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Abstract

In this thesis we present some combinatorial optimization problems, sug-

gest models and algorithms for their effective solution. For each problem,

we give its description, followed by a short literature review, provide meth-

ods to solve it and, finally, present computational results and comparisons

with previous works to show the effectiviness of the proposed approaches.

The considered problems are: the Generalized Traveling Salesman Problem

(GTSP), the Bin Packing Problem with Conflicts(BPPC) and the Fair Lay-

out Problem (FLOP).
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Introduction.

Combinatorial Optimization Problems are very common in industrial pro-

cesses and planning activities. They are problems where a solution is com-

posed by a set of fundamental discrete decisions or assumptions. Every de-

cision may influence the global cost and the feseability of the solution. The

trivial way to solve a combinatorial optimization problem is to enumerate

the elements of the correspondent feasible solutions set and pick up the best

one. But, due to the combinatorial nature of the considered problems, in

real cases the number of solutions (feasible or unfeasible) to be enumerated

for a given problem is intractable even for very powerful computers.

To deal with the difficulty in solving Combinatorial Optimization Prob-

lems, some techniques have been proposed:

• Branch and Bound methods where the solution space is systematically

divided and its subsets of solutions are evaluated according to their

bounds on the objective function value;

• Heuristic methods, where the problem is solved through the application

of experience-based techniques. When these techniques dirive from

other generic or natural problems rather than the original problem, we

call them Meta-heuristic;

• Methods based on Integer/Mixer Programming and Hybrid methods

that combine some of previously mentioned approaches.

In this thesis, our goal was to obtain good results on different combinato-

rial optimization problems by choosing and appling one or more approaches
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for each case.

The first problem studied in this work is the Fair Layout Optimization

Problem (FLOP). In this problem we have to place rectangular stands over

a given non convex area. The stands must satisfy some fixed patterns. The

papers [11] is our publication related to this problem.

The second problem is the Generalized Traveling Salesman Problem (GTSP),

which is a generalization of the classical Traveling Salesman Problem (TSP)

where the vertices are divided in clusters and the salesman must visit at least

one vertex in each cluster. We wrote the paper [3] with our results for the

GTSP.

The last considered problem is the Bin Packing Problem with Conflicts

(BPPC), a generalization of the classical Bin Packing Problem (BPP) where

a set of elements must be load into bins of a given capacity and some pair

of elements cannot be placed in the same bin. The paper [12] contains our

results to the BPPC.

This thesis is divided into 7 parts, starting with the Introduction, fol-

lowed by Chapters 1, 2, 3, where we study and propose effective algorithms

for repectively, the Fair Layout, the Generalized Traveling Salesman and Bin

Packing with Conflicts Problems. In these chapters we give the description

of the problems, suggestions of algorithms or models to solve them, com-

putational results and comparisons of the proposed methods with the most

effective methods from the literature, and conclusions on the obtained results.

We finish with the Conclusions, the Acknowledgements and the Bibliography.
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Chapter 1

Fair Layout Optimization

Problem.

1.1 Introduction.

Fairs and expositions are nowadays fundamental tools for providing in-

dustrial exhibits and demonstrations. According to the International Asso-

ciation of Fairs & Exposition (IAFE), over 3 200 fairs are currently held in

North America each year. The European Major Exhibition Centres Associa-

tion (EMECA) estimates that more than 36 million visitors and upwards of

330 000 exhibitors take part in roughly 1 000 EMECA exhibitions. A relevant

logistic issue in the organization of a fair concerns the way the stands have to

be placed in the exhibition space so as to satisfy all constraints (security, ease

of access, services, to mention just a few) arising in this kind of event, and to

maximize the revenues coming from the exhibitors. Such issue is frequently

manually solved by the organizers on the basis of experience and common

sense.

In this work we present mathematical models and algorithms for the op-

timal solution of a basic version of the problem, and describe a real world

application dealing with such version. We also instroduce variants and gen-

eralizations of the basic methods in order to deal with additional constraints
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Figure 1.1: A non-convex exhibition area.

or requirements resulting from real world cases.

Given an exhibition surface having irregular (non-convex) shape such as

the one shown by the solid lines in Figure 1.1 (disregard by the moment the

dotted lines), and an unlimited number of identical rectangular stands, we

want to find a feasible layout containing the maximum number of such stands.

A layout is feasible if it fulfils a number of basic operational constraints (the

stands cannot overlap and must completely lie within the exhibition area; the

clients must have an easy access to the stands), plus additional constraints

coming from specific requests of the organizers.

In this work we limit our search to a particular case of layout, quite

common in practical contexts, in which the stands must all have the same

orientation, and must be accommodated into vertical strips, with enough

space between strips to allow an easy access of the clients. An example is

shown in Figure 1.2.

This problem can remind a number of two-dimensional packing problems,

such as the two-dimensional bin packing problem and the two-stage two-

dimensional cutting stock problem (see, e.g., Lodi, Martello and Vigo [29]

and Wäscher, Haußner and Schuman [52], respectively, for recent surveys). It

can also remind the facility layout problem, for which we refer the reader to

the works by Widmer [53] and Singh and Sharma [48]. Nevertheless, to our

knowledge, no study has been devoted to the specific problem we consider.

Although a number of results on various facility layout problems can be



found in the literature, only in recent years specific contributions on fair

layout were presented. Schneuwly and Widmer [45] presented heuristic algo-

rithms for a specific real world case at the regional fair in Romont (Switzer-

land). They referred indeed to a rectangular exhibition area, did not impose

that the stands be placed into vertical strips, and considered stands of six

different shapes.

The problem (a real-world case situation arising at the regional fair in

Romont, Switzerland) was modeled by discretizing the rectangular exhibition

area, and solved through three constructive heuristics, which first place the

stands and then construct the space for the aisles. Three possible objective

functions were considered: the space utilization, the total attractiveness of

the exhibition and the visitor convenience.

In Section 1.2 we present the problems addressed and describe their main

features. In Section 1.3 we introduce integer linear programming models

based on discretization of the layout space and objects to be placed. A

binary matrix encodes the available and not available exhibition areas. It is

shown that the matrices associated with the corresponding constraint sets are

total unimodular, hence allowing solution through linear programming. The

models are tested in Section 1.4 on a real-world case study. In Section 1.5 we

consider a case in which blocks of four (2×2) stands have to be used, instead

of single stands. Section 1.6 deals with a common topological variant, in

which the exhibition area is limited by walls, hence additional accessibility

constraints have to be imposed. In Section 1.7 we show how the implemented

decision support system can be easily used to optimize cases in which the

orientation of the stands is not imposed. Some computational considerations

are finally given in Section 1.8.

1.2 The Problem.

We are given:

(i) a non-convex two-dimensional surface that may contain holes (exhibi-



tion area);

(ii) an axis-aligned minimal rectangle which encapsulates the exhibition

area and touches it on the borders (see the dotted lines in Figure 1.1);

(iii) an unlimited number of identical rectangular stands;

(iv) a minimum width needed for the aisles.

The Fair Layout Optimization Problem we consider consists in orthogo-

nally allocating the maximum number of stands, without rotation, to vertical

strips parallel to the vertical edges of the rectangle, by ensuring left and/or

right (see below) side access to each stand.

Concerning the access constraint, we will consider two variants of the

problem, that are frequently encountered in practice:

Figure 1.2: A single strip solution.

• FLOP1: it is required that each stand (i.e., each strip) can be accessed

from both sides, as in the solution depicted in Figure 1.2;

• FLOP2: it is allowed to place pairs of strips with no space between

them, thus obtaining stands that can be accessed from one side only,

as in the solution depicted in Figure 1.3.

We will assume, without loss of generality, that the exhibition area can be

accessed from all sides. For the cases where such assumption does not hold,

the available area can be conveniently restricted (as it will be clear later).



Figure 1.3: A double strip solution.

We will also assume that the width and height (W and H) of the exhi-

bition area, the width and height (w and h) of the stands and the minimum

aisle width (a) are integers, i.e., that they are expressed in the minimum unit

length, say δ, that is convenient to evaluate (typical δ values in real-world

applications are in the range 5–20 cm). This is obtained by rounding down

the rectangle sizes, and by rounding up the stand sizes and the aisle width,

so as to guarantee a feasible solution.
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Figure 1.4: Matrix M associated with the exhibition area of Figure 1.1.

Let M be an H × W binary matrix corresponding to the encapsulating

rectangle (see Figure 1.4). For convenience of notation, we will number

the rows and columns of M starting from the bottom-left corner, so that

the indices correspond to coordinates in the corresponding discretized space.



Matrix M is then defined as

Mij =

{
1 if the δ × δ square located at coordinate (i, j) can be used for a stand;

0 otherwise,

(1.1)

for i = 1, . . . , H and j = 1, . . . , W .

We say that a column j is selected for the layout if a strip of stands is

placed with the left edge of the stands on column j. For example, column 1

is selected for the first strip of Figures 1.2 and 1.3 (where w = 3, h = 2 and

a = 1).

Consider any column j, and any maximal row interval [ir, is] such that

matrix M has all 1’s in the rectangle of width w and height (is − ir + 1)

having its bottom-left corner in (ir, j). The maximum number of stands that

can be placed within such a rectangle is ⌊(is − ir + 1)/h⌋. In the example

of Figure 1.4 we have, for j = W − 3, two maximal row intervals of width

3: one of height 2 and one of height 5. The corresponding strip can thus

accommodate three stands in total.

For any column j ≤ W − w + 1, the maximum number of stands vj that

can be placed with their left edges on column j can be obtained in a greedy

way by iteratively determining the next group of consecutive rows satisfying

the above condition. A straightforward implementation of such a method

would require, for each column, O(H) iterations, each of time complexity

O(w), i.e., in total O(WHw) time. We next give a simple procedure that

computes the same information vj (j = 1, . . . , W − w + 1) in O(WH) time,

i.e., in the order of time proportional to the size of the input of matrix M .

We define, for each row i such that Mi,j = 1 (j being the current column),

a pointer p(i) to the last column ̂ such that Mi,j = Mi,j+1 = · · · = Mi,̂ = 1.

If instead Mi,j = 0 for the current column j then p(i) has any value less than

j. In this way all maximal row intervals can be determined by examining

each element of M a constant number of times. Counter k stores, for the

current column j and the current row interval, the number of feasible rows.

The detailed procedure is given in Algorithm 1.



Algorithm 1 Computation of the vj values.
Procedure Alloc Stands

for i := 1 to H do

Mi,W+1 := 0;

if Mi,1 = 1 then p(i) := min{k : Mi,k = 0} − 1 else p(i) = 0

end for;

for j := 1 to W − w + 1 do

vj := k := 0;

for i := 1 to H do

if p(i) − j + 1 ≥ w then k := k + 1

else

vj := vj + ⌊k/h⌋;

k := 0;

if (p(i) < j and Mi,j+1 = 1) then p(i) := min{q > j : Mi,q = 0} − 1

end if

end for;

vj := vj + ⌊k/h⌋

end for

end

The inner ‘if’ statement is executed O(WH) times. The search for the

new p(i) value, say p′(i), is only performed when j > p(i), and requires a loop

going from j + 1 to p′(i) + 1. The next such search will only be performed

when j > p′(i), implying that each element of M is examined at most once.

The overall time complexity of the algorithm is thus O(WH).

Our combinatorial optimization problem thus reduces to determining

which columns j should be used for packing the strips of stands. (Note that,

if a column j is selected, the placement of the vj stands is straightforward.)

1.3 Mathematical Models.

Let us associate a binary variable xj ,

xj =

{
1 if a single strip of stands has its left edges on column j,

0 otherwise,
(1.2)



to each column j where a strip can be selected, i.e., for j = 1, . . . , W −w+1.

Our first problem can then be modeled as

(FLOP1) max

W−w+1∑

j=1

vjxj (1.3)

s.t.
k∑

j=k−a−w+1

xj ≤ 1 (k = w + a, . . . , W − w + 1), (1.4)

xj ∈ {0, 1} (j = 1, . . . , W − w + 1). (1.5)

The set of constraints (1.4) imposes that the stands do not overlap and

there is enough space left for the aisles: if column k is selected then columns

k − a − w + 1, . . . , k − 1 cannot be selected (see Figure 1.5 (a)). Note that

the constraints (1.4) for k = 1, . . . w + a − 1 are not imposed, as they are

dominated by the first constraint (k = w + a).

Problem FLOP2 can be modeled in a similar way by introducing a second

set of binary variables for each column j, namely

ξj =

{
1 if a double strip of stands has its leftmost edges on column j,

0 otherwise,
(1.6)

for j = 1, . . . , W − 2w + 1. Observe that the maximum number of stands

that can be placed in a double strip with the leftmost edges on column j is

vj + vj+w. We thus obtain the model

(FLOP2) max

W−w+1∑

j=1

vjxj +

W−2w+1∑

j=1

(vj + vj+w)ξj (1.7)

s.t.
k∑

j=k−a−w+1

xj +

min(W−2w+1,k)∑

j=max(1, k−a−2w+1)

ξj ≤ 1 (k = w + a, . . . , W − w + 1),

(1.8)

xj ∈ {0, 1} (j = 1, . . . , W − w + 1),

(1.9)

ξj ∈ {0, 1} (j = 1, . . . , W − 2w + 1).

(1.10)



 w  a  k

(a) Constraint (1.4).

 w  a  k w

(b) Constraint (1.8).

Figure 1.5: Constraints visualization.

The set of constraints (1.8) imposes that the single and double strips of

stands do not overlap, and there is enough space left for the aisles: if column

k is selected (ether for a single or a double strip) then (see Figure 1.5 (b))

columns k − a − w + 1, . . . , k − 1 cannot be selected for a single strip, and

columns k − a− 2w + 1, . . . , k − 1 cannot be selected for a double strip. The

max and min operators in the second summation exclude indices j that are

out of range.

The structure of the constraint matrix induced by (1.8) is shown in Fig-

ure 1.6, which provides the constraint matrix corresponding to the instance

depicted in Figure 1.4. (Additionally note that the leftmost portion of such

matrix gives the structure of the constraint matrix induced by (1.4).)

It is not difficult to see that our two models possess the following relevant

property.

Property 1. The matrices associated with the constraint sets (1.4) of FLOP1

and (1.8) of FLOP2 are totally unimodular.

Proof. Recall that a 0 − 1 matrix in which each column has its ones

consecutively is called an interval matrix. It is known (see, e.g., Schrijver

[46], Section 19.3) that interval matrices are totally unimodular. The co-

efficients in each row i induced by (1.4) are all zeroes but a set of w + a

consecutive ones starting in column i (see the leftmost part of Figure 1.6),

hence the resulting constraint matrix is an interval matrix. The coefficients
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Figure 1.6: Constraint matrix for model FLOP2 associated with Figure 1.4.

in each row i induced by (1.8) are all zeroes but two sets of consecutive

ones: one starting in column i for the x variables, and one starting in column

max{W −w+2, W −w+ i−2} for the ξ variables (refer again to Figure 1.6).

Each column of the resulting constraint matrix has thus all zeroes but a set

of consecutive ones, from which one has the thesis. △

It follows from Property 1 (see, e.g., Schrijver [46]) that both problems

FLOP1 and FLOP2 can be solved in polynomial time by relaxing the inte-

grality constraints, i.e., by replacing (1.5) and (1.9) with

0 ≤xj ≤ 1 (j = 1, . . . , W − w + 1) (1.11)

and (1.10) with

0 ≤ξj ≤ 1 (j = 1, . . . , W − 2w + 1), (1.12)

and solving the resulting linear programming problem.

We conclude with the following

Observation 1. The generalization of (1.7)-(1.10) to handle triple, quadru-

ple, . . . , k-tuple strips produces ILP models that maintain the total unimod-

ularity property.



Indeed the resulting constraint matrix has the same structure as the one

shown in Figure 1.6 with the addition, to the right, of k − 2 blocks having

the same shape as the rightmost block in the figure. Hence each column still

consists of all zeroes but a set of consecutive ones. This observation is mainly

of theoretical interest: in our specific application the stands in the second,

third, . . . , (k−1)th column of a k-tuple strip (k > 2) would be unaccessible.

1.4 Model Application.

The Java implementation of the above models and the linear program-

ming solver lp solve Version 5.5. (see http://sourceforge.net/projects/lpsolve/)

were used for constructing a decision support system. We first tested it by

determining layouts for the permanent “Beira Mar” handcraft fair of Fort-

aleza (Brazil), whose exhibition area is shown in Figure 1.7.

The fair is located in an area approximately 200 meters wide and 55

meters high. Its current configuration consists of 617 stands, placed along 26

double strips roughly similar to those produced by FLOP2. The width and

height of each stand are 2 meters.

The available area for placing the stands is depicted in grey in Figure 1.7.

The area is non-convex due to the presence of palm trees, small shopping

facilities, light poles, a monument and some sub-areas which cannot be used

Figure 1.7: The Beira Mar handcraft fair exhibition area.

http://sourceforge.net/projects/lpsolve/


Figure 1.8: Solution produced by FLOP1.

Figure 1.9: Solution produced by FLOP2.

for the stands.

We solved the problem by setting δ = 5 cm, thus obtaining w = h = 40,

W = 4090 and H = 1084. The aisle width was set to the same value currently

adopted, i.e., a = 70 (3.5 meters). In order to test the algorithm we solved

both FLOP1 (very different from the current configuration) and FLOP2.

Model FLOP1 was constructed and solved in 1.6 CPU seconds. The

resulting solution, shown in Figure 1.8, consists of 505 stands placed along

36 single strips, i.e., with less than 20% decrease with respect to the current

double strip configuration.

Model FLOP2 was constructed and solved in 4.81 CPU seconds. The

solution, shown in Figure 1.9, includes 742 stands placed along 26 double

strips, increasing by 20% the current number of stands. The decision makers

wanted to also test the possibility of allowing the use of the roughly triangular

area located in the upper right corner of the exhibition area. The outcome



was an increase to 759 stands placed along 26 double strips. None of the

solutions produced by FLOP2 combined double and single strips, probably

due to the fact that the aisles are relatively quite large, thus making their

use not convenient.

1.5 Blocks of stands.

Upon examining the solution shown in Figure 1.9, the fair organizers

wanted to examine a different layout, obtained by imposing blocks of four

contiguous stands (2× 2), arranged into single strips of blocks with horizon-

tal aisles of minimum height b separating adjacent blocks, besides the vertical

aisles of minimum width a separating the strips (see, e.g., Figure 1.10). Al-

though it was clear that the resulting number of stands would be smaller,

the rationale was to facilitate the circulation of visitors around the stands.

The resulting problem was solved by defining in a different way the the

vj values used in the model. For each column j (j = 1, . . . , W − 2w + 1), let

vj be the number of stands that can be arranged in a single strip of blocks

having the left edges of the blocks on column j. This can be obtained by

computing, for the given j, all maximal sets of consecutive row intervals [r, s]

such that Mik = 1 for i = r, r + 1, . . . , s and for k = j, j + 1, . . . , j + 2w − 1.

For each such interval, the maximum number of blocks that can be feasibly

arranged is then given by

β(r, s) = 1 +

⌊
(s − r + 1) − 2h

2h + b

⌋
(1.13)

(note that no horizontal aisle is needed below the first block or above the

last one). The required total number of stands vj is then four times the sum,

over all intervals [r, s] of column j, of the β(r, s) values.

Once the new vj values have been computed, the problem is solved by

FLOP1, with ‘w’ replaced by ‘2w’ to take into account the fact that each

single strip has length 2w. In Figure 1.10 we show the solution obtained for

the same input data as before and aisles of minimum size b40. The layout



Figure 1.10: Second Fortaleza layout.

Figure 1.11: Third Fortaleza layout.

consists of 26 strips of blocks, allocating in total 21 blocks (484 stands).

A third intermediate solution was also requested, in which incomplete

blocks (due, for example, to forbidden areas) are accepted. This can be

modeled by considering a strip of 2 × 2 blocks at a time. For each column

j, we consider the exhibition sub-area given by columns j, . . . , j + 2w − 1,

and rotate it by 90◦ degrees. We then compute the optimal solution given by

FLOP2 for the resulting sub-area. Note that such sub-area is encapsulated

by a rectangle of width W̃ = H and height H̃ = 2w, and that FLOP2 has

to be run with aisle size ã = b, and stand sizes w̃ = h and h̃ = w. The

number of stands given by the double strip solution found by FLOP2 is then

assigned to vj , to represent the number of (possibly incomplete) blocks having

their leftmost edges on column j. For example, the rotated counterpart of

the leftmost column of blocks in Figure 1.10 produces a FLOP2 solution

consisting of 3 consecutive double strips, followed by a single strip, followed



by a double strip (see the leftmost strip of blocks in Figure 1.11). The

corresponding vj value is thus v1 = 18.

Once all vj values have been computed, the overall solution is obtained as

before, by executing FLOP1 on the original exhibition area, with ‘w’ replaced

by ‘2w’. The solution obtained for the Fortaleza fair is shown in Figure 1.11.

Note several 2 × 1 partial blocks, some single stand blocks and some blocks

consisting of 3 stands. The solution still consists of 26 strips of blocks, but

the overall number of stands is now 512, with an increase of roughly 6%.

This was the solution preferred by the organizers.

1.6 Non-accessible borders.

The exhibition area of the Fortaleza fair discussed in the previous sections

takes place in an open space, so there is no problem of accessibility to the

stands touching the borders. A different situation occurred for the fair of

Reggio Emilia (Italy), whose exhibition area is inside a building, i.e., the

borders are constituted by walls. In Figure 1.12 the walls are represented by

the thick black lines, while the forbidden (open) spaces are represented by the

grey non-dashed areas. The grey dashed areas (to be discussed below) are

non-forbidden areas. The input data were δ = 5 cm, w = h = 80, W = 2850,

H = 2394 and a = 60.

Executing FLOP2 with no restriction produced a solution with 514 stands.

Such solution was however clearly unacceptable, as it included long strips of

stands terminating on the walls. Although all stands were accessible from

the central large aisle that is visible in the figure, visitors would have been

obliged to walk back along the same aisle once the wall was reached. In

order to evaluate acceptable layouts, we thus implemented two variations of

the basic model, by

1. preliminary imposing an alley of width a along the walls, or

2. preliminary allocating stands along the walls.



Figure 1.12: First Reggio Emilia layout.

The first run was thus executed by forbidding the grey dashed areas

of Figure 1.12, and executing FLOP2 on the resulting (white) areas. The

layout, shown in the same figure, consists of 461 stands. All stands are easily

accessible, but the number of stands is considerably smaller than the one in

the above mentioned (unacceptable) solution.

The second layout was obtained by preliminary allocating in a greedy

way a series of stands touching the walls on one side and having an aisle of

width a on the opposite side, as shown in Figure 1.13. This kind of solution

turns out to be frequently adopted in practice, as can be seen from fair layouts

available on the internet such as, e.g., in the Italian market, those of Modena,

Carrara and Lingotto (Turin). The overall solution shown in Figure 1.13 was

then obtained by running FLOP2 on the remaining available area. Quite

surprisingly, the resulting number of stands was 514, i.e., exactly the same

as in the unacceptable solution mentioned above.



Figure 1.13: Second Reggio Emilia layout.

1.7 Non-oriented layouts.

In the layouts considered so far the orientation of the stands (and hence

of the strips) was prefixed. This is quite usual when the exhibition area is

inside a building, although rotations by 90◦ can sometimes be evaluated. For

the case of open space exhibition instead, any stand rotation can virtually

be implemented.

We thus added to our decision support system a feature that allows one

to examine different orientations, as well as a tool that outputs the orien-

tation producing the highest number of stands. Let ϑ denote the number

of degrees by which the stands are rotated (clockwise) with respect to the

basic orientation, and let z(ϑ) be the number of stands that FLOP2 allo-

cates with ϑ rotation. Observe that z(ϑ) is a general non-convex function

(see Figure 1.14). For each ϑ value we thus produced the corresponding 0-1

matrix M (see Section 1.2) and found the optimal solution.

We experimented the above tool on the open space Beira Mar fair exam-

ined in Section 1.4. For a general case rotations between 0 and 180◦ should

be evaluated. As in this specific case the stands are squares, it was enough

to evaluate the range 0-90◦. The result is shown in Figure 1.14. Remind
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Figure 1.14: Rotation.

that the orientation currently adopted, corresponding to ϑ = 0, allocates 742

stands. The highest values of z(ϑ) were obtained in the range 80◦–90◦, with

an absolute maximum of 756 stands for 82◦. It should be observed, however,

that implementing such solutions could require additional aisles to avoid too

long strips.

1.8 Computational Considerations.

In Table 2.3 we give some details on the computational performance of the

various models. Each line refers to a specific experiment. Columns H , W , h,

w, a and b report the input data. Columns T, T–M , T–vj and T–solve give,

respectively, the total CPU time, and the times needed to produce matrix

M , to determine the vj values and to solve the linear program. All runs have

been executed on a Pentium IV 3.2 GHz, 1GB RAM, running under a Linux

operating system.

All solution times are quite low, with the only exception of the time

needed to compute the vj values for the solution made up by incomplete

blocks of stands (Figure 1.11). On the other hand such computational effort



Table 1.1: Computational results.

Instance H W h w a b T T–M T–vj T–solve # stands

Figure 1.8 1084 4090 40 40 70 − 5.09 3.34 0.13 1.63 504

Figure 1.9 1084 4090 40 40 70 − 8.27 3.34 0.13 4.81 742

Figure 1.10 1084 4090 40 40 70 40 4.93 3.34 0.11 1.49 484

Figure 1.11 1084 4090 40 40 70 40 448.77 3.34 443.80 1.63 512

Figure 1.12 2394 2850 80 80 60 − 3.27 2.13 0.06 1.08 461

Figure 1.13 2394 2850 80 80 60 − 2.82 1.84 0.07 0.91 514

was rewarded by a considerable increase of the overall number of stands (from

484 to 512).

1.9 Conclusions.

We addressed a particular layout problem derived from a real-world situa-

tion. We proposed two ILP models and showed that their constraint matrices

are totally unimodular. The solutions obtained have been given to the local

authorities, that are currently discussing the new fair layout configuration to

be implemented.

Our models are based on discretization of the layout space and objects

to be placed. The same technique could be used to model other packing

problems, such as the two-dimensional bin packing problem or the two-stage

two-dimensional cutting stock problem. In these problems the layout space

is a special case of the one we considered, as it is restricted to rectangles.

The objects to be placed, however, are more general, as they consist of non-

identical rectangles that need not to be arranged into strips. The latter

consideration shows however that the resulting models would not possess

the total unimodularity property, that directly comes from our specific con-

straints (see the proof of Property 1).

We have examined a relevant logistic issue arising in the organization of

fairs, namely the optimization of the stands allocation in the exhibition space.



We have reviewed two mathematical models for the optimal solution of a ba-

sic version of the problem. In real world applications the constraints and

requirements (secu- rity, ease of access, services) can vary considerably from

case to case. We have examined a number of practical situations, and the

corresponding requirements, and we have shown how the two basic math-

ematical models, and the corresponding decision support system, can be

adapted to handle them. The conclusion of this study is that these mathe-

matical models are flexible enough to be used with satisfactory results in a

variety of different real world situations.



Chapter 2

Generalized Traveling Salesman

Problem.

2.1 Introduction.

The Generalized Traveling Salesman Problem (GTSP) is a variant of

the Traveling Salesman Problem (TSP). We are given an undirected graph

G = (V, E), where V = {1, . . . , n} is the set of vertices and E is the set of

edges, each edge (i, j) having an associated cost cij . The set of vertices V is

partitioned into m clusters V1, . . . , Vm. GTSP is to find an elementary cycle

visiting at least one vertex for each cluster, and minimizing the sum of the

costs of the traveled edges. If a directed graph is considered, the problem is

denoted as Asymmetric GTSP (AGTSP). We focus on the commonly con-

sidered version of the problem, i.e. the so-called Equality GTSP (E-GTSP),

in which the cycle has to visit exactly one vertex for each cluster.

Both the GTSP and the E-GTSP are generalizations of the TSP : we

obtain the TSP in the particular case where each cluster is composed by just

one vertex. Thus both problems are NP-Hard since the TSP is NP-Hard.

In the next section, we give a short literature review of some important

previous works on the GTSP.
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2.2 Literature Review.

The GTSP was introduced simultaneously by Srivastava et al. [50] and

Henry-Labordere [19] in 1969. In 1970 Saksena [44] studied the symmetric

and asymmetric cases. The GTSP has been studied later by Laporte et al. in

[28] and [27], by Noon in his Ph.D. thesis [38] and by Noon and Bean in [39]

and [40]. The most studied version of the problem is the one called E-GTSP.

To the best of our knowledge, the name E-GTSP was first introduced by

Fischetti et al. [14], even if already in previous papers this version of the

problem was studied. In [13] Fischetti et al. proposed a Branch and Cut

algorithm to solve E-GTSP to optimality. They also proposed two heuristics

for E-GTSP. The first one is a cycle construction algorithm, which is an

adaptation of the Farthest Insertion TSP procedure. Analogous algorithms

can be obtained by adapting the Nearest Insertion and the Cheapest Insertion

TSP procedures. This algorithm is combined with two cycle improvement

procedures: the first one is based on 2-opt and 3-opt exchanges; the second

one starts from a given sequence of the clusters and computes the best feasible

cycle, visiting the clusters in the given order, by using a Layered Network and

solving shortest path problems. Consider the visiting order of the clusters to

be fixed as V1, . . . , Vm. The Layered Network has m+1 layers corresponding

to the m clusters V1, . . . , Vm and to an additional cluster, Vm+1, which is

a copy of cluster V1. The Layered Network contains all the vertices of G,

and one copy of each vertex in V1. It contains an arc (i, j), for each i ∈ Vh

and j ∈ Vh+1, (h = 1, . . . , m), with cost cij. Any path in the Layered

Network, going from a vertex u in V1 to the corresponding vertex v in Vm+1,

is a feasible solution to E-GTSP, since it defines a cycle in G which visits

each cluster exactly once. Moreover, every E-GTSP solution which visits

the clusters in the order V1, . . . , Vm corresponds to a path in the described

Layered Network. Thus, finding the best cycle, once the visiting order of

the clusters is fixed, can be done by finding the shortest path from each

vertex u in V1 to the corresponding vertex v in Vm+1. In the following we will

denote this method as the Layered Network Method. The second heuristic



proposed by Fischetti et al. [13] is based on a Lagrangian Relaxation of the

problem, followed by the second improvement procedure, and is executed in a

subgradient optimization framework. Fischetti et al. in [13] also introduced a

clustering procedure to obtain benchmark instances of the E-GTSP starting

from instances of the TSPLIB Library (Reinelt [42]). In a previous paper

[14], Fischetti et al. studied the facial structure of the polytopes associated

with the GTSP and the E-GTSP.

In [43] Renaud and Boctor presented a classification of the different

heuristics that can be used to solve the problem. The algorithms can be

divided into three classes: the decomposition algorithms, the construction

algorithms and the solution improvement algorithms. The algorithms of the

first two classes produce a feasible solution to the problem, which can be

improved by the heuristics of the third class. The decomposition algorithms

subdivide the problem into two phases. In the first phase the algorithm

selects the vertices to be visited (one for each cluster) and in the second

phase it constructs a cycle, for example using a TSP heuristic. Alternatively,

in the first phase the algorithm determines the order in which the clusters

should be visited (for example by using a TSP heuristic) and in the second

phase constructs the shortest cycle by using the Layered Network Method.

The construction heuristics simultaneously choose the vertices to be visited

and construct the cycle, for example by using adaptations of TSP construc-

tion heuristics (e.g., nearest neighbor, cheapest insertion, farthest insertion).

