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Abstract

A very recent and exciting new area of research is the application of Concurrency Theory

tools to formalize and analyze biological systems and one of the most promising approach

comes from the process algebras (process calculi).

A process calculus is a formal language that allows to describe concurrent systems

and comes with well-established techniques for quantitative and qualitative analysis. Bi-

ological systems can be regarded as concurrent systems and therefore modeled by means

of process calculi.

In this thesis we focus on the process calculi approach to the modeling of biologi-

cal systems and investigate, mostly from a theoretical point of view, several promising

bio-inspired formalisms: Brane Calculi and κ−calculus family. We provide several ex-

pressiveness results mostly by means of comparisons between calculi.

We provide a lower bound to the computational power of the non Turing complete

MDB Brane Calculi by showing an encoding of a simple P-System into MDB. We ad-

dress the issue of local implementation within the κ−calculus family: whether n-way

rewrites can be simulated by binary interactions only. A solution introducing divergence

is provided and we prove a deterministic solution preserving the termination property is

not possible.

We use the symmetric leader election problem to test synchronization capabilities

within the κ−calculus family. Several fragments of the original κ−calculus are considered

and we prove an impossibility result about encoding n-way synchronization into (n-1)-

way synchronization.

v



A similar impossibility result is obtained in a pure computer science context. We

introduce CCSn, an extension of CCS with multiple input prefixes and show, using the

dining philosophers problem, that there is no reasonable encoding of CCSn+1 into CCSn.
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Chapter 1

Introduction

One of the most recent area of convergence between Biology and Computer Science is

that of Systems Biology [30]. Systems Biology is an inter-disciplinary field of Biology

studying living organisms at a system level, that is centralizing the attention on the inter-

actions of the different parts they are composed of. Systems Biology aims to develop a

better understanding of the processes involved and it requires taking a systems theoretic

view of biological processes analyzing inputs and outputs and the relationships between

them.

A radical shift from earlier reductionist approaches, Systems Biology aims to provide

a deep conceptual basis and a methodology for reasoning about biological phenomena at

a molecular and cellular level. Whereas the reductionist paradigm tries to understand a

complex system by gathering all the knowledge of its basic components and extrapolating

their individual behaviors, Systems Biology approach states this is not enough. In order

to properly characterise a complex biological system we must also comprehend its emer-

gent behaviors and this can be accomplished only by studying the interactions among its

components.

Since its creation Systems Biology has been studying the interactions between com-

ponents of biological systems and how these interactions consistently produce complex

behaviors in a very systematic way thus collecting a huge amount of data.
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Far from being an easy task perhaps one of the most important issues is that of keeping

trace of this knowledge in such a way that we can examine it and perform analysis in order

to better understand biological phenomena at a system level in a consistent way. In other

words one of the necessary steps for understanding the evolution of a biological system is

to get an exhaustive representation of the different components and of their capability of

interaction but the huge amount of informations that Systems Biology is producing must

be stored somehow, and more important, the data must be stored in a proper way so that

later it can be retrieved, used and analyzed in an efficient and easy way.

Biologists have already developed several notations and formalisms which can be

used to represent, and therefore store, these informations (Object databases, Kohn charts,

ODEs, chemical reactions etc.). While some of them are actually used and useful to

depict even complex interactions between components the models depicted typically are

not compositional or can’t be animated to simulate the underlying dynamics or both in

the worst case.

For example differential equations (ODEs) allow to give a complete characterization

of a biological system dynamics, but they are very hard to produce, and very hard to

generalize once the initial conditions are even sligthly changed; Object databases permit

a scalable representation but do not contain information about the dynamics; Kohn maps

[31] give a quite formal graphical description easier to understand but they also are not

scalable and do not contain information on the dynamics of the system.

This is where Computer Science is trying to help Systems Biology: by providing tools

for the representation and analysis of the collected information and for the formulation of

consistent models of biological phenomena. The field of Computer Science providing

these tools is the Concurrency Theory. It studies concurrent systems that are systems

composed by several processes operating in parallel and interacting with each other.

The initial works [54, 55] showing that is possible to successfully represent and sim-

ulate biological systems at a molecular level, and the metaphor in [56] where computing

parallel units are abstractions of molecules evidenced an important conjunction point be-

tween Systems Biology and Computer Science.

After those seminal works the application of formalisms coming from the Concur-
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rency Theory to the modeling and the analysis of biological systems has attracted the

interest of the scientific community in the last few years, with the perspective of formal-

izing, simulating and analyzing them in silico.

In a big-picture perspective the potential outcomes of this interdisciplinary approach

are very attracting: a complete formal specification of a biological system (for example

part of or an entire cell, or a portion of a tissue) would signify not only an exact, unam-

biguous (textual or graphical) representation of the system itself, but also the possibility

of its in silico simulation and analysis of the interaction with other components or sys-

tems (i.e. other kind of cells, drugs, or viruses), thus drastically improving for example

the approach to drugs discovery and disease prediction.

One of the most promising approach to modelling biological systems comes from the

application of process algebras. Process algebras are a class of formalisms from the Con-

currency Theory that offer a compositional description technique supported by apparatus

for formal reasoning, moreover if we look at the organization of biological systems from

an information science point of view we can easily map biological entities as processes in

a process algebra. Once we model a biological system as interacting processes within a

process algebra we can reason about the behaviors and properties of the system itself us-

ing well-established technique that include qualitative and quantitative analysis, and also

model checking.

The first process algebra (also process calculus) applied to the modeling of biomolec-

ular processes was the π−Calculus [57], used to formalize a signal transduction pathway.

After the first use of π−Calculus the applications of process calculi to Systems Biology

attracted increasing research efforts. The direct employment of π−Calculus allowed the

formalization of several biological mechanisms, its variants and extension permitted the

representation or analysis of cellular processes. To obtain higher abstraction level and

biological faithfulness, more complex calculi have been proposed which are based on or

get inspiration from π−Calculus.

The increasing number of bio-inspired process calculi is in fact indicative of an at-

tempt to fill the expressiveness gap between process calculi and biological processes:

even if biological entities can be seen as concurrent, interacting processes, the funda-
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mental structures and mechanisms of bio-systems are obviously not originally modeled

by already existing process calculi. For the sake of simplicity, each bio-inspired calcu-

lus focuses its attention on particular biological entities or mechanisms. For example,

Brane calculi [13] are formalisms completely devoted to represent membrane interaction

at cellular level and sublevel: they allow to easily model events like cellular reproduc-

tion, phagocytoses, viral infections. This a strongly bio-inspired formalism and the goal

is the modelling of various cell dynamics together with the behaviour of biological mem-

branes. In Brane Calculi active entities are tightly coupled to membranes and this en-

dows membranes with the (correct) biological role of support of biochemistry; we have

that computation happens on membrane and not inside of it. Another recent approach is

represented by the κ−calculus [22] that has an interesting abstraction level and models

molecules behaviour at domain level (complexation, activation, interaction). It was in-

troduced in an attempt to provide a visual and compact notation for biological signaling

pathways. It idealizes molecule-molecule interactions, as a particular restricted kind of

graph-rewriting.

In this continuous research, once a proposed formalism presents some interesting and

fresh paradigm or useful modeling property a formal study of the formalism itself takes

place and typically many refining variants arise in order to improve, and better exploit,

the formalism’s original idea.

This was the case for both Brane Calculi and κ−calculus, and in this thesis we try

to deepen their formal study by providing various expressiveness results, reading, when

possible, such results from a biological point of view.

Since the thesis focus mainly on the κ−calculus family we briefly introduce it here.

The κ-family originates with the formalization of the κ-calculus. The main entity is the

molecule which is modeled as a node with fixed numbers of sites. Complexes (i.e. compo-

sition of molecules) are connected graph built over such nodes where bonds are modeled

by names. Two kinds of rewriting rules are used to model biological reactions: complexa-

tions, which create bonds between sites, and decomplexations which are meant to destroy

them. The κ−calculus has been encoded into the π calculus[41], thus potentially allowing

the simulations of κ models on both uniprocessors [53] and distributed systems [62].
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What makes κ an interesting language, apart from being reaction centric, is its rule-

based approach to the modeling. Indeed both the rule-based and the process-based ap-

proaches avoid the combinatorial explosion affecting, for example, differential equations,

but the rule-based approach has in addition the concrete advantage of making the building

and modification of models easier. This is clearly shown in [19] where it is illustrated

how easy could be to perform variations of a given model and why the gain in flexibility

from using a rule-based approach would be even more pronounced within large models

involving many entities.

A peculiar characteristic of the original κ−calculus is that the number of nodes in-

volved in a rewriting rule is not limited. This characteristic originated an interesting

problem called local-implementation. Quoting from [22]

Be that in biology, or in any other decentralized computational scenario, non-

local graph-rewriting takes time and more accurately it takes consensus.

Roughly speaking the local-implementation problem consists in finding, given a high

level model description an encoding so that in a purely decentralized way and with bi-

nary sinchronization as the only means of communication, the encoded model is going to

preserve the behavior of the original high level model description. This is an important

topic because for biological systems it seems reasonable to consider atomic only binary

reactions, that is interactions between at most two entities.

Contribution and Overview

In Chapter 2 we show a translation between two well known families of bio inspired

calculi: the P Systems and Brane Calculi. Membrane systems (also called P systems)

and Brane calculi have been recently introduced as formal models inspired by the struc-

ture and the functioning of living cells, but having in mind different goals. The aim of

Membrane systems was the formal investigation of the computational nature and power

of various features of the cell, while Brane calculi aims to define a model capable of a

faithful and intuitive representation of various biological processes. The common back-

ground of the two formalisms and the recent growing of interests in applying P systems in
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Systems Biology have raised the natural question of bridging this two research areas. This

chapter goes in this direction, as it presents a direct simulation of a variant of P systems

by means of Brane calculi. In particular, we consider a Brane calculus based on three op-

erations called Mate/Bud/Drip, and we show how to use such system to simulate Simple

Symport/Antiport P systems, a variant of P systems purely based on communication of

objects. As an example, a simplified sodium–potassium pump modeled in Simple SA is

encoded in Mate/Bud/Drip Brane calculus. The translation is one way only as it is shown

how to encode Simple SA into MDB but not vice versa. From a purely computational

point of view we may consider Simple SA as a lower bound for the computational power

of MDB. The results of this chapter have been published in [61].

In Chapter 3 we study the problem of local-implementation between the κ calculus

and nanoκ calculus which is a calculus similar to κ that only admits binary interactions

and introduces a new kind of rewriting called bond-flipping. Roughly speaking a bond-

flipping rewriting takes a bond x connecting a molecule A to some other molecule and

migrates x to a third molecule C concretely connecting C to the molecule that was con-

nected to A through x in the initial state. We give a solution of the local-implementation

of κ in nanoκ that is divergent and we show the nonexistence of deterministic solutions

retaining “reasonable” properties. The results of this chapter have been published in [34].

In Chapter 4 we investigate and compare the expressive power of various calculi

within the κ family by studying the leader election problem in a symmetric network. More

precisely we compare the calculi by testing their capability in solving the leader election

problem in two different scenarios: a fully connected network and a ring network. We

work with κ calculus, nanoκ calculus and a newly defined κ sub family called psn suit-

able to describe polymeric structures. In psn by n we represent the maximum number

of molecules allowed to react together at once. This family has been defined so that its

less expressive calculus, i.e. ps2, be a common subset for both the κ calculus and nanoκ

calculus. Our investigation led us to realize that the synchronization degree n, i.e. the

number of elements we allow to communicate simultaneously, has an important role in

this context. Our work demonstrate that it is not possible to elect a leader in polymers

organized as a suitably large ring. This result entails that polymerizations rewriting at
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most n proteins are strictly less expressive than those rewriting n + 1 proteins. The first

scenario was rather unhelpful for any comparison since we prove that the leader election

is solvable in all the calculi considered by providing a solving algorithm for the ps2 cal-

culus: this holds because ps2 is a subset for both the κ calculus and nanoκ calculus, and is

also the less powerful representative of the psn family. The ring network scenario is more

interesting. We have that the psn family is unable to solve the leader election in general

but interestingly any given calculus psm ∈ psn can solve the leader election when the ring

network size is less than 2m−1. This is due to the fact that in psm we can synchronize m el-

ements at a time. A corollary of these result is that the psn family retains a totally ordered

hierarchy wrt the expressive power: psm+1 is strictly more powerful than psm. We finally

provide two extensions of the common subset ps2 capable of solving leader election in

the ring network. These extensions, ps2b and ps3c are respectively obtained by adding the

bond-flipping primitive to the former and allowing bond creation with no constraint in the

latter. Since ps2b happens to be a sub calculus for nanoκ calculus and ps3c is a sub calculus

for κ calculus while the contrary is not true we may conclude that bond-flipping and the

free bond creations1 are the key features for solving the leader election in nanoκ calculus

and κ calculus respectively. It is worth noticing that the algorithm solving the problem for

ps2b does not depend on the network size while all the other considered in this chapter do.

In Chapter 5 we present some purely Theoretical Computer Science results inspired

by the previous work in chapters 3 and 4 and specifically by the synchronizations among

more than two processes. The idea is to investigate multi synchronization mechanisms,

inspired by our work with the κ family, within a well established calculus framework such

as the CCS calculus.

We demonstrate the non-existence of a uniform, fully distributed translation of Mil-

ner’s CCS with multi input synchronizations of n + 1 processes into CCS with multi input

synchronizations of n processes that retains a “reasonable” semantics. In order to prove

this expressiveness gap we adapted a well-known problem of resource sharing: the dining

philosophers problem. We define the dining philosophers problem in the hypercube: the

philosophers sit at the vertices of an hypercube of dimension n and each edge represents

1Together with the ability to involve 3 molecules in a reaction.
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a shared fork. We then extend our study to CCS with more powerful synchronizations

that allow both inputs and outputs at the same time. We prove that synchronizations with

more than three input/output items are encodable in those with three items, while there

is an expressiveness gap between three and two. Finally we compare the introduced syn-

chronization mechanisms with various choice operator.

The results of chapters 4 and 5 are in submission process.



Chapter 2

Encoding Simple SA into MDB Brane calculus

In this chapter we provide a translation between two well known families of bio inspired

calculi: the P Systems and Brane Calculi families. The translation is rather specific as it

involves a couple of calculi within the two families and is not therefore universal nor does

equate the two families. Moreover, the translation is one way only as it is shown how to

encode Simple SA into MDB but not vice versa. From a purely computational point of

view we may consider Simple SA as a lower bound for the computational power of MDB.

It is practically showed that for some system it is possible to shift any formal reasoning

on a biological model from one family to the other one.

Membrane systems (also called P systems) and Brane calculi have been recently in-

troduced as formal models inspired by the structure and the functioning of living cells,

but having in mind different goals. The aim of Membrane systems was the formal investi-

gation of the computational nature and power of various features of the cell, while Brane

calculi aims to define a model capable of a faithful and intuitive representation of various

biological processes.

The common background of the two formalisms and the recent growing of interests in

applying P systems in Systems Biology have raised the natural question of bridging this

two research areas. This chapter goes in this direction, as it presents a direct simulation

of a variant of P systems by means of Brane calculi. In particular, we consider a Brane

calculus based on three operations called Mate/Bud/Drip, and we show how to use such

system to simulate Simple Symport/Antiport P systems, a variant of P systems purely
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based on communication of objects. As an example, a simplified sodium–potassium pump

modeled in Simple SA is encoded in Mate/Bud/Drip Brane calculus.

2.1 Introduction

Both P systems [47] and Brane calculi [13] have been introduced as (families of) com-

putational models inspired by the structure and the functioning of the living cell, starting

from the key observation that the various processes taking place in the living cell can be

regarded as computations.

Although they have common bases, they have different goals: the main objective of

P system’s area of research is the formal investigation of the computational nature and

power of various features of membranes, while Brane calculi’s main goal is to create a

model capable of a faithful and intuitive representation of the biological reality.

To better clarify the different goals we quote from [15]:

“While membrane computing (i.e. P systems) is a branch of natural comput-

ing, which tries to abstract computing models, in the Turing sense, from the

structure and the functioning of the cell, making use especially of automata,

languages, and complexity theoretic tools, Brane calculi pay more attention

to the fidelity to the biological reality, have as primary target systems biology,

and use especially the framework of process algebra.”

Living cells are extremely well organized self-contained systems, composed by dis-

crete interacting components. Each component is delimited by a physical membrane and

is often called region or compartment. From a computer science point of view, we can

surely regard the cells as information processing devices. A cell has a complex internal

activity and an ingeniously elaborated interactions with the environment and the neigh-

bouring cells. A proper interaction based on a flow of substances between components

and the environment is necessary for the cell life: a cell not aware of the environment

conditions soon dies.



Chapter 2. Encoding Simple SA into MDB Brane calculus 11

In P systems the cell organization is simulated by a membrane structure formalized

with a Venn diagram of nested membranes, while the chemicals swimming in the solution

delimited by a compartment are represented with a multiset of symbols/objects from a

given alphabet. The multiset notion perfectly simulates the unordered structure of floating

chemicals.

In the basic variant of P systems the objects evolve according to evolution rules, lo-

cally associated to the compartments, that transform multisets of symbols in multisets of

symbols. The interaction between compartments is realized by evolution rules that move

objects between directly nested membranes. Such rules are generally applied non deter-

ministically in a maximally parallel manner: the rules to be used and the objects to evolve

are randomly chosen, and, in each step all objects which can evolve must do it.

While in Brane calculi we have a membrane structure too, membranes are not simple

separators of compartments as in P systems but they are coordinators and active sites of

major activity. In Brane calculi a computation happens on the membrane and not inside

of it. So we no longer make use of multisets of objects but work with processes that re-

side on membranes. The operations of the two basic Brane calculi proposed in [13] are

directly inspired by biologic processes such as endocytosis, exocytosis and mitosis. An-

other difference with P systems is that generally Brane calculi evolve using an interleaving

semantics (sequential single instruction execution).

Only recently P systems have been applied to model biological systems and proce-

sses (in particular at cellular level). The common background of the two formalisms and

the recent shift of interests of P systems toward Systems Biology have raised the natural

question of bridging the two research areas.

Various formal results have already been achieved. In [10] the computational power

of two basic Brane calculi proposed in [13] is investigated. In [15] is inspected a variant

of P systems inspired by the interactions of a basic Brane calculus defined in [13]. A

parallel semantics for Brane calculi, inspired by the maximal parallelism semantics of P

systems, is considered in [9]. Finally in [52] two variants of P systems whose interactions

are inspired by the two basic Brane calculi defined in [13] are studied.

This chapter follows these recent attempts to connect P systems with Brane calculi,
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and it contributes with a straight simulation of a variant of P systems by means of Brane

calculi. In particular, we consider the variant of Brane calculi based on three operations

called Mate/Bud/Drip [13]: such primitives are inspired by membrane fusion (mate) and

fission (mito). The fission process is modelled by both Bud and Drip operations: the

former consists in splitting off exactly one internal membrane while the latter in splitting

off zero internal membrane.

We will show how Mate/Bud/Drip Brane calculus (MBD) can be used to simulate

Simple SA systems [29], a bounded variant of P systems with symport/antiport rules [46]

where computations are purely based on communication of objects. Such systems are

closely related to the biologic trans-membrane communication by coupling chemicals and

do not evolve by transforming objects, as the basic variant of P systems, but by changing

their position with respect to the compartments defined by the membrane structure used.

The rest of the chapter is organized as follows. In section 2.2 we introduce all the for-

mal notions we will need in the rest of the chapter. Section 2.3 contains the description of

the simulation of Simple SA systems in the MDB Brane calculus. In section 2.4 we show

an example of a translation: we encode a simplified sodium–potassium pump modeled in

Simple SA in MDB Brane calculus. In section 2.5 we report some final remarks and we

give some perspectives for future work.

2.2 Preliminaries

The notions of formal language theory we use are basic, and can be found in every mono-

graph in this area (e.g. [58]).

The key function of a biological membrane in a living cell is to define a compartment

and its interaction with the surrounding environment (including other compartments). In

both P systems and Brane calculi we have a membrane structure where the membrane

concept is used as a logic separator between processes and resources. The membrane

structure can be seen as a tree like structure, a Venn diagram or a correctly matching

parentheses string and it should be clear that we can have nested membrane structures.

The most external membrane of a system is called skin membrane and a membrane not
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1
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(a) Venn diagram

1

2 3 4

5 6

(b) Tree like

[1 [2]2 [3]3 [4 [5]5 [6]6 ]4]1

(c) Matching parentheses

Figure 2.1: Three equivalent ways to represent the same membrane structure

containing other membranes it is said to be elementary. The space defined by a membrane

is called region or compartment. A biologic membrane contains various substances and

we use the multiset notion to formalize them. A multiset W over a set X is a mapping

W : X → N and can be represented with a string (e.g. a3bc2 = abacac = baccaa = . . . ).

The multiset data structure let us directly formalize the multiplicities and the unordered

structure of floating chemicals.

2.2.1 P systems

P systems aim to abstract new computing paradigms from the biological reality of living

cells using tools from the field of automata and formal language theory. Generally speak-

ing a P system is a computational model based on a membrane structure1 and processes

locally multisets of symbols in a parallel and distributed manner. Each membrane iden-

tifies a compartment (or region) that contains a set of evolution rules and a multiset of

symbols from a given alphabet. The symbols in each compartment evolve according to

the set of rules contained in it. Typically the rules are used in a non deterministic, maxi-

mally parallel way; at each step of computation rules and objects (symbols) are associated

in a non deterministic way until no further choice can be made and then the rules are si-

multaneously applied to the assigned symbols. A computation is successful if it halts and

a simple way to define the output is to consider the number of objects in a predefined

compartment.

One of the most interesting classes of P systems is the symport/antiport one, first

1Usually a hierarchical structure as shown in figure 2.1, but a net structure exists too.
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introduced in [46]. P systems with symport/antiport rules (briefly S/A P systems) are

closely related to the biological trans-membrane communication that occurs at the cellular

level and relies on coupling chemicals. When two chemicals can cross a membrane only

together in the same direction we speak of symport process; when the two chemicals can

cross a membrane only together but in opposite direction we speak of antiport process.

