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ABSTRACT 
 

 

 

An integrated array of analytical methods -including clay mineralogy, vitrinite 

reflectance, Raman spectroscopy on carbonaceous material, and apatite fission-track 

analysis- was employed to constrain the thermal and thermochronological evolution of 

selected portions of the Pontides of northern Turkey. 

(1) A multimethod investigation was applied for the first time to characterise the 

thermal history of the Karakaya Complex, a Permo-Triassic subduction-accretion 

complex cropping out throughout the Sakarya Zone. The results indicate two different 

thermal regimes: the Lower Karakaya Complex (Nilüfer Unit) -mostly made of 

metabasite and marble- suffered peak temperatures of 300-500°C (greenschist facies); 

the Upper Karakaya Complex (Hodul and the Orhanlar Units) –mostly made of 

greywacke and arkose- yielded heterogeneous peak temperatures (125-376°C), possibly 

the result of different degree of involvement of the units in the complex dynamic 

processes of the accretionary wedge. Contrary to common belief, the results of this 

study indicate that the entire Karakaya Complex suffered metamorphic conditions. 

Moreover, a good degree of correlation among the results of these methods demonstrate 

that Raman spectroscopy on carbonaceous material can be applied successfully to 

temperature ranges of 200-330°C, thus extending the application of this method from 

higher grade metamorphic contexts to lower grade metamorphic conditions. 

(2) Apatite fission-track analysis was applied to the Sakarya and the İstanbul Zones 

in order to constrain the exhumation history and timing of amalgamation of these two 

exotic terranes. AFT ages from the İstanbul and Sakarya terranes recorded three distinct 

episodes of exhumation related to the complex tectonic evolution of the Pontides. (i) 

Paleocene - early Eocene ages (62.3-50.3 Ma) reflect the closure of the İzmir-Ankara 

ocean and the ensuing collision between the Sakarya terrane and the Anatolide-Tauride 

Block. (ii) Late Eocene - earliest Oligocene (43.5-32.3 Ma) ages reflect renewed 

tectonic activity along the İzmir-Ankara. (iii) Late Oligocene- Early Miocene ages 

reflect the onset and development of the northern Aegean extension. The consistency of 



AFT ages, both north and south of the tectonic contact between the İstanbul and 

Sakarya terranes, suggest that such terranes were amalgamated in pre-Cenozoic times. 

(3) Fission-track analysis was also applied to rock samples from the Marmara 

region, in an attempt to constrain the inception and development of the North Anatolian 

Fault system in the region. The results agree with those from the central Pontides. The 

youngest AFT ages (Late Oligocene - early Miocene) were recorded in the western 

portion of the Marmara Sea region and reflect the onset and development of northern 

Aegean extension. Fission-track data from the eastern Marmara Sea region indicate 

rapid Early Eocene exhumation induced by the development of the İzmir-Ankara 

orogenic wedge. Thermochronological data along the trace of the Ganos Fault –a 

segment of the North Anatolian Fault system- indicate the presence of a tectonic 

discontinuity active by Late Oligocene time, i.e. well before the arrival of the North 

Anatolian Fault system in the area. The integration of thermochronologic data with 

preexisting structural data point to the existence of a system of major E-W-trending 

structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, 

inception of the present-day North Anatolian Fault system in the Marmara region 

occurred by reactivation of these older tectonic structures. 

 



 

 

RIASSUNTO 
 

 

 

Una serie di metodologie analitiche (mineralogia delle argille, riflettenza della 

vitrinite, spettroscopia Raman sulla materia organica, analisi delle tracce di fissione in 

apatite) è stata applicata per determinare l’evoluzione termica e termocronologica di 

alcuni vasti settori delle Pontidi (Turchia settentrionale). 

(1) Per la prima volta è stato utilizzato un metodo integrato dei parametri 

temperatura- dipendenti per la caratterizzazione termica del Complesso di Karakaya, un 

complesso di subduzione-accrezione permo-triassico, che affiora estesamente in tutta la 

Zona di Sakarya. I risultati ottenuti hanno messo in evidenza due diverse storie termiche 

per tale complesso. La porzione inferiore del Complesso (Unità di Nilüfer) – costituita 

prevalentemente da metabasiti e marmi- è caratterizzata da un intervallo di temperature 

massime compreso tra 300-500°C, indicando condizioni metamorfiche nel campo degli 

scisti verdi. La porzione superiore del Complesso (Unità di Hodul e Orhanlar) – 

costituita prevalentemente da grovacche e arcose- ha registrato un intervallo di 

temperature massime molto ampio (120-376°C) dovuto al diverso grado di 

coinvolgimento delle unità nei complessi processi dinamici del prisma di accrezione. I 

risultati di questo studio indicano che anche tutta la porzione superiore del Complesso 

di Karakaya ha subito condizioni metamorfiche, contrariamente a quanto riportato in 

letteratura. Le tre metodologie applicate (mineralogia delle argille, riflettenza della 

vitrinite, spettroscopia Raman sulla materia organica) hanno mostrato un buon grado di 

correlazione, permettendo così di applicare la spettroscopia Raman sulla materia 

organica anche a temperature comprese tra 200°C e 330°C. L’applicazione di tale 

metodo a condizioni di basso grado metamorfico risulta quindi molto promettente. 

(2) Le analisi termocronologiche (studio delle tracce di fissione in apatiti) sono 

state applicate alle Zone di İstanbul e di Sakarya, al fine di ricostruire la storia di 

esumazione e vincolare la tempistica dell’amalgamazione di questi due terreni esotici. I 

dati termocronologici provenienti dalle Zone di İstanbul e di Sakarya hanno registrato 

tre distinti episodi di esumazione legati alla complessa evoluzione delle Pontidi. (i) Le 

età di esumazione del Paleocene-Eocene inferiore (62.3-50.3 Ma) sono associate alla 



chiusura dell’oceano İzmir-Ankara e alla risultante collisione tra la Zona di Sakarya a 

nord e il blocco anatolide-tauride a sud. (ii) Le età eocenico superiori - oligocenico 

inferiori (43.5-32.3 Ma) sono collegate ad una successiva fase deformativa lungo la 

sutura İzmir-Ankara, come anche indicato da deformazione e iati sedimentari nei bacini 

interni. (iii) Un terzo gruppo coerente di età (Oligocene superiore – Miocene inferiore) 

nella parte più occidentale dell’area di studio testimonia l’inizio dell’estensione egea. 

L’uniformità delle età di esumazione riscontrate in entrambe le zone (İstanbul e 

Sakarya) indica che la collisione tra questi due frammenti continentali è avvenuta 

durante il Mesozoico, cioè prima degli eventi deformativi registrati dalle tracce di 

fissione. 

(3) L’analisi delle tracce di fissione è stato applicato anche a campioni provenienti 

dalla regione del Mare di Marmara, per caratterizzare l’evoluzione del ramo occidentale 

della Faglia Nord-Anatolica. I risultati sono in accordo con quelli provenienti dalle 

Pontidi centrali. Nei settori più occidentali si riscontrano le età di esumazione più 

recenti legate all’estensione egea; mentre i settori più orientali registrano una rapida 

esumazione nell’Eocene inferiore derivante dalla strutturazione dell’orogene di İzmir-

Ankara. I dati ottenuti lungo la Faglia di Ganos – un segmento del sistema di faglia 

nord-anatolico- mettono in evidenza la presenza di una discontinuità tettonica attiva già 

dall’Oligocene superiore, ben prima della nucleazione della Faglia Nord-Anatolica ad 

est. L’integrazione dei dati termocronologici con quelli strutturali pre-esistenti su tutta 

la regione del Mare di Marmara suggerisce l’esistenza di un sistema di discontinuità 

tettoniche orientate E-O attive almeno dall’Oligocene superiore, lungo le quali, a partire 

dal Pliocene inferiore, si è impostato l’attuale sistema di faglia nord-anatolico. 



 

 

CHAPTER 1 
 

 

1.1 Introduction 
 

Turkey occupies a crucial position in the geodynamic evolution of the Tethyan 

domain and particularly in the Eastern Mediterranean region. The present-day 

geological setting of Turkey (Fig. 1) is the result of complex geodynamic processes that 

involved the Tethyan domain during Paleozoic and Mesozoic time. Turkey is made of 

numerous continental fragments (also called terranes) that during the evolution of the 

Paleotethys and Neotethys rifted off from either sides of these two oceanic domains and 

eventually collided with the opposite continental margins (e.g. Okay & Tüysüz 1999; 

Stampfli & Hochard 2009). The final amalgamation of these terranes occurred in Late 

Tertiary time when the Arabian plate collided with the Eurasian plate (Okay & Tüysüz 

1999).  

 
Figura 1. Simplified tectonic map of Turkey and surrounding region. Modified from Okay and Tüysüz (1999). 



Geologically, Turkey can be divided into three main tectonic units: the Pontides, 

the Anatolide-Tauride Block and the Arabian platform (Okay 2008). The Pontides (Fig. 

1), that comprise the Strandja Massif, the İstanbul and the Sakarya Zones (or terranes), 

show Laurasian stratigraphic affinities whereas the Anatolide –Tauride Block and the 

Arabian platform are tectonically and stratigraphically related to Gondwana (Şengör & 

Yılmaz 1981; Okay et al. 1996; Okay & Tüysüz 1999).  

 

This dissertation is focused on different aspects of the geological evolution of the 

Pontides of northern Turkey. 

The Pontides, a composite orogene stretching >1,500 km from eastern Bulgaria to 

the Lesser Caucasus, from late Paleozoic to Recent times, have suffered the cumulative 

effects of a complex structural history, including the Variscan (Carboniferous), 

Cimmerian (Triassic), and Alpine (Late Cretaceous-Paleocene) orogenies (Yılmaz et al. 

1997; Tüysüz 1999) as well as Aegean extension and significant strike-slip deformation 

associated with the North Anatolian Fault system (for a review, see Stephenson et al. 

2004). 

In this complex geodynamic setting, a multidisciplinary methods has been applied 

to investigate the thermochronological and geodynamic evolution of selected elements 

of the Pontides. In details the main goals of the dissertation may be summarised as 

follow:  

(i) the thermal evolution of the Karakaya Complex, a Permo-Triassic Paleotethyan 

subduction-accretion complex cropping out throughout the Sakarya terrane (Chapter 2);  

(ii) the exhumation history of the İstanbul and Sakarya exotic terranes (Chapter 3); 

(iii) the tectonic evolution of the western North Anatolian Fault in the Marmara Sea 

region (Chapter 4). 

 

i) The Karakaya Complex is the tectonostratigraphic term used to designate the strongly 

deformed Permo-Triassic rock units in the Sakarya terrane of northern Anatolia (Figure 

2). This complex developed during Permo-Triassic northward subduction of the 

Paleotethys along the southern margin of Eurasia (Tekeli 1981; Pickett and Robertson 

1996; Okay 2000; Stampfli & Borel 2004).  

The Karakaya Complex was studied by many authors since 1975 when Bingöl et al. 

defined for the first time this complex. In the following years many interpretations 

about the origin and the stratigraphy of the Karakaya Complex were made (Tekeli 1981; 



Akyürek & Soysal 1983; Akyürek et al. 1984; Şengör et al. 1984; Koçyiğit 1987; Kaya 

et al. 1989; Okay et al. 1991; Altıner & Koçyiğit 1993; Pickett & Robertson 1996; Y. 

Yılmaz et al. 1997; Göncüoğlu et al. 2000). Up to now two geodynamic models are still 

in competition to explain the evolution of the Karakaya Complex and more in general to 

explain the evolution of this complex in the western Tethyan (Paleo-Tethyan) domain: 

the rift model (Bingöl et al. 1975) and the subduction-accretion one (Tekeli 1981), each 

of them with many different variations (Y. Yılmaz 1981; Şengör & Yılmaz 1981; 

Şengör 1984; Şengör et al. 1984 Koçyiğit 1987; Genç & Yılmaz 1995; Göncüoğlu et al. 

2000; Pickett et al. 1995; Pickett & Robertson 1996; Okay 2000). 

Generally two tectono-stratigraphic units were defined in the Karakaya Complex: 

the first one, made up of metabasites, phyllites and marble, and the second one, made up 

of highly deformed clastic and volcaniclastic rocks which generally are considered non 

metamorphosed or slightly metamorphosed (e.g. Pickett 1994) 

In this contribution I have used, for the first time, an integrated analytical methods 

for determination of organic and inorganic temperature-dependent parameters to 

characterise the thermal structure and evolution of the Karakaya Complex. 

 

 

More in detail, these methods include clay mineral parameters, such as the Kübler 

Index and the percentage of illite in I-S mixed layers, vitrinite reflectance (Ro%) and 

Raman spectroscopy on carbonaceous material (RSCM). 

Figura 2. Outcrops of the Karakaya Complex. Modified from Okay & Göncüoğlu (2004). 



Clay mineral parameters and vitrinite reflectance are traditionally used to constrain 

thermal conditions from diagenesis (Corrado et al. 2005; Aldega et al. 2007a, b) to 

epizone (Ferreiro Mählmann 2001; Rantitsch et al. 2005; Potel et al. 2006; Judik et al. 

2008); on the other hand, Raman spectroscopy (RSCM) was applied to provide reliable 

estimates of peak metamorphic temperatures in the range 330°-650°C (Beyssac et al. 

2002a,b, 2003, 2004, 2007; Rantitsch et al. 2004). More recent studies focussed on 

lower temperature ranges (Lahfid 2008), and now a good qualitative approach is also 

available to estimate temperature <330°C (Lahfid 2008). In this work I have applied the 

Raman spectroscopy on carbonaceous material also to low grade metamorphic 

conditions (200-330°C) to test the reliability of this technique in this temperature range.  

 

ii) The Intra-Pontide suture is the boundary between the İstanbul and the Sakarya 

terranes. This boundary is considered by Okay and Tüysüz (1999) the result of the 

progressive closure of an Intra-Pontide ocean during the Senonian. In contrast, 

according to Şengör and Yılmaz (1985), the Intra-Pontide suture formed in the early 

Eocene after an orthogonal opening between İstanbul and Sakarya terranes during the 

Liassic. Stampfli and Hochard (2009) support a middle Jurassic collision between 

İstanbul and Sakarya terranes. Akbayram et al. (2009) favour a Cenomanian collision.  

In this geological context apatite fission-track (AFT) analysis has been used to 

constrain the exhumation history of the İstanbul and Sakarya terranes.  

Fission-track dating is a powerful tool to infer the time of uplift and exhumation of the 

rocks and to give a measure of their motion toward the Earth’s surface. The large 

number of samples collected from both terranes (İstanbul and Sakarya) isolate three 

discrete episodes of exhumation related to the complex tectonic evolution of the 

Pontides. These results have significant bearings on paleogeographic-paleotectonic 

reconstructions of the eastern Mediterranean region. 

 

iii) The Neogene tectonics in the Marmara region is the result of interaction between the 

Aegean extension regime and the westward escape of the Anatolian microplate guided 

by the North Anatolian Fault (NAF) (Fig. 3). In the Aegean region, the rigid westward 

translation of the Anatolian microplate combined with back-arc spreading behind the 

Aegean Trench gave way to distributed north-south extension along E-W–trending 

normal faults. This extension resulted in the formation of E-W trending grabens, which 



are the most prominent neotectonic feature of western Anatolia (Bozkurt, 2001). The 

same structural trend is observed in the Marmara Sea region, where the NAF developed 

as a complex fault system. 

Following the work of Zattin et al. (2005) that deals with the activity of the NAF in the 

southwestern Thrace Basin, new apatite fission-track (AFT) data, have been integrated 

with (U-Th)/He ages and preexisting structural data (Aksoy, 1998; Okay et al., 2008) to 

characterise the tectonic evolution of the western segment of the North Anatolian Fault 

(NAF) in the Marmara Sea region. 

 

Due to the different objectives dealt with in this study, associated with the vast 

dimensions of the study area, this dissertation is written as a collection of three papers 

(Chapter 2, 3, and 4) focused on the single goals outlined above. In the final chapter 

(Chapter 5) the main results are summarized and integrated in a broader geodynamic 

context. 

Figura 3. Simplified tectonic map of the Marmara region showing the North Anatolian Fault system. Modified from 
Okay et al., 2008. 



1.2 Methodology 
 

To investigate the thermal and thermochronological evolution of selected elements 

of the Pontides I have used a multidisciplinary approach including clay mineralogy, 

vitrinite reflectance and Raman spectroscopy on carbonaceous material for the thermal 

characterization of the Karakaya Complex, and apatite fission track analysis to constrain 

the exhumation history of the İstanbul and the Sakarya terranes, and the tectonic 

evolution of the western segment of the North Anatolian Fault (NAF) in the Marmara 

Sea region. 

Because of the complicated nature of the Karakaya Complex such a 

multidisciplinary (integrated) approach has more chance to give a coherent result than 

the use of a single one. 

In the sections below a concise description of these methodologies are given. 

 

1.2.1 Clay mineralogy 

 

 Prograde clay mineral transformations in a sedimentary basins are primarily a 

response to burial and varying degrees of tectonic fabric development at temperatures 

below 300°C. Some transformations produce predictable patterns of change in mineral 

assemblage that can be used to characterised the conditions of diagenesis and very low 

grade-metamorphism in basins (Merriman, 2005). These patterns involve the smectite-

illite-to-muscovite transformation that is part of a more extended series of reactions in 

2:1 dioctahedral clay minerals. The series of reactions: smectite → mixed-layer 

illite/smectite (I/S) →illite → muscovite is characterised by a progressive increase in 

crystal thickness (illite “crystallinity”) and decrease in defect densities, lattice strain and 

compositional variability as illite-muscovite becomes better ordered (Peacor, 1992)  

 The most common method now used for determining grade in metapelitic 

sequences is the Kübler Index of illite “crystallinity”, which measures changes in the 

shape of the first basal reflection of dioctahedral illite-muscovite at an X-ray diffraction 

(XRD) spacing of approximately 10 Å. This method is a good tool to determine the 

thermal maturity in sediments in a range between the deep diagenetic zone to the 

epizone (Merriman & Peacor, 1999). Another important measurement is the 

quantification of mixed-layer illite/smectite (I/S). Measurement of proportions and 

degree of ordering in the smectite-/I/S-illite reaction series is the most widely used 

indicator of reaction progress in the diagenetic zone (Merriman, 2005). 



Progress in the trioctahedral 2:1 reaction series can be also monitored using the Árkai 

Index of chlorite “crystallinity” (Árkai 1991; Guggenheim et al. 2002). 

 

 

1.2.2. Vitrinite Reflectance 

 

 Vitrinite Reflectance is the most widely used indicator of thermal maturity in 

sedimentary rocks containing organic particles. Vitrinite is a maceral family of humic 

coals derived from the decay of ligno-cellulose parts of higher plants (Durand et al., 

1987). With increasing temperature and pressure within the Earth’s crust, irreversible 

chemical reactions take place within the vitrinite structure. This process, termed 

maturation or coalification, include chemical transformation such as decarboxylation, 

dehydroxylation, demethylation, aromatization, and finally polycondensation of 

aromatic lamellae (Mukhopadhyay, 1994). The major physical manifestation of the 

maturation process is the increase in the reflectance of vitrinite. The reflectance of 

vitrinite is defined as the proportion of normal incident light reflected by a plane 

polished surface of vitrinite, which changes according to the level of maturation 

(Mukhopadhyay, 1994). This thermal maturity indicator is an effective method for 

estimating the maximum temperatures experienced from sedimentary rocks in the 

diagenetic zone. 

 

 

1.2.3 Raman Spectroscopy on carbonaceous material 

 

The Raman Spectroscopy on Carbonaceous Material (RSCM) is a new 

geothermometer and can be applied to metasedimentary rocks to indicate the peak of the 

metamorphic condition. 

During diagenesis and metamorphism, carbonaceous material present in the initial 

sedimentary rock progressively transforms into graphite (graphitization). The 

corresponding progressive evolution of degree of organization of the carbonaceous 

material is considered to be a reliable indicator of metamorphic grade, especially of 

temperature (Beyssac et al., 2002a). 

Because of the irreversible character of graphitization, the carbonaceous material 

structure is not sensitive to retrograde metamorphism and therefore primarily depends 



on the maximum temperature reached during metamorphism, whatever the retrograde 

history of the sample (Beyssac et al.,2002b). It also has been observed that samples 

collected from neighbouring outcrops with clearly different strain have the same degree 

of graphitization, indicating that deformation does not significantly affect the structural 

organization of the carbonaceous material (Beyssac et al.,2002b).  

Now this technique is successfully applied in the range of high grade 

metamorphism (T between 350°C to 650°C) (Beyssac et al. 2002a,b, 2003, 2004, 2007; 

Rantitsch et al. 2004). Recently, Lahfid (PhD thesis 2008) focused his study to lower 

the range of temperature investigation. And now there is a good qualitative approach to 

estimate temperature values from Raman analysis. In this work I have applied the 

Raman spectroscopy on carbonaceous material also to low grade metamorphic 

conditions (200-330°C) to contribute to lower the temperature range of this new 

methodology.  

 

 

1.2.4. Correlation of methodologies 

 

 Such multi-method investigation shows a good degree of correlation among the 

obtained results (widely described in chapter 2). Reliability of data is therefore 

increased because each methodology investigates different parameters, organic and 

inorganic, and each in a different range of temperature. Moreover these results 

demonstrate that Raman spectroscopy on carbonaceous material can be applied 

successfully to temperature ranges of 200-350°C, thus extending the application of this 

method from higher grade metamorphic contexts (Bollinger et al. 2004; Beyssac et al. 

2007; Gabalda et al. 2009) to lower grade metamorphic conditions. 

 

 

1.2.5. Fission tracks in apatite 

 

 Thermochronology is a technique that permits the extraction of information about 

the thermal history of rocks. Because temperature increases with depth in the Earth’s 

lithosphere, this temperature information can be translated into structural information, 

thermochronological data contain a record of the depth below the surface at which rocks 



resided for a given time. This methodology is able to constrain quantitatively the time of 

rock exhumation towards the surface (Braun et al., 2006). 

 Fission track dating method is based on the spontaneous fission of 238U which cause 

a structural damage in the crystal lattice. This technique is no different from other 

isotopic dating methods based on the decay of a naturally radioactive parent to a stable 

daughter atom. In the fission track method it is the spontaneous fission tracks instead of 

daughter isotopes that are measured as a product of the decay of 238U (Wagner & Van 

Den Haute, 1992). 

 Experimental study on minerals (Fleischer et al., 1965) showed that temperature is 

the most important parameter that influence the stability of fission tracks in minerals. 

The damage zone comprising a fission track in the crystal lattice is not stable and tend 

to be repaired with the increase of temperature by a process called annealing. This 

process is gradual and the temperature range at which tracks density and their length 

decrease is known as Partial Annealing Zone (PAZ) (Wagner & Van Den Haute, 1992). 

In fission track dating, the cooling range in the PAZ have to be “adapted” in a single 

temperature value, to which the age has to be referred; this temperature value is defined 

by Dodson (1973) as the closure temperature(Tc). Wagner and Reimer (1972) suggest 

that the closure temperature correspond to a temperature within the PAZ, where about 

50% of the tracks are stable. 

 For apatite the PAZ spam from about 60°C to 120°C and the Tc is about 110°C ± 

10°C 

Apatite fission track analysis is a powerful tool to determine the time of deformation 

and the crustal depth at which it took place.  

 

 



 

 

CHAPTER 2 
 

 

 

 

 

 

 

 

This chapter consists of the manuscript titled “Thermal evolution of the Permo-Triassic 

Karakaya subduction-accretion complex from the Biga Peninsula to the Tokat Massif 

(Anatolia)” by Ilaria Federici, William Cavazza, Aral I. Okay, Olivier Beyssac, 

Massimiliano Zattin, Sveva Corrado and Francesco Dellisanti. The manuscript was 

submitted to the “Turkish Journal of Earth Sciences” on October 27th, 2009. 
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Abstract 

The results of the combined application of a series of analytical methods (clay mineralogy, 

vitrinite reflectance, Raman microspectroscopy) placed tight constraints on the thermal 

evolution of the Karakaya Complex of northern Anatolia, a mostly Permo-Triassic 

subduction-accretion complex resulting from the progressive closure of the Paleotethys. 

The thermal evolution of the Karakaya Complex is the result of Permian-Triassic 

subduction-accretion processes, and was not significantly affected by later Alpine-age 

tectonism, as shown by Liassic shallow-water siliciclastic and carbonate deposits 

unconformably overlying the Karakaya Complex which did not undergo any significant 



burial. The Lower Karakaya Complex –made of metabasite and subordinate marble and 

phyllite- experienced maximum temperatures ranging from 340 to 497°C, in agreement 

with independently determined thermobarometric reconstructions. The entire Upper 

Karakaya Complex –previously considered either unmetamorphosed or slightly 

metamorphosed - was affected by zeolite to lower greenschist facies metamorphism (120-

376°C). The coherent results of this study show that Raman microspectroscopy has great 

potential for the determination of relatively low paleotemperatures (200-350°C). 

 

 

Key Words: vitrinite reflectance, clay mineralogy, Raman microspectroscopy, 

metamorphism, Pontides 

 

 

Introduction 

Karakaya Complex is the tectonostratigraphic term used to designate the strongly 

deformed Permo-Triassic rock units in the Sakarya terrane (Sakarya Composite Terrane of 

Göncüoğlu et al. 1997; also known as Sakarya Zone) of northern Anatolia (Figure 1). This 

complex developed during Permo-Triassic northward subduction of the Paleotethys along 

the southern margin of Eurasia (Tekeli 1981; Pickett and Robertson 1996; Okay 2000; 

Stampfli & Borel 2004).  

Although the pre-Jurassic rocks of the Sakarya terrane have been described and 

mapped by several authors in previous years, the comprehensive term Karakaya Formation 

was first defined by Bingöl et al. (1975), who supported an intracontinental rift origin for 



this unit. Conversely, Tekeli (1981) proposed a subduction-accretion origin. The Karakaya 

Formation was renamed Karakaya Complex by Şengör et al. (1984). Several other studies 

have dealt with the Karakaya Complex (e.g. Akyürek & Soysal 1983; Akyürek et al. 1984; 

Koçyiğit 1987; Kaya et al. 1989; Okay et al. 1991; Altıner & Koçyiğit 1993; Pickett & 

Robertson 1996; Göncüoğlu et al. 2000, 2004; Okay & Altıner 2004, Yılmaz & Yılmaz 

2004) yet the same two geodynamic interpretations are still in competition: the rift model 

and the subduction-accretion one, each with several different variations (Yılmaz 1981; 

Şengör & Yılmaz 1981; Şengör 1984; Şengör et al. 1984 Koçyiğit 1987; Genç & Yılmaz 

1995; Göncüoğlu et al. 2000; Pickett et al. 1995; Pickett & Robertson 1996, 2004; Okay 

2000). 

There is general agreement that the Karakaya Complex is restricted to the Sakarya 

terrane of the Pontides and is absent in the rest of the Pontides and in the Anatolide-

Tauride Block (Okay & Göncüoğlu 2004) (Figures 1, 3). Two tectonostratigraphic units 

were defined in the Karakaya Complex: the first one made of metabasite, phyllite and 

marble, the second one made of highly deformed epiclastic and volcaniclastic rocks 

considered unmetamorphosed or slightly metamorphosed (e.g. Pickett 1994). Following 

Okay & Göncüoğlu (2004), the terms Lower and Upper Karakaya Complex are used here 

for the metabasite series and the clastic series, respectively. 

In this contribution we determine in the Lower and Upper Karakaya Complex (i) 

clay mineral metamorphism by XRD diffraction-derived parameters such as the Kübler 

Index and the percentage of illite in I-S mixed layers, and (ii) organic metamorphism by 

means of vitrinite reflectance data and Raman spectroscopy on carbonaceous material 

(RSCM). These temperature-dependant parameters have been successfully applied to 

constrain the thermal structures of high crustal levels of better known regions where very 

low- to low-grade metamorphic rocks are exposed (e.g. Beyssac et al. 2004; Potel et al. 



2006; Judik et al. 2008). Clay mineral parameters such as the Kübler Index and the 

percentage of illite in I-S mixed layers coupled with vitrinite reflectance are traditionally 

used to constrain thermal conditions from diagenesis to epizone (Ferreiro Mählmann 2001; 

Rantitsch et al. 2005; Potel et al. 2006), and their correlations have been widely explored 

both in diagenetic (Corrado et al., 2005; Aldega et al. 2007a, b) and metamorphic 

conditions (Potel et al. 2006). Raman spectroscopy has been applied widely to provide 

reliable estimates of peak metamorphic temperatures between 350° and 650°C (Beyssac et 

al. 2002, 2003, 2004, 2007; Rantitsch et al. 2004); a pilot study focused on temperature 

below 350°C (Lahfid 2008). 

 

Geological setting  

The study area is located in the Sakarya terrane, an east-west-trending continental block 

about 1,500 km long and 120 km wide (Figure 1). To the northwest the Sakarya terrane is 

in tectonic contact with the İstanbul terrane by means of the Intra-Pontide suture, and to the 

north it is bounded by the Black Sea. The contact with the Anatolide-Tauride Block to the 

south is marked by the Izmir-Ankara-Erzincan suture. Outcrops of the Permo-Triassic, 

highly deformed, low-grade metamorphic rocks of the Karakaya Complex characterize the 

Sakarya terrane over a distance of ca. 1,100 km from the Biga Peninsula to the Lesser 

Caucasus. The Sakarya terrane, together with the İstanbul and Strandja terranes, has 

Laurasian affinity (Okay & Tüysüz 1999) with Paleozoic and Mesozoic stratigraphies 

different from the Anatolide-Tauride Block to the south. These terranes were amalgamated 

into a single continental unit during the latest Cretaceous-Paleocene continental collision 

(Şengör & Yılmaz 1981; Okay & Tüysüz 1999).  



The Karakaya Complex is subdivided in a low-grade metamorphic series [Lower 

Karakaya Complex (LKC), also known as Nilüfer Unit] and a clastic series [Upper 

Karakaya Complex (UKC)] made of highly deformed epiclastic and volcaniclastic rocks 

(Hodul, Orhanlar and Çal Units) (Figure 2).  

 The LKC consists of highly deformed and metamorphosed metabasite, phyllite and 

marble, with minor amounts of metachert, metagabbro and serpentinite (Okay & 

Göncüoğlu 2004). Rocks of the LKC are generally foliated, isoclinally folded and cut by a 

large number of shear zones. The original thickness is difficult to estimate but the 

structural thickness exceeds 5 km (Okay & Göncüoğlu 2004). Conodonts from marble 

interbedded with the metabasite gave an Early Triassic age from the type locality of the 

LKC south of Bursa and a Middle Triassic age from the Biga peninsula (Kaya & Mostler 

1992; Kozur et al. 2000). 

The LKC is metamorphosed in greenschist facies, with a common mineral 

paragenesis of actinolite/barroisite + albite + chlorite + epidote in the metabasite (Okay & 

Moniè 1997; Okay 2000; Okay et al. 2002). Locally metamorphism reaches albite-epidote 

amphibolite, blueschist, and eclogite facies (Okay & Moniè 1997; Okay et al. 2002; Okay 

& Göncüoğlu 2004). The blueschist and eclogite facies rocks form tectonic slices within 

the predominantly greenschist facies rocks. Ar-Ar isotopic ages from phengite and 

amphibole from an eclogite lens enclosed into the greenschist facies east of Bandırma 

(Okay & Monié 1997) and from blueschist and high-pressure greenschist facies metabasite 

north of Eskişehir (Okay et al. 2002) yielded very similar Late Triassic (205-203 Ma) ages. 

The LKC of the eastern Pontides yielded early Permian (263-260 Ma) Ar-Ar and Rb-Sr 

ages (Topuz et al. 2004a, b). 

The relationship between the LKC and the epiclastic and volcaniclastic rocks of the 

UKC are almost everywhere tectonic. The UKC consists of three tectonostratigraphic units 



made of highly deformed epiclastic and volcaniclastic rocks (Figure 2). The highly 

deformed nature of these units make their identification and correlation across the Sakarya 

terrane problematic (Okay & Göncüoğlu 2004). However, there is a general agreement –at 

least in the western outcrop area- on the fact that the UKC includes a thick series of 

quartzo-feldspathic sandstone-shale (Hodul Unit) with a continental granitic source, and a 

greywacke-shale sequence (Orhanlar Unit). The UKC also comprises a series of basalt, 

debris flows and grain flows with Upper Permian limestone clasts (Çal Unit) (Okay et al. 

1991; Pickett & Robertson 1996; Okay & Göncüoğlu 2004). In this paper, we extend 

tentatively this stratigraphic subdivision to our entire study area. Outside of their type 

localities in the area of the Biga peninsula, the terms Hodul Unit and Orhanlar Unit as used 

in this study refer generically to arkosic sandstones and graywackes, respectively, 

belonging to the upper structural levels of the Karakaya Complex (for a description, see 

below). Currently, a rigorous tectonostratigraphic correlation throughout the entire outcrop 

area of the Karakaya Complex is hampered by the high degree of structural complexity 

combined with the scarcity of detailed regional studies. 

From west to east, the Hodul Unit crops out from the Biga Peninsula to the region 

north of Eskişehir, and consists of arkosic sandstones with intercalation of shales and 

siltstones, which pass upward into debris flows with blocks of basalt and Carboniferous 

and Permian limestone (Okay et al. 1991; Leven & Okay 1996). Arkosic sandstone ranges 

from coarse-grained, thickly bedded proximal facies with pebbles of granite to finer-

grained distal turbidites. The arkosic sandstone succession is attributed to the Norian, 

mainly based on a few occurrences of Halobia sp. (Kaya et al. 1986; Wiedmann et al. 

1992; Leven & Okay 1996; Okay & Altiner 2004). The presence of Ladinian limestone 

blocks in the Bursa area (Wiedmann et al. 1992) may indicate a longer time span for the 

Hodul Unit. 



The Hodul Unit is strongly deformed with anastomosing shear zones and boudinage 

obscuring original bedding at all scales, from outcrop to thin section. The estimated total 

thickness of this unit is >2 km (Okay 2000), a more precise determination being hampered 

by the high degree of deformation. The Hodul Unit is unconformably overlain by fairly 

undeformed shallow-water Liassic sandstone and siltstone (Bayırköy Formation, Fig. 2). 

 The bulk of the Orhanlar Unit (>80%) is made up of yellowish green, yellowish 

brown, highly fractured and generally altered greywacke that rarely shows recognizable 

bedding (Okay et al. 1991). These rocks are composed of very poorly sorted angular 

quartz, plagioclase, opaque minerals, black metachert, red radiolarian chert, basalt and 

phyllite clasts set in an argillaceous matrix. In the locality type near the Orhanlar village, 

the greywacke series contains small (<1m) olistoliths of dark Lower Carboniferous (Visean 

and Serpukhovian) limestone and is overlain by undeformed Liassic sandstones and 

siltstones (Leven & Okay 1996). The Orhanlar Unit shows strong layer-parallel extension 

that has destroyed much of the original bedding. However, its thickness ranges probably 

from a few hundred meters to over 1 km. Okay et al. (1991) describe the origin of the 

Orhanlar as related to an accretionary complex. 

 The Çal Unit (Figure 2) consists mainly of grain and debris flows with basalt and 

Upper Permian limestone clasts. The siliciclastic mass flows are interbedded with basaltic 

lava flows, calciturbidites, pelagic limestone, shale, greywacke and rare radiolarian chert 

(Okay et al. 1991; Pickett & Robertson 1996). A typical feature of this unit is the presence 

of fossiliferous Upper Permian limestone blocks and olistoliths ranging in size from a few 

centimeters to one kilometer. The debris-flow deposits are distinguished from those of the 

Hodul Unit by the abundant presence of spilitized basic volcanic rocks (Sayıt & 

Göncüoğlu 2009). The Çal Unit is also strongly deformed, and hence the stratigraphic 

relationships of this unit, if any, with the other units of the UKC are obscure. 



 The tectonic evolution of the Karakaya Complex is still matter of debate. In the rift 

model proposed by Bingöl et al. (1975) and then developed by Şengör & Yılmaz (1981), 

Şengör et al. (1984), Şengör (1984), Genç & Yılmaz (1995), and Göncüoğlu (2000), the 

Karakaya Complex was deposited in a Late Permian rift, which developed in a small 

marginal basin and closed in the Late Triassic by southward subduction. Initially Bingöl et 

al. (1975) assumed that the Karakaya rift was purely intracontinental, but the presence of 

oceanic crustal lithologies in the Karakaya Complex led to the suggestion that the 

Karakaya rift developed into a oceanic marginal basin (Şengör & Yılmaz 1981). In this 

model, it is assumed that the Karakaya marginal basin opened on the northern margin of 

the Anatolide-Tauride Block above the southward subducting Palaeotethys ocean and that 

the Permian and Carboniferous limestone blocks are derived from uplifted rift shoulders. 

The subduction-accretion model was firstly proposed by Tekeli (1981) and then 

developed by Pickett et al. (1995), Pickett & Robertson (1996), and Okay (2000). This 

model assumes that the Karakaya Complex was formed during the Late Permian-Triassic 

by northward subduction-accretion of the Paleotethys under the active Laurasian margin. 

The units of the Karakaya Complex were formed either during the steady-state subduction 

of oceanic crust or during subduction of oceanic seamounts (Pickett & Robertson 2004) or 

oceanic plateau (Okay 2000). 

 

Sampling 

Samples were collected from suitable rock types over a distance of about 800 km from the 

Biga peninsula to the Tokat Massif (Figures 1, 3). Samples from the Biga Peninsula, 

Bandırma, and Bursa are from the type areas of the Karakaya Complex. The remaining 

samples come from the Ankara area, the Tokat Massif, and the Kargı Massif, where the 



lithological assemblage has been correlated to the Karakaya Complex of Biga, Bandırma, 

and Bursa (Yılmaz & Yılmaz 2004; Okay 2000; Okay & Göncüoğlu, 2004; Pickett & 

Robertson 2004). 

Twenty samples for clay mineralogy analysis were collected mainly from clay and 

silt layers of the Hodul and Orhanlar Units of the UKC. Only two samples were taken from 

the phyllite of the LKC. Twelve samples for vitrinite reflectance analysis were collected in 

the same localities mainly from the arenaceous and pelitic beds of the Hodul and Orhanlar 

Units. Seventeen samples were collected in the same localities for Raman spectroscopy 

(RSCM) from both the Upper (Hodul and Orhanlar Units) and Lower Karakaya Complex. 

The results of these analyses are reported in Tables 1 and 2. 

