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1. INTRODUCTION 

 

1. 1. THE CENTRAL AUTONOMIC NETWORK 

1.1.1. Epileptic seizures and the central autonomic network 

During epileptic seizures various autonomic symptoms (cardiovascular, gastrointestinal, 

respiratory, urogenital, sexual, cutaneous) frequently occur either as an accompaniment to 

other seizure symptoms or as the predominant seizure manifestation. These symptoms do 

not seem to represent simple reactions to motor manifestations of seizures, but are 

probably the consequence of seizures originating or secondarily involving the cerebral 

areas of the central autonomic network (CAN) [1-3].  

Investigating autonomic symptoms could yield important clinical information on the 

localization and lateralization of the seizure onset zone and help in the differential 

diagnosis with other non-epileptic events. It could also serve to clarify the pathophysiology 

of serious complications of epilepsy such as sudden unexplained death (SUDEP), seizure-

induced cardiac arrhythmias or neurogenic pulmonary edema [4]. 

The present study will focus on the ictal cardiovascular manifestations of nocturnal frontal 

lobe epilepsy (NFLE), a distinct partial epileptic syndrome whose clinical features 

comprise a spectrum of paroxysmal motor manifestations of variable duration and 

complexity, occurring mainly during sleep [5]. Areas of the CAN implicated in 

cardiovascular manifestations during NFLE seizures will then be reviewed (Figure 1). 
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Figure 1. From Britton and Benarroch [6]: Cortical and subcortical structures potentially 

involved in cardiovascular manifestations during seizures. IML: intermediolateral cell 

columns; PVN: paraventricular nucleus; VLM: the rostral ventrolateral medulla.       
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1.1.2. Functional anatomy of the central autonomic network 

The CAN comprises several interconnected cortical and subcortical regions devoted to the 

tonic, reflex and adaptive control of autonomic functions [7]. In particular, the insular 

cortex, prefrontal cortex (ventromedial prefrontal cortex and anterior cingulate gyrus) and 

amygdala are involved in modulating cardiac sympathetic and parasympathetic outflow. 

These areas integrate cardiovascular responses related to behavior and emotion through 

connections with the following regions: 

- The lateral hypothalamic area; 

- The periaqueductal gray matter (PAG), the parabrachial region of the dorsolateral 

pons and the nucleus of the solitary tract (NST) in the brain stem; 

- The “effector” regions of the medulla and the spinal cord: the nucleus ambiguous 

(NA), the rostral ventrolateral medulla (VLM) and the intermediolateral cell 

columns (IML) [8]. 

1.1.2.1. The insular cortex and the hypothesis of hemispheric lateralization in 

cardiovascular control 

Neuroanatomical tracer and electrophysiological studies in animals and functional 

neuroimaging in humans indicate that the insular cortex can be viewed as a primary 

viscerosensory area receiving gustatory and general visceral afferents. This information 

reaches the insular cortex through projections from the lamina I of the spinal cord, the 

NST, the parabrachial nucleus and the lateral hypothalamic area that relay in the 

parvocellular subdivision of the ventroposterior complex of the thalamus. The insular 

cortex contains topographically organized representations of taste, pain, temperature, itch 

and sexual and visceral sensations. In addition, the insular cortex is part of the second 
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somatosensory area as it receives complex somatosensory inputs from the contralateral 

body via projections from the parietal lobe [8]. 

The insular cortex has reciprocal connections with the other areas of the CAN involved in 

cardiovascular control, the ventromedial prefrontal cortex and anterior cingulate gyrus, and 

projects to the amygdala, the lateral hypothalamus, and the PAG [8]. Therefore electrical 

stimulation of the insular cortex elicits changes in heart rate and blood pressure.  

There is experimental and clinical evidence that the insular cortex may exert a lateralized 

influence on cardiovascular autonomic control. In humans, cortical intraoperative 

stimulation of the left insular cortex elicited heart rate (HR) decrease and hypotension, 

whereas stimulation of the right insular cortex resulted in tachycardia and hypertension, 

suggesting a lateralization of parasympathetic activity to the left insular cortex and 

sympathetic activity to the right [9]. A right insular influence on sympathetic parameters 

was also documented with FMRI and PET techniques [10-11]. 

However, studies investigating changes in modulation of the cardiovascular system after 

stroke have yielded conflicting results with respect to hemispheric lateralization. A 

reduction in parasympathetic cardiovascular function and an increased risk of complex 

arrhythmia and sudden death was found in patients after right hemispheric stroke [12-15] 

while left insular lesions led to increase sympathetic cardiac modulation [16-17] and 

sudden death [18].  Other studies confirmed the association between cardiac autonomic 

dysregulation and cerebral infarction irrespective of the side of the lesion [19]. Even 

studies using unilateral intracarotid amobarbital hemispheric inactivation (Wada test) 

failed to establish accordance in hemispheric lateralization of sympathetic and vagal 

modulation of the heart [20-23]. 

Lastly, an anteroposterior distribution of response within the insular cortex of each side 

was observed, with an increase in sympathetic parameters more often elicited from the 
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anterior part of the right insular cortex and bradycardia from the posterior part of the left 

[9]. 

1.1.2.2. The prefrontal cortex: the ventromedial prefrontal cortex and the anterior 

cingulate gyrus 

The medial prefrontal cortex is considered a “visceral motor cortex” and includes the 

ventromedial prefrontal cortex and the anterior cingulate gyrus. 

The ventromedial prefrontal cortex is the site of convergence and integration of processed 

exteroceptive and visceroceptive information and is involved in high level emotional and 

cognitive functions. In humans lesions of this area abolish autonomic preparatory reactions 

in response to emotionally significant stimuli [24]. 

The anterior cingulate gyrus, the “executive” region of the cingulate gyrus, sends 

projections to the hypothalamus, PAG, parabrachial nucleus, NST, NA and rostral VLM. 

Bilateral electrical stimulation of the rostral portion of the anterior cingulate cortex, 

applied before frontal gyrectomy in psychotic patients, elicited autonomic responses 

including increases or decreases in heart rate, blood pressure and respiratory rate. 

Complete respiratory arrest was also observed [25]. Moreover bradycardia and asystole 

was induced in a patient during electrical stimulation of the left cingulate gyrus as part of 

presurgical evaluation of drug-resistant epilepsy [26].  These autonomic responses were 

previously obtained during electrical stimulations of the anterior cingulate cortex in 

animals [27-29]. 

Neuroimaging studies with PET and fMRI investigated autonomic-related cortical activity 

with experimental paradigms measuring different parameters of physiological arousals 

(blood pressure, heart rate, skin conductance activity) in response to several tasks 

(decision-making, arithmetic and motor tasks). These studies reported increased activity in 
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the rostral anterior cingulate region and ventral prefrontal cortex to correlate with 

autonomic measures and suggested the involvement of these regions in the modulation of 

cardiovascular responses to arousal stimuli, irrespective of the nature of the demands [10, 

30-34]. Moreover, patients with focal damage to the anterior cingulate gyrus presented 

blunted autonomic arousal response to tasks requiring mental stress [33]. 

A recent study recording directly skin conductance activity and heart rate changes in 

response to multi-voltage stimulation of the anterior cingulate cortex during stereotactic 

limbic surgery in psychotic patients found a voltage-response relationship [35]. These data 

confirmed the crucial role of the anterior cingulate cortex in the neuroanatomical circuitry 

responsible for autonomic modulation [35].  

1.1.2.3. Other cerebral regions involved in cardiovascular modulation 

The amygdaloid complex consists of different subnuclei with specific afferent and efferent 

connections whose function is to interpret the affective significance of incoming sensory 

information and to generate the appropriate autonomic and behavioral responses. The 

central nucleus of the amygdala is the primary effector region of this complex and, 

together with the bed nucleus of the stria terminalis, forms an anatomofunctional unit, “the 

extended amygdala”, responsible for the autonomic response to emotion [8]. In particular, 

the amygdala is part of a complex circuit comprising the orbital prefrontal cortex and 

anterior cingulate gyrus that plays a crucial role in integrated response to aversive stimuli, 

including the conditioned fear response [36]. Electrical stimulation of the central nucleus 

of the amygdala in animals resulted in variable blood pressure and heart rate changes [37-

38]. 

The hypothalamus contains several regions controlling autonomic functions, namely the 

paraventricular nucleus (PVN), dorsomedial nucleus and lateral hypothalamus which are 
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closely interconnected and project to the brain stem and spinal autonomic nuclei. These 

areas are involved in integrated autonomic responses to stress and mechanisms of 

behavioral arousal. The lateral hypothalamic area has a critical role in mediating 

cardiovascular and other autonomic responses initiated in the insular cortex and amygdala 

[8]. Electrical stimulation of the lateral hypothalamus in animals induced bradycardia and 

hypotension, whereas stimulation of medial hypothalamic sites produced a 

tachycardia/pressor response pattern [39]. 

1.1.3. Parasympathetic and sympathetic control of the heart 

Although cardiac automaticity is intrinsic to various pacemaker tissues, heart rate (HR), 

excitability and contractility of the heart are largely under the control of parasympathetic 

and sympathetic autonomic nervous system.  

Parasympathetic influence on the heart, mediated by the vagus nerve and acetylcholine 

release, leads to a decrease in HR, atrio-ventricular (AV) conduction and ventricular 

excitability through activation of muscarinic receptors. In particular, the vagus exerts a 

beat-to-beat control of HR that depends largely on the level of innervation of the sinus 

atrial node (SA).  

The sympathetic control of the heart, mediated by norepinephrine acting primarily on β1 

receptors, produces increases in HR, AV conduction and ventricular excitability and 

contractility [40]. 

The parasympathetic influence on the heart arises primarily from the NA with 

contributions from the dorsal motor nucleus of the vagus. The NA comprises two 

functional regions: the dorsal NA that contains brachimotor neurons innervating the palate, 

pharynx, oesophagus and larynx respectively and the ventral NA where the preganglionic 

neurons innervating the heart are located [41]. 
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Sympathetic innervation of the heart arises from the preganglionic neurons in the IML 

columns in the upper thoracic segments of the spinal cord. The sympathetic influence on 

the heart is lateralized, as the right sympathetic ganglia predominantly innervate the SA 

node and increase HR, while the left ganglia innervate the AV node and ventricles, 

increasing AV conduction, ventricular excitability and cardiac contractility [40]. Balance 

of parasympathetic and sympathetic modulation is critical for control of cardiac function 

and is regulated by two main influences [42]:  

 

1. Medullary reflexes triggered by activation of baroreceptors, cardiac receptors and 

chemoreceptors integrated at the level of the NST  and in the rostral VLM; 

 

2. Descending influences from the cerebral cortex, amygdala, hypothalamus and 

PAG mediating integrated responses to internal or external stressors, in part by 

affecting the gain of medullary reflexes. 

 

The major excitatory effect on cardiovagal activity is due to baroreceptor inputs via a relay 

in the NST.  Cardiovagal neurons are otherwise inhibited by inputs from the central 

inspiratory generators and lung inflation and by the stimulation of the hypothalamic 

“defense” area. Respiration also modulates the basic discharge of cardiovagal motoneurons 

presenting variations in their basal potentials coupling the respiratory cycle, with 

hyperpolarization during inspiration and depolarization postinspiration [43]. Moreover, the 

excitatory influence of baroreceptor on cardiovagal neurons is decreased during 

inspiration. This strong respiratory modulation of cardiovagal activity is the main 

determinant of the respiratory sinus arrhythmia (tachycardia in inspiration, bradycardia in 

expiration) observed in physiological conditions.  
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1.2. HEART RATE VARIABILITY 

1.2.1. Definition of heart rate variability  

Heart rate variability (HRV) refers to the beat-to-beat variations in HR, expressed by the 

interval between R waves of two consecutive QRS complexes (RRi). HRV is a typical 

feature of physiological autonomic control of the heart and reflects spontaneous 

fluctuations of cardiovagal and sympathetic nerve activity. Under resting conditions, the 

ECG of healthy individuals exhibits periodic RRi changes according to the respiratory 

cycle (RRi decreases during inspiration and increases during expiration). This rhythmic 

phenomenon, known as respiratory sinus arrhythmia, depends primarily on inhibition of 

cardiovagal neurons during inspiration by the central respiratory generator and pulmonary 

afferents. However HR variance in normal subjects also depends on the non respiratory 

mechanism of control of parasympathetic and sympathetic activity, like thermoregulatory 

and blood pressure influences [1-3]. 

Spectral analysis of HRV is routinely used and recognized for the assessment of autonomic 

control of the heart in healthy subjects and various pathological conditions. It is widely 

accepted that HRV comprises three major components: a very low frequency component 

(VLF: 0÷0.04 Hz); a low frequency component (LF: 0.04÷0.15 Hz) and a high frequency 

component (HF: 0.15÷0.4 Hz) [4].  

The HF component has been related mainly to parasympathetic outflow and respiratory 

rhythm [5-7], while the significance of LF component is more controversial. Some believe 

it to be an index of sympathetic activity [7, 8], while others consider it an indicator of both 

sympathetic and parasympathetic influences [5, 9]. The LF/HF ratio is however widely 

used as an indicator of the so-called sympathovagal balance, with high values indicating an 
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autonomic shift toward sympathetic activity. Physiological correlates of VLF components 

are not well understood.  

The measurement of VLF, LF, and HF power components is usually made in absolute 

values of power (milliseconds squared). However LF and HF could also be measured as 

normalized units representing the percentage of each power component in proportion to the 

total power except for the VLF component.  

The normalized indices are used to minimize any changes in the absolute magnitude of 

total power of HRV on the values of LF and HF components that could occur for example 

in some conditions associated with sympathetic activation, and to better represent the 

modulation exerted by the two branches of the autonomic nervous system. Nevertheless, 

for a complete description of the power distribution in spectral components it is preferable 

to quote normalized units together with absolute values of the LF and HF power [1]. 

Spectral analysis of 24-hour recordings shows that LF and HF expressed in normalized 

units exhibit a circadian pattern and reciprocal fluctuations in normal subjects, with higher 

values of LF in the daytime and of HF at night [7, 10]. Changes in LF/HF ratio have been 

observed among sleep phases with a predominance of parasympathetic activity during 

NREM sleep (decrease of LF/HF ratio) and an increase in LF/HF during REM sleep [11]. 

HRV also varies across ages with a reduction of overall HRV and high-frequency 

fluctuations with advanced age [12]. In addition a sex difference in HRV has been reported 

with relatively greater high-frequency variability in healthy woman compared to men 

across all ages [13]. 

1.2.2. Spectral analysis of HRV  

Different mathematical approaches have been applied for HRV analysis [14]. Among 

these, Fast Fourier Transform (FFT) and autoregressive spectral analysis are the most 
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frequently used. FFT decomposes each signal into a series of sinusoidal functions of 

different frequencies and amplitudes leading to the definition of a frequency spectrum of 

the signal. The application of FFT to the analysis of HRV in humans disclosed the three 

components of HRV described above (VLF, LF, and HF).  

However, FFT has important limitations making it unsuitable for the analysis of short and 

transient changes in HRV. FFT is appropriate for signals whose frequency contents do not 

change in time (stationary signals), while almost all biological signals are not stationary 

(EEG, ECG). Moreover it requires a long period of recording as at least five minutes are 

recommended for the optimal measurement and interpretation of short-term HRV. Finally 

FFT gives information about the frequency components of the signal, but it does not 

indicate when a particular frequency occurs.  

Wavelet transform (WT) was introduced in medicine as a signal-analysis technique to 

overcome the limits of FFT. Like FFT, WT is a linear signal transformation made by 

decomposing the signal into a group of basic functions (WT frame) that are scaled versions 

(stretched or compressed) of the same prototype, called the mother function (MF). The 

analysis consists of sliding a window of different weights (corresponding to different levels 

and frequency bands) containing the WT function throughout the signal. The first levels (2, 

4, 8, ...) correspond to a wavelet analysis conducted with a small value of the dilatation 

factor, thus representing high-frequency variations in the signal. On the contrary, the last 

levels (..., 32, 64, 128….) correspond to a wavelet analysis conducted with a large value of 

the dilatation factor, thus representing low-frequency variations in the signal. The 

evolution of each frequency band, composing the initial signal, could be followed through 

time. Finally WT gives a list of coefficients which measure the correlation between the 

initial signal and the wavelet function at each level. 
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Therefore WT allows a sliding temporally localized analysis of the signal providing 

concomitant time and frequency information. Moreover, the shape of the analyzing 

equation of WT in not fixed as the sinusoidal shape of FFT, and can be chosen to better fit 

the shape of the analyzed signal. Thus, WT is suitable for processing non-stationary signals 

and may assess the sudden and transient changes in sympathovagal balance occurring in 

different clinical situations [15-17]. 

1.2.3. Application of WT analysis of HRV in sleep medicine 

Wavelet transform has been applied to evaluate the diagnostic value of HRV changes in 

different sleep-related pathological conditions like sleep fragmentation and obstructive 

sleep apnoea syndrome (OSAS) and to define time-dependent oscillations in sympathetic 

and parasympathetic activity associated with motor events arising from sleep. 

Sleep fragmentation, a common feature of sleep disorders determining daytime 

hypersomnolence, inattention and cognitive deficits, is characterized by recurrent arousals 

from sleep, related to specific stimuli (respiratory or motor events) or without any 

identifiable causes. 

Arousals from sleep, spontaneous or induced, are associated with substantial autonomic 

activation, characterized by transient increase in blood pressure, heart rate and ventilation 

[18]. Cardiovascular modifications are present either in arousals with cortical involvement; 

“cortical arousals”, characterized by the appearance of alpha or low voltage fast EEG 

activity, either in “subcortical arousals” coupled with sequences of delta waves or K-

complexes without any EEG desynchronization [19, 20]. Consequently different 

techniques have been applied to detect changes in cardiovascular parameters as markers of 

arousals. Due to the non-stationary pattern of the data WT has been proposed. 
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Spectral analysis of HRV calculated with WT from nocturnal polygraphic recordings, 

provides indirect measures of sleep fragmentation. In particular, an increase in the LF/HF 

ratio was related to the arousal index and was observed despite the nature of the arousal 

[21]. Likewise, WT was applied to quantify the recurrence of vagal stimulation and 

sympathetic discharge induced by sleep apnoeas during full night ECG recording of 

patients examined for possible sleep-related breathing disorders. The alteration in the 

power coefficient of specific wavelet variables was highly predictive of OSAS, so that time 

frequency domain analysis of HRV using WT could be considered an efficient diagnostic 

marker of this breathing disorder [22]. 

Lastly, WT has allowed investigation of the temporal relationship between autonomic 

modifications and cerebral and muscular activity related to periodic limb movements of 

sleep (PLMS), stereotyped, involuntary and repetitive limb movements mostly occurring in 

NREM sleep and less frequently during REM sleep.  

Using WT for the spectral analysis of EEG activity and HRV, an early sympathetic 

activation was found to precede EEG changes and movement onset in PLMS, suggesting a 

primary role of the sympathetic nervous system in the generation of PLMS [23]. Other 

studies applying WT to EEG spectral analysis and evaluating variation in HR expressed by 

RRi showed a similar sequence of changes consisting in a significant increase in HR and 

EEG delta power a few seconds before the onset of PLMS. According to these data, 

cardiac activation, together with delta EEG activity increase, is probably a preparatory 

condition triggering PLMS, and not a consequence of the movement [24, 25].  

Despite methodological differences in the studies analyzed (different MFs, sampling 

rates,...), the WT approach appeared a powerful tool to detect a sudden shift in autonomic 

nervous system balance associated with transient phenomena, and could therefore be 
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applied to investigate cardiovascular changes accompanying the epileptic motor 

phenomena of sleep. 
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1.3. NOCTURNAL FRONTAL LOBE EPILEPSY 

1.3.1. Clinical and seizure characteristics 

Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose 

clinical features comprise a spectrum of paroxysmal motor manifestations of variable 

duration and complexity, arising mainly from sleep.  

Three main semeiological patterns were observed in a large series studied by video-

polysomnographic recordings [1]:  

1. minor motor events (<20 seconds) characterized by brief, sudden and recurrent 

arousals from sleep associated with frightened or surprised expression and 

stereotyped movements of the head, trunk and limbs (paroxysmal arousals-PA);  

2. major attacks (20 s-2 minutes), originally named nocturnal paroxysmal dystonia 

(NPD) [2], that include asymmetric tonic seizures (ATS) and more complex motor 

episodes with violent, uncoordinated and repetitive movements of the limbs and 

trunk and vocalizations (hyperkinetic seizures-HS);  

3. prolonged episodes (1-3 minutes) consisting of a stereotypic paroxysmal 

ambulatory behaviour (epileptic nocturnal wandering-ENW). 

These three different manifestations coexisted in the same patient, and the beginning of the 

ictal motor pattern was usually stereotyped. Investigations with intracerebral recording 

techniques during presurgical evaluation in patients with drug-resistant NFLE seizures 

demonstrated that the increasing complexity of the motor behaviors from minor events to 

prolonged seizures reflects different duration, amplitude and spread of the epileptic 

discharge [3]. 

The frequency of NFLE seizures was reported to be usually high (mean of 20 seizures 

monthly and 3 attacks nightly) [1]. However, in the large series studied by Provini [1] most 
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patients (72%) were not aware of their nocturnal attacks, which were described by their 

relatives. Nevertheless patients often complained of nocturnal sleep discontinuity due to 

frequent arousals and daytime sleepiness-related symptoms. 

Seizures could occur during any time of the night, mainly from stages 1-2 NREM sleep 

and occasionally during REM sleep. Electroencephalographic (EEG) activity during the 

seizures failed to disclose epileptic activity in almost 50% of patients. Diffuse or focal 

flattening of background activity and appearance of rhythmic theta or delta activity were 

the prominent rhythms observed in the majority of patients presenting abnormalities, but 

only 10% showed spike and wave activity, while another 10% showed focal fast activity. 

Interictal EEG activity was frequently normal, with clear-cut epileptiform discharges 

observed in only 33% of individuals in wakefulness and 45% in sleep [1]. 

Neuroradiological investigations by means of brain CT or MR scans were poorly 

informative and most cases investigated with non invasive techniques resulted cryptogenic 

[1, 4]. 

NFLE has been described to occur sporadically or as an inherited form associated with 

mutations in the genes encoding the α4 (CHRNA4), α2 (CHRNA2) and β2 (CHRNB2) 

subunits of the neuronal nicotinic acetylcholine receptors (autosomal dominant nocturnal 

frontal lobe epilepsy -ADNFLE-) [5]. Clinically, sporadic and familial cases of nocturnal 

frontal lobe epilepsy had similar clinical presentation. A positive family history for 

epilepsy was recognized in 25% of patients and the occurrence of one or more parasomnias 

in at least one first degree relative was common in patients with NFLE [1]. 

The prognosis of NFLE is partially benign, as most patients have responded favorably to 

antiepileptic drugs, particularly carbamazepine [1]. In patients with drug-resistant disabling 

seizures resective surgery of the epileptogenic focus led to effective control of seizures and 

epilepsy-related sleep disturbances [4]. In these patients non invasive anatomical and 
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electrophysiological presurgical evaluations often failed to identify the region of seizure 

onset so that investigations with intracerebral recording techniques were required [4].  

1.3.2. NFLE, NREM parasomnias and the unifying role of arousal 

As previously explained, EEG findings and neuroimaging investigations are often poorly 

informative in NFLE patients leading to problems of differential diagnosis between 

epileptic and non-epileptic paroxysmal sleep-related phenomena presenting with similar 

motor features [6]. In particular, NFLE seizures have often been misdiagnosed as 

“disorders of arousal” (DA) which are parasomnias arising from NREM sleep including 

“confusional arousals”, “sleepwalking” and “sleep terrors” [7]. Arousal parasomnias are 

the expression of sleep wake state dissociation in which wakefulness and NREM sleep 

seem to coexist.  

Polysomnographic recording of the whole night with continuous audiovisual monitoring 

and careful history-taking are necessary to establish a correct diagnosis [6]. According to 

clinical history, the following characteristics could be useful for the differential diagnosis: 

age at seizure onset (3-8 years for DA, any age for NFLE), seizure frequency (low for DA, 

even several per night for NFLE), influence of triggering factors (ascertain for DA, absent 

for NFLE) and disease evolution (spontaneous disappearance of nocturnal episodes 

throughout life in DA). Video-polysomnography documented that NREM parasomnia 

episodes arise from NREM sleep stages 3-4 typically in the first part of the night, do not 

generally occur with a stereotypical motor pattern and abnormal dystonic or diskinetic 

features are absent . Instead, the recording of several motor events, any time during the 

night, usually with brief duration (seconds) and stereotypic clinical features are indicative 

of NFLE seizures [6]. However, experts did not always reach a consensus on the diagnosis 

especially when classifying brief motor phenomena as PA or non epileptic arousals [8]. 
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The coexistence of parasomnic attacks in patients with NFLE or in their relatives [1, 9] is 

another confounding feature. 

The difficulties encountered in the differential diagnosis between these paroxysmal motor 

behaviours during sleep, could otherwise reflect a common pathophysiological mechanism, 

originating from the pathways controlling the occurrence of physiological arousal during 

sleep [10].  

Arousal responses during sleep are characterized by a continuous spectrum of EEG 

changes, ranging from high voltage slow rhythms (K-complexes and delta burst) to low 

amplitude fast rhythms, associated with various degrees of autonomic and somatomotor 

changes [11-13]. 