Given an alphabet of objects V and objects a, b ∈ V we formalize these processes with

rules of the form (ab, in) or (ab, out) for symport and (a, out; b, in) for antiport. We also

consider rules of the form (a, in) or (a, out) and call them uniport rules.

A system with only these rules is purely communicative since no objects are destroyed

or transformed during the computation, they only change the compartment they belong

to. Formally a S/A P system is a construct

Π = (V, µ,W1, . . . ,Wm, E,R1, . . . ,Rm, i0)

where: V is the alphabet of objects; µ is a membrane structure with m membranes in-

jectively labelled by positive integers 1, 2, . . . ,m; W1, . . . ,Wm are the multisets of objects

(symbols) initially contained in the compartments; E ⊆ V is the set of objects present in

arbitrarily many copies in the environment; R1, . . . ,Rm are finite sets of rules associated

with the m membranes of µ; i0 ∈ {1, . . . ,m} is an elementary membrane of µ (the output

membrane). The configuration of a S/A P system is defined by the multisets of objects

present in all the regions of Π. The result of a S/A P system is the number of objects

present in the membrane (compartment) labelled i0 in the halting configuration.

Simple SA

A Simple SA2 (of degree k + 1) is a limited (i.e. non universal) variant of a S/A P system,

and is defined by a construct

Π = (V, µ,W1, . . . ,Wk+1,WE, n1, . . . , nk,R1, . . . ,Rk+1)

where

• the alphabet is V = F ∪ {o} with F finite set of symbols and o < F;
2Obviously “SA” stands for “symport/antiport”.
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• µ is a two level membrane structure: k ≥ 1 input membranes on the same level

embedded in a skin membrane→ [skin[1]1 . . . [k]k]skin ;

• Wi,WE are finite multisets of objects over F respectively associated with the region

i and the environment;

• ni is the (non negative) number of objects o initially contained in the input mem-

brane i (the skin membrane initially does not contain any o);

• Ri is a finite set of symport/antiport rules associated to the region i. They are of the

form

·(a) (u, out) · (b) (v, in) · (c) (u, out; v, in)

with u, v ∈ V+, and for rules of type (b) and (c) it holds o < v: objects o can “move”

only toward the environment region.

In [29] Simple SA are studied as acceptors of k-tuples (n1, . . . , nk) of non negative

integers. A k-tuple is accepted if, when the k input membranes are given on1 , . . . , onk , the

system halts. It is shown that Simple SA systems characterize exactly the semilinear sets

[28].

Compared with basic S/A P systems, Simple SA is formally a less powerful device but,

from a biologic point of view, the limited resources scenario of Simple SA makes it a more

realistic model for Systems Biology. Standard S/A P systems have indeed uncountable

many copies of each symbol in the environment while obviously biologic systems have to

cope with limited resources.

2.2.2 Brane calculi

Brane calculi are a family of process calculi proposed for modelling the various cell dy-

namics together with the behaviour of biological membranes.

The main difference with regard to P systems is that here active entities are tightly

coupled to membranes and this endows membranes with the (correct) biological role of

support of biochemistry; we have that computation happens on membrane and not inside
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of it. Another difference with P systems is that generally Brane calculi evolve using an

interleaving semantic (sequential single instruction execution).

Biologic membranes are formed by a lipid bilayer that actually behaves as a fluid that

let both structural components and embedded substances like proteins to freely move into

the region delimited by the lipid layers. Membranes themselves are immersed into an

aqueous solution where they can freely float. Such a fluid within fluid structure directly

inspires the basic structure of Brane calculi: two commutative monoids with a replication

operator, each representing a kind of fluid. We have

1. a monoid representing the lipid bilayer: (Membranes, |, 0)

where | is the membranes’ composition and 0 the unit (empty process);

2. and a monoid representing the aqueous solution: (S ystems, ◦, �)
where ◦ is the systems’ composition and � the unit (empty system).

Both monoids use the replication operator ! to model the notion of a “multitude” of

components of the same type (parallel composition of an unbounded number of compo-

nents).

A system consists of nested membranes and each membrane represents a combination

of actions (a process) that define its behaviour. Formally the basic syntax is described by

the following table

Systems P,Q F � ¦ P ◦ Q ¦ !P ¦ σ 〈P〉 nested membranes

Membranes σ, τF 0 ¦ σ|τ ¦ !σ ¦ a.σ membrane processes

Actions a, b F . . . see table 2.4

Table 2.1. Basic syntax of Brane calculi

With σ 〈P〉 we denote a generic system that behaves as σ and contains the system

P. With a.σ we denote a guarded process: the process behaves as σ after the execution

of the action a. We use the following abbreviations: a for a.0, 〈P〉 for 0 〈P〉, and σ 〈〉
for σ 〈�〉. Both systems and processes have a structural congruence relation defined over

them (table 2.2).
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P ◦ Q ≡ Q ◦ P σ|τ ≡ τ|σ
P ◦ (Q ◦ R) ≡ (P ◦ Q) ◦ R σ|(τ|ρ) ≡ (σ|τ)|ρ
P ◦ � ≡ P σ|0 ≡ σ

!� ≡ � !0 ≡ 0

!(P ◦ Q) ≡ !P ◦ !Q !(σ|τ) ≡ !σ|!τ
!!P ≡ !P !!σ ≡ !σ

!P ≡ P ◦ !P !σ ≡ σ|!σ

0 〈�〉 ≡ �
Table 2.2. Structural congruence relation for systems and membranes

The generic reactions of table 2.3 are valid for any Brane calculus, but each calculus

have to define its own specific reactions providing the relative reaction rules.

P Q⇒ P ◦ R Q ◦ R

P Q⇒ σ 〈P〉 σ 〈Q〉
P ≡ P′ ∧ P′ Q′ ∧ Q′ ≡ Q⇒ P Q

We use ∗ to denote the transitive and reflexive closure of 3.

Table 2.3. Generic reaction rules

The Mate/Bud/Drip Brane calculus

The Mate/Bud/Drip Brane calculus (briefly MDB) is defined by three actions inspired

by the biological processes of membrane fusion (mate) and fission (mito). The fission

process is specialized into two operations: budding (bud), which consists in the splitting

off one internal membrane, and dripping (drip), which consists in the splitting off zero

internal membranes. The fusion process is represented by the mating (mate) operation.
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Tables 2.4 and 2.5 provide the MDB actions’ syntax and reaction rules.

Actions a,bF maten ¦ mate⊥n ¦ budn ¦ bud⊥(ρ) ¦ drip(ρ)

Table 2.4. MDB actions’ syntax

Mate maten σ|σ0 〈P〉 ◦mate⊥n .τ|τ0 〈Q〉 σ|σ0|τ|τ0 〈P ◦ Q〉
Bud bud⊥n (ρ).τ|τ0 〈budn .σ|σ0 〈P〉 ◦ Q〉 ρ 〈σ|σ0 〈P〉〉 ◦ τ|τ0 〈Q〉
Drip drip(ρ).σ|σ0 〈P〉 ρ 〈〉 ◦ σ|σ0 〈P〉

Table 2.5. Reaction rules for MDB

For actions that involve two membranes we need a co-action to identify the second

membrane. Such co-actions are obtained appending the symbol ⊥ to the action name.

Moreover we can index our actions in order to precisely couple an action with the correct

co-action.

Actions maten and mate⊥n will synchronize to achieve membranes fusion and the

membranes will result irreversible mixed. Actions budn and bud⊥n will synchronize to

split one nested membrane. Action drip let to split off zero internal membranes. Actions

drip and bud⊥ come with a parameter ρ which represents the membrane process of the

new membrane created by the reaction.

2.2.3 MDB syntax simplifications

Let k be a positive integer and ω a membrane process (combinations of actions, see table

2.1), we use the following syntax simplifications

3Roughly speaking this means that the reaction is not an elementary transition but is composed by a

sequence of elementary reactions.
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k(ω) ,
k︷      ︸︸      ︷

ω.ω. . . . .ω and (ω)k ,

k︷      ︸︸      ︷
ω|ω| . . . |ω

Moreover, where clear enough, we often omit the parentheses and use just kω and ωk.

With indexed membrane process we use
∏

to denote the parallel composition

k∏
i=1

ωi , ω1 | . . . | ωk

and the symbol
∑

for
k∑

i=1

ωi , ω1.ω2. . . . .ωk

Similarly for parallel composition of k identical systems we use

(P)k ,

k︷   ︸︸   ︷
P|P|P|P

where P is a system.

2.2.4 Synchronization actions

In order to deal with common synchronization situations for adjacent and directly nested

membranes in the MDB calculus, we introduce the composite synchronization actions

syn and syn⊥.

Let’s assume we want to model a dependency of process ωB1 from process ωA1 . More

generally let ωB1 and ωA1 be two processes that need to synchronize, with ωB1 the process

waiting for a signal from ωA1 . Clearly ωA1 and ωB1 must be in parallel.

Although syn and syn⊥ are designed as an action - coaction couple, they, for their

composite nature, do not happen simultaneously. A syn action is free to execute when-

ever able to, while the corresponding syn⊥ action can execute only if the former already

executed, and between the two, arbitrarily many actions can execute. We define the fol-

lowing systems

A , ωA1 . synAB | ωA2 〈. . .〉
B , syn⊥AB .ωB1 | ωB2 〈. . .〉

(2.1)
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For greater flexibility, we define the synchronization actions syn and syn⊥ as spe-

cial contextual operations. That means they have different definitions determined by the

context (i.e. the membranes involved) they are used in. While modelling, we can sim-

ply regard syn as the “send signal” action and syn⊥ as the “receive signal” action, but it

should be clear that we are effectively dealing with three different couples of definitions.

We indeed have the following scenarios:

1. A and B adjacent:

mate drip
AB


S , ωA1 . synAB 〈. . .〉 ◦ syn⊥AB .ωB1 〈. . .〉

synAB , drip(mateAB)

syn⊥AB , mate⊥AB

2. B nested in A:

mate

mate

CC∗
A

B

bud


S , ωA1 . synAB

〈
C ◦
←−−−−− B−−−−−→
syn⊥AB .ωB1 〈. . .〉

〉
synAB , bud⊥AB(mateAB) | mate⊥AB

C , budAB .mateAB 〈〉
syn⊥AB , mate⊥AB

3. A nested in B:

drip
A

Bbud 
S , syn⊥AB .ωB1

〈←−−−−− A−−−−−→
ωA1 . synAB 〈. . .〉

〉
synAB , drip(budAB)

syn⊥AB , bud⊥AB(0)

The further scenario of processes ωA1 and ωB1 on the same membrane in parallel com-

position is analogous to the scenario of adjacent membranes: the couple syn syn⊥ is

defined the same way, and so a signal syn can be received indistinctly by an adjacent

membrane or by a process on the same membrane. We will use this property later in our

encoding.
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The scenario (2) requires an ad hoc support system C: if the syn action is thought to

repeat system C must be present with the proper multiplicity (e.g. ! syn⇒ !C).

We leave it as an exercise to verify that in all the scenarios considered above the

system S can execute ωB1 only after executing ωA1 . That realizes our dependency:

. . . ωA1 . . . ωB1 . . .

2.3 The encoding

We now show how to construct a non deterministic simulation of Simple SA with MDB

calculus. The encoding we propose is non deterministic in the following sense: the simu-

lation behaves non deterministically only when the original (simulated) Simple SA system

shows non deterministic behaviour too.

Let Π be the Simple SA system we want to simulate, we call H the set of all available

objects4 in Π. We have that

|H |= h =

k+1∑
j=1

|W j| + |WE | +
k∑

j=1

|on j | (2.2)

and moreover

1. H is finite;

2. and its cardinality h is fixed for the entire computation.

The first property is the main characteristic of Simple SA systems and it derives from the

finiteness of the multiset WE initially given to the environment E (in a basic S/A P system

the environment has an unbounded quantity of specified objects). The second property

is a direct consequence of the intrinsic conservation law of S/A P systems: no object is

created or destroyed during the computation. From now on with h we always refer to the

fixed number of objects of the Simple SA we are considering.

It is now easy to formulate a key observation: in a single step of computation a Sim-

ple SA can execute at most h reactions. Indeed, in order to maximize the number of rules
4Including the environment objects.
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used having exactly h objects, we can (if all conditions are met) choose for execution h

uniport rules (they “use” only a single object). It is obvious that after choosing h uni-

port rules we use all our objects and no more choices are possible. We recall that each

region/membrane5 is identified by a unique index i, and with a little abuse of notation we

can identify the environment with the index k + 2. We also label the rules by a given set

of integers in a one to one manner.

The most relevant parts of our encoding are:

• the (exact) simulation of a non deterministic maximally parallel step of execution;

• the processes that determine if a certain rule i is applicable or not;

• the way we encode the objects and the membrane structure of Π.

2.3.1 Encoding objects and structure

Given a multiset Wl and an object a ∈ Wl we encode a with the following system

matea,l 〈〉

This system models an instance of object a contained by the membrane l. Hence, if

Wl = α1, . . . , αs, we model Wl with the following composition of systems

Wl = mateα1,l 〈〉 ◦ . . . ◦mateαs,l 〈〉

In a similar way we model each o symbol contained by a membrane l with a system

mateo,l 〈〉

Given a configuration of Π we can easily encode every object in the MDB calculus

using the above suggestions obtaining h systems (one for each object of Π) of the form

mateβ,i 〈〉 with β ∈ V and i ∈ 1, . . . , k + 2. It should be clear enough that a composition

of all such systems embedded in a single membrane would preserve all the informations

5Clearly the correspondence region - membrane is one to one.
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of the given Π configuration (the symbols along with their position in the membrane

structure).

Clearly two objects of the same type generate two different systems if they belong to

different regions. Since we have k + 2 regions (we include the environment region) each

object a ∈ V can map in k + 2 different systems according to its actual region. With such

encoding we effectively collapse the two level structure of Π by expanding the alphabet

used by exactly a k + 2 factor. In MDB we no longer work with objects from V but with

objects from a new alphabet V̇ where

V̇ = {1, 2, . . . , k + 2} × V

It should be clear that each symbol of V̇ has a direct interpretation as an MDB system; a

bijection that

∀α ∈ V̇ α 7−→ mateα 〈〉 (2.3)

It is worth noting that we can similarly collapse a structure of any complexity with

the only constraint of using an accordingly expanded alphabet. Collapsing a structure of

degree m would expand the original alphabet V to an alphabet of cardinality |V |(m + 1).

We use Ḣ to denote the set of all the encoded objects of Π. For bijection (2.3) we can

interchangeably consider Ḣ as composed by symbols from V̇ or by systems of the form

mateα 〈〉 with α ∈ V̇ .

2.3.2 Simulating rules

Having encoded the data structure we now show how to simulate the symport/antiport

rules of Π. Let i be a generic rule associated to membrane l, it can be executed only if all

the necessary objects are simultaneously available.

In Simple SA, the verification of the availability of objects is directly demanded to the

semantics used, while in Brane calculi we must simulate the verifying process. The only

way we can assure the presence of an object α in region l is to execute the action mate⊥α,l
effectively “consuming” the system mateα,l 〈〉 that encodes the object.
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Since rule i generally requires a string u ∈ V∗ the verifying process for i is a sequence

of mate⊥ actions. For example, let u = α1, . . . , αn and i = (u, out), we say that i is

executable if we can execute the following sequence:

mate⊥α1,l .mate⊥α2,l . . . . .mate⊥αn,l
(2.4)

If the sequence (2.4) completes successfully we can proceed with execution of rule

i, but if some object is missing the sequence halts in a deadlock condition. To prevent a

global deadlock we compose such process with its counterpart: a process that success-

fully completes if and only if there are not all the necessary objects to execute i. These

two process are complementary: if one successfully completes the other will certainly

deadlock and vice versa. We call run the process that verifies the presence of the nec-

essary objects and then executes the rule i, while we call skip the process that verifies

the unavailability of the necessary objects. Composing in parallel the two processes we

can deterministically establish if rule i can be executed or not. Before detailing the two

processes we must introduce the concept of complementary symbols/objects.

Complementary objects

We have already suggested a way to evaluate the executability of a rule (i.e. the equation

(2.4)) but not how to verify the contrary (the skip process). Let

λ
mi,1
i,1 λ

mi,2
i,2 . . . λ

mi,ti
i,ti
, λi, j ∈ V̇ ,mi,k ∈ N+

be the multiset of objects required by rule i. If we denote with |Ḣ|λi, j the number of

occurrences of system mateλi, j 〈〉 in set Ḣ the followings holds

|Ḣ|λi,1 ≥ mi,1 ∧ |Ḣ|λi,2 ≥ mi,2 ∧ · · · ∧ |Ḣ|λi,ti
≥ mi,ti ⇔ rule i is applicable (2.5)

|Ḣ|λi,1 < mi,1 ∨ |Ḣ|λi,2 < mi,2 ∨ · · · ∨ |Ḣ|λi,ti
< mi,ti ⇔ rule i is not applicable (2.6)

We are interested to, and will use, only the (⇒) part of the above equations. The interpre-

tation of (2.5) is quite straightforward: if the multiplicities of objects required by rule i

are less or equal to the corresponding multiplicities of objects present in Ḣ then rule i can
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be executed. We already know we can verify the antecedent of (2.5) with the following

sequence

mi,1

(
mate⊥λi,1

)
.mi,2

(
mate⊥λi,2

)
. . . . .mi,ti

(
mate⊥λi,ti

)
(2.7)

In order to verify the antecedent of (2.6) we define the alphabet of the complementary

objects of V̇

C
(
V̇
)

= {α : α ∈ V̇}
If we add to Ḣ systems from

{
mateα 〈〉 : α ∈ C

(
V̇
)}

in such a way that

|Ḣ|α + |Ḣ|α = h ∀α ∈ V̇ (2.8)

we have that |Ḣ|α corresponds exactly to the number of systems in Ḣ different from

mateα 〈〉 (not counting the complementary systems!). Hence we can write the follow-

ing equivalence

|Ḣ|λi,1 < mi,1 ∨ |Ḣ|λi,2 < mi,2 ∨ · · · ∨ |H|λi,ti
< mi,ti =

|Ḣ|λi,1
> h − mi,1 ∨ |Ḣ|λi,2

> h − mi,2 ∨ · · · ∨ |Ḣ|λi,ti
> h − mi,ti

(2.9)

Using (2.9) we can now verify the antecedent of (2.6) with the following composition of

processes

h1

(
mate⊥

λi,1

) ∣∣∣∣ h2

(
mate⊥

λi,2

) ∣∣∣∣ . . . ∣∣∣∣ hti

(
mate⊥

λi,ti

)
(2.10)

where h j = (h−mi, j +1). More precisely the antecedent is verified if any of the ti processes

in the above composition successfully complete. For the sake of clarity, we observe that

in (2.10) we use parallel composition while in (2.7) we use a straight sequence because

of the different “normal forms6” of the two logic expressions (2.6) and (2.5): the former

is true if any ..., while the latter if all .... For that reason we will later use the
∑

operator

for the run process definition and the
∏

operator for the skip one.

Effect of an antiport rule

As an example we show the effect of applying to our encoded objects an antiport rule. Let

i be now an antiport rule (u, out; v, in) associated to membrane s. Given

u , α1 . . . αl and v , β1 . . . βe with α j ∈ V, β j ∈ F
6Yes, we are abusing the “conjunctive and disjunctive normal forms” definitions of boolean expressions!
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if set Ḣ contains systems
←−−−−−−−−−−− u−−−−−−−−−−−→
mateα1,s 〈�〉 , . . . ,mateαl,s 〈�〉 encoding string u, and systems

←−−−−−−−−−−−−− v−−−−−−−−−−−−−→
mateβ1,k+1 〈�〉 , . . . ,mateβe,k+1 〈�〉 encoding string v than, for (2.5), we can execute rule i

and its execution would have the following effect on the system

mateα j,s 〈�〉
rule−i

mateα j,k+1 〈�〉 , ∀ j : 1 ≤ j ≤ l

mateβ j,k+1 〈�〉
rule−i

mateβ j,s 〈�〉 , ∀ j : 1 ≤ j ≤ e
(2.11)

where k + 1 is the index identifying the skin region. Formally, in our simulation, a rule

i transforms a string γi on V̇ into another string ωi on V̇ (i.e. γi
i7−→ ωi). We define, for

later use, γi and ωi as

γi = γi,1γi,2 . . . γi,xi , ωi = ωi,1ωi,2 . . . ωi,xi with xi = |uv| = l + e

Having |γi |= |ωi| means our encoding respects the conservation law observed by Simple

SA.

2.3.3 Simulating rules (encoding)

We finally show and explain the concrete encoding of the processes run and skip. Let’s

suppose we are evaluating the executability of our antiport rule i: we have process runi

and process skipi in parallel execution on distinct membranes.

Although in theory run and skip are mutually exclusive (if one successfully complete

the other will not), we still have a race condition (see below) and we resolve it by model-

ing a (unique) system mateToken 〈〉; the first process that successfully completes consumes

the token performing the action mate⊥Token. We remark that for every couple of processes

run and skip there is a single token, and the token itself is responsible for the entire syn-

chronization between the two processes.

Since both processes effectively modify the configuration of the global system by

consuming objects during their verification, it may happen that, for example, runi blocks

(i.e. fails) after consuming some objects. In such case we must restore, with a proper undo

process, the consumed objects but do not know exactly which objects were consumed. We

solve this by first introducing in Ḣ all the objects required by runi and then waiting for
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its completion. In this way, we induce a fake termination of runi and, as a net result, we

restore the configuration prior to the execution of runi itself. The undo process for skipi

is solved in the same way. It is the fake termination that cause the race condition.

Clearly there are two cases:

1. i is executable⇒ process runi complete successfully;

2. i is not executable⇒ process skipi complete successfully.

We separately describe the two situations.

The “run” process

runi ,
( xi∑

p=1

(
mate⊥γi,p

)
. synA .mate⊥Token . syn⊥A .undo-skipi. synTrashS kip .