A well-known construction algorithm is the one proposed by Noon in [38]:

this is a Nearest Neighbor algorithm, adapted for the E-GTSP. Finally, the

solution improvement algorithms start from a feasible solution and try to im-

prove it, by using local search procedures, such as 2-opt or 3-opt or specific

adaptations for the E-GTSP. Renaud and Boctor [43] proposed a composite

heuristic, composed of three phases. They call this algorithm GI3, which

stands for Generalized Initialization, Insertion and Improvement. In the first

phase they construct a sub-cycle, and in the following phase they apply an

insertion procedure to obtain a cycle which visits exactly one vertex in each



cluster. Finally, they apply a solution improvement procedure.

In [49] Snyder and Daskin proposed a random-key genetic algorithm. The

encoding of an E-GTSP solution is as follows: each cluster Vi, (i = 1, . . . , m),

has a gene consisting of an integer part (drawn from {1, . . . , |Vi|}) and a

fractional part (drawn from [0, 1)). The integer part indicates which vertex

from the cluster is included in the cycle, and the vertices are sorted according

to their fractional part to indicate the order of the clusters in the cycle. In

the crossover operator, two parent solutions are randomly chosen from the

current population. One offspring is then generated from the two parents

by using a parametrized uniform crossover, i.e. by taking each gene from

parent 1 with probability 0.7 and from parent 2 with probability 0.3. The

initial population is created by randomly generating 100 solutions, drawing

the gene for cluster Vi, (i = 1, . . . , m) uniformly from [1, |Vi| + 1). At each

iteration 20% of the population comes directly from the previous population

via reproduction, i.e. by copying the best solutions, 70% is obtained via

crossover and the remaining 10% is generated via immigration (by generating

new solutions randomly, as done for the initial population). Every time a

new solution is created, an attempt is done to improve it by using 2-opt and

“swap” procedures. The “swap” procedure involves the removal of the vertex

currently selected for a cluster Vi and the insertion of a different vertex from

Vi into the cycle. The insertion is done by using a modified cheapest insertion

criterion, so that the new vertex may be inserted into the cycle in a position

different from that of the original vertex.

Pintea et al. in [41] proposed a meta-heuristic, based on an Ant Colony

System. They call the algorithm Reinforcing Ant Colony System (RACS),

since it uses new pheromone rules and pheromone evaporation techniques.

They present an experimental comparison of their algorithm with the Nearest

Neighbor algorithm by Noon [38], the composite heuristic by Renaud and

Boctor [43]) and the genetic algorithm by Snyder and Daskin [49]. However,

the authors do not report the corresponding computing times (they only say

that the algorithm was run with a time limit of 10 minutes).



In a recent work [47], Silberholz and Golden proposed a new genetic al-

gorithm. Each chromosome is given by a sequence of vertices, representing

the visited cycle. This is a simple representation, called path representation,

which however has the drawback that a randomly selected representation

has no guarantee to be feasible for E-GTSP, unless specialized procedures

are used. At the beginning, each chromosome is generated by selecting ran-

dom vertices and adding them to the new chromosome one by one, provided

that another vertex from the same cluster had not yet been selected. The

initial population consists of 50 chromosomes. Two new crossover operators

are introduced, which are based on the TSP ordered crossover (OX): the ro-

tational and reverse crossover (rOX) and its modification (mrOX). Since the

new operators are characterized by many features, we suggest the readers to

refer to [47] for further details. The authors proposed also a new population

structure, which considers several independent small groups of chromosomes

for a relatively short computing time at the beginning of the solution pro-

cedure, and uses less computationally intensive genetic procedures and local

improvement to rapidly generate a subset of reasonable solutions for each

group. Then, the best chromosomes from each group are merged into a final

population, which is improved by using a standard genetic algorithm struc-

ture. Local improvements are also applied: the 2-opt procedure and the swap

operator introduced in [49]. To favor population diversity, each chromosome

has a 5% probability of being selected for mutation. The algorithm is ter-

minated when it does not improve the incumbent solution for 150 iterations.

The algorithm was tested on the benchmark instances by Fischetti et al. [13],

and on a new set of larger instances obtained from the TSPLIB data sets.

A condensed literature review is shown in Table 2.1.

In this work we present a new heuristic. It is a multi-start algorithm,

which iteratively starts with a randomly chosen set of vertices and applies

a decomposition approach, combined with improvement procedures. The

decomposition approach considers a first phase to determine the visiting order

of the clusters and a second phase to find the corresponding minimum cost



Authors Date Topic

Srivastava et al. [50] 1969 Dynamic programming (GTSP)

Henry-Labordere [19] 1969 Dynamic programming (AGTSP)

Saksena [44] 1970 Application in scheduling problems

Laporte and Nobert [28] 1983 Branch & bound (GTSP)

Laporte et al. [27] 1987 Branch & bound (AGTSP)

Noon [38] 1988 Nearest Neighbor heuristic (AGTSP)

Noon and Bean [39] 1991 Lagrangian based approach (AGTSP)

Noon and Bean [40] 1993 Transformation of the AGTSP into a Clustered TSP,

Transformation of the GTSP into an asymmetric TSP

Fischetti et al. [14] 1995 Facial structure of polytopes (GTSP and E-GTSP)

Laporte et al. [25] 1996 Applications

Fischetti et al. [13] 1997 Branch-and-Cut (E-GTSP)

Heuristic and improvement procedures (E-GTSP),

Benchmark instances up to 442 vertices, solved to

optimality (E-GTSP)

Renaud and Boctor [43] 1998 Composite Heuristic GI3 (E-GTSP),

instances up to 442 vertices

Snyder and Daskin [49] 2006 Random-Key Genetic Algorithm (E-GTSP)

instances up to 442 vertices

Pintea et al. [41] 2007 Reinforcing Ant Colony System (E-GTSP)

instances up to 442 vertices

Silberholz and Golden [47] 2007 Genetic Algorithm (E-GTSP),

Benchmark instances up to 1084 vertices

Table 2.1: Literature Review

cycle.

The chapter is organized as follows: we present the multi-start heuristic

in Section 2.3; in Section 2.4 we give computational results on benchmark

instances from the literature and a comparison between the results of the

proposed algorithm and the best results found in the literature. Finally we

give some conclusions in Section 2.5.



2.3 A Multi-Start Heuristic.

In a decomposition algorithm, the problem is subdivided into two sub-

problems. As previously mentioned, there are two ways of decomposing the

problem (see Renaud and Boctor [43]). One possibility is to select the ver-

tices to be visited, and then construct a minimum cost cycle that visits the

selected vertices; another possibility is to determine the order in which the

clusters are visited, and then construct the corresponding minimum cost cy-

cle, by selecting one vertex for each cluster.

Our method is an extension of this class of decomposition algorithms,

since it combines these two approaches, alternating these two ways of de-

composition of the problem and introducing as well some randomness to

explore a larger solution space. Moreover, we apply local search procedures,

to improve the solution found. The name “Multi-Start Algorithm” (MSA)

underlines that we iteratively repeat the algorithm, starting at each itera-

tion with a different initial set of vertices. MSA considers a first phase to

determine the visiting order of the clusters and a second phase to find the cor-

responding minimum cost cycle. The visiting order of the clusters is obtained

as follows: at the first iteration we randomly choose, with uniform proba-

bility, one vertex in each cluster; we then compute, by using the Farthest

Insertion TSP (FITSP) procedure, followed by a Lin-Kernighan (L-K) and

a swap improvement procedures, a TSP feasible solution for the subgraph

induced by the selected vertices.

The FITSP procedure is applied to get the initial visiting order of the

clusters for the first iteration and whenever the algorithm achieves MAXI

consecutive iterations without improvement of the reference solution. We call

reference solution the solution which is initially determined by the FITSP

procedure and is updated when a lower cost current solution is detected. Note

that the reference solution may be different from the best solution found so

far, since we want to escape from possible local minima. In the other iter-

ations, the visiting order of the clusters is determined by the corresponding

order in the reference solution.



Once the order of the clusters is fixed, the second phase starts: the Lay-

ered Network Method is applied. It computes the shortest cycle which visits

exactly one vertex in each cluster. This phase gives a set of vertices which

can be different from the one obtained in the first phase. In this case, we ap-

ply the L-K and swap improvement procedures to the new vertex sequence,

allowing a change in the order of the clusters. If the order of the clusters is

changed, we apply again the Layered Network Method in an iterative way.

Otherwise the current solution cannot be further improved, so we start a

new iteration with a new set of randomly chosen vertices. In addition, we

apply a probabilistic step: with probability p each vertex in the chosen set

is substituted by the vertex corresponding to the same cluster in the current

reference solution. The approach iteratively repeats these steps until a stop

condition (e.g., time limit) is reached.

Since the probability p is a very important parameter of our approach,

as it makes the method more or less conservative, we change the probability

during the execution. In particular, its value increases from an initial proba-

bility pin to a final probability pfin. The probability is changed every MAXP

iterations. At the beginning the steps for changing the probability are larger

and later on they become smaller. The rule for defining the probability is

the following: p = pfin −⌊pfin/(Cp + 2)⌋, where Cp represents the number of

probability values already considered (initially Cp = 0). When the final value

pfin is reached, in order to avoid to be stuck at this value, the probability p

is perturbed with a random offset of ±10%.

The swap improvement procedure considers in turn each vertex in the

current cycle and tries to determine a better feasible solution by removing

the vertex from its current position and by inserting it, or any other vertex

belonging to the same cluster, in every other position of the current cycle.

The L-K procedure is an adaptation of the classical Lin-Kernighan TSP

improvement method, where we initially restrict the maximum number of

edges involved in a single move to kmax = 15. To avoid too high computing

times for the L-K procedure, we impose a maximum limit equal to 15m on



the number of attempted k-opt moves with k > 2. In addition, we change the

value of kmax by decreasing it of one unit whenever the number of attempted

moves reaches its maximum limit (i.e. 15m), and increasing it of one unit

otherwise (never exceeding the initial value of 15).

In the following we present in detail the sequence of steps performed

by the algorithm. A feasible vertex set C is given by a vertex subset of V

containing one vertex for each cluster. A feasible solution T is given by a

sequence of the vertices belonging to a feasible vertex set C. The cost of

the solution is given by the sum of the costs of the edges in the sequence.

We denote with SB the best known feasible solution found so far, and with

S the current reference solution. In addition, we call H(C) the subgraph

induced by the feasible vertex set C. The following counters are used in the

description of the algorithm:

- count = number of iterations executed with no improvement of the

reference solution S;

- countp = number of iterations executed from the last change of the

probability value.

0. Set SB := ∅, S := ∅, count := 0, countp := 0, Cp := 0, p := pfin −

⌊pfin/(Cp + 2)⌋.

1. Define a feasible vertex set C by randomly selecting, with uniform

probability, one vertex from each cluster.

2. If S 6= ∅, then substitute, with probability p, each vertex v of C with

the vertex u ∈ S such that u belongs to the same cluster as v. Consider

the corresponding induced subgraph H(C).

3. If count = MAXI or S = ∅, then find a TSP feasible solution on graph

H(C), by applying the FITSP procedure. Otherwise, the current feasi-

ble solution is defined by the visiting order of the clusters corresponding

to S. Apply the L-K and swap improvement procedures, and obtain



the sequence of vertices T = (v1, . . . , vm). Let TV = {Vs(1), . . . , Vs(m)}

be the corresponding sequence of clusters.

4. Apply the Layered Network Method (taking TV as visiting order of the

clusters) and obtain a new sequence of vertices Tnew (this is the best

sequence of vertices with the fixed cluster order).

5. If the sequence Tnew can be improved through the L-K and/or swap

improvement procedures, then update Tnew and TV and go to step 4.

6. If S = ∅ or the cost of S is worse than the cost of Tnew, then:

6.a set S := Tnew and count := 0 (consider the current solution as the

reference one);

6.b If SB = ∅ or the cost of SB is worse than the cost of Tnew, then

set SB := Tnew;

Otherwise:

6.c if count < MAXI then set count := count + 1 else set S := Tnew

and count := 0;

7. 7.a If a given time limit is reached, then stop the algorithm.

7.b Set countp := countp+1. If countp = MAXP , then set Cp := Cp+

1, p := pfin − ⌊pfin/(Cp + 2)⌋, countp := 0. If p = pfin, then p :=

uniformly distributed random integer in the range [0.9pfin, 1.1pfin].

7.c Go to step 1.

For a better understanding, in Figures 2.1 - 2.4 we show an example of

the first iteration of the described heuristic on the instance 10att48 taken

from the literature. The costs of the edges are assumed to be propor-

tional to the Euclidean distances between the corresponding extreme ver-

tices (i.e., the cost of the edge having as extreme vertices those with co-

ordinates (xi, yi) and (xj , yj) is given by ⌈
√

((xi − xj)2 + (yi − yj)2) ∗ 10 ⌉).



Figure 2.1: Example of steps 0-3 of the Multi-Start Algorithm: one vertex

per cluster is randomly selected with uniform probability, and the sequence

of vertices in the figure is obtained by applying the FITSP procedure followed

by the L-K and swap procedures.

In the example we have 10 clusters and 48 vertices. The vertices are num-

bered from 1 to 48 and the clusters are identified with letters from a to

j and represented by grey sets. In Figure 2.1 vertices are randomly se-

lected, one for each cluster, and the sequence T is obtained by applying

the FITSP procedure followed by the L-K and swap procedures. T is given

by (2a, 24b, 33c, 9d, 4g, 19f, 6h, 14i, 21j, 32e). The sequence of clusters TV is

given by {a, b, c, d, g, f, h, i, j, e}. The cost of the obtained solution is 5799.

In Figure 2.2, the Layered Network Method is applied, taking the order of

the clusters at the previous step as fixed. The new sequence of vertices



Figure 2.2: Example of step 4 of the Multi-Start Algorithm: the Layered

Network Method is applied, giving the new represented sequence of vertices,

where the “stars” correspond to the replacement of vertices.

Tnew is given by (2a, 24b, 33c, 9d, 46g, 19f, 34h, 31i, 11j, 32e), where vertices

{4g, 6h, 14i, 21j} are replaced by vertices {46g, 34h, 31i, 11j}, respectively.

The changes with respect to the previous step are indicated with stars in

the figure. The cost of the obtained solution is 5523. In Figure 2.3, the L-K

and swap procedures are applied and the new sequence of vertices Tnew =

(2a, 24b, 33c, 9d, 19f, 18j, 34h, 31i, 32e, 27g) is obtained. The corresponding

new sequence of clusters is given by TV = {a, b, c, d, f, j, h, i, e, g}. The cost of

the obtained solution is 5426. Since the visiting order for the clusters has been

changed, we repeat step 4 applying the Layered Network Method and obtain-

ing the new sequence of vertices {2a, 24b, 33c, 22d, 19f, 18j, 34h, 31i, 32e, 27g},



Figure 2.3: Example of step 5 of the Multi-Start Algorithm: the L-K and

swap procedures are applied, and as a result the order of the clusters is

changed; the dashed lines represent the previous edges.

where vertex 9d is replaced by vertex 22d (see Figure 2.4). The cost of the

obtained solution is 5394, which is the optimal solution value. The L-K and

swap procedures produce no further improvement, thus we store the solution

in S and SB and end the first iteration of the algorithm.

Notice that steps 4 and 5 constitute a local search scheme which tries

to improve the current solution Tnew by alternating the Layered Network

Method and the L-K and swap procedures. The change of neighborhood (or

restart) is performed by steps 1 and 2, which lead the algorithm to reach new

neighborhoods, tuned by parameter p.



Figure 2.4: Example of steps 4-6 of the Multi-Start Algorithm: the Layered

Network Method is applied; it replaces vertex 9d with vertex 22d and finds

the optimal solution.

2.4 Computational Results.

The Multi-Start Algorithm MSA described in Section 2.3 was imple-

mented in Java (JDK and JRE 5.0 Update 11) and tested on a PC Pen-

tium(R) IV, 1 Gb RAM, 3.4Ghz.

