 149

<<abstract>>

ChanceFactory

+ True() : IDegree

+ False() : IDegree

+ Unknown() : IDegree

+ Random() : IDegree

+ buildDegree(String degree) : IDegree

+ buildDegree(double value) : IDegree

+ getX() : X

+ getX(String type) : X

+ getX(String type, String params) : X

<<interface>>

IDegree

+ asBoolean() : boolean

+ getValue() : double

Figure 35: Centralized Factory and Degrees

[104]. Unfortunately, many optimization devised for the original RETE
algorithm do not apply, since they assume that an evaluation is either
true or false. So far, optimizations for the imperfect case have not been
considered (but will be in future works), so it is necessary to take into
account the cost of the additions: the custom evaluators in the con-
straint nodes, the new operator nodes and the degree updates due
to injections. The complexity of an embedded evaluator can’t be con- Evaluator Cost
trolled, so it will be assumed to be constant: in any case, the benefits
of invoking an external module should justify its use. The presence of
operators, instead, lengthens the α and β chains by a constant-bound Operator Cost
factor. In fact, if a is minimum arity of the operators and L = max{A,B},
a tree with up to

∑loga L
j=1 aj = O(L) nodes can be built from L nodes,

yielding a sequence of length proportional to a · L. Hence, the cost of
propagation is comparable to the standard case, even if C has to be
increased by one due to the implication node.

C+1∑
j=1

{(W ·ω(A))j−1 · (W ·ω(A)) +ω(B)} (7.3)

A relevant cost increase, both spatial and temporal, can instead be
ascribed to the injections. The merge at each constraint node may have Injection Cost
to process up to O(R) degrees, affecting the propagation cost ω(A)

(resp. ω(B)) that becomes O(A · R). In case of late injections, an Eval
tree could be updated up to O(R) times, each time with a cost O(R ·
log(x)) making the cost quadratic in the number of rules. Likewise,
the storage of rule-entailed degrees requires a spatial cost O(R · L ·W).
Thus, the critical point is the maximum number of injecting rules for
any constraint: even if all rules could theoretically inject all others, in
most practical cases the effective number of injecting rules R ′ will be
much lesser than R.

150 enhancing a rule-based system with imperfection

7.6 conclusions

This Chapter has introduced an enhanced version of the RETE-OO
algorithm, using Drools as a case study. The rule language has been
extended to be as compatible as possible with the generalized imper-
fect logic language cited in Section 6.2.2. At the same time, the DRL
language and the RETE-OO engine have been thoroughly modified to
support a generalized inference schema suitable for that language.

In particular, the DRL extensions have involved both the expressive-
ness of the logic language and the set of attributes which can be used
to decorate the rules with fine-grained meta-data. These additional
constructs are used by the compiler to build, respectively, an extended
evaluation network and configure its runtime behaviour.

The new features come with a price: the complexity of the algorithm
increases, both in terms of computational requirements and usage. The
language is richer and more complicated, so additional care is required
to write sound and coherent rules; likewise, the attributes give many
degrees of freedom in customizing the behaviour of the engine, fact
which is only partially mitigated by the use of the centralized factory

to limit the possible combinations.
However, the new features are expected to increase the potentialities

of the engine in a way that makes the benefits outweigh the drawbacks,
allowing to write and process imperfect rules according to the vision
outlined in the previous Chapters. To test the potentialities of the en-
gine, the next Chapter will show several case studies which have been
realized for evaluation and test purposes, before moving the descrip-
tion of an application of the engine in a real-world case study.

8
A P P L I C A T I O N S O F I M P E R F E C T L O G I C

Contents
8.1 Imperfect Logic Applications 152

8.1.1 Boolean Logic 152

8.1.2 MYCIN Certainty Factors 153

8.1.3 Many-valued logics 155

8.1.4 Possibilistic Logic 161

8.1.5 Learning by Induction 161

8.1.6 Probabilistic logics 166

8.1.7 Dealing with Exceptions 169

8.2 Hybrid Applications 172
8.2.1 Embedding a fuzzy ontological rea-

soner 179

8.2.2 A simple Bayesian network 181

8.2.3 The SOM training algorithm 183

8.3 Conclusions 192

The goal of this Chapter is twofold. First, it is meant to show the po-
tentialities of the enhanced engine, showing that there exists a rather
wide class of applications that can be realized using it. Taken alone,
they are by no means innovative - and neither complete, since not
all possible ones have been explored - but they come from a variety
of different contexts. The examples have been divided in two classes:
the first ones are the “purely” logical ones, which show some imper-
fect extensions of a classical logic reasoner such as many-valued and
non-monotonic logics; after that, several “hybrid” applications will be
introduced, where the engine is integrated at various levels with tools
such as neural networks.

The proposed implementations are not meant to replace the exist-
ing individual engines or tools, which are in fact often optimized for
the specific types of reasoning. However, in Chapter 4 the benefits of
hybrid systems were discusses extensively: it is not unlikely, then, to
think of a real application (e.g. a CEP problem) where a rule-based sys-
tem requires the capabilities of, say, a Bayesian Network or a fuzzy
logic controller. Moreover, a complex application is likely to require
many different SC techniques for different sub-problems. When the role
of each one is limited to a very specific task, the emerging scenario is
one in which dozens of different modules co-exist and need to be inter-

151

152 applications of imperfect logic

faced and (especially in real applications) maintained and upgraded.
In this, the engine may assume a strong relevance for several reasons:

• It divides the abstract semantics of a rule from its concrete one.
The rules are written as if they were perfect, but their semantics
in presence of imperfection can be adapted to the actual type
of imperfection, possibly dynamically. In fact, it is sufficient to
change the evaluators and/or the Factory to modify the rule
semantics as the corollary conditions change.

• It acts as a common logic “middleware”, decoupling the various
sub-symbolic modules by forcing them to interact at the higher,
symbolic level of abstraction where they can be coordinated in
a way that is also declarative. In fact, it will be shown both how
to invoke a module from the logic level (e.g. trivially in the RHS)
and how to manage its feedback (e.g. wrapping it in a custom
evaluator).

• Some techniques can even be emulated by the engine, offering an
interesting option to the developer. While a dedicated module is
surely more powerful and efficient, the cost of interfacing, start-
ing, invoking and maintaining it could be too much if compared
to the real complexity of the task it is required for. Consider, for
example, a Bayesian “Network” composed by 5 nodes used to
process a low-priority event which may manifest itself once per
day.

The second goal, instead, is more pragmatically the definition of
some patterns which could be used in more concrete applications: in
fact, the concrete example discussed in Chapter 10 will exploit some
of them.

8.1 imperfect logic applications

8.1.1 Boolean Logic

Trivially, and for completeness, it must be noted that the behaviour of
a standard, boolean engine can be reproduced using an appropriate
Factory, outlined in Table 16. The degree set reduces to the binary
case, so ε ∈ {0, 1}, and the operators are defined as in the classical case.
Optionally, a weak form of Open World Assumption can be adopted: a
tuple is held if the current overall degree is ∅ because the direct eval-
uation could not determine the truth state and no injecting rule has
contributed yet. Notice that each coherent set of configuration param-
eters is provided by one concrete Factory (but the same Factory can
provide more than one set of parameters).

8.1 imperfect logic applications 153

Table 16: Configuration for Boolean logic

Parameter Description

L {0, 1}.

σ Any boolean property

Ω

∧ min

∨ max

¬ n.a.

→ εC

⇒

1 εP = 1, ε→ = 1

∅ else

∩ ∨

S∅ Ignore

Sk Ignore others

Sf

pass ε = 1

drop ε = 0

hold ε = ∅

8.1.2 MYCIN Certainty Factors

The first example is a historical tribute. Certainty factors were intro-
duced in MYCIN [69], one of the first expert systems ever, to deal with
the statistical uncertainty typical of the medical context in which it
was developed. They replaced proper joint and conditional probability
distributions, difficult to elicit with absolute numerical precision from
human experts.

In fact, each statement is annotated with a degree of “belief” in its
truth (MB) and a degree of “disbelief” (MD) - i.e. the belief in its being
false. Pairs of such values, each normalized in [0, 1], give a certainty
factor CF = MB−MD ∈ [−1, 1].

It is trivial to implement MYCIN’s handling of imperfection in Drools:
the engine used a rule language which is a subset of DRL; moreover, CF

are modelled using simple real values and are truth-functional, so the
general inference framework applies directly. CFs annotate individual
constraints (where they can be given a priori, by evaluation or multiple
entailment) and rules alike. Formulas are formed by atomic constraints
connected implicitly by the connective ∧, which is implemented by the
min operator; Modus Ponens then applies the product between the CF

of the premise and the CF of the rule. Partial results, which can but
decrease during the evaluation of a single rule, are propagated only
if superior to a threshold and merged using an operator which takes

154 applications of imperfect logic

into account both the sign and the relative strength of the contributions.
The mapping between MYCIN’s operators and the engine’s configura-
tion options are listed in Table 27: a dedicated Factory instantiates
degrees and connectives accordingly.

Table 17: Configuration for Certainty Factors

Parameter Description

L [−1, 1]

σ Predicate constraints with confidence

Ω

∧ min

¬ −(·)
⇒ CFP ·CF→

∩

CF1 +CF2 −CF1 ·CF2 CF1 ·CF2 > 0
CF1+CF2

1−min{|CF1|,|CF2|} else

S∅ Set to 0

Sk Ignore others

Sf

pass CF > θ

hold CF < θ

From the point of view of imperfection, CFs can be considered a
subjective measure of uncertainty. However, their use as measures of
uncertainty has been severely criticized ([126], [93]). In fact, CF are set
arbitrarily and treated truth-functionally, which is the opposite of of
what normally happens with probability. A definition more coherent
with theory of probability [187], but which still relies on the assump-
tion of independence, was used in EMYCIN. A CF is defined as the
variation in belief due to the acquisition of new knowledge, i.e. the
knowledge update from p(B) to p(B|A). Other than giving a recom-
mendation on how to evaluate the atomic predicates, it allows a more
coherent belief/certainty propagation. In this framework, a rule ϕ→ γ

- in Drools, the implication degree - is described by two factors, one rel-
ative to the conclusion given a true premise (CF(γ|ϕ)) and one relative
to the conclusion when the premise is false (CF(γ|ϕ). This reflects on a
different definition of the Modus Ponens operator:

Parameter Description

⇒

CF(γ|ϕ) ·CF(ϕ|θ) CF(ϕ|θ) > 0

0 CF(ϕ|θ) = 0

−CF(γ|¬ϕ) ·CF(ϕ|θ) CF(ϕ|θ) < 0

8.1 imperfect logic applications 155

8.1.3 Many-valued logics

Unlike belief-oriented logics, the class of many-valued logics deals
with partially true relations. The term includes a vast family of truth-
functional logics of which fuzzy logic (in a narrow sense and, to some
extent, even in a broader sense) is a specific case.

Theoretical Background

“Fuzzy” many-valued logics [144] are a truth-functional generalization Many-valued Logics
of classical logic: the set of truth values is extended from the binary
true/false {0, 1} to the whole interval L = [0, 1] (even if, theoretically,
any lattice would be suitable). Sentences, then, can have a partial, but
certain, truth degree, since in this context ||ϕ|| ∈ L. The degree of truth
of an atomic predicate is given by the associated relation’s membership
function: in order to evaluate complex formulas, then, the canonical
logical connectives and, or, not, . . . are likewise generalized. As in the
classical case, it is sufficient to define any two of them, usually the
implication and the conjunction operators, so that the others can be
derived accordingly. However, things are complicated by the fact that
there is not a univocal admissible extension - actually, there are infinitely
many ones.

The role of conjunction operator can be taken by any T-norm ?, a com- Conjunctions :
T-normsmutative, associative, monotonic binary function L× L 7→ L with sup{L}

as identity element. Even if any function satisfying these mild require-
ments is suitable, there exist only three “basic” T-norms [144]:

Gödel Goguen Łukasiewicz

||ϕ ?γ|| min{||ϕ||, ||γ||} ||ϕ|| · ||γ|| min{0, ||ϕ|| + ||γ|| − 1}

Table 18: Canonical T-norms

For a chosen T-norm, the associated implication operator →? is de- (R-) Implications
fined by residuation [117] : ||ϕ → γ|| = max{θ ∈ L | ϕ ? θ 6 γ}. The
definition requires, however, the T-norm to be continuous. In this case,
the implications (or, more properly, the R-implications) are:

Gödel Goguen Łukasiewicz

||ϕ→? γ||

 1 ||ϕ|| 6 ||γ||

||γ|| else

 1 ||ϕ|| 6 ||γ||
||γ||
||ϕ||

else
min{1,1− ||ϕ|| + ||γ||}

Table 19: Canonical R-implications

Given the implication, the negation operator is defined such that Negation
||¬ϕ|| , ||ϕ → 0||. In Gödel logic, the evaluation of the negation re-
turns 1 if the operand has a truth degree of 0, and 0 in all other cases.
Applying the same definition to the other implications, instead, yields
the strong negation ||¬ϕ|| = 1− ||ϕ||. The negation operator, in turn, al-
lows to define the reciprocal implication←, which is very relevant from

156 applications of imperfect logic

a practical point of view. In fact, when ¬ is a strong negation, ||ϕ→ γ||

is equal to ||¬γ→ ¬ϕ||, but knowing the value of the direct implication,
in general, does not allow to evaluate the reversed formula γ→ ϕ. The
evaluation of the reciprocal R-implication, then, yields:Reciprocal (R-)

implication
Gödel Goguen Łukasiewicz

||ϕ←? γ||

 1 ||ϕ|| 6 ||γ||

1− ||ϕ|| else

 1 ||ϕ|| 6 ||γ||
1−||ϕ||
1−||γ||

else
min{1,1− ||ϕ|| + ||γ||}

Table 20: Canonical reciprocal R-implications

The remaining operators are defined in terms of the previous ones.
In particular, the disjunction operator •, also called T-conorm, is ob-Disjunction :

T-Conorms tained applying DeMorgan’s law to a T-norm:

Gödel Goguen Łukasiewicz

||ϕ •γ|| max{||ϕ||, ||γ||} ||ϕ|| + ||γ|| − ||ϕ|| · ||γ|| min{1, ||ϕ|| + ||γ||}

Table 21: Canonical T-conorms

Eventually, the equivalence operator and its negation, the exclusiveEquivalence and
Exclusive-Or or [51], derive from their classical counterparts: ||ϕ ≡ γ|| = ||(ϕ ? γ) •

(¬ϕ ? ¬γ)||. The standard quantifiers, instead, rely on Gödel’s T-norm
and conorm:

||∀X : ϕ(X)|| = minX{||ϕ(X)||}

||∃X : ϕ(X)|| = maxX{||ϕ(X)||}

However, this chain of derivations is not the only possible one. TheAlternative
Definitions :
S-Implications

implication→, so far defined from a material point of view, can also be
defined from an intuitionistic one [44], extending the classical tautology
(ϕ→)γ ≡ (¬ϕ •γ). This framework requires that • and ¬ have already
been defined. In particular, considering the strong negation 1 − || · ||,
the choices for • still coincides with the definitions already given for
T-conorms, but in this case are provided as primitives. The resulting
definitions are not the same: in fact, they are called S-implications to
distinguish them from R-implications.

Gödel Goguen Łukasiewicz

||ϕ→? γ|| max{1− ||ϕ||, ||γ||} 1− ||ϕ|| + ||ϕ|| · ||γ|| min{1,1− ||ϕ|| + ||γ||}

Table 22: Canonical S-implications

Yet another derivation of the implication operator is found in [51]:
this framework considers the exclusive or primitive, and derives the
other operators from it. In particular, two more notions of implications,
E-implication and X-implications are obtained.

From a practical point of view, it is clear that the use of many-
valued logics requires particular attention: while connectives can be
used to compute almost any combination of truth degrees, their use

8.1 imperfect logic applications 157

in a coherent way from the logical point of view is a different matter.
Łukasiewicz’s logic is possibly more “coherent” than the other two [?
], but it is also the most strict, since the ordering relation between the
evaluation of the T-norms always holds1:

min{0, ||ϕ|| + ||γ|| − 1} 6 ||ϕ|| · ||γ|| 6 min{||ϕ||, ||γ||}

Goguen’s logic is suitable to model the operators of a probabilistic
logic under the strong assumption of statistical independece required to
make the logic truth-functional, which however is unrealistic in many
cases. Gödel’s logic, on the other hand, is the one commonly used
in canonical fuzzy logic systems. However, there are several variants
which combine two or more of the previous, like Pavelka’s rational
logic ([234],[235],[236]), which is an extension of Łukasiewicz’s logic
with an explicit notion of truth degrees. A complete picture of the
different logics and their relations can be found in [144] or [117].

Kleene’s 3-valued logic

Kleene’s logic is a well-known formalism (e.g.[214]) which extends
the admissible set of truth values with a third value, ⊥. This value
has found a dual interpretation [131]: as intermediate truth degree,
modelling any partial degree 0 < ε < 1 without specifying exactly
which one, or as a measure of (un)certainty. In this second case, a
sentence evaluated to ⊥ is either true or false, but an agent does not
have enough evidence to decide which is the case. The logic is truth-
functional and the definition of the operators is intuitively and appar-
ently closer to the uncertainty semantics, but the sound interpretation
is actually the many-valued one [112]. In this case, it can be recon-
ducted to the more general case by considering ⊥ equal to any inter-
mediate value between 0 and 1.

Implementation

Given the variety of definitions for the logical connectives, the role
of the attribute @kind becomes crucial: the various families are then
wrapped into operators, as summarized in Table 23, and completed
with the appropriate strategies. Different sources are combined taking
the maximum of the individual degrees: in fact, applying modus po-
nens on a single-rule basis guarantees only a lower bound to the truth
degree of a conclusion ([235],[144]). To obtain the definitive value, all
possible injecting rules must have fired: this is the reason why a tuple
is propagated only when the associated Eval degree is strictly greater
than a threshold (usually 0 or 0.5), but instead is held if the degree is
below the threshold but there still exist some rules which could poten-
tially bring it above the desired level.

Problems, in many-valued logic, arise when the theory admits the Negation and
Interval Degrees

1 non-continuous T-norms are not considered

158 applications of imperfect logic

Table 23: Configuration for many-valued logic

Parameter Description

L [0, 1].

σ Fuzzy predicate constraints

˙

¬ 1− ·1

∗ ∧,�, ∧Ł

+ ¬(¬ε1 ∗¬ε2)

→ ¬ε1 + ε2

6= ε1 ∗¬ε2 + ¬ε2 ∗ ε2

≡ (ε1 → ε2) ∗ (ε2 → ε1)

⇒ εP ∗ ε→

∩ ∨

S∅ Set to 0 (cwa) or ignore

Sk Set non-flagged to 0 (cwa) or ignore

Sf

hold ε < θ, |γ| < γ0

drop ε < θ, |γ| > γ0

pass ε > θ

entailment of the logical negation of a formula. In this case, one ob-
tains a set of upper bounds to the truth degree of the formula itself: in
fact, from ε¬C > ϕ follows that εC 6 1−ϕ. The separate entailments
of C and ¬C yield an interval [τ, 1−ϕ], in which the actual truth degree
εC is expected to lie. Unless intervals are certain (i.e. they reduce to a
single number and τ+ϕ = 1), their use introduces a degree of uncer-
tainty on the gradual truth of a formula. τ and 1−ϕ can be considered
lower and upper previsions of a formula’s truth degree: the immediate
consequence of the adoption of this type of logic is the loss of truth-
functionality in the strict sense. All the operators generalize naturally
to be used with intervals, but the resulting intervals must always be
considered bounds. For example, while ∀ε : ε⊗ (1−ε) = 0, the interval-
valued version gives [τ, 1−ϕ]⊗ [ϕ, 1− τ] = [0, 1− (ϕ+ τ)] ⊇ [0, 0].

A further extension of this model can be obtained combining the in-Many-valued Logic
with Confidence terval degrees with a specialization of certainty factors, using the latter

to model confidence, in a way similar to what was done in fuzzyCLIPS
[7]. Unlike MYCIN, however, the confidence factors lie in [0, 1]. The
two degrees exist at different levels: the interval is used to model the
imprecision in defining an exact truth value, while here the confidence
degree measures the strength of the belief in the (imprecise) estimation.

8.1 imperfect logic applications 159

Table 24: Configuration for interval-valued logic with confidence

Parameter Description

L {[τ, 1−ϕ]χ|[τ, 1−ϕ] ⊆ [0, 1],χ ∈ [0, 1]}.

ff Fuzzy predicate constraints with confi-
dence

˙

¬ ¬G, ¬π, ¬L

∗ ∧,�, ∧Ł

+ ¬(¬ ·1 ∗¬·2)

→ ¬ ·1 +·2

� ·1 ∗¬ ·2 +¬ ·2 ∗·2

≡ ¬�, (·1 → ·2) ∗ (·2 → ·1)

⇒ [τ1 ∗ τ2, 1]χ1·χ2
∩ χ-discount and interval intersection

S∅ Set to [0, 1]0 or ignore

Sk
χ? = max{χj | εj overrides}

χj | εj ¬overrides = max{0,χj − χ?}

Sf

hold χ · (τ+ϕ) < θ, |γ| < γ0

drop χ · (τ+ϕ) < θ, |γ| > γ0

pass χ · (τ+ϕ) > θ

In fact, confidence is ultimately used by the merge function ∩. When
intervals are involved, ∩ usually reduces to interval intersection, gener-
alizing the concept of sup for mere lower bounds. When confidence is
also present, intervals can be discounted according to their associated
(lack of) confidence before they are intersected, moving from [τ, 1−ϕ]

to [χ · τ, 1 − (χ · ϕ)]. At worst, when χ = 0, the discount causes an
interval to become the vacuous interval [0, 1]. The computation of con-
fidence factors themselves, instead, may proceed as follows. Atomic
evaluators are expected to provide the confidence degree as well as
the (interval) truth one; operators, then, combine the confidence of
their operands by returning an aggregate confidence by means of a
T-norm (usually the min). Modus Ponens, instead, always returns the
product of the premise’s and implication’s confidence degrees. ∩, even-
tually, combines the confidence degrees of the different contributions
using a T-conorm: in fuzzyCLIPS max is used, but the probabilistic
sum is also a good candidate since it causes the overall confidence to
grow as the number of merged contributions increases. The revised
configuration parameters are listed in Table 24. Notice that confidence
can be used as an additional factor by the filtering strategy.

160 applications of imperfect logic

Application: Gradual Rules

An important application of many-valued logic is given by fuzzy rules,
where implications (or, more generally, the relation ρ(P,C) between
premise and conclusion) has a gradual, fuzzy value. In [117], several
sub-classes of rules are defined, including:Types of Gradual

Rules
• Gradual Rules : The more P, the more necessary C.

• Impossibility Rules : The more P, the less possible not C.

• Possibility Rules : The more P, the more possible C.

• Antigradual Rules : The more P, the less necessary C.

The definitions are rather general, but with some assumptions they
can be used to justify some basic inference rules. The first states that
modus ponens entails a lower bound for the conclusion; the second,
instead, that using a (negated) premise to entail a negated conclusion
yields an upper bound for the conclusion itself (in fact, assume that
P → C ≡ ¬C → ¬P: the more P, the less ¬P, so ¬C must be low as
well, even in the best case). The last two, instead, rely on negated im-
plications: they allow to entail lower and upper bounds for the conclu-
sion, but in this case the lower bound is obtained implying the negated
conclusion and vice versa (intuitively, for S-implications ¬(P → C) is
equivalent to P ∧ ¬C). (Other rules exist, such as certainty rules, but
these involve a mapping from the level of truth degree to the level of
belief degree. While theoretically supported by the engine, they have
not been studied yet)

Rules like these can be implemented easily, according to the pattern
8.1.

Listing 8.1: Gradual Rules
rule "Gradual"

enta i lment @[kind="modus_ponens"]
// kind =" equivalence "

/*neg*/ i m p l i c a t i o n
when

/*neg*/ Premise (. . .)
then

i n j e c t (. . .) ;
// r e j e c t (. . .)

end �
Premise and implication can be negated as necessary; the modus po-

nens operator then computes the conclusion degree in the form of an
interval [τ, 1] which can be applied to a target, chained formula either
as a lower bound or, negated, as an upper bound [0, 1− τ]. For conve-
nience, moreover, the equivalence entailment modality is provided:
it applies, at the same time, the modus ponens twice: 〈P,P → C〉
and 〈¬P, ¬P → ¬C〉. To do so, however, it assumes that the rule is
not based on a simple implication, but on an equivalence, so that
(P → C) ≡ (C→ P).

8.1 imperfect logic applications 161

8.1.4 Possibilistic Logic

In its original definition, Possibilistic logic [112] is an application of
possibility theory (see Chapter 2) to first-order logic, where formulas
ϕ are annotated with a possibility degree ε which models the necessity
of the sentence to be true, i.e. N(ϕ) = N(||ϕ|| = 1) > ε. The defini-
tion explicitly involves the evaluation of the formula to stress the con-
cept that possibility does not reason over truth degrees, but degrees of
possibility that a sentence is true. However, it generalizes to a fuzzy
version where necessity and possibility become the lower and upper
bounds of the truth degree of a predicate.

The operators of possibility theory are not truth-functional, and so
is the logic which maps ∧ on ∩ and ∨ on ∪. However, it is still possible
to reason with bounds for the necessity and possibility of a formula:
in fact, from N(ϕ) > ε one gets Π(¬ϕ) 6 1 − ε. These bounds are
a specific case of (consonant) belief and plausibility functions and can
be used for automatic reasoning. In [107] a mixed necessity/possibility
resolution-style inference procedure is shown, but it also defines the
required operators.

Possibility logic uses modus ponens as main inference rule, com-
puting the necessity of a formula γ from the necessity of a premise
εϕ and an implication εϕ→γ. In particular, from N(ϕ) > εϕ and
N(ϕ→ γ) = N(¬ϕ∨ γ) > ε→, one entails:

N(γ) > min{εϕ, ε→}

Bounds for the same formula can be combined: if one hasN(γ) > ε1
and N(γ) > ε2, the effective bound becomes N(γ) > max{ε1, ε2}. An
alternative definition of modus ponens, this time involving an implica-
tion defined in terms of its possibility, is also given in [107].

8.1.5 Learning by Induction

Induction is the process of inferring the degree at which a general
property P(X) holds for a set of objects X from the mere observation of
the property on a limited subset of objects x1, x2, . . . , xn ∈ X. Induction
becomes particularly relevant when the formula to be learned is an im-
plication P → C and the observations are pairs of premise/conclusion
candidates, or in the data-mining problem of learning association rules
P ⇒ C [29].

The classical formulation
P(x1) . . . P(xn)

∀X : P(X)

is obviously inadequate: it is sufficient that P does not hold for one
element xj to make the universally quantified formula false. In prac-
tice, the ∀ quantifier is used in natural language expressions, but in a
relaxed sense, with the actual meaning of “most” and, even then, as-
suming implicitly that it holds only with a certain probability/belief/-
confidence. Clearly, in order to be sound, an inductive process must

162 applications of imperfect logic

Table 25: Configuration for possibilistic logic

Parameter Description

L [0, 1]× [0, 1]

σ Gradual Necessity/Possibility

˙

¬ Π = 1−N

∗ ∧(N)

+ ∨(Π)

→ ¬P+C

⇒ NC > (NP ∧N→)

∩ ∨

S∅ N = 0, Π = 1

Sk Set non-flagged to N = 0, Π = 1

Sf

hold N < θ, |γ| < γ0

drop N < θ, |γ| > γ0

pass N > θ

take imperfection into account. Unfortunately, as usual there are many
possible definitions, which also depend on the imperfection associated
to the individual observations. From a merely syntactical point of view,
DRL has been extended with one dedicated quantifier, forany. The po-
tentialities of this quantifier are still being studied, so here a few basic
applications will be described. The syntax is given in 8.2; informally,
the equivalent predicate-style notation

∫
C() F()dW() will sometimes be

adopted.
The forany quantifier can be customized using the @kind and theGeneralized

Induction other common attributes. For example, in his paper [308] Zadeh gen-
eralizes the concept of (fuzzy) quantifier for fuzzy statements, intro-
ducing concepts such as “most” which fit well in an induction context.
The attribute @kind can be used to choose the specific type of opera-
tion to be performed: it is an entry-point for external algorithms, but
also an important extension which supports purely logical, rule-based
mechanisms. The expression weight, instead, is meant to evaluate a
degree with the semantics of weight, used by the induction operator
to give different relevance to the different individuals when comput-
ing the overall degree. The actual semantics depends on the context
and is delegated to the operator: the simplest induction operator is the
AverageInductionOperator which computes a (weighted) average of
the individual degrees. When the degrees are properly fuzzy degrees,
it computes the expected fuzzy degree as suggested in Zadeh’s exampleInducing Expected

Fuzzy Degrees

8.1 imperfect logic applications 163

Listing 8.2: Generalized Induction Quantifier
rule "Induction"

when
forany @[kind = " . . . "] (

F () // any formula to be induced
s u b j e c t _ t o C() // another formula
weight W() // one more formula

)
then

i n j e c t ("Target") ;
end

rule "Target"

when
. . .

then
end �
(see rule 8.3):

Listing 8.3: “Most Swedes are tall”
rule "Fuzzy Induction"

when
forany @[kind=" average "] (

$p : Person (t h i s seems "tall")
weight Person (t h i s == @[cut] $p ,

n a t i o n a l i t y == "Swedish")
)

then
. . .

end �
The same syntax, however, can be used with boolean properties to

obtain a frequentist probability, as shown in rule 8.4, where it is used Inducing Objective
Probabilitiesto compute the probability that a 1 is rolled on some die. Notice that

the same rule exploits another feature of Drools, the from keyword,
which allows to define alternative object entry points and thus can be
conveniently used to keep the flow of samples from a “training set”
separate from the main WMEs.

The degrees so obtained can be used directly in the consequence, or
injected in some other constraint. For example, the frequentist proba-
bility obtained in the previous example can be injected as a prior prob-
ability, to be combined and refined using, for example, a direct evalua-
tor as in the second rule of example 8.4. The probability induced on a
case history of previous rolls, in fact, becomes useful when the direct
observation of a roll is impossible, either because the dice has not been
rolled yet (there is no Roll in the WM) or because the information is
missing (the field result is null). When the Roll is actually inserted or
updated, the appropriate ∩ strategy will compute the correct value.

164 applications of imperfect logic

Listing 8.4: “Probability Estimation”
rule "Frequentist Probability"

when
$d : Die ()
forany @[kind=" average "] (

Rol l (die == @[cut] $d ,
r e s u l t == 1) from R o l l s

)
then

i n j e c t ($d , "idRoll1") ;
end

rule "Bad luck"

when
$d : Die ()
$r : Rol l (die == @[cut] $d ,

r e s u l t == @[id =" idRoll1 "] 1)
then

. . .
end �

The possibilities increase when more complicated degrees are used
in place of simple real values. In a probabilistic setting, a Bayesian
update schema can be adopted, possibly in combination with the use
of imprecise probabilities. For example, the previous dice example can
be used with a (binomial) IDM (see [54] and Section 2.1.3), as in ruleInduction with IDM
8.5. In this case, the @degree attribute can be used to specify the prior
probability, while the @params can set additional parameters such as
the weight of the “hidden” observations.

Listing 8.5: “Imprecise Dirichlet Probability Estimation”
rule "IDM"

when
$d : Die ()
forany @[kind=" d i r i c h l e t " , degree = " 1 / 6 " , params = " 0 . 2 "] (

Rol l (die == @[cut] $d ,
r e s u l t == 1) from R o l l s

weight . . .
)

then
. . .

end �
The boolean definition of

∫
becomes more robust in a possiblistic

context, by considering the necessity-possibility interval [∀X : P(X),∃X :

P(X)]. An induction operator of this kind computes the min (respec-
tively the max) of the necessity (resp. possibility) degrees associated to
the individual observations, which however must be equally relevant.
This definition generalizes naturally to the fuzzy case, as well.

8.1 imperfect logic applications 165

Learning Implications : Gradual Rules

As already noted, induction becomes a relevant tool when rules have
to be learned from data. In doing so, one must try to avoid the dan-
gerous side-effect known as Ex Falso Quodlibet: given an implication
P(X) → C(Y), a false premise makes the operator true, regardless of
the conclusion. Hence, the first time the premise becomes true, the
conclusion might be assumed to be true as well, which is obviously an
undesired behaviour.