. syn⊥TrashDone .inc-γi. drip(rulei). drip
(
synTrashRun . syn⊥TrashDone . synNext

))
| syn⊥TrashRun . budJunk

rulei , syn⊥Execute .

xi∑
j=1

(
drip(mateωi, j)

)
.dec-ωi. synExecuted

(2.12)

Here we assume having all the necessary objects to execute i, and therefore to suc-

cessfully complete runi. Briefly the runi process uses up, by performing the sequence

of actions
∑xi

p=1

(
mate⊥γi,p

)
, the objects it requires, then it consumes the token with the

mate⊥Token action and finally it undoes any effect on the system caused by the skipi process

(i.e. any action done by skipi) by executing the process undo-skipi (detailed later). The

action synTrashS kip orders the “expulsion” (i.e. the budding to the environment region)

of the skipi membrane from the system (if left it can adversely affect the simulation):

syn⊥TrashDone action couples with skin’s synTrashDone action, and they’re executed only after

skipi membrane has been trashed. Actually synTrashDone behaves as an acknowledgement

signal. The process inc-γi releases a system mateγi, j 〈〉 for each object γi, j previously con-

sumed by runi. We remind that we work with a fixed number of objects h, hence for (2.8)

by creating a new system mateγi, j 〈〉 in Ḣ we are effectively informing the simulation that

the number of available objects γi, j is decremented by one.
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Up to now we have only reserved the required objects and modified accordingly the

complementary ones. The process rulei contains the sequence that actually executes the

rule by creating the objects composing the stringωi but, after being released, rulei remains

idle until it receives the signal synExecute (detailed later). The dec-ωi process is analogous

but contrary to process inc-γi seen before: it consumes a system mateωi, j 〈〉 for each ωi, j ∈
ωi created with

∑xi
j=1

(
drip(mateωi, j)

)
.

As for skipi, if we leave the remainder of the runi process it can adversely affect the

simulation, so we release the process synTrashRun . syn⊥TrashDone . synNext that first causes the

expulsion (budding) to the environment region of runi membrane itself and then signals

the correct termination with the action synNext.

The “skip” process

skipi ,
ti∏

j=1

(
h j mate⊥

λi, j
. synB .mate⊥Token .undo-skipi.undo-runi. synTrashRun .

. syn⊥TrashDone . drip
(
synTrashS kip . syn⊥TrashDone . synFail

))
| ti syn⊥B . synUndoDone

| syn⊥TrashS kip . budJunk
(2.13)

In brief, skipi verifies that process runi is not going to complete successfully, then restores

the complementary objects it used for verification performing process undo-skipi and

undoes the effect of the runi process too executing the process undo-runi. Finally it forces

the expulsion of both runi and skipi membranes and signals to the controller (see (2.15))

that i is not applicable with the action synFail.

The skipi process establishes the unexecutability of rule i (i.e. the failure of runi) if

any of the ti parallel processes it is composed of reaches the execution of the action synB.

Such a process consumes the token and follows as described above. Looking at (2.13) you

should understand that each of the ti parallel processes verifies the unavailability of the

corresponding λi, j object. That means that if the process indexed by j = 3 executes action

synB the number of objects λi,3 in the system is not sufficient for the execution of rule3.

After the execution of the sequence undo-skipi.undo-runi the set Ḣ returns to the state

prior to the parallel execution of runi and skipi. If a rule can not execute it clearly should

not use any object.
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The signal synUndoDone is sent only if all the ti parallel processes have executed their

synB actions; the undo-skipi process enforces that by releasing exactly the systems mateλi, j
〈〉

needed to partially complete all the ti parallel processes skipi is composed of. We point

out that only one of the ti processes will perform actions that follow synB since there is

only one system mateToken 〈〉 available. Moreover this will occur only if it is impossible

to complete process run.

undo-runi ,
( xi∑

j=1

drip
(
mateγi, j

))
. syn⊥A

undo-skipi ,
( ti∑

j=1

h j drip
(
mateλi, j

))
. syn⊥UndoDone

inc-γi ,
xi∑

j=1

drip
(
mateγi, j

)
dec-ωi ,

xi∑
j=1

mate⊥ωi, j

token , mateToken

(2.14)

2.3.4 Simulating the non deterministic maximally parallel step

To faithfully simulate the Simple SA parallel semantics we must first non determinis-

tically determine a maximal multiset of applicable rules and then simultaneously apply

them. The number of times a particular rule is executed in a specific step is not bounded,

but we recall that we can execute no more than h rules at any step of computation. Given a

configuration there may be different maximal multisets of rules, the Simple SA semantics

non deterministically selects one.

Since MDB uses a sequential semantics, we must be able to non deterministically

choose up to h rules one by one. We realize this by means of systems Lv: the role of a

generic system Lv j, with 1 ≤ j ≤ h, is to select (if possible) the j−th rule and add it to

the maximal set in construction. If system Lv j is active, then it means we have already

chosen for execution j − 1 rules. Only one Lv system is active at a time.
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Let r be the number of rules in Π. The simulation of a step of computation initiates

by sending the signal syn1 and activating the various processes of system Lv1.

When a generic Lv j system activates, its controller process sends a synS tart signal

that non deterministically activates one of the processes that compose the process rules.

Process rules is composed by exactly r parallel processes, one for each rule of Π. Let i

be the index of the activated process: it releases systems runi 〈〉, skipi 〈〉 and token 〈〉. The

parallel execution of these systems’ processes releases a system rulei 〈〉 (see (2.12)) and

sends the signal synNext if rule i is executable, otherwise it sends the signal synFail. If i

results executable, then we have the following cases:

• 1 ≤ j < h: the next j process is activated. It releases a membrane that first causes

the expulsion of the remainder of system Lv j and then activates Lv j+1 by sending

the signal syn j+1;

• j = h: the reseth+1 process is activated. It first sends h synExecute signal causing

the execution of the h rule processes that represent the maximal set of rules to be

executed, then it waits for their completion and finally it releases a membrane that,

as before, forces the budding of Lv j and then activates Lv1 by sending the signal

syn1. The signal syn1 concretely starts a new step of computation.

If instead i results not executable, we have two conditions:

A i is the r-th rule we find not executable within Lv j;

B i is not the r-th rule we find not executable within Lv j.

and the following cases

1. j = 1

A the simulation halts. We have zero rules in the maximal set and no more rule

to choose;

B the controller sends another signal synS tart and a new rule is evaluated;

2. 1 < j ≤ h
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A the maximal set of rules we are constructing is complete: j − 1 synExecute sig-

nal are sent and the rule processes are executed. After their execution, Lv j is

expelled and Lv1 is activated starting a new step of computation;

B the controller sends another signal synS tart and a new rule is evaluated.

Lv1 , syn⊥1 .
(
rules | controller | next1 | syn⊥TrashLv . budJunk

)
〈�〉

Lv j , syn⊥j .
(
rules | controller. synReset | next j | reset j | syn⊥TrashLv .

. budJunk

)
〈�〉

Lvh , syn⊥h .
(
rules | controller. synReset | syn⊥Next .reseth+1 | reseth

| syn⊥TrashLv . budJunk

)
〈�〉

controller , r
(
synS tart . syn⊥Fail

)
skin , ! bud⊥Junk(0). synTrashDone

rules ,
r∏

i=1

(
syn⊥S tart . drip(skipi). drip(token). drip(runi)

)
next j , syn⊥Next . drip

(
synTrashLv . syn⊥TrashDone . syn j+1

)
reset j , syn⊥Reset .( j − 1) synExecute .( j − 1) syn⊥Executed . drip(synTrashLv .

. syn⊥TrashDone . syn1)

(2.15)

The final MDB system, in its starting configuration, that encodes the Simple SA Π is

defined as follows:

Encoding , skin
〈
!Lv1 ◦ · · · ◦ !Lvh ◦ syn1 〈〉 ◦ Ẇ1 ◦ · · · ◦ Ẇk+1 ◦ ẆE ◦ O1 ◦ · · · ◦ Ok

〉
where O j stands for

(
mateo, j 〈〉

)n j
, and, given multiset W j = α1, . . . , αm, Ẇ j stands for∏m

i

(
mateαi, j 〈〉

)
. The system syn1 〈〉 is the one that starts the computation by activating

one of the uncountable many Lv1 systems.

2.4 Example: The Sodium Potassium Pump

In order to explain how the translation work, we consider the modeling of the so-called

sodium–potassium pump, a process which allows the exchange of sodium and potassium
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ions through the cell membrane. Three sodium ions are sent, through a membrane chan-

nel, outside the cell, by using one molecule of ATP. The channel is phosporilated and it

changes its conformation to be open to the outside. When two potassium ions enter the

channel, they are brought inside the cell, the channel is deposhorilated, and the process is

ready for a new iteration. Such a process can be modeled by a Simple SA system in the

following way (we stress the fact that many details are ignored here):

Π = (V, µ,W1,W2,WE,R1,R2)

where:

• V = {Na,K, AT P,C}

• µ = [2[1]1]2

• W2 = {B,Nai|i ≥ 1}

• W1 = {AT Ph|h ≥ 1}

• WE = {C,Kl|l ≥ 1}

• R2 = {(Na3, out; C, in)} ∪ {(C, AT P, out; K2, in)}

• R1 = {(B, in)} ∪ {(AT P, B, out)}

The system works in the following way.

We start with a certain number i of sodium ions and a single symbol B in region 2,

with h molecules of energy AT P in region 1, with l copies of potassium ions in the envi-

ronment, and a unique symbol C in the environment, which is used to control the whole

process (one can think it encodes the state of the channel, defining in which direction it is

closed).

Initially, three ions Na from region 2 are sent to the environment, while the symbol

C is brought in region 2, using the rule (Na3, out; C, in). The channel is now open in the

direction of the environment, but it cannot bring the potassium ions inside the cell until

an energy unit is available. The symbol B in region 2 is thus sent to region 1 by the
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rule (B, in); here the rule (AT P, B, out) can be applied, and an energy molecule is made

available in region 2.

Using the AT P molecule in region 2, we can now apply the rule (C, AT P, out; K2, in),

which brings two ions K inside the cell. The energy unit AT P reaches the environment,

as well as the symbol C. This last one can thus be used again to start a new cycle of the

process.

We want to stress that the amount of energy in the cell is encoded in the number of

symbols AT P in region 1. Each time the sodium–potassium pump is activated, one unit

of such energy is consumed (a symbol AT P reaches the environment). When such energy

units are over, the process cannot evolve anymore. Of course, the same is true if less than

three Na ions within the cell are available to be sent in the environment, or less than two

K ions are available in the environment to be brought within the cell.

2.4.1 Encoding the Simple SA Sodium Potassium pump

For lack of space we do not completely detail the encoding but we present significant

parts of it and describe the runtime scenario of the simulation. We remember that Simple

SA works with finite resources so we fix them in order to deal with the simplest case:

i = 3, h = 1, l = 2 . This means we have |H |= h = 8 (i + h + l plus a single C and a

single B). With this conditions the model should be able to complete a single cycle of the

sodium–potassium pump.

For the parts shown we straightforwardly apply the encoding proposed.

First we need to define our new alphabet V̇ = {N,K, A,C, B} × {1, 2, 3} where index

3 corresponds to the environment region. We mapped Na → N and AT P → A for less

typing. Rules also are indexed in a one to one manner:

• (B, in) 7→ 1

• (AT P, B, out) 7→ 2

• (Na3, out; C, in) 7→ 3

• (C, AT P, out; K2, in) 7→ 4
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We suppose set Ḣ already contains the correct amount of complementary objects (see

2.3.2) for each symbol in V̇ .

Coming to the concrete encoding we detail process run for rule 4:

run4 ,
←− “testing” (consuming) ob jects availability−→
mate⊥C,2 .mate⊥A,2 .mate⊥K,3 .mate⊥K,3.synA .mate⊥Token . syn⊥A .undo-skip4.synTrashS kip .

. syn⊥TrashDone.inc-γi. drip(rule4).drip(synTrashRun . syn⊥TrashDone . synNext) | syn⊥TrashRun . budJunk

rule4 , syn⊥Execute

←−−−−−−−−−−−−−−−−− “moving” (creating) ob jects−−−−−−−−−−−−−−−−−→
. drip(mateC,3). drip(mateA,3). drip(mateK,2). drip(mateK,2).

.dec-ωi.synExecuted
(2.16)

Even if our encoding actually “consumes” and “creates” objects, we faithfully sim-

ulate the purely communication based computation of Simple SA: the created objects

corresponds to the consumed one with a new position in the membrane structure.

Processes inc-γi and dec-ωi take care of the complementary objects in the simulation

and are fully described in section 2.3.3. Here we just remind that for (2.8) every time

we consume an object a we must create an instance of the corresponding complementary

object a, and vice versa, for every created object b we must consume an instance of b.

We define τ as follow

τ , synB .mate⊥Token .undo-skip4.undo-run4. synTrashRun . syn⊥TrashDone .

. drip
(
synTrashS kip . syn⊥TrashDone . synFail

)
and present the encoding of skip4

skip4 ,
←−−−−−−−−−− testing unavailability (in parallel!)−−−−−−−−−−→
8 mate⊥

mateA,2
.τ | 8 mate⊥

mateC,2
.τ | 7 mate⊥

mateK,3
.τ | 3 syn⊥B . synUndoDone

| syn⊥TrashS kip . budJunk

(2.17)

Since rule4 requires 3 distinct objects we have ti = 3 in process skip4 and need to test

only these resources. Having a total (fixed) number of eight symbols7 in our system if, for

example, we successfully complete sequence 8 mate⊥
mateA,2

, for the complementary objects

logic this would mean that there are at least 8 symbols that differ from symbol mateA,2

and so, that there is no symbol mateA,2 available. The encoding of process run and skip

7The complementary symbols are not counted since they are just meta–symbols.
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for the most complex rule in our simulation should let you easily guess the encoding of

the remaining rules.

So let’s suppose our simulation starts. Since we are simulating the parallel seman-

tics of Simple SA we must determine a maximal set of rules and simulate their parallel

execution. As stated in 2.3.4 we realize this by means of systems Lvi. System syn1 〈〉,
which is provided in the initial configuration, activates a system Lv1. The system Lv1 must

determine the first executable rule and add it to the maximal set in construction. So far

we have that the only active process is controller on the activated Lv1 system. The total

number of rules in our model is four so

controller , 4
(
synS tart . syn⊥Fail

)
To us it is immediate that the only fireable rules are 3 and 1, but our model can only

randomly choose a rule and then test if it is executable or not. In the worst case process

controller will first trigger the tests for rules 2 and 4 before choosing either rule 3 or rule

1 as executable.

rules , syn⊥S tart . drip(skip1). drip(token). drip(run1) | syn⊥S tart . drip(skip2). drip(token). drip(run2) |
| syn⊥S tart . drip(skip3). drip(token). drip(run3) | syn⊥S tart . drip(skip4). drip(token). drip(run4)

(2.18)

The controller process sends a synS tart signal and waits for a signal synFail. All the four

processes in (2.18) are competing for the signal synS tart sent by the controller but only

one can receive it. Let’ suppose the signal is received by the process that tests rule number

1.

The testing of rule 1 starts by releasing the systems skip1 〈〉, run1 〈〉 and token 〈〉. Since

we have an object B in region 2, rule 1 is executable: process run1 releases the system

rule1 〈〉. Please note that process rule1 will execute only after receiving a signal synExecute.

The remainder of system run1 〈〉 is expelled out to the environment and the signal synNext

is produced.

So far system Lv1 has accomplished its goal by adding rule 1 to the maximal set we

are constructing. The signal synNext is received by the process next1 on system Lv1, the
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remainder of system Lv1 is expelled to the environment and the signal syn2 is produced.

This activates a system Lv2 which goal is to find another executable rule. We want to stress

out that we have not yet executed process rule1, it is still awaiting for a signal synExecute,

but we have indeed locked resources for its execution. Clearly the locked resources will

not be available to system Lv2.

System Lv2 undergoes, more or less, the same sequence we just described for system

Lv1. Briefly, a new system rule3 〈〉 is released, the remainder of system Lv2 is discarded

to the environment and a signal syn3 is produced.

It should be easy too see no more rules are executable. System Lv3 will indeed test all

the four rules of our simulation but no runi process is going to succeed. Every test will

indeed terminate by sending a synFail signal. Since four synFail signals are produced the

controller process will complete its sequence and so the signal synReset will be produced

(see (2.15)). The signal produced triggers the reset3 process on system Lv3.

So far our simulation have completed the maximal set of rules (with rules 1 and 3),

and now we must execute the chosen rules and start a new step of computation.

It is the reset3 process that triggers the execution of processes rule1 and rule3 by

producing two synExecute signals. After the execution, processes rule1 and rule3 reply

with one synExecuted signal each. The reset3 process receives the two signals and forces

the expulsion to the environment of the remainder of system Lv3. Finally, it produces a

new syn1 signal. As you can easily see the produced signal triggers a new Lv1 system and

a new step of computation starts.

At this point we have successfully simulated the parallel execution of rules 1 and 3 by

simulating the transport of a B symbol from region 2 to region 1, the transport of three

N symbols from region 2 to the environment and the transport of a single C symbol from

the environment to region 2. To simulate this we deleted the symbols

mateB,2, 3 mateN,2,mateC,3

and produced the following

mateB,1, 3 mateN,3,mateC,2
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We chose some “lucky” branch in our simulation in order to avoid the description of a

long and tedious skip process, but you should note that, given the starting configuration,

in whichever order we test our rules we obtain a maximal set containing exactly rules 3

an 1 since it is the unique maximal set possible.

The simulation undergoes two more computation step executing rule 2 in the first step

and rule 4 in parallel with rule 1 in the second one. After completing this last step the

simulation will start a new step searching for a new executable rule by means of a system

Lv1. Since we can not execute any rules four synFail signals are produced, the controller

process on Lv1 completes and, with no active process, the entire simulation stops (see

definition of Lv1 in 2.15).

A single cycle of the sodium–potassium pump has been simulated.

2.5 Conclusion and final remarks

This chapter is a contribution to the recently started investigations aiming to bridge two

research areas which are both inspired by the functioning of the living cell: Membrane

computing and Brane calculi.

We have presented a simulation of a variant of Membrane systems by means of Brane

calculi based on the three operations Mate/Bud/Drip. As the main idea behind the chapter

was to investigate the use of these two frameworks in Systems Biology area, we chose

to start from simple formalisms: we chose MBD Brane calculus, which is non-Turing

equivalent, to simulate a variant of P systems called Simple Symport/Antiport P systems

(Simple SA); the computations of this last type of systems is, in fact, purely based on

communications of objects and it is obtained by coupling chemicals and by changing their

position with respect to the compartments defined by the membrane structure used, and

not by creating or destroying some of them. Their behaviour is thus closely related to the

biological trans-membrane communication, and they can be effectively used in describing

such processes. Moreover, compared with basic Symport/Antiport P systems, Simple SA

is a less powerful computational device, but its limited resources scenario makes it a more

realistic model for Systems Biology.
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We recall here that, as pointed out in the previous section, the encoding we have pro-

posed is non deterministic: if the Simple SA system to be simulated is non deterministic,

then also the MDB encoding is non deterministic. It remains an open problem to show

if it is possible or not to simulate Simple SA systems using deterministic MBD Brane

calculus.

Many other related research topics remains to be investigated: the simulation of other

classes of P systems by means of MBD Brane calculus, the use of Brane calculus using

the Pino/Exo/Phago operations, and the use of different types of parallel semantics within

the framework of Brane calculi are the directions we plan to explore in the near future.



Chapter 3

κ and nanoκ: the local-implementation problem

In this chapter we address the local-implementation problem, already introduced in Chap-

ter 1, between κ calculus and nanoκ calculus. More precisely we study the implementa-

tion of κ into nanoκ. As introduced in Chapter 1 the former is a model for molecular

biology that rewrites graphs of molecules in one step; the latter is a calculus similar to

κ that only admits binary interactions. We give a solution of the local-implementation

of κ in nanoκ that is divergent and we show the nonexistence of deterministic solutions

retaining “reasonable” properties.

3.1 Introduction

As already detailed the κ calculus has been introduced for modeling molecular biology

in a formal way. It is a graph rewriting system where nodes represent molecules and

edges represent bonds. Nodes retain a finite information, typically about the shape of

the molecule or about connected molecules. The semantics allows monotone rewritings

of finite graphs whose nodes are in specific states into finite graphs in such a way that

changes to a solution are always localized to the rewriting part. Monotonicity constraints

rewritings to either create or destruct molecules and bonds.

The κ calculus, being as much simple and close to biology as possible, admits rewrit-

ing rules where several molecules may interact at a time. The question that was raised

already in [22] is whether κ calculus may be implemented in a calculus with binary reac-
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tants only or not. This problem, called local-implementation, had a positive answer in a

variant of κ calculus – the mκ calculus – with binary rewriting rules and multiedges. The

idea was to use these multiedges as logs of the reactions. The check that reactants are

connected, as prescribed in the left-hand side of the reaction, reduced to verify that the

connected molecules all share the same log.

Some years later, a new formalism – the nanoκ calculus – similar to κ and mκ, was

introduced for modelling nano-technologies [17]. This calculus has binary interactions

(as mκ) but no multiedge is admitted (as in κ). Some expressive power is recovered by

admitting a new binary rule – the exchange – that allows an end of a bond to be passed

from one molecule to another. This rule, which is illustrated in the following picture
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has been motivated by process calculi, where it is customary to receive a channel name

and communicating on such a channel in the continuation. However, it was not clear

whether nanoκ calculus was expressive enough for implementing the κ calculus.

In this chapter we demonstrate that the local-implementation of κ into nanoκ is possi-

ble and we define the protocol. The solution is similar to the one from κ to mκ, except that

the check verifying the proper connection of reactants is performed by percolating a bond

among them. To illustrate the point, consider the structure (a) below, and assume that A

wants to verify that the B and C to which it is connected are connected between them.

B C

A

B C

A

B C

A

B C
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(a) (b) (c) (d)

B C

A

B C

A

(a) (b)

Molecules A and B create a bond (the one to be exchanged), as illustrated in picture (b).