The algorithm was tested on a set of benchmark instances obtained by the

clustering procedure introduced by Fischetti et al. [13] applied to instances

from the TSPLIB Library [42]. All the instances have triangular costs. For

each instance, the clustering of the corresponding n vertices has been done

so as to simulate geographical regions, with a number of clusters equal to

⌈n/5⌉. These 41 instances are generally used to test the performance of the



algorithms for the E-GTSP. The names of the instances xxnameyyy indicate

the number of clusters (xx) and the number of vertices yyy.

The results obtained by MSA in a single run, corresponding to a given

random seed, are compared with the optimal solution values obtained by the

Branch-and-Cut algorithm (B&C) presented in [13], and with the results

obtained by the following heuristics:

1. the Genetic Algorithm mrOX by Silberholz and Golden [47],

2. the Reinforcing Ant Colony System RACS by Pintea et al. [41],

3. the Genetic Algorithm GA by Snyder and Daskin [49],

4. the composite algorithm GI3 by Renaud and Boctor [43],

5. the Nearest Neighbor approach NN by Noon [38],

6. the heuristics (FST-Lagr and FST-root) by Fischetti et al. [13], applied

at the root node of the decision tree.

In order to perform a fair comparison on the computing times, we refer

to Dongarra [7] for the evaluation of the speed of the computers used in the

experiments. The computer factors are shown in Table 2.2. The columns

have the following meaning:

- Computer describes the used computer;

- Mflops reports the corresponding calculated amount of Mflops per sec-

ond;

- r reports the computer factor, i.e. the ratio between the Mflops of the

computer and 295 (our computer Mflops);

- Method describes the corresponding algorithm.

Since in [41] the computer was not reported, for algorithm RACS we

assume a computer factor equal to 1.



Computer Mflops r Method

Gateway Profile 4MX 230 0.78 GA

Sun Sparc Station LX 4.6 0.015 GI3, NN

HP 9000/720 2.3 0.007 FST-Lagr, FST-Root, B&C

Unknow - 1 RACS

Dell Dimension 8400 - 1 mrOX

Our 295 1 MSA

Table 2.2: Computers comparison

MSA was run with a time limit of 60 seconds. We used the following

values for the parameters: final percentage probability pfin = 75 (hence the

initial percentage probability is equal to 75−⌊75/2⌋ = 38), maximum number

of iterations without improvement MAXI = 500, and maximum number of

iterations without changing the probability MAXP = 20.

Table 2.3 compares the results of MSA with those of the best methods in

the literature. For each instance, we report the percentage gap with respect

to the optimal solution value and the computing time (expressed in seconds

and scaled according to the computer factors given in Table 2.2) for all the

methods but for B&C (for which we report only the computing time). Note

that the results of mrOX [47] and RACS [41] represent, for each instance, the

average of the best solutions found in 5 runs, each corresponding to a different

random seed (a time limit of 10 minutes was imposed on each run of RACS).

The results of all the other algorithms refer to a single run for each instance.

In the last four rows of Table 2.3 we report, for each algorithm, the average

percentage gap and the average computing time on the 36 instances tested by

all the methods and on the 41 instances for the algorithms which consider the

remaining 5 instances. We report as well the number of times the optimum

was reached. As Table 2.3 shows, MSA finds the optimal solution for all the

instances, and the computing times are always much smaller than those of

the Branch-and-Cut algorithm B&C (and, as well, than those of the FST-

root heuristic applied at the root node of the corresponding decision tree).

The table also shows that MSA clearly outperforms the other heuristics.



Instance Optval MSA mrOX RACS GA GI3 NN FST − lagr FST − Root B&C

gap time gap time gap gap time gap time gap time gap time gap time time

10att48 5394 0 0 0 0.4 - 0 0 - - - - 0 0 0 0 0.0

10gr48 1834 0 0 0 0.3 - 0 0.4 - - - - 0 0 0 0 0.0

10hk48 6386 0 0 0 0.3 - 0 0.2 - - - - 0 0 0 0 0.0

11eil51 174 0 0 0 0.3 0 0 0.1 0 0 0 0 0 0 0 0 0.0

12brazil58 15332 0 0 0 0.8 - 0 0.2 - - - - 0 0 0 0 0.0

14st70 316 0 0 0 0.4 0 0 0.2 0 0 0 0 0 0 0 0.1 0.1

16eil76 209 0 0 0 0.4 0 0 0.2 0 0 0 0 0 0 0 0.1 0.1

16pr76 64925 0 0 0 0.5 0 0 0.2 0 0 0 0 0 0 0 0.1 0.1

20rat99 497 0 0 0 0.5 0 0 0.5 0 0.1 0 0.1 0 0 0 0.4 0.4

20kroA100 9711 0 0 0 0.6 0 0 0.3 0 0.1 0 0.1 0 0 0 0.1 0.1

20kroB100 10328 0 0 0 0.6 0 0 0.3 0 0.1 0 0 0 0 0 0.2 0.2

20kroC100 9554 0 0 0 0.6 0 0 0.2 0 0.1 0 0.1 0 0 0 0.1 0.1

20kroD100 9450 0 0 0 0.7 0 0 0.3 0 0.1 0 0.1 0 0 0 0.1 0.1

20kroE100 9523 0 0 0 0.6 0 0 0.6 0 0.1 0 0 0 0 0 0.1 0.1

20rd100 3650 0 0 0 0.5 0 0 0.2 0.08 0.1 0.08 0.1 0.08 0 0 0.1 0.1

21eil101 249 0 0 0 0.5 0 0 0.2 0.4 0.1 0.4 0 0 0 0 0.2 0.2

21lin105 8213 0 0 0 0.6 0 0 0.2 0 0.2 0 0.1 0 0 0 0.1 0.1

22pr107 27898 0 0 0 0.5 0 0 0.3 0 0.1 0 0.1 0 0 0 0.1 0.1

24gr120 2769 0 0 0 0.7 - 0 0.4 - - - - 1.99 0 0 0.3 0.3

25pr124 36605 0 0 0 0.7 0 0 0.5 0.43 0.2 0 0.2 0 0 0 0.2 0.2

26bier127 72418 0 0 0 0.8 0 0 0.4 5.55 0.5 9.68 0.1 0 0.1 0 0.2 0.2

28pr136 42750 0 0 0 0.8 0 0 0.4 1.28 0.2 5.54 0.1 0.82 0.1 0 0.3 0.3

29pr144 45886 0 0 0 1.0 0 0 0.2 0 0.2 0 0.2 0 0 0 0.1 0.1

30kroA150 11018 0 0 0 1.0 0 0 1.0 0 0.3 0 0.3 0 0.1 0 0.7 0.7

30kroB150 12196 0 0 0 1.0 0 0 0.8 0 0.2 0 0.3 0 0.1 0 0.4 0.4

31pr152 51576 0 0 0 1.0 0 0 1.2 0.47 0.3 1.8 0.2 0 0.1 0 0.4 0.7

32u159 22664 0 0 0 1.0 0.01 0 0.5 2.6 0.3 2.79 0.4 0 0.1 0 1.0 1.0

39rat195 854 0 0.1 0 1.4 0 0 0.5 0 0.6 1.29 1.3 1.87 0.1 0 1.7 1.7

40d198 10557 0 0 0 1.6 0.01 0 0.9 0.6 0.9 0.6 1.8 0.48 0.1 0 5.3 5.3

40kroA200 13406 0 0 0 1.7 0.01 0 2.1 0 0.4 5.25 0.8 0 0.1 0 1.3 1.3

40kroB200 13111 0 0 0.05 1.6 0 0 1.1 0 0.5 0 2.0 0.05 0.1 0 1.9 1.9

45ts225 68340 0 2.1 0.14 1.7 0.02 0 1.9 0.61 1.3 0 1.8 0.09 0.1 0.09 9.1 265.1

46pr226 64007 0 0 0 1.5 0.03 0 0.8 0 0.4 2.17 1.0 0 0.1 0 0.7 0.7

53gil262 1013 0 3.5 0.45 3.6 0.22 0.79 1.5 5.03 1.7 1.88 1.8 3.75 0.1 0.89 10.1 46.4

53pr264 29549 0 0 0 2.4 0 0 1.0 0.36 1.0 5.73 2.2 0.33 0.2 0 2.4 2.4

60pr299 22615 0 0.7 0.05 4.6 0.24 0.02 4.8 2.23 0.1 2.01 4.2 0 0.2 0 5.7 5.7

64lin318 20765 0 0 0 8.1 0.12 0 2.7 4.59 3.1 4.92 4.8 0.36 0.4 0.36 5.9 11.7

80rd400 6361 0 0.3 0.58 14.6 0.87 1.37 2.7 1.23 6.1 3.98 17.1 3.16 0.4 2.97 35.2 49.2

84fl417 9651 0 0 0.04 8.2 0.57 0.07 1.9 0.48 6.4 1.07 20.1 0.13 0.5 0 117.0 117.0

88pr439 60099 0 1.9 0 19.1 0.79 0.23 7.1 3.52 9.2 4.02 18.6 1.42 1.0 0 37.9 38.0

89pcb442 21657 0 0.8 0.01 23.4 0.69 1.31 7.9 5.91 8.5 0.22 12.6 4.22 0.6 0.29 37.5 411.4

Average (36) 0 0.26 0.04 3.00 0.10 0.10 1.27 0.98 1.21 1.48 2.57 0.46 0.13 0.13 7.69 26.75

# Opt (36) 36 29 24 30 19 18 23 31 36

Average (41) 0 0.23 0.03 2.70 0.09 1.14 0.46 0.11 0.11 6.76 23.5

# Opt (41) 41 34 35 27 36 41

Table 2.3: Comparison of the algorithms on the small instances.



In Table 2.4 we present a comparison on a set of new larger instances pro-

posed by Silberholz and Golden in [47]. These instances are again obtained

by applying the clustering procedure introduced by Fischetti et al. [13] to

instances of the TSPLIB Library (Reinelt [42]). In order to perform a fair

comparison with the results obtained by algorithm mrOX [47], which corre-

spond to the averages of the best solutions found in 5 runs, for each instance

we have run MSA with 5 different random seeds. The corresponding average

results (best solution values and computing times) are reported in Table 2.4.

In addition, as done for the smaller instances, we report the results obtained

by MSA in a single run, since this is, according to our computational exper-

iments, the most effective way to execute MSA. In Table 2.4 the columns

have, for each instance, the following meaning:

1. instance name,

2. the average of the best solution values obtained by algorithm mrOX

[47] (computed over 5 runs),

3. the corresponding average computing time expressed in seconds (com-

puted over 5 runs),

4. the best solution value obtained by algorithm MSA in a single run,

with the same random seed used for the smaller instances considered

in Table 3,

5. the corresponding computing time expressed in seconds,

6. the average of the best solution values obtained by algorithm MSA

(computed over 5 runs),

7. the corresponding average computing time expressed in seconds (com-

puted over 5 runs).

For each instance and for each run, MSA was run with a time limit of

600 seconds. We represent in bold the best solution value for each instance.

In the last row we present the average values over the 13 instances.



Instance mrOX (5 runs) MSA (single run) MSA (5 runs)

avg. value avg. time value time avg. value avg. time

99D493 20117.2 35.72 20023 226.10 20023.0 220.85

107ATT532 13510.8 31.70 13464 4.76 13464.0 2.81

107SI535 13513.2 26.35 13502 0.39 13502.0 2.13

113PA561 1053.6 21.08 1038 6.51 1038.0 2.81

115RAT575 2414.8 48.48 2388 27.28 2388.0 53.57

131P654 27508.2 32.67 27428 6.03 27428.0 3.59

132D657 22599.0 132.24 22498 367.97 22502.4 296.44

145U724 17370.6 161.82 17271 76.97 17271.0 133.18

157RAT783 3300.2 152.15 3266 573.37 3265.4 311.38

201PR1002 114582.2 464.36 114311 70.54 114316.0 86.67

207SI1032 22388.8 242.37 22311 115.70 22310.4 311.53

212U1060 108390.4 594.64 105957 566.03 106026.2 251.24

217VM1084 131884.6 562.04 130703 101.38 130703.0 198.50

Average 38356.4 192.74 38012.3 164.85 38018.3 144.21

Table 2.4: Comparison on a new data set of instances proposed in [47]

Table 2.4 shows that algorithm MSA outperforms algorithm mrOX,

since it always obtaines, in comparable computing times, better solutions

(by considering both the values found in a single run and the average values

found in 5 runs). It is worth to note that the behavior of MSA is quite sta-

ble with respect to the random seed considered for its execution. Indeed, the

average solution values (computed over 5 runs) are very close to the values

found in the single runs: for 8 instances (over 13) the values coincide, for

3 instances the single run produces better solutions, and for 2 instances the

averages over 5 runs are better (for these 2 instances the best solution values

found were 3265 for instance 157RAT783 and 22306 for instance 207SI1032);

in addition, the global average values are 38018.3 for the averages over 5 runs

and 38012.3 for the single runs.

A more detailed experimental analysis on the execution of a single run of

MSA showed that, for the 13 larger instances considered in Table 2.4, the

number of iterations (Steps 1 to 7 of the algorithm described in Section 2.3)



was on average 22076 (with a minimum of 39 and a maximum of 101564),

while the number of applications of the FITSP procedure (see Step 3) was

on average 23 (with a minimum of 0 and a maximum of 102). We observed

as well that, as expected, most of the computing time of MSA (about 95%)

was spent in the execution of the L-K and swap improvement procedures (see

Step 3).

In order to investigate the effects of the probabilistic alteration of the

vertices chosen in the initialization phase (see Step 2) and of the rule used

to update the value of the probability p (see Step 7.b), we executed a single

run of MSA, on the 13 larger instances, by setting p = 0 (i.e. with no

probabilistic alteration) and p = 75% (i.e. with a fixed probability equal to

its maximum value). The global averages of the solution values and of the

corresponding computing times were, respectively, 38150.6 and 213 seconds

for p = 0, and 38016.9 and 224 seconds for p = 75%. In both cases, the

average results are worse than those obtained by executing a single run of

MSA with the original parameter setting (38012.3 and 165 seconds for the

averages of the solution values and of the computing times, respectively).

Indeed, when setting p = 0 the algorithm performs a completely random

selection of the vertices, and when setting p = 75% it keeps as fixed several

vertices of the reference solution that at the beginning of the process may

not be of good quality.

2.5 Conclusions.

We developed a multi-start heuristic for the E-GTSP, which starts with a

randomly chosen set of vertices, one for each cluster, and applies a Farthest

Insertion TSP procedure followed by a Lin-Kernighan and a swap improve-

ment procedures to obtain a good visiting order for the clusters. The algo-

rithm then takes this order as fixed and applies the Layered Network Method

to compute the corresponding best cycle. The Lin-Kernighan and swap pro-

cedures are applied again, followed by the Layered Network Method, until



no further improvement can be obtained. The algorithm is then repeated by

considering a new randomly chosen set of vertices, where, with probability p,

each vertex is replaced by the vertex belonging to the corresponding cluster

in the reference solution.

We compared the proposed method with the best state-of-the-art algo-

rithms on a set of benchmark instances from the literature, and showed the

effectiveness of the approach. It turned out that, on the set of smaller in-

stances (with up to 442 vertices), the proposed algorithm finds always the

optimal solution in less than four seconds, and clearly outperforms the most

effective heuristics. For the set of larger instances (with up to 1084 vertices)

the proposed algorithm always improves, in comparable computing times,

the solution values obtained by the genetic algorithm recently presented by

Silberholz and Golden [47].

The proposed heuristic can be easily extended to the case of the AGTSP,

by adapting the Farthest Insertion TSP procedure and the Lin-Kernighan

and swap improvement procedures. Future work will be devoted to investi-

gate the general case of GTSP (where more than one vertex for each cluster

can be visited), and the extension to the variant of the problem where clusters

may intersect.





Chapter 3

Bin Packing Problem with

Conflicts.

