
ALMA MATER STUDIORUM
UNIVERSITY OF BOLOGNA

ARCES - ADVANCED RESEARCH CENTRE ON ELECTRONIC SYSTEMS
FOR INFORMATION AND COMMUNICATION TECHNOLOGIES E. DE CASTRO

Architectures for Context Aware
Services in Smart Environments

Daniele Manzaroli

PhD Coordinator Supervisor

_______________ ________________

PHD. THESIS
January, 2007 – December, 2009

PHD PROGRAM IN INFORMATION TECHNOLOGY

CYCLE XXII – ING-INF/05

Prof. Tullio Salmon Cinotti Prof. Claudio Fiegna

Architectures for Context-Aware Services in Smart Environments

2

With a special feeling of gratitude, I dedicate this work to my family for all the love given to me

Architectures for Context-Aware Services in Smart Environments

3

May 2010 – Bologna

Architectures for Context-Aware Services in Smart Environments

4

Keywords

Context Awareness

Smart Environment

Interoperability

Architectures for cross-domain applications

Platforms for interoperable services

Architectures for Context-Aware Services in Smart Environments

5

Architectures for Context-Aware Services in Smart Environments

6

I – TABLE OF CONTENTS

II – INDEX OF FIGURES..8

1.1 THESIS STRUCTURE... 11

2 AN ARCHITECTURE FOR INTEROPERABILITY: REQUIREMENTS AND PRINCIPLES....... 12

3 RELATED WORK.. 18

3.1 COMPARISON OF INTEROPERABILITY MODELS.. 18
3.2 APPLICATION DOMAINS... 20
3.3 CONTEXT.. 22
3.4 CONTEXT-AWARE ARCHITECTURES... 24

4 RESEARCH FRAMEWORKS .. 26

4.1 EUROPEAN NETWORK OF EXCELLENCE ON CULTURAL HERITAGE (EPOCH) 27
4.2 JOINT RESEARCH TELECOM ITALIA LAB ... 28
4.3 EUROPEAN TECHNOLOGY PLATFORM ON EMBEDDED SYSTEM (SOFIA).............................. 28

5 ARCHITECTURES AND PLATFORMS .. 30

5.1 MULTIMEDIA GUIDE FOR MUSEUMS AND ARCHAEOLOGICAL SITES... 31
5.2 A CONTEXT-AWARE PLATFORM FOR CULTURAL HERITAGE APPLICATIONS AND SERVICES.. 33

5.2.1 MobiComp: a context management solution for Cultural Heritage....................................... 35
5.2.2 Device and language interoperability for MobiComp.. 38
5.2.3 Multi programming languages: MobiComp Enabler Library 40
5.2.4 Context-aware application broker .. 42
5.2.5 FEDORA content management system.. 44
5.2.6 Tool chain for Cultural Heritage sites .. 45

5.2.6.1 Monitoring, Tracking guiding and data collection service .. 46
5.2.6.2 Access detection service ... 47
5.2.6.3 Presence monitoring service.. 49
5.2.6.4 Statistics on visitors flow.. 51
5.2.6.5 People tracking service... 52
5.2.6.6 Pedestrian navigation support ... 53

5.3 USER PREFERENCES IN SERVICE PLATFORMS... 55
5.3.1 Preference based information processing model ...57

5.4 AN INTEROPERABILITY PLATFORM FOR SMART SPACES.. 59
5.4.1 Smart-M3 and interoperable context management solution... 61
5.4.2 Integrated service and information interoperability.. 63

5.4.2.1 Application of Integrated Service and Information Interoperability .. 67
5.4.3 Service discovery and access control proposal ... 70

6 CONCLUSIONS ... 74

PUBLICATIONS ... 80

BIBLIOGRAPHY .. 82

TOOLS .. 90

ACRONYMS... 92

ACKNOWLEDGEMENTS .. 94

Architectures for Context-Aware Services in Smart Environments

7

Architectures for Context-Aware Services in Smart Environments

8

II – Index of Figures

FIGURE 1: INTEROPERABILITY ENABLING ARCHITECTURE COMPONENTS. APPLICATIONS OR SERVICES

FOR SE COULD BE MADE BY EXPLOITING ONE OR MORE OF THESE COMPONENTS......................... 13

FIGURE 2: THE CLASSIFICATION FRAMEWORK OF CONTEXT-AWARE SYSTEMS [21] 25

FIGURE 3: TWO WHYRE VIEWS (LEFT AND CENTRE). ON THE RIGHT A MUSEUM USE CASE WHERE A

VISITOR WEARING THE WHYRE CAN ENJOY MULTIMEDIA CONTENTS WHILE SENSORS LOCALIZE

HIM IN TERMS OF POSITION AND ORIENTATION... 31

FIGURE 4: MINIMALISTIC ARCHITECTURE FOR AN APPLICATION SPECIFIC SYSTEM................................ 32

FIGURE 5: SCHEMATIC VIEW OF THE ARCHITECTURE ADOPTED IN EPOCH. IT PROVIDES CONTEXT,
PREFERENCES, PROFILE AND CONTENT MANAGEMENT. PART OF THE ARCHITECTURE WAS

DEDICATED TO SERVICE MANAGEMENT FOR THE END USER.. 34

FIGURE 6: MOBICOMP ARCHITECTURE... 35

FIGURE 7: ABSTRACT VIEW OF A MOBICOMP APPLICATION: AN AGGREGATOR PRODUCES NEW CONTEXT

DATA BY PROCESSING ALREADY AVAILABLE INFORMATION; A LISTENER GETS CONTEXT

INFORMATION FROM THE CONTEXT STORE, E.G. FOR MONITORING PURPOSES............................... 37

FIGURE 8: MMPI ARCHITECTURE... 38

FIGURE 9: MMPI MESSAGE TRACKING UML SEQUENCE DIAGRAM.. 39

FIGURE 10: MOBICOMP WRAPPER MODEL. NON-JAVA APPLICATIONS CAN USE MOBICOMP WITH THIS

METHOD .. 40

FIGURE 11: LIST OF MOBICOMP ACTORS CLASSES.. 41

FIGURE 12: CAB ARCHITECTURE ENHANCED BY THE CONTEXT ACCESS SERVICE PROVIDED BY MMPI.
THE CAB SERVICE IS CUSTOMIZED ON THE CLIENT SIDE BY USING USER PREFERENCES, PROFILE

AND CONTEXT. IT IS BASED ON THE HTTP COMMUNICATION PROTOCOL. 42

FIGURE 13: SCHEMATIC VIEW OF THE FINAL ARCHITECTURE DEVELOPED UNDER THE EPOCH PROJECT44

FIGURE 14: STRUCTURE OF A GENERIC MOBICOMP APPLICATION. ACTORS MEANS MOBICOMP JAVA

CLASSES THAT IMPLEMENT A LISTENER, A TRACKER OR AN AGGREGATOR.................................. 45

FIGURE 15: LAYERED STRUCTURE OF A “VISITOR GUIDE” CIMAD APPLICATION. THIS IS A GENERIC

EXAMPLE ON HOW ALL COMPONENTS CAN BE PUT TOGETHER TO BUILD A CIMAD APPLICATION

FOLLOWING THE MVC PATTERN. .. 46

FIGURE 16: ON THE LEFT THE STEREO CAMERA FIELD-OF-VIEW. ON THE RIGHT THE STEREO CAMERA

INSTALLED IN A MUSEUM ACCESS GATE (STH-MDCS2-C VIDERE DESIGN). 47

FIGURE 17: VTS PROGRAM SCREENSHOTS. PEOPLE UNDER THE STEREO CAMERA ARE TAGGED WITH A

COLORED CUBE. THE VTS COUNTS THE PEOPLE CROSSING THE GREEN VIRTUAL LINE.................. 48

FIGURE 18: INTEGRATION OF THE STEREO VISION BASED TRACKING SYSTEM.. 49

FIGURE 19: REAL TIME VISITORS FLOW INDICATOR. .. 49

FIGURE 21: PEDESTRIAN NAVIGATION SUPPORT: A USER WITH A MOBILE DEVICE - ENRICHED WITH A

WIRELESS INERTIAL MOTION SENSOR BOARD –ENJOYS THE PEDESTRIAN NAVIGATION SERVICE .
THE PATH TO THE TARGET AND THE DIRECTION TO FOLLOW ARE SHOWN (SCREENSHOT ON THE

RIGHT) ... 54

FIGURE 22: ARCHITECTURE COMPONENTS FOR A PREFERENCE AND CONTEXT BASED RECOMMENDATION

SERVICE... 55

FIGURE 23. CONTEXT MANAGEMENT ARCHITECTURE [75] ... 56

FIGURE 25: AN ARCHITECTURE EXAMPLE WHERE INFORMATION SEMANTICS IS HANDLED UNDER

ONTOLOGIES CONSTRAINS. THIS IMPROVES THE INTEROPERABILITY AT INFORMATION LEVEL 60

FIGURE 26: SMART-M3 FUNCTIONAL AND LOGICAL ARCHITECTURE...61

Architectures for Context-Aware Services in Smart Environments

9

FIGURE 27: OVERVIEW OF THE OSGI AND SMART-M3 INTEGRATION.. 65

FIGURE 28: INTEGRATED SMART-M3/OSGI SOLUTION ... 66

FIGURE 29: SYSTEM ARCHITECTURE OF THE MAINTENANCE SCENARIO DEMONSTRATION 68

FIGURE 30: SOFTWARE ARCHITECTURE OF THE MAINTENANCE SCENARIO DEMONSTRATION IN TERMS

OF KPS .. 69

FIGURE 31: SNAPSHOT OF THE ONTOLOGY USED FOR THE MAINTENANCE SCENARIO........................... 69

FIGURE 32: THE ENVIRONMENT CAN BE SPLIT IN MANY SES. EVERY SE CAN CONTAIN ONE OR MORE SS,
DEPENDING ON THE USE CASE. .. 70

FIGURE 33: AN EXAMPLE ON HOW TO MODEL THE TOPOLOGY OF THE AVAILABLE SSS AND CORE SERVICE

... 71

FIGURE 34: ARCHITECTURE COMPONENTS FOR EXTENDED INTEROPERABILITY 75

FIGURE 33: FROM DEDICATED CONTEXT-AWARE PLATFORMS TO INTEROPERABLE SMART SPACES FOR

MULTI -DOMAIN CONTEXT AWARE SERVICES.. 76

Architectures for Context-Aware Services in Smart Environments

10

Chapter 1

Introduction

Technology provides power to modern devices. Power needs control and control

requires an infrastructure.

Examples of modern devices relying on an infrastructure include smart phones,

PDAs, RFID tags and readers but also sensing devices spread in the environment such

as temperature, humidity and light sensors, inertial sensors, camera and many others.

They are integrated through an infrastructure to impact people behaviour and life

style.

The infrastructures are architecture implementations; they enable the just mentioned

technology products to interact and co-operate, share and exchange information and

they behave like a Service Oriented Architecture (SOA); the services provided have

the ability to adapt to the user situation, profile and preferences; in other words they

are context-aware services.

In my thesis I will review the history of my research activity on interoperable context-

aware computing. At the beginning interoperability was not considered an issue, as

the focus was on using sensors in a specific application with a specific device, namely

guiding museum and archaeological sites visitors with a context-aware multimedia

guide.

Then the context-awareness concept was extended to the cultural heritage domain

aiming to multiple services for many user profiles in cultural heritage applications.

This led to two requirements: the need to share among multiple services information

originating from sensors and the devices spread in the environment, and the need for

service interoperability across multivendor devices.

Architectures for Context-Aware Services in Smart Environments

11

Eventually the focus was further extended beyond cultural heritage towards multi-

domain and also cross-domain applications (such as for example, personal healthcare,

city and domestic smart services), bringing in a clear requirement for information

level interoperability, which is considered the enabling factor for a new industry of

context-aware multi-domain services. In fact, an architecture that supports

interoperability of information originating from the environment will allow to develop

applications easily without the constrain of knowing everything about the new

technologies involved in any new project.

A lot of research worldwide is currently investigating architecture solutions to support

inter-communication and data sharing between multi-vendor devices. Interoperability

is usually considered the ability of heterogeneous devices to interoperate – i.e. to

interact and exchange semantically meaningful information – without the need to a-

priori know each other communication protocols and information representation

models.

My research activity in this area was carried out at the University of Bologna and

partially at VTT (Technical Research Centre of Finland) in Oulu, mostly within the

framework of European Projects and Networks of Excellence, but also within joint

research projects between the University of Bologna and the Italian industry.

1.1 Thesis structure

The rest of this document is organized as follows. In chapter 2 research are and the

principles that drive the research are shown. Related work and the state of the art are

described in chapter 3. Chapter 4 is dedicated to detail projects and networks

associated to my work. All work done is detailed in chapter 5. In chapter 6 conclusion

are drawn. Chapter 7 is dedicated to my publications. The list of references is reported

in chapter 8. Design time tools and acronyms are explained respectively in chapter 9

and 10.

Architectures for Context-Aware Services in Smart Environments

12

Chapter 2

An architecture for interoperability:

requirements and principles

Provide a zero-effort interface between machine and human is one of the key aspects

of this research. The goal is to achieve a smooth interaction – for both end-user and

developers – based on human desires and not on the machine world rules for a novel

form of Human-Computer Interaction (HCI)1.

