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ABSTRACT 

 

The ferric uptake regulator protein Fur regulates iron-dependent gene 

expression in bacteria. In the human pathogen Helicobacter pylori, Fur has been shown 

to regulate iron-induced and iron-repressed genes. Herein we investigate the molecular 

mechanisms that control this differential iron-responsive Fur regulation. Hydroxyl 

radical footprinting showed that Fur has different binding architectures, which 

characterize distinct operator typologies. On operators recognized with higher affinity 

by holo-Fur, the protein binds to a continuous AT-rich stretch of about 20 bp, 

displaying an extended protection pattern. This is indicative of protein wrapping around 

the DNA helix. DNA binding interference assays with the minor groove binding drug 

distamycin A, point out that the recognition of the holo-operators occurs through the 

minor groove of the DNA. 

By contrast, on the apo-operators, Fur binds primarily to thymine dimers within a 

newly identified TCATTn10TT consensus element, indicative of Fur binding to one side 

of the DNA, in the major groove of the double helix. Reconstitution of the 

TCATTn10TT motif within a holo-operator results in a feature binding swap from an 

holo-Fur- to an apo-Fur-recognized operator, affecting both affinity and binding 

architecture of Fur, and conferring apo-Fur repression features in vivo.  

Size exclusion chromatography indicated that Fur is a dimer in solution. However, in 

the presence of divalent metal ions the protein is able to multimerize. Accordingly, apo-

Fur binds DNA as a dimer in gel shift assays, while in presence of iron, higher order 

complexes are formed. Stoichiometric Ferguson analysis indicates that these complexes 

correspond to one or two Fur tetramers, each bound to an operator element. 

Together these data suggest that the apo- and holo-Fur repression mechanisms 

apparently rely on two distinctive modes of operator-recognition, involving 

respectively the readout of a specific nucleotide consensus motif in the major groove 

for apo-operators, and the recognition of AT-rich stretches in the minor groove for 

holo-operators, whereas the iron-responsive binding affinity is controlled through 

metal-dependent shaping of the protein structure in order to match preferentially the 

major or the minor groove. 
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1. Helicobacter pylori 

 

1.1 Epidemiology and infection  

 
Helicobacter pylori is a gram-negative, spiral shaped, microaerophilic bacterial 

pathogen (Fig. 1), which colonizes the mucosal layer overlying the gastric epithelium 

of the human stomach. Isolated in 1982 by Robin Warren and Barry Marshall, it is 

recognized as the principal causative agent of chronic active gastritis (Blaser, 1990), as 

well as gastric and peptic ulcer diseases (Nomura et al., 1994), and is associated with 

the development of B-cell mucosa-associated lymphoid tissue lymphoma and gastric 

adenocarcinoma (Peek et al., 2002, Du et al., 2002, Parsonnet et al., 1994). 

 

 

 

Fig. 1 Electron micrograph of Helicobacter pylori. H.pylori in vivo and under optimum in vitro 

conditions is an S-shaped bacterium with 1 to 3 turns, 0.5 ×5 μm in length, with a tuft of 5 to 7 

polar sheathed flagella. Field emission SEM, bar = 0.5 μm. Image form (Mobley et al., 2001). 

 

While the infection is chronic and often asymptomatic, this bacterium infects 

over 50% of the world’s population (Dunn et al., 1997). The sheer number of infected 

individuals leads to a significant number of H. pylori-associated diseases cases each 
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year, worldwide. Moreover, since colonization usually occurs early in childhood and 

remains throughout the person’s life if the infection is not treated with antibiotics 

(Blaser, 1990, de Reuse et al., 2007), the chronicity increases the likelihood of disease. 

For these reasons H. pylori is considered an important public health problem with 

serious economic consequences and the World Health Organization has classified the 

organism as a class 1 carcinogen in 1994 (Bouvard et al., 2009).  

After initial infection, H. pylori rapidly reaches to the gastric mucosa layer in 

close contact with epithelial cells (Josenhans et al., 2007). There, the bacterium is 

continuously faced with harsh physiological conditions such as mild to strong acidity, 

fluctuating nutrient, availability and osmolarity, oxygen tension and a vigorous host 

immune response. Therefore, H. pylori produces a number of factors to cope with 

changes in the micro-environment and the host response (van Vliet et al., 2001a). 

Several factors that facilitate its survival, such as flagellins (Suerbaum et al., 1993) and 

urease (Cussac et al., 1992), and that are associated with pathogenesis, like the cag 

pathogenicity island (Covacci et al., 1993) and the vacuolating toxin (Telford et al., 

1994, Cover et al., 1994), have been extensively studied, and significant advances 

regarding the regulation of these factors have been made (Akada et al., 2000, Joyce et 

al., 2001). 

H. pylori infections can be successfully cured with antibiotic treatment, 

associated with a proton pump inhibitor (Megraud et al., 2003). Unfortunately, the 

available antimicrobial therapies are beginning to lose efficacy principally because of 

insurgence of antibiotic resistance, which frequently emerges de novo in H. pylori. 

Altered expression of gene products sensitive to antibiotic treatment seems to be 

especially important for resistance to penicillins and especially nitrimidazoles, the most 

common form of resistance encountered in H. pylori (Gerrits et al., 2006). However, 

because it would be unrealistic to use antimicrobial therapies to eradicate an infection 

that affects 50% of the world population, it remains necessary to explore and identify 

both bacterial and host markers to diagnose individuals at high risk for the most severe 

infection outcomes, as well as to develop new effective therapeutic strategies. For these 

reasons, H. pylori remains a bacterial pathogen of major medical importance. This was 

acknowledged by the Nobel Price for Medicine in 2005 to Warren and Marshal who 

first discovered the bacterium (Marshall et al., 1984). 
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1.2 Genome and regulatory functions 

 
The complete genomic sequence of four H. pylori strains derived from unrelated 

clinical isolated are currently available [Hp 26695, (Tomb et al., 1997); Hp J99, (Alm 

et al., 1999); HpAG1, (Oh et al., 2006) and HpG27, (Baltrus et al., 2009)]. Although H. 

pylori was believed to exhibit a large degree of genomic and allelic diversity, the 

overall genomic organization, gene order and predicted gene products of these strains 

were found to be remarkably similar (Alm et al., 1999). 

The H. pylori genome is 1600 kb long and contains approximately 1500 open 

reading frames (ORFs) of which 60% were similar to genes of known function and 

could, therefore, be designated a putative identification, 18% showed similarity to 

genes that are conserved throughout other bacteria but do not have a known function 

and 23% were specific to H. pylori (Alm et al., 1999, Scarlato et al., 2001).  

One of the most striking features of the H.pylori genome is the singular paucity 

of transcription factor and regulatory protein predicted (Scarlato et al., 2001, Tomb et 

al., 1997). Analysis of genome led to the identification of only 32 gene products 

classified as having a possible regulatory function of which only 17 are predicted to 

have a role in the regulation of transcription (Fig. 2). This is approximately half the 

number of those reported for H. influenzae, which has a genome of comparable size to 

H. pylori and less than a quarter to those predicted for E. coli. In addition, only one-

third of the number of two-component regulatory systems of E. coli are present in H. 

pylori which possesses only four sensor proteins and seven response regulators (Tomb 

et al., 1997). 

The low abundance of regulators is consistent with a small genome, where 

transcription factors have been lost due the absence of selective pressure (Madan Babu 

et al., 2006), reflecting the reductive evolution of this pathogen, which has been 

attributed to a constrained gastric habitat and the absence of other competitive 

microrganisms in this hostile environment (de Reuse et al., 2007). 

There is, however, evidence that H. pylori uses other mechanisms of regulation. 

These include slipped-strand mispairing within genes (Josenhans et al., 2007) and in 

putative promoter regions (Alm et al., 1999) and methylation by its nine type II 

methyltransferases (Marais et al., 1999). Until this moment, little was known regarding 

posttranscriptional or translational control in H. pylori, even if evidence from two-
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dimensional gel electrophoresis analysis has suggested that these exist (Laub et al., 

2000). However, a recent work reported a map of the primary trascriptome of H. pylori 

that reveals an unexpected complex RNA output from this small and compact genome. 

Accordingly, 60 small RNAs including the ε-subdivision counterpart of the regulatory 

6S RNA and associated RNA products and potential regulators of cis- and trans-

encoded target messenger RNAs has been identified (Sharma et al., 2010). 

Finally, the H. pylori genome does not have extensive operon structure. For example, 

the flagellar regulon is not contained in operons in this organism, which further 

confounds the apparent lack of regulation. 

 

 

 

Fig. 2 Schematic representation of H. pylori genome and map position of regulatory genes 

(Scarlato et al., 2001, Tomb et al., 1997). Outer concentric circle: predicted coding regions on 

the plus strand; second concentric circle: predicted coding regions on the minus strand. 

Symbols: green arrow boxes, sigma factors (3); blue arrow boxes, sensor kinase (3); yellow 

arrow boxes, response regulator (5); red arrow boxes, transcriptional regulator (7). 

 



_________________________________________________ Introduction __________ 
 

15 
 

Thus, despite the limited number of proteins putatively involved in regulation of 

transcription functions (as deduced from genome), H. pylori seems to use complex and 

fascinating mechanisms to control transcription. The key issue is how the few 

regulatory proteins of H. pylori can exploit their functions in order to regulate different 

sets of genes in a coordinate manner. Globally, the coordinated expression of the 

genetic repertoire is controlled by the transcriptional regulatory network (TRN), which 

controls the decision making of the bacterium in response to changes in the 

environment (Balazsi et al., 2005). Recent evidence points to a very shallow of H. 

pylori TNR in which the few regulators are encompassed in four main modules which 

process the physiological responses needed to colonize the gastric niche: respectively, 

heat and stress response, motility and chemiotaxis, acid acclimation and metal ion 

homeostasis (Danielli et al., 2010). For example, a tightly controlled metal trafficking 

is at the basis of the activation mechanism of the Ni2+-dependent urease and the [Ni2+-

Fe2+] hydrogenase (Mehta et al., 2003). These two enzymes are central players in the 

infectious process: urease allows buffering of the acidic micro-environment 

surrounding the bacterium through the conversion of exogenous urea to ammonium and 

bicarbonate (Sachs et al., 2003, Tsuda et al., 1994), while hydrogenase allows infection 

through breakdown of hydrogen, an energy-yielding substrate that is freely available in 

the stomach (Maier et al., 1996, Olson et al., 2002). 
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2. METAL ION HOMEOSTASIS 

 

2.1 General Features  
 

Ions play an important role in the metabolism of all organisms as reflected by the wide 

variety of chemical reactions in which they take part. Ions are cofactors of enzymes, 

catalyzing basic functions such as electron transport, redox reactions, and energy 

metabolism; and they also are essential for maintaining the osmotic pressure of cells. 

Because both ion limitation and ion overload delay growth and can cause cell death, ion 

homeostasis is of critical importance to all living organisms. In bacteria, this is 

achieved by balancing their uptake, efflux, utilization, and storage (Fig. 3). 

 

 

 

Fig. 3 Schematic representation of the mechanisms involved in maintaining ion homeostasis. 

 

Maintaining ion homeostasis requires both sensor systems to detect the 

cytoplasmic ion concentration and effector systems to restore normal cell conditions, or 

to cope with stress caused by ion imbalance. For most ions, the cell can affect 
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homeostasis through regulation of the expression or the activity of its uptake and efflux 

systems. Since import of many cations appears to be relatively nonspecific, the 

corresponding regulatory mechanisms are probably based mainly on ion-specific efflux 

pumps. For some ions the existence of cytoplasmic storage proteins allows for more 

complex homeostasis mechanisms. Ion storage proteins remove excess ions from the 

cytoplasm and keep them in a nonreactive form, which can be accessed when the ion 

becomes scarce (van Vliet et al., 2001a). 

The ion-responsive regulatory systems of bacteria usually consist of a single 

regulatory protein that combines sensor and effector functions in one molecule. It 

senses the cytoplasmic ion concentration and, when activated, can induce or repress 

transcription of the corresponding uptake, efflux, and/or storage systems (Silver et al., 

1996). This ensure that the cytosol have the proper complement of transition metal ions 

(Blencowe et al., 2003). 

 

2.2 Iron Homeostasis 

 

Iron is an essential element for most bacteria, as many enzymes involved in 

cellular metabolism require iron as a co-factor. Accordingly, ferroprotoporphyrin 

(heme) groups are essential moieties of many enzymes involved in bacterial respiration, 

electron transport, and peroxide reduction. Iron-sulfur proteins participate in electron 

transport reactions, anaerobic respiration, amino acid metabolism, and energy 

metabolism. Finally, iron-containing non-heme, non-iron-sulfur proteins are required 

for DNA synthesis, protection from superoxide, and amino acid biosynthesis. 

In addition, in bacteria, the level of iron determines the expression of several virulence 

factors (Braun, 2005, Litwin et al., 1993).  

Although iron is considered an abundant element in nature, under aerobic 

conditions, most iron exists in the insoluble Fe3+ form. Reduction of Fe3+ to Fe2+ is 

toxic to cells because Fe2+ has the ability to generate hydroxyl radicals by catalysing 

the Fenton reaction (Imlay et al., 1988, Hantke, 2001). Several proteins, such as 

albumin, ferritin, lactoferrin and transferrin, present in humans, reduce this toxicity by 

sequestering free Fe2+ and oxidizing it to insoluble Fe3+, which is not readily available 

to support bacterial growth (Weinberg, 1978). 
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Hence, the survival and growth of bacteria during infection depends on their ability to 

interact with and acquire iron from the host. Bacteria have evolved several mechanisms 

to help utilization of host iron-bound compounds directly, or to separate iron from other 

host sources. Under iron-limiting conditions, most bacteria produce small iron-

chelating molecules called siderophores, which can solubilize iron in the environment 

and present it to specific receptors for transport into the bacteria (Braun et al., 1998, 

Braun et al., 1999).  

Unlike many other organisms, H. pylori does not synthesize siderophores (van 

Vliet et al., 2001a). This is confirmed by analysis of the H. pylori genome sequence, 

which does not contain homologs of siderophore synthesis genes (Berg et al., 1997). 

Compared to the range of iron compounds that other bacterial pathogens like E. coli 

and Salmonella enterica serovar Typhimurium can utilize, the number used by H. 

pylori is limited. Feeding assays indicate that H. pylori uses only very few siderophores 

produced by other organisms (Berg et al., 1997, Husson et al., 1993, Illingworth et al., 

1993). This limitation regarding iron acquisition may have developed owing to the 

absence of competition for nutrients by other microorganisms and the relatively low 

number of iron compounds available in the human stomach. In fact, in the gastric 

mucosa, the iron is complexed into haemoglobin or cheated by transferring in serum or 

by lactoferrin. As the conditions in the gastric lumen and mucosa are predicted to 

stabilize the soluble ferrous iron, it is likely that, in contrast with many other bacterial 

pathogens, ferrous iron uptake plays an important role for H. pylori.  

The genome sequence of H. pylori suggests that this bacterium possesses 

several iron acquisition systems including both ferrous (Fe2+) and ferric uptake systems 

(Alm et al., 1999, Tomb et al., 1997). In addition, it is known that H. pylori is capable 

to uptake iron from human lactoferrin and haem (Husson et al., 1993, Dhaenens et al., 

1999, Worst et al., 1999). Importantly, it seems that H. pylori infection is associated 

with a decrease in human serum ferritin concentration that might be induced by the 

uptake of ferritin in the stomach by H. pylori (Berg et al., 2001). Accordingly, H. pylori 

infections have been also epidemiologically linked with disorders in iron metabolism 

and iron deficiency anemia, especially in adolescent and pregnant women (Muhsen et 

al., 2008).  