3.1 Introduction.

In the Bin Packing Problem with Conflicts (BPPC), we are given a set

V = {1, 2, . . . , n} of items, each item i having a non-negative weight wi, and

an infinite number of identical bins of weight capacity C. We are also given

a conflict graph G = (V, E), where E is a set of edges such that (i, j) ∈ E

when items i and j are in conflict. Items in conflict cannot be assigned to

the same bin. The aim of the BPPC is to assign all items to the minimum

number of bins, while ensuring that the total weight of the items assigned

to a bin does not exceed the bin weight capacity and that no bin contains

items in conflict.

The BPPC is important because of the high number of real-world ap-

plications, and because it generalizes other important problems in combina-

torial optimization. Some BPPC real-world applications include examina-

tion scheduling (see [26]), the assignment of processes to processors and the

load balancing of tasks in parallel computing (see [21]). Other applications

concern particular delivery problems, such as food distribution, where some

items cannot be placed in the same vehicle (see [6]).
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The BPPC is NP-hard, since it generalizes both the Bin Packing Problem

(BPP) and the Vertex Coloring Problem (VCP). The BPP (see, e.g., [33]) is

a special case of the BPPC where no item is in conflict with another, i.e.,

E = ∅. In the VCP each vertex of the conflict graph has to be assigned a

color, such that no two adjacent vertices share the same color and the number

of colors used is minimum (see, e.g., [23] and [32]). The VCP is a special

case of the BPPC where all items weights take value 0.

The BPPC can be modelled by introducing two sets of binary variables:

yh, taking value 1 if bin h is used, 0 otherwise (h = 1, 2, . . . , n); xih, taking

value 1 if item i is assigned to bin h, 0 otherwise (i = 1, 2, . . . , n, h =

1, 2, . . . , n). We obtain the following Integer Linear Programming model.

min

n∑

h=1

yh (3.1)

n∑

h=1

xih = 1 i = 1, 2, . . . , n (3.2)

n∑

i=1

wixih ≤ Cyh h = 1, 2, . . . , n (3.3)

xih + xjh ≤ yh (i, j) ∈ E, h = 1, 2, . . . , n (3.4)

yh ∈ {0, 1} h = 1, 2, . . . , n (3.5)

xih ∈ {0, 1} i = 1, 2, . . . , n, h = 1, 2, . . . , n. (3.6)

Constraints (3.2) require that each item is assigned to a bin. Constraint

(3.3) are the classical capacity constraints of BPP and (3.4) are the classical

conflict constraints of the VCP. Model (3.1)–(3.6) generalizes the well known

descriptive model of the BPP and was introduced by [17], although with a

weaker version of (3.4). Note that conflict constraints are here reported as

edge constraints, but can be strengthened to clique constraints, as discussed,

e.g., in [30]. Other valid inequalities may be introduced to strengthen the

model, although its linear relaxation remains weak (see, e.g., [33]).

The BPPC was addressed by [22] and [21], who derived polynomial

time approximation schemes for special classes of conflict graphs. The most

relevant work from a computational point of view was provided by [17], who

surveyed previous results in the literature, presented new lower and upper

bounds, and introduced benchmark instances. [18] considered a special case



of the BPPC, the so-called Bounded Vertex Coloring, where all weights are

equal to 1, and proposed upper and lower bounds, as well as complexity

results. [2] considered the complexity of the previous problem for different

conflict graph classes. [1] considered the mutual exclusion scheduling, where

unit-time tasks have to be scheduled on m processors, subject to the con-

straint that conflicting tasks must run in disjoint time intervals. A problem

related to the BPPC, where a number of conflicting examinations have to be

scheduled in the smallest number of periods, under capacity restrictions, was

addressed through greedy heuristic procedures by [5].

In the remaining of the text we will use the definition of extended conflict

graph G′ = (V, E ′), where E ′ = E
⋃
{(i, j) : i, j ∈ V and wi +wj > C} as the

set of edges containing the given input conflicts and the conflicts imposed for

those items whose weight sum is greater than the bin capacity.

This work provides new lower and upper bounds for the BPPC and to

combine them into an exact approach. In Section 3.2 we survey combina-

torial lower bounds from the literature and introduce new lower bounding

procedures. In Section 3.3 we present several upper bounds, including a

metaheuristic approach making use of an inner Tabu Search algorithm. In

Section 3.4 we present an exact approach, based on a classical Set Covering

formulation and solved through column generation and Branch-and-Price. In

Section 3.5 we evaluate all the algorithms by means of extensive computa-

tional tests on benchmark instances.

3.2 Combinatorial lower bounds.

We first note that any lower bound for the BPP is a valid lower bound

also for the BPPC. Analogously, any lower bound for the VCP is also a lower

bound for the BPPC. In Section 3.2.1 we briefly describe lower bounds from

the BPP, the VCP and the BPPC literature, while in Section 3.2.2 we present

new lower bounds for the BPPC. In the following, we denote by Lx both the

procedure used to produce a lower bound, and the lower bound value itself



(where x changes accordingly to the procedure). Similarly, we denote by Ux

both the procedure used to produce an upper bound, and the upper bound

value itself.

3.2.1 Lower bounds from the literature.

Many lower bounding techniques have been proposed in the BPP litera-

ture. The simplest technique corresponds to the so-called continuous lower

bound (denoted as L0
BPP in the following), computed as the rounding up of

the sum of the weights divided by the bin capacity

L0
BPP =

⌈
n∑

i=1

wi

C

⌉
. (3.7)

Other effective lower bounding strategies were proposed by [10] through

Dual Feasible Functions. These functions modify the item weights, while

ensuring that, if an item subset fits in one bin, then it also fits in one bin

after the weight modification. Then a classical BPP algorithm, as L0
BPP ,

is applied on the modified weights to obtain a valid lower bound. In [10]

three parametric functions were proposed. We denote as LDFF
BPP the maximum

lower bound value produced by these functions. The corresponding time

complexity is O(n) for items sorted by size.

Also the VCP literature has produced lower bounding techniques. A

simple idea consists of determining a maximum clique, whose cardinality

naturally gives a valid lower bound value for the VCP. [17] developed a valid

BPPC bound by heuristically computing a maximum clique on the extended

conflict graph G′ through the greedy algorithm of [24]. This heuristic method

initializes the clique with the vertex of maximum cardinality. Then it enlarges

the clique by iteratively adding new vertices: at each iteration it considers the

remaining vertices according to a non-increasing degree order, and adds to

the clique the first vertex which can fit. Such algorithm can be implemented

in O(m + n) time for vertices sorted by non-increasing degree. This simple

lower bound is denoted as LMC in the following.

One can note that, when applied to the BPPC, any BPP lower bound

is arbitrarily bad (it is sufficient to consider an instance with bin capacity



1 and items weights ε << 1), and also any VCP lower bound is arbitrarily

bad (by considering an instance with E = ∅). It is thus more convenient

to focus on bounds tailored to the BPPC structure. One of these bounds

was proposed by [17], and is denoted as constrained packing lower bound

(LCP in the following). In LCP a maximal clique K of graph G′ is computed

by means of Johnson’s algorithm as in LMC . Then a bin is initialized for

each item in the clique, and the items in V \ K are assigned to these bins

(possibly in a fractional way), by solving a transportation problem that takes

into consideration both the weights and the given conflicts. All the remaining

items (or fractions of items) than cannot fit in the |K| initialized bins are

stored in a new set V1, on which L0
BPP is applied. A valid lower bound is

finally obtained by computing

LCP = |K| + L0
BPP (V1). (3.8)

Note that by construction LCP ≥ LMC and LCP ≥ L0
BPP .

3.2.2 Clique-based lower bounds.

Let us discuss the lower bounds based on the computation of a maximal

clique. [17] propose to compute LMC by finding a maximal clique on graph

G′. Even if any maximal clique of G (the graph that considers only input

conflicts) is by construction included in a maximal clique of G′, computing

a maximal clique of G′ by means of Johnson’s algorithm can lead to disap-

pointing results. Indeed, the drawback of this strategy is that vertices of

high weight have systematically high degree in G′. Hence, they are usually

among the first to be included in the clique, even when they do not belong

to large cliques of G′.

We propose the following improvement to the computation of LMC : 1)

compute a maximal clique K on G by means of Johnson’s algorithm; 2) add

to E all edges (i, j) such that wi + wj > C, thus obtaining graph G′; 3)

enlarge K by selecting vertices in V \K according to a non-increasing degree

order. The clique K ′ we obtain in this way is a maximal clique of G′ and

contains K. The corresponding lower bound is Limp
MC = |K ′|. On average this

strategy leads to larger cliques than those obtained by applying the Johnson’s



algorithm directly on graph G′.

Bound LCP may be improved by considering the way the maximal clique

K is computed. We obtain a new bound, denoted as Limp
CP , by determining

K as in Limp
MC instead of LMC . This generally leads to better lower bounds.

3.2.3 A surrogate relaxation.

Let us study a possible surrogate relaxation of constraints (3.4). We sum

the original n|E| constraints over the edges, with all multipliers equal to 1,

and we obtain the n constraints

n∑

i=1

δixih ≤ |E|yh h = 1, 2, . . . , n, (3.9)

where δi denotes the degree of vertex i in G′. Model (3.1) – (3.3), (3.5),

(3.6) and (3.9) may be seen as an instance of the Two-Vector Packing Problem

(TVPP). The TVPP is a generalization of the BPP in which items have two

weight dimensions (e.g., weight and length) and bins have two corresponding

capacities.

Clearly any lower bound for this TVPP is a valid lower bound for the

BPPC. In particular, we use the lower bounding procedure LH by [4], which

runs in O(n4 log n) time. In LH the items are first partitioned into three

subsets N1, N2 and N3. Items in N1 and N2 are pair-wise in conflict,

while N3 contains all the remaining items. Lower bounds are computed

separately for N1 and N2 through different techniques and then summed

to obtain the overall lower bound. Two partitions are attempted and the

highest bound is finally returned. (Note that the only TVPP lower bound

able to computationally outperform LH is the column generation procedure

proposed in [4].)

We define LTV PP the lower bound obtained by: 1) relaxing in a surrogate

way the BPPC constraints, as described above, so as to obtain a TVPP

instance; 2) applying the TVPP procedure LH to the new instance to get a

valid BPPC bound. The corresponding time complexity is O(n4 log n).



3.2.4 A matching-based lower bound.

Consider a subset S ⊆ V of items with the property that at most two

items in S can fit in a single bin. The minimum number of bins required to

pack all the items in S can be computed, in polynomial time, by matching

as many items as possible, and then assigning one bin to each matched pair

and one bin to each unmatched item. In other words, the optimal solution

value corresponds to the cardinality of a maximum cardinality matching M

on the complement graph GS of GS, induced by S on G, plus the number

of unmatched items. Of course this results in a valid lower bound for the

complete set of items V ⊇ S. In this way we obtain the lower bound Lmatch =

|M | + (|S| − 2|M |) = |S| − |M |.

However, the choice of subset S is far from trivial. First, we want it to

be inclusion maximal with respect to the required property (i.e., at most two

items in S can fit in one bin, but there exist at least three items that fit in one

bin for any subset S
⋃
{j}, for j ∈ V \S). We do not require S to be the max-

imum cardinality subset among those having the required property. Indeed,

computational evidence and straightforward examples show that there is no

guarantee that a maximum cardinality subset S would lead to the largest

value of Lmatch (which depends as well on the cardinality of matching M).

We attempt several computations of S through the greedy procedure

defined in Algorithm 2. The procedure tries to combine together in S items of

large weight and items which are included in a maximal clique K, computed

as for Limp
MC . This is done by defining a parameter β such that 0 ≤ β ≤ C/2

and there exists at least one item having weight equal to β. Then, for each

value of β a corresponding subset Sβ is first initialized by items in K with

weight at least equal to β, and then filled with items from V \ Sβ being in

conflict with all pairs of items in Sβ. These items are considered according

to a non-increasing weight ordering. For each subset, Algorithm 2 computes

a valid lower bound value, and finally returns the maximum value found.

At Step 7 of Algorithm 2 we carry out the possible inclusion of a new item

in Sβ by means of procedure CHECK INCOMPATIBILITY by [4], running in



Algorithm 2 A Matching-based lower bound
1: Lmatch := 0;

2: Compute a maximal clique K as for Limp
MC ;

3: Order the items by non-increasing weight;

4: for all distinct β such that 0 ≤ β ≤ C/2 and ∃i ∈ V : wi = β do

5: Sβ := {i ∈ K : wi ≥ β}

6: for all i ∈ V \ Sβ do

7: if Sβ ∪ {i} contains no subset of 3 items which can fit into one bin then

8: Sβ := Sβ ∪ {i}

9: end if

10: end for

11: if |Sβ| > Lmatch then

12: Compute a maximum matching Mβ of Sβ through Edmonds’ algorithm;

13: if Lmatch < |Sβ | − |Mβ | then

14: Lmatch := |Sβ | − |Mβ |

15: end if

16: end if

17: end for

18: return Lmatch

O(|Sβ|logSβ) time. We compute the maximum cardinality matching at Step

12 in O(n3) time, by means of the implementation of the Edmonds’ algorithm

[8] proposed by Gabow [15]. Before invoking the matching algorithm, we

check that subset Sβ is not equal to the previous one. Since the number of

distinct β values is bounded by n, the overall complexity of Lmatch is O(n4).

To see that bound Lmatch is not dominated by any of the previous lower

bounds, consider the simple instance given in Figure 3.1. Each edge rep-

resents a conflict, the values reported inside the vertices denote the cor-

responding items weights, and suppose C = 10. If we relax the conflict

constraints (3.4) we obtain a BPP instance having optimal solution of value

2. If instead we relax the capacity constraints (3.3) we obtain a VCP in-

stance having optimal solution of value 3. Similarly one can check that

LTV PP = LCP = Limp
CP = 3. However, the minimum number of bins needed

to pack all the items of this example is 4. When β = 5, Algorithm 2 defines

Sβ = V , |Mβ| = 2 and Lmatch = 6 − 2 = 4.
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Figure 3.1: A simple BPPC example where Lmatch outperforms the other

lower bounds. Let C = 10. Edges and numbers represent, respectively,

conflicts and weights of the items.

3.3 Upper bounds.

We first adapt to the BPPC classical heuristic algorithms proposed for the

BPP ( [24]). Let us consider the items ordered according to non-increasing

weight. We obtain:

• First-Fit Decreasing with Conflicts (UFF , proposed by [17]), adaptation

of the BPP First-Fit Decreasing (FFD) algorithm: consider each item

in turn and assign it to the first bin with sufficient residual capacity

and for which there is no conflict with the already assigned items;

• Best-Fit Decreasing with Conflicts (UBF ): as in UFF , but the items

are assigned to the feasible bin for which the resulting weight sum is

maximum;

• Worst-Fit Decreasing with Conflicts (UWF ): as in UBF , but the result-

ing weight sum must be minimum.

We obtain an improved class of heuristic algorithms by considering the

surrogate weights

ws
i = α

wi

w
+ (1 − α)

δi

δ
(3.10)

for i = 1, 2, . . . , n, where α is a given parameter (with 0 ≤ α ≤ 1), δi is

the degree of i in G′, and w and δ are, respectively, the average weight



and degree of the vertices. Now we can find new heuristic solutions by

ordering the items according to non-increasing ws
i values and executing the

three previous heuristic techniques. In our computational experiments, we

set α = 0, 0.1, . . . , 1, running 11 times each algorithm. We define UFF (α),

UBF (α) and UWF (α) the new heuristic procedures. Both the adaptations of

the classical BPP heuristic algorithms and the generalizations obtained by

using the surrogate weights run in O(n2) time.

We finally include in our initial set of heuristic algorithms procedure

H6, which is the most performing technique among the ones proposed by

[17]. This algorithm initially partitions the items in the set C of conflicting

items (with at least one conflict in G′) and the set C of non-conflicting

items. Then it computes a maximal clique K among the items in C on the

extended conflict graph G′. For each item i of the clique K, the algorithm

computes a maximal stable set Hi containing i in the subgraph of G′ induced

by (C \K)∪{i} (Hi can be computed as a maximal clique in the complement

of the induced subgraph). The Bin Packing instance corresponding to the

items in Hi is solved through FFD, and the bin containing item i is fixed in

the solution and the corresponding items removed from C. The process is

reiterated until all items in C are assigned. Finally, all the items in C are

assigned to the open (and possibly new) bins through FFD.

We propose the following improvements to the above heuristic idea, and

call the resulting algorithm H6imp: i) compute a clique K ′ in C through the

improved procedure described in Section 3.2.2; ii) assign each item i of clique

K ′ to a new bin and, instead of using FFD on the maximal set Hi, fill the bin

heuristically by considering the items in C according to the non-decreasing

weight ordering, thus reducing the overall computing time of the algorithm;

iii) assign the items in C to the current (and possibly new) bins through

the Best-Fit Decreasing algorithm. Both algorithms H6 and H6imp run in

O(n2 log n) time (see [17] for further details).

If the best solution value found by the above heuristic algorithms is not

equal to the lower bound of the previous section, then we invoke the meta-



heuristic procedure to be described in the following section.

3.3.1 Population heuristic.

To find high-quality solutions on difficult instances, we propose a pop-

ulation based metaheuristic algorithm, called Population Heuristic in the

following. The Population Heuristic is initialized with a pool of solutions ob-

tained by the heuristic procedures described in Section 3.3. New solutions are

then produced through a tailored crossover operator. Each solution is given

as input to a Tabu Search algorithm. The Tabu Search technique (described

in Section 3.3.1) produces an intensive local search on each input solution,

and is the core of the algorithm. Whereas the crossover operator (described

in Section 3.3.1) is aimed at diversifying the search among different portions

of the solution space. This kind of approach is also known in the literature

as memetic algorithm (see, e.g., [37]).

Tabu Search algorithm.

Our Tabu Search procedure moves among partial feasible solutions, i.e.,

solutions in which each bin satisfies capacity and conflict constraints, but not

all the items are assigned to a bin. This idea is based on the impasse class

neighborhood, proposed by [36] for the VCP, to improve a partial feasible

solution of value k to a complete feasible solution of the same value. An

effective Tabu Search procedure, based on this neighborhood, was proposed

by [31] for the Vertex Coloring Problem. In our case the input parameter k

represents the target number of bins to be used to pack all the items.

More formally, a partial feasible solution S is defined as a partition of the

items set V in k + 1 bins {V1, . . . , Vk, Vk+1}, in which all bins, but possibly

the last one, are feasible. The aim of the neighborhood structure, and of our

Tabu Search procedure, is to move all the items currently in bin k +1 to the

k previous bins, so as to produce a feasible solution of value k.

In our search process, we evaluate each solution S through a score function



f(S), to be minimized. Such score is defined as

f(S) =
∑

i∈Vk+1

max {ws
i , ǫ} (3.11)

and is based on the sum of the surrogate weights (introduced in Equation

(3.10)) of the items not assigned to feasible bins. This score depends on

parameter α and reduces to the cumulate weight or cumulate degree of the

unassigned items, when α = 1 or α = 0, respectively. The parameter ǫ << 1

is used in case some items have surrogate weight equal to 0, to avoid solutions

S with f(S) = 0 and some items still unassigned to feasible bins. According

to our computational experience, the best results are obtained by setting

α = 0 for graphs having density δ > 0.4, and α = 1 otherwise.

To minimize the current score, we search the solution space by using a

sequence of moves. A move from a solution S to a new solution S ′ is obtained

by performing the following steps:

1. randomly choose an item i ∈ Vk+1;

2. assign i to one of the k feasible bins, say h;

3. move to bin k + 1 all items j ∈ Vh that are in conflict with i;

4. if the total weight of the items in Vh exceeds C, then move extra items

from h to k + 1 until the capacity constraint is satisfied.

In Step 1, the item i to be moved is randomly chosen with equal probability

among all items in bin k+1. To perform Step 2, we first evaluate all possible

bins 1, 2, . . . , k for the insertion of item i. The one that, after Steps 3 and 4,

will produce the new solution S ′ of minimum score is chosen, and the move

is then performed.

The removal of items from bin h in Step 3 is straightforward, but the

execution of Step 4 may be performed in different ways. We considered four

possibilities to satisfy the capacity constraint:

• remove items one at a time according to a non-increasing surrogate

weight ordering;



• remove items one at a time according to a non-decreasing surrogate

weight ordering;

• remove items one at a time according to a random ordering;

• remove the subset of items that would determine the minimum score of

the new solution S ′. We obtain this by solving the minimization version

of a 0-1 Knapsack Problem (KP01), in which each item j assigned to h

(after Steps 1–3) is given a cost equal to max
{
ws

j , ǫ
}

and a weight wj.

Let C̃h be the actual weight of the set of items assigned to h. The aim of

the KP01 we address is to determine the subset of items of total weight

greater than or equal to C̃h − C, and of minimum total cost. To solve

this problem we use subroutine MT1 by [33], whose computational

requirement is very limited on these small-size instances. Once the

optimal subset is found, it is moved from bin h to bin k + 1.

The removal procedure producing the best results is the one that removes

items one at a time according to a random ordering. Although this procedure

does not minimize the score of the resulting new solution S ′, it introduces a

randomness which is beneficial to the algorithm, while the alternative proce-

dures are deterministic and tend to move the same items at every iteration.

The Tabu Search moves from the current solution to the best one in the

neighborhood, even if this leads to a worsening of the score. To avoid cycling,

a tabu rule is implemented: an item i cannot enter the same bin h it entered

during one of the last τ iterations, unless this would improve the incumbent

solution. According to our computational experience, the best results are

obtained by setting τ = 40.

The Tabu Search is halted when 1) a complete feasible solution of k bins

is found, or 2) a maximum number L of iterations has been performed. In

case stopping condition 2 is met, the output is the (infeasible) solution of

lowest score found during the search.



Diversification.

To improve the Tabu Search performance and allow an effective explo-

ration of the solution space, we use a crossover operator and embed the Tabu

Search in a Population Heuristic algorithm. We start with an initial pool of

feasible solutions, obtained by means of the fast greedy algorithms of Section

3.3. Each greedy solution is then transformed into a partial feasible solution

of value k (in the following simply solution), by moving all the items assigned

to bins of index larger than k + 1 to bin k + 1. Each solution in the pool

is then improved by means of the Tabu Search technique of the previous

section. We also considered obtaining a solution of value k from a solution

of larger value by keeping the best k bins according to (3.11). This choice

did not improve the computational behavior of the algorithms. This should

not surprise, since the greedy algorithms tend to better fill the first bins.

The pool of solutions is evolved through the following steps:

1. randomly choose two solutions (parents) from the pool;

2. generate an offspring by using a tailored crossover operator;

3. improve the offspring by applying the Tabu Search algorithm (accord-

ing to our computational experience, the best results are obtained by

setting the limit of iterations L = 500);

4. insert the offspring in the pool, deleting its worst (according to (3.11))

parent.

At Step 2, we use as crossover operator a variation of the specialized

Greedy Partition Crossover, proposed by [16] for the VCP. Given two parents

S1 = {V 1
1 , . . . , V 1

k , V 1
k+1} and S2 = {V 2

1 , . . . , V 2
k , V 2

k+1}, the operator outputs

an offspring S3 = {V 3
1 , . . . , V 3

k , V 3
k+1} having the same structure, i.e., the

items are partitioned into sets V 3
1 , . . . , V 3

k which correspond to feasible bins,

and a set V 3
k+1 which can be infeasible. The crossover selects alternatively

parents S1 and S2. The h-th bin of the offspring, 1 ≤ h ≤ k, is obtained by

copying into the offspring the bin currently maximizing a given score in the



selected parent. Then, items included in the new bin are deleted from both

parents, and the process is iterated until the k bins of the offspring are built.

Finally, all unassigned items are inserted into set V 3
k+1.

When picking up the next bin to be copied into the offspring, alternative

scores can be considered:

• the cardinality of the bin;

• the total surrogate weight of the bin, corresponding to its weight or

global degree, when α = 1 and α = 0, respectively.

Experimentally, the best choice is to consider as score of a bin its global

surrogate weight with α = 1, i.e., its global weight.

This generation–improvement–insertion procedure is iterated until 1) a

feasible solution of k bins is found (i.e., a partial feasible solution is extended

to a complete feasible solution) or 2) a time limit TPH is reached.

Let L be the best lower bound provided so far and U the value of the

incumbent solution. The Population Heuristic is first invoked with k = U−1.

Suppose a feasible solution is found. Then, if k = L we have proven the

optimality of the solution. If instead k > L, we set U = k and re-execute

the Population Heuristic with k = U − 1 and time limit TPH . If no feasible

solution is found but the time limit is reached, we continue our approach by

executing the exact algorithm of the next section.

3.4 Set Covering model.

An alternative way to model the BPPC is the well known Set Covering

(SC) formulation, which produced very interesting results for both the BPP

(see, e.g., [51] and [35]) and the VCP (see, e.g., [34] and [31]).

We define B as the family of all the subsets of items i ∈ V representing

feasible bins. Each bin b ∈ B is associated with a binary variable ξb having



value 1 iff the bin is selected. The BPPC can be formulated as

min
∑

b∈B

ξb (3.12)

∑

b∈B:i∈b

ξb ≥ 1 i = 1, 2, . . . , n (3.13)

ξb ∈ {0, 1} b ∈ B. (3.14)

The objective function (3.12) minimizes the total number of bins used.

Constraints (3.13) state that every item i ∈ V must belong to at least one

bin. Note that if an item i belongs to more than one selected bin, it can be

removed from all the bins but one, thus obtaining a feasible solution of the

same value. Finally, constraints (3.14) impose variables ξb to be binary.

3.4.1 A better lower bound.

By relaxing the integrality constraints (3.14) to

ξb ≥ 0 b ∈ B, (3.15)

we obtain the Linear Programming (LP) relaxation of the SC model. Note

that we are allowed to disregard constraints ξb ≤ 1, since they are implied

when the objective function (3.12) is considered with constraints (3.13). Let

z∗ be the value of the optimal solution of this LP relaxation. We obtain a

valid BPPC lower bound, denoted LSC in the following, by rounding up z∗

to the next integer:

LSC = ⌈z∗⌉. (3.16)

Model (3.12), (3.13) and (3.15) has an exponential number of binary

variables (corresponding to the exponentially many subsets of V representing

feasible bins), hence, we need column generation techniques to generate only

the variables we need, among the exponentially many variables representing

bins in B.

To solve this model, called master problem, we first initialize it with

a subfamily B′ of the family of all bins B. We then solve the model to



optimality by means of 20, and obtain the optimal values π∗

i , i ∈ V , of

the dual variables associated with constraints (3.13). To detect violated

dual constraints, corresponding to variables (bins) to be added to the master

problem, we solve the following slave problem, where the binary variable θi,

i ∈ V , has value 1 iff item i is inserted into the bin under consideration:

max

n∑

i=1

π∗
i θi (3.17)

n∑

i=1

wiθi ≤ C (3.18)

θi + θj ≤ 1 (i, j) ∈ E (3.19)

θi ∈ {0, 1} i = 1, 2, . . . , n. (3.20)

Model (3.17)–(3.20) can be interpreted as a 0–1 Knapsack Problem with

Conflicts (KPC), with profits π∗ and conflicts between pairs of items imposed

by constraints (3.19). If the optimal solution of the KPC has value greater

than one (the cost of a bin in the BPPC), then we have found a column with

negative reduced cost. We thus add it to the master problem and iterate. If

instead the solution has value not greater than one, then we have reached

the optimal solution of model (3.12), (3.13) and (3.15).

We solve each KPC by first invoking a simple greedy algorithm, in which

items are sorted according to a given ordering, and inserted into the bin,

one at a time, if they can fit. Items are sorted according to non-increasing

values of the ratio π∗

i /w
s
i . The greedy algorithm is called 11 times, varying

at each iteration the parameter α in the set of values {0.0, 0.1, . . . , 1.0} and

thus obtaining different orderings (recall the surrogate weights depend on α

in (3.10)). All the bins (columns) having negative reduced cost are added to

the family B′.

If no column to be added is found by the greedy approach, we solve (3.17)–

(3.20) by means of CPLEX10. In order to reduce the computing time, we

find the first bin corresponding to a violated dual constraint, if such a bin

exists (i.e., we stop the execution as soon as we find a column with negative

reduced cost).

If model (3.17)–(3.20) is solved to optimality, but no column with negative



reduced cost is found, then we have obtained the optimal solution of the LP

relaxation, and we stop the column generation phase.

If LSC = U we proved the optimality of the incumbent solution. If

LSC < U and the solution of (3.12), (3.13) and (3.15) is integer, we set

U = LSC and again terminate with a proof of optimality. If instead LSC < U

and the solution is fractional, we need to embed the column generation phase

within a Branch-and-Bound algorithm, obtaining what is usually defined as

a Branch-and-Price algorithm (see the following section).

3.4.2 A Branch-and-Price algorithm.

In the Branch-and-Price algorithm, we use a depth first strategy and a

binary branching, choosing as branching variable the one with the largest

fractional part, and exploring first the subtree obtained by fixing the branch-

ing variable to 1. This strategy generally leads to feasible integer solutions

within a short computing time.

Each node of the branching tree is solved through the column generation

approach previously described. When a variable ξeb
is fixed to 1, all constraints

(3.13) associated with items i ∈ b̃ can be removed from the descendent

subproblems, since automatically satisfied. Conversely, when a variable ξeb

is fixed to 0, we must forbid in the descendent subproblems that the column

generation procedure creates again the associated bin b̃. This can be ensured

by adding to the slave problem the constraint

∑

i∈eb

θi ≤ |̃b| − 1, (3.21)

imposing that at most |̃b|−1 items among the ones in bin b̃ are chosen. The

resulting slave problem (3.17)–(3.21) is solved by CPLEX10.

3.5 Computational experiments.

The algorithms were coded in C++ and run on a Pentium IV 3 GHz

with 1GB RAM, under a Linux operating system. To test their behavior, we

created a test-bed that replicates the one originally proposed by [17] (note



that the original test-bed is no longer available). This is done through the

following steps.

We first consider the 8 classes proposed by [9] for the BPP. The first

four classes consist of items with integer weights uniformly distributed in the

range [20, 100], to be packed into bins of capacity 150. The number n of

items is the same for each instance in a class, and grows from the first to the

fourth class, taking value, respectively, 120, 250, 500 and 1000. The second

four classes consists of “triplets” of items of weights uniformly distributed

in the range [25, 50] and with one decimal digit, to be packed into bins of

capacity 100. Each triplet in this class is generated so as to form an exact

packing of weight 100, i.e., each bin may be completely filled by three items.

The number of items for the instances in each class is, respectively, 60, 120,

249 and 501. As done in [17] the items sizes in these last four classes are

multiplied by 10 to obtain integer data.

As done in [17], we selected the first 10 instances of the 20 originally

proposed in each class. From each BPP instance we obtained 10 BPPC ones,

by adding 10 random conflict graphs G, characterized by different density

values (named δ in the following), varying from 0 to 0.9. This is done by

assigning a value pi to each vertex i ∈ V , according to a continuous uniform

distribution in [0, 1]. Then, for each couple (i, j) a conflict is created if

(pi +pj)/2 ≥ δ. The resulting test-bed is composed by 800 instances in total.

We made these instances publicly available at http://www.or.deis.unibo.it.

Apart from the test-bed, this web site also contains the detailed computa-

tional results we obtained by running our algorithms on each single instance.

In the following, due to the large size of the test-bed, we focus on average

results. In Section 3.5.1 we present the results obtained by the combinatorial

lower bounds described in Section 3.2 and by the lower bound based on the

Set Covering formulation presented in Section 3.4.1. In Section 3.5.2 we il-

lustrate the results of the upper bounds of Section 3.3 and finally, in Section

3.5.3, we present the performance of our overall algorithm (which includes

the Branch-and-Price algorithm proposed in Section 3.4.2). In Section 3.5.4

http://www.or.deis.unibo.it


we discuss an alternative exact algorithm based of a computationally faster

lower bound and compare it with the Branch-and-Price algorithm.

3.5.1 Lower bounds results.

In Tables 3.1 and 3.2 we present the results obtained by the lower bounds

developed for the BPPC. In Table 3.1 the results are given as averages for

class, i.e., each line contains average values over 100 instances. In Table 3.2,

instead, the results are given as averages for value of density, and each line

contains average values over 80 instances. The first columns in the tables

have the following meanings: cl gives the number of the original Falkenauer

class (Table 3.1), δ gives the value of the density used to create the random

conflict graph (Table 3.2) and U gives the average best upper bound value

produced by the overall algorithm. Then, for each lower bound, say Lx, %g

is the average percentage gap, computed as 100(U − Lx)/U , and time is the

computing time in seconds required to run Lx to completion.

In the tables we do not report the computing times of LDFF
BPP , LMC and

Limp
MC , since these values were always lower than 0.1 second. Moreover, we

do not report the results obtained by L0
BPP , since they are always domi-

nated by LDFF
BPP . Negative results were obtained by the lower bound LTV PP

based on the surrogate relaxation of Section 3.2.3. Indeed this bound could

never improve the values obtained by the other combinatorial lower bounds,

with computing times that could be very large (greater than one minute on

average).

The dual feasible functions LDFF
BPP and the max clique based bounds LMC

and Limp
MC obtain very high percentage gap on all the 8 classes of instances

(Table 3.1), always larger than 20% and 15%, respectively. This is reasonable,

since these techniques consider just one aspect of the double nature of the

BPPC. To compute a clique, the simple method LMC seems slightly better

than the new method Limp
MC . However, when considering Table 3.2, which

reports the results as averages for density value, the real performance of

the lower bounds is correctly disclosed: LDFF
BPP gradually worsens from the



very low percentage gaps achieved on the sparse graphs (where the BPP

component is more important) to the huge gaps obtained for the dense graphs

(where the VCP component is more important). The opposite effect may be

noted for LMC and Limp
MC . For graphs having densities varying from 0.3 to

0.9, Limp
MC always outperforms LMC , while the fact that LMC obtains a better

performance for graphs having densities lower than 0.3 is not significative,

since both procedures have a very large gap on these instances, and are

useless in practice.

Table 3.1: Computational results of the BPPC lower bounds (averages for

class).

LDFF
BPP LMC Limp

MC LCP Limp
CP Lmatch LSC

cl U %g %g %g %g time %g time %g time %g time

1 68.17 22.05 15.13 17.63 1.38 0.0 0.24 0.0 6.29 0.2 0.01 22.8

2 139.49 20.33 16.21 18.05 1.36 0.1 0.18 0.1 6.99 1.5 0.00 57.4

3 277.82 20.30 17.86 17.54 1.79 0.4 0.17 0.4 7.32 13.1 0.07 151.2

4 555.03 20.54 19.25 17.26 1.90 2.0 0.09 2.3 7.58 122.4 0.04 275.1

5 32.06 28.37 22.93 22.93 0.98 0.0 0.98 0.0 10.97 0.0 0.05 38.3

6 63.54 27.49 22.94 22.94 0.27 0.0 0.27 0.0 11.44 0.4 0.12 44.8

7 130.59 26.79 22.58 22.58 0.11 0.1 0.11 0.1 11.93 5.4 0.05 68.5

8 264.87 27.35 21.93 21.93 0.05 0.5 0.05 0.5 11.90 63.4 0.03 232.6

avg 191.45 24.15 19.85 20.11 0.98 0.4 0.26 0.4 9.30 25.8 0.05 111.3

The constrained packing bounds LCP and Limp
CP obtain much better re-

sults. In particular Limp
CP (which uses Limp

MC in the clique computation) achieves

a global percentage gap of just 0.26% from the best upper bound available,

in a very limited time (0.4 seconds on average and never exceeding the 4

seconds for a single instance). Note that Limp
CP on average outperforms LCP

on all classes. In particular, when considering instances grouped by density

(Table 3.2), the two procedures have the same gap for graphs having densi-

ties up to 0.3, while Limp
CP clearly outperforms LCP for larger densities. This



Table 3.2: Computational results of the BPPC lower bounds (averages for δ

value).

LDFF
BPP LMC Limp

MC LCP Limp
CP Lmatch LSC

δ U %g %g %g %g time %g time %g time %g time

0.0 133.01 0.00 60.11 60.11 0.00 0.3 0.00 0.3 26.35 4.8 0.00 40.7

0.1 133.05 0.13 49.12 72.07 0.13 0.3 0.13 0.2 26.35 3.3 0.01 127.6

0.2 133.16 0.61 40.01 45.63 0.61 0.3 0.61 0.4 24.66 5.4 0.14 131.4

0.3 133.54 1.41 26.04 17.78 0.69 0.4 0.69 0.6 12.83 8.7 0.16 289.3

0.4 144.43 10.66 10.20 2.34 1.86 0.5 0.34 0.7 1.47 12.8 0.13 262.7

0.5 177.36 27.38 5.50 0.91 2.78 0.6 0.18 0.7 0.47 18.5 0.00 41.1

0.6 213.16 39.63 3.28 0.72 1.78 0.5 0.22 0.6 0.28 28.8 0.00 53.0

0.7 247.38 47.97 2.20 0.64 1.11 0.4 0.20 0.5 0.23 41.5 0.00 60.3

0.8 282.25 54.38 1.26 0.40 0.61 0.3 0.17 0.3 0.21 57.3 0.01 73.9

0.9 317.13 59.36 0.80 0.47 0.23 0.1 0.09 0.1 0.19 76.9 0.00 33.4

avg 191.45 24.15 19.85 20.11 0.98 0.4 0.26 0.4 9.30 25.8 0.05 111.3

confirms the observation of the previous paragraph: when the densities are

low, regardless how a maximal clique is computed, the corresponding gap is

very large, and using LMC instead of Limp
MC does not benefit LCP (in some

sense, it is the Vertex Coloring component of the problem that matters).

On the contrary, when densities are increasing, the capability to compute a

better clique embedded in Limp
CP gives it an advantage on LCP .

The behavior of Lmatch is not satisfactory, because of a quite large per-

centage gap on instances having low density. However, Lmatch outperforms

LCP for graphs having densities larger than 0.3 (while it is on average out-

performed by Limp
CP for all classes and densities). In addition, it is worth

pointing out that in 32 cases out of 800 Lmatch improves all the previous

lower bounds. This is however achieved with larger computing times: half a

minute on average, 10 minutes for the slowest instance.

We first evaluate LCP and Limp
CP , and compute the combinatorial upper

bounds of Section 3.3, in order to possibly prove the optimality of a large

set of instances (more details are given in the next section), or to create



an initial pool of solutions when optimality cannot be proved. Then the

Population Heuristic of Section 3.3.1 is executed with a time limit of two

minutes. For the instances which are not solved to optimality, we finally

solve the LP relaxation of the Set Covering formulation described in Section

3.4.1 with a time limit of 1 hour. Clearly, we stop the computation as soon

as the LP relaxation of the Set Covering formulation cannot improve on

the incumbent lower bound. In two instances of our test-bed the column

generation procedure did not converge within the time limit, and thus we

have only the corresponding combinatorial lower bound. The results we

obtain are very good, since we reduce the global average percentage gap to

0.05%. The average computing time (including the computation of LCP ,

Limp
CP and the time of the Population Heuristic) is less than 2 minutes. Note

that the most time consuming class is the fourth one (for which n = 1000),

followed by the eighth one (n = 501) and the third one (n = 500), while the

most time consuming density is 0.3. Note also that instances with densities

between 0.1 and 0.4 are the most difficult to be solved.

3.5.2 Upper bounds results.

In Tables 3.3 and 3.4 we present the results obtained by the upper bounds

developed for the BPPC. Columns cl (Table 3.3) and δ (Table 3.4) have the

same meanings as in the corresponding tables of the previous section, whereas

L gives the average best lower bound value produced (equal to the optimum if

a proof of optimality for the instance is given). Now the average percentage

gap %g is computed as 100(Ux − L)/L, where Ux denotes both the upper

bound value obtained by a heuristic procedure, and the procedure itself.

In Table 3.3 we note that on average the best heuristic technique among

the adaptations of the classical BPP heuristic procedures is the UWF . This is

a bit surprising, but we note that it can be a good idea to leave some empty

space in the opened bins during the greedy execution, so that when assign-

ing the last small (but possibly with many conflicts) items, one has more

alternative ways to fit them. Among the parametric heuristic procedures,



UBF (α) turns out to be superior. Since 11 values of α are attempted, it seems

that in at least one of them the Best-Fit policy finds a good assignment.

The average percentage gap of UBF (α) is the smallest among the ones pro-

duced by the heuristic procedures. Comparing UH6 and U imp
H6 , we note that

the solutions found by U imp
H6 are slightly worse than those of UH6, but the

computing time is eight times shorter, for the reasons discussed in Section

3.3. The computing times required to run the other heuristic algorithms are

not reported since they are negligible: on average always smaller than 0.1

seconds.

Before invoking the Population Heuristic algorithm, whose initial pool of

solutions is obtained through the previous heuristic procedures (more details

on the population initialization are given in the next Section), we compute

the lower bounds LCP and Limp
CP , and set the number of available bins k equal

to the best heuristic solution value minus 1. Then the Population Heuristic

iteratively solves the problem for decreasing values of k, until a proven opti-

mal solution is obtained or the time limit TPH of 2 minutes is reached. Not

surprisingly, the Population Heuristic consistently outperforms the heuristic

algorithms used for its initialization, achieving a 0.30% of average percentage

gap, with an average computing time of less than 1 minute. The most time

consuming class is the fourth one.

In Table 3.4 we first focus on the line in which δ = 0, corresponding

to a pure BPP. We note here that UWF cannot outperform UFF and UBF

(this confirms previous results in the literature), and that the values of the

parametric heuristic procedures are equivalent to the ones of the greedy pro-

cedures (since the surrogate weights are always equal to the input weights

and just the call with α = 0 is performed). The other lines confirm the

difficulty of the sparse graphs with 0.1 ≤ δ ≤ 0.3, for which both %g and

time reach the highest values.



Table 3.3: Computational results of the BPPC upper bounds (averages for

class).

UF F UBF UWF UF F (α) UBF (α) UWF (α) UH6 U
imp

H6 UPH

cl L %g %g %g %g %g %g %g time %g time %g time

1 68.17 7.86 8.02 5.71 1.03 0.98 1.56 2.67 0.0 3.28 0.0 0.10 22.4

2 139.49 8.37 8.53 5.45 0.96 0.92 1.51 2.50 0.1 3.74 0.0 0.21 52.1

3 277.69 8.17 8.33 5.51 0.90 0.85 1.47 2.27 1.2 3.47 0.2 0.20 69.7

4 554.87 7.59 7.75 5.12 0.87 0.74 1.38 1.96 17.5 2.84 2.0 0.22 107.8

5 32.06 9.47 9.73 9.15 3.92 3.59 3.93 3.05 0.0 2.53 0.0 0.45 37.5

6 63.49 10.30 10.61 10.09 4.30 4.18 4.36 3.15 0.0 2.91 0.0 0.62 40.0

7 130.55 9.83 10.17 10.18 4.50 4.38 4.51 3.16 0.1 3.06 0.0 0.39 51.9

8 264.82 8.52 8.92 9.05 4.22 4.14 4.10 2.84 1.4 2.78 0.3 0.21 58.9

avg 191.39 8.76 9.01 7.53 2.59 2.47 2.85 2.70 2.6 3.07 0.3 0.30 55.0

Table 3.4: Computational results of the BPPC upper bounds (averages for δ

value).

UF F UBF UWF UF F (α) UBF (α) UWF (α) UH6 U
imp

H6 UPH

δ L %g %g %g %g %g %g %g time %g time %g time

0.0 133.01 7.90 7.90 8.07 7.90 7.90 8.07 1.64 1.4 2.84 0.0 0.15 38.0

0.1 133.04 8.00 8.01 8.08 5.26 4.83 5.83 5.97 1.4 6.93 0.0 1.09 95.7

0.2 133.13 9.37 9.43 8.99 5.82 5.43 5.79 6.89 0.7 7.24 0.0 0.65 94.9

0.3 133.41 15.33 15.81 13.78 5.00 5.00 5.25 6.88 1.2 7.15 0.1 0.52 95.6

0.4 144.06 18.37 19.06 14.52 0.99 0.92 2.11 2.51 1.4 3.87 0.2 0.47 58.3

0.5 177.36 11.95 12.35 9.12 0.27 0.17 0.45 1.05 3.3 1.05 0.4 0.05 29.8

0.6 213.16 7.62 7.93 5.66 0.20 0.20 0.34 0.76 5.7 0.68 0.5 0.03 42.0

0.7 247.38 4.90 5.17 3.75 0.16 0.13 0.33 0.62 5.3 0.49 0.6 0.03 40.3

0.8 282.25 2.91 3.08 2.32 0.14 0.07 0.22 0.41 3.4 0.31 0.7 0.01 34.9

0.9 317.13 1.27 1.32 1.04 0.11 0.06 0.13 0.29 1.7 0.21 0.7 0.00 21.0

avg 191.39 8.76 9.01 7.53 2.59 2.47 2.85 2.70 2.6 3.07 0.3 0.30 55.0



3.5.3 Overall algorithm results.

On the basis of the results obtained in the two previous sections, we

structured a four-phase algorithm to solve the BPPC:

1. we compute LCP and Limp
CP , and set L = max{LCP , Limp

CP }. We execute

all the combinatorial heuristic procedures described in Section 3.3, with

the exception of H6, and set U equal to the best solution value found;

2. we run the Population Heuristic with a time limit of 2 minutes. The

Population Heuristic is initialized with the solutions found by the previ-

ously executed heuristic procedures; if more than 20 different solutions

are found, only the 20 best ones are considered;

3. we solve the LP relaxation of the set covering formulation, possibly up-

dating L and, when the corresponding solution is integer (and thus opti-

mal), U . The initial pool of columns is set up by storing all the columns

corresponding to the solutions found by the combinatorial heuristic pro-

cedures and to the feasible solution found for every value of k by the

Population Heuristic. Before adding a new column, we check if the col-

umn is already contained in the pool, so as to avoid storing a duplicate

information. We use hashing techniques to speed up this search step;

4. if the solution provided by the LP relaxation is fractional, we execute

the Branch-and-Price algorithm described in Section 3.4.2. The overall

time limit of Phases 3 and 4 is set to 10 hours.

We stop the execution of our algorithm as soon as L = U .

In Tables 3.5 and 3.6 we give the average values for class and for density

value, respectively, produced by our algorithm. Apart from the columns

indicating the class (Table 3.5) and the density value (Table 3.6), the tables

are divided into five main parts: the first part gives the results obtained by

our implementation of the most performing algorithms developed by [17]

(LCP , UFF and UH6); the remaining four parts give the results obtained by

the four phases of the algorithm we developed. For each part of the tables we



report the percentage gap (%g), the number of solutions solved to optimality

(opt) and the overall computing time (time). For Phase 4 we additionally

report the average number of nodes (nodes) required by our branching scheme

(we consider one node if an instance is solved to optimality during one of the

first three phases).

Table 3.5: Computational results of the overall algorithm (averages for class).

