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Abstract 
 

Atmospheric aerosols play a key role in many environmental processes at local and global scale 

affecting human health, visibility, air quality and the climate system. Worldwide, a major 

component of the total particulate mass is constituted by organic compounds. Primary organic 

aerosols are directly emitted in the atmosphere by combustion sources (e.g. fossil fuel combustion, 

biomass burning) or by wind-driven processes such as re-suspension of soil particles and sea-spray. 

Conversely, secondary organic aerosols (SOA) form by chemical reactions occurring in the 

atmosphere, including the oxidation of volatile organic compounds (VOCs) leading to less volatiles 

species which can condense onto pre-existing particles or form new particles, and as well by the 

chemical transformations of primary components in the particulate phase (ageing). 

State-of-the-art global models estimate that SOA account for a significant fraction of atmospheric 

aerosol nevertheless these data remain extremely uncertain due to the lack of observations capable 

to discern natural and anthropogenic SOA from other aged organic aerosol types. A major 

limitation is given by the complex chemical composition, encompassing myriads of individual 

compounds, of atmospheric particulate organic matter. 

In the present study, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatographic 

methods were employed to investigate the chemical composition of SOA produced in simulation 

chambers by photo-oxidation and ozonolysis of atmospherically relevant biogenic and 

anthropogenic VOCs. The resulting spectroscopic and chromatographic data were then used to 

interpret the composition of ambient samples of atmospheric fine particulate matter collected at 

several sites in Europe, in order to determine the fraction of ambient aerosol organic mass 

accounted for by biogenic and anthropogenic SOA. 

Laboratory biogenic SOA analyzed in this thesis were generated from terpene mixtures, including 

α/β-pinene, limonene, ∆3-carene, ocimene, β-caryophyllene and α-farnesene, as representative for 

VOCs emitted by conifer tree species, whereas one aromatic hydrocarbon having a high SOA 

formation yield (1,3,5-trymethylbenzene) was used as model anthropogenic SOA precursor. 

Ambient samples containing SOA were collected in both unperturbed environments (Finnish boreal 

forest, Atlantic coast of Ireland) and polluted rural areas (Po Valley, Hungarian plain, Netherlands, 

Saxony).. 

Among the employed analytical techniques, NMR spectroscopy provided “spectral fingerprints” for 

biogenic and anthropogenic SOA, which accounted for by the variability of the complex fraction of 

aerosol organic matter not resolvable at the molecular level. These fingerprints were obtained for 
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the samples of SOA generated in the reaction chambers, and were then compared to spectral types 

characterizing the ambient samples. The great variability of the ambient sample NMR composition 

was processed using multivariate statistical methods such as clusters analyses, positive matrix 

factorization (PMF) and non-negative matrix factorization (NMF), allowing to extract few spectral 

types (profiles). Based on the comparison with the fingerprints of SOA provided by the lab 

experiments, on the occurrence of tracer compounds and on ancillary informations, the spectral 

profiles extracted from the ambient samples were tentatively assigned to SOA and to other oxidized 

organic aerosol types, such as biomass burning products. 

PMF analysis applied to a collection of NMR spectra of aerosol samples from the boreal forest 

provided one factor fitting unambiguously the NMR fingerprint obtained for biogenic SOA during 

reaction chamber experiments. Therefore the contribution of biogenic SOA to total organic 

particulate matter could be estimated for this environment. 

By contrast, the comparison of the spectral profiles characteristic of polluted continental areas with 

the fingerprints of anthropogenic SOA obtained in lab experiments proved to be less successful, 

indicating that the reaction chamber experiments in this case were not fully representative of the 

atmospheric system. 

These results suggest that NMR spectroscopy combined to statistical multivariate analysis can be 

profitably employed in source apportionment studies of atmospheric particulate organic matter into 

its source contributions.  
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Introduction 
 

Atmospheric aerosol particles play a significant role in a variety of environmental issues at both 

regional and global scales, influencing health, air quality and climate. Aerosols scatter and absorb 

solar and terrestrial radiation, and influence cloud formation thus affecting the radiative balance in 

Earth’s atmosphere (IPCC, 2007; Ravishankara, 2005). Moreover it is now well established that the 

exposure to submicron aerosol particles is associated to damaging effects on respiratory and 

cardiovasculatory systems (Pope and Dockery, 2006, Davidson et al., 2005). 

Worldwide organic compounds are a major component of atmospheric submicron particulate 

matter, accounting for up to 90% of aerosol mass (Kanakidou et al., 2005). Despite much efforts 

dedicated in the last two decades, only a minor fraction of the organic aerosol mass has been 

identified at molecular level due to its extreme chemical complexity. Consequently the effects of 

organic particulate matter remain highly uncertain as highlighted by several reviews (Poschl, 2005; 

Fuzzi et al., 2006; Goldstein and Galbally, 2007; Rudich et al., 2007). 

Organic aerosols are either emitted directly into the atmosphere as primary organic aerosol (POA) 

or form in the atmosphere as secondary organic aerosol (SOA) due to the photochemical conversion 

of gaseous precursors (Pankow, 1994; Kroll and Seinfield, 2008). SOA have recently gained much 

attention because current models estimate that they account for a dominant fraction of the total 

organic particulate mass (Baltensperger et al., 2005; Lanz et al., 2007). Nevertheless current 

estimates of global SOA production remain extremely approximate due to the lack of observations 

capable to discern between the various SOA sources. 

SOA is formed in the atmosphere by transformations of gaseous precursors emitted from both 

biogenic and anthropogenic activities. On a worldwide basis volatile organic compounds (VOCs) 

emitted from biogenic sources exceed up to ten times those from anthropogenic sources, however in 

urban areas anthropogenic VOCs often dominate (Calvert, 2002; Atkinson and Arey, 2003). 

Alkanes, alkenes, aromatic hydrocarbons and oxygenated compounds are the major classes of the 

non-methane VOCs typically released from vehicle exhausts, industrial scale combustion, solvents 

usage, refineries and petrochemical facilities (Lewis et al., 2000). In polluted urban environments 

anthropogenic emissions include up to 40% of aromatic hydrocarbons (Smith et al., 1999; Molina et 

al., 2007). Thus the photochemical processing of primary aromatic hydrocarbons can contribute 

significantly to the production of secondary pollutants in these areas, most notably tropospheric 

ozone and SOA (Derwent et al., 2003; Derwent et al., 2007a). 
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Although major efforts have been made in identifying key biogenic and anthropogenic SOA 

precursors, significant gaps still remain in understanding the formation mechanisms, composition 

and properties of SOA (Hallquist et al., 2009). 

Recent combined experimental and modelling studies have investigated the formation of SOA from 

the photo-oxidation of several simple aromatic hydrocarbons (e.g. alkyl benzenes such as toluene, 

xylenes, trimethylbenzenes and their analogues) and of terpenoids (e.g. isoprene, α/β-pinene, 

limonene, etc.), obtaining a considerable amount of new data (Cao et al., 2007; Cao et al., 2008; 

Johnson et al., 2004; Ng et al., 2007; Song et al., 2007; Metzger et al., 2008; Rickard et al., 2009). 

Moreover, the aromatic degradation as represented in the Master Chemical Mechanism (MCM) was 

recently updated to better fit against smog chamber data (Bloss et al., 2005; EXACT project and 

references therein). Although the research has been quite active so far significant deficiencies still 

remain. It was shown for example that models strongly under-estimate the observed production of 

SOA unless to increase the absorptive partitioning coefficients and these observations were 

generally interpreted in terms of significant occurrence of condensed-phase association reactions 

(Johnson et al., 2005). Conclusions from such works have inferred an important role for addition 

processes involving reactive aldehydes (e.g. formation of peroxyhemiacetals from the reaction of 

aldehydes with organic hydroperoxides). Few years before Jang (2002) had presented the first 

evidence that small volatile organic compounds increase the mass of acidic particles by forming 

low-volatility condensation products and after that several authors showed that high-molecular-

weight compounds (with masses up to 1000 Da) are present in laboratory SOA generated from both 

biogenic as well anthropogenic precursors (Kalberer et al., 2004; Gross et al., 2006; Surratt et al., 

2006; Tolocka et al., 2004; Iinuma et al., 2004; Gao et al., 2004; Reinhart et al., 2007). On the basis 

of the proposed formation pathways (i.e. heterogeneous hydration and polymerisation of low-

molecular-weight aldehydes following their transfer from the gas phase) oligomeric structures have 

been hypothesized for these high-molecular-weight compounds. Kalberer et al.(2004) found that up 

to 50% of the total SOA mass formed during the photooxidation of 1,3,5-trimethylbenzene can be 

attributed to oligomers. 

In ambient aerosol samples macromolecular substances with spectral characteristics similar to those 

of humic and fulvic acids (and thus named HULIS, humic-like substances) were first detected by 

Havers (1998). Hulis were found to be the major contributors (20-50%) to the water-soluble organic 

aerosol at urban and rural sites in Europe (Facchini et al., 1999a; Zappoli et al., 1999; Krivácsy et 

al., 2001; Kiss et al., 2003; Limbeck et al., 2005). The origin of these macromolecular substances 

was tentatively assigned to biomass burning (Facchini et al., 1999a; Hoffer et al., 2004) although 

their structures and the mechanisms of their formation are still highly speculative (Graber and 
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Rudich, 2006). Thus exists an urgent need to know how the structures of HULIS found in ambient 

compare with those of oligomers found in laboratory-generated particles. 

Elucidation of SOA chemical composition challenges in many way the analytical techniques 

currently adopted and a number of reviews has been published in recent years (McMurry, 2000; 

Rudich et al., 2007; Hoffmann and Warnke, 2007). 

Attempts to clarify SOA composition at molecular level (with GC-MS analysis often providing the 

foundation) supplied no more than 15-30% of the total SOA mass (Forstner et al., 1997; Cocker III 

et al., 2001; Hamilton et al., 2003; Edney et al., 2005; Surratt et al., 2006). Moreover, with much 

research geared to evaluate how different experimental conditions affect the physical properties of 

the laboratory-generated aerosol (e.g. yields, hygroscopicity, etc.), to date few studies have reported 

the corresponding aerosol chemical composition (Cocker III et al., 2001; Kleindienst et al., 2003; 

Sax et al., 2005). 

Spectroscopic techniques such as aerosol mass spectrometry (AMS), nuclear magnetic resonance 

(NMR) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, bypass the constraints of 

molecular speciation looking to the integral chemical features of the unresolved mixtures of 

myriads of oxidized compounds which characterise processed aerosol particles. 

Nuclear magnetic resonance (NMR) spectroscopy techniques has been profitably used to gain 

information on the average functional distribution of SOA (Decesari et al., 2001; Fuzzi et al., 2001; 

Tagliavini et al., 2006; Moretti et al., 2008). This technique has been used in numerous studies, 

including source apportionment (Decesari et al., 2007), having the potential to separate biomass 

burning from marine and secondary organic aerosol. 

Aerosol mass spectrometry is now widely used for on-line measurements of the aerosol chemical 

composition and data are generally reported as sulfate, nitrate, ammonium, chloride and organic 

contents (Allan et al., 2003; Jimenez et al., 2003). Moreover statistical multivariate techniques 

combined to AMS data can be used to identify components in the total OA spectra (Zhang et al., 

2005a, b; Lanz et al., 2007, 2008, Jimenez et al., 2009). 
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Objectives of the study 
 

In this work has been investigated the chemical composition of SOA produced in smog chambers 

by photo-oxidation and ozonolysis of atmospherically relevant biogenic and anthropogenic volatile 

organic compounds (VOCs). Ambient samples containing SOA and collected in both pristine 

forested and polluted environments were also analyzed with the aim of comparison with the smog 

chamber data. Ambient sampling sites were mainly selected on the basis of their different 

environmental typology in order to possibly use them as surrogates for different sources of 

carbonaceous aerosol present in polluted and natural background in Europe. 

Laboratory-SOA analyzed within this thesis were generated from terpene mixtures, including α/β-

pinene, limonene, ∆3-carene, ocimene, β-caryophyllene and α-farnesene, as representative for 

VOCs emitted by conifer tree species, whereas a single aromatic hydrocarbon (1,3,5-

trymethylbenzene) was used as model of anthropogenic gaseous pollutants. Laboratory-SOA 

composition was investigated in different ranges of precursor concentration and in different 

photochemical conditions. Moreover in order to investigate the laboratory-SOA chemical 

composition in parallel with their photochemical aging, two samplings were generally performed in 

subsequent moments of each chamber experiment.  

A suite of spectroscopic and chromatographic methods were employed to chemically characterize 

the laboratory-SOA and the ambient organic aerosol samples. 

The analytical methods included determination of Total Carbon (TC) and Water-Soluble Organic 

Carbon (WSOC), the speciation of WSOC into main chemical classes on the basis of their acidic 

properties and characterization of WSOC by Proton Nuclear Magnetic Resonance (1H-NMR) 

spectroscopy for functional group analysis. 

A recently set up anion exchange HPLC method was employed for quantitatively resolving WSOC 

into the following main chemical classes: neutral compounds (N), mono- and di-acids (MDA) and 

polyacids (PA), the latter including HULIS. 
1H-NMR spectroscopy in D2O solution was exploited for functional group characterization of the 

water soluble organics. The resulting series of 1H-NMR spectra was further processed by a variety 

of multivariate statistical methods such as clusters analyses, positive matrix factorization (PMF) and 

non-negative matrix factorization (NMF), with the aim to identify spectral profiles featuring the 

different SOA sources through the comparison with the reference spectra provided by laboratory 

experiments. 
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In summary, the laboratory experiments provided the spectral fingerprints for biogenic and 

anthropogenic SOA that were eventually used for the interpretation of field data. 
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1 Literature review 
 

This section provides a survey of the sources and nature of tropospheric aerosols with a focus on  

secondary organic aerosols. Primary sources of organic aerosols are described first, followed by an 

overview of atmospheric processes responsible for the formation and transformation of secondary 

organic aerosols starting from gaseous compounds. 

 

1.1 Aerosol particles 
 

Aerosols are defined as colloidal systems of liquid or solid particles suspended in gas phase, with 

particles diameters in the range of 10-9-10-4 m. The lower size limit is represented by molecules or 

clusters of molecules, while the upper limit corresponds to particles or droplets with a high settling 

rate (Seinfield and Pandis, 1998). In atmospheric sciences, the term aerosol refers usually to solid 

particles whereas cloud droplets are considered a distinct system. 

Aerosol particles are made of a large number of chemical compounds originating from both natural 

and anthropogenic sources. which consequently determine their chemical composition, size and 

shape characteristics (fig. 1). Natural sources include wind-driven processes such as re-suspension 

of soil particles and sea-spray, combustion processes such as forest fires, volcanic eruptions and 

finally emissions from vegetation. Several human activities, such as, e.g., combustion of fossil 

fuels, domestic heating, traffic-related suspension of road-dust, represent significant sources of 

atmospheric particulate matter. 

 

 
Figure 1. Examples of common aerosol shapes and compositions as observed by scanning electron microscopy, 
SEM (figure taken by Poschl, 2005). 
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1.1.1 Size distribution 
 

The atmosphere, either in urban or in remote areas, contains significant amount of aerosol particles, 

with concentrations sometimes as high as 107-108 cm-3. The diameters of these aerosol particles 

spans from few nanometers to tens of micrometers. Nevertheless, particles having aerodynamic 

diameters smaller than 10 µm dominate the size spectrum, accounting for most of the total aerosol 

particles (on either number and mass basis). 

As a result of particle formation and removal processes, the atmospheric aerosol size distribution is 

characterized by a number of modes, i.e. different populations of particles (Fig. 2). 

 
Figure 2. Schematic representation of tropospheric aerosol size distribution on number concentration basis. 
(adapted from Seinfield and Pandis, 2006) 
 

These modes are approximated to log normal distributions and are generally found in to the 

following size ranges (Whitby, 1978): 

Nucleation mode (D < 0.01µm); 

Aitken mode (0.01 < D < 0.1µm); 

Accumulation mode (0.1 < D < 1µm); 

Coarse mode (D> 1µm). 
Nucleation and Aitken particles are also referred as ultrafine particles. Even if the ultrafine aerosols 

dominate the number concentration, they contribute to a small fraction of total particle mass 

concentration. 
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Most of the mass of fine particles, defined as aerosols with aerodynamic diameter lower than 2.5 

µm, is accounted for by the accumulation mode. Coarse particles are defined as those having 

aerodynamic diameter larger than 1 µm and most of their mass is generally measured below 10 µm. 

Fine and coarse particles differ in respect to production mechanisms and sinks. 

Coarse particles are the result of mechanical processes such as erosion or re-suspension of mineral 

dust, and of biological material, such as plant debris, pollen, spores, etc.. Other sources of coarse 

aerosols include traffic emissions, resuspension of road dust, and the natural production of seasalt 

particles due to sea.spray over oceanic regions. Coarse aerosols are removed from the atmosphere 

essentially by sedimentation. 

Conversely, fine particles are mainly produced by secondary processes such as gas-to-particle 

conversion mechanisms and by primary combustion sources. The nucleation mode is the result of 

nucleation of new particles from rapid gas condensation. This occurs during the rapid cooling of an 

exhaust upon dilution in the background air, but may happen also at ambient temperature through 

photochemical reactions. The Aitken mode results from condensation of vapors onto nucleation 

mode particles and from their coagulation, as well as from primary combustion emissions. In turns, 

the accumulation mode typically results from prolonged condensation of vapors on Aitken particles 

and from the formation of particle mass by chemical reactions in non-precipitating cloud droplets. 

Since sedimentation is not effective for fine aerosols and coagulation is too slow for aerosol > 0.1 

µm, particles in the accumulation mode tend to accumulate in the atmosphere. 

Since this thesis deals with organic aerosols of secondary origin, the chemical analyses have been 

focussed on fine particles. 
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1.1.2 Chemical composition 
 

Tropospheric aerosol chemical composition is characterized by a great spatial and temporal 

variability, reflecting the variety of sources and transformation processes. In general, aerosol 

particles consist of complex mixtures of inorganic and carbonaceous species, the most important 

classes being inorganic water-soluble salts such as sulfates, nitrates, ammonium salts and sea salt, 

soluble and insoluble carbonaceous material, and insoluble inorganic compounds from soil particles 

and combustion ash.. 

Carbonaceous particles are found in the troposphere as elemental (black) carbon (EC), organic 

carbon (OC) and carbonate carbon, the latter being negligible in the submicron size range. Produced 

solely by combustion processes, elemental carbon is a typical primary aerosol component. EC 

strongly absorbs light and has been associated with poor visibility (Bond and Bergstrom, 2006). 

Organic carbon is formed by both primary sources and gas-to-particle conversion (Castro et al., 

1999). 

Aerosol compounds derived from combustion or from gas-to-particle conversion, such as sulphate, 

ammonium, elemental and organic carbon, are found predominantly in fine particles whereas coarse 

particles are generally associated with sea salt and crustal species emitted by mechanical processes 

at the Hearth surface. However, heterogeneous chemical reactions at particle surface may lead some 

compounds, like nitrate, to condense on both fine and coarse modes. An overview of the average 

chemical composition of European tropospheric aerosols in the different size ranges has been 

published by Putaud and co-workers (2003) and more recent studies have provided detailed 

phenomenologies of the aerosol chemical composition for many specific European sites. 

Organic compounds are widespread in all areas and represent a large, sometimes even dominant, 

fraction of atmospheric fine particles accounting for 20-90% of aerosol mass in the lower 

troposphere (Kanakidou et al., 2005; Zhang et al., 2005; Jimenez, 2009). 

Although a substantial amount of new data on organic aerosol has been provided in the last decade, 

the current understanding of OA chemical composition, sources and formation mechanisms remains 

very limited (Fuzzi et al., 2006). 

Organics in the fine fraction can result either from primary emissions due to combustion processes 

at high temperature or from VOC oxidation and gas to particle conversion mechanisms (Kroll and 

Seinfeld, 2008; Zhang et al., 2007), while in the coarse fraction it can originate also from biological 

debris (Jacobson et al., 2000; Jaenicke et al., 2005). Spray of organic-rich liquid surfaces may inject 

primary organic particles also in the submicron mode. Such mechanism can contribute to the 
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formation of fine organic particles over high-biologically productive oceanic waters (O’Dowd et al., 

2004). 
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1.2 Secondary organic aerosol 
 

Ambient organic aerosols (OA) comprise either primary organic aerosol (POA, particle mass 

directly emitted into the atmosphere from the sources) and secondary organic aerosol (SOA, particle 

mass formed in the atmosphere due to the photochemical conversion of gaseous precursors) 

(Pankow, 1994; Seinfield and Pankow, 2003; Kroll and Seinfield, 2008). 

SOA mass is generated in the atmosphere in various ways:a) low-volatility compounds can be 

formed in the gas phase and condense onto pre-existing particles or lead to the formation of new 

particles; b) it can also be formed by chemical transformation of primary components in the 

condensed phase; and c) as well chemical aging (transformation) of atmospheric aerosols can lead 

to the formation of multiple generations of secondary chemical components. 

Organic aerosol originate from a wide range of both natural and anthropogenic sources including 

combustion of fossil fuels, direct injection of un-burnt fuel and lubricants, industrial emissions, 

plant matter, biomass burning, and biogenic emissions (Jacobson et al., 2000). 

Current models estimate that secondary organic aerosol account for a dominant fraction of the total 

organic particulate mass (Baltensperger et al., 2005; Lanz et al., 2007; Robinson et al., 2007). 

Recent estimations of primary and secondary, biogenic and anthropogenic emissions are reported in 

the table below (tab. 1). Nevertheless the relative contribution of POA and SOA to the overall OA 

budget remains controversial due to the persistent discrepancies between measured OA 

concentrations and predictions of atmospheric chemistry models. 

In particular, the chemical and physical processes associated with SOA formation and evolution are 

complex. 
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Table 1. Particles emission/production burdens estimated for the year 2000 (taken from Andreae and Rosenfeld, 
2008) 
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1.2.1 Organic aerosol source apportionment 
 

The organic source apportionment problem has been approached by numerous techniques. 

A frequently adopted method to estimate primary and secondary OA has been to use the ratio 

between elemental and organic carbon (EC/OC) measured on aerosol filter samples (Turpin and 

Huntzicker, 1991). 

An other widely adopted approach to apportion OA is the use of molecular markers, e. g. detected 

by GC-MS, with a chemical mass balance (Schauer et al., 1996). Several sources with unique 

markers can be identified, but source profiles must be known a priori and in generally only primary 

OA sources are accounted for by this method. 

Recently have received much attention techniques based on carbon isotopic ratios (14C/12C) but they 

have very low time resolution (many hours to several days to collect enough material for the 

analyses) and overall can identify only few categories of sources (Szidat et al., 2006). 

The last years have seen the development of a new generation of real-time aerosol chemical 

instrumentation based on mass spectrometry or ion chromatography, noticeably aerosol mass 

spectrometers(AMS) and particle in to liquid sampler (PILS) (Sullivan et al., 2004; DeCarlo et al., 

2006; Canagaratna et al., 2007; Murphy et al., 2007). AMS produce ensemble average spectra for 

organic species and several methods (PCA, PMF) have been applied to deconvolve them into their 

principal components. The resulting main factors were commonly identified as hydrocarbon-like 

organic aerosol (HOA) and oxygenated organic aerosol (OOA) and were strongly linked to primary 

and secondary organic aerosol (POA and SOA). More advanced source apportionment methods 

further separate OOA in different types. 

Other spectroscopic techniques such as nuclear magnetic resonance and infrared spectroscopies 

(NMR and FTIR) have been used aiming to OA source apportionment. In particular NMR 

spectroscopy allowed to separate biomass burning from marine and secondary organic aerosol 

(Decesari et al., 2007) 

17 



Chemical characterization of atmospheric secondary organic aerosol of biogenic and anthropogenic origin 

 

1.2.2 Gas-to-particle partitioning and volatility basis set 
 

The most commonly studied mechanism of SOA formation is the oxidation of volatile organic 

compounds (VOCs), forming products with lower volatility that subsequently partition onto the 

condensed phase. Nevertheless temperature reduction, as well as reactive uptake via heterogeneous 

reactions and adsorption of chemical species, also shift species from the gas to particle phase. 

A fundamental concept underlying the current SOA modelling concerns the treatment of the 

volatility of its components, including those present entirely in the condensed phase (non-volatile 

organics), as well as those that may be present in both the gas and the particle phase (semi-volatiles 

organics). The adopted definition of semi-volatile organic is quite broad involving saturation vapour 

pressures spanning seven orders of magnitude (Donahue et al., 2006). 

Basically, SOA is though as composed predominantly by semi-volatile organics and consequently 

SOA formation can be described by gas-particle partitioning. The theoretical foundations on 

partitioning have been developed by Pankow in the 1990s (Pankow , 1994a, 1994b). In the 

Pankow’s partitioning theory each compounds is described by an equilibrium partitioning 

coefficient Kp,i (m3/µg), or equivalently by its inverse, the saturation vapour concentration Ci*( 

µg/m3): 

 
in which Cp

i is the mass concentration of the semi-volatile species in the gas phase, Cg
i is the mass 

concentration of the semi-volatile species in the particle phase, and COA is the mass concentration of 

the total absorbing particle phase. Odum et al . (1996) extended for the first time this model to SOA 

formation, showing that SOA yield (the mass of aerosol formed per mass of hydrocarbon reacted) 

can be expressed in terms of the formation of a collection of semi-volatile compounds: 

 
In principle SOA formation can be calculated by carrying out the summation over all the semi-

volatile compounds formed within a given reaction but such degree of details is unfeasible due to 

the large number of unknown compounds. Instead two surrogate products (i=2) have been 

traditionally used to represent the SOA formation (fig.) (Seinfield and Pankow, 2003; Keywood et 

al., 2004; Kanakidou et al., 2005; Chan et al., 2007) . 
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Figure 3. Schematic representation of the two-product model of SOA formation (taken by Odum et al., 1996) 
 

Recently Donahue and co-workers has proposed the use of a volatility basis set (VBS) to address 

this issue. The VBS approach is similar , though with a larger number of lumped semi-volatiles 

which span a wider range of prescribed vapour pressures (fig.4) (Donahue et al., 2006; Presto and 

Donahue, 2006; Pathak et al., 2007). 

 
Figure 4. Representation of gas–particle partitioning for a complex mixture of semi-volatiles using (a–b) the two-
product model, in which the semivolatiles are represented by two model compounds with experimentally 
determined vapor pressures, and (c–d) the volatility basis set, which employs a larger number of lumped 
compounds with prescribed vapor pressures. Partitioning at two mass loadings of organic aerosol  is shown for 
each (figure taken from Kroll and Seinfield, 2008) 
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1.2.3 Heterogeneous reactions 
 

The occurrence of polymeric material has been observed in SOA generated by aromatic compounds 

such as trimethylbenzene (Karlberer et al., 2004). Furthermore measurements performed on TMB-

SOA by laser desorption ionization-mass spectrometry (LDI-MS) have shown that a substantial 

fraction of TMB-SOA mass is composed of polymers (fig. 5). 

 

 
Figure 5. Figure taken from Karlberer et al., 2004. LDI-mass spectrum of TMB-SOA. In the inset is a detail 
from 480<m/z<625 where the regular repetitive structure typical of polymers is visible. 
 
In that study an acetal polymerization mechanism with methylglyoxal as the main monomer unit 

has been proposed to explain the formation of these high molecular mass compounds in the particle 

phase (fig. 6). 

 

 
Figure 6. Chemical structure and formation reactions of the acetal polimerization mechanism proposed to 
explain the occurrence of polymers in TMB-SOA. Routes A, B and C include the incorporation into the polymer 
of: pure methylglyoxal, 3,5-dimethylbenzaldehyde and pyruvic acid, respectively. (figure taken from Karlberer 
et al., 2004). 
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2 Experimental 
 

2.1 Laboratory experiments 
 

Laboratory experiments are performed to study the chemistry and the physical properties of model 

systems representative of atmospheric aerosols. Most of the studies about SOA formation from 

VOCs oxidation are conducted in simulation chambers (i. e. static reactors or smog chambers), 

ranging in volume from 1 up to 300 m3 and designed to mimic atmospheric conditions as closely as 

possible. In order to generate SOA in controlled experimental conditions, the chambers are 

equipped with various instruments monitoring fundamental parameters such as gaseous precursors 

concentration, overall oxidant levels, temperature, relative humidity, light intensity and wavelength, 

etc. 

Laboratory SOA characterized within the present work were produced in two different facilities, 

namely in the SAPHIR and PSI smog chambers. Technical data and instrumentations of the 

SAPHIR and PSI chambers are described in detail by Bohn and Paulsen papers respectively (Bohn 

et al., 2005 and Paulsen et al., 2005). A basic technical description of them follows in the table 

below. 

 

 chamber 
 SAPHIR PSI 
institute ICG-Jülich Forschungzentrum,

Jülich, Germany 
LAC-Paul Scherrer Institut ,
Villigen (Switzerland) 

volume (m3) 270 27 
wall material Teflon-FEP, double wall Teflon-FEP 
lighting  sun xenon arc lamps  
temperature range (°C) outside temperature 15-30 

 

The SAPHIR facility is a very large outdoor chamber which uses the sun as natural light source (see 

picture SAPHIR). The wall material is chemically inert and UV transparent (80% of the outside 

actinic flux (290–420 nm) is generally available inside the chamber. It is also equipped with a 

louvre system which permits to modulate the radiation reaching the chamber up to dark conditions. 

In the indoor PSI facility, four xenon arc lamps mimic the sun’s UV radiation supplying the energy 

required for the chemical reactions taking place in the chamber (see picture PSI chamber). 
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Synthetic SOA particles are generated in the chambers oxidizing a variety of organic gases by 

species such as the hydroxyl radical (OH), ozone (O3) and nitrate radical (NO3). OH is a universal 

oxidizing agent in the troposphere, being capable to react with all volatile organic compounds. 

Photolytical OH radical sources typically used in chambers are listed below: 

 

O3 + H2O+ hν→ 2OH                                                                                     (O3 photo-dissociation) 

HONO + hν→ OH + NO                                                                    (nitrous acid photo-dissociation) 

 

Laboratory-SOA characterized within the present work were mostly produced in NOx photo-

oxidation experiments, nevertheless few nitrous acid photo-oxidation and ozonolysis experiments 

were also performed. 

Terpenes and aromatic hydrocarbons are respectively regarded as the main biogenic and 

anthropogenic compounds contributing to SOA mass, thus volatile precursors for the laboratory 

experiments were chosen among these chemical classes. 
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The outdoor chamber SAPHIR in Jülich, Germany. 
 

 
The indoor chamber at the Paul Scherrer Institut in Villigen, Switzerland.  
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2.1.1 Laboratory-biogenic SOA production 
 

The contribution of a given volatile compound to produce SOA in the atmosphere depends 

concurrently on its emission rate (atmospheric abundance), its chemical reactivity and on the 

volatility of its oxidation products. Among the hydrocarbons emitted by terrestrial vegetation, 

isoprene, monoterpenes (MT) and sesquiterpenes (SQT) are estimated to be the major source of 

secondary organic particulate matter on the basis of the three above-mentioned features (Kanakidou 

et al., 2005; Goldstein and Galbally, 2007). 

Biogenic SOA analyzed in the present study were produced by photo-oxidation of α-pinene (α-pin), 

mixtures of monoterpenes, and mixtures of monoterpenes and sesquiterpenes. The laboratory 

experiments were performed at the PSI and SAPHIR facilities in the framework of the PolySOA 

and EUCAARI projects. The mixtures employed to generate biogenic SOA are representative for 

VOCs emitted typically by European boreal forests where conifers such as pine and spruce are the 

most dominant tree species with few contributes from broadleaf deciduous trees such as birch and 

larch (table 1). Biogenic SOA were mostly produced in NOx photo-oxidation experiments, 

nevertheless few ozonolysis experiments were also conducted (table 2). 
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Table 1. Chemical structures of VOCs employed to generate biogenic SOA 
 ACYCLIC MONOCYCLIC BICYCLIC 

double bonds n=3 n=2 n=1 n=2 

 
cis-ocimene 

 
limonene 

 
α-pinene 

 
β-pinene 

 
 

  

 
∆3-carene 
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sabinene 

 

SQT 
Sesquiterpenes 

C15

 
α-farnesene 

 
 

  

 
β-caryophyllene 
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Table 2. Experimental conditions during the biogenic SOA particles generation experiments 
 VOCs Oxidation conditions   

date α-pin (ppb) NOx=NO+NO2 (ppb) HONO (a) (ppb) O3 (ppb) VOC/NOx 
09/10/2006 160 80    How much? 2 
23/10/2006       160 80 2
24/09/2007       240 240 1
26/09/2007       240 240 1
28/09/2007 3(b)   1.5  2  
01/10/2007 240   1.5   160 
03/10/2007 240   1.5   160 
05/10/2007 3(b)   1.5    2 

 MT mix wo Ocimene (ppb)        
06/06/2008  50 1.5     40 33
16/06/2008       100 0.95 43 105

 MT mix (ppb)        
06/10/2007       50 1.7 75 29
04/06/2008       50 1.3 55 38
09/06/2008       100 1.8 40 56
13/06/2008       100 0.8 43 125
20/06/2008      100 0.15 180 (c)  

 MT+ SQT mix (ppb)        
04/10/2007       55 1.05 60 52
31/10/2007       55 0.4 60 138
11/06/2008       55 1.5 35 37
18/06/2008       110 0.9 40 122
29/10/2007 55 1.70    80 (c)  

(a) concentration pumped continuously into the chamber at 2.0 lpm  
(b) concentration kept constant throughout the experiment 
(c) ozonolysis experiment (dark conditions) 
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2.1.2 Laboratory-anthropogenic SOA production 
 

1,3,5-trimethylbenzene (TMB) was employed in laboratory experiments as single gaseous precursor 

representative for aromatic VOCs emitted by anthropogenic sources. 

 
1,3,5-trimethylbenzene (TMB) 

 
All the experiments performed to produce anthropogenic SOA were carried out at the PSI smog 

chamber in the frame of the EU-funded project PolySOA (web reference). In a typical photo-

oxidation experiment, the humidification of the chamber to the desired humidity value (~50% 

relative humidity, RH) was achieved before the injection of the other components and after that, 

they were let to diffuse and mix for at least 30 min before the experiment was started by turning on 

the lights. The initial TMB concentration was almost always pretty high (1200 ppb) as well the NOx 

level (600 ppb), except for few experiments where TMB initial level was 600 ppb and NOx was 300 

ppb. Hence most of the photo-oxidation experiments were carried out under high NOx conditions 

with an initial VOC/NOx ratio of 2 (table 3). The temperature in the smog chamber was kept 

constant at 20 ± C°. 
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Table 3. Experimental conditions during the anthropogenic SOA particles formation experiments.  

mean aerosol mass conc.a 
(µg/m3) exp.  date (dd/mm/yy) TMB (ppb) NOx (ppb) SO2 (ppb) 

initial stage final stage 
1 04/10/06 600 300 0.4 54  
2 06/10/06 1200 600 0.8 128  

3 11/10/06 1200 600 2 135 155 

4 13/10/06 1200 600 2 162 159 

5 18/10/06 1200 600 2 142 135 

6 20/10/06 1200 600 2 160 160 

7 19/10/07 1200 300 2 103 101 

8 21/10/07 1200 300 2 108 101 
a Aerosol mass concentration from SMPS data assuming a density of 1 g cm-3 and spherical particles. Two averaged 
values are respectively given for the initial and final stages of the aerosol growth, corresponding to the filter sampling 
times in each experiment.  
 

28 



Chemical characterization of atmospheric secondary organic aerosol of biogenic and anthropogenic origin 

 

2.1.3 Organics loading in the chamber experiments 
 

Over the last two decades, several laboratory experiments have been conducted to study the 

formation of SOA, constituting the basis to parameterize SOA formation and evolution in the real 

atmosphere. Laboratory studies must mimic the ambient conditions with specific attention to key 

parameters. For instance, the organics loading, i.e., the concentration of SOA inside the chamber, 

has been proved to be very important. In fact, it has been shown that laboratory loadings higher than 

those present in atmosphere favour the partitioning of slightly oxidized species which would 

otherwise remain in gas phase under atmospheric conditions (Duplissy et al., 2008). At the same 

time, the limited volume of the reaction chambers imply a minimum concentration of SOA inside to 

guarantee a sufficient amount of sample for the chemical analyses. 

The organics loadings reached during the laboratory experiments considered in this thesis are 

shown in the graphic below. Different lines in the graph refer to distinct VOCs. Starting from the 

bottom are encountered values for TMB, α-pin, MT and SQT photo-oxidation experiments 

respectively. The three values in the upper line belong to the ozonolysis experiments. The organics 

loadings observed in ambient exceed very rarely 25 µg/m3 as reported by worldwide AMS data 

(Jimenez et al., 2009).  

 
Figure 5. Mean aerosol mass concentrations calculated from SMPS data (assuming a density of 1 g cm-3 and 
spherical particles) and averaged upon the filter sampling times. The values are lumped in different lines 
depending on the precursors employed: starting from the bottom are listed TMB, α-PIN, MT and SQT photo-
oxidation experiments. In the upper line are those of ozonolysis experiments. Empty and filled symbols stand 
respectively for the organics loading present in the initial and final part of each experiment.  
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2.2 Field data 
 

Ambient aerosol samples analyzed within this thesis were mostly collected during various intensive 

field experiments set up in the frame of the EU-funded EUCAARI project. The joint-measurements 

campaigns were carried out at six European sites selected on the basis of their different typology of 

aerosol emission patterns and pollution levels. Referring to the criteria used by Van Dingenen and 

coworkers for Europe (Van Dingenen et al., 2004), e.g. the distance from pollution sources, the sites 

can be classified into: marine background, natural continental background, rural background, near-

city background or urban background (table 4). 

 

ID site position altitude 
(m asl) 

typology operated by 

MHD Mace Head, 
Ireland 

53° 19’ N, 
9° 53’W 5 marine background National University of 

Ireland, Galway 

HYY Hyytiälä, 
Finland 

61º 51’ N, 
24º 17’ E 181 natural continental 

background University of Helsinki 

KPO K-Puszta, 
Hungary 

46° 58’ N, 
19° 33’ E 125 rural background 

Hungarian 
Meteorological Service 
and ACUV 

CBW Cabauw, 
Netherlands 

51° 18’ N, 
04° 55’ E 60 rural background KNMI 

SPC 
San Pietro 
Capofiume, 
Italy 

44º 39’ N, 
11º 37’ E 11 near-city background 

ISAC-CNR and 
regional environmental 
protection agency 

MPZ Melpitz, 
Germany 

51° 32’N, 
12° 54’ E 87 near-city background Leibniz Institute for 

Tropospheric Research 
Table 4. Synthetic description of the sites. 
 
Intensive observing periods (IOP) of the field measurement campaigns are reported in the table 2 

along with number and type of the collected samples. 

 
IOP samples n° aerosol type site (year) start exp. date stop exp. date   

HYY (2007) 29/03/2007 18/04/2007 22 PM1
SPC (2008) 31/03/2008 20/04/2008 34 PM1 and PM1-10
CBW (2008) 08/05/2008 26/05/2008 30 PM1 and PM1-10
MPZ (2008) 01/05/2008 31/05/2008 15 PM2.5-PM2.5-10
MHD (2008) 17/05/2008 10/06/2008 7 PM1.5-PM1.5-10
KPO (2008) 26/05/2008 14/08/2008 10 PM2.5
SPC (2009) 27/06/2009 15/07/2009 100 (29+71) PM1 and PM1-10
Table 2. Sampling periods.  
 
A more detailed description of the sites is reported in the following paragraphs. 
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2.2.1 Mace Head 
 

The atmospheric research station of Mace Head is located on the west cost of Ireland, offering a 

westerly exposure to the North Atlantic ocean. The climate is prevalently dominated by maritime 

air masses: on average over 60% of air masses arrive to the site from a clean sector (180° through 

west to 300°). In fact, it has been shown that this site can be representative of clean background 

marine air (Rinaldi et al., 2009). By contrast, when easterly air masses reach the station, aerosols 

characteristic of the European pollution background are observed. More details on the station are 

available on the official web site (http://macehead.nuigalway.ie/ ). 

 

 
Figure 2. Mace Head Atmospheric Research Station. Department of Experimental Physics National University of 
Ireland, Galway. 
 

 

2.2.2 Hyytiälä 
 

The Finnish Station for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II) is located 

in Hyytiälä, Finland. This forestry station is situated in the middle of a more than 40-years old Scots 

pine stand (Pinus Sylvetrsis L.) which surrounds homogeneously the site for about 200 m in all 

directions and it extends up to 1.2 km towards the North. Tampere is the largest city nearby and it is 

situated more than 60 km S-SW far. In fact, it has been shown that this site can be representative of 

the boreal coniferous forest. More details on the station are available on the official web site 

(http://www.mm.helsinki.fi/hyytiala/english/eng_index.htm ). 
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Figure 3. Landscape surrounding the Hyytiälä forestry field station (SMEAR II). Faculty of Agriculture and 
Forestry, Helsinki University. 
 
 

2.2.3 K-Puszta 
 

K-Puszta is a central European site located in the middle of the Hungarian plain. The station is 

surrounded by coniferous forests spaced out with clearings. The station resides at 80 km south-east 

far from Budapest. The largest nearby town (Kecskemét, 110,000 inhabitants) is 15 km far from the 

station, S-E direction. Thus the site can be representative of the European rural background as well 

as more polluted air masses depending on the meteorological conditions. 

 

 

2.2.4 Cabauw 
 

The Cabauw Experimental Site for Atmospheric Research (CESAR) is located in flat rural area in 

the western part of The Netherlands. The North Sea is more than 50 km away from the site in the N-

W direction. The region nearby the site is predominantly agricultural although the station is not very 

far from large cities such as Amsterdam and Utrecht. Hence the site offers the opportunity to study 

a variety of air masses from clean maritime to continental polluted ones. More details on the station 

are available on the official web site (http://www.cesar-database.nl/About.do ). 
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Figure 4. Landscape surrounding the CESAR observatory. The Royal Netherlands Meteorological Institute. 
 

 

2.2.5 San Pietro Capofiume 
 

The Italian field station is located at San Pietro Capofiume in a flat rural area in the river Po Valley 

region. The Adriatic Sea is more than 60 km away from the site in the east direction. The closest 

large cities are Bologna and Ferrara which are each roughly 40 km far from the site. This region is 

overall characterized by a high population density and by intensive agricultural as well industrial 

activities. Moreover major highways cross this area. Hence according to EMEP (European 

Monitoring and Evaluation Programme under the Convention on Long-range Transboundary Air 

Pollution) conventions this site can be representative even for urban background air. 

 

 
Figure 5. Atmospheric research station “G. Fea”, San Pietro Capofiume. ISAC-CNR. 
 

 

2.2.6 Melpitz 
 

The IFT-Melpitz ground-based research station is located in the river Elbe Valley in Germany. 

Melpitz is a small village surrounded by agricultural land interspersed by edges of forest and it is 

far from the city of Leipzig about 40 km in the southwest direction. Nevertheless major highways 

cross the region at a minimum distance of 1.5 km. Moreover during high pressure conditions dry air 

masses are transported from the north-east area where coal heated power plants and old industries 

with poor exhaust treatments still operate. Anyway air masses reaching the station come 
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predominantly from the south-west direction after crossing part of western Europe. Hence Melpitz 

can be described as a rural polluted continental site. 

 

 
Figure 6. IFT-Melpitz atmospheric research station. 
 

34 



Chemical characterization of atmospheric secondary organic aerosol of biogenic and anthropogenic origin 

 

2.3 Samples handling and analysis 
 

2.3.1 Sampling methods 
 

Within this work aerosol samples have been prevalently collected on quartz micro fiber filters 

(QMA grade purchased by Whatman or Pall), except for few chamber experiments where Teflon 

substrates have been used, and then analyzed off-line. The quartz fiber filters were washed with 

Milli-Q water and fired for 1h at 800 °C before sampling in order to reduce their blank values. The 

Teflon substrates were as well cleaned with Milli-Q water but left to dry in a clean room for 24 h 

before sampling. 

Atmospheric aerosols have been sampled by various high volume samplers depending on the 

instrument available on the site. During the intensive observing periods held in the SPC and CBW 

stations was employed a Dichotomous high volume sampler from MSP Corporation (Universal Air 

Sampler, model 310) working at a constant nominal air flow rate of 300 L/min. The Dichotomous 

sampler allowed to collect atmospheric aerosols in their PM1 and PM1-10 fractions. A Sierra 

Andersen high volume sampler, segregating PM1.5 and PM1.5-10 particles, was used in the MHD 

station. PM2.5 and PM2.5-10 fractions of atmospheric aerosol were obtained in the MPZ station using 

a Digitel high volume sampler. In the HYY and KPO stations were employed two high volume 

samplers working at 600 and 850 L/min and configured to remove particles with aerodynamic 

diameter larger than 1 and 2.5 µm respectively. 

 

Synthetic SOA particles formed in the chamber experiments were simply pumped to the filters 

sucking up the air inside the chamber at a flow rate of 10 or 20 L/min. Sampling times lasted 

typically two hours. Denuders (charcoal or XAD resins) upstream the filter holders were employed 

to remove gaseous organic compounds from the sampled air stream to prevent positive artefacts. A 

sampling tandem configuration consisting in the use two piled filters, one front (F) and one back up 

(BU) filter, in separate filter holders, was adopted when possible in order to assess negative 

sampling artefacts. 

In order to investigate the laboratory-SOA chemical composition in parallel with their 

photochemical aging, two filters sets were generally collected in subsequent moments of each 

chamber experiments. Thus obtaining fresh SOA from the initial part and aged SOA from the final 

part of each experiment. The experiments conducted at the PSI smog chamber (specifically those 
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with α-pinene and 1,3,5-trimethylbenzene as gaseous precursors) lasted typically 8 hours: fresh 

SOA was roughly collected between the 4th and the 6th hour while aged SOA between the 6th and 

the 8th hour. In the case of SOA formed in the SAPHIR simulation chamber, typical aging 

experiments ran up to about 30 hours. A two-hours sampling was performed in the first day of the 

experiment, during the particles generation, while a second sampling was performed in the day 

after. In this way the aged SOA particles were actually subjected to a long time OH-radical 

exposure. 

After sampling the aerosol samples were stored in a fridge at 4 ° C until the analyses. 

 

 

2.3.2 Analytical methods 
 

A scheme of the analytical protocol deployed to characterize the aerosol samples collected on 

quartz fiber filters (or in few cases on Teflon substrates) is reported below (fig.1). Overall a small 

portion of the samples was directly subjected to high temperature combustion analysis in order to 

measure their Total Carbon (TC) content, except for samples collected on Teflon substrates on 

which TC analysis is not feasible. The leftover filter portions underwent extraction with ultrapure 

mQ water (Millipore, 18.2 mOhm cm water resistivity): about 1 mL of mQ water per filter’s cm2 

has been generally employed. The extraction procedure was performed using a ultrasonic bath on 

quartz fiber filters and by stirring on Teflon substrates: 60 minutes for the former and 30 minutes 

for the latter. After sonication, water extracts were filtered on PTFE membranes (pore size 0.45 µm) 

in order to remove suspended particles. After filtration the water extract was split into aliquots 

devoted to the various analyses on the dissolved water soluble organic matter as schematically 

reported in figure 7. Additional analytical details will be reported in the following sections. 
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Figure 7. Scheme of the analytical protocol deployed to characterize aerosol samples. 

 

 

2.3.2.1 Total Carbon (TC) analysis 
 

Total carbon content was directly measured on a small portion of the quartz fiber filters (about 1 

cm2) by evolved gas analysis. Measurements were performed by a Multi N/C 2100 elemental 

analyser (Analytik Jena, Germany) equipped with a furnace suited for solid samples. Inside the 

furnace samples were exposed to increasing temperature (up to 950 °C) in a pure oxygen carrier 

gas. Under these conditions all carbonaceous matter (Organic Carbon, Carbonate Carbon and 

Elemental Carbon) is converted in CO2 (Gelencser et al., 2000). TC is measured as total evolved 

CO2 by a non-dispersive infrared (NDIR) analyser. The instrumental detection limit was 0.2 µgC 

and the accuracy resulted better than 5% for 1 µgC. 

 

2.3.2.2 Water Soluble Organic Carbon (WSOC) analysis 
 

WSOC content was measured by the liquid module of the above-mentioned Multi N/C 2100 total 

organic carbon analyser. For each aqueous sample parallel measurements of carbonate carbon (CC) 

and total soluble carbon (TSC) were carried out. The measure of the TSC is performed by catalytic 

high temperature combustion in a pure oxygen carrier gas (up to 800 ° C in presence of Pt as 

catalyst) and a NDIR detector. The measure of the CC content is provided by the acidification of the 

sample before its combustion. The difference between the measured total soluble carbon and 

inorganic carbon results in WSOC (Rinaldi et al., 2007). Replicate analysis of standard solutions 
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showed a reproducibility within 5% for both TSC and carbonate carbon at the concentrations 

typically employed for samples extracts (i.e. between 0.5 and 5 ppmC). 

 

2.3.2.3 Ion Chromatography (IC) 
 

The inorganic water soluble fraction of the ambient aerosol samples has been characterized by 

means of Ion Chromatography (IC). Inorganic ions (NH4
+, Na+, K+, Mg2+, Ca2+, Cl-, NO2

-, NO3
-, 

SO4
2- ) were identified along with light organic acids ions such as acetate (Ace), formate (For), 

oxalate (Oxa) and methanesulfonate (MSA). Even light alkyl ammonium ions were identified such 

as mono-, di- and tri-methyl ammonium ions (MMA+, DMA+, TMA+), and mono-, di- and tri-ethyl 

ammonium ions (MEA+, DEA+, TEA+). 

A Dionex instrument (ICS-2000) equipped with a conductivity detector, a gradient pump and a self 

–regenerating suppressor has been used to separate and quantify the above-listed ions. Anions were 

specifically analyzed by the ion chromatograph, equipped with IonPac AG11 2x50mm Dionex 

guard column, IonPac AS11 2x250mm Dionex separation column and ASRS ULTRA II self-

regenerating suppressor. A solution of KOH was used as eluent. Its concentration increased from 

0.1 mM to 38 mM, in a 25 minutes long run (0.1 mM for 8 min, 5 mM reached at 12 min, 10 mM at 

17 min and 38 mM at 25 min). The flow rate was 0.25 mL/min. Cations were analyzed with the 

same ion chromatograph, equipped with IonPac CG16 3x50 mm Dionex guard column, IonPac 

CS16 3x250mm Dionex separation column and CSRS ULTRA II self-regenerating suppressor. The 

analysis were performed isocratically with a 30 mM solution of MSA as eluent held for 35 min. The 

flow rate was 0.36 mL/min. 

The detection limit for the analysed inorganic ions corresponds to an average air concentration of 4 

ng/m3, except for sodium, nitrite and calcium for which it is 45 ng/m3.  

 

2.3.2.4 Water Solubile Organic Nitrogen (WSON) 
 

The above-mentioned Multi N/C elemental analyser has been even employed to measure also the 

Total Soluble Nitrogen (TSN) content of the water-soluble fraction of the aerosol. The instrument’s 

module for nitrogen analysis is equipped with a chemiluminescence detector to measure the NOx 

evolved from the high temperature combustion (800 ° C, 100% O2) of the samples. The elemental 

analyzer resulted sensitive to nitrogen regardless to its chemical form. TSN was quantified against 

calibration curves obtained using sodium nitrate as standard compound. The instrumental 
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reproducibility resulted very good (better than 2%) at concentration of 1 ppmN but increases at 

lower concentrations (8% at 300 ppbN). 

Once determined the TSN, the Water Soluble Organic Nitrogen (WSON) content was calculated 

subtracting the inorganic nitrogen content derived by ion chromatography (i.e. the sum of nitrate, 

nitrite and ammonium). 

 

 

2.3.2.5 WSOC separation by High Performance Liquid Chromatography (HPLC) 
 

A new liquid chromatography method has been applied to simplify the initial complex mixture of 

water soluble organics into few main chemical classes according to their neutral/acidic character 

(Mancinelli et al., 2007). An anion exchange HPLC method coupled to WSOC analysis was 

specifically exploited to quantitatively resolving water soluble organics into: neutral compounds 

(N), mono- and di-acids (MA and DA), and poly-acids (PA, i.e. compounds carrying more than two 

carboxylic groups). 

The analyses were performed on a HPLC instrument from Agilent (Model 1100), equipped with a 

TSK-GEL® DEAE-5PW column (7.5mm i.d. × 7.5 cm length, Tosoh Bioscience), an autosampler, 

UV detector and a fractions collector. The selected injection volume, flow rate and wavelength were 

respectively 1 mL, 0.7 mL/min and 260 nm. The mobile phase consisted of A) mQ water and B) a 

ClO4-/PO4
3- buffer solution at pH 7 (NaClO4 0.5 M, KH2PO4 0.05 M, NaOH 0.044 M) whose 

composition changed towards an increasing ionic strength within the eluition program . The mobile 

phase composition changed as follows: A 100 % isocratically from 0 to 8 min; first gradient from 8 

to 15 min reaching B 10 %; B 10 % isocratically from 15 to 21 min; second gradient from 21 to 26 

min reaching B 100 %; final gradient back to A from 26 to 31 min. N, MA, DA and PA compounds 

were subsequently eluted and collected on the bases of time intervals chosen depending on the 

minima between the UV peaks in the chromatogram (7-20 min for N, 20-23 min for MA, 23-30 min 

for DA and 30-37 min for PA). Avoiding organic additives, the mobile phase does not interfere with 

the measure of the dissolved organic carbon in the HPLC collected fractions thus allowing the 

direct WSOC analyses after the collection (before the elemental analysis PA fractions were 

acidified with 50 µL HCl conc. and purged with CO2 free-air to remove the carbonates due to the 

mobile phase). 

The instrumental detection limits of the NB, MA, DA and PA fractions were 2.2, 1.0, 1.3 and 3.2 

µgC, respectively. 
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2.3.2.6 WSOC characterization by proton-Nuclear Magnetic Resonance (1H-NMR) 

spectroscopy 
 
1H-NMR spectroscopy in deuterum oxide (D2O) solution was exploited to functional group 

characterization of water soluble organics. Aliquots of water extracts were dried under vacuum and 

re-dissolved in 650 µL D2O. Sodium 3-trimethylsilyl-(2,2,3,3-d4) propionate (TSP-d4) was 

prevalently used as referred internal standard adding 50 µL of a TSP-d4 0.05 % (w/w) solution in 

D2O (1.455 µmol H belonging to the standard in the probe) following the protocol already tested by 

Decesari (Decesari et al., 2000; Tagliavini et al., 2006). In some cases methanol (MeOH) was used 

as alternative internal standard (0.5 µmol H belonging to the standard in the probe). The 1H-NMR 

spectra were acquired with a Varian spectrometer working at 400 MHz (Mercury 400) in 5 mm 

probes. Mono-deuterated water (HDO) signal’s pre-saturation was always performed nevertheless 

residuals were still appearing in few spectra in the region between 4.5-5.5 ppm. 

At least 80 µg of carbon content has to be in the sample aliquot destined to 1H-NMR experiments in 

order to achieve a good signal to noise ratio. Due to its limited sensitivity, 1HNMR spectroscopy has 

been rarely applied to the analysis of atmospheric aerosols, nevertheless this technique offers 

several advantages with respect to other techniques such as GC/MS, LC/MS or AMS.  

In principle, 1H-NMR spectroscopy can detect any protons belonging to the organic molecules, but 

it is mainly sensitive to protons attached to carbon atoms (i.e. H-C bonds) because, in aqueous 

solutions, the hydrogen atoms attached to oxygen and nitrogen atoms (e.g. H-O of carboxylic acids, 

alcohols and the H-N bonds of amines) are exchanged with the solvent and cannot be detected. 

Then, sensitivity is higher for functional groups carrying more hydrogen atoms, i.e., it is higher for 

methyls than for methylenes or methynes, and it is higher for aliphatic than for aromatic 

compounds. 
1H-NMR spectroscopy thus provides information about both the main structural units as well it is 

able to identify individual compounds. Moreover, it is not affected by the interference of inorganic 

compounds. 

An important advantage of 1H-NMR spectroscopy is that quantitative analysis is straightforward: 

the integrals of the peaks in 1H-NMR spectra are proportional to the molar concentrations of 

hydrogen atoms within 15%. Then, a simple a-specific internal standard can be used for calibration  

(Derome, 1987; Braun et al., 1998). 
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The different bands of the spectra can be integrated providing molar concentrations of the organic 

hydrogen atoms associated with the various functional groups. To derive the molar concentrations 

of the functional groups, their stoichiometry is required, i.e., the H:C ratios. 

Most of the signal in spectra of aerosol samples is accounted for unresolved bands rather than 

narrow peaks attributable to single compounds. On the basis of the range of frequency shifts (the 

so-called chemical shift, ppm) in which these bands occur, they can be attributed to different 

functional groups. Since there are a lot of overlaps between the characteristic chemical shifts of the 

various functional groups, the functionality that can be resolved unambiguously are limited to: 

H-(C=O)R ( > 9 ppm): aldehydic protons; 

H-Ar (6.5-8.5 ppm): aromatic moieties; 

H-C= (4.5-6.5 ppm): vinylic or (hemi)acetalic protons; 

H-C-O (3.3-4.5 ppm): protons bound to oxygenated aliphatic carbon atoms such as alcohols and 

ethers; 

H-C-C= (1.9-3.3 ppm): aliphatic groups adjacent to unsaturated carbon atoms such as carbonyls and 

carboxyls or benzylic protons; 

H-C-C< (0.8-1.9 ppm): aliphatic groups bound to saturated carbon atoms. 
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3 Results 
 

3.1 Terrestrial biogenic SOA 
 

3.1.1 Alpha-pinene SOA 
 

Here are present data on chemical characterization of biogenic SOA formed in photo-oxidation 

experiments with α-pinene. A complete list of the collected samples is reported in the table below. 

 VOC oxidants sample ID   

exp. date α-pin 
(ppb) 

NOx 
(ppb) 

HONO 
(ppb) front  back up 

SOA mass. 
conc. 

(µg/m3) 

sampling 
volume 

(m3) 
PIN_091006_F PIN_091006_BU 195 1.6 09/10/2006 160 80   
        
PIN_231006_1F_teflon PIN_231006_1BU 165 0.65 23/10/2006 160 80   
PIN_231006_2F_teflon PIN_231006_2BU 150 0.90 
PIN_240907_1F PIN_240907_1BU 182 0.87 24/09/2007 240 240   
PIN_240907_2F PIN_240907_2BU 158 0.87 
PIN_260907_1F_teflon PIN_260907_1BU 179 0.86 26/09/2007 240 240   
PIN_260907_2F_teflon PIN_260907_2BU 154 0.85 
PIN_011007_1F_teflon PIN_011007_1BU 119 0.80 01/10/2007 240   1.5 
PIN_011007_2F_teflon PIN_011007_2BU 123 0.79 
PIN_031007_1F PIN_031007_1BU 127 0.84 03/10/2007 240   1.5 
PIN_031007_2F PIN_031007_2BU 137 1.0 
PIN_280907_1F PIN_280907_1BU 20 4.0 28/09/2007 3   1.5 
PIN_280907_2F PIN_280907_2BU 15 6.6 
PIN_051007_1F PIN_051007_1BU 30 4.8 05/10/2007 3   1.5 
PIN_051007_2F PIN_051007_2BU 21 6.3 

Table 6. List of SOA samples collected during experiments employing α-pinene as precursor VOC. Two filters 
sets were sampled each experiment: numbers 1 or 2 in the sample ID stand for sets sampled in the initial or in 
the final part of the experiment respectively. Only one sampling was done in the first experiment. The sample ID 
reports as well when Teflon was used as alternative substrate. Grey colour is used for back up filters. The mean 
aerosol mass concentrations are calculated from SMPS data and averaged upon the filters sampling times. 
 

The experiments lasted roughly 8 hours and two filters sets were typically sampled in subsequent 

moments in order to obtain fresh SOA from the initial part and aged SOA from the final part of 

each experiment: fresh SOA was roughly collected between the 4th and the 6th hours while aged 

SOA between the 6th and the 8th hours (fig. 1). 
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Figure 1. Typical time-resolved number-weighted size distribution from a photo-oxidation experiment. 
The measured total and water-soluble organic carbon contents are reported in the table 2. 
 
 

front back up  
sample ID TC (µg C /m3) WSOC (µg C /m3) TC (µg C /m3) WSOC (µg C /m3) 

PIN_091006 138 95 25.96 16.99 
      
PIN_231006_1_teflon n.a. 71 64 41 
PIN_231006_2_teflon n.a. 34 86 35 
PIN_240907_1 150 71 7.5 1.6 
PIN_240907_2 103 79 7.5 5.3 
PIN_260907_1_teflon n.a. 73 34 1.7 
PIN_260907_2_teflon n.a. 81 44 5.4 
PIN_011007_1_teflon n.a. 20 44 36 
PIN_011007_2_teflon n.a. 16 38 33 
PIN_031007_1 135 58 12 4.0 
PIN_031007_2 96 78 16 12 
PIN_280907_1 20 11 2.9 1.2 
PIN_280907_2 11 8.5 2.3 1.5 
PIN_051007_1 27 13 6.4 3.4 
PIN_051007_2 18 9.9 3.9 2.5 
Table 2. Total and water-soluble organic contents of α-pin-SOA. TC analyses are not feasible for Teflon 
substrates. 
 

 

The aerosol mass concentrations obtained by off-line measurements on quartz filter samples 

resulted to fit nicely with those calculated from SMPS data, particularly with values corresponding 

to experiments conducted at low VOC level (fig. 2). On the contrary, samples collected on Teflon 

substrates resulted affected by negative artefacts. Since the carbon loadings of such substrates were 

found systematically in defect with respect to those expected from SMPS data, the hereinafter 

comments will concern only quartz filter samples. 
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Figure 2. Scatter plot of aerosol mass concentrations (µg/m3) as derived from SMPS data and calculated from 
total carbon measurements upon the filters. (TC measured on front filters have been multiplied by 1.8 to be 
compared with the value obtained by SMPS). 
 

Since SOA are supposed to be composed by fairly oxygenated (polar) compounds, WSOC was 

expected to approach TC. The measured WSOC resulted to contribute between 50% up to 80% to 

total carbon of α-pinene SOA. Hence the analyses performed show that α-pinene SOA contain a 

small but significant amount of water-insoluble organic compounds (fig. 3). 

 

 
Figure 3. Diagrams showing the water-soluble and insoluble organics concentrations of α-pinene SOA: absolute 
and relative values are in the left and right side respectively. 
 

As can be seen even in the upper figure (right side), the samples collected in the last parts of the 

experiments (aged SOA) are characterized by WSOC fractions systematically higher with respect to 

those collected at the beginning (fresh SOA). Thus confirming that more oxygenated compounds 

constitute aged with respect to fresh α-pinene SOA. Interestingly the WSOC/TC ratios increase 

concordantly to the initial VOC level: in greater extent (up to 1.8 times) within high-level VOC 

experiments and in lesser extent (up to 1.3 times) within low-concentration experiments (fig. 4).  
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Figure 4. Extent of the increase of the WSOC/TC ratios from fresh to aged SOA within high- and low-level VOC 
experiments. The y-axis corresponds to the averaged ratios between the WSOC fraction of fresh SOA and the 
WSOC fraction of aged SOA ( e.g. for high-livel VOC experiments, WSOC/TC in aged SOA is about 1.8 times 
greater than WSOC/TC in the corresponding fresh SOA). The bars has not to be considered as errors bars but 
they serve merely to show the observed variability as standard deviation from the mean values. 
 

 

During the low-concentration experiments, constant low SOA levels were maintained by injecting a 

constant flow of HONO and α-pinene: steady-state conditions were thus reproduced during these 

experiments. New SOA particles were continuously generated so that a negligible difference was 

actually expected between SOA collected in the beginning and in the end of these experiments. 

By contrast, the great WSOC fraction enhancement in SOA collected in the end of the high loadings 

experiments could possibly reflect both an actual oxidizing activity (ageing process) or as well the 

partitioning of species such as small polar semi-volatile organics (e.g. pinic acid) which otherwise 

remain in gas phase under low organics loading conditions. 

In order to obtain a better insight into the chemical features of the water soluble organic compounds 

constituting α-pinene SOA, 1H-NMR spectroscopy has been deployed. A typical 1H-NMR spectrum 

of α-pinene SOA is shown in figure 5. 
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Figure 5. 1H-NMR spectrum of α-pinene SOA (PIN_091006_F) in D2O at 400 MHz. The horizontal scale reports 
the frequency shift (“chemical shift”, ppm). The peaks at 3.36 and 4.8 ppm are the internal standard (methanol) 
and the residue of the solvent peak (HDO) upon suppression by instrumental methods. 
 
 

As expected the α-pinene SOA spectra show a functional groups distribution strongly dominated by 

aliphatic compounds with aromatic signals (6.5-8.5 ppm) completely absent. This profile is 

consistent with the current knowledge about monoterpenes oxidation mechanism and agree with 

previous spectroscopic data from chamber experiments (Cavalli et al., 2006).  

The spectra also show sharp peaks superimposed to a broad background signal attributable to a 

complex mixture of α-pinene oxidation products. Among the sharp peaks, the most important are 

those of well-known species such as pinic acid and pinonic acid (fig. 6). 

 
Figure 6. Enlarged version of the spectrum shown in fig. 6. Pi and Po mark the main singlet peaks from methyl 
groups belonging to pinic and pinonic acid respectively, those chemical structures are also reported in the left 
side of the figure. The peak at 1.92 ppm is from acetate (Ac). 
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3.1.2 Low-concentration experiments 
 

The different partitioning of pinic and pinonic acid in the different SOA concentration regimes are 

clearly reflected in the 1H-NMR spectra and their signals resulted the main distinguishing feature 

between SOA produced during high VOC level and steady-state low concentration experiments. 

Pinonic and pinic acid resulted actually to contribute in much lesser extent to SOA mass of samples 

collected in low concentration experiments (fig.7, 8). Hence the spectra of SOA produced at low 

precursor concentration can be interpreted as resulting from compounds with a higher partitioning 

coefficient (i.e., a lower volatility) than pinonic and pinic acids. Such compounds may include 

extensively oxidized products, which have lost the original molecular backbone of α-pinene, i. e. a 

cyclobutane ring with two geminal methyls and also products of accretion reactions (i.e., 

oligomerization). 

 
Figure 7. Left side: pinic and pinonic acid relative contributions (percentage) to α-pinene SOA samples. Right 
side: pinic and pinonic acid relative contributions averaged upon high and low level VOC experiments. The 
percentages have been calculated using the concentrations (µmol H/m3) derived from the NMR analyses. 
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Figure 8. 1H-NMR spectra of α-pinene SOA generated in high concentration (orange profile) and in low 
concentration (green profile) experiments (PIN_091006_F and PIN_280907_1F). The vertical scales have been 
normalized by the total area of the corresponding spectrum. Pi and Po mark the pinic and pinonic acid signals. 
Peaks at 3.36 ppm and at 1.92 ppm are from the internal standard and from acetate. The peak at 1.26 ppm is 
ubiquitous among quartz filters extracts and it doesn’t belong to the samples. 
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3.1.3 SOA generated from mixtures of terpenes 
 

Laboratory-SOA samples produced by the photo-oxidation of terpenes mixtures are listed in the 

table below (tab.3). Two experiments performed in dark conditions (ozonolysis experiments) are 

also reported at the bottom of the table. 

 oxidants 
exp. type 

VOCs (ppb) NOx (ppb) O3 (ppb)
sample ID TC  

(µg C/m3) 
WSOC  

(µg C/m3) 
50 1.5 40 MT_060608_1F 36 26 

   MT_060608_2F n.a. 12 
100 0.9 43 MT_160608_1F 37 n.a. 

