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“et Pangloss disait quelquefois à Candide: Tous les événements sont

enchâınés dans le meilleur des mondes possibles; car enfin si vous n’aviez pas

été chassé d’un beau château à grands coups de pied dans le derrière pour

l’amour de mademoiselle Cunégonde, si vous n’aviez pas été mis à

l’inquisition, si vous n’aviez pas couru l’Amérique à pied, si vous n’aviez pas

donné un bon coup d’épée au baron, si vous n’aviez pas perdu tous vos

moutons du bon pays d’Eldorado, vous ne mangeriez pas ici des cédrats

confits et des pistaches. ”

Voltaire, Candide, ou l’optimisme.





Abstract

Heat treatment of steels is a process of fundamental importance in tailoring

the properties of a material to the desired application; developing a model able

to describe such process would allow to predict the microstructure obtained

from the treatment and the consequent mechanical properties of the material.

A steel, during a heat treatment, can undergo two different kinds of phase

transitions [p.t.]: diffusive (second order p.t.) and displacive (first order p.t.);

in this thesis, an attempt to describe both in a thermodynamically consistent

framework is made; a phase field, diffuse interface model accounting for the

coupling between thermal, chemical and mechanical effects is developed, and

a way to overcome the difficulties arising from the treatment of the non-local

effects (gradient terms) is proposed.

The governing equations are the balance of linear momentum equation, the

Cahn-Hilliard equation and the balance of internal energy equation. The

model is completed with a suitable description of the free energy, from which

constitutive relations are drawn.

The equations are then cast in a variational form and different numerical

techniques are used to deal with the principal features of the model: time-

dependency, non-linearity and presence of high order spatial derivatives.

Simulations are performed using DOLFIN, a C++ library for the automated

solution of partial differential equations by means of the finite element method;

results are shown for different test-cases. The analysis is reduced to a two

dimensional setting, which is simpler than a three dimensional one, but still

meaningful.
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Chapter 1

Introduction

1.1 From Heat Treatments Modelling To Thermody-

namics of Continuum Media

Heat treatment of steels is a process of fundamental importance in tailoring the properties

of a material to the desired application. Steel quenching, among other heat treatments, is

an old-established technology still extensively used today; this process is mainly utilised

for hardening the mating surfaces of bodies in contact, enhancing their mechanical prop-

erties, reducing wear, and is essential to produce useful tools for the common life and

for the machining of other materials. Heat treatment of steels involves microstructural

phase transitions which can be divided into displacive (short time) and diffusive (long

time) transformations.

The modelling of this process is of paramount importance: it would allow to predict

the microstructure - and the mechanical properties, thus - in every part of a machine com-

ponent, with advantages for both the heat treatment set-up and the designing procedure.

For instance, a reliable prediction of mechanical properties of the machine component

would make more refined stress analysis possible.

Up to now, heat treatment modelization developed for the aforementioned purposes

has been based on empirical laws which tend to describe the experimental evidences at

a macroscopic scale (useful for technological applications).

Take, for example, a simple treatment achieved by heating a specimen above a crit-

ical temperature (to obtain an austenitic structure) and suddenly cooling it (fig. 1.1):

1



1. INTRODUCTION

Figure 1.1: Temperature setting for typical heat treatments.

(a) (b)

Figure 1.2: a) TTT diagram and b) CCT diagram for an eutectoid steel.

Austenite becomes unstable and new phases appear, depending on the cooling rate.

In the shop practice, as well as in the computer aided simulation [Bergheau et al.

(2000)], the heat treatment design is based on Bain curves mapping; these curves are

collected into two diagrams [Matteoli (1990)], namely time-temperature-transformation

(TTT) diagrams and continuous cooling transformation (CCT) diagrams.

TTT diagrams describe an ideal process which can be far from the real one. In

fact, they reproduce a constant temperature, long time effect after an initial quasi-

instantaneous cooling of the specimen. The curves depicted on the diagram mark the

onset and the end of metal structural transformations using a logarithmic scale for both

time and temperature. Figure 1.2a shows a TTT diagram for an eutectoid steel.

2



1.1 From Heat Treatments Modelling To Thermodynamics of Continuum
Media

Figure 1.3: Sub-division of the cooling phase into many isothermal steps.

To account for the velocity of cooling and its influence on the phase transformations,

the CCT diagrams were derived (Fig.1.2b, eutectoid steel). Again, temperature is plotted

against time using a logarithmic scale.

It has to be remarked that these diagrams cannot describe the transformations and

the exchange of energy occurring during a heat treatment with the demanded accuracy;

for example, in many of the commonly manufactured processes, nor the temperature or

the cooling rate are constant. To cope with the fact that the only diagrams available

are suitable for isothermal or constant cooling velocity conditions, a common strategy

consists in splitting the whole process into a number of isothermal sub-processes (fig. 1.3)

for which the TTT diagrams are considered reliable and then combining the intermediate

results obtained through an additivity law; one of the most widely accepted relations is

the Scheil’s additivity rule [Bergheau et al. (2000)], [Brokate and Sprekels (1996)].

A heat treatment model is complemented with some laws for the mass fraction evo-

lution of the different phases involved. For example, the evolution of the phase ob-

tained from a displacive transformation can be described by the Koistinen-Marburger

rule [Brokate and Sprekels (1996)], while to predict the phase fraction obtained from a

diffusive transformation the Johnson-Mehl formula can be used [Brokate and Sprekels

(1996)].

The modelling approach depicted above has some drawbacks. First of all, it does not

clarify the causes of the phase changes, and is far from getting the actual physics of the

phenomena involved, especially in non-isothermal conditions; moreover, the mechanical

effects of a heat treatment, despite being of paramount importance from a designing

3



1. INTRODUCTION

(a) (b) (c)

Figure 1.4: Microscope image of: (a) Austenite, (b) Pearlite and (c) Martensite [Mehl

(1972)].

point of view, do not receive the deserved attention in such approaches. This makes

therefore difficult the prediction of the residual strains and stresses inside the specimen,

as well as the estimation of possible failures arising from a badly designed heat treatment.

There is the need for looking at steel heat treatment in its generality, within a thermody-

namic consistent framework; this change in the point of view would allow thermal effects,

mechanical effects and phase transformations to be accounted for concurrently.

To this end, there have been some attempts [Bouville and Ahluwalia (2007)] which

look at the global phenomenon starting from a physical microscopic description of the

material. The heat treatment evolution is traced accounting for the diffusive as well as

the displacive transformations.

For the sake of simplicity, an eutectoid steel will be considered. In this case there

can only be three phases: Austenite (fig.1.4a) with a face-centered cubic lattice (fcc),

Pearlite (fig.1.4b) with a body-centered cubic (bcc) lattice and Martensite (fig.1.4c) with

hexagonal close packed (hcp) lattice.

Figure 1.5 shows the phase diagram for iron varying the temperature and the pressure.

Note that the pressure (i.e. the stress) is also a fundamental variable for the existence of

a given phase within a steel.

1.2 State Of The Art In Phase Transitions Modelling

Solid-to-solid phase transitions can be, as stated in Sect.1.1, of different nature: diffusive

and displacive. Diffusive transformations are second order phase transitions, and are

4



1.2 State Of The Art In Phase Transitions Modelling

Figure 1.5: Phase diagram for iron, taken from Yano and Horie [Yano and Horie (2002)].

able to describe, among others, processes involving diffusion of atoms. Typical examples

include spinodal decomposition, vapour-phase deposition, crystal growth during solidifi-

cation and grain growth in single-phase and two-phase systems. Spinodal decomposition

can occur, for instance, in an eutectoid steel: a diffusive transition from a high tempera-

ture stable phase, Austenite (fig. 1.4a), to Pearlite (fig. 1.4b) takes place at low cooling

rate; as the temperature decreases slowly, carbon (the solute) can migrate outside iron

cell and originate Cementite layers.

Displacive transformations are first order phase transitions involving a lattice distor-

tion. Typical examples include the martensitic transformation of shape memory alloys or

martensitic transformation of quenched steels: here the displacive transformation from

Austenite to Martensite (fig. 1.4c) occurs at high cooling rate; the temperature decreases

fast, and there is no time for diffusive phenomena to take place so that the new phase

originates with a lattice deformation.

In a steel subjected to a heat treatment there may be different zones in which, due

to a different cooling rate, the transformations are of different kind, leading to different

phases.

As stated in Sect.1.1, a number of approaches may be adopted to model both the

aforementioned phase transitions; for instance, use of phenomenological laws can be made:

5



1. INTRODUCTION

Brokate and Sprekels [Brokate and Sprekels (1996)], following the approach proposed by

Hömberg [Hömberg (1995)], present a model constituted by the Koistinen-Marburger rule

for the prediction of the martensitic phase fraction, the Johnson-Mehl formula for the

estimate of the perlitic phase fraction, together with the Scheil’s additivity rule for non-

isothermal conditions. However, such an approach suffers from the drawbacks explained

in Sect.1.1. A different way to tackle the problem may consist in setting a framework in

the context of nonlinear thermoelasticity including the Ginzurg-Landau theory of phase

transitions [Ginzburg and Landau (1950)], [Tolédano and Tolédano (1987)]. Following the

phase-field approach, a microstructure is identified by a variable named order parameter.

The phase transitions rely on phase evolution equations; constitutive laws are expressed

as the derivatives of the Helmholtz free energy density, which is given as a function of

the order parameters.

In particular, a Ginzburg-Landau theory was proposed by Falk [Falk (1980)] for the

martensitic phase transition in shape memory alloys using an order parameter dependent

on the strain tensor. The same idea has been developed by Barsch and Krumhansl [Barsch

and Krumhansl (1984)] to describe the microstructure of inhomogeneous materials and

their proposed model has been extended to simulate martensitic structures in two-and

three-dimensional domains. In the work by Ahluwalia et. al. [Ahluwalia et al. (2006)]

this theory is generalised to describe a two-dimensional square to rectangle martensitic

transition in a polycrystal with more than one lattice orientation. Other models which

describe the martensitic transformation in a Ginzurg-Landau framework using a different

order parameter not dependent on the strain tensor are proposed by Levitas and Preston

[Levitas and Preston (2002)], Wang and Khachaturyan [Wang and Khachaturyan (1997)],

Artemev et. al. [Artemev et al. (2001)], Berti et. al. [Berti et al. (in press)].

Ginzburg-Landau frameworks have also been applied to study diffusive phase transi-

tions. In this context, Cahn [Cahn (1961)] presented a first model in the simplest case of

diffusive phase transition without accounting for thermal effects. An extension to Cahn’s

model is presented - among others - by Alt and Pawlow [Alt and Pawlow (1992)]; in their

paper the coupled phenomena of mass diffusion and heat conduction in a binary system

subjected to thermal activation have been modelled. Other models accounting for the

mechanical aspects related to the diffusive phase transitions are the ones by Onuki and

Furukawa [Onuki and Furukawa (2001)] and Fried and Gurtin [Fried and Gurtin (1993)].

6



1.3 Outline Of The Thesis

First attempts to study diffusive and displacive phase transitions together were made

by Rao and Sengupta [Rao and Sengupta (2003)] and by Levitas [Levitas (2000)]; the

same idea has been developed by Bouville and Ahluwalia [Bouville and Ahluwalia (2007)],

who proposed a Ginzburg-Landau framework including the balance of linear momentum

equation and the Cahn-Hilliard equation.

1.3 Outline Of The Thesis

The outline of the thesis is as follows:

• in Chapter 2 we will describe the order parameters used and we will declare the

scale at which the model is intended to operate.

• In Chapter 3 the equations of the model will be derived within a thermodynamically

consistent framework, which would allow to deal with the non-localities of the

model in a satisfactory way and to derive proper constitutive relations by means

of functional derivatives of the Helmholtz free energy; initial conditions, as well as

suitable boundary conditions of standard and non-standard type will be proposed.

An appropriate form for the Helmholtz free energy will be assumed and the explicit

form of the equations of the model will be given.

• In Chapter 4 the equations of the model will be cast in a variational form and

different numerical techniques will be proposed in order to treat the peculiarity of

the model: we will make use of the operator-splitting approach, a discontinuous-

Galerkin formulation, the theta-method and the generalised-alpha scheme; a sketch

of the linearisation of each equation will also be given.

• In Chapter 5 we will explain how the model has been coded using DOLFIN, a C++

library for the automated solution of partial differential equations by means of the

finite element method.

• In Chapter 6 we will present the results of the simulations conducted for different

test cases and we will highlight the basic features and the behaviour of the model.

• In Chapter 7 we will draw conclusions for the work done and presented in this

thesis.

7



1. INTRODUCTION

• Two appendices have been included: Appendix A contains the computer code de-

veloped for the solution of the system of equations, while Appendix B presents an

experimental characterisation of the type of steel that the model aims to describe.

1.4 The Material Body

Let1 B be a material body; in the following we will refer to the material body through

its reference configuration, namely a configuration for the body free of loads and strains.

In other words, we will make no distinction between the material description and the

reference description [Malvern (1969)].

The material body, in its reference configuration, is supposed to occupy a simply

connected open set of the Euclidean two-dimensional space; we will call Ω such region

and ∂Ω its boundary, which is supposed to be sufficiently regular 2. At a generic time t,

the body will be in its actual configuration and will occupy a region which we will call

Ωt, an open set with a boundary ∂Ωt.

The actual configuration is described by means of a space-time mapping called motion:

x = χ (x0, t) , (1.1)

being x0 the position of a given particle in the reference configuration and x its actual

position.

In the following, we will consider the Lagrangian description (based upon the reference

configuration) to be coincident with the Eulerian description (based upon the actual

configuration)3; this derives form the exploitation of the so-called small perturbation

hypothesis, for which the determinant of the Jacobian matrix of χ is approximately equal

to the identity tensor:

det (∇X χ) ' I; (1.2)

this will cause integrals over subsets S of Ω to be equivalent to the corresponding integrals

over subsets St of Ωt.

1A reference for this section may be the book by Maugin [Maugin (1992)].
2For an analysis of the regularity requisites see the work by Del Piero [Del Piero (2007)] and the

references therein.
3see for instance Sect. 3.3.

8



1.4 The Material Body

Moreover, we will denote with dw and ds the volume measure and the surface measure

of the aforementioned integrals, respectively.

In Sect. 4.3 we will have to introduce a discontinuous Galerkin formulation for one

of the equations of the model: we will call ∂̃Ω the interior boundary of the domain.

9
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Chapter 2

Order Parameters

2.1 Introduction

An order parameter can be defined as an indicator of the state - or a measure of the

inner order - of a material medium; for phase change models it can act as a marker of

the phase.

Its introduction dates back to the 50s, when a paper by Landau and Ginzburg

[Ginzburg and Landau (1950)] utilising a variable to describe the state of a supercon-

ductor media appeared. In this paper, instead of explaining the microscopic behaviour

mechanism of superconduction, they set a somewhat abstract quantity and proposed an

equation describing the evolution of the order parameter (the Ginzburg-Landau equa-

tion). Moreover, they provided a polynomial expansion for the free energy of the super-

conductor as a function of the aforementioned order parameter.

These kind of frameworks are often referred to as phenomenological models, as, in

principle, it is nor fundamental for the order parameter to have a physical meaning or

to explain the microscopic mechanism of the phenomenon accounted for by the order

parameter; however it seems important to stress that:

i. recent advances [Gurtin (1996)] have shown that the Ginzburg-Landau equation

can be obtained through a microforce balance, strengthening the physical content

of such models;

ii. if the method of virtual power is applied to derive the framework [Del Piero (2009)],

some considerations on the nature - and the meaning, thus - of the order parameter

11



2. ORDER PARAMETERS

are needed in order to establish how it transforms due to a change of observer;

iii. every constitutive law is of phenomenological nature in essence;

iv. an order parameter may be used to describe a behaviour whose inner features, even

if are known, cannot be observed at the scale at which the model is set.

In the case of phase transition models, the scale of the problem has to be pointed out

(this is a critical point), as the physical meaning of some of the order parameters may

differ and different evolution equations have to be accounted for.

2.2 Displacive order parameter

In order to describe a displacive phase transition, a common choice for the order param-

eter is [Shenoy et al. (1999)], [Albers et al. (2004)], [Ahluwalia et al. (2006)]:

e2 =
ε11 − ε22√

2
,

being

ε =
1

2

(
∇u+∇uT

)
(2.1)

the linearised strain tensor and

u = u(x, t), for (x, t) ∈ Ω × [0,∞) (2.2)

the displacement field.

Besides the order parameter, two other displacive quantities need to be introduced in

order to complete the description of the strain at a given point; these are:

e1 =
ε11 + ε22√

2

and

e3 = ε12.

The given definitions for the order parameter and the complementary displacive quantities

may be confusing because of the presence of the coefficient 1√
2

1; here the following

1the reason for such a choice lays in the fact that the Helmholtz free energy density for the linear
elastic case takes the very compact form ψ = (λ+ µ)e12 + µe2

2 + µe3
2.

12



2.2 Displacive order parameter

Figure 2.1: Bain strain (taken from Bhadeshia [Bhadeshia (1987)]).

positions are preferred 1:

e1 = ε11 + ε22; e2 = ε11 − ε22; e3 = ε12. (2.3)

It is important to notice that the quantities e1, e2 and e3 are frame-dependent as the

frame axes are meant to be coincident with the lattice axes (b1, b2 and b3 in fig. 2.1);

therefore, the domain has to be constituted by a single grain or multiple grains having

the same orientation.

The choice of the order parameter reflects the kinematic of the cubic-to-tetragonal

martensitic phase transition [Lieberman et al. (1955)], [Bhadeshia (1987)]; its major

feature is the Bain strain: a compression along two orthogonal axes and a dilatation

along the third one. Figure 2.1 [Bhadeshia (1987)] clearly shows that the Bain strain

can be described by a linearised strain tensor which is diagonal if (b1, b2, b3) is assumed

as the reference frame; in a two-dimensional setting the transition may be described as

a square-to-rectangle deformation and calling α1, α2 the moduli of the principal strains

we have:

ε =

[
α1 0
0 −α2

]
⇒ e2 = α1 + α2; e1 = α1 − α2.

1the Helmholtz free energy density for the linear elastic case would be ψ = λ+µ
2 e1

2 + µ
2 e2

2 + µe3
2,

but this is of no importance, since the model proposed here cannot be referred to a linear elastic one.
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2. ORDER PARAMETERS

Figure 2.2: Optical microscope image of Pearlite.

The strains α1 and α2 are in general dependent on the temperature and on the chemical

composition of the material [Kurdjumov and Kaminsky (1928)], [Xiao et al. (1995)].

2.3 Diffusive order parameter

An order parameter accounting for diffusive phenomena is set:

c = c(x, t), for (x, t) ∈ Ω × [0,∞). (2.4)

The parameter describes the evolution from one phase to another one with different struc-

ture, and different inner order, thus; at the single-grain scale it may represent the density

of solute divided by a reference density. This leads to a non-dimensional order parameter

which can be used in a balance of mass equation, enforcing the physical meaning of the

evolution equation for the diffusive part of the model.

In carbon steels, the solute is the carbon; Austenite can be identified by a null value

of the diffusive order parameter (c = 0). The phase obtained through a diffusive phase

transition is called Pearlite and appears as in figure 2.2. Pearlite is originated by the

migration of the atoms of carbon; this process leads to a layered morphology in which it

is possible to distinguish Cementite layers, i.e. zones where there is a great amount of

carbon (c > 0) and ferrite layers, i.e. zones in which there is a lack of carbon (c < 0).

2.3.1 Diffusive Order Parameter Suitable For Macroscopic Scale

For macroscopic scale we mean a scale at which is no longer possible to distinguish

the single grain. The physical meaning of the order parameter (and hence some of the

14



2.3 Diffusive order parameter

equations of the model) has to change; for instance, the diffusive order parameter cannot

represent the amount of carbon anymore, as no migration can be observed at this scale,

and therefore needs to be a non-conserved one, identifying the transition from a phase

to another with different inner structure.

Instead of using a Cahn-Hilliard equation as the evolution law (see Sect. 3.2.1), at this

scale a Ginzburg-Landau equation seems more appropriate; the two scenarios, anyway,

can still be obtained by means of same thermodynamic frame [Gurtin (1996)].
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Chapter 3

Equations Of The Model And

Thermodynamic Restrictions

3.1 Introduction

This chapter describes the equations used in the model; these are three balance equations:

for solute mass, linear momentum and energy. The thermodynamic consistency of this

set of equations will be investigated, as proper constitutive relations will be assumed,

and a way to treat the terms accounting for the non-local effects will be proposed.

The set of the state variables is given by the following vector:

Γ = (ε, c, T,∇ε,∇c),

in which ∇ε and ∇c account for non-locality effects and

Γloc = (ε, c, T )

is the set of the local state variables.

3.2 Balance Equations

This section is devoted to the description of the balance equations used in the model, as

well as to the proper distinction between external and internal powers; this is a critical

point for non-local model with order parameters [Del Piero (2009)] and has to be carefully

considered in order to correctly state the balance of energy.
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3. EQUATIONS OF THE MODEL AND THERMODYNAMIC
RESTRICTIONS

3.2.1 Conservation of mass and chemical powers

We consider c to be a conserved order parameter, therefore:∫
St

ċ dwt = −
∫
∂St

jc · ν d∂st = −
∫

St

∇ · jc dwt, (3.1)

where jc is the mass flux of c. As eq.(3.1) must hold for any sub-body St, the mass

balance equation can be expressed point-wise as:

ċ = −∇ · jc. (3.2)

In order to write the powers associated to the balance equation, the chemical potential µ,

which is the variable conjugated to ċ, has to be introduced; to account for the non-local

nature of this thermodynamic force we consider the relation:

µ = µloc(Γloc)−∇ ·M(Γ), (3.3)

in which the local part of the chemical potential is separated from the non-local one; in

fact, ∇ ·M represents the part of the chemical potential at a given point due to the

long-distance interaction.

Multiplying both terms in eq.(3.2) by the chemical potential and integrating over St

we have:∫
St

µ (ċ+∇ · jc) dwt =∫
St

[µlocċ−∇ · (M ċ) +M · ∇ċ+∇ · (µjc)−∇µ · jc] dwt = 0;

re-arranging the terms we obtain:∫
St

(µlocċ+M · ∇ċ−∇µ · jc) dwt =

∫
∂St

(M ċ− µjc) · ν dst. (3.4)

The balance of chemical powers (eq.(3.4)) allows to identify the internal chemical power

and the external chemical power, respectively:

Pic(St) =

∫
St

(µlocċ+M · ∇ċ−∇µ · jc) dwt, (3.5)

Pec(St) =

∫
∂St

(M ċ− µjc) · ν dst. (3.6)
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3.2 Balance Equations

Note that the internal chemical power sums up the contribution of three terms; the first

and the second depend on the local and the non-local part of µ, respectively, and are

related to the reversible part of the chemical process; the third one is dependent on ∇µ
and will give rise to the chemical dissipation.

3.2.2 Balance of momentum and mechanical powers

Balance of linear momentum reads:

d

dt

∫
St

ρv dwt =

∫
∂St

t dst +

∫
St

b dwt, (3.7)

where ρ is the density, v is the velocity, t is a surface force term, b is a body force term.

By means of the Noll’s and the Cauchy’s theorems it is possible to state that t = σ · ν;

hence, applying the divergence theorem we have:

d

dt

∫
St

ρv dwt =

∫
St

∇ · σ dwt +

∫
St

b dwt, (3.8)

where σ is the Cauchy stress tensor; as eq.(3.8) must hold for any sub-body St, we can

write the balance equation in its point-wise formulation:

ρ
∂v

∂t
= ∇ · σ + b. (3.9)

In order to write the powers associated to this balance equation, the local and the non-

local parts of the stress tensor must be highlighted; this is done by assuming the following

decomposition of the stress tensor:

σ = σloc(Γloc)−∇ ·Σ(Γ), (3.10)

in which, again, ∇ · Σ represents the part of the stress tensor at a given point due to

the long-distance interaction; both σloc and ∇ ·Σ are supposed to be symmetric second

order tensors.