A sequence of EEG arousals recurring at brief intervals during sleep have been associated 

with a condition of sleep instability and proved to be favourable triggers in several sleep-

related physiological [14] and pathological motor phenomena [15]. During these periods of 

unstable sleep EEG arousals (vertex sharp waves, K-complexes, delta busts) tend to occur 

in repetitive sequences lasting 8-15 s (phase A) separated by intervals of 15-20 s (phase B) 

of transient reappearance of background EEG activity [16]. This endogenous biphasic 

rhythm pattern is know as a cyclic alternating pattern (CAP) where phase A of CAP 

reflects a condition of transient activation and acts as a gate facilitating the occurrence of 

motor events. 

Both major and minor motor episodes of NFLE have been associated with the slow 

component of phase A (K-complexes and delta burst) [15] and sound-induced K-complex 

arousals were demonstrated to trigger seizures in a patient with autosomal dominant 

nocturnal frontal lobe epilepsy [17]. Likewise, bursts of high-amplitude repetitive and 

monomorphic slow delta waves are usually observed before onset of NREM parasomnias 

[18]. 
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Taken together, these findings suggest that arousal during sleep could represent a 

facilitating condition for NFLE and NREM parasomnias. It has been hypothesized that 

motor behaviours common to parasomnic and epileptic manifestations, derive from the 

release of central pattern generators (CPGs), neuronal circuitry, mainly located in the 

meso-diencephalic-pontine regions and the spinal cord, capable of generating stereotyped 

motor patterns and whose activity is modulated by the cerebral cortex [19]. Increased 

arousal instability, intrinsically due to a sleep-related dysfunction, can lead to temporary 

loss of cortical control over CPGs and therefore facilitate the emergence of stereotyped 

inborn fixed action patterns. Otherwise epileptic discharge recurrence in NFLE could be 

directly responsible for increased arousal fluctuation and sleep instability and hence 

facilitate activation of the same CPGs [20]. 

1.3.3. NFLE seizures and cardiovascular symptoms 

Autonomic symptoms during NFLE seizures (tachycardia, sustained tachypnoea and 

irregular respiratory rhythm) have been observed in most patients [1], but the extent of 

these modifications and their relationship with seizure onset has not been described. 

Recordings with intracerebral electrodes [3, 21] demonstrated that during NFLE seizures 

the epileptic discharge could arise from regions of the CAN devoted to cardiovascular 

modulation like the cingulate gyrus and insular cortex. In addition, SPECT studies showed 

increased blood flow in the right anterior cingulate gyrus and in the cerebellum during an 

episode of PA [22] and bilateral hyperperfusion of the anterior cingulate gyrus in a patient 

with NPD [23].  

These data suggested that cardiovascular manifestations during NFLE are probably due to 

the direct effect of epileptic discharges. For this reason, analysing how cardiovascular 
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changes develop during seizures could provide useful information in the differential 

diagnosis with other non epileptic motor phenomenon occurring during sleep.  
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1.4. CARDIOVASCULAR CHANGES IN EPILEPSY 

1.4.1. Ictal cardiovascular changes 

Cardiovascular manifestations frequently occur during epileptic seizures [1-3] and have 

received particular attention due to their possible role in the pathogenesis of sudden 

unexplained death [4-5]. Investigations of ictal HR changes could also provide information 

on the localization or lateralization of the seizure onset zone. 

The most frequently reported cardiovascular change associated with seizures is ictal 

tachycardia (IT), whereas ictal bradycardia (IB) is much less frequently observed.  

1.4.1.1. Ictal tachycardia 

Ictal sinus tachycardia, when investigated, was observed in more than 85% of seizures in 

different studies [6-9]. Heart rate has been reported to increase up to 120 beats per minutes 

(bpm) in 67% [6] to 76% of seizures [7], with possible peak frequency exceeding 200 bpm, 

without major clinical haemodynamic consequences. 

Heart rate changes were observed to precede, follow or coincide with seizure onset [9, 11-

12]. The temporal relation between the onset of ictal EEG discharges and changes in ictal 

HR was evaluated in detail to disprove the hypothesis that HR changes might be solely a 

consequence of ictal motor activity. In 145 complex partial seizures, IT, defined as ictal 

HR increase >1 standard deviation of the mean preictal HR of all patients, was found to 

precede the ictal discharge, evaluated through scalp recording, in more than 75% of 

seizures by 0.7–49.3 s [9]. In another study the ictal HR increase preceded the onset of the 

EEG discharge by 5 seconds in 98% of seizures of medial temporal lobe origin, while it 

coincided with the ictal onset discharge in 95% of seizures arising from the lateral 

temporal regions [12]. 
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According to the cerebral region of seizure onset, IT was observed more frequently in 

seizures arising from the temporal lobe, especially from mesial structures, compared with 

seizures of extratemporal lobe origin [7, 9, 11]. Moreover, when IT precedes EEG seizure 

onset the time lag between the two events appeared longer in seizures of temporal lobe 

origin compared to extratemporal seizures [9].  

Two distinct patterns of IT development have been recognized: a continuous steady 

increase in HR, significantly related to temporal lobe seizures, and an abrupt increase in 

HR within a few RR intervals followed by continuous and steady increase, which occurred 

more often in seizures of extratemporal origin [9]. In addition, patterns of HR changes 

were relatively stereotyped across different seizures within a given patient, suggesting that 

they might be related to specific patterns of seizure spread [9, 13].  

There is current no consensus on the hypothesis of lateralized hemispheric influences in 

determining the degree of ictal HR increase [7-12]. Some claim the prevalence and 

magnitude of IT depend principally on the generalization of EEG seizure discharge [6, 8, 

14] and the volume of cerebral structures recruited during the seizure [15]. 

1.4.1.2. Ictal bradycardia 

Ictal bradycardia has been reported in <6% of complex partial seizures [7, 13-14], and 

asystolic episodes associated with IB seemed to occur even less frequently (0.3-0.4%) [16-

17]. However, the true incidence of this rare but potentially life-threatening condition is 

probably underestimated. Diagnosis of IB is established after documentation of 

bradycardia/asystole clearly determined by a documented concomitant ictal EEG 

discharge. Patients with bradyarrhythmias are usually admitted to coronary care units, 

where EEG investigations are not routinely performed, leading to possible misdiagnosis. 
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Moreover IB and/or ictal asystole (IA) do not necessarily occur in all seizures, and a 

limited number of seizures can be recorded during inpatient monitoring [18].  

Unlike IT, IB usually starts 10-30 s after EEG seizure onset [16, 18] and could progress to 

IA which usually lasts 10-30 s. Both IT and IB could be preceded or followed by opposite 

HR changes. A pattern of HR changes consisting of tachycardia at the onset of the seizure 

evolving into progressive bradycardia leading to asystole has been described in seizures 

associated with IB. After IA a reversed pattern was observed characterized by spontaneous 

sinus bradycardia followed by brief tachycardia before HR returned to baseline values 

[17]. 

IB is seen primarily during seizures arising or involving the temporal lobe [18-19], but 

cases of IB related to orbitofrontal lobe seizures have also been reported [20].  

Lastly, IB does not appear to be a lateralizing sign in the localization of seizure onset 

occurring in association with discharges arising either from the left or right hemispheres 

[18] or after bilateral hemispheric spread of seizure activity [19]. Moreover the 

lateralization hypothesis cannot explain the combined pattern of HR decrease and increase 

observed during IB. These data and similar results in cases of IT support the hypothesis of 

the influence of the seizure onset zone in determining the prevalence, direction and degree 

of ictal HR changes. On the contrary, cerebral cortex lateralization in parasympathetic and 

sympathetic cardiac control has not been confirmed.  

1.4.2. Ictal and interictal cardiovascular changes and SUDEP 

Epileptic patients have an increased risk of sudden death with an incidence ranging from 

0·09 per 1000 patient-years in newly diagnosed patients to 9 per 1000 patient-years in 

candidates for epilepsy surgery. SUDEP is defined as the sudden, unexpected, witnessed or 

unwitnessed, non-traumatic, and nondrowning death of patients with epilepsy with or 



Introduction 

 34 

without evidence of a seizure, excluding documented status epilepticus, and in whom post-

mortem examination does not reveal a structural or toxicological cause for death. 

Although no definitive evidence has emerged from animal models or clinical data, ictal 

cardiac changes might play a role in the pathophysiology of SUDEP [5]. Although IT does 

not have major clinical haemodynamic consequences, it can be associated with rare but 

life-threatening cardiac anomalies like atrial fibrillation [14, 21], or ST depression and T-

wave inversion [8, 22, 23]. Likewise, IA that seemed to be a self-limiting phenomenon, 

may last long enough to become potentially dangerous directly [24] or by inducing atonia 

and fall [25]. Pacemaker implantation in patients with IB, particularly those with drug-

resistant seizures, can prevent these adverse effects.  

Recognizing cardiac ictal arrhythmias is also useful to choose the correct antiepileptic 

therapy as some antiepileptic drugs have cardiovascular side-effects and contribute to 

SUDEP. Carbamazepine has been reported to exert a negative chronotropic and 

dromotropic effects [26], particularly in patients with cardiac electrophysiological 

abnormalities [27]. Carbamazepine was also present in chronic therapy in some series of 

epileptic patients presenting with SUDEP [28]. Phenytoin was shown to act by centrally 

depressing hyperactivity in cardiac sympathetic nerves and abolishing arrhythmias [29], 

and hence may be beneficial in patients with IT, but should be avoided in patients with IB 

due to its cardioinhibitory action [18].  

Interictal cardiovascular autonomic dysregulation has also been described in epileptic 

patients and could contribute to SUDEP. Several studies investigating HRV in steady state 

conditions and in response to standard autonomic tests found interictal changes, including 

reduced overall HRV, decreased sympathetic or parasympathetic activity or a combined 

reduction of both, or low parasympathetic tone associated with high sympathetic tone [3]. 
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Impaired baroreflex functions in epileptic patients [30] and autonomic changes during 

sleep have also been documented [31].  

Mechanisms leading to the shift of the sympathoparasympathetic balance toward the 

dominance of one autonomic system over the other are not yet clearly understood, but are 

likely to result from progressive alterations induced in autonomic centres by repetitive 

seizure discharges [3].  
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2. OBJECTIVES 

 

The primary aim of the study was to analyze HR changes, expressed as RRi variations, 

occurring during NFLE seizures. We were particularly interested in the development of 

RRi changes with respect to the motor onset of the seizure according to the hypothesis that 

cardiovascular manifestations are not only due to ictal motor behaviors, but also reflect 

epileptic discharges involving regions of the CAN. As scalp EEG activity preceding 

clinical seizure onset tends to be poorly informative in NFLE seizures, we evaluated 

whether RRi variations could be considered an early clinical sign and hence a reliable 

diagnostic marker of seizure occurrence. 

Secondarily, we applied the wavelet transform technique using time and frequency domain 

analysis of heart rate variability to determine the sudden and transient changes in 

sympathovagal balance occurring during seizures, again specifically with regard to the 

clinical motor seizure onset. In doing this, we proposed to search for centrally mediated 

indicators of autonomic activation preceding and possibly resulting in seizures. 

Lastly, if a unique pattern of cardiovascular changes proved to be associated with NFLE 

seizures, we planned to assess its contribution in the differential diagnosis with other motor 

phenomena occurring during sleep. 
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3. METHODS 

 

3.1. PATIENTS and RECORDINGS 

3.1.1. Patients 

We retrospectively reviewed 18 consecutive patients who underwent a whole night 

digitally recorded video-polysomnography (VPSG) for NFLE in our sleep centre from 

2000 to 2006. Only two out of 18 patients followed the inclusion criteria and were 

considered for the study.  

From 2007 to 2009 we evaluated for the study another nine consecutive patients diagnosed 

with NFLE, two were excluded after VPSG. 

The nine patients finally included met the following criteria: 

1. Diagnosis of NFLE formulated in the presence of an evocative history and after 

VPSG recording of at least two episodes with a stereotypic motor pattern 

suggestive of NFLE seizures; 

2. Absence of an active cardiovascular disease or any other disorder that might affect 

the autonomic nervous system; 

3. Absence of other neurological or mental disorders;  

4. Exclusion of a sleep-related breathing disorder with VPSG; 

5. Absence, at the time of VPSG, of medications that could modify HR except for 

anti-epileptic drugs that if present were reduced or withdrawn two weeks before the 

VPSG; 

6. Recording of at least two seizures during VPSG meeting the criteria explained 

below. 
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For all patients a full neurological examination, routine EEG recording during 

wakefulness, and neuroradiological evaluation (Brain MRI) were performed.  

3.1.2. Recordings 

Whole night VPSG (from 11 pm to 7 am) included standard bipolar scalp EEG (according 

to the International 10-20 System), surface right and left electro-oculogram (EOG), 

electromyogram (EMG) of mentalis, electrocardiogram (ECG) (from a standard D2 lead), 

and thoracic and abdominal respirograms (strain-gauge). EMG of at least one limb muscle, 

selected according to the anamnestic description of the clinical onset of the seizure, was 

also performed. 

Continuous audiovisual acquisition was available for seven patients while for the other two 

video recordings were limited to the seizure period. 

