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1 INTRODUCTION

Plant stress can be defined from a physiological point of view, as any factor altering the 

homeostatic equilibrium of the plant; on the agricultural side, it is measured as the economic 

loss due to the same factor. Based on the nature of its causes, a major distinction is made 

between  biotic  and  abiotic  stress.  The  first  case  includes  the  interactions  with  living 

organisms  and  viruses,  which  use  the  plant  as  a  source  of  food  or  a  means  for  their 

reproduction. The abiotic stresses are nonoptimal growth conditions, such as drought, salinity, 

chilling temperatures, nutritional deficiency or pollutants, which prevent the plant to express 

its full genetic potential, in terms of carbon fixation or production. The severity of a stressing 

agent depends on the evolutionary background of the plant species or variety.

Homeostasis is achieved by means of an electron flux, through tightly controlled redox-

exchange pathways. Since plants use sunlight as the primary energy source to activate the 

redox cascade, stressing factors will limit the efficiency of the process, causing, as a final 

result, an increased electron leakage towards acceptors which do not take part in the cascade. 

Among such acceptors, oxygen and nitrogen compounds emerge for several reasons: (1) their 

formation  cannot  be  completely  avoided;  (2)  their  high  reactivity  would  compromise  the 

plant's metabolic apparatuses, in case of deregulated production; (3) their controlled formation 

has been adopted, during plant evolution, as a protective or signalling mechanism in stress 

responses.

1.1 Reactive oxygen species in abiotic stress

Abiotic  stress  is  considered  the  main  limiting  factor  in  crops  yield,  which  can  be 

reduced by more than 50% worldwide [144]. In contrast with the resistance to pathogens, the 

tolerance to abiotic stresses is essentially a quantitative trait; yet, from the understanding of its 

physiology,  some  pivot  signals  and  genes  emerge  as  possible  targets  for  the  genetic 

improvement of crops, or the remediation and prevention of a stress instance.

In  field  conditions,  several  abiotic  stresses  are  often  combined  together,  potentially 

leading to conflicting responses (heat and drought on stomata opening) or synergistic effects 

(drought and heavy metals).  Adaptation to stressing conditions is an active process, which 

may be impaired by nutritional deprivation or low availability of key elements or cofactors. 
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A transcriptomic and metabolite analysis in Arabidopsis evidences only a partial overlapping 

between heat stress, drought stress, and a combination of the two. Carbohydrates catabolism 

is likely to have an outstanding role in the process, since photosynthesis  slows down and 

starch degradation is required for the production of energy and protective compounds [155; 

190].

Abscisic acid (ABA) is known to be implicated in many stress responses, leading to a 

regulation  of  the  hydric  balance,  and inducing  specific  gene  sets.  In  some cases,  distinct 

ABA-dependent  and  ABA-independent  signalling  pathways  can  be  distinguished  in  the 

response to the same stress [227; 244]. A coarse classification can be made between early and 

late induced genes. Early genes respond within minutes and include transcription factors and 

intermediates  of  the  signalling  cascade,  while  late  genes  lead  to  the  accumulation  of 

protective products to cope with a chronic stress [144].
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1.1.1 ROS production

Abiotic  stresses  are  associated  with  an  unbalance  in  the  electron  flux  from excited 

chlorophylls or reduced compounds to physiological electron acceptors, such as ferredoxin, 

NAD+ and  NADP+,  through  electron  transport  chains,  most  notably  in  mithocondria, 

peroxysomes, plasma membrane, and, above all, in chloroplasts, where O2 production and the 

greatest  part  of  electron  transport  take  place.  As a  result,  reactive  oxygen species  (ROS) 

deriving  from  O2 would  deteriorate  the  cellular  components;  notably,  the  photosynthetic 

apparatus would lose its electron exchange efficiency (photoinhibition).

The excited chlorophyll can be stabilized by electron spin inversion; in this state, named 

excited triplet,  it is blocked in an inactive form and can transfer its energy to a triplet O2 

molecule, converting it to singlet (1O2
*). This chemical species is highly reactive, having a 

half-life  of  a  few  ns.  To  prevent  photoinhibition,  the  PSII  complex  is  surrounded  by 

carotenoids in the antenna systems, and is subject to a rapid turnover, as a complete protection 

from the reactive oxygen species formed in the process can't be achieved.

When the reduction of the acceptors is outcompeted by that of molecular oxygen, the 

formation  of  superoxide  (O2
-∙)  takes  place.  This  may  occur  when  NADP+ is  not  readily 

available  during  photosynthesis  (the  overall  metabolism  is  not  consuming  NADPH 

efficiently), or when the stomata are closed (a common feature of plant stress, inducing a rise 

in oxygen concentration in the cell). This reaction is most frequently occurring either at the 

[4Fe-4S] cluster in the excited PSI cluster (where the radical form is stabilized by the absence 

of H+ in the membrane) or by ferredoxin oxidation.

Other  metabolic  pathways  are  minor  sources  of  ROS.  Photorespiration  regenerates 

NADP+ evolving  H2O2 in  peroxisomes.  Purines  catabolism  involves  a  reaction  in  which 

xanthine is converted to uric acid with evolution of O2
-∙, then uric acid produces allantoin, 

H2O2 and  CO2.  An  oxidative  burst,  driven  by  a  NAD(P)H-dependent  membrane  oxidase 

(Respiratory  Burst  Oxidase  Homologue,  Rboh)  is  the  main  source  of  ROS  during  an 

incompatible  pathogenic  reaction  and  hypersensitive  reaction,  and  occurs  during  several 

abiotic  stresses  as  well,  in  response  to  ABA;  specific  isoforms  are  required  for  stomata 

closure, root hair development, and wound response. All isoforms are regulated by Ca2+, Rop 

(Rho-like  small  G-proteins  from  plants)  and  N-term  phosphorilation,  possibly  CDPK-

dependent  [115;  223].  Electron  leakage  to  O2 can  occur  during  reactions  catalyzed  by 
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cytochromes,  in  particular  cytochrome  P450.  Upon alkalinization  of  the  apoplast,  several 

peroxidases and oxidases (amine oxidase, oxalate oxidase) are activated and evolve H2O2 in 

presence  of  a  reductant,  resulting  in  a  pathogen-targeted  oxidative  burst  and  driving 

lignification and cell wall strengthening [237].

1.1.2 ROS detoxification

The toxic effects of ROS include DNA damage, lipid peroxidation and inactivation of 

proteins.

DNA damage (strand breakage, deoxiribose fragmentation or base modification) is due 

to  OH∙  but  not  O2
-∙,  requiring  a  Fenton-active  transition  metal;  the  damage  level  can  be 

extimated by the level of 8-hydroxyguanine [10].

Removing a hydrogen atom from a polyunsaturated fatty acid, OH∙ can trigger the lipid 

peroxidation  chain  reaction,  thus disrupting the structure and functionality  of  membranes, 

which  can  be  measured  by  electron  leakage  or  thiobarbituric  acid  reactive  substances 

(TBARS) like malondialdehyde  [68].  A reversion of the lipid peroxidation  level  after  the 

recovery from stress can be explained assuming that the plant is producing new tissues, rather 

than rescuing old ones; indeed, such a reversion has been observed in roots [31].

Proteins  can  suffer  from  carbonilation  (mainly  Lys,  Arg  and  Pro  residues),  redox 

inactivation (for Cys-rich proteins), or metal  cluster disruption [111]; the latter  case, often 

leading to ubiquitin-depending degradation, can provide Fenton-reactive metals, thus feeding 

the oxidative stress. 

1.1.2.1 Electron dissipation

O2
-∙  can  behave  both  as  a  reductant  and  as  a  prooxidant,  and  can  reduce  either 

cytochrome  b6f or  plastocyanin,  feeding  a  cyclic  electron  transport  around  PSI  on  the 

thylakoid lumen side. Alternatively, it tends to dismutate spontaneously or is enzymatically 

converted by superoxide oxidase (SOD) to  hydrogen peroxide (H2O2),  which is  relatively 

stable,  but can react  with transition metals  such as Fe(II)  or Cu(I)  to form the extremely 

reactive  hydroxyl  radical  (OH∙),  according  to  the Fenton  reaction  (fig.  1.2). Since  the 

hydroxyl radical cannot be controlled, the antioxidant apparatus is centered on the removal of 

its precursors superoxide and hydrogen peroxide, by the activities of SOD, catalase (CAT) 
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and  peroxidases.  The  whole  process  is 

named pseudocyclic electron transport or 

water-water cycle,  to underline electrons 

cross the thylakoid membrane through the 

photosynthetical electron transport chain, 

although the end product is the same as 

the precursor; it yields a proton gradient 

between thylakoid and stroma, but no net 

reduction  of  ferredoxin  or  NADPH 

occurs, so that the ATP/reducing equivalents ratio can be adjusted; moreover, it is required to 

dissipate electrons during photoinhibition, in order to keep the carbon fixation provided with 

ATP [7]. The rate of H2O2 formation in chloroplasts under optimal conditions is estimated to 

be about 100 mM s-1, but it can suffer an increase of several orders of magnitude under photo-

oxidative stress, and a H2O2 level as low as 10 mM inhibits CO2 fixation by 50% because of 

the oxidation of thiol-modulated enzymes [103].