Then the connection between A and C makes this bond to be exchanged as in figure (c).

This is a successful state because B and C are connected by two bonds (and the success is
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eventually reported to A). It is worth to notice that this algorithm fails if B and C are not

connected, as illustrated below:

B C

A

B C

A

B C

A

B C

A

(a) (b) (c) (d)
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A

B C

A
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(there is only one bond connecting B and C).

The local-implementation protocols proposed in [22, 18] and in this chapter avoid

deadlocks by admitting divergent computations. A relevant question is whether a de-

terministic, not-divergent local-implementation encoding κ into a calculus with binary

reactants, such as mκ or nanoκ, does exist or not. In this chapter we show that, un-

der “reasonable” constraints, such a protocol does not exist. This case is close to the

comparison of the expressive power of synchronous and asynchronous π calculi done

by Palamidessi [45]. As in that case, we require the local-implementation protocol to

be uniform – homomorphic with respect to parallel composition and preserving the con-

nectedness of molecules – and semantically reasonable – preserving termination and the

complexes.

However, it turns out that these constraints are inadequate to exclude convergent local-

implementation protocols of κ because these protocols must also redefine the reaction

rules. That is, since every κ reaction is encoded by a set of low-level ones, we need

to regulate this set in order to avoid misbehaviours. For example, a malicious protocol

(which is uniform and semantically reasonable) might grab more material then necessary

for the reaction (in the worst case, all the material in the solution) and release it after the

reaction has been performed, thus being inconsistent with the locality principle of the κ

family.

In order to localize the effects of protocols we also add a constraint called twinning:

some reactions between those implementing a κ reaction L → R have a twin one in the

protocol that undoes the effects on bonds. In particular, if L → R is a creation then every
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destruction in its protocol has a corresponding creation restoring the bonds in the reac-

tants. This means that if the protocol of a creation unbinds a molecule then the released

molecule may be rebound, thus yielding either a previous solution – and the computation

may diverge – or a previous complex (with a different state). In this latter case, if the com-

plex is too big with respect to the complexes in R then the protocol is not semantically

reasonable.

The chapter is structured as follows. In Section 3.2 we define the calculi of the κ

family (κ, mκ, and nanoκ calculus). In Section 3.3 we discuss the local-implementation

problem for κ, recall the protocol in mκ and define the protocol in nanoκ calculus. The

Section 3.4 discusses the problem of not-divergent local-implementation protocols.

3.2 The κ family: syntax and semantics

Two disjoint countable sets of names will be used: a set of species, ranged over by A,

B, C, · · · ; and a totally ordered set of bonds, ranged over by x, y, z, · · · . Species are

sorted according to the number of fields and sites they possess. Let s f (·) and ss(·) be

two functions returning naturals; the numbers 1, 2, · · · , s f (A) and 1, 2, · · · ss(A) are

respectively the fields and the sites of A. (s f (A) = 0 means there is no field; ss(A) = 0

means there is no site). In the following, fields are ranged over by h, i, j, · · · ; sites are

ranged over by a, b, c, · · · .
Sites may be either bound to other sites or unbound, i.e. not connected to other sites.

The state of sites are defined by maps, called interfaces and ranged over by σ, ρ, · · · .
Given a species A, its interfaces are partial functions from {1, · · · , ss(A)} to the set of

bonds or a special empty value ε. A site a is bound with bond x in σ if σ(a) = x; it is

unbound if σ(a) = ε. For instance, if A is a species with three sites, (2 7→ x, 3 7→ ε) is one

of its interfaces. In order to ease the reading, we write this map as 2x + 3 (the empty value

is always omitted). This interface σ does not define the state of the site 1, which may be

bound or not. In the following, when we write σ + σ′ we assume that the domains of σ

and σ′ are disjoint.

Fields represent the internal state of a species. The values of fields are defined by
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maps, called evaluations, and ranged over by u, v, · · · . For instance, if A is a species with

three fields, [1 7→ 5, 2 7→ 0, 3 7→ 4] is a possible evaluation. As before, we write this map

as 15 + 20 + 34. We assume there are finitely many internal states, that is every field h is

mapped into a finite set of values. As for interfaces, we use partial evaluations and, when

we write the union of evaluations u + v, we implicitly assume that the domains of u and v

are disjoint.

Definition 3.1 A molecule A[u](σ) is a term where u and σ are respectively a total eval-

uation of A and a total interface of A. Solutions, ranged over by S, T, · · · , are defined by

the following grammar

S ::= A[u](σ) | S,S

The operator “,” is assumed to be associative, so (S,S′),S′′ is equal to S,(S′,S′′) (and

we always omit parentheses).

Solutions retain the property that bonds always occur at most twice. A solution is

proper if bonds occur exactly twice. Let bonds(S) be the bonds of S.

The calculi in the κ family retain the same terms and differ for the shape of reactions.

We define the reactions and the transition system of the κ calculus and, later on, we discuss

the reactions of the other calculi in the family. Few preliminary definitions are in order:

• we write σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if σ(i) , ε then σ(i) = σ′(i)

(the two interfaces may differ on sites mapped to the empty value ε by σ: σ′ may

map such sites to bonds);

• a pre-solution is a sequence of terms A[u](σ) where u and σ are partial functions

and bonds occur at most twice;

• a pre-solution is proper if it retains the property that bonds occur exactly twice.

The κ calculus retains an intelligible graphical notation [21]. For example the solution

A[112 + 224 + 332](1x),B[11 + 227](1x + 2) is represented by the picture
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The formal translation from solutions to graphs is given below.

Definition 3.2 Let graph(·) be a function from solutions to graphs where nodes have sites

and an internal state:

1. graph(A[u](σ)) is the graph with a single node labeled A, sites in {1, · · · , ss(A)},
and a tuple of values. The site i is labeled with σ(i) (i.e. the bond, if any); the j-th

element of the tuple has value u( j) (i.e. the j-th field value);

2. graph(S,S′) is the union graph of graph(S) and graph(S′) where sites labeled with

the same name are connected by an edge, and their common name is erased.

graph(S) is called the underlying graph of S.

Two molecules in a solution S are connected if there is a path of bonds in graph(S)

that connects the corresponding nodes.

The definitions of underlying graph and connectedness easily extend to pre-solutions by

taking the fields and the sites that are specified. Connectedness allows us to define com-

plexes: a complex is a bunch of connected molecules where bonds occur exactly twice.

We will extensively use the graphical notation in the rest of the chapter – indeed, it has

been already used in the Introduction – sometimes replacing fields with colors. In partic-

ular, we will use graphs for describing reactions – see below.

Definition 3.3 Reactions of κ calculus are either creations C, or destructions D. The

format of creations is

A1[u1](σ1), · · · ,An[un](σn)→ A1[u′1](σ′1), · · · ,An[u′n](σ′n),

B1[v1](φ1), · · · ,Bk[vk](φk)

where, for every i, dom(ui) = dom(u′i) andσi ≤ σ′i , reactants and products are proper pre-

solutions, the products are connected, and vi and φi are total. The format of destructions

is

A1[u1](σ1), · · · ,An[un](σn)→ Ai1[u
′
i1](σ

′
i1), · · · ,Aik[u

′
ik](σ

′
ik)

where, i1, · · · , ik is an ordered sequence in [1..n], for every i j, dom(ui j) = dom(u′i j
) and

σi j ≥ σ′i j
, reactants and products are proper pre-solutions, the reactants are connected,

and, for every j < {i1, · · · , ik}, u j, σ j are total.
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Creations produce new bonds between two unbound sites and/or synthesize new molecules

(that must be connected to the molecules in the left-hand side). Destructions behave in

the other way around 1. We assume that reactants and products always have at least one

term.

Example 3.1 We illustrate few κ calculus reactions that corresponds to biochemical re-

actions. We only discuss creations.

1. The hydrogen gas is the combination of two hydrogen atoms:

H[1],H[1] → H[1x],H[1x]

2. The homeotrimerization is a combination of three monomers of the same species:

A[1 + 2],A[1 + 2],A[1 + 2] → A[1x + 2y],A[1y + 2z],A[1z + 2x]

3. As an example of synthesis, we consider Escherichia Coli that has to synthesize

galactosidase (Gal) and permease (Per) when the repressor is absent (field rep of

RNAp equal to 0):

RNAp[rep0](sGal + sPer)→ RNAp[rep1](sy
Gal + sz

Per),

Gal[loaded0](lac + sy),Per(lac + sz)

(With an abuse of notation, here and below, identifiers are used instead of numbers

for addressing fields and sites.)
�

The operational semantics of κ calculus is a reduction semantics, which requires a

couple of standard definitions.

• The structural equivalence between solutions, noted ≡, is the least equivalence sat-

isfying the following two rules (we remind that solutions are already quotiented by

associativity of “,”):

1The terms creation and destruction have been preferred to complexation and decomplexation used

in [22, 33] because they have a more neutral chemical meaning.
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1. S,T ≡ T,S;

2. S ≡ T if there exists an injective renaming ı on bonds such that S = ı(T).

• Let S = A1[u1](σ1), · · · ,An[un](σn) be a pre-solution. We say that T = A1[u1 +

u′1](σ1 ◦ ı+σ′1), · · · ,An[un + u′n](σn ◦ ı+σ′n) is an (ı, u′1, σ
′
1, · · · , u′n, σ′n)-instance of

S if ı is an injective renaming on bonds and the maps ui + u′i and σi ◦ ı+σ′i are total

with respect to the species Ai.

Using structural equivalence it is possible to identify solutions that should not be kept dis-

tinct, such as H(bx),H(bx),H(bz),H(bz) ≡ H(by),H(bk),H(bk),H(by). We also notice

that an instance may not be necessarily a proper solution. For example A[u0](1y + 2x) is

an ([x 7→ y], [u 7→ 0], [2 7→ x])-instance of A(1x), but it is not a proper solution (bonds

occur once).

Definition 3.4 The reduction relation of the κ calculus, written −→, is the least relation

satisfying the rules:

1. let P −→ P′,Q be a creation and S is an (ı, u′1, σ
′
1, · · · , u′n, σ′n)-instance of P, S′ is

an (ı, u′1, σ
′
1, · · · , u′n, σ′n)-instance of P′ and T is an (ı, ∅, ∅, · · · , ∅, ∅)-instance of Q.

Then S −→ S′,T;

2. let P −→ Q be a destruction and S is an (ı, u′1, σ
′
1, · · · , u′n, σ′n)-instance of P and T

is an (ı, u′i1 , σ
′
i1 , · · · , u′ik , σ′ik)-instance of Q. Then S −→ T;

3. let S −→ S′ and (bonds(S′) \ bonds(S)) ∩ bonds(T) = ∅; then S,T −→ S′,T;

4. let S ≡ S′, S′ −→ T′, and T′ ≡ T; then S −→ T.

The definition of reduction regards reactions as schemas. Namely, a reaction such as

Na[e0](1),Cl[e0]1 → Na[e1](1x),Cl[e−1](1x) only addresses the fields and the the sites

of the reactants that are useful for the reaction. For example, it may be the case that Na

retains a site to be used for other complexes (the sodium peroxide, for example). In this
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case, the rule may be applied either to Na[e0](1 + 2), where the site is unbound, or to

Na[e0](1 + 2z). In this latter case, the reaction is instantiated as the reduction:

Na[e0](1 + 2z),Cl[e0](1) −→ Na[e1](1x + 2z),Cl[e−1](1x) (3.1)

Items 3 and 4 of Definition 3.4 allow one to derive the reductions of bigger solutions, such

as

Na[e0](1 + 2z),Cl[e0](1),Na[e1](1x + 2z),Cl[e−1](1x) (3.2)

Reduction (3.1) may be used for deriving a reduction of the first two terms of (3.2), how-

ever it cannot be lifted to the whole solution because the bond created in (3.1) clashes with

a bond already present in the solution. In this case, one derives a reduction for the struc-

tural equivalent solution Na[e0](1 + 2z),Cl[e0](1),Na[e1](1y + 2z),Cl[e−1](1y) and then a

reduction of (3.2) is got by applying the last rule of Definition 3.4. It is straightforward to

verify that the check of bond-clashes and the properness of reactants and products imply

that proper solutions always reduce to proper solutions.

A basic property of κ calculus (and the other calculi of the family) is locality: if a

sub-solution reduces then the reduction may be lifted to the whole solution without any

effect on the remaining part – a direct consequence of Definition 3.4. In other words, the

effects of a reduction are localized to the parts of molecules specified in the reaction rules.

Two other calculi, similar to κ calculus, have also been studied: the mκ calculus and

the nanoκ calculus 2.

Definition 3.5 The mκ calculus has species and solutions as the κ calculus but

1. bonds may occur more than twice in a solution (multi-edges are admitted: these are

called group-names in [22]);

2. reactants consist of at most two terms and, as well as products, may be not proper.

The nanoκ calculus has species and solutions as the κ calculus but

2The following definitions of mκ calculus and nanoκ calculus are a bit different from those in [22, 17].

In particular we admit creations of several terms at once, while this was not admitted in [22] and was not

considered in [17]. However, these differences are not meaningful in the rest of the chapter.
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1. reactants consist of at most two terms;

2. there is a third type of reactions, the exchanges E, whose format is

A[u](ρ),B[v](ψ) −→ A[u′](ρ′),B[v′](ψ′)

with either ρ = ρ′ and ψ = ψ′ or ρ = ax +cy +ρ′′, ρ′ = a+cy +ρ′′ and ψ = b+dy +ψ′′,

ψ′ = bx + dy + ψ′′.

Reactions of mκ and nanoκ retain a process-calculus flavour since they amount to interac-

tions between at most two terms. However, in order to recover (at least, to some extent)

the expressiveness of κ, reactions are extended with two different features:

• in mκ one may write A[10](1x),B[10](2x) −→ A[11](1x),B[11](2x),C[01 + 11](1x +

2 + 3) meaning that C is created and complexed both with A and with B: the multi-

edge x represents the skeleton of the complex;

• in nanoκ one may write A[10](1x +2y),B[10](1y+2) −→ A[11](1+2y),B[11](1y+2x)

meaning that the edge x migrates from A to B: the other end of the edge remains

untouched. We notice that exchanges never modify the connectedness of a solution.

3.3 The local-implementation problem

The κ calculus allows for several many molecules to react in a reaction. The local-

implementation problem questions whether it is possible to obtain the same behaviour

with “elementary” reactions involving at most two molecules. This problem got a pos-

itive answer when the elementary reactions were those of mκ [22, 18]. κ-reactions were

decomposed in sequences of mκ reactions by using the following protocol:

1. Recruitment step: every κ reaction has a unique spanning tree covering its reactants;

in this step all the reactants are recruited (by using ad-hoc sites in the encoded

molecules). At the end of the step, all the molecules in the spanning tree share a

common multi-edge.
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2. Later contacts step: the spanning tree is inadequate when the left-hand sides of

κ reactions are not trees, such as A(1x + 2y),B(1x + 2z),C(1y + 2z). In this case,

letting A be the root of the spanning tree, the protocol has to verify that B and C are

connected by means of the two sites 2 and share the same multi-edge.

3. Phase shift step: when the left-hand side of the reaction has been completely

checked, the (κ) reaction may occur and the product is generated. The κ reaction is

implemented as a sequence of mκ reactions.

It is clear that every mκ reaction of steps (1) and (2) may fail; for this reason such reac-

tions are reversible and the protocol has been proved to be correct with respect to weak

coupled simulation in [22] and weak bisimulation in [18] (which are both insensitive to

divergence).

The protocol used for local-implementation κ in mκ may be adapted to nanoκ. In par-

ticular, the steps are the same as those described in [22, 18], except for the later contacts,

where the spanning tree must be checked for the presence of additional bonds between the

molecules therein. This case is illustrated in the following picture – called the triangular

trade –, where A is a common parent of B and C in the spanning tree (one may take A as

the unique parent at highest depth) and the bond between B and C must be verified (they

have already been recruited and the protocol may fail because of the absence of such a

bond).
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Without loss of generality, we illustrate the protocol for a κ reaction rewriting a triangular

trade:
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(the arrow is indexed by κ in order to avoid ambiguities). To ease the understanding, the

description is pictorial. In this reaction, fields have been omitted for simplicity. Molecules

are encoded into lower-level ones having an additional site (for a bond to be exchanged)

and an additional field that, in the following protocol, will store the color. Colors are used

to mark the step of the protocol in the molecules. The recruitment step is the following

sequence of reversible nanoκ reactions, where the spanning tree is assumed to be the

right-hand side of the κ reaction. At the end of the step, every molecule is gray.
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The later contacts step checks that B and C are actually bound each other (this may be not

the case, in general, because B may be bound to a C different from the recruited one).

!

A

12 24 32

B

1 27

C
7 11 5

recrute the first
and connect with a

group edge

nano!

B C

A

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

nano!

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

nano!

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

nano!

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

B C

A

A’ A”

nano! nano! nano!

B C

A

A’ A”

B C

A

A’ A”

nano!



Chapter 3. κ and nanoκ: the local-implementation problem 51

In order to verify that B and C are bound as required, a new edge is created by the root

A and it is percolated among the nodes by means of exchange reactions till reaching

the configuration depicted in the rightmost complex of the first line. Up-to now, every

nanoκ reaction is reversible because the protocol may fail. On the contrary, once the

double connection between B and C is verified – leftmost reaction in the second line –

, the protocol cannot fail anymore and the reactions are unidirectional. The success is

reported to the root A of the spanning tree by coloring the molecules in yellow. (Actually,

every reaction has to be reversible when there are several triangular trades in the reactants

of κ.) At this stage the phase shift step may begin and the effects of the κ reaction may be

implemented. This is described by the following reactions.
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Following the same pattern of [22, 18], it is possible to demonstrate the correctness of the

local-implementation protocol in nanoκ calculus. The formal proof is omitted.

3.4 Divergence and determinism

The local-implementation protocols proposed in [22, 18] and in the previous section are

divergent: the protocols backtrack in case of failures that may happen in the recruitment or

the later contacts steps. The combination of forward and backward computations produce

(infinite) loops. The questionable issue is whether a deterministic, not-divergent protocol

encoding κ into a calculus with binary interactions does exist or not.
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We remark that, the local-implementation protocol [![·]!] must encode both a solution

– the initial one – and a set of κ reactions. Following Palamidessi [45], let [![·]!] be

uniform if

• it is homomorphic with respect to “,”, namely [![S,T]!] = [![S]!],[![T]!];

• it is renaming preserving, namely for every injective renaming ı on bonds of S there

exists an injective renaming  such that [![ı(S)]!] = ([![S]!]).

and be semantically reasonable if

• it preserves the relevant observables and the termination properties.

Uniformity guarantees that the degree of distribution of the solution is maintained by the

encoding, i.e. no coordinator is added, and that the encoding does not depend on bonds. It

is worth to notice that, in our case, [![·]!] might introduce new fields and new sites in the

nanoκ molecules (called low-level fields and sites in the following). In addition, [![·]!]
must redefine κ reactions in order to fit with the new schemas of nanoκ. We therefore

extend Palamidessi’s notion of uniformity of [![·]!] with the following requirements:

– for every κ reaction L → R, [![L → R]!] = {L1 → R1, · · · , Lm → Rm}, where

Li → Ri are nanoκ reactions;

– (this is for simplicity) [![A[u](σ)]!] = A[[![u]!] + v]([![σ]!] + ρ), that is [![·]!] pre-

serves the granularity but may augment fields and sites. ([![u]!] and [![σ]!] may

also have larger domains than u and σ, respectively.)

As regards the semantics reasonableness, in our setting the “relevant observables” are

the complexes. The following equivalence equates two solutions if they possess the same

complexes.

Definition 3.6 S and T are equivalent, in notation S ≈ T, if there exists a bijection f from

nodes of graph(S) to nodes of graph(T) that preserves the species and such that A[u](σ)

and B[v](ρ) are connected if and only if f (A[u](σ)) and f (B[v](ρ)) are connected.
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Notwithstanding the above revisions of Palamidessi’s requirements, they turn out to

be insufficient to exclude odd local-implementation protocols. In fact, our case is different

than the one discussed in [45] where the dynamics of the calculi were fixed (those of pi

calculus). In particular, the local-implementation protocol might completely redefine the

dynamics of the encoded solution by tailoring the low-level reactions to the particular

problem one wants to solve. For example, one might encode a κ-reaction by grabbing

the reactants into one big molecule – that is, changing the degree of distribution – and

then yielding the products – that is, re-establishing the degree of distribution. However,

these encodings cannot be considered reasonable as much as maps that do not match

Palamidessi’s requirement of homomorphism.

Definition 3.7 Let [![·]!] be an homomorphic encoding of (pre-)solutions and reactions

in κ into (pre-)solutions and reactions in nanoκ. The encoding [![·]!] is twinned if, for

every L→ R

– if it is a creation and [![L→ R]!] contains a nanoκ destruction L′ → R′ then it also

contains a twin creation R′ → L′′ such that L′ and L′′ only differ for the values of

fields;

– if it is a destruction and [![L→ R]!] contains a nanoκ creation L′ → R′ then it also

contains a twin destruction R′ → L′′ such that L′ and L′′ only differ for the values

of fields.

Twinning guarantees that the local-implementation may undo some previous operation.

The circularity may be avoided by yielding pre-solutions with different fields. Twinning

also allows to localize the effects of protocols. Let us discuss the case of a κ creation

L → R. Then every destruction in [![L → R]!] has a corresponding creation restoring

the bonds in the reactants. This means that if a destruction unbinds a molecule then the

released molecule may be rebound, thus yielding either the previous complex with the

same state – and the computation may diverge – or a previous complex with a different

state. In this latter case, if the complex is too big with respect to those in R, then, there is

a computation that either diverges or retains the complex (or a larger one). This because
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twinning will restore the complex if it is broken at some point. Therefore, in any case, the

protocol is not semantically reasonable.