  

Methods 

Clay mineralogy 

Mineralogical composition of the bulk rock and clay fraction was carried out by powder X 

ray diffraction (XRD) using a Philips PW 1710 diffractometer (CuKα radiation, 40kV/30 

mA power supply, graphite secondary monochromator, 1° divergence and scatter slits, 0.1 

mm receiving slit, 0.02° 2q step size, counting time of 2 s/step). 

Clay mineralogy was determined on <2mm grain-size fraction by XRD. Following 

the recommendations by Kisch (1991), the <2mm fraction was obtained by differential 

settling after disintegration by shaking in demineralized water and ultrasonic 

disaggregation for up to 15 minutes. Both air-dried and ethylene glycol solvated samples 

(50°C overnight) were analyzed by XRD. Smeared oriented mounts were prepared for each 

sample taking into account that the amount of clay on the glass slide was at least 3mg/cm2 

(Lezzerini et al. 1995). Mineralogical parameters were determined via processing of the 



XRD patterns by WINFIT program (Krumm 1996) using an asymmetrical Pearson VII 

function (Stern et al. 1991; Warr & Rice 1994). The semiquantitative modal composition 

of the clay fraction was calculated using the method by Biscaye (1965) slightly modified to 

take into account the occurrence of mixed layer illite-smectite (I-S) and chlorite-smectite 

(C-S). 

The very low-grade metamorphism was estimated on air-dried samples by using the 

illite Kübler Index (KI) obtained by measuring the full-width-at-half-maximum-height 

(D°2q) on the (001) illite diffraction peak at about 10 Å (Kübler 1967; Guggenheim et al. 

2002). KI data were calibrated against the CIS scale (Warr & Rice 1994) using the 

following regression equation: KI(CIS) = 1.09 KI(Bologna) + 0.02 (R2 = 0.96) (Dellisanti et al. 

2008). Chlorite crystallinity was determined on air-dried samples using the Árkai Index 

(AI) (Árkai 1991) obtained measuring the full-width-at-half-maximum-height (D°2q) on 

the (002) chlorite diffraction peak at about 7 Å (Árkai 1991; Guggenheim et al. 2002). AI 

data were calibrated using the equation: AI(CIS) = 1.13 AI(Bologna) - 0.02 (R2 = 0.84) 

(Dellisanti et al. 2008). The occurrence of mixed layers I-S and C-S was determined on 

glycolated samples applying the NEWMOD computer modelling (Reynolds 1985; Moore 

& Reynolds 1997). 

  

Vitrinite Reflectance (Ro%) 

Whole-rock samples were mounted on epoxy resin and polished according to standard 

procedures described in Bustin et al. (1990). Random reflectance (Ro%) was measured 

under oil immersion, with a Zeiss Axioplan microscope in reflected monochromatic non-

polarized light. For each sample, an average of 20 measurements were taken on vitrinite 

fragments >5µm and only slightly fractured. Mean reflectance and standard deviation 

values were then calculated.  



  

Raman Spectroscopy on Carbonaceous Material (RSCM) 

RSCM thermometry is based on the quantitative study of the degree of graphitization of 

carbonaceous material (CM) which is a reliable indicator of metamorphic T. Because of the 

irreversible character of graphitization, CM structure is not sensitive to the retrograde path 

during exhumation of rocks and depends on the maximum T reached during metamorphism 

(Beyssac et al., 2002). T can be determined in the range 330-650°C with a precision of ± 

50 °C due to uncertainties on petrologic data used for the calibration. Relative uncertainties 

on T are however much smaller, probably around 10-15 °C (Beyssac et al. 2004). 

 Raman spectra were obtained using a Renishaw InVIA Reflex microspectrometer 

(Ecole Normale Superieure, Paris). We used a 514 nm Spectra Physics argon laser in 

circular polarization. The laser was focused on the sample by a DMLM Leica microscope 

with a 100× objective (NA=0.90). The laser power at the sample surface was set at 1 mW. 

Rayleigh diffusion was eliminated by edge filters, and the entrance slit was closed down to 

10-15 µm to achieve nearly confocal configuration. The signal was finally dispersed using 

a 1800 gr/mm grating and analyzed by a Peltier cooled RENCAM CCD detector. Before 

each session, the spectrometer was calibrated with a silicon standard. Because Raman 

spectroscopy of CM can be affected by several analytical mismatches, we followed closely 

the analytical and fitting procedures described by Beyssac et al. (2002, 2003). 

Measurements were taken on polished thin sections cut perpendicularly to the main fabrics 

(S0, S1) and CM was systematically analyzed below a transparent adjacent mineral, 

generally quartz. 10-15 spectra were recorded for each sample in the extended scanning 

mode (1000-2000 cm-1) with acquisition times from 30 to 60 s. Spectra were then 

processed using the Peakfit software (Beyssac et al. 2003).   



Lahfid (2008) investigated the applicability of RSCM thermometry at lower 

temperatures, based on a qualitative comparison with reference spectra from the Glarus 

Alps of Switzerland. Although elaboration of the definitive version of the quantitative 

calibration is still in progress, we used a qualitative comparison with the reference spectra 

to determine temperature values in low-grade rocks.   

 

Results 

Clay mineralogy 

Mineralogical data of clay fraction are reported in Table 1 and Figure 3. The <2µm fraction 

is dominated by illite and chlorite, with subordinate mixed layer illite-smectite (I-S) and 

chlorite-smectite (C-S) present only in a few samples. Overall, the Hodul Unit is 

characterized by the predominance of illite with respect to chlorite whereas the Orhanlar 

Unit has similar percentages of illite and chlorite. The LKC (Nilüfer Unit) has a 

mineralogical composition similar to the Orhanlar Unit with a slight enrichment in illite 

content. 

The illite Kübler index (KI) is used to evaluate the metamorphic grade. KI values of 

0.42 and 0.25 (D°2q) are considered as lower and higher boundaries of the anchizone 

(Merriman & Frey 1999; Merriman 2005; Kübler 1967), whereas the value of 0.30 (D°2q) 

is defined as the boundary between lower and upper anchizone. The Árkai index is 

correlated with the Kübler index, and the values of 0.33 and 0.26 are established as deep 

diagenetic zone - anchizone and anchizone – epizone boundaries, respectively (Árkai 

1991).  

KI values in analyzed samples range between 0.95 and 0.19, i.e. from deep 

diagenesis to epizone (Merriman & Frey 1999). In the Biga Peninsula KI data from the 



pelitic layers of the Hodul Unit range from 0.95 to 0.86 (D°2q), indicating deep diagenetic 

conditions (samples IF24 and IF 19; Table 1, Figure 3). These data agree with the presence 

of highly ordered mixed layers illite-smectite (I-S) with illite content of about 80% and 

90% respectively (Table 1) due to an incomplete illitization reaction. KI values from the 

Hodul Unit in the Bandırma area range narrowly between 0.26 and 0.19, indicating high 

anchizone/epizone conditions.  

Samples from the Bursa area belong to the Hodul Unit to the NE and to the 

Orhanlar Unit SW of the city (Table 1). The Hodul Unit experienced deep diagenetic 

conditions (sample IF7; KI = 0.92; 85% illite in I-S) whereas the Orhanlar Unit yielded 

contrasting results, ranging from deep diagenetic conditions (sample IF 39; KI = 0.52; 95% 

illite in I-S) to high anchizone – epizone (IF36 and IF37; KI = 0.23 and 0.26, respectively). 

In the Inegöl area about 60 km SE of Bursa sample TU224 from a pelitic horizon of the 

Hodul Unit yielded a KI value of 0.31, at the boundary between low and high anchizone 

(Table 1). 

Southwest of Ankara high anchizone conditions prevail in the Orhanlar Unit (TU 

229 and TU231; KI = 0.27 and 0.26) whereas east of Ankara the same unit suffered only 

deep diagenetic conditions (TU233 and TU235; KI = 0.50) (Figure 3). For both the Bursa 

and the Ankara regions, there is general agreement between KI values and Árkai Index 

(AI) values from samples of the Orhanlar Unit (Table 1).  

In the Tokat Massif KI values from the Orhanlar Unit and the LKC range from 0.32 

to 0.27 (TU 237, TU 241, TU242) indicating the boundary between low and high 

anchizone for both units. KI data agree with Árkai Index (AI) data (Table 1). 



In the Kargı Massif one sample (TU244) was collected from the LKC. The KI 

value of 0.31 indicates the boundary between low and high anchizone. Again KI and Árkai 

Index (AI) are in agreement. 

 

Vitrinite Reflectance (Ro%) 

Kerogen is generally abundant, heterogeneous, and mainly made of poorly preserved 

macerals. When recognizable, macerals mainly belong to the vitrinite and inertinite groups. 

Where vitrinite is present, the lower Ro% measurements are representative of indigenous 

woody fragments and are characterized by a gaussian distribution, whereas the higher Ro% 

values show a less regular distribution and are mostly made up of altered or recycled 

fragments. Pyrite, either finely dispersed or in small globular aggregates, is generally 

present around vitrinite fragments. Overall, Ro% mean values cover a wide range between 

0.74 and 3.85%, i.e. from the mid-mature stage of hydrocarbon generation in the deep 

diagenetic zone to high (i.e. deep) anchizone. 

In more detail, in the Biga peninsula (Figure 3) Ro% data from the arkosic 

sandstones of the Hodul Unit (IF23, IF17, IF20) cluster between 0.74 and 0.97% (Table 1), 

indicating the beginning of the deep diagenetic zone. Pelites from the same unit (IF24, 

IF19) yielded higher Ro% values of 1.37 and 1.98. Ro% frequency distribution of sample 

IF 24 is strongly unimodal and indicates a probably indigenous population of vitrinite 

fragments; conversely the frequency distribution of sample IF19 is rather scattered and 

indicates considerable reworking. In summary, the Hodul Unit experienced a thermal 

evolution from middle to very mature stages of hydrocarbon generation (oil and wet gas) in 

deep diagenetic conditions. The only sample taken from the Orhanlar Unit in the Biga 



peninsula (IF13) yielded an Ro% value of 1.03, in general agreement with the samples 

from the Hodul Unit within the same area. 

In the Bandırma area reliable Ro% data were obtained only from sample IF33 

(Hodul Unit) with values indicating anchizone conditions (Ro%=3.3).  

Northeast of Bursa sample IF7 from the pelites of the Hodul Unit is characterized 

by abundant reworked material; nevertheless the Ro% value of the possible indigenous 

population is 1.17%, indicating the deep diagenetic zone. Southwest of Bursa two samples 

from the greywackes of the Orhanlar Unit were analyzed (Table 1). IF39 has a mean Ro% 

of about 1.7% in the deep diagenetic zone for a possible indigenous population, but with 

abundant reworked vitrinite fragments. IF 36 yielded much higher values (mean Ro of 

about 3.1%) correlatable with the middle anchizone.  

In the Tokat area, Ro% data from greywackes of the Orhanlar Unit range between 

3.6% and 3.8%, indicating high anchizone conditions. 

 

Raman spectroscopy on carbonaceous material (RSCM) 

Raman spectroscopy-derived temperatures of analyzed samples range between 270°C and 

497°C. Samples which yielded temperatures <350°C and >350°C are listed in Tables 1 and 

2, respectively. Representative Raman spectra and corresponding RSCM temperatures for 

samples with temperatures >350°C are shown in Figure 4.  

Samples from the Hodul Unit in the Bandırma area (IF28, IF29, IF31, IF33, IF34) 

(Figure 3) recorded temperatures <300°C. As mentioned earlier, in this case temperature 

estimates are based on a semiquantitative approach and the result is a homogeneous value 



of 270°C±30°C for all samples. These values suggest that in this area the Hodul Unit has 

undergone very low-grade metamorphic conditions. 

In the Bursa area, samples 7249, 7370, 7369 were taken from the LKC phyllite and 

marble. Sample 7369 yielded a temperature of 405°C whereas for samples 7249 and 7370 

temperature estimates reach 340°C±30°C. 

In the area south of Inegöl and North of Eskişehir, peak metamorphic temperatures 

are 376°C (TU224 from the Hodul Unit) and 497°C (TU226 from a marble layer of the 

LKC) respectively. 

RSCM data from the Orhanlar Unit in the Ankara area show an increase in 

temperatures from northeast (TU233 and TU235; <230°C and 270°C±30°C, respectively) 

to southwest (TU229; 372°C). 

In the Tokat Massif two samples were collected. South of the massif, sample 

TU237 from the Orhanlar Unit yielded a temperature of 270°C±30°C; in the northern part 

of the massif sample TU243 from the LKC yielded temperature of 459°C. 

 

Discussion  

The results of this research, integrated with preexisting petrological data (Genç & Yılmaz 

1995; Okay & Monié 1997; Yılmaz et al. 1997; Yılmaz & Yılmaz 2004; Okay et al. 2002, 

2006), provide a comprehensive thermal characterization of the Karakaya Complex of 

northern Anatolia. In Figure 5 the paleotemperatures obtained from clay mineralogy, 

vitrinite reflectance, and Raman microspectroscopy are summarized. Overall, two main 

thermal conditions could be recognized: a deep diagenetic condition in the Biga peninsula 

to the west and a much higher thermal condition -from low anchizone to epizone- to the 



east. Some of the samples taken southwest of Bursa and northeast of Ankara seem to 

contradict this general pattern.  

Okay (1991, fig.13) depicts the Orhanlar Unit in the Biga peninsula regionally 

thrust over the Hodul Unit. A later (probably late Tertiary) near vertical fault downdropped 

the Orhanlar Unit and juxtaposed it to the Hodul Unit. We found no substantial difference 

between hangingwall and footwall thermal maturity indicating that their thermal signature 

has been acquired in an almost homogeneous shallow environment (deep diagenetic 

environment; 4-5 km of depth) in a range of 125°-140°C, probably after both thrusting and 

later high-angle faulting. The lack of a well developed cleavage in the mudstones indicates 

a negligible illite recrystallization during diagenetic processes, confirming low burial 

depths and temperatures. Apatite fission-track data acquired on the same units (Cavazza et 

al. 2009) indicate temperatures higher than 125°C (total resetting). 

In the Bandırma area (Figure 3), Ro, KI, and RSCM data from the Hodul Unit 

indicate anchizone-epizone conditions suggesting that the thermal signature was acquired 

in a much deeper environment (8-9 Km) with respect to the same unit in the Biga peninsula 

(Figure 5). In this locality, the Hodul Unit tectonically overlies the LKC (Nilüfer Unit). 

Okay & Monié (1997) described for the LKC in this area a >5 km thick succession, mainly 

made of metabasite metamorphosed in greenschist facies with actinolite or barroisite + 

albite + epidote + chlorite + titanite. Within the metabasite, a tectonic lens of eclogite 

occurs and its mineral paragenesis indicates high pressure-low temperature metamorphism, 

whereas the metabasite show no evidence of high pressure metamorphism. 

Geochronological data (40Ar/39Ar) from the eclogite gave an age for the metamorphic peak 

between 208 and 203 Ma (Triassic-Jurassic boundary) (Okay & Monié 1997). The 

radiometric age is consistent with stratigraphic data as Liassic deposits unconformably 

overlain the metamorphic rocks.  



Northeast of Bursa vitrinite reflectance and clay mineralogy data from the Hodul 

Unit (Figures 3 and 5) indicate deep diagenetic conditions suggesting a thermal path with 

no substantial differences from that of the same unit in the Biga peninsula. Southwest of 

Bursa the LKC is characterized by high-pressure greenschist facies metamorphism with a 

mineral assemblage of actinolite/barroisite + epidote + chlorite + albite + leucoxene; 

within the green metabasite there is an epidote blueschist band with mineral assemblage of 

quartz + sodic amphibole + epidote + albite (Okay 2004). As there is no evidence for 

polymetamorphism in these rocks, it could be the result of cogenetic metamorphism in the 

P-T region of transition between blueschist and greenschist facies (Okay 2004). Kisch et 

al. (2006) provides mean b0 data of 9.039 Å from the same unit and suggests a 

metamorphic condition characterized by intermediate to high pressure in a convergent 

basin setting with low geothermal gradient (Merriman 2005). RSCM and b0 data are in 

agreement with petrological data described by Okay (2004) indicating a low-grade 

metamorphic condition for the LKC in this area. Our data provide further constraints as 

RSCM temperatures from the phyllite and marble of the LKC range between 340°C±30°C 

and 405°C (Table 1). 

In the same area the Orhanlar Unit underwent peak temperatures from deep 

diagenesis to high anchizone/epizone (Figure 5), corresponding to a burial depth from 5-6 

to 9-10 km. The progressive change in thermal conditions is confirmed by a different 

development of microfabric and bulk mineralogy of mudstones samples (Kisch 1987; 

Merriman & Frey 1999). Mudstones in diagenetic conditions show a bedding-parallel 

fabric, whereas high anchizone and epizone conditions are characterized by slaty cleavage 

and increased illite-muscovite/quartz ratios due to recrystallization of strongly oriented 

illite and muscovite (Norris & Rupke 1986). These estimates are in agreement with 

temperatures obtained by RSCM (340°C±30°C).  



Moving to the east, KI data from the Hodul Unit in the Inegöl area (Figure 3) 

indicate the boundary between low and high anchizone. Temperature obtained by RSCM 

(376°C) recorded a slightly higher thermal condition but compatible with the KI value. In 

this area, the arkosic sandstone of the Hodul Unit is thrust over the LKC (Genç & Yılmaz 

1995). A wedge shaped tectonic slice of metaophiolite, consisting of metamorphosed 

serpentinite, gabbro and basalt, is also present in this area (Genç & Yılmaz 1995).  

In the area north of Eskişehir, eclogite and blueschist facies rocks occur as a thrust 

sheet within the greenschist facies of the LKC. The common blueschist facies mineral 

assemblage in the metabasite is sodic-amphibole epidote + albite + chlorite + phengite ± 

garnet. Eclogite paragenesis of garnet + sodic pyroxene + sodic-calcic amphibole + epidote 

has been found only in one locality (Okay et al. 2002). P-T conditions of the epidote-

blueschist facies metamorphism are estimated at 450±50°C and 11-12 kbar, whereas the 

very low Na contents of calcic amphiboles in the greenschist facies metabasites indicate 

pressure <4 kbar (Okay et al. 2002). RSCM data (497°C) from a marble layer within the 

metabasites of the LKC are in agreement with petrological data. Again, phengite, sodic 

amphibole, and barroisite 40Ar/39Ar ages from metabasite range between 215-205 Ma and 

indicate Late Triassic high pressure metamorphism, similarly to what was found in the 

Bandırma eclogite (Okay et al. 2002).  

In the Ankara region, samples from the Orhanlar Unit record two somehow 

different thermal evolutions (Figure 3 and 5). KI and RSCM data from samples TU 229 

and TU 231 indicate paleotemperatures typical of the high anchizone and the top of the 

epizone. On the other hand, KI data from samples TU233 and TU235 indicate only deep 

diagenetic conditions. The different thermal paths observed in the Ankara region could 

derive from tectonic deformation. In fact, samples indicating high anchizone and epizone 

conditions show a closely spaced slaty cleavage due to recrystallization and orientation of 



platy mineral, mostly illite-muscovite, as a consequence of the progressive burial at 

temperatures of about 200-300°C. By contrast, the samples with higher KI value show a 

spaced scaly cleavage typical of tectonic shear. Shear strain can induce lattice defects in 

the illite structure leading to estimate higher KI values (Árkai et al. 2002; Abad et al. 2003) 

and consequently to apparent lower thermal conditions. Thus, the samples could have had 

the same thermal history but different subsequent tectonic evolution, as also shown by the 

higher RSCM temperatures obtained from the tectonically deformed samples. 