Gendreau et al. Phase 1 Phase 2 Phase 3 Phase 4

cl %g opt time %g opt time %g opt time %g opt time %g opt nodes time

1 3.65 15 0.0 1.11 44 0.0 0.25 82 22.4 0.11 94 22.6 0.00 100 73.2 29.4

2 3.53 3 0.2 1.02 28 0.1 0.37 60 52.1 0.21 78 62.9 0.00 100 18.6 107.1

3 3.70 0 1.6 0.89 28 0.4 0.31 51 69.7 0.20 67 572.1 0.06 95 47.6 2195.4

4 3.56 0 19.5 0.77 27 2.7 0.27 48 107.8 0.22 56 1032.7 0.04 98 136.0 1911.9

5 4.06 53 0.0 3.02 64 0.0 1.48 69 37.5 0.30 94 38.2 0.00 100 2.8 38.7

6 3.31 54 0.0 2.76 60 0.0 0.78 67 40.0 0.62 75 44.8 0.13 95 64.0 1860.3

7 3.22 48 0.2 2.85 54 0.1 0.46 59 51.9 0.39 68 69.2 0.05 96 222.7 1582.1

8 2.86 49 2.0 2.66 59 0.5 0.23 63 58.9 0.21 70 242.2 0.03 96 73.3 3163.6

avg 3.49 222 2.9 1.88 364 0.5 0.52 499 55.0 0.28 602 260.6 0.04 780 79.8 1361.1

The first phase of the overall algorithm consistently outperforms the re-

sults obtained by the most performing algorithms in [17], providing a smaller

percentage gap on all classes with shorter computing time (at least, with our

implementation). 364 instances are solved to optimality (compared to 222),

with an average computing time of 0.5 seconds. The average gap is 1.88%,

compared to 3.49%. This gap reduction is obtained by both increasing the

lower bound and decreasing the upper bound.

The second phase reduces the percentage gap to 0.52% and solves to

optimality 499 instances, with an average computing time of 55 seconds.

The third phase is mainly aimed at improving the value of the lower bound.

However, for 5 instances the solution found is integer (and thus optimal) and

better than the previous upper bound. The third phase reduces the gap to

0.28% and increases the number of optima to 602, with an average comput-

ing time of 260.6 seconds. The Branch-and-Price algorithm executed in the

fourth phase solves to optimality 780 instances, with an average comput-



Table 3.6: Computational results of the overall algorithm (averages for δ

value).

Gendreau et al. Phase 1 Phase 2 Phase 3 Phase 4

cl %g opt time %g opt time %g opt time %g opt time %g opt nodes time

0.0 0.71 42 1.7 0.71 42 0.0 0.15 58 38.0 0.15 58 43.6 0.00 80 76.3 67.9

0.1 5.13 2 1.8 4.74 2 0.1 1.22 31 95.7 0.91 36 121.8 0.02 79 116.4 896.2

0.2 7.15 1 1.1 5.76 1 0.1 1.21 32 94.9 0.65 41 126.2 0.08 77 188.5 2231.6

0.3 7.48 1 1.6 5.35 2 0.2 1.08 31 95.6 0.52 42 329.8 0.16 71 332.4 6080.9

0.4 4.43 26 1.9 1.08 41 0.3 0.69 43 58.3 0.47 50 1754.8 0.13 73 60.2 3951.2

0.5 4.07 28 3.8 0.28 58 0.5 0.19 62 29.8 0.05 74 34.9 0.00 80 6.1 56.1

0.6 2.65 28 6.3 0.35 50 0.7 0.23 55 42.0 0.03 74 46.0 0.00 80 9.2 109.7

0.7 1.77 27 5.7 0.29 51 0.9 0.22 57 40.3 0.03 73 50.9 0.00 80 5.3 71.3

0.8 0.99 31 3.7 0.17 56 0.9 0.13 61 34.9 0.03 75 74.3 0.00 80 2.5 122.3

0.9 0.49 36 1.8 0.12 61 1.0 0.06 69 21.0 0.00 79 23.6 0.00 80 1.0 23.6

avg 3.49 222 2.9 1.88 364 0.5 0.52 499 55.0 0.28 602 260.6 0.04 780 79.8 1361.1

ing time of 1361.1 seconds (including 10 hours for each of the 20 instances

that cannot be solved to optimality). The final percentage gap is reduced

to 0.04%. It is worth noting that the lower bound produced by the column

generation phase is very accurate and generally coincides with the optimal

solution value (the Branch-and-Price algorithm is capable of improving its

value for two instances only). This also justifies the choice of our branching

scheme, which, under a depth-first strategy, has the advantage of quickly

leading to optimal or near optimal integer solutions. This allows Phase 4 to

improve 181 times the upper bound value found by the first three phases.

Tables 3.5 shows that classes 1, 2 and 5 are easy, as all their instances are

solved to optimality in less than two minutes on average. Table 3.6 confirms

the difficulty of the sparse graphs. Pure BPP instances (δ = 0) are all

solved to optimality in around one minute. Also instances with high density

(δ ≥ 0.5) are all closed to optimality, in an average time of less than two

minutes. All the unsolved instances are characterized by 0.1 ≤ δ ≤ 0.4. For

these instances the computing times and the number of nodes of the search

tree are high.



In Figure 3.2 we graphically represent the evolution of the average lower

bound value L and upper bound value U , for the algorithms in [17] and

for the four phases of our algorithm. The average lower bound value for our

implementation of the algorithms in [17] is 188.97. This value is increased

to 191.21 by Phase 1, and further increased to 191.39 by Phases 3. Phase

4 increases the bound for 2 additional instances, and the final average lower

bound is 191.39. A similar behavior is noted for the upper bound value,

which is 194.47 for the algorithms in [17], 193.18 at the end of Phase 1, and

191.73, 191.72 and 191.45 at the end of Phases 2, 3 and 4, respectively.
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189
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191

192

193

194

195
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Figure 3.2: Evolution of the lower and upper bound values (averages over

the complete set of 800 instances).

In Table 3.7 we focus on the subset of the 20 difficult instances which

were not solved to optimality. The first part of the table contains the class,

the density and the progressive number (n◦) of the instance (from 1 to 10,

as in our web site) for a given class and density. The three remaining parts

of the table present the results of the last three phases of the algorithm. In

particular, column #col gives the number of columns stored into the pool at

a certain step. Column diff. gives the difference between U and L, and the

last column gives the number of nodes of the search tree.



For these instances, the lower bound computed during the first phase can

be improved by the LP relaxation of the Set Covering formulation only in two

cases, whereas the Branch-and-Price does not lead to further improvements.

Also the upper bound of the second phase is never improved. The heuristic

algorithms produce on average 3156 columns, that are given as input to the

Set Covering model. Just solving the corresponding LP relaxation raises

#col to 3628 on average. Finally the Branch-and-Price algorithm increases

this value to 55030. We note that in two cases our algorithm fails to solve the

LP relaxation within the given time limit. For these two cases the difference

between L and U is high, whereas for all the other cases is usually between

1 and 4. Finally, we tried to solve these 20 instances by giving a larger

time limit to the Population Heuristic (20 minutes instead of 2 minutes)

and by performing multiple runs with different seeds for the random number

generator used by the Tabu Search algorithm described in Section 3.3.1. The

result is that 10 additional instances can be solved to optimality within the

second phase. The values of the optimal solutions, which correspond to those

of the corresponding initial lower bounds, are marked with a * in the table.

In addition, we could improve two upper bounds in the table, namely that

of instance (3,0.4,4), for which we find a solution of value 206, and that of

instance (3,0.4,7), with a solution of value 211.

3.5.4 An alternative exact algorithm based on a fast

lower bound.

As one can observe, the overall algorithm described in the previous sec-

tion is quite fast in the first two phases, requiring on average 55 seconds of

computing time. It is instead slower in the last two phases, where it computes

a lower bound, based on column generation, which is very effective but com-

putationally expensive. We thus tested as well a classical Branch-and-Bound

algorithm based on a less expensive lower bound computation.

We designed an exact approach inspired to a well known branching rule

proposed by [34] for the VCP. The basic idea is as follows: at each node



Table 3.7: Computational results on the difficult instances (* = proved to be

optimal).

Phases 1-2 Phase 3 Phase 4

cl δ n◦ L U #col time L U #col time L U diff. #col nodes

3 0.4 4 204 207 3763 132 204 207 4535 5543 204 207 3 5555 124

3 0.4 5 206 207 3563 137 206 207 4101 8373 206 207 1 4280 15

3 0.4 7 207 212 3655 122 208 212 4631 27170 208 212 4 4651 20

3 0.4 8 204 206 3918 129 205 206 4405 1171 205 206 1 4656 51

3 0.4 9 196 200 3730 122 196 200 4549 7080 196 200 4 4707 39

4 0.4 8 404 411 7826 139 404 411 9122 t.lim. 404 411 7 9122 1

4 0.4 10 397 406 7656 128 397 406 9168 t.lim. 397 406 9 9168 1

6 0.2 8 40* 41 547 121 40 41 715 129 40 41 1 105371 30

6 0.2 10 40* 41 493 121 40 41 699 127 40 41 1 111910 2670

6 0.3 5 40* 41 743 121 40 41 927 145 40 41 1 61077 30

6 0.3 6 40 41 842 121 40 41 1043 142 40 41 1 69635 1468

6 0.3 9 40* 41 765 121 40 41 980 141 40 41 1 74791 32

7 0.1 3 83* 84 793 125 83 84 1144 567 83 84 1 160540 3939

7 0.2 7 83* 84 1356 128 83 84 1558 146 83 84 1 292490 7320

7 0.3 2 83* 84 1971 126 83 84 2212 231 83 84 1 3590 35

7 0.3 4 83 84 2092 124 83 84 2420 231 83 84 1 125212 8539

8 0.3 1 167* 168 5015 187 167 168 5219 4001 167 168 1 34139 2394

8 0.3 4 167 169 4566 152 167 169 4884 2513 167 169 2 4952 26

8 0.3 5 167* 168 4879 160 167 168 5052 2172 167 168 1 5504 21

8 0.3 10 167* 168 4948 243 167 168 5200 2244 167 168 1 9256 151

avg 150.90 153.15 3156 138 151.00 153.15 3628 6724 151.00 153.15 2.15 55030 1345



of the search tree we select two non-conflicting items, say i and j, such that

wi +wj ≤ C and (i, j) /∈ E. We then consider the two subproblems obtained

by: 1) adding a conflict between i and j, and 2) collapsing i and j into a

single item. The first case is simply obtained by setting E = E ∪ (i, j). The

second case is obtained by removing i and j from the instance and creating

a new item k, having weight wk = wi + wj and conflicts (k, h) ∈ E with

all items h previously being in conflict with i and/or j. In both cases we

obtain a BPPC instance with one more edge or one less item, respectively.

We can thus apply the fast bounding procedures of Sections 3.2 and 3.3.

If these bounds solve the subproblem to optimality or allow us to conclude

that the solution of the subproblem cannot improve on the best incumbent

solution, then we backtrack. Otherwise we continue exploring the search tree

by selecting the next couple of items.

We integrated this Branch-and-Bound algorithm with the first two phases

of the overall algorithm, and tested it on all the instances not solved to

optimality after the second phase. We explore the search tree according to a

depth first strategy. At each node of the search tree, we compute the lower

bound Limp
CP and the upper bound UFF (we also tested UBF and UWF but this

produced worse results). If Limp
CP = UFF , then the corresponding subproblem

is optimally solved. If Limp
CP is not smaller than the best incumbent solution

value, we can fathom the node. Otherwise we branch by choosing two non-

conflicting items i and j and generating the two subproblems as explained

above.

The choice of items i and j is not trivial, and should be aimed at im-

proving the lower bound value produced by Limp
MC for both descendent nodes.

We recall that this procedure initially computes a clique K and then solves

a transportation problem. We considered several alternatives, all aimed at

enlarging the initial clique and/or increasing the number of conflicts encoun-

tered when solving the transportation problem. We always choose first an

item j /∈ K and then an item i ∈ K among those not in conflict with j (so as

to possibly enlarge K in few iterations). We considered the following alterna-



tives: i) j of largest weight and then i of largest weight; ii) j of largest degree

and then i of largest degree; iii) j of largest degree in the induced subgraph

G \ K and then i of largest degree. Our computational experiments showed

that the best configuration is iii), which is much better than i) and slightly

better than ii).

Concerning the computation of the maximal clique K, we considered two

options: i) computing the clique from scratch at each node; ii) transferring

the clique from each father node to its descendent nodes (note that if K is

a maximal clique at a given node, then K remains a clique, possibly not

maximal, when an item i ∈ K is collapsed with an item j /∈ K or an edge

(i, j) is added to E). Our computational experiments showed that the best

choice is ii), as one might expect since i and j are selected with respect to

the father clique.

We tested the best configuration of this Branch-and-Bound algorithm,

with a time limit of 1000 seconds (not including the time required by Phases

1 and 2), and compared it with the results obtained by our original overall

algorithm within the same computing time. The original algorithm solved

to optimality 233 out of the 301 instances remained unsolved after Phase 2,

whereas the most performing configuration of the Branch-and-Bound algo-

rithm described in this section solved only 62 instances. This result confirms

the efficacy of the overall algorithm.

3.6 Conclusions.

The Bin Packing Problem with Conflicts is a combinatorial optimization

problem of practical interest, since it models many real world situations,

occurring in cutting and packing, scheduling, and vehicle routing fields, just

to cite some. It is also an interesting problem from the theoretical viewpoint,

since it generalizes both the Bin Packing Problem and the Vertex Coloring

Problem, both well known and notoriously difficult.

In this work we presented several algorithms devoted to the solution of



this problem. By considering the simple lower and upper bounds, we notice

how important is to take care of both aspects of the problem (packing and

coloring) at the same time, in order to obtain a good performance. Tabu

Search algorithms always give a successful scheme to address these combi-

natorial problems from a heuristic point of view, although in this case they

need a diversification phase to explore more efficiently the very large solu-

tion space. The Set Covering formulation, solved by column generation and

Branch-and-Price, provides very interesting results on the problem. This

confirms previous results on the classical Bin Packing Problem.

Extensive experiments on a benchmark test-bed show the good behavior

of the algorithms we implemented, that are able to solve to optimality 780

instances out of 800 and to consistently improve previous algorithms in the

literature. We made the benchmark instances available on the web, so as to

facilitate future research on this problem.



Conclusions.

We have examined a relevant logistic issue arising in the organization

of fairs, namely the optimization of the stands allocation in the exhibition

space. We proposed two mathematical models for the optimal solution of a

basic version of the problem. In real world applications the constraints and

requirements (security, ease of access, services) can vary considerably from

case to case.

We have examined a number of practical situations, and the correspond-

ing requirements, and we have shown how the two basic mathmatical models,

and the corresponding decision support system, can be adapted to handle

them. The conclusion of this study is that these mathematical models are

flexible enough to be used with satisfactory results in a variety of different

real world situations.

We studied the Generalized Traveling Salesman Problem which is a gen-

eralization of the classical Traveling Salesman Problem (TSP) where the ver-

tices are divided in clusters and the salesman must visit at least one vertex

in each cluster.

We have developed a Multi-start Heuristic for the E-GTSP, and we com-

pared the proposed method with the best state-of-the-art algorithms on a

set of benchmark instances from the literature, and showed the effectiveness

of the approach. It turned out that, on the set of smaller instances (with up

to 442 vertices), the proposed algorithm finds always the optimal solution

in less than four seconds, and clearly outperforms the most effective heuris-

tics. For the set of larger instances (with up to 1084 vertices) the proposed

77



algorithm always improves, in comparable computing times, the solution val-

ues obtained by the genetic algorithm recently presented by Silberholz and

Golden [47].

We considered a particular Bin Packing Problem, noted as the Bin Pack-

ing Problem with Conflicts, in which some items cannot be assigned to the

same bin. The problem combines Vertex Coloring and Bin Packing aspects,

and turned out to be particularly challenging.

We have solved the problem through combinatorial lower bounds, para-

metric greedy heuristics, a population heuristic making use of an effective

tabu search inner procedure, and a column generation. Extensive experi-

ments on a benchmark test-bed show the good behavior of the algorithms we

implemented, that are able to solve to optimality 780 instances out of 800

and to consistently improve previous algorithms in the literature.Moreover

we showed how a clear integration between a metaheuristic and column gen-

eration may yield to surprising advances in the performance of the algorithm,

both in terms of speed and solution quality.
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