Definition 3.8 Let A be a species with no field and two sites 1 and 2. An homeotrimer-

ization is a κ-reaction:

A(1x + 2),A(1 + 2x),A(1y + 2),A(1 + 2y),A(1z + 2),A(1 + 2z)

−→ A(1x + 2u),A(1v + 2x),A(1y + 2w),A(1u + 2y),A(1z + 2v),A(1w + 2z)

that may be rendered as:
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Theorem 3.1 There exists no local-implementation protocol that is uniform, semantically

reasonable and twinned for the homeotrimerization.

Proof : Let S be a solution consisting of 2m∗3 sticks A(1x+2),A(1+2x) (we assume m > 0).

This κ solution yields a stable solution T containing 2m homeotrimeric complexes. By

contradiction, let [![·]!] be a local-implementation protocol that satisfies the requirements

of the theorem. We show that it is possible to construct an infinite derivation, thus yielding

a contradiction because the S always terminates. We notice that the homeotrimerization is

a creation; therefore in this case positive-direction set consists of creations and exchanges,

while the negative-direction set consists of destructions and exchanges.

We analyze the protocol:

1. Initially every [![A(σ)]!] may arrange itself in order to participate to the homeotrimer-

ization. Let us call ready stick such arranged sticks.

2. Then two ready sticks must be bound, thus making an homeodimeric complex.
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Failure 1: Since the initial solution S consists of an even number of sticks, it is

possible to obtain a solution with 2m−1 ∗ 3 homeodimeric complexes.

3. In order to avoid a deadlock, the protocol must admit bonds between two home-

odimerics and then discharge one stick.

Failure 2: The step 3 is not possible because the reaction discharging one stick is a

destruction. By the twinning, the protocol must also admit a creation reconnecting

the two sticks. Therefore, either one obtains the previous complex, thus yielding

a divergent computation, or one obtain a complex with same bonds but different

fields. So we are again in case 3. Eventually one gets either a solution with a

complex of two homeodimerics and no destruction is possible, therefore it is not

equivalent to [![T]!], or a divergent computation.

4. It remains the possibility for an homeodimeric to break the bond created in 2, thus

releasing two sticks and breaking the symmetries (changing the fields). That is,

while rolling back to 1, it is possible to mark the two sticks in “winner” and “loser”,

respectively. It is possible to obtain a solution where half sticks are marked as

“winners” and half sticks are marked as “losers”. Reactions of losers are frozen

(otherwise no symmetry is broken). Then it is possible to build homeodimeric of

winners and use losers to build homeotrimerics.

Failure 3: It is possible to obtain a solution where a quarter of initial sticks is

frozen (because they are losers). Therefore the protocol, in order to be semantically

reasonable, must admit interactions between losers that yield homeodimerics. But

this is not possible because they might be also performed before (losers do not

know what happens in the context – the locality principle of the κ family), when

homeodimerics of winners are built (and obtaining again a solution like 2).

Our result has rather negative consequences. One for all is the impossibility of imple-

menting a stochastic version of κ in nanoκ (or pi calculus) by preserving the distribution

of rates (see [17]). This means that stochastic simulations must be done directly in κ [20].
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Chapter 4

Leader election in the κ-family

In this chapter we investigate and compare the expressive power of various calculi within

the κ family by studying the leader election problem in a symmetric network.

We work with κ calculus, nanoκ calculus and a newly defined κ sub family called psn

within two different scenarios: a fully connected network and a ring network. The psn

has been defined mainly because we realized soon enough that both κ calculus and nanoκ

calculus are able to solve leader election in the two scenarios.

In order to point out which primitives were required by the two calculi to solve the prob-

lem we defined a very compact common sub-calculus, ps2, and then looked for the small-

est extension of ps2 capable of solving leader election and still being a sub-calculus for κ

calculus (respectively, nanoκ calculus).

Our investigation led us to realize that the synchronization degree, i.e. the number of el-

ements we allow to communicate simultaneously, has an important role in this context.

Therefore an entire new family, called psn and containing ps2, has been defined to study

how different synchronization degrees affect expressiveness in the κ-family.

The results are presented bottom-up since we start from the psn calculi and mainly

focus on the synchronization degree issue, then consider various extensions and finally

their relationship with the κ calculus and nanoκ calculus calculi.

From a biological point of view our psn calculi can be seen as good abstraction of

polymeric structures – a grid of proteins of the same species with polymerizations that
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rewrite connected proteins. On the other side the psn calculi can be also seen as a graph

rewriting framework with some restrictions on rules: this should not surprise as it is

defined as a sub calculus of κ calculus which is essentially a particular restricted kind

of graph rewriting. We demonstrate that it is not possible to elect a leader in polymers

organized as a suitably large ring. This result entails that polymerizations rewriting at

most n proteins are strictly less expressive than those rewriting n + 1 proteins. We also

demonstrate that the leader election is solvable when polymerizations do connect proteins

that are not directly connected or when they may flip connections. Finally we discuss how

these results relate to the calculus of protein – the κ calculus –, of which our formalism

happens to be a sub-calculus.

In the following we will mainly adopt a graph theoretical approach in the formalization

and discussion of our study.

4.1 Introduction

A polymeric structure is typically a large molecule composed of many molecular units

of the same type. The small molecular units interact and bind together so to form the

larger polymer. Individually the molecular units are equivalent and cannot be distin-

guished therefore any macro behavior of the polymer must derive from the interaction of

its composing units. We explore here what kind of interaction is needed for completely

equivalent components to synchronize and reach a consensus in a symmetric scenario.

From a pure computer science point of view we compare different calculi suitable to

describe polymeric structures and evaluate their synchronization capabilities.

When comparing the power of different calculi, their computational capability is only

one, and the most obvious, property to evaluate. Another important aspect, when dealing

with concurrent calculi for example, is indeed the synchronization capability of a calculus:

for example whether independent processes in the calculus can reach an agreement or not.

We perform our evaluation by means of a typical problem testing the capability to

reach a consensus: the leader election problem. The problem of leader election comes

from the distributed systems field and was first posed by LeLann [35] who also gave
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the first solution. The problem tests the synchronization capability of a calculus and

specifically it expresses the ability of a group of processes to reach an agreement without

using a central coordinator.

More specifically the symmetric leader election problem requires that, starting from

a configuration where each eligible component of the system is in the same state, a con-

figuration is reached where exactly one component is in a special state leader, while all

other components are in the state lost. The component in state leader at the end of the

computation is called the leader and is said to be elected by the algorithm.

The main difficulty is to find an algorithm capable of breaking the initial symmetry

of the system by reaching a configuration which is inherently asymmetric and where a

leader can be always found.

This problem perfectly mimics the situation of a polymeric structure where a macro

behavior has to be deterministically produced by means of interactions among completely

equivalent subcomponents.

The rest of the chapter is organized as follows. In section 4.2 we introduce the poly-

meric structures calculus, its graphical notation and all the formal notions we will need.

In section 4.3 the leader election problem along with the notions of symmetric network

and electoral system is formulated within the setting of our calculus. Section 4.4 contains

our main proofs, i.e. the non-existence of an electoral system for psn and the expressive-

ness hierarchy in the ps family by means of the separation between psn and psn+1. In

section 4.5 we discuss the existence of an electoral system for various cases: two calculi

extending ps i.e psc and psb.

4.2 Preliminaries

As already mentioned we favor the graph theoretical approach and therefore we present

ps as a graph rewriting calculus. The biological interpretation is always at hand by re-

membering that each node represents a monomer, an edge represents a bond or interaction

between two monomers and two or more monomers connected together represent a poly-

mer structure.
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We first introduce the syntax of the graph rewriting calculus we use, then discuss its

graphical notation and finally give its semantics. We use a finite set of sites S = {1, · · · , l},
a finite set of fields F = {1, · · · , p}, a finite set of values V and a countable set of bonds

B. The full syntax is given in fig 4.2. The basic elements of this calculus are the nodes:

each node has an interface and an internal state that correspond to maps S 7→ B∪ {ε} and

F 7→ V respectively.

Sites are meant to be the interaction points for nodes and they may be either bound

to other sites or unbound, i.e. not connected to other sites. The state of sites are defined

by maps, called interfaces and ranged over by σ, ρ, · · · . These interfaces are partial

functions from {1, · · · , l} to the set of bonds plus a special empty value ε. A site i is bound

with bond x in σ if σ(i) = x; it is unbound if σ(i) = ε.

For instance, if |S |= 3, then (2 7→ x, 3 7→ ε) is a possible interface for a node. In order

to ease the reading, we write this map as 2x + 3 (the empty value ε is always omitted).

This interface σ does not define the state of the site 1, which may be bound or not.

The internal state of a node depends on the values of its fields which are defined by

maps as well, ranged over by u, v, · · · . For instance, if F = 3, then [1 7→ 5, 2 7→ 0, 3 7→ 4]

is a possible map. As before, we write this map as 15+20+34. We will sometime use letters

or short words and write map as d0 + locked1 + count4 in order to ease the understanding

of the fields’ role. Since the set of valuesV is finite there are finitely many internal states.

A pre-graph is a sequence of nodes [u](σ) where u and σ are not total functions: i.e.

the information on the sites and fields status is not complete.

As expected we say two nodes in a graph G are connected if there is a path of bonds

in between them. We define the distance between two connected nodes in a graph G as

the number of bonds in the shortest path connecting the nodes.

Given a graph term G as specified above we also have a corresponding graphical

notation, shown in Fig. 4.2, where all the information is retained.

We remark here that the syntactic representation is excessively intensional because, as

shown in Fig. 4.2, syntactically different graph terms G and G′ may give rise to the same

graphical notation. More precisely each graphical notation corresponds to an equivalence
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aF [u](σ) (node) λF ε | j ∈ B (bond)

GF ∅ | a,G (graph term) uF ∅ | zγ + u (internal state)

σF ∅ | iλ + σ (interface) γF j ∈ V (value)

iF j ∈ S (site) zF j ∈ F (field)

where u and σ are total in the node definition and with the operator w + w′ we assume the

domains of maps w and w′ are disjoint.

Figure 4.1: Syntax of psn calculi

Figure 4.2: Graphical notation for both G = [ f 2](1x +2ε), [ f 0](1ε+2x) and G′ = [ f 0](1ε+

2x), [ f 2](1x + 2ε)

class of graph terms. This is due to the fact we are not using structural equivalence to

keep the formalism as simple as possible.

Formally we can define exactly each graphical notation by means of the usual nodes

and edges sets:

Definition 4.1 Let G = a1, a2, · · · , al be a graph term and let vi be the graphical notation

for the single node ai as specified in Fig. 4.2 with the exception that sites’ status is

removed. We define the G graphical notation, and we call it Ḡ, by means of the couple of

sets V and E where V = {vi : i ∈ 1, 2, · · · , l} and

E =
{〈

(vi : s1), (v j : s2)
〉

: ai ∧ a j are bound in G via sites s1, s2

}
A system in our framework is completely defined by a couple < R,G > where G is
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a graph with sites and internal values as defined in Fig. 4.2, while R is a set of rewriting

rules of the form L→ R where L and R are pre-graphs.

Semantics

The general schemata of a rewriting rule in our framework are the following

rc : [u1](σ1), · · · , [ut](σt)→ [u′1](σ′1), · · · , [u′t](σ′t), [v](ψ)

where ui and σi are partial maps. In addition rules must respect the following conditions

1. the t nodes in the left hand side are all connected;

2. the creation of a fresh bond between nodes with distance greater than one is forbid-

den;

3. t is upper limited by a given integer n.

With this schemata it is clear that destructions of nodes are not permitted in our calcu-

lus. The second condition on rules concretely forbid the creation of bonds between nodes

that are not directly connected, i.e. that do not already have a bond in between. For the

given schemata this implies that the distance between two nodes may never be decreased

as the effect of a rule. The last condition hides the fact that with the name ps we actually

identify a family of rewriting calculi that differ on the number of nodes allowed to interact

in the left hand side of rules: the specific calculus limited to synchronize at most n nodes

will be referred to with the notation psn.

Given rule r as above the reduction relation over the graphs is the smallest relation

satisfying the following rules:

Basic :
[ui + v](σi ◦ αi + ρ)

r,i,αi−−−→ [u′i + v](σ′i ◦ αi + ρ)

where αi is an injective renaming on bond’s names

Comp :
a1

r,1,α1−−−−→ a′1 · · · at
r,t,αt−−−→ a′t

G0, aπ(1),G1, · · · ,Gt−1, aπ(t),Gt
r−→ G0, a′π(1),G1, · · · ,Gt−1, a′π(t),Gt
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where ∀i, j αi(x) = α j(y) i f f x = y and π is a permutation on (1, · · · , t).

Roughly speaking the Basic rule performs a matching between nodes of the graph and

rules of the system. A transition a
r,i,αi−−−→ a′ identifies the node a as a potential resource

required by the left hand side of rule r. The basic transitions are actually used to build

the composite ones which correspond to real transitions of the system. The Comp rule

generates a transition labeled r whenever all the resources specified in the left hand side

of the rule r are available in the graph, no matter how they are placed within the syntactic

representation of the graph nor what the context is (i.e. the Gis). This is accomplished by

looking if basic transitions, with compatible renamings αi, are present for all the t nodes.

For example, let a = [13 + 21](1z), b = [10](1y), with a rule r̄ = [21](1x), [10](1x) →
[20](1x), [11](1x) and a graph G = G′, a, b,G′′ the basic rule would produce transitions

a
r̄,1,(z7→x)−−−−−−→ a′ and b

r̄,1,(y7→x)−−−−−−→ b′ but their renaming functions are not compatible therefore

a composite transition for the rule r̄ will not be produced: please note this is obviously

correct since the rule requires the two nodes to be bound together while the nodes in G

have different bond names (i.e. z , y).

Let’s now keep a and r̄ as above and consider b = [10](1z) and G = G′, b,G′′, a.

Here we have that the two nodes are correctly bounded together but they are ’mixed’

and ’misplaced’ within G. Still, the Comp rule is able to correctly produce a transition

a,G′′, b
r̄−→ a′,G′′, b′ thanks to the permutation π = (1 7→ 2, 2 7→ 1). A transition gener-

ated by rule Comp for rule r can be seen as a synchronization between the t nodes involved

and leaves untouched any Gi filling the gaps between the t nodes in the syntactical term.

Automorphisms on graphs

We need to recall the concept of graph automorphism and properly adapt it to our graph

framework before proceeding.

We will define the automorphism for the more intuitive graphical representation. Let

Ḡ = (V, E), where V denotes the set of nodes and E the set of edges between nodes, be
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the graphical notation for some graph term G. We define a type function tE on edges as

follows:

tE(x) =
〈
(vi; s1), (v j; s2)

〉
where vi, v j ∈ V are the nodes connected by x, and s1, s2 ∈ N the specific sites used by

the edge x ∈ E. The function tE therefore assigns to each edge e ∈ E the couple of nodes,

along with the sites involved, connected by e itself. We also need a type function tV on

nodes

tV(z) = [γ1, · · · , γp] γi ∈ V

returning a tuple of values that represents the node’s complete internal state.

Definition 4.2 (Graph automorphism) An automorphism on Ḡ is a pair δ = 〈δV , δE〉
such that δV : V 7−→ V and δE : E 7−→ E are permutations that preserve the type of

edges and the type of nodes, i.e. for any e ∈ E if t(e) =
〈
vi; s1, v j; s2

〉
then t(δE(e)) =〈

δV(vi); s1, δV(v j); s2

〉
and for any v ∈ V tV(v) = tV(δ(v)).

It is not difficult to show that the composition of automorphisms is still an auto-

morphism. Given automorphisms δ and δ′ the composition is defined component-wise

δ ◦ δ′ =
〈
δV ◦ δ′V , δE ◦ δ′E

〉
. The identity automorphism is defined as the couple of iden-

tity functions on V and E, i.e. id = 〈idV , idE〉. The set of automorphisms on Ḡ with the

composition operation forms a group.

The orbit of v ∈ V generated by the automorphism δ is defined as the set of nodes in

which the various iterations of δ map v:

Oδ(v) = {v, δV(v), δ2
V(v), · · · , δh−1

V (v)}

where δi
V is the composition of δV with itself i times, and h is the least number of iterations

such that δh
V = idV . The set of all the orbits generated by δ forms a partition of V: we call

it orbit of δ and we write O(δ).

An automorphism δ is said well-balanced if all the sets in O(δ) (i.e. all its orbits) have

the same cardinality. We call such cardinality degree of δ.
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4.3 Leader election, electoral system: formal notions

In this section we formalise the leader election problem in the setting of our ps calculus.

We point out here that the constraint requiring the left hand side of rules to be connected

perfectly simulates the communication issues between elements in a distributed system:

bonds represent communication channels and a synchronization between nodes may not

take place if they cannot communicate. In other words we will use the connectedness as

an abstraction for the existence of a communication path between components.

Leader Election in Distributed Systems

The leader election problem comes from the distributed systems field and the generic

problem consists in ‘electing a leader’ among several processing independent units. By

the term ‘distributed system’ it is usually meant an interconnected collection of au-

tonomous machines. The machines are referred to as the nodes of the distributed system

and in order to be qualified as autonomous each node should have its own private control.

To be qualified as interconnected, the nodes must be able to exchange information. A

computation is performed by the distributed system by means of the interactions between

its nodes. The computation of a distributed system should be obviously evaluated at the

system level, yet every single node of the system is fully qualified as an independent

computing device.

The leader election problem has been successfully represented in process algebra. The

first formalisation is due to Bougé [7] who formalised the problem in symmetric networks

for CSP. The notion of leader election was later formalised in a similar way by Palamidessi

[45] for the π−calculus. In contrast with process algebra where the behaviours are mostly

encoded in the processes, the dynamics and behaviours of polymers in our ps calculus are

expressed in the form of rewriting rules. Therefore we can’t straightforwardly reuse the

existing formalisation and need to provide a new one that suits the graph-rewriting nature

of ps.

The leader election problem requires that, starting from a configuration where each

eligible component of the system is in the same state, a configuration is reached where



66 Chapter 4. Leader election in the κ-family

exactly one component is in a special state leader, while all other components are in the

state lost and can no longer become leader. The component in state leader at the end of

the computation is called the leader and is said to be elected by the algorithm.

It is not required that the so called eligible component be a basic element (i.e. a single

node of the graph) of the system but it could as well be defined as a more complex struc-

ture with some specific property that let it regard as an autonomous unit of the system.

Yet, and without loss of generality we will map eligible components into single nodes in

order to ease the reading and the formalisation of few definitions. A network is informally

a composition of such eligible components or separate units of the system.

Observation relation

There are several ways to define an observational predicate given a system < G,R >, we

could for example be interested in monitoring the development of a special structure or

we may want to know if a special internal state has been reached by some node or finally

we could monitor the firing of some special rule during the system computation. We opt

for the latter as it perfectly suits our problem.

Given a system with rules defined by the set R the set of observable reactions Obs is

defined as a subset of R.

Definition 4.3 (Computation) Given a system S =< R,G > a computation C of S is

a (finite or infinite) sequence of transitions G = G0
ω1−−→ G1

ω2−−→ · · ·, with ωi ∈ R. A

computation is called maximal if it cannot be extended: either C is infinite or it is of the

form G0
ω1−−→ G1

ω2−−→ · · · ωh−−→ Gh where Gh 9.

Definition 4.4 Given a computation C = G0
ω0→ · · ·Gl ωl →· · · we say ωi ∈ C if there

exists Gi
ωi→ G j in C. We define the observables of C to be the multiset Obs(C) =

⊎
i
{ωi :

ωi ∈ C and ωi ∈ Obs} where the operator
⊎

stands for the multiset union.

Definition 4.5 (Network) A network N of size k is a couple (R, 〈a1, . . . , ak〉), where R is

a set of rules and 〈a1, . . . , ak〉 a sequence of nodes. Each ai is said component of the

network N.
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Informally with the network concept we intend to explicitly represent the distribution in

the system of the various components forming the system itself: each of them is given an

index that could be seen as a positional information in the network topology. The only

difference between a network N = (R, 〈a1, . . . , ak〉) and a system S =< R, a1, . . . , ak > is

indeed just the added index information for each node.

In our ps calculus we do not admit structural congruence on terms and therefore graph

terms composed by the very same nodes but with different orders are considered distinct.

We exploit this fact and consider a system S as above as a network where each node is

naturally assigned its term position number as the index of the network: e.g. in graph

a, b, c node a has position 1 while nodes b and c have position 2 and 3 respectively. That

means that for all practical purposes a network is a system in which we do care about the

nodes position in the graph term G. Obviously networks inherit all the notions defined

for the systems, e.g. computation and observables. We say δ is an automorphism on the

network N = (R,G) if it is an automorphism on Ḡ. Let ΦN = {id, δ1, · · · , δk} be the set of

all the automorphisms on the network N.

Definition 4.6 (Symmetric network) A network N of size m is symmetric if it admits a

well-balanced automorphism δ , id. It is fully symmetric if δ has degree equal to m, i.e.

if all the nodes are identical but for the bond names.

It could be shown that any well-balanced automorphism corresponds to a graphical

rotational symmetry on the graph itself1. Intuitively a network is symmetric if it is pos-

sible to spatially rearrange the nodes, without altering the edges, of its graphical notation

so to see a rotational symmetry. A well-balanced automorphism with orbits of size k

corresponds to a so called k-fold rotational symmetry.

In order to define an electoral system we need to specify how the system communi-

cates to the external world that the election of a leader has been completed. We do that

by means of a special reaction ωout, with ωout ∈ Obs. We actually assume Obs to contain

exactly ωout as the only observable of the system and, without loss of generality let ωout be

triggered by a special internal state of a single component of the network which becomes

1Actually on its graphical notation.
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the leader as the effect of the reaction itself. Finally lets assume ωout can be fired only

once for each component and never for a component which has been marked as defeated

by means of its internal state.

Definition 4.7 (Electoral system) A network N is an electoral system if any maximal

computation C of N is finite and contains only one occurrence of transition ωout.

A network is therefore an electoral system if it never diverges and eventually reports a

unique leader among its components.

4.3.1 Scenarios

We will consider the leader election problem in two different scenarios corresponding to

two different topologies. While the sites and fields of the nodes will be properly defined

case by case, each node will have at least a field d that is set to 1 if the node gets defeated

during the selection of the leader. Initially all the d fields are set to 0.