In the Tokat Massif, the LKC was affected by regional metamorphism in 

greenschist facies as the mineral paragenesis suggests pressures of 3 to 6 kbar and 

temperatures of 300-500°C (Rojay & Göncüoğlu 1997; Yılmaz et al. 1997; Yılmaz & 

Yılmaz 2004). Our RSCM paleotemperature determinations (380-459°C) from the LKC fit 

well with the preexisting thermobarometric reconstructions (Figures 3 and 5). KI, Ro, and 

RSCM paleotemperature determinations from the Orhanlar Unit indicate homogeneous 

thermal conditions at about 270-300°C. 

In the Kargı Massif, our results from the LKC (Figure 3 & 5) are in agreement with 

the low-grade regional metamorphism in high pressure greenschist facies shown by Okay 

et al. (2006). 

In summary, moving eastward (Figure 5) the Hodul Unit recorded peak thermal 

conditions from diagenesis (Biga peninsula) to anchizone and epizone (Bandırma and 

Inegöl). This increase in thermal conditions is interrupted northeast of Bursa, where the 

Hodul Unit records only deep diagenetic conditions. Similar geographic trends are present 

in the Orhanlar Unit. In fact, data from organic and inorganic parameters for this unit range 

from deep diagenetic condition in the Biga peninsula to anchizone and epizone around 

Bursa, Ankara, and in the Tokat Massif. This coherent geographic trend is somehow 

interrupted in the Ankara region, where deep diagenetic and low anchizone conditions 



were recorded. Data from the LKC are fully concordant with those preexisting 

thermobarometric reconstructions and peak temperatures determined during this study are 

everywhere higher than those from the Upper Karakaya Complex. KI data indicate high 

anchizone conditions and RSCM temperatures (ranging between 340±30°C to 497°C) 

along with petrological data indicate greenschist facies metamorphism. The highest peak 

temperature metamorphism detected here is from Bursa, Eskişehir and in the Tokat Massif 

areas. 

The integrated dataset (clay mineralogy, vitrinite reflectance, Raman 

microspectroscopy) obtained during this study is in agreement with clay mineralogy data 

recently obtained from the Karakaya Complex by Tetiker et al. (2009a, b). For example, 

Tetiker et al. (2009b, Fig. 12) report KI values from the UKC in the area between Edremit 

and Bursa ranging from 0.85 and 0.30. Our average KI value from the same region is 0.62 

± 0.33, if we exclude the results obtained from samples taken around Bandırma –an area 

not sampled by Tetiker at al. (2009b). Similarly, KI values obtained by Tetiker at al. 

(2009b, Fig. 6) from the Tokat Massif cluster at 0.15-0.30 for the LKC and 0.25-0.40 for 

the UKC, again in agreement with our data (Table 1). Reconstructed peak 

thermobarometric conditions (Tetiker et al. 2009a, Fig. 8; 2009b, Fig. 17) of 14 Kb/500 °C 

for the LKC and 5 Kb/300° C for the UKC are in agreement with our temperature 

reconstructions constrained by multiple methods. 

The results of this study and the preexisting data available in the literature are still 

insufficient to fully discriminate among the various hypotheses put forward to explain the 

development of the Karakaya Complex. For the LKC a wealth of data on textural features, 

mineral associations, clay/phyllosilicate transformations, typical index minerals, and 

crystallochemistry of various mineral species points to HP/LT conditions in a 

compressional basin (Okay & Moniè 1997; Rojay & Göncüoğlu 1997; Okay et al. 2002; 



Tetiker et al. 2009a, b). More difficult is the interpretation of the UKC for which a rather 

limited dataset is available. According to Tetiker et al. (2009b), the Upper Karakaya units 

(Orhanlar, Hodul, Çal, and their eastern equivalents) reflect the diagenetic/metamorphic 

characteristics of an extensional basin dominated by low heat flow. We do not share their 

opinion as low heat flow is a hallmark of sedimentary basins located along subduction 

zones and partly or totally superposed on subduction-accretion complexes such as forearc, 

trench-slope, or peripheral foreland basins (e.g. Ingersoll & Busby-Spera 1995; Allen & 

Allen 2005). The thermal evolution of the Karakaya Complex may be envisaged as the 

result of Permian-Triassic subduction-accretion related to the progressive closure of the 

Paleotethys (Figure 6). Within the framework of the oceanic-plateau hypothesis of Okay 

(2000), during the Middle Triassic time while the Lower Karakaya (Nilüfer Unit) oceanic 

plateau was moving towards the southern active margin of Laurasia, the greywacke series 

of the Upper Karakaya (Orhanlar Unit) were probably already part of the accretionary 

complex. In the Late Triassic, the LKC was accreted, as testified by the presence of the 

eclogite and blueschist facies slices. During this stage, deformation along the Laurasian 

margin induced erosion of granitic basement and sedimentation of arkosic detritus (Hodul 

Unit) onto the accretionary wedge. The different temperature peaks (120-376°C) recorded 

in the Upper Karakaya are the results of different degree of involvement of the units in the 

complex dynamic processes of the accretionary wedge. Portions of these units experienced 

higher temperatures as they were incorporated in the accretionary wedge, whereas others 

remained at relatively higher structural levels.  

At the Triassic-Jurassic boundary time the Karakaya Complex suffered an erosional 

episode (Cimmeride orogeny), and was then regionally overlain by relatively undeformed 

Early Jurassic shallow-marine sandstone and limestone (Figure 2). In the Bursa region, a 

new AFT age from the overlying Early Jurassic sandstone (Bayırköy Formation) yielded a 

Middle Jurassic age (184±22 Ma) showing that such sandstone was never buried more than 



a few kilometers (Okay et al. 2008). This result constrains the exhumation history of the 

Karakaya Complex, which recorded Late Triassic peak temperatures and during Jurassic 

time was already at relatively shallow crustal depth, at least in the Bursa region.   

 

Conclusions 

Integrated analytical methods for the determination of organic and inorganic parameters -

including clay mineralogy, vitrinite reflectance and Raman spectroscopy on carbonaceous 

material- were applied to the Karakaya Complex of northern Anatolia to constrain its 

thermal structure and evolution. Such multi-method investigation shows a good degree of 

correlation among the results of these methods, and demonstrates that Raman spectroscopy 

on carbonaceous material can be applied successfully to temperature ranges of 200-350°C, 

thus extending the application of this method from higher grade metamorphic contexts 

(Bollinger et al. 2004; Beyssac et al. 2007; Gabalda et al. 2009) to lower grade 

metamorphic conditions. 

Our data from the Lower Karakaya Complex (Nilüfer Unit) indicate a range of peak 

temperatures up to about 500°C (upper greenschist facies), with higher temperatures 

reached in Bursa, Eskişehir and in the Tokat Massif areas. The Hodul and the Orhanlar 

Units of the Upper Karakaya Complex yielded heterogeneous temperature peaks (125-

376°C) across the study area. Deep diagenetic conditions (4-5 km depth), were present in 

the Biga peninsula whereas towards the east anchizone up to epizone conditions (9-10 km) 

prevailed. The graywackes of the Orhanlar Unit and the arkoses of the Hodul Unit 

experienced a common range of peak temperatures across the study area. 

The thermal evolution of the Karakaya Complex as a whole is the result of complex 

accretionary wedge dynamics during the progressive closure of the Paleotethys in Permo-



Triassic time. At the Triassic-Jurassic boundary the Karakaya Complex was further 

deformed, uplifted and eroded during the Cimmerian collisional orogeny. The Complex is 

overlain by a relatively undeformed Early Jurassic succession which was never buried 

more than a few kilometers, suggesting that (i) most Karakaya Complex was already at 

shallow crustal depth by Early Jurassic time and hence (ii) its thermal evolution can be 

ascribed to subduction-accretion processes.  
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Figure captions 

 

Figure 1. Simplified tectonic map of Turkey and the surrounding regions. Modified from 

Okay and Tüysüz (1999). 

Figure 2. Tectonostratigraphy of the Karakarya Complex showing the tectonic 

relationships between its Lower and Upper portions. Modified from Okay (2000). 

Figure 3. Geologic map of the western-central Pontides with Kübler Index and vitrinite 

reflectance data, and Raman spectroscopy temperatures from the Karakaya Complex. 

Modified from Okay & Göncüoğlu (2004). 

Figure 4. Raman spectra of carbonaceous material obtained in various units of the 

Karakaya in order of increasing metamorphic grade. Location are indicated in Figure 3. 

Position of the graphite G band and D1, D2 defects bands are indicated. For each spectrum, 

the value of the mean R2 ratio (R2= D1/[G+D1+D2] peak area ratio) obtained after 10 

decomposition and corresponding RSCM temperature is given. 

Figure 5. Regional distribution of clay mineral, vitrinite reflectance, and Raman 

spectroscopy data. For ÁI only values between 0.33 and 0.26 are reported. For RSCM the 

mean temperatures are indicated. 

Figure 6. Schematic cross-section showing the hypothetical tectonic evolution of the 

Karakaya Complex during the (a) Middle Triassic and (b) Late Triassic. Modified from 

Okay (2000). 

Table 1. Clay mineralogy and vitrinite reflectance data and Raman spectroscopy 

temperatures. 

Table 2. Raman spectroscopy data with paleotemperatures higher than 350°C. 



 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 

 



 

 

CHAPTER 3 
 

 

 

 

 

 

 

 

This chapter consists of the manuscript titled “Pre-Cenozoic amalgamation of the 

İstanbul and Sakarya terranes (NW Turkey) – evidence from low-temperature 

thermochronology” by William Cavazza, Ilaria Federici, Aral I. Okay and Massimiliano 

Zattin. The manuscript was submitted to “Terra Nova” on October 19th, 2009. 
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ABSTRACT 

Apatite fission-track (AFT) analyses of a large number of rock samples collected from the Đstanbul 

terrane (ĐT) and the adjacent Sakarya terrane (ST) of northwestern Turkey isolate three discrete 

episodes of exhumation. (1) Paleocene - early Eocene AFT ages reflect the closure of the Izmir-

Ankara ocean. (2) Late Eocene – earliest Oligocene ages are the result of renewed tectonic activity 

along the Izmir-Ankara suture. (3) Late Oligocene - early Miocene ages reflect the onset and 

development of northern Aegean extension. AFT ages cluster identically both north and south of the 

tectonic contact between ĐT and ST, thus implying that such terranes were amalgamated in pre-

Cenozoic times. 
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Introduction 

The Pontides are an east-west trending orogenic belt stretching some 1,400 km, from SE 

Bulgaria to the Lesser Caucasus (Fig. 1). They repeatedly underwent deformation during the 

Variscan (Carboniferous), Cimmerian (Triassic), and Alpine (Late Cretaceous-Paleogene) orogenies 

(Yılmaz et al., 1997; Tüysüz, 1999), with widespread reactivation of older structures and creation of 

complex tectonostratigraphic relationships. Although presently constituting a discrete and 

continuous orographic element, the Pontides result from the amalgamation of three tectono-

stratigraphic terranes: the Strandja massif, the Đstanbul  terrane (ĐT) (also known as Đstanbul  Zone), 

and the Sakarya terrane (ST) (also known as Sakarya Zone). The Intra-Pontide suture, i.e. the 

tectonic boundary between ĐT and ST, is considered by Okay and Tüysüz (1999) the result of the 

progressive closure of an Intra-Pontide ocean during the Senonian. In contrast, according to Şengör 

and Yılmaz (1985), the Intra-Pontide suture formed in the early Eocene after an orthogonal opening 

between ĐT and ST during the Liassic. Stampfli and Hochard (2009) support a middle Jurassic 

collision between ĐT and ST. Akbayram et al. (2009) favor a Cenomanian collision. 

In this paper, based on a large number of AFT ages derived from rock units cropping out 

north and south of the Intra-Pontide suture, we document that ĐT and ST were mechanically coupled 

at least from the Paleocene and thus they were amalgamated in pre-Cenozoic times. This result has 

significant bearing on paleogeographic-paleotectonic reconstructions of the eastern Mediterranean  

region. 

 

Geological overview 

As mentioned above, the Pontides are made of three distinct tectonostratigraphic terrane: the 

Strandja massif, the ĐT, and the ST (Fig. 1). The Strandja massif constitutes the easternmost part of 

the vast crystalline basement massif that includes the Rhodope and Serbo-Macedonian massifs. It 

consists of a Variscan crystalline basement nonconformably overlain by a Triassic-Jurassic 

sedimentary succession (Aydın, 1974; Okay and Tüysüz, 1999; Sunal et al., 2006). Senonian 

andesites and associated granodiorites are widespread (Moore et al., 1980), and form a distinctive 

Late Cretaceous magmatic belt that can be followed all along the Pontides along the Black Sea and 

represents a magmatic arc developed above the northward subducting Neotethyan Ocean. 

The ĐT is a fragment of continental lithosphere about 400 km long (Figs. 1, 2). It is made of 

a late Precambrian basement complex overlain by a continuous Ordovician-to-Carboniferous 

sedimentary succession, which was deformed during the Hercynian orogeny (Dean et al., 1997; 

Görür et al., 1997). The ĐT shows a Paleozoic-Mesozoic stratigraphy similar to that of the Moesian 
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platform and -according to Okay et al. (1994)- prior to the Late Cretaceous opening of the western 

Black Sea it was situated south of the Odessa shelf (Fig. 1). 

The ST is an elongate lithospheric ribbon stretching >1,500 km from the Aegean Sea to the 

Lesser Caucasus (Fig. 1). It is characterized by the absence of in situ Paleozoic sedimentary rocks, 

by the presence of a characteristic Permo-Triassic subduction-accretion complex (Karakaya-Küre 

Complex), and by a ubiquitous early to mid-Jurassic transgression (Okay and Göncüoğlu, 2004).  

 

Analytical methods 

Fission-track dating is a tool to unravel the cooling histories experienced by rocks in the upper 

crustal levels and to give a measure of their motion toward the surface (for a review, see Donelick 

et al., 2005). Fission tracks in apatites all have the same initial length of about 16 µm (Green, 1988) 

but anneal at rates proportional to temperatures, starting at about 60°C. Over geological time scales, 

partial annealing of fission tracks occurs at temperatures between about 60 and 125°C (the Partial 

Annealing Zone: PAZ; Gleadow and Fitzgerald, 1987). Because tracks shorten in relation to the 

degree and duration of heating, the measurement of fission track lengths gives information about 

thermal evolution in the PAZ temperature range. A quantitative evaluation of the thermal history 

can be carried out through modelling procedures, which find a range of cooling paths compatible 

with the AFT data (Ketcham, 2005). In this work, inverse modelling of track-length data was 

performed using the HeFTy program (Ehlers et al., 2005), which generates the possible T-t paths by 

a Monte Carlo algorithm.  

 

Discussion of analytical results 

Samples were collected from most of the suitable stratigraphic units across a large area of the ĐT 

and the ST (Fig. 2). Figure 2 shows the areal distribution of AFT ages in the study area; complete 

results are listed in Table 1. All youngest, Neogene AFT ages were yielded by rock samples 

collected in the western portion of the study area around the Marmara Sea. Except for the Neogene 

ages, all other AFT ages do not show any consistent geographic distribution (Fig. 2). Similarly, 

there is no relationship between FT ages and sample elevations (Table 1). 

AFT ages from the western portion of our study area confirm the results of Zattin et al. 

(2009) that most exhumation in the peri-Marmara region occurred in latest Oligocene – early 

Miocene times, when the Aegean domain was beginning to form by extension. Detachments are 

widespread in the Cyclades as well as in the northern Rhodope and western Turkey (e.g. Gautier 

and Brun, 1994; Dinter, 1998). For example, the two youngest AFT ages (16.8 ± 1.9 and 16.3 ± 1.4 

Ma) of our entire dataset were yielded by samples taken from pre-Jurassic units a few km east of the 
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Kazdağ core complex (Table 1, Fig. 2), a major Aegean-related extensional feature exposing mid-

crustal level (Okay and Satır, 2000; Cavazza et al., 2008). Zattin et al. (2005, 2009) and Okay et al. 

(2008) provide evidence that the present-day western portion of the North Anatolian Fault system –

widening to ca. 100 km in a north-south direction in the Marmara-Biga region- is superposed on 

older, generally east-west trending, tectonic structures with a significant vertical component, thus 

capable of inducing exhumation.  

The oldest AFT age of our entire dataset (106.6 ± 5.7 Ma) was yielded by a sandstone 

sample (TU 116, Table 1) from the Carboniferous fluvio-deltaic Karadon Formation along the coast 

of the Black Sea (Fig. 2). This is the only evidence in the study area of the thermochronological 

effects of the opening of the western Black Sea. The FT age of this sample fits well with the time 

span covered by the western Black Sea break-up unconformity between the Cağlayan Fm. (Aptian-

Albian) an the Kapanboğazi Fm. (Cenomanian) in the area of Sinop and the correlative hyatuses to 

the west (Tüysüz, 1999, Fig. 3). Such distinctive thermotectonic event was likely registered by other 

rock units but then erased by younger thermochronological events.  

If we exclude the Neogene AFT ages from the westernmost samples and the one Early 

Cretaceous age discussed above, all other twenty-two AFT ages cluster into two discrete groups 

(Fig. 3). Such groups are neither geographically nor geologically defined, as samples from both the 

ĐT and the ST concur to the composition of each group. The first cluster comprises Paleocene-

Ypresian AFT ages and if we exclude sample TU 41 (65.8 ± 5.0 Ma), the age distribution of the 

other ten samples within this cluster ranges narrowly between 62.3 (late Danian) and 50.3 Ma (late 

Ypresian). The second cluster comprises eleven samples ranging in age between 43.5 (late Lutetian; 

TU 120) and 32.3 Ma (early Rupelian; TU 114). Excluding sample TU 120, the entire late Ypresian 

– early Bartonian time span, covering about >10 Ma, is devoid of AFT ages. Similarly, the early 

Rupelian – early Chattian time span is also devoid of AFT ages (Fig. 3). 

The coherent AFT ages distribution along the western-central Pontides, with three discrete 

clusters of ages alternating with two relatively long periods of little or null exhumation, requires a 

geologically meaningful explanation. The absence of any regular spatial pattern in the geographic 

distribution of the older AFT ages derives from the complex tectonic history of the Pontides, with 

multiple, superposed deformation episodes –including Plio-Quaternary strike-slip deformation with 

large horizontal offset- which have generated complex tectonostratigraphic relationships and 

jumbled any previous spatially coherent exhumation trend(s). From this viewpoint, it is not 

surprising that the only areally defined exhumation trend is determined by the youngest cluster of 

ages concentrated in the westernmost portion of the study area (Figs. 2, 3). In fact, such cluster (late 
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Oligocene – early Miocene) relates to northern Aegean regional extension, i.e. the latest tectonic 

event capable of generating significant vertical separation. 

The older age cluster (Paleocene – late Ypresian; Fig. 3) can be explained as the result of 

deformation induced by the closure of the Đzmir-Ankara oceanic domain and the ensuing collision 

in the Paleocene – early Eocene between the ST to the north and the Anatolide-Tauride Block to the 

south (Okay and Tüysüz, 1999; Okay et al., 2001). All our samples are within 100 km from the 

trace of the Đzmir-Ankara suture (Fig. 2) and the entire study area provides ample evidence of 

deformation related to the development of such suture (e.g. Okay et al., 2001). Our data are 

supported by similar Paleocene – early Eocene AFT ages from the Dereli–Şebinkarahisar granitoids 

in the Eastern Pontides (Boztuğ et al., 2004), also interpreted as the result of fast exhumation related 

to the collision. 

The Bartonian – early Rupelian age cluster (Fig. 3) corresponds to the second phase of 

deformation along the Pontides characterized by the termination of deposition and deformation in 

the internal basins (Okay et al., 2001; Fig. 13).  Alternatively, Robinson et al. (2005, Fig. 8) 

interpreted a widespread stratigraphic hyatus covering the same time span in the eastern Pontides as 

the result of rifting and opening of the eastern Black Sea, while compression induced by the closure 

of the Neotethys would have occurred much later in the late Eocene - Oligocene 

Modeling of fission-track data was performed on the five samples with the highest numbers 

of measured tracks (Table 1) and provided more quantitative constraints on their cooling paths (Fig. 

4).  Sample TU 41 from early Eocene turbidites north of Đzmit Bay within the ĐT yielded an AFT 

age of 65.8 Ma, i.e. older than its depositional age. This implies that (i) we dated fast cooling and 

exhumation in the sediment source area in the latest Cretaceous time, and (ii) the flysch has never 

been buried at the bottom of the PAZ after deposition. Sample TU 46 from a granitoid unit within 

the ST also points to an early Paleocene episode of exhumation. Cooling occurred over a wide time 

span until the early Oligocene, with a discrete period of no exhumation during the middle Eocene, 

in line with the overall absence of AFT ages in this period throughout the study area (Fig. 3). TU 

116 was taken from Westphalian fluvio-deltaic deposits along the coast of the Black Sea and 

yielded an Albian AFT age. In spite of relatively scarce constraints for the pre-Cretaceous history, 

thermochronological modeling indicates a long phase of Mesozoic subsidence followed by steady 

exhumation during Cretaceous times. TU 117 was also taken along the Black Sea coast, from 

Triassic continental to shallow-marine deposits. Its modelled thermochronological evolution is 

similar to the one of TU 116, with a long phase of early-middle Jurassic subsidence followed by 

exhumation beginning in the late Jurassic and taking up speed starting at about 110 Ma. The 

somewhat younger early Paleocene AFT age (61.0 Ma) of TU 117 derives from the short tracks 
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(mean confined track lengths = 11.76 µm; Table 1), indicating a long period of residence of the 

sample within the partial annealing zone. TU 123 from a Precambrian granite of the ĐT yielded an 

AFT age of 38.3 Ma (late Bartonian). Inverse modelling of track-length data indicates fairly steady, 

low rates of cooling. 

The clustering of AFT data from both the ĐT and ST into two coherent groups (Danian-

Ypresian and late Lutetian - early Rupelian) indicates that they were amalgamated by earliest 

Paleocene time and then suffered the same tectonic events. Both exhumation episodes correlates 

well with phases of deformation along the Izmir-Ankara suture, as discussed above. The overall 

Cenozoic chronostratigraphy of sedimentary successions in the Pontides within relatively short 

distance from the Izmir-Ankara suture (<50 km) agrees with our thermochronologic data, as major 

supraregional hyatuses correspond to the two older clusters of AFT ages (Fig. 5). Other independent 

data substantiate the hypothesis of a pre-Cenozoic amalgamation of the ĐT and ST. (1) Within the 

Pontides, the Turonian-Campanian magmatic arc related to northward subduction of the Izmir-

Ankara ocean stretches continuosly some 1,500 km from Bulgaria to the Caucasus, crossing the 

tectonic boundaries between the Strandja massif, the ĐT, and the ST without any significant 

interruption or offset. (2) Tüysüz (1999) showed that ĐT and the ST in the central Pontides share a 

common Senonian stratigraphy while they differ in their pre-Senonian stratigraphy and evolution, 

thus indicating that amalgamation must be Cenomanian or older. The question arises if 

amalgamation took place during the Cenomanian, i.e. concomitant with the opening of the western 

Black Sea (Okay et al., 2001; Akbayram et al., 2009), or earlier (i.e. in the middle Jurassic, as 

shown in the paleotectonic reconstructions by Stampfli and Hochard, 2009). 

 

Conclusions 

The complex areal distribution of exhumation ages documented in this paper in the western and 

central Pontides results from the superposition of discrete tectonic events. The western portion of 

the study area is dominated by late Oligocene – early Miocene AFT ages which obliterated any 

previous thermotectonic event. We suggest that extension that affected the Aegean region (e.g. 

Jolivet et al., 2004) gave rise to exhumation at a regional scale. These exhumation ages are in 

agreement with the thermochronologic and structural data of Zattin et al. (2005, 2009) and Okay et 

al. (2008) for the southern and western Marmara region, indicating that the present-day North 

Anatolian Fault –which branches into a ca. 100 km wide fault system in the Marmara-Biga region- 

is superposed on older, generally east-west trending, tectonic structures capable of inducing 

significant exhumation. 
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All older exhumation ages in the study area do not show an ordered geographic distribution 

yet they cluster coherently into two discrete groups: late Danian - late Ypresian (62.3-50.3 Ma) and 

late Lutetian - early Rupelian (43.5-32.3 Ma). Both exhumation episodes correlates well with 

phases of deformation along the Izmir-Ankara suture. Since the thermochronological effects of the 

two exhumation episodes are widespread in both the Đstanbul and Sakarya terranes, our data 

indicates that their amalgamation occurred in pre-Cenozoic times. 
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Figure captions 

Figure 1. Simplified tectonic map of Asia Minor and the surrounding regions showing the major 

terranes and sutures. Modified from Okay and Tüysüz (1999). 

 

Figure 2. Geologic map of the western-central Pontides with apatite fission-track ages (black) from 

the Đstanbul and Sakarya Zones. Modified from Okay et al. (2008). 

 

Figure 3. Age distribution of apatite fission-track data from the Đstanbul (black bars) and Sakarya 

(gray bars) Zones. See Fig. 2 for location of samples.  

 

Figure 4. Time-temperature paths obtained from inverse modelling using the HeFTy program 

(Ehlers et al., 2005), which generates the possible T-t paths by a Monte Carlo algorithm. Predicted 

AFT data were calculated according to the Ketcham et al. (2007) annealing model and the Donelick 

et al. (1999) c-axis projection. Shaded areas mark envelopes of statistically acceptable fit and the 

thick lines correspond to the most probable thermal histories. Thermal paths out of the partial 

annealing zone are largely inferential as fission-track data cannot give reliable information out of 

this temperature range. In each diagram, parameters (model and measured age, model and measured 

mean length) related to inverse modelling are reported. GOF gives an indication about the fit 

between observed and predicted data (values close to 1 are best). 

 

Figure 5. Simplified chronostratigraphic sections for selected localities in the Sakarya terrane. 

Major hyatuses correspond to exhumation episodes defined by AFT age clusters of Fig. 2. 
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Sample 

number
Rock unit UTM coordinates

Elevation 

(m)

No. of 

crystals
P(�)

2 Age (Ma) ± 

1s

Mean confined 

track length 

(mm) ± std. err.

Std. dev. 
No. of tracks 

measured

ρs Ns ρi Ni ρd Nd

TU 38^ Eocene granodiorite 0667110  4497786 424 15 3.51 193 1.16 636 20.2 0.94 4474 51.4 ± 4.8 13.43 ± 0.33 1.91 33

TU 39^ ?Oligocene tuffite 0711381  4503904 - 20 1.66 124 0.60 448 98.9 1.05 4982 53.0 ± 5.5 15.46 ± 0.11 1.07 100

TU 41^ Early Eocene turbidite 0730648  4522849 - 20 5.83 255 1.51 661 99.9 0.94 4444 65.8 ± 5.0 13.83 ± 0.18 1.79 100

TU 46^ granite 0274412  4495581 - 20 2.34 157 0.85 570 67.6 1.06 5021 53.3 ± 4.9 13.28 ± 0.34 1.71 52

TU 47^ Eocene granite 0560460 4485269 25 20 2.46 199 1.44 1164 86.6 1.07 5059 33.4 ± 2.6 14.15 ± 0.15 1.04 49

TU 48^ Eocene granite 0545966 4494013 20 20 0.51 67 0.46 597 91.6 0.94 4458 19.3 ± 2.5 14.12 ± 0.16 1.31 68

TU 49^ Eocene granite 0549675 4495825 709 20 0.64 34 0.44 235 99.6 1.04 4924  27.5 ± 5.1 14.52 ± 0.19 1.16 38

TU 92^ Trakya Fm. ss. (Carb.) 0641940  4555239 31 14 0.27 72 1.95 517 99.9 1.05 4993 24.3 ± 3.1 13.59 ± 0.16 0.80 25

TU 94^ Trakya Fm. ss. (Carb.) 0662767  4556491 - 8 0.34 75 2.36 517 6.9 1.08 5122 25.6 ± 4.1 12.62 ± 0.30 1.46 23

TU 96^ andesite dyke (?K) 0678005  4523039 - 26 0.10 137 0.71 937 84.8 1.07 5085 25.4 ± 2.6 - - -

TU 100^ Çavuşbaşı granite (?K) 0681234  4552295 92 21 0.18 151 0.79 664 85.3 1.06 5030 39.9 ± 3.7 13.77 ± 0.23 1.20 27

TU 101 Bayırköy Formation (early J.) 0667147  4436914 - 10 0.46 72 1.31 204 43.2 1.07 5067 62.3 ± 8.7 - - -

TU 109* Hodul Unit  (Triassic) 0693970  4451364 - 19 5.66 336 2.63 1562 0.0 1.12 5291 39.4 ± 4.8 - - -

TU 110 Pamukova granite (Prec.) 0255732  4490386 348 12 1.19 307 3.74 964 0.0 1.07 5103 58.9 ± 12.5 11.42 ± 0.31 1.47 22

TU 111 Geyve gneiss (Prec.) 0274851  4502255 108 15 0.33 72 1.47 321 98.8 1.00 4750 37.2 ± 4.9 - - -

TU 112 Bolu Dagi granodiorite (Prec.) 0421837  4545342 607 22 0.43 140 1.26 413 62.2 1.06 5048 59.6 ± 6.1 11.83 ± 0.27 1.40 27

TU 113 Ulus Fm. ss. (Aptian-Albian) 0446093  4561816 208 9 0.28 38 0.94 129 57.5 1.03 4907 50.3 ± 9.4 - - -

TU 114 Carboniferous ss. 0402256  4589029 80 14 0.31 119 1.65 640 65.8 1.05 4975 32.3 ± 3.3 14.08 ± 0.29 1.21 17

TU 116 Karadon Fm. ss. (Carb.) 0444679  4619235 10 19 1.15 925 1.88 1521 13.7 1.06 5047 106.6 ± 5.7 13.04 ± 0.12 1.25 100

TU 117 Çakraz Fm. ss. (Triassic) 0456851  4625629 5 21 0.78 379 2.23 1088 14.7 1.05 5012 61.0 ± 4.5 11.76 ± 0.16 1.44 86

TU 120 ?Jurassic granitoid 0554312 4619561 1237 6 0.72 87 2.89 349 93.5 1.05 5006 43.5 ± 5.3 12.49 ± 0.38 1.63 18

TU 121 Hercynian granitoid 0579170 4606995 1183 20 1.14 849 7.09 5277 83.4 1.04 4965 27.9 ± 1.2 13.52 ± 0.09 0.92 100

TU 123 Iğdir granite (Prec.) 0512004  4574545 1167 14 0.69 258 3.04 1137 60.7 1.02 4842 38.3 ± 2.8 13.59 ± 0.16 1.16 54

TU 125 Mudurnu Fm. ss. (middle J.) 0338444  4487906 447 3 1.15 11 0.39 37 82.5 1.04 4924 51.0 ± 17.6 - - -

TU 126 granite (Prec.) 0329991  4495829 571 18 0.34 203 1.77 1049 99.6 1.03 4883 33.0 ± 2.6 13.51 ± 0.20 1.30 42

TU 234 Elmadağ Fm (middle-late Tr.) 0508153  4423773 900 20 0.28 210 2.00 1517 71.8 1.49 7088 34.2 ± 2.6 13.74 ± 0.25 1.00 16

TU 236 Devecidağ Complex (Triassic) 0656958  4442603 840 5 0.39 66 2.57 429 25.5 1.50 7138 38.3 ± 5.1 - - -

IF 6 Hodul Unit (Triassic) 0687071  4459898 172 21 0.36 181 3.72 1863 1.9 1.16 5498 19.7 ± 2.1 13.13 ± 0.19 1.15 38

IF 8 Hodul Unit  (Triassic) 0688559  4458907 253 8 0.27 58 1.91 404 96.2 1.15 5457 27.3 ± 3.9 - - -

IF 12 Orhanlar Greywacke (Tr.) 0553203  4414050 263 24 0.08 36 0.61 270 51.4 1.11 5293 24.6 ± 4.4 - - -

IF 14 Orhanlar Greywacke (Tr.) 0552629  4415471 231 14 0.36 79 3.54 787 5.5 1.14 5416 18.4 ± 3.0 12.56 ± 0.47 1.25 7

IF 16 Hodul Unit  (Triassic) 0550687  4399167 293 10 0.40 61 3.15 485 57.7 1.13 5375 23.6 ± 3.2 - - -
IF 21 Çamlık Granodiorite 0515901  4384381 376 21 0.17 93 1.91 1030 96.0 1.12 5334 16.8 ± 1.9 12.81 ± 0.26 1.24 22

IF 24 Hodul Unit  (Triassic) 0515487  4383163 241 17 0.51 254 5.67 2842 11.0 1.11 5252 16.3 ± 1.4 12.77 ± 0.18 1.18 42

IF 35 Orhanlar Greywacke (Tr.) 0670389  4437874 422 23 0.22 92 1.20 509 60.5 1.09 5170 32.6 ± 3.8 - - -

IF 38 Orhanlar Greywacke (Tr.) 0669326  4437757 561 13 0.85 193 2.79 632 6.1 1.08 5129 56.0 ± 6.1 11.16 ± 0.39 1.93 25

Notes. Central ages calculated using dosimeter glass CN5 and ζ-CN5=332.54±5.55. ρs: spontaneous track densities (x 10
5
 cm

-2
) measured in internal mineral surfaces; Ns: total number of spontaneous tracks; ρi and ρd: induced and dosimeter track 

densities (x 10
6
 cm

-2
) on external mica detectors (g=0.5); Ni and Nd: total numbers of tracks; P(χ

2
): probability of obtaining χ

2
-value for ν degrees of freedom (where ν=number of crystals-1); a probability >5% is indicative of an homogenous population. 

Predicted AFT data were calculated according to the Ketcham et al. (1999) annealing model and the Donelick et al. (1999) c-axis projection. Procedures for sample preparation and analysis are described in Zattin et al. (2000).  *Published in Okay et 

Spontaneous         Induced Dosimeter

Table 1. Apatite fission-track analyses. See Fig. 2 for location of samples. 
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This chapter consists of the manuscript titled “A precursor of the North Anatolian Fault in the 

Marmara Sea region” by Massimiliano Zattin, William Cavazza, Aral I. Okay, Ilaria Federici, 

Maria Giuditta Fellin, Antonio Pignalosa and Peter Reiners. The manuscript was submitted to the 

“Journal of Asia Earth Sciences” on May 20th, 2009, and accepted on March 11th 2010. 
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Abstract 

Apatite (U-Th)/He and fission-track analyses of both basement and sedimentary cover 

samples collected around the Marmara Sea point to the existence of a system of major E-W-

trending structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, 

inception of the present-day North Anatolian Fault (NAF) system in the Marmara region occurred 

by reactivation of these older tectonic structures.  This is particularly evident across the Ganos fault 

in southern Thrace, as exhumation south of it occurred during the latest Oligocene and north of it 

during the mid-Miocene. In this area, large tectonic structures long interpreted as the results of Plio-

Quaternary NAF-related transpressional deformation (i.e. the Ganos monocline, the Korudağ 

anticline, and the Gelibolu folds) were in fact produced during the Late Oligocene – Early Miocene. 

The overall lack of significant (U-Th)/He age differences across the NAF indicates that the Early 

*Manuscript
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Pliocene inception of strike-slip motion in the Marmara region represents a relatively minor 

episode. At the scale of the entire Marmara region, the geographic pattern of exhumation ages 

shown in this study results instead from the complex superposition of older tectonic events 

including (i) the amalgamation of Sakarya and Anatolide-Tauride terranes, and (ii) Aegean-related 

extension. 

 

Keywords 

Thermochronology, exhumation, North Anatolian Fault, Marmara Sea. 

 

The Marmara Sea consists essentially of depressions and ridges aligned along the E-W trend 

of the North Anatolian Fault (NAF). This fault system, about 1500 km long, is characterized by a 

right-lateral strike-slip motion and constitutes the northern boundary of the westward moving 

Anatolian block (e.g. Jackson and McKenzie, 1988; Barka, 1992). According to the common 

interpretation, the NAF nucleated in eastern Anatolia (Bitlis-Zagros suture zone) during the Late 

Miocene (ca. 11 Ma) following the collision of the Arabia and Anatolian plates, and propagated 

westward reaching the Marmara region during the Pliocene (e.g. Barka, 1992; Hubert-Ferrari et al., 

2002; Şengör et al., 2005). In this region, the NAF widens into a complex fault zone stretching 

some 100 km in a N-S direction, from Ganos Mt. in southern Thrace (Okay et al., 2004) to Kazdağ 

in the southern Biga peninsula (Cavazza et al., 2008). Such configuration translates into a high 

degree of structural complexity, with coexisting deep basins, push-up structures, and block rotations 

(e.g. Seeber et al., 2004). The inception of the NAF activity has been inferred based on the study of 

the associated sedimentary basins, with earlier studies relying mainly on the scarce palaeontological 

data from terrestrial sedimentary records (see Şengör et al., 2005, for a review). The oldest basins 

are Middle to Late Miocene in age, whereas the youngest are hardly older than the Pleistocene. 

Based on apatite fission-track analysis of limited number of samples, Zattin et al. (2005) suggested 

that the Ganos segment of the NAF follows a preexisting structural discontinuity in existence at 
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least by the latest Oligocene. Late Oligocene age displacement along the NAF is also supported by 

Uysal et al. (2006) who studied a ca. 500 km long segment of the NAF east of the Marmara Sea by 

radiometric dating of fault gouges. They found that an early event of significant strike-slip was 

initiated at about 57 Ma, but further intensified at ~26 Ma and later than ~8 Ma. Kaymakci et al. 

(2007), on the basis of palaeomagnetic data, proposed that the Ganos fault and other ENE-trending 

faults experienced dextral strike-slip activity before the Late Pliocene development of the NAF. An 

Oligocene major strike-slip shear zone in western Anatolia, with an estimated right-lateral offset of 

100±20 km, was described also by Okay et al. (2008) in the Uludağ area, located close to the city of 

Bursa, about 30 km south of the Marmara Sea. All these papers support the idea that pre-existing 

mechanical weakness zones such as faults and shear zones greatly influence the locus of subsequent 

tectonic activity (e.g. Holdsworth et al., 1997). 

In this paper, we build on the results by Zattin et al. (2005) to give a more complete picture 

of the tectonic evolution of the western NAF by using (U-Th)/He and fission-track dating on 

apatite. Samples were therefore collected all around the Marmara Sea and across the main strands of 

the fault. Our data confirm that the Marmara segments of the active NAF, regarded as post-Miocene 

structures, have had instead a complex evolution, as shown by the presence of pre-Late Miocene 

structural discontinuities along which significant vertical displacements occurred. The exact age of 

these earlier discontinuities is difficult to determine but should be older than the extension that 

affected the Aegean region since the Late Oligocene (e.g. Seyitoğlu et al., 1992; Jolivet and 

Faccenna, 2000). Thermochronological data by Zattin et al. (2005) demonstrate that in the Late 

Oligocene vertical displacements occurred along a precursor of the Ganos fault. The additional 

dataset presented in this paper suggests that the location and kinematics of the western NAF are 

controlled by position and geometry of the basement block margins inherited from Mesozoic–

Cenozoic closure of oceanic basins belonging to the Tethyan realm and the ensuing collision 

between the bordering microcontinents. 
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Geologic setting 

The Neogene tectonics of the Marmara region has been controlled by the interaction of the 

extensional regime driven by slab retreat along the Aegean subduction zone (e.g., Jolivet, 2001) and 

the westward escape of the Anatolian microplate (moving with respect to the Eurasian plate at a 

velocity of ~21 mm/yr; e.g., Reilinger et al., 2006) guided by the NAF. In central Anatolia, over 

90% of this movement is concentrated on this fault, which forms a well-defined narrow plate 

boundary. In the Aegean region, the rigid westward translation of the Anatolian microplate 

combined with back-arc spreading behind the Aegean Trench gave way to distributed north-south 

extension along E-W–trending normal faults. This extension resulted in the formation of E-W 

trending grabens, which are the most prominent neotectonic feature of western Anatolia (Bozkurt, 

2001). The same structural trend is observed in the Marmara Sea region, where the NAF developed 

as a complex fault system. East of the Marmara Sea, the NAF splits into two branches which, 

divided into sub-branches, form a zone of distributed deformation more than 120 km wide (Fig. 1; 

Şengör et al., 1985). However, GPS studies show that over 90% of the present-day strike-slip 

deformation occurs along the main northern branch of NAF passing through the Marmara Sea and 

continuing westward into Thrace as the Ganos segment (McClusky, 2000; Meade et al., 2002). The 

Marmara Sea comprises a broad shelf to the south and three deep step-over sub-basins to the north 

(Barka, 1997; Okay et al., 2000; Le Pichon et al., 2001; Imren et al., 2001; Armijo et al., 2002). 

Transpressional uplift and transtensional subsidence are associated with the Ganos fault in the 

western Marmara region (Okay et al., 2004; Seeber et al., 2004).  

The present-day tectonic framework of Anatolia is the result of a complex evolution that 

initiated in the Late Cretaceous with the convergence between the African and Eurasian plates. This 

resulted in the progressive closure of the Neotethyan Ocean and the amalgamation of the 

surrounding continental fragments. The consequent subduction–accretion complexes and 

emplacement of ophiolites produced the present-day crustal configuration.  
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In western Anatolia an extensional phase occurred during latest Oligocene-Miocene time, as 

testified by exhumation of the Kazdağ massif in the southern Biga Peninsula (Okay and Satir, 2000; 

Cavazza et al., 2008) and in the Simav complex in the northern Menderes Massif (Isik et al., 2004; 

Thomson and Ring, 2006). In both cases, Neogene tectonic evolution involved rapid exhumation 

through low-angle detachment faults followed by relative quiescence, at least in terms of vertical 

tectonics. The history of this extensional phase is consistent with that of the Aegean post-orogenic 

back-arc extension, widely recognised in the central Aegean region (e.g. Jolivet et al., 2008). 

 

The terranes of the Marmara region  

Geologically, the Marmara region resulted from the amalgamation of relatively small 

continental fragments: the Sakarya Zone to the south, the İstanbul Zone to the northeast and the 

Strandja-Rhodopian terrane cropping out all along the northern, western and southern margins of 

the Thrace Basin (Fig. 1; Görür and Okay 1996; Okay and Tüysüz 1999). According to Şengör and 

Yılmaz (1981), the tectonic boundary between the Sakarya and İstanbul zones –the so-called Intra-

Pontide suture- formed in the early Eocene after an orthogonal opening between the İstanbul and 

Sakarya terranes during the Liassic. Okay and Tüysüz (1999) advocated a Senonian closure of the 

Intra-Pontide ocean. Beccaletto et al. (2005) pointed out that the Intra-Pontide suture cannot be 

traced in the western Marmara region. Following is a concise description of the peri-Marmara 

terranes. 

The Sakarya Zone is a terrane characterised by the presence of a Triassic subduction-

accretion complex (Karakaya Complex), which forms a strongly deformed and partly 

metamorphosed basement. The final phase of deformation occurred during the latest Triassic and 

was followed by sedimentation of Jurassic continental to shallow-marine deposits, Cretaceous 

carbonates, and finally by Senonian andesites (Altıner et al., 1991; Tüysüz, 1993).  

The İstanbul Zone is made of Precambrian crystalline basement overlain by a continuous 

transgressive sedimentary succession ranging from Ordovician to Carboniferous which was 
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deformed during the Hercynian orogeny (Dean et al., 1997; Görür et al., 1997). The deformed 

Paleozoic succession is unconformably overlain by a Mesozoic succession. Senonian andesites and 

small acidic intrusions are widespread and are related to the northward subduction of the İzmir-

Ankara ocean (Okay and Tüysüz, 1999).  

The Strandja zone constitutes the easternmost part of the crystalline basement that includes 

the Rhodope Massif and, in the Marmara region, is made of metamorphic rocks intruded by 

Permian granites which are unconformably overlain by a Triassic succession (Aydın, 1974; Okay 

and Tüysüz, 1999). Basement and Triassic succession were regionally metamorphosed during the 

mid-Jurassic and then overlain by Cenomanian conglomerates and shallow marine limestones. As in 

the case of the İstanbul Zone, these are covered by Senonian andesites and intruded by associated 

granodiorites (Moore et al., 1980). 

The crystalline rocks of Strandja-Rhodope represent the basement of the Thrace basin 

(Görür and Okay 1996). The base of the Thrace basin fill is Early-Middle Eocene (Sakinç et al., 

1999; Siyako and Huvaz, 2007) and the following deposits (until the Oligocene) form a shallowing-

upward, dominantly clastic succession up to 9000-m-thick. The depocenters of the basin are 

characterised by locally tuffaceous siliciclastic turbidites, whereas continental to shallow-marine 

clastics and carbonates with subordinate volcanoclastics were laid along the margins and on 

elongate bathymetric highs. Dramatic lateral facies changes and the corresponding irregular 

subsidence patterns during the Middle Eocene (Siyako and Huvaz, 2007) have been interpreted as 

the result of strike-slip tectonism (e.g. Turgut et al., 1991). During the Early Oligocene, shales and 

sandy shales were deposited in a shelf to slope environment. Later sedimentation was characterised 

by coal-bearing clastics and carbonates with some tuffaceous material deposited in marginal marine 

to terrestrial environments (Turgut et al., 1991). During the latest Miocene–Pliocene, most of the 

area was characterised by fluvial deposition which lasted until the Late Pleistocene. 

 

Methods 
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Fission-track dating is a useful tool to unravel the cooling histories experienced by rocks in 

the upper crustal levels and to give a measure of their motion toward the surface (for a review of the 

method, see Donelick et al., 2005). Fission tracks in apatites all have the same initial length of about 

16 µm (the extact length depending on composition; e.g. Ketcham et al., 1999) but anneal at rates 

proportional to temperatures, starting from about 60°C. Over geological time scales, partial 

annealing of fission tracks occurs at temperatures between about 60 and 125°C (the Partial 

Annealing Zone: PAZ; Gleadow and Fitzgerald, 1987). Because tracks shorten in relation to the 

degree and duration of heating, the measurement of fission track lengths gives information about 

the thermal evolution in the PAZ temperature range. A quantitative evaluation of the thermal 

history can be carried out through modelling procedures, which find a range of cooling paths 

compatible with the apatite fission-track (AFT) data (Ketcham, 2005). In this work, inverse 

modelling of track length data was performed using the HeFTy program (Ehlers et al., 2005), which 

generates the possible T-t paths by a Monte Carlo algorithm. Predicted AFT data were calculated 

according to the Ketcham et al. (1999) annealing model and the Donelick et al. (1999) c-axis 

projection. 

The (U-Th)/He method is based on the accumulation of 
4
He produced by the decay of 

238
U, 

235
U, 

232
Th and 

147
Sm. Radiogenic 

4
He diffuses out of the mineral at a rate determined by the 

temperature and the He diffusivity of the mineral. The temperature range of the apatite He partial 

retention zone (PRZ) is estimated to be ~40-80°C (Wolf et al., 1998). Measurements are typically 

made using a two-stage analytical procedure involving degassing of the crystal by heating and gas-

source mass spectrometry to measure 
4
He, followed by inductively-coupled plasma mass 

spectrometry on the same crystal to measure U and Th (and, in some cases, Sm). Grain ages 

typically have a relative standard error of approximately 3% to 5%, as determined by replicate 

measurements. 

Procedures for sample preparation and analysis are outlined in Table 1 and described in 

more detail in Zattin et al. (2000) and Reiners (2005).   
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Analytical results 

Western Marmara Sea 

The westernmost samples come from Gökçeada (Fig. 2a). TU55 was collected from  

andesites dated at 30.4±0.7 Ma (K/Ar; Ercan et al., 1995) and cutting Eocene-Oligocene flysch. The 

obtained AFT age (27.2±1.8 Ma) and the very long track lengths (mean length = 15.11 µm; Table 

1) indicate fast cooling immediately after the volcanic event. A sample from a sandstone bed of the 

Upper Eocene-Lower Oligocene Ceylan Fm from the Gökçeada (TU54; see Gelibolu column in Fig. 

3) yielded an AFT age of 48.5±5.7 Ma, i.e. older than the depositional age considering 1 sigma 

error (Fig. 4). Given the AFT age of the andesites, we can infer that the Upper Eocene-Oligocene 

flysch underwent no major post-depositional burial and, therefore, the AFT age of sample TU54 is 

related to the cooling of the source rock and does not give any information about the post-

depositional history. However, the time of exhumation of the rocks exposed on the island is 

constrained by AHe dating (11.9±0.1 Ma, sample TU55), which indicates that (i) the andesites were 

emplaced at a depth above the AHe closure temperature and (ii) final cooling took place in the 

Serravallian. 

Moving to the Gelibolu peninsula, we dated a sample (TU52) collected from a tuffite bed 

within the Ceylan Fm dated at 30.05±0.49 Ma (Ar-Ar on biotite; Di Vincenzo, pers. comm.). Here 

AFT data agree with Ar-Ar data (27.2±2.6 Ma), thus indicating minor post-depositional burial. 

Moreover, Ar-Ar and AFT data indicate that the depositional age of the Ceylan Fm reaches up the 

end of the Early Oligocene. Exhumation to very shallow levels occurred only in the Late Miocene, 

as testified by an AHe age of 8.4±0.1 Ma from the same sample. The AHe age indicates some 

reheating that should have caused some annealing of fission tracks. Actually, the radial plot (Fig. 4) 

shows some grains older than depositional age that could be related to inherited apatites (i.e. not 

crystallized during the Oligocene magmatic event) and the younger individual grain ages could 

therefore be referred to some post-depositional annealing that affected the volcanic apatites. A Late 
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Oligocene AFT exhumation age (28.3±3.2 Ma) is recorded by sample TU51, collected from the 

Ceylan Formation (Fig. 3) exposed just south of the NAF, close to the coast of the Saros Gulf. 

However, here the chi-square test shows a broad dispersion of single grain ages, part of which are 

older than the stratigraphic age (Fig. 4). Hence, post-depositional burial was not sufficient to reset 

completely the fission tracks but enough to reset the AHe system which gave a very young age of 

2.5±0.1 Ma. Sample TU50, collected from the Keşan Formation exposed just south of the 

easternmost Ganos fault, gave an AFT age of 22.3±2.5 Ma, slightly younger than AFT ages from 

previously described samples. Its AHe age is again quite young (4.7±0.1 Ma). 

North of sample TU51 and north of the NAF, in the core of the Korudağ anticline sample 

TU64 yielded an AFT age of 24.9±2.3 Ma, younger than its depositional age (Eocene, Keşan 

Formation; Fig. 4). In this case, burial temperatures were comprised into the PAZ, as constrained by 

inverse modelling which was performed by using both AFT and AHe data (Fig. 5). The cooling 

path is quite complex, with a rapid cooling event at 14-10 Ma followed by very low cooling rates. 

We performed also some AHe dating on samples from the Ganos Mt. area, previously analysed 

with the fission-track method by Zattin et al. (2005). The oldest AHe (9.4±0.1 Ma) was detected on 

sample TU2 collected on the top of Ganos Mountain (Table 2). This age fits well with the cooling 

path shown by Zattin et al. (2005; Fig. 5). Moving towards the NAF, a slightly younger AHe age 

(8.8±0.2 Ma) was yielded by a sample from the Gaziköy Fm (Middle Eocene; Figs.2 and 3). The 

youngest age (5.7±0.1 Ma) was detected on the sample closest to the NAF and at sea level. 

On the southern side of the Marmara Sea, a sample (TU56) from the Eocene Karabiga 

granitoids yielded an AFT age of 24.8±3.4 Ma, in the same range of those obtained along the 

northern coast. 

Two samples were taken on Marmara Island from Eocene granitoids, at sea-level (TU48) 

and on top of the highest peak (709 m; TU49). As expected, TU49 yielded the oldest AFT age 

(27.5±5.1 Ma) although the age difference with the sample taken at the sea level (19.3±2.5 Ma) is 

quite high despite the limited elevation difference. Track lengths demonstrate that both samples 
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cooled rapidly through the PAZ. The AHe age of sample TU48 (21.2±0.5 Ma) is older than the 

corresponding AFT age, thus pointing to the some problems in the analytical data such as the 

possible presence of apatite crystals with anomalous annealing kinetics or some inclusions in the 

apatite dated with the AHe method.  

Another sample was collected south of Marmara Island, along the western coast of the 

Kapıdağı peninsula (TU47). Its AFT age (33.4±2.6 Ma) is significantly older than those obtained 

from Marmara Island and from the Eocene flysch of the Ganos area. Again, track lengths indicate a 

fast cooling through the PAZ, as confirmed by the AHe age of 27.7±0.4 Ma. 

 

Eastern Marmara 

Samples were collected from different units across a large area (Fig. 2b). Three samples 

(TU38, TU39, TU46) located at the same latitude show very similar AFT ages (51-53 Ma). TU39 is 

from a tuffitic bed interbedded with the Eocene flysch. This sample has very long fission tracks 

(mean length: 15.46 μm). Given that its AFT age is very close to the depositional age (Fig. 4) we 

can exclude that we dated the time of exhumation. It is likely that the apatites were derived from 

syndepositional volcanism, and that the flysch was never buried at the bottom of the PAZ. 

However, the AHe age (23.0±1.1 Ma) suggests some possible reheating, thus pointing to an 

interpretation similar to one we proposed for sample TU52. Samples TU38 and TU46 are both from 

Eocene granites. Their AFT age and track length distribution are very similar and document a 

moderate cooling after their intrusion. Inverse modelling (Fig. 5) suggests Early Eocene intrusion 

and very low cooling rates (about 1.3°C/m.y.) in the last 40 m.y. Considering a ―normal‖ 

geothermal gradient of 30°C/km, this translates into an exhumation rate of 0.04 km/m.y. 

Sample TU41 was collected NW of Izmit from the Eocene flysch. This sample yielded an 

AFT age (65.8±5.0 Ma) older than its depositional age. We can then conclude that (i) we dated 

cooling and exhumation in the sediment source area, and (ii) the flysch has never been buried at the 

bottom of the PAZ after deposition. (Although some reset is possible, given that some grains are 
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younger than the depositional age; Fig. 4.) Four more samples were dated in the İstanbul zone. Two 

of them (TU92, TU94) were collected from Carboniferous sandstones and cooled in a short time 

range (24-26 Ma); the same age was detected in a sample from Cretaceous andesites (TU96). 

Measured track lengths are not sufficient to constrain reliably the thermal history. The oldest AFT 

age from the İstanbul zone (39.9±3.7 Ma) was obtained from a sample (TU100) collected from a 

granite emplaced during the Late Cretaceous. 

The youngest AFT age (14.9±5.0 Ma) from eastern Marmara region was obtained from a 

sample collected from a granitic intrusion of Eocene age in the Armutlu peninsula (TU36), although 

only twelve grains could be dated (no track lengths). Here some problems arise from the 

comparison with the AHe age (38.9±1.1 Ma), much older than the AFT age. It is likely that AHe 

age is affected by the presence of small inclusions of zircon. 

 

Discussion 

The data presented here, integrated by those by Zattin et al. (2005) and Okay et al. (2008), 

provide the first regional picture of the thermal evolution in the last 60 m.y. of both crystalline units 

and sedimentary successions cropping out around the Marmara Sea. Overall, samples collected west 

of Marmara Island underwent a larger degree of subsidence and a much younger exhumation. 

Moreover, we document the presence of tectonic denudation related to fault structures which –

although following the trace of the present-day NAF- were active well before its inception. Age 

patterns could be affected by possible deformations of isotherms due to advection and/or 

topography effects but these processes were probably not really effective due to the low exhumation 

rates and the very smooth topography, with most of the samples collected at very low elevation (the 

only relevant relief is Ganos mountain, as discussed here below). 

The oldest ages have been recorded in the eastern Marmara region. Here, AFT analyses date 

to the Early Eocene the exhumation of the crystalline units exposed along the Armutlu peninsula 

and are in the same age range of the K-Ar dating of illite from the fault rocks along the NAF (Uysal 
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et al., 2006). These data could be related to the closure of the İzmir-Ankara oceanic domain and the 

ensuing collision between the Sakarya terrane to the north and the Anatolide-Tauride Block to the 

south (Okay and Tüysüz, 1999; Okay et al., 2001). AFT ages, including the data from the sample 

located just north of Izmit (TU41), may indicate the timing of the final uplift related to the end of 

collision. This exhumation event was followed by very little if not null subsidence and no other 

important uplift episodes, as testified by mean track lengths, which suggest quite a fast cooling at 

time of exhumation, and by the AHe ages, which document that the sampled rocks were already 

near the surface at the end of the Oligocene.  