In fact, it is common to partition the set of examples according to the
fuzzy concept of relevance. So, for each couple <P,C>, membership in
the positive, negative and irrelevant sets is given by a trio of functions
that should be complementary, i.e.:

∀ < P,C >: µ+(< P,C >) + µ−(< P,C >) + µ0(< P,C >) = 1

In [114], Dubois and Prade study the learning of associative and
gradual rules in terms of fuzzy partitions. The first case uses the con- Relevance
junction, implication and negation of many-valued logic to define the
partition in terms of logical formulas involving the candidate premise
and conclusion:

µ+ = P ?C

µ− = ¬(P → C)

µ0 = ¬P

An alternative definition, more suitable for gradual rules, is given
in the same paper:

µ+ = P ? (P → C)

µ− = P ? (¬(P → C))

µ0 = ¬P

The extended syntax supports this theoretical framework as well.
In [114], it is remarked that the operators ?, ¬ and → cannot be cho-
sen independently. Only some combinations of Łukasiewicz, Goguen
and Gödel operators are allowed: the Factory can ensure that the con-
straints are verified using the same specific meta-value in the atttribute
@kind - e.g. gradualImpl - of all the connectives, even if the program-
mer is free to override it locally. Rule 8.6 shows an example for asso-
ciative rules:

In particular, the memberships in µ+ and µ− lead to two different
degrees which must be induced separately and used, for example, to
define the lower and the upper bound (in a fuzzy or possibilistic sense)
for the degree associated to a rule P → C. The presence of µ0, instead,
led to another subtle consideration on the role of pairs for which the
premise tends to be false: in fact, a pair can either be ignored or taken
into account, but considering its contribution as an “unknown”. When
a single pair is involved, the false implication is considered a lower
bound for the induced degree, so there is no real difference. When
many pairs are involved, however, the difference may lie in the support.

166 applications of imperfect logic

Listing 8.6: “Learning Associative Fuzzy Rules”
rule "Assoc_rules"

when
forany @[kind=" goedel "] (// min in a p o s s i b i l i s t i c sense

and @[kind] (
$p : Premise () from tsEP
Conclusion (l i n k == @[cut] $p) from tsEP

)
s u b j e c t _ t o Premise (t h i s == @[cut] $p)
weight Premise (t h i s == @[cut] $p)

)
then

. . .
end �
Consider, for example, a Bayesian model such as the IDM: it is rather
different to say that a formula (the general implication, in this case) is
unknown because no observations have been made, rather than say-
ing that, after observing all the training set, no additional knowledge
has been gained. To this end, two different expressions can be used:
the first, weight, is used only to compute the (relative) relevance of
an element in the induction process. The second, subject_to is used
to discount the degree before it is combined with the others, using the
same Factory’s discounting strategy used by ∩ to merge degrees (un-
less modified with @kind). Obviously, the two can be used together.

8.1.6 Probabilistic logics

Various logics with support for probabilistic reasoning (purely statis-
tical approaches as well as Bayesian reasoning) have been developed.
The main problem of probabilistic logic is their general lack of truth-
functionality, so several integrations of probability theory and rule-
based systems have been proposed, but all with specific limitations.
Given the number and variety of languages, only a few have been
analysed.

Probabilistic Datalog

(DatalogP) [137] is an extension of Datalog [77], a propositional lan-
guage, which additionally allows for the probabilistic weighting of
facts (but not - extensionally - of rules). Informally, the idea here is
that each ground fact corresponds to an event in the sense of probabil-
ity theory, and rules allow for boolean combinations of events and their
probabilities, which have a probabilistic possible-world semantics (i.e. the
degrees model a probability distribution over all possible worlds). In
order to deal with the absence of truth functionality,DatalogP follows
two alternative directions: basic DatalogP yields probability intervals
instead of "point" probabilities in case of derived event expressions;

8.1 imperfect logic applications 167

alternatively, DatalogPID makes the quite strong assumption of uni-
versal event independence, that is Pr(A∧ B) = Pr(A) · Pr(B) for any
events A and B. Under this assumption boolean combinations of the
constituents of probabilistic event expressions become possible, so the
logic reduces to a many-valued one.

Bayesian Logic Programming

While Bayesian networks can emulate certain types of rules, they work
only on a propositional level. However, several formal approaches ex-
ist which extend Bayesian networks with first-order capabilities (rela-
tions). Bayesian logic programs (BLP) [167] for example can be seen as
a generalization of Bayesian networks and logic programming, imple-
menting a possible-world semantics. The logic component of BLP con-
sists of so-called Bayesian clauses. A Bayesian clause is a rule of the form
A|A1, ...,An, where each Ai is a universally quantified Bayesian atom.
The main difference between Bayesian clauses and ordinary clauses
is that the Bayesian atoms have values from a finite domain instead of
boolean values. In addition to Bayesian clauses, a BLP consists of a set of
conditional probability distributions over Bayesian clauses c (encoding
p(head(c)|body(c))) and so-called combining rules in order to retrieve a
combined conditional probability distribution from the combination of the
multiple different conditional probability distributions. Given a BLP

a Bayesian network can be easily computed and then queried using
standard Bayesian inference. In alternative, it is possible to exploit the
enhanced engine writing rules such as the ones in 8.7. Using a naive
approach, the conditional probability tables are mapped on implica-
tions’ degrees, while the conjunction operator in the LHS combines the
premise atoms’ degrees in matrix form, so that modus ponens reduces
to matrix multiplication. The entailed degree, then, can be injected and
combined using the chosen combination rule.

Listing 8.7: Bayesian Logic Programs
rule "BLP"

enta i lment @[kind="BLP"]
i m p l i c a t i o n @[degree = " . . . "]
when

$a1 : Atom1 (value == @[id = " . . . "] "...")
. . .

$aN : AtomN(value == @[id = " . . . "] "...")
then

AtomC cons = new AtomC (. . .) ;
i n j e c t (cons , "idValC") ;

end �
It could be also possible to write one generalize rule (i.e. without

placing restrictions on the atom values), but in that case the implica-
tion operator would not be truth functional: in fact, it would be its
responsibility to analyse the atoms (accessing them through the Evals

168 applications of imperfect logic

in order to choose the appropriate conditional probability table (which
would likewise not be possible to express as a constant degree in the
rule base).

Table 26: Configuration for Bayesian Logic Programs

Parameter Description

L [0, 1].

σ Atom value restrictions

Ω

∧ matrix composition

∨ n.a.

¬ n.a.

→ p(C|P)

⇒ p(C|P) ? p(P)

∩ ∨

S∅ n.a.

Sk n.a.

Sf pass

hybrid probabilistic logic programs Hybrid Probabilis-
tic Logic Programs [91] are a hybrid combination of interval many-
valued logic and probabilistic logic programs. Atoms are annotated/e-
valuated with a probability interval and then combined using different
types of truth-functional connectives, derived from many-valued logic.
The interest lies in the inference procedure, derived from probabilistic
logic programs [213] where rules have the form

P : [pl,pu]⇒ C : [τ, 1−ϕ]

meaning that when a fact P ′ : [p ′l,p
′
u] matches with P and its probabil-

ity interval is contained in the one given for P (i.e. [p ′l,p
′
u] ⊆ [pl,pu]),

then it is possible to entail the conclusion C with a probability falling
within the range [τ, 1 − ϕ]. The only required addition is an unary
meta-operator range which checks whether the premise degree falls
within the given range, returning true ([1, 1]) or false ([0, 0]) as appro-
priate. It is also necessary to use the equivalence modus ponens op-
erator, interpreting the rules as gradual, and specify the desired con-
clusion degree as the implication degree. In fact, interval based equiv-
alence modus ponens is defined as follows, generalizing the concept
of many valued modus ponens. Assuming that the premise degree is
[τP, 1−ϕP], that the implication degree is [τ→, 1−ϕ→] and that the

8.1 imperfect logic applications 169

equivalence holds so that P → C ≡ C → P, applying the definition of
gradual modus ponens twice with any T-norm ? :

τP ? τrightarrow 6 τCτP ?ϕrightarrow 6 ϕC

When τP is 0, the entailed conclusion [τC, 1−ϕC] is [0, 1]; otherwise,
when τP = 1, modus ponens returns [τC, 1−ϕC] = [τrightarrow, 1−

ϕ→]. The rule pattern is shown in rule 8.8.

Listing 8.8: Hybrid Probabilistic Logic Programs
rule "BLP"

enta i lment @[kind=" equivalence "]
i m p l i c a t i o n @[degree ="(a , b) "]
when

range @[params ="(c , d) "] (
// any multi−valued formula here

)
then

. . .
end �
8.1.7 Dealing with Exceptions

The problem of exception is relevant in perfect, monotonic systems,
since one has to find a trade-off between the use of general rules and
the possible presence of (rare) instances of facts which violate them.
Consider the classic example bird(X) ⇒ flies(X). The rule is valid for Exception
most birds but not for all, since there can be exceptions, from entire sub-
classes of birds (e.g. penguins) to individuals (e.g. Tweety). However,
even if incorrect, statements like this are convenient because (i) they
are simple and (ii) still cover the majority of cases. In practice, it is
not feasible to have a rule should include all the additional checks in
its preconditions (e.g. (P ∧ ¬E) ⇒ C, where E denotes an exceptional
condition), especially since a rule should be modified every time a new
condition is found. Notice, however, that this problem is covered by the
framework of imperfection since ignoring E is equivalent to treating it
as if it were a missing piece of information.

Default logic [253] deals with the problem by transforming premises
in prerequisites which must be subject to some required justifications
before they can be effectively used to entail a conclusion.

Another widely used theoretical framework is that of Defeasible Logic Defeasible Logic
[217]. In this framework, conflicts are solved by “defeat”, i.e. proving
that one of the conflicting consequences effectively overrides the other.
In particular, given an implication ϕ→ γ used for modus ponens, the
knowledge of a third formula κ can be used either to attack the impli-
cation → (undercutting defeat), preventing γ from being deducted, or
to attack the conclusion γ itself (rebutting defeat), or both. Defeaters
may be defeated themselves: a partial order relation � is defined over
the formulas do decide their relative strength.

170 applications of imperfect logic

Defeasible logic has been integrated with canonical logic program-
ming (i.e. Horn clauses in a Prolog-compliant rule engine) [37]: using
a defeasible theory, a goal can be solved with one of four degrees of
certainty: +∆ (the goal is definitely provable), +δ (the goal is provable
in a defeasible manner), −δ (the goal is provable not to be defeasibly
provable) and −∆ (the goal can be proved to be definitely not provable).
Another integration, this time using a forward chaining approach, is
given in [192], where the complexity of the problem is also studied.

In Drools Chance, there exists a form of support for undercutting and
rebutting defeating rules, as defined in [217] and [16], but instead a fullDefeaters
mapping of defeasible logic, for example exploiting generalized truth
degrees to model states such as +∆, −∆, +δ and −δ, has not been been
studied in detail yet.

Listing 8.9: “Rules with Exceptions”

rule "default" // aka " r1 "
// Bird (X) −> F l i e s (X)
when

$x : Bird ()
then

i n j e c t ($x , "idFlies") ; // d e f a u l t
end

rule "defeater" // aka " r2 "
// Chicken (X) −> neg F l i e s (X)
// Chicken (X) −> neg (Bird (X) −> F l i e s (X))
when

$x : Chicken ()
then

r e j e c t ($x , "default" , t rue) ;
r e j e c t ($x , "idFlies" , t rue) ;

end

rule "policy" // aka " r3 "
when

$x : Bird (f l i e r == @[id =" i d F l i e s "] t rue)
then

. . .
end �

To discuss this feature on a concrete example, consider the rule baseExample
in 8.9. The idea is that the “defeater” rule, active only in presence
of exceptional conditions, alters the “default” logical sequence Bird

→ Flies rightarrow . . . , cutting the link between Bird and Flies

and replacing it with its own. To do so, it uses its own consequence
degree, opportunely negated, to influence the two specific degrees: the
implication of the default rule and the evaluation of the final constraint.
The situation is sketched in Figure 36 and Figure 37 (where only an
abstraction of the RETE nodes is drawn).

The effect of the different defeaters depends on the type of logic
which is being used. As an example, the behaviour is described in

8.1 imperfect logic applications 171

Bird
→⇒

Bird[this flies]

r2 : B(X)⇒ F(X)

∩[ε0, ..,εr1,εrk1, ..]

∩[επ, ..,εr2, ..]Chicken
→⇒

rk1 : C(X)⇒ ¬(B(X)→ F(X))

Figure 36: Undercutting De-
feater

Bird
→⇒

Bird[this flies]

r2 : B(X)⇒ F(X)

∩[επ, ..,εr2, ..]

∩[επ, ..,εr2,εrk2, ..]Chicken
→⇒

rk2 : C(X)⇒ ¬F(X)

Figure 37: Rebutting Defeater

the cases of 3-valued logic and possibilistic interval logic, so the cor-
responding factories are assumed to be loaded. To handle exceptions,
however, a further addition is required. Degrees ε (of any kind) are
annotated with a higher order, real-valued degree χ to model the con-
fidence in their evaluation. The implementation of the merge strategy
∩, then, is extended to take into account the presence of “overriding”
degrees, which normally are not present in a monotonic rule base.
In practice, this requires to extend the confidence-discount modality
applied to interval-valued possibilistic logic to other types of many-
valued logic. As described in [16], ∩ performs a discount of the differ-
ent degrees before combining them: the discount, in turn, is stronger
for degrees with lower confidence - at the limit, a degree with no con-
fidence is not taken into account at all. In this context, the default
override policy, as suggested by [243], lowers the confidence of low pri-
ority degrees using the maximum confidence of the high priority ones
before they are merged. This allows exceptional degrees to override
standard ones, but only if an exceptional condition is acknowledged
with sufficient certainty.

Table 27: Configuration for Defeater Rules

Sk
χ? = max{χj | εj overrides}

χj | εj ¬overrides = max{0,χj − χ?}

exceptions in 3-valued logic . The network uses 3-valued
logic, where T , F and ? are used to denote true, false and unknown
respectively, while ∅ is used to model a situation of conflict. Suppose
also that Sf is configured to always choose the Pass option.

Initially, all implications are T ; then, a Chicken (subtype of Bird) x
is created and its field flier is set to null, so the direct evaluation
of the constraint σ? : Bird.flier == true returns ?. After its insertion,
r1 and r2 are T -activated, while r3 is ?-activated. The agenda is non-

172 applications of imperfect logic

deterministic, so suppose that the rules will activate in order r3, r1, r2,
causing the greatest number of revisions. The first activation of r3 re-
turns that it is unknown whether x flies or not. When r1 fires, the
combined information for σ? evaluates to T , so r3 entails that x flies.
The eventual activation of r2 revisions the belief: the attacking F it con-
tributes discounts the existing evidence to ?, so the aggregate degree
becomes F. It also sets the implication Bird(x) → Flies(x) to F, in turn
changing the contribution of r1 to ?. In either case, the merge at the
constraint node is no longer conflictual. At the end, the consequence
degree of r3 is F (x does not fly), while the degree of r2 is T ; r1 has
a true premise, but its implication is false for x, as expected given the
state of its conclusion, false, and its premise, true.

exceptions in possibilistic logic . The same network can
be used with fuzzy interval-valued possibility degrees annotated with
confidence. They are in the form [N,Π]χ, where N and Π are, respec-
tively a lower bound of the necessity of a constraint and an upper
bound of its possibility ([113]), while χ is the confidence degree. The
engine configuration parameters are the same for possibilistic logic,
even if the filtering strategy is set to always Pass as in the previous
example.

Suppose that the degree of →1 is set to [.8, 1].5, possibly because
it has been learned by induction over a limited set of example birds
(low confidence), not all of which were fliers (necessity < 1). Given a
Bird x, rule r1 returns [.8, 1].5. Since it does not trigger the exception,
this degree is merged with the one resulting from direct evaluation
at r3. In particular, if x were known to fly, the evaluator would yield
[1, 1]1 so the merge would be true. If, instead, the field x.flies is null,
the overall result is [.4, 1].5 since, due to the low confidence, N has
been discounted; evaluation at r3 returns [0, 1]0, while the premise
of r2 is false, so its activation degree is [0, 1]0, which alters neither
r3 conclusion nor r1 implication. When, instead, x is a Chicken, the
system behaves like in the boolean case, overriding the contributions
of →1 and r3 to [0, 0]1. A schema of the final configuration (valid for
both cases) is given in Figure 38.

8.2 hybrid applications

This Section shows how a rule-base relates to tools which are usu-
ally considered “intelligent” in some sense, but are not purely sym-
bolic (such as Fuzzy Logic Systems or Bayesian Networks) or even
completely connectionist such as Neural Networks. Purely algorith-
mic modules, instead, are not considered: generally speaking, however,
they can be invoked in the RHS of a rule or wrapped in custom evalua-
tors as shown in Chapter 7.

8.2 hybrid applications 173

Bird

→⇒
Bird[this flies]

[1, 1]1

∩[[0..1]0−1, [0.8..1].5−1, [0..0]1] = [0, 0]1

∩[[0, 1]0−1, [0..1]0−1, [0..0]1] = [0..0]1

Chicken
[1, 1]1

→⇒

Figure 38: Defeated Rule

(Fuzzy) Feed Forward Networks

The first example shows some possible ways to integrate a rule base
with a neural network. As outlined in Chapter 4, NNs have the dis-
advantage of being black-box models, so it is difficult to verify their
behaviour and guarantee the correctness of their outputs. A common
approach is to extract a rule base which emulates the network, exploit-
ing the rules’ explanatory capabilities ([283],[284]). Here, instead, the
focus will be on the dual approach, i.e. how to embed a neural network
into a rule base at different levels.

The easiest way is to create a loosely integrated, cascaded system by Cascaded
Integrationhaving a rule invoke a neural network, as in rule 8.10. This method

allows to use a pre-existing component, but the two components are
essentially independent.

Listing 8.10: NN Invocation
rule "NeuralNet v1"

when
$x : Input ()
$n : NeuralNetwork ()

then
$n . process ($x) ;

end �
In a more tightly coupled system, a neural network is used as an

external evaluator. To do so, the output of the network must have the Embedded
Integrationsemantics of a degree: so, classifier networks and fuzzy networks are

suitable, while predictor networks are not. The former, in fact, return
a degree of belief (resp. of truth), while the latter returns a value.

Example 8.11 models a classical application of neural networks: char-
acter recognition. It is supposed that a network exists, with N input

174 applications of imperfect logic

Listing 8.11: Neural-based Evaluation
rule "NeuralNet v2"

when
CharacterShape (pat te rn i s L e t t e r "A")

then
. . .

end �
Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \cascade= +//

Figure 39: NN Invocation

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& /feedback− = +//

Figure 40: NN Hybridization

neurons, one for each pixel of an input image, and M output neurons,
one for each symbol. The evaluator isLetter wraps the network and
feeds it the left input (the pattern), then it uses the right input to select
the output neuron. If necessary, the attributes @kind and @params can
be used to pass additional configuration information. Notice also that,
according to the actual structure of the network and the training pro-
cedure, the output can either be considered a degree of probability or
of similarity and so should be treated accordingly.

The integration of more generic types of networks is possible byFull Emulation
having the rule engine compute the output of the network instead of
just invoking it more or less explicitly. In fact, the enhanced engine
supports the implementation of different rule-based neuronal mod-
els. In [139], a first model of fuzzy neuron is proposed which imple-Fuzzy Neuron
ments the max/min compositional principle exploiting the T norms
and conorms of many-valued logic. A possible implementation of this
model is shown in 8.12: it relies on (i) the fuzzy custom evaluator seems
to convert a quantitative input into a fuzzy one; (ii) gradual rules to
scale it; (iii) chaining to propagate the weighted inputs and (iv) the or

connective to combine them.
Other types of network can be emulated simply changing the @kind

of the operators involved: the (bounded) linear perceptron is obtainedGeneric Neuron
using the product T-norm to implement modus ponens in the first
level and the bounded sum T-conorm in the second level. The use
of sigmoidal activation function, instead, is slightly more complicated,
since the argument of the sigmoidal function σ(

∑
jwj · xj) is not neces-

8.2 hybrid applications 175

Listing 8.12: Rule-based Fuzzy Neuron
rule "Link_j" // parametric : one r u l e f o r each j

enta i lment @[kind="min"]
i m p l i c a t i o n @[degree = " . . . "] // constant degree = w_j
rulef low−group "Charge"

when
Input (value seems "A_j") // eva luates x _ j
. . .

then
i n j e c t (new Yj () , "idLinkj")

end

rule "Neuron"

rulef low−group "Discharge"

when
or @[kind="max"] (

. . .
Yj (. . .) @[id =" idLinkj "]
. . .

)
then

. . .
end �

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \ − = +assisted

Figure 41: NN Emulation: Hybridization

sarily bounded. However, it is possible to exploit the concept of fuzzy
interactive sigmoidal-or] defined in [139]2:

σ(
∑
j

wj · xj) =]jσ(wj · xj) (8.1)

] can be used to implement the or connective; however, it is also nec-
essary to alter the definition of modus ponens, to have it apply a sig-
moidal transformation to its output after combining the premise’s and
the implication’s degree.

Notice, however, that so far no rule-based version of a training algo-
rithm has been implemented, even if the injection of the implications’
degrees could allow to alter then dynamically.

2 actually, two kinds exist for the tansig and logsig activation functions

176 applications of imperfect logic

A “Fuzzy” Logic Controller

Fuzzy Systems are another common logic-inspired SC application, of
particular interest in the development of control systems. As described
in Chapter 3, standard Fuzzy Logic controllers use linguistic expres-
sion such as “if X is Aj then Y is Bk in some degree µ”, where X and Y
are objects and Aj and Bk are linguistic values from a fuzzy partition
defined on the domain of some “hidden” quantitative variable X.v and
Y.w. A more formal description, also more suitable to be representedFuzzy Rules
in a rule-based system, is the rule-equivalent:

Aj(X.v)⇒µ Bk(Y)

It states that the more the “hidden”, but perfectly known variable v of X
makes it a member of the fuzzy set Aj, the more Y can be considered
a member of the fuzzy class Bk, up to a degree µ. Thus, fuzzification
corresponds to evaluating the membership degree A(X), inference con-
sists in applying modus ponens to compute B(Y) and defuzzification
allows to obtain the quantitative value of the “hidden” variable Y.w,
given the possibility distribution induced by Bk. In practice, however,
the situation is more complicated:

• The premise may be formed by a conjunction of predicates⇒ an
operator ∧ is required to combine the different degrees.

• The conclusion degree may be limited by a value µ ⇒ µ can be
considered an implication degree: using a T-norm in the modus
ponens operator ensures that the rule conclusion degree will not
exceed µ.

• More than one rule may have the same fuzzy set for conclusion
⇒ The various degrees must be combined using a strategy ∩,
which usually coincides with the max operator ∨.

• Rules may entail degrees for more than one fuzzy set Bk1,..,kn
in the range partition ⇒ The defuzzification operator must per-
form the union of these set, weighted by their associated degrees,
before applying its defuzzification strategy.

This schema translates easily in the proposed framework, as shownImplementation
Analysis by the simple example in rule 8.13, where the temperature of a room

is controlled by the speed of a fan. Other than the configuration of the
operators and the default filter strategy, set to always pass, the rules
deserve more comments. The rules exploit the concept of Drools Flow
rule-flows for synchronization and are actually executed cyclically: the
first rule (which is one of many similar ones, covering the other possi-
ble combinations of temperature and speed) determines the new value
of the fan; when all of them have fired and all the contributions have
been injected, the second class of rules can assign the aggregate de-
gree to each fuzzy set in the target domain. Eventually, the overall
possibility distribution can be defuzzified to update the speed of the
fan. Notice that, when created, the FanCommand does not have its speed

8.2 hybrid applications 177

value set, which is rather determined by the fuzzy rules. In practice, as-
suming that the temperature partition has N fuzzy sets and the speed
partitioned is composed by M sets, N ×M are required in the first
group, M in the second and 1 in the third.

Listing 8.13: Fuzzy Controller
declare Fan

speed : SpeedPar t i t ion
end
declare Room

temperature : TemperaturePart i t ion
end
declare FanCommand

fan : Fan
speed : SpeedPar t i t ion

end

rule "Sense 1"

enta i lment @[kind="Min"]
i m p l i c a t i o n @[degree = " . . . "] // mu here
rulef low−group "Sense"

when
$r : Room(temperature seems "hot")

and @[kind="Min"]
$f : Fan (speed seems "slow")

then
FanCommand f c = new FanCommand($ f) ;
i n j e c t (fc , "idFast") ;
. . .

end

rule "Update 1"

rulef low−group "Update"

when
$ f c : FanCommand(speed seems @[id = " idFast "] "fast")

then
$ f c . update ("fast" , consequenceDegree) ;

end

rule "Act"

rulef low−group "Act"

when
$ f c : FanCommand($fan : fan)

then
$fan . setSpeed ($ f c . defuzz i fy ()) ;
update ($fan) ;
// wait some time . . . �

To be implemented, this schema requires that the field of the objects
are not simple values, but rather described by a fuzzy partition. To do Fuzzy Partitions
so, a class FuzzyPartition has been created: it wraps a Number field,
but it also refers a collection of fuzzy sets, each identified by a name,
and a collection of degrees used to α-cut the fuzzy sets, as shown by
the diagram in figure 42. The fuzzy sets, in fact, are used twice in the
process: by the defuzzification strategy, which also relies on the α-cut

178 applications of imperfect logic

degrees, and by the custom evaluator seems3. This binary evaluator"Seems" Evaluator
accepts two arguments: the left one is a fuzzy partition, while the right
one is a linguistic value. It extracts the wrapped numeric value and
the designed fuzzy set, then has the set compute the membership of
the value. This approach was used because the semantics of linguistic
variables such as “hot” and “fast” depends on the actual domain, so it
is unfeasible to define one custom evaluator for each fuzzy set.

<<abstract>>

FuzzyPartition

value : Number

partition : Map<String,FuzzySet>

cutDegrees : Map<String,Degree>

defuzz : DefuzzStrategy

+ getValue() : Number

+ getSet(id : String) : FuzzySet

+ defuzzify() : Number

+ update(id : String, alpha : Degree) : void

Figure 42: Fuzzy Partitions

observations and criticisms on the approach While
widely applied in practice, this inference schema is questionable from
the strictly logical point of view ([144], [117]). Among other things,
it assumes that the original input X.v is perfectly known. This is a
rather strong assumption, especially considering that, when rules are
chained, the intermediate values are fuzzy sets: the defuzzified value
is only an arbitrary approximation, useful when decisions have to be
taken but not during an inferential reasoning. In general, the narrow-
sense interpretation of fuzzy logic in a broader sense models the latter
as a mathematical logic which reasons with and over possibility distri-
butions. In fact, when Zadeh’s generalized modus ponens is applied,
both the fact P ′ and the implication’s premise P are expressed in term
of fuzzy sets which must be intersected.

Given a target domain set B, the rules described so far can be sum-
marized as:

∪j
[
A ′ ? (Aj → B)

]
(8.2)

But this is a less informative approximation (in the sense of fuzzy set
inclusion) of the relation:

∩j
[
A ′ ? (Aj → B)

]
(8.3)

which, in turn, approximates Zadeh’s composition principle

A ′ ?
[
∩j(Aj → B)

]
(8.4)

3 “seems” was used in place of the more common “is” not to generate confusion
with other semantics

8.2 hybrid applications 179

The problems become more evident if 8.4 is rewritten in expanded
form:

B(Y.w) = sup
v

min
{
A ′(X.v), min

j
(A(X.v)→ B(Y.w))

}
(8.5)

The approximations introduced by 8.2 are (i) assuming that Y.v is
perfectly known; (ii) that the rules’ implication degrees are constant
and that (iii) the rules can be separated. Unfortunately, the current state
of the art does not support the full composition principle because pos-
sibility distributions are not allowed as inputs. However, Mamdani’s
approximation turns out to work in practice and can be used. More-
over, the effect of using different operators and merge strategies in the
inference process can be experimented with using an applet provided
by Dr. Wulff’s research group4, who also contributed to the develop-
ment of fuzzy systems in Drools [17].

8.2.1 Embedding a fuzzy ontological reasoner

In addition to fuzzy controllers, fuzzy logic has several other practical
applications. Recently there has been a growing interest in the com-
bination of logic rules and ontologies. Notably, many works have fo-
cused on the theoretical aspects of such integration, sometimes leading
to concrete solutions (e.g., [36]). On the other hand, there is some inter-
est in the combination of ontologies with imperfect variants of descrip-
tion logic, in particular using fuzzy concepts (e.g. [313], [60]). At the
moment there exist several engines integrating semantic descriptions
and rule bases (notably DR-Device [173], which also offers support
for defeasible logic), as well as a few ontological reasoners support-
ing fuzzy descriptions (notably fuzzyDL [281], which offers support
for general many-valued logics), but a solution integrating all three
aspects has not yet appeared as a mainstream tool to this date. Until
a full tight integration can be achieved (some work has been planned
in Drools as well), it is still possible to use a loose integration schema.
The presence of custom evaluators makes the task trivial in Drools, as
shown by rule 8.14.

The rule uses the custom evaluator isA to perform a generalized
type check: this is still done after the strict instanceof, even if, should
the approach prove to be useful and largely applied, the pattern this

isA could be used to override the evaluator in the type node directly.
Regardless of its position in the RETE network, the evaluator isA

uses reflection to convert the left argument into a representation com-
patible with the one required by the ontological reasoner (in the spe-
cific case, fuzzyDL5 was used) and queries it according to what speci-
fied using the right argument. The result of the query is then wrapped
into a Degree: since fuzzyDL is a many-valued reasoner using real val-

4 http://www.lab4inf.fh-muenster.de
5 http://gaia.isti.cnr.it/ straccia/software/fuzzyDL/fuzzyDL.html

180 applications of imperfect logic

Listing 8.14: Embedding a (fuzzy) DL Reasoner

rule "Ontology -based"

when
Car (t h i s isA @[params=" Cars . t x t "] "SportCar"

&& @(kind="Lukas")
p r i c e not ~seems "low")

then
. . .

end

/* Cars . t x t − from http :// gaia . i s t i . cnr . i t /~ s t r a c c i a /software/
fuzzyDL

(define−modif ier very l i n e a r−modif ier (0 . 8))
(define−fuzzy−concept High r ight−shoulder (0 , 4 0 0 , 1 8 0 , 2 5 0))
(define−concept SportCar (and Car (some speed (very High))))
*/ �
ues in [0, 1], the conversion is trivial. This degree can then be combined
at rule level, as if it had been obtained evaluating a normal constraint.

This approach is still rather experimental, and the implication in
terms of performance have not been fully tested yet. Simple queries
like the one in example 8.14 can be emulated directly rules, either
using injection like in example 8.15 or, given the simplicity of the ex-
ample, more directly by evaluating the constraint directly in the Car

pattern. Nevertheless, this example may possibly become of some im-
portance when large legacy ontologies are available and their transla-
tion in not a feasible option.

Listing 8.15: Sport Car : Rule-Based Version

rule "Fuzzy eval"

when
$c : Car (speed very seems "high")

then
i n j e c t ($c , "idSportCar") ;

end

rule "Ontology -equivalent"

when
Car (t h i s isA @[id =" idSportCar "] "SportCar"

&& @(kind="Lukas")
p r i c e not ~seems "low")

then
. . .

end �

8.2 hybrid applications 181

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& /feedback− = +//

Figure 43: Rule/Ontology Hybridization

8.2.2 A simple Bayesian network

Reasoning with a truth-functional logic such as fuzzy logic or its vari-
ants is a computational advantage, but also a formal disadvantage
when the knowledge base is affected by uncertainty. To handle it while
ensuring the probabilistic coherence of the entailed information, the
optimal tool balancing complexity and correctness is a Bayesian Net-
work (see [237] and Chapter 3). While there exists ways to translate a
rule base into a BN (e.g. [174]), the converse is not trivial (e.g. consider
the already cited BLP [167]). The goal of this section, instead, is to show
how to emulate the behavior of a small BN using some complex cus-
tom operators, adapting the message-passing propagation algorithm
to the reasoning schema implemented in the enhanced RETE engine.
This configuration is in no way meant to be used to implement BN,
but it could allow a seamless integration between a rule base and one
or more Bayesian sub-networks interfaced through custom evaluators.
The performances of a rule-based version are surely worse than a ded-
icated implementation, but could grant access to the other features of
the rule engine, such as side effects and integration with different types
of logic, at least for some very specific BN nodes. In order to realize the
integration in practice, several assumptions are required: Mapping the

Message Passing on
Rules• The distribution εi for a BN node Xi is given by the aggregation

of several contributions: one, πi, coming from the parent set Πi
as a whole, plus one, λik, from each child node Cik. Dummy
children model priors (esp. for root nodes) or direct evaluations
(esp. for leaf nodes). Each contribution is a |Xi|× 1 vector and
can be stored in an Eval: πi occupies the third slot, while λk is
stored in the kth slot of the internal degree array. Since the con-
tributions are independent, the merge operator ∩ is actually the
elementwise matrix product (i.e. C[i, j] = A[i, j] ·B[i, j]), followed
by normalization.