Fully connected network

This is the standard scenario for leader election as studied in [45] and we summarize it

with the following parameters:

• no restriction on the topology of the network: we will assume fully connected net-

works;

• the size of the network is supposed to be known: that means the number of the

nodes is fixed and known;

• the declaration of the leader will be announced by the leader itself for simplicity.

A system < R, a1, · · · , am > is a fully connected network if for each i, j ∈ 1, · · · ,m
there exist s1, s2 and x such that ai = (ui)[sx

1 + σi] and a j = (u j)[sx
2 + σ j].
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Ring network

The second scenario is more restrictive and thus more interesting as it requires the network

to be organized in a ring. A component of the ring is supposed to interact only with

its left-hand and right-hand neighbors. Typically the algorithms which assume that all

the components of the network can interact directly will no longer work. A system <

R, a1, · · · , am > is a ring connected network if for each node a of the system there exist

exactly two distinct indexes i, j ∈ 1, · · · ,m such that a is directly connected to ai and a j.

4.4 Non existence of a symmetric electoral systems in psn

for ring networks

We show here that, for polymers organized as symmetric ring networks, the leader elec-

tion problem is not solvable in psn when the network size is big enough with respect to

n.

In this section we favor the graph theory point of view for it provides a more intuitive

approach to address the symmetry related issues of the problem.

We already said that an automorphism δ gives rise to a partition on the nodes of a

network by means of its orbits. If δ is also well-balanced with degree d than the partition

is composed by exactly m/d orbits. Intuitively this means it is possible to see the network

as composed by d completely symmetric parts, and they also form a partition on the nodes.

Each symmetry of a network is represented by a well-balanced automorphism and

when the network is fully symmetric there is exactly one automorphism δi of degree di

for each di positive divisor of the network size.

We remind n corresponds to the maximum number of nodes a rule can specify in its

left hand side. Moreover, in psn we may synchronize only connected components. In a

ring network this specifically means it is possible to synchronize only chains of at most n

nodes.

Fact 1 In psn a rule may synchronize nodes whose distance is at most n − 1.
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Fact 2 Let δ be a well-balanced automorphism with degree d on a ring network of size

m. Nodes of the same orbit are equidistant in the network: the distance between a node b

and δ(b) is exactly m/d.

The idea behind the proof is that, under certain conditions, whenever a rule takes

place in a symmetric ring network, it can be applied again on each of the d − 1 symmetric

portions of the network for some automorphism δ with degree d thus restoring the sym-

metry induced by δ itself after d − 1 steps. The process can be repeated for any rule and

a maximal computation which preserves the δ symmetry is produced. In such maximal

computation the election of a leader never succeeds either because no node is declared the

winner or, if a node becomes the leader by means of transition ωout then any node in the

same orbit wrt δ may do the same.

Lemma 4.1 Let N =< R,G > be a symmetric ring network of size m and δ one of its

automorphisms with degree d such that n ≤ m/d, then for any transition r on G there

exists a sequence of d − 1 transitions r that reestablish the symmetry induced by δ on the

network. Proof:

Since we assumed n ≤ m/d it immediately follows from Facts 1 and 2 that any rule

in R may not synchronize two nodes symmetric wrt δ, i.e. two nodes in the same orbit of

δ. This guarantees that any rule modifies at most one node for each orbit of δ and leaves

untouched the others.

Let’s now consider a rule r with arity n′ ≤ n. If a transition of type
r−→ is executed

than it involves exactly n′ nodes of the network and they are all connected in a chain. The

effect of a single transition on the the network is, in general, that symmetry is broken: in

the worst case the internal state of each node involved is modified so to obtain a distinct

internal state on a network level. So far δ no longer represents a symmetry on the network.

Let ai, · · · , a j be the chain of nodes involved by the first transition. Consider node ai,

it has been modified according to transition r and therefore it is no longer equivalent with

the nodes of its orbit. If we could modify the other d − 1 nodes in the very same way we

would reestablish the equivalence for that orbit.
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This is indeed possible by applying d−1 times the rule r on the network: for symmetry

of δ we have that another transition of type
r−→ can be applied on the symmetric chain of

nodes δV(ai), · · · , δV(a j) and in general on the chain δh
V(ai), · · · , δh

V(a j) with h ranging

over 1, · · · , d − 1. After those d − 1 transitions, δ regain the status of a well-balanced

automorphism and its symmetry on the network is preserved.

This is no longer true if n > m/d: in this case a rule could have arity n′ > m/d and

any application of such a rule would affect (at least) two nodes of a same orbit. It should

be clear that in general the two nodes will not be symmetric after the rule application and

we cannot reapply the rule d − 1 times simply because there are no d symmetric chains of

size n′ in the network: indeed n′ · d is greater than the network size! �

Theorem 4.1 Let N = (R, < a1, · · · , am >) be a symmetric ring network, if N admits a

well-balanced automorphism δ , id with degree d such that n ≤ m/d, then N is not an

electoral system for psn. Proof: We have a network N symmetric wrt some automor-

phisms δ, we may always produce a maximal computation on N that does not resolve

leader election:

1: N9 if no transition is possible and a leader is missing: ⇒ failure!

2: N
r−→ N′ a transition is possible

There are two sub cases:

a: r = ωout – A node ai has been elected as leader

For symmetry of δ we may perform a transition r also on the symmetric node

δ(ai) producing another leader⇒ failure!

b: r , ωout – We have no leader and the network symmetry is broken

For Lemma 4.1 we may undertake a computation N′
r−→ N′1

r−→ · · · r−→ N′d−1 such

that N′d−1 is symmetric wrt the automorphism δ

⇒ we have restored the initial conditions: failure or infinite computation pre-

serving δ and no leader!

�
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Please note that if m is prime then the theorem holds only for n = 1 no matter how

big m is. In fact it can be shown that for any ring network of prime size ps2 can resolve

leader election.

Since conditions of Theorem 4.1 depend on the network size m it is clear that by

choosing a suitably large network we can always fulfill the theorem’s requirements. That

is, for any psn there exist a polymer organized as a ring with size big enough so that leader

election is not solvable with psn.

Hierarchy on the psn family

We exploit here our main result to show that psn is strictly less expressive than psn+1. The

idea is to take a ring network of a specific size and show it is an electoral system only for

one of the calculi.

Corollary 4.1 Let N =< R,G > be a symmetric ring network of size m = 2n. Such

a network is not an electoral system for psn. Proof: Clearly 2 is a divisor of m and

therefore there exists an automorphism δ of degree d = 2 on the network N. Since the

conditions of theorem 4.1 are satisfied

n ≤ m/d = n ≤ 2n/2 = n ≤ n

we have that for such a ring network leader election is not solvable with psn. �

To have the separation we have to demonstrate that such a network is an electoral

system for psn+1.

Theorem 4.2 Let n ∈ N and N =< R,G > be a symmetric ring network of size m =

2n. Such a network is an electoral system for psn+1. Proof: The proof consists in the

description of an easy protocol solving this specific scenario. The only remark we make

is that the solution requires the network size to be known.

We have a ring network of size m = 2n and we may use rules with at most n + 1

connected nodes in their left hand side. Initially all the nodes are eligible and the very

first rule takes a chain of n + 1 eligible nodes and marks n of them as losers. We opt to
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leave the eligible one at the clockwise end of the chain. Obviously such a rule may be

performed only once since only n eligible nodes are left. A second rule is triggered by a

chain of n + 1 nodes where only one, at an end of the chain, is marked as loser and marks

all the eligible nodes but one as losers. The node not marked as loser is instead marked as

the leader.

The algorithm is quite easy since it is composed by only two rules and therefore it is

immediate to see it always produce a single leader in such a symmetric network. �

Corollary 4.2 Let n ∈ N, psn is strictly less expressive than psn+1. Proof: From theorems

4.2 and 4.1 we have that for each n ∈ N there exists a symmetric ring network of size

m = 2n which is an electoral system for psn+1 but not for psn. �

The separation has been done with a generic n therefore it leads to an expressiveness

hierarchy on the whole ps family.

4.5 Existence of a symmetric electoral system in ps2 for

fully connected networks

Here we show an algorithm that, assuming known the network size, solves leader election

problem in fully connected polymers using only binary polymerizations.

The algorithm idea is fully explained but we leave out few formal details.

Let m be the network size, the generic protein in its initial configuration is described

by

[d0 + l0](1x1 + 2x2 + · · · + m − 1xm−1) (4.1)

where bonds xi connect the protein with all the others m−1 composing the structure, field

l marks the protein as leader when its value is equal to 1 and field d marks the protein as

defeated if its value is set to 1.

In this scenario we just need a very simple (schema of) polymerization in order to

elect a leader. The algorithm idea, not new at all, is to let eligible components of the

network fight each other two at a time until a single one remains and is therefore declared
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the leader. A ‘fight’ consists in a synchronization between two proteins with their fields d

set to 0 where one protein becomes defeated by setting its d field to 1.

This simple idea is realized by the following schema that generates all the ‘fight’

polymerizations we need

f ighti, j : [d0](ix), [d0]( jx)→ [d1](ix), [d0]( jx) i, j ∈ 1, · · · ,m − 1 (4.2)

We leave out the correctness proof for it is not difficult to see that in a system com-

posed by m proteins, defined as specified in (4.1), together with the set of f ighti, j poly-

merizations after any maximal computation we are left with a structure where a single

protein has internal state d0 + l0: clearly no polymerization from the fight schema can

happen anymore and a leader has been found.

There are several ways to proceed once a leader is found. Probably not the most

efficient we illustrate a simple one. We have to make sure the leader is aware of being the

leader and that all the defeated proteins are told who the leader is as well.

We may, for example, add a counter field c to each protein telling how many proteins

were directly or indirectly defeated by the protein itself. The rough idea is that every time

a protein win a fight synchronization we add the c value of the defeated protein plus one

to the c value of the winner. To integrate this idea the fight schema must be extended to

the following one:

[d0 + cl](ix), [d0 + cl′]( jx)→ [d1](ix), [d0 + cl+l′+1] with l + l′ ≤ m− 2∧ i, j ∈ 1, · · · ,m− 1

The leader is then recognized by looking the internal state of proteins with the follow-

ing:

ωout : [d0, l0, cm−1]→ [d0, l1, cm−1] leader found!

A protein becomes the leader only if it has defeated all the others m − 1.

Once a leader is recognized, it can contact all the defeated proteins letting them know

about its identity thus completing the algorithm. We omit the reaction schema for the

leader notification protocol.
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4.6 Existence of a symmetric electoral system in ps2b and

ps3c in ring networks

We introduce now two variants of psn and show how to solve leader election with such

calculi. The first variant is obtained by adding a new rule schema that let an existing bond

to be flipped from one node to another, while the second one is obtained by relaxing the

condition on bonds creation between non adjacent nodes.

Definition 4.8 The psnb calculus is defined as psn with the addition of a new kind of

polymerization, called bond flip, defined by the following schema

b f : [u](ax + cy + ρ′),[v](b + dy + ψ′) −→ [u′](a + cy + ρ′),[v′](bx + dy + ψ′)

In psnb we may write [10](1x + 2y),[10](1y + 2) −→ [11](1 + 2y),[11](1y + 2x) meaning that

the bond x migrates from the first protein to the second: the other end of the bond remains

untouched. We notice that a bond flip rule never modify the connectedness of a structure

and it does not create new bonds.

Definition 4.9 The psnc calculus is defined as psn but polymerizations are now allowed to

create bonds between proteins with distance greater than one (i.e. not directly connected).

Solving Leader Election in ps2b

As in the fully connected scenario we still use a fight schema to determine the loser be-

tween directly connected candidates but we need a protocol to determine the loser between

non adjacent ones (not directly connected).

Informally we have a two phase algorithm. The first phase consists in fights between

adjacent proteins as seen above. When the first phase is over we are generally left with a

ring where candidates are not adjacent2. The second phase will try to connect any isolated

candidate to the first candidate encountered following the ring in a counter clockwise way

in order to let them fight until only one protein is left as a candidate.

2With the only exception of the rare case the first phase lead directly to a single candidate.
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The generic protein for this scenario in its starting configuration is defined as

[d0 + l0](1x + 2y + 3ε + 4ε)

Fields d and l have the same meaning as seen before. Sites 1 and 2 are meant to connect

the protein to its clockwise and counter clockwise neighbors respectively, while site 3 and

4 will be used to connect isolated candidates using bond flipping. We precise now that a

bond connected to a site 3 will always have a site 4 on the other end, moreover the bond’s

end on site 3 will be fixed while we will be flipping the bond’s end on site 4.

The following two rules are responsible for the first phase of the algorithm, i.e. the

fights between adjacent candidates

Adjacent fight:

 [d0](1x), [d0](2x) −→ [d1](1x), [d0](2x)

[d0](1x), [d0](2x) −→ [d0](1x), [d1](2x)

Second phase: bond flipping and non local fights

As already said, after the first phase we are generally left with a ring network where two

or more candidates are not adjacent. In order to let these isolated candidates interact

we need to create a bond between them3, but since we are forbidden to directly create

bonds between non adjacent candidates we first create a special bond between an isolated

candidate and its counter clockwise (defeated) neighbor and then we use the bond flip

rule to flip the neighbor’s end of the special bond to its counter clockwise neighbor. After

the first flip the isolated candidate is therefore connected to a third node of the network

and they can interact. The idea is simply that if the third node is also a candidate a fight

interaction marks one as the loser otherwise the special bond’s end on the third node is

flipped again to the next node in counter clockwise order and so on until another isolated

candidate is found.

The special bond creation and flipping is realized with the following rules

cre : [d0 + l0](2x + 3), [d1](1x + 4) −→ [d0 + l0](2x + 3y), [d1](1x + 4y)

f lipping : [d1](2x + 4y), (1x + 4) −→ [d1](2x + 4), (1x + 4y)

3We are working with ps2b so only two proteins at a time may synchronize and they must be connected.
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We may safely assume that the creation of the special bond occurs only when both the

neighbors are marked as defeated even if the rule cre above checks only one. This can be

easily accomplished by means of two rules checking the neighbors status and two fields

storing this information.

The non local fight between ‘isolated’ candidates connected by means of a special

bond is straightforward

Non local fight:

 [d0](3y), [d0](4y) −→ [d0](3), [d1](4)

[d0](3y), [d0](4y) −→ [d1](3), [d0](4)

To keep the protocol easy to understand, we are not interested in efficiency right now, we

destroy the flipped bond after every fight between non adjacent candidates. It should be

clear that an isolated candidate will always start the bond flipping protocol by creating the

special bond with its neighbor unless the candidate itself has been marked as the leader.

Leader recognition

A nice property of the algorithm described here is that it does not need to know the

network size, i.e. it is size independent. This property comes from the ring structure of

the network and the fact that a node may interact with all the others following the ring

order by flipping a single bond.

In order to recognize a node as the leader we must check it is the only one still eligible

in the network, i.e. that all the others have been marked as defeated. Let’s consider then

a network configuration where a single candidate is still eligible: we have that the second

phase protocol would create a bond between the candidate and its neighbor in the counter

clockwise direction, the bond would be flipped, in the same counter clockwise direction,

until another eligible candidate is found. Since there is only a single eligible candidate

the bond would be flipped through the whole ring until it reaches the initial node: actually

if self connections are allowed in our calculus we would end up having a loop bond on

the single candidate otherwise the bond would connect the candidate with its neighbor in

clockwise direction. In both cases the flipping protocol would stop. Let’s assume we do
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not admit self connections, the following rule recognizes the leader:

ωout : [d1](2x + 4y), [d0 + l0](1x + 3y)
ωout−→ [d1](2x + 4y), [d0 + l1](1x + 3y)

Once a leader has been elected, it can notify the others about its identity using again a

simple protocol that flips a bond through the network.

Since we never mentioned the network size in the algorithm description it should be

clear it is size independent.

Solving Leader Election in ps3c

As in the solution in ps2b we have a two phase algorithm. The main difference is we no

longer have bond flipping but we are allowed to create new bonds between nodes with

distance greater than one. Concretely this allows to decrease the distance between nodes

in the ring in a similar way we did before using bond flipping.

The first phase of the algorithm is identical to the one for ps2b while the second phase

is similar but we use a ternary rule and two special bonds. An isolated candidate is

first connected to its neighbor with distance equal to two, then a fight takes place if the

neighbor is a candidate as well otherwise a second bond is created connecting the isolated

candidate and the neighbor that before the first bond creation had distance three with the

isolated candidate. This is possible only because the first bond creation decreased by one

the distance between the isolated candidate and any neighbor with distance greater than

one. Again, after this second special bond is created, the first bond is deleted and a fight

takes place if the newly connected neighbor is an eligible candidate otherwise the process

iterates until another isolated candidate is found. It should be easy to see this is very

similar to the previous solution. For everything else the algorithm is identical to the one

for ps2b.

Clearly the creation rule cannot perfectly simulate the bond flipping, and this is the

reason we are using ps3c and not ps2c .
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4.7 Conclusion

We have considered a new family calculi suitable to describe polymeric structures and

analyzed its synchronization capabilities. This family, called psn has been defined ad

hoc and its smallest (less expressive) calculus ps2 is a subset for both the κ calculus and

nanoκ calculus.

The various calculi have been compared by assessing their capability in solving the

leader election problem and we considered two different scenarios: a fully connected

network and a ring network. The first scenario was rather unhelpful for any comparison

since we prove that the leader election is solvable in all the calculi considered by providing

a solving algorithm for the ps2 calculus: this holds because ps2 is a subset for both the κ

calculus and nanoκ calculus, and is also the less powerful representative of the psn family.

The ring network scenario is more interesting. We have that the psn family is unable

to solve the leader election in general but interestingly any given calculus psm ∈ psn can

solve the leader election when the ring network size is less than 2m− 1. This is due to the

fact that in psm we can synchronize m elements at a time. A corollary of these result is

that the psn retains a totally ordered hierarchy wrt the expressive power: psm+1 is strictly

more powerful than psm.

From a biological point of view our main proof in theorem 4.1 entails that the psn

calculus is not sufficient to describe a polymeric structure of any size whose components

must interact to deterministically produce a macro behavior. This is the case indeed only

for polymers whose size is bounded with respect to n, where we remind that n is the

maximum number of monomers that may interact simultaneously.

We have then showed that ps2 extended with the bond-flipping primitive, i.e. ps2b, and

ps3 with no constraint on bonds creation, i.e. ps3c , are enough to let monomers reach a

consensus. These results state the expressive power of the bond-flipping operation and

of bond creations that disregard any constraint. It is worth to notice that the algorithm

solving the problem for ps2b does not depend on the network size while all the other

considered in this chapter do.

The formalization we gave of the leader election problem is similar to the one given
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by Palamidessi in [45] and our non-existence result has a similar approach. The main

difference is that we had to deal with a much finer grained symmetry with respect to the

full symmetry used by Palamidessi. Our ps calculus is indeed able to break the initial

symmetry of the system but only to a certain degree. That is, full symmetry is easy to

break with ps but there is typically a symmetry induced by a well-balanced automorphism

which is unbreakable. This result depends on the degree of the automorphism and the

number of nodes allowed in the left hand side of rule.



Chapter 5

The Expressive Power of Synchronizations

In this chapter we leave completely our bio inspired world and present some results into

Theoretical Computer Science. This study has been actually inspired by our previous

work in chapters 3 and 4 and precisely by the insights on synchronizations among more

than two processes but the connection with bio inspired calculi goes no further. We are

interested in studying what we could call multi synchronization mechanisms within a well

established framework.

By the term synchronization we refer to a mechanism allowing two or more processes

to perform actions at the same time. In this chapter we study the expressive power of syn-

chronizations gathering more and more processes simultaneously. We demonstrate the

non-existence of a uniform, fully distributed translation of Milner’s CCS with synchro-

nizations of n + 1 processes into CCS with synchronizations of n processes that retains

a “reasonable” semantics. We then extend our study to CCS with more liberal synchro-

nizations allowing a process to perform both inputs and outputs at the same time. We

demonstrate that synchronizations containing more than three input/output items are en-

codable in those with three items, while there is an expressiveness gap between three and

two.

Finally we compare the introduced synchronization mechanisms with various choice

operator.
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5.1 Introduction

Process calculi propose several different synchronization mechanisms. In CCS and pi

calculus, the synchronization is between two processes, one sending a message and the

other receiving it [38, 42]. In CSP, the synchronization is among all the processes that

share a common channel name [8]. Join calculus has a programmable synchronization

mechanism – the joint inputs –, which allows one to define the channels whose messages

must be handled simultaneously [26]. Other calculi use joint input mechanisms, such as

smooth orchestrators [32] – an extension of asynchronous pi calculus to program web

services orchestrations – and strand algebras – a recent formalism proposed for DNA

computing [14].

Already in the first contribution about the join calculus, Fournet and Gonthier pre-

sented an encoding of the generic synchronizations to basic ones consisting of binary syn-

chronizations [26]. There are two problems with Fournet and Gonthier’s encoding. First,

their encoding introduced divergence and, in facts, it was proved correct with respect

to coupled simulation, which is unsensible to divergent computations. For this reason,

the encoding is not “reasonable” in the sense of Palamidessi [45]. Second, the encoding

cannot be considered “truly distributed” because it relies on the locality principle that

constrains co-defined channels to be co-located.

It is folklore in the Concurrency Theory community that some expressiveness gap

between the different forms of synchronizations must exists. For example, in a calculus

à la CCS without mixed choice it is not possible to elect one leader in a fully connected

network of (symmetric) processes without introducing divergence [45]. On the contrary,

if one extends CCS with a prefix [a1, a2].P, which enables P if there are two outputs on

a1 and a2, then leader election has the following simple solution. Let m be the processes

that wants to elect a leader, and let h = blog mc, where b·c returns the integer part of the

argument. Then the system (a1, · · · , ah)
∏

i∈1..m P1
i where

P`
i = a` | [a`, a`].P`+1

i (1 ≤ ` ≤ h − 1)

=

Ph
i = ah | [ah, ah].outi
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solves the leader election in a symmetric network. (When m = 3, Pi = a1 | [a1, a1].outi,

with i = 1, 2, 3.) In the sense that exactly one outk will be performed.