 Furthermore, H. pylori possesses also iron storage and iron detoxification 

systems. This allows the cell to be protected from iron toxicity and also provides for an 
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iron deposit, which is available when iron is scarce. Bacterial iron storage proteins can 

be divided into two classes: ferritins and bacterioferritins and H. pylori contains one 

ferritin, the 19-kDa prokaryotic ferritin (Pfr) protein (HP0653), and one putative 

bacterioferritin, the HP-NAP protein (HP0243). 

 

2.3 Regulation of Iron Homeostasis 

 

Bacteria regulate their iron-uptake and iron-storage systems in response to the 

cytoplasmic Fe2+ concentration in order to reduce the generation of toxic radicals that 

will damage biological macromolecules (Braun et al., 1999). When this concentration 

becomes too high, bacteria switch off their high-affinity iron uptake systems.  

On the other hand, continuous uptake of iron creates the need for removal of iron from 

the cytoplasm and storage of excess iron. The shielding role of soluble metal-storage 

protein is often essential to this task. These proteins, from one site protect the cell from 

the toxic effects of intracellular free metal ions and, from the other site, should release 

the metal ions to metallo-enzymes and/or specific metallo-chaperones vehiculating the 

metals to the correct metal binding pockets of the enzymes, in order to trigger their 

enzymatic activity. 

Thus the iron homeostasis is tightly controlled, both at the protein level, through 

incorporation of free metal ions into metallo-proteins, and more importantly at the 

transcriptional level, through the regulated expression of genes encoding metal-

trafficking proteins, including storage and uptake proteins. In many bacteria, this 

transcriptional regulation is mediated by the ferric uptake regulator Fur (Crosa, 1997, 

Escolar et al., 1999). 

In contrast, this process in eukaryotic organisms occurs mainly at level of translation 

through the binding of a regulatory protein to specific mRNA transcripts (Schneider et 

al., 2000). 
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3. THE TRANSCRIPTIONAL REGULATOR FUR 

 

3.1 Overview 
  

 The ferric uptake regulator Fur is a widespread bacterial protein that regulates 

the expression of iron-uptake and iron-storage systems in response to intracellular iron. 

The Fur protein has been best characterized in E. coli (Bagg et al., 1987, de Lorenzo et 

al., 1987, Hantke, 1981), and Fur homologous have been found in both Gram-negative 

bacteria and Gram-positive bacteria (Bsat et al., 1998, Xiong et al., 2000). 

Fur is a key regulator of iron metabolism, but in different organisms it clearly 

plays a role in numerous other aspects of physiology (Escolar et al., 1999). In 

particular, in H. pylori, the relative paucity of transcriptional regulators, combined with 

the necessity to respond to environmental stresses (see Chapter 1.2), may have resulted 

in H. pylori Fur (HpFur) being involved in the regulation of other adaptive responses. 

(Ernst et al., 2005a). Thus, other than regulation of iron metabolism, HpFur has also 

been implicated in the regulation of acid resistance (Bijlsma et al., 2002, Bury-Mone et 

al., 2004, van Vliet et al., 2004), nitrogen metabolism (van Vliet et al., 2001b, van 

Vliet et al., 2003) and oxidative stress resistance (Dubrac et al., 2000). Further, Fur-

mediated regulation is also required for gastric colonization by H. pylori, as 

demonstrated in a mouse model of infection (Bury-Mone et al., 2004, Gancz et al., 

2006). 

Therefore, due to Fur involvement in the regulation of many other processes in the cell, 

it is tempting to also consider Fur like a global regulator rather than a simple 

transcriptional regulator (Escolar et al., 1999). The importance of Fur as global 

regulator is reflected by more than 200 identified target gene loci in H. pylori genome, 

as shown in a genome-wide location analysis (Danielli  et al., 2006). 

In the classical Fur regulation paradigm, Fur acts as transcriptional repressor in 

the presence of iron, which acts as co-repressor, promoting the binding affinity of Fur 

to AT-rich DNA elements, termed Fur-boxes, encompassed in the core promoters of 

iron-regulated genes (Escolar et al., 1997, Escolar et al., 1999). Thus, Fur binding to 

the Fur-boxes, occludes the promoter from being recognized by the vegetative RNA 

polymerase (RNAP) holoenzyme, resulting in transcriptional repression of target genes. 
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However, under low iron conditions the iron-free Fur (apo-Fur) has a reduced affinity 

for the Fur-boxes allowing the RNAP free access to the promoters of the downstream 

genes. Classical Fur-regulated promoters are repressed under iron replete conditions 

and derepressed under iron starvation conditions. 

Fur represents the founding member of a family of regulators composed by 

several subclasses of bacterial metalloproteins. These proteins differ in function and 

have different DNA-binding sites but are all involved in metal-dependent control of 

gene expression. However, the Fur family includes members that sense metals in the 

cell as well as other signals than metal ions, including the sensors of zinc starvation Zur 

(Gaballa et al., 1998, Patzer et al., 1998), the manganese-uptake regulator Mur (Diaz-

Mireles et al., 2004), the nickel-selective regulator Nur (Ahn et al., 2006) and a 

hydrogen peroxide stress-sending repressor, PerR, from Bacillus subtilis (Bsat et al., 

1998). PerR is capable of binding Fe2+ or Mn2+ to a metalloregulatory site which 

represses the expression of genes that control a response to H2O2 and oxidative stress, 

through a singular mechanism in which the iron-binding site now functioning as a 

metal-based sensor of peroxides (Lee et al., 2006b). 

 

3.2 Structure-function relationship: mechanisms of iron sensing and 
allosteric activation 

 
The H. pylori fur gene was originally isolated as coding sequence able to 

partially complement an E. coli ∆fur knockout strain (Bereswill et al., 1999, Bereswill 

et al., 1998). The deduced polypeptide sequence predicts a protein of ~ 17 kDa mass, 

containing 150 residues, with high homology to E. coli Fur (EcFur). Accordingly, 

antibodies directed against EcFur cross-react with the HpFur protein (Bereswill et al., 

1999). It also shares extensive sequence and secondary structure homology to the broad 

family of Fur-like metallo-regulators found in Gram-negative and Gram-positive 

bacteria, including Pseudomonas aeruginosa Fur (PaFur), B. subtilis PerR (BsPerR), 

Mycobacterium tubercolosis Zur (MtZur) (reviewed Lee et al., 2007b). Biochemical 

and spectroscopic studies indicated that Fur proteins assume a homodimeric tertiary 

structure (Pecqueur et al., 2006, Pohl et al., 2003) and are able to multimerize also in 

the absence of target DNA (Delany et al., 2002a, Vitale et al., 2009). Evidence 
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gathered from the first, and currently sole, complete crystal structure of PaFur, suggests 

that each monomer contains two winged HTH motifs, encompassed in the N-terminal 

DNA-binding domain, and a dimerization domain, encoded by the C-terminal half of 

the polypeptide sequence. More in details, the DNA-binding domain is composed of 

four helices followed by two-stranded antiparallel β-sheet, while the dimerization 

domain of each PaFur monomer consists of an α/β-domain in which three β-strand are 

covering in one long α-helix (Fig. 4). Both structural elements are involved in the 

formation of a functional protein dimer (Pohl et al., 2003). 

 

 

 

Fig. 4 Ribbon diagram of the crystal structure of the Pseudomonas aeruginosa Fur. A Fur 

dimer with secondary structural elements annotated, are shown in the left panel. The DNA-

binding domains are depicted in blue and the dimerization domain in green. The symmetry-

related second monomer is shown in light blue and green. In the crystal structure two 

functional metal binding sites were identified: structural site and regulatory site (right panel). 

Adapted from (Pohl et al., 2003, Pennella et al., 2005). 
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Although the crystal structure of HpFur is not available, sequence alignments of 

HpFur along with PaFur and other several Fur proteins revealed significant differences 

in protein structure, one of which consists in an additional N-terminal helix in HpFur 

protein that may be involved in DNA recognition, as will be discussed below. (Fig. 5) 

Extensive studies in EcFur, PaFur, BsFur, as well as HpFur indicated that each 

Fur monomer contains at least two related metal-binding sites: a structural zinc binding 

site (Zn2) and a regulatory binding site (Zn1), in which the Zn2+ ion is readily exchange 

by the regulatory ion Fe2+ (or also Mn2+) (Pennella et al., 2005, Pohl et al., 2003) . The 

regulatory site, responsible for activation of DNA binding activity, is coordinated by 

the side chain of residues His-86, Asp-88, Glu-107, His-124, located exclusively in the 

dimerization domain. The structural site connects the DNA-binding domain and the 

dimerization domain and comprises the side chains of His32, Glu80, His89 and Glu100 

in a tetrahedral geometry (Fig. 4 and Fig. 5). 

In HpFur, metal chelation with EDTA disrupts the Zn2+-substituted dimeric 

form into a monomer, while reconstitution of the dimer requires reducing agents and 

metal ions such as Zn2+ or Cd2+ (Vitale et al., 2009). This strongly suggests that the 

structural Zn binding site is important for the multimerization of the protein. In contrast 

to PaFur, where the structural site contains a zinc ion coordinated in tetrahedral 

geometry by two histidine and two glutamate residues (see above and Fig. 4 and Fig. 

5), in HpFur the structural zinc ion is coordinated by two CXXC motifs (specifically 

Cys102/Cys105 and Cys142/Cys145), conserved also in MtZur and BsPerR (Vitale et 

al., 2009). The coordination of the structural zinc ion in a ZnCys4 motif is closer to 

BsPerR (Lee et al., 2006b), than to EcFur where the Zn2+ ion is coordinated by two 

cysteines, one histidine and one aspartate (Jacquamet et al., 1998). In this light, it is 

noteworthy to recall that BsPerR is involved in regulation of redox genes in B. subtilis 

(Fuangthong et al., 2002), using the ferrous ion coordinated at the regulatory site as 

reducer of hydrogen peroxide, thereby catalyzing the oxidation of residues important 

for the DNA binding activity of the regulator (Lee et al., 2006b, Jacquamet et al., 

2009). This mechanism explains the capacity of BsPerR to sense and transduce the 

hydrogen peroxide signal in a transcriptional output. This opens the intriguing 

hypothesis that also HpFur may work similarly, combining both iron- as redox-sensing 

regulatory features.  
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3.3 Recognition of DNA: Fur box consensus sequence and Fur-DNA 
interactions 

 
 The mode of interaction of Fur with DNA has been controversial to date 

(Baichoo et al., 2002a, Escolar et al., 1999, Lavrrar et al., 2003). Fur binds with high 

affinity to AT-rich DNA sequences known as a Fur boxes. The classical Fur box has 

been described as 19 bp inverted repeat GATAATGATnATCATTATC (Fig. 6A). 

 

 

 

 

 

 

 

 

 

FIG. 6. Comparison of models to explain the Fur box consensus sequence. (A) The Fur box is 

classically defined as a 19-bp inverted repeat sequence(de Lorenzo et al., 1987), originally 

envisioned to bind a single Fur dimer. (B) An alternative view proposes that Fur binds to 

repeated arrays of three or more copies of the hexamer GATAAT (Escolar et al., 1998a, Escolar 

et al., 1999). According to this model, the classic Fur box is three GATAAT motifs in a head-to-

head-to-tail (6-6-1-6) array. (C) Further studies propose that the 19-bp Fur box results from 

two overlapping heptamer inverted repeats [(7-1-7)2] that together define a 21-bp sequence 
(Baichoo et al., 2002a). 

 

 

Since Fur is a dimer in solution, it was originally proposed that one dimer would bind 

to each Fur box according to a model in which Fur contacts the major groove of DNA 

and the protein symmetry axis is perpendicular to the DNA axis (Fig. 7A; (Pohl et al., 

2003). 

A 

B 

C 
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FIG. 7. Interaction of Fur with DNA. (A) Model of one Fur dimer bound to canonical B-DNA. 

Note that the twofold symmetry of the protein dimer follows the pseudo twofold symmetry of 

the DNA sequence (Pohl et al., 2003). (B) Model of the interaction of BsFur with DNA. In this 

revised model of two overlapping 7-1-7 motif (arrows), two Fur dimers bind the two 7-1-7 

motifs from opposite side of the DNA (Baichoo et al., 2002a). The N-terminal DNA-binding 

domains are in red and blue, the C-terminal dimerization domains are in green. (C) Model 

derived from biochemical characterization of EcFur-DNA interactions. In this new model, the 

protein symmetry axis formed an angle of ca. 50° with the DNA axis (Tiss et al., 2005). 
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However, this model was not easily reconciled with the typically observed 31 

bp footprint, since a Fur dimer would not be expected to protect more than 20 bp in a 

DNase I protection assay. In addition, Fur proteins tend to polymerize at many operator 

sites to generate footprints that are not simple multiple of the 31 bp protected region. 

(Escolar et al., 2000). Indeed, Fur binds cooperatively at some promoter regions and 

generates helical arrays spiralling around the DNA duplex (Lavrrar et al., 2002, Le 

Cam et al., 1994). 

These observations motivated detailed studies using synthetic oligonucleotides. 

As a result, Escolar et al. (1998a) proposed a reinterpretation of  19 bp Fur box as a 

head-to-head-to-tail repeat of simple hexamer GATAAT (Fig. 6B). Accordingly to this 

model, Fur would bind tightly to repeated arrays of examers as long as they contained a 

minimum of GATAAT motifs. However, this interpretation is not easy to reconcile 

with the dimeric state of Fur and it is not clear whether each hexamer motif represents 

the proposed binding sites for one monomer or one dimer (Escolar et al., 1999). 

Compilation and analysis of Fur regulated genes from B. subtilis led to a revised 

proposal (Baichoo et al., 2002a). A multiple sequence alignment of all identified fur-

regulated genes led to a consensus Fur box containing a heptameric inverted repeat (7-

1-7) of TGATAATNATTATCA. Two such motifs, offset by 6bp, generate a 21-bp 

sequence containing the classical 19-bp Fur box (Fig. 6C). According to this model, the 

classical 19-bp Fur box is recognized by two Fur dimmers, each interacting with one of 

two overlapping 7-1-7 motifs from opposite faces of the DNA duplex (Fig. 7B). 

Recently, the characterization of the DNA-binding site in the EcFur by UV 

crosslinking and mass spectrometry, has shown that Tyr55 of EcFur, contacts two 

thymines in position 18 and 19 of the consensus Fur box (Tiss et al., 2005). This 

evidence has suggested a conformational model of the Fur-DNA complex in which the 

protein wraps helically around the DNA and its symmetry axis formed an angle of 50° 

with the DNA axis (Fig. 7C). Furthermore, the binding of two dimers was as plausible 

in this model as it was in the model in Fig. 7B.  

The presence of 19 bp Fur box consensus sequences is correlated with iron-

repressible genes in numerous bacteria (Baichoo et al., 2002b, Grifantini et al., 2003, 

Panina et al., 2001). In addition, Fur homologue from many different bacteria can at 

least partially complement an E. coli fur mutant, providing further evidence that DNA-

binding specificity is conserved among many Fur family members. Indeed, simply 
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searching bacterial genomes for close matches to the 19 bp Fur consensus identifies 

numerous candidates for iron-regulated genes. In the case of B. subtilis, approximately 

one-half of the Fur regulon could be identified by this simple expedient (Baichoo et al., 

2002b) and a similar correlation was reported for Neisseria meningitidis (Grifantini et 

al., 2003). This approach misses weaker sites and sites that match the shorter 7-1-7 

consensus (and presumably bind only one dimer). In addition, recent evidence suggests 

that in some cases Fur and Fur-like proteins may recognize distinctly different classes 

of DNA-binding sites (Lee et al., 2007b). 
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4. FUR REGULATION 

 

The first genes to be linked to Fur control were identified as being 

transcriptionally repressed by iron, constitutively derepressed in fur mutants, and bound 

by the Fur protein in the core promoter region.  