Smart Environment (SE) is intended as an environment with an associated digital

representation called Smart Space (SS) [1] that is a named search extent of

information. In a SE it should be possible – by using an own personal mobile device –

to share context information2. Both content and service fruition should be possible

and they can be both context and device performance driven. Innovative applications

could be developed because developers have more freedom by operating on ready to

use infrastructure. These applications will be called Smart Applications (SA).

1 Definition: Human-Computer Interaction (HCI) is a discipline concerned with the design, evaluation
and implementation of interactive computing systems for human use and with the study of major
phenomena surrounding them. -- 1992, SIGCHI Curriculum Development Group
2 Context Definition by Dey, Abowd & Salber (2001): "Context is any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and application themselves"

Architectures for Context-Aware Services in Smart Environments

13

So far no context management system has been standardized yet, nor there are

solutions that can be considered de-facto standards but there are many approaches and

many architecture hypothesis, which depend on the inspiring principles.

Interoperability at different levels could be reachable by using an architecture that is

able to support modules shown in Fig.1 that can be involved depending on the use

case. So, not all of these components are always required.

With reference to Fig. 1, a Communication and Connectivity Infrastructure is needed

to be able to interact with other actors on user or device level. An advanced

middleware is necessary to overcome issues like:

• which communication channel is available?
• which is the best one?
• How can a Bluetooth device exchange information with another device

with a WiFi interface?

Figure 1: Interoperability enabling architecture components.
Applications or services for SE could be made by exploiting

one or more of these components

Architectures for Context-Aware Services in Smart Environments

14

In the other levels you may find:

A Context Management System is the infrastructure component to keep track of a

digital representation of the environment and of the interaction between the user and

the environment itself.

A Content Management System can be involved generally when content must be

distribute – and/or store outside the user device – and in every case where the original

content is not compatible with the addressed device hardware performance but must

be adapted to. Because of that, a content management system should be a pro-active

and dynamic module rather than a simple content store.

A User Preferences Manager can be useful to drive the services selection and to adapt

service behaviour.

The final user could be interested to a new or particular service or to a new

application. A Service Management System can help to manage service discovery and

service dissemination. This can be done by regarding user preferences, profile and

context. A portion of this theme should be dedicated to developers because some

services can be design to improve and reduce the effort needed to make smart

application and new services.

It is possible to reach the Information Interoperability by specifying an ontology that

add semantics to the set of data. Since it is quite impossible to represent of the extra

human knowledge into only one ontology it becomes more efficient to provide the

system with Ontology Aligners that could work like translators or like a bridge

between different ontologies.

A Reasoning Engine – by working on user preferences, context and profile

information – could improve the quality of a service provider by finding the target

point with less user interaction and reducing the working time.

Architectures for Context-Aware Services in Smart Environments

15

Security and trust are a hot discussion theme in many application fields. A module to

handle data encryption or to manage an access control list is often required to ensure

protected and secure information exchange and service access.

Multi-vendor devices offer an increasing number of services and end-user

applications that base their value on the ability to exploit the information originating

from the surrounding environment by means of an increasing number of embedded

sensors, e.g. GPS, compass, RFID reader, camera and so on.

Interoperability level Related to

Communication

and connectivity

Interoperability at the protocol and access
control levels. Different applications/services
must be able to communicate with each other,
despite of heterogeneous programming
interfaces and/or implementation languages

Devices

Capabilities sharing –e.g. temperature sensors or
speakers – , smooth exchanging and replacing

Information

User preferences, context and location. Event
data exchange capabilities. Ontology driven data
management

Services

Service adaptation and reasoning based on
available resources. Dynamic service discovery
situation based

Content

Content adaptation based on device features

Table 1: Smart Environment Interoperability levels

However, usually such devices are not able to exchange information because of a lack

of a shared data storage and common information exchange methods. A large number

of standards and domain specific building blocks are available and are heavily used in

today's products.However, the use of these solutions based on ready-to-use modules is

not without problems. The integration and cooperation of different kinds of modules

can be daunting because of growing complexity and dependency. In this scenarios it is

necessary to have an infrastructure that makes the coexistence of multi-vendor

devices easy, able to allow a low cost developing and a simple fruition of services for

Architectures for Context-Aware Services in Smart Environments

16

both developers and final use. This sort of technologies glue should reduce both

software and hardware integration issue by removing troubles of interoperability. The

result should be also speed up and simplify the design, development, and deployment

of cross-domain applications.

The shared information principle Information ontology based model should drive
the information interoperability and semantics.
Information should include all data involved
with the context.

The simplicity principle The information level should not include
knowledge about the use case and the
architecture should be composed by few,
general and simple components.

The Service principle The SE behaviour should be close to the SOA
one, that is, exporting functionalities like
discovering and accessibility.

The Agnostics principle Knowledge about ontology, application
programming language, service,
communication layer and hosting device/system
should be not included into the architecture.

The extensibility principle Functionality to manipulate information are not
provided a-priori. Domain ontologies and
information manipulation applications can
extend the set of architecture functionality

The notification principle Publish-subscribe functionality should be
available for application to receive notification
when context data changes.

The security and trust principle Both the service level and information level
should implement access control functionality
if security and trust are required.

The RAS (Reliability,

Availability and Serviceability)

principle

At development time Reliability, Availability
and Serviceability should be evaluated for both
localization and application .They should be
also measurable at execution time.

Table 2. Interoperability principles

Interoperability is intended as “the ability of two or more systems or components to

exchange information and to use the information that has been exchanged” [2].

According to this definition interoperability can be located on different abstraction

levels as shown in Tab. 1.

Architectures for Context-Aware Services in Smart Environments

17

To evaluate an interoperability enabled architecture some architecture principles should

be outlined to define a priori capabilities and requirements. The following table

summarizes some of the principles. taken from the set of principles defined in SOFIA

project (Smart Object For Intelligent Application) [4] that will be discussed later.

Architectures for Context-Aware Services in Smart Environments

18

Chapter 3

Related work

In the previous paragraph the view on interoperability platforms adopted in the project

where I’m doing my activity was introduced. Interoperability platforms enable

different kind of objects to interact. Objects can be e.g. sensors, devices, appliances,

and embedded systems. These interacting objects form different kind of smart

environments. The idea is to connect physical world with information world by

enabling the sharing of information in digital format in physical spaces. This, sharing

of information, enables novel and possibly cross-domain applications.

Here some related works are summarized.

3.1 Comparison of Interoperability Models

Interoperability models proposed or adopted in existing platforms vary depending on

which interoperability levels are considered, on how interoperability is conceived and

on the technical solution adopted. The Connection, Communication, Consolidation,

Collaboration Interoperability Framework (C4IF) exploits the concepts of language

theories such as the language form, syntax, meaning and use of symbols and

interpretations [5]. C4IF maps the linguistics concepts to the interoperability levels as

follows:

Architectures for Context-Aware Services in Smart Environments

19

• Connection interoperability is i) an ability to exchange signals, ii) a channel as an

object of integration, and iii) out of content. Connection interoperability can be

easily mapped to the device interoperability in our model.

• Communication interoperability is i) an ability to exchange data, ii) information as

an object of integration, i.e. format and syntax of data, iii) out of context.

Communication interoperability is mapped to the device interoperability in our

definition.

• Consolidation interoperability is i) an ability to understand data, ii) information as

an object of integration, and iii) out of usage. It is mapped to the service level

interoperability in our model.

• Collaboration interoperability addresses i) an ability to act together, and ii)

process as an object of integration. The definition is similar to the information

interoperability in the sense that it concentrates on usage of information, i.e.

actions/modelling. However, dynamism, cross-domain and cross-business

interoperability are not considered. The main reason is the difference in

application fields; smart spaces vs. information systems.

One of the definitions of interoperability levels widely used is the reference model of

interoperability [6], where levels are defined as integrability, interoperability and

composability. Integrability is achieved by technical and syntactical interoperability

(related to network and connectivity). The interoperability level focuses on semantics

and pragmatic interoperability that are related to simulation and implementation.

Composability tries to manage dynamic and conceptual interoperability with

abstraction and modelling. This is very similar to the ontology oriented modelling

adopted in our approach and used for achieving cross-domain interoperability through

abstraction and modelling.

In [7], a different approach has been taken for interoperability: Conflict Resolution

Environment for Autonomous Mediation (CREAM). CREAM has similarities with

our ontology oriented application development approach that gives support for

modelling and abstracting concepts and their relations at the information

interoperability level by means of a core ontology, domain ontologies and application

specific ontologies. CREAM has three levels:

Architectures for Context-Aware Services in Smart Environments

20

• Semantic conflict resolution ontology that provide a dynamic mechanism for

comparing and manipulating contextual knowledge about each information

source.

• Ontology relationship knowledge that forms the core of the reasoning process for

semantic reconciliation.

• Semantic mediation service layer that manages schema mapping and ontology-

schema mappings.

This kind of support is still missing from our approach although we are working for it.

For example, a semantic information broker could acts as a conflict resolver, the core

ontology as a mediator, and SmartModeller, a tool intended for smart space

application development, could handle schema mapping and ontology-schema

mappings. However, there is still a lot of work to be done in order to get the approach

to work in practice.

Interoperability maturity models are compared in [8]. In summary, none of the

compared models are based on system theories but one has strong basis on computer

science. All of them have potential because of support for standards. However, less

support was for flexibility to adapt, agility to react, openness and re-configurability.

Inter-system interoperability was addressed in one model. Thus, we conclude that

there are still much work to be done in order to put interoperability into practice in

smart spaces that are made of heterogeneous systems, devices, and services.

3.2 Application domains

The recently published papers on information interoperability highlight issues and

topics related to the following fields:

• Health care systems
• Cross-border public services and
• Networked manufacturing systems.

Interoperability is seen as a fundamental requirement of a health care system to derive

the societal benefits promised by the adoption of electronic medical records [9].

However, its achievement is difficult because interoperability benefits are highly

Architectures for Context-Aware Services in Smart Environments

21

dispersed across many stakeholders, and early adopters are penalized by negative

network externalities and first-mover disadvantages, e.g. faced barriers and challenges

that have resulted in partial success, slow progress and outright failure. However,

Extensible Markup Language (XML) is considered as an integration glue for

biomedical information interoperability among disparate and dispersed systems – a

common constellation in the fragmented world of healthcare [10]. The Open Health

Tools [11] is an open source community with a vision of enabling an ecosystem,

where members of Health and IT professions collaborate to build interoperable

systems that enable patients and their care providers to have access to vital and

reliable information at the time and place it is needed. Tools are really needed in order

to tackle all interoperability challenges of heterogeneous environments, practices and

cultures [12].

In [13], four types of Pan-European Public Services (PEPS) have been introduced and

analyzed, and thereafter, a typology of semantic conflicts in PEPSs is defined;

evidences, i.e. a piece of information that is used to activate the service, evidence

placeholders, pre-conditions, service providers, public services, effects and service

versions. In SOFIA, we focus on three types of Smart spaces, personal spaces, indoor

spaces and smart cities. We use a set of ontologies to handle differences between

spaces, domains, applications and businesses but so far we have not taken into

account the differences between countries on the information interoperability level.

In [14], a product ontology based on standards about product data representation and

exchange is proposed as a vehicle for achieving interoperability between networked

production processes. In practice, PDM STEP Schema and IEC 62264 models were

renormalized, conceptualized and represented by Unified Modeling Language (UML)

class diagrams in order to have a common minimum denominator which allows the

matching and mapping between the two standards. Although the context is far away

of smart spaces, the solution is analogous to ours; minimal common ontology shared

with two worlds of standards and rules for mapping the concepts of two standards.

The work was made in a bottom-up fashion, similar to our approach.

Architectures for Context-Aware Services in Smart Environments

22

3.3 Context

Designing context-aware applications requires an adequate context representation

model. One of the most popular context definitions was provided by Dey and Abowd

[16]. They describe context as "any information that can be used to characterize the

situation of entities (i.e., whether a person, place or object) that are considered

relevant to the interaction between a user and an application, including the user and

the application themselves" [17].

Context modelling may be categorized by considering the method adopted to

represent and share context information. The following approaches should be

mentioned:

• Key-value pairs. This is the simplest way to model context data used by

Schilit et al. [22] to model context information like the location and export

this as an environmental variable. Because its simplicity the key-value

modeling approach is widely used in distributed service frameworks, such

as discovery frameworks, e.g. Jini [23] or SLP [24], where a list of simple

attribute-value pairs describe service functionalities – as well as system

context information. The discovery procedure is realized by a matching

mechanism on these attributes. In some cases Key-value pairs can not be

adopted because a lack of structured data to enable context retrieval

algorithms.

• Markup scheme. Markup tags with attribute and content are organized in a

hierarchical data structure. ISO 8879 Information Processing Standard

Generic Markup Language (SGML) [25] is a standard technology to define

generalized markup languages. “eXtensbile Markup Language” (XML) is

the most commonly adopted language – or one of its vocabularies [26].

• Graphical model. UML is one of the widely used graphical oriented

general purpose modeling instrument appropriate also to model the context.

Henricksen et al. in [27] introduce a significant example of the graphic-

Architectures for Context-Aware Services in Smart Environments

23

oriented context model which is a context extension of the Object-Role

Modeling (ORM) approach [28]. Database-oriented applications are a

prolific field for a graphical approach to model context for example to

derive Entity-Relationship (ER) context models.