A precise account of our work follows. We extend CCS with a more powerful input

prefix [a1, · · · , an].P that gets simultaneously the outputs on a1, · · · , an and transits to P.

We define a family of process calculi, called CCSn, that retains input prefixes up-to n

names. In order to demonstrate the presence of an expressiveness gap between CCSn and

CCSn−1, we consider a well-known problem of resource condivision: the dining philoso-

phers problem. In facts, we consider a variant of it – the dining philosophers problem in

the hypercube – where the philosophers sit at the vertices of an hypercube of dimension

n, forks are at the angle, and a philosopher can grab forks at its own angles only. We

demonstrate that the problem may be solved in CCSn but not in CCSn−1 if the network of

philosophers is symmetric and the solution has no divergent behaviour (detailed later).

Then we compare the expressiveness of joint inputs with another well-known expres-

sive operation of CCS, the (guarded) choice. We show that input-guarded choice
∑

i∈I ai.Pi

may be easily encoded already in CCS2. However our solution for mixed-guarded choice∑
i∈I αi.Pi, where αi may be either input or output, is not satisfactory. In particular, our

solution works when two mixed choices never interact. This problem reveals a limitation

of CCSn (as well as in CCS-like calculi and join-like calculi): in synchronizations the

flow of information is in one direction only. If we admitted a more liberal synchroniza-

tion, such as [α, β].P, where α and β may be either inputs or outputs then there is a simple

encoding of mixed choice:

(`)(
∏
i∈I

[αi, `].[![Pi]!] | `) .

Related Works

The question about the expressive power of synchronization mechanisms dates back (at

least) to the eighties when Francez and Rodeh proposed a distributed, deterministic solu-

tion to the dining philosopher problem in CSP [27] and Lehmann and Rabin demonstrated

that such a solution does not exist in a language with a synchronization à la CCS [36].

After these results, our problem slept for about two decades, till a contribution by Nest-
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mann on the expressive power of joint inputs in pi calculus [43]. Nestmann demonstrated

that it is possible to encode the pi calculus with mixed choice into a pi calculus with joint

input; however he only conjectured the absence of an encoding from pi-calculus with

joint inputs into one with 2-ary joins. Other researches have obtained results similar to

our one for the so-called polyadic synchronizations, which are interactions confined to

two processes (and not to n) but using structured channel names [12, 3].

Apart these researches in process algebras, there are close results in biologically in-

spired calculi. Actually, the need of implementing biologically inspired calculi in pi cal-

culus has been our first motivation for studying the expressive power of synchronizations.

In Chapter 3 we demonstrated that it is not possible to encode the κ-calculus into one

admitting at most two reactants – the nanoκ calculus.

Structure of the chapter

In Section 5.2 we define the calculi CCSn. In Section 5.3 we analyze the expressive power

of CCSn with respect to CCSn−1 by studying the descriptions of the dining philosopher

problem in the n-hypercube. In Section 5.4 we compare the expressive power of guarded

choice and multi-synchronizations. In Section 5.5 we extend CCS into CCSn+ with a more

liberal multi-synchronizations where input and output can be mixed and show there is an

expressiveness gap between CCS2+ and CCS3+ while CCSn+ is encodable into CCS3+.

5.2 CCS with joint inputs

The syntax of CCSn, called n-join CCS, uses a countable set of names N , ranged over by

a, b, c, · · · , a countable set of co-names N , ranged over by a, b, c, · · · , and a countable set

of variablesV, ranged over by x, y, z, · · · .
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The syntax of CCSn is defined by the following grammar:

P ::= ” inaction

| a.P output

| [a1, · · · , am].P input (1 ≤ m ≤ n)

| (a)P restriction

| P | P parallel

| x variable

| rec x. P recursion

The process ′′ defines the terminated process; a.P defines a process that sends a message

on a and continues as P; the behavior [a1, · · · , am].P defines a process that receives si-

multaneously messages on a1, · · · , am and continues as P. The term a1, · · · , am represents

a multiset; so every permutation of its represents the same multiset (see the structural

congruence below). Tailings ′′ will be omitted. The parallel allows processes to inter-

act. We often abbreviate the parallel composition of Pi for i ∈ I, where I is a finite set,

with
∏

i∈I Pi. The restriction (a)P limits the scope of a to P; the name a is said to be

bound in (a)P. This is the only binding operator of names in CCSn. We write (̃a)P for

(a1) · · · (an)P, n ≥ 0. The free names in P, denoted en(P), are the names and co-names

in P with a non-bound occurrence. The term rec x.P defines a recursive process: a (free)

occurrence of the variable x in P stands for the whole rec x.P. We assume that variables

are always bound in processes.

The calculus CCS1 is Milner’s CCS without relabelling and choice [38]. We also

notice that inputs in CCSn have at most n messages. One might be stricter on this point,

by admitting inputs of CCSn with exactly n messages. However this is an unnecessary

constraint, since it is easy to encode inputs with less than n elements into a calculus

using only n-multi-synchronizations. For example [a1, · · · , an−1].P may be encoded as

(`)(` | [a1, · · · , an−1, `].P), with ` fresh. Said otherwise, CCSn−1 is (easily) encodable in

CCSn.

Next we define the labelled semantics of CCSn. There is a subtle issue regarding

restriction that deserves to be discussed in advance. Consider the process (a)([a, b].P |
a.Q) | b.R. This process has one τ transition into (a)(P | Q) | R however we are not able
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to derive this transition by means of rules like

P1
a,b−→ P′1 P2

a−→ P′2 P3
a−→ P′3

P1 | P2 | P3
τ−→ P′1 | P′2 | P′3

because of the restriction that encloses two processes only. To overcome this problem we

define rules that collect the synchronizing processes inside the proof tree, rather than in a

unique rule.

We use µ, µ′, · · · to range over either sequences of co-names or sequences of names or

the special symbol τ. The predicate a ∈ µ is true if either a or a occurs in the sequence µ,

otherwise it is false. Let a1, · · · , am \ a be the function returning

− τ, if a1, · · · , am = a,

− a2, · · · , am, if a1 = a and m ≥ 2,

− a1, (a2, · · · , am \ a), if a1 , a and a ∈ a2, · · · , am.

The function a1, · · · , am \ a is partial: it is not defined if a < a1, · · · , am. This func-

tion will be also applied to arguments that are both sequences: a1, · · · , am \ b1, · · · , b` =

(· · · (a1, · · · , am \ b1) \ · · · ) \ b`. Similarly we extend ∈ to sequences and write a1, · · · , am ∈
b1, · · · , b` if, for every i, ai ∈ (b1, · · · , b` \ a1, · · · , ai−1) (this is multiset containment).

The operational semantics of CCSn is defined by the following rules (plus the sym-

metric ones for |).
a.P

a−→ P [a1, · · · , am].P
a1,··· ,am−→ P

P
µ−→ Q a < µ

(a)P
µ−→ (a)Q

P{rec x.P/x}
µ−→ Q

rec x.P
µ−→ Q

P
µ−→ P′

P | Q µ−→ P′ | Q
P

a1,··· ,am−→ P′ Q
b1,··· ,bn−→ Q′

P | Q a1,··· ,am+n−→ P′ | Q′

P
a1,··· ,am−→ Q P′

a1,··· ,a`−→ Q′ a1, · · · , a` ∈ a1, · · · , am

P | P′ a1,··· ,am\a1,··· ,a`−→ Q | Q′
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All the rules are standard except synchronization that is defined by the last one. Processes

performing outputs are collected by the process performing the input. Every time the label

is updated according to the output process that has been recruited. When a simple input

label like a remains and the process recruits one emiting a, a τ transition is performed,

and no other process may be recruited. Similarly when the input label is a1, · · · , a` and the

recruited process has ` subprocesses performing ai, 1 ≤ i ≤ `, respectively. For example,

(a)([a, b].P | a.Q) | b.R τ−→ (a)(P | Q) | R because (a)([a, b].P | a.Q)
b−→ (a)(P | Q) and

b.R
b−→ R. Also (a)([a, b].P | (a.Q | b.R)

τ−→ (a)(P | Q) | R because [a, b].P
a,b−→ P and

a.Q | b.R a,b−→ Q | R (the synchronization between [a, b].P and a.Q | b.R should have not

been possible without labels a, b).

In the following we abbreviate P
τ−→∗ µ−→ τ−→∗ Q with P

µ
=⇒ Q.

In process calculi it is usual to equate processes that differ for alpha equivalence, the

abelian monoid law of | (associativity, commutativity and ′′ as identity), and the scope

laws
(a)′′ ≡′′, (a)(b)P ≡ (b)(a)P,

P | (a)Q ≡ (a)(P | Q), if z < en(P)

In addition, in CCSn, we also equate

[a1, · · · , am].P ≡ [ai1 , · · · , aim].P

when i1, · · · , im is a permutation of 1, · · · ,m.

Let structural congruence, noted ≡, be the least congruence containing the above laws.

In alternative to the labelled semantics, one may supply CCSn with a reduction semantics

consisting of the rule ∏
i∈1..n

ai.Pi | [a1, · · · , am].P −→
∏
i∈1..n

Pi | P

We have adhered to a labelled approach in order to ease our arguments in the technical

part (see Theorem 5.2).

Let ρ be a renaming, that is a map N → N , and let ρ(a) = ρ(a). Then ρ(P) is the

process where ρ has been applied homomorphically to every CCSn operator. Renamings

are ranged over by ρ, σ, · · · .
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5.3 The dining philosophers problem in the hypercube

The usual description of Dijkstra’s dining philosophers problem is the following [25].

There are m philosophers sitting around a table with exactly one fork in between them.

Philosophers go indefinitely through the following cycle: thinking, trying to eat, and

eating. In order to eat, a philosopher needs both the forks on his left and right sides;

when the two forks at his sides are free, the philosopher grabs them – one after the other

–, eats, and releases them (and starts thinking). The difficulty of the problem is when

every philosopher grabs the fork at his left. Then, to escape the deadlock, someone has to

release the fork. This fact, assuming that philosophers are identical, may get back to the

initial state, thus yielding a cycle.

The dining philosopher problem has been studied since long time. Solutions have

been proposed that totally order either forks or philosophers [16] or that use powerful

operators, such as the CSP synchronization [27], or probabilistic algorithms [36]. It is

worth to observe that the presence of, even simple, solutions of the problem do not in-

validate Lehmann and Rabin’s theorem in [36] (there is no deterministic, deadlock-free,

truly distributed and symmetric solution to the dining philosopher problem). But, rather,

as they already pointed out for the CSP solution in [27], that there is no truly distributed

implementation of the synchronization operators we are studying.

The generalization of the dining philosopher problem is when the philosophers sit at

the vertices of an hypercube and forks are at the edges. Thus every philosopher has n

neighbour philosophers and n adjacent forks. In this general problem, a philosopher eats

if he grabs all the n adjacent forks. The Figure 5.1 illustrates the cube and the forks (the

3-hypercube) where philosophers, represented by 3 bits, sit at the vertices and forks label

edges. In the case of the n-hypercube, the philosophers are represented by n bits – they are

2n – and the forks by unordered pairs of neighbour philosophers representations – they are

n× 2n−1. It is worth to notice that two philosophers are neighbours if their representations

differ for exactly one bit.

Few preliminary notions follow. We use b, b′, · · · to range over {0, 1} and b̃, b̃′, · · ·
to range over {0, 1}n (n bits). Let 0 ⊕ 0 = 0, 0 ⊕ 1 = 1 ⊕ 0 = 1 and 1 ⊕ 1 = 0
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Figure 5.1: The cube (3-hypercube) and the forks

and let b1 · · · bn ⊕ 1, the set of neighbours of b1 · · · bn, be {(b1 ⊕ 1)b2 · · · bn, b1(b2 ⊕
1)b3 · · · bn, · · · , b1b2b3 · · · (bn⊕1)}. Let also Fn, the forks of the n-hypercube, be { f{̃b,b̃′} | b̃ ∈
{0, 1}n and b̃′ ∈ b̃ ⊕ 1} and F b̃, the forks that are adjacent to the philosopher b̃, be

{ f{̃b,b̃′} | b̃′ ∈ b̃ ⊕ 1}, For example, when n = 3, the set F000 is { f{000,001}, f{000,010}, f{000,100}};
the set notation as index of a fork allows us to equate the forks f{000,001} and f{001,000}.

Dining philosophers in a hypercube network. A philosopher network N of size n is a

(2n + 1)-tuple 〈P 0···0, · · · , P 1···1,
∏

f∈F⊆Fn f 〉 where en(P b̃) = F b̃ ∪ F b̃ ∪ {eat b̃} and the

continuations of co-names f ∈ F b̃ in P b̃ are always empty. The above network N is

meant to represent the process

(Fn)(
∏

b̃∈{0,1}n
P b̃ |

∏
f∈F⊆Fn

f )

where P b̃ will be called the philosopher at vertex b̃ of the n-hypercube. N explicitly

represent (i) the distribution in the system of the various components of its, (ii) the fact

that forks are “passive” processes that may be accessed only by adjacent philosophers,

and (iii) that philosophers do not communicate directly.

We also impose another (natural) constraint: that philosophers have all identical code.

This is formalized by assuming that there are configurations of the network where the

codes of philosophers are equal up-to bijective renamings. (The notion of philosopher net-

work describes one of the possible reachable configurations where, for example, philoso-
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phers may be in different states.) In particular, in the initial configuration, all philosophers

are in the same state and no-one grabs any fork. We say that a philosopher network is sym-

metric if philosophers’ codes are identical up-to bijective renamings.

The issue of identical protocols. It is well-known that there are philosopher networks that

never manifest a deadlock even if philosophers have identical codes. The reason is that

philosophers might use different protocols for grabbing forks. For example, consider the

square. Assume that philosophers at even positions grab their right fork and philosophers

at odd position grab their left fork. While philosophers are all identical up-to renamings,

the competition between those at 00 and 01 and between those at 11 and 10 already

allow the progress of only two philosophers. The two “winning” philosophers either will

progress grabbing the remaining forks or will compete on a free fork. In any case, the

overall system progresses.

A philosopher network N of size n is deadlock-free if every maximal computation has

infinitely many actions in the set {eat b̃ | b̃ ∈ {0, 1}n}. (This is less demanding than livelock

freedom where every philosopher is guaranteed to eventually eat.) It is possible to define a

deadlock-free philosopher network of size n in CCSn. The solution is (Fn)(
∏

b̃∈{0,1}n Ph b̃ |∏
f∈Fn f ), where

Ph b̃ = rec x.[F b̃].eat b̃.(x |
∏
f∈F b̃

f )

(we encourage the reader to write the case n = 3). We also notice that, considering Ph 0̃,

every philosopher network of size n containing this process is deadlock-free.

An Hamiltonian cycle in the n-hypercube is a path traversing all the vertices of the

hypercube without repetition of edges. The following result is due to Alspach, Bermond

and Sotteau.

Theorem 5.1 ([5]) In the n-hypercube there exist bn/2c edge-disjoint Hamiltonian cycles.

Definition 5.1 An m-edge assignment in the n-hypercube (m ≤ n) is a map χ from nodes

to edges such that χ(̃b) ⊆ F b̃ and

• χ(̃b) is either empty or has cardinality m;
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• for every pairs of neighbours b̃, b̃′, χ(̃b) ∩ χ(b̃′) = ∅ (an edge is assigned to at most

one node).

An m-edge assignment χ in the n-hypercube

• is maximal if, for every m-edge assignment χ′ such that, for every b̃, χ(̃b) ⊆ χ′(̃b),

then χ = χ′ (no further m-edge assignment can be done);

• (when m < n) is saturated if it is maximal and, for every χ(̃b) , ∅, there exist

b̃′ ∈ b̃ ⊕ 1 such that F b̃ \ χ(̃b) ∩ F b̃′ , ∅ (some missing edge has been assigned to

an adjacent node).

Let S be a set of edges, we define S ↑̃b as the set {̃bb̃′ ↔ b̃b̃′′ | b̃′ ↔ b̃′′ ∈ S }. For

example {00 ↔ 01, 01 ↔ 11}↑1 is {100 ↔ 101, 101 ↔ 111}, namely a set of edges in the

cube.

Lemma 5.1 There exists a maximal n-edge assignment in the n-hypercube.

Proof. The cases of the square and the cube are left as an exercise. We demonstrate that,

(5.1)(a) for every n ≥ 4, there are two canonical maximal assignments in the

n-hypercube, called χn
[0] and χn

[3], such that, for every b̃:

χn
[0](̃b) = ∅ if and only if χn

[3](̃b) , ∅ .

Let χ4
[0] and χ4

[3] be

χ4
[0] assigns all the adjacent edges to 0000, 0110, 1011, and 1101 – see Figure 5.2;

χ4
[3] assigns all the adjacent edges to 0011, 0101, 1000, and 1110 – see Figure 5.3.
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Figure 5.2: The edge assignment χ4
[0]

It is easy to verify that both χ4
[0] and χ4

[3] satisfy (5.1)(a). Assuming χn
[0] and χn

[3] satisfy

(5.1)(a), let χn+1
[0] and χn+1

[3] be the following assignments:

χn+1
[0] (̃b) =



χn
[0](̃b

′)↑0 ∪ {0̃b′ ↔ 1̃b′} if b̃ = 0̃b′ and χn
[0](̃b

′) , ∅
∅ if b̃ = 0̃b′ and χn

[0](̃b
′) = ∅

χn
[3](̃b

′)↑1 ∪ {0̃b′ ↔ 1̃b′} if b̃ = 1̃b′ and χn
[3](̃b

′) , ∅
∅ if b̃ = 1̃b′ and χn

[3](̃b
′) = ∅

χn+1
[3] (̃b) =



χn
[3](̃b

′)↑0 ∪ {0̃b′ ↔ 1̃b′} if b̃ = 0̃b′ and χn
[3](̃b

′) , ∅
∅ if b̃ = 0̃b′ and χn

[3](̃b
′) = ∅

χn
[0](̃b

′)↑1 ∪ {0̃b′ ↔ 1̃b′} if b̃ = 1̃b′ and χn
[0](̃b

′) , ∅
∅ if b̃ = 1̃b′ and χn

[0](̃b
′) = ∅

The proof that χn+1
[0] and χn+1

[3] satisfy the constraints in (5.1)(a) follow directly by induction

and by definition. �

Lemma 5.2 There exists a saturated (n − 1)-edge assignment in the n-hypercube.

Proof. By cases on n.
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Figure 5.3: The edge assignment χ4
[3]

Case n = 2. The 2-hypercube is a square. A maximal 1-edge assignment is obtained

by giving to every node its right edge.

Case n = 3. The 3-hypercube is a cube, namely the cartesian product of two squares at

level 0 and 1, respectively. A maximal 2-edge assignment is obtained by taking the 1-edge

assignment of the case n = 2 for the square of level 0 – the vertices 000, 001, 010, 011

– and lifting it to a 2-edge assignment by assigning the edge between the two levels

to the corresponding vertices of level 0. Additionally, the assignment allocates 100 ↔
110, 100↔ 101 to 100 and 110↔ 111, 101↔ 111 to 111.

Case n = 4. The 4-hypercube is the cartesian product of two cubes at level 0 and 1, re-

spectively. A maximal 3-edge assignment is obtained by taking the 2-edge assignment of

the case n = 3 for the cube of level 0 – the vertices 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111

– and lifting it to a 3-edge assignment by assigning the forks between the two lev-

els to the corresponding vertices of level 0. Additionally, the assignment allocates the

edges 1010 ↔ 1110, 1010 ↔ 1011, 1010 ↔ 1000 to 1010, 1001 ↔ 1011, 1001 ↔
1000, 1001 ↔ 1101 to 1001, 1111 ↔ 1011, 1111 ↔ 1110, 1111 ↔ 1101 to 1111,

1100↔ 1101, 1100↔ 1110, 1100↔ 1000 to 1100.

Case n ≥ 5. The n-hypercube is the cartesian product of two (n − 1)-hypercubes at

level 0 and 1, respectively. Let χn−1
[0] be the maximal (n−1)-edge assignment for the (n−1)-
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hypercube defined in Proposition 5.1. We define χ, a maximal (n − 1)-edge assignment

for the n-hypercube, as follows:

• χ(0̃b) = χn−1
[0] (̃b)↑0;

• whenever χn−1
[0] (̃b0000) , ∅:

– χ(1̃b0000) = (χn−1
[0] (̃b0000)↑1 \ {1̃b0000↔ 1̃b0010}) ∪ {0̃b0000↔ 1̃b0000};

– χ(1̃b0110) = (χn−1
[0] (̃b0110)↑1 \ {1̃b0110↔ 1̃b0100}) ∪ {0̃b0110↔ 1̃b0110};

– χ(1̃b1011) = (χn−1
[0] (̃b1011)↑1 \ {1̃b1011↔ 1̃b1001}) ∪ {0̃b1011↔ 1̃b1011};

– χ(1̃b1101) = (χn−1
[0] (̃b1101)↑1 \ {1̃b1101↔ 1̃b1111}) ∪ {0̃b1101↔ 1̃b1101};

– χ(1̃b0010) = F1̃b0010 \ {1̃b0010↔ 1̃b0110};

– χ(1̃b0100) = F1̃b0100 \ {1̃b0100↔ 1̃b0000};

– χ(1̃b1001) = F1̃b1001 \ {1̃b1001↔ 1̃b1101};

– χ(1̃b1111) = F1̃b1111 \ {1̃b1111↔ 1̃b1011};

• whenever χn−1
[0] (̃b0011) , ∅:

– χ(1̃b0011) = (χn−1
[0] (̃b0011)↑1 \ {1̃b0011↔ 1̃b0111}) ∪ {0̃b0011↔ 1̃b0011};

– χ(1̃b0101) = (χn−1
[0] (̃b0101)↑1 \ {1̃b0001↔ 1̃b0101}) ∪ {0̃b0101↔ 1̃b0101};

– χ(1̃b1000) = (χn−1
[0] (̃b1000)↑1 \ {1̃b1000↔ 1̃b1100}) ∪ {0̃b1000↔ 1̃b1000};

– χ(1̃b1110) = (χn−1
[0] (̃b1110)↑1 \ {1̃b1110↔ 1̃b1010}) ∪ {0̃b1110↔ 1̃b1110};

– χ(1̃b0001) = F1̃b0001 \ {1̃b0001↔ 1̃b0011};

– χ(1̃b0111) = F1̃b0111 \ {1̃b0101↔ 1̃b0111};

– χ(1̃b1010) = F1̃b1010 \ {1̃b1010↔ 1̃b1000};

– χ(1̃b1100) = F1̃b1100 \ {1̃b1100↔ 1̃b1110};

• otherwise: χ(1̃b) = ∅.
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Informally, χ lifts the maximal (n − 1) edge assignment χn−1
[0] to the (n − 1)-hypercube

at level 0, and uses a modified version of χn−1
[0] for the (n − 1)-hypercube at level 1. In

particular, the edges in between the two levels are assigned to vertices at level 1, whilst

the same vertices leave exactly one edge in favour of new vertices that are adjacent to two

of them. We leave the reader to verify that either χ(̃b) = ∅ or χ(̃b) is a set of n − 1 forks.