In  mithocondria,  the  ubiquinone  pool  can  feed  either  the  cytochrome  pathway 

(comprehending the complex III, the cytochrome c and the cytochrome oxidase, with O2 as 

final electron acceptor) or the alternative oxidase (AOX), which is an electron transport chain 

uncoupled  to  proton  movement,  ubiquitous  in  plants,  acting  as  a  dissipator  of  electrons. 

Mutants  lacking  the  AOX  display  an  increased  ROS  content  and  an  upregulation  of 

antioxidant  activities;  notably,  heme inhibitors  as  N3 and  NO block  the  complex  IV and 

induce the programmed cell  death (PCD), while  AOX is resistant  to  heme inhibitors  and 

confer  higher  resistance  to  PCD.  In  the  thylakoid  membrane,  the  plastoquinol  oxidase 

(PTOX)  acts  similarly,  reducing  O2 and  keeping  the  photosynthetic  electron  transport 

effective [3].

Plasma  membrane  and  tonoplast  house  an  ascorbate-dependent  cytochrome  b561, 

allowing the reducing equivalents to cross the membrane. In fact, apoplast is less buffered 

than cytosol,  being poor in NADPH and GSH, and rich in peroxidase activity.  Thylakoid 

lumen could be another critical compartment, since it can be reached by ascorbate only by 

diffusion, in spite of being one major site of ROS production; an accumulation of ROS in the 

lumen could be important as a signal for PCD [75].
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1.1.2.2 Non-enzymatic antioxidants

The  interaction  between  ROS  and  the  antioxidant  apparatus  works  as  an  interface 

between  stressing  conditions  and  metabolism,  allowing  to  maintain  proteins  and  other 

components in an active state, and, at the same time, to elicit a response against stress.

Ascorbic acid (AsA) is one of the main antioxidant compounds, and shows its maximal 

efficiency  when  coupled  with  glutathione  in  the  ascorbate-glutathione  (Halliwell-Asada) 

cycle. It is used as the electron donor by the ascorbate peroxidase to reduce H2O2 to water, 

forming monodehydroascorbate, either disproportionated to ascorbate and dehydroascorbate, 

or  reduced to  ascorbate  by a  specific,  NADPH-dependent  reductase.  Reduced glutathione 

(GSH), besides acting as a thiol buffer, provides electrons for dehydroascorbate reduction, 

and  is  in  turn  reducted  by  the  NADPH-dependent  glutathione  reductase.  Ascorbate 

biosynthesis  can be achieved through different pathways,  the main being the D-man/L-gal 

pathway (D-glucose 6-P  →→ D-mannose 1-P  →→ L-galactose  → L-galactono-1,1-lactone 

→ ascorbic acid), occurring in mitochondria; other pathways can proceed from myo-inositol 

or pectins through, respectively, glucuronate or galacturonate intermediates [103].

Tocopherols are among the most important antioxidant factors in membranes, and are 

considered the main scavengers  for singlet  oxygen and lipid peroxides;  their  regeneration 

depends on ascorbate. They are augmented after several abiotic stresses such as light excess, 

drought,  high  temperature  and  heavy  metal  toxicity,  probably  in  order  to  protect 

polyunsaturated  fatty  acid-enriched  membranes  from  oxidative  stress,  and  their  absence 

induces  phytoalexins,  jasmonic  acid,  phytodienoic  acid  (OPDA)  and  other  stress-related 

compounds [143]. Carotenoids can quench both the excited triplet state of chlorophylls and 

the singlet  oxygen through the xanthophyll  cycle,  consisting in  the enzymatic  removal  of 

epoxy groups from violaxanthin to yield zeaxanthin; the intermediate antheraxanthin is also a 

lipophylic antioxidant. 

Typical stress products are heat-shock proteins, chaperonins, LEA proteins (for which is 

postulated a role in maintaining the structure and functionality of proteins), stress-associated 

metabolites such as aminoacids (mainly proline), amines (glycine-betaine and polyamines), 

sugars  and  polyalcohols,  which  can  act  as  osmoprotectants,  N/C sources  or  antioxidants, 

either directly or in their synthesis [233]. Yet, only in a few cases an overproduction of one of 

these compounds  succeeded in  improving  plant  fitness.  In particular,  proline is  known to 

accumulate  under  stress,  but  in  no  case  reaches  concentrations  which  could  support  an 
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osmotic function; rather, since its synthesis proceeds from glutammate through two reductive 

steps, it may help controlling the ratio NADP+/NADPH when carbon fixation slows down 

[93; 231]. 

1.1.2.3 Antioxidant enzymes

Some  enzymatic  activities  overtake  a  main  role  in  ROS scavenging,  being  induced 

under stress and located in proximity of the evolving site of their substrate. Nevertheless, part 

of their physiological function is debated, and various reports evidence different responses 

under stressing conditions, possibly reflecting different tolerance strategies and mechanisms 

among species. Peroxidases both remove H2O2 and contribute to lignification, which might be 

an adaptation to abiotic stress by limiting growth. H2O2 is a stress marker, a toxic by-product 

against  pathogens  and  a  signal  for  its  own  detoxification.  Being  mainly  located  in 

peroxisomes, catalase could be involved in removing the photorespiration-derived H2O2; in 

this  case,  ascorbate  peroxidase or  peroxiredoxins  would undertake the main  role  of H2O2 

scavengers.

Peroxidase family

Peroxidases are a large class of heme-binding enzymes catalyzing the oxidation of an 

electron donor, in order to convert H2O2 to water. According to their interspecific homology, 

they are divided in three superfamilies: animal peroxidases, catalases and plant peroxidases.

The  first  group  is  represented  in  plants  only  by  the  glutathione  peroxidases  (EC 

1.11.1.9). While the mammalian enzymes are dependent on selenocysteine for their catalytic 

mechanism, this rare aminoacid is replaced by cysteine in plant isoforms, whose activities 

result therefore far  lower. A particular kind of glutathione peroxidase has been identified, 

which uses phospholipid hydroperoxide as electron donor rather than H2O2, thus potentially 

blocking the Fenton chemistry in membranes. In plants, this enzyme has been shown to be 

induced by several abiotic and biotic stressing agents, and to be located in mitochondria and 

possibly other organules, linking it to the major sites for ROS production [249].

Catalase (CAT; EC 1.11.1.6) is a specialized type of peroxidase for H2O2 dismutation 

(H2O2  acts  both  as  electron  donor  and  acceptor).  Catalase  isoforms  display  a  reaction 

mechanism in which one hydrogen peroxide mole reacts  with the heme-Fe(III) giving the 

compound  I,  heme–Fe(IV)=O + H2O.  A  second  H2O2 mole  reacts  with  the  compound  I 
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yielding back heme–Fe(III) + H2O + O2. A large number of plant isoforms exist, belonging to 

the  small  (<60  kDa)  or  large  (>75  kDa)  type,  and  showing  different  kinetic  properties, 

quaternary structure and thermal stability [35].

The plant peroxidases, found in bacteria and fungi as well, include ascorbate peroxidase 

(APX;  EC  1.11.1.11)  and  the  so-called  class  III  plant  peroxidases  (EC  1.11.1.7).  The 

members  of the latter  class have a  vacuolar  or apoplastic  localization,  and display a low 

electron donor specificity (unlike APX and others); they are often assayed with guaiacol as 

the electron donor, and therefore named GPX. They are proposed for a great number of roles, 

such as H2O2  removal,  cell  wall  strengthening by lignification,  suberization  after  wounds, 

toxicity  toward  pathogens  (in  this  case,  evolving  H2O2),  auxin  catabolism,  and  even 

transcription factor activity (for isoforms featuring AP2/EREBP, MYB or WRKY domains). 

Peroxidases  have  three  strictly  conserved  domains  (two heme-binding,  each  containing  a 

histidine residue, and a domain of unknown function included between them); 8 invariable 

cysteine residues form a disulphide bridge network, and the region comprised between the 

sixth and the seventh is proposed to play a role in electron donor specificity. Nevertheless, 

due to the great number of possible substrates, the physiological function of each isoform 

should be probably found in a combination of characteristics, such as the expression pattern, 

localization and in-vitro properties [98].

APXs  are  classified  into  three  groups  according  to  the  subcellular  localization 

(chloroplast, either in a soluble or thylakoid membrane-bound form; cytosol; microbodies). 

APXs  are  unstable  at  low  ascorbate  concentration,  and  rapidly  lose  their  activity  [103]. 

Chloroplastic  membrane-bound  and  soluble  isoforms,  active  as  monomers,  derive  from 

alternative splicing of the sampe transcript,  with a C-terminal  hydrophobic domain in the 

membrane-bound enzyme, which is found in stoichiometric ratio with PSI. Cytosolic isoforms 

are active as homodimers and display a lower substrate specificity [7].

Peroxiredoxins

Peroxiredoxins (Prx; EC 1.11.1.15) have recently been characterized as a class of heme-

free thiol  peroxidases,  sharing their  base reaction mechanism towards hydroperoxides  and 

peroxynitrites. A conserved cysteine residue carries out a nucleophilic attack to the substrate, 

turning into a sulphenic acid (–SOH) which can be regenerated by direct reduction, intra- or 

intermolecular disulphide bridge formation.  The disulphide is then reduced by an electron 
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donor such as thioredoxin or glutaredoxin. The regeneration pathway allows a classification 

among peroxiredoxins, into 1-Cys Prx, type II Prx (both having the sulphenic acid reduced 

directly  by  an  external  donor),  2-Cys  Prx  (where  the  sulphenic  acid  is  reduced  by  an 

intermolecular  disulphide  bond),  or  Prx  Q  (forming  a  intramolecular  disulphide  bond). 