• Object-oriented model. Object-oriented approaches export encapsulation

and reusability concept often useful to model, to represent and to access to

multi level/multi actors environment context information. The object

abstraction permit to encapsulate and hide low level details on the context

data while providing contextual information by means of interfaces. It is an

example the TEA project [29] with its concept of cues. It provides an

abstraction for physical and logical sensors and provide a symbolic

representation of a certain context data starting from the value of single

physical or logical sensors data.

• Logic-based models. The means of facts, expressions and rules – in a

logic-based context model – are used to represent and process the context.

Generally a reasoning process is applied on conditional expressions and

facts to obtain a derived set of new expressions and/or facts. Conditions

usually are a set of rules. Contextual information is represented by means of

logical expressions. All logic based models adopt an high degree of

formality to represent the context and processing it. For example, the

Sensed Context Model proposed by Gray and Salber [30] is based on a

first-order predicate logic as a formal representation of contextual

propositions and relations. Another approach within this category is the

framework GAIA [31]. However others solutions can be adopted – e.g.

fuzzy logic – to represent and reason about uncertain context information or

to determine the quality of context information [32]. A logic context

representation allows an automated reasoning improving the quality of the

service.

Architectures for Context-Aware Services in Smart Environments

24

• Ontology-based models. An ontology can be defined as "a formalization

of a conceptualization" in according with the Gruber’s definition [33].

Ontologies allow the description of context within specific knowledge

domains. Semantic-based context models represent an emerging approach

in context representation expecially if it is coupled with an ontology – that

permit to check the consistency of context information. Examples can be

the CONON context modeling approach by Wang et al. [34] and the

SOUPA ontology developed within the CoBrA system [35].

Many other approaches to context modelling are available in the literature. For a more

extended analysis of this topic refer to [18].

3.4 Context-Aware architectures

According to [19] a smart environment is a dynamic system that can change its

behaviours based on context-awareness mechanisms implemented as core elements of

its architecture. A context-aware architecture collects, uses and interprets context

information and changes its functionality to the current context of use.

In the survey on context-aware web service systems presented in [19], the following

questions were considered:

1. Context information and context representation: which techniques should be

adopted to modeling context information?

2. Context sensor techniques: how to measure and sense context information?

3. Context storage techniques: how context information is stored and how the

information can be accessed from its storage?

4. Context distribution techniques: how application and services can access and

retrieve context information? How to disseminate context information to

different components?

5. Security and privacy techniques: how to protect context information and the

Architectures for Context-Aware Services in Smart Environments

25

access to it? Which authentication and/or authorization mechanism should be

adopted? How to reach privacy on connection channel to the context shared store?

6. Context adaptation techniques: In which context information are actually

used?

 According to [16] context-aware systems have typical layered architecture like

distributed systems. According to [21] the classification framework of context-aware

systems can be decomposed in five layers (Fig. 2):

• end user infrastructure

• application and service

• middleware

• network infrastructure

• concepts and research

Figure 2: The classification framework of context-aware systems [21]

My contribution was mainly is in the research layer and particularly on:

• context reasoning (see section 5.3)

• the use of agent and service technologies for context-awareness (see section 5.4.1)

• context-awareness design and evaluation (see sections 5.2.4, 5.2.5)

• security and privacy (see section 5.4.3)

• context data management (see sections 5.2.1, 5.4.1)

Architectures for Context-Aware Services in Smart Environments

26

Chapter 4

Research frameworks

My research program was carried out within the framework of three main research

initiatives: a European Network of excellence on cultural heritage EPOCH (2004-

2008), a joint research project with Telecom Italia Lab on social advertising and a

European project on interoperable smart environments named SOFIA.

Common thread within these projects was the goal to study system architectures that

can handle context information and services and support the interaction between user

and context-aware applications.

Acting in different scenarios, ranging from cultural heritage to social applications to

smart buildings, my research concerned:

 -Profiling

Tools able to dynamically model the behaviour of the system by

monitoring and know the user context and actions

 -Recommendation

Special purpose engine able to automatically recommend services and

content by combining context, profile, domain and group information

Architectures for Context-Aware Services in Smart Environments

27

 -Content adaptation

Special purpose engine able to adapt user interface and content based

on the user preferences, profile and context

 -Domain ontology definition

Formal representation of a set of concepts within a domain and the

relationships between those concepts. It is used to reason about the

properties of that domain, and may be used to define the domain.

With reference to the list of my publication – section 7 - the following topics were

mainly covered:

• User preference service adaptation [pub. 2]
• Context management [pub.8]
• Content management [pub.3]
• Information interoperability [pub.1]
• Multivendor device interoperability [pub.1],[pub.8]
• Communication/connectivity interoperability [pub.6],[pub.1]
• Service discovery [pub.6],[pub.3]

4.1 European Network of Excellence on Cultural Heritage

(EPOCH)

EPOCH [36] is a network of about a hundred European cultural institutions joining

their efforts to improve the quality and effectiveness of the use of Information and

Communication Technology for Cultural Heritage. Participants include university

departments, research centres, heritage institutions, such as museums or national

heritage agencies, and commercial enterprises, together endeavouring to overcome

the fragmentation of current research in this field. [37].

The goal of the network is to define a framework to overcome fragmentation on

cultural heritage applications. EPOCH is focused on all processes and information

involved in cultural heritage domain, from archaeological discovery to education and

dissemination.

Architectures for Context-Aware Services in Smart Environments

28

Within EPOCH I worked on a project called CIMAD "[Common

Infrastructure|Context Influenced] Mobile Acquisition and Delivery of cultural

heritage data" [38][39]. CIMAD provided a framework supporting the development of

cultural heritage "services". CIMAD results were shown in many European museums

as an itinerant exhibition called Interactive Salon [12].

4.2 Joint research Telecom Italia Lab

Within a collaboration with TiLab-TELECOM Italia [40], I was involved in a

research project on social advertising. The goal was to develop and implement an

algorithm and a web based service to recommend activities to the end-users based on

their preferences and context. The proposed solution was based on the Telecom CAP

– Context Aware Platform –,an implementation of Telecom context management

architecture [41],[42]. Research goal was to improve the CAP by introducing a

mechanism to discover and recommend new social activities. The project was called

CaPUA (Context-aware Preferences, Users, and Activities) and it was carried out

under the supervision of professor Paolo Ciaccia, at the University of Bologna.

4.3 European technology platform on embedded system

(SOFIA)

Sofia (2009-2011) is an European research project carried out by 19 academic and

industrial partners led by Nokia. Partners joined their effort to enable people to benefit

from smart environments, by “making information in the physical world available to

users while maintaining existing legacy” [44].

SOFIA is funded through the European ARTEMIS programme [45] under the

subprogramme SP3 “Smart environments and scalable digital services”, within the

7th European Framework Programme, and it aims to provide a shared information

search extent for cross-domain end-to-end applications executed by multivendor

Architectures for Context-Aware Services in Smart Environments

29

devices. The primary SOFIA project contribution is an Inter-Operability Platform

(IOP). Sofia IOP is an infrastructure to assist developers with added-value

interoperable information about objects/sensors/devices spread within the surrounding

environment. The information repository is active and it can trigger external entities

to react to relevant and selected environmental changes. The IOP was designed

starting from sixteen principles [4] that originate from vertical application domains,

i.e. personal spaces, smart housing and smart city.

Architectures for Context-Aware Services in Smart Environments

30

Chapter 5

Architectures and platforms

This section will review the context-aware platforms I was involved with along my

PhD program, starting from a dedicated solution, moving to the Interoperability

Platform developed within SOFIA Project (see par. 4.3).

These solutions are intended to support a wide range of applications, addressing

domain-specific as well as multi-domain scenarios. Methods, architecture components

and SW agents developed to support context-aware services will be described.

The following platform and frameworks will be considered:

• WHIRE: Application specific, context-aware mobile client with server based

multimedia content distribution [49][50]

• MobiComp: a context management framework for Cultural Heritage

applications [38]

• CAB: a context, preference and profile based application broker to support

service and application distribution [12]

• Smart-M3: "Semantic Web based" information sharing infrastructure for

smart spaces designed by Nokia within the European project SOFIA

• NoTa: a service and transport independent connectivity framework designed

by Nokia [47]

• OSGi: the well known Java based service support framework

Architectures for Context-Aware Services in Smart Environments

31

5.1 Multimedia guide for museums and archaeological sites

WHYRE® is a hands-free, sensory augmented, wearable computer designed to turn

museums and archaeological sites into communicating machines. It offers a unified

interface to multiple format contents, including interactive 3D, sensors driven QTVRs,

and streamed animations. It is based on an IA32 mobile platform with a 3D graphics

accelerator. Its operating system is Windows XP Embedded [12]. WHYRE was

developed by Ducati Energia [48] in cooperation with the University of Bologna and

other partners within an Italian research project – Parnaso (2000-2003).

WHYRE[49],[50] was used as a dedicated context aware platform where the context

(basically the user current place and field-of-view in a Museum or archeological site)

was evaluated based on on-board sensors, i.e. a compass, a gyroscope and two

accelerometers [51]. The WIFI interface was also considered a sensor as it was used

not only for wireless communication but also for coarse location detection [76].

Figure 3: Two WHYRE views (left and centre). On the right a museum use
case where a visitor wearing the WHYRE can enjoy multimedia contents

while sensors localize him in terms of position and orientation

WHYRE tracks the user position and direction when he is visiting a museum or an

archaeological site. A specific application running on WHYRE exploits the user’s

context to dynamically select the relevant multimedia content associated to each

exhibit to be shown to the visitor.

The architecture is sketched in Fig.4. Multimedia contents are centralized, shared and

distributed through the network. This is a simple architecture for a specific use case.

Context – e.g. sensors data – is managed locally at application level; it is not shared

Architectures for Context-Aware Services in Smart Environments

32

and it does not have any impact on the environment. This reduces the interoperability

level and it prevents to develop services or applications that exploit the user context.

Figure 4: Minimalistic architecture for an applicat ion specific system

Only adopting a context management system - as show in the next section – it

becomes possible to share context data opening the way to additional services like

visitor monitoring and object localization services inside the museum – i.e. to define

for every object or exhibit of interest some context information like their position

and/or location to be used in multiple services. By knowing exhibits and user exhibits

position, it is possible to collect some important information about the visit – e.g.

amount of time spent on each exhibit, which exhibits were visited, the path followed

by the user – and then build new interesting services upon this information, such as,

for example, pedestrian navigation support.

Next section will show the way to “extend” the range of services through a shared

context management system. This will demonstrate the requirement for and the

implementation of the extensibility principle, i.e. one of the principles of a target

interoperability platform (see section 2).

To summarize this section, WHYRE relies on a centralized dedicated architecture

which is unable to establish interoperability at information and device level. The

evolution towards a smart environment scenario should start from context sharing.

Architectures for Context-Aware Services in Smart Environments

33

Next section will address a context management platform supporting context sharing

among a set of context-aware services and applications. Issues like multi-vendor

device support, device usability, service distribution, information sharing and content

interoperability will be faced.

5.2 A Context-aware platform for Cultural Heritage

applications and services

This section is dedicated to context-aware solutions in the Cultural Heritage domain.

Here not only the visitor guide is considered, but also several additional services that

we want to provide with the same platform.

The goal is to provide an infrastructure supporting access to customized services and

to focus on the following properties [12]:

• Scalability

• Interoperability of Context Information

• Context-awareness

• Developers facilities

• Support to heterogeneous devices

• Content adaptation

This activity was carried out within the framework of the EPOCH Network of

Excellence.

The focus was to discover pros and cons of architecture components implementations

and extend them to meet new requirements.

Architectures for Context-Aware Services in Smart Environments

34

Figure 5: Schematic view of the architecture adopted in EPOCH. It provides context,
preferences, profile and content management. Part of the architecture was dedicated to

service management for the end user

Services and applications for both end-users and museum curators were also

considered. Fig. 5 shows a schematic view of the architecture. Here a more complex

architecture was adopted compared with the one shown in paragraph 5.1. Very

important was to introduce a shared context management system. This was the first

step towards a interoperability SE. Next paragraphs are dedicated to the work done on

this architecture.

Architectures for Context-Aware Services in Smart Environments

35

5.2.1 MobiComp: a context management solution for Cultural Heritage

Mobicomp is a context management framework to store, retrieve and aggregate

context elements, i.e. heterogeneous static and dynamic information about the entities

involved (e.g. people, exhibits, devices, sensors). A context-element includes: a

subject-predicate-object triple – relating an entity identifier to a named context value

– a time-stamp, and additional specifiers (e.g. validity period and privacy level).

MobiComp also provide a data store features to maintain history of entities data.

MobiComp is written in Java. Hence, multiplatform applications can be easily written.

To develop a MobiComp based custom application, MobiComp client source code

needs to be compiled with the appropriate client dependent JDK. Standard PCs, PDAs

and mobile phones are supported. The compatibility is guarantee from the JVM 1.4 to

the 1.6 at the moment of writing.

Three components exist allowing the interaction with MobiComp: trackers, listeners

and aggregators. The Fig. 6 report a top view of the MobiComp components:

Figure 6: MobiComp architecture

- A tracker is a MobiComp component that acts as a context producer. Trackers

register their availability and capabilities by sending appropriate information to the

ContextService. Their purpose is to collect raw context data from sensors, such as

GPS receivers, and other dynamic or static sources, including configuration files for

Architectures for Context-Aware Services in Smart Environments

36

device capabilities and user-preferences. Trackers transform their input into context

elements which are then put into the MobiComp repository. It sends to MobiComp a

subject-predicate-object triple , e.g. the tracker ID and the pair (“predicate-ID”,

“value”). Trackers can provide multi level data like sensor data (e.g. the user position

inside a room), higher level information (e.g. the place ID) or other context

information made by a reasoning engine.

- The second component that interacts with MobiComp is a listener. It is a Java object

waiting for events. Listeners receive notifications of ContextEvents from the

ContextService and perform some actions based on the context element carried by the

event object. They receive event notifications whenever a context element is put into

the store or modified by a tracker that sends a Context Element to MobiComp (put

action). On receiving a notification, the listener may get the element from the store

and use it as required.

- The third MobiComp component is the “Aggregator”. The Aggregator combines the

behaviour of both a tracker and a listener. Aggregators monitor events from the

ContextService, rather than a sensor device, and apply a transformation before

returning a new element to the repository. For example, aggregators can combine

several low-level sensor elements to produce an element at a higher level of

abstraction. Also, aggregators may perform transformation services, i.e. converting

latitude and longitude coordinates from a GPS sensor to coordinates on an appropriate

local or national grid. Many non-trivial context-aware applications utilise a number of

complex context aggregators, e.g. the FieldMap [52] application.

MobiComp has a local context data store – ContextService, see Fig. 6 – automatically

aligned with the remote one. It can prevent lost of data in case of remote MobiComp

service not reachable and can speed up both data store and retrieve. XPath query are

also supported [65].

The widely reused model of a MobiComp application is shown in Fig. 7.

Usually each use case involves at least two services that use MobiComp components.

The first service is a context producer, based on a tracker that collects some

Architectures for Context-Aware Services in Smart Environments

37

interesting context data and sends them to MobiComp. The second one is a context

consumer, based on a listener that reacts to context change events reading from

MobiComp repository information originated by the producer. Producers and

consumers may run on different machines. An aggregator can be used rather than a

listener or a tracker whenever deemed useful.

Figure 7: abstract view of a MobiComp application: an aggregator produces new
context data by processing already available information; a listener gets context

information from the context store, e.g. for monitoring purposes

MobiComp was one of the first context management frameworks ever developed by

the academic world and had the following main limitations experienced in some use

case. There was not an event notify mechanism therefore to implement an event

driven interaction model it was necessary to use polling loop method to discover data

changes. This reduced performance and it took developers time. A first solution

should be to integrate this mechanism inside the MobiComp middleware and then to

change the interaction model from Web Service to Publish Subscribe model.

Furthermore MobiComp should be enhanced by adopting an ontology to give

semantics to the data store and make possible the information interoperability

between different vertical use cases and different domains. MobiComp was used to

track people position inside a museum site. At the moment of writing MobiComp was

not intended to support real-time use . Therefore MobiComp it can not be used in

scenarios where information changes quickly or when many clients call for services at

the same time. This was demonstrated by many experiments done in cultural heritage

scenarios aiming to evaluate the scalability of the framework.

Architectures for Context-Aware Services in Smart Environments

38

5.2.2 Device and language interoperability for MobiComp

Another issue with MobiComp was its Java dependency: programming languages

interoperability was not supported. My contribution here was to design and to develop

a service called MMPI (MobiComp Multi Platform Interface). MMPI service is an

alternative – servlet/socket based – interface to MobiComp that removes both the

requirement to have a JVM installed on the client side and the need to use the

MobiComp java classes. With MMPI, MobiComp can be accessed from any platform

because MMPI removes constrains in term of programming languages and OS.

World Wide Web

OS

JVM

Java Servlet and JavaServer
Pages technologies enabler

MMPI
Servlet

MMPI
Server

MobicComp
class package

HTTP SOCKET

SOCKET

Figure 8: MMPI architecture

MMPI consists of two components (Fig. 8): a java servlet and a stand alone server.

They can work in conjunction or separately. The former works as a web interface

resolving HTTP client request and enabling web application developers to access to

MobiComp through a browser. The latter is a multi-thread Mobicomp aggregator Java

program that wait for client connection through socket .

Architectures for Context-Aware Services in Smart Environments

39

Figure 9: MMPI message tracking UML sequence diagram

Both the servlet and the server can handle request like:

- publish - put - data on MobiComp:

The put command allow clients to publish new subject-predicate-object data

triple on MobioComp. It is required that the client send him MobiComp ID

(MID) and a list of papameters: the predicate and the object value.

- retrieve - get - data from MobiComp:

The get command is used to search the context repository for specific context

elements. A context elements include triple as subject-predicate-object. With

this command is possible to specify the triple. One element can be a wildcard

with the meaning of any element - the wildcard adopted was the “*”. If the

subject is the “*” wildcard, a list of all subjects with relative values is

retrieved. It is required that the client send his MID and a list of parameters:

the subject MID, the predicate and the object value.

- register - reg - a new entity in MobiComp:

Architectures for Context-Aware Services in Smart Environments

40

The reg command is used to register a new entity on Mobicomp. It is required

that the client send him MID and a list of parameters: the entity name, the

entity type and an entity description.

Fig. 9 shows how a MMPI request can evolve during the time. The user A sends his

request to MobiComp through a socket connection to the server and receives the

answer directly from the MMPI server. The user B uses the web interface so his

request goes first through the servlet (steps 6 and 7 in Fig.9).

5.2.3 Multi programming languages: MobiComp Enabler Library

The MMPI could not be a scalable solution in some case, so devices involved need to

be MobiComp enabled by adopting the MobiComp’s standard library. However to

reduce programming languages constrains a set of C/C++ DLL libraries was

developed to wrap the MobiComp Java library supporting different programming

languages interoperability - MobiComp Enabler Library (MEL). The Java Native

Interface [53] was used to encapsulate Java classes. It is quite simple to use these

C/C++ DLL from many different programming languages – e.g. Visual Basic, Java,

C/C++, C# and so on. These modules allow the use of trackers, aggregators and

listeners from programming languages other than Java enlarging developers

expression possibilities. These library wrap not only the basic functionality

MobiComp class but also some specific use case SW modules. The Fig. 10 show the

generic wrapper layered model.

Figure 10: MobiComp wrapper model. Non-java applications
can use MobiComp with this method

Architectures for Context-Aware Services in Smart Environments

41

Not all methods and functions of a generic MobiComp module are provided by the

wrapper to the top level user. The wrapper provides only high level methods useful to

communicate with MobiComp and some methods to handle the state of the DLL - e.g.

for the latter INIT and RESET methods and for the former the PUT and GET methods

and an event notifier method used in case of context data changing. To support the

experimental CIMAD services a wrapper for a visitor guide and people tracking

services were developed.

The following rules were adopted for class naming:

• MD stands for “Mobile Device” (WHYRE® in our case)
• VTS stands for “Video Tracking System” (VTS) (described below in par.

5.2.6.2) [56]
• ITS stands for “inertial tracking system”, i.e. the navigation system available

on WHYRE®

Figure 11: List of MobiComp actors classes

With reference to Fig. 11, which shows my MobiComp classes:

• The VTSAggregator class supports mechanism to publish and to retrieve
context information provided by the VTS itself to maintains the people counter
service working.

• The VTSCounterMonitor class is a listener reacting to events generated by the
VTS and it provides functions supporting Monitoring Services.

• The MDLocationMonitor class is a listener. It is activated by context change
events originated by the mobile devices – e.g. new position or new Point Of
Interest (POI). It is the base component for user on-site tracking service.

Other classes provide auxiliary functions. For example VTS EventCallback supports

the functionality to receive and handle context data changes event. MDRegression

Architectures for Context-Aware Services in Smart Environments

42

supports reference coordinate system changes (e.g. from stereo camera vision system

coordinates to museum coordinates). ITS_VTS_Const is a class containing useful

naming constants.

5.2.4 Context-aware application broker

A first prototype of a service/application management service was developed within a

project named CIMAD (section 4.1) and was therefore called “CIMAD Application

Broker” (CAB). CAB is a web service, it is based on MMPI service and it was

developed in PHP and Java-Script. CAB enables the discovery of context-aware

applications reachable on the web (CIMAD applications). It enables the user to

choose a CIMAD application from a list. The list is made by considering user profile,

preferences, context and device features.

Figure 12: CAB architecture enhanced by the context access service
provided by MMPI. The CAB service is customized on the client side by

using user preferences, profile and context. It is based on the HTTP
communication protocol

Fig. 12 shows the system architecture and the interaction between modules. CAB

requires that both the users and their own device are provided with a MID

(MobiComp Identifier). The hypothesis is that a device is owned by just one user. A

CAB service understands automatically if the device is registered or not and if it has

Architectures for Context-Aware Services in Smart Environments

43

an owner. This is done by using cookies to save some information on the device – e.g.

device and user MIDs. A CAB’s feature allows to reset this information at any time.

1

The user device is not
recognized as a valid
MobiComp device. It
means that the device
doesn’t have a MID

2

The user device is not
recognized as a valid
MobiComp device. It
means that the device
doesn’t have a MID

3

CAB recognizes the user and
the device. It is possible to
change the own preferences
or to search for a CIMAD

Application

4

Preferences example.
The user language and

the user role

5

List of available
CIMAD applications

based on user
preferences, profile and

context

6

Details on the selected
CIMAD Application .
It can be executed or

downloaded.

Table 3: Steps to find and select a CIMAD application

This is useful when a device may be time-shared by multiple users who became

temporary owners; this is the case, for example, of museum guides for hire. Context

can include also information about the device e.g. the screen resolution and list of

sensors available on-board. To reach a CIMAD Application, the CAB service requires

Architectures for Context-Aware Services in Smart Environments

44

that the user follows some steps. These are explained in Tab. 3. Future work may

include the definition of services and users through an ontology. This could made

interoperable the CAB service and the way to publish and associate a new service to a

set of users. At the moment the CAB has only a web interface for user interaction

purposes, but the service could be made available through a socket or HTTP interface

in the future.

Next paragraph is dedicated to the content management system adopted within

EPOCH and to its integration in the platform with the purpose to achieve content and

device interoperability.

5.2.5 FEDORA content management system

FEDORA (Flexible Extensible Digital Object Repository Architecture)[54] was

adopted for its scalability and ability to adapt multimedia contents to heterogeneous

devices. Fedora was originally developed by researchers at Cornell University as an

architecture for storing, managing, and accessing digital content in the form of digital

objects inspired by the Kahn and Wilensky Framework. Fedora defines a set of

abstractions for expressing digital objects, asserting relationships among digital

objects, and linking "behaviours" (i.e., services) to digital objects [55].

user

mobile
device

Context

Preferences

Profile

Context Manager
(MobiComp)

Content Manager
(FEDORA)

Application Broker
(CAB)

CIMAD Application

…communication infrastructure…

Figure 13: Schematic view of the final architecture
developed under the EPOCH project

Architectures for Context-Aware Services in Smart Environments

45

To reach device interoperability it is necessary to reduce technologies constrains. In

CH scenario, multimedia content needs to be adapted to device performance and

technologies features – e.g. screen resolution. A solution can be to adopt a content

management system able to adapt content on-demand with the respect to device

features.

My target was to study how to integrate FEDORA with the other architecture

components. Fig. 13 shows a schematic view of the final architecture whereby it is

possible to handle context information, adapt content based on device performance

and find the appropriate context-aware application by using user preferences, profile

and context.

The integration of FEDORA was simple because its service can be reached through

the HTTP protocol, reducing communication and developing issues.

5.2.6 Tool chain for Cultural Heritage sites

A set of applications and services was developed to enrich a cultural heritage

environment. Some tools were integrated to support user-system interaction, the user

being the visitors, the museum curator and also the developers.

Figure 14: Structure of a generic MobiComp application.
Actors means MobiComp Java classes that implement

 a listener, a tracker or an aggregator

Architectures for Context-Aware Services in Smart Environments

46

Fig. 14 shows a layered structure of a generic application that exploits context

information provided by MobiComp. It can be a very simple application. Thanks to

architecture and the related MobiComp library its implementation required a minimal

effort i.e. the development of a Graphic User Interface (GUI), because most of the

work was done previously and it could be reused. Examples of this type of

applications were Visitor Monitoring and Tracking, Museum Guide and a Site Data

Collection service detailed below (see sections 5.2.6.1 to 5.2.6.5).

5.2.6.1 Monitoring, Tracking guiding and data collection service

With reference to fig. 15 this paragraph describes the structure of a Multimedia

Museum Guide and a Site Data Collection service. The former is addressed to

museum visitors, the latter is addressed to museum operators who need to collect

information about exhibits spread into the museum. Information may be additional

detail including multimedia content for the exhibit, and context information like the

exhibit “place” inside the museum and/or its position. Looking from the user

perspective, we first find a GUI that can change according to the user profile and

preferences. Configuration info – e.g. connection information or specific application

setting – can be stored locally on the device. Next to the GUI there is the “engine”

level acting as coordinator between the user, MobiComp and, the CAB service.

Figure 15: Layered structure of a “visitor guide” CIMAD Application.
This is a generic example on how all components can be put

 together to build a CIMAD application following the MVC pattern

Architectures for Context-Aware Services in Smart Environments

47

The GUI and the Engine are two separate components of the same client-side

application. In the prototype the engine and the GUI were developed in C# and C++

respectively.

As MobiComp is java-based, a java wrapper allows the engine to communicate with

MobiComp directly. Information exchange and event notifications are managed by a

MobiComp aggregator.

 The behaviour of the application is customizable. For example, by changing some

configuration data, such as the user profile and/or preferences, the scenario changes

and the guide behaviour may be turned into a data collection behaviour.

5.2.6.2 Access detection service

Some of the MobiComp based services developed within EPOCH rely on a computer

vision based tracking system named VTS [56] developed by third parties ([56]).

The VTS accurately tracks people walking under a stereo camera and counts the

people crossing a virtual line located in its Field-of-View.

From these counting events, higher level dynamic information about the museum (e.g.

Day visitors, Average Occupancy, Average Visit Time and others) can be estimated

and exploited by a CIMAD application.

Figure 16: On the left the stereo camera field-of-view. On the right the stereo camera
installed in a museum access gate (STH-MDCS2-C Videre Design)

Architectures for Context-Aware Services in Smart Environments

48

Fig. 16 shows the camera installation set up. In Fig. 17 some VTS program

screenshots are reported, in order to show the camera view and the counter of the

virtual line crossings.

Figure 17: VTS program screenshots. People under the stereo camera are tagged with a
colored cube. The VTS counts the people crossing the green virtual line

The application was modified to become a MobiComp data producer; in this way the

stereo camera was turned into a smart sensor.

Architectures for Context-Aware Services in Smart Environments

49

5.2.6.3 Presence monitoring service

A service to remotely monitor the presence of people inside the museum was

implemented starting from the VTS coupled to the CAB service, the MMPI service

and MobiComp. Fig. 18 shows a schematic view of the use case where appropriate

users can enjoy the monitoring application on their mobile device. A user – with

curator profile – can join the CAB, discover the monitoring application and then run it

on his personal mobile device.

Figure 18: Integration of the stereo vision based tracking system

The monitoring application is a web application developed with PHP and Java-Script

technologies. It is a data consumer. Thanks to the MMPI service it is possible to reach

the VTS context data stored in MobiComp.

Figure 19: Real time visitors flow indicator

Architectures for Context-Aware Services in Smart Environments

50

Fig. 19 shows the output of the presence monitoring application developed in C++ on

Windows XP. The application is based on a “Mobicomp Enabler Library” (MEL) and

it demonstrates that heterogeneous applications developed in different programming

languages can coexist and use the same data with possible different purposes.

Development time and effort are reduced by using the services and the ready-to-use

SW packages provided by the infrastructure. This application demonstrates is a tiny

step in the direction of interoperability at platform level in context-aware computing.

The VTS was installed on the access gate of several museum exhibitions – please

refer to The Interactive Salon [40] - In order to make the best use of the information

produced by the VTS a Smart Application was developed to gather statistics about the

visitor flow over long periods of time. Tab. 4 shows screenshots of charts produced by

the service.

Architectures for Context-Aware Services in Smart Environments

51

5.2.6.4 Statistics on visitors flow

The VTS was installed on the access gate of several museum exhibitions – please
refer to The Interactive Salon [40] - In order to make the best use of the information
produced by the VTS a Smart Application was developed to gather statistics about the
visitor flow over long periods of time. Tab. 4 shows screenshots of charts produced by
the service.

Two set of four charts showing
presence information during
the day in two visit days.
Charts show:
visitors total count during the
day, visitors hourly rate,
occupancy (i.e. the average
amount of people inside the
exhibition in every hour) and
average visit time (i.e. the
average amount of time spent
inside the exhibition in every
hour).

Monthly reports show amount
of visitors and average visit
time day by day over a month

Table 4. Screenshot of statistics produced by a web-based visitor flow monitoring service

Architectures for Context-Aware Services in Smart Environments

52

5.2.6.5 People tracking service

Here a MobiComp application called “People Tracking Application” (PTA) is

summarized. The PTA is based on positioning information gathered by WHYRE’s on

board sensors (section 5.1) and it is a data consumer providing a mobile device

tracking service to museum curators (screenshot in Fig. 20). It is developed in C++ on

Windows XP and it uses the MEL. It is a general purpose smart application and can

be adopted when position information is provided to the Context Management

Platform. All kind of device that share the same context information in the same way

– e.g. the user position – can be tracked by this application. Under semantics

constrains all kind of information can be shared and used smoothly in cross domain

applications.

Figure 20: User tracking inside a museum site

Within EPOCH information interoperability was assured by a standard XML schema.

However, while XML schemas is most useful to describe the structure and to validate

documents [57] an ontology should be used to ensure information interoperability.

With the help of an ontology and its related aligner each context-aware application

can produce compatible and machine understandable context information, as it will be

shown in section 5.4.

Additionally, as proof of concept, a context aware service that exploit this shared

information is shown in next paragraph.

Architectures for Context-Aware Services in Smart Environments

53

5.2.6.6 Pedestrian navigation support

An important principle for context-aware platforms is the extensibility principle

introduced in section 2. As proof of concept a new service was introduced to add

more features to the platform. This was a pedestrian navigation support service. It was

developed both as a stand-alone C++ DLL library for Windows OS and as a web

service to achieve device interoperability and also for reliability and serviceability

purposes (see RAS principle in section 2). The service simply finds the shortest path

between a source point and a target point. In cultural heritage applications the source

point often coincides with the user position and the target point with an exhibit to

reach. The service can also be used whenever a path solver is required.

A complete tool chain was made to support the following functions:

• add a new map to the service

• starting from a 32bit BMP raster map image create a structured map graph

representation

• change the map reference system

• simulate people walking on the area represented by the map

The service was enhanced by a dedicated and still unpublished image

manipulation algorithm called Bubbles which automatically creates an optimized

graph representation of the map and:

• reduces the memory amount occupation

• speeds up the path solving computation

• optimizes and makes “pedestrian-friendly” the path to follow

The service was integrated into a multimedia museum visitor guide. This drives the

user to an exhibit by showing him the path to the target and the direction to follow.

Incremental position information is provided by an inertial sensor platform.

Architectures for Context-Aware Services in Smart Environments

54

Figure 21: Pedestrian navigation support: a user with a mobile device - enriched with a
wireless inertial motion sensor board –enjoys the pedestrian navigation service .

The path to the target and the direction to follow are shown (screenshot on the right)

Fig.21 shows a screenshot of an application exploiting the service. In this paragraph a

mechanism to guide a user to a target was shown. But, how is the target selected?

Some support to implement user preference based selection policies is required.

Next paragraph introduces an architecture module to handle context-dependent user

preferences.

Architectures for Context-Aware Services in Smart Environments

55

5.3 User preferences in service platforms

The user preferences are an important context coordinate. They complete the

information related to the environment and they allow to model a service or

application behaviour. The use case presented in this paragraph concerns a preference

management system developed during a joint research program with Telecom Italia

Lab (par. 4.2).

The idea was to extend Telecom Context-Aware-Platform (CAP) with an “activity

suggestion service”, being the suggestion achieved by aggregating context and user

profile and preferences. Main architecture components are shown in Fig. 22.

Figure 22: Architecture components for a preference and
context based recommendation service

The CAP is a software platform for the management of context information. The term

context indicates the collection of information available from the environment

surrounding an entity, the terminal capabilities, the network connectivity, the

preferences and the available services. Thus, this is a large amount of information that

grows with time. A description of the CAP architecture follows.

Architectures for Context-Aware Services in Smart Environments

56

The CAP is a comprehensive and distributed context-aware platform capable of

aggregating and processing a variety of context information [58]. Fig. 23 shows how

this architecture facilitates re-use and support for many applications from context

acquisition to context usage or consumption.

The CAP has been designed according to the producer/consumer paradigm where

some entities produce context, i.e. Context Providers (CP), while other entities

consume context, i.e. Context Consumers (CC). These entities communicate with

each other through a central entity named Context Broker (CB), which also provides

some additional functions within the system (see Fig. 23). The main characteristics of

the above mentioned entities follow.

Context Broker (CB) creates and manages the relationship between CPs and CCs.

The CB performs Context Source discovery and management and it offers subject-

based lookup services.

Context Provider (CP) is the logical point where context is detected and acquired or

extracted from Context Sources. A CP supplies mechanisms for on-demand queries

and it may optionally support subscription based notifications depending on defined

event occurrences, e.g. general context change or timer expiration. Along with the

acquisition of context data, a CP performs data aggregation, fusion and inference.

Figure 23. Context Management Architecture [75]

Architectures for Context-Aware Services in Smart Environments

57

Context Consumer (CC) is the logical point where context is used (or consumed)

accordingly to the context-aware service logic. CCs implement an event-based model

to support a query-based publish-subscribe mechanism for context data notification.

5.3.1 Preference based information processing model

The interoperability between CPs from different domains is based on a common

language for context information representation named ContextML [59]. It is an

XML-based language that all CPs need to comply with, in order to be registered in the

CB and to enable potential CCs to discover the context information they need. To

simplify the data management, context has been subdivided into scopes, namely a

simple a priori aggregation of data with a semantic coherence, grouped together and

identified by a name. Such names could easily be mapped to concepts within an

ontology. Scopes can be atomic or aggregated, as the union of different atomic

scopes.

Any information given by a CP is characterized by an entity and a specific scope.

When a CP is queried, it returns the required data in a ContextML document, which

contains the following XML elements:

• contextProvider: a unique identifier for the CP of the data;

• entity: the identifier of the entity which the data are related to;

• scope: the scope which the context data belongs to;

• timestamp and expires: the time in which the response has been created and

the expiration time of the dataPart;

• dataPart: part of the document which contains actual information data which

are represented by a list of name-value pairs through the <par> element

(“parameter”). Parameters can be grouped through the <parS> (“parameter

structure”) or <parA> (“parameter array”) elements if necessary.

• CAPUA was developed on top of the CAP. CaPUA is a Java Servlet that

exploits user preferences and context. CaPUA exports a web GUI to allow user

interaction – e.g. from a smart phone – but can be used directly from other

applications that need to use the service directly through the HTTP protocol. My

Architectures for Context-Aware Services in Smart Environments

58

job here was to participate to the development of the CaPUA architecture and to

integrate an activity discovery service that exploits an optimized algorithm –

called Opt_Activity – able to handle qualitative preferences instead of the

common quantitative preferences often adopted.

Figure 24: Context-aware and user preferences
activities suggestion service architecture

This algorithm searches on the activities database to find all the activities most close

to the user preferences and context.

The following service interface methods were implemented:

• add, remove, update activity

• activity search

• add, remove, modify preference

update context information

Fig. 24 depicts the architecture split in client side, CaPUA server side and external

services side – that include the CAP service. The communication protocol between a

client and CaPUA is based on a set of XML messages.

So far, in this thesis, all services that exchange information need to know the meaning

of the information exchanged. Thus, information interoperability was based on a

Architectures for Context-Aware Services in Smart Environments

59

“service-to-service” agreement. Rising the level of information interoperability from

service to platform would dramatically extend the scope of context-aware platforms,

bringing in an inherent ability to support multi-domain applications.

Next section is dedicated to the project SOFIA and to the related impact on

interoperability and multi-domain context aware services.

5.4 An Interoperability Platform for Smart Spaces

As already introduced in section 4.3, SOFIA goal is s to provide an interoperability

platform (IOP) to make the information originating from the physical world available

to smart services and then to the users. This information is stored in Smart Spaces

(SSs). Smart Space interoperability is based on information sharing and on adaptation

to existing legacy devices and systems. Ontologies are adopted to share the semantics

of the information and to assure a complete understandable interaction. Because the

fulcrum is information, context management service is a central to SOFIA. On top of

this service it is possible to build others services or applications that consist of a

collection of small SW modules. These modules are independent each other i.e. they

can be developed separately based on a previously defined and shared ontology.

These SW modules are called Knowledge Processors (KPs) and are mostly developed

in Python, even if they may also be coded in other programming languages.

In order to help developers to interact with the SS without the need to be expert on

ontologies and related description languages some tool was developed. An example of

these tools is the “Ontology to Python Tool” from Åbo Akademi University [66]

which creates an ontology dependent library that “wraps” the ontology and takes the

developer to a higher programming level, adopting a model based approach.

Within SOFIA, my contribution was to add side by side to the already available

Python library a new library to enable Java KPs to interact with the Interoperability

platform. This library is independent from development support tools. It is a SOFIA’s

core SW module that interacts with the IOP directly. It can be used to implement data

providers and data consumers.

Architectures for Context-Aware Services in Smart Environments

60

Furthermore, as the architecture originally lacked of service oriented facilities, an OSGi

(Open Service Gateway initiative) based interface to the IOP was introduced [60].

Figure 25: an architecture example where information semantics is handled under
ontologies constrains. This improves the interoperability at information level

In the following paragraph I will introduce the project, the architecture, its actors and

how they were integrated together. The last paragraph is dedicated to describe a

proposal to add access security and service discovery mechanism.

Architectures for Context-Aware Services in Smart Environments

61

5.4.1 Smart-M3 and interoperable context management solution

Smart-M3 [61] is an open source architecture [62] supporting a tuple-space and agent-

based model of computation upon a semantic web substrate providing integration of

different kinds of devices at the information level and thereby facilitating

interoperability between applications and devices. It provides cross domain search

extent of information. As an example, Smart-M3 allows an application developer who

works on a specific mobile platform to access simultaneously and in a uniform way

contextual information of a car, home, office, football stadium, etc. Smart-M3 stores

information in RDF (Resource Description Language) [63] format, which is a W3C

standard.

KP

KP

KP SIB

SIB

SIB

Smart SpaceKP

KP
KP

KP

Business domain A Business domain B

Knowledge Processor Smart Space Applications

SS Physical
Distribution

Smart Space Access
Protocol

Semantic Information
Broker

Figure 26: Smart-M3 Functional and Logical Architecture

First, RDF provides the ability to join data from vocabularies belonging to different

business domains, without having to negotiate structural differences between the

vocabularies. Second, adopting RDF allows to benefit of the Ontology Based

Reasoning theory, practice and tools developed by the semantic web community.

Wilbur query language [64] is also supported to enhance data retrieving. The Smart-

M3 functional and logical architecture is shown in Fig. 26.

Architectures for Context-Aware Services in Smart Environments

62

The following elements can be underlined:

• Smart Space (SS): a named search extent of information.

• Semantic Information Broker (SIB): an entity for storing, sharing and

governing the information of one smart space as RDF triples, i.e. ontology.

• Triple governance transactions using an XML based communication

protocol, namely Smart Space Access Protocol (SSAP). The SSAP

primitives are: join, leave, insert, remove, update, query, subscribe,

unsubscribe.

• Knowledge Processor (KP): any entity contributing to produce (insert,

remove, update) and/or consume (query, subscribe) information in a SS.

Common functionalities to access and use SS information are made available

to KP by Knowledge Processor Interfaces (KPIs), i.e. KPIs hide SSAP

details.

• SS Physical Distribution: allow the formation of SS by using multiple SIBs.

SIBs physical distribution is hidden to KPs.

• Smart Space Application (SSA): a subset of KPs that use one (or more) SS as

resource to perform the desired functionality.

As shown in Fig. 26, Smart-M3 architecture allows KPs running in different business

domains to share interoperable information. Smart-M3 will also provide a set of

common convenience libraries to facilitate the access and the usage of ontology based

information, i.e. RDF triples are hidden. Smart-M3 is still under development and its

access protocol, i.e. at device level, can be implemented by using any transport

protocols, e.g. TCP/IP or NoTA.

Architectures for Context-Aware Services in Smart Environments

63

5.4.2 Integrated service and information interoperability

A SOA approach can be a promising solution in order to optimize costs, provide ICT

agility and guarantee software/systems evolution [20]. However, it is not enough: i)

applications should be able to integrate easily and dynamically, ii) without writing

custom specific glue code and iii) without extra costs. The philosophy behind OSGi

[60] is an answer to these requirements. OSGi proposes a dynamic modular SOA

application platform for Java™ that has been adopted by many enterprises in different

application fields, e.g. home and office environment. OSGi specifications have been

implemented in several certified platforms that have been adopted by a wide range of

device vendors to empower their products with OSGi as a hosting platform for wired

and wireless SOA oriented applications. Examples of these platforms are: Equinox

[67], Knopflerfish [68], Apache Felix [69] and Concierge OSGi [70]. They define a

standardized, component-oriented computing environment for general networked

services that is intended to significantly increase the quality of the produced software.

In OSGi the application emerges from a set of dynamic modules – called bundles –

that collaborate with each other. Dependencies between bundles and associated

consistency are automatically managed. Explicit sharing, i.e. importing and exporting,

and automatic management of code dependencies are available for bundles, and their

associated services, that may appear or disappear at any time. OSGi Service Platform

specification adds in a networked device the capability to manage through the

network the lifecycle of the software services exposed by the device itself [71].

Software services can be installed, updated, or removed in a controlled manner

without having to disrupt the operations the device is doing [72], increasing

maintainability, scalability and evolvability. The OSGi service oriented component

model enables networked services to dynamically discover other services and work

together to achieve the desired functionality [72]. It is also possible to receive event

notification when a service emerges or changes its properties [73]. Services could be

linked to devices. If a device is no more available, the services it offers are

automatically unregistered. OSGi has a component-based architecture that enables

device-side applications to load required components from the management server at

run time [74]. In this sense, application components can be customized on demand,

Architectures for Context-Aware Services in Smart Environments

64

e.g. if a new sensor is available or a new service appears, then specific module can be

loaded and used smoothly.

The OSGi framework provides the following benefits:

• The modular approach based on bundles reduces the complexity, in terms of

bundle development and in terms of system architecture. It contributes to the

rationalization of applications and exploits reuse e relying on a huge

community of bundles developer.

• OSGi framework is simple, because the core API is composed only of 30

classes and the entire framework consists of a JAR file of about 300KB. With

this footprint it can be used on a large range of devices, with the only

requirement of a minimal JVM.

• OSGi is a dynamic framework, where bundles can be updated on the fly and

the associated services came and go dynamically. This dynamicity is fully

supported by the framework and it is transparent to the developer. Bundles can

be installed, started, stopped, updated, and uninstalled without bringing down

the whole system.

• The framework is adaptive, because bundles can find out what capabilities are

available on the system through a service registry and can adapt consequently

the functionality they can provide.

• OSGi based solutions are easy to deploy, because the standard specifies how

components are installed and managed. It supports a native versioning system,

solving the big issue of JAR version management.

• It provides a new security model that leverages and hardens the Java fine

grained security model but improves the usability by introducing a simple way

to specify the security details of the bundles.

• It is not intrusive because it can run potentially in any existing facility and can

be easily ported to almost any software environment. It can run everywhere

there is a JVM, because it is entirely written in Java and the API uses only

standard Java classes.

• It is available since 1998 and has been extensively used in several application

contexts (automotive, mobile and fixed telephony, industrial automation,

gateways & routers, private branch exchanges, etc.). It is supported in many

development environments (IBM Websphere, SpringSource Application

Architectures for Context-Aware Services in Smart Environments

65

Server, Oracle Weblogic, Sun's GlassFish, Eclipse, and Redhat's JBoss) and by

key companies (Oracle, IBM, Samsung, Nokia, IONA, Motorola, NTT,

Siemens, Hitachi, Ericsson, etc.).

OSGi specifications do not concern with interoperability at the information level so

the introduction of elements that allow information interoperability would represent

an important improvement for OSGi platform.

The functionalities of the information interoperability level in Smart-M3 are based on

the interaction between the actors involved in a smart environment, i.e. KPs and SIBs,

and on the common access protocol, i.e. SSAP. Porting these elements into OSGi, i.e.

OSGi bundles, introduce the information interoperability level into OSGi allowing

OSGi Smart Environments applications to exchange information and use services in a

unified and simple way. From Smart-M3 side, it benefits from the entire OSGi

Framework, both in terms of architecture and functionalities and in terms of software

engineering – by introducing a modular service oriented architecture.

The result of this integration (see Fig. 27) is a dynamic interoperability service

architecture where it is possible to publish a new service at runtime, discover and use

services, share both raw data and high level information obtained from devices and

sensors.

Figure 27: Overview of the OSGi and SMART-M3 Integration

Architectures for Context-Aware Services in Smart Environments

66

The most important parts of the integration between Smart-M3 and OSGi are the SIB

and the SSAP. The availability of a native OSGi SIB provides complete autonomy to

OSGi by introducing the possibility to implement a complete OSGi based SSA. At the

same time, from a communication point of view, the implementation of SSAP on

OSGi allows legacy Smart-M3 application to interact with the OSGi SIB localization.

With respect to the service oriented architecture of OSGi, a specific bundle for SSAP

has been developed. This bundle provides an SSAP services for all the bundles that

want to access a SS and it allows each OSGi based KP to communicate with every

SIB in the SS. Fig. 27 describes the current status of Smart-M3 implementations,

specifying the development language/platform and related support tools. The frame

related to OSGi explains how the integration of Smart-M3 has been performed and

which components have been involved.

OSGiOSGi FrameworkFramework

KP

KP

SSAP (C#, Phyton, Java, C/C++)

SIB
(C, Phyton)

SSAP (OSGi)

KP

KP KP
KP

Smart Space Cross Platform ApplicationSmart Space Cross Platform Application

KP

SIB
(Java)

KP
KP

KP

SmartSmart --M3M3

Figure 28: Integrated Smart-M3/OSGi Solution

The integration is fully compatible with existing Smart-M3 implementations,

allowing developers to create multi-platform SSA as shown in Fig. 28: on the left side

– the Smart-M3 KPs written in Python, Java, C#, C/C++ and – on the right side – the

same modules implemented in Java as bundles running on the OSGi framework.

Through the SSAP these modules can communicate and exchange information in both

directions, i.e. Smart-M3 to OSGi, OSGi to Smart-M3.

Architectures for Context-Aware Services in Smart Environments

67

5.4.2.1 Application of Integrated Service and Information

Interoperability

In this paragraph, an application of the proposed solution to the maintenance of

buildings and, in general, maintenance of indoor spaces (Fig. 29) is presented. In this

scenario, maintenance needs should be identified, specified and communicated to the

reference maintenance company, as early as possible. For flexibility reasons any

authorized maintenance company may subscribe to any maintenance action needed.

As shown in Fig. 29, the main actors involved in the demonstration are: the

maintenance company, maintenance operators and office tenants. In the

demonstration, maintenance needs are represented by faults related to environments.

Faults are automatically detected on the base of the environmental conditions, i.e.

temperature, humidity, presence of water. Environmental conditions are gathered

from a set of EUROTECH ZigBee sensors spread across the environment. A

EUROTECH local gateway acts as a controller of the Wireless Sensor Network

(WSN) and it hosts Smart-M3/OSGi. The local gateway provides two different

interfaces: SSAP through a TCP/IP connection and OSGi. The former is used by non

OSGi compliant devices, i.e. the office tenant device and the building management

station, and the latter by OSGi compliant devices, i.e. a wearable device used by

maintenance operators. Relevant items that need to be identified are tagged using

RFID tags, e.g. Heating Ventilation Air Conditioning (HVAC) system, light, window

(Fig. 29). RFID tags are also placed on the entrance door of each environment. In the

first instance, this information will be used to locate maintenance operators.

Architectures for Context-Aware Services in Smart Environments

68

Figure 29: System Architecture of the Maintenance Scenario Demonstration

According to the Smart-M3 vision, the application is composed by a set of KP – see

Fig. 30 - , each of them with a specific function:

WSN Manager acts as a legacy adapter. It gathers data from wireless sensors and

provides information to the Smart-M3/OSGi in terms of RDF triples.

Automatic Fault Generators starting with environmental information, i.e. temperature,

humidity, presence of water, and a set of rules, detect the presence of an anomalous

condition, i.e. a fault. In the demonstration the rules consist of simple threshold-based

conditions.

Fault/Intervention Announcer is subscribed to the presence of fault instances. When it

receives a notification of a new fault, it updates Smart-M3/OSGi with a request of a

corrective intervention related to the detected fault.

Tenant Notifier is subscribed to corrective interventions related to the environment,

i.e. an office, of a tenant. It notifies the tenant of the time and time expected for the

intervention. The tenant is also notified at the end of the intervention.

Maintenance Software for Operators is subscribed to corrective interventions. When

it receives a notification of a new intervention request it asks the user, i.e.

maintenance operator, if he wants to take care of the intervention. When the operator

reaches the place of intervention, he verifies if being in the right place by reading the

RFID on the entrance door. This operation also sets the intervention start time.

Architectures for Context-Aware Services in Smart Environments

69

Building Monitor is subscribed to corrective intervention. This KP presents a user

interface, where all relevant information are shown, e.g. fault location, fault time,

relevant parameters, scheduled intervention date and time.

Figure 30: Software Architecture of the Maintenance Scenario
Demonstration in Terms of KPs

Information interoperability is achieved by using Smart-M3/OSGi with a domain

specific ontology. In Fig.31, as an example, a snapshot of the ontology used to

describe a fault is depicted.

Figure 31: Snapshot of the Ontology Used for the Maintenance Scenario

fault

Architectures for Context-Aware Services in Smart Environments

70

When creating a SE becomes a concrete opportunity for a real implementation,

challenging issues like authenticated security access and service discovery must be

considered. The next paragraph is dedicated to discuss about a possible solution to

these challenges.

5.4.3 Service discovery and access control proposal

Security-and-trust and service discovery are fundamental topics in many use cases.

Often it is important to ensure that only a subset of users may discover and access a

service. [3] is a comprehensive survey on service discovery protocols. This paragraph

introduces an idea for a future implementation of service discovery and access control

mechanisms on top of the architecture presented in 5.4.1. Basically the idea is to put

side by side to the SIB a core service. All the information useful to reach this core

service should be available on the relative SIB in the relative SE. Every KP should

know how to obtain this information from the local SIB – because this is a core

service. Some information handled by the core service may be useful to the same

service in another SE so this information should be able to migrate from one SS to

another one. The scenario consists of a set of SSs that can be related to a set of SEs

through an N-to-M relation, i.e. one SE can include more that one SS, as shown in

Fig. 32.

Figure 32: the environment can be split in many SEs.
Every SE can contain one or more SS, depending on the use case

Architectures for Context-Aware Services in Smart Environments

71

Several system topologies are suitable to link together every SS and to put a core

service next to the SS. One of these topologies could be a network where every node

is a core service linked to one or more SSs. This requires that every SIB contains

information to reach all other SIBs. This could be done with a hierarchical topology

where not all the SSs know the other SSs but only one special candidate can be used

as a gate to the others (Fig.33).

This topology could be similar to a distributed database. A distributed database is

collection of multiple, logically interrelated databases distributed over a computer

network where a distributed database management system (DDBMS) manages the

distributed databases and makes this distribution transparent to the user. This help

when the information to handle could be put all together. In other cases – when it is

necessary to keep apart every set of information especially if they refer to different

ontologies – a scalable solution that can evolve during the time should be a better

solution.

Figure 33: an example on how to model the topology
of the available SSs and core service

Fig. 33 shows a SE distribution example with the relative SS and core service. More

that one core service can be present into the same SE, the concept does not change.

Architectures for Context-Aware Services in Smart Environments

72

In this scenario a special purpose KP can be designed to feel when a new user enters

the SE and to retrieve the user sensitive information from the other SSs by browsing

the network. The user can carry very little information like his/her identifier and the

last SE visited. The user can enjoy the smooth propagation of his sensitive data and

does not need to provide it again when enters a new SE, as the platform recognizes

the user from the above mentioned minimum information. All services in the new SE

can exploit the user sensitive data propagated through the network.

Likewise an access control service, should offer functionalities to subscribe to the

service and to check if a user is subscribed and recognized by the system. When a

user tries to use a service, this can understand if the user is able to use it and his role,

by using the access control service. In this way unauthorized use is prevented

Security-free service can coexist with the secure ones. The latter will be more

complex, while the former will keep unmodified. SOFIA Architecture doesn’t change

but it requires a shared ontology to handle the user/service interaction.

The service discovery service should offer functionalities to subscribe to a new

service and to search for a service. This could be done, for example, with a reasoning

engine based on the user preferences and profile.

The way to interact with core services should be standardized and it should be known

from all KPs. An ontology that describes services and user types should be defined to

fix which user type can use a service.

Architectures for Context-Aware Services in Smart Environments

73

Architectures for Context-Aware Services in Smart Environments

74

Chapter 6

Conclusions

My research intended to investigate which architecture components can be devised

and combined to enable multi-level interoperability in context-aware computing.

The following interoperability levels were considered:

• Communication and connectivity

• User Device

• Information

• Service (discovery and composition)

• Content (adaptation)

Some solutions were proposed in terms of architecture and systems components.

Considering both the developer and the user point of views, their aim was to

implement an extended interoperability concept first, and then to provide a mature

architecture for context-aware services.

With reference to fig. 1 (pg. 9), rearranged into fig. 34 and starting from the

device/communication level, I am now going to summarize the results of my

experience.

Architectures for Context-Aware Services in Smart Environments

75

Figure 34: architecture components for extended interoperability

The proposed solution is based on the “separation of concerns” principle. Each

module can base its behaviour on the others if they are available.

Often legacy architectures are limited by the devices involved and by the services

offered which depend on the specific use case considered.

 By increasing the level of abstraction of the architecture and the generality of actors

and modules belonging to the architecture - the interoperability will improve too.

 This should be considered when different scenarios are fused and evolve into a new,

more general smart environment configuration. Based on the roadmap of my research,

activity, fig. 33 shows how the increasing generality of actors and tools leads to

increasing interoperability levels.

Architectures for Context-Aware Services in Smart Environments

76

Figure 33: From dedicated context-aware platforms to interoperable smart spaces for
multi-domain context aware services

The underlying vision is that when all information about the surrounding environment

is easily available, the life quality will greatly benefit, as the variety of applications

that that could get an added value by making their behaviour dependent on the

environment “state” is only limited by fantasy [1].

The first requirement for an extended interoperability concept is an architecture

component to handle communication and connectivity between heterogeneous

multivendor equipment.

The strategy is to provide a framework able to transparently manage the

connection/communication channel. This allows to forget issues like:

• communication protocols between multivendor devices
• best communication channel to use
• communication channel interoperability

A solution in this respect could be provided by a service architecture that can export

communication facilities – e.g. NoTA [47].

Architectures for Context-Aware Services in Smart Environments

77

Then the requirement arises to handle services and provide mechanisms like service

discovery, service composability and service interoperability. This was shown in

Section 5 where a service platform for cultural heritage applications was analysed.

Then the need for information interoperability comes into play. Data sharing, as

currently implemented for example in the context management framework

MobiComp (Par. 5.2.1) is just a step forward but it is not enough. A shared agreement

on information semantics is also needed.

This work is about smart environments, therefore the term information has been

mostly associated to “context”. Context information – in a SE for advanced services–

could not just be stored or exchanged as is, because the possible differences in the

associated semantics could be source of lack of mutual understanding.

A popular solution is to add information to information by adopting ontologies.

Ontologies define the domain, the entities involved and their properties. By adopting

ontologies it is possible to prevent a wrong interpretation of shared data and to help in

case of need for data alignment in different domains.

Ontologies can be also adopted to describe not only the user and his environment but

also services and security mechanism that are going to improve the quality of the

entire platform. This information representation moves the scene from machine

readable information to machine interpretable information. Cross domain application

become more natural and easy to develop.

On top of this substrate of communication and information interoperability, new

advanced services can be developed for multi vendor sensors and devices, such as the

tool chain developed for the cultural heritage domain (Section 5).

 By exploiting information interoperability, interoperable connectivity and

communication facilities together with the digital representation of the environment,

services can be composed to form new and more advanced services; in this way

appropriate answers to the growing demand for new multi-domain and cross-domain

services may be provided.

Architectures for Context-Aware Services in Smart Environments

78

In this respect a service oriented mechanism based on the OSGi framework was added

to an architecture natively devised for information level interoperability (see section

5.4). OSGi introduces standardized mechanisms to integrate easily and dynamically

new platform services. As shown in section 5.4.2, many OSGi features can be

exploited to support service discovery by an application. The same mechanism may

be used to enable service discovery for the end user – e.g. to discover services like a

museum guide service or a pedestrian navigation service. Furthermore the mechanism

shown in section 5.4.3 could be implemented using OSGi and could be exploited to

extend the service discovery feature to not-OSGi based services.

 Zero-effort interfaces and context-aware smooth user interaction models should now

be investigated to maximize user satisfaction in multidomain service-based

applications offered by future interoperable smart environments.

Architectures for Context-Aware Services in Smart Environments

79

Architectures for Context-Aware Services in Smart Environments

80

Publications

1. D. Manzaroli, L. Roffia, E. Ovaska, P. Azzoni, T. Salmon Cinotti, V. Nannini, S. Mattarozzi,

Smart M3 and OSGi: The Interoperability Platform accepted for presentation at the

International Workshop on Semantic Interoperability for Smart Spaces (SISS 2010) in

association with the IEEE Symposium on Computers and Communications (ISCC 2010)

2. L.Roffia, S. Bartolini, D. Manzaroli, A. D’Elia, T. Salmon Cinotti, Requirements on System

Design to Increase Understanding and Visibility of Cultural Heritage, accepted chapter for

“Handbook of Research on Technologies and Cultural Heritage” Edited by Dr. Georgios

Styliaras, Dr. Dimitrios Koukopoulos and Dr. Fotis Lazarinis of the University of Ioannina

3. L. Roffia, L. Lamorte, G. Zamagni, S. Bartolini, A. D’Elia, F. Spadini, D. Manzaroli, C. A.

Licciardi, T. Salmon Cinotti, Personalized Context Based Services for Dynamic User Groups

at 2nd International Workshop on Social Aspects of Ubiquitous Computing Environments

(SAUCE2009, October 12, 2009), 5th IEEE International Conference on wireless and mobile

computing, networking and communication (Marrakech, Morocco, October 12-14, 2009)

4. N. Ryan , P. Mohr, D. Manzaroli, G. Mantovani, S. Bartolini, A. D’Elia, M. Pettinari, L.

Roffia, L. Sklenar, F. Garzotto, T. Salmon, “Interoperable multimedia mobile services in

cultural heritage sites” EPOCH Conference on Open Digital Cultural Heritage Systems,

Roma, (2008)

5. T. Salmon Cinotti, M. Pettinari, L. Roffia, D. Manzaroli, S. Bartolini, “Technology meets

Culture: from MUSE to EPOCH”, International meeting Vesuviana, “Archeologie a

confronto”, Bologna, 2008, Antequem edition, pp 845-857

6. D. Manzaroli, P. Lacchè, M. Pettinari, L. Roffia, A. D’Elia, T. Salmon Cinotti (2008)

Enhancing Social Life with Path Solvers, Rendez-vous without Constraints on MeetingPlace

and Time - SAUCE 2008 1st International Workshop on Social Aspect of Ubiquitous

Computing Enviroment (October 12, 2008) held in conjuction with WiMob-2008, 4th IEEE

International Conferences on wireless and mobile computing, network and communication

(Avignon,France, October 12-14, 2008)

Architectures for Context-Aware Services in Smart Environments

81

7. G. Raffa, P. H. Mohr, N. Ryan, D. Manzaroli, M. Pettinari, L. Roffia, S. Bartolini, L. Sklenar,

F. Garzotto, P. Paolini, T. Salmon Cinotti, CIMAD - A Framework for the Development of

Context-aware and Multi-channel Cultural Heritage Services, in ICHIM07 September 30,

2007 Toronto

8. M. Pettinari, D. Manzaroli, S. Bartolini, L. Roffia, G. Raffa, L. Di Stefano, T. Salmon Cinotti,

A Stereo Vision based system for advanced Museum services , EPOCH Publication, The

Integration of Location Based Services in Tourism and Cultural Heritage, edited by David

Pletinckx, Workshop Proceedings, Page(s): 57 - 68, ISBN:978-963-8046-88-8 Ed.

ARCHAEOLINGUA, 2007

9. N. Ryan, G. Raffa, P. H. Mohr, D. Manzaroli, L. Roffia, M. Pettinari, L. Sklenar, L. Di

Stefano, T. Salmon Cinotti, (2007) A Smart Museum installation in the Stadsmuseum in

Stockholm - From Visitor Guides to Museum Managemen, in The Integration of Location

Based Services in Tourism and Cultural Heritage. (pp. 83-90). ISBN: 978-963-8046-88-8

10. N. Ryan, T.Salmon Cinotti, D. Manzaroli, M. Pettinari, G. Raffa, L. Roffia, S. Ghosh, P.

Mohr, L. Sklenar, Smart Museums, Sites and Landscapes - From Visitor Guides to Collection

Monitoring in Interactive Salon - New Technology for Visitors in Cultural Heritage. (pp. 10 -

13), HALINA GOTTLIEB, HANS OEJMYR, STOCKHOLMS STADSMUSEUM

publication, STOCKHOLM 2006

Architectures for Context-Aware Services in Smart Environments

82

Bibliography

[1] F. Spadini, S. Bartolini, R. Trevisan, F. Vergari, G. Zamagni, A. D’Elia, L. Roffia,

T. Salmon Cinotti, Approaching the design of interoperable smart environment

applications, in 2nd International Nota Conference, 2009.

[2] Institute of Electrical and Electronics Engineers. IEEE Standard Computer

Dictionary, A Compilation of IEEE Standard Computer Glossaries. New York, NY,

1990.

[3] A. Mian, R. Beraldi and R. Baldoni, A closer Investigation of Service Discovery

Protocols in Multihop Mobile Ad-Hoc Networks, IEEE Pervasive Computing, 2009

[4] Sofia work package 5.11 deliverable: Interoperability Platform Principles:

http://www.sofia-project.eu .

[5] Peristeras, B., Tarabanis, K. The Connection, Communication, Consolidation,

Collaboration Interoperability Framework (C4IF) for Information Systems

interoperability, in IBIS - Interoperability in Business Information Systems, Issue 1,

2006.

[6] Tolk, A., S. Y. Diallo, C. D. Turnitsa, and L. S. Winters. 2006. Composable M&S Web

services for netcentric applications, in. Journal for Defense Modeling and Simulation, 27-44.

[7] Park, J., Ram, S. Information systems interoperability: What lies beneath?, in

ACM transactions on information systems, vol. 22, no 4, Oct. 2004, pp. 595-632.

[8] Guédria, W., Naudet, Y., Chen, D. Interoperability Maturity Models - Survey and

Comparison, in On the move to meaningful Internet systems: OTM 2008 workshop,

LNCS, Vol. 5333/2009, pp. 273-282.

[9] Brailer, D. From the Field. Interoperability: The key to the future health care

system, in Health affairs - Web Exclusive, W5-19-21.

[10] Shabo, A., Rabinovici-Cohen, S., Vortman, P. Revolutionary impact of XML on

biomedical information interoperability, in IBM Systems Journal, Vol. 45, no. 2, 2006, pp.

361-372.

Architectures for Context-Aware Services in Smart Environments

83

[11] Open Health Tools, http://www.openhealthtools.org

[12] Garzotto, F., Manzaroli, D., Paolini, P., Salmon Cinotti, T., Sklenar, L., Raffa,

G., Roffia, L., Bartolini, S., Pettinari, M., Ryan, N., Mohr, P., CIMAD/EPOCH, A

Framework for Developing Customized Multi-channel Cultural Heritage Services, in

International Cultural Heritage Informatics Meeting - ICHIM07: Proceedings 2007,

Archieves & Museum Informatics.

[13] Peristeras, V., Tarabanis, K., Loutas, N. Cross-Border Public Services: Analysis

and Modelling, in Proceedings of the 40th Hawaii International Conference on

System Sciences, 2007, 7 p.

[14] Tursi, A., Panetto, H., Morel, G., Dassisti, M. Ontology-based products information

interoperability in networked manufacturing enterprises, in Proceedings of the IFAC

conference on Cost Effective Automation in Networked Product Development and

Manufacturing, IFAC-CEA’07. October 2-5, Monterrey, Mexico. 9 p.

[15] O’Reilly, T., Battelle, J. Web Squared: Web 2.0 Five Years On, in Special

Report. Web 2.0 Summit. 13 p.

[16] A. K. Dey, G. Abowd, and D. Salber. A conceptual framework and a toolkit for

supporting the rapid prototyping of context-aware applications, in Human Computer

Interaction (HCI) Journal, 16:97-166, 2001.

[17] A. K. Dey. Understanding and using context, in Personal and Ubiquitous

Computing, 5(1):4-7, 2001.

[18] T. Strang and C. Linnhoff-Popien. A context modeling survey, in Proceedings of

the Workshop on Advanced Context Modelling, Reasoning and Management as part

of UbiComp 2004.

[19] H.Truong, S. Dustdar. A Survey on Context-aware Web Service Systems, in

International Journal of Ad Hoc and Ubiquitous Computing, Vol. 2 No.4, pp.263-77,

2007 .

[20] S. Mello, R. Correa, From Credit Cards to Gift Registries, in IMB Web Seminar,

Connecting everything with Smart SOA Connectivity & Integration (2009), Webcast.

Architectures for Context-Aware Services in Smart Environments

84

[21] Jong-yi Hong, Eui-ho Suh, Sung-Jin Kim, Context-aware systems: A literature

review and classification, in Expert Systems with Applications Volume 36, Issue 4,

May 2009, Pages 8509-8522.

[22] W. N. Schilit. A System Architecture for Context-Aware Mobile Computing, in

PhD thesis, Columbia University, 1995.

[23] Jini Technology. http://www.jini.org.

[24] Service Location Protocol. Internet Engineering Task Force Request For Comments 2608.

[25] Overview of SGML Resources. http://www.w3.org/MarkUp/SGML.

[26] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.

Extensible Markup Language (XML) 1.0 (Fourth Edition), 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/.

[27] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context information

in pervasive computing systems, in F. Mattern and M. Naghshineh, editors, Pervasive,

volume 2414 of Lecture Notes in Computer Science, pages 167-180. Springer, 2002.

[28] T. Halpin. Information Modeling and Relational Databases: From Conceptual

Analysis to Logical Design, in Morgan Kaufmann Publisher, 2001.

[29] A. Schmidt and K. van Laerhoven. How to build smart appliances, in IEEE

Personal Communications.

[30] P. D. Gray and D. Salber. Modelling and using sensed context information in the

design of interactive applications, in M. R. Little and L. Nigay, editors, EHCI,

volume 2254 of Lecture Notes in Computer Science, pages 317-336. Springer, 2001.

[31] A. Ranganathan and R. H. Campbell. A middleware for context-aware agents in

ubiquitous computing environments, in M. Endler and D. C. Schmidt, editors,

Middleware, volume 2672 of Lecture Notes in Computer Science, pages 143-161.

Springer, 2003.

[32] M. Berchtold, C. Decker, T. Riedel, T. Zimmer, and M. Beigl. Using a context

quality measure for improving smart appliances, in ICDCS Workshops, page 52.

IEEE Computer Society, 2007.

[33] T. R. Gruber. A translation approach to portable ontology specifications, in

Knowledge Acquisition , v.5 n.2, p.199-220, June 1993

Architectures for Context-Aware Services in Smart Environments

85

[34] Xiao Hang Wang, Da Qing Zhang, Tao Gu, Hung Keng Pung: Ontology Based

Context Modeling and Reasoning using OWL, in Pervasive Computing and

Communications Workshops, IEEE International Conference, 2004

[35] H. Chen, F. Perich, T. W. Finin, and A. Joshi. Soupa: Standard ontology for

ubiquitous and pervasive applications, in MobiQuitous, pages 258-267. IEEE

Computer Society, 2004.

[36] EPOCH (2004). The European Network of Excellence on ICT Applications to

Cultural Heritage, in Contract no. IST-2002-507382. Epoch Repository. Retrieved

December 22, 2009, http://public-repository.epoch-net.org/presentations/EPOCH-

Presentation.pdf

[37] EPOCH project: http://www.epoch-

net.org/index.php?option=com_content&task=view&id=231&Itemid=360

[38] MobiComp, Ryan, N., Salmon Cinotti, T., & Raffa, G. (2005). Smart

Environments and their Applications to Cultural Heritage, in Proceedings of a

workshop held in conjunction with UbiComp’05 (Ed.), EPOCH Publication, Tokyo

2005 (pp. 7-11). Archaeolingua Ed

[39] N. Ryan , P. Mohr, D. Manzaroli, G. Mantovani, S. Bartolini, A. D’Elia, M.

Pettinari, L. Roffia, L. Sklenar, F. Garzotto, T. Salmon. “Interoperable multimedia

mobile services in cultural heritage sites” EPOCH Conference on Open Digital

Cultural Heritage Systems (2008)

[40] Interactive Salon, A touring exhibition about new technologies and concepts for

communication with visitors in the context of cultural heritage,

http://www.tii.se/projects/interactivesalon

[41] TiLab - TELECOM Italia research group:

http://telecomitalia.mobi/en/chisiamo/rs.html

[42] Marco Marengo, Nicoletta Salis, Massimo Valla,. Context Awareness: servizi mobili “su misura”

[43] L. Roffia, L. Lamorte, G. Zamagni, S. Bartolini, A. D'Elia, F. Spadini, D. Manzaroli,

C. A. Licciardi, T. Salmon Cinotti, Personalized Context Based Services for Dynamic

User Groups, in WiMob, pp.411-416, 2009 IEEE International Conference on Wireless

and Mobile Computing, Networking and Communications, 2009

Architectures for Context-Aware Services in Smart Environments

86

[44] SOFIA project - Smart Objects For Intelligent Applications, http://www.sofia-project.eu

[45] Artemisia: http://www.artemisia-association.org/sofia

[46] ARTEMIS European Technology Platform - Advanced Research & Technology

for EMbedded Intelligence and Systems, http://www.artemis.eu

[47] NoTA World, Open Architecture Initiative, http://NoTAWorld.org

[48] DUCATI Energia: http://www.ducatienergia.it

[49] Salmon, C. T., Nagaraj, R., Mincolelli, G., Sforza, F., Raffa, G. Roffia, L.

(2004). WHYREe: A context-aware wearable computer for museums and

archaeological sites, in proceedinf of the 8th IEEE International Symposium on

Wearable Computers (ISWC2004), Arlington, Virginia, pp 174-175.

[50] G. Raffa, L. Roffia, M. Pettinari, R. Nnagaraj, F. Sforza, G. Mincolelli, T. Salmon

Cinotti, Context-aware computing for Cultural Tourism – Experiences from the MUSE

project, in: “The Integration of Location Based Services in Tourism and Cultural

Heritage. (pp. 69 - 81), Daniel Pletinckx Editor. ISBN: 978-963-8046-88-8. Published by

Archaeolingua, 2007, Budapest

[51] Arces Laboratory, MML group: http://www.arces.unibo.it/content/view/51/290/

[52] FiealdMap Landscape Mapping : http://www.fieldmap.cz

[53] Java Native Interface: http://java.sun.com/j2se/1.4.2/docs/guide/jni

[54] FEDORA, Lagoze, C., Payette, S., Shin, E., & Wilper, C. (2006), Fedora: an

architecture for complex objects and their relationships, in International Journal on

Digital Libraries 6(2), 124-138.

[55] Fedora content management: http://www.fedora-commons.org/about

[56] Arces Laboratory, Alma Vision: http://www.arces.unibo.it/content/view/55/290/,

http://www.arces.unibo.it/content/view/43/290/

[57] Klein, M., Fensel, D., Van Harmelen, F., Horrocks, I., (2001) The relation

between ontologies and XML schemas, Electronic Articles in Computer and

Information Science

[58] L. Lamorte, C.A. Licciardi, M. Marengo, A. Salmeri, P. Mohr, G.Raffa, L.

Roffia, M. Pettinari, T.S. Cinotti, A platform for enabling context aware

Architectures for Context-Aware Services in Smart Environments

87

telecommunication services, in Proc. Third Workshop on Context Awareness for

Proactive Systems, Guildford,UK (2007)

[59] R. Reichle, M. Wagner, M.U. Khan, K. Geihs, M. Valla, C. Fra, N. Paspallis, G.

A. Papadopoulos, A Context Query Language for Pervasive Computing

Environments, in Proceedings of 5th IEEE Workshop on Context Modeling and

Reasoning (CoMoRea ’08) in conjunction with the 6th IEEE International Conference

on Pervasive Computing and Communication (PerCom), 2008

[60] OSGi™ - The Dynamic Module System for Java™, http://www.osgi.org

[61] Smart-M3 Wiki, http://en.wikipedia.org/wiki/Smart-M3

[62] Smart-M3 Open Source Project, http://sourceforge.net/projects/smart-m3

[63] RDF Semantics, http://www.w3.org/TR/rdf-mt

[64] O. Lassila. Enabling Semantic Web Programming by Integrating RDF and

Common Lisp, in Proceedings of the First Semantic Web Working Symposium. Stan-

ford University, 2001.

[65] XPath query: http://www.w3.org/tr/xpath20.

[66] Ǻbo Akademi University, Ontology to Python tool, http://sourceforge.net/projects/smart-m3

[67] Equinox, http://www.eclipse.org/equinox.

[68] Knopflerfish Open Source OSGi Sevice Platform, http://www.knopflerfish.org.

[69] Apache Felix, http://felix.apache.org/site/index.html.

[70] Concierge OSGi, http://concierge.sourceforge.net.

[71] OSGi Technical Whitepaper,

http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf

[72] OSGi Core Specification, www.osgi.org/download/r4v41/r4.core.pdf.

[73] OSGi Initiative, OSGi Service Platform R4, 2007,

http://www.osgi.org/Release4/HomePage.

[74] H. Chang, T. Chun Jie, A new strategy of language pack management for wireless

applications, in IBM Shanghai Globalization Laboratory (SGL), 2005, Webcast.

Architectures for Context-Aware Services in Smart Environments

88

[75] L. Lamorte, C. Venezia, Smart Space a new dimension of context, in PERSIST

Workshop on Intelligent Pervasive Environments, at the Edinburgh Convention Centre

at Heriot Watt University in Edinburgh, Scotland, AISB 2009 Convention, 2009

[76] G. Raffa, Context-Aware Computing In Smart Environments, PhD Thesis,

University of Bologna, Faculty of Engineering, DEIS Department 2005

Architectures for Context-Aware Services in Smart Environments

89

Architectures for Context-Aware Services in Smart Environments

90

Tools

This section lists the tools used.

Tool Description

Eclipse Java, Python IDE

C++Builder 6 C/C++ IDE

Microsoft Visual Studio 2005 C/C++ IDE

NetBeans IDE 6.1 - C++ Java and C/C++ IDE

Apache ANT Java build tool

Dreamweaver MX HTML, PHP, JavaScript IDE

PAPYRUS Open source tool for graphical UML2 modelling

Apache HTTP Server

Apache Tomcat Java Servlet Server

JVM (1.4, 1.6) Java Virtual Machine

EasyPHP PHP and MySQL administration tool

MySQL Database management system

ArcView GIS 3.2 Maps geo-processing tool

GIMP 2 Image manipulation program

notepad++ Advanced text editor

Architectures for Context-Aware Services in Smart Environments

91

Architectures for Context-Aware Services in Smart Environments

92

Acronyms

SW Software
DLL Dynamic Link Library
SOA Service Oriented Architecture
XML Extensible Markup Language
UML Unified Modeling Language
GUI Graphic User Interface
OSGi Open Service Gateway initiative
IDE Integrated Developing Environment
DDBMS Distributed Database Management System
MVC Model View Controller
HCI Human-Computer Interaction
CH Cultural Heritage

MID MobiComp ID
POI Point Of Interest
MMPI MobiComp Multi Platform Interface
VTS Video Tracking System
ITS Inertial Tracking System
MEL MobiComp Enabler Library
PTA People Tracking Application

CAP Context Aware Platform
CaPUA Context-aware Preferences, Users, and Activities
SOFIA Smart Object For Intelligent Application
CIMAD

Common Infrastructure/Context Influenced Mobile
Acquisition and Delivery

ARTEMIS

Advanced Research & Technology for EMbedded
Intelligence and Systems

Architectures for Context-Aware Services in Smart Environments

93

Architectures for Context-Aware Services in Smart Environments

94

Acknowledgements

EPOCH, The European Network of Excellence on ICT Applications to Cultural

Heritage was funded by the European Commission under the Community´s Sixth

Framework Programme, contract no. IST−2002−507382.

SOFIA, Smart Objects for Intelligent Applications, is funded through the European

Artemis programme under the subprogramme SP3 Smart environments and scalable

digital services, within the 7th European Framework Programme, contract no.

100017.

I'd like to thank my colleagues, my supervisor and all of those people who worked

with me during this thesis, particularly ARCES and VTT (Oulu) staff who made this

work possible.

Architectures for Context-Aware Services in Smart Environments

95

Architectures for Context-Aware Services in Smart Environments

96

Architectures for Context-Aware Services in Smart Environments

97

Architectures for Context-Aware Services in Smart Environments

98

Architectures for Context-Aware Services in Smart Environments

99

Architectures for Context-Aware Services in Smart Environments

100