MT mix  
wo ocimene  

   MT_160608_2F 22 n.a. 
50 1.7 75 MT_061007_1F 41 32 

   - - - 
50 1.3 55 MT_040608_1F 32 n.a. 

   MT_040608_2F 12 n.a. 
100 1.8 40 MT_090608_1F 40 35 

   MT_090608_2F n.a. 16 
100 0.8 43 MT_130608_1F 65 49 

MT mix  

   MT_130608_2F 18 15 
55 1.0 60 MT+SQT_041007_1F 67 45 

   MT+SQT_041007_2F 26 24 
55 0.4 60 MT+SQT_311007_1F 59 48 

   MT+SQT_311007_2F 13 16 
55 1.5 35 MT+SQT_110608_1F 38 37 

   MT+SQT_110608_2F 10 n.a. 
110 0.9 40 MT+SQT_180608_1F 48 29 

MT + SQT mix 

   MT+SQT_180608_2F 16 15 
100 0.2 180 MT+O3_200608_1F 54 44 

   - - - 
55 1.7 80 MT+SQT+O3_291007_1F 61 59 

ozonolysis 

   MT+SQT+O3_291007_2F 12 15 
Table 3. List of SOA samples produced in laboratory from terpenes mixtures. Two filters sets were sampled each 
experiment: numbers 1 or 2 in the sample ID stand for sets sampled in the initial or in the final part of the 
experiment respectively. Measured total and water soluble carbon concentrations are reported in the last 
columns on the right. 
 

 

VOCs constituting the employed mixtures are specified in the table below. Equi-molar VOCs 

concentrations were used for each mixture. 

Mixture’s ID Monoterpenes Sesquiterpenes 

MT mix without ocimene α-pinene, β-pinene, limonene, 
∆3-carene  

MT mix α-pinene, β-pinene, limonene, 
∆3-carene, ocimene  

MT + SQT α-pinene, β-pinene, limonene, 
∆3-carene, ocimene β-caryophyllene, α-farnesene 
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In the next figure WSOC/TC ratios of laboratory-generated biogenic SOA are reported, lumped by 

the different experiment types and including the α-pinene SOA formed in the PSI chamber. 

Experiments employing an increasing complexity of the initial VOC mixture are reported from the 

left to the right side. At least two trends are clearly visible upon these data: The WSOC fraction 

increase slightly along with the mixture complexity and, looking at each experiment type, the water 

soluble fraction increase concordantly with SOA ageing. 

 
Figure 9. WSOC/TC ratios of biogenic SOA generated in laboratory. Empty symbols represent SOA generated 
in low VOC concentration experiments (less than 55 ppb) and filled symbols represent those generated in high 
VOC level experiments (more than 55 ppb). Colours distinguish between fresh and aged SOA, orange and green 
respectively. 
 

An overall increase of the water soluble fraction in aged SOA with respect to fresh SOA is also 

visible in the following histogram where averaged values upon all laboratory-generated biogenic 

SOA are reported (fig. 10).  

 

 
Figure 10. Averaged WSOC/TC ratios upon all laboratory-generated biogenic SOA (overall), upon all biogenic 
fresh SOA and upon all aged SOA. 
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The chemical structures of water soluble compounds constituting SOA generated from mixtures of 

terpenes have been further investigated by 1H-NMR spectroscopy. The main spectral features of 

MT mix- and MT+SQT mix-SOA presented several analogies with those of the above-mentioned 

spectra of α-pinene-SOA (fig.11). Most of the resonances fall in the aliphatic region, whereas the 

aromatics region is completely void of signals. Sharp and intense peaks are visible upon unresolved 

background bands. Some of such distinct peaks have been identified in both α-pinene-SOA as well 

in MT mix-SOA spectra and have been attributed to pinic and pinonic acid. Signals at 0.94 ppm and 

1.08 ppm, found exclusively in MT-mix SOA spectra, have not been yet identified but they come 

likely from a compound with analogous molecular structure of pinic acid (hereinafter called Pi-

like). This Pi-like compound shows concentrations comparable to those of pinic acid in most of the 

analyzed samples. Other singlets and some doublets from unidentified compounds are 

systematically seen in the chemical shift range between 0.8 and 1.6 ppm, pointing to several 

oxidation products often occurring in similar or even higher concentrations with respect to pinic 

acid. Standards of carboxylic acids expected to form from extensive oxidation of α-pinene SOA 

were analyzed with aim of comparison with the major unidentified peaks in the HNMR spectra of 

MT SOA but they did not show an exact match. 

 

 
Figure 11. 1H-NMR spectra of α-pinene SOA (PIN_240907_1F) and MT-SOA (MT_130608_1F). The vertical 
scales have been normalized by the total area of the corresponding spectrum. Pi and Po mark the pinic and 
pinonic acid signals identified in both spectra whereas stars mark signals at 0.94 ppm and 1.08 ppm present in 
MT-SOA spectrum only. 
 

 

Main functional groups quantified for biogenic laboratory-SOA correspond to: a) primary or 

secondary alcohols and ethers (H-C-O), b) aliphatic groups adjacent to carbonyls/carboxyls (H-C-

C=) and c) alkyl groups (H-C-C<). The measured functional groups concentrations (µmol H/m3), 

51 



Chemical characterization of atmospheric secondary organic aerosol of biogenic and anthropogenic origin 

averaged for each type of experiment, are reported in the figure below (fig. 12, upper panel). 

Basically, the 1H-NMR spectra of the SOA samples generated in different photochemical conditions 

and from different mixtures showed a very low variability in terms of functional groups 

distributions (fig. 12, lower panel). Overall, aliphatic groups adjacent to carbonyls together with 

alkyl groups account for most of the detected 1H-NMR signal, while the aliphatic groups adjacent to 

hydroxyls are present in much lower amounts (fig. 12, pie-graph). 

 
Figure 12. 1H-NMR functional groups of biogenic laboratory-SOA averaged upon the type of experiment. Upper 
histogram: functional groups absolute concentrations (µmol H/m3). Deviation standard is given for experiments 
performed in replicate. Lower panel: functional groups percentage of the total 1H-NMR signal. The pie-graph in 
the right side reports the mean percentages averaged upon all the experiments. 
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3.1.4 Effect of ageing on biogenic laboratory-SOA 
 

The concentrations of aged SOA are typically from ½ to ¼ those of the correspondent fresh SOA as 

can be seen in the figure below where WSOC concentrations are reported together with the total 

µmol H m-3 derived by the NMR analysis (fig. 13). 

 
Figure 13. The left vertical axis reports the WSOC concentrations (µg C/m3) and the vertical axis on the right 
reports the total µmol H/m3 derived by the 1H_NMR analyses. 
 

 

In spite of this significant differences in the concentrations, the overall distribution of the various 

HNMR functional groups resulted very similar between the fresh and aged samples (fig.14). 

 
Figure 14. Functional groups percentages averaged separately upon fresh and aged SOA for each type of 
experiment. Deviation standard is reported for experiments performed in replicate. 
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Nevertheless, some changes in the distribution of individual compounds and in minor bands 

belonging to the background unresolved signal are observable. Multivariate statistical methods were 

therefore applied to the 1H-NMR spectra obtained from biogenic laboratory-SOA in order to 

possibly better quantify such variability. The 1H-NMR spectra were subjected to Positive Matrix 

Factorization (PMF) and Non-negative Matrix Factorization (NMF) analyses. Since the results from 

the two techniques were analogous, here only those of NMF will be discussed. 

A total of 16 1H-NMR spectra obtained from fresh and aged MT-SOA were subjected to NMF 

analysis. In the figure below the profiles are reported resulting with the simplest two-factors 

solution applied to MT_SOA spectra (fig.15). 

 

 
Figure 15. Profiles obtained applying NMF (two-factor solution) to 1H-NMR spectra of MT-SOA. The profile 
colors distinguish between factor 1 (orange) and factor 2 (green). The signals at 1.92 ppm (acetate) and at 1.26 
ppm (from blank) were cancelled from the spectra subjected to NMF analysis thus they are not visible into the 
resulted profiles. 
 
 
The resulted loadings (percentage) of the two factors shown in Fig.16 are reported in the following 

diagram (fig.16). 
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Figure16. Relative abundances (percentage) of the factors obtained applying NMF analysis to MT-SOA spectra. 
 

 

Factor 1 (corresponding to the orange profile) accounts for the majority of the spectral signal of 

MT-SOA generated during ozonolysis experiments. A NMF run using even a two-factors solution 

but excluding the ozonolysis experiments from the input data matrix was also performed: the same 

profiles and the same corresponding loadings were found. 

Basically, the loadings of factor 1 decrease clearly from fresh to aged SOA samples. Conversely, 

the loadings of factor 2 (corresponding to the green profile) looks to increase with ageing, except 

for the experiment without ocimene in the MT mixture. The main distinguishing feature between 

the spectral profiles of factor 1 and factor 2 is the intensity of the peaks of pinic acid and of pi-like 

compound with respect to the background signal: the singles peaks of such early generation 

oxidation products contribute strongly to the factor 1 signal whereas they disappear among the 

factor 2 signal. The profiles of factor 1 and factor 2 have been therefore interpreted as the 

fingerprints of fresh and aged MT-SOA respectively. 
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3.2 Anthropogenic SOA 
 

3.2.1 SOA formed by 1,3,5-trimethylbenzene 
 

A series of SOA generation experiments were performed employing 1,3,5-trimethylbenzene (TMB) 

as gaseous precursor representative for aromatic VOCs emitted by anthropogenic sources (tab.4). 

 

   sample ID   

exp. date TMB 
(ppb) 

NOx 
(ppb) front back up 

SOA 
mass conc. 

(µg/m3) 

sampling 
 volume 

(m3) 
TMB_041006_F TMB_041006_BU 54 1.8 04/10/2006 600 300     
TMB_061006_F TMB_061006_BU 128 1.4 06/10/2006 1200 600     
TMB_111006_1F_teflon TMB_111006_1BU 135 1.5 11/10/2006 1200 600 TMB_111006_2F_teflon TMB_111006_2BU 155 1.2 
TMB_131006_1F TMB_131006_1BU 162 1.2 13/10/2006 1200 600 TMB_131006_2F TMB_131006_2BU 159 1.0 
TMB_181006_1F_teflon TMB_181006_1BU 142 1.2 18/10/2006 1200 600 TMB_181006_2F_teflon TMB_181006_2BU 135 1.2 
TMB_201006_1F TMB_201006_1BU 160 1.2 20/10/2006 1200 600 TMB_201006_2F TMB_201006_2BU 160 1.0 
TMB_191007_1F TMB_191006_1BU 103 0.9 19/10/2007 1200 300 TMB_191007_2F TMB_191006_2BU 101 0.9 
TMB_211007_1F TMB_211007_1BU 108 0.9 21/10/2007 1200 300 TMB_211007_2F TMB_211007_2BU 101 0.9 

Table 4. List of SOA samples collected during experiments employing 1,3,5-trimethylbenzene as VOC precursor. 
Two filters sets were sampled each experiment: numbers 1 or 2 in the sample ID stand for sets sampled in the 
initial or in the final part of the experiment respectively. Only one sampling was done in the first two 
experiments. The sample ID reports as well when Teflon was used as alternative substrate. Grey colour is used 
for back up filters. The mean aerosol mass concentrations are calculated from SMPS data and averaged upon 
the filters sampling times. 
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The measured total and water-soluble organic carbon contents are reported in the table 5. 
 

front back up sample ID 
TC (µg C/m3) WSOC (µg C/m3) TC (µg C/m3) WSOC (µg C/m3) 

TMB_041006 67 35 13 4.8 
     
TMB_061006 79 61 16 6.3 
     
TMB_111006_1_teflon(*) n.a. 8.1 89 35 
TMB_111006_2_teflon n.a. 29 32 21 
TMB_131006_1 68 41 33 12 
TMB_131006_2 105 98 25 16 
TMB_181006_1_teflon n.a. 48 30 15 
TMB_181006_2_teflon n.a. 19 18 9.5 
TMB_201006_1 84 56 14 0.04 
TMB_201006_2 97 75 19 4.7 
TMB_190907_1 69 n.a. 5.0 n.a. 
TMB_190907_2 196 n.a. 6.0 n.a. 
TMB_210907_1 76 95 14 6.5 
TMB_210907_2 65 83 21 10 

Table 5. Total and water-soluble organic contents of TMB-SOA. TC analyses are not feasible for Teflon 
substrates. (*) Teflon substrate broken during the sampling. 
 

Since the carbon loadings of samples collected on Teflon substrates were found strongly affected by 

negative artefacts, the following discussion applies only to quartz-fiber filter samples. 

The analyses performed show that TMB-SOA are mostly composed by water soluble organic 

compounds: overall WSOC account for about 75 % of TC on front quartz-fiber filters and this 

percentage decreases to ca. 43 % on back up filters (fig. 17). The organic compounds found on back 

up filters represent likely the semi-volatile fraction constituting TMB SOA which is expected to 

evaporate from the particles trapped on front filters. The lower WSOC/TC ratios found 

systematically on back up filters with respect to the front filters reflect a less oxygenated nature of 

the semi-volatile compounds (SVOCs) with respect to the others compounds constituting TMB 

SOA. 

 
Figure 77. Averaged WSOC/TC ratio of TMB-SOA (front). The reported averaged WSOC/TC ratio found on 
back up filters (back up) which characterize likely the SVOCs escaped from the particles collected on the front 
filters. The bars represent the observed variability as standard deviation from the mean values. 
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The samples collected in the last parts of the experiments are characterized by WSOC fractions 

slightly higher with respect to those collected at the beginning: WSOC/TC in aged SOA is about  

1.3 times greater than WSOC/TC in the corresponding fresh SOA (fig. 18), thus confirming the 

more oxygenated state of the particles constituting aged with respect to fresh TMB-SOA. 

 
Figure 18. Histograms showing the water-soluble and insoluble organics concentrations of TMB-SOA on front 
quartz-fiber filters: absolute (µg C/m3) and relative values are in the left and right side respectively. 
 

 

The chemical features of the water soluble organic compounds constituting TMB-SOA have been 

further investigated by 1H-NMR spectroscopy. The resulted 1H-NMR spectra appear typically as 

shown in figure 19. Looking to this spectrum it can be noticed that TMB SOA present a chemical 

composition prevalently aliphatic, being the signal mostly accounted for by alkylic protons bound to 

sp3- and sp2-hybridized carbons. Vinylic protons and protons close to hydroxylic groups are found 

in much lower amounts. Only a weak singlet peak is detectable in the spectral region of the 

aromatic protons suggesting a very few aromatic ring-retaining products content in TMB SOA. It 

should be anyway mentioned that completely substituted aromatic structures are not visible by this 

technique thus they can’t be definitively excluded. 
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Figure 19. 1H-NMR spectrum of TMB-SOA (TMB_201006_1F) in D2O at 400 MHz. The horizontal scale reports 
the chemical shift (ppm). The peaks at 3.36 and 4.8 ppm are the internal standard (methanol) and the residue of 
the solvent peak (HDO) upon suppression by instrumental methods. The peak at 1.92 ppm is from acetate. 
 

The mean TMB SOA functional group absolute concentrations (µmol H/m3), obtained by the 

integration of the bands in the 1H-NMR spectra, are reported in the figure 20. This figure reports 

also the corresponding averaged values measured on back up filters, i.e. representing the 

composition of the semi-volatile fraction of TMB-SOA. It can be noticed that the two series of 

values differ mostly in the amount of the alkylic groups (H-C-C<). 

 
Figure 20. TMB-SOA averaged functional groups absolute concentrations (µmol H/m3). The values measured on 
back up filters are also reported (light blue symbols) for comparison. The bars represent the observed variability 
as standard deviation from the mean values. 
 

 

The figure below concerns on the differences between fresh and aged TMB SOA functional group 

composition (fig. 21). A general increasing of the absolute concentrations is recorded for the last 

sampling stages, having the alkyl protons bound to sp3- and sp2-hybridized carbons the mostly 

enhanced values. Conversely, the main spectral features remain unvaried for TMB-SOA sampled at 

the beginning and those collected in the last part of each experiment: the relative functional groups 
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distribution is fairly the same in both fresh and aged TMB SOA. This may indicate that the time 

scales of SOA evolution in the PSI chamber was not long enough to observe an actual ageing of the 

composition of the particles. 

 
Figure 21. TMB-SOA functional groups absolute concentrations (µmol H/m3) averaged separately upon fresh 
and aged TMB-SOA. Solid lines serve merely to help the eyes. 
 
The overall distribution of the various bands in the different chemical shift regions for TMB-SOA is 

also shown in the following pie-graph (fig. 22). 

 

 
Figure 22. Relative abundances (percentage) of the main functional groups quantified in TMB-SOA. 
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3.2.2 Comparison with TMB-SOA composition as predicted by models 
 

The formation and composition of secondary organic aerosol generated by the photo-oxidation of 

1,3,5-trimethylbenzene has been already simulated using the Master Chemical Mechanism (MCM 

v3.1) model coupled to a representation of the transfer of organic material from the gas to particle 

phase (Johnson et al., 2005; Bloss et al., 2005b). A partial schematic representation of the OH-

initiated photo-oxidation of TMB as simulated by MCM v3.1 is reported in figure 23. The model 

indicates specific classes of organic compounds as the best candidates for contributing to SOA mass 

such as: ring-retaining products including aromatic aldehydes and cyclic peroxides, and ring-

opening products (e.g. low-molecular weight carbonyls). The measured 1H-NMR functionalities of 

TMB-SOA can then be compared to those predicted by models. 

 
Figure 23. Partial schematic representation of the OH-initiated oxidation of TMB as implemented in the MCM 
v3.1. The first generation products are shown in boxes and the branching ratio of the respective forming 
pathway is given in percent (figure taken from Metzger et al., 2008). 
 

 

Basically, the major degradation pathway for TMB involves the addition of OH to the aromatic 

ring, followed by further steps leading to the formation of an oxygen-bridged bicyclic peroxy 

radical structure. Several large multifunctional O2-bridged products (both ring-retaining as well ring 

opening oxygenated and nitrated compounds) are generated by this so called “peroxide-bicyclic 
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route” and are likely to be sufficiently non-volatile to partition into the organic aerosol phase (fig. 

24). Recently such high molecular weight primary products have been actually detected in the gas 

phase during TMB photo-oxidation experiments and for them an important role in the initiation of 

the TMB-SOA nucleation process have been inferred (Whyche et al., 2009; Rickard et al., 2009). 

 

 
Figure 24. Examples of structures considered to made a significant contribution to the simulated TMB SOA 
mass. 
 

The presence of methyl groups within these structures which have resonance among the alkyls 

spectral range are highlighted in the following figure (fig. 9) using light-blue spots for methyl 

groups in beta position to an oxygen atom (H-C-C-O) and orange spots for methyl groups bound to 

sp2-hybridized carbons (H-C-C=). The same distinctive colours were used for these functional 

groups in the above pie-graph (fig. 25). 

 

 
Figure 25. The above figure with coulored spots highlighting HC-C= (orange) and HC-C< (blue) functionalities. 
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3.2.3 Oligomerization reactions with methyl glyoxal 
 

In the frame of the chemistry of SOA formation and transformation considerable attention has been 

paid to condensed phase reactions. Even in the Johnson et al. paper, the need to scale the gas-to-

particle partitioning coefficients in the simulated SOA mass to fit the measured SOA mass 

suggested a significant occurrence of association chemistry in the condensed organic phase.  

Experimental evidence of accretion reactions (i.e. non-oxidative association reactions occurring in 

condensed phase) involves the detection of high-MW species in laboratory-generated as well in 

ambient aerosol (Hallquist et al., 2009). In respect to TMB photo-oxidation experiments, Kelberer 

et al. (2004) have shown that accretion reactions take place within the particles resulting in 

oligomers molecules and suggested that the observed oligomers could be formed by the 

polymerization of methyl glyoxal. Low molecular weight dicarbonyls, particularly aldehydes like 

methylglyoxal, are expected to occur on mature SOA particles in the form of oligomers. 

Methyl glyoxal (MG) is a first generation product of the OH-initiated oxidation of TMB and it is 

produced in large amounts based on branching ratios predicted by the MCM v3.1 (fig.23). 

Moreover, in a recent study on TMB photo-oxidation, MG exhibited experimental gas/particle 

partitioning coefficient several order of magnitude higher than theoretically expected, based on its 

vapour pressure (Healy et al., 2008). 

The following figure reports only few products (acetals) possibly formed via methylglyoxal uptake 

and subsequent reactions in particle-phase along with coloured spots highlighting the methyl groups 

(fig. 26). 
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Figure 26. Examples of structures formed via methylglyoxal uptake in condensed phase and (hemi)acetals 
formation. Light-blue spots stand for methyl groups in beta position to an oxygen atom (H-C-C-O) and orange 
spots for methyl groups bound to sp2-hybridized carbons (H-C-C=). 
 

The occurrence of H-C-C= and H-C-C-O groups in large amounts in MG condensation products 

was confirmed by recording 1H-NMR spectra of MG oligomers synthetized in laboratory (fig. 27). 

 
Figure27. 1H-NMR spectra in D2O of methylglyoxal oligomers (green line) and a TMB SOA sample (TMB_##) 
(orange line). The horizontal scale reports the chemical shift (ppm). Only the alkyl spectral region is shown. 
 

Together with the multifunctional O2-bridged compounds formed by oxidation reactions (fig. 25), 

also compounds having chemical structures like those of (hemi)acetal oligomers formed via 

methylglyoxal uptake in the condensed phase could actually contribute in substantial amount to the 

TMB SOA composition. 
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3.3 Comparison between ambient organic aerosol and laboratory-SOA 
 

3.3.1 Ambient organic aerosol 
 

A substantial amount of atmospheric aerosol samples (about 150) has been collected across Europe 

in the frame of the European EUCAARI project and analyzed within this thesis. As already 

mentioned in the experimental section, the six sampling sites were mainly selected on the basis of 

their different charcteristics of their environment in respect to the sources of carbonaceous aerosol 

in Europe. Since most of the intensive measurements campaigns took place between the months of 

March and July, the data resulted as well in a recent overview of the aerosol chemical composition 

over Europe in spring seasons. 

Night-time and day-time samplings, lasting roughly 12 hours, were generally carried out, except for 

the clean background sites where longer sampling times were applied to collect enough material for 

the analyses. The chemical composition of the fine aerosol samples collected on quartz-fiber filters 

have been investigated off-line following the analytical protocol described in the experimental 

section, and both organic and inorganic components have been characterized. The latter have been 

used in this study primarily as supporting information for tracing the origin and type of 

carbonaceous particles. Indeed, inorganic components can be used as tracers for aerosols being 

transported at the regional scale (sulphate), or anthropogenic semivolatile (nitrate), originating from 

biomass burning (potassium), or from sea-spray (seasalt). 

The organic composition of the samples showed quite different chemical features depending on 

both the site as well the atmospheric conditions present during the sampling. As expected, the 

lowest carbon concentrations were found in the remote areas (Mace Head, Hyytiälä) with respect to 

those collected at the sites closer to anthropogenic emissions. The following plots show these trends 

for the measured total and water-soluble carbon concentrations (fig.28). 
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Figure 28. Box-and-whiskers plots for the total and water-soluble carbon averaged concentrations, left and right 
panel respectively. Box and whiskers denote the 10th , 25th, 50th, 75th, 90th percentiles. Maximum and minimum 
values are represented by the stars while the squares indicate the mean values. 
 
 
In these plots are reported the averaged values obtained within each sampling site. 

Data resulted from samples collected at Mace Head and Hyytiälä were further classified into 

“clean” and “polluted” subsets, based on particulate matter and trace gases concentrations and 

meteorological parameters. In the station of Mace Head, a computer-based sampling system ensured 

the selective collection of background marine particles coming from the so-called “clean sector”. 

Air masses were thus defined “clean” according to the following criteria: a) reaching the site from 

the oceanic sector between 180 and 300 degrees, b) having a total particle number concentration 

below 700 cm-3, and c) having black carbon concentration below 50 ng m-3. As can be seen from the 

figure 1, the background marine particles sampled in clean sector regime showed actually the 

lowest carbonaceous content with respect to the other samples, in terms of both water-soluble as 

well water-insoluble carbon content. 

A rough classification of the samples collected in the Finnish forest station (HYY) was carried out 

by dividing the series in “clean” and “polluted” subsets on the basis of: a) total carbonaceous 

concentrations, b) nitrate and sulphate ions contents as derived from the AMS data, and c) air mass 

backtrajectory analysis (fig.2). A similar approach was adopted by Cavalli et al. (2006) for a 

previous intensive field campaign in Hyytiälä. 

Basically, the average TC and WSOC concentrations of the polluted MHD and HYY series are in 

the same range of those measured in the other continental sites. Among all sites, the series of 

samples collected in Melpitz resulted to have in average the highest TC and WSOC contents. 
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The averaged WSOC/TC ratios are shown for each site in the following plot (fig.29). Two different 

WSOC/TC ranges can be clearly distinguished: a) the samples collected in continental areas, 

including those collected in Hyytiälä when the site were impacted by air masses transported from 

Eastern/Central Europe, and b) the samples collected in marine areas together with HYY samples 

collected in the “clean” period, having the latter (b-type) higher water-soluble organic fractions with 

respect to the former (a-type). 

 
Figure 29. Box-and-whiskers plots for the WSOC/TC averaged ratios. Box and whiskers denote the 10th , 25th, 
50th, 75th, 90th percentiles. Maximum and minimum values are represented by the stars while the squares indicate 
the mean values.  
 

The higher WSOC/TC ratios found in b-type samples reflect likely a major contribution of sources 

of secondary organic carbon (SOC), or vice versa a minor contribution of primary organic carbon 

(POC), with respect to the a-type samples. In fact SOC is expected to be mostly comprised in the 

WSOC fraction, being composed primarily of oxygenated compounds highly water-soluble. 

Another possible contribution to aerosol WSOC is biomass burning smoke. For this reason, 

measurements of WSOC has been used in the past as a proxy for secondary organic carbon after 

correction for the contribution of biomass burning emissions, estimated through EC- or 

levoglucosan- tracer methods (Snyder et al., AST 2009; Decesari et al. 2001; Szidat et al. 2004;n 

Docherty et al. 2008; Stone et al. 2008). 
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3.3.2 Clusters analysis applied to 1H-NMR spectra of ambient organic aerosol 
 

In order to achieve a closer insight to the chemical composition of the water-soluble organic 

compounds constituting the collected ambient aerosol, 1H-NMR spectroscopy has been exploited, 

prodiving a unique data base of 1H-NMR spectra of atmospheric particulate matter samples. 

The spectral features of the various samples has been found to reflect roughly the distinct patterns 

just observed on the basis of the WSOC/TC ratios, i.e. showing the marine particles, and 

particularly those collected in clean sector conditions, the mostly evident distinctive characteristics 

with respect to the rest of the samples. Clusters analysis has been therefore applied to the 1H-NMR 

spectra with the aim to group together samples with similar features obtaining few groups 

representing the different typologies. 

In particular, agglomerative hierarchical clustering has been applied, with a complete linkage 

method and a Pearson-distance metric, as this method should produce well separated, small and 

compact clusters. The algorithm starts with each object (i.e. each 1H-NMR spectrum) in its own 

cluster and in following steps the spectra with the highest similarity degree are joined. Each step 

result in one fewer cluster number than the step before, until at the end all objects are in one cluster. 

The hierarchy of the clusters obtained for the ambient aerosol samples is displayed in the binary tree 

in the following figure (fig. 30). 

 
Figure 30. Dendogram displaying the hierarchy of the clusters obtained from the ambient aerosol samples. The 
terminal nodes at the bottom of the tree are clusters containing a single spectrum. Numbers were assigned to 
each samples instead of their extended labels in order to make the horizontal axis less crowded. The vertical axis 
indicates the similarity level at which the clusters were formed. The horizontal black line cutting the tree at 
about 50% of similarity level serves merely to better visualize the clusters described in the discussion. 
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Cutting the tree at a specified similarity level a certain number of clusters is determined. At a 

similarity level of about 50%, the various spectra merged basically into 3 main groups: 1) one group 

containing only the two samples collected at Mace Head during clean sector conditions (on the left 

of the dendogram), thus linked to a marine biogenic source; 2) one group containing few samples 

collected at Hyytiälä mostly in clean conditions, thus corresponding to a terrestrial biogenic source 

on the right of the dendogram), and 3) one very crowded cluster including the samples collected in 

the continental areas plus the samples collected at Mace Head and in Hyytiälä under polluted 

conditions. 

The resulted three cluster centroid spectral profiles representing the above-listed three source 

typologies are shown in the figure below (fig. 31). 

 

 
Figure 31. Cluster centroid spectral profiles resulting applying hierarchical clustering to the series of 1H-NMR 
spectra of ambient aerosols and cutting the clustering at 50% similarity level. At 2.82 ppm is indicated the peak 
of methanesulfonic acid (MSA). 
 

It is worth to notice that these three cluster centroids correspond to the averaged spectral profiles of 

samples belonging to clusters which have together a very low similarity degree, nevertheless cutting 

the tree at increased similarity levels (e.g. 66%), the same basic pattern is still recognizable, being 

these three main clusters just divided in smaller subgroups. 

Interestingly, applying a further cluster analysis to the samples of group 3, i.e. selecting only the 

samples having a polluted continental source profile, they resulted split into other two main 

subgroups, with one tracing biomass burning products (fig.32). 
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Figure 32. Cluster centroid spectral profiles resulting applying hierarchical clustering to the series of 1H-NMR 
spectra of samples included in group 3, i.e. the samples having a polluted continental profile. 
 

The major organic components of particles emitted by biomass burning are mostly monosaccharide 

derivates (polyols) from pyrolysis of cellulose, thus their 1H-NMR spectra exhibit intense bands due 

to protons adjacent to hydroxyl and alcoxyl groups (H-C-O). Among these polyols, levoglucosan 

has been widely used as tracer for biomass smoke. The signals of levoglucosan have been clearly 

identified in the spectral profile attributed to biomass burning-impacted samples and the 

identification has been confirmed by comparison with the standard compound (fig. 33). 
 

 
Figure 33. Cluster centroid spectral profile of biomass burning-impacted terrestrial polluted samples (brown 
line) and 1H-NMR spectrum of levoglucosan (light blue line). 
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Our findings indicate that biomass burning accounts for a common organic aerosol type in rural 

continental areas, confirming previous studies which have suggested that this source can contribute 

up to 30 % (on annual basis) to the organic matter constituting the European aerosol background 

(Puxbaum et al., 2007).  
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3.3.3 Relationship between functional group distribution and WSOC sources 
 

Functional group compositions of all the collected ambient samples have been calculated by the 

integration of the corresponding bands in the 1H-NMR spectra in order to determine the functional 

group patterns characterizing each cluster of samples, distinguished above merely on the basis of 

their overall spectral profiles (fig. 30). 

 

 
Figure 34. Relative abundances of the protons attributable to the main functional groups(or species) quantified 
in 1H-NMR spectra of ambient WSOC and expressed as percentages of the total signal. In the horizontal axis are 
the series of samples lumped for the various sampling sites. Within each series, the samples are listed from the 
left to the right as decreasing “MSA + amines” content. 
 

In figure 34 are reported the relative concentrations (in % of the total signal) of organic hydrogen 

corresponding to main functional groups of WSOC in the analyzed ambient aerosol samples. The 

samples in the graph are grouped together on the basis of the different sampling sites. and, within 

each series, they are listed from the left to the right side as the “MSA + amines” content decreases. 

The functional group composition of marine atmospheric particles is strongly dominated by the 

MSA signal, particularly in the case of the samples collected at Mace Head with air masses coming 

from the clean sector, where the signal corresponding to MSA and amines represents up to 45% of 

the total signal (first two samples starting from the left). Conversely, the samples collected in the 

other sites show a quite limited variability in the functional group composition. 

Recently, the 1H-NMR functional group compositions of WSOCs from different environments have 

been already explored, providing characteristic 1H-NMR fingerprints for at least three major aerosol 
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sources: emission from the ocean, biomass burning and secondary formation from anthropogenic 

and biogenic emissions (Decesari et al., 2007). The analysis involved two indexes for the aliphatic 

functional group composition, i.e. the fraction of aliphatic carbon accounted for by hydroxyl groups 

(H-C-O/ sum aliphatics) and the fraction of aliphatic carbon accounted for by carbonyls/carboxyls 

groups (H-C-C=O/ sum aliphatics). A third index expressed the ratio of aromatic moieties to total 

aliphatic groups. The observed variability of the composition of few samples selected as 

representative for the above-mentioned sources allowed to assign for each source type specific areas 

of the scatter plot reporting these two indexes (fig. 35). 

 

 
Figure 35. Functional group distribution of WSOCs samples of specific aerosol sources. Diagonal lines represent 
the percentage fraction of total oxygenated groups (H-C-O + HC-C=O). The rectangular areas mark the regions 
assigned to marine OA, SOA, and biomass burning (BB) aerosols. Figure taken by Decesari et al. (2007). 
 
The four sets of samples shown in the figure 35, for which a source apportionment had already been 

performed on the basis of the study of the back-trajectories, the analysis of chemical tracers and the 

emissions known to impact the sampling sites, fall in different areas in the diagram. As can be seen, 

biomass burning samples (Brazil BB) are characterized by the highest hydroxyls to alkyls ratio 

occupying the lower right corner of the diagram. Clean marine aerosol are characterized by the 

lowest fraction of total oxygenated groups appearing in the lower left corner. Anthropogenic and 

biogenic SOA are similarly characterized by a slightly higher content of carbonyls and form a 

crowded region in the middle of the scatter plot. 

The two indexes related to the aliphatic composition have been calculated for the ambient samples 

collected within this thesis work in order to compare their functional group compositions with those 

characteristic of the three main WSOCs sources identified in the study of Decesari et al. (2007). 

73 



Chemical characterization of atmospheric secondary organic aerosol of biogenic and anthropogenic origin 

The measured hydrogen contents of the 1H-NMR functional groups were converted into carbon 

contents using H/C molar ratios on the basis of the corresponding expected stoichiometry, i.e.:  

 
 H-Ar H-C-O H-C-X H-C-C= H-C-C< 

H/C espected molar ratio 0.4 1.1 2 2 2 
 
Moreover the unsaturated carbon (H-C-C=) have been exploited to estimate the amount of the 

oxygenated unsaturated aliphatic groups (H-C-C=O) upon the subtraction of the fraction 

corresponding to the benzylic groups (H-C-Ar), assuming these groups to be proportional to the 

measured aromatic protons (specifically it has been considered one benzylic substituent per 

aromatic ring). 

Functional group distributions for the whole set of ambient samples analyzed in this thesis work are 

plotted in the following figure (fig. 36), together with those obtained for SOA from the laboratory 

studies. The rectangular areas defining the functional group compositions of biomass burning OA, 

marine OA and secondary OA, based on the previous studies, are kept in this figure with the aim of 

comparison between the present and past data sets. 

The Mace Head samples collected on May 2008 show a composition within the same range 

observed in the previous campaigns at the same site, while most of the samples collected at the 

continental polluted sites and in the forest site exhibit a functional group distribution which overlap 

with that previously assigned to SOA, although with a lower carbonyl/carboxyl content compared to 

past studies (Decesari et al., 2007). Finally, only a few samples from the Po Valley (San Pietro 

Capofoume, March-April 2008) show a compositions which appears to be partly affected by 

biomass burning aerosols. The samples collected in the Finnish forest station (HYY 07) appear 

partly included into the SOA sector, but showing scattered plots also in areas of the diagram of 

unexplained assignment. 

The compositions of laboratory-generated SOA did not overlap with any of the areas characteristic 

of ambient oxidized aerosol samples. In particular, anthropogenic SOA, having been generated by a 

single VOC precursor (trimethylbenzene) show the most distinct functional group composition and 

are characterized by the lowest carbonyl/carboxyl content. Conversely, biogenic SOA generated 

from mixtures of monoterpenes (MT-SOA) show the highest amount of oxygenated unsaturated 

groups. Finally, both laboratory-SOA types are characterized by a lower content of hydroxyls 

groups with the majority of the continental ambient OA samples. 
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Figure 36. Functional group distribution of WSOCs samples analyzed within this thesis work, including those 
obtained in laboratory experiments starting from anthropogenic and biogenic precursors (TMB-SOA and MT-
SOA). Distinguishing colours are used for ambient samples collected at different sites. 
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3.3.4 Identification of biogenic SOA based on NMR spectral signatures observed 
in chamber experiments and at pristine forest sites 
 

The set of samples collected at Hyytiälä in spring 2007 was analysed with the main objective of 

deriving an NMR spectral fingerprint for biogenic SOA in an unperturbed, unpolluted, 

environment. 

As already stated in the paragraph 3.3.1, the series of samples were preliminary classified on the 

basis of the back-trajectories analysis. The series of samples has been divided into “clean” or 

“polluted” subsets depending on the origin of the air masses reaching the forest station, and 

considering also the time spent over the land, and its population density encountered along the air 

mass transport (fig. 37). A similar approach was already tested for other measurement intensive 

campaigns held in Hyytiälä (Cavalli et al., 2006; altre referenze). 

 

 
clean air masses

polluted air masses

 
clean air masses

polluted air masses

 
Figure 37. Air mass back trajectories arriving at Hyytiälä calculated by FLEXTRA model from the Norwegian 
Institute of Air Research (http://www.nilu.no/trajectories/index.cfm). Clean period – Artic air masses; Polluted 
period – air masses from Eastern/Central Europe. (Figure taken by Alves et al.) 
 

Further classification was provided by measurements performed in parallel to the filter sampling 

with an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Q-AMS measures mass 

concentrations of non-refractory species including sulphate, nitrate, ammonium ions and organics 

from submicron particles, and can be used to trace the transport of polluted air masses with a sub-

hourly time resolution. 

Total carbon and water-soluble carbon concentrations determined for the filter samples collected in 

Hyytiälä, together with their classification, are listed in the table below (tab.6). 

In summary, many samples were collected in very clean conditions, i.e. those with TC < 1 µgC/m3 

and labelled as background organic aerosol in the table. Moderately polluted air masses were 
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sampled between 15th and 17th of April and an intense pollution outbreak was also observed at the 

beginning of the period (30th March). 

 

WSOC TC 
sample ID sampling start sampling stop 

(µgC/m3) (µgC/m3) 

classification 
extracted from Q-

AMS data 

HYY_29_03_07_D 29/3/07 6:52 29/3/07 17:20  5.3 polluted 

HYY_30_03_07_D 30/3/07 7:02 30/3/07 20:20 6.9 8.6 polluted 

HYY_30_03_07_N 30/3/07 20:30 31/3/07 8:40 0.60 0.82 background 

HYY_31_03_07_D 31/3/07 8:50 31/3/07 19:45 0.53 0.84 background 

HYY_01_04_07_D 1/4/07 8:43 1/4/07 21:09 0.46 0.87 background 

HYY_02_04_07_D 2/4/07 8:40 2/4/07 20:30 0.54 0.83 background 

HYY_02_04_07_N 2/4/07 20:38 3/4/07 8:59 0.71 0.76 background 

HYY_05_04_07_D 5/4/07 9:10 5/4/07 19:12 0.51 0.78 background 

HYY_07_04_07_D 7/4/07 8:00 7/4/07 19:30  0.78 background 

HYY_08_04_07_D 8/4/07 9:05 8/4/07 18:43 0.75 0.89 background 

HYY_11_04_07_D 11/4/07 8:21 11/4/07 19:47 0.83 0.84 background 

HYY_12_04_07_D 12/4/07 8:07 12/4/07 19:04 0.76 0.81 background 

HYY_14_04_07_D 14/4/07 8:54 14/4/07 20:29 0.57 0.97 background 

HYY_15_04_07_m 15/4/07 8:44 15/4/07 12:25 1.3 2.3 high OM, low SO4 

HYY_15_04_07_a 15/4/07 12:29 15/4/07 20:00 1.0 2.0 high OM, low SO4 

HYY_15_04_07_N 15/4/07 20:03 16/4/07 9:20 0.98 2.2 moderately 
polluted 

HYY_16_04_07_m 16/4/07 9:26 16/4/07 12:00 1.5 3.7 moderately 
polluted 

HYY_16_04_07_a 16/4/07 12:06 16/4/07 22:22 0.92 1.9 moderately 
polluted 

HYY_17_04_07_N 17/4/07 21:04 18/4/07 7:05 0.51 1.2 high OM, low SO4 

Table 6. Total carbon and water-soluble carbon values obtained for samples collected in Hyytiälä. Sample code: 
D = day, N = night, m = morning, a = afternoon. 
 

With respect to samples showing low concentrations, the supposed clean samples, not many 

overlaps was found by the straight comparison of their 1H-NMR spectral profiles with those of the 

laboratory biogenic SOA, due likely to the simultaneous presence other sources hindering the 

biogenic one. 

Factor analysis has been applied to the whole collection of 1H-NMR spectra obtained for the 

Finnish samples in order to discern the biogenic SOA contribution from those related to other 
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sources. The factor profiles resulting by applying positive matrix factorization (PMF, EPA 3.0v) on 

binned (low resolution) spectra using a 4-factor solution, are shown in figure 38. The analysis has 

been focused only on the aliphatic zone being the rest of the spectrum quite void of signals. The 

resulted factors have been interpreted as follows: 

1) a first factor was attributed to polluted oxidized organic aerosol (pollution OOA) based on 

the similarity with the spectra recorded for samples collected in polluted conditions in the 

other continental sites. Such factor accounted for most of the signal in the 30th March 

sample and, to a lesser extent, it contributed to the moderately polluted samples collected in 

the final part of the campaign. 

2) a second factor was attributed to unknown species, interpreted as possible contaminants, 

showing features similar to the spectrum of commercial butyl-glycols and occurring 

randomly in a subset of samples. These signals have not been found in blank filters but some 

sampling artefacts or contaminations could not be excluded. 

3) a third factor included the signals of low-molecular weight amines and MSA and provided 

the largest contribution to the background aerosol samples, collected when clean artic air 

masses reached the site. 

4) a fourth factor with spectral features very close to those of the biogenic SOA generated in 

laboratory from the oxidation of terpenes (MT-SOA). The characteristic spectrum of this 

factor correlated well with the spectrum of aged MT-SOA generated in the SAPHIR 

chamber. This factor was then attributed to real biogenic oxidized organic aerosols (biogenic 

OOA). 

 

 
Figure 38. 1H-NMR factors extracted by applying the factor analysis (PMF) to the Hyytiälä samples. The profile 
of the factor attributed to aged MT-SOA is also shown for comparison together with that related to biogenic 
OOA. 
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The apportionment of the water-soluble carbon based on the extracted four PMF factors is shown in 

the figure 39 together with the indication of the three identified regimes.  
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Figure 39. Apportionment of the WSOC based on the extracted 1H-NMR factors with PMF. Absolute 
concentrations (µgC/m3). The three above-described regimes are also reported on the top of the figure. Few 
samples have been excluded from the factorization due to very low signal to noise ratios. 
 

The relative contribution of each factors to the WSOC of the Hyytiälä samples are shown in the 

figure 40. 

 

 
Figure 40. Relative contributions (%) of the PMF factors to the accounted WSOC for the Hyytiälä samples. 
 
Noticeably, the factor associated to amines contributed to the WSOC of samples collected primarely 

during background conditions, while the relative importance of the factor attributed to biogenic 

SOA increased during moderately polluted conditions. 
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These findings suggest that biogenic organic aerosols in Hyytiälä originate from at least two 

independent sources: condensation of amines and the oxidation of reactive terpenes, with the first 

process relatively more important at low aerosol concentration regime. The larger fraction of MT-

SOA under moderately polluted conditions may be explained by the higher level of atmospheric 

oxidants promoting the conversion of terpenes to SOA precursors, and also by the greater amount of 

pre-existing aerosol burden promoting the condensation of semivolatile organic compounds onto 

particles.  

Independent measurements conducted at Hyytiälä during an other intensive observation period held 

in spring 2005 also indicated that factors related to the biogenic and polluted sources are frequently 

mixed and that background aerosol at this pristine forest station is not necessarily enriched in 

biogenic SOA (Raatikainen et al., 2009). In that study, the relative importance of biogenic SOA 

with respect to polluted OOA was deduced applying PMF to the Q-AMS spectra and following the 

m44/(m43+m44) ratio. 

In summary, the findings of that work are in good agreement with those obtained applying PMF 

analysis to 1H-NMR spectra. 
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3.3.5 Ambient organic aerosol vs anthropogenic laboratory-SOA 
 

In order to identify a spectral signature specific for anthropogenic SOA in ambient aerosol, 

multivariate statistical methods have been also applied to the 1H-NMR spectra of the water-soluble 

organic aerosol samples collected in polluted continental sites such as those sampled in San Pietro 

Capofiume during the intensive field campaign carried out from 31st March to 20th April 2008 (SPC 

08). 

These set of samples has been chosen because during this observation period distinct conditions 

typical of continental atmospheric regimes developed. In particular, during the first days of the 

campaign, until 6th April, and in the middle of the sampling period, between 8th and 10th April, 

conditions were favourable for the accumulation of pollutants, while the last days were 

characterized by more ventilation, precipitation and hence removal of pollutants. 

The adopted time resolution sampling was 12 hours, from 8:00 to 20:00 and from 20:00 to 8:00 

(local times, UTC+2), with the aim to collect day and night samples (fig. 41). 

 
Figure 41. Ground temperature (°C) and relative humidity (percentage) trends measured in San Pietro 
Capofiume throughout the campaign held in spring 2008. Hourly data produced by the regional environmental 
agency (ARPA-Emilia Romagna). The light blue and white bars overlapped to the graph refer to night and day 
filter samples, respectively. 
 
The concentrations trends for major submicron aerosol species including sulphate, nitrate, 

ammonium ions and organics as measured by an Aerodyne High Resolution ToF-AMS instrument 

running in parallel with filter sampling are also shown below (fig. 42). 
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Figure 42. On-line aerosol measurements performed with an Aerodyne HR-ToF-AMS running in parallel with 
the filter sampling. The light blue and white bars overlapped to the graph refer to night and day filter samples, 
respectively. 
 

Total carbon and water-soluble carbon concentrations determined for the analyzed filter samples are 

listed in the following table, where it is also reported the sample classification based on supporting 

data such as the aerosol chemical composition provided by the HR-ToF-AMS. 

 

Sample ID sampling start sampling stop WSOC 
(µgC/m3) 

TC 
(µgC/m3) 

Classification extracted from 
atmospheric conditions and AMS data 

SPC_01_4_08_N 01/04/2008 20:00 02/04/2008 8:00 2.0 6.3 Polluted 
SPC_02_4_08_N 02/04/2008 20:24 03/04/2008 7:58  1.4 Polluted 
SPC_04_4_08_D 04/04/2008 8:17 04/04/2008 20:03 1.1 1.3 Polluted 
SPC_04_4_08_N 04/04/2008 20:18 05/04/2008 8:01 2.2 4.9 Polluted 
SPC_05_4_08_D 05/04/2008 8:21 05/04/2008 20:00 1.4 1.8 Polluted 
SPC_05_4_08_N 05/04/2008 20:23 06/04/2008 8:00 2.1 4.2 Polluted 
SPC_06_4_08_D 06/04/2008 8:21 06/04/2008 20:00  2.4 Polluted 
SPC_06_4_08_N 06/04/2008 20:29 07/04/2008 8:00 0.92 0.97  

SPC_07_4_08_D 07/04/2008 8:21 07/04/2008 20:00  0.65 Clean (strong winds) 

SPC_07_4_08_N 07/04/2008 20:28 08/04/2008 8:01  1.6  
SPC_08_4_08_D 08/04/2008 8:22 08/04/2008 20:00  2.9 (rain) 

SPC_08_4_08_N 08/04/2008 20:21 09/04/2008 8:00  4.6 Polluted, high NO3 

SPC_09_4_08_D 09/04/2008 8:31 09/04/2008 19:58 1.9 4.5 Polluted, high NO3 

SPC_09_4_08_N 09/04/2008 20:19 10/04/2008 8:00 1.7 2.5 Polluted, high NO3 

SPC_10_4_08_D 10/04/2008 8:20 10/04/2008 20:00 2.1 3.4 Polluted, high NO3 

SPC_10_4_08_N 10/04/2008 20:22 11/04/2008 8:00 1.2 1.5  

SPC_11_4_08_D 11/04/2008 8:20 11/04/2008 19:35 0.66* 1.8 Clean 

SPC_11_4_08_N 11/04/2008 20:00 12/04/2008 8:01 * 0.67  
SPC_12_4_08_D 12/04/2008 8:25 12/04/2008 19:58 * 1.0  
SPC_12_4_08_N 12/04/2008 20:22 13/04/2008 8:00 0.91* 2.9  
SPC_13_4_08_D 13/04/2008 8:26 13/04/2008 20:00 * 1.2  
SPC_13_4_08_N 13/04/2008 20:22 14/04/2008 8:00 0.82* 1.6  
SPC_14_4_08_D 14/04/2008 8:20 14/04/2008 20:00 * 1.4  

Table 7. Total carbon and water-soluble carbon concentrations (µgC/m3). Diurnal and nocturnal samples are 
marked with N and D in sample labels. Asterisks mark samples extracts which were lumped in order to have 
enough material for NMR analysis. 
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Finally, we applied Positive Matrix Factorization (PMF, EPA 3.0v) to the set of 1H-NMR spectra of 

samples collected at SPC. A simple three-factor solution provided a clear split between the 

following profiles:  

1) a first factor containing significant signals from levoglucosan together with other polyols 

and abundant aromatic compounds. Such factor was attributed to biomass-burning products 

(BB) 

2) a second factor containing sharp peaks assigned to low-molecular weight alkylammonium 

salts and methanesulphonate (MSA) mixed with other aliphatic compounds. Protonated 

alkylamines were speciated into monomethylamine (MMA), dimethylamine (DMA), 

trimethylamine (TMA) and triethylamine (TEA), and can be related to the emissions from 

landfills or incinerators or to those associated to animal husbandry. 