Data were recorded with two digital acquisition systems in seven patients: Connex EEG 

Sleep-XLTEK Software 5.4 (sampling rate 256 Hz; 4 patients) and Nihon Kohden EEG-

1200 (sampling rate 500 Hz; 3 patients). For two patients data were acquired on a Grass 

polygraph with paper speed of 10 mm/s (30 s epoch) and synchronized video-recording 

and were computerized and stored with Neuroscan Acquisition System P/N 1098, SCAN 

4.2 (sampling rate: 256 Hz). 

3.1.3. Criteria for seizure selection 

VPSG were revised independently by three examiners (P.T.; F.P.; F.B.) and events with 

features of NFLE seizures were selected and included in the study only if a consensus was 

reached. In addition, we chose for HR analysis only seizures occurring at least three 

minutes after the end of a previous seizure and 90 seconds from the end of another 
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spontaneous or evoked arousal or another motor phenomenon. This criterion was adopted 

to avoid the confounding persisting HR changes due to seizures or other phenomena 

preceding the seizure under analysis. Seizures with loss of ECG signal due to movement 

artefacts were excluded. 
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3.2. ANALYSIS 

3.2.1. Seizure analysis 

For each seizure clinical classification, sleep stage of occurrence and duration were 

assessed. Seizures were classified according to two main semeiological patterns: 

paroxysmal arousal (PA), minor motor events characterized by brief, sudden and recurrent 

arousals from sleep associated with frightened or surprised expression and stereotyped 

movements of the head, trunk and limbs, and nocturnal paroxysmal dystonia (NPD) that 

includes asymmetric bilateral tonic seizures (ATS) and more complex motor episodes with 

violent, uncoordinated, and repetitive movements of the limbs and the trunk, and 

vocalizations (HS) [1]. Seizures with features of episodic nocturnal wandering (ENW), 

consisting of prolonged episodes with a stereotypic paroxysmal ambulatory behaviour, 

were excluded due to the unavoidable loss of the ECG signal. 

Sleep stages were visually scored on 30 s epochs, according to the American Academy of 

Sleep Medicine criteria, as light NREM sleep (stages 1 and 2), deep NREM sleep (stages 3 

), and REM sleep [2].  

Seizure onset was identified with the clinical onset of the seizure, corresponding to the first 

significant change in EMG activity or the first movement observed in the video recording. 

Seizure period corresponded to the development of clinical epileptic manifestations and 

was visually defined from the video recording. 

3.2.2. Heart rate analysis 

Heart rate was evaluated by measuring the interval between two consecutive R-waves of 

QRS complexes (RRi). RRi series were digitally identified and automatically calculated for 



Methods 
 
 
 

 44 

a period of 20 minutes, including the seizures, by means of Vision Analyser software 

(version 1.05-Brain Products). Visual control of RRi series allowed erroneous R waves and 

missed detection to be corrected. Ectopic beats were deleted from the resulting RRi series 

and replaced by a virtual beat by interpolating adjacent R waves as recommended [3]. 

3.2.3. Spectral analysis of heart rate variability 

Spectral analysis of HRV was performed to assess seizure-related changes in autonomic 

activity. The power spectrum of HRV comprises high-frequency components (HF: 0.15-

0.40 Hz), reflecting parasympathetic outflow and breathing activity, low frequency 

components (LF: 0.04-0.15 Hz), mediated mostly by sympathetic activity and very low 

frequency components (VLF: 0÷0.04 Hz) whose meaning is controversial. The LF/HF 

ratio is widely used to indicate the balance between sympathetic and parasympathetic 

outflows. 

A discrete wavelet transform (WT) was preferred to the classical Fourier transform to 

describe the temporal evolution of the frequency spectrum contained in the ECG signal. As 

previously explained, WT does not assume stationarity of the analyzed signal and may 

detect transient and rapid changes in HRV.  

Analysis was conducted off-line over a period of 20 consecutive minutes for each seizure 

using Mathematica® 7.0. Period analysis length of at least 20 minutes was demonstrated in 

our preliminary evaluations to reproduce the same power spectrum of HRV obtained with 

the whole night analysis. 

RRi series were firstly resampled at 10 Hz using cubic spline interpolation following the 

heuristic rationale of resampling at approximately ten times the band of the fastest 

regulatory mechanism of interest (which is assumed to be active beat-to-beat) [4]. 
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A multiresolution analysis was then performed using the Daubechies-16 form as mother 

function. WT signal decomposition requires an adequately regular and localized basal 

function called the ‘‘mother function (MF).’’ In our study we chose the Daubechies-16 

form to guarantee a steep fall-off at the boundaries of the mother wavelet spectrum and a 

close match between the full width at half maximum boundaries of dilated wavelet spectra 

and the HF and LF band transition frequencies. 

A family of basis functions which are scaled versions of the MF was then built by dilation 

and translocation of the MF. The similarity between the signal and these basis functions 

were estimated through coefficients computed by convolving the original signal with the 

basis functions in the time domain.  

The squared level specific amplitude coefficients were summed across appropriate 

decomposition levels to compute total band powers in bands of interest (VLF: 0.00976551 

- 0.039062, LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992) (Figure 2).  

The first levels of transformation (1-17) correspond to a wavelet analysis conducted with a 

small value of the dilation factor, thus representing high-frequency variations in the signal. 

On the contrary, the last levels correspond to a wavelet analysis conducted with a large 

value of the dilation factor, and representing low-frequency (17-74) and very low-

frequency (74-255) variations in the signal. At any level, the larger the coefficients were, 

the greater the correspondence between the original signal and the analyzing wavelet. 

Band transitions/edges were estimated as the points of half-maximum spectral power 

amplitudes of the level-specific MF dilations. This approach was preferred to the 

traditional one of quoting the central frequency of the dilated wavelets to take in to account 

the individual shape of the mother wavelet spectrum, hence better estimating the bands 

related to the coefficients resulting from wavelet transform application.  
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Band specific powers were then filtered using a linear recursive filter (exponential filtering 

with α = 0.1) to reduce noise especially in the HF band. 
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Figure 2. Wavelet analysis performed on the RRi series, resampled at 10 Hz, of 20 consecutive minutes selected from the whole night recording 

of patient 2. The figure showed the ability of wavelet analysis to detect sudden frequency variations along a time scale. Black horizontal lines 

delimit transformation levels representing different signal frequencies: HF:1-17; LF: 17-74; VLF: 74-255. 
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3.2.4. Statistical analysis 

3.2.4.1. Selection of analysis periods  

Before proceeding with statistical analysis we plotted the values obtained for each parameter 

of interest (RRi, LF and HF) (y-axis) versus time (x-axis) and found that most of these graphs 

followed a specific pattern for seizures of different patients. 

We consequently defined three analysis periods: 

1) Basal period (Basal): 30 seconds, at least 30 seconds before seizure onset during which no 

movements occurred and autonomic conditions, evaluated by the LF/HF ratio assessed with 

WT, were stationary; 

2) Pre-seizure period (preSP): 10 seconds preceding seizure onset; 

3) Seizure period (SP): corresponding to clinical motor manifestations visually defined from 

the video-recording.  

3.2.4.2. Data and analysis  

RRi values (s) and HF and LF absolute values (s2) were used for statistical analysis. We 

selected one value every ten out of the 10 Hz sequences of resampled data to have a time 

resolution of 1 second. Initially we performed a group analysis considering all patients 

together, followed by a single subject analysis. 

Data are reported as means ± SD. Data non-normally distributed (LF and HF absolute values) 

were transformed using logarithmic transformation to resemble normal distribution. 

For group analysis a general linear univariate model (factorial ANOVA) was applied to 

estimate changes in each parameter (RRi, LF and HF), during the three defined periods, 

assuming the parameter as a dependent variable and alternatively patient, seizure, sleep phase 

of occurrence and period as fixed factors (see results for details).  
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RRi values were considered covariates in the LF and HF statistical model to minimize the 

effects of RRi differences between patients. 

Lastly, as LF correlated significantly with HF, we assumed HF as covariate in the LF model 

to reduce the effect of differences in the LF variable due to different HF values. 

For single subject analysis a general linear univariate model (factorial ANOVA) was applied 

assuming again the parameter of interest as dependent variable (RRi, LF and HF) and period 

as fixed factor. Seizure was considered a fixed factor only when it was a significant predictor 

of the dependent variable. 

All statistical analyses were performed with SPSS-PASW (Predictive Analytics Software) 

version 18 and significance was set at p ≤ 0.05.  

Data of individual subjects were also measured as normalized units representing the 

percentage of LF and HF component in relation to the total power except for the VLF 

component, and as LF/HF ratio. Even though they were not used in the statistical analysis, the 

normalized indices and the ratio were plotted when necessary to better represent the 

modulation exerted by the two branches of the autonomic nervous system.  
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4. RESULTS 

 

4.1. PATIENTS and SEIZURES 

 

Nine patients were selected for the study. Patient 9 underwent a whole night video-

polysomnographic (VPSG) recording and prolonged 24-hour video-polygraphic 

monitoring during which three seizures associated with ictal asystole were recorded, and 

described in detail below. We finally included in the group analysis eight patients (5 males, 

3 females; mean age at VPSG: 24±9 years), whose clinical features are summarised in 

Table 1. 

Age at seizure onset ranged from three to 14 years (mean 9±4 years). Four patients 

(1,3,7,8) had a positive family history for parasomnias, two patients (3,6) had a history of 

sleep enuresis and one (1) had febrile convulsions. Interictal wakefulness EEG and brain 

MRI were uninformative in most patients. Interictal sleep EEG showed clear epileptic 

abnormalities in three patients (1,2,6). 

At the time of VPSG seizure frequency was high in all patients (Table 2). Six patients were 

under antiepileptic drugs (AEDs) and presented drug-resistant seizures. Antiepileptic drugs 

were reduced in five patients but withdrawn only in one to avoid the occurrence of 

secondarily generalized seizures.  

The number of seizures analyzed varied between patients, ranging from two to eight (Table 

2). All 41 seizures (11 PA; 30 NPD) arose from NREM sleep (mean duration PA: 8±5.6 s; 

mean duration of NPD except for Pt 6: 27±10.3 s). Seizures in Patient 6 lasted longer than 

three minutes comprising a first part with hyperkinetic automatism (mean duration: 

106±21 s), and a second part (mean duration: 76±15 s) characterized by a clear EEG 
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epileptic discharge in the left centro-fronto-temporal regions associated with behavioural 

arrest, unresponsiveness and assumption of an asymmetric posturing of the right arm and 

leg (see single patient analysis for description). 

Six patients showed ictal EEG abnormalities but only Patient 6 presented a clear epileptic 

ictal activity.  

After VPSG Patient 8 underwent presurgical evaluation with deep implanted electrodes 

that identified the seizure onset zone in the right cingulate gyrus. He subsequently received 

a microsurgical resection of the epileptic zone (posteromesial frontal cortex and cingulate 

gyrus) with a seizure-free outcome. 
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Patient Sex Family history 
Personal 

history 

Age at seizure 

onset (years) 

Frequency of nocturnal 

seizures at VPSG 

Interictal EEG 

(wakefulness) 
Interictal EEG (sleep) 

Brain 

MRI 

1 F 

Parasomnias 

 (sleep-walking/ 

sleep terrors) 

FC 5 Several per night Normal B fronto-temporal spikes Normal 

2 F - - 14 Several per night Centro-frontal spikes B centro-frontal spikes Normal 

3 M 

Parasomnias 

(sleep-walking/ 

sleep terrors) 

Sleep enuresis 14 Several per night Normal Normal Normal 

4 M Negative - 14 
1-3 episodes per night, 

1-2 nights per week 
Normal Normal Normal 

5 M Negative - 3 3-4 per night Normal 
L temporal and R centro-

frontal theta activity 
Normal 

6 M Negative Sleep enuresis 8 Several per night Normal 
R and L fronto-temporal 

spikes and sharp waves  
Normal 

7 F 
Parasomnias 

(sleep-walking) 
- 9 Several per night Normal 

Posterior vertex and 

R parietal theta activity 
Normal 

8 M 
Parasomnias 

(sleep-walking) 
- 6 Several per night Normal 

B  fronto-temporal  

theta activity 
Normal 

 

Table 1: F: female; M:  male; FC: febrile convulsions; L:  left; R: right; B: bilateral. 
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Sleep phase of 
occurrence Patient 

Age at VPSG 
(years) 

AEDs  at VPSG 
(mg/die) 

No. of 
nights 

analyzed 

No. of 
seizures 
recorded 

No. of 
seizures 
analyzed 

Seizure 
features 

NR1 NR2 NR3 

Seizure duration 
Mean ± SD (s) 

Ictal 
EEG 

1 23 
CBZ 800; TPM 50 

R: CBZ 400; TPM 50 
1 10 7 NPD (HS) - 3 4 23 ± 2.24 

Fast, low voltage diffuse 

activity 

2 23 
CBZ 1000; LTG 300 

R: CBZ 600; LTG 200 
1 4 4 NPD (ATS) 1 1 2 22 ± 3.37 

Fast, low voltage diffuse 

activity 

3 34 - 2 17 8 PAs - 2 6 8 ± 6.51 Normal 

4 41 - 1 4 3 PA - - 3 10±2 Normal 

5 20 
CBZ 1000; CLB 20 

R: CBZ 800 
2 3 2 NPD (HS) - 2 - 34±10.6 

L temporal flattening and 

rhythmic theta activity 

6 19 
CBZ 800 

Withdrawn 
1 

8 NPD, 

Several PA 
3 NPD (HS) - 2 1 205±16 

L fronto-centro- temporal 

rhythmic fast activity 

7 23 
CBZ 1000; CZP 1.5 

R: CBZ 400 
1 

12 NPD, 

Several PA 
7 NPD (ATS) - 6 1 37±13.3 

R centro-parietal theta 

rhythmic activity 

8 12 
CBZ 600; LTG 50 

R: CBZ 400 
1 

11 NPD, 

Several PA 
7 NPD (ATS)  2 5 20±4.7 

B centro-fronto-parietal 

theta rhythmic activity 

 

Table 2: VPSG: video-polysomnography; AEDs: antiepileptic drugs; CBZ: carbamazepine; TPM: topiramate; LTG: lamotrigine; R: reduced; NPD: 

nocturnal paroxysmal dystonia; HS: hyperkinetic seizures; ATS: asymmetric tonic seizures; PA: paroxysmal arousal; L:  left; R: right; B: bilateral. 
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4.2. CARDIOVASCULAR PARAMETERS: GROUP ANALYSIS 

4.2.1. Analysis of RRi 

Mean RRi values ± SD during the three different periods for each patient are listed in 

Table 3. A general linear model was first applied assuming RRi as dependent variable and 

sex, patient, sleep phase of occurrence (NREM1, NREM2, and NREM3), seizure, and 

period as fixed factors. Propriety of the model, expressed by Fisher’s F was 166, 

corresponding to a significance of p <0. 0001. 

As only one seizure occurred in phase NREM1, this seizure was excluded from the 

analysis. We subsequently simplified the analysis model excluding sex and seizure as fixed 

factors (F =412; p<0. 0001). 

As sleep phase was not a significant predictor of RRi (p=0.249) it was also excluded from 

the model. The final model assumed RRi as dependent variable and patient and period as 

fixed factors (F= 708.8; p <0.0001). The analysis indicated a significant period effect on 

the RRi variable: compared to basal values, RRi remained unchanged during the preSP, 

whereas it significantly decreased during the SP (p<0.001). Results were consistent in the 

three models described. Estimated marginal means for overall RRi values obtained with 

the final model of analysis (Basal: 1.036 s; preSP: 1.011 s; SP: 0.67 s) are reported in 

Figure 3. 
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Estimated Marginal Means RRi
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Figure 3. 
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Patient Period Mean RRi (s) SD 

Basal 0.8682 0.0551 

preSP 0.8556 0.0543 1 

SP 0.5314 0.0861 

Basal 0.7990 0.0367 

preSP 0.7887 0.0383 2 

SP 0.5896 0.0738 

Basal 1.0475 0.0558 

preSP 1.0357 0.0558 3 

SP 0.6995 0.1811 

Basal 1.0902 0.0720 

preSP 1.1179 0.0877 4 

SP 0.8096 0.0965 

Basal 1.5287 0.0985 

preSP 1.4286 0.0773 5 

SP 0.9975 0.1546 

Basal 1.0642 0.1270 

preSP 1.0102 0.1900 6 

SP 0.6157 0.1070 

Basal 0.9974 0.1071 

preSP 0.9858 0.1150 7 

SP 0.4261 0.1284 

Basal 0.8770 0.1033 

preSP 0.8557 0.1144 8 

SP 0.6859 0.1271 
 
 
Table 3. Mean RR interval (RRi) values ± SD for each patient during the three defined 

periods. Basal: basal period; preSP: pre seizure period; SP: seizure period. 
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4.2.2. Analysis of HF 

Mean HF absolute values ± SD during the three different periods for each patient are listed 

in Table 4. A general linear model was first applied assuming HF as dependent variable, 

patient and period as fixed factors (F=149.3; p<0.0001). We also used a model with HF as 

dependent variable, RRi as covariate, and period as fixed factor (F=516; p<0.0001). This 

model was chosen due to the increased F. Compared to basal values, a significant decrease 

of HF was observed during the SP (p<0.0001), whereas HF did not differ during the preSP. 

Results were the same in the first model evaluating patient and period as fixed factors. 

Estimated marginal means for Log HF during the three defined periods obtained from the 

group analysis are reported in figure 4. 
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Figure 4. 
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Patient Period Mean HF (s2) SD 

Basal 0.0323 0.0174 

preSP 0.0214 0.0109 1 

SP 0.0086 0.0123 

Basal 0.0080 0.0046 

preSP 0.0048 0.0037 2 

SP 0.0076 0.0093 

Basal 0.0102 0.0057 

preSP 0.0114 0.0058 3 

SP 0.0110 0.0116 

Basal 0.0471 0.0236 

preSP 0.0365 0.0175 4 

SP 0.0205 0.0143 

Basal 0.1062 0.1113 

preSP 0.1145 0.0603 5 

SP 0.0671 0.0627 

Basal 0.2431 0.1190 

preSP 0.3411 0.2513 6 

SP 0.0578 0.1171 

Basal 0.2247 0.1483 

preSP 0.2226 0.1593 7 

SP 0.0204 0.0442 

Basal 0.2360 0.1397 

preSP 0.1682 0.0983 8 

SP 0.0760 0.0596 

 
 
Table 4. Mean HF absolute values ± SD for each patient during the three defined periods. 

Basal: basal period; preSP: pre seizure period; SP: seizure period.  
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4.2.3. Analysis of LF 

Mean LF absolute values during the three different periods for each patient are reported in 

Table 5. A general linear model was applied assuming LF as dependent variable, period as 

fixed factor, and RRi and HF as covariates (F=481. 6; p<0.0001). The analysis indicated a 

significant period effect on the LF variable. Compared to basal values, a significant 

increase in LF was observed during both the preSP (p<0.0001) and the SP (p<0.0001). The 

same results were obtained with a model (F=151.4; p<0.0001) considering LF as 

dependent variable, patients and period as fixed factors, and HF as covariate. Estimated 

marginal means for Log LF, during the three defined periods, obtained from the first model 

of analysis are reported in figure 5. 
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Figure 5. 
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Patient Period Mean LF (s2) SD 

Basal 0.0632 0.0620 

preSP 0.2126 0.1506 1 

SP 0.1696 0.1479 

Basal 0.0107 0.0064 

preSP 0.0564 0.0330 2 

SP 0.1791 0.1281 

Basal 0.0352 0.0248 

preSP 0.1840 0.0947 3 

SP 0.2752 0.1322 

Basal 0.0264 0.0207 

preSP 0.2158 0.1173 4 

SP 0.2012 0.1354 

Basal 0.0905 0.0781 

preSP 0.4829 0.1861 5 

SP 0.7587 0.5536 

Basal 0.2743 0.1876 

preSP 0.6398 0.4752 6 

SP 0.1843 0.2333 

Basal 0.1691 0.1351 

preSP 0.3196 0.2377 7 

SP 0.1724 0.2409 

Basal 0.1881 0.1248 

preSP 0.3905 0.3149 8 

SP 0.4806 0.3559 

 

Table 5. Mean LF absolute values ± SD for each patient during the three defined periods. 

Basal: basal period; preSP: pre seizure period; SP: seizure period. 
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4.3. CARDIOVASCULAR PARAMETERS: SINGLE SUBJECT 

ANALYSIS 

 

A general linear model was applied for the data of each patient assuming the parameter of 

interest as dependent variable (RRi, LF, and HF) and period as fixed factor. Seizure was 

included as fixed factor only if a significant difference in the values of the dependent 

variable between seizures was detected. Statistical analysis was performed only when more 

than three seizures were available. Before proceeding with the analysis we plotted the 

values obtained for each parameter of interest (RRi, LF, and HF) for the different seizures 

of each patient. Statistical analysis was performed only if a similar pattern of response for 

each parameter was visually observed in the majority of seizures of each patient. The 

characteristics of the model selected and results of the analysis for the parameters 

investigated are reported below for each patient. 

4.3.1. Patient 1 

Mean RRi, HF and LF values of the seven seizures analyzed are plotted in Figure 6.  

Single subject analysis for this patient were in accordance with the results of the group 

analysis for all the parameters evaluated (Table 6). HF values also tended to decrease in the 

PreSP but a significant difference was not reached. 
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Figure 6. 
 
 
 
 
 
 

Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

Agreement  

with the GA 

SP vs Basal 

(B; p values) 

Agreement 

with the GA 

RRi 
Seizure 

Period 

F=162.2 

p<0.0001 

B=-0.036 

p=0.104 
yes 

B=-0.359 

p<0.0001 
yes 

HF 
Seizure 

Period 

F=35.5 

p<0.0001 

B=-0.163 

p=0.220 
yes 

B=-1.028 

p<0.0001 
yes 

LF 
Seizure 

Period 

F=27.7 

p<0.0001 

B=0.716 

p<0.0001 
yes 

B=0.569 

p<0.0001 
yes 

 
 
Table 6. Single subject analysis of patient 1. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis. 
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4.3.2. Patient 2 

Mean RRi, HF and LF values of the four seizures analyzed are plotted in Figure 7. Single 

subject analysis for this patient found an accordance with the results of the group analysis 

for RRi and LF values (Table 7). The pattern of HF changes differed in the four seizures of 

this patient (Figure 8) due to the different values of the HF in the basal period and to the 

different seizure duration. Absolutes HF values (Figure 9) and normalized values of LF 

and HF (Figure10 a, b) for seizures 1 and 3 were plotted to better explain changes in 

sympathovagal balance during the seizures. Compared to Basal,  HF remain unchanged 

(S1) or decreased (S2) in the first part of the SP, whereas in the second part of the SP an 

increase in HF values contributed to the mean of HF values only in the shortest seizures 

(Figure 9). Changes in sympathovagal balance were the same during the two seizures 

(Figure 10). 
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Figure 7. 

 

 

Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

Agreement 

with the GA 

SP vs Basal 

(B; p values) 

Agreement 

with the GA 

RRi 
Seizure 

Period 

F=110.4 

p<0.0001 

B=-0.03 

p=0.078 
yes 

B=-0.255 

p<0.0001 
yes 

HF - - - - - - 

LF 
Seizure 

Period 

F=145.2 

p<0.0001 

B=0.486 

p<0.0001 
yes 

B=1.210 

p<0.0001 
 yes 

 
 
Table 7. Single subject analysis of patient 2. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis. 
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Figure 8. The pattern of changes in mean values of HF differed in the four seizures 

analyzed. 
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Figure 9. HF values during seizure 1 (a; green square: SP=18 s) and seizure 3 (b; green 

square: SP=23 s) of Patient 2. Compared to basal values (grey square: from -90 to -60 s), 

HF remained unchanged (a) or decreased (b) in the first part of the SP (from 0 to 10 s). In 

the second part of the SP, HF significantly increased only in seizure 1(a). 



Results 
 
 
 

 68 

Pt2_Seizure1_(NR1)

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

s

%

LF_% HF_%

a

 

Pt2_Seizure3_(NR3)

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

s

%

LF_% HF_%

b

 

 

Figure 10. Normalized values of HF and LF during seizure 1 (a; seizure period=18 s) and 

seizure 3 (b; seizure period=23 s) of Patient 2. The same pattern of HF% and LF% changes 

were observed during the seizure period (green square) in both seizures. 
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4.3.3. Patient 3 

Mean RRi, HF and LF values of the eight seizures analyzed are reported in Figure 11. 

Results of single subject analysis for this patient were in accordance with the group 

analysis for RRi and LF values (Table 8). Single subject analysis of HF values was not 

performed due to the different patterns of changes observed in different seizures (Figure 

12). However, as for patient 2, an increase in LF% and a decrease of HF% was observed 

during the seizure period of all the seizures. 
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Figure 11. 
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Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

Agreement  

with the GA 

SP vs Basal 

(B; p values) 

Agreement  

with the GA 

RRi 
Seizure 

Period 

F=100.3 

p<0.0001 

B=-0.005 

p=0.838 
y 

B=-0.181 

p<0.0001 
y 

HF - - - - - - 

LF 
Seizure 

Period 

F=51.4 

p<0.0001 

B=0.562 

p<0.0001 
y 

B=0.824 

p<0.0001 
y 

 

Table 8. Single subject analysis of patient 3. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis; y: yes; n: no. 