However, while Fur was first characterized as an autoregulatory transcriptional 

repressor under iron-replete conditions (holo-repressor), it has subsequently been 

shown to function as an activator and even to repress certain genes in the absence of the 

iron cofactor (apo-repressor). These diverse types of Fur regulation are discussed in 

further detail below. 

 

4.1 holo-Fur regulation 

 
The best-described means of Fur regulation is hallmarked by the iron-bound 

form of Fur (holo-Fur) which displays iron-dependent DNA binding ability to 

conserved sequences (Fur boxes), located in the promoters of iron-regulated genes, 

with iron functioning as repressive cofactor. Fur binding blocks the binding of RNA 

polymerase, thus preventing transcription of these target genes (Escolar et al., 1997, 

Escolar et al., 1998b). This type of regulation is here termed holo-Fur repression (see 

Fig. 8). 

A greater understanding of the mechanism of Fur regulation came with the first 

description of a DNA binding consensus sequence for E. coli Fur (see Chapter 3.4 and 

Fig. 6A). This consensus sequence became the gold standard for comparison of types of 

Fur regulation across bacterial species and facilitated the understanding of exactly how 

Fur functions as a regulator. Although the Fur box of E. coli is used as the standard to 

which other Fur binding sequences are compared, it is not clearly conserved in all 

organisms that exhibit Fur regulation. Accordingly, in H. pylori, the EcFur box is not 

well conserved and a proper consensus is currently ill-defined. However, sequence 

alignments of several genes regulated by holo-Fur, indicated that the binding sequence 

occurs in AT-rich regions oftentimes with repeats of AAT, arranged in the consensus 

Fur box NNNNNAATAATNNTNANN (Merrell et al., 2003). This consensus 

sequence is significantly different from that for E. coli and is certainly less conserved, 
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even among H. pylori Fur-regulated genes, than the E. coli sequence. While it is 

currently unclear, it may be that the requirement for Fur binding is less reliant on a 

recognition sequence and more related to the overall structural configuration of the 

target promoter sequence in H. pylori. This notion is further supported by the fact that 

HpFur is only partially able to complement an E. coli fur mutant (Bereswill et al., 

2000) and that an E. coli Fur titration assay (FURTA-Ec) was not very successful at 

identifying Fur-regulated genes in H. pylori (Bereswill et al., 1999, Bereswill et al., 

1998) until the system was modified to heterologous expression of the H. pylori Fur 

homologue (Fassbinder et al., 2000). 

 

 

 

 

 

Fig. 8 Basic features of holo- and apo-Fur repression. (Left) Classical holo-Fur repression. As 

iron becomes increasingly available in the bacterial cell, the iron cofactor binds to Fur protein 

and the iron-bound Fur dimers represses transcription by binding the Fur box in their target 

promoters and block the binding of RNA polymerase. (Right) apo-Fur repression. Under iron 

depletion conditions, Fur is in its apo-form and binds to the Fur boxes of its target promoters. 

The binding blocks the RNA polymerase, hence transcription is repressed. 
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Even though all of the specifics are not known, holo-Fur repression in H. pylori 

has been well documented, and binding to several gene targets has been confirmed 

through DNase I footprinting analysis. Indeed, the predicted Fur regulon in H. pylori is 

quite extensive (Danielli et al., 2006, Ernst et al., 2005a, Merrell et al., 2003). The 

regulon includes mainly iron uptake genes, like frpB (Delany et al., 2001a, Delany et 

al., 2001b), exbB (Delany et al., 2005), fecA (Danielli et al., 2009, van Vliet et al., 

2002), ceuE and feoB (van Vliet et al., 2002), that are repressed under iron replete 

conditions in order to prevent the harmful effects of iron overload. In this way a fine 

control of iron homeostasis is maintained (see Chapter 2.3).  

In addition, holo-Fur regulon includes also other genes involved in functions like acid 

resistance (van Vliet et al., 2003), colonization and virulence (Danielli et al., 2006). 

Thus, is not surprising that fur has been shown to be important for efficient 

colonization of the mouse gastric mucosa by H. pylori (Bury-Mone et al., 2004, Gancz 

et al., 2006). 

It seems that iron-bound Fur-regulated genes in H. pylori have one to three Fur 

binding sites within their promoters. The sites with the highest affinity span the -10 

and/or -35 promoter element; the lower affinity Fur binding sites are located further 

upstream from the primary Fur box (Delany et al., 2005, Delany et al., 2001a, Delany 

et al., 2001b). This high-affinity orientation supports the current hypothesis of Fur 

competing with RNA polymerase for binding to target promoters. Indeed, what we 

know about Fe-bound Fur regulation in H. pylori agrees with what is seen for many 

other organisms and is the most common mechanism of Fur regulation. 

 

4.2 apo-Fur Regulation 

 
 Soon it became clear that Fur regulation in H. pylori, goes beyond the classical, 

well-documented holo-Fur regulation. Accordingly, a mechanism of iron-sensitive 

repression has also been demonstrated. It involves iron-free Fur (apo-Fur) binding to 

target promoters, in absence of its iron cofactor (apo-Fur), to prevent the binding of 

RNA polymerase. This phenomenon is here termed apo-Fur regulation and involves 

repression of iron storage genes under iron limited conditions (Fig. 8) (Delany et al., 

2001b). While the holo-Fur repression is conserved across a wide range of bacterial 
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species, the ability of Fur to repress gene expression in its apo-form remains unique to 

H. pylori. Because the apo-Fur regulation has not been described for other bacterial 

species and because Fur clearly plays a role in global gene regulation in response to 

environmental stimuli, and enhances the fitness of H. pylori as pathogen, go on with the 

study of Fur in H. pylori is of particular interest. 

The apo-Fur regulon consists of an entirely different set of genes than the holo-

Fur regulon and is predicted to contain approximately 16 genes (Ernst et al., 2005a), 

though few genes have definitively been shown to be regulated in this manner. 

Expression of the iron storage protein Pfr is regulated by apo-Fur; pfr 

expression is promptly derepressed under Fe2+ replete conditions but is constitutively 

expressed in a fur mutant (Bereswill et al., 2000). Distinctively, HpFur acts as a 

transcriptional repressor also in this case, with iron acting as inducer, instead of as co-

repressor (Delany et al., 2001b). Specifically, Fur binds an operator overlapping the -10 

element of the pfr promoter with higher affinity in the absence of iron ions.  

From a bacterial standpoint, repression of the iron storage protein Pfr under iron-

limited conditions makes biological sense, as the expression of a storage protein in the 

absence of a molecule to be stored would be a waste of energy.  

Another confirmed apo-Fur target is sodB, encoding superoxide dismutase. 

Binding of Fur to sodB in the absence of iron was demonstrated via electrophoretic 

mobility shift assays and DNase I footprinting analysis, which have shown that the 

sodB promoter has only one Fur binding region, spanning  the -10 and -35 promoter 

elements (Ernst et al., 2005b). Recently, it has been demonstrated that a strain-specific 

substitution of a single nucleotide flanking this operator results in loss of sodB metal-

responsive and Fur-dependent regulation (Carpenter et al., 2009a). Interestingly, 

comparison of pfr and sodB Fur boxes shows very little sequence homology between 

them. Additionally, there is little homology with the known H. pylori holo-Fur boxes 

and even less homology with the E. coli consensus Fur binding sequence (Delany et al., 

2001b, Ernst et al., 2005b).  

The ability of Fur to bind to distinct sites in the presence or absence of iron may 

also play a role in the autoregulation of fur gene by an “anti-repression” mechanism 

(Delany et al., 2003). 
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4.3 Autoregulation of Fur 

 
 While some organisms have additional regulatory proteins to regulate Fur 

expression (De Lorenzo et al., 1988, Delany et al., 2005), autoregulation of Fur is the 

most conserved mechanism of fur regulation. Fur represses its own expression under 

iron-replete conditions. Biologically speaking, it makes sense to link the expression of 

Fur to the level of available iron, given the dangers of iron toxicity (see Chapter 2). Fur 

can be thought of as a rheostat that senses the available iron and responds by regulating 

its own expression accordingly (Delany et al., 2002a, Delany et al., 2003). 

In general Fur autoregulation is the straightforward classical holo-Fur 

repression. However, in some organisms, Fur autoregulation appears to be more 

complex. For example, in Lysteria monocytogenes, fur is upregulated under iron-

limited conditions, and the Fur protein is able to bind to and protect the Fur box region 

of its own promoter in the absence of the metal cofactor (Ledala et al., 2007). In 

contrast to this and holo-Fur autoregulation, Vibrio vulnificus Fur has been shown to 

bind to and activate fur expression in the absence of iron (Lee et al., 2007a). 

Fur autoregulation in H. pylori may very well be the most complex Fur 

autoregulatory circuit known to date, since it combines both the classical holo-Fur 

repression and the apo-Fur anti-repression that is also exhibited in V. vulnificus. Initial 

studies by Delany and colleagues revealed three Fur binding regions in the H. pylori fur 

promoter (Delany et al., 2002a). The first two operators are likely to be involved in 

repression of the fur promoter, as they encompass both the -10 and -35 promoter 

elements, but the role of the third and farthest-upstream operator was initially unclear 

(Delany et al., 2002a). In their subsequent work, the authors showed that the third 

operator region was indeed important for Fur autoregulation and that it functions as a 

site for apo-Fur anti-repression (as subsequently shown for V. vulnificus). Additionally, 

operator I is involved in both holo-Fur repression and apo-Fur anti-repression of 

expression through binding Fur in its respective forms (Delany et al., 2003). Which 

form binds is driven by the prevalence of iron, as both forms bind to this operator with 

equal affinities. The current model of H. pylori Fur autoregulation also suggests that if 

the concentration of Fur dips below a certain level, then Fur binding to operator I is 

lost, allowing this site to act as an UP element for RNA polymerase (Delany et al., 

2003). Given that this organism utilizes Fur in both its holo- and apo- forms, it is 
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perhaps not surprising that Fur autoregulation in H. pylori is a complex mixture of 

holo-Fur repression and apo-Fur anti-repression. Additionally, with few regulatory 

proteins relative to its genome size, H. pylori would likely have evolved to utilize every 

regulatory mechanism it has to ensure proper homeostasis. 

 

4.4 Fur Activation 

 
The complexity of fur autoregulation in H. pylori points to yet another 

regulatory function of Fur; Fur can act as a positive regulator. The first indication that 

Fur may act as a positive regulator came from microarray analyses where a number of 

genes were suggested to be Fur induced (Danielli et al., 2006, Ernst et al., 2005a). 

However, the process of Fur activation in H.pylori is currently little understood, 

except with nifS which encodes a [Fe-S] cluster synthesis protein. Footprinting analyses 

have identified two Fur boxes located far upstream of the transcriptional start site in 

nifS promoter, associated with a direct positive regulation mechanism (Alamuri et al., 

2006). 

While, for both holo- and apo-Fur repression, the Fur boxes are located near the 

transcriptional start site, the Fur boxes for Fur-activated genes are all located far 

upstream from the transcriptional start site. This suggests that Fur activation does not 

occur in the same manner as a Fur repression. Even so, formal demonstration of 

transcriptional activation mediated by HpFur and the molecular bases behind this 

mechanism have not been provided yet, leaving important questions open whether and 

how HpFur can function in vivo as authentic transcriptional activator, either in its apo- 

or holo-form. 

In fact, in many bacteria positive Fur regulation has been proven to be indirect, 

mediated by the presence of small regulatory sRNAs, acting post-transcriptionally on 

the decay and translation of target mRNAs (Masse et al., 2007). Similar mechanisms 

are not known in H. pylori, but natural antisense transcripts (NATs) and putative small 

non-coding RNAs, have been reported (Xiao et al., 2009a, Xiao et al., 2009b). 

Recently, 60 new sRNA, including 6S RNA, and potential regulators of cis- and trans-

encoded target messenger RNAs have been identified (Sharma et al., 2010). 
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4.5 Focusing on holo- and apo-Fur repression: target genes and DNA-
binding 

 
As discussed above, Fur can act as either a repressor or an activator and 

function with or without its iron cofactor, in its holo- or apo-form. However, while the 

mechanism of holo-Fur repression is well understood, little is known about apo-Fur 

regulation for which the mechanism of action remains unclear.  

However, the current data do not suggest a conserved binding sequence for apo-Fur 

binding. In addition, the structural features that distinguish those sites bound by Fur in 

the absence of iron (apo-Fur) versus the presence of its iron cofactor (holo-Fur) have 

not been elucidates.  

In H. pylori, the holo- and apo-Fur repression have been first verified for frpB 

and pfr genes, which encode an outer-membrane protein and a non-haem iron 

containing ferritin, involved in iron-uptake and iron storage, respectively (Delany et al., 

2001a, Delany et al., 2001b). 

Delany et al, in 2001 (Delany et al., 2001b), showed that iron affects the 

expression of these genes differentially. Accordingly, the frpB promoter (PfrpB) is iron-

repressed in contrast to pfr promoter (Ppfr), whose expression is iron-induced, reflecting 

the unusual apo-Fur repression. Regardless of iron availability, both PfrpB and Ppfr 

promoters are constitutively de-repressed in Fur mutant, indicating that the Fur protein 

mediates both types of iron-dependent repression.  

DNase I Footprinting analyses have also demonstrated that the frpB and pfr 

gene regulation is directly mediated by Fur, which binds to multiple operators on PfrpB 

and Ppfr promoters regions. Specifically, two Fur operators have been identified on PfrpB 

while three regions of protection have been described on Ppfr. The structural 

organization of PfrpB and Ppfr is represented schematically in Fig. 9.  

On both promoters, the operator with the highest affinity for either holo- or apo-Fur 

(indicated as OPI), spans the -10 and -35 promoter elements, while the lower affinity 

Fur operators are located upstream from the primary Fur box. This high affinity 

orientation supports the current hypothesis of Fur competing with RNA polymerase for 

binding to target promoters.  

The affinity of the Fur protein for these operator sequences is differentially 

affected by the iron in both promoters (Delany et al., 2001b). 
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FIG. 9 Schematic representation of PfrpB  (A) and Ppfr (B) promoter structure. Fur binding sites 

have been identified through DNase I footprinting analysis by Delany et al 2001. Light grey box 

(marked I) indicates the operator site recognized mainly by the holo-protein, while dark boxes 

(marked I, II and III) indicate operator sites with higher affinity for apo-Fur. For each operator 

the numbers refers to their positions respect to the transcriptional start site. On each 

promoter, the −10 and −35 regions and the transcriptional start site (bent arrow) are 

indicated, and the open reading frames are indicated by horizontal open arrows. Width of 

arrows is proportional to the affinity of Fur for the operator sites. 

 

 

 

Accordingly, the affinity of Fur for the frpB operator I increases with Fe2+. Thus, this 

operator is the site with highest affinity for holo-Fur. In contrast, the affinity for the 
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three pfr operators and the operator II on PfrpB decreases in presence of iron, which 

indicates that Fur has the highest affinity in its apo-form (Fig. 9).  

 

Hence, the H. pylori Fur protein exploits different mechanisms of DNA binding 

that are operator dependent and results in differential effects of Fe2+ on the binding 

ability of the protein. 

Based on this evidence, this study focuses on the characterization of the molecular 

determinants that underlie the iron-responsive Fur binding using the frpB and pfr gene 

promoters as a functional example for the holo- and apo-Fur-mediated repression.  

