Garofalo, Pietro
(2010)
Development of motion analysis protocols based on inertial sensors, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Bioingegneria, 22 Ciclo. DOI 10.6092/unibo/amsdottorato/2823.
Documenti full-text disponibili:
Abstract
The aim of this thesis was to describe the development of motion analysis protocols for applications on upper and lower limb extremities, by using inertial sensors-based systems. Inertial sensors-based systems are relatively recent. Knowledge and development of methods and algorithms for the use of such systems for clinical purposes is therefore limited if compared with stereophotogrammetry. However, their advantages in terms of low cost, portability, small size, are a valid reason to follow this direction. When developing motion analysis protocols based on inertial sensors, attention must be given to several aspects, like the accuracy of inertial sensors-based systems and their reliability. The need to develop specific algorithms/methods and software for using these systems for specific applications, is as much important as the development of motion analysis protocols based on them.
For this reason, the goal of the 3-years research project described in this thesis was achieved first of all trying to correctly design the protocols based on inertial sensors, in terms of exploring and developing which features were suitable for the specific application of the protocols. The use of optoelectronic systems was necessary because they provided a gold standard and accurate measurement, which was used as a reference for the validation of the protocols based on inertial sensors.
The protocols described in this thesis can be particularly helpful for rehabilitation centers in which the high cost of instrumentation or the limited working areas do not allow the use of stereophotogrammetry.
Moreover, many applications requiring upper and lower limb motion analysis to be performed outside the laboratories will benefit from these protocols, for example performing gait analysis along the corridors. Out of the buildings, the condition of steady-state walking or the behavior of the prosthetic devices when encountering slopes or obstacles during walking can also be assessed.
The application of inertial sensors on lower limb amputees presents conditions which are challenging for magnetometer-based systems, due to ferromagnetic material commonly adopted for the construction of idraulic components or motors. INAIL Prostheses Centre stimulated and, together with Xsens Technologies B.V. supported the development of additional methods for improving the accuracy of MTx in measuring the 3D kinematics for lower limb prostheses, with the results provided in this thesis.
In the author’s opinion, this thesis and the motion analysis protocols based on inertial sensors here described, are a demonstration of how a strict collaboration between the industry, the clinical centers, the research laboratories, can improve the knowledge, exchange know-how, with the common goal to develop new application-oriented systems.
Abstract
The aim of this thesis was to describe the development of motion analysis protocols for applications on upper and lower limb extremities, by using inertial sensors-based systems. Inertial sensors-based systems are relatively recent. Knowledge and development of methods and algorithms for the use of such systems for clinical purposes is therefore limited if compared with stereophotogrammetry. However, their advantages in terms of low cost, portability, small size, are a valid reason to follow this direction. When developing motion analysis protocols based on inertial sensors, attention must be given to several aspects, like the accuracy of inertial sensors-based systems and their reliability. The need to develop specific algorithms/methods and software for using these systems for specific applications, is as much important as the development of motion analysis protocols based on them.
For this reason, the goal of the 3-years research project described in this thesis was achieved first of all trying to correctly design the protocols based on inertial sensors, in terms of exploring and developing which features were suitable for the specific application of the protocols. The use of optoelectronic systems was necessary because they provided a gold standard and accurate measurement, which was used as a reference for the validation of the protocols based on inertial sensors.
The protocols described in this thesis can be particularly helpful for rehabilitation centers in which the high cost of instrumentation or the limited working areas do not allow the use of stereophotogrammetry.
Moreover, many applications requiring upper and lower limb motion analysis to be performed outside the laboratories will benefit from these protocols, for example performing gait analysis along the corridors. Out of the buildings, the condition of steady-state walking or the behavior of the prosthetic devices when encountering slopes or obstacles during walking can also be assessed.
The application of inertial sensors on lower limb amputees presents conditions which are challenging for magnetometer-based systems, due to ferromagnetic material commonly adopted for the construction of idraulic components or motors. INAIL Prostheses Centre stimulated and, together with Xsens Technologies B.V. supported the development of additional methods for improving the accuracy of MTx in measuring the 3D kinematics for lower limb prostheses, with the results provided in this thesis.
In the author’s opinion, this thesis and the motion analysis protocols based on inertial sensors here described, are a demonstration of how a strict collaboration between the industry, the clinical centers, the research laboratories, can improve the knowledge, exchange know-how, with the common goal to develop new application-oriented systems.
Tipologia del documento
Tesi di dottorato
Autore
Garofalo, Pietro
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
inertial protocol prosthesis walking shoulder stereophotogrammetry
URN:NBN
DOI
10.6092/unibo/amsdottorato/2823
Data di discussione
23 Aprile 2010
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Garofalo, Pietro
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
22
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
inertial protocol prosthesis walking shoulder stereophotogrammetry
URN:NBN
DOI
10.6092/unibo/amsdottorato/2823
Data di discussione
23 Aprile 2010
URI
Gestione del documento: