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Restless legs syndrome (RLS) is the most common disorder of movement 

and quiet wakefulness, with a prevalence in the general population of 10–

12% (with a range of 5–20% among different studies), that increases with 

age and is higher in women than in men (Trenkwalder C et al, 2005; Allen 

RP et al, 2003). It is characterised by an irresistible urge to move the legs, 

associated with unpleasant paraesthesias in the legs and sometimes in the 

arms. These sensations occur at rest, in particular in the evening or at night, 

and are relieved by movement. Many patients also have periodic limb 

movements in sleep (PLMS) and wakefulness (PLMW) and they may 

complain of insomnia and/or hypersomnia (Trenkwalder C et al, 2005; 

Allen RP et al, 2003). In the 70-80% of cases it is an idiopathic disorder 

with no apparent cause and in the remaining part is described as a 

symptomatic syndrome associated with pregnancy, uremia, iron depletion, 

polyneuropathy, spinal disorders, and rheumatoid arthritis (Bassetti C et al, 

2001, Trenkwalder C et al, 2005), which is probably more correct to 

consider “risk factors” (Zucconi M, Ferini-Strambi L, 2004). 

 

Historical note 
 

The first clinical description of restless legs is attributed to Thomas Willis, 

which described the syndrome in 1672 (Willis, 1685). In 1861 Wittmaack 

called the disorder "anxiety tibiarum," and wrote that it was a frequent 

symptom of hysteria (Wittmaack, 1861). Oppenheim was the first to define 

the disease as a neurologic illness and the first to recognize the genetic 

component of the disease (Oppenheim, 1923). The first significant clinical 

review of restless legs syndrome was written by Ekbom in 1945. He 

provided the basic modern description of the disorder and first suggested the 

currently accepted term “restless legs syndrome”. His monograph described 

2 forms of the disorder: one form presents with prominent paresthesia, 

"asthenia crurum paresthetica," and the other form presents with prominent 

pain, "asthenia crurum dolorosa" (Ekbom, 1945). In 1953 Nils-Brage 
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Nordlander was the first to propose that iron deficiency may play a primary 

role in restless legs syndrome (RLS) (Nordlander NB, 1953). In 1953 

Symonds described 5 patients with jerking of the extremities during sleep. 

He thought it could represent an epileptic disorder and called it "nocturnal 

myoclonus" (Symonds CP et al, 1953). In 1965, Lugaresi and colleagues 

first videopolysomnographically documented the presence of PLMS 

(adopting the Symonds’ definition) in patients with RLS (Lugaresi E et al, 

1965). 

 

Clinical features and diagnosis 
 

In 1995, clinical diagnostic criteria for the restless legs syndrome were 

established by the International Restless Legs Syndrome Study Group 

(IRLSSG) (Walters AS, 1995), and reviewed in 2003 (Allen RP et al, 2003). 

These include four essential criteria that all must be met and three 

supportive criteria. Furthermore additional significant clinical features are 

associated with the disorder. 

 

Essential diagnostic criteria for RLS 
1) An urge to move the legs, usually accompanied or caused by 

uncomfortable and unpleasant sensations in the legs (Sometimes the 

urge to move is present without the uncomfortable sensations and 

sometimes the arms or other body parts are involved in addition to 

the legs) 

2) The urge to move or unpleasant sensations begin or worsen during 

periods of rest or inactivity such as lying or sitting 

3) The urge to move or unpleasant sensations are partially or totally 

relieved by movement, such as walking or stretching, at least as long 

as the activity continues 
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4) The urge to move or unpleasant sensations are worse in the evening 

or night than during the day or only occur in the evening or night 

(When symptoms are very severe, the worsening at night may not be 

noticeable but must have been previously present) 

 

Supportive clinical features of RLS 
1) Family history: he prevalence of RLS among first-degree relatives of 

people with RLS is 3 to 5 times greater than in people without RLS. 

2) Response to dopaminergic therapy: nearly all people with RLS show 

at least an initial positive therapeutic response to either L-dopa or a 

dopamine-receptor agonist at doses considered to be very low in 

relation to the traditional doses of these medications used for the 

treatment of Parkinson disease. This initial response is not, however, 

universally maintained. 

3) Periodic limb movements (during wakefulness or sleep): periodic 

limb movements in sleep (PLMS) occur in at least 85% of people 

with RLS; however, PLMS also commonly occur in other disorders 

and in the elderly. In children, PLMS are much less common than in 

adults. 

 

Associated features of RLS 
1) Natural clinical course: the clinical course of the disorder varies 

considerably, but certain patterns have been identified that may be 

helpful to the experienced clinician. When the age of onset of RLS 

symptoms is less than 50 years, the onset is often more insidious; 

when the age of onset is greater than 50 years, the symptoms often 

occur more abruptly and more severely. In some patients, RLS can 

be intermittent and may spontaneously remit for many years. 

2) Sleep disturbance: disturbed sleep is a common major morbidity for 

RLS and deserves special consideration in planning treatment. This 
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morbidity is often the primary reason the patient seeks medical 

attention. 

3) Medical evaluation/physical examination: the physical examination 

is generally normal and does not contribute to the diagnosis except 

for those conditions that may be comorbid or secondary causes of 

RLS. Iron status, in particular, should be evaluated because 

decreased iron stores are a significant potential risk factor that can be 

treated. The presence of peripheral neuropathy and radiculopathy 

should also be determined because these conditions have a possible, 

although uncertain, association and may require different treatment. 

 

In summary RLS is a sensorimotor disorder. The sensory components 

include discomfort in the legs with an urge to move that patients report 

using different and sometimes bizarre descriptions: creepy-crawly, ants 

crawling, jittery, pulling, worms moving, soda bubbling in the veins, electric 

current, shock-like feelings, pain, the gotta moves, burning, jimmy legs, 

heebie jeebies, tearing, throbbing, tight feeling, grabbing sensation, elvis 

legs, itching bones, crazy legs, fidgets (Walters AS, 1996). The motor 

component is characterized by the need to walk and involuntary periodic leg 

movements during wakefulness (PLMW) and during sleep (PLMS).  

In the diagnostic process particular attention must be made in order to 

exclude other conditions that may resemble RLS. Indeed, an interview with 

a trained physician is necessary for the correct diagnosis of RLS: if only 

questionnaires with the RLS criteria are given to patients this results in 

approximately 10–25 % false positives due to the so-called “RLS mimics”, 

which include akathisia, nocturnal leg cramps, peripheral neuropathy, 

lumbosacral radiculopathy, painful legs and moving toes, growing pains, 

attention deficit hyperactivity disorder (ADHD) (Hening WA et al, 2009). 

Useful diagnostic tool is the suggested immobilization test (SIT), that 

evaluates periodic leg movements (PLM) and self-reported sensory 

symptoms for people who are instructed to remain still for 1 h while sitting 

on a bed with their legs outstretched (Michaud M et al, 2002). 



 8 

Polysomnography allows accurate assessment of PLMS, scoring them only 

if they occur in a series of four consecutive movements lasting 0.5-5 s, have 

an amplitude of one quarter or more of the toe dorsiflexion during 

calibration and are separated by intervals of 4-90 s. They occur during the 

stages 1-2 of NREM sleep, diminish during stages 3-4 and nearly always 

disappear during REM sleep. An index (number of PLMS per hours of 

sleep) greater than 5 for the entire night is considered pathologic and is 

supportive, although not specific, of the diagnosis of RLS (Zucconi M et al, 

2006). The PLMW, both during the sleep period and the SIT, appear to be 

more specific for RLS, but the data for this finding remain limited 

(Montplaisir J, et al, 1998; Nicolas A et al, 1999).  

With regard to the quantification of RLS symptoms, since it is primarily a 

subjective disorder, a subjective scale represents the optimal instrument to 

measure disease severity for clinical assessment, research, or therapeutic 

trials. Therefore, in 2003 the IRLSSG proposed and validated a rating scale, 

consists of ten questions, whose total score progresses from 0 to 40 with the 

degree of disease severity (Walters AS et al, 2003). 

 

Genetics 
A family history of RLS is present in more than 50% of affected individuals 

(Zucconi M, Ferini-Strambi L, 2004).  RLS is 3-5 times greater amongst 

first degree relatives of subjects suffering from RLS than in subjects without 

RLS (Allen RP et al, 2003) and pedigrees mostly suggest an autosomal-

dominant transmission with high penetrance. The possibility of anticipation 

has been described (Trenkwalder C et al, 1996; Lazzarini A et al, 1999). 

Variations in penetrance and anticipation suggest possible genetic 

heterogeneity (Lazzarini A et al, 1999). RLS has also been reported to have 

a high concordance for monozygotic (61%) and dyzygotic twins (45%) 

(Desai AV et al, 2004). Clinically, familial forms cannot be differentiated 

from sporadic or symptomatic forms (Winkelmann J et al, 2000) except for 
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an earlier age of onset and a more slowly progressive course in familial 

cases (Allen RP and Earley CJ, 2000;  Winkelmann J et al,  2002). 

Linkage analysis actually have detected nine gene loci associated to familial 

forms of RLS (RLS1-9), located on chromosomes 12q, 14q, 9q, 2q, 20p, 4q, 

17p, 19p, 16p, all autosomal-dominant except the first one that is recessive 

(Trenkwalder C et al, 2009; Levchenko A et al, 2009), but no candidate 

gene has been identified.  On the basis of knowledge of the pathophysiology 

of RLS (see below) some candidate genes have been studied - i.e. those 

coding for D1–D5 receptors, DAT, TH, Dopamine β hydroxylase, GTP 

cyclohydrolase, GABA A receptor subunits (α1-6, β 1-3, χ1-3, p1-2), α-1 

subunit of the glycine receptor (chromosome 5q31), MAO-A, MAO-B, 

Neurotensin – without disclosing any mutation or clearly predisposing 

polymorphism (Winkelmann J et al,  2007a; Dhawan V et al, 2006).  

Recently, a genome-wide case-control study of single-nucleotide-

polymorphisms (SNPs) has showed association between RLS and three 

genetic loci: one within MEIS1, one within BTBD9 and one between 

MAP2K5 and LBXCOR1 (Winkelmann J et al, 2007b). Another genome-

wide association study of RLS and PLM reported association with one of 

these genes, BTBD9 (Stefansson H et al, 2007). All these genes have been 

implicated in development mechanisms, raising the possibility that RLS has 

components of a developmental disorder.  Interestingly BTBD9 also affects 

ferritin level and iron storage (Mignot E, 2007). 

 

Pathophysiology 
 

The pathophysiology of RLS is poorly understood. A lot of observations 

point towards an involvement of central nervous structures and networks, 

dopaminergic system and iron metabolism. 
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Central nervous structures and networks 
RLS dysfunction appears to involve the central nervous system, but the 

areas involved are somewhat uncertain. Functional MRI (fMRI) 

demonstrated an activation of the thalamus (legs discomfort), cerebellum 

(legs discomfort and PLM), red nuclei and brainstem (PLM) (Bucher SF et 

al, 1997). A more recent fMRI study, using only a motor paradigm, found 

activation in the thalamus, the putamen, the middle frontal gyrus and the 

cingulated gyrus (Astrakas LG et al, 2008). 

Electrophysiological studies suggest that the movements are involuntary and 

are organized at the brainstem or spinal level (Trenkwalder C et la, 1996). 

Patients with periodic leg movements of sleep, with or without associated 

restless legs syndrome, may have abnormal blink reflexes (Briellmann RS et 

al, 1996). H-reflexes with its modulation (Martinelli p and Coccagna G, 

1976; Rijsman RM et al, 2005; Scaglione et al 2008) and flexor reflex 

(Bara-Jimenez W et al, 2000) are impaired suggesting a brainstem or more 

rostral dysfunction leading to enhanced spinal excitability. Cortical 

prepotentials associated with the PLMS or PLMW have generally not been 

found (Lugaresi et al, 1986; Trenkwalder et al, 1993). Recently a study 

disclosed that in RLS patients the event-related beta and mu 

(de)synchronization amplitudes and durations for voluntary movement were 

greater during the symptomatic period (at 8:30 PM) than during the 

asymptomatic (at 8:30 AM) period and in comparison with healthy controls, 

suggesting the presence of cortical sensorimotor dysfunction (Tyvaert L et 

al, 2009a). Cortical transcranial magnetic stimulation (TMS) studies in RLS 

show that the pyramidal tract is intact, whereas the excitatory and inhibitory 

system seems to be altered, but can be influenced and restored by treatment 

with dopamine-agonists (Nardone R et al, 2006; Kutukcu Y et al, 2006; 

Gorsler and Liepert, 2007; Rizzo V et al, 2009).  

All these studies are consistent with a subcortical dysfunction that alters 

function of the motor pathways. 
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Clinical observations in patients after an ischemic stroke suggest that lesions 

of the subcortical brain areas such as the pyramidal tract, thalamus and the 

basal ganglia-brainstem axis, which are involved in motor functions and 

sleep-wake cycles, may lead to RLS symptoms (Lee SJ et al, 2009; Unrath 

A et al, 2006). A study in patients with multiple sclerosis disclosed a higher 

prevalence of RLS associated to greater cervical cord damage and 

speculated about a possible brain-spinal disconnection (Manconi M et al, 

2008). 

Therefore, RLS appears as a complex movement disorder affecting several 

levels of the neuraxis, even though the precise pathoanatomic location of 

this dysfunction has not yet been determined (Barrière G et al, 2005). 

However, there is evidence for impairment of sensorimotor processing at the 

level of the cortex and the spinal cord, suggesting altered 

subcortical/supraspinal control. 

 

Structural and microstructural abnormalities in MR studies 
Conventional cranial MRI does not identify any structural abnormalities in 

RLS patients. MR studies using advanced techniques reported contrasting 

data. A voxel based morphometry (VBM) study detected a bilateral gray 

matter increase in the pulvinar and the authors assumed that these changes 

in thalamic structures may reflect a consequence of chronic increase in 

afferent input of behaviourally relevant information (Etgen T et al, 2005). 

Successive VBM studies did not confirm this result, but one disclosed 

significant regional decreases of gray matter volume in the bihemispheric 

primary somatosensory cortex, which additionally extended into left-sided 

primary motor areas (Unrath A et al, 2007), another one slightly increased 

gray matter density in the ventral hippocampus and in the middle 

orbitofrontal gyrus (Hornyak M et al, 2007), and yet another one lack of 

specific gray matter alterations (Celle S et al, 2009). 

Only one diffusion tensor imaging (DTI) study of RLS is present in 

literature (Unrath A et al, 2008). In the patient group, multiple subcortical 
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areas of significantly reduced fractional anisotropy (FA) (a quantitative 

marker of white matter integrity) were observed bihemispherically in close 

proximity to the primary and associate motor and somatosensory cortices, in 

the right-hemispheric thalamus (posterior ventral lateral nucleus), in motor 

projectional fibers and adjacent to the left anterior cingulum. The authors 

suggested that these findings gave support to an altered subcortical network, 

with the major component of altered cerebral sensorimotor pathways, within 

a hodological concept of the RLS pathoanatomy (Unrath A et al, 2008). 

Despite these conflicting data the investigation about structural 

abnormalities in RLS remains an actual point of interest, also in light of the 

discovery of a possible role of genes involved in development mechanisms 

(MEIS1, BTBD9, MAP2K5 and LBXCOR1) (Winkelmann J et al,  2007b). 

 

Dopaminergic system 
The dopaminergic system involvement is highly probable because treatment 

with dopamine agonists shows efficacy as confirmed by controlled trials, 

while dopamine antagonists worsen symptoms or may even elecit RLS 

(Barrière G et al, 2005). Many studies reported an increased prevalence of 

RLS in PD patients, although they are difficult to interpret because the 

current diagnostic criteria for RLS have not been validated in PD patients 

and “RLS mimics” could have been affect the results (Möller JC et al, 

2010). PET and SPECT studies revealed some controversial results of the 

pre- and postsynaptic dopaminergic neurotrasmission system. Almost all 

have focused on the striatum, a brain region receiving dense dopaminergic 

innervations, showing slight reduction binding or no difference of both 

presynaptic ([123I]βCIT, [123I]IPT or [99mTc]TRODAT-1 in SPECT studies 

and 18F-dopa in PET studies) and postsynaptic D2 radioligand ([123I]IBZM 

in SPECT studies and 11C-raclopride in PET studies) in RLS patients when 

compared with control subjects (Wetter TC et al, 2004; Hilker R et al, 

2006). Taken together, these results suggest that at level of nigro-striatal 

pathway the membrane dopamine transporter and postsynaptic D2-receptor 
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seem to be either unchanged or mildly reduced in patients with idiopathic 

RLS. The most recent PET study investigated, besides striatal regions by 
11C-raclopride, other extrastriatal dopaminergic regions by FLB 457 (a new 

postsynaptic high-affinity D2 radioligand) and disclosed a higher binding 

potential in patients than controls at level of limbic and associative part of 

striatum,  medial and posterior part of thalamus, anterior cingulate cortex 

and insule, all part of the medial nociceptive system which is thought to 

regulate the affective-motivational component of pain. The authors 

sustained the hypothesis of hypoactive dopaminergic neurotrasmission 

associated to receptor up-regulations (Cervenka S et al, 2006). An 

involvement of the medial nociceptive system was supported also by a PET 

with [11C]diprenorphine, a non-selective opioid receptor radioligand, which 

found regional negative correlations between ligand binding and RLS 

severity in areas serving the medial pain system (medial thalamus, 

amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex and 

orbitofrontal cortex) (von Spiczak S et al, 2005). 

In a recent pathological study, the substantia nigra and putamen were 

obtained at autopsy from individuals with primary RLS and a neurologically 

normal control group and a quantitative profile of the dopaminergic system 

was obtained. RLS tissue, compared with controls, showed a significant 

decrease in D2R in the putamen that correlated with severity of the RLS. 

RLS also showed significant increases in tyrosine hydroxylase (TH) in the 

substantia nigra, compared with the controls but not in the putamen, and 

both with the decrease of D2R, interpreted as a down-regulation, led authors 

to hypothesize an overly activated dopaminergic system as possible part of 

the RLS pathology (Connor JR et al, 2009). The hypothesis of an increase in 

dopamine activity and turnover is consistent with the recent CSF studies 

showing increased 3-Ortho-methyldopa (3OMD) in RLS patients off 

dopamine treatment that correlates well with increased HVA (Allen et al, 

2008). 

These contrasting data could be explained by the difference in the 

methodologies and in selected patients (mild o severe RLS). However, even 
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if cerebral metabolism in RLS probably reflects a dysfunction of the central 

dopaminergic system, it has still to be determined whether these alterations 

affect mainly the nigrostriatal and/or other central dopaminergic systems 

like the diencephalospinal or mesolimbic pathway and whether they are the 

primary mechanisms or only secondary phenomena within the manifestation 

of RLS symptoms.   

In the last years great interest has developed around the involvement of 

diencephalospinal pathway in RLS. Some authors forward the hypothesis 

that RLS reflects a dysfunction of the little-studied dorso-posterior 

hypothalamic dopaminergic A11 cell group (Clemens S et al, 2006). The 

A11 cell group in the dorso-posterior hypothalamus and subparafascicular 

thalamus is the largest, possible sole, source of spinal DA (Skagerberg G et 

al, 1982 and 1985; Qu S et al, 2006). A11 spinal projections innervate all of 

Rexed’s laminae and are most heavily concentrated in the superficial 

sensory-related dorsal horn and the intermediolateral nucleus (IML). They 

modulate sensory inputs and sympathetic drive, predominantly with 

inhibitory action through D2 and especially D3 receptors (Clemens S et al, 

2006). This theory was supported from some animal models which 

disclosed that D3 receptor knockout (D3KO) mice are hyperactive and 

manifest an increased wakefulness across the rest-activity cycle (Accili D et 

al, 1996; Hue GE et al, 2003) and that locomotor activities were 

significantly increased in A11-lesioned mice compared with controls (Ondo 

WG et al, 2000; Qu S et al, 2007). A recent neuropathological study shows 

no evidence of changes in the number and volume of TH (+) neurons, 

neither atrophy nor hypertrophy nor gliosis in the A11 region in the 

posterior hypothalamus of RLS patients compared with age-matched control 

cases (Earley CJ et al, 2009). These results could support a functional 

involvement rather than a degeneration of A11 region.  

 



 15 

Iron metabolism 
The potential central role of iron metabolism involvement in RLS is 

indicated primarily by those secondary forms of RLS in which iron 

insufficiency is clear, but also from some limited pharmacological studies 

which demonstrated that by using intravenous or oral iron, one could 

markedly improve, if not resolve, RLS symptoms, even in those who 

apparently had normal blood levels of iron (Nordlander NB, 1953; Earley 

CJ et al, 2005; Wang J et al, 2009). Several studies showed a relation 

between low ferritin concentrations and symptoms of the syndrome, 

especially when ferritin was measured in the cerebrospinal fluid (CSF). This 

link to the iron deficiency is particularly strong for early-onset RLS (Clardy 

SL et al, 2006a). Studies on CSF showed decreased ferritin, elevated 

transferrin and decreased pro-hepcidin (that interacts with the iron transport 

protein ferroportin on the surface of cells) in patients with RLS (Clardy SL 

et al, 2006b). Neuropathological studies found alterations of iron regulatory 

proteins (decreased ferritin, divalent metal transporter 1, ferroportin, 

transferrin receptor and increased hepcidin) in neuromelanin cells from 

brains of patients (Connor JR et al, 2003 and 2004). Altered iron 

metabolism was disclosed in lymphocytes from subjects with RLS (Earley 

CJ et al, 2008). A recent pathological study showed that RLS substantia 

nigra had more mitochondrial ferritin levels and less cytosolic H-ferritin 

than control samples (Snyder AM et al, 2009). Reduced brain iron in RLS 

patients is also suggested by the data of some MR studies that exploit the 

effect of iron on T2, T2* and T2' (and associate parameters R2, R2* and 

R2'), although with discrepant results. It has been well documented through 

in vitro studies that paramagnetic iron will increase proportionally proton 

transverse relaxation rates (R2=1/T2). Furthermore, ferritin and hemosiderin 

are considered to be the only forms of nonheme iron present in sufficient 

quantities to affect MR contrast in the human brain (Haacke EM et al, 

2005).  In two studies of the same group regional brain iron concentration 

were assessed in RLS patients by R2' measurement, and the mean iron 

content from the substantia nigra was significantly lower in the early-onset 
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RLS patients (< 45 years) and not in the late-onset (Allen RP et al, 2001; 

Earley CJ et al, 2006). In a study performed in patients with late-onset RLS, 

the T2 relaxation time was assessed separately for the two components of 

the SN, and low iron content was found in the SN pars compacta (and not in 

the pars reticolata) (Astrakas LG et al, 2008). Another group, without 

differentiating between early-onset and late-onset, disclosed that mean T2 

values of multiple regions were higher in RLS patients, though significantly 

increased only in four regions (caudate head, thalamus medial, dorsal and 

ventral); the mean T2 over all voxels was higher in patients, indicating a 

multiregional (global) brain iron deficiency in RLS patients (Godau J et al, 

2008). Also transcranial B-Mode sonography was used in RLS patients 

which exhibited substantia nigra hypoechogenicity correlated inversely with 

T2 values and interpreted as related to iron deficiency (Schmidauer C et al, 

2005; Godau J et al, 2008). 

These observations has led to a more general iron-dopamine model of RLS 

and it has been suggested that dopaminergic dysfunction can be mediated by 

low brain iron levels since iron is needed as a cofactor for tyrosine 

hydroxylase (the rate limiting enzyme in the synthesis of dopamine), 

because the D2 receptor is a protein containing iron, and because the 

dopaminergic synaptic protein Thy-1 requires iron for its activity. Hence a 

brain iron deficiency could lead to lowering dopamine production via 

reduced tyrosine hydroxylase activity, down-regulation of dopamine type 2 

receptors and destabilization of dopaminergic synapses (Allen RP, 2004; 

Allen RP and Earley CJ, 2007). 

In support of this hypothesis there are some animal models which reported 

increase of wakefulness in the 4 hours preceding the resting phase of iron-

deficient mice (Dean T et al, 2006), increased locomotor activities in the 

mice that were iron deprived, with a further significantly augmented activity 

after combination of iron deprivation and A11 lesions (Qu S et al, 2007), 

increased locomotor activities in the mice treated with iron-deficiency diet 

(ID), which were reversed by the D2/D3 agonist ropinirole, and a 
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synergistic greater decrease of spinal cord D2 binding in mice underwent 

both ID and 6-OHDA lesion of A11 region (Zhao H et al, 2007). 

Finally BTBD9 gene recently associated to RLS and PLM, affects ferritin 

level and iron storage (Winkelmann J et al, 2007b; Stefansson H et al, 2007; 

Mignot E, 2007). 
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This study was designed to evaluate RLS patients by multiple advanced MR 

techniques in order to investigate three different aspects of the 

pathophysiology of the disease: 

1) To evaluate the presence of structural and/or microstructural 

abnormalities in the brain of RLS patients using voxel-based 

morphometry (VBM) and diffusion tensor imaging (DTI) analysis, 

considering the contradictory data reported in previous studies 

(Etgen T et al, 2005; Hornyak M et al, 2007; Celle S et al, 2009; 

Unrath A et al, 2007 and 2008). 

2) To investigate metabolic functions of the thalamus of RLS patients 

using proton magnetic resonance spectroscopy (1H-MRS), 

considering the possible involvement of this structure disclosed by 

MRI (Bucher SF et al, 1997; Astrakas LG et al, 2008; Lee SJ et al, 

2009; Unrath A et al, 2006) and PET studies (Cervenka S et al, 

2006; von Spiczak S et al, 2005). 

3) To evaluate brain iron content in RLS patients using phase imaging. 

The primary hypothesis was that patients have low whole-brain iron 

levels. Additionally certain regions previously suspected of low 

iron concentrations were assessed separately (Allen RP et al, 2001; 

Earley CJ et al, 2006; Astrakas LG et al, 2008; Godau J et al, 

2008). 

VBM 
VBM is an automated technique that assesses patterns of regional atrophy 

on MRI between groups of subjects. Mainly and more accurately it 

investigates voxel-wise changes in the grey matter volume/topography 

rather than white matter. The procedure is relatively straightforward and 

involves spatially normalizing high-resolution images from all the subjects 

in the study into the same stereotactic space. This is followed by segmenting 

the gray matter from the spatially normalized images and smoothing the 

gray-matter segments. Voxel-wise parametric statistical tests which 

compare the smoothed gray-matter images from the groups are performed. 
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Corrections for multiple comparisons are made using the theory of Gaussian 

random fields (Ashburner J and Friston K, 2000). It is unbiased in that it 

looks throughout the whole brain and does not require any a priori 

assumptions concerning which structures to assess. This gives it a 

significant advantage over more traditional region of interest (ROI) based 

methods, which typically involve drawing around a structure of interest.  

DTI 
Diffusion tensor imaging (DTI) is sensitive to water diffusion characteristics 

(such as the principal diffusion direction and the diffusion anisotropy) and 

has therefore been developed as a tool for investigating the local properties 

and integrity of brain tissues, mainly at level of white matter tracts but also 

at level of grey matter (Pierpaoli P et al, 1996). Post-processing of the 

acquisitions allows the reconstruction of maps of the mean diffusivity (MD) 

and of the white matter anisotropic properties, usually in terms of fractional 

anisotropy (FA) (Mascalchi M et al, 2005). Neuronal and/or axonal loss is 

typically characterised by increased MD and reduced FA, as modification of 

brain tissue integrity reduces the barriers that restrict the movement of water 

(Rizzo G et al, 2008; Agosta F et al, 2009). Maps of MD and FA may be 

analysed using a ROIs approach to evaluate single structures, using a 

histogram approach to evaluate greater portions of the brain or whole brain 

and using voxel-wise analyses for an unbiased approach. We utilised all 

three approaches. For the voxel-wise analyses we used tract-based spatial 

statistics (TBSS), which aims to solve crucial issues of cross-subject data 

alignment, allowing localized cross-subject statistical analysis (avoiding the 

arbitrariness of the choice of spatial smoothing extent), using the ‘‘mean FA 

skeleton’’ approach (Smith SM et al, 2006 and 2007). 

1H-MRS 
Magnetic resonance spectroscopy (MRS) is a noninvasive method that 

permits measurement of the concentration of specific biochemical 

compounds in the brain and other organ systems in precisely defined regions 
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guided by MR imaging. With MR spectroscopy we can measure spectra of 

many biologically interesting isotopes. In vivo biomedical applications are 

mainly focused on proton (1H), phosphorus (31P) and carbon (13C) isotopes 

(Hajek M et al, 2008). The most used in clinical practice is 1H MRS. At 

long echo-time (TE) 1H MRS can detect N-acetyl-aspartate containing 

compounds, choline containing compounds, creatine-phosphocreatine and 

lactate. At short TE, lipids, tryglicerides, glutamate, glutamine, scyllo-

inositol, glucose, myo-inositol, are visible (Bonavita S et al, 1999). The 

most relevant metabolites in neurological studies are probably N-acetyl-

aspartate (NAA), a neuronal marker (Kantarci K et al, 2008), and myo-

inositol (mI) a glial marker (Brand A et al, 1993). 1H MRS can be 

performed with single-voxel, multivoxel, single slice and multislice 

techniques. This technique can be useful in the study a number of central 

nervous system disorders such as epilepsy, brain tumors, stroke, multiple 

sclerosis, degenerative disorders (identification of microscopic pathology 

not visible with MRI) and metabolic diseases (metabolic disturbances with 

specific metabolic patterns) (Lodi R et al, 2009; Bonavita S et al, 1999).  

Phase imaging 
This is a new neuroimaging technique (a part of susceptibility-weighted 

imaging, SWI), which uses tissue magnetic susceptibility differences to 

generate a unique contrast, different from that of spin density, T1, T2, and 

T2* (Haacke EM et al, 2009). It measures the phase shifts in gradient-echo 

images. It seems a very sensitive tool to quantify the iron content of the 

brain (Ogg RJ et al, 1999). Furthermore, while R1 (1/T1) and R2 (1/T2) can 

be reversible depending on the water content and other local structural 

changes that can affect relaxation times (in these cases, the effect of iron 

remains invisible), this is not true for R2’ (R2’=R2*-R2) or phase (Haacke 

EM et al, 2005). Tissue containing (paramagnetic) iron exhibits a negative 

phase in complex images compared to immediately adjacent tissue, which 

will have an increased phase. Phase imaging allows a qualitative evaluation 

based on the unique contrast resulting in the images and a quantitative 
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analysis based on the evaluation of local phase differences (measured in 

radians). 
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Setting, timing and subjects 
 

A total of 25 patients (age 52±10, mean ± SD; 10 males and 15 females) 

(Table 1) were recruited by Sleep Medicine Centre of the Department of 

Neurological Science of Bologna University and they were studied by MR 

in the MR Spectroscopy Unit of the Department of Internal Medicine, 

Aging and Nephrology of Bologna University, from January 2007 to May 

2009. The patients will satisfy the revised criteria of IRLSSG (Allen RP et 

al, 2003). Secondary forms of RLS were excluded by exploring a detailed 

history, by objective evaluation and using laboratory analyses such as 

hemoglobin, iron, ferritin, tranferrin, creatinine, urea and liver enzymes. The 

severity of RLS was assessed on the day of scan using the IRLSSG rating 

scale (Walters AS et al, 2003). 

We have studied also 22 healthy control subjects (age 49±16, mean ± SD; 

14 males and 8 females). 

All control subjects were interviewed by a Sleep Medicine expert in order to 

exclude symptoms suggesting RLS and other neurological disorders. Both 

patients and controls gave written informed consent. Both patients and 

controls not always underwent the complete MR protocol because of time or 

technical problems. So the studied samples differ among the different 

protocols.  

 

MR protocols 
 

Subjects were studied in a 1.5 Tesla GE Signa Horizon LX system equipped 

with a birdcage head radio-frequency coil for signal reception and an 

EchoSpeed gradient system providing a maximum gradient strength of 22 

mT/m and maximum slew rate of 120 mT/m/ms (Figure 1). 

  

1) Structural and microstructural analysis 
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VBM 

Data acquisition. A conventional T1-weighted (T1W) axial volumetric 

image was acquired using the FSPGR sequence TI=600 ms; TE=5.1 ms; 

TR=12.5 ms; 25.6 cm square FOV, 1 mm slice thickness; in-plane 

resolution=256x256.  

Data analysis. Structural data was analysed with FSL-VBM, a voxel-

based morphometry style analysis (Ashburner J and Friston K, 2000) 

carried out with FSL tools (Smith SM et al, 2004) (Figure 2). First, 

structural images were brain-extracted using BET (Smith SM et al, 

2002). Next, tissue-type segmentation was carried out using FAST4 

(Zhang Y et al, 2001). The resulting grey-matter partial volume images 

were then aligned to Montreal Neurological Institute MNI152 standard 

space using the affine registration tool FLIRT (Jenkinson M et al, 2002], 

followed by nonlinear registration using FNIRT 

(www.fmrib.ox.ac.uk/fsl), which uses a b-spline representation of the 

registration warp field (Rueckert D et al, 1999). The resulting images 

were averaged to create a study-specific template, to which the native 

grey matter images were then non-linearly re-registered. The registered 

partial volume images were then modulated (to correct for local 

expansion or contraction) by dividing by the Jacobian of the warp field. 

The modulated segmented images were then smoothed with an isotropic 

Gaussian kernel with a sigma of 3 mm. Finally, voxelwise GLM was 

applied using permutation-based non-parametric testing, correcting for 

multiple comparisons across space, using the program Glm 

(www.fmrib.ox.ac.uk/fsl), applying threshold-free cluster enhancement. 

Sex and age were introduced as covariates. Thresholds for significance 

level were set at P<0.01.  

 

DTI: ROI/histogram analyses and TBSS 

Acquisition. Axial DTI SE-EPI images were obtained (slice thickness = 5 

mm, inter-slice gap = 0 mm) using a single-shot EPI sequence with α = 

90º, TE=89.2 ms; TR=10 s; 32 cm2 FOV, in-plane resolution=192x192, 
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NEX=1, and phase encoding in right-left direction. Six directions-

encoding gradients were applied with gradient strengths corresponding to 

b-values 900 s/mm2. In addition, images without diffusion weighting 

were acquired, corresponding to b = 0 s/mm2 and exhibiting T2-contrast.  

Data preprocessing. Distortions in the DTI-EPI images due to gradient-

induced eddy currents were corrected by slice-wise registration of the DT 

images onto the T2-weighted EPI image using the image registration 

software FLIRT (www.fmrib.ox.ac.uk/fsl). Due to the nature of the 

distortions, the degrees of freedom were restricted to translation, scaling, 

and shearing along the phase encoding direction (Haselgrove et al, 1996). 

Mean diffusivity (MD) and fractional anisotropy (FA) were determined 

pixel-wise using a least-squares fit using the program DTIFIT 

(www.fmrib.ox.ac.uk/fsl). In order to avoid contamination of the MD 

values for grey and white matter by the much higher values of cerebral 

spinal fluid (CSF) during further evaluation, pixels containing CSF were 

masked from the MD map. This was accomplished using the FAST 

algorithm (www.fmrib.ox.ac.uk/fsl) for a two-class segmentation based 

on the corresponding T2-weighted EPI images (Figure 3). 

Manual ROI and histogram analyses. Regions of interest (ROIs) were 

selected manually on T2-weighted EPI images. ROIs were defined to 

include medulla, pons, left and right middle cerebellar peduncle (MCP), 

superior cerebellar peduncle (SCP), dentate nucleus, cerebellar white 

matter, thalamus, caudate, putamen, pallidus, pyramidal tract at the level 

of the posterior limb of internal capsule (PLIC), frontal and parietal white 

matter, optic radiation and corpus callosum (genu and splenium) (Figure 

4-A). Cerebral cortical ROIs were not selected, because substantial 

partial volume effects from subcortical white matter and CSF could not 

be completely avoided. For a global evaluation of brain MD values, 

including cortical areas, histograms of MD were generated for all pixels 

in the sovratentorial and infratentorial compartment (Figure 4-B/C). As 

previously described (Martinelli et al, 2007) infratentorial compartment 

histograms of MD were also generated separately for areas corresponding 
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to brainstem, vermis, and cerebellar hemispheres determined by manual 

segmentation (Figure 4-D). The asymmetry of the MD distribution was 

assessed by finding the 50th percentile values (medians) along with the 

mean (Rizzo et al, 2008) (Figure 4-E). Parametric tests were used as 

Kolmogorov–Smirnov testing showed that means and median values 

were normally distributed. The Student T test was used to evaluate 

differences among two groups and Pearson test to evaluate correlations, 

correcting for multiple comparisons. P values less than 0.05 were 

accepted as statistically significant. 

Tract-based analysis. Voxel-wise statistical analysis of the FA data was 

carried out using TBSS (Tract-Based Spatial Statistics) (Smith SM et al, 

2006), part of FSL (Smith SM et al, 2004). First, FA images were created 

as described in the paragraph 'Data pre-processing'. All subjects' FA data 

were then aligned into a common space using the nonlinear registration 

tool FNIRT (www.fmrib.ox.ac.uk/fsl), which uses a b-spline 

representation of the registration warp field (Rueckert D et al, 1999). 

Next, the mean FA image was created and thinned to create a mean FA 

skeleton which represents the centres of all tracts common to the group. 

Each subject's aligned FA data was then projected onto this skeleton and 

the resulting data fed into voxelwise cross-subject statistics, correcting 

for multiple comparisons, using the program Glm 

(www.fmrib.ox.ac.uk/fsl). Subjects' age and sex were considered 

nuisance variables whose effect was removed from the final group 

comparisons. Thresholds for significant level were set at P<0.01 (Figure 

5). 

 

Automatic segmentations 

Automatic segmentation of the volumetric T1W image was performed 

using FIRST (www.fmrib.ox.ac.uk/fsl) to bilaterally define seven 

subcortical gray matter structures (thalamus, putamen, caudate, pallidus, 

accumbens, hippocampus and amygdala) (Figure 6). In addition, frontal, 

parietal, temporal and occipital lobes, brainstem and cerebellum were 
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defined using the MNI152 template. Within these regions gray matter 

was defined using a three-class segmentation of the T1W images. All 

structures were registered onto the DTI maps in two steps using FLIRT 

(www.fmrib.ox.ac.uk/fsl). White matter partial volume on DTI images 

was masked by registering the MNI FA template onto subjects’ own FA 

map using non-linear registration. Deep gray structures were identified 

by warping the Harvard-Oxford sub-cortical structure atlas (also defined 

in MNI coordinate space). A mask excluding CSF was generated from a 

three-class segmentation of the T2-weighted image volume. ROIs of all 

deep gray and cortical structures was defined in the DTI space by fusing 

registered FIRST, Harvard-Oxford, and CSF and WM exclusion masks 

(Figure 7). For each, volumes and median MD values were calculated. 

Cortical and subcortical volumes were separately corrected for subject 

age and total brain volume, MD values for age only. Statistical analyses 

were performed using SPSS 15.0 for Windows. Parametric tests were 

used as Kolmogorov-Smirnov testing showed that the variables were 

normally distributed. The Student T test was used to evaluate differences 

among two groups. For correlations we used the Pearson test. The 

Bonferroni correction was applied to correct for multiple comparisons. 

Only P values less than 0.05 were accepted as statistically significant. 

 

2) 1H-MRS 

 

Data acquisition. Proton magnetic resonance spectroscopy (1H-MRS) 

study was performed. Single voxel 1H-MRS spectra were acquired using 

the PRESS sequence. The water signal was suppressed by the CHESS 

(Chemical Shift Selective) sequence. A spectrum at short echo-time (TE 

= 35ms; TR = 4 s; number of acquisitions = 128) was acquired in the 

medial region of the thalamus (volume 4.0 to 5.0 cm3) (Figure 8).  

Data analysis. Peak integrals for N-acetyl-aspartate (NAA), creatine-

phosphocreatine (Cr), choline-containing compounds (Cho), and myo-

inositol (mI) were calculated using the operator-independent fitting 
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program LCModel using standard basis sets (Provencher SW, 1993). 

Peak integral values were expressed relative to Cr. The exclusion 

criterion for metabolite evaluation was an LCModel estimated fitting 

error greater than 20%, this being a reliable indicator of poor quality 

spectra. Statistical analyses were performed using SPSS 15.0 for 

Windows. Parametric tests were used as Kolmogorov–Smirnov testing 

showed that the variables were normally distributed. The Student T test 

was used to evaluate differences among two groups. For correlations we 

used the Pearson test. For all analyses, only P values less than 0.05 were 

accepted as statistically significant. 

 

3) Phase imaging 

 

Data acquisition. Anatomical imaging was performed by a T2-weighted 

(T2W) FSE sequence in an axial oblique plane, using acquisition 

parameters: α=90º; echo time (TE): 107 ms; repetition time (TR): 5080 

ms; square FOV: 24 cm; acquisition matrix 320×256; reconstructed in-

plane resolution: 0.938 mm; slice thickness; 4 mm w/o gap. # slices 

variable to cover whole head. NEX: 2. Phase-sensitized images were 

acquired using a gradient echo sequence, and preserving both real and 

imaginary channels. Slice locations matched those of the anatomical 

scan, excluding slices above the central corpus callosum, and below the 

dentate nucleus. Acquisition parameters: TE/TR: 40/60 ms; acquisition 

matrix 512×256; reconstructed in-plane resolution: 0.938 mm; NEX 2; 

bandwidth 15.6 kHz; maximum acquisition time 7’06”.  

Data analysis. Following the published method (Ogg RJ et al, 1999) data 

were high pass filtered by multiplication with a filter function in k-space, 

using tools provided by FSL (FMRIB; U Oxford) and AFNI (NIMH, 

NIH; Bethesda MD), and a phase map prepared using the filtered data. 

T2W data were registered onto the gradient echo data using FLIRT (FSL) 

(Figure 9). Whole brain regions of interest were selected automatically 
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by thresholding T2W data, and excluding pixels whose local filtered 

phase dispersion exceeded a second threshold (indicating low 

signal:noise) (Figure 10). Regions of interest were selected in two ways: 

structures known to accumulate iron (dentate and red nucleus, substantia 

nigra, basal ganglia) were manually segmented using both phase maps 

and T2W images (Figure 11). For whole brain ROIs, the 10th, 50th and 

90th percentile of the filtered phase histogram were calculated, while for 

local ROIs, 25th and 50th percentiles only, as these contained mainly 

negative phase. For each percentile score, patients and control groups 

were compared using the Mann-Whitney U test, and correlation with 

demographic and clinical parameters used the Spearman test. The 

Bonferroni correction was applied to correct for multiple comparisons. 

Statistical analyses will be performed using with SPSS 15.0 for 

Windows, assuming a significant P-value <0.05. 
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Structural and microstructural analysis 
 

Subjects 
22 patients (age 50±9, mean±SD; 7 males and 15 females) and 22 healthy 

controls (age 49±16, mean ± SD; 14 males and 8 females) were studied. 

Mean values and standard deviations of age at onset, disease duration and 

IRLSSG score in RLS patients were 41±12 years, 9±8 years and 22±7 

respectively. 14 patients never took therapy and 8 patients receiving 

dopaminergic therapy were free from drugs from at least 2 weeks before 

scan. 8 patients had a family history of RLS (Table 2). 

 

MR data 
VBM 

No significant difference in volume or density was found in any brain 

area. The lack of differences still remains when age and sex were 

introduced as a cofactor (Figure 12). 

DTI 

For all ROIs selected MD and FA values in RLS patients were not 

significantly different from controls (Table 3). Similarly, the histograms 

of MD and FA in the whole sovratentorial and infratentorial 

compartment and in the brainstem, vermis, and cerebellar hemispheres 

singly were virtually identical for the two groups and no significant 

differences were observed at level of median MD values (Table 3). 