Multiplying all the terms in the balance of linear momentum (eq.(3.9)) by v and

integrating over St, we have:

1

2

d

dt

∫
St

ρ‖v‖2 dwt =

∫
St

[∇ · (σloc −∇ ·Σ) + b] · v dwt =

+

∫
St

[
−
(
σloc : ε̇+ Σ

...∇ε̇
)

+∇ · (σ · v + Σ : ε̇) + b · v
]
dwt,
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3. EQUATIONS OF THE MODEL AND THERMODYNAMIC
RESTRICTIONS

having enforced the symmetry condition for the tensors and therefore substituted ε̇ with

∇v; splitting the local part of the stress tensor into two parts and re-arranging the terms

we obtain:

1

2

d

dt

∫
St

ρ‖v‖2 dwt +

∫
St

(
σelloc : ε̇+ σanloc : ε̇+ Σ

...∇ε̇
)
dwt =∫

St

b · v dwt +

∫
∂St

(σ · v + Σ : ε̇) · ν dst. (3.11)

The balance of mechanical energy (eq.(3.11)) allows to identify the kinetic energy, the

internal mechanical power and the external mechanical power, respectively:

K(St) =

∫
St

1

2
ρ‖v‖2 dwt, (3.12)

Pim(St) =

∫
St

(σelloc : ε̇+ σanloc : ε̇+ Σ
...∇ε̇) dwt, (3.13)

Pem(St) =

∫
St

b · v dwt +

∫
∂St

(σ · v + Σ : ε̇) · ν dst. (3.14)

Note that the internal mechanical power sums up the contribution of three terms; the

first and the third depend on, respectively, the local elastic part and the non-local part

of σ and are related to the reversible part of the mechanical process; the third one is

dependent on σanloc - the anelastic contribution to the local part of the stress tensor - and

will give rise to the mechanical dissipation.

3.2.3 Balance of energy

The first principle of thermodynamics, conservation of energy, requires that:

d

dt

∫
St

(
1

2
ρ‖v‖2 + ρu

)
dwt = −

∫
∂St

q · ν dst

+

∫
St

b · v dwt +

∫
∂St

(σ · v + Σ : ε̇) · ν dst

+

∫
∂St

(M ċ− µjc) · ν dst (3.15)

where u is the specific internal energy (per unit volume) and q is the heat flux; inserting

the mechanical power balance eq.(3.11) and the chemical power balance eq.(3.4) into
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3.3 Thermodynamic Restrictions For Admissible Processes: The Second
Law Of Thermodynamics

eq.(3.15), we obtain:

d

dt

∫
St

ρu dwt = −
∫

St

∇ · q dwt

+

∫
St

(σelloc : ε̇+ Σ
...∇ε̇) dwt +

∫
St

(µlocċ+M · ∇ċ) dwt

+

∫
St

σanloc : ε̇ dwt −
∫

St

∇µ · jc dwt, (3.16)

which is the energy balance equation. As eq.(3.16) must hold for any sub-body St, we

can write:

ρu̇ = pim + pic −∇ · q, (3.17)

being:

pim = σelloc : ε̇+ Σ
...∇ε̇+ σanloc : ε̇ (3.18)

pic = µlocċ+M · ∇ċ−∇µ · jc (3.19)

the specific mechanical and chemical internal powers, respectively.

3.3 Thermodynamic Restrictions For Admissible Pro-

cesses: The Second Law Of Thermodynamics

In order to write the equations of the model in a definitive fashion, constitutive relations

need to be assumed; these must be compatible with the principles of thermodynamics.

In this section we will derive the constitutive equations by exploiting the second law

of thermodynamics in the form of the Clausius-Duhem equation [Lemaitre and Chaboche

(1990)], [Maugin (1998)]. Here we do not include any extra-entropy fluxes [Maugin

(1990)].

The second law of thermodynamics, the entropy inequality, requires that:∫
St

ρη̇ dwt ≥ −
∫
∂St

q · n
T

dst, (3.20)

where η is the specific entropy. Applying the divergence theorem we obtain:∫
St

ρη̇ dwt ≥ −
∫

St

∇ ·
( q
T

)
dwt;
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3. EQUATIONS OF THE MODEL AND THERMODYNAMIC
RESTRICTIONS

as eq.(3.3) must hold for any sub-body St, we can write the point-wise form of the

Clausius-Duhem inequality:

ρη̇ ≥ −∇ · q
T
. (3.21)

Assuming that the displacements and the displacements gradient are very small, no

distinction is made between the Lagrangian and the Eulerian description (see Sect. 1.4);

it is therefore possible to use the density of the media in the reference configuration and

re-write the Clausius-Duhem inequality as follows 1:

η̇ ≥ −∇ · q
T
. (3.22)

By using the first law of thermodynamics (eq.(3.17)) and introducing the Helmholtz

free energy ψ = u − Tη, the Clausius-Duhem inequality can be expressed in the more

convenient form (reduced inequality):

ψ̇ + Ṫ η − pic − pim ≤ −
q

T
∇T. (3.23)

By substituting the expressions for the internal powers and remembering that ψ is a

function of the variables Γ = (ε, c, T,∇ε,∇c), the inequality becomes:

(ψT + η)Ṫ + (ψc − µloc)ċ+ (ψ∇c −M ) · ∇ċ

+ (ψε − σelloc) : ε̇+ (ψ∇ε −Σ)
...∇ε̇

≤ σanloc : ε̇−∇µ · jc −
q

T
· ∇T, (3.24)

where the subscripts represent partial derivatives. This inequality has to be satisfied for

all processes (ε̇, ċ, Ṫ ,∇ε̇,∇ċ).

Note that in eq.(3.24) the dissipations have been clearly separated from the parts of

the stress tensor and of the chemical potential that are of non-dissipative nature.

1strictly operating, we should introduce the product of the reference density by the specific entropy
as a new quantity, e.g. η̃ = ρη; however, in order to keep the notation light, we will not write η̃ but just
η in the following. The same policy will be pursued for all the other quantities.
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3.3 Thermodynamic Restrictions For Admissible Processes: The Second
Law Of Thermodynamics

The second principle of thermodynamics is satisfied assuming:

η = −ψT , (3.25)

µloc = ψc, (3.26)

M = ψ∇c, (3.27)

σelloc = ψε, (3.28)

Σ = ψ∇ε, (3.29)

∇µ · jc ≤ 0, (3.30)

σanloc : ε̇ ≥ 0 (3.31)

q · ∇T ≤ 0. (3.32)

Obviously, this by no means determines univocally the constitutive expressions; for our

purposes it will be sufficient to assume the simplest choice which ensures the dissipations

to be always positive:

jc = −γ∇µ, γ(Γ) > 0, (3.33)

σanloc = βė2 (i⊗ i− j ⊗ j) , β(Γ) > 0 (3.34)

q = −κ∇T, κ(Γ) > 0. (3.35)

Notice that the constitutive choice for jc (together with a convenient form of the free

energy) will cause the balance of solute mass to take the form of the standard Cahn-

Hilliard equation; γ is called mobility.

The choice of σanloc introduces a damping only for the deformation which characterises

the displacive phase transition (i.e. a square-to-rectangle deformation), β being the

damping coefficient.

For the heat flux we have chosen the Fourier’s law, κ being the conductivity.

The resulting dissipations, namely chemical, mechanical and thermal [Maugin (1998)]

are:

Φc = α‖∇µ‖2, (3.36)

Φm = βė2
2 (3.37)

Φt =
1

T
κ‖∇T‖2. (3.38)
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3. EQUATIONS OF THE MODEL AND THERMODYNAMIC
RESTRICTIONS

We remark that the chemical potential and the elastic stress can be written accounting

for their local and non-local parts in terms of functional derivatives of the Helmholtz free

energy Ψ =
∫
ψ dw:

µ = ψc −∇ · ψ∇c ≡
δΨ

δc
, σel = ψε −∇ · ψ∇ε ≡

δΨ

δε
(3.39)

(this will be consistent with the choice of the boundary conditions made in Sect.3.5.2).

3.4 Helmholtz Free Energy

Central to our thermodynamic approach is the definition of the Helmholtz free energy.

The total free energy of the system is given by:

Ψ =

∫
S

ψ dw, (3.40)

where ψ is the specific free-energy per unit mass.

The free energy is decomposed additively into four contributions, with each repre-

senting a particular physical aspect of the model, namely diffusive processes, displacive

processes, interfacial energy, and coupling effects. Hence, we express ψ as:

ψ = ψdiff (T, c,∇c) + ψdispl (T, e1, e2, e3,∇e2) + ψtherm (T ) + ψcpl (c, e2) , (3.41)

where:

• ψdiff is the free energy associated with diffusive processes,

• ψdispl is the free energy associated with displacive transformations and mechanical

deformation,

• ψtherm is the part of the free energy depending only on the temperature,

• ψcpl is the energy associated with the interaction of phases, typically the penalisa-

tion of the the formation of one in the presence of the other.

We provide explicit forms for each contribution to the free energy in the following.
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Figure 3.1: Diffusive free energy (A = 7.3 · 10−4, B = 6.6 · 10−4, TP = 1)

3.4.1 Diffusive part of the free energy

We postulate the diffusive free energy functions of the form [Cahn (1961)], [Bouville and

Ahluwalia (2007)]:

ψdiff =
A

4
c4 +

B

2

T − TP
TP

c2 +
1

2
Kc‖∇c‖2, (3.42)

where A, B and Kc are positive constants, and TP is the temperature above which only

Austenite is stable. The diffusive free energy as a function of c is shown in figure 3.1 for

various temperatures T . At high temperature the free energy is convex, which indicates

that there is only one stable phase, and this phase is associated with the minimum

point c = 0. For a lower temperature, below TP , the free energy function becomes non-

convex and two wells appear, each corresponding to a stable phase. This is consistent

with the formation of Pearlite - alternating layer with different carbon concentration.
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RESTRICTIONS

3.4.2 Displacive part of the free energy

The displacive part of the free energy is postulated as follows:

ψdispl =
D

6
e6

2 −
E

4
e4

2 +
F

2

T − TM
TM

e2
2

+
G

2
e1

[
e1 − 4

(
α (T − Tref) + x1cc+ x12e

2
2

)]
+
H

2
e2

3 +
1

2
Ke|∇e2|2, (3.43)

where D, E, F , G, H and Ke are positive constants, x1c and x12 are constant coupling

parameters, TM is the temperature below which Martensite becomes a stable phase,

α is the thermal dilatation coefficient and Tref is a reference temperature for thermal

dilatation.

The displacive part of the free energy is illustrated in figure 3.2 as a function of e2

(e1 = e3 = 0) for various temperatures and Tref = T . At high temperature (T > TM) only

one phase is stable, which can be identified with the minimum at e2 = 0. For T < TM ,

another phase, Martensite, becomes stable, as the free energy shows two minima. The

phase corresponding to e2 = 0 is unstable, while the other one, corresponding to non-zero

values of e2, is stable.

3.4.3 Thermal part of the free energy

The thermal part of the free energy is assumed as follows:

ψtherm = −η0 (T − Tref)−
cp

2Tref

(T − Tref)
2 , (3.44)

where cp is the specific heat, η0 is the specific entropy and Tref is the reference temperature

for thermal dilatation.

3.4.4 Phase-coupling part of the free energy

Finally, we consider a coupling contribution to the free energy. It serves to couple diffusive

and deformation processes. We will consider a coupling free energy which is quadratic in

both c and e2:

fcpl = x2cc
2e2

2, (3.45)

where x2c is a positive constant.
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Figure 3.2: Displacive free energy as a function of e2 only (D = 29.5, E = 0.49, F =

9.9 · 10−3, x12 = 0, TM = 0.495).

3.5 Governing Equations

It is possible to substitute the constitutive relations eqs. (3.26) ÷ (3.29) and eqs. (3.33)

÷ (3.34) in the equation for the internal powers (eqs.(3.18) and (3.19)), obtaining the

following specific internal powers:

pim = ψε : ε̇+ ψ∇ε
...∇ε̇+ βė2

2 (3.46)

pic = ψcċ+ ψ∇c · ∇ċ+ γ|∇µ|2 (3.47)

Besides, by using the constitutive relation for the specific entropy and for the heat flux

(eqs.(3.25) and (3.35) respectively), we can rewrite eq.(3.17):

−T ψ̇T = γ|∇µ|2 + βė2
2 +∇ · (κ∇T ). (3.48)

If now we define:

cs(T ) = −TψTT (3.49)

cs,c = ψTc (3.50)

cs,e1 = ψTe1 (3.51)

cs,e2 = ψTe2 (3.52)
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eq.(3.48) takes the following form:

cs(T )Ṫ − T [cs,cċ+ cs,e2ė2 + cs,e1ė1] = γ|∇µ|2 + βė2
2 +∇ · (κ∇T ), (3.53)

which can be referred to as the complete heat equation and in which the thermo-chemical

coupling, the thermo-mechanical coupling and the chemical, mechanical, thermal dissi-

pations can be clearly noticed. We can observe that:

- both coupling terms and dissipations act as a heat source;

- dissipations are always a positive heat sources, and result in a temperature increase,

thus (note that γ and β are requested to be always positive, see Sect.3.3);

- coupling terms can be positive or negative heat sources, depending on the process;

- for a process, in general, temperature will instantaneously increase or decrease

depending on the concurrent effect of the dissipation and of the coupling terms.

We now summarise the equations of the model by collecting the three balance equa-

tions: 
ċ = ∇ · (γ∇µ)
ρü = ∇ · σ + b

cs(T )Ṫ − T [cs,cċ+ cs,e2ė2 + cs,e1ė1] = γ|∇µ|2 + βė2
2 +∇ · (κ∇T ).

(3.54)

3.5.1 Explicit constitutive relations

The constitutive laws of stress and chemical potential can be put in an explicit form.

The stress tensor can be written as:

σ = σelloc + σanloc − (Ke∇2e2) (i⊗ i− j ⊗ j) , (3.55)

with:

σelloc =

[
De2

5 − Ee2
3 +

(
F
T − TM
TM

+ 2x2cc
2

)
e2

]
(i⊗ i− j ⊗ j)

+G
[
e1 − 2

[
α(T − Tref ) + x1cc+ x12e

2
2

]]
(i⊗ i+ j ⊗ j)

− 4Gx12e1e2 (i⊗ i− j ⊗ j) +He3 (i⊗ j − j ⊗ i) , (3.56)
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3.5 Governing Equations

σanloc = βė2 (i⊗ i− j ⊗ j) . (3.57)

The chemical potential is the following:

µ = µloc −Kc∇2c, (3.58)

where:

µloc = Ac3 +B
T − TP
TP

c− 2Gx1ce1 + 2x2ce2
2c. (3.59)

The terms appearing in the heat equation are:

cs(T ) = cp
T

Tref
(3.60)

cs,c =
B

TP
c (3.61)

cs,e1 = −2Gα (3.62)

cs,e2 =
F

TM
e2 (3.63)

These expressions have to be substituted in eqs.(3.54).

3.5.2 Boundary and initial conditions for the differential system

Well-posed boundary and initial conditions are necessary to complement eqs.(3.54). To

state the boundary conditions in a general mixed form, we assume that the boundary ∂Ω

is partitioned into two subsets in two different ways:

∂Ω = ∂Ωs ∪ ∂Ωu = ∂Ωq ∪ ∂ΩT ,

with:

∂Ωs ∩ ∂Ωu = ∅, ∂Ωq ∩ ∂ΩT = ∅.
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We assume the following boundary conditions:

∇µ(x, t) · ν
∣∣∣
∂Ω

= 0

∇c(x, t) · ν
∣∣∣
∂Ω

= 0

∇e2(x, t) · ν
∣∣∣
∂Ω

= 0

∇T (x, t) · ν
∣∣∣
∂Ωq

= g(x)

σloc(x, t) · ν
∣∣∣
∂Ωs

= t(x)

u(x, t)
∣∣∣
∂Ωu

= ũ(x)

T (x, t)
∣∣∣
∂ΩT

= T̃ (x).

(3.64)

We remark that condition (3.64)1 ensures the global conservation of solute mass in the

domain:
d

dt

∫
Ω

c dw = −
∫
∂Ω

jc · ν ds =

∫
∂Ω

γ∇µ · ν ds = 0. (3.65)

The non-local boundary conditions (eqs.(3.64)2, (3.64)3) reflect the consideration that no

long-distance interactions are allowed between the medium and its surrounding [Poliz-

zotto (2003)]; hence, recalling eqs.(3.3) and (3.14) we assume:∫
∂Ω

M · ν ds =

∫
∂Ω

Kc∇c · ν ds = 0 (3.66)∫
∂Ω

(Σ : ε̇) · ν ds =

∫
∂Ω

Keė2∇e2 · ν ds = 0, (3.67)

which are satisfied if the conditions (3.64)2 and (3.64)3 are assumed.

The other conditions are classical.

The initial conditions are the following:
u(x, 0) = u0(x)
u̇(x, 0) = v0(x)
c(x, 0) = c0(x)
T (x, 0) = T0(x).

(3.68)
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Chapter 4

Weak Form Of The Equations Of

The Model

4.1 Introduction

This chapter is devoted to present the variational formulations of the equations of the

model we derived in Chapter 3. The structure will be the same for each equation: first

we will formulate the variational expression in the semi-discrete case, then we will treat

the fully discrete case and last we will linearise the resulting form.

As the equations are of various nature, different techniques will be used; for the Cahn-

Hilliard equation we will make use of the operator-splitting approach and treat the time

derivative by means of the theta-method; for the balance of linear momentum we will

propose a discontinuous-Galerkin formulation and obtain the fully discrete version of

the equation through the generalised-alpha method; for the heat equation we will again

enforce the theta-method to deal with the time derivatives.

The test and the trial functions resulting from the formulation must possess some

properties that will be explained in Sect. 5.3.1, in which we will comment upon the code

developed for the solution of the system of equations.
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4. WEAK FORM OF THE EQUATIONS OF THE MODEL

4.2 Cahn-Hilliard Equation

The Cahn-Hilliard equation is a parabolic PDE containing derivatives up to the fourth

order; for this reason we consider an operator splitting approach for the derivatives in

space, while the time derivative will be handled by means of the theta-method.

4.2.1 Semi-discrete case

We recall, for convenience, the Cahn-Hilliard equation:

ċ = ∇ ·
(
γ∇
(
ψc −Kc∇2c

))
.

Implementing the operator splitting approach, we obtain the following two equations:

ċ = ∇ · (γ∇µ) , (4.1)

µ = ψc −Kc∇2c, (4.2)

which are now of second order with respect to the derivatives in space.

Being (p, q) the test functions, the problem reduces to find (µ, c) such that:∫
Ω

p ċ dw +

∫
Ω

γ∇p · ∇µ dw −
∫
∂Ω

γ p∇µ · ν ds = 0∫
Ω

q µ dw −
∫

Ω

qψc dw −
∫

Ω

Kc∇q · ∇c dw +

∫
∂Ω

Kc q∇c · ν ds = 0.

Note that the boundary conditions that we require from the thermodynamics fall natu-

rally out of the variational form; enforcing them we obtain:∫
Ω

p ċ dw +

∫
Ω

γ∇p · ∇µ dw = 0 (4.3)∫
Ω

q µ dw −
∫

Ω

qψc dw −
∫

Ω

Kc∇q · ∇c dw = 0 (4.4)

4.2.2 Fully-discrete case

Using the theta-method to treat the time derivative, the two equations become:∫
Ω

p
cn+1 − cn

∆t
dw +

∫
Ω

∇γ p · ∇µn+θ dw = 0 (4.5)∫
Ω

q µn+1 dw −
∫

Ω

q ψc
n+1 dw −

∫
Ω

Kc∇q · ∇cn+1 dw = 0, (4.6)
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4.3 Balance Of Linear Momentum Equation

where the mobility is considered constant, ∆t is the time step, ·i is a generic quantity

evaluated at the step i and:

µn+θ = (1− θ)µn+1 + θµn.

Notice that the second equation is evaluated at the step n+ 1, as this will be the current

step for our implementation (see Sect. 5.3.1).

The equations appear to be non-linear, due to the non-linearity of ψc; in a general

fashion we can write:

ΛC

(
µn+1, cn+1

)
= 0;

hence, the linearisation leads to the following equation to be solved:

∇(µn+1,cn+1)ΛC

(
µn+1

0 , cn+1
0

)
·
(
dµn+1, dcn+1

)
= −ΛC

(
µn+1

0 , cn+1
0

)
, (4.7)

where the left-hand side of eq.(4.7) is the bi-linear form, the right-hand side is the linear

form of the problem, the vector (dµn+1, dcn+1) is the unknown and represents the incre-

ment in the solution for the step n + 1, while
(
µn+1

0 , cn+1
0

)
is the solution (for the time

step n+ 1) vector at the previous linear solver step.

4.3 Balance Of Linear Momentum Equation

For the model considered here, the balance of linear momentum yields to an equation

containing fourth order derivatives in space and second order derivatives in time; however,

an operator splitting approach leading to two second order partial derivatives 1 equation

would not be feasible, as the natural boundary conditions would not fall naturally out of

the formulation. Hence, we will formulate the problem through a discontinuous Galerkin

approach for the non-local part of the stress tensor, while the local part will be handled

in a standard fashion.

4.3.1 Semi-discrete case

We recall, for convenience, the balance of linear momentum equation:

ρü− β∇ · (ė2 ε2)−∇ · σelloc +Ke∇ ·
(
∇2e2 ε2

)
− b = 0,

1in space.

33



4. WEAK FORM OF THE EQUATIONS OF THE MODEL

where:

ε2 = i⊗ i− j ⊗ j.

Being r the test function, the variational formulation reads:∫
Ω

ρ r · ü dw +

∫
Ω

β ė2 (r1,1 − r2,2) dw +

∫
Ω

∇r : σelloc dw

−
∫

Ω

Ke∇2e2 (r1,1 − r2,2) dw −
∫

Ω

r · b dw −
∫
∂Ω

r · t ds = 0, (4.8)

where:

(r1,1 − r2,2) = ∇r : ε2

and being ri,j = ∂jri.

Focussing now only on the integral representing the non-local part of the stress tensor

and applying integration by parts, we have:∫
Ω

Ke∇2e2 (r1,1 − r2,2) dw = −
∫

Ω

Ke∇e2 · ∇ (r1,1 − r2,2) dw,

having accounted for the non-local natural boundary condition (3.64)3 and set, therefore,∫
∂Ω

Ke (r1,1 − r2,2)∇e2 · ν ds = 0.

We can now apply a discontinuous Galerkin scheme [Ølgaard et al. (2008)] and write:

∫
Ω

Ke∇e2 · ∇ (r1,1 − r2,2) dw −
∫
∂̃Ω

Ke〈∇e2〉 · J(r1,1 − r2,2)K ds̃

−
∫
∂̃Ω

KeJe2K · 〈∇ (r1,1 − r2,2)〉 ds̃+

∫
∂̃Ω

ξ

h
KeJe2K · J(r1,1 − r2,2)K ds̃, (4.9)

where: JaK = a+n+ + a−n− is the jump operator, 〈b〉 = (b+ + b−) /2 is the average

operator, ∂̃Ω is the inner boundary, h is the mesh size and ξ is a stabilisation parameter.

We recall here that the second integral in the formulation (4.9) is needed for the

consistency of the method, the third ensures the problem to have symmetry property

and the fourth gives stability to the formulation.
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4.3 Balance Of Linear Momentum Equation

Remembering that e2 = u1,1 − u2,2 and substituting the formulation (4.9) of the

integral accounting the non-local stress into eq.(4.8), we obtain:

∫
Ω

ρ r · ü dw +

∫
Ω

β (u̇1,1 − u̇2,2) (r1,1 − r2,2) dw +

∫
Ω

∇r : σelloc dw

+

∫
Ω

Ke∇ (u1,1 − u2,2) · ∇ (r1,1 − r2,2) dw

−
∫
∂̃Ω

Ke〈∇ (u1,1 − u2,2)〉 · J(r1,1 − r2,2)K ds̃

−
∫
∂̃Ω

KeJ(u1,1 − u2,2)K · 〈∇ (r1,1 − r2,2)〉 ds̃

+

∫
∂̃Ω

ξ

h
KeJ(u1,1 − u2,2)K · J(r1,1 − r2,2)K ds̃

−
∫

Ω

r · b dw −
∫
∂Ω

r · t ds = 0. (4.10)

4.3.2 Fully-discrete case

In solving the balance of linear momentum equation it is of fundamental importance to

eliminate - or at least reduce - high-frequency spurious modes, arising mainly from the

finite-element spatial discretisation of the domain. For this reason, a generalised-alpha

method has been applied; the method has some advantages: it is the one, amongst a

variety of dissipative algorithms, that for given high-frequency dissipation has the lowest

numerical dissipation at low frequencies; it does not exhibit any overshoots in displace-

ments; it allows the user to control the amount of numerical dissipation introduced in

the implementation [Chung and Hulbert (1993)], [Erlicher et al. (2002)].

The method consists in solving a modified balance equation in which the inertial term

is evaluated at an intermediate point which is different from the intermediate point used

for the evaluation of the stress and external force terms; for our purposes, the balance of
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4. WEAK FORM OF THE EQUATIONS OF THE MODEL

linear momentum equation becomes:∫
Ω

ρ r · aαm dw +

∫
Ω

β
(
vαs

1,1 − vαs
2,2

)
(r1,1 − r2,2) dw

+

∫
Ω

∇r : σelloc (uαs) dw

+

∫
Ω

Ke∇
(
uαs

1,1 − uαs
2,2

)
· ∇ (r1,1 − r2,2) dw

−
∫
∂̃Ω

Ke〈∇
(
uαs

1,1 − uαs
2,2

)
〉 · J(r1,1 − r2,2)K ds̃

−
∫
∂̃Ω

KeJ
(
uαs

1,1 − uαs
2,2

)
K · 〈∇ (r1,1 − r2,2)〉 ds̃

+

∫
∂̃Ω

ξ

h
KeJ

(
uαs

1,1 − uαs
2,2

)
K · J(r1,1 − r2,2)K ds̃

−
∫

Ω

r · bαs dw −
∫
∂Ω

r · tαs ds = 0, (4.11)

where:

aαm = (1− αm) ün+1 + αm ü
n

vαs = (1− αs) u̇n+1 + αs u̇
n

uαs = (1− αs)un+1 + αs u
n

bαs = (1− αs) bn+1 + αs b
n

tαs = (1− αs) tn+1 + αs t
n

are the acceleration at the step n+αm and the velocity, the displacement, the body force

and the surface force at the step n+ αs, respectively.

The Newmark approximation is used to evaluate the acceleration and the velocity at

the step n+ 1 [Erlicher et al. (2002)]:

an+1 =
1

βa ∆t2

[
un+1 − un −∆t vn −

(
1

2
− βa

)
∆t2 an

]
(4.12)

vn+1 = vn + (1− γv) ∆t an + γv ∆t an+1; (4.13)

the only remaining unknown in eq.(4.11) is un+1. Once un+1 is calculated, vn+1 and an+1

can be determined with eqs.(4.12), (4.13) and all the three quantities are given in input

for the next time step.
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4.4 Heat Equation

Note that in order to correctly apply the proposed algorithm, the initial displacement

and velocity have to be specified 1, while the initial acceleration needs to be evaluated

solving eq.(4.11) with αm = αs = 0 2.

In order to evaluate the elastic part of the stress tensor σelloc (uαs) in eq.(4.11) different

quadrature rules may be applied 3; we have used the generalised mid-point rule:

σelloc (uαs) = σelloc
(
(1− αs)un+1 + αs u

n
)
.

A feature of the generalised-alpha method is the capability to control the numerical

dissipation introduced; in fact, all the algorithm parameters (αm, αs, βa, γv) can be

expressed as functions of the spectral radius in the high frequency limit; as we will see in

Sect.5.3.2, we have chosen values for the parameters which ensure stability and second

order accuracy of the method in the case of asymptotic annihilation, i.e. posing the

spectral radius equal to zero (this case is the opposite with respect to the no-dissipation

case) [Chung and Hulbert (1993)].

Equation (4.11) is non-linear and in a general and compact fashion we can write:

ΛM

(
un+1

)
= 0;

hence, the linearisation leads to the following equation to be solved:

∇un+1ΛM

(
un+1

0

)
· dun+1 = − ΛM

(
un+1

0

)
, (4.14)

where the left-hand side of eq.(4.14) is the bi-linear form, the right-hand side is the linear

form of the problem, the vector dun+1 is the unknown and represents the increment in

the solution for the step n+ 1, while un+1
0 is the solution (for the time step n+ 1) vector

at the previous linear solver step.

4.4 Heat Equation

The heat equation results from the balance of energy; for the model proposed here, it

is an equation containing second order derivatives in space and first order derivatives in

time. To handle the latter, the theta-method will be applied.

1they are natural initial conditions indeed (see Sect. 3.5.2).
2as the current unknown becomes the acceleration, the equation is linear.
3note that all the possible rules differ because the elastic part of the stress tensor, for our choice of

the free energy, is non-linear.
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4. WEAK FORM OF THE EQUATIONS OF THE MODEL

4.4.1 Semi-discrete case

We recall, for convenience, the heat equation:

cp
T

Tref
Ṫ − T

[
B

TP
c ċ+

F

TM
e2 ė2 − 2 G α ė1

]
− α|∇µ|2 − β ė2

2 −∇ · (κ∇T ) = 0.

Being s the test function, the variational formulation reads:∫
Ω

cp
T

Tref
s Ṫ dw −

∫
Ω

cp s T
B

TP
c ċ dw

−
∫

Ω

F

TM
(u1,1 − u2,2) (u̇1,1 − u̇2,2) dw

+

∫
Ω

2 G α (u̇1,1 + u̇2,2) dw

−
∫

Ω

αs∇µ · ∇µ dw −
∫

Ω

β s (u̇1,1 − u̇2,2)2 dw

+

∫
Ω

κ∇q · ∇T dw −
∫
∂Ω

q g ds = 0. (4.15)

4.4.2 Fully-discrete case

Using the theta-method to treat the time derivative, the equation becomes:∫
Ω

cp
T n+θ

Tref
s
T n+1 − T n

∆t
dw −

∫
Ω

cp s T
n+θ B

TP
cn+θ c

n+1 − cn

∆t
dw

−
∫

Ω

F

TM

(
un+θ

1,1 − un+θ
2,2

)(un+1
1,1 − un1,1

∆t
−
un+1

2,2 − un2,2
∆t

)
dw

+

∫
Ω

2 G α

(
un+1

1,1 − un1,1
∆t

+
un+1

2,2 − un2,2
∆t

)
dw

−
∫

Ω

αs∇µn+θ · ∇µn+θ dw −
∫

Ω

β s

(
un+1

1,1 − un1,1
∆t

−
un+1

2,2 − un2,2
∆t

)2

dw

+

∫
Ω

κ∇q · ∇T n+θ dw −
∫
∂Ω

q gn+θ ds = 0. (4.16)

Note that all the time derivatives have been computed with the difference between the

value at the time steps n+1 and at n, while the variables themselves have been evaluated

at the step n+ θ.
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4.4 Heat Equation

Equation (4.16) is non-linear; in a general and compact fashion we can write:

ΛH (T,u, µ, c) = 0;

hence, the linearisation leads to the following equation to be solved:

∇(Tn+1,un+1,µn+1,cn+1)ΛH

(
T n+1

0 ,un+1
0 , µn+1

0 , cn+1
0

)
·

·
(
dT n+1,dun+1, dµn+1, dcn+1

)
=

− ΛH

(
T n+1

0 ,un+1
0 , µn+1

0 , cn+1
0

)
, (4.17)

where the left-hand side of eq.(4.17) is the bi-linear form, the right-hand side is the

linear form of the problem, the vector (dT n+1,dun+1, dµn+1, dcn+1) is the unknown and

represents the increment in the solution for the step n+ 1, while
(
T n+1

0 ,un+1
0 , µn+1

0 , cn+1
0

)
is the solution (for the time step n+ 1) vector at the previous linear solver step.
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Chapter 5

Computer Code For The Equations

Of The Model

5.1 Introduction

This chapter explains how the fully-discrete, linearised forms of the equations presented

in Chapter 4 have been coded. We used a collection of C++ libraries that are part of

the FEniCS Project which will be, for this reason, briefly explained in Sect. 5.2.

The interested reader can found further details about the FEniCS project in the

work by Logg and Wells [Logg and Wells (2010)] and in the references contained therein;

however, in order to clarify some concepts exposed here without forcing the reader to

refer to the aforementioned paper, some of the figures of the work by Logg and Wells will

be reported here (as explicitly stated in the related captions).

The solution of the equations of the model puts many computational issues. First of

all, it is important to highlight that the diffusive and the displacive phenomena occur at

two very different time scales; as stated in Sect. 1.1, displacive transitions occur in short

time, while diffusive ones take very long time to exhibit; this fact cannot be ignored, par-

ticularly when the temperature is around (but below) the martensitic transition one, and

the two phenomena are clearly concurrent, thus. Moreover, the variational formulations

we proposed are both continuous (Cahn-Hilliard and heat equations) and discontinuous

(balance of linear momentum equation), refer to equations of very different nature and

the variables are many, namely (u, T, c, µ).
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5. COMPUTER CODE FOR THE EQUATIONS OF THE MODEL

Figure 5.1: Dolfin relations with external components (taken from Logg and Wells [Logg

and Wells (2010)]).

Therefore, the need for high-efficiency computational tools is urgent; however, special-

purpose codes, despite being very efficient, typically lack flexibility, which makes their

use for the solution of new problems not suitable. For this reason we decided to use

DOLFIN, a library that encompasses computational efficiency, flexibility and a high level

of expressiveness.

5.2 The FEniCS Project

The FEniCS Project represents an attempt to develop innovative tools for the automation

of mathematical computation modelling; this aspect will be emphasised in the current

section, while explaining some features of the components of the project.

DOLFIN is the main programming interface and the problem solving environment of

the FEniCS project [Logg and Wells (2010)] and is a library for the automated solution of

partial differential equations through the finite element method; DOLFIN relies on other

tools (internal and external to the FEniCS project) in order to accomplish this mission.

As depicted in fig.5.1, DOLFIN takes as input:
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5.2 The FEniCS Project

• a problem-specific code for computing the element vector and matrix

• a mesh

• linear algebra backend

and performs the assembly relying on highly-efficient algorithms, as this procedure can

be executed in the same manner independently on the content of the above listed input

elements (i.e. for different variational forms, element type, mesh, linear algebra backend).

The problem-specific code comes as C++ code containing a number of classes that

can be instantiated by the user and passed to DOLFIN; for example, the bilinear and the

linear forms of the problem are instantiated as objects of such classes and passed as input

arguments to the assembly function. Such problem-specific code is passed through an

interface called UFC (Unified Form-assembly Code) [Alnæs et al. (2009)]. DOLFIN can

be fed with any UFC-compliant code, even if within the context of the FEniCS project

some form compilers have been developed.

For the generation of the problem-specific code we used FFC (Fenics Form Compiler),

a form compiler which automatically generates code compatible with UFC; it takes as

inputs:

• the variational form of the problem

• the specification of the finite element to be used.

The finite element basis functions are evaluated by another FEniCS component, namely

FIAT (FInite element Automatic Tabulator) [Kirby (2004)].

The principal advantages of using FFC are in that the form can be written in a

nearly-mathematical notation and the automatic code generation makes the process less

tedious and error-prone; the former argument brightly highlights the mission of automatic

mathematical modelling of the FEniCS project and will be elucidated in Sect. 5.3.1.

In this way, very efficient code is automatically generated while the user has only to

write the variational form of the problem in a very simple language (see Sect. 5.3.1).

The compilation of the variational form is done by calling the compiler with a line

command, and must be performed prior to compiling the DOLFIN code.
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Figure 5.2: UML diagram for the central components and classes of DOLFIN (taken from

Logg and Wells [Logg and Wells (2010)]).

As explained before, DOLFIN is a library containing a number of classes, which are

all members of the C++ namespace dolfin; the most important ones are depicted in fig.

5.2 [Logg and Wells (2010)].

For the solution of linear systems, DOLFIN relies on external libraries (fig.5.1); hence,

the related DOLFIN classes (e.g. KrylovSolver, fig. 5.2) are mostly wrappers for the linear

algebra backends, allowing the user to easily set sensible options for the external libraries.

We remark that all FEniCS components are released under the GNU General Public

License or the GNU Lesser General Public License and are freely available at

http://www.fenics.org.

5.3 Equations Coding In DOLFIN

Figure 5.3 shows a diagram of the files structure regarding the model code for DOLFIN;

the functionality of each file will be briefly exposed in this introduction and only the most

relevant features will be explained in detail throughout the current section.

For further details see Appendix A, where all the developed code is contained.

• ThermoChemicalMechanical.ufl, ChemicalMechanical.ufl, ThermoMechanical.ufl, Me-

chanical.ufl : FFC files containing the variational formulations for the complete
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Mechanical.ufl

ChemicalMechanical.ufl

ThermoMechanical.ufl

ThermoChemicalMechanical.ufl

ThermoChemoMechanicalModel.h

ChemoMechanicalModel.h

MechanicalModel.h

ThermoMechanicalModel.h

ThermoChemicalMechanical.h

ThermoChemicalMechanical.cpp

ChemicalMechanical.h

ChemicalMechanical.cpp

Mechanical.h

Mechanical.cpp

ThermoMechanical.h

ThermoMechanical.cpp

Updates.h Model.h.h Parameters.h

InititialConditions.h BoundaryConditions.he2.ufl

e2.h

e2.cpp

main.cpp

NonLinearProblem.h

Figure 5.3: UML diagram for the files produced.

model (Cahn-Hilliard equation, balance of linear momentum equation and heat

equation) and for reduced models (Sect. 5.3.1);

• ThermoChemicalMechanical.h, ThermoChemicalMechanical.cpp, ChemicalMechan-

ical.h, ChemicalMechanical.cpp, ThermoMechanical.h, ThermoMechanical.cpp, Me-

chanical.h, Mechanical.cpp: FFC-generated files for the aforementioned variational

formulations;

• ThermoChemoMechanicalModel.h, ChemoMechanicalModel.h, MechanicalModel.h,

ThermoMechanicalModel.h: header files for the setting of the coefficients of the

variational formulation, initial conditions, boundary conditions and for the accel-

eration and velocity updates. There is one file for each version of the model (and

for each FFC file, thus);

• Model.h: header file for the definition of the general structure and features of each

of the aforementioned files;

• Parameters.h, InitialConditions.h, BoundaryConditions.h: header files for the phys-

ical parameters of the model, the time stepping parameters and all the other pa-
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rameters involved in the simulation, for the specification of the mesh, of the initial

conditions and of the boundary conditions (Sects. 5.3.2, 5.3.3);

• Updates.h: header file containing the functions that perform the update of the

acceleration and of the velocity after each time step (Sect. 5.3.4);

• e2.ufl, e2.h, e2.cpp: FFC and FFC-generated files for evaluating the displacive

order parameter e2 from the given displacements;

• NonLinearProblem.h: header file for the assembly of the residual vector and the

Jacobian matrix of the linearised variational problem (Sect.5.3.5);

• main.cpp: main file, containing the time stepping loop and the commands for saving

the results of the simulation.

5.3.1 Variational form

The variational form of the problem has been coded in FFC; first comes the definition of

the finite element to be used:

P2v = VectorElement ( ”Lagrange” , ” t r i a n g l e ” , 2)
P1 = FiniteElement ( ”Lagrange” , ” t r i a n g l e ” , 1)
ME = MixedElement ( [ P2v , P1 , P1 , P1 ] )

The syntax shows the capability of defining a mixed element made up of different el-

ements, which can be either scalar or vectors; in the present case we use continuous

Lagrange elements of second order for the vector element and of the first order for the

scalar elements.

After this, the test function and the approximate solution function are defined in the

following way:

# Displacement , temperature , concentra t ion , chemica l p o t e n t i a l
( r , q , s , y ) = TestFunct ions (ME)
dU = Tria lFunct ion (ME)
U1 = C o e f f i c i e n t (ME) # Current s o l u t i o n

46



5.3 Equations Coding In DOLFIN

U0 = C o e f f i c i e n t (ME) # Previous converged s t ep
du , dT, dc , dmu = s p l i t (dU)
u1 , T1 , c1 , mu1 = s p l i t (U1)
u0 , T0 , c0 , mu0 = s p l i t (U0)

The solution vector is build up with the functions related to the displacements (second

order vector function), the temperature, the concentration and the chemical potential.

The displacements have to be computed using at least a second order function, as in

the weak form of the balance of linear momentum (eq.(4.11)) second order derivatives

persist in the discontinuous-Galerkin part of the formulation; notice that the displace-

ments function is a continuous piece-wise polynomial of second order and its derivative is

a discontinuous piece-wise polynomial of first order which has to be derived once more,

justifying the discontinuous formulation.

The solution vector contains both the concentration and the chemical potential; this is

due to the operator splitting approach used to solve the Cahn-Hilliard equation. In both

cases, with reference to eq.(4.5) and eq.(4.6), the gradient of one function is a piecewise

constant function and is projected onto a linear basis.

Notice that the command split (.) allows to operate with only a part of the complete

vector of functions and that because of the non-local, time-dependent nature of the

equations, the functions to account for are the solution at the previous converged time

step, the current solution and its increment.

The following box contains an example of how parameters (either constants or func-

tions) can be passed from outside FFC; this will enable simulations with different values of

the parameters to be performed without having to re-compile the variational formulation

code.

cT = Constant ( t r i a n g l e ) # heat capac i t y
kT = Constant ( t r i a n g l e ) # conduc t i v i t y
T re f = C o e f f i c i e n t (P1) # re f e r ence temperature f o r

# undeformed con f i g u r a t i on

The drawback of passing parameters from outside consists on a higher compilation time;

for this reason not all the simulation parameters are passed from outside FFC; for exam-
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ple, the coefficients of the local part of the free energy are defined inside the form file, as

their values will not change:

D = 29.535
E = 0.49482
F = 0.009948
G = 0.004974
H = 0.004974
TM = 0.495

FFC allows also to easily define functions in the following way:

# Shear s t r a i n (1/2) ( dv/dx + du/dy )
def e3 ( r ) :

return 0 . 5∗ ( r [ 0 ] . dx (1 ) + r [ 1 ] . dx (0 ) )

in which r [ i ]. dx(j) corresponds to ∂xi
rj (x).

The variational formulation is then coded basically using the commands diff (.,.) and

derivative (.,.,.) . These are commands of major importance, that allow to write the code

in the spirit of the automatic mathematical modelling: in Sect. 3.3 we gave constitutive

equations in terms of functional derivatives of the free energy; the command diff (.,.)

avoids these derivatives to be calculated by the user (a process which may introduce

errors in the code), who has only to specify, as we did in Sect. 3, the free energy and

write the constitutive relations in the form of its derivatives. With reference to the

chemical potential:

# Chemical f r e e energy
def f d i f f ( s , l , q ) :

return (B/ 4 . 0 ) ∗ s ∗ s ∗ s ∗ s + A∗(q−Tp) ∗ s ∗ s / (2 . 0∗Tp) \
+ ( lmbda / 2 . 0 ) ∗ i nne r ( l , l )

# Chemical p o t e n t i a l d f /dc
mu c = d i f f ( f d i f f ( c1 , grad c1 , T1) , c1 ) \

+ d i f f ( f c p l ( c1 , e2 1 ) , c1 ) \

48



5.3 Equations Coding In DOLFIN

+ d i f f ( f d i s p ( e1 ( u1 ) , e2 ( u1 ) , c1 , T1) , c1 )
mu grad = d i f f ( f d i f f ( c1 , grad c1 , T1) , grad c1 )

being fcpl and fdisp the coupling and the displacive part of the free energy (see App. A

for details).

Once the constitutive relations are written in terms of derivatives of the free energy,

we write the linear form and let FFC to compute the bilinear form (as the derivative of the

linear form). With reference to the Cahn-Hilliard equation, linearisation of eqs.(4.5),(4.6)

leads to eq.(4.7); in FFC we just write:

# Weak form
L c mass = s ∗ c r a t e ∗dx + Mob T∗ i nne r ( grad ( s ) , grad (mu mid) ) ∗dx
L c p o t e n t i a l = y∗mu1∗dx − y∗mu c∗dx − i nne r ( grad ( y ) , mu grad ) ∗dx

L mass = L c mass + L c p o t e n t i a l
a mass = d e r i v a t i v e ( L mass , U1 , dU)

which is very compact and eliminates many sources of user-induced errors.

As can be seen, the variational formulation has been introduced in FFC using a near

mathematical syntax and following a procedure that closely resembles the way in which

we derived the model mathematically.

5.3.2 Parameters of the model and linearised system solver

The file Parameters.h contains the parameters for the model; the type of model, the linear

solver and the Newton solver parameters are specified in the first part:

// Spec i f y model type
std : : s t r i n g model type ( ”ThermoChemoMechanical” ) ;

// Create l i n e a r s o l v e r and s e t parameters
KrylovSolver l i n e a r s o l v e r ( ” b i cg s tab ” , ” so r ” ) ;
stat ic bool l i n e a r s o l v c o n v ( true ) ;
stat ic double l i n e a r s o l v r e l t o l = 1 .0 e−4;
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// Create non l inear s o l v e r and s e t parameters
DefaultFactory f a c t o r y ;
NewtonSolver newton so lver ( l i n e a r s o l v e r , f a c t o r y ) ;
stat ic int newton maxit = 10 ;
stat ic double n e w t o n r e l t o l = 1e−6;
stat ic double newton absto l = 1e−12;

In the piece of code above, the complete model (balance of linear momentum equation,

Cahn-Hilliard equation and heat equation) is chosen for the simulation through the string

”ThermoChemoMechanical”.

As mentioned in Sect. 5.2, DOLFIN allows to easily tune the value of some param-

eters of the linear algebra backend; in this case the type of solver, the tolerance and

the monitoring of the convergence have been chosen; the linear solver for the linearised

problem is an iterative one provided by the PETSc backend, namely the biconjugate gra-

dient stabilised solver with an appropriate preconditioner. This makes the problem to be

solved using an inexact Newton method, which is faster - in terms of time needed for the

computation of one step - than an exact Newton method if the dimension of the problem

is large [Dembo et al. (1982)].

The parameters for the Newton algorithm are set in the third part of the piece of

code reported above: the type of linear solver is passed to the Newton solver, as well as

the maximum number of iterations allowed and the relative and absolute tolerance. In

Sect. 5.3.5 the class will be explained in more detail.

The values for the time step, for the generalised-alpha scheme and for the theta-

method scheme are set with the following lines of the code:

// Time s t epp ing parameters
stat ic Constant dt ( 2 . 5 e−6) ; // time s t ep
stat ic double t = 0 . 0 ; // i n i t i a l s imu la t i on time
stat ic double T = 10000∗ dt ; // t o t a l s imu la t i on time
stat ic int s a v e s t e p = 2 ; // save r e s u l t s every # s t e p s
stat ic Constant theta ( 0 . 5 ) ; // eva l ua t i on po in t
stat ic Constant theta m (−1.0) ; // eva l ua t i on po in t g−a lpha
stat ic Constant t h e t a s ( 0 . 0 ) ; // eva l ua t i on po in t g−a lpha
stat ic Constant beta ( 1 . 0 ) ; // a c c e l e r a t i o n weigh t
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stat ic Constant gamma( 1 . 5 ) ; // v e l o c i t y we igh t

The evaluation point chosen for the theta-method is the mid point (θ = 0.5, see Sects.