The fact that χ is saturated follows directly by definition. �

Lemma 5.3 Let 1 ≤ m ≤ n − 2. There exists a saturated m-edge assignment in the

n-hypercube.

Proof. There are two cases: 1 ≤ m ≤ bn/2c and bn/2c + 1 ≤ m ≤ n − 2.

1 ≤ m ≤ bn/2c : By Theorem 5.1 there are bn/2c Hamiltonian cycles in the n-hypercube.

We consider m of them and we fix a direction for every cycle. The m-edge assign-

ment χ associates to every vertex its outgoing m edges. In this case χ(̃b) , ∅, for

every b̃, and it is easy to verify that it is saturated.

bn/2c + 1 ≤ m ≤ n − 2 : Let Hm+1 be an (m + 1)-hypercube. The n-hypercube is

Hm+1 × · · · × Hm+1︸                 ︷︷                 ︸
2n−(m+1)times

By Lemma 5.2, there exists a saturated m-edge assignment in Hm+1 and let it be

χ[m+1]. In the following of the proof, let b̃ range over {0, 1}n−(m+1). We define an

edge assignment χ′ of the n hypercube as follows:

χ′(̃bb̃′) = χ[m+1](b̃′)↑̃b .

By construction, χ′ is such that, for every b̃′′ there exist b̃′′′ ∈ b̃′′ ⊕ 1 with Fb̃′′ ∩
χ′(b̃′′) , ∅. However χ′ is not maximal because there are vertices b̃′′ with χ′(b̃′′) =

∅ and, yet, m unassigned edges in Fb̃′′ . These vertices had not enough adjacent unas-

signed edges in Hm+1, but have enough edges in the n-hypercube due to the presence

of n − (m + 1) further edges. Clearly, it is possible to extend χ′ by performing a

sequence of edge assignments. When no other edge assignment is possible, one

gets a χ that is maximal. It is also saturated because of the corresponding property

for χ′. �
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In a network philosopher system, a philosopher releasing a fork that he has just

grabbed cannot affect the behaviour of other philosophers because the communication

through the forks is asynchronous.For example, if the code of a philosopher is [ f1, f2, f3].( f2 |
f3 | P), the other philosophers will not distinguish it from the code [ f1].P. It is also pos-

sible to iterate the same argument after the first input. That is, in the cube, the code

[ f1, f2].( f2 | [ f2].( f1 | P)) is undistinguishable from [ f2].P. This asynchronicity is formal-

ized by the following auxiliary relation , which is the least one satisfying the rules:

P
f1,··· , fm
=⇒ g1

=⇒ · · · g`
=⇒ P′

g`+1
;

g1, · · · , g`+1 ⊆ f1, · · · , fm

h1, · · · , hκ = ( f1, · · · , fm \ g1, · · · , g`)

P
h1,··· ,hκ
 P′

P
f1,··· , fm
 P′ P′

f ′1 ,··· , f ′m′
=⇒ g1

=⇒ · · · g`
=⇒ P′′

g`+1
;

g1, · · · , g`+1 ⊆ f1, · · · , fm, f ′1 , · · · , f ′m′

h1, · · · , hκ = ( f1, · · · , fm, f ′1 , · · · , f ′m′ \ g1, · · · , g`)

P
h1,··· ,hκ
 P′′

It is worth to notice that  is an abbreviation for sequences of transitions labelled by

forks. Transitions labelled by eat are not considered and are never performed. In facts, the

above considerations about asynchrony are false for labels eat in a philosopher network.

In the second rule of , m + m′ ≤ n, otherwise a philosopher would try to grab a fork that

he already retains.

Theorem 5.2 Let P be the CCSn−1 code of a philosopher at vertex b̃ of the n-hypercube

that does not retain any fork. There exists a symmetric philosopher network N[P] having

P at position b̃ that is not deadlock-free.

Proof : Without loss of generality, we assume P be the process at vertex 0̃. Let P =

P 0̃

f 0̃
1 ,··· , f 0̃

m
 P′

0̃

g0̃
1,··· ,g0̃

m′−→ be the longest computation such that m + m′ = n, m < n and m′ < n,

and the other input transitions in P′
0̃

have labels with sequences longer than m′. Few

remarks are in order:
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– P 0̃ cannot output because he does not grab forks;

– there may be several different inputs due to nondeterminism: we are considering

one of them;

– by definition of , only input moves are possible in P′
0̃
.

If there is no finite longest computation as above then either P will block on an internal

action or it has a divergent computation. In any case, it is easy to define a philosopher

network N[P] that is not deadlock free. Otherwise, the argument is by cases on m.

1 ≤ m ≤ n − 2 : By Lemma 5.3, there exists a saturated m-edge assignment χ in the n-

hypercube. Let { f 0̃
1 , · · · , f 0̃

m} = χ(̃0) and let N[P] be the network such that Pb̃ =

ρb̃(P0̃) with ρb̃({ f 0̃
1 , · · · , f 0̃

m}) = χ(̃b). Since χ is saturated, there exists a computation

N[P] =⇒ N′, where the philosopher at b̃ is either in the state P′
b̃

or in a state

reachable from Pb̃ with internal moves. In both cases, because χ is saturated, he

cannot perform either the transition
gb̃

1,··· ,gb̃
m′−→ or the transition

f b̃
1 ,··· , f b̃

m
=⇒ . So the network

is deadlocked.

m = n − 1 : Let χ be the saturated (n − 1)-fork assignment of Lemma 5.2. We define the

renaming ρb̃ from P 0̃ to P b̃ in such a way that ρb̃({ f 0̃
1 , · · · , f 0̃

n−1}) = χ(̃b). The proof

is similar to the previous case. �

It is worth to observe that Theorem 5.2 also holds when P retains at most dn/2e
forks because, in these cases, it is possible to define a symmetric philosopher network.

As a consequence of Theorem 5.2, it is possible to demonstrate that CCSn is not en-

codable into CCSn−1, under certain requirements for the notion of encoding. Following

Palamidessi [59], let [![·]!] be uniform if

– it is compositional;

– it is renaming preserving, namely for every injective renaming θ on names of P

there exists an injective renaming θ′ such that [![(θ)(P)]!] = (θ′)([![P]!])
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Compositionality ensures that the encoding of a compound process must be expressed in

terms of the encoding of its components. However, in a distributed context (as the one of

philosophers networks), the requirement of compositionality is usually strengthened by

requiring the homomorphism with respect to “ |”, namely

[![P | Q]!] = [![P]!] | [![Q]!]

that is, the encoding must preserve the degree of distribution of the processes (parallel

processes remain in parallel) and cannot introduce additional processes that might act as

coordinators.

The requirement of renaming preserving means that the encoding does not depend on

the identity of free (channel) names, which is understandable as long as one wants liberal

installations of processes in the network. We assume that the renamings θ and θ′ map

names into names (the encoding uses a strict renaming policy [3]). In addition, as in [45],

Section 7, the renaming preserving constraint is strengthened into θ(a) = θ′(a), for every

relevant free name. This strengthening aims at substantiating that external resources must

be accessed in the same way by the process and every encoding of its, hence encodings

cannot rename them. In the dining philosopher networks, the relevant free name are the

forks and names eat. Therefore we will assume θ( f̃b,b̃′) = θ′( f̃b,b̃′) and θ(eatb̃) = θ′(eatb̃).

Let [![·]!] be semantically reasonable if it preserves the relevant observables and the

termination properties. Usually, the observables that are relevant in a concurrent scenario

are the sequence of interactions with possible parallel contexts. As regards termination,

reasonableness constrains the encoding in not introducing divergence.

Corollary 5.1 There exists no uniform, semantically reasonable encoding of CCSn into

CCSn−1.

Proof : Assume to the contrary that [![·]!] is a uniform, semantically reasonable encoding

of CCSn into CCSn−1. Take the philosopher code in CCSn:

Ph 0̃ = [ f1, · · · , fn].eat 0̃.

(
∏

f∈F 0̃
f | rec x.[ f1, · · · , fn].eat 0̃.(

∏
f∈F 0̃

f | x))
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where f1, · · · , fn are the forks adjacent to the philosopher at 0̃. It is worth to notice

that the network is deadlock free for every possible permutation of forks in the prefixes

[ f1, · · · , fn] because, in this case, the philosopher is grabbing all his adjacent forks at a

time.

By Theorem 5.2, there exists a family ρ0̃,̃b of bijective renamings such that the process∏
b̃∈{0,1}n

ρ0̃,̃b([![Ph 0̃]!])

when put in the context (Fn)([ ] | ∏
f∈Fn f ) is not deadlock free.

The renamings ρ0̃,̃b map forks adjacent to 0̃ to forks adjacent to b̃ and eat0̃ to eatb̃.

Let Ph′
0̃

= eat 0̃.(
∏

f∈F 0̃
f | rec x.[ f1, · · · , fn].eat 0̃.(

∏
f∈F 0̃

f | x)). Because the encoding is

compositional:

[![Ph 0̃]!] = C f1,···, fn[[![Ph′
0̃
]!]]

where C f1,··· , fn[·] is a context encoding the joint input [ f1, · · · , fn]. Hence, since [![·]!] is

uniform and ρ0̃,̃b is a bijective renaming:

ρ0̃,̃b([![Ph 0̃]!]) = ρ0̃,̃b(C f1,··· , fn[[![Ph′
0̃
]!]] )

= Cρ0̃,̃b( f1),··· ,ρ0̃,̃b( fn)[ρ0̃,̃b([![Ph′
0̃
]!])]

= Cρ0̃,̃b( f1),··· ,ρ0̃,̃b( fn)[[![ρ0̃,̃b(Ph′
0̃
)]!]]

= [![ρ0̃,̃b(Ph 0̃)]!]

We conclude by taking the process in CCSn

∏
b̃∈{0,1}n

ρ0̃,̃b(Ph 0̃) .

This process, when put in the context (Fn)([ ] | ∏
f∈Fn f ), has a deadlock free behaviour,

while its encoding [![·]!] is not, contradicting our assumption. �

We notice that a similar result may be proved for mobile calculi à la pi calculus with

joint inputs that are reminiscent of join calculus [26]. One such language is described

in [32, 43].
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5.4 Choices and joint inputs

As discussed in the previous section, joint inputs are rather expressive. In this section

we compare them with another well-known expressive operation of CCS, the (guarded)

choice. In the following [a].P is abbreviated into a.P.

The input guarded choice in CCS, written
∑

i∈I ai.Pi, is defined by the transition rule∑
i∈I ai.Pi

a j−→ P j. There is a straightforward encoding of the input guarded choice in

CCS2:

[![
∑
i∈I

ai.Pi]!] = (`)(
∏
i∈I

[ai, `].[![Pi]!] | `) (5.1)

where ` < en(
∑

i∈I ai.Pi). (The encoding is uniform and semantically reasonable: it is

possible to demonstrate that P
α−→ P′ if and only if [![P]!]

α−→≡ [![P′]!].) Of course, this

translation is not original: it have already been used in join calculus to implement input

guarded choice.

A choice operation that is more expressive then input guarded choice is the mixed

choice [44], written
∑

i∈I αi.Pi, where αi ∈ N ∪ N . This choice may be encoded in CCS2

plus output-guarded choices as follows. Let I = I′ ∪ I′′ such that {αi | i ∈ I′} ⊆ N and

{αi | i ∈ I′′} ⊆ N . Then

[![
∑
i∈I

αi.Pi]!] = (`)(
∏
i∈I′

[αi, `].[![Pi]!] | (` +
∑
j∈I′′

α j.[![P j]!]))

(the correctness of the encoding may be proved similarly to the case of input-guarded

choice). In this case, the output guarded choices seem to be necessary and we are not

aware of any uniform and semantically reasonable encoding of mixed choice into CCS2.

The above remark paves the way for a calculus alternative to CCSn. In facts, there is

a solution of the problem of encoding mixed choice in a choice-free calculus by replac-

ing joint inputs with joint prefixes. Let CCS2+ be the extension of CCS2 with prefixes

[α1, α2].P, where αi ∈ N ∪N . We will define the semantics of CCS2+ in the next section;

for the time being we rely on reader’s intuition. Then the mixed choice
∑

i∈I αi.Pi may be

encoded in a similar way to (5.1):

[![
∑
i∈I

αi.Pi]!] = (`)(
∏
i∈I

[αi, `].[![Pi]!] | `)
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For example, [![a.P + b.Q]!] is (`)([a, `].[![P]!] | [b, `].[![Q]!] | `). It is worth to notice

that in CCS2+, unlike CCS2, it is possible that more than two processes do synchronize.

For example the process in CCS with mixed choice

(a.P + b.Q) | (a.P′ + b.Q′)

is translated into
(`)([a, `].[![P]!] | [b, `].[![Q]!] | `)
| (`′)([a, `′].[![P′]!] | [b, `′].[![Q′]!] | `′)

that requires four parallel processes to sort out the right choices. As we will discuss below,

in CCS2+, there is no upper bound to the number of processes that synchronize.

5.5 CCS with joint prefixes

Let α, possibly indexed, range over N ∪ N and let a = a. The calculus CCSn+, called

CCS with n-joint prefixes, is CCSn where outputs and inputs are replaced by the n-joint

prefix

[α1, · · · , αm].P

with 1 ≤ m ≤ n. As for CCSn, the term α1, · · · , αm represents a sequence (now of names

and co-names). With an abuse of notation, let µ, η range over sequences α1, · · · , αn and

τ; let ν range over sequences α1, · · · , αn or ε (the empty sequence). Let ν = α1, · · · , αn if

ν = α1, · · · , αn, ν = ε if ν = ε. Let also α ∈ µ if α occurs in µ. When α ∈ µ, let ν \ α be

– ε if ν = α;

– α2, · · · , αm, if ν = α, α2, · · · , αm;

– α1, (α2, · · · , αm) \ α, otherwise.

The operations ∈ and \ are extended to sequences of prefixes as follows:

– ε ∈ µ and µ \ ε = µ;

– µ \ (α1, · · · , αm) = (· · · (µ \ α1) \ · · · \ αm);
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– α1, · · · , αm ∈ µ if, for every i, αi ∈ (µ \ (α1, · · · , αi−1)).

The operational semantics of CCSn+ is defined by the following rules (plus the sym-

metric ones for | and where we are letting ε, ε = τ):

[α1, · · · , αn].P
α1,··· ,αn−→ P

P
µ−→ Q a < µ

(a)P
µ−→ (a)Q

P{rec x.P/x}
µ−→ Q

rec x.P
µ−→ Q

P
µ−→ Q

P | P′ µ−→ Q | P′

P
µ−→ Q P′

η−→ Q′

µ , τ , η ν ∈ µ ν ∈ η

P | P′ µ\ν,η\ν−→ Q | Q′

The main difference with the transition relation of CCSn is that there is no collector of

the synchronizing processes – in CCSn this role was played by the input process – but

they aggregate two by two in a more symmetric way. This pairwise aggregation may

not cause any synchronization, which is the case when ν = ε – in a similar way to the

aggregation of outputs in CCSn. On the contrary, the sychronization is complete when

the two processes in parallel show up matching sequences. For example, the process

(a)([a, b].P | [a, c].Q) | [b, c].R has one τ transition into (a)(P | Q) | R that follows

by collecting first [a, b].P and [a, c].Q and then [b, c].R. The collection of the first two

processes produces a “residual” label b, c that matches with the label of the third process.

No other process needs to be collected because the result of the match is ε, ε, which

represents a τ move.

Proposition 5.1 Let n ≥ 3. There exists a uniform, semantically reasonable encoding of

CCSn+ into CCS3+.
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Proof : The encoding [![·]!] is homomorphic with respect to every operation except the

prefix [α1, · · · , αn].P whose definition is:

[![[α1, · · · , αn].P]!] = (`1, · · · , `n)( [`1, α1, `2].′′

| [`2, α2, `3].′′

· · ·
| [`n, αn, `1].[![P]!] )

It is easy to prove that P
µ−→ P′ if and only if [![P]!]

µ−→≡ [![P′]!], where ≡ is the same

of the one defined for CCSn. �

However there is an expressiveness gap between two and three that may be disclosed

by studying the dining philosopher problem in the cube. The point is that, in CCS2+

it is possible to synchronize as many processes as needed but with the overall effect of

exposing at most two labels. This is too restrictive when resources must be grabbed at

once, as in the case of the dining philosophers. We omit the proof because it is similar to

the Corollary 5.1.

Proposition 5.2 There exists no uniform, semantically reasonable encoding of CCS3+

into CCS2+.

The relationship between CCS2+ and the hierarchy CCSn remains an open issue. For

example, it is possible to encode the mixed choice into CCS2+. Let I = I′ ∪ I′′ such that

{αi | i ∈ I′} ⊆ N and {αi | i ∈ I′′} ⊆ N . Then

[![
∑

i∈I αi.Pi]!] = (`, `′, `′′)(
∏

i∈I′[αi, `].[![Pi]!]

| ∏
i∈I′[`′′, α j].[![P j]!]

| [`, `′].′′ | [`′, `′′].′′ | `′
)

On the contrary, we have not been able to define a uniform, semantically reasonable en-

coding of mixed choice in CCSn.
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Chapter 6

Conclusions

Much work still needs to be done in the conjunction process between Systems Biology

and Computer Science. So far researchers from Concurrency Theory field have provided

many formalisms for the modeling and the analysis of biological systems. Most of them

are bio-inspired and tailored to model a specific aspect of biological systems. In this thesis

we have focused on two of the most interesting (family of) formalisms and tried to enrich

their formal study by providing various expressiveness results.

We have established a bridge between the MDB calculus, whose primitives are in-

spired by membrane fusion and fission processes and Simple SA systems, whose oper-

ations are purely based on communication of objects and closely related to the biologic

trans-membrane communication by coupling chemicals. We concretely provide an en-

coding of Simple SA into MDB. An example of a translation of a simplified sodium–

potassium pump model is given in order to explain how the encoding works. Since the

MDB calculus is not Turing equivalent our encoding entails Simple SA as a lower bound

for the expressive power of MDB.

We addressed the issue of local-implementation between κ and nanoκ. We give a

positive answer to the local-implementation of κ in nanoκ that is divergent and we show

the nonexistence of deterministic solutions retaining “reasonable” properties. The main

negative consequence of this last result is the impossibility of implementing a stochastic

version of κ in nanoκ (or pi calculus) by preserving the distribution of rates (see [17]).

We investigated the leader election problem within the κ family and introduced a new
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sub family called psn in order to characterize the primitives required to solve the prob-

lem by the various calculi. Specifically we attempted to compare the calculi by testing

their capability in solving the leader election problem in two different scenarios: a fully

connected symmetric network and a ring symmetric network. The fully connected net-

work turned out to be a weak comparison ground since every calculi was able to solve the

problem in this scenario. The only interesting point is that we provide a unique solving

algorithm for κ, nanoκ and the whole psn family. Further investigation within the ring

scenario pointed out that the synchronization degree, i.e. the number of elements we al-

low to communicate simultaneously, has an important role in this context. We show that

the psn family, where n stands for the maximum number of molecules allowed to react

simultaneously, is unable to solve the leader election in general but interestingly any given

calculus psm can solve the leader election when the ring network size is less than 2m − 1.

This is due to the fact that in psm we can synchronize m elements at a time. A corollary

of these result is that the psn family retains a totally ordered hierarchy wrt the expressive

power: psm+1 is strictly more powerful than psm. We then show how to extend the less

powerful calculus of the psn family, i.e. ps2, in order to solve the problem in the ring net-

work. One such extension is obtained adding the bond-flipping primitive of nanoκ, and

another by allowing rules with synchronization degree equal to three and bonds creation

with no constraint.1 The first extension is a sub calculus for nanoκ and the latter for κ

while the converse is not true. It is worth to notice that the algorithm solving the problem

for the first extension does not depend on the network size while all the other considered

in this chapter do.

Mostly inspired by the synchronization mechanisms of the κ family, we investigated

the power of multi-synchronizations from a purely theoretical point of view within the

framework of a well known calculi such as CCS. We demonstrated that a uniform, fully

distributed translation of Milner’s CCS with multi input synchronizations of n + 1 pro-

cesses into CCS with multi input synchronizations of n processes that retains a “reason-

able” semantics does not exist. We then extended our study to CCS with a more powerful

multi-synchronization mechanism allowing a process to perform both inputs and outputs

1As detailed in Chapter 4 ps has some restrictions on rules.
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at the same time. We show that synchronizations containing more than three input/output

items are encodable in those with three items, while there is an expressiveness gap be-

tween three and two. The multi-synchronization seems a rather powerful primitive and an

interesting goal for the near future will be to investigate how it is affected by asynchronous

scenarios.

Several expressiveness results for bio-inspired languages with a strong focus on the κ

family have been illustrated throughout this thesis and, along with some detour in Theo-

retical Computer Science, hopefully our initial goal has been satisfied.
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