Glutathione peroxidase can also be ascribed to thiol peroxidases [199].

Superoxide dismutases

The superoxide dismutases (SOD; EC 1.15.1.1) are considered the first line of defence 

against ROS formation. They usually locate near the centres of O2
-∙ production, since O2

-∙, as a 

charged  molecule,  cannot  cross  membranes  and  must  be  removed  in  loco. Chloroplasts, 

mitochondria  and  peroxisomes  are  thought  to  be  the  main  sites  for  ROS  evolution.  A 

reversible activation of SOD was found in roots, but not in shoots of salt-stressed cowpea 

plants  [30;  31];  therefore,  SODs  may  be  crucial  in  the  tissues  which  directly  sense  the 

stressing agent, and not necessarily depend on chloroplast activity. With regard to their metal 

cofactor, SODs are distinguished as iron-, manganese- or copper-zinc-containing isoforms. 

Iron SODs are found in chloroplasts, and can be active as homodimers (20 kDa per subunit) 

or homotetramers (about 90 kDa per subunit). Manganese SODs might have evolved from 

iron-containing isoforms when the level of O2 in the environment rose, making soluble Fe(II) 

less available; they are localized in mitochondria and peroxisomes, and work as homodimers 

or homotetramers. Copper-zinc SODs, the most recently evolved type, are very different from 

the other isoforms, because of the different electrical properties of the metal cofactors. This 

group  is  further  divided  into  homodimeric  forms,  present  in  the  cytoplasm  and  in  the 

periplasm, and homotetrameric, extracellular or chloroplastic forms. In the chloroplast, they 

have been found to be attached to the stromal side of the thylakoidal membrane, where PSI is 

located. The metal cofactor dependence can be discriminated since Fe SODs are inactivated 

by H2O2, Cu-Zn SODs by both H2O2 and KCN, and Mn SODs by neither of these inhibitors. 

Different isoforms might have some specificity towards stressing agents [2].

1.1.3 ROS signalling

In contrast with biotic stresses, resistance to abiotic stress is mainly multigenic, and is 

associated to morphological or phenological avoidance. The known stress receptors are few, 
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consistently with the idea of a broadly overlapping, partly aspecific response to stresses. ROS 

signalling  is  probably  based  on  thiol  chemistry  in  target  proteins,  and  is  affected  by 

thermodinamic (redox potentials) and kinetic (competition with antioxidants) factors. Thiols 

are  subjected  to  a  variety  of  modifications,  such  as  disulfide  bond  formation, 

glutathionylation, sulphenic acid formation, or nitrosilation. Variations in the redox state of 

the glutathione pool could be as affecting as variations in the ROS content [75].

Hydrogen peroxide is a key signal, inducing detoxification responses at sublethal levels, 

PCD at  higher  concentrations,  and  potentially  necrosis.  As a  relatively  stable,  uncharged 

molecule, it is able to cross lipidic membranes and to act at some distance from the evolving 

site. Its concentration can increase either when the antioxidant apparatus is weakened, or after 

elicited synthesis. Hydrogen peroxide is a mediator in hormonal signalling, including ABA-

induced stomatal closure (by activation of the Rboh NAD(P)H oxidase) and auxin-depending 

gravitropism.  PCD  is  controlled  in  interaction  with  nitric  oxide  (NO).  Controlled  H2O2 

generation requires and induces ion fluxes (by opening plasmalemma calcium channels and 

closing potassium channels) and protein phosphorilation, in an autocatalytical way. Its effect 

is  probably  mediated  by  disulfide  bridge  reduction  in  specific  target  proteins  and  sites. 

Several  genes  are  modulated  by  H2O2,  including  antioxidant  enzymes,  calmodulin,  PCD 

proteins,  protein  kinases  and  transcription  factors.  H2O2-responsive  promoters  are  known, 

although their working mechanism is not clear; WRKY proteins, Zatl1 (containing a C2H2 

Zn-finger domain) and NAM proteins are reported as H2O2-activated transcription factors [79; 

169].

A specificity  in  the  signalling  properties  of  different  ROS can  be  hypothesized,  as 

studied in the  flu mutant of Arabidopsis: these plants accumulate protochlorophillide in the 

dark,  which  evolves  singlet  oxygen  when exposed to  light,  leading  to  a  gene  expression 

pattern differing from the one induced by paraquat (which causes the overproduction of O2
-∙ 

and H2O2); furthermore, the double mutant flu/tAPX (overexpressing a thylakoidal APX, thus 

containing  increased  1O2  and  less  H2O2 than  the  wild  type)  shows  an  exasperated  flu 

phenotype.  This could be explained  with an antagonistic  role  of  H2O2  towards  1O2 in  the 

chloroplast,  where  H2O2 would  compete  against  excess  GSH  in  keeping  PSII  electron 

acceptor QA oxidized, thus making the electron flux more efficient and the 1O2 production less 

probable [123].
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1.1.3.1 Calcium

Calcium ion is present in millimolar concentrations mainly in vacuoles and endoplasmic 

reticulum, but also in chloroplasts and mitochondria, while its cytosolic concentration is about 

200 nM. Various stressing conditions, including cold, drought and heat, induce a release of 

Ca2+ into  the  cytoplasm.  In  Arabidopsis guard  cells,  a  hyperpolarization-dependent,  Ca2+ 

permeable  channel  is  activated  by  H2O2.  Ryanodine  and  IP3 receptors  are  Ca2+ channels 

characterized  by  a  high  number  of  cysteines,  potential  targets  of  redox regulation.  ATP-

depending Ca2+ pumps and Na+:Ca2+ exchangers, which decrease the cytosolic concentration 

of calcium, can be inactivated by ROS. On one side, Ca2+ increases the production of ROS, as 

a promoter of pathways increasing the mitochondrial activity (mainly the Krebs cycle), of the 

Rboh NAD(P)H oxidase; on the other hand, several antioxidant enzymes like catalase, GSH 

reductase, SOD, among a great number of other proteins, are regulated by Ca2+ [248]. Among 

the calcium sensors, calmodulin, protein kinases like CDPK and SOS, annexins, calnexins 

and several transcription factors have been demonstrated [227].

1.1.3.2 Signalling network

Responses,  aimed  to  the  restoration  of  homeostasis,  need  a  signalling  network 

composed by G-proteins, mitogen-activated protein kinases (MAP-K), tyrosine phosphatases, 

salt  overly  sensitive  kinases  (SOS-K),  phospholipases,  transcription  factors  (heat-shock 

factors, C-repeat binding factors, ABA-responsive element factors) [233].

Some genes from Arabidopsis thaliana, induced after osmotic stress, can complement 

yeast mutants lacking specific osmosensors, consisting in a two-component system, including 

a histidine kinase and a response regulator.

Calcium ion serves as a second messenger in many responses, and is thereby a main 

player  in  the  cross-talk;  Ca2+ channels  must  exist,  being  regulated  by  mechanical  or 

membrane-deriving signals such as IP3 (possibly elicited by ABA or ROS), cyclic nucleotides 

(induced by NO), or factors affecting membrane fluidity and citoskeletal reorganization [227]. 

The  SOS pathway for  sodium stress  tolerance  consists  in  a  signal  transmission  from the 

membrane-associated SOS3 protein, containing 3 low-affinity EF-hand motifs, thus reacting 

to great variations in Ca2+ concentration. In the Ca2+-binding form, it can activate the SOS2 

protein, a Ser-Thr protein kinase, which in turn activates its target SOS1 by ATP-dependent 

phosphorilation. SOS1 is a Na+:H+ membrane exchanger; other targets may be Na+ channels 
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or vacuolar Na+:H+ antiport systems. Although the SOS pathway appears to be specific for 

saline  stress,  other  SOS-like  genes  are  involved  in  response  to  ABA.  Another  class  of 

regulators, the calcium-dependent protein kinases (CDPK), allows the response to drought, 

wound or cold, probably by activation of transcription factors [38].

1.2 Nitric oxide and related compounds (RNS)

Besides ROS, the role of other reactive species has been pointed out. Since early 1990s, 

nitrogen  monoxide,  more  commonly  called  nitric  oxide  (NO), and  related  compounds, 

collectively  named  reactive  nitrogen  species  (RNS,  in  analogy  with  ROS),  have  been 

characterized as  actively produced  physiological regulators in plants,  despite their  unusual 

features.  Indeed,  in  contrast  to  other  signalling  molecules,  NO is  a  small,  ubiquitous  and 

unstable radical, freely diffusible both in aqueous and lipidic media [247].

1.2.1 Chemistry of RNS

The NO molecule  is  a lipophilic  radical  gas,  with the unpaired electron delocalized 

between the N and O atoms. For these properties,  it results uncommonly stable; its half-life 

inversely depends on its concentration, spanning from minutes or hours at < 1 μM to seconds 

at higher concentrations, and, moreover, on the presence of targets such as: proteins, transition 

metals, thiols, O2 and ROS [213]. A maximum range of 200-500 μm is estimated for free NO 

diffusion [101; 225; 247].

The redox status of NO can vary among three different forms:

NO+ (nitrosonium) → NO∙ → HNO (nitroxyl)

Each of these species has a specific chemistry,  but their interconversion is slow, and 

their effects appear to be distinct, possibly depending on the pahway NO derives from [73; 

101].

The reactivity of NO towards O2 is increased in a lipophilic medium, and yields NO2. 

This compound can further react with NO, according to the following reactions:
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NO2 + NO → N2O3

N2O3 + H2O → 2 HNO2

The transfer of a NO+ group to a nucleophilic target, named nitrosation or nitrosylation, 

may be driven by NO2 or N2O3; else, NO∙ can be activated to nitrosonium by reducing metals, 

or  react  with thiyl  moieties;  in  no case  can NO directly  substitute  a  thiol  group.  On the 

contrary,  HNO can react with thiols [101;  134].  Protein  S-nitrosothiol  formation seems to 

occur  in  specific  consensus  sequences,  or  might  be  mediated  by  low  molecular  weight 

nitrosothiols (like nitrosoglutathione) in a transnitrosilation reaction. Nitrosothiols tend to be 

labile in presence of reducing agents (AsA, GSH), transition metals or light, with half-lives of 

minutes  or  seconds.  Moreover,  nitrosothiol  decomposition  can  also  be  catalyzed  by 

thioredoxins, nitrosoglutathione reductase, Cu-Zn SOD and other enzymes [134].

NO has a strong affinity to octahedral metal centres, and can induce the release of metal 

ions (including Cd) from their storage and chelation sites, or prevent iron to accumulate in 

ferritins.  Iron  forms  mono-  or  dinitrosyl  iron  complexes  [(R-S-)2Fe+(NO+)2]+ with  S-

nitrosothiols;  NO∙ specifically  binds  Fe(II),  while  HNO  seems  to  favour  Fe(III).  Hence, 

another difference between the radical and the reduced forms could emerge [101; 186].

NO reacts with  O2
-∙ at a nearly diffusion-limited rate, yielding ONOO-  (peroxynitrite). 

This reaction depends on the relative concentrations of NO and SOD, which controls  O2
-∙ 

availability;  moreover,  peroxynitrite  itself  is highly reactive toward both of its  precursors, 

which can therefore act as ONOO- scavengers when present in excess. ONOO- can also be 

formed by HNO and O2 [101] and act as a S-nitrosylating compound [134]. Despite being less 

toxic than other peroxides, ONOO- is a powerful oxidant for aromatic moieties; in particular, 

tyrosine modification (nitration) yields nitrotyrosine. In physiological conditions, very little 

O2
-∙ is  produced  and  not  removed  by  SOD;  therefore,  the  formation  of  nitrotyrosine  is 

proposed as a stress marker.
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1.2.2 RNS metabolism

1.2.2.1 GSNO and nitrosothiols (RSNO)

Nitrosothiols  (RSNOs)  are  considered  important  intermediates  of  NO biochemistry, 

since the half-life of NO in vivo is very short, whereas RSNOs can participate to NO storage, 

transport and delivery, due to their higher stability.

In  particular,  nitrosoglutathione  (GSNO)  has  been  recognized  as  a  physiologically 

relevant  compound  since  the  characterization  of  the  previously  called  class  III  alcohol 

dehydrogenase  (synonimous:  glutathione-dependent  formaldehyde  dehydrogenase;  EC 

1.2.1.1) as nitrosoglutathione reductase (GSNOR), catalyzing the reaction GSNO + NADH → 

GSSG  +  NH3 +  NAD+  [203].  GSNOR-coding  genes  are  evolutionarily  conserved, 

ubiquitously  expressed  in  the  plant,  and  present  in  one  single  copy  in  the  Arabidopsis  

thaliana genome [129]. 

GSNO is generally considered a NO storage and translocation form [9;  72], and can 

transnitrosylate  other  thiols,  including  proteic  cysteine  residues;  thus,  GSNOR  activity 

indirectly  affects RSNOs.  GSNO and  nitrosothiols  vary  in  concentration  and distribution 

during stress conditions, notably in or near the vascular tissues, and GSNOR expression is 

affected by the same stressors, as well as by JA and SA [9; 45; 61; 229]. Nevertheless, both 

induction and repression occur in the reported works. An increase in GSNO concentration, 

obtained  through an  antisense GSNOR RNA, promoted  pathogen resistance  and systemic 

acquired resistance [201].  Arabidopsis GSNOR mutants result more sensitive to heat stress, 

while  GSNOR-lacking  plants  display  pleiotropic  phenotypes  (reduced  fertility  and 

germinability,  sensitivity  to  the  light  period);  their  NO content  is  higher  and  less  stress-

inducible in comparison to the wild type, and nitrosothiols correlate to an increased nitrate 

concentration [129]. Taken together, these results could mean GSNOR activity,  rather than 

being  a  first-line  actor  in  stress  sensing  or  adaptation,  depends  on  other  factors  like  NO 

production or the rate of RSNO formation.

1.2.2.2 Protein nitrosylation

Protein  S-nitrosothiols  can be obtained by direct  interaction of several  RNS species, 

including  other  nitrosothiols  such  as  GSNO.  The  process  is  reversible  and no  enzymatic 

mechanism  appears  to  be  required.  In  presence  of  reductants  like  ascorbate  or  reduced 
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glutathione,  or  metal  ions,  nitrosothiol  half-life  can  be  estimated  in  seconds  or  minutes, 

making  S-nitrosylation  a  suitable  fine-tuning  mechanism.  Indeed,  a  mechanism  in  NO-

mediated  regulation  of  proteins  consists  in  the  reversible  nitrosylation  of  specific  Cys 

residues; the consensus motif is probably a 3D environment featuring an acid-base pair, an 

aromatic ring, possible docking sites for GSNO or interaction with NOS, an enhanced acidity 

for the thiol  group, and an hydrophobic environment.  From a bioinformatic approach,  the 

degenerate  nitrosylation  motif  [GSTCYNQ]-[KRHDE]-C-[DE]  was  found  in  about  one 

hundred  Arabidopsis proteins,  involved in signalling,  metabolism,  cell  cycle  and transport 

[92; 134; 238].

Proteomic screens of potential targets for nitrosylation [132; 133] and of S-nitrosylated 

proteins  during  hypersensitive  response  [197]  in  Arabidopsis led  to  the  identification  of 

transcription factors, ion channels, primary metabolism enzymes (PSII; Rubisco and Rubisco 

activase;  glyceraldehyde  3-phosphate  dehydrogenase;  glycolisis,  oxidative  phosphorilation 

and pentose phosphate  pathway enzymes),  possibly driving to  the balancing  of  the redox 

status (thioredoxins and glutaredoxins are candidate targets too). Allene oxide synthase (JA 

pathway),  methionine  synthetase,  S-adenosyl  homocysteinase,  and  methionine 

adenosyltransferase (MAT) were also spotted.

Besides  the  proteomic  approach,  only  few  proteins  were  demonstrated  to  undergo 

regulation in plants. A MAT isoform loses its activity after nitrosylation, consistently with the 

reported  inhibition  of  ethylene  by  NO  [133].  During  the  hypersensitive  response, 

peroxiredoxin  IIE  undergoes  nitrosylation;  since  its  activity  includes  the  thioredoxin-  or 

glutaredoxin-dependent peroxynitrite reduction, and is inhibited by nitrosylation, the observed 

increase  in  tyrosine  nitration,  mediated  by  peroxynitrite,  can  be  explained  [196]. 

Metacaspases are plant proteases, related to metazoan caspases (essential  for the apoptosis 

process and known to be regulated by nitrosylation), which are kept in a inactive form while 

the  catalytic  Cys  residue  is  nitrosylated.  After  the  nitrosyl  moiety  is  lost,  the  protein  is 

converted to the mature, active form by autocleavage; in this state, the enzyme is not prone to 

inhibition, because of a second, nitrosylation-insensitive cysteine residue which can undertake 

the catalytic function if the first is blocked [13]. NO is also known to inhibit glyceraldehyde-

3-phosphate dehydrogenase activity and AtMYB2 binding to DNA [45]. Rubisco undergoes 

nitrosylation in both subunits, and consequently reduces its carboxilation activity, in Brassica 
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juncea subjected to cold stress; other affected enzymes belong to photosynthesis, glycolysis, 

antioxidant (APX, SOD, peroxiredoxin) and defensive metabolisms [1].

1.2.2.3 Nitration and nitrosative stress

The potential toxicity of RNS led to the consideration of markers for cellular damage 

deriving from an unregulated radical production, defined nitrosative stress.

Superoxide and NO react in an extremely fast reaction, to yield peroxynitrite (ONOO-), 

a powerful oxidant which can modify a number of biological molecules, including proteins, 

lipids and nucleic acids; in particular, tyrosine and other aromatic molecules undergo nitration 

in the ortho position. Since very little O2
-∙ is thought to be evolved in healthy tissues, due to 

the SOD activity, nitrotyrosine is proposed as a biomarker of nitrosative stress.

Actually,  both ONOO- and nitrotyrosine were found to increase in salt-stressed olive 

plant,  together  with  NOS-like  activity,  nitrosothiol  content,  superoxide  production; 

furthermore, NO and O2
-∙ are shown to colocalize [229]. Tobacco cells require both NO and 

superoxide  to  induce  hypersensitive  response  after  elicitin  treatment,  and  nitration  is 

demonstrated by Western blotting [202]. Despite these data, it must be observed that oxidative 

and nitrosative  stress  do  not  necessarily  overlap.  A Cd treatment  in  pea  plant  did  cause 

oxidative stress, but also a decrease in NO and GSNO content, thus making the production of 

RNS unlikely [9].

Nevertheless,  observations  in  animal  systems  suggested  that  some  proteins  are 

selectively nitrated and nitration could be reversible;  a nitrotyrosine denitrase activity has 

been described.  Moreover, the plant peroxiredoxin IIE, which has been characterized as a 

target for  S-nitrosylation,  displays  a peroxinitrite reductase activity in the non-nitrosylated 

form [196]. Thus, a signalling role for nitration cannot be excluded [44]. In plants, the number 

of proteins undergoing nitration during a stress instance is limited [45; 202]; in sunflower, 21 

proteins  were  spotted  and identified,  concerning  metabolic  processes  such  as  respiration, 

photosynthesis, protein folding and degradation [33].

1.2.2.4 Affinity to transition metals

Many of the biological effects of NO depend on its strong affinity to octahedral metal 

centres, which leads to a typical weakening of the coordination bond pattern, and possibly the 
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release of the metal atom (especially in FeS clusters, causing the degradation of the cluster 

itself) and/or the regulation of the protein activity.

The soluble guanylate cyclase (sGC, EC 4.6.1.2) is known as one of the main targets for 

NO action in animal systems. Its product, cyclic GMP (cGMP), has then been identified in 

plants as well, as a second messenger in the NO signalling. NO interacts with the heme centre 

loosening the bond between Fe(II) and a coordination histidine residue, boosting the enzyme 

activity.  The release of NO, and the consequent enzyme inactivation,  can be enhanced by 

oxyhemoglobin, Mg-GTP (the substrate of sGC), and other redox agents [146].

In all living organisms, hemoglobins are among the main targets for NO action. Plant 

hemoglobins are classified in symbiotic, non-symbiotic, and truncated; class I (stress-induced) 

non-symbiotic  hemoglobins,  often expressed in hypoxic environments,  are subjected to  S-

nitrosylation, and can react with NO and O2 to yield nitrate (and possibly to free NO and 

oxygen from nitrite).  Hemoglobin overexpression reduces NO levels  and nitrosative stress 

incidence  [48].  Thus,  their  proposed  primary  function  might  be  the  modulation  of  NO 

bioactivity, by detoxifying it to nitrate in a NAD(P)H-dependent reaction, storing it as a  S-

nitrosyl group, or reducing GSNO to GSH and nitrate [178].

Bacterial  and  metazoan  aconitase  isoforms  can  switch  to  DNA-binding  proteins 

involved in the regulation of iron uptake, named IRP. NO is known to turn the functional 

aconitase  to  IRP,  by  disrupting  the  FeS  cluster.  Although  IRP-binding  sites  are  not 

characterized in plants, they might be represented by a structure rather than a sequence, and 

aconitase binding is reported to superoxide dismutase mRNA [6; 157].

Besides  the  cytochrome  c oxidase  (complex  IV  or  COX,  EC  1.9.3.1),  plant 

mithocondria  have  a  second  terminal  oxidase  (alternative  oxidase,  AOX,  EC 1.-.-.-),  not 

coupled to oxidative phosphorylation, bypassing the complexes III and IV and releasing the 

ubiquinol electron potential as heat. While COX is (reversibly) inactivated by NO, AOX is 

not [153]; therefore, NO affects the production of energy and the likelihood of ROS formation 

in plant mitochondria.
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1.2.3 NO synthesis

1.2.3.1 NO synthase

NO synthase (NOS, EC 1.14.13.39) has been characterized as the enzymatic source of 

NO in  mammals.  Two isoforms  are  constitutively  expressed  in  neuronal  and  endothelial 

tissues, while an inducible one (iNOS) is expressed by the immune system cells. All isoforms 

share the structure and the reaction mechanism: the enzyme, active as a homodimer, includes 

NADPH-,  FAD-,  FMN-,  and  CaM-binding  sites  in  the  C-term  domain,  and 

tetrahydrobiopterin (BH4)-,  heme- and L-arginine-binding sites in the N-term domain.  The 

reaction consists in the oxidation of arginine to citrulline + NO, requiring O2 and 5 e- from 

NADPH bound on the adjacent subunit. Ca2+-CaM are the main regulators of the constitutive 

isoforms, while the inducible NOS binds them strongly,  so that it  results constantly active 

[19].

After the discovery of NO as a regulator  in mammals,  a plant  homologue has been 

searched by different means, including molecular, immunological and radiochemical ones.

The occurrence of the typical NOS reaction has been demonstrated in a number of plant 

models, such as  Pisum sativum development,  Lupinus albus nodulation,  Nicotiana tabacum 

infected with TMV [43; 50; 53; 65]. In particular, a constitutive activity is found in xylem and 

epidermis during pea seedling growth [43]; it is proposed that the role of NO in those tissues 

may reflect  their  importance in environment  sensing and transfer of nutrients  and signals. 

Cofactor requirements and inhibitors are the same as in the mammalian NOS, although it must 

be noted that BH4 is not present in plants, where it could be substituted by tetrahydrofolate 

[229].

Despite this, no homology to mammalian NOS genes could be found in Arabidopsis or 

other species, where plenty of molecular data is available. All the claims for the identification 

of a plant NOS [34;  89] have been retracted [49;  114]. Thus, the activity is referred to as 

NOS-like. It has been observed that BH4-free NOS can release nitroxyl (HNO) from arginine, 

in  a  standard  monooxygenase  reaction  involving  2  NADPH,  2  O and  a  4-e- transfer, 

contrasting with the unique stoichiometry of NOS (2 O, 1.5 NADPH, 5 e-). NO∙ could then 

derive from HNO, possibly undergoing SOD-mediated reduction [101]. Thus, HNO might be 

the actual product of NOS-like plant activity, which could be ascribed to a monooxigenase 

enzyme rather than a homologue of the mammalian NOS.
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1.2.3.2 Cytosolic nitrate reductase

Nitrate reductase (NR; EC 1.6.6.1) catalyzes the limiting step in the reduction of NO3
- to 

NH4
+. The first reaction of the pathway is the NADH-dependent reduction of NO3

- to NO2
-; 

nitrite is then reduced to NH4
+ by nitrite reductase (NiR) and ferredoxin as the electron donor. 

The NADH consumption and the NH4
+ production can be crucial in some cases, like in root 

anoxia, when excess reducing potential and acidification occur; the tolerance to submersion 

has been associated to high nitrate fertilization [214].

NR  is  a  cytosolic  homodimeric  enzyme;  each  subunit  houses  a  N-terminal  MoCo 

domain,  a  heme  cofactor  and  a  C-terminal  FAD-binding  domain.  It  is  inactivated  by 

interaction  with  14-3-3  proteins,  which  recognize  the  phosphorilation  of  a  conserved Ser 

residue  between  the  heme  domain  and  the  MoCo  domain.  Several  protein  kinases  can 

overtake  this  role;  among  them  the  Ca2+-depending  CDPKs.  Moreover,  NR  synthesis  is 

induced by nitrate; this also makes an important regulating strategy, since NR half-life is short 

(hours).  Finally,  the  NRI  protein  inhibits  specifically  and  irreversibly  NR,  probably  by 

blocking the FAD-binding site. As a general rule, a high energy status is linked to a high NR 

activity, although the mediator is not known. In the dark, NR phosphorilation is complete and 

no NR activity can be found, since the ferredoxin-dependent NiR could not remove the toxic 

nitrite [109;  152]. NO itself can increase NR activity, either by a direct stimulation (on the 

heme  cofactor,  or  by  cysteine  nitrosylation),  or  by  controlling  the  protein  kinases  and 

phosphatases which regulate NR activity [64].

As a side reaction, NR can also reduce NO2
- to NO. The Km for nitrite is about 100 μM, 

thus making nitrate the preferred substrate and antagonist for NO production; nevertheless, 

NO synthesis  follows the activation status of NR and the accumulation of nitrite,  even if 

induced by anoxia or uncouplers of the oxidative phosphorilation. Normally,  NO emission 

occurs specifically in light, with a peak, as soon as the lamp is switched off, before dropping 

to zero (fig. 1.3); this activity, ascribed to NR, is positively affected by NO2
-  and CO2, and 

depressed by O2 [182; 191], which is a possible competitor substrate for NR, and the resulting 

superoxide would further subtract NO [245].

Experiments  on  a  tobacco  clone  expressing  a  NiR-antisense  RNA showed  a  5-fold 

content of nitrite, but a 10 or 15-fold increase in NO emission compared to the wild type; no 

“light-off peak” occurred. These data can be explained assuming that the NO2
- distribution in 

the  cell  are  different  in  the  mutant,  so  that  NR  experiences  locally  a  higher  nitrite 
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concentration;  such  saturation  is  consistent  with  the  idea  that  only  the  enzyme  circadian 

activation status, but not the substrate concentration affects the production of NO [160]. The 

Arabidopsis thaliana double mutant  nia1 nia2, where NR is not expressed, still displays a 

NO2
--dependent  NO production when NO2

- is  exogenously supplied,  but  contains  reduced 

concentrations of aminoacids, in particular arginine [156].

1.2.3.3 Nitrite:NO reductase

An enzymatic source of NO has been found in tobacco, on the apoplastic side of the 

root  plasma membrane.  Like the cytosolic  NR, it  requires  NO2
- as  the substrate  and was 

therefore  named  nitrite:NO  reductase  (NiNOR);  yet,  it  does  not  require  a  molybdenum 

cofactor, and can use cytochrome c but not NADH as the electron donor. The enzyme appears 

to  be  membrane-bound,  with  an  apparent  molecular  mass  of  about  300 kDa;  its  specific 

activity is estimated in 5 nmol mg-1 protein min-1. Associated to the plasma membrane-bound 

nitrate reductase, it may be a sort of nitrate receptor, converting the reduction of NO3
- into NO 

signal [212].
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Figure 1.3: NR-dependent NO production in detached tobacco leaves. Triangles – wild type;  
squares – tungstate-grown wild type; circles – NR-deficient mutant. Left: NO emission under  
air in dark and in light (grey-white in the top bar); right: NO emission in N2 atmosphere and 
continuous dark [182].



1.2.3.4 Other sources for NO production

Several non-enzymatic reactions can produce NO. Carotenoids can reduce NO2 to NO 

in light; at low pH, NO2
- can be reduced by ascorbate yielding NO and dehydroascorbate, or 

spontaneously  dismutate  to  NO  +  NO3
- [213].  Light-mediated  reduction  of  NO2 by 

carotenoids, and reaction of H2O2 with arginine are also proposed [53]. Some reports failed to 

link the production of NO to any of the known enzymes during cryptogein elicitation [183].

In barley aleurone apoplast, the non-enzymatic reaction

2 NO2
- + 2 H+ → 2 HNO2 → NO + NO2 + H2O → 2 NO + ½ O2 + H2O

is suggested,  since the pH is  low enough (3-4) for nitrite  protonation to  occur,  and 

antioxidants (proanthocyanidins) can subtract molecular oxygen. Indeed, NO synthesis from 

NO2
- is confirmed, does not depend on proteins of >10 kDa, and may act as a signal or an 

antimicrobial compound [16].

Arginine-derivated  polyamines  (ornithine,  putrescine,  spermidine  and  spermine) 

accumulate under stress; among their  roles, they act  as protective compounds and also as 

signals for proliferation and differentiation. They have been found to promote NO evolution, 

with no lag phase and with the highest efficiency for spermine and the lowest for arginine: 

these observations would exclude a NOS-like-mediated effect. Non-physiological amines, like 

Tris and imidazole, give no NO rise. Polyamine oxidases are known to produce H2O2, but the 

existence  of  NO-evolving  isoforms  could  be  supposed  [78;  225].  In  drought-stressed 

cucumber, polyamine-mediated NO production is abolished by tungstate and sensibly reduced 

by L-NAME, supporting the idea that polyamines act on NOS, NR or both [4].

Hydroxylamine and salicylhydroxamic acid can induce a rise in NO content in tobacco 

cell suspension in presence of oxygen. It can be noted that ROS promote the reaction (O2
-∙ 

aspecifically,  H2O2 with  a  catalyzer),  and  SOD  can  free  NO  from  hydroxylamine  in 

anaerobiosis  (that  is,  with  no  precursor  O2
-∙ and  no  intermediate  H2O2).  Unknown 

monooxigenases  might  be  proposed  as  hydroxylamine  sources  in  plants  [200].  N-

hydroxyarginine and hydroxyurea, in presence of H2O2, can be substrates for NO production; 

horseradish  peroxidase,  and  possibly  other  peroxidases,  as  well  as  heme-proteins  like 

cytochrome  P450,  hemoglobin  and  catalase,  have  all  been  demonstrated  to  drive  these 

reactions [53].
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Xanthine  oxidoreductase  is  a  molybdenum  cofactor-containing  enzyme  that  can  be 

found  in  the  interconvertible  forms  xanthine  oxidase  and  xanthine  dehydrogenase.  The 

former, according to O2 availability, is reported to produce either O2
-∙ or NO [53].

1.2.3.5 Subcellular localization of NO production

A dependence on electron transfer can be ruled out for the NO-evolving activities, since 

it has been associated to mitochondria, chloroplasts, peroxisomes.

Mitochondria

A link between NO metabolism and mitochondria exists in animal cells as well as in 

plants. NO was found to reversibly inhibit  the mitochondrial  respiration and to reduce the 

membrane potential, by targeting the cytochrome oxidase (COX) and also the cytochrome c 

[25]. In plants, the alternative oxidase (AOX, insensitive to all heme-blocking compounds, 

including NO) allows electron dissipation uncoupled to ATP production [246]. In the green 

alga  Chlorella sorokiniana, NO synthesis is stimulated by light and nitrite [222]; nitrite is 

sufficient for NO emission in cultured tobacco cells or isolated mitochondria [182] and in the 

Arabidopsis double mutant nia1 nia2, lacking both NR genes [156]. In all these cases, NO2
--

dependent NO emission does not require NR, but is reduced or blocked by COX and AOX 

inhibitors. This holds true for tobacco root, but not leaves mitochondria, possibly because of 

the inability to reduce nitrite to ammonia in anoxic roots [90].

Chloroplasts

Despite not affecting the efficiency of PSII, NO causes a reduction in electron transfer 

rate and ATP synthesis in chloroplasts, maybe competing with the stimulator HCO3
- for the 

same binding site; on the other hand, when photosynthesis is not able to efficiently reduce 

ferredoxin, a nitrite accumulation leads potentially to a higher NO production, mediated by 

cytosolic  NR. Globally,  an interplay between carbon and nitrogen metabolism could take 

place in chloroplasts, limiting carbon fixation when NO is produced as a consequence of a 

depressed nitrogen reduction [217].

Both a NOS-like and a NO2
--depending activity are reported in soybean chloroplasts, 

the latter specifically located in thylakoids [106]. The Arabidopsis NOA1 protein, previously 

classified as a mitochondrial atypical NOS, has been demonstrated to be a functional GTPase 
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required for ribosome assembly located in plastids, with no NOS activity. Despite this, NOA1 

mutants have a yet unexplained low NO production [77].

Peroxisomes

Peroxisomes are ubiquitous organules,  delimited by a single membrane,  and hosting 

oxidative  metabolisms  as  their  distinctive  feature  beyond  a  great  metabolic  plasticity 

(specialized forms, such as glyoxysomes or photorespirative leaf peroxisomes, can be found 

in different tissues or species). As a result of such metabolisms, H2O2 and other ROS are 

massively produced in peroxisomes. Oxidases (mainly flavin oxidases) and catalases are the 

most represented enzymes, along with SOD, ascorbate-glutathione cycle enzymes, glutathione 

peroxidase  and  peroxiredoxins.  Several  NADP+ dehydrogenases  allow  the  recycling  of 

NADP+ to NADPH [52; 54].

A NOS activity in pea peroxisomes was identified according to several complementary 

approaches: [3H]-citrulline production in purified peroxisomal fraction, sensitivity to typical 

NOS inhibitors, Western blotting, and electron microscopy immunocytochemical analysis of 

intact  tissues  [8].  Citrulline  production  is  shown to  co-localize  with  CAT activity,  to  be 

protein-mediated,  to  require  Ca2+ and  NADPH,  and  is  extimated  in  about  5.5  nmol  mg-1 

protein  min-1.  Two  different  antibodies,  raised  agains  iNOS,  were  used  for  the  Western 

blotting  and  the  immunocitochemical  analysis,  giving  a  signal  in  peroxisomes  and 

chloroplasts.  Nevertheless,  the specificity  of antibodies  raised against  mammalian  NOS is 

questioned in plants. In maize embryonic axes, 20 protein spots of a 2D gel reacted with the 

antibodies; 15 of them have been identified, having no relation to NOS [28].

Despite being a possible product for other enzymatic activites, citrulline is synthesized 

in a NADPH-depending reaction, which can be blocked by NOS inhibitors. Thus, although no 

definitive conclusions can be drawn about the identity of the enzyme, a NOS-like activity is 

likely to be present in peroxisomes. A role for NO could be proposed as a ROS scavenger, a 

signal in coordination with H2O2, or by forming peroxynitrite with  O2
-∙; peroxynitrite could 

regulate the activity or stability of proteins.
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1.2.4 RNS signalling interactions

1.2.4.1 Cyclic GMP cascade

Cyclic GMP (cGMP) has been identified, firstly in animals, then in plants as well, as a 

second messenger in the NO signalling. NO induces the activation of the mammalian sGC by 

binding reversibly its  Fe(II)-heme group.  The  concentration  of  cGMP is  the result  of  the 

balance  between  its  production,  mediated  by  sGC,  and  its  degradation,  mediated  by  a 

phosphodiesterase. In turn, cGMP induces cADP-ribose (cADPR) and the release of Ca2+ in 

the cytosol, driving the regulation of Ca2+-dependent proteins.

Despite neither a mammalian-like (heme-containing) sGC, nor the phosphodiesterase 

have ever  been cloned in  plants,  cGMP induces  several  physiological  responses,  like  the 

metabolism  of  phenolic  compounds,  the  maturation  of  chloroplasts,  auxin-induced 

adventitious rooting, and stomatal closure; specific inhibitors of sGC or phopshodiesterase, or 

cADPR antagonists, interfere with such responses [119; 124; 170; 174].