Herein, we demonstrate the existence of a peculiar binding architecture, specifically 

associated to the operator typology recognized by either holo- or apo-Fur. Furthermore, 

we show that the binding of the holo- and apo-regulator is apparently mediated in cis, 

within the operator sequence, whereas iron modulates protein oligomerization on DNA. 

In addition, we elucidate the binding residues important for both holo- and apo-Fur 

binding, defining a peculiar consensus motif for the apo-protein, while highlighting the 

important role of the overall DNA structure for the holo-Fur binding. Thus two 

distinctive mechanism of recognition are proposed for the specific recognition of apo- 

and holo-Fur targets, respectively. The first occurs through the specific recognition of a 

peculiar consensus motif in the major groove and the second one relies on the specific 

recognition of the overall structure of DNA that is recognized by Fur trough binding 

into the minor groove of DNA.  
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5. Fur shows a distinctive binding architecture on holo- and apo-Fur 
recognized operators 
 

5.1 Fur binding architecture on PfrpB and Ppfr 

 
The ferric uptake regulator (Fur) protein is known to act as a Fe2+-dependent  

transcriptional repressor of bacterial promoters (holo-Fur repression). However, in 

Helicobacter pylori, in addition to the classical Fur repression paradigm, Fur can 

mediate the regulation of iron-induced genes through a mechanism that has been 

termed apo-Fur repression. 

The holo- and apo-Fur repression has been verified on the promoters of the frpB and 

pfr genes, respectively, and shown to be associated with different iron-dependent 

binding affinities of Fur for specific operators within the promoter regions of these 

genes. 

Thus, the HpFur exploits different mechanisms of DNA binding that are operator 

dependent and results in differential effects of Fe2+ on the binding ability of the protein 

to DNA (Delany et al., 2001b). 

To further characterize the holo- and apo-Fur-DNA interactions, we performed 

hydroxyl radical (OH*) footprinting experiments with probes consisting of the 

promoter regions under study, PfrpB and Ppfr. The use of hydroxyl radicals as the 

cleaving agent in footprinting experiments, provides more detailed information about 

the bases directly involved in protein-DNA contacts, thereby contributing to reveal the 

mechanicistic features of protein-DNA interaction that other methods fail to provide 

(e.g. DNase I footprinting). Each promoter probe, end-labelled at either the coding or 

the non coding DNA strand, was incubated with increasing amounts of tag-removed 

recombinant purified Fur protein, in the presence of 150 µM MnCl2 or 150 µM 2,2’-

dipyridyl (a specific iron chelator) and subjected to OH* cleavage. Manganese was 

used as a co-factor instead of iron, as it is more stable and has been shown to function 

like Fe2+ under in vitro binding conditions (Escolar et al., 1999, de Lorenzo et al., 

1987).  

Representative results of OH* footprinting from the coding strand of the PfrpB 

and Ppfr promoter probes are shown in Fig. 10. Consistently, the nucleotides protect 
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from OH* cleavage fall within the operator regions previously identified in DNase I 

footprinting experiments (Delany et al., 2001b).  

 

 

 

 

FIG. 10. Distinctive binding architecture of Fur to the PfrpB and Ppfr promoter regions. Specific 

DNA probes for PfrpB (A) and Ppfr (B) fragments, end labeled in their coding strands, were 

incubated with increasing amounts of recombinant Fur protein in presence of 150 μM 

2,2’dipyridyl (marked Dipy, left panel) or in presence of 150 μM MnCl2 (marked Mn
2+

, right 

panel). Lanes 1 to 7; 0, 29, 61, 122, 244, 490, 980 nM Fur added, respectively. Left to each gel, 

light and dark grey boxes indicated the Fur binding sites, identified by DNase I footprinting 
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analysis, with highest affinity for holo- and apo-Fur, respectively (Delany et al., 2001b). The 

open boxes on the right indicate the extended region of OH*protection, while the arrowheads 

indicate short protected areas from OH* cleavage. A G+A sequence reaction ladder for each 

promoter probe was run in parallel (data not shown) to map the protected bases. A bent 

arrow marks the transcriptional start site, the position of the -10 and -35 hexamers are 

symbolized by open rectangles, and the open reading frames are indicated by vertical open 

arrows to the left of each gel.  

Summary of protection data on operators from PfrpB (C) and Ppfr (D). For each operator, the 

numbers refer to the position with respect to the transcriptional start site (position1). Open 

circles indicate bases protected by Fur on the coding and non coding strand. Among them, the 

strong protected bases are shaded in grey. Representative helical projections of the hydroxyl-

radical-protected residues on the OPIfrpB (E) and OPIpfr (F) backbone. Hydroxyl-radical-

protected residues are marked by open circles. Shaded and black bars in the DNA helix 

represent adenine and thymine bases respectively. 

 

 

 

The OH* footprints highlighted important structural differences in the interaction of 

Fur with its operator regions. On the operator with the highest affinity for holo-Fur (i.e. 

OPIfrpB), the binding of Fur results in an extended footprint of 21 bp, mapping in an 

AT-rich region (Fig. 10A and 10C). Furthermore, at higher concentrations of Fur, two 

short additional stretches of protection, flanking symmetrically the core of the 21 bp 

protected region, appeared (Fig. 10A, lanes 6-7). Hence, OH* nicking revealed that Fur 

displays an extended protection pattern on an operator that is recognized with higher 

affinity by the holo-protein. 

Similar results have been obtained from the non coding strand, which shows the 

identical extended footprint in the same region (data not shown, results are reported in 

Fig. 10C). This indicates protein wrapping around the DNA helix, as sketched in 

helical projections of the hydroxyl-radical-protected residues on a duplex DNA, 

modeled as a canonical B-form (Fig. 10E).  

In striking contrast, the binding of Fur on operators with the highest affinity for 

the apo-protein (OPI, OPII, OPIII on Ppfr and OPII on PfrpB), results in a periodic 

pattern of four short protected regions of two/four nucleotides in length (Fig. 10B and 

10D). The two central regions are separated by 10±1 bp, while the two flanking 

stretches are separated by 8±1 bp from the central core. Thus, the average periodicity of 

regions protected by Fur is close to 10 bp, and the protected areas on the non coding 

strands are offset form those of the coding strands by 1 nucleotide (data not shown, 

results are shown in Fig. 10D). Both these features are characteristic of protection of 
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the double helix on one face and that access of OH* nicking is permitted only on the 

other face of the helix (Tullius et al., 1987). This indicates that Fur binds to one side of 

the DNA on these operators, as illustrated in Fig. 10F, in which OH*-protected bases 

are mapped onto a scheme of B-DNA. 

Within the bases directly contacted by the apo-protein, Fur binds mainly to a 

couple of thymine dimers separated by a gap of 10bp (Fig. 10B). Fur binding to 

thymine dimers is consistent with results from previous work in E. coli, which pointed 

to two thymine dimers directly involved in Fur-DNA interactions (Tiss et al., 2005). 

Moreover, it has been reported that the T residues could be an essential recognition 

element in direct contact with the Fur protein (Escolar et al., 1998b). 

Treatment with the metal ion, or iron chelator, affects differently Fur affinity 

toward the operators mapping in the PfrpB and Ppfr promoters (Fig. 10, panel A and B 

respectively). On OPIfrpB, in presence of Mn2+, a protection is detected readily at 29 nM 

Fur (lane 2; Fig. 10A) whereas, in the absence of the metal ion, protection occurs at 

fourfold higher protein concentration (lane 4; Fig. 10A). In contrast, all three Ppfr 

operators (OPIpfr, OPIIpfr and OPIIIpfr) and OPII on PfrpB, display an opposite behavior: 

the full protection occurs at lower protein concentration when the regulatory metal ion 

is chelated (compare lanes 2 and 7; Fig. 10B and 10A). This is consistent with what has 

been previously shown in DNase I footprinting analyses (Delany et al., 2001b). 

Notably, chelation of iron by the addition of 2,2’-dipyridyl resulted in a pattern 

of OH* protection that is indistinguishable form that observed after metal addition, 

suggesting that both operators are recognized by holo- as well as apo-Fur (Fig. 10A and 

Fig. 10B). Therefore, chelation of the regulatory metal has no effect on the specificity 

of Fur binding, but influences the affinity of the protein for DNA. This strongly 

suggests that the nucleotide sequence of each operator dictates the Fur binding 

architecture to DNA, irrespectively of the presence of the regulatory metal ion of the 

Fur protein. 

Moreover, we verified if the multiple-operator promoter organization could 

affect Fur binding to single operators, due to possible co-operative effects. For this 

purpose, OH*footprinting assays were carried out on the single Fur operators isolated 

from the promoter context (see Material and Methods). The cloned operator regions 

OPIpfr, OPIIpfr OPIIIpfr form Ppfr and OPIfrpB OPIIfrpB from PfrpB, were end labelled at 

either the coding or the non coding strand and subjected to OH* cleavage, with results 
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shown in Fig. 11. The results revealed protection patterns identical to those observed on 

the entire promoter regions: the same bases were protected by Fur (data not shown) and 

the binding architecture was maintained (compare Fig. 10A and B to Fig. 11A and B, 

respectively). 

 

 

FIG. 11. Hydroxyl Radical footprinting on isolated DNA operators from PfrpB  and Ppfr. Specific 

DNA probes for OPIfrpB (A) OPIIfrpB (B) OPIpfr (C) OPIIpfr (D) and OPIIIpfr (E), end labeled at their  

non coding and coding DNA strands, were incubated with increasing amounts of recombinant 

Fur protein and subjected to OH* cleavage. Lanes 1 to 7 contain 0, 29, 62, 122, 244, 490, 980 
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nM Fur, respectively. Symbols have been previously described in legend in Fig. 10. A G+A 

sequence reaction ladder for each promoter probe was run in parallel to map the protected 

bases (not shown). 

 

 

Also in this case, while the presence/absence of metal divalent ions modulates the 

affinity of Fur for different operators, it did not influence the specificity and 

architecture of Fur binding (data not shown). 

Taken together these results suggest that neither the metal ion cofactor, nor possible in 

trans effects due to the promoter structure, are responsible for the specific recognition 

of distinctive regulatory elements. Thus, the specific operator sequences dictate the 

binding architecture of Fur to DNA. Consequently, the molecular determinant 

responsible for the different mode of binding of Fur to DNA resides in cis within the 

operator sequences. Accordingly, two different operator typologies, here named holo- 

and the apo-operators, are characterized by a distinctive binding architecture of the 

protein, which are recognized with higher affinity by holo- and apo-Fur, respectively 

 

 

 

 

5.2 Fur binding architecture on PfecA1 and PfecA2 

 
In order to verify whether the characteristic binding architecture of Fur on the 

holo- and apo-operators could represent a general rule for discriminating binding of 

Fur, we extended OH* footprinting analysis on other Fur regulated promoters, PfecA1 

and PfecA2, whose genes have been reported to be iron repressed in a Fur-dependent 

fashion (van Vliet et al., 2002, Danielli et al., 2009). Figure 12 shows the pattern of 

protection of Fur on the PfecA1 and PfecA2 promoters probes.  

Once more, on operators recognized with higher affinity by the holo-protein (OPIfecA1 

and OPIIfecA2), Fur binds a continuous AT-rich stretch of about 20 bp, displaying the 

extended protection pattern similarly to that observed previously on PfrpB OPI (compare 

Fig. 10A and Fig. 12A).  
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FIG. 12. Distinctive binding architecture of Fur to the PfecA1 and PfecA2 promoter regions. 

Specific DNA probes for PfecA1 (A) and PfecA2 (B) fragments, end labeled in their coding DNA 

strands, were incubated with increasing amounts of recombinant Fur protein in presence of 

150 μM 2,2’dipyridyl (marked Dipy, left panel) or in presence of 150 μM MnCl2 (marked Mn
2+

, 

right panel). Lanes 1 to 7 contain 0, 29, 61, 122, 244, 490, 980 nM Fur, respectively. Left to 

each panel, light and dark grey boxes indicate the Fur binding sites, identified by DNase I 

footprinting analysis, with highest affinity for holo- and apo-Fur, respectively (Danielli et al., 

2009). The grey box on the right indicate the extended region of OH*protection, while the 

arrowheads indicate short protected areas from OH* cleavage. A G+A sequence reaction 

ladder for each promoter probe was run in parallel (data not shown) to map the protected 

bases. A bent arrow marks the transcriptional start site, the position of -10 and -35 promoter 

elements are symbolized by open rectangles, and the open reading frames are indicated by 

vertical open arrows to the left of each gel.  

 

 

In addition, on OPIfecA2, Fur exhibits a periodic pattern of four protected areas with a 

central couple of thymine dimers separated by 10 bp, whilst the affinity of the protein 

remains unaltered in the presence or absence of a metal regulatory ion (Fig. 12B). 

These results validate a direct association between the peculiar binding architecture of 

Fur and the differential iron responsive binding of the holo- and the apo-protein to 

specific DNA operators.  
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6. TCATT n10TT: Consensus motif for apo-Fur recognized operators 

 

Currently, little is understood about the sequences important for HpFur binding 

to target promoters. One common feature among Fur boxes is the high number of A/T 

nucleotides relative to C/G nucleotides. Thus, it is perhaps not a surprise that the 

definition of a consensus box is somewhat hindered by the fact that the H. pylori 

genome is highly AT-rich (Tomb et al., 1997). Accordingly, a consensus sequence is 

still ill-defined and this is true for both holo- and apo-Fur (Carpenter et al., 2009b).  

For holo-Fur binding, a consensus sequence was proposed, consisting of an AT-rich 

region encompassing two repeats of the AAT triplet (Merrell et al., 2003). This 

consensus sequence is significantly different form that for E. coli (de Lorenzo et al., 

1987) and is certainly less conserved, even among H. pylori Fur-regulated genes, than 

the E. coli sequence (Carpenter et al., 2009a). Instead, to date, there is no defined 

consensus sequence for apo-Fur binding.  

To gain information on a putative consensus motif required for recognition by 

either holo- or apo-Fur, we performed sequence analysis of the differentially 

recognized operators, previously analyzed by OH* footprinting assays (Fig. 10 and 12). 

The sequence of three holo-Fur recognized operators (OPIfrpB, OPIfecA1 and OPIIfecA2) 

and sequences of the four apo-Fur recognized operators (OPIpfr, OPIIpfr, OPIIpfr and 

OPIfecA1) were aligned with the CLUSTAL W computer program. Alignments were 

subsequently submitted to the Web LOGO program to built a consensus logo sequence 

reported in Fig. 13 (Larkin et al., 2007, Thompson et al., 1994). 

For the holo-recognized operators, this analysis revealed an AT-rich nucleotide stretch 

with multiple and contiguous AAT triplets, tentatively organized in a 

TAATAAT n2ATTATTA inverted repeat (Fig. 13A). By contrast, sequence analysis of 

the apo-Fur recognized operators led to the identification of a peculiar consensus motif 

TCATT, separated by a gap of 10 bp from a thymine dimer (Fig. 13B). Interestingly, 

the TCATTn10TT consensus motif encompasses the thymine dimers directly protected 

by Fur in OH*FP analyses (Fig. 10 and Fig. 12).  