 

 

Figure 12. Means of HF values during the three defined periods of different seizures of 

Patient 3. Four different patterns of HF changes were observed. Only two seizures, 

lasting>10 s (S1; S2), presented HF changes similar to the pattern observed in the group 

analysis. 
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4.3.4. Patient 4 

Mean RRi, HF and LF values of the three seizures during the three different periods are 

plotted in Figure 13. Single subject analysis for this patient found an accordance with the 

results of the group analysis for RRi and LF values. For HF values accordance was present 

only for the SP (Table 9). Compared with basal values, HF values significantly decreased 

also in the preSP. 
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Figure 13. 
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Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal (B; p 

values) 

Agreement 

with the GA 

SP vs Basal 

(B; p values) 

Agreement 

with the GA 

RRi Period 
F=162 

p<0.0001 

B=0.028 

p=0.104 
yes 

B=-0.281 

p<0.0001 
yes 

HF 
Seizure 

Period 

F=31.1 

p<0.0001 

B=-0.212 

P=0.003 
no 

B=-0.858 

p<0.0001 
yes 

LF 
Seizure 

Period 

F=94.8 

p<0.0001 

B=0.910 

p<0.0001 
yes 

B=0.991 

p<0.0001 
yes 

 

Table 9. Single subject analysis of patient 4. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis. 

 

 

4.3.5. Patient 5 

Mean RRi, HF and LF values of the two seizures of patient 5 during the three different 

periods are plotted in Figure 14. Single subject analysis for this patient was not performed 

as only two seizures were analyzed. Patterns of RRi, HF and LF visually reproduced the 

results obtained in the group analysis except for the RRi values of seizure 2 that started to 

decrease in the preSP. 
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Figure 14. 
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4.3.6. Patient 6 

Mean RRi, HF and LF values of the three seizures of patient 6 during the three different 

periods are plotted in Figure 15. Single subject analysis for this patient was in agreement 

with the results of the group analysis for RRi and HF values. For LF values accordance 

was present only for the preSP (Table 10), whereas LF was significantly decreased in the 

SP. However, this is probably due to the fact that the marked increase in HR, reflecting 

high sympathetic activation, was accompanied by a reduction in total power of HRV 

spectral components (Figure 16). After plotting normalized units of LF and HF, an increase 

in LF% during seizures became evident (Figure 17). As previously explained, this patient 

presented seizures lasting longer than three minutes comprising a first part (SP1) with 

hyperkinetic automatism and a second part (SP2) characterized by a clear EEG epileptic 

discharge in the left centro-fronto-temporal regions (Figure 18) associated with 

behavioural arrest, unresponsiveness and assumption of an asymmetric posturing of the 

right arm. A marked decrease of RRi and an increase in LF% were observed during both 

SP1 and SP2. 
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Figure 15. 

 

 
Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

Agreement 

with the GA 

SP vs Basal 

(B; p values) 

Agreement 

with the GA 

RRi 
Seizure 

Period 

F=232.1 

p<0.0001 

B=0.0.038 

p=0.327 
yes 

B=-0.478 

p<0.0001 
yes 

HF Period 
F=128.9 

p<0.0001 

B=0.107 

P=0.575 
yes 

B=-1.412 

p<0.0001 
yes 

LF 
Seizure 

Period 

F=17.1 

p<0.0001 

B=0.782 

p<0.0001 
yes 

B=-0.220 

p<0.010 
no 

 
 
Table 10. Single subject analysis of patient 6. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis. 
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Figure 16. Changes in RRi (a), LF and HF absolute values (b) during seizure 3 of patient 

6. Compared to the basal period (grey square: from -90 to -60 s), RRi, LF and HF absolute 

values significantly decreased during the first (SP1: from 0 to 130 s ) and second parts 

(SP2: from 130 to 210 s ) of the seizure period (green square: from 0 to 209 s). 
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Figure 17. LF and HF expressed in normalized units during seizure 3 of patient 6. 

Compared to the basal period (grey square: from -90 to -60 s), LF% significantly increased 

during the first (SP1: from 0 to 130 s) and second parts (SP2: from 130 to 210 s) of the 

seizure period (green square: from 0 to 209 s) suggesting a marked sympathetic activation. 
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Figure 18. Polygraphic recording of seizure 3 of patient 6 (speed 30 mm/s). 130 s after 

clinical onset of the seizure a clear epileptic discharge was evident in the centro-fronto-

temporal derivations. During the discharge the patient presented behavioural arrest, 

unresponsiveness and raised his right arm in a dystonic posturing. Although few 

movements occurred, tachycardia was observed. 

EEG (Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T4, T4-T6, Fz-Cz, Cz-Pz, Fp1-F3, F3-

C3, C3-P3,  P3-O1, Fp1-F7, F7-T3, T3-T5); R.: right; L.: left; Mylo.: mylohyoideus 

muscle, Delt.: deltoideus muscle; Gastr: gastrocnemius muscle; Tib. Ant.: tibialis anterior 

muscle; Intercostalis muscle; ECG: electrocardiogram (from a standard D2 lead); T-A 

Resp.: thoracic and abdominal efforts (strain gauge). 
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4.3.7. Patient 7 

Mean RRi, HF and LF values of the seven seizures of patient 7 during the three different 

periods are plotted in Figure 19. As for patient 6, single subject analysis for patient 7 was 

in agreement with the results of the group analysis for RRi and HF values. For LF values 

accordance was present only for the preSP (Table 11), whereas LF was significantly 

decreased in the SP. Normalized units of LF and HF were again plotted to better explain 

the sympathetic-parasympathetic control during the seizure (Figure 20). 
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Figure 19. 
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Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

Agreement  

with the GA 

SP vs Basal 

(B; p values) 

Agreement 

with the GA 

RRi Period 
F=1581 

p<0.0001 

B=-0.12 

p=0.475 
yes 

B=-0.571 

p<0.0001 
yes 

HF 
Seizure 

Period 

F=382.2 

p<0.0001 

B=-0.035 

P=0.778 
yes 

B=-2.152 

p<0.0001 
yes 

LF Period 
F=30 

p<0.0001 

B=0.226 

P=0.001 
yes 

B=-0.225 

p<0.0001 
no 

 

Table 11. Single subject analysis of patient 7. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis. 

 

 

 

 

 

 

 

 

 



Results 
 
 
 

 81 

Pt7_Seizure5_(NR3)

0

0.5

1

1.5

2

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

s

s

0

0.5

1

1.5

2

s2

RRi HF LF

a

 

Pt7_Seizure5_(NR3)

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

s

%

0

10

20

30

40

50

60

70

80

90

100

%

LF% HF%

b

 

 

Figure 20. a) Compared to the basal period (grey square: from -90 to -60 s), a significant 

decrease of RRi and absolute values of LF and HF were observed during the seizure period 

(green square: from 0 to 60 s). b) Compared to basal values, LF% increased during the 

seizure period. 
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4.3.8. Patient 8 

 

Mean RRi, HF and LF values of the seven seizures of patient 8 during the three different 

periods are plotted in Figure 21. Single subject analysis for this patient was in agreement 

with the results of the group analysis for RRi and LF values (Table 12). Compared to basal 

values, values of HF significantly decreased in both the preSP and the SP. 
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Figure 21. 
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Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

Agreement  

with the GA 

SP vs Basal 

(B; p values) 

Agreement 

with the GA 

RRi Period 
F=130 

p<0.0001 

B=0.021 

p=0.172 
yes 

B=-0.191 

p<0.0001 
yes 

HF 
Seizure 

Period 

F=30.2 

p<0.0001 

B=-0.291 

P=0.002 
no 

B=-0.401 

p<0.0001 
yes 

LF 
Seizure 

Period 

F=36.4 

p<0.0001 

B=0.512 

p<0.0001 
yes 

B=0.420 

p<0.0001 
yes 

 

Table 12. Single subject analysis of patient 8. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors; GA:  group analysis. 
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4.3.9. Summary of the single subject analysis 

Single subject analysis was performed in seven out of eight patients as only two seizures 

had been analyzed for patient 5 (Table 13). This analysis confirmed the results obtained in 

the group analysis for RRi changes during the preSP and the SP in all subjects analyzed. 

For HF variations complete accordance with the group analysis was found for the SP in 

five patients and for the preSP in three. Analysis was not performed in patients 2 and 3 as a 

similar pattern of HF changes was not visually observed in the majority of their seizures. 

Lastly, single subject analysis confirmed the results obtained for LF changes during the 

preSP in seven patients and during the SP in five patients. In two patients LF absolute 

values were decreased during the SP due to the reduction in total power of spectral 

components as demonstrated after plotting the normalized units. 

 

RRi HF LF 
Patient 

preSP SP preSP SP preSP SP 

1 yes yes yes yes yes yes 

2 yes yes - - yes yes 

3 yes yes - - yes yes 

4 yes yes no yes yes yes 

6 yes yes yes yes yes no 

7 yes yes yes yes yes no 

8 yes yes no yes yes yes 

 

Table 13. Agreement between the results of the single subjects analysis and the group 

analysis for the parameters analyzed. 
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4.4. PATIENT 9: A CASE OF NOCTURNAL ICTAL ASYSTOLE 

4.4.1. History and recordings 

Patient 9, a 40-year-old right-handed woman born in twin delivery, with a positive family 

history for sleep talking, began having seizures at 17 years of age. Seizures occurred 

exclusively during sleep, lasted a few minutes, and were characterized by vocalizations and 

uncoordinated and violent movements involving the axial musculature and the limbs. 

Urinary incontinence was sometimes associated. Subjectively she was usually unaware of 

the episodes but she occasionally reported feeling as if “the skin around the right eye was 

stretching” during the night. Response to CBZ (400 mg/die) was initially favourable with 

complete control of the seizures until 35 years of age. At that time seizures reappeared with 

the same semeiological features and low frequency (less than one per month). However 

one year before our evaluation, seizure frequency had increased to several episodes nightly 

despite CBZ at the same dosage. Patient also had hypothyroidism, treated with 

levothyroxine, and chronic daily headache. Neurological examination was normal. Brain 

MRI disclosed thickening of the left amygdala and blurring  of the grey–white matter 

junction on T2-weighted images in the left mesial temporal regions. 

A whole night VPSG (Connex EEG Sleep-XLTEK Software 5.4; sampling rate 256 Hz) and 

24-h video polygraphic monitoring (Nihon Kohden EEG-1200; sampling rate 500 Hz) were 

performed. Polygraphic recordings included standard bipolar EEG (according to the 

International 10-20 System), right and left electrooculogram, surface electromyogram 

(EMG) of mylohyoideus,  bilateral deltoideus and tibialis anterior muscle, ECG (from a 

standard D2 lead), microphone, oro-nasal (thermistor), thoracic and abdominal 

respirograms (strain gauge) and oxygen saturation (pulse oxymeter). 
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During wakefulness interictal EEG revealed normal activity while epileptic abnormalities 

with sharp wave features involving the anterior vertex and the centro-parietal regions of 

both the hemispheres were observed during sleep. Three seizures were recorded during two 

separate nights associated with ictal asystole (IA; mean duration: 18±4 s) and characterized 

by similar motor features. All the seizures arose from deep NREM sleep.  

At the beginning of the seizure the patient presented a downward contraction of the rima 

oris followed by oroalimentary automatisms associated with movement of the pelvis in an 

anterior-posterior direction. After this she assumed an asymmetric tonic posturing with 

extension of the right arm and leg, while performing manual automatisms with the left 

hand. Repetitive screams and hyperkinetic movements of both the superior and inferior 

limbs were then observed before the end of the seizure. 

A diffuse flattening of the EEG activity appeared nearly 20 seconds before clinical seizure 

onset, followed by a diffuse fast, low voltage rhythmic activity that persisted until the first 

movement occurred and was associated with an increase in heart and respiratory rates 

(Figure 22). Muscular artefacts masked the EEG traces after seizure onset and during IA. 

Tachycardia persisted in the first part of the seizure and was followed by progressive 

bradycardia until IA occurred (see Figure 23 and RRi analysis). During IA the patient 

maintained the asymmetric tonic posturing and about two seconds before the end of IA she 

screamed and presented manual automatisms with the left hand. After IA, tachycardia was 

observed while normal HR was regained after the end of the seizure. After polygraphic 

recordings, the patient underwent a 24h ECG monitoring that showed normal results.  
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4.4.2. Analysis of cardiovascular parameters 

Measurement of the RRi interval, spectral analysis of HRV by WT, and single subject 

statistical analysis were performed as explained in the methods section. 

Four periods were selected to evaluate time-dependent cardiovascular changes during 

seizures before IA: basal period (Basal - 90 s to 60 s before the clinical seizure onset), pre-

seizure period (preSP - 20 s preceding seizure), the first part of the seizure period (SP1 – 

from clinical onset to the shortest RRi interval value reached before RRi started to return to 

basal values) and the second part of the seizure period (SP2: from end of SP1 to beginning 

of IA) (Table 14 and Figure 24).  

Compared to basal values a significant decrease of RRi and HF absolute values, during 

both the preSP and SP1 (p<0.001) and a significant increase during SP2 (p<0.001) were 

observed, while a significant increase in LF absolute values was detected in preSP , SP1 

and SP2  (p<0.001) (Table 15).  