1.2.4.2 Calcium

The variations in cytosolic calcium concentration must be perceived by sensors, such as 

calmodulin (CaM) or calcium-dependent protein-kinases (CDPK), and give rise to specific 

responses.  NOS, but not NR, is activated by Ca2+-CaM; in turn,  calcium channels  can be 

controlled by NO directly after nitrosylation, or indirectly through the cGMP/cADPR cascade 

[126; 174]. Thus, Ca2+ can be required to intiate, but also amplify or maintain the NO signal 

[47]. The imposition of a thermic or osmotic stress in Nicotiana plumbaginifolia cell cultures 

increases the cytosolic Ca2+ concentration, according to a biphasic rise with an early, higher 

peak, and a second, lower peak a few minutes after the stress (fig. 1.4). The first peak is less 

affected, whereas the second phase appears to be delayed and lowered by the NO scavenger 

cPTIO; thus, NO could respond to the primary peak, and induce the second phase [82].
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The animal ryanodine receptor (RyR) is a class of Ca2+-channel, activated by cADPR 

and cytosolic Ca2+; a RyR-like channel in plants can be postulated, since a cADPR antagonist 

reduces significantly, although not completely,  a NO-mediated calcium release. A different 

second messenger pathway could involve a phosphorilation cascade, since calcium release is 

limited by a protein-kinase inhibitor, and promoted by a tobacco NO-activated protein kinase 

(named NtOSAK), induced under osmotic stress [124].

Phosphatidic  acid  is  also proposed as  a  mediator  in  the induction  of  hypersensitive 

response,  after  a  rapid  and  prolonged  production  of  NO.  In  this  model,  NO induces  the 

phospholipase C to produce inositol triphosphate, provoking the release of the Ca2+ stores; 

phospholipase  D  and  diacylglycerol  kinase,  combined,  give  rise  to  phosphatidic  acid  in 

response to the Ca2+ signal; other activation targets are the Rboh NAD(P)H oxidases, resulting 

in an increase in ROS [128].
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Figure 1.4: Variation in cytosolic calcium concentration after osmotic (sorbitol) treatment 
(grey), and in presence of sorbitol plus the NO scavenger carboxy-PTIO (black) [82].



1.2.4.3 Hormones

In some cases, NO mediates or alter the biological effects of hormones, for example by 

affecting tissue sensitivity,  or being induced after  elicitation by a long-distance signal.  In 

these models, NO function is limited to its site of synthesis.

Citokinins

The perception of citokinins is carried out by the AHK receptors, activating the histidine 

phosphotransferase  AHT  to  phosphorilate  the  nuclear  response  regulators  ARR;  other 

signalling pathways cannot be excluded.

NO was induced a few minutes after zeatin treatment in arabidopsis seedlings [226] and 

after benzyladenine (BA) treatment in arabidopsis cell cultures [29]. In the latter case, NO 

was shown to mediate the senescence programme and PCD activation, possibly by inhibiting 

the mitochondrial respiration [29]. In turn, senescence, due to NO deprivation, was partially 

reverted by BA [154].

Abscisic acid

ABA is  mainly  associated  to  water  stress,  because  of  its  role  in  inducing  stomatal 

closure  through  a  signalling  network  involving  second  messengers  (cADPR,  Ca2+),  ion 

channels, protein phosphorilation. The NO/H2O2 ratio, and the identity of other RNS and ROS 

involved, are crucial  for the induction of responses. Moreover, the ABA-induced stomatal 

closure and the ABA-induced stomatal opening inhibition are two distinct phenomena, with 

the first involving H2O2, MAP kinases and NO, whereas the second requires G proteins but 

probably no NO [60]. A simplified, general model (not accounting for other effects of each 

intermediate, autocatalysis or amplification) is proposed as follows  [24]:  ABA → H2O2 → 

NO → cGMP/cADPR → Ca2+ release → stomatal closure.

The stomatal closure occurs in two phases. The inactivation of the inwards K+ channels 

is rapidly induced by ABA through a rise in the cytosolic calcium concentration, requiring the 

signal cascade of NO, cGMP and cADPR; on the other hand, the opening of the outwards K+ 

channel is NO- and Ca2+-insensitive, and depends on the alkalinization of the cytosol, which is 

still induced by ABA, but slower than the NO-dependent pathway. H2O2 is also able to induce 

a rise in cytosolic calcium levels, but since it affects both inwards and outwards K+ channels, 

its signalling mechanism must be at least partly distinct from NO [76].
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ABA-mediated  induction  of  antioxidant  enzymes  is  reported  to  require  a  NOS-like-

derived NO production [257].

Phototropin is a blue light receptor with Ser/Thr kinase activity, inducing an increase in 

plasma membrane potential by plasmalemma H+:ATPase activation, thus leading to K+ intake 

and stomatal opening. NO, as a signal intermediate of ABA, counteracts the whole process by 

inhibiting the proton translocation, although no interactions with the H+:ATPase or the protein 

kinase cascade are demonstrated [252].

In arabidopsis seeds, NO is an antagonist for ABA-induced dormancy: after a treatment 

with a NO donor, seeds lose sensitivity to ABA and germination takes place in spite of ABA 

concentration. Nitrite appears to be the source for NO production [17].

Auxins

In Arabidopsis, the root system architecture (that is, the balance between primary and 

lateral  roots)  is  influenced  by  nutrient  patches  and osmotic  stress,  with  indoleacetic  acid 

(IAA) and indolebutyric acid (IBA) inducing adventitious rooting and lateral root emission 

[117;  118;  126;  174].  The  NO-cGMP  cascade,  and  possibly  the  direct  activation  of 

phospholipases and calcium channels by NO, are proposed for the onset of the process. Other 

signals driving to the same radication effect (such as salicylic acid), or other effects of auxins, 

may require NO as a second messenger. Some differences arise in other species (for instance, 

pea), possibly due to modulating factors, like the intensity of an oxidative stress [117].

Ethylene and polyamines

Some of the key enzymes for ethylene biosynthesis are shown to be regulated by NO. 

Methionine  adenosyltransferase  and  S-adenosyl  homocysteine  hydrolase,  required  for  the 

synthesis  of  both  ethylene  and  polyamines,  lose  their  activity  after  S-nitrosylation  and 

nitration,  respectively  [33;  133].  ACC  synthase  transcription  is  promoted  when  NO  is 

subtracted [154]. Supporting this view, NO is known to counteract the effects of ethylene by 

delaying senescence, flowering and maturation [131], and is proposed to act downstream to 

polyamines, possibly being a by-product of their metabolism [4].

In  ozone-treated  tobacco  plants,  NO  and  ethylene  cooperate  in  promoting  the 

transcription  of  the alternative  oxidase,  which is  normally low in unstressed plants,  since 
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treated leaf discs incubated with a NO scavenger fail to induce ethylene accumulation, ACC 

synthase mRNA transcription, and cell death [67].

Salicylic acid

NO  and  ROS,  induced  by  pathogens  or  abiotic  stresses,  regulate  the  synthesis  of 

salicylic acid. In turn, SA promotes the NO- and ROS-mediated redox signalling, in a positive 

feedback. SA activates a NOS-like activity in Arabidopsis and Vicia faba, which triggers Ca2+ 

release  in  the  cytosol  and  protein-kinase  activation  [260]  and  depends  on  mitochondrial 

electron  flux,  through  AOX  [78].  Since  nitration  is  shown  to  occur  in  the  phloem,  and 

GSNOR counteract the systemic acquired resistance (SAR) onset, NO or GSNO are proposed 

as mobile feedback messengers that spread the SA signal in the whole plant [78].

Jasmonates

Jasmonate (JA) and methyl-jasmonate (MeJA) are promoters of senescence, causing a 

rise in H2O2 (possibly through the Rboh oxidase), a decrease in ascorbate and glutathione, 

lipid peroxidation, protein and chlorophyll  demolition, and an overall oxidative stress status. 

JA- and MeJA-induced senescence is contrasted by ROS scavengers; NO is shown to limit the 

lipid  peroxidation  and  promote  antioxidant  enzymes  [102].  Moreover,  NO  prevents 

wounding- and JA-induced H2O2 synthesis and expression of defence genes in tomato and 

sweet potato; on the other hand, wounding and JA induce NO production, and NO promotes 

the genes for JA biosynthesis, although not JA production [86; 100]. This unclear relationship 

could include the negative regulation of JA effects by SA [242].

1.2.4.4 Interactions with ROS signalling

NO or RNS are requested in many ROS-mediated responses, such as cell death, SAR 

[78]  and  gene  expression,  specifically  related  to  the  metabolism  of  phenylpropanoid 

compounds, notably salicylic acid and flavonoids [58]. The relationship between NO (which 

can act both as a prooxidant and an antioxidant) and ROS is controversial; RNS appear to be 

in some cases required for ROS activity, counteracting in other cases.

Pathogen resistance  is  allowed by an oxidative  burst,  aimed  to  direct  killing  of  the 

pathogen, cell wall strengthening, PCD and systemic resistance induction. Observing that, in 

the host-pathogen interaction, the oxidative burst is required but not sufficient to induce PCD, 
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along with SA and Ca2+ metabolism perturbations,  the NO/H2O2 ratio  was identified as a 

trigger for PCD [56;  57].  O2
-∙ is not directly implied, and ONOO- cannot elicit PCD (unlike 

mammalian apoptosis);  therefore,  a model  is  proposed in which excess  O2
-∙ or  NO act as 

reciprocal  scavengers,  unless  O2
-∙ is  efficiently  dismuted to H2O2;  the combined action  of 

H2O2 and NO in inducing cell death could imply highly reactive oxygen species, possibly with 

trace metal ions.