We conclude that the holo-Fur might recognize sequences within the holo-operator, 

which is an AT-rich inverted repeat, TAATAATn2ATTATTA, while the apo-Fur might 

recognize sequences within the newly identified apo-operator TCATTn10TT.  
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FIG. 13. Consensus motifs of the H. pylori holo- and apo-Fur recognized operators. Sequence 

alignment for holo-Fur controlled operators (A) and apo-Fur recognized operators (B) are 

aligned at the top of each panel. Asterisks above the sequence alignments indicate conserved 

bases. Alignments were used to generate a sequence logo, reported at the bottom of each 

panel. The height of each letter corresponds to its relative abundance at that position. 
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7. TCATT n10TT is the recognition element for Fur binding to an apo-

Fur recognized operator 

 

The TCATTn10TT motif has been proposed as consensus motif for the apo-Fur 

binding (See Chapter 6). In order to verify the functional role of this consensus motif, 

we decided to evaluate the binding affinity of the apo- and holo-Fur on the wild type 

and mutant apo-operator. To this aim, we carried out mutagenesis of pfr operator I 

(OPIpfr), that is the operator with highest affinity for the apo-protein (Fig. 9; (Delany et 

al., 2001b). We started with mutagenesis of the C base since it provides a 

discriminating element in the AT-rich background of the TCATTn10TT element. 

Sequence analysis of OPIpfr, revealed the presence of another incomplete TCATT 

element upstream of the identified consensus motif. For this reason, we substituted the 

C base to A in one or both TCATT elements, generating the mutants OPIpfrc11a and 

OPIpfrc11-17c, respectively (Fig. 14A).  

The binding of Fur to wild type (OPIpfr) and mutant pfr OPI operators (OPIpfrc11a 

and OPIpfrc11-17a, respectively) was investigated by electrophoretic mobility shift assays 

(EMSA). EMSA was performed incubating probes encompassing the operators under 

study, which spans from positions -36 to +5 of the promoter regions of the pfr gene, 

with increasing amounts of purified Fur protein, in presence of 150 µM Fe2+ or 150 µM 

2,2 dipyridyl. Fur-DNA complexes were resolved on native polyacrylamide gels, the 

intensity of discrete bands was quantified (with a phosphorimager), and the KD was 

determined by plotting both free and bound DNA as function of the protein 

concentration. 

Figure 14B shows the binding affinity curves to the wild type operator probe 

OPIpfrwt.. In the absence of iron, 1.5 nM Fur was necessary to shift 50% of the probe 

(KD), whereas the KD of the Fur-DNA complexes formed in presence of iron was 

calculated as 6 nM. Therefore, the affinity of apo-Fur is fourfold higher than the 

affinity of holo-Fur for OPIpfrwt. These results provide further evidence that the pfr 

operator I is the operator with the highest affinity for apo-protein, confirming previous 

DNase I (Delany et al., 2001b) and OH* footprinting assays (Fig. 10). In addition, this 

data strengthen the idea that the molecular determinant responsible for the different,  
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metal-dependent mode of binding of Fur to DNA is carried in cis, within the operator 

sequence. 
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FIG. 14. Role of the TCATTn10TT motif in Fur binding. (A) Nucleotide sequence alignment of 

wild-type OPIpfr and mutants OPIpfrc17a,OPIpfrc11-17a . The identified consensus TCATTn10TT motif, 

and the additional TCATT element are shaded in dark and light grey respectively. Underlined 

bold letters indicate the point mutation affecting the TCATT elements. EMSA assays with 

OPIpfrwt (B), OPIpfrc17a (C), and OPIpfrc17c11a (D). Samples of approximately 0.6 nM of 5’-end-

labeled probes were incubated with increasing amount of Fur protein (indicated below each 

graph) in presence of 150 μM Fe
2+

 (squares) or 150 μM 2,2’ dipyridyl (triangles). Affinity of Fur 

to DNA was calculated by plotting the percentage of both bound (closed triangles and closed 

squares) and free probe (opened triangles and opened squares) versus protein concentration 

in presence or absence of iron. The KD was defined as protein concentration required to shift 

50% of the probe. 

 

 

 

In contrast, the binding studies reported in Fig. 14C and 14D show that the 

mutant operators OPIpfrc11a and OPIpfrc11-17a are bound by Fur only at the highest protein 

concentration employed in the binding reactions (40 nM), both in presence or in 

absence of iron. Thus, the affinity of Fur decreases significantly for both mutant 

operators, despite the absence of the metal cofactor in the binding reaction. 

This loss of affinity likely reflects the fact that the introduced mutation affects the motif 

responsible for Fur recognition of this operator, suggesting that an integer 

TCATTn10TT recognition element is needed for high affinity binding of Fur to an apo-

operator. 
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8. Helical phasing of TT dimers affects holo-Fur binding architecture 

on an apo-operator 

 

The substitution of the C base within the TCATTn10TT motif significantly reduced the 

metal-dependent Fur binding to OPIpfr, indicating a key role of this element in apo-Fur 

binding. It will be noted that, the two thymine dimers of the TCATTn10TT element are 

separated by 10 bp, indicating that they are located at the same face of the DNA helix 

(Fig. 10F). Therefore, we set out to investigate whether the precise helical phasing of 

thymine dimers of the TCATTn10TT element could also be important for preferential 

recognition by apo-Fur. We constructed a mutant operator, OPIpfrsw, in which the 

original spacing between TT residues found in OPIpfr was reduced of 5bp, 

corresponding to half an helix turn, resulting in thymine dimers TT located at opposite 

faces of the DNA helix (Fig. 15A). Furthermore, the construction of this mutant places 

a CT dinucleotide in the same position of TT dimer, thus representing also a single T to 

C base substitution.  

 

 

 

 

 

FIG. 15. Fur binding to an apo-recognized operator as a function of helical spacing between 

TT dimers. (A) Nucleotide sequence alignments of OPIpfrwt and OPIpfrsw display the variation in 

spacing between TT dimers corresponding to a half helix turn. Thymine dimers are in bold and 
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underlined. The TCATTn10TT motif is shaded in grey. (B) The affinity of Fur for OPIpfrsw was 

determined by plotting the percentage of shifted probe versus protein concentration in the 

presence of Fe
2 

or 2,2’dipyridyl, marked as closed squares and closed triangles, respectively. 

The amount of free probe was calculated in presence or absence of iron, indicated as opened 

squares and opened triangles, respectively. (C) Hydroxyl radical footprints of Fur on the 

OPIpfrsw mutant operator. Arrows to the right of each gel, mark short protected areas from 

OH* protection, while the grey vertical bar indicates extended region of OH* protection. Open 

circles indicate bases protected by Fur. Among these, filled circles indicate the strong 

protected bases. The first lane marked (-) contains the OH* reaction in absence of Fur protein, 

and subsequent lanes contain reactions with increasing amounts of Fur. Lanes 1 to 6 

contained 0, 29, 61, 122, 244 and 490 nM Fur added, respectively. 

 

 

 

The effects of this mutation on Fur binding to OPIpfrsw were investigated first by 

EMSA. As shown in Fig. 15B, 4.5 nM Fur was required to bind 50% of the probe in 

absence of iron, while 1.5 nM apo-Fur was necessary to bind the same fraction of the 

wild-type OPIpfr operator probe (compare Fig.15B and Fig. 14B). Thus, the affinity of 

apo-Fur decreases 3-fold in this mutant. In contrast, the affinity of holo-Fur towards 

this mutant operator, OPIpfrsw, showed an unaltered KD (7nM) with respect to the wild-

type OPIpfr operator I (compare Fig. 15B and Fig. 14B). Thus, the distance of 10 bp 

between two intact TT dimers seems to be the key element for the preferential binding 

of apo-Fur on an apo-operator.  

To verify the binding architecture of Fur on this mutant operator, the protection pattern 

of Fur binding to the OPIpfrsw was analyzed by OH*footprinting experiments. The 

results shown in Fig. 15C indicate that the apo-Fur binding architecture on OPIpfrsw 

looks very similar to that observed for OPIpfrwt (compare left panel Fig. 15C with Fig. 

10B and Fig. 13C). In fact, Fur still protects short stretches of four nucleotides with an 

average periodicity close to 10 bp, albeit, in this case, the protein binds mainly two TA 

nucleotides dimers separated by 10 bp. Accordingly, the affinity of apo-Fur is 

significantly reduced, with protection occurring only at 122 nM protein concentration 

(compare Fig. 15C; left panel with Fig. 11C) in line with decreased apo-Fur affinity 

observed in EMSA experiments. 

Therefore, the binding architecture of apo-Fur on OPIpfrsw is unaffected by mutations of 

TT dimers, while the affinity is affected. In contrast, in presence of metal ions, Fur 

binds just one TA nucleotides dimer and starts to extend its protection toward a 
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downstream region of about 15 bp, displaying a partial extended protection pattern 

(Fig. 15C; right panel). Hence, for the first time, a differentiation in Fur binding 

architecture on the same operator was observed in response to the presence of divalent 

metal ions.  
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9. Reconstitution of the TCATTn10TT motif within an  holo-operator 

changes the holo-Fur operator into an apo-Fur recognized operator 

 

Taking into account that the holo-Fur-box of H. pylori appear as an AT-rich 

region with inverted repeats of AAT triplets (see Fig.13 and Merrell et al., 2003) we 

reasoned that the well-defined TCATTn10TT motif could be critical to allow Fur to 

correctly discriminate between apo- and holo-operators. To verify this hypothesis, the 

TCATTn10TT motif was reconstituted in the holo-Fur recognized frpB operator I 

(OPIfrpB) by substitution of solely four bases within the native OPIfrpB nucleotide 

sequence. Thereby, a motif similar to that found in the apo-Fur recognized operator 

OPIpfr was created (Fig. 16A). 

Once again, the binding affinity of Fur to the wild-type (OPIfrpBwt) and mutant 

frpB operator (OPIfrpBsw) was tested by EMSA in presence of either 150 µM Fe2+ or 150 

µM 2,2’ dipyridyl. The binding affinity curves of Fur to OPIfrpBwt and OPIfrpBsw 

operators are shown in Fig. 16B. The KD of Fur towards OPIfrpBwt in presence of iron 

was calculated as 11 nM Fur, while the KD after iron chelation with 2,2’ dipyridyl, was 

27 nM (Fig. 16B, left panel). Therefore, holo-Fur binds with higher affinity than apo-

Fur to OPIfrpBwt, providing further evidence that the frpB operator I exhibits higher 

affinity for the holo-protein.  

On the contrary, 5 nM Fur was sufficient to shift 50% of the OPIfrpBsw mutant probe 

when iron was chelated, whereas the KD of OPIfrpBsw binding remained unaltered in the 

presence of iron with respect to OPIfrpBwt (11 nM; Fig. 16B, right panel). Thus, apo-Fur 

exhibits a twofold increase of affinity to OPIfrpBsw over holo-Fur, which instead binds 

both OPIfrpBsw and OPIfrpBwt with the same affinity (Fig. 16B; see curves with closed 

square). In addition, apo-Fur affinity for OPIfrpBsw is 4.5 fold higher than that for 

OPIfrpBwt (KD= 5 nM and 27 nM for OPIfrpBsw and OPIfrpBwt respectively).  

This indicates that Fur binds to OPIfrpBsw with higher affinity in its apo-form, 

providing the first evidence of a swap in the metal responsive binding affinity of the 

Fur protein. Based on this finding, we conclude that the reconstitution of the 

TCATTn10TT motif in an holo-Fur operator swaps the iron responsive binding of the 

Fur protein.  
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FIG. 16. Feature binding swap of Fur from an holo-Fur to an apo-Fur recognized operator. (A) 

Sequence alignments of OPIfrpBwt, OPIpfrwt and derived mutant OPIfrpBsw, illustrating the 

reconstitution of the TCATTn10TT element in an holo-Fur recognized operator. The extended 

protection pattern of Fur on an holo-operator is shaded in grey. Horizontal bars mark the 

TCATT elements and TT dimers. Underlined bold nucleotides indicate substitutions from the 

wild type frpB operator I. (B) EMSA and (C) OH*Footprinting assays on OPIfrpBwt, OPIfrpBsw and 

OPIpfrwt. Symbols have been previously described in legend for Fig. 14. 
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Next, OH* footprinting were performed to investigate whether the TCATTn10TT motif 

within the swapped mutant OPIfrpBsw could also impair the binding architecture of Fur. 

Remarkably, the binding architecture turned from the typical extended protection 

pattern distinctive of an holo-operator (Fig. 16C, left panel) to a periodic pattern of four 

protected regions separated by approximately ten OH* sensitive base pairs (Fig. 16C, 

middle panel). This pattern is very similar to the well-characterized protection pattern, 

found in operators recognized with higher affinity by the apo-protein (Fig. 16C, left 

panel). Consistently, Fur binds mainly the thymine dimers separated by 10 bp of the 

TCATTn10TT element reconstituted in OPIfrpBsw (data not shown), as previously shown 

for the apo-operator OPIpfr. (Fig. 10B and 10D). Again metal chelation or repletion had 

no effects on the Fur binding architecture (data not shown). Thus, the reconstitution of 

the TCATTn10TT motif in an holo-Fur operator affects also the Fur binding 

architecture, changing the protection pattern of Fur. 

Taken together these data confirm the feature binding swap of Fur form an holo-

Fur to an apo-Fur recognized operator and confirms that the TCATTn10TT consensus 

motif is the distinctive element of the apo-operators needed for high affinity apo-Fur 

binding. This demonstrates that the specific operators sequence dictates the mode of 

binding of Fur to DNA, which implies the distinctions between the holo- and apo-

operator as two different operator typologies. 

 

 

 

 

 

 

 

 

 

 

 



_____________________________________________________ Results __________ 
 

59 
 

10. Reconstitution of the TCATTn10TT motif within an holo-operator 

affects Fur-regulation in vivo 

 

In order to verify the role of different operators typologies on the iron-

dependent regulation of Fur in vivo, two transcriptional fusions were constructed. The 

wild-type and swapped frpB operators, OPIfrpBwt and OPIfrpBsw (Fig. 16A), 

encompassing the frpB promoter elements, were cloned upstream of a promoterless 

lacZ gene (OPIfrpBwt-lacZ and OPIfrpBsw-LacZ; see Material and Methods). Both 

transcriptional fusions were inserted by homologous recombination in the vacA locus of 

wild-type and fur knockdown mutant strains (H. pylori G27 and G27fur, respectively).  

Fur- and iron-dependent regulation of the transcriptional fusions was monitored 

by primer extensions analyses on total RNA extracted from exponentially growing H. 

pylori cultures treated for 15 min with 1mM Fe2+ or 150 µM 2,2’dipyridyl in parallel 

with results shown in Fig. 17. In the parental G27 background, transcription of 

OPIfrpBwt-lacZ fusion is almost completely repressed by Fe2+ treatment (Fig. 17A lane 

1). Iron chelation leads to a marked de-repression of the transcriptional fusion (Fig. 

17A, lane 2) while in the G27fur background transcription of OPIfrpBwt-lacZ is 

constitutively derepressed (Fig. 17B, lanes 1 and 2).  

 

 

 

 

Fig. 17. Primer extension with total RNA extracted at mid-log growth phase from a 

recombinant G27 wild-type (A) and G27fur (B) strains, harboring the OPIfrpB-lacZ 

transcriptional fusions with wild-type OPIfrpBwt and mutated OPIfrpBsw operator I in response to 

different environmental iron conditions: 1mM (NH4)2Fe(SO4)2; or 150 μM 2,2’-dipyridyl 

(marked + or –, respectively). The elongated primer is marked with an asterisk. 
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This provides compelling evidence that the OPIfrpBwt holo-operator, 

encompassing the native -10 box, retains the molecular determinant responsible for the 

correct iron-dependent Fur regulation, in cis. On the other hand, transcription of the 

OPIfrpBsw-LacZ fusion, bearing the swapped frpB operator, is similarly repressed by iron 

and constitutively derepressed in a ∆fur background. However, the de-repressive effect 

of iron-chelation is significantly reduced in the parental G27 strain (Fig. 17A and B 

lanes 3-4). Thus, the presence of the TCATTn10TT element, characteristic of apo-Fur 

repressed operators, within OPIfrpBsw, does not affect the iron-dependent repression 

(compare lanes 1 and 4 of Fig.17A) but rather impairs the de-repressive effect of iron 

chelation (compare lanes 2 and 3 Fig. 17A). 