TBSS group comparison revealed no difference in MD and FA of any 

brain area between two groups. The lack of differences still remains 

when age and sex were introduced as a cofactor (Figure 13). 

Automatic segmentation 

No significant difference in volume or MD values was disclosed in any 

segmented structures. (Table 4) 
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1H-MRS 
 

Subjects 
25 patients (age 52±10, mean±SD; 10 males and 15 females) and 18 

healthy controls (age 51±16, mean ± SD; 11 males and 7 females) were 

studied  Mean values and standard deviations of age at onset, disease 

duration and IRLSSG score in RLS patients were 43±13 years, 9±8 years 

and 22±7 respectively. 16 patients never took therapy and 9 patients 

receiving dopaminergic therapy were free from drugs from at least 2 

weeks before scan. 9 patients had a family history of RLS (Table 5). 

 

MR data 
The NAA/Cr and Cho/Cr ratios were significantly lower in the medial 

thalamus of RLS patients compared with the healthy controls (Table 6, 

Figures 14 and 15). We did not detect statistical differences in the other 

ratios. The reduction of the NAA/Cr and Cho/Cr ratios in the thalamus of 

the patients did not correlate with the clinical variables considered (age, 

age at onset, disease duration, IRLSSG rating scale for symptoms 

severity). 

 

Phase imaging 
 

Subjects 
11 patients (age 54±11, mean±SD; 2 males and 9 females) and 11 healthy 

controls (age 51±18, mean ± SD; 6 males and 5 females) were studied  

Mean values and standard deviations of age at onset, disease duration and 

IRLSSG score in RLS patients were 48±11 years, 6±3 years and 21±9 
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respectively. 8 patients never took therapy and 3 patients receiving 

dopaminergic therapy were free from drugs from at least 2 weeks before 

scan. 5 patients had a family history of RLS (Table 7). 

 

MR data 
In the whole brain analysis, RLS patients showed lower phase dispersion, 

characterized by 10th and 90th percentile radians values of significantly 

smaller magnitude than in controls (respectively p=0.01 and p=0.02), 

while the median was no different (Table 8 and Figure 16). In the 

localized ROIs, differences were not significant although there was a 

trend of more negative radians values, prevalently in red nucleus and 

substantia nigra (Table 8). The 10th percentile of whole brain phase in 

RLS patients correlated with disease duration (r=0.60, p=0.04) (Figure 

17), but not with IRLSSG rating scale or other clinical/demographic 

parameters. 



 35 

  

 

 

 

 

 

 

 

 

DISCUSSION 



 36 

In this study we have used advanced MR techniques to investigate various 

aspects of RLS pathophysiology. Firstly, we used a multimodal approach to 

evaluate the possible presence of structural and/or microstructural 

abnormalities in terms of volume and/or DTI parameters alterations using 

ROI/istogram analysis, VBM, TBSS and automatic segmentations of brain 

structures. Neither volume or MD or  FA pathological changes were found 

in any brain structures of RLS patients. Regarding four previous VBM 

studies (Etgen T et al, 2005; Unrath A et al, 2007; Hornyak M et al, 2007; 

Celle S et al, 2009) our data are in accord only with the most recent one 

which found a lack of specific grey matter alterations in RLS patients (Celle 

S et al, 2009). Discrepancies with other studies might on the one hand be 

explained by methodological differences, since the first study, detecting 

increasing pulvinar grey matter, was performed by use of the classical VBM 

technique (Etgen T et al, 2005). All other studies, including our, used the 

optimised VBM protocol (Good CD et al, 2001). Differently from previous 

studies, our study used the software FSL-VBM instead of SPM, although 

the two software packages seem to give similar results (Battaglini M et al, 

2009). For example Cell et al found results very similar to ours, using SPM. 

Another important note regarding the first two VBM works is that in neither 

study did the results survive a correction for multiple comparisons (Etgen T 

et al, 2005; Unrath A et al, 2007). 

Methodological differences are also present between our and a previous DTI 

analysis (Unrath A et al, 2008), which disclosed an FA reduction in the 

sensori-motor cortical regions not confirmed in our study. Indeed, Unrath et 

al used standard registration algorithms that didn’t give a satisfactory 

solution to the question of how to align FA images from multiple subjects 

with an arbitrariness of the choice of spatial smoothing extent. We have 

chosen to used TBSS, which resolves these issues by using the ‘‘mean FA 

skeleton’’ approach (Smith SM et al, 2006 and 2007). Lack of any MD or 

FA abnormalities was confirmed by the ROI and histogram analysis. 

Furthermore for the first time in RLS patients we evaluated volume and DTI 
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parameters at level of cortical and subcortical areas using automatic 

segmentation and again no pathological changes were present. 

On the other hand, these technical aspects alone might not be sufficient to 

explain the different results among different studies. The heterogeneity in 

terms of size and clinical features of the studied samples could be a 

considerable factor. The presence of medical treatment, such as 

dopaminergic agents, is an important issue, because these are known to 

affect the morphology of cerebral structures (Corson PW et al, 1999). In 

some studies (Etgen T et al, 2005; Unrath A et al, 2007 and 2008) almost all 

the patients were on treatment, but not in all cases (Hornyak M et al, 2007; 

Celle S et al, 2009).  In our sample most patients (n=16) never took therapy. 

In the remaining 9 patients treated with dopaminergic drugs, treatment was 

stopped for at least 2 weeks before scan. Other possible differences among 

the studies would regard the severity of symptoms, the percentage of family 

history, and the co-occurrence of other sleep disorders. Finally the possible 

heterogeneity of RLS itself might be reflected in the different results. 

Overall our VBM and DTI data argue against clear 

structural/microstructural abnormalities in the brain of patients with 

idiopathic RLS. 

The second part of our study focused on thalamic involvement. Using 1H-

MRS we detected metabolic changes in the medial region of the thalamus. 

This region is a part of the medial nociceptive system. This system projects 

through medial and intralaminar nuclei of the thalamus to several cortical 

and limbic regions: frontal and insular cortices and anterior cingulate gyrus. 

It is thought to mediate affective-motivational aspects of pain such as 

emotional reactions, arousal and attention to the stimulus, as well as the 

drive to escape from the noxious stimuli (Treede RD et al, 1999; Price DD, 

2000). An activation of these brain structures during pain perception has 

been confirmed by PET and fMRI studies (Apkarian AV et al, 2005).  

H2[15O] PET (San Pedro EC et al, 1998) and fMRI (Bucher SF et al, 1997; 

Astrakas LG et al, 2008) found similar brain activation in RLS patients. A 

PET study with [11C]diprenorphine, a non-selective opioid receptor 
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radioligand, disclosed regional negative correlations between ligand binding 

and RLS severity in areas serving the medial pain system (medial thalamus, 

amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex and 

orbitofrontal cortex) (von Spiczak S et al, 2005). Another PET study which 

used the high-affinity D2-receptors radioligands [11C]FLB 457 reported a 

higher thalamic binding potential in RLS patients than in controls, at the 

level of the medial and posterior portions, other than at the level of limbic 

and associative part of striatum, anterior cingulate cortex and insulae, 

suggesting again an involvement of the medial pain system (Cervenka S et 

al, 2006). Neurophysiological studies have shown an impairment of pain 

and temperature perception in idiopathic RLS, with an absence of peripheral 

nerve fibre damage suggesting a functional impairment of central 

somatosensory processing (Stiasny-Kolster K et al, 2004; Schattschneider J 

et al, 2004; Tyvaert L et al, 2009b). Interestingly one study has disclosed 

increased ratings of pin-prick pain in untreated RLS patients indicating 

static hyperalgesia that was more pronounced in the lower limb and reversed 

by long-term dopaminergic treatment (Stiasny-Kolster K et al, 2004). 

Our MR spectroscopic data confirm a thalamic involvement in RLS 

patients, presumably not due to degenerative changes given that none were 

detected by VBM and DTI studies (see above). This abnormality could be 

an epiphenomenon in the pathophysiology of RLS, in terms of metabolic 

dysfunction secondary to discomfort perception. But it is also possible that 

the involvement of the medial portion of the thalamus could have a primary 

role, because its function is modulated by dopaminergic afferents. Indeed, 

an extensive mesothalamic and nigrothalamic system originates as 

collaterals from A8-A9-A10 neurons (Freeman A et al, 2001). Thus, DA 

axons directly innervate thalamic components of several parallel, 

functionally unique, basal ganglia-thalamocortical loops as follows: motor 

(ventrolateral; VL), ‘prefrontal’ (parvocellular ventroanterior; VApc), and 

‘limbic’ (mediodorsal; MD) in non-human primates and humans (Rye DB, 

2004).   
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From this point of view the thalamic metabolic alteration which we have 

found may reflect an impairment of medial pain system secondary to a 

dopaminergic dysfunction and leading to a abnormal affective-motivational 

sensory-motor processing of the sensory inputs. This could also happen in 

parallel with a dysfunction of other dopaminergic pathways such as the 

diencephalospinal pathway projecting from A11 area to spinal cord in a 

contest of a multilevel demodulation of pain stimuli perception.    