• Xi sends a message to each parent Pj and cooperates to the con-
struction of the message for Ck with its other parents. For each

182 applications of imperfect logic

node Xi the following n+ 1 rules are written (notice that →i is
shared):

∨jPj →i Xi (8.6)

Xi ∧ (∨j6=j∗Pj)→i Pj∗ (8.7)

• Rules are fired whenever the truth degree εi changes, until sta-
bility: Sf is fixed to pass.

• Computing πi for rule 8.6: All the possible combinations uz of
the n parents of Xi are Z =

∏n
j=1 |Pij |; moreover, the combi-

nations can be ordered lexicographically according to the or-
der of the nodes and an internal ordering of each discrete do-
main. An aggregate prior vector, defined as p(P) = p(uz:1..Z) =∏n
j=1

εj
λi

(uz[j]), can be computed by an operator, ∨, since all in-
formation is stored in the Evals. A conditional table p(X|P) is
provided and ordered such that each column z models the prob-
ability p(Xi|uz): this table is the truth degree of the→ node. The
matrix product ? can be used as Modus Ponens operator to ob-
tain πi = p(P)T ? p(X|P)T .

• Computing λij∗ for rules 8.7: The value to be injected is εi
πi

T
?

p(X|P) ? p(P\Pj∗). In order to distribute the evaluation between
the operators ∨,∧,→ and ⇒, while still being able to use the
same to compute πi, the following final definition is given:

– ∨ : computes p(P\Pj∗) using Function 5. Pj∗ may be ∅.
– ∧ : extracts εiπi from its left operand.
– → : returns p(X|P)

– ⇒ : computes εT∧ ? ε→ ? ε∨. If ε∧ is not defined, it is set
equal to 1.

example To better show the functioning of the system, consider
the canonical example shown in Figure 44. One of the required rules,
instead, is shown in listing 8.16. Each rule, is used to model an unidi-
rectional communication link between two nodes, so each arc requires
two rules. The atomic variables are boolean so, for each of them, the
belief degree is given by the vector [p(true), 1− p(true)]; the degree
associated to the implications, instead, is a 2-dimensional conditional
table which size depends on the children of a node. In the example,
it is set to a constant (meaningless) value using the @degree attribute,
but, like any other degree, can be set by implication or deduction. The
@kind operator, instead, determines the concrete implementation of the
operators, which are built by a dedicated Factory (its configuration is
summarized in Table 28). To allow all the messages to be propagated,
the filter strategy is set to “always pass”; moreover, the related acti-
vations are “sticky”: they are not removed from the agenda until all
possible injecting rules can no longer be activated themselves. This,
together with the signalling capabilities of the Evals, allows the ac-
tive rules to exchange messages through mutual injection. Eventually,

8.2 hybrid applications 183

Algorithm 5: {T,rowO,colO} = buildP(j∗,j,T,n,rowI,colI,p)
for idx = 1 to |Xj| do

p← p0;
if j 6= j∗ then

p← p · εjλi [idx]
end if
if j < n then

{T, rowO, colO}← buildP(j∗,j,T,n,rowI,colI,p)
else

T[rowI,colI]← p, colI← colI+1
end if
if j = j∗ then

colI← (colI+1) mod |Xj|

end if
end for
rowO← rowI, colO← colI

when quiescence is achieved, the engine can proceed to eval the conse-
quences with their entailed belief degree.

The topic still requires more investigation, but the alarm example
has been implemented in three stages: simple chain, tree and polytree.
In all cases, the propagation has worked in both directions (depending
on the initial insertions from the main program) and the results have
been compared with the ones generated by a normal BN tool6.

Alarm

QuakeBurglar

John Mary

Figure 44: A Simple Bayesian
Network

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \cascade= +//

Figure 45: Hybridization Anal-
ysis

8.2.3 The SOM training algorithm

To conclude this section, a more articulated and complete example will
be presented. The Self-Organizing Map described in Chapter 3 can be

6 JavaBayes : http://www.cs.cmu.edu/ javabayes/Home/

184 applications of imperfect logic

Listing 8.16: BN Rule
rule "lambda:Quake+Burglar ->Alarm_1"

i m p l i c a t i o n @[kind="bn " , degree = " (0 . 9 0 . 8 0 . 7 0 . 6 ; 0 . 1 0 . 2
0 . 3 0 . 4) "]

rulef low−group "Propagation"

when
Alarm ()
and @(kind="bn_and")

((or @(kind="bn_or" args="index=1")
Burglar ()

))
then

Quake quake = new Quake () ;
i n j e c t (quake , "idQuake") ;

i n s e r t L o g i c a l (quake) ;
end

rule "Alarm"

i m p l i c a t i o n @[kind="bn " , degree ="(1 0 ; 0 1) "]
rulef low−group "Activation"

when
Alarm ()

then
. . .

end �
Table 28: Configuration for Bayesian logic

Parameter Description

L Probability distributions (joint and con-
ditional) over finite domains, including
boolean

σ Field selectors

Ω

∧ cause elimination

∨ conditioning

→ p(C|P)

Not truth-functional

⇒ ? (matrix product)

∩ normalized � (element-wise vector prod-
uct)

S∅ Set to uniform distribution

Sk n.a.

Sf pass

considered a neural clustering algorithm. It is recalled here to show
how it can be used quite easily in a rule base.

8.2 hybrid applications 185

kohonen’s algorithm A detailed description of the original
SOM training algorithm can be found in [149], so it will only be outlined
here.

Given a training set X = {xs1, .., xsD}s:1..S of S samples in a D-
dimensional space and a set W = {nj1, ..,njD}j:1..N of N neurons
constrained on a d-dimensional lattice, the problem is to deploy the
neurons in the space. The goal is to minimize the distance δ(n, x) be-
tween each data point and its nearest neuron while preserving the
neighbourhood relations.

1. Initialize: Choose the initial position of the neurons, usually at
random or by using some elements of X.

2. Sample: Draw a sample xs from X with probability p(xs)

3. Match: Find the winning neuron using a min-distance criterion:

win(xs) = nj∗ = arg min
j
δ(nj − xs)

4. Update: Move the winning neuron towards the input sample; its
neighbour neurons are moved depending on their topological
distance from the winner:

∆nj∗ = η(t) · ν(j, j∗) · (nj∗ − xs)

The learning rate η determines how much the winning neuron
should be shifted towards the input sample: it decreases with
time to grant plasticity to the net in the early stages of train-
ing and stability in the late ones. The neighbourhood function ν
has a single maximum for j = j∗ and models the links between
neurons, causing the winner to drag its neighbours along as it
moves.

5. Continue: Go to step 2 unless some condition is satisfied. Typical
indicators include performance (e.g. the mean distance 1S

∑
s δ(nj∗−

xs)), the number of training epochs t and/or the network stabil-
ity (e.g.

∑t
t−τ ||∆nj∗(t)|| for some time window τ).

For simplicity, it will be assumed that the training data to be pro-
cessed are 2-Dimensional, while the neurons lie on a 1-dimensional
chain, so that the concept of neighbourhood is limited to a single di-
mension; moreover, all the coordinates are normalized so that the do-
main is [0, 1]× [0, 1].

Predicates

Before showing the DRL implementation, a first definition is provided
using a predicate logic formalism. This allows to better explain the
semantics of both the atomic and composite predicates. If not speci-
fied differently, the variable terms are actually structures storing the
information on training Samples (X), Neurons (N) and time epochs (T).

186 applications of imperfect logic

Samples and Neurons have a field (position) which stores their coordi-
nates; Neurons, moreover, have and identifier field.

Recall(N,X,T): “Neuron N recalls data X at epoch T”

Evaluation : exp−
δ(X,N)
σ

In a SOM, the activation of a neuron depends on the similarity
between an input pattern and the prototype stored in the neu-
ron. Thus, the evaluation exploits the monotonically decreasing
relation between similarity and distance δ: the exponential form
emphasizes nearby inputs, but a larger scope parameter σ can
be used to have neurons recall less similar data to a higher de-
gree.

Far(N) : “Neuron N is located far from the beginning of
the linear grid”

Evaluation :
N.id
|N|

The |N| neurons are ordered by an index ranging from 1 to |N|:
the value of the index expresses directly how "far" the neuron
is placed along the linear chain. Notice, then, that neighbour
neurons are “far” in a similar degree.

Young(T): “The Net is responsive to novel inputs”

Evaluation :
1

1+ T
τ

The “age” of a network is measured in term of training epochs:
a “young” neural network usually learns faster to fill its mem-
ory of meaningful data, while an “old” one must not forget the
data already learned. In this case, the time constant τ models
the speed at which the network ages.

Acknow(X,T): “The Net recognizes the input X (at time T)”

Evaluation : ∃N : Recall(N,X, T)

This predicate becomes more true the more the network could
recognize an input sample. The overall degree depends on the
degree of the neuron which was activated most.

Winner(N,T): “Neuron N has the highest activation at T”

Evaluation : Recall(N,X, T) ≡ Acknow(X, T)

With this formulation, the concept of “winner” neuron is grad-
ual: the role of the winner is an ideal one, which is matched
by the individual neurons depending on how much their acti-
vation is similar to the maximum one. Notice that no explicit
ordering nor comparisons are performed as there can be many
more-or-less winners.

8.2 hybrid applications 187

FarActiv(T) : “The farthest part of the Net recognizes the in-
put”

Evaluation :
∫
Winner(N,T)N : Far(N)dRecall(N,X, T)

The degree of truth of this predicate is correlated to the loca-
tion along the grid of the winner neuron. In fact, the position
of the ideal winner neuron(s), modelled by Far, is averaged
to locate the neighbourhood to move. The induction process is
constrained to the winner neurons, and weighted by the degree
of recall, as discussed in the induction example. The resulting
position determines the neighbourhood to be shifted.

Near(N,T) : “Neuron N is topologically near to the winner
position”

Evaluation : FarActiv(T) ≡ Far(N)

Before and during the organization phase, topological neigh-
bour neurons may be far apart in space. In order to realign the
network, an activated winner neuron activates its neighbours,
albeit to a lesser degree, regardless of their position. To do so,
a neuron’s topological position is compared to the active neigh-
bourhood: this compatibility is usually maximal for the winner
neuron.

Fast(N): “Neuron N adapts easily to new inputs”

Evaluation : µ

This is a logical interpretation of a neuron’s learning rate. Un-
less influenced otherwise, it is set to a prior, fixed value.

Lure(N,X,T): “Neuron N is attracted by input X at input T”

Evaluation : {Young(T) ∧ Fast(N) ∧ veryNear(N, T)}

Reaction : N.pos+ = µ · ε ·C · (X.pos−N.pos)

The more a neuron belongs to the active neighbourhood, the
more it is to be attracted by the current input. This condition
is further affected by three factors: first, the hedge very causes
only those for which Near is true to a high degree to actually
move. Second, as the number of epochs increases, the attraction
and thus the learning capabilities are dampened. Last, the neu-
ron’s learning rate affects its elasticity. The overall consequence
truth degree is eventually used to perform the actual neuron
shift.

SOM Algorithm : DRL Version

The predicate logic version of the algorithm translates directly into
DRL rules and can take advantages of the expressiveness of the lan-
guage. All intermediate “virtual” facts can be declared in the knowl-
edge base directly, so that only the real entities of the domain, sam-
ples and neurons, are effectively defined as Java POJOs. The rule base
also exploit the sequencing capabilities of Drools Flow (see Chapter 6):

188 applications of imperfect logic

since the rules have a clear sequencing order, but they must be exe-
cuted in parallel on the different neurons, the use of flow groups en-
sures that rule activations are not mixed. This is a safer approach than
the use of salience or, worse, the introduction of synchronization facts.
Finally, the rules make extensive use of attributes to influence the be-
haviour of the operators. Being many-valued rules, the same Factory

used in Section 8.1.3 applies.

Listing 8.17: SOM Training, part I

globa l i n t N; // = 10

declare Young
end

declare R e c a l l
neuron : Neuron
sample : Sample

end

declare Acknowledge
end

declare Winner
neuron : Neuron
id : i n t

end

declare HotSpot
p o s i t i o n : Double

end

declare Lure
neuron : Neuron

end �
Listing 8.18: SOM Training, part II

rule "Insert"
rulef low−group "Init"
enta i lment @[kind=" equivalence "]
when

$p : Sample (epoch young @[params = " 0 . 0 1 5 "])
then

Young young = new Young () ;
i n j e c t (young , "idClsYoung") ;

i n s e r t L o g i c a l (young) ;
end �
Results and Extensions

The algorithm has been tested on some synthetic data sets, namely
groups of 1000 random data points generated adding some white noise
to the functions y = x and y = (x− 1/2)2. A 10-neuron network has
been trained in the two cases, setting the values of the parameters σ,
τ and µ to 0.05, 0.015 and 0.2 respectively (as shown in the DRL). The
results, after 1000 training epochs, are shown in Figure 46 and 47.

8.2 hybrid applications 189

Listing 8.19: SOM Training, part III
rule "Recall"

rulef low−group "Excite"
enta i lment @[kind=" equivalence "]
when

$p : Sample ()
$n : Neuron (p o s i t i o n near @[params = " 0 . 0 5 "] $p . p o s i t i o n)

then
R e c a l l r = new R e c a l l () ;

r . setSample ($p) ;
r . setNeuron ($n) ;
i n j e c t (r , "idClsRecall") ;

i n s e r t L o g i c a l (r) ;
end �

Listing 8.20: SOM Training, part IV
rule "Acknowledge"

rulef low−group "Ack"
enta i lment @[kind=" equivalence "]
when

e x i s t s $rec : R e c a l l () @[id =" idClsRecall "]
then

Acknowledge ack = new Acknowledge () ;
i n j e c t (ack , "idClsAck") ;

i n s e r t L o g i c a l (ack) ;
end �

Listing 8.21: SOM Training, part V
rule "Winner"

rulef low−group "Locate"
enta i lment @[kind=" equivalence "]
when

(equiv
$rec : R e c a l l ($n : neuron) @[id =" idClsRecall "]
Acknowledge () @[id =" idClsAck "]

)
then

Winner winner = new Winner () ;
winner . setNeuron ($n) ;
winner . s e t I d ($n . get Id ()) ;
i n j e c t (winner , "idClsWinner") ;

i n s e r t L o g i c a l (winner) ;
end �

Listing 8.22: SOM Training, part VI
rule "Position"

rulef low−group "Isolate"
enta i lment @[kind=" equivalence "]
when

forany (
$n : Neuron (id f a r N)
s u b j e c t _ t o Winner (neuron == @[cut] $n) @[id =" idClsWinner "]
weight R e c a l l (neuron == @[cut] $n)

)
then

HotSpot p o s i t i o n = new HotSpot () ;
i n j e c t (pos i t ion , "idHSfarN") ;

i n s e r t L o g i c a l (p o s i t i o n) ;
end �
learning with relevance The results have been obtained
assuming that all inputs were equally important and relevant. Rele-

190 applications of imperfect logic

Listing 8.23: SOM Training, part VII
rule "Excitation"

rulef low−group "Update"
enta i lment @[kind=" equivalence "]
when

(equiv
HotSpot (p o s i t i o n f a r

@[id ="idHSfarN "]
N

) // i n j e c t e d
$n : Neuron (id f a r N)
)

then
Lure l u r e = new Lure () ;

l u r e . setNeuron ($n) ;
i n j e c t (lure , "idClsLure") ;

i n s e r t L o g i c a l (l u r e) ;
end �

Listing 8.24: SOM Training, part VIII
rule "Lure"

rulef low−group "Update"
enta i lment @[kind=" equivalence "]
when

(and @[kind="Lukas "]
$p : Sample ()
Young () @[id ="idClsYoung "]
(very

Lure ($neur : neuron f a s t @[degree = " 0 . 2 "]
) @[id =" idClsLure "])

)
then

double alpha = drools . getConsequenceDegree () . getValue () ;
$neur . moveTo ($p , alpha) ;

end �
vance, in general, is instead a fuzzy concept: its definition depends
on the actual data and, possibly, the sources they have been collected
from. So, one can assume the additional predicate:

TrainSample(X,T): “The point X is a relevant training sample
for the Net at time T”

Evaluation : varies
TrainSample can be set a priori, evaluated, or deducted from other

rules. It is meant to replace the Sample pattern in rule Lure and can
be used for many purposes: its crisp form selects the sample(s) to be
presented to the network for sequential or batch training, since inputs
for which its evaluation are do not cause the neurons to shift. Using
intermediate truth values, instead, differentiates the samples by im-
portance and conditions the outcome of the training. A simple test has
been performed on the quadratic data set, considering the relevance
to be function of the first coordinate: in particular, relevance was 1
for samples with coordinate x < 0.5; otherwise it decreased linearly
to reach 0 for x = 1. The results are shown in Figure 48: notice that
in this case only 2/3 neurons are used to cover the second half of the
data, whereas in the case with equal relevance they were uniformly
distributed.

8.2 hybrid applications 191

Figure 46: SOM with linear
dataset

Figure 47: SOM with quadratic
dataset

Figure 48: SOM with partial rel-
evance

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \ − = +assisted

Figure 49: SOM Hybridization

192 applications of imperfect logic

som-based reactions Remarkably, many of the rules such as
the Recall, Acknowledge and Winner predicate/rules can be used not
only for training, but also for normal recognition purposes. The up-
dated neurons, in fact, remain in the WM and can be used in reaction
rules like 8.25: the consequence degree, then, is function of the degree
of similarity. Moreover, this degree can be controlled by the implica-
tion degree associated to the rule itself. It can be set a priori, but an
induction schema such as the one shown in Section 8.1.5 can be adop-
ted.

Listing 8.25: SOM Usage
rule "React"

when
R e c a l l ($n : neuron , $x : sample)

then
// . . .

end �
This is possibly the highest grade of fusion between the two systems:

the rules are used both to train the network and to invoke it. From the
point of view of hybrid systems classification, this can be considered
an assisted system, since reactive rules like 8.25 rely on the result of a
closed-loop feedback procedure - the training of the network - which
was guided at rule level.

som validation Eventually, rules can be used to write valida-
tion expression, such as the ones in rule 8.26. The simple idea behind
the first is that a neuron which does not effectively recognize at least
one (training) sample is useless and so could be pruned or retrained.
The second, instead, has a proper validation nature: it expresses, on
average, how much the training set has been covered by the neurons.

8.3 conclusions

While many of the examples presented in this Chapter are more pat-
terns studied from a theoretical point of view than a set of concrete
applications, the results are nevertheless promising. First of all, the
language remains compatible with standard boolean logic, but adds
support for several types of extensions with different semantics, from
many-valued to possibilistic to probabilistic, provided that they are
used in the context of production rules, which propagate the informa-
tion entailed using modus ponens using a forward-chaining strategy.
More interestingly, however, it was possible to integrate different SC

techniques in a natural way. The simplest way is cascading, where a SC

module is invoked to produce new data to be assembled into new facts.
The second modality involves a feedback connection: the SC modules
are used to evaluate logical properties, so they process data (terms) to
return a degree which is reintroduced in the reasoning flow. More in-

8.3 conclusions 193

Listing 8.26: SOM Validation
rule "Validate I"

when
$n : Neuron ()
neg e x i s t s $r : R e c a l l (neuron == @[cut] $n)

then
// Neuron i s u s e l e s s

end

rule "Validate II"

when
forany (

($s : Sample ()
e x i s t s R e c a l l (sample == @[cut] $s)

)
weight TrainSample (sample == @[cut] $s)

)
then

// T r a i n s e t i s covered
end �
terestingly, it has been shown that using imperfect reasoning it is also
possible to emulate the behaviour of some non-symbolic tools, at least
partially. In conclusion, an imperfect reasoning engine is not only a
rule-based system, but a polymorphic component which can be conve-
niently used to build strongly hybrid systems, possibly composed by
many (logically) interacting sub-parts. The next Chapters, then, will
show a concrete application exploiting the potentialities of the novel
component.

Part IV

C A S E S T U D Y : A H Y B R I D
E N V I R O N M E N T A L D E C I S I O N S U P P O R T

S Y S T E M

9
S E Q U E N C I N G B A T C H R E A C T O R S - O P T I M I Z A T I O N

Contents
9.1 Background : Sequencing Batch Reactors 198
9.2 Process Observation 201
9.3 SBR Management: State of the art 202
9.4 Offline Management 205
9.5 Conclusions 207

The examples provided in Chapter 8 may be interesting from a the-
oretical point of view, but they are abstract test cases rather than con-
crete applications. The last part of this dissertation, then, will be dedi-
cated to the discussion of a more realistic case study which better justi-
fies the use of all the techniques recalled or introduced in this work. In
fact, the full features of the BRMS Drools, enhanced with the support for
imperfection, will be used in the development of a complex manage-
ment architecture applied to waste-water treatment plants, according
to the principles outlined in Chapter 5. In particular, the research and
development activities have been carried out on a pilot-scale treatment
plant, choosing a plant from a class - the Sequencing Batch Reactors -
which is particularly suitable for the application of control and diagno-
sis policies, to the point that the scientific literature - including several
works of the author - is full of results, more or less relevant, on the
automatic management of the process. Remarkably, in many cases the
difference between a relevant result and a standalone study of little
practical importance lies in the possibility of applying it in the context
of a broader architecture providing, in a robust way, all the corollary
services which are not strictly part of the technique itself, but are re-
quired for it to work in practice.

Before discussing the proposed architecture, however, this Chapter
will be dedicated to the description of the particular applicative do-
main and to an overview of the various, standalone techniques which
can be applied to it. The next Chapters, then, will show how it is pos-
sible to integrate them in a more general framework. It must be re-
membered, though, that this dissertation is not focused on water treat-
ment itself, but on the applicability of AI techniques to it, so we excuse Disclaimer
preventively if a competent reader will find in the description of the
process rather simplified or imprecise. More detailed works, explicitly

197

198 sequencing batch reactors - optimization

focused on SBRs and the related processes, can be found for example
in [282] and [66].

9.1 background : sequencing batch reactors

Sequencing Batch Reactors SBR are a particular class of activated sludge
WWTPs, with a layout characterized by the presence of a single treat-
ment tank where all the necessary reactions take place sequentially
in time [19]. SBRs have several applications [188], but when used for
urban waste-water treatment, the main reactions involved are the nitri-
fication and denitrification of nitrogen compounds and the simultaneous
removal of organic matter, as described in Chapter 5.

Due to the necessity of different environmental conditions, a SBR

operates in a cyclic modality: a batch of water is loaded, treated al-SBR Cycle
ternating anoxic and aerobic conditions, and finally discharged. The
effectiveness of the treatment process depends on many factors, in-
cluding the hydraulic retention time (HRT) [297]: roughly speaking,
this factor determines how long the polluted water remains in a tank
and thus the amount of time it is subject to the particular environmen-
tal conditions which favour the different bio-chemical reactions. Thus,
the timing of the phases must be chosen carefully, finding a trade-off
between ensuring that the HRT is sufficient to complete the reactions
and the contingent necessity to process a certain number of batches
every day, fact which determines a limit to the maximum duration of
a cycle.

The actual sequence of phases may vary according to the type and
concentration of pollutants, but the “standard” cycle is composed by
six (or seven) phases, ordered as in Figure 50. They are:

load During this phase, a volume of water ∆V is loaded in the tank.
This volume is a fraction of the total volume V of the tank -
usually around 40 − 50%, even if it can be as low as 25% or
as high as 70%. The loaded water is mixed with the activated
sludge left in the tank after settling during the previous cycle.
The duration Tload of this phase depends on the flow rate ql of
the pumps the tank is equipped with, according to the relation
Tload = ∆V

ql
. In any case, the load terminates when the water

level in the tank reaches a maximum admissible level, or after a
maximum time in case there is no water to treat for some reason.

react The reactions in the tank start as soon as the biomass gets in
contact with the water to be treated, so this phase may effectively
overlap with the load phase, depending on the load modalities.
The phases can be considered distinct only if a step-feed load is
performed: the water is brought in the tank very quickly and
mixed with the sludge only after the load has been completed.
If, instead, the mixing starts as soon as the load operation begins,
the two phases are effectively concurrent. In any case, the reac-
tions taking place during this phase can be controlled by dosing
the concentration of dissolved oxygen in the tank:

9.1 background : sequencing batch reactors 199

Anoxic : When no free oxygen is present in the tank, the bacteria
extract it from the oxidized forms of nitrogen (nitrates and
nitrites), phosphor (phosphates) and sulphur (sulphates),
reducing them to the basic elements. In particular, this al-
lows to remove the nitrogen from the water, since it is re-
leased in the atmosphere in gaseous form.

Aerobic : The concentration of dissolved oxygen in the tank can be
increased by blowing air in the water. When this concen-
tration is sufficiently high, the bacteria consume ammonia
- oxidizing it to nitrate - and organic matter - transforming
it into carbon dioxide.

settling : After the reactions have been completed, the blowers and
the mixers (if any) are turned off, so that the sludge can settle by
gravity on the bottom of the tank, becoming separated from the
(clean) water.

draw : The clarified water is eventually removed from the top of the
tank, extracting a volume ∆V equal to the loaded one. It is as-
sumed that the sludge has had enough time to settle, otherwise
the biomass would be discharged and lost: in fact, the inability
of the sludge to settle is one of the main problems in WWTPs.

• Sludge draw: One of the ways to ensure a good sludge
quality is to keep the sludge retention time (SRT) within cer-
tain specific ranges. In fact, the bacteria in the sludge are
living creatures and, as such, have a limited life span: in
order to remove the inert (dead) biomass, some sludge has
to be removed periodically from the tank, albeit at a much
slower rate and in much smaller amounts than the water.

idle : During this phase, while a new batch of water to be treated is
collected, nothing happens in the tank.

As long as the treatment is concerned, the only relevant phases are
the reaction ones. The concentration of pollutants in urban wastewater
is usually low enough that a single sequence of anoxic/aerobic con-
ditions is sufficient to meet the law requirements. However, to ensure
that the HRT is sufficient for the reactions to be completed, the sub-
phases must last for enough time. Unfortunately, the effective load of Phase Duration
pollutants in the influent is not constant, but varies with factors such
as the time of the day (few pollutants are discharged in the sewers at
night, when people sleep), the period of the year (e.g. the population
of an area may vary significantly during holidays), the presence of pe-
riods of intense rainfalls or draught and so on. Thus, the maximum
duration of the phases is tuned on the average case, plus a relevant
safety margin, with the ratio of the durations of the anoxic and aero-
bic sub-phases normally close to 1 : 2. However, it turns out that this
conservative approach often leads to a waste of time (the reactions are
completed well before the deadlines), energy (air blowers are expen-
sive) and, ultimately, opportunities (with shorter cycles, more water
can be treated). For this reason, much research has been carried out on

200 sequencing batch reactors - optimization

the optimization of the duration of the SBR cycles, the topic which will
be discussed in the next Sections.

1.Load

2.Anoxic6.Idle

3.Aerobic5.Draw

4.Settling

Figure 50: SBR Cycle

the pilot plant In order to experiment with the SBR technology
and collect experimental data, a pilot-scale SBR plant has been built by
ENEA and placed inside the municipal plant of Trebbo di Reno (BO,
Italy). The plant, which has a working volume of 500L (of which, about
150L of working load) and an overall hydraulic retention time (HRT)
of 20h, is fed with real sewage drawn after grit removal. Biomass is
automatically wasted on a daily basis to maintain the sludge retention
time (SRT) between 15 and 20 days. The plant is operated with 4 cycles
a day, consisting in the canonical sequence of feed, reaction (anoxic,
then aerobic), sludge wasting, settling, draw and idle phase (see Fig-
ure 50). It is equipped with a mechanical mixer, a variable-flow blowerPilot Plant

Equipment connected to a membrane diffuser, two peristaltic pumps for influent
loading and effluent discharge (flow rate = 6L/min) and a pump for
sludge wastage (flow rate = 1L/min). A multi-parameter converter con-
tinuously measures pH, ORP and DO signals during the whole process:

9.2 process observation 201

Phase Max. Duration Load
Pump

Mixer Blower
Sludge
Pump

Draw
Pump

Load 30m
√ √

Anoxic 1h
√

Aerobic 3h
√ √

Sludge Draw 3m
√ √ √

Settling 40m

Discharge 30m
√

Idle 1

Table 29: Pilot Plant Static Configuration

the samples are acquired by a National Instruments data acquisition
board and stored in a MySQL database for both immediate and later
access. The actuators, instead, are controlled by a PLC interfaced to the
acquisition card. The operating phases, their maximum duration and
the actuators active during each phase are reported in Table 29.

9.2 process observation

As outlined in the previous Section, the critical point in the manage-
ment of a SBR is the optimization of the duration of the reaction phases.
In fact, the SBR allows to change the HRT! dynamically - an action which
in other types of plants would require to change the volume of a tank
- but to do so in a sensible way, one should be able to monitor the
evolution of the treatment process as it takes place. In Chapter 5 it was
noted that there exist online sensors which can sample the concentra-
tions of nitrogen and carbon compounds, but their high costs make
their use hardly convenient, especially since the lower costs are one of
the strong points ofSBRs [223]. Instead, several authors have pointed
out that there exists a strong correlation between the state of the pro-
cess and the time evolution of three indirect signal, namely pH ORP

and DO, which can be sampled using much cheaper instrumentations
(e.g. see [33], [181], [78]). Figure 56 shows the result of a track study
on the pilot plant: the measured concentrations of [NH+

4] and [NO−
3]

confirm the theoretical expectations.
As soon as the water is pumped in the tank, the process of denitrifi- Signal Trend

Explanationcation starts: the reduction of nitrates to nitrogen increases the pH of
the environment and lowers the oxidation potential to values around
−150mV . After the nitrates are depleted, the biomass starts to reduce
other oxidized compounds such as phosphates and sulphates, further
lowering the ORP; at the same time, a decrease in pH can usually be
observed. When the blower is turned on and the aerobic conditions
are restored, the oxygen is consumed by the bacteria to oxidise the
remaining organic matter and, most importantly, ammonia to nitrates
(passing through the intermediate step of nitrite). For this reason, the

202 sequencing batch reactors - optimization

level of DO remains low until the nitrification process is completed,
while the ORP is still increased by the presence of the oxidized com-
pounds. The same reaction also causes the release of H+ ions, which
lower the pH. When nitrification stops, instead, the oxygen is free to
saturate the water rapidly; at the same time, the pH increases again,
possibly due to the stripping of CO2 from the water which is no longer
contrasted by the consumption of ammonia.

9.3 sbr management : state of the art

Actually, the motivations adduced to explain the signal trends are not
absolutely certain. Moreover, it must be remembered that nitrogen and
carbon compounds are not the only chemical substances present in a
waste-water and, especially in the case of real sewage, their presence
(and their effective concentrations) can’t be predicted a priori, but they
could influence the process in some way. If one ignores the theoreti-Accounting for

Process Variability cal justifications and limits to the empirical observations, however, it
turns out that changes in the signal trends may effectively be corre-
lated to and denote the completion of the main reactions involved in
the treatment process. From Figure 51, which shows a typical signal set
acquired when the plant operated in normal conditions of efficiency, it
is evident that the effective reaction time is much lesser than the corre-
sponding phase time. As already pointed out, the phase time must take
into account the variability of the required reaction time, which may be
influenced by a number of factors including the state of the biomass,
the variable load, the temperature, the presence of toxics substances
inhibiting the bacteria, so the maximum duration is usually overdi-
mensioned. An example of the variability of the signals, assumed due
to variations of the process conditions, is shown in Table 30 at the
end of this Chapter: the signals, acquired in subsequent cycles, show
a progressive profile change during the anoxic phase. Safety, however,
comes with a price, since much time and energy and time is wasted in
the average case: in the example in Figure 51, more than 50% of total
reaction time turns out to be useless.

In this context, the variability of the process conditions motivates the
use of any technology allowing to control the process in real time, with
the dynamic regulation of the phase durations being the minimum re-
quirement to be satisfied. The indirect, non-linear correlation between
the measured signals and the process evolution, in turn, makes it a
relevant candidate for the application of AI techniques, especially im-
perfect ones. From an analysis of the literature, it turns out that almost
all possible approaches (see Chapter 3 for their properties) have been
applied with different degrees of success, even if their usage can be
roughly divided in two main families:Process

Optimization
Approaches process state estimation These quantitative techniques try

to predict the current level of concentration of the different substances
such as nitrates and ammonia. If it is not possible to obtain quantita-

9.3 sbr management : state of the art 203

• pH

• ORP

• DO

LoadAnox Aero Settle

Draw

Idle

Denitrification Nitrification

Figure 51: Evolution of pH, ORP and DO during an SBR process

tive values in a reliable way, a weaker form of estimation may be suf-
ficient, which distinguishes between the mere presence or absence of a
substance. To this end, specific instrumentation has been applied [129],
but most of the times neural networks such as the FF-NN or the Elman
network have been used ([183],[127],[32]). We tried this approach in
[11].