3) a third factor showing NMR bands attributable to oxidized aliphatic moieties with a smaller 

contribution from aromatics, with “typical” features for continental pollution aerosols. 

 

The resulted apportionment of WSOC based on the 3-factor solution and the factors profiles are 

shown in the following figures (fig. 43, 44, 45). Since the carbonaceous material collected in the  

samples was too low for NMR analysis, their extracts were lumped together. The three resulting 

combined samples are hereinafter labelled as 11D+11N+12D, 12N+13D and 13N+14D. 

 
Figure 43. 1H-NMR factors extracted by applying the factor analysis (PMF) to the SPC 08 samples.  
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Figure 44. Apportionment of the WSOC based on the three extracted 1H-NMR factors with PMF. Absolute 
concentrations (µgC/m3). The above-described regimes are also reported on the top of the figure. Few samples 
have been excluded from the factorization due to very low signal to noise ratios. 
 

 
Figure 45. Relative contributions (%) of the PMF factors to the accounted WSOC for the SPC 08 samples 
 

We can observe that the biomass burning (BB) factor contributed largely to the samples from the 

first (colder) period of the campaign and particularly to the nocturnal samples collected on 4th and 

5th April, while the amines factor experienced an increase in the second part of the campaign, when 

high nitrate concentrations were observed, and reaching the highest values in the 10th April samples. 

The third factor did not show a clear temporal trend and characterized the WSOC composition in 

polluted as well as in background conditions. Such factor may result from transported aerosol 

particles from pollution sources distributed over a vast geographic area, compared to the previous 

two factors which appears to be related to more local sources in the rural sector of the Po Valley 

surrounding SPC. 
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Interestingly, the NMR biomass burning factor concentrations correlate well with those of 

levoglucosan as measured both by the integration of the 1H-NMR signal and as well by ion 

chromatography (fig. 46). 

 

 
Figure 46. Correlation between measured levoglucosan concentrations and those corresponding to the biomass 
burning factor expressed in µg/m3 (using OM/OC=1.8) 
 

Several studies conducted in both laboratory and as well in areas with high biomass smoke impact 

have investigated the relationship between levoglucosan and fine particulate matter (Simoneit et al., 

1999; Fine et al., 2001; Schmidl et al., 2005). On the basis of these data, conversion coefficients for 

estimating the contribution of wood combustion from levoglucosan concentrations were derived. 

The conversion coefficients for the conversion of levoglucosan mass concentration to biomass 

smoke differs depending on fuels and combustion type (Puxbaum et al., 2007). The organic matter 

accounted for by biomass burning products (OMBB) in the set of the SPC 08 samples has been 

reconstructed using the 1H-NMR biomass burning factor loadings. The adopted OM/OC ratio was 

1.8 as suggested for highly oxygenated organics (Russell et al., 2003). Interestingly the OMBB 

reconstructed via the NMR-BB factor resulted comprised in the range of OMBB values obtained by 

applying literature conversion coefficients to the measured levoglucosan concentrations (fig. 47). A 

maximum of 13.5 and a minimum of 2.9 were chosen among the available literature 

OC/levoglucosan ratios, on the basis of the expected fuel type for this site. 

These results, indicating that the OMBB is found and quantified similarly by NMR BB factor and by 

levoglucosan concentrations, suggest that the interpretation of the BB NMR factor can be 

considered quite robust. At the same time, NMR analysis provides a new quantitative way to 

estimate the PM fraction accounted for by biomass burning whenever there is significant 

uncertainty in the conversion coefficients to be applied to levoglucosan concentrations in retrieving 

OMBB. 
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Figure 47. Organic matter accounted for by biomass burning products (OMBB) in the SPC 08 samples. Red 
points refer to OM reconstructed from 1H-NMR-BB factor. The grey area limits the OMBB range obtained by 
levoglucosan concentrations and applying literature OC/levoglucosan ratios between 2.9 and 13.5. The OM/OC 
ratio adopted in both cases was 1.8. Samples are marked with progressive numbers in the x-axys. 
 

 

Since none of these three factors showed features resembling those characterizing laboratory-

generated anthropogenic SOA, PMF solutions with increasing number of factors were tested with 

aim to discern new factors with a better correlation with the spectra of anthropogenic SOA formed 

by aromatic hydrocarbon oxidation. 

A 4-factor solution provides an additional split of the former third factor into two OOA types, but 

also a partial refinement of the amine factor, whereas the biomass burning factor is little affected. 

The apportionment of WSOC based on 4-factor solutions of NMR PMF analysis is plotted in fig. 

48. Nevertheless, none of the factors obtained applying PMF with increased solutions numbers 

resulted to overlap with those of TMB-SOA. 
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Figure 48. Apportionment of the WSOC based on the four extracted 1H-NMR factors with PMF. Absolute 
concentrations (µgC/m3). 
 

 

In summary, significant differences in the overall spectral signature of TMB-SOA with respect to 

those of the factors extracted from ambient OOA strongly suggest that a single hydrocarbon 

precursor could be not sufficient to reproduce the complex chemistry of real environments. 
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3.3.6 Chemical classes of WSOCs 
 

Water extracts of both laboratory-generated and selected ambient aerosol samples underwent to 

fractionation by an anion exchange chromatographic method which allowed to quantitatively 

resolve WSOC into few chemical classes according to their neutral/acidic nature. The employed 

HPLC method, already described in details in the experimental section, allowed to separate: 

basic/neutral compounds (N), mono-acidic compounds (MA), di-acidic compounds (DA) and poly-

acidic compounds (PA), i.e. compounds bearing more than two carboxylic functionalities (fig. 49). 
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Figure 49. HPLC chromatogram resulting from the WSOC fractionation of a samples of MT-SOA as example. 
 

In the following histogram, the relative abundances (%) of the chemical classes with respect to total 

fractionated WSOC are summarized two laboratory and two field sample sets (fig. 50). 

 

 
Figure 50. Chemical compositions, in terms of acidity classes, of water-soluble organics extracted from 
laboratory-generated SOA and selected ambient organic aerosols. The vertical black bar in the middle of the 
diagram separate anthropogenic from biogenic samples. N= neutral compounds, MA= mono-acids, DA= di-acids 
and PA= poly-acids. Bars represent the variability among the samples. 
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The laboratory-generated SOA, both anthropogenic (TMB-SOA) as well biogenic (α-pin-SOA and 

MT-SOA), are mainly composed by neutral and mono-acidic species, with di-acids contributing in 

much lesser extent, particularly in the TMB-SOA case. The latter were also characterized by very 

high concentrations of acetate as detected by NMR analyses. Thus TMB-SOA were actually 

constituted by neutral compounds (about 43%) and mono-acids (about 42%) which included about 

4% of acetate as determined from NMR spectra. 

The chemical class distributions in SOA generated by α-pinene as single VOC precursor or by 

mixtures of terpenes resulted very similar, confirming the findings of the NMR analyses, i.e. that 

spectral features varied mostly according to the chemical ageing of the particles over the course of 

each experiment, and to a lesser extent depending on the different biogenic VOCs mixtures 

employed. 

If the overall chemical composition of WSOC of pristine boreal forest samples (HYY 07) resulted 

partly reproduced by those of biogenic laboratory SOA, fewer common features emerged from the 

comparison between the composition of polluted continental OA (SPC 08) and TMB-SOA. 

Compounds carrying more than two acidic (carboxylic) groups (PA) were generally found very 

close or below to the limit of detection in laboratory-SOA while they contributed in much more 

extent to the chemical composition of polluted continental samples. On the basis of their retention 

coefficient, PA correspond to atmospheric humic-like substances (HULIS). Since the presence of 

these high molecular weight compounds has been associated to biomass burning emissions in many 

studies, their occurrence in the HPLC composition of the analyzed ambient samples even suggests 

that residential burning for domestic heating and combustion of agricultural wastes impacted 

significantly the organic composition of the European background aerosols. This is also supported 

by the measurements of the levoglucosan concentrations as obtained by NMR spectroscopy. 

A fraction between 15 and 30% of WSOC was unaccounted for by the employed HPLC method and 

that, among all analyzed samples, laboratory TMB-SOA samples showed the lowest recoveries. 

Unaccounted compounds include substances irreversibly absorbed to the stationary phase, possibly 

polymeric. The occurrence of polymeric material has been already observed in SOA generated by 

aromatic compounds such as trimethylbenzene (Karlberer et al., 2004). Furthermore measurements 

performed on TMB-SOA by laser desorption ionization-mass spectrometry (LDI-MS) have shown 

that a substantial fraction of TMB-SOA mass is composed of polymers. In that study an acetal 

polymerization mechanism with methylglyoxal as the main monomer unit has been proposed to 

explain the formation of these high molecular mass compounds in the particle phase. 

As already described in the section about TMB-SOA, the NMR spectral profiles could be explained 

by the molecular structure of the suggested polymeric substances. The HPLC composition of TMB-
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SOA, showing the predominance of compounds with neutral features, is as well in agreement with 

the assumed occurrence of such substances. Hence the low HPLC recovery observed in TMB-SOA 

could be interpreted as caused by such high molecular weight compounds trapped throughout the 

column by hydrophobic interactions. 
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4 Conclusions 
 

The main objective of this thesis was the chemical characterization of synthetic secondary organic 

aerosol (SOA) produced from atmospherically relevant anthropogenic and biogenic VOCs during 

reaction chamber experiments. In parallel, the resulting chemical features of these laboratory-SOA 

were used to interpret the composition of ambient samples of atmospheric fine particulate matter 

collected at several sites in Europe, in order to determine the fraction of ambient aerosol organic 

mass accounted for by biogenic and anthropogenic SOA. 

 

4.1 Terrestrial biogenic SOA 
 

Biogenic SOA characterized in this thesis were generated from various mixtures of terpenes 

representative for VOCs emitted by conifer tree species, including α/β-pinene, limonene, ∆3-carene, 

ocimene, β-caryophyllene and α-farnesene. These samples showed similar chemical composition in 

terms of 1H-NMR functional groups and HPLC fractions. 

Results indicate that biogenic SOA are mainly formed by polar (water-soluble) organic compounds, 

mostly neutral or carrying one acidic group, although dicarboxylic acids can also contribute to a 

lesser extent. The overall chemical composition of WSOC, in terms of chemical classes, of ambient 

samples collected in pristine forested environments resulted reproduced by biogenic laboratory 

SOA.  

The functional groups distribution of biogenic SOA shows a completely aliphatic composition 

which is consistent with the current knowledge about the terpenes oxidation. Specifically, the 

spectra of biogenic SOA show sharp peaks from individual compounds, including well-known 

species such as pinic and pinonic acids, superimposed to a broad background signal attributable to a 

more complex mixture of degradation products. Results of chamber experiments performed at 

different ranges of concentrations highlighted that laboratory loadings higher than those 

representative of the real atmosphere favour the partitioning of less oxidized species which would 

otherwise remain in gas phase under atmospheric conditions. Under low concentration regimes, the 

NMR spectra of biogenic SOA showed actually the best fit with those of SOA components isolated 

from pristine ambient samples. 

Moreover, the dependence of SOA composition on ageing processes was also investigated 

collecting SOA samples in different time intervals during each experiment with the aim to compare 
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fresh and aged SOA. The NMR spectral features of biogenic SOA resulted to change substantially 

according to the chemical ageing of the particles over the course of each experiment.  

Few ozonolysis experiments were also conducted together with the photo-oxidation ones in order to 

study the effect of the photochemistry on SOA composition. The SOA samples formed by 

ozonolysis show a higher proportion of pinic acid and of similar compounds retaining the original 

structure of α-pinene (two geminal methyls on a substituted ciclobutane ring) with respect to those 

formed during photo-oxidation experiments. 

In summary, all these laboratory experiments provided spectral signatures that were helpful for the 

interpretation of field data. In fact, the series of NMR spectra recorded for submicron aerosol 

particles collected in the boreal forest was subjected to multivariate statistical (positive matrix 

factorization, PMF) and the resulting factors were compared to those obtained for laboratory 

biogenic SOA. The PMF analysis showed the occurrence of multiple factors, some of which tracing 

transported aerosols, or particles produced in situ by biogenic sources (amines) other then terpenes, 

but also one factor whose 1H-NMR features unambiguously fitted those of aged biogenic SOA 

obtained in reaction chambers. Such factor accounted for up to 30% of the particle organic matter in 

the boreal forest during the experiment. Therefore, the contribution of biogenic SOA to total 

organic particulate matter could be estimated for this environment. 

 

4.2 Anthropogenic SOA 
 

A single aromatic hydrocarbon (1,3,5-trymethylbenzene, TMB), having a high SOA formation 

yield, was used as model anthropogenic SOA precursor in chamber experiments. 

The analyses performed showed that TMB-SOA is mostly composed by water-soluble (polar) 

compounds but contain also a significant fraction of insoluble carbon, in particular in fresh TMB-

SOA samples. 

Results from HPLC analysis showed that TMB-SOA is mostly accounted for by neutral and mono-

acidic compounds. Polyacids, also called humic-like substances (HULIS), were generally found 

only in trace amounts in laboratory TMB-SOA despite of their abundance in polluted ambient SOA. 

The occurrence of HULIS in the HPLC composition of the analyzed ambient samples has been 

associated to biomass burning emissions on the basis the 1H-NMR data. 
1H-NMR spectroscopy was also exploited for the functional group characterization of TMB-SOA. 

The TMB SOA present a chemical composition prevalently aliphatic, with most of the bands from 

the alkyl moieties falling in the range of methyls in beta position to oxygen atoms (1.1-1.8 ppm). 

Compounds known from previous studies that can be responsible for the observed 1H-NMR spectral 
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bands of TMB SOA include peroxide bicyclic species and methylglyoxal oligomers. These findings 

confirmed the major routes of SOA formation from aromatic VOCs suggested recently by models. 

Contrary to biogenic SOA, the comparison of the spectral features of TMB-SOA with those of 

polluted ambient samples was inconclusive. In general, the functional group composition of 

ambient samples showed a larger complexity containing significant amounts of aromatic and 

hydroxyl units with respect to TMB-SOA, and suggesting a contribution from additional sources of 

oxidized organic aerosols in polluted areas. The series of NMR spectra obtained from polluted 

ambient samples were processed using a variety of multivariate statistical techniques and factor 

analysis (PCA, cluster analysis, PMF, NMF) aiming to identify recurrent spectral profiles to be 

compared with the reference spectra provided by chamber experiments with TMB and by field 

observations conducted close to sources. Our findings indicate that biomass burning accounts for a 

common organic aerosol type in rural continental areas, confirming previous studies which have 

suggested that this source can contribute up to 30 % (on annual basis) to the organic matter 

constituting the European aerosol background. The remaining 1H-NMR factors correspond to 

spectral types commonly found throughout continental Europe, but that have not been reproduced 

by any laboratory experiments so far and thus their attribution to anthropogenic or natural sources 

remains unclear at the moment. 

Recent modelling studies indicate that the SOA yield increases substantially in polluted 

environments when accounting for the oxidation of volatile organic compounds such as evaporated 

POA (like PAHs and alkanes), beside the simple alkyl-benzenes. This hypothesis awaits 

confirmation from field measurements, and the analytical techniques employed in this thesis work 

assisted by laboratory studies can profitably be used for investigating this new research topic. 
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List of frequently used abbreviations 
 
AMS = Aerosol Mass Spectrometer 

BB = Biomass Burning 

CBW = Cabauw 

CCN = Cloud Condensation Nuclei 

CPC = Condensation Particle Counter 

Dp = Particle diameter 

DEA+ = Diethylammonium 

DMA+ = Dimethylammonium 

DMPS = Differential Mobility Particle Sizer 

EC = Elemental Carbon 

HYY = Hyytiälä 

KPO = K-Puszta 

MBL = Marine Boundary Layer 

MHD = Mace Head 

MPZ = Melpitz 

MSA = MethaneSulfonic Acid 

MT = monoterpenes 

NMF = Non-negative Matrix Factorization 

PCA = Principal Component Analysis 

PMF = Positive Matrix Factorization 

POA = Primary Organic Aerosol 

SMPS = Scanning Mobility Particle Sizer 

SOA = Secondary Organic Aerosol 

SPC = San Pietro Capofiume 

SQT = sesquiterpenes 

TC = Total Carbon 

TOC = Total Organic Carbon 

TMB = Trimethylbenzene 

VOC = Volatile Organic Compound 

WIOC = Water Insoluble Organic Carbon 

WIOM = Water Insoluble Organic Matter (= WIOC * 1.4) 
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WSOC = Water Soluble Organic Carbon 

WSOM = Water Soluble Organic Matter (= WSOC * 1.8) 

WSON = Water Soluble Organic Nitrogen 

 

107 


	FrontespizioTesi x segreteria.pdf
	Akcnowledgements.pdf
	tesi Finessi_stampata segreteria.pdf