The third part of our study investigated the brain iron content of RLS 

patients and disclosed a global brain iron reduction in these patients 

compared to healthy subjects of a similar age. We used a quantitative 

evaluation of the phase maps obtained by a SWI protocol. Paramagnetic 

tissue causes a dipolar effect and iron presence strictly affects the 

paramagnetic properties of the tissues (Ogg RJ et la, 1999). In our work 

alterations were seen in both the 10th and the 90th percentile of the whole 

brain histogram where the extremes of image phase variation were reduced, 

due to reduced paramagnetic tissue content in RLS subjects. This is 

consistent with a lower iron content compared to normal brains. This 

alteration correlated with disease duration. These data are in agreement with 

the previous MRI studies that found increased T2, T2* and T2' (and reduced 

R2, R2* and R2') in different brain structures including substantia nigra, 

thalamus and caudate (Allen RP et al, 2001; Earley CJ et al, 2006; Astrakas 

LG et al, 2008; Godau J et al, 2008). Variability in these results points 

toward a non localized reduced iron content but most probably a diffuse 

lowering. Indeed despite the small sample size we found an alteration at the 

whole brain analysis, which appears to be more sensitive than the local ROI 

analysis where we did not detect significant differences but only a trend. 

Alterations of iron regulatory proteins such as ferritin, divalent metal 

transporter 1, ferroportin, transferrin, transferrin receptor, pro-hepcidin and 

hepcidin detected in neuromelanin cells and CSF from brains of patients 

(Clardy SL et al, 2006b; Connor JR et al, 2003 and 2004) indicate a basic 

alteration of brain iron homeostasis, probably affecting the control of iron 

movement between CSF and brain and between extracellular and 
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intracellular compartments. Iron deficiency should impair the function of 

some cerebral systems more than others, notably the dopaminergic system, 

because of the strong connection between dopamine and iron (Allen RP, 

2004; Allen RP and Earley CJ, 2007). Under this hypothesis, an 

involvement of all the various  dopaminergic pathways could be present at a 

subclinical level, but only that of networks implicated in sensori-motor 

integration and pain processing would be clearly evident at clinical level, 

either because of a further major susceptibility to iron deficiency in neurons 

in this network, or because of differences in the threshold of perceptibility 

of the dysfunction (sensory dysfunction through pain system rather than 

motor impairment through nigrostriatal system for example). 

A methodological consideration coming from our study is that the histogram 

analysis of the phase maps is a very sensitive tool to evaluate brain iron 

content and is also far less operator dependent. This suggests that this 

imaging protocol may also be useful in all types of neurological disease 

characterized by a pathological increase of iron accumulation, primary 

(neurodegeneration with brain iron accumulation) or secondary 

(neurodegenerative diseases), as a biomarker of disease progression and for 

assessment of pharmacological interventions with chelating drugs. 

In summary, putting together the results of all the different MR protocols 

adopted in this study, we can support a pathophysiological model of RLS 

which is consistent with low brain iron content in the brains of these 

patients. The iron deficiency may lead to a functional impairment, in the 

absence of structural and/or microstructural abnormalities. Via 

dopaminergic dysfunction, this functional impairment affects the central 

mechanisms of sensori-motor integration and pain processing involving a 

number of brain structures including the medial thalamus (part of medial 

pain system). 
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Table 1. Patients recruited for MR studies. All patients performed the 1H-

MRS study. *=performed structural-microstructural study. #=performed 

phase imaging study. 

 

DA drugs = dopaminergic drugs; IRLSSGRS = International Restless Legs Syndrome 

Study Group Rating Scale 

 

Patients Age (y) Sex 
Age at 

onset (y) 

Disease 

length (y) 
Therapy 

Family 

history 

IRLSSGRS 

score 

1*  48 M 45 3 / No 22 

2* 49 F 39 10 / No 21 

3* 46 M 15 31 DA drugs Yes 26 

4* 43 F 40 3 / No 24 

5* 43 F 35 8 / No 26 

6* 55 F 48 7 / No 23 

7* 43 F 19 24 DA drugs No 25 

8* 56 M 40 16 DA drugs Yes 21 

9* 31 M 30 1 / Yes 22 

10* 50 F 24 26 DA drugs No 26 

11 66 M 59 7 DA drugs Yes 28 

12* 50 M 49 1 / No 8 

13* 58 M 56 2 DA drugs No 24 

14* 67 M 57 10 / No 20 

15*# 65 F 58 7 / Yes 24 

16*# 50 F 40 10 DA drugs No 24 

17# 58 M 54 4 / No 22 

18# 69 F 66 3 / No 10 

19*# 56 M 51 5 DA drugs No 30 

20*# 48 F 38 10 / No 28 

21*# 49 F 45 4 / Yes 9 

22*# 45 F 40 5 / No 12 

23*# 31 F 25 6 / Yes 11 

24*# 62 F 50 12 DA drugs Yes 35 

25*# 61 F 57 4 / Yes 21 

Mean 52  43 9 9/16 9/16 22 

SD 10  13 8 / / 7 



 43 

Figure 1. 1.5 Tesla GE Signa Horizon LX system equipped with a birdcage 

head radio-frequency coil for signal reception. 

 

 

 

 

 

Figure 2. Schematic illustration of methodological steps of FSL-VBM 

(from www.fmrib.ox.ac.uk/fsl). A: Original T1-weighted volumetric 

images; B: Segmented grey matter partial volume; C: spatially smoothed 

grey matter partial volume; D: Regions of significant group difference in 

GM volume (colour) superimposed on template T1-weighted image. 

 

A B C 

D 
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Figure 3. Schematic illustration of preprocessing of DTI images for FA/MD 

analysis. A: DTI image. B: T2W image. C: MD map. D: First eigenvector 

map weighted by FA. 

 

 
 

 

Figure 4. A: Example of manual segmentation of ROIs. B-D: manual 

segmentation of whole left and right hemispheres (B), whole infratentorial 

compartment (C) and of the areas corresponding to brainstem, vermis, and 

cerebellar hemispheres separately for histogram analysis (D). E: example of 

cerebral hemisphere histograms in a healthy control. 
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Figure 5. Schematic illustration of methodological steps of TBSS (from 

www.fmrib.ox.ac.uk/fsl).  

 

 

 

 

Figure 6. Example of three dimensional projection of automatically 

generated subcortical structures (colour) onto T1-weighted volumetric 

image (greyscale). 
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Figure 7. Data pipeline to create automatic ROIs. 

 

 

 

 

 

 

Figure 8. Localization of medial thalamic VOI (volume of interest) for 1H-

MRS study (A) and example of spectrum (B) in a control subject. NAA = 

N-acetyl-aspartate; Cr = creatine-phosphocreatine; Cho = choline-

containing compounds; mI = myo-inositol. 
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Figure 9. Schematic illustration of preprocessing of phase images. A-B: real 

and imaginary images; C-D: Low pass filtered images; E: phase map; F-H: 

details of iron-rich structures (F: basal ganglia, G: substantia nigra and red 

necluei, H: dentate nuclei). 

 

 

 

 

 

Figure 10. Whole brain ROI (A) and derived phase histogram from a 

healthy control (B). 
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Figure 11. Manual segmentation of ROIs at level of iron-rich structures (A: 

basal ganglia, B: substantia nigra and red necluei, C: dentate nuclei). 

 

 

 

 

 

 

 

 

Table 2. Clinical data of the RLS patients and controls of the 

structural/microstructural study. 

Subjects 

(N) 

Age 

(years) 

Sex 

(M/F) 

Age at 

onset 

(years) 

Disease 

duration 

(years) 

IRLSSG 

score 

Therapy 

(DA 

drugs) 

(N) 

Positive 

family 

history 

(N) 

RLS 

patients 

(22)  

50±9 7/15 41±12 9±8 22±7 8 (36%) 8 (36%) 

Healthy 

controls 

(22) 

49±16 14/8 / / / / / 

M, male; F, female; DA drugs = Dopaminergic drugs; IRLSSGRS = International Restless 

Legs Syndrome Study Group Rating Scale. All data are given as mean ± SD.  
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Figure 12. VBM analysis disclosed no differences between two groups. 

Thresholds for significance level were set at P<0.01 after correction for 

multiple comparisons across space, and applying threshold-free cluster 

enhancement. 
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Table 3. MD and FA values for control and RLS groups by ROI and 

histogram analysis of DTI images. 
 

*Student T test (a P-value of <0.05 after correction for multiple comparisons was 

considered to be significant). MD= Mean diffusivity; FA= Fractional anisotropy. # = Mean 

of the left and right values. ## = Mean of the genu and splenium. All data are given as mean 

± SD. 