Low-temperature thermochronometers cannot provide evidence of Eocene tectonics in 

western Marmara as widespread Oligo-Miocene exhumation removed any older thermal signals. At 

that time, the region around the Ganos fault was exhuming, confirming the conclusions by Zattin et 

al. (2005). AFT age differences across the Ganos fault support the presence of a nearly E-W 

oriented structure that was active during the Oligocene (although horizontal displacement due to 

Plio-Pleistocene strike-slip must be considered when comparing ages across the fault). Rocks north 

and south of the fault followed markedly different T-t paths (table 1, Fig. 2 and Fig. 3 in Zattin et 

al., 2005).  Exhumation of the southern block across the fission-track closure isotherm took place in 

the latest Oligocene – earliest Miocene, while the northern block was exhumed in the mid-Miocene 

(16.4-11.7 Ma). Such different AFT ages and thermochronologic evolutions for samples of similar 

depositional age and lithology suggest that a precursor of the Ganos Fault was active by late 

Oligocene time. This conclusion is supported also by the local stratigraphy, as the two clusters of 

AFT ages ages north and south of the fault correspond to hiatuses in the respective sedimentary 

successions (Fig. 3). For example, during the late Oligocene deposition came to an end in the 

southernmost Thrace basin, and was followed by uplift and erosion. In contrast, the Eocene 

succession north of the fault was still at several kilometres depth by the late Oligocene and was 

exhumed above the fission-track closure isotherm (110° C) only during the Middle Miocene, when 

continental to marginal-marine sandstones were being deposited south of the fault (Fig. 3).  
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During late Oligocene time the whole Kapıdağı-Marmara Island region was being exhumed 

and some exhumation occurred also in the Thrace basin (Korudağ high). This structure can be 

linked to the uplifting shoulders related to the formation of the graben in the Gulf of Saros and to 

the contemporaneous development of the Kuleli-Babaeski high in the northern Thrace basin 

(Çağatay et al., 1998; Coskun, 2000). Furthermore, our data along the Gelibolu peninsula match 

well the subsidence rate curves of Coskun (2000) who shows a maximum subsidence in the 

Oligocene and the inversion of the basin since 26 Ma. Siyako and Huvaz (2007) postdate the 

inversion of the basin at 20 Ma but their reconstruction was made in a depocentral area about 40 

kilometers northeast of the Ganos region. 

AFT ages document that most exhumation occurred in a period during which the Aegean 

area was dominated by extension. During this stage, the Aegean Sea began to form and exhumation 

led to crustal thinning and formation of sedimentary basins in the hanging walls of detachments. 

Detachments are widespread in the Cyclades as well as in the northern Rhodope and western 

Turkey (e.g. Gautier and Brun, 1994; Dinter, 1998). This extensional phase caused erosional 

unroofing which is well recorded by our thermochronological data although, in the Marmara region, 

there is no evidence of tectonic exhumation along a discrete tectonic structure, as detected, for 

example, in the Kazdağ core complex to the south (Okay and Satır, 2000; Cavazza et al., 2008). 

However, the age differences across the Ganos fault document that some tectonic lineament(s) 

nearly E-W oriented were active.  

Integration of our results with preexisting data indicates that tectonic structures with the 

same strike of the NAF were active in the Marmara region well before its inception (from 13 to 4 

Ma according to different interpretations; see Şengör et al., 2005 for a review). For example, 

significant Oligocene E-W-trending strike-slip shear zones in the middle crust have been 

documented in the granitoids of the Kapıdağı peninsula (Aksoy, 1998) and in the late Oligocene 

gneisses and granitoids of Uludag (Okay et al., 2008). However, movement along the precursor of 

the WSW-ENE-trending Ganos Fault had a significant dip-slip component (Zattin et al., 2005), 
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given the marked AFT age difference north and south of the fault. The final collision of the Arabian 

and Eurasian plates in the mid-Miocene (Dewey et al., 1986; Robertson et al., 2007; Okay et al., in 

press) and the ensuing change of stress regime resulted in a switch of these structures (both 

compressional and extensional) to NAF-related faults. This relatively simplistic scenario is much 

complicated by extension in the Aegean domain. 

While Eocene collision and Oligocene-Miocene extension generated some erosion that is 

well recorded by low-temperature thermochronology, the new strike-slip regime produced no major 

vertical displacements, as shown by the relationships between AFT ages and sample elevations 

along the Ganos fault (Fig. 6; Zattin et al., 2005). The increase of AHe ages with elevation confirm 

this evidence as we could calculate a vertical displacement in the order of 2 kilometers at a mean 

cooling rate of about 10°C/m.y. in the last 5 m.y. (i.e. an exhumation rate of about 0.3 km/m.y., 

considering a normal geothermal gradient of 30°C/km). The absence of significant differences in 

AHe ages across the Ganos fault - at least in its easternmost sector - implies that Pliocene motion 

along the NAF was predominantly strike-slip. However, some vertical offset and corresponding 

tectonic exhumation, occurred locally due to the geometry of the fault, probably in the last 3 m.y. 

For example, along the westernmost sector of the Ganos fault, we found the youngest AHe age (2.5 

Ma), documenting a cooling rate of about 25°C/m.y. (corresponding to an exhumation rate of about 

0.8 km/m.y. considering a geothermal gradient of 30°C/km). Oblique slip on a non-vertical master 

fault, which may accommodate transtension and transpression, was described in detail by Seeber et 

al. (2004) for a curved segment of the Ganos fault. However, it is possible that youngest ages could 

be related to some late cooling due to hydrothermal activity. Although the region north of Marmara 

Sea is characterized by normal present-day heat flow values up to 55 mW/m
2 

(Pfister et al., 1998), 

there is the evidence of hydrothermal mineralizations during the Pleistocene on rocks close to faults 

related to the NAF (Ece et al., 2008). 

The last stages of exhumation testified by AHe data are confirmed by stratigraphic hiatuses 

that document periods of no sedimentation and/or erosion. Çağatay et al. (2006) refer the presence 
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of an erosional unconformity dated at the base of the late Pliocene in the area of the Gulf of Saros. 

The same age is given by Yaltırak et al. (1998) for folding and denudation of the westernmost 

Gelibolu peninsula. Along the Ganos fault, no Pliocene deposits are preserved, therefore confirming 

the enhanced erosion detected by AHe data. These age data disagree with the notion that the folds in 

the Gelibolu peninsula occurred in a short period of time (<10
6
 years) and, above all, that they were 

well eroded during the Messinian salinity crisis (Armijo et al., 1999). In fact, AHe ages along the 

Ganos fault are younger than the base of the Alçitepe Formation (top of the Miocene), where 

Armijo et al. (1999) placed the main erosional unconformity. 

AHe indicate that the activity of the NAF (or a paleo-NAF) in the Armutlu peninsula 

produced only minor vertical displacements (i.e. total offset < 1.5 km). Nonetheless exhumation 

was sufficient to generate an 800-m-thick fining-upward clastic sequence of Sarmatian to Lower 

Pliocene age (Sengor et al., 2005) in Yalova Basin. The Manyas and Ulubat basins contain fluvial-

to-lacustrine sediments whose deposition started in the late Miocene (Pontian) and continued into 

Early Pliocene (Yaltırak and Alpar, 2002), reaching a total thickness of about 700 m (Yalçın, 1997; 

Emre et al., 1998). The Mudanya basin is presently bordered on the south by the Uludağ Massif, 

whose exhumation was recently described by Okay et al. (2008). Here we report an AHe of 10 Ma 

from a sample collected at the very border of the Uludağ Massif, indicating that, in this area, a fault 

with a significant dip-slip component was present before the inception of the NAF.  

 

Conclusions 

Integration of our thermochronologic data (AFT and AHe) with preexisting structural 

information (Aksoy, 1998; Okay et al., 2008) indicates that during the Oligocene E-W-trending 

tectonic structures were active throughout the Marmara region. Both strike-slip and dip-slip 

movements occurred across this wide deformation zone. Locally, these structures had significant 

vertical displacements and generated topographic lows and highs capable of exhuming the partial-

annealing zone of apatite. For example, our data show that the present-day Ganos segment of the 
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NAF follows the trace of a pre-existing structural discontinuity active by late Oligocene time, thus 

confirming the hypothesis advanced by Zattin et al. (2005). The western Marmara region south of 

the NAF is characterised by Late Oligocene AFT ages. We suggest that the extension that affected 

the region, caused by the southward migration (rollback) of the Aegean subduction zone, gave rise 

to tectonic denudation at a regional scale. 

Significant vertical displacements of Neogene age are absent across most of eastern 

Marmara. Here thermochronological data around the Armutlu peninsula document a rapid 

exhumation in the Early Eocene and indicate  that, at that time, all the different units were already at 

very shallow crustal levels. This exhumation event is probably related to the collision between the 

Sakarya terrane to the north and the Anatolide-Tauride Block to the south. This erosion event is 

recorded both in İstanbul and Sakarya terranes, thus indicating that their amalgamation occurred in 

pre-Eocene times (Cavazza et al., unpublished results). The NAF system in the Marmara region 

seems to have undergone a two-stage development dominated by (i) dip-slip movements (both 

compressional and extensional) in the Oligo-Miocene and (ii) dextral strike-slip with negligible 

vertical movements during the Plio-Quaternary. The second stage is shown by (i) the absence of 

significant AHe age differences across the main branches of the fault system, and (ii) the virtual 

absence of ages younger than Pliocene.  
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Figure captions 

Figure 1. Simplified tectonic map of the Marmara region showing the major terranes and sutures, as 

well as the North Anatolian Fault system. Modified from Okay et al., 2008. 

 

Figure 2. Geologic map of western (A) and eastern (B) Marmara with apatite fission-track (black) 

and (U-Th)/He (red) ages. Fission-track data in italic are from Zattin et al., 2005.  

 

Figure 3. Chronolitho-stratigraphic chart of main lithostratigraphic units across the North Anatolian 

Fault  in the regions around the Gulf of Saros (left) and Ganos Mountain (right). Exact duration of 

Oligo-Miocene hiatuses north and south of Ganos fault is poorly constrained. Time scale from 

Gradstein et al. (2004). Sources: Okay et al. (2009), Özcan et al. (2009), Sümengen and Terlemez 

(1991), Yıldız et al. (1997) and Şentürk et al. (1998). 

 

Figure 4. Radial plots of samples collected from sedimentary rocks whose depositional age partially 

overlap the AFT age (see Fig. 2 for sample location). If all the single grain ages are younger than 

the sample’s stratigraphic age, then all the grains have been annealed and maximum temperatures 

must have been at or greater than the total resetting temperature. As the maximum temperature 

lowers, the number of grain ages older the stratigraphic age generally increases. If the sample age 

was close to the depositional age (e.g., an ash), then partial (not only total)  resetting will produce 

AFT ages younger than depositional age. 

Dots: single grain ages; horizontal axis: precision of individual grains (1/sigma); vertical axis: bar 

indicates the standard error of each measurement; dashed line: (U-Th)/He age; shaded area: 

stratigraphic age.  

 

Figure 5. Time-temperature paths obtained from inverse modelling using the HeFTy program 

(Ehlers et al., 2005), which generates the possible T-t paths by a Monte Carlo algorithm. Predicted 
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AFT data were calculated according to the Ketcham et al. (1999) annealing model and the Donelick 

et al. (1999) c-axis projection whereas AHe data were calculated according to Farley (2000) 

diffusion model.  

Shaded areas mark envelopes of statistically acceptable fit and the thick lines correspond to the 

most probable thermal histories. Thermal paths out of the partial annealing zone are largely 

inferential as fission-track data cannot give reliable information out of this temperature range. In 

each diagram, parameters (model and measured age, model and measured mean length) related to 

inverse modelling are reported. GOF (Goodness-Of-Fit) gives an indication about the fit between 

observed and predicted data (values close to 1 are best) as it reveals the probability of failing the 

null hypothesis that the model and data are different. In general a value of 0.05 or higher is 

considered not to fail the null hypothesis, and thus reflects an acceptable fit between model and 

data. In these simulations, the only constraints used are the granite emplacement temperature and 

age  (TU46) and the depositional age (TU64). 

 

Figure 6. Age-elevation plot for AFT (dots) and AHe (squares) data in the Ganos region. Only data 

from the block north of the Ganos fault have been considered. 
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Table 1. AFT data

Sample 
number

Coordinates (UTM) Elevation (m) No. of 
crystals

Spontaneous         Induced P (c)2 Dosimeter
Age (Ma) ± 

1s

Mean confined 
track lenght (mm) ± 

std. err.

Std. dev. 
No. of 
tracks 

measured
rs N s ri N i rd N d

TU1* 35T0526836 4516172 830 20 0.76 44 1.09 634 99.0 1.28 6137 16.4±5.1 13.73±0.23 1.64 53
TU2* 35T0524972 4515051 910 20 1.06 91 1.57 1348 89.0 1.27 6061 15.9±3.4 13.50±0.30 1.91 40
TU3* 35T0523523 4511909 660 20 1.17 80 1.69 1159 92.9 1.27 6022 16.1±3.7 12.93±0.33 1.99 37
TU4* 35T0524381 4510956 350 20 1.45 90 2.53 1565 74.2 1.26 5984 13.3±2.9 14.32±0.34 1.47 19
TU5* 35T0528256 4511674 1 20 2.13 104 3.86 1885 42.5 1.25 5946 11.9±3.2 14.28±0.17 0.76 20
TU6* 35T0508245 4501346 170 20 2.10 286 1.93 2630 94.1 1.24 5908 24.7±3.1 12.60±0.18 1.49 65
TU7* 35T0533648 4519168 350 20 0.67 33 1.29 640 99.9 1.24 5869 11.7±4.2 14.33±0.29 1.25 19
TU9* 35T0538218 4522726 120 20 1.09 74 1.55 1054 18.8 1.22 5793 15.9±4.6 13.53±0.38 2.03 28
TU36 35T0666467 4481129 10 12 0.49 12 0.55 134 48.1 0.95 4504 14.9±5.0 - - -
TU38 35T0667110 4497786 200 15 3.51 193 1.16 636 20.2 0.94 4474 51.4±4.8 13.43±0.33 1.91 33
TU39 35T0711381 4503904 70 20 1.66 124 0.60 448 98.9 1.05 4982 53.0±5.5 15.46±0.11 1.07 100
TU41 35T0730648 4522849 301 20 5.83 255 1.51 661 99.9 0.94 4444 65.8±5.0 13.83±0.18 1.79 100
TU46 35T0274412 4495581 80 20 2.34 157 0.85 570 67.6 1.06 5021 53.3±4.9 13.28±0.24 1.71 52
TU47 35T0560460 4485269 25 20 2.46 199 1.44 1164 86.6 1.07 5059 33.4±2.6 14.15±0.15 1.04 49
TU48 35T0545966 4494013 20 20 0.51 67 0.46 597 91.6 0.94 4458 19.3±2.5 14.12±0.16 1.31 68
TU49 35T0549675 4495825 709 20 0.64 34 0.44 235 99.6 1.04 4924 27.5±5.1 14.52±0.19 1.16 38
TU50 35T0519072 4506276 310 20 2.22 103 1.69 783 37.7 0.93 4428 22.3±2.5 - - -
TU51 35T0493388 4496841 100 30 1.44 238 1.10 1823 0.0 1.05 4963 28.3±3.2 - - -
TU52 35T0456626 4470872 106 20 1.12 149 0.78 940 50.1 0.93 4414 27.2±2.6 14.17±0.16 0.96 36
TU54 35T0405489 4453934 1 14 2.91 93 1.20 385 99.6 1.10 5195 48.5±5.7 - - -
TU55 35T0400758 4450867 250 20 2.35 275 1.66 1939 78.4 1.05 5001 27.2±1.8 15.11±0.10 0.98 100
TU56 35T0527608 4474219 30 8 2.81 60 1.92 410 97.7 0.93 4398 24.8±3.4 - - -
TU64 35T0480731 4506555 350 20 1.74 139 1.37 1094 99.6 1.07 5079 24.9±2.3 13.26±0.33 2.08 40
TU92 35T0641940 4555239 31 14 2.71 72 1.95 517 99.9 1.05 4993 24.3 ±3.1 13.59 ±0.16 0.80 25
TU94 35T0662767 4556491 27 8 3.43 75 2.36 517 6.9 1.08 5122 25.6 ±4.1 12.62 ±0.30 1.46 23
TU96 35T0678005 4523039 1 26 1.04 137 0.71 937 84.8 1.07 508 25.4±2.6 - - -
TU100 35T0681234 4552295 92 21 1.79 151 0.79 664 85.3 1.06 5030 39.9 ±3.7 13.77 ±0.232 1.20 27

Central ages calculated using dosimeter glass CN5 and z-CN5=367.45±4.35 (analyst MZ) for all the samples but TU92, TU94, TU96 and TU100 (z-CN5=332.54±5.55; analyst: IF). Samples marked by an asterisk 

are from Zattin et al. (2005). rs: spontaneous track densities (x 105 cm-2) measured in internal mineral surfaces; Ns: total number of spontaneous tracks; ri and rd: induced and dosimeter track densities (x 106 cm-

2) on external mica detectors (g =0.5); N i and N d: total numbers of tracks; P (c2): probability of obtaining c2-value for n degrees of freedom (where n=number of crystals-1); a probability >5% is indicative of an 

homogenous population. Samples with a probability <5% have been analyzed with the binomial peak-fitting method. 

Table 1



Table 2. (U-Th)/He data. Refer to table 1 for sample location. 

Apatite (U-Th)/He analytical data

Sample Replicates FT
a Corrected 

Age
b 1σ± (Ma)

MWAR 

(um)
c

Mass 

(μg)

Mean 

Age
d 1σ± (Ma)

1 0.650 9.22 0.20 41.0 1.41

2 0.700 9.61 0.18 47.5 2.14

TU4 1 0.610 8.81 0.19 35.0 0.78 8.81 0.19

TU5 1 0.710 5.71 0.14 49.3 2.73 5.71 0.14

1 0.728 10.39 0.80 50.9 8.35

2 0.758 9.83 0.59 56.4 10.74

TU36 1 0.643 38.88 1.13 38.8 3.53 38.88 1.13

TU39 1 0.614 23.03 1.09 35.0 2.80 23.03 1.09

1 0.653 28.70 0.69 38.1 6.01

2 0.670 26.35 0.71 42.9 4.04

3 0.728 28.04 0.62 52.3 8.14

TU48 1 0.657 21.22 0.50 38.1 4.26 21.22 0.50

1 0.551 4.27 0.12 29.5 1.79

2 0.618 4.95 0.10 36.1 3.59

1 0.692 2.45 0.05 47.8 6.92

2 0.685 2.58 0.05 45.8 3.75

1 0.585 7.66 0.15 33.9 3.10

2 0.651 9.58 0.19 39.6 4.56

3 0.696 8.33 0.17 46.9 8.48

1 0.620 12.40 0.26 26.0 4.73

2 0.654 10.82 0.28 21.9 5.02

3 0.695 12.84 0.26 30.9 7.12

TU64 1 0.594 17.86 0.37 26.7 2.25 17.86 0.37

0.10

TU50

TU47

TU29

27.75 0.39

AHe age determination are calculate using multigrain-multi-replicate aliquots; Propagated

analytical uncertainties are 1σ; Durango apatite measured concurrently with these analyses

yielded a weighted mean age of 31.6 ± 0.48 Ma (2σ standard error, n = 9);
a

FT is the alpha-

ejection correction of Farley (2000);
b

Alpha ejection corrected age;
c

Mass-weighted average

radius;
d
 mean ages represent weighted means with weighted errors (1 σ). 

TU51 2.52 0.04

TU52 8.38

4.67 0.08

TU55 11.92 0.15

9.43 0.14TU2

9.99 0.42

 

 

Table 2



 

 

CHAPTER 5 
 

 

CONCLUSIONS 
 

From late Paleozoic to Recent times, the Pontides of northern Turkey have suffered 

the cumulative effects of a complex structural history, including the Hercynian, 

Cimmeride, and Alpine orogenies, as well as Aegean extension and significant strike-

slip deformation associated with the North Anatolian Fault system (for a review, see 

Stephenson et al. 2004). The determination of the timing of amalgamation of (i) the 

Rhodopian domain (Strandja Massif), (ii) the İstanbul Zone, and (iii) the Sakarya Zones 

is of particular interest in deciphering the tectonic evolution of the Pontides and its 

relationships with the İzmir-Ankara-Erzincan suture to the south. Within this general 

framework, this dissertation tackled selected aspects of the geological evolution of the 

Pontides by applying several analytical methods to the thermal evolution of the 

Cimmeride-age Karakaya subduction-accretion complex, to the thermochronological 

evolution of the Sakarya and Istanbul exotic terranes, and to the propagation of the 

North Anatolian Fault system in the Marmara region. 