4.2.2, 4.4.2); for the generalised-alpha scheme (see Sect. 4.3.2) the asymptotic annihilation

case is enforced. As observed by Chung and Hulbert [Chung and Hulbert (1993)], with

the generalised-alpha method the amount of numerical dissipation can be controlled by

the user; in the case adopted here, the value of the spectral radius in the high frequency

limit (ρ∞) is set to zero and the sensible parameters of the scheme are determined by the

following relations [Chung and Hulbert (1993)]:

αm =
2ρ∞ − 1

ρ∞ + 1

αs =
ρ∞

ρ∞ + 1

βa =
1

4
(1− αm + αs)

2

γv =
1

2
− αm + αs

in order to ensure stability and second-order accuracy to the method in this condition.

The file Parameters.h, in its last part, contains some specifications for the number

of initial conditions needed, the value for the Dirichlet boundary conditions and the

specification of the part of boundary for the latter to be applied:

uint i c d im = 5 ; // number o f i n i t i a l c ond i t i on s

// Boundary cond i t i on s
std : : vector<double> z e r o v e c t o r = boost : : a s s i g n : : l i s t o f (0 ) (0 ) ;
stat ic Constant z e r o v e c t o r ( 0 . 0 , 0 . 0 ) ;
stat ic Constant z e r o s c a l a r ( 0 . 0 ) ;
stat ic Le f t l e f t ;
stat ic CentreLeft c e n t r e l e f t ;

The values for the initial conditions and the classes describing the boundary are cast into

separate files (see Sect. 5.3.3).
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For the values of the physical parameters of the model the reader is referred to Sect.

6.2.3.

5.3.3 Initial conditions and boundary conditions

The initial conditions are specified in the file InitialConditions .h; the code consists of the

definition of the class InitialConditions :

class I n i t i a l C o n d i t i o n s : public Express ion
{
public :

I n i t i a l C o n d i t i o n s ( u int i c d im )
: Express ion ( i c d im ) , eng ine (2 ) , d i s t r i b u t i o n (−0.01 , 0 . 0 1 ) ,

rng ( engine , d i s t r i b u t i o n )
{
}

void eva l ( Array<double>& values , const Array<const double>& x ) const
{

va lue s [0 ]= 0.0001∗ rng ( ) ; // x d i sp lacement
va lue s [1 ]= 0.0001∗ rng ( ) ; // y d i sp lacement
va lue s [2 ]= 0 . 4 ; // temperature
va lue s [3 ]= 0.001∗ rng ( ) ; // chemica l concen t ra t ion
va lue s [4 ]= 0 . 0 ; // chemica l p o t e n t i a l

}

private :

s td : : t r1 : : mt19937 eng ine ;
std : : t r1 : : un i f o rm rea l<double> d i s t r i b u t i o n ;
mutable std : : t r1 : : v a r i a t e g e n e r a t o r<std : : t r1 : : mt19937 , std : : t r1 : :

un i f o rm rea l<double> > rng ;
} ;

The ease of specification of functions can be observed in the above code; DOLFIN already

contains the class Expression, from which InitialConditions inherits the member eval for the

assignment of the function values.
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The Dirichlet boundary conditions are set by defining a portion of the boundary of the

domain (file BoundaryConditions.h) making use of the member inside of the class SubDomain

provided by DOLFIN:

class Le f t : public SubDomain
{

bool i n s i d e ( const double∗ x , bool on boundary ) const
{
i f ( x [ 0 ] < DOLFIN EPS)

return true ;
else

return fa l se ;
}

} ;

and then by defining an object of the class DirichletBC as follows:

Le f t l e f t ;
Dir ich letBC bc u 1 ( Vu x , z e r o s c a l a r , l e f t ) ;

where the arguments are the finite element sub-space, the value of the boundary condition

and the boundary on which it has to hold.

5.3.4 Acceleration and velocity updates

The file Updates.h contains the functions for the update of the velocity and of the ac-

celeration according to eqs.(4.12), (4.13); for example, the function defining how the

acceleration is updated is the following:

void update a ( Function& a , const Function& u , const Function& a0 ,
const Function& v0 , const Function& u0 ,
double beta , double dt )

{
// a = 1/(2∗ be ta ) ∗ ( ( u−u0 − v0∗ dt ) /(0 .5∗ dt ∗ dt ) − (1−2∗ be ta )∗a0 )
a . vec to r ( ) = u . vec to r ( ) ;
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a . vec to r ( ) −= u0 . vec to r ( ) ;
a . vec to r ( ) ∗= 1.0/ dt ;
a . vec to r ( ) −= v0 . vec to r ( ) ;
a . vec to r ( ) ∗= 1.0/((0 .5− beta ) ∗dt ) ;
a . vec to r ( ) −= a0 . vec to r ( ) ;
a . vec to r ( ) ∗= (0.5− beta ) / beta ;

}

5.3.5 Non-linear solver

The DOLFIN class VariationalProblem already allows to solve non-linear problem with the

Newton method; however, we had to code a user-defined class in order to achieve more

flexibility regarding the non-linear solver. The code is the following:

class NonlinearProblem : public d o l f i n : : NonlinearProblem
{

public :

// Constructor
NonlinearProblem ( const Form& a , const Form& L , std : : vector<const

Dir ichletBC∗>& bcs ,
const NewtonSolver& s o l v e r ) : a ( a ) , L(L) , bcs ( bcs ) ,
s o l v e r ( s o l v e r ) , r e s e t t e n s o r ( true )

{
}

// Res idua l v e c t o r
void F( Gener icVector& b , const Gener icVector& x )
{

// Assemble and modify f o r D i r i c h l e t boundary cond i t i on s
d o l f i n : : Assembler : : assemble (b , L) ;
for ( d o l f i n : : u int i = 0 ; i < bcs . s i z e ( ) ; i++)

bcs [ i ]−>apply (b , x ) ;
}

// Jacobian
void J ( d o l f i n : : GenericMatrix& A, const d o l f i n : : Gener icVector& x )
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{
// Assemble and modify f o r D i r i c h l e t boundary cond i t i on s
i f ( s o l v e r . i t e r a t i o n ( ) < 1)
{

d o l f i n : : Assembler : : assemble (A, a , r e s e t t e n s o r ) ;
for ( d o l f i n : : u int i = 0 ; i < bcs . s i z e ( ) ; i++)

bcs [ i ]−>apply (A) ;
}
r e s e t t e n s o r = fa l se ;

}

private :

const Form& a ;
const Form& L ;

std : : vector<const Dir ichletBC∗>& bcs ;
const NewtonSolver& s o l v e r ;
bool r e s e t t e n s o r ;

} ;

Two members of the class have been defined: one (F) for the assembly of the residual

vector given the linear form and the Dirichlet boundary conditions and one (J) for the

assembly of the Jacobian matrix given the bi-linear form and the Dirichlet boundary

conditions.

The creation of a user-defined class for the solution of the non-linear problem is

justified by the if cycle in the class member J: it allows to switch between a Newton

method and a Quasi-Newton method [Herceg et al. (1996)], [Ortega and Rheinboldt

(1970)]; in fact, the assembly of the Jacobian matrix can be performed only for the first

i iterations of the linear solver algorithm.

The adopted quasi-Newton method permits to considerably reduce the single-step

computation time, especially for large dimension problems, where the the time needed to

assemble the Jacobian matrix is a considerable amount of the total simulation time.

When this strategy is coupled with an iterative solver for the linearised system, the

solution algorithm is said to belong to the inexact quasi-Newton family.
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Chapter 6

Numerical Results

6.1 Introduction

This chapter is devoted to the comment of the results obtained through the numerical

simulations; in order to put the solution of the equations in a more general framework

and allow to compare the results obtained with what can be found experimentally, a

preliminary section dealing with dimensional analysis is introduced; all the expressions

for dimensionless coefficients will be derived in order to allow the comparison between

the time and space scales resulting from the simulations and the real ones.

Before discussing the results, two major remarks need to be done:

• the time scale for diffusive and the thermal phenomena have been reduced to partly

overcome the limits arising from our numerical implementation of the model (fixed

time step, all equations solved at each time step; see Sect. 6.3).

• we did not implement any periodic boundary conditions; therefore simulations have

to be considered as referred to a whole domain having the extension of a single grain,

and not referred to a part of a larger domain (see Sect. 6.3).

6.2 Dimensional Analysis

In this subsection, dimensionless expressions for all the parameters to be used in the

equations of the model will be derived. To this end, a dimensional basis will be chosen

and the fundamental dimensions will be expressed in terms of the element of the basis.
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This allows to compare results obtained by simulations with different values of the

parameters and to compare the time and space scales of the model to the real ones, once

real values for each element of the dimensional basis are known.

6.2.1 Dimensional basis and fundamental dimensions

The model proposed here encompasses chemical, mechanical and thermal phenomena;

hence, the dimensional basis has to be constituted of four element. We will assume the

following as the dimensional basis:

{d, ρ,G, TP} , (6.1)

where:

• d is a characteristic dimension of a single grain;

• ρ is the density;

• G is the coefficient of the hydrostatic part of the displacive free energy;

• TP is the Pearlite transition temperature.

All the other parameters of the model can be made dimensionless by multiplying them

by powers of the aforementioned element of the dimensional basis.

The fundamental dimensions, namely length, time, mass and temperature expressed

in terms of the element of the dimensional basis are:

L̃ = d; t̃ = ρ1/2

G1/2d; M̃ = ρd3; θ̃ = TP .

6.2.2 Dimensionless parameters

As stated in the previous subsection, dimensionless counterparts for all the parameters

of the model can be obtained by multiplying the parameters by powers of the element of

the dimensional basis; we obtain:

Πcp = cp TP

G
Πκ = κ ρ1/2 TP

d G3/2 Πht = hT ρ1/2 TP

G3/2 Πα = α TP
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for thermal properties. Note that we have assumed the heat flux on the boundary (bound-

ary condition eq.(3.64)4) to be due to convective phenomena; this describes in a proper

manner what happens in a heat treatment, in which the specimen is cooled by throwing

it into a specific cooling fluid. The convective heat flux is the following:

g = ht (T − Text) , (6.2)

where Text is the bulk temperature of the medium external to the body and ht is the

convective heat transfer coefficient, depending on the properties of both the cooling media

and the material of the body.

The dimensionless parameters for the stress tensor are:

ΠD = D
G

ΠE = E
G

ΠF = F
G

ΠH = H
G

Πx2c = x2c

G
ΠKe = Ke

d2 G
Πβ = β

d ρ1/2 G1/2 ;

note that x12 and x1c are already dimensionless, as well as the displacive order parameter

e2 and the complementary displacive quantities e1 and e3.

The dimensionless temperatures are:

ΠTM
= TM

TP
ΠTref

=
Tref

TP
ΠText = Text

TP
.

The dimensionless parameters for the chemical potential are:

ΠA = A
G

ΠB = B
G

ΠKc = Kc

d2 G
;

note that the diffusive order parameter c is already dimensionless.

Regarding the mobility, a temperature-dependent function has been implemented for

the simulations:

γ = γ0e
−Q

T , (6.3)

where γ0 is the mobility limit for T → ∞ and Q is the activation energy. The dimen-

sionless values for these quantities are:

Πγ0 = γ0 G1/2 ρ1/2

d
ΠQ = Q

TP
.
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Figure 6.1: The unit squared domain with the applied boundary conditions.

6.2.3 Values of the Parameters

Simulations have been performed using the following values of the parameters:

d = 1 D = 29.54 β = 5 · 10−8

ρ = 5 · 10−7 E = 4.95 · 10−1 TM = 0.495
G = 4.97 · 10−3 F = 9.95 · 10−3 A = 7.31 · 10−4

TP = 1 H = 4.97 · 10−3 B = 6.62 · 10−4

cp = 1.35 · 10−1 x12 = 1.1 Kc = 1 · 10−8

κ = 1.78 · 10−3 x1c = 0 γ0 = 1.24 · 106

ht = 8.1 · 10−5 x2c = 5 Q = 5
α = 1.17 · 10−2 Ke = 1 · 10−7

6.3 Domain, Initial And Boundary Conditions

All the simulations have been performed on a squared domain of unitary edge length;

hence, we suppose to simulate the behaviour of a single grain of material (see Sect. 2).

Different simulations have been carried out for different values of the initial tem-

perature, in order to span the entire range form T = 0.9 (below the perlitic transition

temperature TP ) to T = 0.2 (well below the martensitic transition temperature TM).
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The complete model, as has been numerically implemented, solves the given equations

all at the same time. On the other hand experiments show that, displacive, diffusive and

heat exchange phenomena run on very different time scales; the formers are extremely

quick, while the other two take far more time to complete. This constitutes a limitation

for the model in its current implementation: the maximum allowed time step is prescribed

by the need for describing displacive phenomena.

In modelling a heat treatment in its cooling phase, the initial temperature should be

above TP and a heat flux of the kind of eq.(6.2) should be applied at the boundary; Text

should be the bulk temperature of the cooling media and ht its convective heat transfer

coefficient. However, due to the fact that the time step is fixed and that all the equations

are solved at each time step, we couldn’t simulate the described conditions, because the

computational time needed for any point of the domain to reach a temperature below

TP or even TM would not have been affordable; we decided therefore to start from an

initial temperature already below the transition temperature. This is a strong limitation,

however:

- it has been possible to get the main physical aspects of the model, except for the

influence of the term α (T − Tref ) in triggering the displacive phase transition;

- it has been possible to solve many of the computational issues arising from the

solution of the three equations which constitutes the model;

- time adaptivity and other numerical techniques implementation is planned as a

future activity.

As a result, the initial temperature was varying from one simulated case to another, while

the initial displacements and the initial value of the diffusive order parameter were set

to a random small value; this simulates a small perturbation in the equilibrium state;

if such equilibrium is unstable, the transition will occur. Indicating as rnd(i) a random

function with values contained in the interval [−i , i] and remembering that the initial

value of the chemical potential is set to zero, the initial conditions were:
c0 = rnd (10−5)
µ0 = 0
u0 = rnd (10−6)

T0 = T̃ext

;
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Figure 6.2: Diffusive o.p. evolution at three different points of the domain; Text = 0.6.

note that the initial temperature is equal to the bulk temperature of the cooling media

(also the reference temperature for the undeformed configuration Tref was set equal to

Text); this corresponds to having a body of the dimension of a single grain, at t = 0,

all at the same temperature of the cooling media and in the austenitic phase (removing

completely the effect of the initial cooling and the related thermo-elastic effect, however).

The boundary conditions, as described in Sect. 3.5.2, were:

- of insulation type for the diffusive order parameter and for the long-distance inter-

actions;

- Neumann condition (eq.(6.2)) throughout the boundary for the temperature (see

fig. 6.1);

- Dirichlet boundary conditions at left edge for the displacements (see fig. 6.1).
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6.4 Features Of A Diffusive Phase Transition

Figure 6.2 depicts the evolution of the diffusive order parameter (as a function of time) in

a diffusive phase transition; the simulation was performed with the following parameters1:

· mesh: triangular elements; 128× 128 elements;

· time step: dt = 5 · 10−6;

· initial, cooling media bulk and reference temperature: T̃ext = 0.6.

The evolution is shown at three different points of the domain; the presence of the only

first-order time derivative in the Cahn-Hilliard equation gives the curves the typical

sigmoidal behaviour, with the order parameter that do not oscillate and tends, after a

long time, to reach the stable value.

However, sometimes the value of the order parameter may significantly change (see

for instance the green curve of fig. 6.2), passing from a negative value to a positive one

(or vice-versa); this is due to the capability of the interfaces to move and the tendency of

the phases to coarsen, in order to reach a more favourable configuration from an energy

point of view.

In figure 6.15, the temperature evolution is related to the change in the order pa-

rameter value for two different points of the domain; the changes in temperature up to

t ' 0.065 are driven by the thermo-chemical coupling term and the dissipation term in

the heat equation, which act as heat sources when a diffusive process occur (ċ 6= 0). A

reduced form of the heat equation, obtained disregarding the heat conduction term and

the others related to displacive phenomena, may help in highlighting this concept:

cs(T )Ṫ = T
B

TP
c ċ+ γ|∇µ|2. (6.4)

As a result, temperature may increase, or even decrease, accordingly to the observa-

tions stated in Sect. 3.5 (see also Sect. 6.5). On the other hand, changes in temperature

after t ' 0.065 are mainly due to heat conduction. In fact, the diffusive order parameter

does not change significantly; this excludes any effects of the aforementioned thermo-

chemical coupling term in changing the temperature; moreover, the observed variation

1we report here only the parameters whose values change from one test-case to another; for the
values of all the other see Sect. 6.2.3.
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Figure 6.3: Diffusive o.p. and temperature evolution at two different points of the domain;

Text = 0.6.

cannot be due to the dissipation term, as this can only cause an increase in temperature

(see Sect. 3.5).

In figure 6.4, the evolution of the whole domain is depicted; only the temperature and

the diffusive order parameter are represented, as the displacive order parameter, being

the temperature in the domain above TM , remains null1. Note that the transition starts

almost everywhere at the same time, as no direct chemo-mechanical effects are present

(x1c = 0), and that phases tend to form a right angle with the edges of the boundary, as

this configuration is energetically more favourable. After a long time, a little coarsening

can be observed.

Temperature changes accordingly: there is a general increase due to the heat generated

by the diffusive phase transition and after a long time heat conduction smothers the

temperature difference between the regions of the domain.

The width of the bands can be controlled by tuning the value of the gradient coefficient

Kc, which plays a relevant role on the transition onset time as well: a high value of Kc

1i.e. its value changes, but remains between ±10−6, the value of the initial random.
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6.4 Features Of A Diffusive Phase Transition

(a) t = 0.010 (b) t = 0.023 (c) t = 0.030

(d) t = 0.050 (e) t = 0.080

Figure 6.4: Diffusive o.p and temperature evolution throughout the domain; Text = 0.6.
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Figure 6.5: Onset and end curves for diffusive phase transition.

will cause the phase to be coarser from early stages of formation and will increase the

nucleation time, because it will increase the energy related to the interface construction.

6.4.1 Diffusive phase transition at various temperatures

Figure 6.5 shows the effect of the concurrent interaction between the temperature-dependent

mobility and the undercooling. For each test-case (from Text = 1 to Text = TM = 0.495)

two measurements of time have been conducted; one when the value of the diffusive o.p.

at any point of the domain was at 5% of the stable value, and another when it was at

95% (note that, for the choice of the Helmholtz free energy we made, the stable value

changes with temperature, see Sect. 3.4); the measurements have been collected and the

resulting plot shows the typical behaviour of the Bain curves: at high temperature the

undercooling, i.e. the difference between the temperature at a given point of the domain

and the perlitic transition temperature, is small and the transition takes a long time

to start; at low temperature (but above TM , black line in fig. 6.5) the undercooling is

relevant, but the mobility is low, eq.(6.3); hence, the transition is again inhibited and

takes long time even to get to completion. At an intermediate temperature the optimum

condition can be reached, and the transition is the quickest to start and complete.

Figure 6.6 depicts a comparison between the morphology of the diffusive phase ob-
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6.4 Features Of A Diffusive Phase Transition

(a) T̃ref = 0.6 (b) T̃ref = 0.7

(c) T̃ref = 0.8 (d) T̃ref = 0.9

Figure 6.6: Morphology of the diffusive phase for different values of Text.
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Figure 6.7: Displacive o.p. evolution at four different points of the domain; Text = 0.4.

tained for different values of T̃ext; the images refer, for each test, to the time marked by

the Pearlite finish curve of fig. 6.5 and are scaled to the stable value proper of the consid-

ered temperature, in order to set the attention on the morphology only and to highlight

that at high temperature a coarse phase is obtained, while the structure becomes finer

(thinner bands) as temperature decreases.

6.5 Features Of A Displacive Phase Transition

Figure 6.7 depicts the evolution of the displacive order parameter (as a function of time)

in a displacive phase transition; the simulation was performed with the following param-

eters1:

· mesh: triangular elements; 196× 196 elements;

· time step: dt = 2.5 · 10−6;

1we report here only the parameters whose values change from one test-case to another; for the
values of all the other see Sect. 6.2.3.
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Figure 6.8: Displacive o.p. and temperature evolution at two different points of the

domain; Text = 0.4.

· initial, cooling media bulk and reference temperature: T̃ext = 0.4.

The evolution is shown at four different points of the domain; note that the time scale

is one order of magnitude smaller with respect to the previous case (Sect. 6.4). As the

balance of linear momentum contains also a second-order time derivative (inertial) term,

the order parameter vibrates around the stable value; vibrations tend to be damped due

to the presence of the dissipative term depending on β (see eq.(3.54)2).

However, due to the moving interfaces and the tendency of the phases to coarsen, the

value of the order parameter may significantly change (see for instance the violet and the

green curves of fig. 6.7), passing from a negative value to a positive one (or vice-versa).

Moreover, fig. 6.7 clearly shows that the phase transition may begin at very different

times at different points of the domain; this behaviour will be explained later in this

section (see fig. 6.10).

In figure 6.8, the temperature evolution is related to the change in the order parameter

value at two different points of the domain; as diffusive phenomena cannot take place
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Figure 6.9: Displacive o.p. and temperature evolution at a point of the domain; Text =

0.4, point coordinates: x = 0.51, y = 0.40.

at this time scale1, the changes in temperature are driven by the thermo-mechanical

coupling term and the dissipation term in the heat equation, which act as heat sources

when a displacive process occurs (ė2 6= 0). A reduced form of the heat equation, obtained

disregarding the heat conduction term (heat conduction cannot occur at this time scale)

and the others related to displacive phenomena, may help in highlighting this concept:

cs(T )Ṫ = T

[
F

TM
e2 ė2 − 2 G α ė1

]
+ βė2

2. (6.5)

As a result, temperature may increase, or even decrease, accordingly to the observa-

tions stated in Sect. 3.5. This behaviour is better highlighted in fig. 6.9: from t ' 0.006

the temperature basically decreases when the order parameter is increasing and has a

negative value, while starts increasing again when the order parameter is still increas-

ing, but has reached a positive value, accordingly to the sign of the thermo-mechanical

coupling term in the heat equation:

T
F

TM
e2 ė2.

1even if for these simulations diffusive phenomena have been accelerated (see Sect. 6.1).
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Note also that the temperature and the coefficient F of the Helmholtz free energy act

as a gain factor for the production of heat, similarly to B for the case discussed in Sect.

6.4; this is coherent with the observation that, leaving unchanged the ratios between all

the coefficients, the aforementioned part of the free energy can be written as:

ψ∗displ = F

[
D

6 F
e6

2 −
E

4 F
e4

2 +
1

2

T − TM
TM

e2
2

]
,

showing that if F is increased, the difference:

ψ∗displ (e2 = 0)−min
(
ψ∗displ

)
increases.

The behaviour described above is slightly modified by the dissipative term:

βė2
2,

which always tends to increase the temperature if a displacive phase change occurs

(ė2 6= 0); the presence of this term causes the trend of the temperature to be always

increasing each time the moving interface produces a strong change in the value of the

order parameter, as dissipations are connected with the switch from one Martensite vari-

ant to the other (see fig. 6.11).

In figure 6.10, the evolution of the whole domain is depicted; only the temperature

and the displacive order parameter are represented, as diffusive phenomena cannot take

place in such short time at this temperature, which is above TM , and the value of c

remains therefore null1.

Note that the transition starts from the free edges first, in contrast with the behaviour

of the diffusive phase transition. Phases tend to form a right angle with the edges of the

boundary, but the most energetically favourable configuration at a distance from the

edges is a 45◦ banded pattern of the different layers, which represents the two possible

variants of Martensite in two dimensions, often referred to as M+ and M− and identified

with a distortion of the lattice in one direction or in the other one (see fig. 6.11); the two

variants are described, from an energy point of view, by the double-minimum displacive

part of the Helmholtz free energy (see fig. 3.2). The composition of alternate layers gives

rise to the so-called twinned Martensite, which is the only allowed by our model if no

1i.e. its value changes, but remains between ±10−5, the value of the initial random.