 

 
  
 
 
 
 
 
 

 

 

 
ROIs 

MD (x10-3 mm2/s) FA 
 

P* 
 Controls RLS patients Controls RLS patients 

Mean values 
Medulla 0.84±0.07 0.86±0.08 0.46±0.12 0.44±0.10 n.s. 
Dentate nucleus# 0.69±0.06 0.74±0.06 0.34±0.07 0.31±0.07 n.s. 
Pons 0.87±0.06 0.91±0.05 0.43±0.07 0.47±0.08 n.s. 
Middle cerebellar peduncle# 0.74±0.06 0.78±0.05 0.60±0.04 0.57±0.07 n.s. 
Superior cerebellar peduncle# 0.69±0.03 0.69±0.05 0.48±0.10 0.43±0.10 n.s. 
Cerebellar white matter# 0.81±0.04 0.77±0.06 0.67±0.07 0.69±0.06 n.s. 
Posterior limb of internal capsule# 0.69±0.03 0.71±0.03 0.68±0.04 0.52±0.07 n.s. 
Thalamus# 0.78±0.02 0.78±0.05 0.32±0.02 0.70±0.04 n.s. 
Putamen# 0.75±0.02 0.75±0.02 0.24±0.03 0.33±0.03 n.s. 
Globus pallidus# 0.73±0.03 0.75±0.04 0.38±0.04 0.23±0.03 n.s. 
Caudate# 0.79±0.03 0.80±0.03 0.24±0.03 0.38±0.04 n.s. 
Parietal white matter# 0.85±0.07 0.84±0.06 0.39±0.07 0.22±0.02 n.s. 
Frontal white matter# 0.78±0-04 0.76±0.03 0.29±0.04 0.41±0.05 n.s. 
Corpus callosum## 0.82±0-05 0.83±0.04 0.76±0.03 0.29±0.04 n.s. 
Optic radiation# 0.83±0.04 0.83±0.03 0.55±0.04 0.76±0.05 n.s. 

Median values 
Sovratentorial compartment 0.89±0.05 0.86±0.03 0.23±0.02 0.24±0.02 n.s. 
Infratentorial compartment 0.87±0.05 0.87±0.05 0.29±0.04 0.31±0.04 n.s. 
Brainstem 0.90±0.05 0.87±0.05 0.44±0.04 0.45±0.02 n.s. 
Vermis 0.98±0.11 0.96±0.07 0.23±0.03 0.24±0.04 n.s. 
Cerebellar hemispheres 0.81±0.03 0.83±0.05 0.29±0.05 0.30±0.05 n.s. 
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Figure 13. TBSS analysis of DTI images disclosed no differences between 

two groups. Thresholds for significance level were set at P<0.01 after 

correction for multiple comparisons across space, and applying threshold-

free cluster enhancement. 
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Table 4. MD values and volumes for control and RLS groups selected by 

automatic ROI segmentation. 

 
Volume (mm3) 

 Controls RLS patients 
P* 

 Mean ±SD Mean ±SD 
Occipital lobe# 101259 12651 98645 9738 n.s. 

Parietal lobe# 149318 15213 148619 14795 n.s. 
Temporal lobe# 141164 11859 140741 15285 n.s. 

Frontal lobe# 239190 26608 239435 23835 n.s. 
Caudate# 7199 708 6712 819 n.s. 
Pallidus# 3572 447 3450 391 n.s. 
Putamen# 9680 1315 9441 926 n.s. 

Thalamus# 15572 1829 14862 1333 n.s. 
Accumbens# 1033 185 1101 156 n.s. 

Hippocampus# 7822 1077 7633 518 n.s. 
Amygdala# 2775 389 2630 474 n.s. 
Brainstem 23566 2804 21650 9455 n.s. 

Cerebellum 110160 11203 104524 10450 n.s. 
MD (x10-3 mm2/s) 

 Controls RLS patients 
P* 

 Mean ±SD Mean ±SD 
Occipital lobe# 0,84 0,04 0,81 0,03 n.s. 

Parietal lobe# 0,79 0,04 0,77 0,03 n.s. 
Temporal lobe# 0,85 0,03 0,83 0,02 n.s. 

Frontal lobe# 0,80 0,04 0,79 0,02 n.s. 
Caudate# 0,77 0,02 0,80 0,02 n.s. 
Pallidus# 0,77 0,06 0,76 0,02 n.s. 
Putamen# 0,75 0,02 0,74 0,02 n.s. 

Thalamus# 0,79 0,05 0,78 0,04 n.s. 
Accumbens# 0,80 0,05 0,80 0,03 n.s. 

Hippocampus# 0,92 0,04 0,91 0,04 n.s. 
Amygdala# 0,86 0,05 0,87 0,04 n.s. 
Brainstem 0,83 0,03 0,85 0,05 n.s. 

Cerebellum 0,79 0,03 0,80 0,04 n.s. 
*Student T test (a P-value of <0.05 after correction for multiple comparisons was 

considered to be significant). MD= mean diffusivity. # = Mean of the left and right values. 
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Table 5. Clinical data of the RLS patients and controls of the 1H-MRS 

study. 

Subjects 

(N) 

Age 

(years) 

Sex 

(M/F) 

Age at 

onset 

(years) 

Disease 

duration 

(years) 

IRLSSG 

score 

Therapy 

(DA 

drugs) 

(N) 

Positive 

family 

history 

(N) 

RLS 

patients 

(25)  

52±10 10/15 43±13 9±8 22±7 9 (36%) 9 (36%) 

Healthy 

controls 

(18) 

51±16 11/7 / / / / / 

M, male; F, female; DA drugs = dopaminergic drugs; IRLSSGRS = International Restless 

Legs Syndrome Study Group Rating Scale. All data are given as mean ± SD.  

 
 
 
 
 
 
 
 
 
 
 
Table 6. 1H-MRS results in RLS patients and healthy controls. 
 

Ratios 
 Controls RLS patients 

P* 
 Mean ±SD Mean ±SD 
NAA/Cr 1.39 0.11 1.24 0.16 <0.01 
Cho/Cr 0.31 0.04 0.29 0.03 <0.05 
mI/Cr 0.83 0.17 0.78 0.13 n.s. 
*Student T test (a P-value of <0.05 was considered to be significant). NAA = N-acetyl-

aspartate; Cr = creatine-phosphocreatine; Cho = choline-containing compounds; mI = myo-

inositol. 
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Figure 14. Examples of medial thalami spectra in one RLS patient and one 

control. NAA = N-acetyl-aspartate; Cr = creatine-phosphocreatine; Cho = 

choline-containing compounds; mI = myo-inositol. 

 
 

 
 
 
 
 
 
 
 
 
Figure 15. Box-plots of 1H-MRS data of RLS patients and controls (A: 

NAA/Cr; B: Cho/Cr). 

 

 
**=P<0.01; *=P<0.05 

 

 

**  
*  
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Table 7. Clinical data of the RLS patients and controls of the phase imaging 

study. 

 

Subjects 

(N) 

Age 

(years) 

Sex 

(M/F) 

Age at 

onset 

(years) 

Disease 

duration 

(years) 

IRLSSG 

score 

Therapy 

(DA 

drugs) 

(N) 

Positive 

family 

history 

(N) 

RLS 

patients 

(11)  

54±11 2/9 48±11 6±3 21±9 3 (27%) 5 (46%) 

Healthy 

controls 

(11) 

51±18 6/5 / / / / / 

M, male; F, female; DA drugs = dopaminergic drugs; IRLSSGRS = International Restless 

Legs Syndrome Study Group Rating Scale. All data are given as mean ± SD.  

 
 
 
 
 
 
Table 8. Phase image analysis of RLS patients and controls. 

 

Phase (radians) 
 Controls RLS patients 

P* 
 Mean ±SD Mean ±SD 
Dentate nucleus 25th# -0,172 0,033 -0,165 0,024 n.s. 
Dentate nucleus 50th# -0,060 0,027 -0,062 0,022 n.s. 
Red nucleus 25th# -0,265 0,055 -0,234 0,056 n.s. 
Red nucleus 50th# -0,141 0,039 -0,132 0,043 n.s. 
Substantia nigra 25th# -0,287 0,046 -0,243 0,077 n.s. 
Substantia nigra 50th# -0,138 0,042 -0,119 0,072 n.s. 
Basal ganglia 25th# -0,205 0,026 -0,203 0,028 n.s. 
Basal ganglia 50th# -0,075 0,015 -0,081 0,016 n.s. 

Histogram of whole brain 
10th percentile -0,220 0,007 -0,208 0,010 0.01 
50th percentile 0,000 0,003 0,002 0,001 n.s. 
90th percentile 0,214 0,009 0,200 0,009 0.02 
*Mann–Whitney U test (a P value of < 0.05 after correction for multiple comparisons was 

considered to be significant). # = Mean of the left and right values. 
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Figure 16. Box-plots of 10th, 50th and 90th values from histograms of phase 

in RLS patients and controls. 

 

 
**=P<0.05 

 

 

 

 

 

Figure 17. Correlation between 10th values from histograms of phase in 

RLS patients and disease duration (Spearman rank test). 
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