These data demonstrate that the TCATTn10TT element confers apo-repression 

features to Fur. This is consistent with the in vitro data, which showed that the presence 

of the TCATTn10TT had no effects on the holo-Fur binding affinity but confers higher 

affinity to the apo-protein towards OPIfrpBsw containing the TCATTn10TT  
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11. Recognition of either minor or major groove DNA establishes Fur 

binding to the holo- and apo-operators. 

 

Fur binding to apo-operators occurs on two TT dimers on the same face of the 

DNA helix. By contrast, the binding of Fur to holo-operators occurs on continuous 

stretch of AT nucleotides arranged in AAT triplets (Fig. 10).  

It has been reported that AT-rich tracts, defined as three or more As or Ts that 

not contain the flexible TpA step, have a strong tendency to narrow the minor groove 

(Burkhoff et al., 1988, Crothers et al., 1999, Haran et al., 2009). This structural feature 

is exploited by some families of DNA binding proteins [Hox protein SCR (Joshi et al., 

2007), POU homeodomains (Remenyi et al., 2001), MATα1-Matα2 (Li et al., 1998)] to 

recognize the enhanced electrostatic potential induced by narrowing of the minor 

groove (Rohs et al., 2009, Tullius, 2009). Accordingly, we hypothesized that a similar 

requirement for Fur binding to the holo-operators, could rely on the direct recognition 

of the minor groove width or structure, rather than to the readout of a specific 

nucleotide sequence. 

In order to verify this hypothesis, we set out to implement (DNA-binding) interference 

experiments with the minor groove binding drug Distamycin A. With a crescent-shaped 

structure composed of planar aromatic groups joined by amide bonds (Fig. 18A), 

distamycin A binds deeply within minor groove at AT-rich sequences (Fig. 18B). 

 

 

 

 

Fig. 18. (A)Structure of Distamycin A; (B) van der Waals diagram of the DNA-Distamycin complex. 

Distamycin is colored in grey, whereas DNA follows typical CPK color assignments. 
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The binding specificity for AT-rich regions in DNA is probably due to better 

van der Waals contacts between the drug and groove walls in this region, since A/T 

regions are narrower than G/C groove regions and also because of the steric hindrance 

in the latter, presented by the C2 amino group of the guanine base (Coll et al., 1987, 

Churchill et al., 1990, Van Dyke et al., 1982). 

 To determine whether the drug would be useful to interfere with Fur binding to 

both the holo- and apo-operator OPIfrpB and OPIpfr., the binding sites for distamycin 

were first characterized by hydroxyl radical footprinting (Fig. 19). Specific protections 

were detected within the same regions protected by Fur on both OPIfrpB and OPIpfr. The 

length of protection, 4-5bp in size, is consistent with the length previously reported in 

distamycin OH* footprints (Churchill et al., 1990). 

 

 

 

Fig. 19. Hydroxyl radical footprints of Distamycin A on OPIfrpBwt and OPIpfrwt. Specific DNA 

probes for OPIfrpBwt (A) OPIpfrwt (B), end labeled at their coding strands, were incubated with 
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increasing amount of minor groove binder Distamycin A and subjected to OH* cleavage. Lanes 

1 to 6; 62.5, 125, 250, 500, 1000 mM Distamycin, respectively. On the left of each panel, open 

boxes define the operator region. The grey box and arrowheads within the open boxes 

indicate the regions protected by Fur as previously identified by OH*footprinting analysis (see 

Fig. 10). On the right of each panel, small dark boxes map Distamycin binding sites.  

 

 

 

The overlapping Fur and distamycin binding patterns permitted to ask whether 

distamycin binding in the minor groove could interfere with binding of Fur. We used 

EMSAs to determine the effect of distamycin on Fur binding to both the holo- (OPIfrpB) 

and apo-operators (OPIpfr). The assays were performed by preincubating operator 

probes with increasing amounts of distamycin followed by the addiction of purified Fur 

protein. (Fig. 20).  

 

 

 

 

Fig. 20. Competition of minor groove binding drug Distamycin A with Fur binding to the 

OPIfrpBwt (A), OPIpfrwt (B) and OPIfrpBsw (C). Incubation of labelled DNA fragments with 

Distamycin A preceded the addition of Fur protein. Complexes were separated from free DNA 

on native polyacrylamide gel followed by autoradiography. Fur concentration employed in 

each binding reaction is 40 nM. Lane 1 indicates DNA control. Lane 2 represents Fur DNA 

complexes with no drug treatment. Lanes 3-5 denoted addiction of Distamycin A at 

concentration of 1.2, 2.4 and 4.8 nM respectively. Single asterisk indicates free probe, double 

asterisks Fur DNA complexes and three asterisks pBluescript KS used as non specific 

competitor in binding reactions. 
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Although Fur binds to OPIfrpB with lower affinity than OPIpfr (compare lanes 2 

in Fig. 20A and B), as little as 1.2 nM distamycin is sufficient to start to prevent Fur 

binding to the holo-operator OPIfrpB (lane 3, Fig. 20A). At 2.4 nM distamycin half 

maximal Fur-OPIfrpB complex formation is inhibited, while at higher drug concentration 

a complete inhibition of complex formation is observed (lane 5, Fig. 20A). Conversely, 

at the same distamycin concentrations, binding to the OPIpfr apo-operator is totally 

unaffected (Fig. 20B). These results show that distamycin outcompetes Fur binding to 

OPIfrpB  but not to OPIpfr. This is a strong indication that Fur binds holo-operators 

trough the minor groove, while the recognition of apo-operators occurs through the 

major groove of the DNA as a result of a direct readout of a specific nucleotide 

sequence (TCATTn10TT). Accordingly, the binding of Fur to the mutated (swapped) 

holo-operator, encompassing the TCATTn10TT motif (OPIfrpBsw) is less sensitive to 

distamycin and is only partially inhibited at the maximum drug concentration, [that 

instead has been shown to totally hinder the Fur binding at the wild type holo-operator 

OPIfrpB (compare lanes 5 Fig. 20 A-C).]  

These results provide strong evidences that the requirement for Fur binding to the holo- 

and the apo-operator is reliant on a different mechanism of recognition of the DNA 

helix. Thus, Fur binding to the apo-operators occurs primarily in the major groove, 

through the direct readout of the specific TCATT element, whereas the recognition of 

the holo-operators occurs mainly through protein binding into the minor groove. 
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12. Stoichiometry of Fur-DNA complexes within the holo- and the apo-

operators 

 

To gather information on the stoichiometry of Fur binding to operator sequences we 

carried out EMSA experiment on both operators, OPIfrpB and OPIpfr, with the purified 

recombinant Fur protein in the presence and absence of iron-cofactor. EMSA 

experiments showed a difference in mobility among complexes formed in presence or 

absence of iron (Fig. 21A and 21B). While apo-Fur bound on both OPIfrpB and OPIpfr, 

forms a single higher-mobility complex HMC (Fig. 21A), holo-Fur forms preferentially 

two additional lower-mobility complexes, LMC and LMC2 (Fig. 21B). Moreover, size 

exclusion chromatography indicated that Fur is a dimer in solution and that is able to 

multimerize in presence of divalent metal ions (data not shown).  

In order to determine the number of Fur dimers within the various gel shifted 

species, the Ferguson method was used (Orchard et al., 1993, Ferguson, 1964). Fur-

operator complexes were run along with molecular weight markers on a series of 

nondenaturating gels of various acrylamide concentrations. The molecular mass of Fur-

operator complexes was then determined by interpolation of the titration curve of the 

molecular weight standards (Fig. 21C and 21D). 

For both OPIpfrwt and OPIfrpBwt operators the molecular mass of HMC was 

estimated as 85 kDa, which is comparable to the expected mass of 76 kDa calculated 

for a dimer of Fur bound to the 64 bp probe (since OPIpfr and OPIfrpB are 42.2 kDa and 

one Fur dimer is 34 kDa). In contrast, the LMC complex had an apparent molecular 

mass of 118 kDa, in close agreement with the expected mass of 110 kDa calculated for 

two dimers of Fur bound to the DNA operators. Finally, the LMC2 is a complex of 228 

kDa; this molecular mass is close to the predicted value of 220 kDa for two Fur 

tetramers, each bound to an operator probe. In all cases, the estimated molecular weight 

of the Fur-DNA complexes was somewhat higher than the predicted values, perhaps 

due to the fact that the protein-DNA complexes have different shape than the globular 

protein standards employed (Baichoo et al., 2002a). Similar, an 8-kDa overestimate 

was also obtained when the stoichiometry of the Lrp-DNA complexes was determined 

by this method (Cui et al., 1996).  
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FIG. 21. Determination of the stoichiometry of Fur-DNA complexes by native PAGE. 

Representative gel shifts with OPIfrpBwt and OPIpfrwt used as an example of an holo- and apo-Fur 

recognized operators. Increasing amounts of Fur protein were incubated with end-labeled 

probes in presence of 150 μM 2,2 dipyridyl (A) and 150 μM Fe
2+ 

(B). Lane 1 to 7; 0, 1.2, 2.4, 

4.8, 9.6, 18, 39 nM Fur added respectively. Single asterisks indicate free probe, while double 

asterisks indicate pBluescript KS used as non specific competitor in binding reactions. HMC 

and LMC denote the high mobility complex and the low mobility complex, respectively, 

formed in a metal-dependent manner. (C) Logarithm of the relative mobilities of Fur-DNA 

complexes and marker proteins as function of gel concentration. (B) Determination of 

apparent molecular weights of HMC, LMC, LMC2 Fur complexes. The negative slopes of the 

mobility lines in panel C were plotted against the molecular weights of the protein standards 

on double-log graph. The apparent mass of Fur-DNA complexes were determined by 

interpolation. The legend for the protein markers and Fur complexes are shown inside each 

graph. 

 

 

 

These results indicates that apo-Fur binds DNA as a dimer, while holo-Fur is 

able to tetramerize (on DNA), and the two holo-Fur tetramers can interacts with each 
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other without losing contacts to the bound operators. Together this data support the idea 

that the metal ions determine the stoichiometry of Fur binding to DNA, regardless of 

the operator typology specifically recognized by the protein. 
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The H. pylori Fur protein is a transcriptional repressor involved in metal ion 

homeostasis and virulence. Classically, it is activated to bind DNA by the iron co-

repressor. However, it has been shown that the HpFur binds DNA also in the absence 

of the iron regulatory cofactor. These two modes of Fur regulation have been termed 

holo- and apo- repression respectively, and rely on opposite effects of the regulatory 

metal ion on the affinity of Fur towards specific operator elements (Delany et al., 

2001b) (Fig. 9). This feature distinguishes HpFur from all other members of the Fur-

family, which have not been shown to be able to bind DNA in the apo-form, to date 

(Carpenter et al., 2009b).  

 

Nevertheless, very little is understood about the molecular determinants that 

underlie Fur-dependent transcriptional regulation of iron-induced and -repressed genes. 

In H.pylori, the Fur-box consensus is still ill defined, and the nucleotide sequence of 

known Fur operators diverges significantly from that of E. coli and other bacteria. Even 

among HpFur target genes, the operators sequences are poorly conserved. An operator 

consensus sequence for the apo-repressed genes is lacking, due to little sequence 

homology between the only two known apo-Fur regulated genes, pfr and sodB (Delany 

et al., 2001b, Ernst et al., 2005b), while the consensus element for holo-Fur repression 

has been repeatedly reinterpreted based only on computational analysis of Fur bound 

operators sequences (Baichoo et al., 2002a, de Lorenzo et al., 1987, Escolar et al., 

1998b, Gao et al., 2008). A common feature of Fur-boxes is the high number of A/T 

nucleotides. Thus it is not surprising that in silico definition of the Fur-box in H. pylori 

has been somewhat hindered by the AT-rich genome of this bacterium, considering also 

the lack of knowledge on the exact bases that are contacted by the protein. Recent 

reviews indicate this black box as one of the most intriguing puzzles in the wide field 

of Fur regulation. 

 

Using OH* footprinting, electrophoretic mobility shift assays, and mutational 

analyses, we identify for the first time a specific Fur box consensus motif 

(TCATTn10TT) for the apo-Fur operators (Fig. 13B), to which Fur is recruited with a 

characteristic binding architecture (Fig. 10 and Fig. 11). This finding led to unravel key 

molecular determinants responsible for the iron-responsive Fur regulation in H. pylori, 
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which ultimately involves: i) the nucleotide sequence of the operator element 

associated with the binding architecture of the regulator; ii) possible conformational 

changes of the protein induced by the metal ion cofactor; and iii) the ability of Fur to 

bind with different affinity distinct operator elements, carried within different grooves 

of the DNA helix. 

In particular, we demonstrate the existence of two binding architectures of Fur 

to DNA, distinctive of the operator typology recognized with higher affinity by either 

the holo- or apo-regulator. The determinants, characterizing holo- and apo-operators, 

are carried in cis, within the operator sequences, and are represented by distinct 

nucleotide sequences important for holo- or apo-Fur binding. We have been able to 

identify a TCATTn10TT consensus motif responsible for discriminative binding of Fur 

to apo-operators. Fur binding to this element resulted insensitive to the minor groove 

binding drug distamycin A. On the contrary, Fur binding to holo-operators, 

characterized by extensive protein wrapping on AT-rich DNA elements, result to be 

distamycin-sensitive. Thus, the apo- and holo-Fur repression mechanisms apparently 

rely on two distinctive modes of operator-recognition, involving respectively the 

readout of a specific nucleotide consensus motif in the major groove for apo-operators, 

and the recognition of AT-rich stretches in the minor groove for holo-operators. 

 

The shape of the DNA minor groove varies depending on the nucleotide 

sequence in a segment of DNA. TpA dinucleotide steps tend to widen the minor groove 

(Burkhoff et al., 1988, Stefl et al., 2004), enabling recognition by transcription factors 

such as TBP complexed to the TATA box (Kim et al., 1993a, Kim et al., 1993b). 

Instead, short runs of adenine nucleotides (called A-tracts) followed by a T residue, 

have the strong tendency to narrow the minor groove, leading to a cleft with enhanced 

negative electrostatic potential, which can be recognized by proteins bearing arginine 

residues (that offer a complementary set of positive charges) in their DNA binding 

domains (Rohs et al., 2009, Tullius, 2009). Accordingly, the AAT repeats found within 

the extended protection region on holo-operators (Fig. 10C), may influence the minor 

groove width in such a way that it can serve as site for specific recognition by Fur. 

Interestingly, the H. pylori Fur protein encompasses a unique RLR amino acid motif 

within the recognition helix H1 in the N-terminal winged helix-turn-helix DNA-
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binding domain (Fig. 5), not found in Fur orthologues of other bacterial species. 

Moreover, HpFur bears an additional short N-terminal sequence, rich in positive amino 

acid residues, predicted to fold in an α-helix secondary structure (Fig 5). This may 

contribute to confer affinity to Fur for negatively charged clefts predicted to form in the 

minor groove of the holo-operators as a consequence of contiguous repeats of ATT 

triplets. 