71



6. NUMERICAL RESULTS

(a) t = 0.0020 (b) t = 0.00275 (c) t = 0.0030

(d) t = 0.0040 (e) t = 0.0075

Figure 6.10: Displacive o.p and temperature evolution throughout the domain; Text = 0.4.
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Figure 6.11: Martensite variants in two dimensions.

external load is applied. Applying an external load would result in having one of the

two minima depicted in fig. 3.2 to be lower than the other, making one variant more

favourable with respect to the other; the resulting microstructure would be a de-twinned

Martensite1.

After some time, a little coarsening can be observed.

Temperature changes accordingly: there is a general increase due to the heat generated

by the displacive transition, while where interfaces between the two variants are located

the temperature remains low.

As in the previous case of Sect. 6.4,the width of the bands can be controlled by tuning

the value of the gradient coefficient Ke, which plays a relevant role on the transition onset

time as well: a high value of Ke will cause the Martensite bands to be larger from early

stages of formation and will increase the nucleation time, because it will increase the

energy related to the interface construction.

6.5.1 Displacive phase transition at various temperatures

Figure 6.12 depicts a comparison between the morphology of the Martensite obtained for

different values of T̃ext; the images refer, for each test, to the time at which Martensite

has formed in every part of the domain, and are scaled to the stable value proper of

the considered temperature, in order to set the attention on the morphology only and

to highlight that at high temperature a coarse phase is obtained, while the structure

becomes finer (thinner bands) as temperature decreases.

1this behaviour is typical of shape memory alloys; our model permits it, but we did not consider this
aspect in our investigations.
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(a) T̃ref = 0.2 (b) T̃ref = 0.3

(c) T̃ref = 0.4 (d) T̃ref = 0.45

Figure 6.12: Morphology of the displacive phase for different values of Text.
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6.6 Open Issues - Overshoots in Temperature

(a) t = 0.00125 (b) t = 0.0025

(c) t = 0.0050 (d) t = 0.0070

Figure 6.13: Coarsening effect in time; T̃ext = 0.2.

This trend, however, tends to be deleted after a long time, because coarsening phe-

nomena are relevant (see fig. 6.13 and compare fig. 6.13d with fig. 6.12d).

6.6 Open Issues - Overshoots in Temperature

One of the remaining issues regards the excessive overshoots in the temperature experi-

enced when a displacive phase transition occurs; as can be seen from figure 6.15, especially

between t ' 0.0010 and t ' 0.0015, temperature exhibits a suspicious overshoot. This

behaviour is thought to be partly physical, as also if a diffusive phase transition - governed

by a first-order time derivative equation - occurs it persists, but partly numerical, and it

is thought to be related to the thermo-mechanical coupling term and the dissipative term

in the heat equation, containing, respectively, the time derivative of e2 and its square.
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Figure 6.14: Overshoots in temperature; T̃ext = 0.2.

Figure 6.15: Overshoots in temperature; T̃ext = 0.6.

76



Chapter 7

Concluding Remarks

A phase field, diffuse interface model has been proposed for modelling both diffusive and

displacive phase transitions in steels; the description of the phenomena is accomplished

by means of two order parameters and of their gradients.

A thermodynamical consistent framework has been proposed for the treatment of the

model and specifically to deal with its non-local character; three balance equations have

been introduced: the balance of linear momentum equation, the Cahn-Hilliard equation

as solute mass balance and the balance of internal energy equation. Thermodynamics

considerations allowed to highlight the dissipation sources of the model and to derive

proper constitutive relations for the stress tensor and the chemical potential, both com-

posed of a local and a non-local part. A convenient form of the Helmholtz free energy as a

sum of various contributions has been proposed and initial as well as local and non-local

boundary conditions have been assumed and justified.

The resulting system of equations has been cast in a variational form and coded in

DOLFIN making use of different numerical techniques. The results of the simulations

conducted have shown that the model is able to describe the main features of both

diffusive and displacive phase transitions in a satisfactory manner; especially the effect of

the phase transitions on the temperature (due to the thermo-chemo-mechanical coupling

effects and the dissipations) have been highlighted and examined.
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Appendix A

DOLFIN/FFC Code

ThermoChemicalMechanical.ufl

1 # Copyright (C) 2009 Mirko Maraldi and Garth N. Wells

2 # Licensed under the GNU LGPL Version 2 . 1 .

3 #

4 # Fi r s t added : 2008

5 # Last changed : 2010

6 #

7

8 P2v = VectorElement ( ”Lagrange” , ” t r i a n g l e ” , 2)

9 P1 = FiniteElement ( ”Lagrange” , ” t r i a n g l e ” , 1)

10 ME = MixedElement ( [ P2v , P1 , P1 , P1 ] )

11

12 # Displacement , temperature , concentrat ion , chem po t e n t i a l

13 ( r , q , s , y ) = TestFunct ions (ME)

14 dU = Tria lFunct ion (ME)

15 U1 = C o e f f i c i e n t (ME) # Current s o l u t i on

16 U0 = C o e f f i c i e n t (ME) # Previous converged s t ep

17 du , dT, dc , dmu = s p l i t (dU)

18 u1 , T1 , c1 , mu1 = s p l i t (U1)

19 u0 , T0 , c0 , mu0 = s p l i t (U0)

20
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21 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 # Time s t epp ing parameters

23 dt = Constant ( t r i a n g l e ) # time s t ep

24 theta = Constant ( t r i a n g l e )

25 theta m = Constant ( t r i a n g l e )

26 t h e t a s = Constant ( t r i a n g l e )

27 beta = Constant ( t r i a n g l e )

28 gamma = Constant ( t r i a n g l e )

29

30 # Parameters

31 cT = Constant ( t r i a n g l e ) # heat capac i t y

32 kT = Constant ( t r i a n g l e ) # conduc t i v i t y

33 hT = Constant ( t r i a n g l e ) # heat f l u x c o e f f i c i e n t

34 T ext = Constant ( t r i a n g l e ) # ex t e rna l temperature

35 rho = Constant ( t r i a n g l e ) # dens i t y

36 eta = Constant ( t r i a n g l e ) # damping c o e f f i c i e n t

37 Mob = Constant ( t r i a n g l e ) # chemical mob i l i t y

38 Q = Constant ( t r i a n g l e ) # ac t i v a t i on energy

39 x12 = Constant ( t r i a n g l e ) # energy coup l ing parameter

40 x1c = Constant ( t r i a n g l e ) # energy coup l ing parameter

41 x2c = Constant ( t r i a n g l e ) # energy coup l ing parameter

42 K4 = Constant ( t r i a n g l e ) # s t r a i n grad i en t term

43 lmbda = Constant ( t r i a n g l e ) # sur face energy term

44 T re f = C o e f f i c i e n t (P1) # re f e rence temperature f o r undeformed con f i gu ra t i on

45 alpha = Constant ( t r i a n g l e ) # thermal d i l a t a t i o n c o e f f i c i e n t

46

47 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48 # Acce lerat ion , v e l o c i t y ( prev ious converged s t ep )

49 a0 = C o e f f i c i e n t (P2v)

50 v0 = C o e f f i c i e n t (P2v)

51

52 # Acce lerat ion , v e l o c i t y ( current )

53 a1 = ( u1 − u0 − dt∗v0 − (0.5− beta ) ∗dt∗dt∗a0 ) /( beta ∗dt∗dt )

54 v1 = v0 + (1.0−gamma) ∗dt∗a0 + gamma∗dt∗a1

55

56 # Facet normal and mesh s i z e

57 n = P1 . c e l l ( ) . n
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58 h = Constant ( t r i a n g l e )

59 h avg = (h( ’+’ ) + h( ’− ’ ) ) /2 .0

60

61 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

62 # Displacement , v e l o c i t y , acce l e ra t i on , temp , concentrat ion , chem po t e n t i a l

63 # Theta−method

64 u mid = (1.0− theta ) ∗u1 + theta ∗u0

65 v mid = (1.0− theta ) ∗v1 + theta ∗v0

66 a mid = (1.0− theta ) ∗a1 + theta ∗a0

67 T mid = (1.0− theta ) ∗T1 + theta ∗T0

68 c mid = (1.0− theta ) ∗ c1 + theta ∗ c0

69 mu mid = (1.0− theta ) ∗mu1 + theta ∗mu0

70 # General ised−alpha method

71 u mid g = (1.0− t h e t a s ) ∗u1 + t h e t a s ∗u0

72 v mid g = (1.0− t h e t a s ) ∗v1 + t h e t a s ∗v0

73 a mid g = (1.0− theta m ) ∗a1 + theta m∗a0

74 T mid g = (1.0− t h e t a s ) ∗T1 + t h e t a s ∗T0

75 c mid g = (1.0− t h e t a s ) ∗ c1 + t h e t a s ∗ c0

76

77 # Displacement , temperature , concentra t ion ( ra t e s )

78 u ra t e = ( u1 − u0 ) /dt

79 T rate = (T1 − T0) /dt

80 c r a t e = ( c1 − c0 ) /dt

81

82 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 # Stra in terms

84 # Hydros ta t i c s t r a i n (1/ s q r t (2) ) ∗( eps xx + eps yy )

85 def e1 ( r ) :

86 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) + r [ 1 ] . dx (1 ) )

87

88 # Stra in (1/ s q r t (2) ) ∗( eps xx − eps yy )

89 def e2 ( r ) :

90 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) − r [ 1 ] . dx (1 ) )

91

92 # Shear s t r a i n (1/2) ( dv/dx + du/dy )

93 def e3 ( r ) :

94 return 0 . 5∗ ( r [ 0 ] . dx (1 ) + r [ 1 ] . dx (0 ) )
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95 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

96 # Free energy

97 #

98 # Var iab l e s :

99 # n + the ta

100 e1 mid = v a r i a b l e ( e1 ( u mid ) )

101 e2 mid = v a r i a b l e ( e2 ( u mid ) )

102 e3 mid = v a r i a b l e ( e3 ( u mid ) )

103 grad e2 = v a r i a b l e ( grad ( e2 ( u mid ) ) )

104 T mid = v a r i a b l e ( T mid )

105 c mid = v a r i a b l e ( c mid )

106

107 # n + 1

108 c1 = v a r i a b l e ( c1 )

109 e2 1 = v a r i a b l e ( e2 ( u1 ) )

110 grad c1 = v a r i a b l e ( grad ( c1 ) )

111

112 # n + th e t a s

113 e1 mid g = v a r i a b l e ( e1 ( u mid g ) )

114 e2 mid g = v a r i a b l e ( e2 ( u mid g ) )

115 e3 mid g = v a r i a b l e ( e3 ( u mid g ) )

116 grad e2 g = v a r i a b l e ( grad ( e2 ( u mid g ) ) )

117 T mid g = v a r i a b l e ( T mid g )

118 c mid g = v a r i a b l e ( c mid g )

119

120 # Disp l a c i v e / e l a s t i c f r e e energy ( Bouv i l l e e t a l )

121 # f d i s p = D∗( e2 ˆ6) /6.0 − E∗( e2 ˆ4) /4.0 + F∗((T−TM)/TM) ∗( e2 ˆ2) /2.0

122 # + (G/2.0) ∗e1 ∗( e1 − 2∗ s q r t (2) ∗( a lpha (T−T ref ) + x1c∗c + x12∗e2 ˆ2) )

123 # + (H/2.0) ∗e3ˆ2

124 # + (K4/2.0) ∗( grad e2 ) ˆ2

125 #

126 D = 29.535

127 E = 0.49482

128 F = 0.009948

129 G = 0.004974

130 H = 0.004974

131 TM = 0.495

82



132

133 def f d i s p ( a , b , c , p , s , q ) :

134 return (D/ 6 . 0 ) ∗ b∗b∗b∗b∗b∗b \

135 − (E/4 . 0 ) ∗ b∗b∗b∗b \

136 + (F/ 2 . 0 ) ∗ ( ( q−TM) /TM) ∗b∗b \

137 + (G/ 2 . 0 ) ∗a∗ ( a − 2 .0∗ s q r t ( 2 . 0 ) ∗ ( alpha ∗(q−T re f ) + x1c∗ s + x12∗b∗b) ) \

138 + (H/2 . 0 ) ∗c∗c \

139 + (K4/ 2 . 0 ) ∗ i nne r (p , p)

140

141 # Chemical f r e e energy

142 # f d i f f = (A∗c ˆ4)/4 + B∗(T−Tp)∗c ˆ2/(2∗Tp) + lmbda/2 ( grad c ) ˆ2

143 #

144 A = 0.00073142

145 B = 0.00066246

146 Tp = 1.0

147

148 def f d i f f ( s , l , q ) :

149 return (A/4 . 0 ) ∗ s ∗ s ∗ s ∗ s + B∗(q−Tp) ∗ s ∗ s / (2 . 0∗Tp) + ( lmbda / 2 . 0 ) ∗ i nne r ( l , l )

150

151 # Coupling f r e e energy

152 def f c p l ( s , m) :

153 return x2c ∗ s ∗ s ∗ m∗m

154

155 # Thermal f r e e energy

156 f therm = − ( T mid−T re f ) − cT/2 .0 ∗ ( T mid − T re f ) ∗( T mid − T re f )

157

158 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

159 # Balance o f l i n e a r momentum ( at genera l i s ed−alpha−po in t )

160 #

161 sigma1 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g , T mid g ) ,

e1 mid g )

162 sigma2 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g , T mid g ) ,

e2 mid g ) \

163 + d i f f ( f c p l ( c mid g , e2 mid g ) , e2 mid g )

164 sigma3 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g , T mid g ) ,

e3 mid g )
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165 sigma g = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g , T mid g ) ,

g rad e2 g )

166

167

168 L s t r e s s i n t e r t i a = rho∗dot ( r , a mid g ) ∗dx

169 L s t r e s s v i s c o u s = eta ∗ e2 ( v mid g ) ∗ s q r t ( 2 . 0 ) ∗ e2 ( r ) ∗dx

170 L s t r e s s r e g u l a r = e1 ( r ) ∗ sigma1∗dx + e2 ( r ) ∗ sigma2∗dx + 2.0∗ e3 ( r ) ∗ sigma3∗dx

171 L s t r e s s g r a d i e n t = inner ( grad ( e2 ( r ) ) , s igma g ) ∗dx \

172 − i nne r ( jump( e2 ( r ) , n ) , avg ( s igma g ) ) ∗dS \

173 − i nne r ( avg (K4∗grad ( e2 ( r ) ) ) , jump( e2 ( u mid g ) , n) ) ∗dS \

174 + 8 .0∗ (K4( ’+’ ) / h avg ) ∗ i nne r ( jump( e2 ( r ) ) , jump( e2 ( u mid g ) ) ) ∗dS

175

176 L s t r e s s = L s t r e s s i n t e r t i a + L s t r e s s v i s c o u s + L s t r e s s r e g u l a r + L s t r e s s g r a d i e n t

177 a s t r e s s = d e r i v a t i v e ( L s t r e s s , U1 , dU)

178

179 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

180 # Mass d i f f u s i o n ( at mid−po in t )

181

182 # Temperature dependent mob i l i t y

183 Mob T = Mob∗exp(−Q/T mid )

184

185 # Chemical p o t e n t i a l d f /dc

186 mu c = d i f f ( f d i f f ( c1 , grad c1 , T1) , c1 ) \

187 + d i f f ( f c p l ( c1 , e2 1 ) , c1 ) \

188 + d i f f ( f d i s p ( e1 ( u1 ) , e2 ( u1 ) , e3 ( u1 ) , grad ( e2 ( u1 ) ) , c1 , T1) , c1 )

189 mu grad = d i f f ( f d i f f ( c1 , grad c1 , T1) , grad c1 )

190

191 # Weak form

192 L c mass = s ∗ c r a t e ∗dx + Mob T∗ i nne r ( grad ( s ) , grad (mu mid) ) ∗dx

193 L c p o t e n t i a l = y∗mu1∗dx − y∗mu c∗dx − i nne r ( grad ( y ) , mu grad ) ∗dx

194

195 L mass = L c mass + L c p o t e n t i a l

196 a mass = d e r i v a t i v e ( L mass , U1 , dU)

197

198 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

199 # Heat equat ion ( at mid−po in t )

200
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201 # Heat f l u x − Fourier law

202 q f l u x = −kT∗grad ( T mid )

203

204 # (Dsigma/DT) ( de/ dt )

205 s igma1 t = d i f f ( f d i s p ( e1 mid , e2 mid , e3 mid , grad e2 , c mid , T mid ) , e1 mid )

206 s igma2 t = d i f f ( f d i s p ( e1 mid , e2 mid , e3 mid , grad e2 , c mid , T mid ) , e2 mid ) \

207 + d i f f ( f c p l ( c mid , e2 mid ) , e2 mid )

208 s igma3 t = d i f f ( f d i s p ( e1 mid , e2 mid , e3 mid , grad e2 , c mid , T mid ) , e3 mid )

209

210 D sigma DTde1 = d i f f ( s igma1 t , T mid ) ∗ e1 ( u ra t e )

211 D sigma DTde2 = d i f f ( s igma2 t , T mid ) ∗ e2 ( u ra t e )

212 D sigma DTde3 = d i f f ( s igma3 t , T mid ) ∗ e3 ( u ra t e )

213 D sigma DTde = D sigma DTde1 + D sigma DTde2 + D sigma DTde3

214

215 # (Dmu/DT) ( dc/ dt )

216 D mu DTdc = d i f f ( d i f f ( f d i f f ( c mid , grad ( c mid ) , T mid ) , c mid ) , T mid ) ∗ c r a t e

217

218 # Heat capac i t y

219 c therm = − d i f f ( d i f f ( f therm , T mid ) , T mid )

220

221 # Weak form

222 L heat = q∗T mid∗ c therm∗T rate ∗dx − q∗T mid∗D sigma DTde∗dx \

223 − q∗T mid∗D mu DTdc∗dx \

224 − q∗Mob T∗ i nne r ( grad (mu mid) , grad (mu mid) ) ∗dx \

225 − q∗ eta ∗ s q r t ( 2 . 0 ) ∗ e2 ( v mid ) ∗ e2 ( v mid ) ∗dx \

226 − i nne r ( grad ( q ) , q f l u x ) ∗dx \

227 + q∗hT∗( T mid − T ext ) ∗ds

228

229 a heat = d e r i v a t i v e ( L heat , U1 , dU)

230

231 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

232 # Total forms

233 a = a s t r e s s + a heat + a mass

234 L = L s t r e s s + L heat + L mass
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ThermoMechanical.ufl

1 # Copyright (C) 2009 Mirko Maraldi and Garth N. Wells

2 # Licensed under the GNU LGPL Version 2 . 1 .

3 #

4 # Fir s t added : 2008

5 # Last changed : 2010

6 #

7

8 P2v= VectorElement ( ”Lagrange” , ” t r i a n g l e ” , 2)

9 P1 = FiniteElement ( ”Lagrange” , ” t r i a n g l e ” , 1)

10 P0 = FiniteElement ( ” Discont inuous Lagrange” , ” t r i a n g l e ” , 0)

11 ME = MixedElement ( [ P2v , P1 ] )

12

13 # Displacement , temperature

14 ( r , q ) = TestFunct ions (ME)

15 dU = Tria lFunct ion (ME)

16 U1 = C o e f f i c i e n t (ME)

17 U0 = C o e f f i c i e n t (ME)

18 du , dT = s p l i t (dU)

19 u1 , T1 = s p l i t (U1) # current s o l u t i on

20 u0 , T0 = s p l i t (U0) # prev ious converged s t ep

21

22 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 # Time s t epp ing parameters

24 dt = Constant ( t r i a n g l e ) # time s t ep

25 theta = Constant ( t r i a n g l e )

26 theta m = Constant ( t r i a n g l e )

27 t h e t a s = Constant ( t r i a n g l e )

28 beta = Constant ( t r i a n g l e )

29 gamma = Constant ( t r i a n g l e )

30

31 # Parameters

32 cT = Constant ( t r i a n g l e ) # heat capac i t y

33 kT = Constant ( t r i a n g l e ) # conduc t i v i t y

34 hT = Constant ( t r i a n g l e ) # heat f l u x c o e f f i c i e n t

35 T ext = Constant ( t r i a n g l e ) # ex t e rna l temperature

36 rho = Constant ( t r i a n g l e ) # dens i t y
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37 eta = Constant ( t r i a n g l e ) # damping c o e f f i c i e n t

38 x12 = Constant ( t r i a n g l e )

39 x2c = Constant ( t r i a n g l e )

40 K4 = Constant ( t r i a n g l e ) # s t r a i n grad i en t term

41 T re f = C o e f f i c i e n t (P1) # re f e rence temperature f o r undeformed con f i gu ra t i on

42 alpha = Constant ( t r i a n g l e ) # thermal d i l a t a t i o n c o e f f i c i e n t

43

44 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 # Acce lerat ion , v e l o c i t y ( prev ious converged s t ep )

46 a0 = C o e f f i c i e n t (P2v)

47 v0 = C o e f f i c i e n t (P2v)

48

49 # Acce lerat ion , v e l o c i t y ( current )

50 a1 = ( u1 − u0 − dt∗v0 − (0.5− beta ) ∗dt∗dt∗a0 ) /( beta ∗dt∗dt )

51 v1 = v0 + (1.0−gamma) ∗dt∗a0 + gamma∗dt∗a1

52

53 # Facet normal and mesh s i z e

54 n = P1 . c e l l ( ) . n

55 h = Constant ( t r i a n g l e )

56 h avg = (h( ’+’ ) + h( ’− ’ ) ) /2 .0

57

58 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

59 # Displacement , v e l o c i t y , acce l e ra t i on , temperature

60 # Theta−method

61 u mid = (1.0− theta ) ∗u1 + theta ∗u0

62 v mid = (1.0− theta ) ∗v1 + theta ∗v0

63 T mid = (1.0− theta ) ∗T1 + theta ∗T0

64 # General ised−alpha method

65 u mid g = (1.0− t h e t a s ) ∗u1 + t h e t a s ∗u0

66 v mid g = (1.0− t h e t a s ) ∗v1 + t h e t a s ∗v0

67 a mid g = (1.0− theta m ) ∗a1 + theta m∗a0

68 T mid g = (1.0− t h e t a s ) ∗T1 + t h e t a s ∗T0

69

70 # Displacement , temperature ( ra t e s )

71 u ra t e = ( u1 − u0 ) /dt

72 T rate = (T1 − T0) /dt

73
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74 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

75 # Stra in terms

76 # Hydros ta t i c s t r a i n (1/ s q r t (2) ) ∗( eps xx + eps yy )

77 def e1 ( r ) :

78 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) + r [ 1 ] . dx (1 ) )

79

80 # Stra in (1/ s q r t (2) ) ∗( eps xx − eps yy )

81 def e2 ( r ) :

82 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) − r [ 1 ] . dx (1 ) )

83

84 # Shear s t r a i n (1/2) ( dv/dx + du/dy )

85 def e3 ( r ) :

86 return 0 . 5∗ ( r [ 0 ] . dx (1 ) + r [ 1 ] . dx (0 ) )

87 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

88 # Free energy

89 #

90 # Var iab l e s :

91 # n + the ta

92 e1 mid = v a r i a b l e ( e1 ( u mid ) )

93 e2 mid = v a r i a b l e ( e2 ( u mid ) )

94 e3 mid = v a r i a b l e ( e3 ( u mid ) )

95 grad e2 = v a r i a b l e ( grad ( e2 ( u mid ) ) )

96 T mid = v a r i a b l e ( T mid )

97

98 # n + 1

99 e2 1 = v a r i a b l e ( e2 ( u1 ) )

100

101 # n + th e t a s

102 e1 mid g = v a r i a b l e ( e1 ( u mid g ) )

103 e2 mid g = v a r i a b l e ( e2 ( u mid g ) )

104 e3 mid g = v a r i a b l e ( e3 ( u mid g ) )

105 grad e2 g = v a r i a b l e ( grad ( e2 ( u mid g ) ) )

106 T mid g = v a r i a b l e ( T mid g )

107

108 # Disp l a c i v e / e l a s t i c f r e e energy ( Bouv i l l e e t a l )

109 # f d i s p = D∗( e2 ˆ6) /6.0 − E∗( e2 ˆ4) /4.0 + F∗((T−TM)/TM) ∗( e2 ˆ2) /2.0

110 # + (G/2.0) ∗e1 ∗( e1 − 2∗ s q r t (2) ∗( a lpha (T−T ref ) + x12∗e2 ˆ2) )

88



111 # + (H/2.0) ∗e3ˆ2

112 # + (K4/2.0) ∗( grad e2 ) ˆ2

113 #

114 D = 29.535

115 E = 0.49482

116 F = 0.009948

117 G = 0.004974

118 H = 0.004974

119 TM = 0.495

120

121 def f d i s p ( a , b , c , p , q ) :

122 return (D/ 6 . 0 ) ∗ b∗b∗b∗b∗b∗b \

123 − (E/4 . 0 ) ∗ b∗b∗b∗b \

124 + (F/ 2 . 0 ) ∗ ( ( q−TM) /TM) ∗b∗b \

125 + (G/ 2 . 0 ) ∗a∗ ( a − 2 .0∗ s q r t ( 2 . 0 ) ∗ ( alpha ∗(q−T re f ) + x12∗b∗b) ) \

126 + (H/2 . 0 ) ∗c∗c \

127 + (K4/ 2 . 0 ) ∗ i nne r (p , p)

128

129 # Thermal f r e e energy

130 f therm = − ( T mid−T re f ) − cT/2 .0 ∗ ( T mid − T re f ) ∗( T mid − T re f )

131

132 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

133 # Balance o f l i n e a r momentum ( at mid−po in t )

134 #

135 sigma1 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , T mid g ) , e1 mid g )

136 sigma2 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , T mid g ) , e2 mid g )

137 sigma3 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , T mid g ) , e3 mid g )

138 sigma g = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , T mid g ) , g rad e2 g )

139

140

141 L s t r e s s i n t e r t i a = rho∗dot ( r , a mid g ) ∗dx

142 L s t r e s s v i s c o u s = eta ∗ e2 ( v mid g ) ∗ s q r t ( 2 . 0 ) ∗ e2 ( r ) ∗dx

143 L s t r e s s r e g u l a r = e1 ( r ) ∗ sigma1∗dx + e2 ( r ) ∗ sigma2∗dx + 2.0∗ e3 ( r ) ∗ sigma3∗dx

144 L s t r e s s g r a d i e n t = inner ( grad ( e2 ( r ) ) , s igma g ) ∗dx \

145 − i nne r ( jump( e2 ( r ) , n ) , avg ( s igma g ) ) ∗dS \

146 − i nne r ( avg (K4∗grad ( e2 ( r ) ) ) , jump( e2 ( u mid g ) , n ) ) ∗dS \

147 + 8 .0∗ (K4( ’+’ ) / h avg ) ∗ i nne r ( jump( e2 ( r ) ) , jump( e2 ( u mid g ) ) ) ∗dS
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148

149 L s t r e s s = L s t r e s s i n t e r t i a + L s t r e s s v i s c o u s + L s t r e s s r e g u l a r + L s t r e s s g r a d i e n t

150 a s t r e s s = d e r i v a t i v e ( L s t r e s s , U1 , dU)

151

152 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

153 # Heat equat ion ( at mid−po in t )

154

155 # Heat f l u x − Fourier law

156 q f l u x = −kT∗grad ( T mid )

157

158 # (Dsigma/DT) ( de/ dt )

159 s igma1 t = d i f f ( f d i s p ( e1 mid , e2 mid , e3 mid , grad e2 , T mid ) , e1 mid )

160 s igma2 t = d i f f ( f d i s p ( e1 mid , e2 mid , e3 mid , grad e2 , T mid ) , e2 mid )

161 s igma3 t = d i f f ( f d i s p ( e1 mid , e2 mid , e3 mid , grad e2 , T mid ) , e3 mid )

162

163 D sigma DTde1 = d i f f ( s igma1 t , T mid ) ∗ e1 ( u ra t e )

164 D sigma DTde2 = d i f f ( s igma2 t , T mid ) ∗ e2 ( u ra t e )

165 D sigma DTde3 = d i f f ( s igma3 t , T mid ) ∗ e3 ( u ra t e )

166 D sigma DTde = D sigma DTde1 + D sigma DTde2 + D sigma DTde3

167

168 # Heat capac i t y

169 c therm = − d i f f ( d i f f ( f therm , T mid ) , T mid )

170

171 # Weak form

172 L heat = q∗T mid∗ c therm∗T rate ∗dx − q∗T mid∗D sigma DTde∗dx \

173 − q∗ eta ∗ s q r t ( 2 . 0 ) ∗ e2 ( v mid ) ∗ e2 ( v mid ) ∗dx \

174 − i nne r ( grad ( q ) , q f l u x ) ∗dx \

175 + q∗hT∗( T mid − T ext ) ∗ds

176

177 a heat = d e r i v a t i v e ( L heat , U1 , dU)

178

179 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

180 # Total forms

181 a = a s t r e s s + a heat

182 L = L s t r e s s + L heat
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ChemicalMechanical.ufl

1 # Copyright (C) 2009 Mirko Maraldi and Garth N. Wells

2 # Licensed under the GNU LGPL Version 2 . 1 .

3 #

4 # Fi r s t added : 2008

5 # Last changed : 2010

6 #

7

8 P2v = VectorElement ( ”Lagrange” , ” t r i a n g l e ” , 2)

9 P1 = FiniteElement ( ”Lagrange” , ” t r i a n g l e ” , 1)

10 ME = MixedElement ( [ P2v , P1 , P1 ] )

11

12 # Displacement , temperature , concentrat ion , chem po t e n t i a l

13 ( r , s , y ) = TestFunct ions (ME)

14 dU = Tria lFunct ion (ME)

15 U1 = C o e f f i c i e n t (ME) # Current s o l u t i on

16 U0 = C o e f f i c i e n t (ME) # Previous converged s t ep

17 du , dc , dmu = s p l i t (dU)

18 u1 , c1 , mu1 = s p l i t (U1)

19 u0 , c0 , mu0 = s p l i t (U0)

20

21 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 # Time s t epp ing parameters

23 dt = Constant ( t r i a n g l e ) # time s t ep

24 theta = Constant ( t r i a n g l e )

25 theta m = Constant ( t r i a n g l e )

26 t h e t a s = Constant ( t r i a n g l e )

27 beta = Constant ( t r i a n g l e )

28 gamma = Constant ( t r i a n g l e )

29

30 # Parameters

31 T1 = Constant ( t r i a n g l e ) # ex t e rna l temperature

32 rho = Constant ( t r i a n g l e ) # dens i t y

33 eta = Constant ( t r i a n g l e ) # damping c o e f f i c i e n t

34 Mob = Constant ( t r i a n g l e ) # chemical mob i l i t y

35 Q = Constant ( t r i a n g l e ) # ac t i v a t i on energy

36 x12 = Constant ( t r i a n g l e ) # energy coup l ing parameter
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37 x1c = Constant ( t r i a n g l e ) # energy coup l ing parameter

38 x2c = Constant ( t r i a n g l e ) # energy coup l ing parameter

39 K4 = Constant ( t r i a n g l e ) # s t r a i n grad i en t term

40 lmbda = Constant ( t r i a n g l e ) # sur face energy term

41

42 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

43 # Acce lerat ion , v e l o c i t y ( prev ious converged s t ep )

44 a0 = C o e f f i c i e n t (P2v)

45 v0 = C o e f f i c i e n t (P2v)

46

47 # Acce lerat ion , v e l o c i t y ( current )

48 a1 = ( u1 − u0 − dt∗v0 − (0.5− beta ) ∗dt∗dt∗a0 ) /( beta ∗dt∗dt )

49 v1 = v0 + (1.0−gamma) ∗dt∗a0 + gamma∗dt∗a1

50

51 # Facet normal and mesh s i z e

52 n = P1 . c e l l ( ) . n

53 h = Constant ( t r i a n g l e )

54 h avg = (h( ’+’ ) + h( ’− ’ ) ) /2 .0

55

56 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

57 # Displacement , v e l o c i t y , acce l e ra t i on , temp , concentrat ion , chem po t e n t i a l

58 # Theta−method

59 mu mid = (1.0− theta ) ∗mu1 + theta ∗mu0

60 # General ised−alpha method

61 u mid g = (1.0− t h e t a s ) ∗u1 + t h e t a s ∗u0

62 v mid g = (1.0− t h e t a s ) ∗v1 + t h e t a s ∗v0

63 a mid g = (1.0− theta m ) ∗a1 + theta m∗a0

64 c mid g = (1.0− t h e t a s ) ∗ c1 + t h e t a s ∗ c0

65

66 # Displacement , temperature , concentra t ion ( ra t e s )

67 c r a t e = ( c1 − c0 ) /dt

68

69 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

70 # Stra in terms

71 # Hydros ta t i c s t r a i n (1/ s q r t (2) ) ∗( eps xx + eps yy )

72 def e1 ( r ) :

73 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) + r [ 1 ] . dx (1 ) )
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74

75 # Stra in (1/ s q r t (2) ) ∗( eps xx − eps yy )

76 def e2 ( r ) :

77 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) − r [ 1 ] . dx (1 ) )

78

79 # Shear s t r a i n (1/2) ( dv/dx + du/dy )

80 def e3 ( r ) :

81 return 0 . 5∗ ( r [ 0 ] . dx (1 ) + r [ 1 ] . dx (0 ) )

82 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 # Free energy

84 #

85 # Var iab l e s :

86 # n + 1

87 c1 = v a r i a b l e ( c1 )

88 e2 1 = v a r i a b l e ( e2 ( u1 ) )

89 grad c1 = v a r i a b l e ( grad ( c1 ) )

90

91 # n + th e t a s

92 e1 mid g = v a r i a b l e ( e1 ( u mid g ) )

93 e2 mid g = v a r i a b l e ( e2 ( u mid g ) )

94 e3 mid g = v a r i a b l e ( e3 ( u mid g ) )

95 grad e2 g = v a r i a b l e ( grad ( e2 ( u mid g ) ) )

96 c mid g = v a r i a b l e ( c mid g )

97

98 # Disp l a c i v e / e l a s t i c f r e e energy ( Bouv i l l e e t a l )

99 # f d i s p = D∗( e2 ˆ6) /6.0 − E∗( e2 ˆ4) /4.0 + F∗((T−TM)/TM) ∗( e2 ˆ2) /2.0

100 # + (G/2.0) ∗e1 ∗( e1 − 2∗ s q r t (2) ∗( x1c∗c + x12∗e2 ˆ2) )

101 # + (H/2.0) ∗e3ˆ2

102 # + (K4/2.0) ∗( grad e2 ) ˆ2

103 #

104 D = 29.535

105 E = 0.49482

106 F = 0.009948

107 G = 0.004974

108 H = 0.004974

109 TM = 0.495

110
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111 def f d i s p ( a , b , c , p , s ) :

112 return (D/ 6 . 0 ) ∗ b∗b∗b∗b∗b∗b \

113 − (E/4 . 0 ) ∗ b∗b∗b∗b \

114 + (F/ 2 . 0 ) ∗ ( (T1−TM) /TM) ∗b∗b \

115 + (G/ 2 . 0 ) ∗a∗ ( a − 2 .0∗ s q r t ( 2 . 0 ) ∗ ( x1c∗ s + x12∗b∗b) ) \

116 + (H/2 . 0 ) ∗c∗c \

117 + (K4/ 2 . 0 ) ∗ i nne r (p , p)

118

119 # Chemical f r e e energy

120 # f d i f f = (A∗c ˆ4)/4 + B∗(T−Tp)∗c ˆ2/(2∗Tp) + lmbda/2 ( grad c ) ˆ2

121 #

122 A = 0.00073142

123 B = 0.00066246

124 Tp = 1.0

125

126 def f d i f f ( s , l ) :

127 return (A/ 4 . 0 ) ∗ s ∗ s ∗ s ∗ s + B∗(T1−Tp) ∗ s ∗ s / (2 . 0∗Tp) + ( lmbda / 2 . 0 ) ∗ i nne r ( l , l )

128

129 # Coupling f r e e energy

130 def f c p l ( s , m) :

131 return x2c ∗ s ∗ s ∗ m∗m

132

133 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

134 # Balance o f l i n e a r momentum ( at genera l i s ed−alpha−po in t )

135 #

136 sigma1 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g ) , e1 mid g )

137 sigma2 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g ) , e2 mid g ) \

138 + d i f f ( f c p l ( c mid g , e2 mid g ) , e2 mid g )

139 sigma3 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g ) , e3 mid g )

140 sigma g = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , grad e2 g , c mid g ) , g rad e2 g )

141

142

143 L s t r e s s i n t e r t i a = rho∗dot ( r , a mid g ) ∗dx

144 L s t r e s s v i s c o u s = eta ∗ e2 ( v mid g ) ∗ s q r t ( 2 . 0 ) ∗ e2 ( r ) ∗dx

145 L s t r e s s r e g u l a r = e1 ( r ) ∗ sigma1∗dx + e2 ( r ) ∗ sigma2∗dx + 2.0∗ e3 ( r ) ∗ sigma3∗dx

146 L s t r e s s g r a d i e n t = inner ( grad ( e2 ( r ) ) , s igma g ) ∗dx \

147 − i nne r ( jump( e2 ( r ) , n ) , avg ( s igma g ) ) ∗dS \
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148 − i nne r ( avg (K4∗grad ( e2 ( r ) ) ) , jump( e2 ( u mid g ) , n ) ) ∗dS \

149 + 8 .0∗ (K4( ’+’ ) / h avg ) ∗ i nne r ( jump( e2 ( r ) ) , jump( e2 ( u mid g ) ) ) ∗dS

150

151 L s t r e s s = L s t r e s s i n t e r t i a + L s t r e s s v i s c o u s + L s t r e s s r e g u l a r + L s t r e s s g r a d i e n t

152 a s t r e s s = d e r i v a t i v e ( L s t r e s s , U1 , dU)

153

154 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

155 # Mass d i f f u s i o n ( at mid−po in t )

156

157 # Temperature dependent mob i l i t y

158 Mob T = Mob∗exp(−Q/T1)

159

160 # Chemical p o t e n t i a l d f /dc

161 mu c = d i f f ( f d i f f ( c1 , grad c1 ) , c1 ) \

162 + d i f f ( f c p l ( c1 , e2 1 ) , c1 ) \

163 + d i f f ( f d i s p ( e1 ( u1 ) , e2 ( u1 ) , e3 ( u1 ) , grad ( e2 ( u1 ) ) , c1 ) , c1 )

164 mu grad = d i f f ( f d i f f ( c1 , grad c1 ) , grad c1 )

165

166 # Weak form

167 L c mass = s ∗ c r a t e ∗dx + Mob T∗ i nne r ( grad ( s ) , grad (mu mid) ) ∗dx

168 L c p o t e n t i a l = y∗mu1∗dx − y∗mu c∗dx − i nne r ( grad ( y ) , mu grad ) ∗dx

169

170 L mass = L c mass + L c p o t e n t i a l

171 a mass = d e r i v a t i v e ( L mass , U1 , dU)

172

173 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

174 # Total forms

175 a = a s t r e s s + a mass

176 L = L s t r e s s + L mass
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Mechanical.ufl

1 # Copyright (C) 2008 Mirko Maraldi and Garth N. Wells

2 # Licensed under the GNU LGPL Version 2 . 1 .

3 #

4 # Fir s t added : 2008

5 # Last changed : 2010

6

7 P2v= VectorElement ( ”Lagrange” , ” t r i a n g l e ” , 2)

8 P0 = FiniteElement ( ” Discont inuous Lagrange” , ” t r i a n g l e ” , 0)

9

10 # Displacement

11 r = TestFunction (P2v)

12 du = Tria lFunct ion (P2v)

13 u1 = C o e f f i c i e n t (P2v) # current s o l u t i on

14 u0 = C o e f f i c i e n t (P2v) # prev ious converged s t ep

15

16 # Time s t epp ing parameters

17 dt = Constant ( t r i a n g l e ) # time s t ep

18 theta m = Constant ( t r i a n g l e )

19 t h e t a s = Constant ( t r i a n g l e )

20 beta = Constant ( t r i a n g l e )

21 gamma = Constant ( t r i a n g l e )

22

23 # Parameters

24 T1 = Constant ( t r i a n g l e ) # temperature

25 rho = Constant ( t r i a n g l e ) # dens i t y

26 eta = Constant ( t r i a n g l e ) # damping c o e f f i c i e n t

27 K4 = Constant ( t r i a n g l e ) # s t r a i n grad i en t term

28 x12 = Constant ( t r i a n g l e ) # coup l ing between e1 and e2

29

30 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31 # Acce lerat ion , v e l o c i t y ( prev ious converged s t ep )

32 a0 = C o e f f i c i e n t (P2v)

33 v0 = C o e f f i c i e n t (P2v)

34

35 # Acce lerat ion , v e l o c i t y ( current )

36 a1 = ( u1 − u0 − dt∗v0 − (0.5− beta ) ∗dt∗dt∗a0 ) /( beta ∗dt∗dt )
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37 v1 = v0 + (1.0−gamma) ∗dt∗a0 + gamma∗dt∗a1

38

39 # Facet normal and mesh s i z e

40 n = P2v . c e l l ( ) . n

41 h = Constant ( t r i a n g l e )

42 h avg = (h( ’+’ ) + h( ’− ’ ) ) /2 .0

43

44 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 # Displacement , v e l o c i t y , a c c e l e r a t i on

46 # General ised−alpha method

47 u mid g = (1.0− t h e t a s ) ∗u1 + t h e t a s ∗u0

48 v mid g = (1.0− t h e t a s ) ∗v1 + t h e t a s ∗v0

49 a mid g = (1.0− theta m ) ∗a1 + theta m∗a0

50

51 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

52 # Stra in terms

53 # Hydros ta t i c s t r a i n (1/ s q r t (2) ) ∗( eps xx + eps yy )

54 def e1 ( r ) :

55 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) + r [ 1 ] . dx (1 ) )

56

57 # Stra in (1/ s q r t (2) ) ∗( eps xx − eps yy )

58 def e2 ( r ) :

59 return ( 1 . 0/ s q r t ( 2 . 0 ) ) ∗( r [ 0 ] . dx (0 ) − r [ 1 ] . dx (1 ) )

60

61 # Shear s t r a i n (1/2) ( dv/dx + du/dy )

62 def e3 ( r ) :

63 return 0 . 5∗ ( r [ 0 ] . dx (1 ) + r [ 1 ] . dx (0 ) )

64

65 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

66 # Free energy

67 #

68 # Var iab l e s :

69 # n + th e t a s

70 e1 mid g = v a r i a b l e ( e1 ( u mid g ) )

71 e2 mid g = v a r i a b l e ( e2 ( u mid g ) )

72 e3 mid g = v a r i a b l e ( e3 ( u mid g ) )

73 grad e2 g = v a r i a b l e ( grad ( e2 ( u mid g ) ) )
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74

75 # Disp l a c i v e / e l a s t i c f r e e energy ( Bouv i l l e e t a l )

76 # f d i s p = D∗( e2 ˆ6) /6.0 − E∗( e2 ˆ4) /4.0 + F∗((T−TM)/TM) ∗( e2 ˆ2) /2.0

77 # + (G/2.0) ∗e1 ∗( e1 − 2∗ s q r t (2) ∗x12∗e2 ˆ2) )

78 # + (H/2.0) ∗e3ˆ2

79 # + (K4/2.0) ∗( grad e2 ) ˆ2

80 #

81 D = 29.535

82 E = 0.49482

83 F = 0.009948

84 G = 0.004974

85 H = 0.004974

86 TM = 0.495

87

88 def f d i s p ( a , b , c , p ) :

89 return (D/ 6 . 0 ) ∗ b∗b∗b∗b∗b∗b \

90 − (E/4 . 0 ) ∗ b∗b∗b∗b \

91 + (F/ 2 . 0 ) ∗ ( (T1−TM) /TM) ∗b∗b \

92 + (G/ 2 . 0 ) ∗a∗ ( a − 2 .0∗ s q r t ( 2 . 0 ) ∗ x12∗b∗b ) \

93 + (H/2 . 0 ) ∗c∗c \

94 + (K4/ 2 . 0 ) ∗ i nne r (p , p)

95

96 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

97 # Balance o f l i n e a r momentum ( at mid−po in t )

98 #

99 sigma1 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , g rad e2 g ) , e1 mid g )

100 sigma2 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , g rad e2 g ) , e2 mid g )

101 sigma3 = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , g rad e2 g ) , e3 mid g )

102 sigma g = d i f f ( f d i s p ( e1 mid g , e2 mid g , e3 mid g , g rad e2 g ) , g rad e2 g )

103

104

105 L s t r e s s i n t e r t i a = rho∗dot ( r , a mid g ) ∗dx

106 L s t r e s s v i s c o u s = eta ∗ e2 ( v mid g ) ∗ s q r t ( 2 . 0 ) ∗ e2 ( r ) ∗dx

107 L s t r e s s r e g u l a r = e1 ( r ) ∗ sigma1∗dx + e2 ( r ) ∗ sigma2∗dx + 2.0∗ e3 ( r ) ∗ sigma3∗dx

108 L s t r e s s g r a d i e n t = inner ( grad ( e2 ( r ) ) , s igma g ) ∗dx \

109 − i nne r ( jump( e2 ( r ) , n ) , avg ( s igma g ) ) ∗dS \

110 − i nne r ( avg (K4∗grad ( e2 ( r ) ) ) , jump( e2 ( u mid g ) , n) ) ∗dS \
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111 + 8 .0∗ (K4( ’+’ ) / h avg ) ∗ i nne r ( jump( e2 ( r ) ) , jump( e2 ( u mid g ) ) ) ∗dS

112

113 L = L s t r e s s i n t e r t i a + L s t r e s s v i s c o u s + L s t r e s s r e g u l a r + L s t r e s s g r a d i e n t

114 a = d e r i v a t i v e (L , u1 , du)
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e2.ufl

1 # Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 # Licensed under the GNU LGPL Version 2 . 1 .

3 #

4 # Fir s t added : 2009−01−22

5 # Last changed : 2009

6 #

7 # Projec t ion

8 #

9 # Compile t h i s form with FFC: f f c − l d o l f i n e2 . u f l

10

11 P2 = VectorElement ( ”Lagrange” , ” t r i a n g l e ” , 2)

12 P1 = FiniteElement ( ”Lagrange” , ” t r i a n g l e ” , 1)

13 P0 = FiniteElement ( ” Discont inuous Lagrange” , ” t r i a n g l e ” , 0)

14

15 # displacement , v e l o c i t y

16 v = TestFunction (P1)

17 e2 = Tria lFunct ion (P1)

18 u = C o e f f i c i e n t (P2)

19

20 a = v∗ e2∗dx

21 L = (1 . 0 / s q r t ( 2 . 0 ) ) ∗v∗(u [ 0 ] . dx (0 ) − u [ 1 ] . dx (1 ) ) ∗dx
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Model.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed :

6 //

7

8 #ifndef HEAT MODEL H

9 #define HEAT MODEL H

10

11 #include <s t r i ng>

12 #include <boost / a s s i g n / l i s t o f . hpp>

13 #include <boost / scoped pt r . hpp>

14 #include <boost / sha red pt r . hpp>

15 #include <d o l f i n /fem/ Dir ichletBC . h>

16 #include <d o l f i n /fem/ Var iat ionalProblem . h>

17 #include <d o l f i n / func t i on / C o e f f i c i e n t A s s i g n e r . h>

18 #include <d o l f i n / func t i on / Express ion . h>

19 #include <d o l f i n / func t i on / Function . h>

20 #include <d o l f i n / func t i on / FunctionSpace . h>

21 #include <d o l f i n / func t i on /SubSpace . h>

22 #include <d o l f i n / func t i on / Spec ia lFunct i ons . h>

23 #include ” Parameters . h”

24 #include ”e2 . h”

25

26 namespace d o l f i n

27 {

28 namespace heat

29 {

30

31 class Model

32 {

33 public :

34

35 // Constructor

36 Model ( boost : : shared ptr<FunctionSpace> V, std : : s t r i n g model )
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37 : V(V) , W(V) , W0(V) , h(V−>mesh ( ) ) , model ( model )

38 {

39 }

40

41 // Return b i l i n e a r form

42 const Form& a ( ) const

43 { return ∗ a ; }

44

45 // Return l i n e a r form

46 const Form& L( ) const

47 { return ∗ L ; }

48

49 // Return vec tor conta in ing boundary cond i t i ons

50 virtual std : : vector<const Dir ichletBC∗>& bcs ( ) = 0 ;

51

52 // Vector a s s o c i a t e with complete ( p o s s i b l e mixed ) f i e l d

53 Gener icVector& vecto r ( )

54 { return W. vecto r ( ) ; }

55

56 // Return disp lacement f i e l d

57 virtual const Function& disp lacement ( ) const = 0 ;

58

59 // Return temperature f i e l d

60 virtual Function& temperature ( )

61 { e r r o r ( ”Model : : temperature not implemented” ) ; return W; }

62

63 // Return concentra t ion f i e l d

64 virtual Function& concent ra t i on ( )

65 { e r r o r ( ”Model : : c oncent ra t i on not implemented” ) ; return W; }

66

67 // Return s t r i n g d e s c r i b i n g model

68 std : : s t r i n g s t r ( ) const

69 { return model ; }

70

71 // Perform updates at the end o f a s t ep

72 virtual void update ( ) = 0 ;

73
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74 // Compute and return e2 fo r post−proces s ing

75 Function e2 ( ) const

76 {

77 const Function& u = disp lacement ( ) ;

78 boost : : shared ptr<e2 : : FunctionSpace> Ve(new e2 : : FunctionSpace (V−>mesh ( ) ) ) ;

79 e2 : : Bi l inearForm a (Ve , Ve) ;

80 e2 : : LinearForm L (Ve , u) ;

81 Var iat ionalProblem eps ( a , L ) ;

82 eps . parameters [ ” l i n e a r s o l v e r ” ] = ” i t e r a t i v e ” ;

83

84 Function e2 (Ve) ;

85 eps . s o l v e ( e2 ) ;

86 return e2 ;

87 }

88

89 protected :

90

91 // So lu t i on func t i on space

92 boost : : shared ptr<FunctionSpace> V;

93

94 // So lu t i on func t i on

95 Function W;

96 Function W0;

97

98 // Forms

99 boost : : shared ptr<Form> a ;

100 boost : : shared ptr<Form> L ;

101

102 // Ce l l s i z e

103 C e l l S i z e h ;

104

105 private :

106

107 // Model name

108 const std : : s t r i n g model ;

109

110 } ;
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111

112 }

113 }

114 #endif
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Updates.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT UPDATES H

9 #define HEAT UPDATES H

10

11 #include <d o l f i n / func t i on / Function . h>

12 #include <d o l f i n / l a / Gener icVector . h>

13

14 namespace d o l f i n

15 {

16 namespace heat

17 {

18 // Acce l e ra t ion update

19 void update a ( Function& a , const Function& u , const Function& a0 ,

20 const Function& v0 , const Function& u0 ,

21 double beta , double dt )

22 {

23 // a = 1/(2∗ be ta ) ∗ ( ( u−u0 − v0∗ dt ) /(0 .5∗ dt ∗ dt ) − (1−2∗ be ta )∗a0 )

24 a . vec to r ( ) = u . vec to r ( ) ;

25 a . vec to r ( ) −= u0 . vec to r ( ) ;

26 a . vec to r ( ) ∗= 1.0/ dt ;

27 a . vec to r ( ) −= v0 . vec to r ( ) ;

28 a . vec to r ( ) ∗= 1.0/((0 .5− beta ) ∗dt ) ;

29 a . vec to r ( ) −= a0 . vec to r ( ) ;

30 a . vec to r ( ) ∗= (0.5− beta ) / beta ;

31 }

32

33 // Ve loc i t y update

34 void update v ( const Function& a , Function& v , const Function& a0 ,

35 const Function& v0 , double gamma, double dt )

36 {

105



A. DOLFIN/FFC CODE

37 // v = dt ∗ ((1−Gamma)∗a0 + Gamma∗a) + v0

38 v . vec to r ( ) = a0 . vec to r ( ) ;

39 v . vec to r ( ) ∗= (1.0−gamma) /gamma;

40 v . vec to r ( ) += a . vec to r ( ) ;

41 v . vec to r ( ) ∗= dt∗gamma;

42 v . vec to r ( ) += v0 . vec to r ( ) ;

43 }

44 }

45 }

46 #endif
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ThermoChemoMechanicalModel.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT THERMOCHEMOMECHANICAL MODEL H

9 #define HEAT THERMOCHEMOMECHANICAL MODEL H

10

11 #include <boost / a s s i g n / l i s t o f . hpp>

12 #include ” Parameters . h”

13 #include ”Model . h”

14 #include ”Updates . h”

15 #include ”ThermoChemicalMechanical . h”

16

17 namespace d o l f i n

18 {

19 namespace heat

20 {

21

22 // User de f ined nonl inear problem

23 class ThermoChemoMechanicalModel : public Model

24 {

25 public :

26

27 // Constructor

28 ThermoChemoMechanicalModel ( const Mesh& mesh )

29 : Model ( boost : : shared ptr<FunctionSpace>(new ThermoChemicalMechanical : :

FunctionSpace ( mesh ) ) ,

30 ”thermo−chemo−mechanical ” ) ,

31 // Subspaces

32 Vu(new SubSpace (∗V, 0) ) , Vu x (new SubSpace (∗V, 0 , 0) ) ,

33 Vu y (new SubSpace (∗V, 0 , 1) ) ,

34 Vt(new SubSpace (∗V, 1) ) , Vc(new SubSpace (∗V, 2) ) ,

35 // Displacement , v e l o c i t y , a c c e l e r a t i on
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36 u(new Function (Vu) ) , u0 (new Function (Vu) ) ,

37 v (new Function (Vu) ) , v0 (new Function (Vu) ) ,

38 acc (new Function (Vu) ) , acc0 (new Function (Vu) ) ,

39 // Boundary cond i t i ons

40 bc u 1 (∗Vu x , z e r o s c a l a r , l e f t ) ,

41 bc u 2 (∗Vu y , z e r o s c a l a r , c e n t r e l e f t , ” po intw i se ” )

42 {

43 // In s e r t bc in to vec tor

44 bcs . push back(&bc u 1 ) ;

45 bcs . push back(&bc u 2 ) ;

46

47 // I n i t i a l cond i t i ons f o r d isp lacement and temperature

48 I n i t i a l C o n d i t i o n s UU( ic d im ) ;

49 i f (UU. va lue d imens ion (0 ) != 5)

50 e r r o r ( ”Wrong i n i t i a l c ond i t i on vec to r dimension . You should have 5 i n i t i a l

c o n d i t i o n s ” ) ;

51 W. i n t e r p o l a t e (UU) ;

52 W0 = W;

53 update i c ( ) ;

54

55 // Set r e f e r ence temperature to i n t i a l temperature

56 r e f e r enc e t empe ra tu r e . r e s e t (new Function (W[ 1 ] ) ) ;

57

58 // Create forms

59 a . r e s e t (new ThermoChemicalMechanical : : Bi l inearForm (V, V) ) ;

60 L . r e s e t (new ThermoChemicalMechanical : : LinearForm (V) ) ;

61

62 // Attach c o e f f i c i e n t s

63 ThermoChemicalMechanical : : Bi l inearForm ∗ aa = dynamic cast<

ThermoChemicalMechanical : : Bi l inearForm∗>( a . get ( ) ) ;

64 ThermoChemicalMechanical : : LinearForm∗ LL = dynamic cast<ThermoChemicalMechanical

: : LinearForm∗>( L . get ( ) ) ;

65

66 aa−>U1 = W; aa−>U0 = W0; aa−>a0 = ∗ acc0 ; aa−>v0 = ∗v0 ;

67 aa−>dt = dt ; aa−>theta = theta ; aa−>theta m = theta m ; aa−>t h e t a s = t h e t a s ;

68 aa−>beta = beta ; aa−>gamma = gamma;

69 aa−>h = h ;
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70 aa−>x12 = x12 ; aa−>x1c = x1c ; aa−>x2c = x2c ;

71 aa−>rho = rho ; aa−>eta = eta ; aa−>K4 = K4 ;

72 aa−>kT = k ; aa−>cT = c ; aa−>hT = hT; aa−>alpha = alpha ;

73 aa−>lmbda = lambda ; aa−>Mob = Mob; aa−>Q = Q;

74

75 LL−>U1 = W; LL−>U0 = W0; LL−>a0 = ∗ acc0 ; LL−>v0 = ∗v0 ;

76 LL−>dt = dt ; LL−>theta = theta ; LL−>theta m = theta m ; LL−>t h e t a s = t h e t a s ;

77 LL−>beta = beta ; LL−>gamma = gamma;

78 LL−>h = h ;

79 LL−>x12 = x12 ; LL−>x1c = x1c ; LL−>x2c = x2c ;

80 LL−>rho = rho ; LL−>eta = eta ; LL−>K4 = K4 ;

81 LL−>kT = k ; LL−>cT = c ; LL−>hT = hT;

82 LL−>T ext = temp re f ; LL−>alpha = alpha ; LL−>T re f = ∗ r e f e r enc e t empe ra tu r e ;

83 LL−>lmbda = lambda ; LL−>Mob = Mob; LL−>Q = Q;

84 }

85

86 std : : vector<const Dir ichletBC∗>& bcs ( )

87 { return bcs ; }

88

89 const Function& disp lacement ( ) const

90 { return ∗u ; }

91

92 Function& temperature ( )

93 { return W[ 1 ] ; }

94

95 Function& concent ra t i on ( )

96 { return W[ 2 ] ; }

97

98 // Update

99 void update ( )

100 {

101 ∗u = W[ 0 ] ;

102 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

103 update v (∗ acc , ∗v , ∗acc0 , ∗v0 , gamma, dt ) ;

104 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

105 W0 = W;

106 }
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107 // I n i t i a l update

108 void update i c ( )

109 {

110 ∗u = W[ 0 ] ;

111 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

112 Constant v i c ( 0 . 0 , 0 . 0 ) ; ∗v = v i c ;

113 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

114 W0 = W;

115 }

116

117 private :

118

119 // Function spaces

120 boost : : shared ptr<FunctionSpace> Vu;

121 boost : : shared ptr<FunctionSpace> Vu x ;

122 boost : : shared ptr<FunctionSpace> Vu y ;

123 boost : : shared ptr<FunctionSpace> Vt ;

124 boost : : shared ptr<FunctionSpace> Vc ;

125

126 // Displacement , v e l o c i t y , a c c e l e r a t i on

127 boost : : shared ptr<Function> u , u0 , v , v0 , acc , acc0 ;

128

129 // Reference temperature ( at t = 0)

130 boost : : shared ptr<Function> r e f e r enc e t empe ra tu r e ;

131

132 // Boundary cond i t i ons

133 Dir ichletBC bc u 1 ;

134 Dir ichletBC bc u 2 ;

135 std : : vector<const Dir ichletBC∗> bcs ;

136 } ;

137

138 }

139 }

140 #endif
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ThermoMechanicalModel.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT THERMOMECHANICAL MODEL H

9 #define HEAT THERMOMECHANICAL MODEL H

10

11 #include <boost / a s s i g n / l i s t o f . hpp>

12 #include ” Parameters . h”

13 #include ”Model . h”

14 #include ”Updates . h”

15 #include ”ThermoMechanical . h”

16

17 namespace d o l f i n

18 {

19 namespace heat

20 {

21

22 class ThermoMechanicalModel : public Model

23 {

24 public :

25

26 // Constructor

27 ThermoMechanicalModel ( const Mesh& mesh )

28 : Model ( boost : : shared ptr<FunctionSpace>(new ThermoMechanical : : FunctionSpace (

mesh ) ) ,

29 ”thermo−mechanical ” ) ,

30 // Supspaces

31 Vu(new SubSpace (∗V, 0) ) , Vu x (new SubSpace (∗V, 0 , 0) ) ,

32 Vu y (new SubSpace (∗V, 0 , 1) ) ,

33 Vt(new SubSpace (∗V, 1) ) ,

34 // Displacement , v e l o c i t y , a c c e l e r a t i on

35 u(new Function (Vu) ) , u0 (new Function (Vu) ) ,
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36 v (new Function (Vu) ) , v0 (new Function (Vu) ) ,

37 acc (new Function (Vu) ) , acc0 (new Function (Vu) ) ,

38 // Boundary cond i t i ons

39 bc u 1 (∗Vu x , z e r o s c a l a r , l e f t ) ,

40 bc u 2 (∗Vu y , z e r o s c a l a r , c e n t r e l e f t , ” po intw i se ” )

41 {

42 // In s e r t bc in to vec tor

43 bcs . push back(&bc u 1 ) ;

44 bcs . push back(&bc u 2 ) ;

45

46 // I n i t i a l cond i t i ons f o r d isp lacement and temperature

47 I n i t i a l C o n d i t i o n s UU( ic d im ) ;

48 i f (UU. va lue d imens ion (0 ) != 3)

49 e r r o r ( ”Wrong i n i t i a l c ond i t i on vec to r dimension . You should have 3 i n i t i a l

c o n d i t i o n s ” ) ;

50 W. i n t e r p o l a t e (UU) ;

51 W0 = W;

52 update i c ( ) ;

53

54 // Set r e f e r ence temperature to i n t i a l temperature

55 r e f e r enc e t empe ra tu r e . r e s e t (new Function (W[ 1 ] ) ) ;

56

57 // Create forms

58 a . r e s e t (new ThermoMechanical : : Bi l inearForm (V, V) ) ;

59 L . r e s e t (new ThermoMechanical : : LinearForm (V) ) ;

60

61 // Attach c o e f f i c i e n t s

62 ThermoMechanical : : Bi l inearForm ∗ aa = dynamic cast<ThermoMechanical : : Bi l inearForm

∗>( a . get ( ) ) ;

63 ThermoMechanical : : LinearForm∗ LL = dynamic cast<ThermoMechanical : : LinearForm∗>(

L . get ( ) ) ;

64

65 aa−>U1 = W; aa−>U0 = W0; aa−>a0 = ∗ acc0 ; aa−>v0 = ∗v0 ;

66 aa−>dt = dt ; aa−>theta = theta ; aa−>theta m = theta m ; aa−>t h e t a s = t h e t a s ;

67 aa−>beta = beta ; aa−>gamma = gamma;

68 aa−>h = h ;

69 aa−>x12 = x12 ;
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70 aa−>rho = rho ; aa−>eta = eta ; aa−>K4 = K4 ;

71 aa−>kT = k ; aa−>cT = c ; aa−>hT = hT;

72 aa−>alpha = alpha ;

73

74

75 LL−>U1 = W; LL−>U0 = W0; LL−>v0 = ∗v0 ; LL−>a0 = ∗ acc0 ;

76 LL−>dt = dt ; LL−>theta = theta ; LL−>theta m = theta m ; LL−>t h e t a s = t h e t a s ;

77 LL−>beta = beta ; LL−>gamma = gamma;

78 LL−>h = h ;

79 LL−>x12 = x12 ;

80 LL−>rho = rho ; LL−>eta = eta ; LL−>K4 = K4 ;

81 LL−>kT = k ; LL−>cT = c ; LL−>hT = hT; LL−>alpha = alpha ;

82 LL−>T ext = temp re f ; LL−>T re f = ∗ r e f e r enc e t empe ra tu r e ;

83 }

84

85 std : : vector<const Dir ichletBC∗>& bcs ( )

86 { return bcs ; }

87

88 const Function& disp lacement ( ) const

89 { return ∗u ; }

90

91 Function& temperature ( )

92 { return W[ 1 ] ; }

93

94 // Update

95 void update ( )

96 {

97 ∗u = W[ 0 ] ;

98 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

99 update v (∗ acc , ∗v , ∗acc0 , ∗v0 , gamma, dt ) ;

100 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

101 W0 = W;

102 }

103 // I n i t i a l update

104 void update i c ( )

105 {

106 ∗u = W[ 0 ] ;
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107 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

108 Constant v i c ( 0 . 0 , 0 . 0 ) ; ∗v = v i c ;

109 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

110 W0 = W;

111 }

112

113 private :

114

115 // Function spaces

116 boost : : shared ptr<FunctionSpace> Vu;

117 boost : : shared ptr<FunctionSpace> Vu x ;

118 boost : : shared ptr<FunctionSpace> Vu y ;

119 boost : : shared ptr<FunctionSpace> Vt ;

120

121 // Displacement , v e l o c i t y , a c c e l e r a t i on

122 boost : : shared ptr<Function> u , u0 , v , v0 , acc , acc0 ;

123

124 // Reference temperature ( at t = 0)

125 boost : : shared ptr<Function> r e f e r enc e t empe ra tu r e ;

126

127 // D i r i c h l e t boundary cond i t i ons

128 Dir ichletBC bc u 1 ;

129 Dir ichletBC bc u 2 ;

130 std : : vector<const Dir ichletBC∗> bcs ;

131 } ;

132 }

133 }

134 #endif
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ChemoMechanicalModel.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed :

6 //

7

8 #ifndef HEAT CHEMO MECHANICAL MODEL H

9 #define HEAT CHEMO MECHANICAL MODEL H

10

11 #include <boost / a s s i g n / l i s t o f . hpp>

12 #include <d o l f i n / func t i on / Function . h>

13 #include ” Parameters . h”

14 #include ”Model . h”

15 #include ”Updates . h”

16 #include ” ChemicalMechanical . h”

17

18 namespace d o l f i n

19 {

20 namespace heat

21 {

22

23 // User de f ined nonl inear problem

24 class ChemoMechanicalModel : public Model

25 {

26 public :

27

28 // Constructor

29 ChemoMechanicalModel ( const Mesh& mesh )

30 : Model ( boost : : shared ptr<FunctionSpace>(new ChemicalMechanical : : FunctionSpace (

mesh ) ) ,

31 ”chemo−mechanical ” ) ,

32 // Subspaces

33 Vu(new SubSpace (∗V, 0) ) , Vc(new SubSpace (∗V, 1) ) ,

34 // Displacement , v e l o c i t y , a c c e l e r a t i on

35 u(new Function (Vu) ) , u0 (new Function (Vu) ) ,
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36 v (new Function (Vu) ) , v0 (new Function (Vu) ) ,

37 acc (new Function (Vu) ) , acc0 (new Function (Vu) ) ,

38 // Boundary cond i t i on

39 bc u (∗Vu, z e ro vec to r , boundary )

40 {

41 // In s e r t bc in to vec tor

42 bcs . push back(&bc u ) ;

43

44 // I n i t i a l cond i t i ons f o r d isp lacement and concentra t ion

45 I n i t i a l C o n d i t i o n s UU( ic d im ) ;

46 i f (UU. va lue d imens ion (0 ) != 4)

47 e r r o r ( ”Wrong i n i t i a l c ond i t i on vec to r dimension . You should have 4 i n i t i a l

c o n d i t i o n s ” ) ;

48 W. i n t e r p o l a t e (UU) ;

49 W0 = W;

50 update i c ( ) ;

51

52 // Create forms

53 a . r e s e t (new ChemicalMechanical : : Bi l inearForm (V, V) ) ;

54 L . r e s e t (new ChemicalMechanical : : LinearForm (V) ) ;

55

56 // Attach c o e f f i c i e n t s

57 ChemicalMechanical : : Bi l inearForm ∗ aa = dynamic cast<ChemicalMechanical : :

Bi l inearForm∗>( a . get ( ) ) ;

58 ChemicalMechanical : : LinearForm∗ LL = dynamic cast<ChemicalMechanical : : LinearForm

∗>( L . get ( ) ) ;

59

60 aa−>U1 = W; aa−>U0 = W0;

61 aa−>dt = dt ; aa−>theta = theta ; aa−>theta m = theta m ; aa−>t h e t a s = t h e t a s ;

62 aa−>beta = beta ; aa−>gamma = gamma;

63 aa−>x12 = x12 ; aa−>x1c = x1c ; aa−>x2c = x2c ; aa−>T1 = temp re f ;

64 aa−>h = h ;

65 aa−>rho = rho ; aa−>eta = eta ; aa−>K4 = K4 ;

66 aa−>Mob = Mob; aa−>lmbda = lambda ; aa−>Q = Q;

67

68 LL−>U1 = W; LL−>U0 = W0; LL−>v0 = ∗v0 ; LL−>a0 = ∗ acc0 ;

69 LL−>dt = dt ; LL−>theta = theta ; LL−>theta m = theta m ; LL−>t h e t a s = t h e t a s ;
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70 LL−>beta = beta ; LL−>gamma = gamma;

71 LL−>x12 = x12 ; LL−>x1c = x1c ; LL−>x2c = x2c ; LL−>T1 = temp re f ;

72 LL−>h = h ;

73 LL−>rho = rho ; LL−>eta = eta ; LL−>K4 = K4 ;

74 LL−>Mob = Mob; LL−>lmbda = lambda ; LL−>Q = Q;

75 }

76

77 std : : vector<const Dir ichletBC∗>& bcs ( )

78 { return bcs ; }

79

80 const Function& disp lacement ( ) const

81 { return ∗u ; }

82

83 Function& concent ra t i on ( )

84 { return W[ 1 ] ; }

85

86 // Update

87 void update ( )

88 {

89 ∗u = W[ 0 ] ;

90 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

91 update v (∗ acc , ∗v , ∗acc0 , ∗v0 , gamma, dt ) ;

92 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

93 W0 = W;

94 }

95 // I n i t i a l update

96 void update i c ( )

97 {

98 ∗u = W[ 0 ] ;

99 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

100 Constant v i c (2 , 0 . 0 , 0 . 0 ) ; ∗v = v i c ;

101 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

102 W0 = W;

103 }

104

105 private :

106
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107 // Function spaces

108 boost : : shared ptr<FunctionSpace> Vu;

109 boost : : shared ptr<FunctionSpace> Vc ;

110

111 // Displacement , v e l o c i t y , a c c e l e r a t i on

112 boost : : shared ptr<Function> u , u0 , v , v0 , acc , acc0 ;

113

114 // D i r i c h l e t boundary cond i t i ons

115 Dir ichletBC bc u ;

116 std : : vector<const Dir ichletBC∗> bcs ;

117

118 } ;

119

120 }

121 }

122 #endif
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MechanicalModel.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT MECHANICAL MODEL H

9 #define HEAT MECHANICAL MODEL H

10

11 #include <vector>

12 #include <boost / a s s i g n / l i s t o f . hpp>

13 #include ” Parameters . h”

14 #include ”Model . h”

15 #include ”Updates . h”

16 #include ” Mechanical . h”

17 #include ” I n i t i a l C o n d i t i o n s . h”

18

19 namespace d o l f i n

20 {

21 namespace heat

22 {

23

24 // User de f ined nonl inear problem

25 class MechanicalModel : public Model

26 {

27 public :

28

29 // Constructor

30 MechanicalModel ( const Mesh& mesh )

31 : Model ( boost : : shared ptr<FunctionSpace>(new Mechanical : : FunctionSpace ( mesh ) ) ,

32 ” mechanical ” ) ,

33 // Spaces

34 Vu(V) ,

35 // Displacement , v e l o c i t y , a c c e l e r a t i on

36 u(new Function (Vu) ) , u0 (new Function (Vu) ) ,
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37 v (new Function (Vu) ) , v0 (new Function (Vu) ) ,