In alternative, statistical approaches based on (Multi-Variate) Prin-
cipal/Independent Component Analysis try to associate the observed
data to a hidden, partially unobservable state which has not necessar-
ily a direct physical meaning, but has the advantage of being learned
from a historic data set in controlled conditions. At runtime, then, the
same procedure is applied and the estimated “state” is analysed to
decide whether the reactions can be considered complete or not. Ex-
amples of this can be found in [31], [303] and [85].

In [194], instead, the estimated state is given by the derivatives of the
(denoised) indirect signals, but the matching between the current state
and the desired ones is performed using fuzzy clustering. We tried a
conceptually similar approach, but instead using a SOM for clustering,
in [9] and evolved it in [4].

signal trend change detection Another large family of
control methods is based on the detection of the qualitative trend changes
(also called discontinuities, breakpoints or characteristic points) in the
indirect signals, which are usually pH, ORP and DO. Alternatively, the
trends themselves may be used [265]. Either case usually requires an
analysis of the time derivatives of the signals: their numeric computa-
tion is the critical point of this approach since derivation is an unstable
operation when the signal is noisy, so a some kind of filtering/denois-

204 sequencing batch reactors - optimization

ing algorithm is always applied (common choices are low-pass filters
and wavelet filters). More generally, for each time t, some features of
each signal σ are computed and analysed in an interval [t− l, t+ u],
not necessarily symmetric, and then used to classify the content of the
window. The possible patterns to be matched include:

• Maximum / Apex: a rising trend followed by a falling one.

• Minimum / Valley: a falling trend followed by a rising one.

• Knee : two consecutive falling (resp. rising) trends. The slope of
the second is usually greater than that of the first.

• Step : quick shifts from one level to another.

In [152], the matching is performed using different types of NN; others,
instead, prefer fuzzy rules to express conditions on the time deriva-
tives, usually included among the features; we defined and matched
such characteristic points expressing conditions on a sigmoidal approx-
imation in [1] exploiting a result presented in [12]. When patterns are
recognized in the signals, the recognition of the completion of the dif-
ferent phases can be expressed in terms of conditions on the patterns
themselves. An (imperfect) rule-based approach would seem the most
appropriate tool for this task, but this is not always the case. In fact,
several works (e.g. [73], [66]) express the conditions in terms of flow
diagrams, which seems to hint to a procedural approach rather than
an “intelligent” one. The conditions, however, are almost always equiv-
alent to logic conjunctive rules [1] such as:

max(pH,T) ∧ knee(orp,T)

→ complete(denitrification,T)

min(pH,T) ∧ step(do,T) ∧ knee(orp,T)

→ complete(nitrification,T)
Nevertheless, this perfect formulation is too brittle to be usable in

practice: the trend change patterns are rarely matched with precision
by the signals to be analysed, and even more rarely at the same time.
In fact, in [305] a disjunctive (∨) form is preferred, but, more often,
what is used in practice is a relaxation of the above constraints. A fullImperfection in SBR

Management treatment of imperfection is rarely applied, possibly because the ulti-
mate decision - deciding whether to turn the air on or off - is crisp.
Instead, partial matches are accepted when the similarity exceeds a
threshold and a tolerance on the temporal alignment is admitted as
well. In many cases, even this is not sufficient, so additional temporal
constraints are added: the duration of a reaction must be comprised
between a minimum and a maximum value. The upper bound is espe-
cially necessary because, most of the times, the algorithms are trained
to recognize the features typical of a correct completion, but not the
ones relative to a failed reaction. Thus, failures are undecidable: “not-
know” situations, where the recognition algorithm fails, can’t be dis-
tinguished from “know-not” ones, where the problem for some reason
lies in the process. In either case, the upper deadline serves to resolve

9.4 offline management 205

the deadlock. While this approach justifiable for reasons of safety and
soundness, it would be more coherent to handle the uncertainty on the
correctness of the response directly at the AI level, which could also be
trained to recognize and diagnose failures, instead of subordinating
the “intelligent” control algorithm to a procedural one.

9.4 offline management

The considerations made so far can be summarized as follows: the SBR

process is cyclic, consisting in a sequence of phases, each one with a
maximum duration. Some process phases, however, can be terminated
before their deadline, according to some criteria which may involve the
analysis of signals samples in the plant itself. The factors influencing
the decisions may be as simple as “turn of the pump when the tank
is full” or as complicated as the predictors described in the previous
session. Nevertheless, this vision can be modelled conveniently using Abstract SBR Model
a Petri net [61] such as the one shown in Figure 52

Load

Tl

Anox

Full

Ta

EoD

NO−
3 ≈ 0

max(pH)

knee(ORP)

Aero

TA

EoN

NO−
3 ≈max

NH+
4 ≈ 0

min(pH)

knee(ORP)
step(DO)

Settle

Ts

Draw

Td

Empty

Idle

Start

Figure 52: Petri Net model of an (optimized) SBR Cycle

This model is interesting for two reasons. First, the existence of al-
ternative criteria should be considered an benefit for a management
system: a system can implement two or more of them and have them
reinforce each other. Moreover, should one not be applicable to a given
input, there is still hope that another may entail something useful. In
[11], three different techniques were applied, all relying on the sam-
pling of pH, ORP and DO. Even if in that paper the analysis was per-

206 sequencing batch reactors - optimization

Figure 53: Combining Possi-
bilistic Estimations

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

¶llel\ − = +//

Figure 54: Hybridation Analy-
sis

formed only on the anoxic phase, the techniques used are not dissimi-
lar from the ones existing in literature:

• An Elman NN-based predictor, similar to the one used in [183]
(of which the work is an evolution), but uses a SOM in parallel to
estimate the reliability of the predictions.

• A signal pattern detection algorithm, dual to the one used in
[265]. The focus is not on trends, but on trend changes; moreover,
the features are extracted from the analysis of an approximation
of the signals performed using sigmoidal basis functions.

• A SOM-based state tracking, comparable to the ones used in [303]
and [194]. The signals and their derivatives are used directly as
state indicators, but the trajectory in the state-space is analyzed
using a SOM with the functions of a fuzzy clusterer.

Interestingly, the modules tried to cope with the imperfection of
the input data and the one added by the elaborations themselves. For
them to comparable and combined, the response πj(t) of each mod-Fusing Multiple

Approaches ule j was cast into the degree of possibility that the reaction had been
completed at time t: the different degrees, then, were merged using a
possibilistic combination function suggested in [109]. An example of
its application is shown in Figure 53: in the upper part, the evolution
of πj(t) is shown, while in the lower part the combined possibility π(t)

is compared to the input signals. The chart in Figure 54, instead, sum-
marizes the characteristics of this approach from the point of view of
the classification of hybrid systems.

The second reason is that the Petri net suggest a (complex) event-
based interpretation of the SBR management policies. A transition from
one state/phase to another, in fact, is always triggered by an event: itSBR from a CEP

Point of View is of little importance whether it is actually generated by a timer or by
a physical source in the plant. In the case of reaction phases, in par-
ticular, the switch is expected to be generated by an “EndOfReaction”
event, signalling the (correct) completion of the current reaction. This
event is clearly complex: it is caused2 by an implicit event signifying

2 in the CEP sense of causality

9.5 conclusions 207

that a certain substance has reached concentration close to zero in the
tank. This last event, which is unobservable, may be estimated directly
or indirectly, by aggregation of simpler events detected on the probe
signals, the trend changes, which in turn are detected analysing even
simpler events, the samples coming from the probes. This vision has
been adopted in [1], where the event analysis was performed offline,
to validate the cycles after their completion rather than to control the
process in real time (the conceptual schema is shown in Figure 55).
Other than showing a first connection between plant management and SBR from a BP

Point of ViewCEP, the same paper also analysed, for the first time, the water treat-
ment process from the point of view of business processes and busi-
ness rules.

Sample

(Sig,Val,T)

TrendChange

(Type,Sig,T)

EndOfReact

(React,T)

Figure 55: Basic Event Hierarchy

While interesting and complementary, the approaches followed in
[11] and [1] are more suitable for an off-line analysis of the treatment
process. The last step, then, consists in adapting and extending those
concepts, deploying them in a suitable real-time management infras-
tructure.

9.5 conclusions

This Chapter has shown the potentialities and the issues of using a SBR

plant for water treatment. To achieve a satisfactory level of treatment
efficiency while still being convenient from an economical point of
view, a SBR has to be optimized, but this is not a trivial task. In fact,
this class of plants turns out to be extremely relevant from a scientific
point of view because it is the ideal candidate for the application of
imperfect AI techniques.

The reasons are various and include:

• The management policies are based on good sense rather than
an in-depth knowledge of the status of the process and the biomass

• A partial knowledge on the state of the process can only be ob-
tained through complex, time consuming laboratory analysis.

• The criteria are based on predictions, or the evaluation of quali-
tative features of noisy indirect measures.

• The effective outcome of the optimization strategies is uncertain.

Given this scenario, it is not surprising that AI - and especially SC al-
gorithms - is preferred. However, the variability of the conditions to be
analysed makes it complicated for a single tool to be always successful

208 sequencing batch reactors - optimization

in optimizing the treatment processes: in fact, many of the proposals
which can be found in literature are actually hybrid systems, either
“pure” or supported by additional, more traditional control modules.

Notice also that, in order to be optimized, a process must work prop-
erly in the first place: for this reason, the problem of optimizing the per-
formance of the plant can’t be kept separate from a diagnosis of the
health status of the plant, from the biomass to the electro-mechanical
components.

This, together with the implicit requirement of usability by the plant
operator, justifies the development not only of an intelligent control
algorithm, but of a full remote EDSS integrating the different tasks, pos-
sibly aware of the event-oriented nature of the monitored system. In
its development, the role of imperfection can’t be ignored or just re-
duced to the application of a few fuzzy definitions. In fact, it is not an
exaggeration to say that:

Most existing SBR control policies are defined in vague
terms, used to describe uncertain relations between a pro-
cess and its observable variables.

The last Chapter, then, will show how to combine all the concepts
introduced so far - namely imperfection-aware hybrid systems, rule-
based CEP, SOAs and BRMSs - in the development of one such architec-
tures applied to the real-time control and optimization of a SBR plant.

9.5 conclusions 209

Table 30: SBR Signals

210 sequencing batch reactors - optimization

10:00 10:30 11:00 11:30 12:01 12:31 13:01 13:31 14:01 14:32 15:02 15:32
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

48.00

50.00

52.00

0

1

2

3

4

5

6

7

8

9

N-NH4+
N-NO3-
TOC
TC
IC
N-NO2-

N
-N

O
3

-,
 N

-N
H

4
+

,
T

O
C

,
T

C
,

IC
 (

m
g

/l
)

N
-N

O
2

-
(m

g
/ l

)

Figure 56: Track Study

10
D E S I G N I N G A C O M P L E X E D S S

Contents
10.1 Related Works : Complex Managed Domains 212
10.2 Architecture 213

10.2.1 Enterprise Service Bus 213

10.2.2 Rule-Based agents 216

10.2.3 (Dynamic) Content-Based Routing 217

10.3 Case Study 221
10.3.1 Event Model 222

10.3.2 General Purpose Services 223

10.3.3 Data/Event Processing Agents 225

10.4 Conclusions 247
10.4.1 Summary : Default Event Flow 247

10.4.2 Considerations 247

This Chapter will discuss the design and implementation details of a
hybrid EDSS infrastructure, applied to the real-time management waste-
water treatment plants and, in particular, sequencing batch reactors.
This infrastructure summarizes the results obtained trying to achieve
all the objectives which motivated this whole work.

In Chapters 5 and 9, it has been shown that various reasons (environ-
mental, energetic, economical, . . .) have motivated much research on
the automation of treatment plants, which is sponsored by private com-
panies and public research centers alike. The very context in which this
research has been carried out was born out of a cooperation between
the university of Bologna, the municipal multi-utility HERA and the
national agency for the energy and the environment, ENEA. This gen-
eralized interest, together with the complexity of the problem, has led
to the development and application of a number of technologies, with
varying degrees of success. However, the simultaneous and integrated
application of the results, both found in literature and developed inter-
nally, requires necessarily a global support infrastructure like the one
that will be presented here. A general-purpose middleware, in fact,
provides all the “horizontal” services required to test and to run differ-
ent control and monitoring modules and have them interact as needed,
facilitating their development and (re)use.

In doing so, other advantages will be discussed at the same time:

211

212 designing a complex edss

• The use of a hybrid architecture, supporting both events and
services

• The use of hybrid AI techniques, processing information affected
by imperfection

• The use of open-source tools as integration platforms.

The proposed approach is general, but has been applied and tested
with the problem of integrating the different optimization criteria stud-
ied for the pilot-scale sequencing batch reactor described in Chapter 9.

10.1 related works : complex managed domains

As discussed in Chapter 5, many commercial EDSS are actually ex-
tremely valid remote management platforms, providing facilities for
the operators but adding little from the point of view of automated
“intelligent” control. More integrated solution of this kind have been
devised in academic contexts (especially in Spain) and then applied
to real plants. Such solutions, dating back about 10 years, introduce
the concept of a modularized DSS, but still have a data-centric archi-
tecture (see Figure 57), where different modules work in parallel on
the data, possibly under the supervision of a dedicated entity. More
recent architectures, instead, adopt a more granular approach: SOAs,
EDAs and combinations thereof stress, with different modalities, the
role of interaction between different parts/entities/modules/agents,
so that not only a single task is solved by the cooperation of more than
one module, but the same module can also take part in different tasks.
Moreover, in such architectures the distinction between the parts is not
strictly hierarchical, but depends on the granularity and the generality
of the capabilities of each module.

Here this second approach has been adopted. All the required func-
tionalities are implemented as services (see Figure 58 for a conceptual
schema), including both “standard” services, invoked explicitly by a
consumer, and reactive, event-triggered handlers. In addition to what
previously stated, the services are implemented by rule-based, intelli-
gent agents. This is not a limitation, since Drools supports workflows,
events and, as shown in Chapter 8, different types of imperfect rea-
soning and both tight and loose models of integration with various SC

techniques.
Excluding private enterprise applications which are not divulged

publicly, similar architectures are beginning to appear in other con-
texts such as the Semantic Web. The pre-eminent example is possibly
the Rule Responder architecture [231]: in that case, however, the fo-
cus is on the coordination and the exchange of information between
heterogeneous systems. The problem considered here, instead, is more
oriented on data processing and imperfection handling, so the two sys-
tems remain complementary (and may benefit from each other in their
future developments). The approach seems to be novel, instead, for
the water treatment domain: complex applications exist based either

10.2 architecture 213

PlantProbes Actuators

Controller

SupervisorDatabase

User Interface

DSSDN F
RO

Figure 57: Data-centric Archi-
tecture

PlantProbes Actuators

OR
FND

ControllerAcquisition

Store

DW

I/O

UISecurity, Admin,
Registry . . .

Router

Scheduler

Figure 58: Service-centric
Architecture

on agents, hybrid AI systems, events or services (see Chapter 5 for a
survey), but none that we are aware of integrates all the aspects at the
same time. Remarkably, recently there has been much interest in dy-
namic signal trend analysis for diagnostic and fault detection purposes
([80], [197]): these works, however, focus on a very specific class of
events. This does not diminish their relevance - in fact, one of the mod-
ules of the proposed application uses a similar if more primitive ap-
proach - but they are often standalone solutions which, instead, could
benefit greatly from being used in a wider context.

10.2 architecture

10.2.1 Enterprise Service Bus

Before discussing the structure of the agents, it is important to cite the
communication infrastructure they rely on. Almost all comparable ar-
chitectures use Enterprise Service Buses (ESB) at their core. An ESB is a Communication

Middlewaresoftware infrastructure providing support services to complex SOA ar-
chitectures: it is a standard-based messaging engine acting as message
broker between applications [79]. This allows to reduce the number of
point-to-point connections and allows a reliable routing of the mes-
sages to the appropriate applications. The message model has to be
standardized and shared between modules using the ESB, but adapters
(“gateways”) can be easily used to transform messages to and from
legacy and custom formats, including JMS [13], SQL, HTTP/SOAP
[62], e-mails and FTP.

The bus usually supports different types of communication models,
including the canonical publish/subscribe and point-to-point schemas.
Interactions, then, can be mono- or bidirectional, synchronous and
asynchronous. A typical implementation may involve the use of re-
liable message queues, which store undeliverable message until the

214 designing a complex edss

intended receiver can retrieve them, and one-to-many channels (also
called topics) for broad- and multi-casts.

Moreover, the service bus is inherently distributed and can be used
to connect services deployed on different nodes in a way that is com-
pletely transparent to the services themselves. If needed, the bus auto-
matically handles replication and load balancing, increasing the fault
tolerance and the flexibility of the system: in fact, services can usually
be hot-plugged on the bus, so the number and type of modules can
change dynamically.

jboss esb The proposed architecture has been implemented on top
of the JBossESB 4.7 middleware, a Java-based, open source ESB with a
set of features comparable with that of mainstream commercial prod-
ucts, which is also natively compatible with other JBoss products in-
cluding Drools itself. (Notice that while convenient, this choice is not
strategic as the ESB could possibly be replaced by another implementa-
tion).

The main features of JBossESB include the expected functionalities
of an ESB, in addition to some “horizontal”, generic services:

• Reliable Message Delivery : The ESB allows to create communica-
tion endpoints and the services can use them to listen for mes-
sages. These endpoints propagate ESB-oriented messages, imple-
mented using a JBoss proprietary format: should a legacy format
be used, specific gateway endpoints can be used to transform the
messages before they are delivered. The delivery itself is reliable
and a storage mechanism can be used: if a message is sent to a
certain endpoint where no listener is available, it will be stored
and the delivery will be delayed until a listener appears on that
endpoint.

• Composite Service : A service is composed by a pipeline of actions:
an incoming request message is processed by each module and
then passed to the next one, or discarded if the computations
must be stopped for some reason.

• Rich Messages : Messages have a complex structure, which in-
cludes a header, a body - which is essentially an identifier-object
Map - and some optional attachments. Thus, any serializable

content can be passed between a consumer and a provider.

• Transformation Service : Message contents can automatically be
converted from a format to another by specifying the transfor-
mation patterns using either Smooks1 or XSLT. The transforma-
tion is performed automatically by a dedicated service, in a way
that is transparent to the final destination.

• Web Service Integration : Services on the bus can be exposed
through a web-service interface simply by providing the asso-
ciated validation schemas.

1 http://www.smooks.org

10.2 architecture 215

• Registry Service : A message can always be sent to a specific
named endpoint, but, given the loosely coupled nature of a SOA,
a client is not likely to know the exact identity of the module
implementing the required service. In general it is sufficient
to know a role identifier, in the specific case a name-category
pair. The ESB, in fact, provides a registry lookup mechanism that,
given a service descriptor, will look for an implementing mod-
ule and automatically forward the message with the request.
Registration is also done automatically when a service is de-
ployed. The implementation supports registries compliant with
standards such as UDDI2, accessed through API such as JAX-R3

or RMI.

• Content-Based Routing : A service consumer needs not necessar-
ily know the name/category identifier of the appropriate service
provider: a specific service can be used to analyse the content of
a message at run-time and deliver it to the most appropriate ser-
vice. This concept has been further extended, completely redefin-
ing the native CBR routing service. The details will be discussed
in Section 10.2.3

• Location Transparency : As long as they point to the same registry
cluster, different bus instances on different nodes can invoke ser-
vices regardless of their effective location, using the API .

• Load Balancing : Services are identified by a name and a category,
independently of the underlying implementation: thus, it is pos-
sible for the same service to be implemented multiple times (or
for a single implementation to be replicated, e.g. for load balanc-
ing or fault tolerance purposes). When a request has to be han-
dled and multiple candidates exist, the bus automatically selects
one of them according to some configurable policy. Predefined
options include round-robin, random and lighter-load-first poli-
cies.

• Security Service: Critical applications can exploit the security and
authentication service to restrict deployment and access to the
resources on the bus.

JBossESB has many advantages, but also some limitations which
influenced the final implementation. The most relevant are:

• Overhead : While instrumental in decoupling the different ser-
vices, the delivery of a standardized request through the ESB

necessarily adds some overhead if compared to a direct, point-to-
point communication in a native binary language. This could be
an important issue when critical events have to be processed in
hard real-time, which is seldom the case when treatment plants
are involved - with the possible exception of some alarms.

2 http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
3 http://java.sun.com/webservices/jaxr/index.jsp

216 designing a complex edss

• Non-structured interactions : While it allows great flexibility in en-
coding and delivering messages, the current implementation is
totally lacking when it comes to the message structure. Unless
Web services are involved, there is no way predefined way for
a service provider to publish its interface so that it can be ac-
cessed by the potential consumers. Thus, the consumer must al-
ready know the request and response format, usually obtained
through an “offline” channel. Moreover, the binary format re-
quires that both parts share the same class model, which can
be a serious limitation for distributed systems, where services
developed by different parties are involved.

10.2.2 Rule-Based agents

The integration of the different components on the ESB is trivial:

• Service: Services are nothing more a name/category pair, from
now on denoted by N/C, connected to one or more communica-
tion channels. The service is defined by a chain of actions, i.e.
methods of some implementing classes. Interactions take place
using Messages, whose format must have been agreed upon by
both sender and receiver: to implement an action, a class must
define a method with the signature process(Message) : Message.

• Events: Events are wrapped and delivered using Messages. The
format is essential: the Message body contains a slot, indexed
by the key “event”, which contains the instance (form) of the
event. Unlike generic interactions, event notifications are always
asynchronous and one-way, so the event source never expects (nor
waits for) a response. If an event requires a response, it must be
delivered by generating a new event. Notice that if an event is
imperfect, i.e. it has an associated degree, this is propagated as
well.

• Rule-Based Agents: Agents are implemented using Drools, so
their behaviour is defined using rules. Agents may be purely
reactive or hybrid4: the former are implemented using a stateless
Drools session, while the latter use a stateful one. The former are
more efficient, but lack the memory of the latter. The session,
if present, is created when the agent is initialized, but can be
disposed or renewed at any moment. Drools’ implementation
also allows to change the rule base dynamically: a rule agent
polls one or more rule resources (either in the local file system or
stored in a Guvnor repository) at constant intervals and updates
its internal RETE network whenever one of them changes.

Every service is implemented using a single action, which acts as
an adapter between the communication channel and the agent.

4 in the sense of mixed reactive/proactive behaviour

10.2 architecture 217

The method process, in fact, limits to extract the payload ob-
ject(s) from the incoming message body and inserts them in
the agent’s working memory. If an event has an associated im-
perfect degree, it is automatically injected on the event’s holds

constraint before the event is inserted. While this is sufficient
for event processing (if needed, new events are generated by the
rules themselves), in case of proper interactions the adapter also
collects the results from the WM (e.g. using a Drools query or a
global object, both features of the engine) and wraps them in a
new Message to be returned to the sender.

Rule-based processing has the further advantage of being less strict
than pure Java methods and does not require explicit type checks
and/or casts: in fact, the RETE algorithm automatically tries to match
a new fact with the existing rules. To overcome - at least partially - the
problem of class sharing, all agents load a model jar from a common,
known repository, implemented using Drools Guvnor. The structure is
summarized in Figure 59.

Action
Service

JBoss ASJBoss AS

Registry

JBoss AS

GuvnorN/C

Msg(Req) Msg(Ev)

JAR DRL

DRL

Figure 59: Agent Architecture

10.2.3 (Dynamic) Content-Based Routing

In normal service invocations, the consumer has the responsibility of
finding a suitable provider: it usually knows its N/C identifier and in-
vokes it using the ServiceInvoke API, which performs a lookup on the
registry to obtain the service’s endpoint, where the message can be de-
livered. In some cases, however, the consumer does not know the N/C

or, like in the case of event sources, is not even interested in knowing
who will handle it. While JBossESB supports the publish/subscribe
interaction pattern using topics, it also allows more structured alterna-
tives.

218 designing a complex edss

Dynamic Content-Based Routing is an enterprise integration patternDynamic CBR
[155] which extends the concept of content-based routing. Unlike pub-
lish/subscribe, where the destination(s) of a message depend uniquely
on the channel, when CBR is used the destinations are chosen accord-
ing to some conditions expressed on the actual contents of the message.
Reactive rules such as rule 10.1 are a natural implementation for this
pattern, which is used for the routing of events.

Listing 10.1: Basic Routing Rule

rule "Routing Example"

// p e r f e c t r u l e
when

$e : Event (. . .) //condi t ions here
then

i n s e r t (new Dest ina t ion ($e , "Name" , "Cat")) ;
end �

In fact, the router is a specialized agent identified by the N/C pair
“Router:Routing”. The use of Guvnor, together with the rule-base up-
date capabilities of the agents, actually allows to implement the dy-
namic version of the router. Standard CBR uses a fixed rule base, while
in D-CBR the rules are provided at run-time by one or more external
sources, usually the destinations themselves, according to the schema
in Figure 60.

Guvnor

DRL

1.Send Rules

2.Upload 3.Update

4.Route

5.Deliver

Figure 60: Dynamic Content-Based Router

The routing rules are sent to a routing agent, which loads them
on the repository. Guvnor sees that the rules are joined in a single
package, which is then downloaded and used by all routing agents to
update their internal RETE networks. This solution allows to hide the

10.2 architecture 219

use of Guvnor from the potential destinations - in fact, only the router
is aware of the presence of the routing rule package in the repository;
at the same time, it allows to share the package between multiple in-
stances of routing agents replicating the routing service.

The use of routing rules generalizes the concept of Event-Processing
Network advocated by Luckham [186]: an EPN, in fact, can be emulated D-CBR vs EPN
by writing a CBR rule for every edge, having each rule test the source
of an event to decide which destination to route it to. The solution has
the advantage of greater flexibility and adapts to the effective number
and type of event handlers active at any moment, but it is assumed
that the destinations upload “safe” routing rules, since no control is
actually performed on them. Notice that, if needed, the routing rule-
base can still be provided by a centralized orchestrator. In particular,
an agent sends its routing rules to the router when it is created; the
same agent notifies the router of its destruction, so that the router may
decide to remove its rules. In the current implementation, the router
checks whether the agent’s service was replicated: if no more instances
of the same service exist, it removes the rules from the repository (and,
subsequently, its RETE network).

Moreover, the behavior of the routing agent can further be enhanced
with additional capabilities:

context-based routing A standard routing agent uses Drools
in stateless mode: the entailed destinations, then, depend on the con-
tent of the event alone. In more complicated situations, the routing
decision may depend on other events or some additional context infor-
mation, but for the agent to retain them, it must be configured to use
a stateful session. This can actually be considered a form of context-
aware routing ([90]): sources and handlers send context facts to the
routing agent, which adds them to its working memory. The routing
rules, then, can express conditions involving them. The drawback of
a stateful session is its increased memory occupation: to limit it, the
session is configured properly using Drools Fusion STREAM mode. In
this mode, facts are retained until retracted explicitly, but events are
retracted automatically when they can no longer match any rule. The
automatic retraction of routed events, in fact, would not allow to use
recent events as part of the context; Drools fusion, instead, permits it
while at the same time avoiding the accumulation of stale events.

A practical example of context-based routing is the dynamic recon-
figuration of the routing paths. Suppose that a handler A1 consumes
the events produces by another EPA A2, but this one is not available
for some reasons - either because its presence is optional or due to a
failure. The router, then, could try to deliver to A1 the events it would
normally have sent to A25, assuming that A1 can still perform at least
part of its tasks using the lower-level events. The conditions may be

5 in practice, the router does so on explicit A1’s request

220 designing a complex edss

expressed on the event flow itself, as in rule 10.2, or on some other
context facts provided by the sources and/or the destinations.

Listing 10.2: Context-Based Routing

rule "Default"

// p e r f e c t r u l e
when

$e : EventA ()
then

i n s e r t (new Dest ina t ion ($e , "A1" , "Cat")) ;
end

rule "Best Effort"

// p e r f e c t r u l e
when

$e : EventB ()
not EventA () over : time (15m)

then
i n s e r t (new Dest ina t ion ($e , "A1" , "Cat")) ;

end �
multiple delivery For any message, the rules may entail zero,
one or more destinations, in the form of N/C pairs: for each N/C pair,
then, a corresponding service is invoked. When the N/C pair is repli-
cated, the ServiceInvoker chooses one instance of the service accord-
ing to the default policy, but there are cases when this is not acceptable.
Consider, for example, the case of an agent with the task of activating
a siren in presence of an alarm: its replication would clearly not be for
load balancing purposes. In this case, it would be desirable that the
event was routed to all instances capable of handling it. Since JBoss-
ESB native CBR does not allow multiple deliveries, the feature has been
added: when a rule entails a Destination, it can add a flag (false by
default) which specifies to all service instance of the same category,
regardless of their name.

source redirection The main drawback of using a dynamic
CBR is the additional overhead. While this is acceptable for complex
events, it becomes less sustainable for simpler events, which usually
are generated with a higher frequency only to be handled by the same
service. To avoid this problem, a router may decide to override the
behaviour of an event-generating agent, having it deliver its events
directly to the designated handlers. The protocol is as follows:

1. The source sends its events to the router to be delivered

2. For simple events only, if the router recognizes that in the last
δT seconds all the events of the same type C, coming from the

10.3 case study 221

same source S, have been delivered to the same destination D, it
sends a one-way asynchronous message to S, asking it to deliver
its events of class C directly to the final destination D.

3. The source may decide to ignore the suggestion, but if it does
not, it sends all events of type C to D instead of the router. The
redirection lasts for ∆T seconds, after which S starts again to
sends the events to the router.

The redirection is temporary, since the final destination could be re-
placed at any time, or others may appear: while the router is aware of
this because the new handlers send their rules, the source is not. The
router, however, may redirect the source again, so for a fraction of time
equal to ∆T−δT

∆T the router is effectively bypassed. A rule implement-
ing this feature is shown in 10.3.

Listing 10.3: Routing : Source Redirection
rule "modifyDestination"

// p e r f e c t r u l e
when

// on rout ing c e r t a i n types of event :
$e : Event ($srcCat : srcCat , $srcName : srcName ,

$type : c l a s s memberOf . . .)
$d : Des t ina t ion (event == $e , $ c a t : category , $ser : name)
// i f a l l previous s i m i l a r events
// have been sent to the same d e s t i n a t i o n :
f o r a l l (

$evt : Event (t h i s before @[params="1ms, 1 0m"] $e , c l a s s
== $type

srcCat == $srcCat , s r c S e r == $ s r c S e r)
Des t ina t ion (event == $evt , category == $cat , name == $ser)

)
// and the event i s s u f f i c i e n t l y frequent :

$ t o t a l : Number(doubleValue > 10)
from accumulate (Event (t h i s before [1ms, 10m] $e ,

c l a s s == $type ,
srcCat == $srcCat ,
s r c S e r == $ s r c S e r)

i n i t (double t o t a l = 0 ;) ,
a c t i o n (t o t a l += 1 ;) ,
r e s u l t (t o t a l))

then
// have the source route them d i r e c t l y to $d

end �
10.3 case study

The proposed architecture facilitates the development and the deploy-
ment of agents with complex event-processing capabilities, supporting
their interactions. The EPN-equivalent of the team of agents developed
for the management of the SBR is shown in figure 61 (in particular, the
proper EPAs are drawn in blue, while the other blocks are corollary ser-
vices and interfaces used by the agents). Remarkably, the network is

222 designing a complex edss

neither static nor has a direct “concrete” representation, but is instead
the result of the various routing rules provided by the agents them-
selves. This section, then, will discuss each agent: all of them are rule-
based, but most have a hybrid structure which includes one or more
SC techniques at different levels of integration, discusses according to
the criteria defined in Chapter 4. To better manage the imperfection,
the agents use non-boolean rules with slightly different semantics, dis-
cussed on a case-by-case basis. The simulations have been performed
using a Factory which models degrees using a simple real value for
all cases, so it was necessary to make some additional assumptions to
mix the different imperfection types.

Chart Trainer Statistics

Predict

Probes Denoise Analysis Policy Control Actuators

Trace

Storage Router

Detection Diagnosis
Prevention

+

Reaction
Figure 61: EPN-equivalent interactions between SBR agents

10.3.1 Event Model

In [75] and other related works, it has been shown that a complex
management system may benefit greatly from the use of an ontology.
Unfortunately, to our knowledege a standard and universally accepted
ontology covering the SBR domain does not exist to this date. The de-
velopment of one was beyond the goals of this work, so a simpler
POJO hierarchy has been adopted instead and will be briefly discussed
in this Section. Nevertheless, the use of ontologies, especially the ones
supporting imperfection natively, will be considered in future versions.

A canonical abstract Event class is at the top of the hierarchy. It
has fields for its start, end, duration and expiration, in order to
be compliant with Drools Fusion. Moreover, two additional fields are
used for the N/C identifier of the source who generated it. This class
is further extended by PlantEvent, adding a reference to a Plant, aSBR Glossary

10.3 case study 223

model class described by its id, class (SBR, MBR, . . .), location and
name.

The fundamental event is the Sample, the act of acquiring a small Sample
amount of water from the tank to perform one or more Analysis on
it. An Analysis is the measure of the value of a Variable (pH, nitrate Analysis

Variableconcentration, temperature, . . .), performed using a method which is af-
fected by an error. The measure can also be associated to a derivative,
estimating the trend of the evolution of that variable in time. Mere
analysis are raw and do not always come with all this additional infor-
mation, which may require a pre-processing treatment to be evaluated.

A sequence of Samples with the explicit goal of monitoring the pro-
cess during its whole execution is called Track. For quick reference, a Track
Track has a reference to the Set of all the variables analyzed in the
Samples, which need not be the same for every Sample. Before a track
can be used, it must be validated to ensure that all the data are com-
plete, correct and coherent.

The relations between these classes are shown in Figure 62; the
model, however, is not limited to them.

The event TrendChange models the signal-level events: the type can TrendChange
be any one among Apex, Knee and Step [1]. Its features, other than
the signal source, are the verse (upwards or downwards), the time
extension deltaT, the range extension deltaY and the slopes leftDer

and rightDer.
In order to model the cyclic process, instead, the simple plant events

InitCycle, InitPhase and ReactionComplete have been defined. No- Cycle- and Phase-
related Eventstice that InitPhase declares the phase about to begin, while ReactionComplete

refers the reaction which just terminated. The two are connected by
the fact that certain reactions can take place only during certain phases
due to various bio-chemical and physical reasons. Moreover, the event
Switch is used to denote a phase transition. Ideally, ReactionComplete
should cause Switch which, in turn, causes InitPhase.

10.3.2 General Purpose Services

To be usable in practice, the system requires some general-purpose
functionalities. They are of little relevance from the AI point of view, so
the description will be summary, outlining a few architectural features.

• Gateway : This module interfaces with the legacy data acquisi-
tion system, a combination of a National Instruments analog/dig-
ital sampling and conversion board and a Labview management
application. The board samples the probes (pH, ORP and DO)
with a 1kHz frequency and averages them over 1000 samples to
return a vector of 3 values every second; the software further av-
erages the data over 60 seconds and stores them in a temporary
archive on the local file system. The gateway agent monitors the
data source and generates an event of type Sample (raw) every
minute.

224 designing a complex edss

<<event>>

Event

start : Date

end : Date

expire : Date

duration : long

srcName : String

srcCat : String

<<event>>

PlantEvent

plant : Plant

PlantEvent

id : String

name : String

type : Enum

location : String

<<event>>

Sample

analysis : Map<Variable,Analysis>

raw : boolean

<<event>>

Track

id : String

validated : boolean

tech : Person

variables : Set<Variables>

samples : SortedMap<Date,Sample>

<<event>>

Analysis

value : double

error : double

derivative : double

method : String

var : Variable

Figure 62: Event Model - Excerpt (UML)

• Data Storage : This agent is an interface for a standard relational
database (even if future releases may rely on a more structured
data warehouse). Remarkably, in the proposed architecture the
DB is moved away from the main data flow. In data-centric ar-
chitectures, DBs are often used with the dual role of storage fa-
cilities and messaging middleware. This reduces the number of
components, but the data consumers have to wait for the infor-
mation to be stored before they can access it, with the additional
overhead of two DB accesses. Moreover, not all DBs support noti-
fication mechanisms, so the consumers must pull the data from
it. The use of the ESB, instead, allows to bypass the DB, at the
same time using a “push” model which notifies the handlers

10.3 case study 225

only when new data are effectively present. The DB, however, re-
mains exposed through the storage agent and can be accessed
like a normal service (for simplicity, the request Message holds
the query to be performed).

• Charting : This basic GUI service interacts with the storage agent
and allows to plot charts of different time series. Remarkably, it
can handle Sample events, updating the charts in real-time if new
data relative to the visualized signals are acquired. This service
also exploits the multiple delivery capability of the event router,
allowing multiple displays to be active at the same time.

• Actuation : The agent responsible for actually sending the com-
mands to the actuators is not active: the legacy control system
does not have an external command interface and due to unfor-
tunate practical reasons it has not yet been possible to upgrade
it.

10.3.3 Data/Event Processing Agents

This section will be dedicated to the proper “intelligent” EPA, outlining
their architecture. In discussing their behaviour, only a subset of the
rules will be presented, and even then they will be somewhat simpli-
fied, ignoring the details of implementation nature to stress, instead,
the underlying logical processes.

Pre-Process

This pre-processing agent reacts to a raw Sample, regenerating the onSample
events with raw set to false, after denoising the data and computing
the accessory information such as the (estimated) time derivative and
measurement noise. Notice, however, that in some deployments the
pre-processing agent can be optional: in that case, a router with the
context-aware modality enabled can bypass it. Since Samples are col-
lections of several measurements, they are internally separated, pro-
cessed individually and then recombined. Each Variable value is as-
signed to its context, namely the plant it has been collected on, and
stored in a limited buffer associated to that context. The agent, in fact,
delegates the actual computation to an internal pre-processing strat-
egy, which is typically a numeric algorithm that requires a number of
past (raw) samples to be effective. A temporal window is then created
the first time the agent has to process a new variable (and retracted
when empty). An outline of the behaviour is listed in rule-base 10.4.

While a simple moving average could be enough, the agent uses Regularization-
based
Denoising

the regularization algorithm described in [82]. Given a time series
x(t) = x(0)..x(T), the algorithm actually smooths the time derivative
x ′ of the signal, computing the clean version x ′c before rebuilding the
denoised series xc by integration. To do so, it minimizes the regular-

226 designing a complex edss

Listing 10.4: Pre-processing Agent Policy
rule "Init Window"

// p e r f e c t r u l e
when

$raw : Sample ($plant : plant , raw == true)
Analysis ($var : var) from $raw . a n a l y s i s
not Window(s r c == $plant , var == $var)

then
i n s e r t (new Window($plant , $var)) ;

end

rule "PreProcess"

// p e r f e c t r u l e
when

$raw : Sample ($id : id , $plant : source , raw==true)
Analysis ($var : var , $newVal : value) from $raw . a n a l y s i s
$w : Window(s r c == $plant , var == $var)
$s : PreprocessS t ra tegy ()

then
$w . update ($newVal) ; // process indiv idua l v a r i a b l e s

Analysis c lean = new Analysis ($id , $var , . . . ,
$s . process ($w)) ;

i n s e r t L o g i c a l (c lean) ; // main entry point
end

rule "Recombine"

// p e r f e c t r u l e
when

$raw : Sample ($id : id , raw == true)
$data : C o l l e c t i o n from accumulate (

Analysis (source == $id)
. . .

) // recombine the r e s u l t s
then

// raw = f a l s e
Sample sample = new Sample ($id , . . . , $data , f a l s e) ;
dispatch (sample) ; // generate the event

end �
ization functional 10.16, which finds a trade-off between the approx-
imation error and the smoothness of the approximation, shifting the
relevance from the former to the latter according to the value of the
parameter α.

α

∫T
0

|x ′′c | +
1

2

∫T
0

|Ax ′c − x| (10.1)

For better results, but at the expense of some delay, the clean value
can be taken to be xc(T − τ) instead of xc(T), since the algorithm is
less stable near the borders of the window. Whatever the value of the
parameter τ, the strategy also returns the estimated derivative x ′c(T −

τ); the error, instead, is defined as the difference between the original
and the denoised values.

6 A is an integration matrix

10.3 case study 227

Figure 63: Original (grey),
filtered (blue) and
derivative (red)
signals

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \cascade= +//

Figure 64: Preprocessing Agent
Hybridization

Trend change Detection

The correlation between changes in the observed signals and the com-
pletion of the bio-chemical reactions is universally acknowledged (see
Chapter 9): however, this poses the problem of identifying the trend
changes, fact which becomes more complicated in an online appli-
cation. To do so, a dedicated agent exists which analyses the differ-
ent signals and generates events of class TrendChange when needed.
The agent ignores the differences between the signals and treats them
equally from a purely numeric point of view. Using a set of rules simi-
lar to the ones used for the pre-processing agent (see 10.3.3), it handles
Sample events by assigning the value of each Variable to a correspond- onSample
ing window. Given the slow dynamics of the processes, the window’s
size is set to 20÷ 30 to have it capture the necessary changes. Every
time a window is updated, the new content is processed by an algo-
rithm which extracts a (linear) model which, in turn, is used by a pat-
tern matching module with the goal of identifying the relevant trend
change patterns. This abstract behaviour can be implemented using a
number of techniques ([197]): the approach adopted here consists in
the combination of a piece-wise linear approximation algorithm ([1])
for feature extraction, together with a (fuzzy) rule-based classification. Signal Feature

ExtractionGiven a window, the linear approximation module returns a se-
quence of contiguous segments 〈[xj,yj], [xj+1,yj+1]〉j:1..n. It was as-
sumed that any one of the trend changes of interest (Apex, Knee and
Step) can be defined by three consecutive segments, so up to n− 2 can-
didate piece-wise tracts have to be tested every time. The module does
not return the segments directly, but actually FeatureSets, structures
holding the features such as amplitudes and slopes which define the
shape of the approximation, as shown in Figure 65.

The use of fuzzy rules to classify the features allows to associate Fuzzy Rule
Classificationeach feature set to a pattern type with a degree that is greater as its

similarity with an ideal prototype increases. The consequence degree
of classification rules such as the ones in example 10.5 can be consid-

228 designing a complex edss

δL

δC

δR

∆XL ∆Xm ∆XR
∆XM

∆Y

Figure 65: Approximation Features

ered a similarity degree, or a measure of the necessity that a pattern
should be assigned to a class. It must not be forgotten, however, that
the rule is applied to an approximated model and not to the original
data, which is affected by (measurement) error itself in the first place.
The feature set, then, includes an error, computed by taking the sum
of the maximum (average) approximation and maximum (average) in-
put errors. The rules should take this into account: when confidenceImperfect

Classification factors are used, the confidence of a classification should be inversely
proportional to this error; more generally, a high error should drive the
consequence degree towards “unknown”, whatever the representation
according to the adopted degree set. A possible way to do it is to use
a custom evaluator in the rule’s implication, conditioning the connec-
tion between premise and conclusion on the value of a specific field.
Rule 10.5 shows the tentative evaluation of a positive Apex (i.e. a max-
imum), conditioned on the approximation error. The rule is actually a
simplified version, since the number of features and the variability of
the patterns complicate the classification, so that additional restrictions
are required in practice. In the current implementation, the fuzzy par-
titions for the features’ domain and the classification rules have been
written by hand, but will likely be replaced by a hybrid cluster/rule
algorithm.

The rules do not generate the events immediately: since the sliding
window is analysed for every new sample, a relevant pattern may re-
main in the window for some time, but the event should be generated
only once. Nevertheless, when the pattern enters the window, a partial
match might still generate an event which could and would be bet-
ter upgraded when the whole pattern is observed shortly afterwards.
So, a temporary TCCandidate is generated instead from the feature set:
this has the form of an event - including start and duration which, for
this type of events, is not null, but estimated from the feature ∆XMax -
but is not propagated unless it has been validated. A possible solution
is to consider only events which start and finish sufficiently far from
the borders of the window, but this introduces a delay. The adopted
solution, shown by rule ??, instead takes advantage of imperfection.

Before a TrendChange is generated, the rule checks whether there
already exist an equivalent event in the immediately preceeding in-

10.3 case study 229

Listing 10.5: Trend Change Detector Rule
rule "Maximum"

// not supported yet , emulated using i n j e c t i o n :
i m p l i c a t i o n @[kind=" predicate " , args ="#0 . e r r o r seems small "]

when
$f : FeatureSet (

// change should be evident
// f i l t e r s out l o c a l " noise "
deltaXMax neg seems "short"

&& d e l t a L e f t neg seems "short"

&& del taRight neg seems "short"

&& deltaY seems "high"

// required t r a i t s
&& l e f t D e r seems "positive"

&& (cenDer seems f l a t || deltaXMin seems "

short")
&& r ightDer seems "negative"

)
then

TCCandidate ec = new TCCandidate (MAX, $f , . . .) ;
i n s e r t (ec) ;

end �
Listing 10.6: Trend Change Detector: Filter

rule "TrendChange"

enta i lment @[f i l t e r =" Threshold (0 . 5) "]
when

$ t c : TCCandidate ($type : type ,
$verse : verse , $ s r c : source)

and @[kind = " Lukas "]
neg e x i s t s TrendChange (type == $type , verse == $verse ,

source == $src ,
t h i s before @[params=" trapez , 5m, 3 0m"] $ t c)

then
TrendChange ev = new TrendChange (t c) ;

i n j e c t (ev , "holds") ;
i n s e r t (ev) ;
dispatch (ev , consequenceDegree) ;
//dispatch event with a s s o c i a t e d degree

end �
stants. The use of Łukasiewicz’s and causes the rule to fire only if
the new event is “truer” (i.e. the pattern is more similar) than was ac-
knowledged before: in fact, a⊗¬b > 0⇔ a > b. The before evaluator
is actually fuzzified, using a trapezoidal membership function: it dis-
counts past events, allowing for successions of similar events which
are sufficiently separated in time. When this constraint is satisfied, the
event is effectively generated from the TCCandidate. Notice also that
the match degree must be superior to a certain threshold to consider
the event relevant.

230 designing a complex edss

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& /feedback− = +//

Figure 66: Trend Change Detector Hybridization

Concentration Estimation

One of the methods of determining the evolution of the process is to
estimate the concentration of the unobservable pollutants in the tank,
using the current values of the measured variables. In this section, it
will be assumed that the former are the nitrogen compounds [NO−

3](t)

and [NH+
4](t) and the latter are the usual pH(t), ORP(t) and DO(t),

but the same system can be used with other variables as well.
The predictor7 agent reacts to pre-processed events of kind SampleonSample

which contain the input variables, but not the target ones. It estimates
their value and (optionally) their derivatives and error, setting the
method to a value which describes the actual technique used for the
estimation. In particular, the agent embeds a prediction module for
each target variable: for every prediction of each variable, it generates
an appropriate Analysis event.

The prediction strategy can be implemented using different tools,Prediction Strategy
but neural networks are ideal candidates. Experiments have been per-
formed using both FF-NN and Elman networks, exploiting the open
source tool JOONE8 for the actual implementation. The invocation pat-
tern, shown by rule 10.7, follows the template outlined in Chapter 8.

The rule, which requires Drools Chance, is rather complex: first, it
finds a suitable predictor for the sample in the WM - only one match
is supposed to exist. The predictor declares its input variables, which
are extracted from the sample and returned in a collection. Actually,Imperfect

Estimation and
Validation

some of the required values may be missing: in that case, the returned
collection will have a size lesser than the expected one, but the imper-
fect evaluator similar will determine to what degree the actual size is
acceptable. Moreover, a further condition on the input is imposed. As
discussed in Chapter 3, predictors and neural networks in particular
are bad extrapolators, so they are likely to give unreliable results when
processing inputs quite different from the ones they have been trained
on. Hence, the predictor’s training set of N elements is retained and
compared to the input. Since training sets can be large while only a

7 the predicted values are not the future ones, but the current, unobservable
ones

8 http://www.jooneworld.com/

10.3 case study 231

summary comparison is required, the set is compressed using a clus-
tering algorithm (the test were performed using a SOM), so that it is
sufficient to test the membership of the input in each of the n clus-
ter, performing only n � N comparisons. The invocation pattern is
the one described for SOMs in Chapter 8. Eventually, the consequence
truth degree is used in the estimation of the error: the lower the de-
gree, the less reliable is the estimation. This definition may be used
either as an alternative or in conjunction with the predictor’s native
error estimation technique, if any exists.

Listing 10.7: Predictor Agent Rule
rule "Predict"

// many−valued r u l e
when

$s : Sample () // rout ing ensures raw = f a l s e , when
p o s s i b l e

$p : P r e d i c t o r S t r a t e g y (
// condi t ions on the plant source , i f any
$in : inputVarSet ,
$ t g t : t a r g e t V a r i a b l e ;
$m : method ,

)
$input : C o l l e c t i o n (s i z e s i m i l a r $in . s i z e) from accumulate

(
Analysis (var memberof @[boolean] $in ,

. . .
$val : value) from $s . a n a l y s i s

) // e x t r a c t input v a r i a b l e s
Tra inSet (pred == @[boolean] $p , $proto : prototypes)
e x i s t s $c lus : Clus ter (t h i s covers $input) from $proto

then
Analysis a = new Analysis () ;

a . s e t V a r i a b l e ($ t g t) ;
a . setMethod ($m) ;
a . setValue ($p . p r e d i c t ($input)) ;
// a . s e t D e r i v a t i v e ($p . predictDer ($input)) ;
double e r r o r = 0 ;

// e r r o r += $p . p r e d i c t E r r o r ($input) ;
e r r o r += $ t g t . maxValue () * (1−consequenceDegree . value ())

;
a . s e t E r r o r (e r r o r) ;

dispatch (a) ;
end �

A pair of prediction examples for nitrates and ammonia concentra-
tions are shown in Figure 67 and Figure 68, respectively. The predic-
tions have been performed using simple FF-NN predictors with 8 and
7 neurons in the hidden layer - sizes chosen after applying a canoni-
cal train/validate/test training procedure with various values for the
parameters such as hidden layer size, learning rate and momentum.

trainer Remarkably, the training of the predictors is not performed
manually, but delegated to a specific agent, who prepares the modules
on behalf of the predictor agent. The latter, in fact, requests a pre-

232 designing a complex edss

Figure 67: [N−NO−
3] : predicted vs real values

Figure 68: [N−NH+
4] : predicted vs real values

dictor module to the trainer whenever (i) it does not have a suitable
predictor strategy for a variable, (ii) the current module’s performance
degrade too much or (iii) after a fixed amount of time which takes
into account the seasonal behavior of the process, so that a previously
learned signal-process correlation is no longer assumed to be reliable.

The role of trainer agent is an abstract one: the concrete subclassesTrainer Types
act as factories for different types of predictor, so there is a FF-NN

trainer, an Elman network trainer and more can be added. All of them,
however, require a training set to train the predictors on. The training
set is built incrementally, as a consequence of the completion of track
studies. The trainer agent, in fact, reacts to Track events, updating itsonTrack
internal knowledge. The operation is not trivial, since initially a Track

contains only sparse information for a number of Variables which are
likely to become the targets of a predictor. The corresponding input
variables, instead, are normally measured by probes, but their values
are not added to the Track. Hence, before a Track can be used to pop-
ulate training sets, several operations have to be performed: the offline
(target) data must be populated fully, the online (input) data must be
retrieved from the storage and the two sets have to be merged - only
then the data can be validated and used in practice. Given the com-

10.3 case study 233

plexity of the problem, it has been formalized using a BPMN notation, Track Processing
considering the validation a particular case of business process. This
allows to implement the different stages using rules and exploiting
the synchronization features of Drools Flow. The resulting flow chart
is shown in Figure 69.

Pre-Processing

×

Load Extraction

Set-Up

Instantiation

×

Integration

Merging

Evaluation

Update

Figure 69: OnTrack Flow

Formally, the Track contains J Samples, performed at times τj:1..J
which form the sparse time set T∆. Each sample holds m Analysis,
which are to be matched to n online signals acquired at a much higher
rate. The actions performed by the rules in every group can be sum-
marized as follows.

• Pre-Process: Global information is extracted from the Track; the
temporary data structures necessary for the elaboration are pre-
pared.

• Load : The online analyses (e.g. pH, ORP, DO) relative to the pe-
riod [Track.start,Track.end] are retrieved from the storage. To
do so, the trainer invokes the Storage Agent, who returns a data
set composed of K (n+1)-element tuples such as 〈tk,pH(tk),ORP(tk),DO(tk)〉.

234 designing a complex edss

For convenience, each tuple is split in (n + 1) pairs: 〈tk, tk〉,
〈tk,pH(tk)〉, The first pair defines the dense time set Tδ.

• Extraction : In parallel, all the Analysis relative to the same
sparse Variable are extracted from the Track and combined so
that each variable can be processed separately. In order to esti-
mate the values for times other than T∆, the sparse time series
must be approximated, possibly using one of the techniques de-
scribed in Chapter 3.

• Set-Up : The Set-Up stage selects the concrete Approximation
strategy and configures the necessary parameters. So far, two
are supported: RBF functions and the Bayesian GPM method [57].

• Instantiation : Eventually, each sparse time serie 〈τj,γ(τj)〉 is
used to train an approximator fγ. Figure 70 and Figure 71 show
the result obtained using the two techniques on the same data
set.

Figure 70: Example: Approximation using RBF model

GPM has the advantage of returning not only an estimate γ =

f(t), but a full Gaussian probability distribution on the variable’s
range p(γ|t) which can be converted in a confidence interval and
thus in an error for the virtual Analysis. An RBF approximator,
instead, returns a definite value, but, assuming that the variance
of each element in the training set (i.e. the error of the Track’s
Analysis) is known, it can be shown that this error can be con-
verted into an uncertainty first on the combination weights of the
RBF [244] and then on the final output [123]. This method, how-
ever, turned out to suffer from some numerical stability prob-
lems.

• Integration : Once the approximators are ready, the sparse time
series can be “filled”: for each t ∈ T∆ and for each approximator
fγ, the pair 〈t, fγ(t)〉 is built.

10.3 case study 235

Figure 71: Example: Approximation using GPM model

• Merging : All the pairs 〈t, ·〉 relative to the same t are joined in a
single tuple 〈t,ϕ1(t), . . . ,ϕn+m(t)〉, where ϕ denotes any input
or target variable.

• Evaluation To have a predictor learn meaningful relations, the
candidate training data must be validated accurately. The crite-
ria are expressed using the many-valued rule 10.8, whose conse- Logic-Based

Validationquence degree is attached to the tuple to measure its reliability.
Different aspects are taken into account at the same time: the ex-
perience of the operator who made the analysis and the method
used for it (a novice tends to make more errors than an expert
one); the compatibility between the tracked plant and the one the
final predictor will work on (if plants of a similar class work in
similar operating conditions, it is reasonable to transfer the infor-
mation acquired on one to the other, albeit with a lower degree
of confidence); the uncertainty on the measures, denoted by the
error, real or estimated.

• Update The Track validated status is set to true; moreover, the
weighted tuples are inserted into a collection, called TrainingBag,
from where they can be extracted to build training sets. A train-
ing set of X elements is formed extracting X elements from the
bag, each with a probability proportional to its weight. This al-
lows less reliable input-target pairs to be presented to a predictor
with lower frequency during its training phase. In practice, the
TrainingBag component allows to implement bootstrap training
procedures [63] which are useful especially when the training
data are scarce. Since tracks are expensive procedures, both in
terms of money and time, this scenario is not unlikely. To this
date, only 10 Tracks were available, 2 of which were kept for the
validation and test of the neural predictors.

236 designing a complex edss

Listing 10.8: Trainer Agent - Data Validation Policy
rule "Validate Data"

when
$ t : Track (t h i s val id ,

$ t i d : id , t e c h n i c i a n expert ,
$pid : source . id ,
$p_loc : source . l o c a t i o n ,
$p_type : source . type

)
// t r a c k execut ion c r i t e r i a
$ t r a i n e r P l a n t : P lant (

id == $pid
|| l o c a t i o n near $p_loc
|| type compatible $p_type

)
//source c o m p a t i b i l i t y c r i t e r i a
$s : Sample (source == @[cut] $t id ,

$s id : id , $time : TStar t ,
$anMap : a n a l y s i s

)
//measurement c r i t e r i a
f o r a l l (

$a : Analysis (. . .
e r r o r small && method r e l i a b l e

) from $anMap
)

then
// weight = consequenceDegree ;
. . .

end �
Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \ −design+//

Figure 72: Trainer Agent Hybri-
dation (w.r.t. to Pre-
dictor)

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \ − =augmentation//

Figure 73: Predictor Agent Hy-
bridation

Time Series Tracking

Another possible, imperfect approach to the monitoring of the process
can be based on the comparison between the time series measured
on-line by the sensors and the ones stored in a historical database.
Conceptually, this approach has some similarities with CBR, since it

10.3 case study 237

tries to associate the current values of the signals to the values they
had in some predefined and well-known situations.

To create the case history, a set of valid cycles is extracted and pre-
pared. The concept of a-posteriori validity defined in [1] applies, but
here it can be easily mapped onto rules using the ReactionComplete

events, as shown in 10.9.

Listing 10.9: Cycle validation
rule "Predict"

// p r o b a b i l i s t i c r u l e
enta i lment @[boolean] // only c e r t a i n l y va l id c y c l e s

allowed
when

. . .
$eod : ReactionComplete ($p : plant , $c : cyc le Id , r e a c t i o n ==

DENITRIFICATION)
$eon : ReactionComplete (plant == $p , c y c l e I d == $c , r e a c t i o n

== NITRIFICATION ,
t h i s a f t e r @[params = " . . . "] $eod) // Tmin

. . Tmax
. . .

then
// $c i s va l id

end �
Knowing the timestamps of the events ReactionComplete for the

relevant reactions, nitrification and denitrification, allows to define a
fuzzy partition of the time domain of each reaction phase (anoxic and Sub-Phase definition
aerobic), using the fuzzy sets “pre”, “inter” and “post” to denote the
fuzzy periods preceding and following the completion of the reaction,
separated by the fuzzy instant during which the reaction effectively
completes (e.g. see Figure 74). This fuzzification is useful for many
reasons: reactions do not actually finish abruptly; the effect on the
signals may not be immediate and there may be some error in the
measurements.

0 30 60 90
0

0.25

0.5

0.75

1

EON

pre inter post

T(min)

µ(x)

Figure 74: Anoxic Sub-Phase Fuzzy Partition

238 designing a complex edss

The goal is to estimate the membership of a signal vector

x = [pH(t),ORP(t),DO(t),pH ′(t),ORP ′(t),DO ′(t)]

obtained from a Sample, in order to generate up to three AckStage

events, respectively holding the memberships µpre, µinter and µpost.
However, the membership degrees are not static : they are not defined
directly on the time domain, but for each cycle they are conditioned by
the value of the signals, i.e. µ(t) = µ(t|x(t)). In practice, the member-
ships are known a posteriori for the signals of the valid cycles, but not
for the new ones. To obtain the memberships at run-time, an imperfect
reasoning based on the principle of similarity is adopted: “The more
similar an input x is to a prototype c for which the memership µ(c) is known,
the more similar µ(t|x(t)) will be to µ(c)”.

This reasoning is implemented in different steps. First, the trainingTraining Set
Reduction set is encoded in a more compact form using a SOM on a bidimensional

grid to take into account variations along the temporal and measure-
ment dimensions (see Figure 75). In particular, two distinct neural net-
works are used for the anoxic and aerobic phases, each deployed on a
fixed 5x20 grid.

Figure 75: Anoxic Phase - SOM Layout (PCA projection) : colors corre-
spond to pre, inter, post sub-phases

The Neurons are used to evaluate the similarity between the current
input and the prototype ones in a more efficient way than using the
redundant training set directly. The agent can choose the appropriate
network simply by intercepting the InitPhase event.

More formally, the classification problem can be stated using theOn-line
Classification approximate inference schema in possibilistic logic:

Recall(N,X(t)), Recall(N,X)→ SubPhase(N)

SubPhase(X(t))

The predicate-equivalent Recall models the similarity between the
input and the prototype (see also Section 8.2.3); the implication →,
instead, models the correlation between a prototype and the current
subphase (respectively pre, inter and post). It is expressed using a
gradual rule (see Section 8.1.3), in order to obtain a conservative lower
bound for the sub-phase membership of the current input.

10.3 case study 239

The language and the engine support the expression and the eval-
uation of this schema. First, the implication is learned by induction,
using a rule pattern similar to the one shown in 8.1.5. The induction
is constrained by the activation of the neuron, in order to use only the
training data which are relevant for the implication (Rule 10.10 is a
simplified example of the training rule set). The actual semantics of
the output degree depends on the form of the degrees: when simple
degrees are used, it can be considered the expected degree of truth of Imperfect

Interpretationthe gradual implication since it is an average of the individual degrees
evaluated for each training pair. The problem is that, when using in-
duction, gradual degrees of truth mix with frequencies, which leads
to a belief distribution on the set of truth values. So, a gradual mem-
bership - i.e. a prototype has mixed traits which could be typical of
a transition between two sub-phases - can’t be distinguished from an
uncertain one - i.e. a prototype has ambiguous traits which can appear
in different sub-phases. Early experiments with more expressive truth
degrees were performed and shown in [9] and [4], but have not yet
been upgraded to the online version.

Listing 10.10: Tracking Agent Training
rule "TrainPre"

when
. . .
forany (

// R e c a l l degree i s given by the i m p l i c i t " holds "
$r : (implies

R e c a l l ($n : neuron , $x : input , $ t : s t a r t) from . . .
Input (t h i s == $x , t h i s seems "pre") from . . .

)
s u b j e c t _ t o R e c a l l (t h i s == @[cut] $r)
weight R e c a l l (t h i s == @[cut] $r)

)
. . .

then
. . .
i n j e c t ($n , "idPre") ;

end �
Nevertheless, the inductive rules allow to obtain an implication de-

gree for each possible neuron-subphase pair: this, in turn, is used to
estimate the a lower bound for the membership of the current input,
as shown by the rules in 10.11. According to the SOM principle, the
winning neuron is used for the association. The strict Lukasiewcz’s
and is used to obtain a safer lower bound: notice that using the con-
junction in the premise with a true implication is equivalent to ap-
plying a gradual implication, since a⊗ b ⇒1 yields the same degree
as a⊗ ⇒b. Moreover, if intervals are adopted, the partition condition
µpre+µinter+µpost can be translated in three rules, each one stating
that the membership in any two sets excludes the membership in the
third. In case, the necessity of intervals derives from the negation in
the entailed conclusion.

240 designing a complex edss

Listing 10.11: Tracking Agent Training
rule "Associate_Pre"

rulef low−group "Step1"

when
$x : Input (. . .)
$win : Winner (input == $x)
(R e c a l l ($n : neuron == $win)

and @[kind="Lukas "]
Neuron (t h i s == @[boolean] $n ,

t h i s seems @[id =" idPre "] "pre")
)

then
i n j e c t ($x , "idInputPre") ;

end
/*
r u l e " I n t e r a c t "
rulef low−group " Step2 "
when

Input (t h i s seems @[id =" idInputPre "] " pre "
|| @[kind =" Lukas "]
t h i s seems @[id =" i d I n p u t I n t e r "] " i n t e r "

)
then

r e j e c t ($x , " idInputPre ") ;
end
*/
rule "Generate"

rulef low−group "Step3"

when
$x : Input (t h i s seems @[id =" idInputPre "] "pre")

then
dispatch (new AckStage ($x , PRE) , consequenceDegree) ;

end �
Eventually, the estimated degrees are used to generate the AckStage

events, up to one for each subphase, which hold partially. In the ideal
case, the neuron which recalls perfectly an input activates during and
only during a given sub-phase, so only one certainly true AckStage

event is generated. When, instead, an input is perfectly recognized by
a neuron which activates with imperfect degrees in all phases, three
AckStage event will occur, each one with a partial degree. The inter-
pretation of this degree is subtle when simple degrees are used. A
possible interpretation is to consider them belief (necessity) degrees,
but this is equivalent to assuming that the output fuzzy partition is
actually crisp - i.e. no partial memberships are allowed, but uncertain
ones are. This is currently not a limitation, since what is really relevant
is the transition from the pre status to the post one and the distinction
between the two is boolean.

Policy Enactment

The policy agent’s knowledge concerns the proper information on the
management of aSBR: in fact, the other agents described so far perform

10.3 case study 241

Grade

Level

Incentive

Time

Structurepre-processing
transformation
model

post-processing

independent
concurrent

complementary
cooperative

low

moderate

high

very high

offline

online

both

& / \ − =augmentation//

Figure 76: Tracking Agent Hybridation

generic tasks which could be easily applied to other types of plants,
if not to other data processing contexts altogether. The policy agent,
among other things, has the task of determining the state of the pro-
cess, generating the event ReactionComplete when necessary. More-
over, it decides when to Switch from one phase to another, according
to its belief and knowledge on the process. The reasoning is properly
performed in two sequential steps: the switch is generated as conse-
quence of the completion of the reactions, which in turn is generated
by aggregation and analysis of the simpler events.

reaction completion The agent intercepts all the events gen-
erated by the analysis agents, namely: Evidence

• Processed Sample(No3,Nh4), holding the estimated values of the
relevant nitrate and ammonia concentrations. The degree of im-
perfection is given qualitatively by the error associated to the
values, which is easily converted in the variance of a gaussian
distribution centered on the value.