On the contrary, apo-operators are characterized by a consensus TCATTn10TT 

motif, in which two thymine dimers, separated 10 bp one from another, are directly 

contacted by the DNA binding domain of Fur. This is indicative of Fur binding to one 

side of the DNA helix. In addition, binding to the apo-operators in not out-competed by 

distamycin in EMSA experiments (Fig. 20B), suggesting that recognition of these 

operators does not occur in the minor groove. EMSA experiments performed with 

cytosine substitutions of thymines (and consequential inosine substitutions of adenines) 

in the TCATTn10TT element, indicated that the affinity of Fur is significantly reduced 

(data not shown), suggesting indeed a specific readout of consensus motif in the major 

groove, in the case of apo-operators. Therefore, the binding affinity of Fur to apo- and 

holo-operators appears to depend on specific recognition of determinants in the major 

and minor groove, respectively. As a consequence, it will be noted that the apo- and 

holo- recognition elements are not mutually exclusive, but may coexist within the same 

operator. Evidence for this is provided by the reconstitution of the TCATTn10TT motif 

within the holo-operator frpB I (OPIfrpBsw), which confers apo-repression features to Fur 

in vivo, leaving the holo-repression unaltered (Fig. 17A). The in vivo data correlate 

with the results gathered in vitro, which indicate that the reconstitution of the 

TCATTn10TT element in a holo-operator has little effect of holo-Fur binding affinity, 

but confers a higher affinity to the apo-protein (Fig. 16). In addition, the presence of 

the TCATTn10TT motif within OPIfrpBsw resulted in lower sensitivity to distamycin A 

(compare the wild-type and mutant frpB operator in Fig. 20A and 20C), further 

strengthening the concept that apo- and holo-regulation molecular determinants are 

biochemically distinct and located on different grooves, but can be concurrently 

encompassed within the same operator sequence. A similar situation is found at the 

native operator I of the autoregulated fur promoter, which is recognized with the same 

affinity by holo- as well as apo-Fur (Delany et al., 2003). Strikingly, this operator 
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encompasses both a perfectly conserved TCATTn10TT motif, which could serve as high 

affinity apo-Fur recognition element, as well as short AT-rich tracts, which may recruit 

holo-Fur through narrowing of the minor groove.  

Based on these evidences, we propose a schematic model that allows to explain 

the relationship between the distinctive binding architecture of Fur, the recognition of 

either the major or the minor groove, and the opposite regulatory effect of iron on apo- 

and holo-Fur repressed promoters in H. pylori (Fig. 22). The model postulates that the 

nucleotide sequences of the holo- and apo-operators dictate a specific binding 

architecture of Fur, which is not influenced by the regulatory iron ion. However, the 

metal ion plays a fundamental role in modulating the affinity of Fur to the different 

operator typologies, through allosteric conformational changes, supported by the 

evidence of different multimerization states of the regulator. In fact, it has been 

proposed that the DNA binding activity of Fur is activated by iron, which complexes to 

the regulatory metal binding site and changes the conformation of the protein (Coy et 

al., 1991, Gonzalez de Peredo et al., 2001). It is possible that once a dimer binds DNA, 

additional dimers are readily recruited to cooperatively bind holo-operators in response 

to the metal ions. This is consistent with the observation that Fur has the ability to 

multimerize on its binding sites through protein-protein interactions generating helical 

arrays spiraling around the DNA helix (Bagg et al., 1987, Lavrrar et al., 2002, Le Cam 

et al., 1994). 

In the case of H. pylori Fur, only the holo-protein is able to multimerize on DNA, while 

the apo-protein preferentially binds DNA as a dimer (Fig. 21). In particular, in the 

absence of iron, an apo-Fur dimer is prompted to bind with higher affinity to the OPIpfr 

apo-operator in the major groove, through a direct readout of nucleotides encompassed 

in the TCATTn10TT consensus element (Fig. 22; upper left panel). By contrast, the 

affinity of the apo-Fur dimer for the OPIfrpB holo-operator is significantly reduced, 

likely because the apo-recognition element TCATTn10TT is missing in the major 

groove, while the structural conformation of the regulator poorly fits within the minor 

groove the DNA on the holo-operator in absence of iron (Fig. 22; upper right panel). 

Thus, under iron-deplete conditions, Fur gains affinity for apo-operators, enabling to 

repress transcription of iron-induced genes, while holo-Fur controlled promoters (iron-

repressed) are derepressed. Accordingly, when an apo-recognition element 

(TCATTn10TT) is inserted into an holo-operator sequence overlapping the promoter 
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elements, the derepression under iron-deplete conditions is less pronounced (Fig. 17A), 

as Fur gains the ability to bind to OPIfrpBsw also in its apo-form, contributing to its 

repression.   

 

 

 

 

 

 

FIG.22 Schematic representation of proposed mode of action of holo- and apo-Fur binding 

on target operators. Fur protein recognized the apo- and holo-operator with differential 

affinity, binding into the major and minor groove of DNA respectively, exhibiting a distinctive 

binding architecture. The iron cofactor induces Fur oligomerization and may stabilize protein 

structure modulating protein affinity. Black triangles represent the dimerization domain of Fur 

dimer. Grey small triangles represent α-helices in the DNA-binding domain. 

 

 

Conversely, under iron replete conditions, metal-dependent conformational 

changes in protein structure, accompanied by tetramerization or multimerization of the 
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regulator, allow the allosteric activation responsible for correct fitting of the DNA 

binding domain into the narrower minor groove of the AT-rich OPIfrpB holo-operator 

(Fig. 22; lower right panel). This results in increased affinity of holo-Fur to this 

operator and transcriptional repression of the frpB promoter. Concomitantly, the 

affinity for the OPIpfr apo-operators decreases, in virtue of a regulator conformation less 

favorable to recognize the thymine dimers of the TCATTn10TT apo-element (Fig. 22; 

lower left panel). A key factor supporting this model, is that holo-Fur continues to bind 

OPIpfr with the same binding architecture (specificity) characteristic of apo-Fur 

recognized apo-operators, but with decreased affinity (Fig.10B). This strongly suggests 

that the holo-regulator loses affinity for the readout of specific nucleotide pairs in the 

major groove. This loss of affinity is not compensated by a gain of affinity for the 

minor groove as the apo-operator lacks the AAT stretches or other determinants that 

are responsible for narrowing of the minor groove.  

In conclusion, we propose that the principal molecular determinant governing 

the iron-dependent and iron-sensitive regulation of Fur resides in cis, within the 

operator sequence. Importantly, the nucleotide sequence of the operator determines the 

specificity of recognition, reflected in different binding architectures, while the affinity 

is controlled through metal-dependent shaping of the protein structure in order to match 

preferentially the major or the minor groove. Base-specific contacts in the minor 

groove of AT-rich DNA sequence have been demonstrated for a number of other DNA-

binding proteins [MogR repressor of Listeria monocytogenes (Shen et al., 2009); the 

nucleoid-associated protein Lsr2 of Mycobacterium tuberculosis (Gordon et al., 2010) 

and α-subunit of RNA polymerase (Ross et al., 2001)]. Frequently, these interactions 

are made by short peptide motifs containing arginine residues that contact bases in the 

minor groove. [e.g., AT-hooks in the chromatin-associated protein HMG-I(Y) (Huth et 

al., 1997), and extended arm sequences in the Hin recombinase (Feng et al., 1994) and 

in homeodomains (Kissinger et al., 1990)]. Some of these proteins interact with DNA 

exclusively through the minor groove [e.g. TATA-box binding protein, integration host 

factor IHF, high mobility group I (Y) (HMG I) and the HMG-box- containing SRY and 

LEF-1(Bewley et al., 1998)], while others are able to bind both the minor and the major 

groove of the DNA (MogR repressor of L. Monocytogenes (Shen et al., 2009), Hin 

recombinase (Feng et al., 1994), and THAP proteins (Sabogal et al., 2010) ]. H. pylori 

Fur adds to list of regulators able to bind both the major and the minor groove. To our 
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knowledge, the HpFur represents the first prokaryotic protein that is able to take 

advantage of the specific recognition of either the minor or the major groove to regulate 

gene expression in response to a specific environmental stimulus. This stunning 

evidence is consistent with the paucity of transcriptional regulators in H. pylori 

(Scarlato et al., 2001, Tomb et al., 1997) and the large number of Fur gene targets in 

the genome (Danielli et al., 2006). The bacterium may have evolved a regulatory 

mechanism to control transcription of AT-rich loci, exploiting Fur to recognize 

structural features of the minor DNA groove imposed by recurrent AT-tracts.  

To our knowledge, this is the first evidence of a prokaryotic transcription factor binding 

alternatively either the major or minor groove of the DNA in response to a specific 

environmental stimulus. 
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13. Bacterial strains, plasmids and growth conditions 

 

The bacterial strain and plasmids used for this study are listed in Table 1. H. 

pylori strains were recovered from frozen stocks on Columbia or Brucella agar plates 

containing respectively 5% horse blood (Oxoid) or 5% fetal calf serum (Oxoid), 0.2% 

cyclodextrin and Dent’s or Skirrow’s antibiotic supplement. Bacteria were grown at 

37°C under microaerophilic conditions in a water-jacketed thermal incubator or in an 

anaerobe jar by using Campygen gas pack (Oxoid). Liquid cultures were grown in 

brucella broth (BB) (Difco) containing 5% fetal calf serum and Dent’s or Skirrow’s 

antibiotic supplement under gentle agitation in a microaerobic environment. To monitor 

the iron-dependent transcriptional responses, a master culture (30 ml) of H. pylori 

strains were grown to an OD600 of 0.5-0.6, divided into aliquots of 5 ml and treated for 

15 min with freshly made 1mM (NH4)2Fe(SO4)2·6H2O [Fe+] or 100 µM 2,2’-dipyridyl 

[Fe-] prior to RNA extraction. For transformation, 5-10 µg of plasmid DNA was added 

to spotted O.N. cultures of naturally competent H. pylori and incubated overnight. 

Transformants were then selected on plates containing chloramphenicol (30 µg ml-1), 

and single colonies were selected for further analysis. 

E. coli strains DH5α and BL21 (D3) were growth on Luria-Bertani (LB) agar or in LB 

broth at 37°C. When required, ampicillin, kanamycin and chloramphenicol were added 

at final concentration of 100 µg ml-1, 25 µg ml-1, and 30 µg ml-1, respectively.  

 

14. DNA manipulations  

 

 Standard molecular biology techniques for DNA purification, PCR analyses, 

restriction digestion, and cloning were performed according to published protocols 

(Sambrook et al., 1989). All constructs were confirmed by sequencing. Restriction and 

modification enzymes were purchased by New England Biolabs (NEB). Small- and 

large-scale plasmid DNA preparations were carried out using QIAprep Spin Mini-Kit 

(Qiagen) and NucleoBond Xtra-Midi (Macherey-Nagel) respectively, according to 

manufacturer’s instructions.  
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Table 1. Strains and plasmids and used in this study 

 

Strains or Plasmid Genotype or Descriptiona Source or 
reference 

 
E. coli strains 

  

DH5α supE44 ∆lacU169 (φ80 lacZ∆M15) hsdR17 recA1 
endA1 gyrA96 thi-1 relA1ß 
 

(Hanahan, 
1983) 

BL21 (DE3) hsdS gal (λcIts857 ind1 Sam7 nin5 lacUV5-T7 gene 1) (Studier et 
al., 1986) 

 
H. pylori strains 

  

G27 Clinical isolated, wild type (Xiang et 
al., 1995) 

G27fur (∆fur::Km) G27 derivative in which 462 bp of the Fur gene has been 
deleted and replaced by a kanamycin cassette, fur-, Kmr 

 

(Delany et 
al., 2001a) 

G27 vac::OPIfrpBwt-
lacZ 

G27 derivative containing the wild-type OPI PfrpB-lacZ 
fusion in the vacA locus; Kmr, Cpr  
 

This study 

G27 vac::OPIfrpBsw-
lacZ 

G27 derivative containing the mutant OPI PfrpB -lacZ 
fusion in the vacA locus; Kmr , Cpr 
 

This study 

G27fur vac::OPIfrpBwt-
lacZ 

G27fur derivative containing the wild-type OPI PfrpB-
lacZ fusion in the vacA locus; Kmr, Cpr 
 

This study 

G27fur vac::OPIfrpBsw-
lacZ 

G27fur derivative containing the mutant OPI PfrpB -lacZ 
fusion in the vacA locus; Kmr, Cpr  
 

This study 

 
Plasmids 

  

pET15b IPTG-inducible vector over-expressing N-terminally 
His6-tagged recombinant protein; Ampr 

 

Novagene 

pET15bfur pET15b derivative containing the fur coding sequence 
cloned in frame within NdeI/XhoI  restriction sites 
 

(Delany et 
al., 2001b) 

pGEM-T Cloning vector for PCR products; Ampr Promega 

pGEMpfr Derivative of  pGEM-T containing a 390 bp of  pfr 
promoter region amplified by PCR with primers PFR-f 
and PFR-r 
 

(Delany et 
al., 2001b) 

pGEM3-z General cloning vector, Ampr 

 
Promega 

pGEMK-F Derivative of pGEM3-z containing a 470 bp of frpB 
promoter region amplified with primers 0875-L and 
0875-R 
 

(Delany et 
al., 2001a) 

a IPTG, isopropyl-β-D-thiogalactopyranoside 
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pGEMT-PfecA1 

 
pGEM-T Easy derivative containing 402 bp of fecA1 
promoter region, amplified by PCR 
with primers A1F and A1R 
 

 
(Danielli et 
al., 2009) 

pGEMT-PfecA2 pGEM-T easy derivative containing 380 bp of fecA2 
promoter region, amplified by PCR 
with primers A2F and A2R 
 

(Danielli et 
al., 2009) 
 

pBluescript II KS  
 

General cloning vector; Ampr Stratagene 

pBS-OPIpfrwt pBluescript derivative containing operator I from pfr 
promoter region obtained by annealing of 
complementary primers PFRI-f and PFRI-r 
 

This study 

pBS-OPIIpfrwt pBluescript derivative containing operator II from pfr 
promoter region obtained by annealing of 
complementary primers  PFRII-f and PFRII-r 
 

This study 

pBS-OPIIIpfrwt pBluescript derivative containing operator III from pfr 
promoter region obtained by annealing of 
complementary primers  PFRIII-f and PFRIII-r 
 

This study 

pBS-OPIpfrsw pBluescript derivative containing  mutant operator I 
from pfr promoter region obtained by annealing of 
complementary primers PFRS-f and PFRS-r 
 

This study 

pBS-OPpfrc17a pBluescript derivative containing mutant operator I from 
pfr promoter region obtained by annealing of 
complementary primers PFRC-f and PFRC-r 
 

This study 

pBS-OPpfrc11-17a pBluescript derivative containing mutant operator I from 
pfr promoter region obtained by annealing of 
complementary primers PFRC1-f and PFRC1-r 
 

This study 

pBS-OPIfrpBwt pBluescript derivative containing operator I from frpB 
promoter region obtained by annealing of 
complementary primers  FRPI-f and FRPI-r  
 

This study 

pBS-OPIIfrpBwt pBluescript derivative containing operator II from frpB 
promoter region obtained by annealing of 
complementary primers  FRPII-f and FRPII-r  
 

This study 

pBS-OPIfrpBsw pBluescript derivative containing mutant operator I from 
frpB promoter region obtained by annealing of 
complementary primers  FRPS-f and FRPS-r 
 

This study 

pVac::Km pGEMZ derivative containing kanamycin cassette  (Delany et 
al., 2002b) 

 
pVac::OPIfrpBwtLacZ 

 
pVac::derivative containing the transcriptional fusion 
OP-I wild-type PfrpB –lacZ; Kmr, Cpr 

 

 
This study 
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15. Cloning of Fur operator regions 

 

The Fur operator regions used in this study, were generated by annealing 

complementary oligonucleotides containing both wild-type and mutated operator 

regions of Ppfr and PfrpB promoters. The OPIfrpB and OPIIfrpB operators contain regions 

spanning positions -1 to -42  and 57 to – 91 of the frpB promoter, whereas the OPIpfr, 

OPIIpfr and OPIIIpfr operators comprises regions spanning positions +5 to -36, -49 to -

85, and -110 to -148 of the pfr promoter respectively (Delany et al., 2001b). 

Oligonucleotides used are listed in Table 2. Equimolar amounts of complementary 

oligonucleotides were incubated at 94°C for 10 min in annealing buffer (50 mM NaCl2, 

10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and then allowed to cool at room temperature 

over a 5-h period. The resulting double stranded DNA products were cloned as blunt-

end fragments at the HincII site in pBlueScript (Stratagene) vector to generate the 

plasmids listed in Table 1.  

The pBlueScript derivatives, bearing the various Fur binding operators, were used to 

obtain DNA probes used in Electrophoretic Mobility Shift Assays, Hydroxyl radical 

footprinting and Ferguson analysis. 

 

 

16. Purification of H. pylori Fur protein 

 

Expression and purification of Fur protein was done as described by Delany et 

al. 2001. The protocol was modified as follows. Over-expression of recombinant Fur 

was induced in cells at mid-log phase by the addiction of 0.4mM IPTG and then 

incubating at 30°C for 4hs. The recombinant His-Fur protein was purified under native 

conditions by Ni-NTA (Qiagen) affinity chromatography according to manufacturer’s 

instructions. The His-tag was cleaved by adding 10 U of thrombin protease 

(Amersham, GE Healthcare) per mg of purified protein and incubating for 2 hours at 

room temperature and subsequently at 4°C overnight. To remove the His-tag and 

exchange the protein storage buffer, the purified untagged protein was subjected to gel 

filtration using PD SpinTrap G-25 (GE Healthcare). After determination of the protein 
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concentration by the Bradford method (Bio-Rad), protein fractions were aliquoted and 

stored at -80°C in EMSA or footprinting buffer for the subsequent assays. Fur 

concentrations indicated through this work refer to the protein dimer. 

 

Table 2.  Primers used for cloning of Fur binding sites 

Operator Primers Sequence (5’-3’)a 

 
OPIpfr 

 
PFRI-f 
PFRI-r 
 

 
GTTGTCCCATAATTATAGCATAAATGATAATGAAAAAGTAA 
TTACTTTTTCATTATCATTTATGCTATAATTATGGGACAAC  

OPIIpfr PFRII-f 
PFRII-r 

AAATTTTTAAAAATTTACAAAAATGAGAAAGAACACC 
GGTGTTCTTTCTCATTTTTGTAAATTTTTAAAAATTT 

 
OPIIIpfr 

 
PFRIII-f 
PFRIII-r 
 

 
ATTTTATCATAAAAATCTATTTAATGAGAATTAGGTAAA 
TTTACCTAATTCTCATTAAATAGATTTTTATGATAAAAT 

OPIpfrsw PFRS-f 
PFRS-r 

GTTGTCCCATAGCATAATTATAAATGATAATGAAAAAGTAA 
TTACTTTTTCATTATCATTTATAATTATGCTATGGGACAAC 
 

OPIpfrc17a PFRC-f 
PFRC-r 

GTTGTCCCATAATTATAGCATAAATTATAATGAAAAAGTAA 
TTACTTTTTCATTATAATTTATGCTATAATTATGGGACAAC 
 

OPIpfrc11-

17a 
PFRC1-f 
PFRC1-r 

GTTGTCCCATAATTATAGCATAAATTATAAT TAAAAAGTAA 
TTACTTTTTAATTATAATTTATGCTATAATTATGGGACAAC 
 

OPIfrpB FRPI-f 
FRPI-r 
 

TTTTAATCTGGTTTTAATAATAATTATCATACTATTCTATCCC 
GAAAAGGATAGAATAGTATGATAATTATTATTAAAACCAGATT 

OPIIfrpB FRPII-f 
FRPII-r 

CTATTCGTAACAATTAATGAAAATAAGAAAGATTAA 
TTAATCTTTCTTATTTTCATTAATTGTTACGAATAG 
 

OPIfrpBsw FRPS-f 
FRPS-r 

TTTTAATCTCATTTTAATAAT CATTATCATACTATT TTATCCC 
GGGATAAAATAGTATGATAAT GATTATTAAAA TGAGATTAAAA 
 

 

 

 

17. Electrophoretic Mobility Shift Assay (EMSA) 

 

EMSAs were used to assays the holo- or apo-Fur binding to DNA. DNA probes 

for gel retardation assays were isolated as 64 bp fragments, containing only the 

operators under study surrounded by unrelated sequence, from HindIII and XhoI 

a Bases underlined and in italics represent introduced mutations 
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digestion of pBlueScript-derived plasmids described above (Table 2). Following double 

restriction digestion, both the DNA fragments and the pBS vector were 

dephosphorylated with calf intestinal phosphatase and labeled at both ends with T4 

polynucleotide kinase and [γ-32P] ATP (Perkin Elmer); unincorporated radiolabeled 

nucleotide was removed with a G-50 microspin column (GE Healthcare).  

The binding reaction was carried out for 15 min, at room temperature, in EMSA 

buffer (50 mM NaCl; 10 mM Tris pH 8.0; 10 mM KCl; 0.01% IGEPAL; 10% glycerol; 

0.1 mM DTT) in presence of vector used as an unspecific competitor. Approximately 

0.6 nM of radiolabeled target DNA and increasing concentrations of Fur, ranging from 

0 to 40 nM, were incubated in a final volume of 15 µl in presence of 5 mM DTT. 

Depending on the effect analyzed the buffer was supplemented 150 µM 

(NH4)2Fe(SO4)2·6H2O or 150 µM 2,2’-dipyridyl as indicated in figure legends. Binding 

reactions were resolved on native 6% polyacrylamide [19:1] gel and electrophoresed in 

1X Tris-borate (TB) buffer (60 mM Tris, 240 mM boric acid, pH 8.0). The gels were 

prerun at 50 V for 30 min prior to loading and then run at 150 V for 2 h at room 

temperature, dried and autoradiographed. The binding pattern was examined by 

exposing the gel to Kodak XAR film.  

To determine the apparent dissociation constant (KD) for each operators, gels 

were expose to a phosphorimager screen. The image was scanned into a Storm 840 

scanner and the intensity of the individual bands was measured with ImageQuant 5.2 

software (Molecular Dynamics). By comparing relative signal intensities and analyzing 

them with Excel Microsoft, percent DNA bound versus unbound fragments was 

calculated for each Fur concentration. One hundred percent represents the association 

of all DNA in the sample with Fur. Also the remaining unbound DNA in each binding 

reaction was estimated with the respect to the band area corresponding to free DNA 

control taken as 100%. Apparent KD is defined as the concentration of protein at which 

50% of DNA is bound.  
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18. Probe preparation and Hydroxyl radical footprinting  

 

Hydroxyl-radical footprinting was carried out to determine the bases directly 

contacted by holo- and apo-Fur and their relative binding architecture on target 

operators or promoter regions. 

The pBlueScript derivatives pBS-OPIpfr, pBS-OPIfrpB and their mutants (Table 1) were 

digested with BamHI or Acc56I for labeling of the top or the bottom strand, 

respectively. The linearized vectors were dephosphorylated with calf intestinal 

phosphatase (NEB) and 5’end-labelled with [γ-32]-P ATP (5,000 Ci/mmol; 

PerkinElmer) and T4 polynucleotides kinase (NEB). 

The labeled DNA probes were further digested with PvuII (top strand) or PvuI (bottom 

strand) and products were separated by native polyacrylamide gel electrophoresis and 

purified as described previously (Delany et al., 2001b). 

The Ppfr and PfrpB promoter regions were obtained from pGEMpfr and pGEMK-

F plasmids (Table 1). Probe preparation was carried out as previously described with 

some modifications (Delany et al., 2001b). A 390 bp BamH1/NcoI-digested pfr 

promoter fragment was isolated from pGEMpfr and 5’end-labelled with T4 PNK at the 

site BamH1 (for labeling of the non coding strand) or NcoI (for labeling of the coding 

strand). A 447 bp HindIII /EcoRI-digested frpB promoter fragment was isolated from 

pGEMK-F and 5’end-labelled with T4 PNK at the site HindIII  or EcoRI for labeling of 

the non coding strand and the coding strand respectively. Probe preparation for PfecA1 

and PfecA2 promoters was carried out as previously described (Danielli et al., 2009). 

The OH*-footprinting assay used in this study is a modified version of that 

described previously by (Tullius et al., 1986). Approximately 0.6 nM of labelled probe 

was incubated with increasing concentration of Fur in footprinting buffer (50 mM 

NaCl,10 mM KCl, 10 mM Tris-HCl pH 8.0, 0.01% Igepal CA-630, 0.1mM DTT) at 

room temperature for 15 min using 300 ng of salmon sperm DNA (Invitrogen) as non 

specific competitor in a final volume of 30 µl. Glycerol was omitted in the footprinting 

buffers as it is a radical scavenger. An excess of MnCl2 (150µM) or 2,2’-dipyridyl (150 

µM) was added where indicated. Mn2+ was used in place of Fe2+ to avoid interference 

with the reaction generating OH* formation. The cutting reaction was carried out by 

the addition of 2 µl each of the following solutions: 125mM Fe (NH4)2(SO4)2-250 mM 
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EDTA, 1% H2O2 and 0.1 M DTT. The stock solution of iron(II)-EDTA was prepared 

immediately before use by mixing equal volumes of freshly prepared 125 mM 

ammonium iron (II) sulfate hexahydrate [Sigma (NH4)2Fe(SO4)2·6H2O)] and 250 mM 

EDTA. After 2 min at room temperature the reaction was quenched by the addition of 

25 µl of OH-stop buffer (4% glycerol, 0.6 M sodium acetate pH 5.2, 100 ng µl-1 100 µg 

ml-1 sonicated salmon sperm DNA), extracted once with an equal volume of phenol-

chloroform isoamyl alcohol (25:24:1), and ethanol precipitated. Sample were 

resuspended in 6 µl of formamide loading buffer, denaturated at 92°C for 2 min, 

separated on 8 M urea-8,5% acrylamide sequencing gels and autoradiographed. A 

modified G+A sequencing ladder protocol (Liu et al., 1998) was employed to map the 

bases directly involved in either holo- or apo-Fur DNA interactions. 

 

 

19. Distamycin A interference assays. 

 

Distamycin A, a minor groove DNA binding drug, (Churchill et al., 1990) was 

purchased from Chemper (Prato, CO Italy), resuspended in distilled water at final 

concentration of 10 mM, and stored at – 20°C.  

Hydroxyl radical footprinting were implemented to detect distamycin binding sites on 

OPIfrpBwt, OPIpfrwt, and OPIfrpBsw. End-labeled fragment containing frpB and pfr operator 

regions was incubated at 22° C for 15 minute with 0.62-1 µM distamycin in 50 mM 

NaCl,10 mM KCl, 10 mM Tris-HCl pH 8.0, 0.01% Igepal CA-630, 0.1mM DTT and 

300 ng salmon sperm DNA (Invitrogen). OH* cleavage and gel electrophoresis was 

carried out as described previously.  

EMSA assays were performed to study the effects of the minor groove binder 

distamycin A on Fur binding to DNA operators. DNA probes (0,6 nM) was 

preincubated for 15 min at 22°C with 1.2, 2.4, 4.8 nM distamycin A in 10 µl of EMSA 

buffer. Then, 39 nM Fur was added to the reaction for additional 15–min incubation. 

Samples were analyzed on 6% native gel and the binding pattern was examined by 

exposing gel to Kodak XAR film. 
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20. Determination of Fur oligomerization by Native PAGE (Ferguson 

analysis) 

 

An EMSA-based method for determining the molecular weights of Fur-DNA 

complexes  was done by performing native PAGE as described by Orchard and May 

(Orchard et al., 1993) and using a native PAGE molecular weight marker kit (SIGMA 

MW ND 500). Briefly, EMSA reactions, along with molecular weight markers, were 

analyzed on a series of nondenaturating gels (5 to 10% polyacrylamide, 19:1) and 

electrophoresed until the bromophenol blu bands in flanking samples lanes just reached 

the bottom of the gels. The gels were stained in Coomassie blue, destained, incubated 

in 7% acetic acid, dried and exposed to Kodak XAR film. To determine the relative 

mobilities (Rf) (of the protein-DNA complexes and protein markers), the distance from 

the top of the gel to the complexes or protein standards were measured and divided by 

the distance migrated by bromophenol blue band for each gel. The logarithm of the Rf 

was plotted against the gel concentration for each complex and protein standard, and 

best-fit lines were obtained. The negative slopes of these lines were the plotted against 

the molecular weight of the protein standards on a double-logarithmic scale, and 

titration curve was obtained. Interpolation of this curve by using the slopes of the lines 

from the protein DNA-complexes was used to deduce the approximate molecular 

weights of the complexes. 

 

 

21. Construction of lacZ transcriptional fusions and integration into 

the vacA locus of H. pylori 

 

Transcriptional fusions of the wild-type and mutant frpB operators I (OPIfrpBwt 

and OPIfrpBsw, respectively) to a promoterless LacZ was constructed as previously 

described (Danielli et al., 2009).  

OPIfrpBwt and OPIfrpBsw were cloned blunt at HincII site in pBluescript II KS (Table 1) to 

have transcriptional fusions with the lacZ 3’ region carried in the plasmid vector. These 

constructs were then excised from the pBluescript derivatives (pBS-OPIfrpBwt and pBS-
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OPIfrpBsw) as XhoI-PvuII segments, blunted and cloned into the pVac::Km transformation 

vector (Delany et al., 2002b) by exploiting a unique HincII site. The transcriptional 

fusions were inserted into the vacA locus on the chromosome of both wild-type and 

∆fur H. pylori strains by homologous recombination; positive colonies on agar plates 

were selected according to the antibiotic resistance phenotype. The integrations were 

confirmed by PCR amplifications using primers FRPI-f (Table 2) and A3Z2 

(GTTTTCCCAGTCACGACGTTG). 

 

22. RNA isolation and Primer extension analysis 

 

Total RNA was extracted by a hot-phenol procedure as described previously 

(Danielli et al., 2006); RNA integrity and purity were ensured by electrophoresis on 1% 

agarose gels. Primers BZ9 (CCCCCGGGCTGCAGGAATTC) and BZ10 

(GCTGCAGGAATTCGATATC) were used for primers extension experiments. The 

primer (5pmol) was 5’ end labelled using  6 pmol [γ-32P]-ATP (Perkin Elmer) with T4 

polynucleotide kinase (NEB) at 37°C for 45 min. Unincorporated radiolabeled 

nucleotide was removed with a G-50 microspin column (GE Healthcare).  

Labelled primer (0.1 pmol) was then added to 18 µg of total RNA, 2 µl of 2mM 

dNTPs and 2 µl of 5X AMV reverse transcriptase buffer (Promega) to make up a final 

volume of 9 µl. The reaction mixture was incubated at 100°C for 3 min, cooled to 

42°C, before addition of reverse transcriptase. 1 µl of AMV reverse transcriptase (10 U 

µl-1, Promega) was added, and incubation continued at 42°C for a further 45 min. After 

cDNA synthesis, samples were incubated for 10 min at room temperature with 1 ml of 

RNase A (10mg ml-1), extracted once with an equal volume of phenol–chloroform 

(1:1), ethanol precipitated and resuspended in 6 µl of sequence loading buffer 

(Sambrook et al., 1989). After denaturation at 100°C for 2 min, samples were subjected 

to electrophoresis on 6% urea–polyacrylamide gels at 1500 V, dried and 

autoradiographed. For sequencing ladders, sequencing reaction was carried out by the 

same set of primers employed in the primer extension, using a T7 Sequencing kit (USB 

Corp). 
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