 

The main results of this dissertation can be summarised as follows. 

 

1) The results of integrated analytical methods for the determination of organic and 

inorganic parameters -including clay mineralogy, vitrinite reflectance and Raman 

spectroscopy on carbonaceous material- applied to the Karakaya Complex of northern 

Anatolia show a good degree of correlation and demonstrate that Raman spectroscopy 

on carbonaceous material can be applied successfully to temperature ranges of 200-

330°C, thus extending the application of this method from higher grade metamorphic 

contexts to lower grade metamorphic conditions. 

These data also point out two different thermal histories for the Karakaya Complex: 

the Nilüfer Unit (Lower Karakaya Complex) recorded a range of peak temperatures 

between 300°C and 500°C (greenschist facies) The Hodul and Orhanlar Units of the 

Upper Karakaya Complex yielded peak temperatures of 125-376°C across the study 



area. This contradicts the commonly held notion that the Upper Karakaya Complex was 

unmetamorphosed or only slightly metamorphosed. The peak temperatures from the 

Upper Karakaya Complex are the results of different degree of involvement of the units 

in the complex dynamic processes of the accretionary wedge. Portion of these units 

experienced high temperatures as part of the deepest sections of the accretionary wedge, 

whereas other remained at relatively shallow depths. In addition, a relatively 

undeformed Early Jurassic succession overlying the Karakaya Complex which was 

never buried deeply, suggests that most Karakaya Complex was already at shallow 

crustal depth by Early Jurassic time. 

 

2) A large number of AFT ages from both İstanbul and Sakarya terranes point to 

three discrete episodes of exhumation related to the complex tectonic evolution of the 

Pontides. The older AFT ages come from the central and eastern portion of the study 

area and are clustered into two main exhumation episodes related to deformation along 

the İzmir-Ankara suture. A first cluster of AFT ages range between 62.3 and 50.3 Ma 

(Paleocene - early Eocene), and reflect the closure of the İzmir-Ankara ocean and the 

resulting collision between the Sakarya terrane and the Anatolide-Tauride Block. A 

second cluster AFT ages ranges between 43.5 and 32.3 Ma (Late Eocene - earliest 

Oligocene) and is the result of renewed tectonic activity along the İzmir-Ankara suture. 

Since the same clusters of AFT ages are present north and south of the tectonic 

boundary between İstanbul and Sakarya terranes (the Intra-Pontide Suture) it is evident 

that such terranes were amalgamated in pre-Cenozoic times. The youngest AFT ages 

(Late Oligocene - early Miocene) were yielded by samples taken from the western 

portion of the study area and are related to the onset and development of northern 

Aegean extension. This tectonic event probably gave rise to exhumation at a regional 

scale.  

 

3) Apatite (U-Th)/He and fission-track analyses of both basement and sedimentary 

cover samples collected around the Marmara Sea region yielded exhumation ages 

spanning the entire duration of the Cenozoic. Exhumation data point to the existence of 

a system of major E-W-trending structural discontinuities active at least from the late 

Oligocene. In the early Pliocene, inception of the present-day North Anatolian Fault 

(NAF) system in the Marmara region occurred by reactivation of these older tectonic 

structures. The Ganos fault segment of the NAF in southern Thrace represents the best 



example of such reactivation, as exhumation south of it occurred during the latest 

Oligocene and north of it during the mid-Miocene. In this area, large tectonic structures 

long interpreted as the results of Plio-Quaternary NAF-related transpressional 

deformation (i.e. the Ganos monocline, the Korudağ anticline, and the Gelibolu folds) 

were in fact produced during the Late Oligocene – Early Miocene. From a 

thermochronological viewpoint, the overall lack of significant (U-Th)/He age 

differences across the NAF indicates that the early Pliocene inception of strike-slip 

motion in the Marmara region represents a relatively minor episode.  

 

At the scale of the entire study area, the entire geographic pattern of exhumation 

ages can be related to the complex superposition of tectonic events that affected the 

Pontides. The western portion of the study area is dominated by the Late Oligocene-

Early Miocene AFT ages that obliterated any previous thermotectonic events. This 

younger exhumation ages are related to the Aegean extension, that probably gave rise to 

exhumation at a regional scale. The older AFT ages are concentrated in the eastern 

portion of the study area. The two clusters of exhumation ages (Paleocene - early 

Eocene and Late Eocene - earliest Oligocene) are related to the activity along the İzmir-

Ankara suture, resulting in the collision between the Sakarya terrane to the north and the 

Anatolide-Tauride Block to the south. The widespread distribution of the AFT ages in 

both terranes (İstanbul and Sakarya) constrain their amalgamation in pre-Cenozoic 

times. This result has an important bearing on paleogeographic-paleotectonic 

reconstructions of the Eastern Mediterranean region. 
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APPENDIX 1 
 

Clay mineralogy 

 

 

 Sample preparation 

Whole-rock samples were disaggregated in a mortar and pestle to obtain fragments 

between 1 and 0.5 cm. These fragments were further disaggregate by shaking in 

demineralised water and ultrasonic disaggregation for up to 15 minutes. Samples were 

then dried. 

For bulk rock analysis samples were mounted on glass slides. The <2µm fraction was 

obtained by differential settling, putting samples into settling tubes with demineralised 

water for 24 hours, according to Stokes Law. The <2µm powder was then dried. Smeared 

oriented mounts were prepared for each sample taking into account that the amount of 

clay on the glass slide was at least 3mg/cm2 (Lezzerini et al. 1995).  

 

 X-ray diffraction analysis 

Mineralogical composition of the bulk rock and clay fraction (air-dried and ethylene 

glycol solvated samples (50°C overnight)) was carried out by powder X-ray diffraction 

(XRD) using a Philips PW 1710 diffractometer (CuKα radiation; 40kV/30 mA power 

supply; graphite secondary monochromator, 1° divergence and scatter slits, 0.1 mm 

receiving slit; 0.02° 2Θ step size; counting time of 2 s/step). 

 

Parameters determination 

Mineralogical parameters were determined via processing of the XRD patterns by 

WINFIT program (Krumm 1996) using an asymmetrical Pearson VII function (Stern et 

al. 1991; Warr & Rice 1994). The semiquantitative modal composition of the clay 

fraction was calculated using the method by Biscaye (1965), slightly modified to take 

into account the occurrence of mixed layer illite-smectite (I-S) and chlorite-smectite (C-

S). 

The very low-grade metamorphism was estimated by using the illite Kübler Index 

(KI) obtained by measuring the full-width-at-half-maximum-height (Δ°2θ) on the (001) 

illite diffraction peak at about 10 Å on air-dried specimen (Kübler 1967; Guggenheim et 

al. 2002). KI data were calibrated against the CIS scale (Warr & Rice 1994) using the 



following regression equation: KI(CIS) = 1.09 KI(Bologna) + 0.02 (R2 = 0.96) 

(Dellisanti et al. 2008). Chlorite crystallinity was evaluated using the Árkai Index (ÁI) 

(Árkai 1991) obtained measuring the full-width-at-half-maximum-height (Δ°2θ) on the 

(002) chlorite diffraction peak at about 7 Å on air-dried specimen (Árkai 1991; 

Guggenheim et al. 2002). 

ÁI data were calibrated using the equation: ÁI(CIS) = 1.13 AI(Bologna) - 0.02 (R2 = 

0.84) (Dellisanti et al. 2008). In figure 1 a good correlation between KI and ÁI values is 

shown. The occurrence of mixed layers I-S and C-S was established on glycolated 

specimen applying the NEWMOD computer modelling (Reynolds 1985; Moore & 

Reynolds 1997). 

 

 

Figura 1. Correlation between KI (10 Å) and ÁI (7 Å) values. 



APPENDIX 2 
 

Vitrinite reflectance (Ro%) 

 

 

 Sample preparation  

Whole-rock samples were disaggregated in a mortar and pestle. The sample was then 

analysed with the optical microscope and -where possible- carbonaceous material was 

isolated by picking, and then put on a plexiglass container. Each sample number was 

engraved on the container.  

A mixture of resin and hardener was prepared just before the mounting procedure. 

Some resin was then put on the plexiglass with sample and carefully mixed to eliminate 

possible bubbles of air. The samples were left to harden for about one day. Five-step 

grinding and polishing processes were then implemented using a polishing machine. The 

sanding was made with progressively finer sandpaper follow by three-step polishing 

processes with 1 µm, 0.3 µm and 0.1 µm alumina slurry. 

 

The microscope analysis 

Random reflectance (Ro%) was measured under oil immersion, with a Zeiss 

Axioplan microscope (Fig.2), in reflected monochromatic non-polarised light and at a 

total magnification of x 50. The microscope was connected with a spectrophotometer 

MSP200 that recorded the reflected light. A software link with the microscope was used 

and to record the measures of the reflectance. A instrument calibration by standard 

samples is needed before measuring. 

An average 20 measurements were taken on vitrinite fragments for each sample (never 

smaller than 5 nm and only slightly fractured and/or altered). Mean reflectance and 

standard deviation values were calculated for all measurements. The result were 

represented with a histogram and the indigenous woody fragments were characterized by 

a gaussian distribution (Fig. 3). 



 

Figura 2. Zeiss Axioplan microscope. 

Figura 3. Histogram of sample IF 20. 



APPENDIX 3 
 

Appendix 3 -  Raman Spectroscopy on carbonaceous material (RSCM) 

 

 

Samples preparation  

Conventional petrographic thin sections cut perpendicularly to the main fabrics (S0, 

S1) were prepared. The sections have a thickness at least of 30µm and were polished in 

two stages using a 3µm and a 1µm diamond paste.  

 

The microscope analysis   

Raman spectra were obtained using a Renishaw InVIA Reflex microspectrometer 

(ENS Paris) (Fig. 4). We used a 514 nm Spectra Physics argon laser in circular 

polarization. The laser was focused on the sample by a DMLM Leica microscope with a 

100 × objective (NA=0.90), and the laser power at the sample surface was set around 1 

mW.  

 

The Rayleigh diffusion was eliminated by edge filters, and to achieve nearly confocal 

configuration the entrance slit was closed down to 10-15 µm. The signal was finally 

dispersed using a 1800 gr/mm grating and analyzed by a Peltier cooled RENCAM CCD 

detector. Before each session, the spectrometer was calibrated with a silicon standard. 

Because Raman spectroscopy of CM can be affected by several analytical mismatches, 

Figura 4. Renishaw InVIA Reflex microspectrometer (ENS Paris). 



we followed closely the analytical and fitting procedures described by Beyssac et al. 

(2002, 2003). CM was systematically analyzed below a transparent adjacent mineral, 

generally quartz. 10-15 spectra were recorded for each sample in the extended scanning 

mode (1000-2000 cm-1) with acquisition times from 30 to 60 s. Spectra were then 

processed using the software Peakfit (Beyssac et al. 2003). 

 

Determination of parameters and temperature 

The Raman spectrum of CM can be divided in first- and second-order regions (Fig. 

5). 

In the first-order region (1100-1800 cm-1), there are two vibration modes (E2g mode) of 

graphite; the first one (E2g1 mode) is attributed to the vibration of carbons within the 

polyaromatic structure and occurs at very low frequency (~ 42 cm-1), however, it is very 

difficult to separate practically this mode from the Rayleigh band and it is therefore rarely 

studied.  

The second mode (E2g2 mode) corresponds to the stretching vibration in the aromatic 

layers. Because the aromatic bond involves very high energy, this mode occurs at an 

unusually high frequency (1580 cm-1) and can be easily studied; this mode is called the 

G band (Fig. 5a). In perfect crystalline CM (graphite s.s.), there is only the G band in the 

first order region (Fig. 5a); for poorly organized CM or very small crystallite dimensions,  

 

additional bands appear in the first-order region around 1150 (D4 band), 1350 (D1 band), 

1500 (D3 band) and 1620 (D2 band) cm-1 (Fig. 5b). The second-order region (2200-3400 

Figura 5. (a) first- and corresponding second-order regions of the Raman spectrum of perfect 
graphite. (b) first- and corresponding second-order regions of the Raman spectrum of 
disordered CM (Beyssac et al. 2003). 



cm-1) shows several features about 2400, 2700, 2900 and 3300 cm-1 (Fig. 5a,b), 

attributed to overtone or combination scattering. The most important one, near 2700 cm-1 

(S1 band), splits into two bands in well crystallized graphite. 

In this work spectra acquisition is focused on the 1100-1800 cm-1 region which 

includes all first-order bands.  

Different parameters are then useful to estimate the CM degree of organization. 

Bands position, bands FWHM (full width at half band maximum intensity), D1 / G 

intensity ratio (R1 ratio), and D1 / (G+D1+D2) area ratio (R2 ratio). Peak position, band 

area (integrated area), and band width (full width at half maximum FWHM) are 

determined using the computer program PeakFit 3.0 (Jandel Scientific) with a Voigt 

function. A linear correlation between this R2 parameter and metamorphic temperature 

(T(°C)= - 445R2 + 641) is calibrated by Beyssac et al. (2002a) using samples from 

different regional metamorphic belts with well-known P-T conditions in the range 350°C-

650°C (Fig. 6 ).  

For samples with temperatures lower than 350°C peak temperatures are referred to a 

good qualitative approach developed by Lahfid A. (2008). 

Figura 6. Selection of representative first-order and corresponding second-order regions of 
Raman spectra from various samples in order of increasing metamorphic grade, the 
temperature range for these sample is 350°C - 650°C (Beyssac et al. 2002). 



 

APPENDIX 4 
 

Apatite fission track (AFT) analysis 

 

 

 Separation of apatite 

Apatite grain were separated from about 5 kg bulk rock. Samples were first washed 

and dried, then split and crushed using a jaw crusher and a disc mill to obtain sand-grain 

fragments. The heavy mineral fraction that include both apatite and zircon grains was 

then separated using a Gemeni shaking table. Minerals with magnetic characteristics were 

removed using a Franz magnetic separator. To separate any remaining quartzo-

feldspathic mineral, the <250 micron fraction of heavy mineral separates was passed 

through different heavy liquids. For this step Tetrabromoethane (density 2.96 g/cm3) is 

used. Apatite (density 3.1-3.35 g/cm3) is then separated from zircon (density 4.6-4.7 

g/cm3) using the liquid methylene iodide ( density 3.3 g/cm3). The mineral were finally 

washed with acetone and dried. 

 

Mounting in epoxy resin and polishing  

A mixture of resin and hardener is prepared just before the mounting procedure. 

Each sample number is then engraved on microscope slides, previously cleaned with 

acetone. The slide is then put on a hot plate and some drops of the resin are put in the 

middle of the glass. The resin is carefully mix to eliminate possible bubble of air, and the 

mineral concentrate can then be mixed with the resin on an area of about 1 x 1.5 cm. The 

ideal mounting consists in a single layer of crystal not too close each other. The resin is 

then hardened leaving the mounting on the hot plate for some minutes. Apatite mounts 

are first hand-ground using wet grinding paper to exposed planar surfaces within the 

grains and then polished using a polishing machine, using first 1 µm diamond paste and 

then 0.3 µm diamond paste. 

 

Chemical etching of Apatites 

To reveal the spontaneous tracks, single mounts are put in 5N HNO3 at 20°C for 20 

seconds and immediately washed for some minutes (any residual nitric acid can be 

eliminated leaving for an hour or more the mounts in simple water). 



Irradiation 

Samples are cut according the dimensions of the mounts a corner of the obtained glass 

is slightly rounded and the surface is cleaned with the acetone. A piece of muscovite is 

split along cleavage, to obtain a layer of about 1 mm thick. The mica can be cut according 

the dimension of the mount. It is important that the surface of the muscovite which will 

be in contact with the mount is perfectly clean and without grazes. On its external side the 

sample number is engraved with a diamond pen and the corner corresponding to the 

rounded corner in the mount is cut. Samples, dosimeter and standards are put in a holder. 

The samples are then irradiated with thermal neutrons in the DR3 reactor at the Radiation 

Center of the Oregon State University with a nominal neutron fluence of 9 x 1015 n cm-2. 

The standard glass CN5 was used as a dosimeter to measure the neutron fluence.  

 

Procedures after the irradiation  

The holder is put in a special container and left there until the radioactivity decreases 

down to 10 times the natural level (about 100 µR/h or 10 µ/Sh). 

Induced fission tracks in the low-U muscovite that covered apatite grain mounts and 

glass dosimeter are etched in 40% HF at 20°C for 45 minutes.  

The mounts and the mica can be fixed to the microscope slide with resin or, better 

with nail varnish. A label with the indication of sample and irradiation number is glued 

along a side. 

 

The microscope analysis 

AFT ages are measured and calculated using the external-detector (EDM) (Fig 7) and 

the zeta-calibration methods (Hurford & Green, 1983). Zeta-calibration is performed 

following the procedure recommended by Hurford (1990). Neutron fluences is measured 

counting neutron-induced tracks in the Corning glass dosimeter CN-5 (Uranium 

concentration: 2.17± 0.62 ppm, 235U atom %: 0.720; Hurford, 1990; Bellemans et al. 

1995). Age standard used are Durango and Fish Canyon apatites (IUGS age standards). 

The mean value obtained (332.54±5.55) is in a good agreement with values obtained by 

other analyst working with similar techniques and criteria (Hurford, 1998). 



 

 

The analyses were subject to the χ2 test (Gailbraith, 1981) to detect whether the data sets 

were normally or overall dispersed. A probability of less than 5% denotes a mixed 

distribution. 

According to EDM, the spontaneous (ρs) and the induced (ρi) tracks densities are 

calculated on the mount and the mica respectively. Counting of tracks has been carried 

out using a microscope Zeiss Axioscope (Fig. 8), equipped with motorized stage, 

transmitted and reflected lights and at a total magnification of x1250 (ocular x10 + 

additional lens Optovar x 1.25 + objective x100). 

Before counting, the stage is calibrated to automatically pass from the apatite to the 

corresponding image on the mica. Where possible, at least twenty crystal with the proper 

Figure 7. External detector method (EDM). From Gallagher et al. 1998. 



characteristics (section parallel to the c axis; no fractures or inclusion, no zoning) are 

selected. The recognition of the proper section is facilitated by the reflected light since 

the etch pit are all parallel. The number of selected crystal can increase in specific case 

(low density of tracks, provenance studies etc.). 

 

Track lengths are measured using digitizing table connected to a computer. A led is 

fixed to a cursor and its light is projected on the slide across a drawing tube. The led is 

used to determine the coordinates of the ends of the tracks; the computer then 

automatically calculates the length. Only the horizontal confined tracks on the section 

parallel to the c-axis can be measured. About 100 tracks should be measured to have a 

statistically significant distribution. 

 

Modelling 

Inverse modelling of track length data are performed using HeFTy program (Ehlers et 

al. 2005). The programme generates the possible T-t paths by a Monte Carlo algorithm. 

Predicted FT data were calculated according to the Ketcham et al. (1999) annealing 

model. In figure 9 the modelling of sample TU 116 is reported as example.  

Figura 8. Microscope Zeiss Axioscope, equipped with motorized stage. 



 

Figura 9. Inverse modeling for sample TU 116 using HeFTy program. 
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