38 acc (new Function (Vu) ) , acc0 (new Function (Vu) ) ,

39 // Boundary cond i t i ons

40 bc (∗Vu, z e ro vec to r , boundary )

41 {

42 // In s e r t bc in to vec tor

43 bcs . push back(&bc ) ;

44

45 // I n i t i a l cond i t i ons f o r d isp lacement

46 I n i t i a l C o n d i t i o n s UU( ic d im ) ;

47 i f (UU. va lue d imens ion (0 ) != 2)

48 e r r o r ( ”Wrong i n i t i a l c ond i t i on vec to r dimension . You should have 2 i n i t i a l

c o n d i t i o n s ” ) ;

49 W0. i n t e r p o l a t e (UU) ;

50 W = W0;

51

52 // Compute u , v , a , u0 , v0 , a0

53 update i c ( ) ;

54

55 // Create forms

56 a . r e s e t (new Mechanical : : Bi l inearForm (V, V) ) ;

57 L . r e s e t (new Mechanical : : LinearForm (V) ) ;

58

59 a s s e r t ( a ) ;

60 a s s e r t ( L ) ;

61

62 // Attach c o e f f i c i e n t s to forms

63 Mechanical : : Bi l inearForm ∗ aa = dynamic cast<Mechanical : : Bi l inearForm∗>( a . get ( ) )

;

64 Mechanical : : LinearForm∗ LL = dynamic cast<Mechanical : : LinearForm∗>( L . get ( ) ) ;

65

66 aa−>u1 = W; aa−>u0 = ∗u0 ;

67 aa−>dt = dt ; aa−>theta m = theta m ; aa−>t h e t a s = t h e t a s ;

68 aa−>beta = beta ; aa−>gamma = gamma;

69 aa−>rho = rho ; aa−>eta = eta ; aa−>K4 = K4 ;

70 aa−>h = h ;

71 aa−>T1 = temp re f ; aa−>x12 = x12 ;

120



72

73 LL−>u1 = W; LL−>u0 = ∗u0 ; LL−>v0 = ∗v0 ; LL−>a0 = ∗ acc0 ;

74 LL−>dt = dt ; LL−>beta = beta ; LL−>gamma = gamma;

75 LL−>theta m = theta m ; LL−>t h e t a s = t h e t a s ;

76 LL−>rho = rho ; LL−>eta = eta ; LL−>K4 = K4 ;

77 LL−>h = h ;

78 LL−>x12 = x12 ; LL−>T1 = temp re f ;

79 }

80

81 std : : vector<const Dir ichletBC∗>& bcs ( )

82 { return bcs ; }

83

84 const Function& disp lacement ( ) const

85 { return ∗u ; }

86

87 // Update

88 void update ( )

89 {

90 ∗u = W;

91 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

92 update v (∗ acc , ∗v , ∗acc0 , ∗v0 , gamma, dt ) ;

93 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

94 }

95 // I n i t i a l update

96 void update i c ( )

97 {

98 ∗u = W[ 0 ] ;

99 update a (∗ acc , ∗u , ∗acc0 , ∗v0 , ∗u0 , beta , dt ) ;

100 Constant v i c (2 , 0 . 0 , 0 . 0 ) ; ∗v = v i c ;

101 ∗u0 = ∗u ; ∗v0 = ∗v ; ∗ acc0 = ∗ acc ;

102 W0 = W;

103 }

104

105 private :

106

107 // Function spaces

108 boost : : shared ptr<FunctionSpace> Vu;
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109

110 // Displacement , v e l o c i t y , a c c e l e r a t i on

111 boost : : shared ptr<Function> u , u0 , v , v0 , acc , acc0 ;

112

113 // Boundary cond i t i ons

114 Dir ichletBC bc ;

115 std : : vector<const Dir ichletBC∗> bcs ;

116 } ;

117 }

118 }

119 #endif
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NonLinearProblem.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT PROBLEM H

9 #define HEAT PROBLEM H

10

11 #include <d o l f i n / n l s /NewtonSolver . h>

12 #include <d o l f i n / n l s / NonlinearProblem . h>

13 #include <d o l f i n /fem/ Dir ichletBC . h>

14 #include <d o l f i n /fem/ Assembler . h>

15 #include <d o l f i n /fem/SystemAssembler . h>

16

17 namespace d o l f i n

18 {

19 namespace heat

20 {

21

22 // User de f ined nonl inear problem

23 class NonlinearProblem : public d o l f i n : : NonlinearProblem

24 {

25 public :

26

27 // Constructor

28 NonlinearProblem ( const Form& a , const Form& L , std : : vector<const Dir ichletBC∗>& bcs ,

29 const NewtonSolver& s o l v e r ) : a ( a ) , L(L) , bcs ( bcs ) ,

30 s o l v e r ( s o l v e r ) , r e s e t t e n s o r ( true )

31 {

32 }

33

34 // Residua l vec to r

35 void F( Gener icVector& b , const Gener icVector& x )

36 {
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37 // Assemble and modify f o r D i r i c h l e t boundary cond i t i ons

38 d o l f i n : : Assembler : : assemble (b , L) ;

39 for ( d o l f i n : : u int i = 0 ; i < bcs . s i z e ( ) ; i++)

40 bcs [ i ]−>apply (b , x ) ;

41 }

42

43 // Jacobian

44 void J ( d o l f i n : : GenericMatrix& A, const d o l f i n : : Gener icVector& x )

45 {

46 // Assemble and modify f o r D i r i c h l e t boundary cond i t i ons

47 i f ( s o l v e r . i t e r a t i o n ( ) < 1)

48 {

49 d o l f i n : : Assembler : : assemble (A, a , r e s e t t e n s o r ) ;

50 for ( d o l f i n : : u int i = 0 ; i < bcs . s i z e ( ) ; i++)

51 bcs [ i ]−>apply (A) ;

52 }

53 r e s e t t e n s o r = fa l se ;

54

55 }

56

57 private :

58

59 const Form& a ;

60 const Form& L ;

61 std : : vector<const Dir ichletBC∗>& bcs ;

62 const NewtonSolver& s o l v e r ;

63 bool r e s e t t e n s o r ;

64 } ;

65

66 }

67 }

68 #endif

124



main.cpp

1 // Copyright (C) 2008−2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2008−07−11

5 // Last changed : 2010

6 //

7

8 #include ”ThermoMechanicalModel . h”

9 #include ”MechanicalModel . h”

10 #include ”ChemoMechanicalModel . h”

11 #include ”ThermoChemoMechanicalModel . h”

12 #include ”NonLinearProblem . h”

13 #include <d o l f i n . h>

14

15 using namespace d o l f i n ;

16 using namespace heat ;

17

18 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 void s o l v e r ( heat : : Model& model , Mesh& mesh )

20 {

21 // Seed random number generator

22 d o l f i n : : seed (3 ) ;

23

24 // S t r e t ch mesh

25 MeshGeometry& mesh geometry = mesh . geometry ( ) ;

26 for ( V e r t e x I t e r a t o r v ( mesh ) ; ! v . end ( ) ; ++v )

27 {

28 double∗ x = mesh geometry . x (v−>index ( ) ) ;

29 x [ 0 ] ∗= mesh st re tch ;

30 x [ 1 ] ∗= mesh st re tch ;

31 }

32

33 // Set parameters f o r l i n e a r s o l v e r

34 l i n e a r s o l v e r . parameters [ ” monitor convergence ” ] = l i n e a r s o l v c o n v ;

35 l i n e a r s o l v e r . parameters [ ” r e l a t i v e t o l e r a n c e ” ] = l i n e a r s o l v r e l t o l ;

36
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37 // Set parameters f o r newton s o l v e r

38 newton so lver . parameters [ ” maximum iterations ” ] = newton maxit ;

39 newton so lver . parameters [ ” r e l a t i v e t o l e r a n c e ” ] = n e w t o n r e l t o l ;

40 newton so lver . parameters [ ” a b s o l u t e t o l e r a n c e ” ] = newton absto l ;

41

42 // Create non l inear problem

43 heat : : NonlinearProblem nonl inear prob lem ( model . a ( ) , model . L( ) , model . bcs ( ) ,

newton so lver ) ;

44

45 // Save i n i t i a l cond i t i on to f i l e

46 F i l e f i l e u ( ” r e s u l t s /u . pvd” , ” compressed ” ) ;

47 F i l e f i l e T ( ” r e s u l t s /T. pvd” , ” compressed ” ) ;

48 F i l e f i l e c ( ” r e s u l t s /c . pvd” , ” compressed ” ) ;

49 F i l e f i l e e 2 ( ” r e s u l t s / e2 . pvd” , ” compressed ” ) ;

50

51 f i l e u << model . d i sp lacement ( ) ;

52 i f ( model . s t r ( ) == ”thermo−mechanical ” | | model . s t r ( ) == ”thermo−chemo−mechanical ” )

53 f i l e T << model . temperature ( ) ;

54 i f ( model . s t r ( ) == ”chemo−mechanical ” | | model . s t r ( ) == ”thermo−chemo−mechanical ” )

55 f i l e c << model . concent ra t i on ( ) ;

56 f i l e e 2 << model . e2 ( ) ;

57

58 // S ta r t time s t epp ing

59 d o l f i n : : u int s tep = 1 ;

60 while ( t < T)

61 {

62 t += dt ;

63

64 // So lve

65 cout << ”Model : ” << model . s t r ( ) << endl ;

66 cout << ”Step , time : ” << s tep << ” , ” << t << endl ;

67 t i c ( ) ;

68 newton so lver . s o l v e ( nonl inear problem , model . vec to r ( ) ) ;

69 cout << ”Newton step r equ i r ed ” << toc ( ) << ” seconds . ” << endl ;

70

71 // Update model

72 model . update ( ) ;
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73

74 // Save func t i ons to f i l e

75 i f ( s tep % sa v e s t e p == 0)

76 {

77 f i l e u << model . d i sp lacement ( ) ;

78 i f ( model . s t r ( ) == ”thermo−mechanical ” | | model . s t r ( ) == ”thermo−chemo−mechanical ”

)

79 f i l e T << model . temperature ( ) ;

80 i f ( model . s t r ( ) == ”chemo−mechanical ” | | model . s t r ( ) == ”thermo−chemo−mechanical ” )

81 f i l e c << model . concent ra t i on ( ) ;

82 f i l e e 2 << model . e2 ( ) ;

83 }

84 ++step ;

85 }

86

87 // Save s o l u t i on vec tor

88 F i l e f i l e s o l u t i o n ( ” U so lu t i on . xml” ) ;

89 f i l e s o l u t i o n << model . vec to r ( ) ;

90 }

91 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

92

93 int main (void )

94 {

95 parameters [ ” l i n e a r a l g e b r a b a c k e n d ” ] = ”PETSc” ;

96

97 // I n i t i a l i s e mesh f a c e t s

98 mesh . i n i t (1 ) ;

99

100 // Create model

101 i f ( model type == ” Mechanical ” )

102 {heat : : MechanicalModel model ( mesh ) ; s o l v e r ( model , mesh ) ;}

103 i f ( model type == ”ThermoMechanical” )

104 {heat : : ThermoMechanicalModel model ( mesh ) ; s o l v e r ( model , mesh ) ;}

105 i f ( model type == ”ChemoMechanical” )

106 {heat : : ChemoMechanicalModel model ( mesh ) ; s o l v e r ( model , mesh ) ;}

107 i f ( model type == ”ThermoChemoMechanical” )

108 {heat : : ThermoChemoMechanicalModel model ( mesh ) ; s o l v e r ( model , mesh ) ;}
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109 else

110 { e r r o r ( ”Unknown model” ) ;}

111 }
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Parameters.h

1 // Copyright (C) 2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2009

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT PARAMETERS H

9 #define HEAT PARAMETERS H

10

11 #include <boost / a s s i g n / l i s t o f . hpp>

12 #include <d o l f i n / func t i on /Constant . h>

13 #include ” I n i t i a l C o n d i t i o n s . h”

14 #include ” BoundaryConditions . h”

15 #include <d o l f i n . h>

16

17 namespace d o l f i n

18 {

19 namespace heat

20 {

21

22 // Spec i f y model type

23 std : : s t r i n g model type ( ”ThermoChemoMechanical” ) ;

24

25 // Create l i n e a r s o l v e r and s e t parameters

26 KrylovSolver l i n e a r s o l v e r ( ” b i cg s tab ” , ” so r ” ) ;

27 stat ic bool l i n e a r s o l v c o n v ( true ) ;

28 stat ic double l i n e a r s o l v r e l t o l = 1 .0 e−4;

29

30 // Create non l inear s o l v e r and s e t parameters

31 Defaul tFactory f a c t o r y ;

32 NewtonSolver newton so lver ( l i n e a r s o l v e r , f a c t o r y ) ;

33 stat ic int newton maxit = 10 ;

34 stat ic double n e w t o n r e l t o l = 1e−6;

35 stat ic double newton absto l = 1e−12;

36 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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37 // Mesh

38 UnitSquare mesh (128 , 128 , ” c ro s s ed ” ) ;

39 stat ic double mesh st re tch = 1 . 0 ; // mesh s t r e t c h i n g parameter

40

41 // Time s t epp ing parameters

42 stat ic Constant dt ( 2 . 5 e−6) ; // time s t ep

43 stat ic double t = 0 . 0 ; // i n i t i a l s imu la t ion time

44 stat ic double T = 10000∗ dt ; // t o t a l s imu la t ion time

45 stat ic int s av e s t e p = 2 ; // save r e s u l t s every # s t ep s

46 stat ic Constant theta ( 0 . 5 ) ; // eva lua t i on po in t

47 stat ic Constant theta m (−1.0) ; // eva lua t i on po in t g−alpha

48 stat ic Constant t h e t a s ( 0 . 0 ) ; // eva lua t i on po in t g−alpha

49 stat ic Constant beta ( 1 . 0 ) ; // ac c e l e r a t i on weight

50 stat ic Constant gamma( 1 . 5 ) ; // v e l o c i t y weight

51

52 // Model parameters

53 stat ic Constant c ( 1 . 3 5 e−1) ; // heat capac i t y

54 stat ic Constant k (1 . 784 e−3) ; // heat d i f f u s i v i t y

55 stat ic Constant hT( 8 . 1 e−5) ; // heat f l u x c o e f f i c i e n t

56 stat ic Constant temp re f ( 0 . 4 ) ; // temperature

57 stat ic Constant alpha (1 . 1 7 e−2) ; // thermal d i l a t a t i o n c o e f f i c i e n t

58 stat ic Constant rho ( 5 . 0 e−7) ; // dens i t y

59 stat ic Constant eta ( 5 . 0 e−8) ; // damping c o e f f i c i e n t

60 stat ic Constant Mob( 1 . 2 4 e6 ) ; // chemical mob i l i t y

61 stat ic Constant Q( 5 . 0 ) ; // a c t i v a t i o n energy

62 stat ic Constant K4( 1 . 0 e−7) ; // d i s p l a c i v e i n t e r f a c e energy term

63 stat ic Constant lambda ( 1 . 0 e−8) ; // d i f f u s i v e i n t e r f a c e energy term

64 stat ic Constant x12 ( 1 . 1 ) ; // coup l ing between e1 and e2

65 stat ic Constant x1c ( 0 . 0 ) ; // coup l ing between c and e1

66 stat ic Constant x2c ( 5 . 0 ) ; // chemo−mechanical coup l ing

67

68 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69 u int i c d im = 5 ; // number o f i n i t i a l cond i t i ons

70

71 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

72 // Boundary cond i t i ons

73 std : : vector<double> z e r o v e c t o r = boost : : a s s i g n : : l i s t o f (0 ) (0 ) ;
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74 stat ic Constant z e r o v e c t o r ( 0 . 0 , 0 . 0 ) ;

75 stat ic Constant z e r o s c a l a r ( 0 . 0 ) ;

76 stat ic Le f t l e f t ;

77 stat ic CentreLeft c e n t r e l e f t ;

78

79 }

80 }

81 #endif
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InitialConditions.h

1 // Copyright (C) 2008−2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2008−07−11

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT INITIAL CONDITIONS H

9 #define HEAT INITIAL CONDITIONS H

10

11 #include <d o l f i n / func t i on / Express ion . h>

12 #include <t r1 /random>

13

14 namespace d o l f i n

15 {

16 namespace heat

17 {

18 // I n i t i a l cond i t i ons

19 class I n i t i a l C o n d i t i o n s : public Express ion

20 {

21 public :

22

23 I n i t i a l C o n d i t i o n s ( u int i c d im )

24 : Express ion ( i c d im ) , eng ine (2 ) , d i s t r i b u t i o n (−0.01 , 0 . 01 ) ,

25 rng ( engine , d i s t r i b u t i o n )

26 {

27 }

28

29 void eva l ( Array<double>& values , const Array<const double>& x ) const

30 {

31 va lue s [0 ]= 0.0001∗ rng ( ) ; // x disp lacement

32 va lue s [1 ]= 0.0001∗ rng ( ) ; // y disp lacement

33 va lue s [2 ]= 0 . 4 ; // temperature

34 va lue s [3 ]= 0.001∗ rng ( ) ; // chemical concentra t ion

35 va lue s [4 ]= 0 . 0 ; // chemical p o t e n t i a l

36 }
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37

38 private :

39

40 std : : t r1 : : mt19937 engine ;

41 std : : t r1 : : un i f o rm rea l<double> d i s t r i b u t i o n ;

42 mutable std : : t r1 : : v a r i a t e g e n e r a t o r<std : : t r1 : : mt19937 , std : : t r1 : : un i f o rm rea l<double

> > rng ;

43 } ;

44

45 }

46 }

47 #endif
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BoundaryConditions.h

1 // Copyright (C) 2008−2009 Mirko Maraldi and Garth N. Wells .

2 // Licensed under the GNU LGPL Version 2 . 1 .

3 //

4 // F i r s t added : 2008−07−11

5 // Last changed : 2010

6 //

7

8 #ifndef HEAT BOUNDARY CONDITIONS H

9 #define HEAT BOUNDARY CONDITIONS H

10

11 #include <d o l f i n / func t i on / Function . h>

12 #include <d o l f i n /mesh/SubDomain . h>

13 #include <d o l f i n . h>

14

15 using namespace d o l f i n ;

16

17 // Boundary

18 class Boundary : public SubDomain

19 {

20 bool i n s i d e ( const double∗ x , bool on boundary ) const

21 {

22 return on boundary ;

23 }

24 } ;

25

26 class Le f t : public SubDomain

27 {

28 bool i n s i d e ( const double∗ x , bool on boundary ) const

29 {

30 i f ( x [ 0 ] < DOLFIN EPS)

31 return true ;

32 else

33 return fa l se ;

34 }

35 } ;

36
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37 class CentreLeft : public SubDomain

38 {

39 bool i n s i d e ( const double∗ x , bool on boundary ) const

40 {

41 i f ( ( x [ 0 ] < DOLFIN EPS) && ( ( x [1 ] −0 .51) < DOLFIN EPS) && ((0.49−x [ 1 ] ) < DOLFIN EPS) )

42 return true ;

43 else

44 return fa l se ;

45 }

46 } ;

47

48 class Bottom : public SubDomain

49 {

50 bool i n s i d e ( const double∗ x , bool on boundary ) const

51 {

52 i f ( x [ 1 ] < DOLFIN EPS)

53 return true ;

54 else

55 return fa l se ;

56 }

57 } ;

58

59 #endif

135



A. DOLFIN/FFC CODE

136



Appendix B

Experimental Characterisation Of

An Eutectoid Steel

B.1 Introduction

A step forward for the work presented in this thesis would be the development of a

macroscopic scale model; in order to proceed in this direction, an experimental campaign

is envisioned for:

• evaluate the importance (at the macroscopic scale) of the mechanical phenomena

for a displacive phase transition;

• estimate the value of some of the model parameters.

For these reasons, an experimental characterisation carried out on an eutectoid steel is

presented in the following; the work contained here has been done in collaboration with

DEMM officine meccaniche Spa. The specimens were of cylindrical shape, with a length

of 60 mm and a diameter of 30 mm.
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Element C Mn Si Cr Ni Mo P S Cu W Fe

Quantity [%] 0.78 0.20 0.26 0.15 0.08 0.01 0.02 0.01 0.02 0.02 98.45

Table B.1: Chemical composition of the analysed eutectoid steel.

(a) (b)

Figure B.1: Heating temperature: 830◦ C, cooling: air; a) position: centre; b) position

surface.

B.2 Chemical Analysis

A chemical analysis has been carried out, to determine the element percentages for the

material under consideration. The results are presented in table B.1.

B.3 Cooling Test

The specimens were heated to different temperatures, in the range of 710◦ C to 830◦ C,

in 20◦ C increments. For each temperature, two specimens were used; one cooled in air,

the other one in water.

To conduct a characterisation of the different microstructures resulting from the dif-

ferent heat treatments, the specimens were prepared for optical microscope observation

after cooling. For the water-cooled specimens, microstructure was observed both at the

centre and at the surface. For the air-cooled specimens only the centre was observed, as

no microstructural difference was found at other locations (see fig. B.1). Images from

B.2 to B.4 show the resulting observations.
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B.3 Cooling Test

(a) (b) (c)

Figure B.2: Heating temperature: 710◦ C; a) cooling: air, position: centre; b) cooling:

water, position: centre; c) cooling: water, position: surface.

(a) (b) (c)

Figure B.3: Heating temperature: 750◦ C; a) cooling: air, position: centre; b) cooling:

water, position: centre; c) cooling: water, position: surface.

(a) (b) (c)

Figure B.4: Heating temperature: 830◦ C; a) cooling: air, position: centre; b) cooling:

water, position: centre; c) cooling: water, position: surface.
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Figure B.5: U curves for the analysed material.

In table B.2 the microstructure obtained, as well as the hardness measurements for

all the tests, are listed: It can be seen that no Martensite can be obtained by cooling

the specimens in air. A martensitic structure is obtained when the specimens’ heating

temperature is above the threshold value, and the cooling rate is high (hence, possible in

water).

B.4 U curves

U curves have been estimated from hardness measurements of the specimens, and are

depicted in fig. B.5. It can be seen that increasing heating temperature over a threshold

will not result in an increase in the maximum hardness, as the limit for an alloy of such

a chemical composition is reached.

Critical depth has been estimated for the various test to which the above figure

refers; this is the depth at which 50% of Martensite can be observed (set at a hardness

of 480 HV ). Results are listed in table B.3.

As expected, increasing the heating temperature results in a grater critical depth
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B.4 U curves

Temperature [◦C] Cooling Location Microstructure Hardness

710 air centre Pearlite 190 [HB]

710 air centre Pearlite 170 [HB]

710 air surface Pearlite 180 [HB]

730 air centre Pearlite 190 [HB]

730 air centre Pearlite + Martensite 270 [HB]

730 air surface Martensite + Pearlite 56 [HRC]

750 air centre Pearlite 195 [HB]

750 air centre Pearlite + Martensite 275 [HB]

750 air surface Martensite + Pearlite 55 [HRC]

770 air centre Pearlite 225 [HB]

770 air centre Pearlite + Martensite 35 [HRC]

770 air surface Martensite 64 [HRC]

790 air centre Pearlite 230 [HB]

790 air centre Pearlite + Martensite 37 [HRC]

790 air surface Martensite 67 [HRC]

810 air centre Pearlite 240 [HB]

810 air centre Pearlite + Martensite 39 [HRC]

810 air surface Martensite 67 [HRC]

830 air centre Pearlite 250 [HB]

830 air centre Pearlite + Martensite 42 [HRC]

830 air surface Martensite 67 [HRC]

Table B.2: Microstructures.
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Heating temperature [◦C] Critical depth [mm]

770 4.8

790 6.5

810 6.5

830 7.5

Table B.3: Critical depth evaluation for different heating temperature.

(despite the maximum hardness not increasing anymore, as stated before).
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