• TrendChange(Type, each annotated by a lower bound of a fuzzy
similarity degree, which is higher as an event matches an ideal
prototype.

• AckStage(Subphase), annotated with a degree describing the be-
lief in the necessity of the truth of stating that the current phase
is actually the given one.

Given the current phase, any of these events can be used to entail
conclusions on the state of the reactions in the tank. These conclusions
are always uncertain: the Samples would be reliable if they were mea-
sured directly using a (precise) sensor, but the ones here are obtained
by prediction; the other criteria, instead, assume a correlation between
indirect signals and processes which is abducted from experimental
data and not guaranteed to hold in any case, especially in case of fail-
ures in the probes or in the process. The correct approach would re- Uncertain Decision

Modelquire a Bayesian Network, expressing the probability that a reaction is
complete, conditioned by all the available information. This is not feasi-
ble in practice, mainly because the evidence-generating agents may not

242 designing a complex edss

be present, and even then, they generate information asynchronously.
To approximate the probabilistic model and decouple it from the infor-
mation sources, a TBM model is used instead.

The property of completion is boolean, so the underlying frame of
discernment has two elements: Ω = {complete, ¬complete}. It will
be assumed that the focal elements are X = {complete} and Ω, with
all the mass assigned initially to Ω. The existing criteria can only
bring evidence to X, so at each update the current distribution m0 =

{m(X),m(Ω) = 1−m(X)} must be merged with the contribution mj =

{mj(X),mj(Ω) = 1 −mj(X)}. Applying Dempster-Shafer’s combina-
tion rule, it turns out that the new evidence is given by m = m0 ∩mj
and, in particular:

m(X) = m0(X) +mj(X) −m0(X) ·mj(X)

Since this is actually the probabilistic disjunction of two belief de-
grees, the rule-based pattern shown in 10.12 can be used:

Listing 10.12: Belief Update
rule "Belief Update"

when
$b : B e l i e f ($ i t e r : step , $ t o p i c : t o p i c) // " holds " <−> m_0

or @[kind=" P r o b a b i l i s t i c "]
$ev : Evidence (r e f e r s = $ t o p i c) // " holds " <−> m_j

then
r e t r a c t ($b) ;
B e l i e f b1 = new B e l i e f ($ i t e r +1 , $ t o p i c) ;

i n j e c t (b1 , "holds") ;
i n s e r t (b1) ;

end �
The various events, then, can be converted into Evidence, each con-

tributing with a mass w to the overall belief. The rules are sketched
in 10.13 and 10.14: notice that they are domain-specific for the two
reactions in the two phases.

The implication in the rules are gradual and return a degree of be-Imperfect criteria
lief, applying the empirical principle “The more compatible the conditions
with the ideal, expected ones, the more it can be believed that the reaction is
complete”. In particular, when the premises have maximum degree the
evidential contribution is w1, w2 and w3 for each criteria, respectively.
w1 and w3 are low (∼ 0.1), but the events are repeatable; w2, instead,
is higher (∼ 0.7). When the events do not match the premises, instead,
the contribution is lower, possibly 0. Notice that since no rule provides
evidence against the completion of a reaction, the belief is monotonic
and non-decreasing. Moreover, the use of implications to vehicle be-
lief is compatible with the definition of rules to handle exceptions, as
shown in Section 8.1.7.

Other than that, the rules are an imperfect reformulation of the com-
mon criteria adopted in literature, as discussed in Chapter 9. The firstI - low nitrates
looks for a (reliable) estimate stating that the nitrate concentration is

10.3 case study 243

Listing 10.13: Anoxic Phase Rules
rule "Denitrification Evidence 1"

i m p l i c a t i o n @[kind="mixed " , degree ="w1"]
when

CurrentPhase (type == ANOX, $den : r e a c t i o n)
$s : Sample ($ a n a l y s i s : ana lys i s , . . .)
Analysis (v a r i a b l e == @[cut] NO3,

range seems "zero") from $ a n a l y s i s
then

Evidence e = new Evidence ($den) ;
i n j e c t (e , "holds") ;

i n s e r t (e) ;
end

rule "Denitrification Evidence 2"

i m p l i c a t i o n @[kind="mixed " , degree ="w2"]
when

CurrentPhase (type == ANOX, $den : r e a c t i o n)
(and @[kind="Min"]
$max : TrendChange (source == "pH" ,

type == APEX, verse == UP)
$k : TrendChange (source == "ORP" ,

type == KNEE, verse == DOWN, t h i s over laps $max)
neg e x i s t s TrendChange (source == "DO" ,

type != STEP , verse == DOWN)
)

then
Evidence e = new Evidence ($den) ;

i n j e c t (e , "holds") ;
i n s e r t (e) ;

end

rule "Denitrification Evidence 3"

i m p l i c a t i o n @[kind="mixed " , degree ="w3"]
when

CurrentPhase (type == ANOX, $den : r e a c t i o n)
e x i s t s AckStage (phase == ANOX, subphase == POST)
e x i s t s AckStage (phase == ANOX, subphase == INTER)
e x i s t s AckStage (phase == ANOX, subphase == PRE)

then
Evidence e = new Evidence ($den) ;

i n j e c t (e , "holds") ;
i n s e r t (e) ;

end �
close to zero, using a fuzzy approach to improve robustness. Since the
estimate is given in a form value±error (returned by the convenience
getter range), the fuzzy evaluator actually returns a necessity/possibil-
ity interval, and only the lower bound is propagated. The second rule II - Simultaneous

Trend Changerequires the contemporary presence of a pH maximum and an ORP

knee. Imperfection is taken into account twice: by the degree at which
the events Hold (in turn derived from their similarity with a prototypi-
cal pattern) and by the degree of overlap of the two events. The third, III - Sub-Phase

Sequenceeventually, requires that the correct sequence of sub-phases has been
acknowledged. Even if only the rules for denitrification have been dis-

244 designing a complex edss

cussed, the rules for the aerobic phase are specular and reported for
completeness in the rule set 10.14.

Listing 10.14: Aerobic Phase Rules
rule "Nitrification Evidence 1"

i m p l i c a t i o n @[kind="mixed " , degree ="w4"]
when

CurrentPhase (type == AEROBIC, $ n i t r o : r e a c t i o n)
$s : Sample (. . . NH4 seems 0 . . .) //a c t u a l l y , the v a r i a b l e

i s e x t r a c t e d from the a n a l y s i s
then

Evidence e = new Evidence ($ n i t r o) ;
i n j e c t (e , "holds") ;

i n s e r t (e) ;
end

rule "Nitrification Evidence 2"

i m p l i c a t i o n @[kind="mixed " , degree ="w5"]
when

CurrentPhase (type == AEROBIC, $ n i t r o : r e a c t i o n)
$min : TrendChange (source == "pH" ,

type == APEX, verse == DOWN)
$step : TrendChange (source == "DO" ,

type == STEP , verse == UP, t h i s over laps $min)
$knee : TrendChange (source == "ORP" ,

type == KNEE, verse == UP, t h i s over laps $min)
then

Evidence e = new Evidence ($ n i t r o) ;
i n j e c t (e , "holds") ;

i n s e r t (e) ;
end

rule "Nitrification Evidence 3"

i m p l i c a t i o n @[kind="mixed " , degree ="w6"]
when

CurrentPhase (type == AEROBIC, $ n i t r o : r e a c t i o n)
e x i s t AckStage (phase == AEROBIC, subphase == POST)
e x i s t AckStage (phase == AEROBIC, subphase == INTER)
e x i s t AckStage (phase == AEROBIC, subphase == PRE)

then
Evidence e = new Evidence ($ n i t r o) ;

i n j e c t (e , "holds") ;
i n s e r t (e) ;

end �
phase switch When the Belief in the completion of a reaction
exceeds a threshold, an event ReactionComplete is fired, with degree
equal to that of the current Belief. The basic policy would be to Switch

to the next phase as soon as the reaction is believed to be complete, but
doing so without taking into account the uncertainty would not be safe.
Instead, rule 10.15 is used:

The rule integrates, putting them at the same logical level, the re-Safe Switch
quirement that the reaction has been completed with the requirement
that a phase must last for a minimum amount of time. before, in this

10.3 case study 245

Listing 10.15: Optimal Switch Rule
rule "SwitchAnox" // resp . SwitchAerobic
when

$c : CurrentPhase (type == ANOX)
(and @[kind == mixed]

$rc : ReactionComplete (r e a c t i o n == DENITRIFICATION)
I n i t P h a s e (phase == $c , t h i s before @[params="tMin"] $rc)

)
then

Switch sw = new Switch (. . .) ;
schedule (Switch , tMax , 1−consequenceDegree) ;

end

rule "Safety Check"

when
Switch (newPhase == AEROBIC, $now : s t a r t)
$cp : CurrentPhase ($c id : cyc le Id , phase == ANOXIC, $dur : (

s t a r t − $now))
CurrentPhase (c y c l e I d == ($cid − 1) , phase == AEROBIC,

$prev : durat ion neg compatible @[f i l t e r = " . . . "] $dur)
then

Alarm a = new Alarm (. . . , consequenceDegree , WARNING) ;
dispatch (a) ;

end �
case, has a trapezoidal membership degree which grows linearly from
0 to the passed argument tMin and stays bounded to 1 afterwards.
Thus, the consequence degree of the first rule decreases as (i) the re-
action is not fully believed to be complete and (ii) there is not enough
temporal distance between the start of the phase and the moment it
could theoretically be ended. Thus, the Switch event is not generated
immediately, but after a time ∆T = (tMax−now) · (1− ε).

Notice that other operations can be performed at this point: for ex- Consistency Checks
ample, it was found that there is a weak correlation between the dura-
tion of a nitrification reaction and the duration of the following deni-
trification, as shown in Figure 77. On leaving the anoxic phase, a rule
retrieves the duration of the aerobic phase of the previous cycle (as-
suming its duration has been optimized, so that it coincides with the
effective duration of the nitrification reaction) and checks the compati-
bility between the two durations. The relation has been modelled using
a GPM, so the response is actually a degree of probability. If this value
is too low, the rule triggers and generates an Alarm. Obviously, similar
rules can be written for other correlations that exist between phases of
different cycles.

Plant Controller

The controller agent takes care of the actual phase changes in the plant:
it reacts to a Switch request event, executing the actions necessary to onSwitch
move from one state to the following, then notifies the completion of

246 designing a complex edss

Figure 77: Correlation between the Duration of an Aerobic and follow-
ing Anoxic Phases

the transition generating the event InitPhase. Its semantics is exactly
the one defined by the Petri Net in Section 9.4: Drools, in fact, allows to
translate the theoretical model directly into a concrete implementation.
Drools Flow has a (limited, but growing) support for BPMN models,
which can be mapped onto Petri nets ([102]). While it has not been
verified if the mapping is biunivocal, so that also the converse holds, it
was feasible to translate the necessary parts.

PhaseN ×

TN

×

+

PhaseN+1

Figure 78: SBR Process Flow : Switch

Formally, the SBR cycle can be defined applying the pattern shown
in Figure 78, where the passage from one phase to the next depends on
any one between the triggering of a watchdog timer and the occuring
of an external event. The event, usually generated by the policy agent,
is a combination of the different on-line analysis techniques; the timer,
instead, is triggered when the previous swith is completed.

The watchdog, in turn, is activated after the previous transition has
been completed.

Drools Flow ensures that rules such as 10.16 are executed only when
ruleflow group the rule belongs to is active, so the necessary actions
on the actuators (blower, mixer, pumps, . . .) can be applied as a con-
sequence of a switch. The concrete actions for each phase are derived,
trivially, from Table 29.

10.4 conclusions 247

Listing 10.16: Controller Agent Policy
rule "Apply Switch"

// p e r f e c t r u l e
rulef low−group "F"

when
CurrentPhase (id == "F-1")

then
// c o n t r o l a c t u a t o r s
. . .
CurrentPhase newPhase = new CurrentPhase ("F") ;
d ispatch (new I n i t P h a s e (newPhase)) ;

end �
10.4 conclusions

10.4.1 Summary : Default Event Flow

Figure 79 summarizes the events which are involved in a normal, man-
aged SBR cycle. The level of abstraction increases and the frequency
lowers when moving from raw Samples to Switch commands: in par-
ticular, raw observations performed on the plant (the Samples) are used
to detect relevant signal state/trend changes, which are mapped onto
process state changes, which in turn cause phase changes in the plant.
The events are correlated by computational causality and/or aggrega-
tion, but the criteria used to generate a complex event from simpler
ones may involve several reasoning steps, conveniently performed by
the agents, possibly exploiting a short-term memory (i.e. stateful rea-
soning sessions) and the integration with sub-symbolic modules. Re-
markably, logical causality would characterize the reversed sequence of
events: phase changes in the plant alter the process state, which in turn
manifest as trend changes in the sampled signals. The use of imperfec-
tion in the reasoning allows to take care of the inherent uncertainty
associated to this form of implicit abduction, in addition to the one
generated by the measurement and process noise.

10.4.2 Considerations

The migration of the decisional applications from an off-line imple-
mentation to an on-line infrastructure has been possible thanks to the
adoption of an appropriate infrastructure. Thus, it was possible to re-
produce the results obtained from an a-posteriori analysis of the SBR

cycles with minor conceptual modifications (e.g. see [11],[4],[1]). Un-
fortunately, the only serious limitation is that, given the current impos-
sibilty of commanding the actuators directly, the only tests have been
simulations on historical data, which reproduced the results obtained
and published in the cited works. So, the effective improvements have
involved the major structural (and in some cases formal) modifications:

248 designing a complex edss

Chart Trainer Statistics

Predict

Probes Denoise Analysis Policy Control Actuators

Trace

Storage Router

Sampleraw Sample TrendChange

AckStage

Samplepred

ReactionC. Switch

InitPhase

Track

Figure 79: Conceptual Event Flow

with respect to other existing solutions, the proposed one has several
advantages - albeit also some drawbacks. The former include:

• Event-Orientation : the application is possibly the first SBR man-
agement system completely based on CEP.

• Flexibility and Reliability: the number and type of agents can be
varied dynamically at runtime. Additional modules can extend
the functionalities of the system, improving the performance
of existing ones or adding completely new ones. Likewise, the
content/context-based routing allows to reconfigure the event
flow dinamically, so that performances can degrade gracefully
in case some services are not available.

• Interactivity: The different interaction options allow the develop-
ment of systems where the different modules interact and coop-
erate in more complex ways than simply processing information
in a parallel or cascaded way.

• Abstraction: Other than modelling some problems in a natural
way, the underlying CEP approach allows to reason at different
levels of abstraction. Complex problems can be decomposed in
simpler ones, resolved individually and then recombined at the
higher level.

• Data Robustness : The native use of imperfection in the reasoning
allows to manage a source - the plant - which naturally produces
noisy, partial, uncertain and/or vague data.

• Integration: Drools has turned out to be convenient tool for the
integration of AI tools: while it remains a symbolic, declarative
tool (with all the advantages of expandibility and explainability),
it also allows to use, embed or even emulate other sub-symbolic

10.4 conclusions 249

modules or techniques. For a quick reference, Figure 80 summa-
rizes the technologies which have been used in the development
of the different agents.

Its main limitation is essentially the lack of a standard model and a
standard language to describe it. The use of a POJO class hierarchy can
be a convenient internal representation, but may fail when the infor-
mation have to be shared between agents. This, together with the lack
of support for a communication standard, limits the interoperability of
the system with third-party services.

Chart Trainer Statistics

Predict

Probes Denoise Analysis Policy Control Actuators

Trace

Storage Router

NumR NumR

SOMR

SOMFFR

P

RR

R

RBFPFFR

Figure 80: Use of (hybrid) AI techniques by the EPAs

Part V

C O N C L U S I O N S A N D F U T U R E W O R K S

11
C O N C L U S I O N S A N D F U T U R E W O R K S

Contents
11.1 Conclusions 253

11.1.1 Results in the Development of (Pro-
duction) Rule-Based Systems 253

11.1.2 Results in the Development of (En-
vironmental) Decision Support Sys-
tems 254

11.2 Future Works 255

11.1 conclusions

The initial motivation of the long-term project discussed in this disser-
tation was to determine to what extent it could be possible to integrate
symbolic and non symbolic AI techniques in the development of a com-
plex automated management infrastructure for a complex system, and
which benefits would come from it.

This has led the work in two main directions, although strongly cor-
related: the study of advanced software architectures and the research
on the inference mechanisms of production rule systems. Interesting
results were obtained in both fields.

11.1.1 Results in the Development of (Production) Rule-Based Sys-
tems

From a theoretical point of view, it was argued that the main benefit
of SC techniques is their ability to deal with various types of imper-
fect information. This property is normally not shared by HC systems,
whereas instead it would be useful in many practical cases, since im-
perfection is possibly an inherent property of information coming from
the real world. However, it turned out that even a “hard” computing
tool such as a rule-based system can be enhanced to support more gen-
eral inference schemas, and can adapt to different types of imperfect
reasoning simply using meta-data in the knowledge bases to configure
it.

253

254 conclusions and future works

This result is relevant when paired to a recent result [92] which
showed how several logic languages can be unified, but a similar gen-
eralization had not yet been performed on rule engines. While it in-
troduces a possibly relevant computational overhead, which makes it
less suitable for the large scale processing of a single type of rules, the
enhancements make the engine important for applications where a mi-
nor number of rule activations, but with different semantics have to be
processed.

In fact, the rule engine enhanced with imperfection allowed to be
integrated with most types of SC techniques in more advanced ways
than simply applying them in cascade or in parallel. Imperfect rea-
soning reduces the distance between the two worlds, to the point that
rules have been proved to emulate the behaviour of some sub-symbolic
algorithms. In more general cases, strong hybrid systems can be devel-
oped using one or more of the following integration patterns, ordered
from the looser to the tighter:

• The imperfect rule engine invokes a SC module, passing the in-
formation it generated.

• A SC can provide imperfect information which is evaluated by
the imperfect rule engine.

• The rule engine delegates the evaluation of an imperfect prop-
erty to a SC module, which returns a generalized degree.

• The imperfect rule engine acts as a polymorphic hybrid system
itself, emulating all or part of the behaviour of a SC module.

Remarkably, the integration is native: while rule-based systems usually
allow the execution of generic code as a consequence of the firing of
a rule, so that any algorithm can be implemented there, the proposed
engine supports integration in the premise part of the rules.

Moreover, the enhancement was not performed on an ad-hoc en-
gine, but rather as a development branch of a mainstream, open source
BRMS - Drools - which features and potentialities can be compared to
the most advanced rule management systems present on the market,
further improving it.

11.1.2 Results in the Development of (Environmental) Decision Sup-
port Systems

The BRMS, enhanced with imperfection, has found a relevant role in
the development of a hybrid Decision Support System - which actu-
ally shares some features of an Expert System - applied to the on-line
monitoring and control of a SBR treatment plant. The proposed archi-
tecture has several interesting points, as well.

First, it combines agents, services and events in a unified frame-
work. This is not particularly innovative, but becomes so if one con-
siders that such integrated platforms are hardly applied to water treat-
ment systems and even then, the existing ones rarely are completely

11.2 future works 255

imperfection-aware (if any). In particular, the proposed application is
possibly the first CEP-oriented solution to the problem of managing a
SBR.

The architecture has all the advantages of a SOA, but, being event-
driven, is even more loosely coupled and thus more flexible. From an
implementation point of view, it relies on agents implemented using
the full capabilities of the BRMS Drools - namely events, workflows,
and repository in addition to the rule engine - and exploits the custom
enhancements to support imperfection. In fact, it has been proved that
all these components, originally designed for an enterprise context,
can be successfully applied to the water treatment domain as well.
Remarkably, in [1] we were among the first to propose the applicability
of concepts taken from the field of business process management to
the specific domain: this dissertation possibly completed the picture
by showing the utility of events and shared rule bases.

The event-aware engine alone, integrated with imperfection, allowed
to translate into rules - and thus to apply in real time - several manage-
ment criteria which were initially developed for off-line control. More-
over, it facilitated their contemporary application, in a framework where
different functionalities can be added or removed at run-time.

In conclusion, then, it was proved not only that symbolic and sub-
symbolic techniques can be integrated tightly to improve the mutual
performances, but also that an integrated intelligent system facilitates
the development of advanced management infrastructures which out-
perform many of the existing ones, both in terms of flexibility and
robustness. Such infrastructures are suitably applied to complex sys-
tems, such as waste-water treatment plants, where the only available
knowledge and information are both characterized by a high degree
of imperfection.

11.2 future works

Despite the results obtained, this dissertation leaves many open chal-
lenges and issues for future research. They can be divided in two
groups: improving the imperfect reasoning engine and expanding the
applicative fields.

Improving the Engine

• Upgrading the Implementation: So far, Drools Chance has been im-
plemented as a prototype in a branch of Drools 5.0. The next step
will be an integration of the branch in the main engine, passing
from a development version to a release one. Since Chance effec-
tively alters the structure of the core nodes, it can’t be added
on top of the existing architecture, but must redefine it. In order
not to force users to adopt it when not necessary, it has been
planned to customize the behaviour of the compiler, which will

256 conclusions and future works

generate either a standard RETE or an imperfect one, according
to the desired configuration.

• Extending the support to other logics : Only a few among all the
possible Factory configurations have been implemented. Ideally,
one Factory for each compatible logic should be prepared and
released as an additional component, with an adequate docu-
mentation on all the possible values of the construction parame-
ters.

• Standardizing the Language DRL is a popular and expressive lan-
guage in the Drools community, but is not compliant with any
standard. Instead, Reaction RuleML is an appealing standard
language, with an expressiveness adequate to cover that of an
production rule system. So, a DRL ↔ RuleML translator would
enhance the compatibility of Drools with other BRMS. Before do-
ing so, however, it will be necessary to compare the two lan-
guages in detail to find the optimal mapping. Reaction RuleML,
moreover, does not support imperfection, so any necessary ex-
tension of the same will be considered.

• Adding support for Semantic Reasoning: Recently, there has been
much interest in the integration of rules and ontologies, as well
as the integration of ontologies with imperfection. Drools Chance

would then allow to reason with imperfect ontologies, but up to
what level of expressiveness has not been studied yet.

• Defining a Benchmark Suite: It is difficult to evaluate the perfor-
mance of the RETE algorithm in an objective way, especially
because they depend on how much a rule base and the cur-
rent set of WME can exploit the node sharing and the other op-
timization techniques. Although there exist some benchmarks,
imperfection complicates things because the structure of an im-
perfect rule base tends to be quite different (on average, the rules
are fewer, but with a more complex structure). Thus, it would
be more appropriate to devise one or more ad-hoc, standard
benchmarks, so to evaluate the computational cost variations
due to the engine’s implementation and not due to the rules
themselves.

Finding additional Applications

• Adding Ontologies to the architecture: As discussed in Chapter 10,
the main limitation of the proposed architecture is the lack of
a standardized language for the agents to communicate with.
Even if a language was chosen or devised, however, the concepts
expressed in this language would still have to be shared. To do
so, an ontology for the water treatment domain in general, and
SBRs in particular, would be the best option.

11.2 future works 257

• Expanding the Knowledge Base: The implemented agents cover but
a small part of the existing management policies for SBR. In fact,
no faulty condition is treated, and the diagnostic capabilities
are very limited. The proposed methodology, however, allows
to build the system incrementally, even as new knowledge is
acquired.

• Applying the architecture to different contexts: SBRs are not the
only possible type of plant the architecture has been devised
for. The next immediate target will be a full-scale plant situated
near Calderara di Reno (Bologna, Italy), owned and managed
by HERA, which has already been equipped with probes and a
remote data acquisition system. The possible applications, how-
ever, would not be limited to treatment plants, but possibly to
all contexts where a knowledge-based decision support system
would be appropriate.

B I B L I O G R A P H Y

[1] A simple algorithm for efficient piecewise linear approximation of space
curves, volume 2, 1997. (Cited on page 227.)

[2] Ruleml - rule markup language. URL http://www.ruleml.org.
(Cited on pages xviii, 107, and 108.)

[3] W3c uncertainty reasoning for the web incubator group,
http://www.w3.org/2005/incubator/urw3/xgr-urw3. (Cited
on page 12.)

[4] MS BizTalk. URL www.microsoft.com/biztalk/en/us/default.

aspx. (Cited on page 105.)

[5] Reasoning about rational agents. MIT Press, Cambridge, MA, USA,
2001. ISBN 0-262-23213-8. (Cited on page 94.)

[6] Business process model and notation, 2009. URL www.omg.org/

spec/BPMN/2.0. (Cited on page 113.)

[7] Fuzzy CLIPS. URL ai.iit.nrc.ca/IRpublic/fuzzy/

fuzzyClips/fuzzyCLIPSIndex.html. (Cited on pages 108,
121, and 158.)

[8] JBoss Drools - Business Logic Integration Platform. (Cited on
pages 105, 110, and 122.)

[9] Scientio InRule. URL www.inrule.com. (Cited on page 105.)

[10] FICO Blaze Advisor. URL www.fico.com/en/Products/DMTools/

Pages/FICO-Blaze-Advisor-System.aspx. (Cited on page 105.)

[11] Jboss jbpm. URL www.jboss.com/products/jbpm. (Cited on
page 113.)

[12] Jess. URL www.nrc-cnrc.gc.ca/eng/ibp/iit.html. (Cited on
pages 108 and 121.)

[13] Java messaging system. URL http://java.sun.com/products/

jms/. (Cited on page 213.)

[14] JRules. URL www.ilog.com/products/jrules. (Cited on
page 105.)

[15] OpenLexicon. URL www.openlexicon.org. (Cited on page 105.)

[16] ObjectConnections CommonKnowledge. URL www.

objectconnections.com. (Cited on page 105.)

259

http://www.ruleml.org
www.microsoft.com/biztalk/en/us/default.aspx
www.microsoft.com/biztalk/en/us/default.aspx
www.omg.org/spec/BPMN/2.0
www.omg.org/spec/BPMN/2.0
ai.iit.nrc.ca/IR public/fuzzy/fuzzyClips/fuzzyCLIPSIndex.html
ai.iit.nrc.ca/IR public/fuzzy/fuzzyClips/fuzzyCLIPSIndex.html
www.inrule.com
www.fico.com/en/Products/DMTools/Pages/FICO-Blaze-Advisor-System.aspx
www.fico.com/en/Products/DMTools/Pages/FICO-Blaze-Advisor-System.aspx
www.jboss.com/products/jbpm
www.nrc-cnrc.gc.ca/eng/ibp/iit.html
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/
www.ilog.com/products/jrules
www.openlexicon.org
www.objectconnections.com
www.objectconnections.com

260 bibliography

[17] OpenRules. (Cited on page 105.)

[18] PegaRules. URL www.pega.com/Products/RulesTechnology.asp.
(Cited on page 105.)

[19] Technical report. (Cited on page 198.)

[20] Sbvr - semantics of business vocabulary and business rules,
2008. URL http://www.omg.org/spec/SBVR/1.0/PDF. (Cited on
page 107.)

[21] Scientio XMLMiner. URL www.scientio.com. (Cited on
page 109.)

[22] FuzzyShell. URL cobweb.ecn.purdue.edu/RVL/Projects/

Fuzzy/. (Cited on page 108.)

[23] Swrl: A semantic web rule language combining owl and
ruleml. URL http://www.w3.org/Submission/SWRL/. (Cited on
page 107.)

[24] Web services business process execution language version 2.0,
2007. URL docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html. (Cited on page 113.)

[25] XpertRule. URL www.xpertrule.com. (Cited on page 105.)

[26] Paschke A., Kozlenkov A., Boley H., Kifer M., Tabet S., Dean M.,
and Barrett K. Reaction ruleml, 2006. (Cited on page 119.)

[27] Agnar Aamodt and Enric Plaza. Case-based reasoning: Founda-
tional issues, methodological variations, and system approaches,
1994. (Cited on page 60.)

[28] Chris Van Aart, Giovanni Caire, Ruurd Pels, and Federico
Bergenti. Creating and using ontologies in agent communica-
tion, 1995. (Cited on page 95.)

[29] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining
association rules between sets of items in large databases. pages
207–216, 1993. (Cited on page 161.)

[30] Gennady Agre. Diagnostic bayesian networks, 1996. (Cited on
page 50.)

[31] D. Aguado, A. Ferrer, J. Ferrer, and A. Seco. Multivariate spc of
a sequencing batch reactor for wastewater treatment. Chemomet-
rics and Intelligent Laboratory Systems, 85(1):82 – 93, 2007. ISSN
0169-7439. doi: DOI:10.1016/j.chemolab.2006.05.003. (Cited on
page 203.)

www.pega.com/Products/RulesTechnology.asp
http://www.omg.org/spec/SBVR/1.0/PDF
www.scientio.com
cobweb.ecn.purdue.edu/RVL/Projects/Fuzzy/
cobweb.ecn.purdue.edu/RVL/Projects/Fuzzy/
http://www.w3.org/Submission/SWRL/
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
www.xpertrule.com

bibliography 261

[32] D. Aguado, J. Ribes, T. Montoya, J. Ferrer, and A. Seco. A
methodology for sequencing batch reactor identification with
artificial neural networks: A case study. Computers & Chemical
Engineering, 33(2):465 – 472, 2009. ISSN 0098-1354. (Cited on
page 203.)

[33] B.S. AkIn and A. Ugurlu. Monitoring and control of biologi-
cal nutrient removal in a sequencing batch reactor. Process Bio-
chemistry, 40(8):2873 – 2878, 2005. ISSN 1359-5113. (Cited on
page 201.)

[34] James F. Allen. Maintaining knowledge about temporal intervals.
Commun. ACM, 26(11):832–843, 1983. ISSN 0001-0782. (Cited on
pages 91 and 112.)

[35] M N Almasri and J J Kaluarachchi. Modular neural networks
to predict the nitrate distribution in ground water using the on-
ground nitrogen loading and recharge data. Environmental Mod-
elling & Software, 20(7):851e871, 2005. (Cited on page 83.)

[36] Grigoris Antoniou, Carlos V. Damásio, Benjamin Grosof, Ian
Horrocks, Michael Kifer, Jan Maluszynski, and Peter. Combin-
ing Rules and Ontologies. A survey., 2005. (Cited on pages 104

and 179.)

[37] Grigoris Antoniou, David Billington, Guido Governatori, and
Michael J. Maher. Embedding defeasible logic into logic pro-
gramming. TPLP, 6(6):703–735, 2006. (Cited on page 170.)

[38] Aleksander Astel. Chemometrics based on fuzzy logic principles
in environmental studies. Talanta, 72(1):1–12, 2007. ISSN 1873-
3573. (Cited on page 83.)

[39] Ioannis N Athanasiadis and Pericles A Mitkas. A Methodol-
ogy for Developing Environmental Information Systems with
Software Agents. Technology, pages 119–137, 2009. (Cited on
page 96.)

[40] Ioannis N. Athanasiadis, Marios Milis, Pericles a. Mitkas, and
Silas C. Michaelides. A multi-agent system for meteorological
radar data management and decision support. Environmental
Modelling & Software, 24(11):1264–1273, 2009. ISSN 13648152.
(Cited on page 96.)

[41] Montse Aulinas. Agents as a Decision Support Tool in Environ-
mental Processes: The State of the Art. Water, pages 5–35, 2009.
(Cited on page 96.)

[42] M Azlan Hussain. Review of the applications of neural networks
in chemical process control - simulation and online implemen-
tation. Artificial Intelligence in Engineering, 13(1):55–68, January
1999. ISSN 09541810. (Cited on page 82.)

262 bibliography

[43] A Azwar, M Hussain, and K B Ramachandran. The study of neu-
ral network-based controller for controlling dissolved oxygen
concentration in a sequencing batch reactor. Bioprocess and Biosys-
tems Engineering, 28(4):251–265, 2005. ISSN 1615-7591. (Cited on
page 83.)

[44] MichałBaczyński and Balasubramaniam Jayaram. (s, n)- and r-
implications: A state-of-the-art survey. Fuzzy Sets Syst., 159(14):
1836–1859, 2008. ISSN 0165-0114. (Cited on page 156.)

[45] J Baeza, D Gabriel, and J Lafuente. An expert supervisory system
for a pilot WWTP. Environmental Modelling and Software, 14(5):
383–390, March 1999. ISSN 13648152. (Cited on page 87.)

[46] Juan Baeza, David Gabriel, Javier Bejar, and Javier Lafuente. A
Distributed Control System Based on Agent Architecture for
Wastewater Treatment. Computer-Aided Civil and Infrastructure
Engineering, 17(2):93–103, March 2002. ISSN 1093-9687. (Cited
on page 95.)

[47] Ying Bai, Hanqi Zhuang, and Dali Wang. Advanced Fuzzy Logic
Technologies in Industrial Applications (Advances in Industrial Con-
trol). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
ISBN 1846284686. (Cited on page 52.)

[48] Debdeep Banerjee and Jeffrey Tweedale. Reactive (re) planning
agents in a dynamic environment. In Intelligent Information Pro-
cessing, pages 33–42, 2006. (Cited on page 95.)

[49] Regina Barzilay, Daryl Mccullough, Owen Rambow, Jonathan
Decristofaro, Tanya Korelsky, Benoit Lavoie, and Cogentex Inc.
A new approach to expert system explanations. In In 9thInterna-
tional Workshop on Natural Language Generation, pages 78–87, 1998.
(Cited on page 59.)

[50] CÃ©dric Baudrit, InÃ©s Couso, and Didier Dubois. Probabil-
ities of events induced by fuzzy random variables. In Eduard
Montseny and Pilar Sobrevilla, editors, EUSFLAT Conf., pages
541–546. Universidad Polytecnica de Catalunya, 2005. ISBN 84-
7653-872-3. (Cited on page 26.)

[51] BenjamÃn C. Bedregal, Renata H.S. Reiser, and GraÃ§aliz P.
Dimuro. Xor-implications and e-implications: Classes of fuzzy
implications based on fuzzy xor. Electronic Notes in Theoretical
Computer Science, 247:5 – 18, 2009. ISSN 1571-0661. Proceedings
of the Third Workshop on Logical and Semantic Frameworks
with Applications (LSFA 2008). (Cited on page 156.)

[52] Richard E. Bellman. Adaptive control processes - A guided tour.
Princeton University Press, Princeton, New Jersey, U.S.A., 1961.
(Cited on page 58.)

bibliography 263

[53] Tom Belwood, Luc Clément, David Ehnebuske, Andrew Hately,
Maryann Hondo, Yin Leng Husband, Karsten Januszewski, Sam
Lee, Barbara McKee, Joel Munter, and Claus von Riegen. UDDI
Version 3.0. http://uddi.org/pubs/uddi_v3.htm, 2000. (Cited
on page 90.)

[54] Jean-Marc Bernard. An introduction to the imprecise dirichlet
model for multinomial data. International Journal of Approximate
Reasoning, 39(2-3):123 – 150, 2005. ISSN 0888-613X. doi: 10.1016/
j.ijar.2004.10.002. (Cited on pages 18 and 164.)

[55] Philippe Besnard and Anthony Hunter. A logic-based theory of
deductive arguments, 2001. (Cited on page 59.)

[56] J.C. Bezdek. The thirsty traveler visits gamont: a rejoinder to
ldquo;comments on fuzzy sets-what are they and why? rdquo;.
Fuzzy Systems, IEEE Transactions on, 2(1):43 –45, Feb 1994. ISSN
1063-6706. doi: 10.1109/91.273125. (Cited on pages 24 and 27.)

[57] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 1 edition, October
2007. ISBN 0387310738. (Cited on pages 16, 17, 42, 44, 47, 49, 50,
62, 66, and 234.)

[58] Jeff Blee, David Billington, and Abdul Sattar. Reasoning with
levels of modalities in bdi logic. pages 410–415, 2009. (Cited on
page 95.)

[59] James L. Blue and Patrick J. Grother. Training feed-forward neu-
ral networks using conjugate gradients. In In SPIE, pages 179–
190, 1992. (Cited on page 41.)

[60] Fernando Bobillo and Umberto Straccia. Fuzzy description log-
ics with general t-norms and datatypes. Fuzzy Sets and Systems,
160(23):3382 – 3402, 2009. ISSN 0165-0114. Theme: Computer
Science. (Cited on page 179.)

[61] G Bortone, S Longhi, L Luccarini, E Porrà, and P Ratini. On-line
Control of a SBR Reactor for the Biological Wastewater Treat-
ment. Time. (Cited on page 205.)

[62] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. Nielsen, S. Thatte, and D. Winer. Simple Object Access Proto-
col (SOAP) 1.1. http://www.w3.org/TR/soap, 2000. (Cited on
pages 90 and 213.)

[63] Leo Breiman and Leo Breiman. Bagging predictors. In Machine
Learning, pages 123–140, 1996. (Cited on page 235.)

[64] Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag
Johansen. Distributed event stream processing with non-
deterministic finite automata. In DEBS ’09: Proceedings of the

264 bibliography

Third ACM International Conference on Distributed Event-Based Sys-
tems, pages 1–12, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-665-6. (Cited on page 92.)

[65] R. Bringhurst. The Elements of Typographic Style. Version 2.5. Hart-
ley & Marks, Publishers, 2002. (Cited on page 287.)

[66] SebastiÃ Puig Broch. Operation and control of SBR pro-
cesses for enhanced biological nutrient removal from wastewa-
ter, February 2008. (Cited on pages 198 and 204.)

[67] Re Bronstein, Joydip Das, Marsha Duro, Rich Friedrich, Gary
Kleyner, Martin Mueller, Sharad Singhal, Ira Cohen, G. Kleyner,
M. Mueller, S. Singhal, and I. Cohen. Self-aware services: Us-
ing bayesian networks for detecting anomalies in internet-based
services. In Northwestern University and Stanford University. Gary
(Igor, pages 623–638. Publishing, 2001. (Cited on page 86.)

[68] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Mar-
tin. Programming expert systems in OPS5: an introduction to rule-
based programming. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1985. ISBN 0-201-10647-7. (Cited on
page 122.)

[69] Bruce G. Buchanan and Edward H. Shortliffe. Rule-based Expert
Systems : the MYCIN experiments of the Stanford Heuristic Program-
ming Project. Addison-Wesley, Reading, Mass. [u.a.], 1984. ISBN
0-201-10172-6. (Cited on pages 104, 109, and 153.)

[70] Bruce G. Buchanan and Edward H. Shortliffe. Rule-based Expert
Systems : the MYCIN experiments of the Stanford Heuristic Program-
ming Project. Addison-Wesley, Reading, MA, 1984. ISBN 0-201-
10172-6. (Cited on page 59.)

[71] Martin Dietrich Buhmann. Radial basis functions. Cambridge Uni-
versity Press, 2003. ISBN 0521633389, 9780521633383. (Cited on
page 43.)

[72] Sergiu Caraman and Marian Barbu. The identification and ro-
bust control of a biological wastewater treatment process. 2008
IEEE International Conference on Automation, Quality and Testing,
Robotics, pages 37–42, May 2008. (Cited on page 84.)

[73] M. Casellas, C. Dagot, and M. Baudu. Set up and assessment
of a control strategy in a sbr in order to enhance nitrogen and
phosphorus removal. Process Biochemistry, 41(9):1994 – 2001, 2006.
ISSN 1359-5113. (Cited on page 204.)

[74] Luigi Ceccaroni. What if a wastewater treatment plant were a
town of agents. Review Literature And Arts Of The Americas. (Cited
on page 96.)

bibliography 265

[75] Luigi Ceccaroni, Supervisors Ulises CortÃ©s, and Miquel
SÃ nchez-marrÃ¨. Ontowedss - an ontology-based environmen-
tal decision support system for the management of wastewater
treatment plants, 2001. (Cited on pages 87 and 222.)

[76] D. Cecil and M. Kozlowska. Software sensors are a real alter-
native to true sensors. Environmental Modelling and Software, 25

(5):622 – 625, 2010. ISSN 1364-8152. Thematic Issue on MOD-
ELLING AND AUTOMATION OF WATER AND WASTEWA-
TER TREATMENT PROCESSES. (Cited on pages 80 and 83.)

[77] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to
know about datalog (and never dared to ask). IEEE Transactions
on Knowledge and Data Engineering, (1(1)):146–66, 1989. (Cited on
page 166.)

[78] C. H. CHANG and O. J. HAO. Sequencing batch reactor system
for nutrient removal : ORP and pH profiles. Journal of chemical
technology and biotechnology, 67(1):27–38, 1996. ISSN 0268-2575.
(Cited on page 201.)

[79] David Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004.
ISBN 0596006756. (Cited on page 213.)

[80] S Charbonnier, C Garciabeltan, C Cadet, and S Gentil. Trends
extraction and analysis for complex system monitoring and de-
cision support. Engineering Applications of Artificial Intelligence, 18

(1):21–36, 2005. ISSN 09521976. doi: 10.1016/j.engappai.2004.08.
023. (Cited on page 213.)

[81] a. Charef, a. Ghauch, and M. Martin-Bouyer. An adaptive
and predictive control strategy for an activated sludge pro-
cess. Bioprocess Engineering, 23(5):529–534, November 2000. ISSN
16157591. doi: 10.1007/s004499900191. (Cited on page 81.)

[82] Rick Chartrand. Numerical differentiation of noisy , nonsmooth
data. Energy, (1):1–9, 2005. (Cited on page 225.)

[83] N. Chomsky. Three models for the description of language. In-
formation Theory, IRE Transactions on, 2(3):113–124, January 2003.
doi: 10.1109/TIT.1956.1056813. (Cited on page 124.)

[84] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001. (Cited on page 90.)

[85] F. Ciappelloni, D. Mazouni, J. Harmand, and L. Lardon. On-line
supervision and control of an aerobic SBR process. Water science
and technology : a journal of the International Association on Water
Pollution Research, 53(1):169–77, 2006. ISSN 0273-1223. (Cited on
page 203.)

266 bibliography

[86] Giulianella Coletti and Romano Scozzafava. Conditional proba-
bility, fuzzy sets, and possibility: a unifying view. Fuzzy Sets and
Systems, 144(1):227–249, 2004. (Cited on pages 26 and 27.)

[87] J. Comas, I. Rodríguez-Roda, K.V. Gernaey, C. Rosen, U. Jepps-
son, and M. Poch. Risk assessment modelling of microbiology-
related solids separation problems in activated sludge systems.
Environmental Modelling & Software, 23(10-11):1250–1261, 2008.
ISSN 13648152. (Cited on page 83.)

[88] Joaquim Comas. Development, implementation and evaluation
of an activated sludge supervisory system for the granollers
wwtp. AI Commun., 14(1):65–66, 2001. ISSN 0921-7126. (Cited
on pages 86 and 87.)

[89] Juan Manuel Corchado and Aitor Mata. Osm: A multi-agent
system for modeling and monitoring the evolution of oil slicks
in open oceans. Expert Systems, pages 91–117, 2009. (Cited on
page 96.)

[90] Gianpaolo Cugola, Alessandro Margara, and Matteo Migli-
avacca. Context-aware publish-subscribe: Model, implementa-
tion, and evaluation. 2009 IEEE Symposium on Computers and
Communications, pages 875–881, July 2009. (Cited on page 219.)

[91] Carlos Viegas Damasio and Luis Moniz Pereira. Hybrid proba-
bilistic logic programs as residuated logic programs, 2001. (Cited
on page 168.)

[92] Carlos Viegas Damásio, Jeff Z. Pan, Giorgos Stoilos, and Um-
berto Straccia. Representing uncertainty in ruleml. Fundam. Inf.,
82(3):265–288, 2008. ISSN 0169-2968. (Cited on pages 109, 117,
123, 129, 134, 137, 144, and 254.)

[93] Q. Dan and J. Dudeck. Some problems related with probabilistic
interpretations for certainty factors. pages 538 –545, jun 1992.
(Cited on pages 104 and 154.)

[94] D Davis. Agent-based decision-support framework for water
supply infrastructure rehabilitation and development. Comput-
ers, Environment and Urban Systems, 24(3):173–190, May 2000.
ISSN 01989715. doi: 10.1016/S0198-9715(99)00056-3. (Cited on
page 96.)

[95] Ramon Lopez de Mantaras and Enric Plaza. Case-based reason-
ing: An overview, 1996. (Cited on page 39.)

[96] Michael Decker and Rebecca Bulander. A Platform for Mobile
Service Provisioning Based on SOA-Integration. pages 72–84,
2008. (Cited on page 90.)

[97] Thierry Denoeux. Modeling vague beliefs using fuzzy-valued
belief structures, 1998. (Cited on page 26.)

bibliography 267

[98] R Denzer. Generic integration of environmental decision support
systems-state-of-the-art. Environmental Modelling & Software, 20

(10):1217–1223, 2005. (Cited on page 87.)

[99] Ralf Der, Gerd Balzuweit, and Michael Herrmann. Building
nonlinear data models with self-organizing maps. (Cited on
page 45.)

[100] B Dieu. Applications of automatic control systems for chlo-
rination and dechlorination processes in wastewater treatment
plants. ISA Transactions, 34(1):21–28, March 1995. ISSN 00190578.
doi: 10.1016/0019-0578(94)00041-J. (Cited on page 82.)

[101] Francisco Javier Diez and F. J. D’iez. Parameter adjustment in
bayes networks. the generalized noisy or-gate. In In Proceedings
of the 9th Conference on Uncertainty in Artificial Intelligence, pages
99–105. Morgan Kaufmann, 1993. (Cited on page 66.)

[102] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal
Semantics and Analysis of BPMN Process Models using Petri
Nets. Language, pages 1–30. (Cited on page 246.)

[103] Liya Ding, Hoon Heng Teh, Peizhuang Wang, and Ho Chung
Lui. A prolog-like inference system based on neural logic—an
attempt towards fuzzy neural logic programming. Fuzzy Sets
Syst., 82(2):235–251, 1996. ISSN 0165-0114. (Cited on page 66.)

[104] Robert B. Doorenbos. Production matching for large learning
systems. Technical Report CS-95-113, Carnegie Mellon Univer-
sity, School of Computer Science. (Cited on pages 37 and 149.)

[105] Marco Dorigo, Mauro Birattari, Thomas StÃ¼tzle, UniversitÃ©
Libre, De Bruxelles, and Av F. D. Roosevelt. Ant colony optimiza-
tion - artificial ants as a computational intelligence technique.
IEEE Comput. Intell. Mag, 1:28–39, 2006. (Cited on page 95.)

[106] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Ap-
plications. Academic Press, 1980. (Cited on page 53.)

[107] D. Dubois, J. Lang, and H. Prade. Automated reasoning using
possibilistic logic: Semantics, belief revision, and variable cer-
tainty weights. IEEE Trans. on Knowl. and Data Eng., 6(1):64–71,
1994. ISSN 1041-4347. (Cited on page 161.)

[108] Didier Dubois and Henri Prade. The three semantics of fuzzy
sets. Fuzzy Sets Syst., 90(2):141–150, 1997. ISSN 0165-0114.
doi: http://dx.doi.org/10.1016/S0165-0114(97)00080-8. (Cited
on page 22.)

[109] Didier Dubois and Henri Prade. Possibility theory and data fu-
sion in poorly informed environments. Control Engineering Prac-
tice, 2(5):811–823, 1994. (Cited on page 206.)

268 bibliography

[110] Didier Dubois and Henri Prade. Fuzzy sets and probability :
Misunderstandings, bridges and gaps. In In Proceedings of the
Second IEEE Conference on Fuzzy Systems, pages 1059–1068. IEEE,
1993. (Cited on pages 24 and 26.)

[111] Didier Dubois and Henri Prade. Possibility theory, probabil-
ity theory and multiple-valued logics: A clarification. Annals of
Mathematics and Artificial Intelligence, 32(1-4):35–66, 2001. ISSN
1012-2443. doi: http://dx.doi.org/10.1023/A:1016740830286.
(Cited on pages 22 and 24.)

[112] Didier Dubois and Henri Prade. Possibilistic logic. . doi: 10.1.1.
54.7792. (Cited on pages 157 and 161.)

[113] Didier Dubois and Henri Prade. Possibilistic logic. . doi: 10.1.1.
54.7792. (Cited on page 172.)

[114] Didier Dubois, Eyke Hullermeier, and Henri Prade. A systematic
approach to the assessment of fuzzy association rules. (Cited on
page 165.)

[115] Didier Dubois, JÃ©rÃ´me Lang, and Henri Prade. Possibilistic
logic, 1992. (Cited on page 66.)

[116] Didier Dubois, Laurent Foulloy, Gilles Mauris, and Henri Prade.
Probability-Possibility transformations, triangular fuzzy sets,
and probabilistic inequalities. Reliable Computing, 10(4):273–297,
2004. doi: 10.1023/B:REOM.0000032115.22510.b5. (Cited on
page 26.)

[117] Didier Dubois, Francesc Esteva, Lluis Godo, and Henri Prade.
Fuzzy-set based logics - an history-oriented presentation of their
main developments. In D. M. Gabbay and J. Woods, editors,
Handbook of the History of Logic, Volume 8: The Many Valued and
Non-monotonic Turn in Logic, pages 325–449. Elsevier, 2007. (Cited
on pages 24, 37, 53, 120, 155, 157, 160, and 178.)

[118] Didier J. Dubois and H. Prade. Fuzzy Sets and Systems : Theory and
Applications (Mathematics in Science and Engineering). Academic
Press, October 1980. ISBN 0122227506. (Cited on page 26.)

[119] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Clas-
sification (2nd Edition). Wiley-Interscience, 2 edition, November
2000. ISBN 0471056693. (Cited on pages 58, 67, and 92.)

[120] John Durkin. Expert systems: A view of the field. IEEE In-
telligent Systems, 11:56–63, 1996. ISSN 0885-9000. doi: http:
//doi.ieeecomputersociety.org/10.1109/64.491282. (Cited on
page 104.)

[121] Richard Dybowski and Stephen J. Roberts. Confidence intervals
and prediction intervals for feed-forward neural networks. In

bibliography 269

Clinical Applications of Artificial Neural Networks, pages 298–326.
University Press, 2001. (Cited on page 47.)

[122] E.Gamma, R.Helm, R.Johnson, and J.Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Massachusetts, 2000. ISBN 0-201-63361-2. (Cited on pages 141,
147, and 148.)

[123] Ralf Eickhoff and Ulrich Rückert. Robustness of radial basis
functions. Neurocomput., 70(16-18):2758–2767, 2007. ISSN 0925-
2312. (Cited on page 234.)

[124] Mats Ekman, Berndt Bjorlenius, and Mikael Andersson. Con-
trol of the aeration volume in an activated sludge process us-
ing supervisory control strategies. Water research, 40(8):1668–76,
2006. ISSN 0043-1354. doi: 10.1016/j.watres.2006.02.019. (Cited
on page 82.)

[125] Thomas Erl. SOA Principles of Service Design (The Prentice Hall
Service-Oriented Computing Series from Thomas Erl). Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2007. ISBN 0132344823.
(Cited on page 88.)

[126] Certainty Factors. Probabilistic Reasoning and Certainty Factors.
186(1975):263–271, 1976. (Cited on page 154.)

[127] Liping Fan and Yang Xu. A pca-combined neural network soft-
ware sensor for sbr processes. In ISNN ’07: Proceedings of the
4th international symposium on Neural Networks, pages 1042–1047,
Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-72392-
9. (Cited on page 203.)

[128] J Ferrer, M Rodrigo, a Seco, and J Penyaroja. Energy saving in
the aeration process by fuzzy logic control, 1998. ISSN 02731223.
(Cited on page 83.)

[129] N Fiocchi, E Ficara, R Canziani, L Luccarini, F Ciappelloni, P Ra-
tini, M Pirani, and S Mariani. SBR on-line monitoring by set-
point titration. Water Science and Technology: A Journal of the In-
ternational Association on Water Pollution Research, 53(4-5):541–549,
2006. ISSN 0273-1223. PMID: 16722107. (Cited on page 203.)

[130] M. Fiter, D. Guell, J. Comas, J. Colprim, M. Poch, and
I. Rodriguez-Roda. Energy Saving in a Wastewater Treatment
Process: an Application of Fuzzy Logic Control. Environmental
Technology, 26(11):1263–1270, 2005. ISSN 0959-3330. (Cited on
page 83.)

[131] Melvin Fitting. Kleene’s three valued logics and their children.
Fundam. Inf., 20(1-3):113–131, 1994. ISSN 0169-2968. (Cited on
page 157.)

270 bibliography

[132] Xavier Flores-Alsina, Ignasi RodrÃguez-Roda, GÃ¼rkan Sin,
and Krist V. Gernaey. Multi-criteria evaluation of wastewa-
ter treatment plant control strategies under uncertainty. Wa-
ter Research, 42(17):4485 – 4497, 2008. ISSN 0043-1354. doi:
10.1016/j.watres.2008.05.029. (Cited on pages 80 and 82.)

[133] Christopher Fogelberg, Vasile Palade, and Phil Assheton. Be-
lief propagation in fuzzy bayesian networks. 2009. (Cited on
page 66.)

[134] Charles Forgy. Rete: A fast algorithm for the many pattern-
s/many objects match problem. Artif. Intell, 19(1):17–37, 1982.
(Cited on pages 37, 65, and 130.)

[135] M Frehner and M Brandli. Virtual database: Spatial analysis in
a Web-based data management system for distributed ecologi-
cal data. Environmental Modelling & Software, 21(11):1544–1554,
2006. ISSN 13648152. doi: 10.1016/j.envsoft.2006.05.012. (Cited
on page 84.)

[136] Nir Friedman, Dan Geiger, Moises Goldszmidt, G. Provan,
P. Langley, and P. Smyth. Bayesian network classifiers. In Ma-
chine Learning, pages 131–163, 1997. (Cited on page 49.)

[137] Norbert Fuhr. Probabilistic datalog - a logic for powerful re-
trieval methods. In Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 1995. (Cited on page 166.)

[138] Lou Goble. The Blackwell Guide to Philosophical Logic. Wiley-
Blackwell, August 2001. ISBN 0631206930. (Cited on page 35.)

[139] Suran Goonatilake and Sukhdev Khebbal, editors. Intelligent Hy-
brid Systems. John Wiley & Sons, Inc., New York, NY, USA, 1994.
ISBN 0471942421. (Cited on pages 63, 174, and 175.)

[140] J. Goppert and W. Rosenstiel. Regularized SOM-training: a solu-
tion to the topology- approximation dilemma? In ICNN 96. The
1996 IEEE International Conference on Neural Networks, volume 1,
pages 38–43. New York, NY, USA, 1996. (Cited on page 45.)

[141] Guido Governatori, Vineet Padmanabhan, and Antonino Rotolo.
A.: Rule-based agents in temporalised defeasible logic. In Ninth
Pacific Rim International Conference on Artificial Intelligence. Num-
ber 4099 in LNAI, pages 31–40. Springer, 2006. (Cited on page 95.)

[142] A. K. GUPTA, S. K. GUPTA, and Rashmi S. PATIL. A comparison
of water quality indices for coastal water. 38(11):2711–2725, 2003.
(Cited on page 75.)

[143] Ian Hacking. Logic of statistical inference. CUP Archive, 1965.
ISBN 0521290597, 9780521290593. (Cited on page 16.)

bibliography 271

[144] Petr Hájek. Metamathematics of Fuzzy Logic (Trends in Logic).
Springer, 1 edition, November 2001. ISBN 1402003706. (Cited
on pages 34, 66, 155, 157, and 178.)

[145] Lawrence Hall. Rule chaining in fuzzy expert systems. (Cited
on page 140.)

[146] Joseph Y. Halpern. An analysis of first-order logics of probability.
Artificial Intelligence, 46:311–350, 1990. (Cited on page 66.)

[147] Joseph Y. Halpern. Reasoning about Uncertainty. The MIT Press,
October 2003. ISBN 0262083205. (Cited on page 12.)

[148] M M Hamed, M G Khalafallah, and E A Hassanien. Prediction
of wastewater treatment plant performance using artificial neu-
ral networks. Environmental Modelling & Software, 19(10):919–928,
2004. (Cited on page 83.)

[149] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmil-
lan, New York, 1994. (Cited on pages 40, 42, 44, and 185.)

[150] David Heckerman. A tutorial on learning with bayesian net-
works. Technical report, Learning in Graphical Models, 1996.
(Cited on page 48.)

[151] David Heckerman, Abe Mamdani, Michael P. Wellman, F. Nadi,
A. Agogino, and D. Hodges Use. Real-world applications of
bayesian networks, 1995. (Cited on page 49.)

[152] D Hegg, T Cohen, Q Song, and N Kasabov. Intelligent Control of
Sequencing Batch Reactors (SBRs) for Biological Nitrogen Re-
moval 1 . Description of the task. pages 1–6. (Cited on page 204.)

[153] M. Henze, P. Harremoes, J. Jansen, and E. Arvin. Wastewater
treatment. Springer, third edition, 2002. (Cited on page 76.)

[154] Mogens Henze, Willi Gujer, and Takashi Mino. Activated Sludge
Models ASM1, ASM2, ASM2D and ASM3. IWA Publishing, 1 edi-
tion, February 2007. ISBN 1900222248. (Cited on page 81.)

[155] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
ISBN 0321200683. (Cited on page 218.)

[156] Eyke HÃ¼llermeier, Didier Dubois, Henri Prade, De Toulouse,
and Universit’e Paul Sabatier. Fuzzy rules in case-based reason-
ing. In in Conf. AFIA99 Raisonnement Ã Partir de Cas, pages 45–54,
1999. (Cited on page 65.)

[157] Sima J. Neural expert systems. Neural Networks, 8:261–271(11),
1995. (Cited on page 104.)

272 bibliography

[158] Peter Jackson. Introduction to Expert Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998. ISBN
0201876868. (Cited on pages 35 and 37.)

[159] A K Jain, M N Murty, and P. J. Flynn. Data clustering: A review,
1999. (Cited on pages 47 and 62.)

[160] I. Jubany, J. a. Baeza, J. Carrera, and J. Lafuente. Model-based
Design of a Control Strategy for Optimal Start-up of a High-
Strength Nitrification System. Environmental Technology, 28(2):
185–194, 2007. ISSN 0959-3330. doi: 10.1080/09593332808618780.
(Cited on page 81.)

[161] Kim K.-S. and Han I. The cluster-indexing method for case-
based reasoning using self-organizing maps and learning vector
quantization for bond rating cases. Expert Systems with Applica-
tions, 21:147–156(10), October 2001. (Cited on page 65.)

[162] S Kaloudis, C Costopoulou, N Lorentzos, a Sideridis, and M Kar-
teris. Design of forest management planning DSS for wildfire
risk reduction. Ecological Informatics, 3, 2008. ISSN 15749541. doi:
10.1016/j.ecoinf.2007.07.008. (Cited on page 86.)

[163] Akimoto Kamiya, Seppo J. Ovaska, Rajkumar Roy, and
Shigenobu Kobayashi. Fusion of soft computing and hard com-
puting for large-scale plants: a general model. Appl. Soft Comput.,
5(3):265–279, 2005. (Cited on page 86.)

[164] M. R. KATEBI, M. A. JOHNSON, J. WILKIE, and G. MC-
CLUSKEY. Control and management of wastewater treatment
plants. IEE conference publication, pages 433–438, 1998. (Cited on
page 82.)

[165] David Keil and Dina Goldin. Indirect interaction in environ-
ments for multi-agent systems. pages 68–87. 2006. (Cited on
page 95.)

[166] Kristian Kersting and Uwe Dick. Balios: the engine for bayesian
logic programs. In PKDD ’04: Proceedings of the 8th European
Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 549–551, New York, NY, USA, 2004. Springer-
Verlag New York, Inc. ISBN 3-540-23108-0. (Cited on page 109.)

[167] Kristian Kersting and Luc De Raedt. Bayesian logic programs.
In Proceedings of the Work-in-Progress Track at the 10th International
Conference on Inductive Logic Programming, pages 138–155, 2000.
(Cited on pages 66, 167, and 181.)

[168] R. Khosla and T.S. Dillon. Welding symbolic ai systems with
neural networks and their applications. In Neural Networks Pro-
ceedings, 1998. IEEE World Congress on Computational Intelligence.
The 1998 IEEE International Joint Conference on, volume 1, pages

bibliography 273

29–34 vol.1, May 1998. doi: 10.1109/IJCNN.1998.682231. (Cited
on page 63.)

[169] Michael Kifer. Rule interchange format: The framework. In RR
’08: Proceedings of the 2nd International Conference on Web Reasoning
and Rule Systems, pages 1–11, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-88736-2. (Cited on pages 107 and 110.)

[170] George J. Klir. Generalized information theory. Fuzzy Sets Syst.,
40(1):127–142, 1991. ISSN 0165-0114. doi: http://dx.doi.org/10.
1016/0165-0114(91)90049-V. (Cited on page 12.)

[171] Kevin Knight. Are many reactive agents better than a few de-
liberative ones? In IJCAI’93: Proceedings of the 13th international
joint conference on Artifical intelligence, pages 432–437, San Fran-
cisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. (Cited
on page 94.)

[172] T. Kohonen. The self-organizing map. 78(9):1464–1480, 1990.
(Cited on pages 45 and 67.)

[173] Efstratios Kontopoulos, Nick Bassiliades, and Grigoris Anto-
niou. Deploying defeasible logic rule bases for the semantic web.
(Cited on page 179.)

[174] M. Korver and P.J.F. Lucas. Converting a rule-based expert sys-
tem into a belief network. Medical Informatics, 18:219–241, 1993.
(Cited on page 181.)

[175] Dinesh Kumar and Babu J. Alappat. NSF-Water quality index:
Does it represent the experts’ opinion? Practice Periodical of Haz-
ardous, Toxic, and Radioactive Waste Management, 13(1):75–79, 2009.
(Cited on page 75.)

[176] Isao Kuwajima, Yusuke Nojima, and Hisao Ishibuchi. Effects
of constructing fuzzy discretization from crisp discretization
for rule-based classifiers. Artificial Life and Robotics, 13(1):294–
297, December 2008. doi: 10.1007/s10015-008-0515-7. (Cited on
page 61.)

[177] Carmen Lacave and Francisco J. Diez. A review of explanation
methods for bayesian networks. Knowledge Engineering Review,
17:2002, 2000. (Cited on page 61.)

[178] Mal Rey Lee. An exception handling of rule-based reasoning
using case-based reasoning. J. Intell. Robotics Syst., 35(3):327–
338, 2002. ISSN 0921-0296. doi: http://dx.doi.org/10.1023/A:
1021161418286. (Cited on page 65.)

[179] Werner Van Leekwijck and Etienne E. Kerre. Defuzzification:
criteria and classification. Fuzzy Sets and Systems, 108(2):159 –
178, 1999. ISSN 0165-0114. (Cited on page 53.)

274 bibliography

[180] Brian Lent, Arun Swami, and Jennifer Widom. Clustering asso-
ciation rules, 1997. (Cited on page 66.)

[181] Baikun Li and Shannon Irvin. The comparison of alkalinity and
orp as indicators for nitrification and denitrification in a sequenc-
ing batch reactor (sbr). Biochemical Engineering Journal, 34(3):248

– 255, 2007. ISSN 1369-703X. (Cited on page 201.)

[182] D. V. Lindley. Scoring rules and the inevitability of probability.
In System design for human interaction, pages 182–208. IEEE Press,
1987. ISBN 0-87942-218-1. (Cited on page 26.)

[183] L. LUCCARINI, E. PORRA, A. SPAGNI, P. RATINI, S. GRILLI,
S. LONGHI, and G. BORTONE. Soft sensors for control of nitro-
gen and phosphorus removal from wastewaters by neural net-
works. Water science and technology, pages 101–107, 2002. ISSN
0273-1223. (Cited on pages 203 and 206.)

[184] David Luckham. Soa, eda, bpm and cep are all complementary
- part i, 2008. URL http://complexevents.com/wp-content/

uploads/2007/07/Soa_EDA_Part1.pdf. (Cited on page 96.)

[185] David Luckham. Soa, eda, bpm and cep are all complementary
- part ii, 2008. URL http://complexevents.com/wp-content/

uploads/2007/07/Soa_EDA_Part2.pdf. (Cited on page 96.)

[186] David C. Luckham. The Power of Events: An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
ISBN 0201727897. (Cited on pages 90, 92, 93, 97, 112, and 219.)

[187] Xudong Luo and Chengqi Zhang. Proof of the correctness of
emycin sequential propagation under conditional independence
assumptions. IEEE Trans. on Knowl. and Data Eng., 11(2):355–359,
1999. ISSN 1041-4347. (Cited on page 154.)

[188] S. Mace and J. Mata-Alvarez. Utilization of SBR technology
for wastewater treatment: An overview. Industrial & Engineer-
ing Chemistry Research, 41(23):5539–5553, November 2002. ISSN
0888-5885. (Cited on page 198.)

[189] David J. C. Mackay. A practical bayesian framework for back-
propagation networks. Neural Comput., 4(3):448–472, May 1992.
ISSN 0899-7667. (Cited on pages 42 and 66.)

[190] J. B. Macqueen. Some methods of classification and analysis
of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, pages 281–
297, 1967. (Cited on page 61.)

[191] P. C. Mahalanobis. On the generalised distance in statistics. In
Proceedings National Institute of Science, India, volume 2, pages 49–
55, April 1936. (Cited on page 45.)

http://complexevents.com/wp-content/uploads/2007/07/Soa_EDA_Part1.pdf
http://complexevents.com/wp-content/uploads/2007/07/Soa_EDA_Part1.pdf
http://complexevents.com/wp-content/uploads/2007/07/Soa_EDA_Part2.pdf
http://complexevents.com/wp-content/uploads/2007/07/Soa_EDA_Part2.pdf

bibliography 275

[192] M.J. Maher. Propositional defeasible logic has linear complex-
ity. In of Logic Programming, pages 691–711, 2001. (Cited on
page 170.)

[193] MarketResearch. Excerpt : Worldwide business rules manage-
ment systems 2009-2013 forecast update and 2008 vendor shares,
2009. (Cited on page 106.)

[194] S Marsili-Libelli. Control of SBR switching by fuzzy pattern
recognition. Water Research, 40(5):1095–1107, March 2006. ISSN
0043-1354. PMID: 16494923. (Cited on pages 203 and 206.)

[195] Thomas Martinetz and Klaus Schulten. A Neural-Gas network
learns topologies. In T. Kohonen, K. Makisara, O. Simula, and
J. Kangas, editors, Proc. International Conference on Artificial Neu-
ral Networks (Espoo, Finland), pages 397–402, Amsterdam Nether-
lands, 1991. North-Holland. (Cited on page 45.)

[196] O. Matan, R. K. Kiang, C. E. Stenard, B. Boser, J. S. Denker,
D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, and Y. Le
Cur. Handwritten character recognition using neural network ar-
chitectures. In In Proceedings of the 4th United States Postal Service
Advanced Technology Conference, 1990. (Cited on page 46.)

[197] M Maurya, R Rengaswamy, and V Venkatasubramanian. Fault
diagnosis using dynamic trend analysis: A review and recent
developments. Engineering Applications of Artificial Intelligence, 20

(2):133–146, 2007. ISSN 09521976. doi: 10.1016/j.engappai.2006.
06.020. (Cited on pages 213 and 227.)

[198] Peter McBrien, Anne Helga Seltveit, and Benkt Wangler. Rule
based specification of information systems. In In Proceedings
of the International Connference on Information Systems and Man-
agement of Data (CISMOD’94, pages 212–228, 1994. (Cited on
page 104.)

[199] Warren S. McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. pages 15–27, 1988. (Cited
on page 39.)

[200] L. Medsker. Design and development of hybrid neural net-
work and expert systems. In Neural Networks, 1994. IEEE World
Congress on Computational Intelligence., 1994 IEEE International
Conference on, volume 3, pages 1470–1474 vol.3, Jun-2 Jul 1994.
(Cited on page 62.)

[201] Jerry M. Mendel. Advances in type-2 fuzzy sets and systems.
Information Sciences, 177(1):84 – 110, 2007. ISSN 0020-0255. doi:
10.1016/j.ins.2006.05.003. (Cited on page 25.)

276 bibliography

[202] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag,
Daniel L. Ong, and Andrey Kolobov. Blog: Probabilistic mod-
els with unknown objects. In In IJCAI, pages 1352–1359, 2005.
(Cited on page 109.)

[203] B Mishra. Distributed digital processing and closed loop com-
puter control of wastewater treatment. Automatica, 16(1):73–82,
January 1980. ISSN 00051098. doi: 10.1016/0005-1098(80)90088-6.
(Cited on page 78.)

[204] Adam Mollenkopf and Edson Tirelli. Applying drools fu-
sion complex event processing (cep) for real-time intelligence,
September 2009. (Cited on page 93.)

[205] Marco Montali. Specification and verification of declarative open
in- teraction models: a logic-based framework, 2009. (Cited on
pages 96 and 112.)

[206] John E. Moody, S. J. Hanson, and John E. Moody. Number of
parameters: An analysis of generalization and regularization in
nonlinear learning systems. (Cited on page 60.)

[207] Hakan Moral, Aysegul Aksoy, and Celal F. Gokcay. Modeling of
the activated sludge process by using artificial neural networks
with automated architecture screening. Computers & Chemical
Engineering, 32(10):2471–2478, 2008. ISSN 00981354. doi: 10.1016/
j.compchemeng.2008.01.008. (Cited on page 83.)

[208] B. Moulin, H. Irandoust, M. Belanger, and G. Desbordes. Expla-
nation and argumentation capabilities: Towards the creation of
more persuasive agents. Artificial Intelligence Review, pages 169–
222, May 2002. ISSN 0269-2821. (Cited on page 59.)

[209] Ioan Nascu, Grigore Vlad, Silviu Folea, and Tudor Buzdugan.
Development and application of a PID auto-tuning method to a
wastewater treatment process. 2008 IEEE International Conference
on Automation, Quality and Testing, Robotics, pages 229–234, May
2008. doi: 10.1109/AQTR.2008.4588827. (Cited on page 82.)

[210] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall,
April 2003. ISBN 0130125342. (Cited on page 61.)

[211] Mircea Negoita, Daniel Neagu, and Vasile Palade. Computational
Intelligence: Engineering of Hybrid Systems. Springer, 1 edition,
April 2005. ISBN 3540232192. (Cited on pages 57, 58, and 62.)

[212] Arnold Neumaier. Clouds, fuzzy sets and probability intervals.
Reliable Computing, Kluwer Academic Publishers, 10:249–272, 2004.
(Cited on page 26.)

[213] Raymond Ng and V.S. Subrahmanian. Probabilistic logic pro-
gramming, 1992. (Cited on page 168.)

bibliography 277

[214] Flemming Nielson, Hanne Riis Nielson, and Mooly Sagiv.
Kleene’s logic with equality. Information Processing Letters, 80(3):
131 – 137, 2001. ISSN 0020-0190. (Cited on page 157.)

[215] Daniel Nikovski. Constructing bayesian networks for medical
diagnosis from incomplete and partially correct statistics. IEEE
Transactions on Knowledge and Data Engineering, 12(4):509–516,
2000. ISSN 1041-4347. doi: http://doi.ieeecomputersociety.org/
10.1109/69.868904. (Cited on page 50.)

[216] VilÃ©m NovÃ¡k. Abstract: Mathematical fuzzy logic in narrow
and broader sense - a unified concept. (Cited on page 52.)

[217] Donald Nute. Defeasible logic. In INAP, pages 87–114, 2001.
(Cited on pages 169 and 170.)

[218] Hyacinth S. Nwana and Martlesham Heath. Software agents: An
overview, 1996. (Cited on page 94.)

[219] R Olejnik, T Fortis, and B Toursel. Webservices oriented data
mining in knowledge architecture. Future Generation Computer
Systems, 25(4):436–443, 2009. ISSN 0167739X. doi: 10.1016/j.
future.2008.09.011. (Cited on page 90.)

[220] Gustaf Olsson and Bob Newell. Wastewater treatment systems.
IWA Publishing, 1999. ISBN 1900222159, 9781900222150. (Cited
on pages 73, 79, and 81.)

[221] Gustaf Olsson, Marinus K. Nielsen, and Zhiguo Yuan. Instrumen-
tation, control and automation in wastewater systems. IWA Publish-
ing, 2005. ISBN 1900222833, 9781900222839. (Cited on pages 77

and 78.)

[222] T J Owens. Survey of event processing, 2007. (Cited on page 93.)

[223] Clark B. Pace and Randy Harlow. Sbr vs. continuous flow: A
cost comparison of waste treatment technologies. volume 278,
pages 99–99. ASCE, 2000. (Cited on page 201.)

[224] T.Y. Pai, T.J. Wan, S.T. Hsu, T.C. Chang, Y.P. Tsai, C.Y. Lin, H.C.
Su, and L.F. Yu. Using fuzzy inference system to improve neural
network for predicting hospital wastewater treatment plant ef-
fluent. Computers & Chemical Engineering, 33(7):1272–1278, 2009.
ISSN 00981354. doi: 10.1016/j.compchemeng.2009.02.004. (Cited
on page 84.)

[225] Heping Pan. Fuzzy bayesian networks - a general formalism
for representation, inference and learning with hybrid bayesian
networks. (Cited on page 66.)

[226] J Z Pan, G. Stoilos, G. Stamou, V. Tzouvaras, and I. Horrocks.
f-SWRL: a fuzzy extension of SWRL, 2006. (Cited on page 110.)

278 bibliography

[227] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-oriented computing: a research
roadmap. Int. J. Cooperative Inf. Syst., 17(2):223–255, 2008. (Cited
on page 87.)

[228] Adrian Paschke. A homogenous reaction rule language for com-
plex event processing. In In Proc. 2nd International Workshop on
Event Drive Architecture and Event Processing Systems (EDA-PS,
2007. (Cited on page 119.)

[229] Adrian Paschke and Alexander Kozlenkov. A rule-based middle-
ware for business process execution. In Martin Bichler, Thomas
Hess, Helmut Krcmar, Ulrike Lechner, Florian Matthes, Arnold
Picot, Benjamin Speitkamp, and Petra Wolf, editors, Multikon-
ferenz Wirtschaftsinformatik. GITO-Verlag, Berlin, 2008. ISBN 978-
3-940019-34-9. (Cited on page 105.)

[230] Adrian Paschke and Alexander Kozlenkov. Rule-based event
processing and reaction rules. In RuleML ’09: Proceedings of the
2009 International Symposium on Rule Interchange and Applications,
pages 53–66, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-
3-642-04984-2. (Cited on page 92.)

[231] Adrian Paschke, Harold Boley, Alexander Kozlenkov, and Ben-
jamin Craig. Rule responder: Ruleml-based agents for dis-
tributed collaboration on the pragmatic web. In ICPW ’07: Pro-
ceedings of the 2nd international conference on Pragmatic web, pages
17–28, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-859-6.
(Cited on page 212.)

[232] Norman W Paton. Supporting production rules using eca rules
in an object-oriented context. Information and Software Technology,
37(12):691 – 699, 1995. ISSN 0950-5849. (Cited on page 119.)

[233] HervÃ© Paulino. An overview of mobile agent systems, 2002.
(Cited on page 94.)

[234] J. Pavelka. On fuzzy logic I: Many-valued rules of inference.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik,
25:45–72, 1979. (Cited on page 157.)

[235] J. Pavelka. On fuzzy logic II: Enriched residuated lattices and
semantics of propositional calculi. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, 25:119–134, 1979. (Cited on
page 157.)

[236] J. Pavelka. On fuzzy logic III: Semantical completeness of some
many-valued propositional calculi. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, 25:447–464, 1979. (Cited on
page 157.)

bibliography 279

[237] Judea Pearl. Probabilistic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1988. ISBN 0-934613-73-7. (Cited on pages 48,
49, 50, and 181.)

[238] Chris Peltz. Web services orchestration and choreography. Com-
puter, 36(10):46–52, 2003. ISSN 0018-9162. (Cited on page 89.)

[239] Britta Petersen, Krist Gernaey, Mogens Henze, and Peter A. Van-
rolleghem. A comprehensive model calibration procedure for
asm1. (Cited on page 81.)

[240] Emil Petre and Cosmin Ionete. Nonlinear and Neural Networks
Based Adaptive Control for a Wastewater Treatment Bioprocess.
Simulation, pages 273–280, 2008. (Cited on page 83.)

[241] M Poch, J Comas, I Rodriguezroda, M Sanchezmarre, and
U Cortes. Designing and building real environmental decision
support systems. Environmental Modelling & Software, 19(9):857–
873, 2004. ISSN 13648152. doi: 10.1016/j.envsoft.2003.03.007.
(Cited on page 86.)

[242] John L. Pollock. Defeasible reasoning with variable degrees of
justification. Artificial Intelligence, 133:233–282, 2001. (Cited on
page 21.)

[243] John L. Pollock. Defeasible reasoning with variable degrees of
justification. Artificial Intelligence, 133(1–2):233–282, 2001. (Cited
on page 171.)

[244] B. T. Polyak and S. A. Nazin. Interval solutions for interval al-
gebraic equations. Math. Comput. Simul., 66(2-3):207–217, 2004.
ISSN 0378-4754. (Cited on page 234.)

[245] Udo W. Pooch. Translation of decision tables. ACM Comput.
Surv., 6(2):125–151, 1974. ISSN 0360-0300. (Cited on page 111.)

[246] D J Power. A brief history of decision support systems. (Cited
on page 85.)

[247] Jim Prentzas and Ioannis Hatzilygeroudis. Categorizing ap-
proaches combining rule-based and case-based reasoning. Expert
Systems, 24(2):97–122, 2007. (Cited on page 65.)

[248] Cecilia M. Procopiuc. Applications of clustering problems, 1997.
(Cited on page 47.)

[249] J. Ross Quinlan. C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993. ISBN
1-55860-238-0. (Cited on page 67.)

280 bibliography

[250] N Quinn. Environmental decision support system development
for seasonal wetland salt management in a river basin subjected
to water quality regulation. Agricultural Water Management, 96(2):
247–254, 2009. ISSN 03783774. doi: 10.1016/j.agwat.2008.08.003.
(Cited on page 84.)

[251] Anand S. Rao and Michael P. Georgeff. Bdi agents: from theory
to practice, 1995. (Cited on page 94.)

[252] ANAND S. RAO and MICHAEL P. GEORGEFF. Decision proce-
dures for BDI logics. J Logic Computation, 8(3):293–343, June 1998.
(Cited on page 95.)

[253] R. Reiter. A logic for default reasoning. AI, 13, April 1980. (Cited
on page 169.)

[254] a Rivas, I Irizar, and E Ayesa. Model-based optimisation of
Wastewater Treatment Plants design. Environmental Modelling
& Software, 23(4):435–450, 2008. ISSN 13648152. doi: 10.1016/j.
envsoft.2007.06.009. (Cited on page 81.)

[255] M a Rodrigo, a Seco, J Ferrer, J M Penya-roja, and J L Valverde.
Nonlinear control of an activated sludge aeration process: use of
fuzzy techniques for tuning PID controllers. ISA transactions, 38

(3):231–41, January 1999. ISSN 0019-0578. (Cited on page 84.)

[256] J.F. Roesler and R.H. Wise. Variables to be measured in wastew-
ater treatment plant monitoring and control. Journal of the Water
Pollution Control Federation, 46(7):1769–1775, 1974. cited By (since
1996) 0. (Cited on page 79.)

[257] Ronald G. Ross. The brs rule classification scheme. (Cited on
page 104.)

[258] S. J. Russell and Norvig. Artificial Intelligence: A Modern Approach
(Second Edition). Prentice Hall, 2003. (Cited on pages 34 and 96.)

[259] Galina Rybina and Victor Rybin. Static and dynamic integrated
expert systems: State of the art, problems and trends. (Cited on
page 104.)

[260] M. Krishnaveni S. Santhosh Baboo, P. Subashini. Combining self-
organizing maps and radial basis function networks for tamil
handwritten character recognition. ICGST International Journal on
Graphics, Vision and Image Processing, GVIP, 09:1–7, 2009. (Cited
on page 44.)

[S.[1] nd C.(1998)]kundu1998 Kundu S.[1] and Jianhua C. Fuzzy logic
or lukasiewicz logic: A clarification. Fuzzy Sets and Systems, 95:
369–379, May 1998.

bibliography 281

[261] J.J. Saade. A unifying approach to defuzzification and compar-
ison of the outputs of fuzzy controllers. Fuzzy Systems, IEEE
Transactions on, 4(3):227–237, Aug 1996. ISSN 1063-6706. doi:
10.1109/91.531767. (Cited on page 53.)

[262] Kai Sachs, Samuel Kounev, Stefan Appel, and Alejandro Buch-
mann. Benchmarking of message-oriented middleware. In DEBS
’09: Proceedings of the Third ACM International Conference on Dis-
tributed Event-Based Systems, pages 1–2, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-665-6. (Cited on page 90.)

[263] Regivan Hugo N Santiago and Christian Maeder. Linguistic Vari-
ables of Type-N. A Mathematical Model. (x), 2009. (Cited on
page 26.)

[264] R Sarrate, J Aguilar, and F Nejjari. Event-based process monitor-
ing. Engineering Applications of Artificial Intelligence, 20(8):1152–
1162, 2007. ISSN 09521976. doi: 10.1016/j.engappai.2007.02.008.
(Cited on page 93.)

[265] R. Sarrate, J. Aguilar, and F. Nejjari. Event-based process moni-
toring. Engineering Applications of Artificial Intelligence, 20(8):1152

– 1162, 2007. ISSN 0952-1976. (Cited on pages 203 and 206.)

[266] M Schutze, a Campisano, H Colas, W Schilling, and P Vanrol-
leghem. Real time control of urban wastewater systems?where
do we stand today? Journal of Hydrology, 299(3-4):335–348, 2004.
ISSN 00221694. doi: 10.1016/j.jhydrol.2004.08.010. (Cited on
page 81.)

[267] Kari Sentz and Scott Ferson. Combination of evidence in
dempster-shafer theory. Technical report, 2002. (Cited on
page 19.)

[268] G. Shafer. A mathematical theory of evidence. Princeton university
press, 1976. (Cited on page 19.)

[269] Glenn Shafer. 1 introduction what is probability? 1. (Cited on
page 16.)

[270] R. Shao, E.B. Martin, J. Zhang, and A.J. Morris. Confidence
bounds for neural network representations. Computers and Chemi-
cal Engineering, 21(Supplement 1):S1173 – S1178, 1997. ISSN 0098-
1354. (Cited on page 47.)

[271] Stuart C. Shapiro. Belief revision and truth maintenance systems:
an overview and a proposal. Technical report, 1998. (Cited on
page 139.)

[272] B. Sick. Fusion of soft and hard computing techniques in indirect,
online tool wear monitoring. IEEE Transactions on Systems, Man,
and Cybernetics - C, 32(2), 2002. (Cited on page 57.)

282 bibliography

[273] B. Sick and S.J. Ovaska. Fusion of soft and hard computing
techniques: a multi-dimensional categorization scheme. In Soft
Computing in Industrial Applications, 2005. SMCia/05. Proceedings
of the 2005 IEEE Mid-Summer Workshop on, pages 57–62, June 2005.
(Cited on page 63.)

[274] Ilse Y. Smets, Jeroen V. Haegebaert, Ronald Carrette, and Jan
F. Van Impe. Linearization of the activated sludge model asm1

for fast and reliable predictions. Water Research, 37(8):1831 –
1851, 2003. ISSN 0043-1354. doi: 10.1016/S0043-1354(02)00580-8.
(Cited on page 81.)

[275] Ph Smets, Y. Hsia, A. Saffiotti, R. Kennes, H. Xu, and
E. Umkehren. The transferable belief model. pages 91–96. 1991.
doi: 10.1007/3-540-54659-6_72. (Cited on page 19.)

[276] Philippe Smets. Analyzing the combination of conflicting belief
functions. Information Fusion, 8(4):387 – 412, 2007. ISSN 1566-
2535. doi: 10.1016/j.inffus.2006.04.003. (Cited on page 19.)

[277] Philippe Smets. Imperfect Information: Imprecision and Uncertainty,
pages 254, 225. 1996. (Cited on pages 11 and 12.)

[278] Barry Smyth and Mark T. Keane. Remembering to forget: A
competence-preserving case deletion policy for case-based rea-
soning systems. pages 377–382. Morgan Kaufmann, 1995. (Cited
on page 60.)

[279] a Stare, D Vrecko, N Hvala, and S Strmcnik. Comparison of
control strategies for nitrogen removal in an activated sludge
process in terms of operating costs: a simulation study. Water re-
search, 41(9):2004–14, 2007. ISSN 0043-1354. doi: 10.1016/j.watres.
2007.01.029. (Cited on page 80.)

[280] Claudia Steghuis. Service granularity in soa-projects : a trade-off
analysis, June 2006. (Cited on page 88.)

[281] Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. fuzzyDL:
An expressive fuzzy description logic reasoner. 2008 IEEE In-
ternational Conference on Fuzzy Systems IEEE World Congress on
Computational Intelligence, (1):923–930, 2008. (Cited on page 179.)

[282] LluÃs Corominas Tabares. Control and optimization of an SBR
for nitrogen removal: from model calibration to plant operation.
(Cited on page 198.)

[283] Ismail A. Taha and Joydeep Ghosh. Symbolic interpretation of
artificial neural networks. IEEE Trans. on Knowl. and Data Eng.,
11(3):448–463, 1999. ISSN 1041-4347. (Cited on page 173.)

[284] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich. The
truth will come to light: directions and challenges in extract-
ing the knowledge embedded within trained artificial neural

bibliography 283

networks. Neural Networks, IEEE Transactions on, 9(6):1057–1068,
1998. (Cited on page 173.)

[285] a Traore, S Grieu, S Puig, L Corominas, F Thiery, M Polit, and
J Colprim. Fuzzy control of dissolved oxygen in a sequencing
batch reactor pilot plant. Chemical Engineering Journal, 111(1):13–
19, 2005. ISSN 13858947. doi: 10.1016/j.cej.2005.05.004. (Cited
on page 83.)

[286] a Traore, S Grieu, F Thiery, M Polit, and J Colprim. Control
of sludge height in a secondary settler using fuzzy algorithms.
Computers & Chemical Engineering, 30(8):1235–1242, 2006. ISSN
00981354. doi: 10.1016/j.compchemeng.2006.02.020. (Cited on
page 83.)

[287] Raynitchka Tzoneva. Method for Real-Time Optimal Control of
the Activated Sludge Process. (Cited on page 81.)

[288] Raman Bai. V, Reinier Bouwmeester, and Mohan. S. Fuzzy logic
water quality index and importance of water quality parameters,
2009. (Cited on page 76.)

[289] Jordi Vallverdu. The false dilemma: Bayesian vs. frequentist,
2008. (Cited on page 16.)

[290] a. Venu Vinod, K. Arun Kumar, and G. Venkat Reddy. Simula-
tion of biodegradation process in a fluidized bed bioreactor us-
ing genetic algorithm trained feedforward neural network. Bio-
chemical Engineering Journal, 46(1):12–20, 2009. ISSN 1369703X.
doi: 10.1016/j.bej.2009.04.006. (Cited on page 83.)

[291] Norhaliza a. Wahab, Reza Katebi, and Jonas Balderud. Multi-
variable PID control design for activated sludge process with ni-
trification and denitrification. Biochemical Engineering Journal, 45

(3):239–248, 2009. ISSN 1369703X. doi: 10.1016/j.bej.2009.04.016.
(Cited on page 82.)

[292] P. Walley. Inferences from multinomial data: learning about a
bag of marbles. Journal of the Royal Statistical Society, Series B, 58:
3–57, 1996. (Cited on page 18.)

[293] Peter Walley. Coherent upper and lower previsions, 1998. (Cited
on page 17.)

[294] Peter Walley. Statistical Reasoning with Imprecise Probabilities.
Chapman & Hall/CRC, 1st edition, December 1990. ISBN
0412286602. (Cited on page 17.)

[295] Aijie Wang, Chunshuang Liu, Hongjun Han, Nanqi Ren, and
Duu-Jong Lee. Modeling denitrifying sulfide removal process
using artificial neural networks. Journal of hazardous materials,
168(2-3):1274–9, 2009. ISSN 1873-3336. doi: 10.1016/j.jhazmat.
2009.03.006. (Cited on page 83.)

284 bibliography

[296] Pei Wang. Confidence as higher-order uncertainty, 2001. (Cited
on pages 21 and 109.)

[297] Yayi Wang, Yongzhen Peng, and Tom Stephenson. Effect of in-
fluent nutrient ratios and hydraulic retention time (hrt) on si-
multaneous phosphorus and nitrogen removal in a two-sludge
sequencing batch reactor process. Bioresource Technology, 100(14):
3506 – 3512, 2009. ISSN 0960-8524. (Cited on page 198.)

[298] I Wong, R Bloom, D Mcnicol, P Fong, R Russell, and X Chen.
Species at risk: Data and knowledge management within the
WILDSPACE Decision Support System. Environmental Mod-
elling & Software, 22(4):423–430, 2007. ISSN 13648152. doi:
10.1016/j.envsoft.2005.12.012. (Cited on page 84.)

[299] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review, 10:115–152,
1995. (Cited on page 94.)

[300] Michael Woolridge and Michael J. Wooldridge. Introduction to
Multiagent Systems. John Wiley & Sons, Inc., New York, NY, USA,
2001. ISBN 047149691X. (Cited on page 94.)

[301] L. Yang and J.E. Alleman. Investigation of batchwise nitrite
build-up by an enriched nitrification culture. Water Science
and Technology, 26(5-6):997–1005, 1992. cited By (since 1996) 59.
(Cited on page 76.)

[302] H. J. Yin. ViSOM - A novel method for multivariate data pro-
jection and structure visualization. IEEE Transactions on Neural
Networks, 13(1):237–243, January 2002. (Cited on page 45.)

[303] Chang Kyoo Yoo, Dae Sung Lee, and Peter a Vanrolleghem. Ap-
plication of multiway ICA for on-line process monitoring of a se-
quencing batch reactor. Water research, 38(7):1715–32, 2004. ISSN
0043-1354. doi: 10.1016/j.watres.2004.01.006. (Cited on pages 203

and 206.)

[304] Changkyoo Yoo and Min Han Kim. Industrial experience of
process identification and set-point decision algorithm in a full-
scale treatment plant. Journal of environmental management, 90(8):
2823–30, 2009. ISSN 1095-8630. doi: 10.1016/j.jenvman.2009.04.
004. (Cited on page 82.)

[305] R Yu, S Liaw, C Chang, H Lu, and W Cheng. Monitoring and con-
trol using on-line orp on the continuous-flow activated sludge
batch reactor system, 1997. ISSN 02731223. (Cited on page 204.)

[306] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibil-
ity. Fuzzy Sets and Systems, 100(Supplement 1):9 – 34, 1999.
ISSN 0165-0114. doi: 10.1016/S0165-0114(99)80004-9. (Cited on
pages 24 and 25.)

bibliography 285

[307] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibil-
ity. Fuzzy Sets and Systems, 100(Supplement 1):9 – 34, 1999.
ISSN 0165-0114. doi: 10.1016/S0165-0114(99)80004-9. (Cited on
page 53.)

[308] Lotfi Zadeh. Generalized Theory of Uncertainty (GTU) - Principal
Concepts and Ideas, pages 3–4. 2006. (Cited on pages 119, 123, 128,
135, and 162.)

[309] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,
1965. (Cited on page 21.)

[310] Lotfi A. Zadeh. The concept of a linguistic variable and its appli-
cation to approximate reasoning - i. Inf. Sci., 8(3):199–249, 1975.
(Cited on pages 25, 52, and 54.)

[311] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft comput-
ing. Commun. ACM, 37(3):77–84, 1994. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/175247.175255. (Cited on page 39.)

[312] Guoqiang P. Zhang. Neural networks for classification: a sur-
vey. Systems, Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on, 30(4):451–462, 2000. doi: 10.1109/
5326.897072. (Cited on page 46.)

[313] Jidi Zhao, Harold Boley, and Weichang Du. Knowledge rep-
resentation and consistency checking in a norm-parameterized
fuzzy description logic. In De-Shuang Huang, Kang-Hyun Jo,
Hong-Hee Lee, Hee-Jun Kang, and Vitoantonio Bevilacqua, ed-
itors, ICIC (2), volume 5755 of Lecture Notes in Computer Science,
pages 111–123. Springer, 2009. ISBN 978-3-642-04019-1. (Cited
on page 179.)

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s genius as pre-
sented in The Elements of Typographic Style [65]. It is available for LATEX
via CTAN as “classicthesis”.

Final Version as of March 15, 2010 at 3:48.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

	Dedication
	Abstract
	Sommario
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Background
	1.2 Contributions of the Dissertation
	1.2.1 Creating an (imperfect) bridge between symbolic and sub-symbolic systems
	1.2.2 Enhancing the RETE algorithm with imperfection
	1.2.3 Developing a complex, strongly hybrid management system

	1.3 Organization of the Dissertation
	1.3.1 Artificial Intelligence Techniques
	1.3.2 Monitoring and Control from an AI perspective
	1.3.3 A Hybrid Rule Engine
	1.3.4 Case Study: a Hybrid EDSS

	Artificial Intelligence Techniques
	2 Dealing with Imperfect Information
	2.1 Properties of Imperfect Information
	2.1.1 Sources of Imperfection
	2.1.2 Types and Causes of Imperfection
	2.1.3 Models of Imperfection

	2.2 Relations between different types of Imperfection
	2.2.1 A Comparison of Imperfection Types
	2.2.2 Reconciling the differences

	2.3 Conclusions

	3 AI Techniques
	3.1 Hard Computing
	3.1.1 Premise - Formal Logic
	3.1.2 Rule-Based Systems
	3.1.3 Case-Based Reasoning

	3.2 Soft Computing
	3.2.1 Neural Networks
	3.2.2 Clustering Algorithms
	3.2.3 Bayesian Networks
	3.2.4 Fuzzy (Logic) Systems

	3.3 Conclusions

	4 Hybrid Techniques
	4.1 Features of pure AI tools
	4.1.1 Relevant Properties
	4.1.2 A Comparison of some Algorithms

	4.2 Hybrid Systems
	4.2.1 Properties of Hybrid Systems
	4.2.2 Common Hybrid Architectures

	4.3 Conclusions

	Monitoring and Control from an AI perspective
	5 Automated Management of Complex Systems : State of the Art
	5.1 Automatic Management
	5.2 Automatic Management of WWTP: Motivations
	5.2.1 Waste-Water Treatment Plants
	5.2.2 Plant automation

	5.3 Basic Control technologies
	5.3.1 Model-Based Controllers
	5.3.2 Artificial Intelligence-based Controllers

	5.4 Advanced Management Architectures
	5.4.1 Remote Management Infrastructures
	5.4.2 Decision Support Systems
	5.4.3 Complex Architectures: Services, Events, Agents
	5.4.4 Combining Events, Services and Agents with Imperfection

	5.5 Conclusions

	A Hybrid Rule Engine
	6 Business Rules Management Systems
	6.1 State of the Art
	6.2 A Comparison of Mainstream BRMS
	6.2.1 BRMS Features
	6.2.2 Results and Considerations

	6.3 Drools
	6.3.1 Drools Expert
	6.3.2 Drools Fusion
	6.3.3 Drools Flow
	6.3.4 Drools Guvnor

	6.4 Conclusions

	7 Enhancing a Rule-Based System with Imperfection
	7.1 Reaction Rules
	7.2 Generalizing the Inference Process
	7.3 Language Extensions
	7.3.1 Drools DRL
	7.3.2 Drools Syntax Extension
	7.3.3 Imperfect Rule Structure

	7.4 RETE Enhancements
	7.4.1 Network Construction
	7.4.2 Run-time Evaluation
	7.4.3 Summary

	7.5 Implementation Notes
	7.5.1 Eval Trees
	7.5.2 Degree Factory
	7.5.3 Complexity Analysis

	7.6 Conclusions

	8 Applications of Imperfect Logic
	8.1 Imperfect Logic Applications
	8.1.1 Boolean Logic
	8.1.2 MYCIN Certainty Factors
	8.1.3 Many-valued logics
	8.1.4 Possibilistic Logic
	8.1.5 Learning by Induction
	8.1.6 Probabilistic logics
	8.1.7 Dealing with Exceptions

	8.2 Hybrid Applications
	8.2.1 Embedding a fuzzy ontological reasoner
	8.2.2 A simple Bayesian network
	8.2.3 The SOM training algorithm

	8.3 Conclusions

	Case Study: a Hybrid Environmental Decision Support System
	9 Sequencing Batch Reactors - Optimization
	9.1 Background : Sequencing Batch Reactors
	9.2 Process Observation
	9.3 SBR Management: State of the art
	9.4 Offline Management
	9.5 Conclusions

	10 Designing a complex EDSS
	10.1 Related Works : Complex Managed Domains
	10.2 Architecture
	10.2.1 Enterprise Service Bus
	10.2.2 Rule-Based agents
	10.2.3 (Dynamic) Content-Based Routing

	10.3 Case Study
	10.3.1 Event Model
	10.3.2 General Purpose Services
	10.3.3 Data/Event Processing Agents

	10.4 Conclusions
	10.4.1 Summary : Default Event Flow
	10.4.2 Considerations

	Conclusions and Future Works
	11 Conclusions and Future Works
	11.1 Conclusions
	11.1.1 Results in the Development of (Production) Rule-Based Systems
	11.1.2 Results in the Development of (Environmental) Decision Support Systems

	11.2 Future Works

	Bibliography
	Colophon