The pattern of RRi changes was confirmed in all three seizures during preSP and SP1 and 

in two seizures during SP2. In seizure 1 RRi progressively increased during SP2, but the 

mean value of RRi remained decreased with respect to basal values as IA was reached in a 

shorter time (Table 14 and Figure 25). An increase in LF absolute values during the three 

periods was observed in all three seizures, whereas pattern of HF component changes was 

different only in preSP of seizure 3 during which HF values increased compared to basal 

values. Lastly, a significant increase in all three parameters (RRi, HF and LF absolute 

values) was observed in SP2 compared to SP1 (p<0.0001) (Figure 25). 

 

 

 



Results 
 
 
 

 88 

4.4.3. Summary of cardiovascular changes in patient 9 

During the preSP and in the first part of SP (12, 16, 14 s respectively) a significant 

tachycardia was observed associated with an increased sympathetic activity (increased LF 

absolute values and LF%). In the second part of the SP (9, 20, 13 s respectively) a 

progressive decrease in HR that gradually exceeded basal values occurred before IA. 

Bradycardia was associated with an increase in parasympathetic activity (increased HF 

absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. 

These data were consistent in the three seizures analyzed. 
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Figure 22. Polygraphic recording of seizure 2 of patient 9 (speed 30 mm/s). A diffuse 

flattening of the EEG activity (black arrow) was observed 20 seconds before the clinical 

onset, followed by a diffuse fast, low voltage rhythmic activity that persisted until the first 

movement occurred and was associated with an increase in heart and respiratory rae. 

EEG (Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T4, T4-T6, Fz-Cz, Cz-Pz, Fp1-F3, F3-

C3, C3-P3, P3-O1, Fp1-F7, F7-T3, T3-T5); R.: right; L.: left; EOG: electrooculogram; 

Mylo.: mylohyoideus muscle; Delt.: deltoideus muscle; Tib. Ant.: tibialis anterior muscle; 

ECG: electrocardiogram (from a standard D2 lead); T-A resp.: thoracic and abdominal 

efforts (strain gauge). 
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Figure 23. Polygraphic recording of seizure 2 of patient 9 (speed 30 mm/s). Tachycardia was observed after the clinical onset of the seizure 

and was then followed by progressive bradycardia until IA occurred. EEG (Fp2-F4, F4-C4, C4-P4, P4-O2, Fp2-F8, F8-T4, T4-T6, Fz-Cz, Cz-

Pz, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp1-F7, F7-T3, T3-T5); R.: right; L.: left; EOG: electrooculogram; Mylo.: mylohyoideus muscle; 

Delt.:deltoideus muscle; Tib. Ant.: tibialis anterior muscle; ECG: electrocardiogram (from a standard D2 lead); T-A resp.: thoracic and 

abdominal efforts (strain gauge 
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Figure 24. Changes in RRi (a), LF and HF absolute values (b) during seizure 2 in patient 9 

before IA. Basal period (grey square: BAS- from 90 s to 60 s before the clinical seizure 

onset), pre-seizure period (orange square: preSP- 20 s preceding seizure), first part of the 

seizure period (light blue square: SP1 - from clinical onset to the shortest RRi interval value 

reached before RRi started to return to basal values) and second part of the seizure period 

(green square SP2: from end of SP1 to the beginning of IA). 
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Night Time of seizure 
occurrence 

SP1 (s) SP2 (s) AI (s) postIA 
(s) 

Seizure duration 
(s) 

1 4.42.27 12 9 21 47 89 

2 1.59.29 16 20 14 47 97 

2 4.40.31 14 13 18 51 96 

 
 
Table 14. SP1: seizure period from clinical onset to the shortest RRi interval value reached 

before RRi started to return to basal values; SP2: seizure period from the end of SP1 to the 

beginning of IA; IA : ictal asystole; postIA: from the end of IA to the end of the seizure. 

 

 

Dependent 

Variable 

Fixed 

factors 

F; p 

of the model 

PreSP vs Basal 

(B; p values) 

SP1 vs Basal 

(B; p values) 

SP2 vs Basal 

(B; p values) 

RRi Period 
F=41.3 

p<0.0001 

B=-0.204 

p<0.0001 

B=-0.357 

p<0.0001 

B=0.283 

p<0.0001 

HF Period 
F=120.5 

p<0.0001 

B=-0.490 

p<0.0001 

B=-0.423 

p<0.0001 

B=1.294 

p<0.0001 

LF 
Seizure 

Period 

F=301.7 

p<0.0001 

B=1.367 

p<0.0001 

B=1.961 

p<0.0001 

B=2.983 

p<0.0001 

 
 
Table 15. Single subject analysis of patient 9. F: propriety of the model expressed through 

Fisher’s F; B: b coefficients for factors. 
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Figure 25. Changes in RRi during the three seizures of patient 9 before ictal asystole. 

Compared to the basal period (from 90 to 60 s before the clinical seizure onset) a 

significant decrease of RRi was observed during the preseizure period (20 s preceding 

seizure) and during the first part of the seizure period (SP1 - from clinical onset to the 

shortest RRi interval value reached before RRi started to return to basal values), while in 

the second part of the seizure period (green square: from the end of SP1 to the beginning of 

ictal asystole) progressive bradycardia occurred.  
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Figure 26. Changes in LF and HF absolute values during seizure 2 of patient 9 before ictal 

asystole (IA). Compared to the first part of the seizure period (from 0 to 15 s after clinical 

seizure onset) a significant increase in LF and HF absolute values was observed during the 

second part of the seizure period (green square: from 15 s to IA). In particular, LF 

continued to increase until IA occurred.  



Results 
 
 
 

 95 

Pt9_Seizure2_(NR3)

0

10

20

30

40

50

60

70

80

90

100

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40

s

%

LF% HF%

 

 

Figure 27. Changes in LF and HF expressed in normalized units during seizure 2 in patient 

9 before ictal asystole. A marked predominance of the LF component was evident 

throughout the seizure period (green square), with only a slight reduction a few seconds 

before ictal asystole occurred.  
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5. DISCUSSION 

 

5.1. CARDIOVASCULAR CHANGES DURING NFLE SEIZURES 

 

This study was designed to investigate the evolution over time of changes in HR and in its 

sympathetic and parasympathetic control in relation to epileptic motor phenomena of sleep 

with clinical features of NFLE seizures. We were particularly interested in the temporal 

relationship between cardiac modifications and seizure onset. According to the hypothesis 

that epileptic cardiovascular manifestations result not only from ictal motor activity, but 

also reflect epileptic discharges involving regions of the central autonomic network 

(CAN), we sought to establish whether cardiovascular changes can be considered an early 

clinical sign and hence a reliable diagnostic marker of seizure occurrence. 

Recordings with intracerebral electrodes [1, 2] and SPECT studies [3,4] demonstrated that 

during NFLE seizures the epileptic discharge could arise or involve regions of the CAN 

devoted to cardiovascular modulation, like the cingulate gyrus and the insular cortex.  

In our study electroencephalographic investigations were performed through scalp 

electrodes and, as expected, failed to disclose and localize the onset of the epileptic 

discharge. For this reason we selected as seizure onset a clinical marker corresponding to 

the first movement recorded. 

We included in the study nine patients (44 seizures) whose clinical and 

electrophysiological characteristics broadly matched those reported in a large population of 

NFLE patients [5]. The differences observed, like the higher prevalence of drug-resistant 

seizures or predominance of seizures with NPD features, are the consequence of our 

decision to apply strictly criteria for both patients and seizure selection, to prevent 
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inaccuracy in the definition of the epileptic nature of the motor phenomena. Moreover, the 

need to avoid confounding influences on HR due to coexistent cardiovascular or 

respiratory disorders limited the number of patients finally selected. Likewise the high 

frequency of minor motor events recorded in our patients and the tendency of seizures to 

recur periodically with a short time span [5, 6] led to the exclusion of several seizures (18 

NPD; several PA in the eight patients finally included) to respect the minimum interval 

required between the seizure under analysis and a previous phenomenon arising from 

sleep. 

The first important finding of our study is that a significant (p<0.001) increase in HR was 

observed during the seizure period in all the seizures analyzed (mean RRi values ± SD in 

the basal period: 0.984 ± 0.17 s ; in the SP: 0.604 ± 0.17 s). Only in one patient was 

tachycardia followed by progressive bradycardia and asystole, and for this reason we 

treated this patient separately.  

These data are in accordance with previous studies investigating HR changes during partial 

seizures of different origin disclosing a high prevalence of ictal tachycardia [7-10]. They 

also confirmed the clinical observation of remarkable autonomic activation associated with 

seizures reported in a large series of NFLE patients [5]. 

Regarding the temporal relationship between cardiovascular modifications and seizures 

onset, we did not find significant HR changes before clinical seizure onset. This result was 

obtained both in the group analysis and in the single subject analysis for all patients 

analyzed. Previous studies reported that tachycardia preceded EEG seizure discharges by 

an average of 18.7 s in more than 75% of seizures evaluated with scalp electrodes and by 

an average of 11 s in 45% of seizures recorded with invasive subdural EEG [8, 10]. 

However, early onset tachycardia was detected more frequently in seizures arising from the 

temporal lobe, especially from mesial structures, compared with seizures of extratemporal 



Discussion 
 
 
 

 98 

lobe origin [10]. In addition, the time lag between cardiovascular changes and seizure 

onset was longer in seizures of temporal lobe origin compared to extratemporal seizures [8, 

10]. A study investigating HR changes during epileptic seizures not associated with any 

subjective or clinical manifestations disclosed tachycardia in eight out of 13 seizures 

arising from the temporal lobe, but only in one out of nine extratemporal seizures [11].  

Therefore our data reflect the findings of previous investigations in which tachycardia was 

uncommon before clinical seizure onset or in the absence of clinical manifestations in 

seizures of extratemporal origin. However, the seizure onset zone in our population was 

identified in the cingulate gyrus only in patient 8 who underwent evaluation with deep 

implanted electrodes. The pattern of HR changes in this patient were consistent with the 

group analysis both in the preSP and in the SP, with significant tachycardia observed after 

seizure onset. In the other seven patients an extratemporal origin of the seizures could only 

be supposed, as NFLE seizures, particularly with hyperkinetic features, could also 

originate, albeit less frequently, in the temporal region [12].  

Regardless of the explanation for our findings, HR changes did not result in NFLE 

seizures, a reliable diagnostic marker of seizure occurrence, however it could suggest an 

extatemporal origin of the seizure. 

As the HR changes coincided with motor seizure onset, we were unable to demonstrate if 

they are the direct consequence of epileptic discharges involving regions of the CAN or a 

simple reaction to motor manifestations of seizures. In patient 6, a clear epileptic discharge 

involving the left centro-fronto-temporal derivations was recorded during which 

tachycardia was observed despite a few movements. This pattern was present in all three 

seizures analyzed in this patient, but the discharge was observed more than two minutes 

after seizure onset and therefore changes in HR could be influenced by persisting HR 

modifications due to the previous clinical behavior. 
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To better understand the autonomic activation related to NFLE seizures and confirmed by 

HR analysis, we performed a time and frequency domain analysis of the HRV using 

wavelet transform technique. As previously explained, this technique detects the sudden 

shift in sympathovagal balance during transient phenomena and has been applied to 

describe autonomic changes associated with non epileptic motor phenomena of sleep [13]. 

Spectral analysis of HRV in our patients showed a significant increase in the LF 

component that started before clinical seizure onset and persisted throughout the seizure. A 

significant decrease in the HF component that mainly represents parasympathetic outflow 

and respiratory rhythm, was instead observed only after clinical seizure onset, as the HF 

component remained unchanged in the preseizure period. This finding demonstrated that a 

clear autonomic activation represented by a shift of sympathovagal balance towards 

sympathetic hypertonus preceded and was therefore independent of the epileptic movement 

onset. However lack of information on the temporal evolution of the epileptic discharge 

meant that we can only speculate on the nature of this autonomic activation.  

A previous study explored the temporal relationship between autonomic modifications and 

cerebral and muscular activity related to non epileptic motor phenomena of sleep (periodic 

limb movements of sleep) using wavelet analysis of the HRV and EEG spectral 

component. An early sympathetic activation was observed nearly six seconds prior to 

movement onset and four seconds before an increase in EEG delta activity became evident 

[13]. The same temporal relationship between cardiac changes, cerebral delta 

synchronization and PLMS onset was observed in other studies, suggesting a permissive 

function of the autonomic and cerebral activation on movement occurrence [14, 15]. A 

continuous spectrum of EEG changes associated with various degrees of autonomic 

activation characterized also the spontaneous arousal from sleep [16, 17]. The stereotyped 

pattern of cerebral and autonomic variation preceding PLM is therefore likely to reflect 
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physiological fluctuations in arousal levels. According to these findings and with the 

proven association between both major and minor motor episodes of NFLE with phase A 

of the CAP [18], we could argue that the sympathetic activation observed in our study 

before seizure onset is the autonomic expression of a spontaneous arousal from sleep that 

triggers seizure occurrence. How arousal exerts this trigger role, however, remains 

unsettled. As the low-frequency component of CAP seemed to be localized mostly over the 

frontal areas [19], an epileptogenic focus localized in the frontal lobe could be more readily 

activated by this oscillatory mechanism [6]. From this point of view the pathophysiological 

mechanism underlying NFLE could be primarily related to a dysfunction in the arousal 

system. The neuronal nicotinic acetylcholine receptor, whose subunits resulted mutated in 

some families with ADNFLE, has a modulatory effect on the arousal system at both 

thalamic and cortical levels. The regional distribution and density of this receptor differed 

in patients with the mutated subunits, and gain of function has been demonstrated [20]. 

Due to this finding the possible contribution of α4/β2 subunit mutations in the genesis of 

pathological thalamocortical oscillations triggering epileptic seizures has been suggested 

[20]. However, studies with intracerebral recordings demonstrated that an increase in the 

arousal fluctuation observed in NFLE patients is the consequence and not the trigger of 

epileptic discharges not detectable on scalp EEG. Moreover, a reduced CAP rate and PLM 

were observed after surgical treatment of NFLE [6, 21]. Taken together these findings, 

suggest that the autonomic activation observed before seizure onset is probably directly 

caused or triggered by the epileptic discharge.  

A final consideration on our data is that both the HR variations and the pattern of 

autonomic activation, characterized by an increase in sympathetic activity, were confirmed 

in all eight patients analyzed during both the preSP and the SP, irrespective of the sleep 

phase of seizure occurrence or the clinical seizure features. The pattern of HF variations 
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was more variable, probably due to a biphasic development of changes during the SP as 

explained for patient 2, or to difference in respiratory activity. One limitation of our study 

is the difficulty determining changes in respiratory activity by strain-gauge during the SP 

due to movement artifacts. However, HF pattern differences did not influence the direction 

of sympathovagal balance changes toward a sympathetic activation in the preSP period and 

in much of the SP as demonstrated for patient 2. Moreover, visual inspection showed a 

quite stereotyped pattern of evolution of autonomic activation during different seizures of 

the same patient (see graphics in appendix A) confirming that stereotypy of clinical 

manifestations is a feature of NFLE seizures [22]. Despite this stereotypy, as sympathetic 

activation was also observed before and during non epileptic motor phenomena of sleep 

and studies applying similar analysis methods to evaluate the evolution of autonomic 

changes during NREM parasomnias are lacking, we could not asses the diagnostic value of 

our findings.  
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5.2 NOCTURNAL ICTAL ASYSTOLE  

 

Bradycardia and asystole are rare epileptic manifestations primarily seen during seizures 

arising or involving the temporal lobe [23], while cases related to frontal lobe seizures 

have occasionally been reported [24,25]. 

The clinical features of our patient with IA were consistent with NFLE (nocturnal and high 

frequency occurrence of the seizures, seizure motor behavior resembling NPD, poor 

informative ictal EEG recordings). However compared with our other eight patients, 

analysis of cardiovascular changes in this patient also yielded different results outside the 

seizure period.  

Firstly a significant tachycardia starting at least 20 seconds before seizure onset was 

detected in all three seizures analyzed. This early HR modification was associated with 

changes in EEG activity and an increased respiratory rate, in the absence of any other 

behaviors. As a clear epileptic discharge was not recorded we could not establish the 

epileptic nature of these early signs, but this autonomic and electrophysiological activation 

recurred in a stereotyped fashion even with similar time duration (25, 20, 19 s respectively) 

in the three seizures evaluated.  

The finding of early tachycardia, mainly observed during seizures involving the temporal 

regions [26], and ictal bradycadia and asystole [23] suggest that the seizure onset zone in 

our patient could be localized in the mesial areas of the temporal lobe or in the insular 

cortex. Brain MRI abnormalities are consistent with this hypothesis. 

The pattern of HR changes after seizure onset, consisting of tachycardia evolving into 

progressive bradycardia leading to asystole, was in agreement with previous descriptions 
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[23, 27]. These HR changes were associated with a marked sympathetic activation before 

seizure onset and in the first part of the seizure (increase in LF absolute values and LF %).  

The progressive decrease of HR in the second part of the seizure was associated with a 

sudden and significant increase in parasympathetic activity and a further increase in LF 

absolute values. This gradual pattern of HR decrease, associated with LF increase, could be 

explained by the sympathetic system’s attempt to counteract the parasympathetic 

hypertonus, to prevent asystole. We could argue that finally asystole occurred when the 

sympathetic exhaustion led the parasympathetic system to prevail.  

A paroxysmal discharge was not documented before bradycardia and asystole in our 

patient and we assume the involvement of the left hemisphere only on the basis of the 

concomitant clinical behavior characterized by an asymmetric tonic posturing with 

extension of the right arm and leg, and the brain MRI findings. This hypothesis is in line 

with results of cortical intraoperative stimulations in humans suggesting a lateralization of 

parasympathetic activity to the left insular cortex and sympathetic activity to the right [28], 

and with literature cases which implicated the left hemisphere in the genesis of IB on the 

basis of ictal and interictal electroencephalographic findings [23]. 
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5.3. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The present study provides the first description of time-related variations in HR and 

sympathetic-parasympathetic balance associated with NFLE seizures and nocturnal ictal 

asystole. Although we can only speculate on the pathophysiological mechanism underlying 

these centrally mediated events, important conclusions can still be drawn. 

Firstly, changes in autonomic balance toward a sympathetic prevalence always preceded 

clinical seizure onset in NFLE, even when HR changes were not yet evident. Further 

investigation could focus on correlating the degree of sympathetic activations and seizure 

occurrence to search for autonomic indicators of impending seizures. 

Secondarily, wavelet analysis is a sensitive technique to detect sudden variations of 

autonomic balance, and could be applied to explore autonomic variations during non 

epileptic motor phenomena of sleep like NREM parasomnias for a differential diagnosis 

with seizures.  

Lastly, epileptic asystole is associated with a parasympathetic hypertonus counteracted 

until the end by a marked sympathetic activation. If this pattern were confirmed in other 

seizures with IA accompanied by a clear epileptic discharge, important information on 

hemispheric lateralization in cardiovascular control could be gained. 

 

 

 

 

 

 



Discussion 
 
 
 

 105 

BIBLIOGRAPHY 

 

1. Nobili L, Sartori I, Terzaghi M, Tassi L, Mai R, Francione S, et al. Intracerebral 

recordings of minor motor events, paroxysmal arousals and major seizures in 

nocturnal frontal lobe epilepsy. Neurol Sci. 2005; 26 suppl 3:215-9. 

2. Ryvlin P, Minotti L, Demarquay G, Hirsch E, Arzimanoglou A, Hoffman D, et al. 

Nocturnal hypermotor seizures, suggesting frontal lobe epilepsy, can originate in 

the insula. Epilepsia. 2006; 47:755-65. 

3. Vetrugno R, Mascalchi M, Vella A, Della Nave R, Provini F, Plazzi G, et al. 

Paroxysmal arousal in epilepsy associated with cingulate hyperperfusion. 

Neurology. 2005; 64:356-8. 

4. Schindler K, Gast H, Bassetti C, Wiest R, Fritschi J, Meyer K, et al. 

Hyperperfusion of anterior cingulate gyrus in a case of paroxysmal nocturnal 

dystonia. Neurology. 2001; 57:917-20. 

5. Provini F, Plazzi G, Tinuper P, Vandi S, Lugaresi E, Montagna P. Nocturnal frontal 

lobe epilepsy. A clinical and polygraphic overview of 100 consecutive cases. Brain. 

1999; 122:1017-31. 

6. Terzaghi M, Sartori I, Mai R, Tassi L, Francione S, Cardinale F et al. Coupling of 

minor motor events and epileptiform discharges with arousal fluctuations in NFLE. 

Epilepsia. 2008; 49:670-6.  

7. Blumhardt LD, Smith PE, Owen L. Electrocardiographic accompaniments of 

temporal lobe epileptic seizures. Lancet. 1986; 1:1051-6. 

8. Schernthaner C, Lindinger G, Pötzelberger K, Zeiler K, Baumgartner C. 

Autonomic epilepsy-the influence of epileptic discharges on heart rate and rhythm. 

Wien Klin Wochenschr. 1999; 111:392-401. 



Discussion 
 
 
 

 106 

9. Opherk C, Coromilas J, Hirsch LJ. Heart rate and EKG changes in 102 seizures: 

analysis of influencing factors. Epilepsy Res. 2002; 52: 117-27. 

10. Leutmezer F, Schernthaner C, Lurger S, Pötzelberger K, Baumgartner C. 

Electrocardiographic changes at the onset of epileptic seizures. Epilepsia. 2003; 44: 

348-54. 

11. Weil S, Arnold S, Eisensehr I, Noachtar S. Heart rate increase in otherwise 

subclinical seizures is different in temporal versus extratemporal seizure onset: 

support for temporal lobe autonomic influences. Epileptic Disord. 2005; 7:199-204. 

12. Mai R, Sartori I, Francione S, Tassi L, Castana L, Cardinale F, et al. Sleep-related 

hyperkinetic seizures: always a frontal onset? Neurol Sci. 2005;26 Suppl 3:220-4. 

13. Guggisberg AG, Hess CW, Mathis J. The significance of the sympathetic nervous 

system in the pathophysiology of periodic leg movements in sleep. Sleep. 2007 1; 

30:755-66. 

14. Ferrillo F, Beelke M, Canovaro P, Watanabe T, Aricò D, Rizzo P, et al. Changes in 

cerebral and autonomic activity heralding periodic limb movements in sleep. Sleep 

Med. 2004; 5:407-12. 

15. Allena M, Campus C, Morrone E, De Carli F, Garbarino S, Manfredi C, et al. 

Periodic limb movements both in non-REM and REM sleep: relationships between 

cerebral and autonomic activities. Clin Neurophysiol. 2009; 120:1282-90.  

16. Sforza E, Jouny C, Ibanez V. Cardiac activation during arousal in humans: further 

evidence for the hierarchy in the arousal response. Clinical Neurophysiol. 2000; 

111:1611-19. 

17. Trinder J, Allen N, Kleiman J, Kralevski V, Kleverlaan D, Anson K, et al. On the 

nature of cardiovascular activation at an arousal from sleep. Sleep. 2003; 26:543-

51. 



Discussion 
 
 
 

 107 

18. Terzano MG, Monge-Strauss MF, Mikol F, Spaggiari MC, Parrino L.Cyclic 

alternating pattern as a provocative factor in nocturnal paroxysmal dystonia. 

Epilepsia. 1997 ; 38:1015-25. 

19. Ferri R, Bruni O, Miano S, Terzano MG. Topographic mapping of the spectral 

components of the cyclic alternating pattern (CAP). Sleep Med. 2005; 6:29-36.  

20. Picard F, Bruel D, Servent D, Saba W, Fruchart-Gaillard C, Schollhorn-Peyronneau 

MA, et al. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: 

a PET study. Brain. 2006; 129: 2047–60. 

21. Nobili L, Sartori I, Terzaghi M, Stefano F, Mai R, Tassi L, et al. Relationship of 

epileptic discharges to arousal instability and periodic leg movements in a case of 

nocturnal frontal lobe epilepsy: a stereo-EEG study. Sleep. 2006;29:701-4. 

22. Tinuper P, Provini F, Bisulli F, Vignatelli L, Plazzi G, Vetrugno R, et al. 

Movement disorders in sleep: guidelines for differentiating epileptic from non-

epileptic motor phenomena arising from sleep. Sleep Med Rev. 2007; 11: 255–67. 

23. Tinuper P, Bisulli F, Cerullo A, Carcangiu R, Marini C, Pierangeli G, et al. Ictal 

bradycardia in partial epileptic seizures. Autonomic investigation in three cases and 

literature review.  Brain. 2001; 124:2361-71. 

24. Munari C, Tassi L, Di Leo M, Kahane P, Hoffman D, Francione S, et al. Video-

stereo-electroencephalographic investigation of orbitofrontal cortex: ictal 

electroclinical patterns. In: Jasper HH, Riggio S, Goldman-Rakic PS, editors. 

Epilepsy and the functional anatomy of the frontal lobe. New York: Raven Press; 

1995. p. 273-95. 

25. Mascia A, Quarato PP, Sparano A, Esposito V, Sebastiano F, et al. Cardiac asystole 

during right frontal lobe seizures: a case report. Neurol Sci. 2005; 26:340-3. 



Discussion 
 
 
 

 108 

26. Leutmezer F, Schernthaner C, Lurger S, Pötzelberger K, Baumgartner C. 

Electrocardiographic changes at the onset of epileptic seizures. Epilepsia. 2003; 44: 

348-54. 

27. Schuele SU, Bermeo AC, Locatelli E, Burgess RC, Lüders HO. Ictal asystole: a 

benign condition? Epilepsia. 2008; 49:168-71.  

28. Oppenheimer S, Gelb A, Girvin J, Hachinski V. Cardiovascular effects of human 

insular cortex stimulation. Neurology. 1992; 42:1727–32. 

} 