With regard to abiotic stress, NO acts downstream to ABA-induced H2O2 to mediate 

stomata  closure  [24].  Populus  euphratica can  deal  with  excess  Na+ by  excluding  it  or 

compartmentalizing it in vacuoles, and accumulating K+ in the cytoplasm; these mechanisms 

rely on H+:ATPase expression and activation promoted by H2O2, which in turn derives from 

NO-triggered NADPH oxidase [251].

While animal cells are susceptible to low doses of ONOO-, plant cell viability is not 

affected,  despite an increase in protein nitration.  The rise in  O2
-∙ formation during abiotic 

stresses can also mask the basal NO level, which may directly control iron availability, and it 

is consistent with this model to postulate a system for the prevention of Fenton reactions. On 

the other  side,  ascorbate  and cytochrome  c oxidase can reduce peroxynitrite  back to NO, 

helping NO conservation and/or ROS removal [230].

1.2.5 Physiological effects of RNS

1.2.5.1 Phenology and morphology

Acting downstream to auxins, NO mediates their effects on root architecture, promoting 

the formation of lateral roots against the elongation of the primary root [46], and inducing 

adventitious rooting [174] and root hair development [136].  By pharmacological treatments 

with NO donors and scavengers in maize roots, and by the analysis of NOS and NR mutant in 

arabidopsis, NO has been shown to respond to auxins, to overcome nitrate-induced growth 

inibition,  to be actively produced under nitrate starvation,  and to derive from NR activity 

[117; 255].

The  floral  transition,  in  Arabidopsis  thaliana,  is  controlled  both  by  external 

(photoperiod, vernalization) and environment-independent (gibberellins and others) factors. 

NO acts  as a  mediator  in  photoperiod sensing,  delaying  the process;  nevertheless, it  also 

33



regulates the expression of genes from the independent pathways, so that a possible role for 

NO emerges in integrating internal and environmental signals [95].

Seed dormancy is adversed by NO. Along with other light-dependent responses, such as 

de-etiolation  and  internodal  growth,  NO  affects  seed  germination  overcoming  light 

requirement,  similarly to gibberellic acid, and possibly sharing the same cGMP signalling 

pathway [14]. While ABA is essential for the establishment and maintenance of dormancy, 

the NO donor sodium nitroprusside (SNP) renders arabidopsis seeds insensitive to ABA [17].

According to its concentration, NO delays or promotes senescence, interplaying with 

ethylene, citokinins, and stress signals (ABA or JA) [154]. It is reported in a wide variety of 

species,  both  climateric  and  non  climateric,  that  NO emission  is  higher  in  unripe  fruits, 

whereas it falls along with the ethylene increase during ripening or senescence; nitrous oxide 

(N2O)  treatments  can  extend  the  postharvest  life  of  crops  [131].  Contrasting  the  lipid 

peroxidation and  lipoxygenase activity in senescence, in dependence of treatment dose and 

timing, NO preserved unsaturated fatty acids in peach fruits [258].

In several angiosperms, the pollen tube emission is associated with a production of NO, 

required for the tube directioning. The unexpectedly high H2O2 concentrations in the stygma 

are shown to decrease after pollen interaction and with a NO donor treatment. Hence, a role 

for NO in pollen compatibility is proposed [151]. Moreover, the pollen tube elongation in 

Pinus  bungeana requires  a  tip-based  calcium  gradient,  achieved  through  an  active,  NO-

dependent intake in the tip region [239].

1.2.5.2 Programmed cell death (PCD)

The programmed cell death (PCD) is an active pathway, supposedly derived from the 

host-endosymbiont interactions leading to cytoplasm shrinkage, chromatin condensation and 

DNA laddering. The process is normally kept suppressed in normal growth conditions, but 

gets  active  in  developmental  or  defence  processes,  under  the  control  of  ROS and  RNS. 

Mutants  lacking  catalase  isoforms,  and  ascorbate-deficient  plants  display  enhanced  PCD, 

suggesting  PCD  to  be  initiated  with  high  ROS  production  in  compartments  with 

(constitutively or induced) low redox buffering [59;  75]. Mitochondrial functionality and a 

MAP-K cascade are involved in PCD activation.

Both H2O2 and NO appear to be required at the same time for PCD, none of them being 

able to induce cell death alone. Therefore, a main role is played by the superoxide dismutase: 
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O2
-∙, as a NO scavenger, inhibits PCD onset; on the other side, SOD converts O2

-∙ to the PCD-

inducing H2O2. The direct reaction with NO is faster than superoxide dismutation; thus, SOD 

must be present in a relevant concentration and in a convenient localization to be efficient. A 

model is proposed, in which the balance between NO and  O2
-∙ is determinant:  excess NO 

subtracts  O2
-∙, preventing it to be converted to H2O2; excess O2

-∙ acts as a NO scavenger, so 

that even in presence of H2O2, PCD cannot take place [57].

While  a  prolonged H2O2 production induces  necrosis,  a  single-pulse H2O2 treatment 

causes the onset of PCD through a rise in NO levels. Together with APX inhibition, decreased 

ascorbate and glutathione concentrations, rather than their redox state, seem to be linked to 

the PCD signal [59]. A low ascorbate content may lower the threshold for sensing stress, thus 

triggering PCD and SAR [145].

1.2.5.3 Genic regulation 

Whole-genome analyses  were carried out in  Arabidopsis  thaliana.  Most of the NO-

modulated genes respond to abiotic  or biotic  stress conditions,  and are involved in signal 

transduction,  cell  death,  defence,  generation  or  detoxification  of  ROS,  photosynthetic 

processes, intracellular  trafficking,  and basic metabolism; only a few among the classified 

ones can be directly linked to stress defence, but a dose-dependency to NO emerges for many 

genes, pointing to a form of signal specificity.

NO effect on transcription can consist either in the expression of specific factors, or in 

the  regulation  (probably  by  Cys-nitrosylation)  of  existing  proteins.  WRKY,  EREBP  and 

DREB1-2 transcriptor factor families appear to be induced by NO, together with transporters, 

ferritin  and  members  of  MAP-K cascades  [86].  Members  of  WRKY,  bZIP,  MYB-MYC 

families  are  the  most  likely  targets  of  NO-mediated  posttranslational  regulation.  WRKY 

transcription  factors  are  often  involved  in  many  responses,  such  as  pathogen  defence, 

senescence,  wounding,  drought,  and  morphological  adaptation,  often  depending  on  SA. 

Members  of  the  bZIP and related  families  mediate  responses  to  pathogens  or  symbionts. 

MYB and  MYC proteins  work  in  the  transcriptional  regulation  of  genes  associated  with 

phenylpropanoid and anthocyanin metabolism and drought stress, and can be activated by 

environmental factors and hormones like ABA [175].
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1.2.5.4 Abiotic stress protection

NO function in stress resistance can be carried out by a signal cascade, or by direct 

detoxification. Plants improve their health status in response to many kinds of environmental 

stress, when exposed to low NO concentrations. Thus, NO could be considered a generalized 

stress signal. To prove this, high temperature, salt stress, excess light and mechanical stress 

were imposed to Nicotiana spp. peels and cell cultures. Only heat and salt stresses resulted in 

enhanced NO production [82]. Low temperature and wounding increased NO content  and 

NOS-like activity in pea plants, whereas high temperature, continuous light and continuous 

dark did not, and excess ligh enhanced NOS-like activity but no apparent NO content [45]. 

Wounding caused a NO burst also in arabidopsis, but the NOS inhibitor L-NMMA affected 

only  slightly  [100].  Hence,  it  must  be  concluded  that  increased  NO  content  is  not  a 

generalized response to stress, although its occurrence varies among species, and possibly on 

the basis of tissue-specific mechanisms.

Cadmium

Cadmium is a heavy metal, not participating to Fenton reactions, and with no biological 

activity.  Despite this, it is highly toxic, because of its rapid uptake, followed by oxidative 

stress. Nucleus activity, hormonal signalling, photosynthetic apparatus, and plasma membrane 

NADPH oxidases could be its primary targets.

The  oxidative  stress  symptoms  in  Cd-stressed  plants  are  either  reverted  by  a  NO 

treatment [127], or associated to a reduced NO content [192]. Reports about the formation of 

stable  complexes  between Cd and thiol  groups,  including  glutathione  and phytochelatins, 

support the protective role of NO and lower glutathione contents in sensitive plants [127].

Other metal ions, such as aluminium in acidic soils, are reported to have toxic effect 

against plants, and to inhibit the NOS-like activity as a direct effect [221].

Salinity and osmotic stress

Salinity involves both an osmotic  stress and a ion toxicity.  The resistance strategies 

consist  in  the  regulation  of  transpiration  and  of  Na+ uptake,  transport  and  redistribution. 

Proton concentration provides energy for Na+ sequestration in the apoplast or in the vacuole; 

NO, along with ascorbate, GSH and Ca2+, stimulate the H+:ATPase and H+:pyrophosphatase 

activities in maize seeds [253]. The rise in the intracellular [Na+]/[K+] ratio is associated to 
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decreased NOS-like activity and NO contents in the salt-sensitive Arabidopsis thaliana [256], 

whereas  the  salt-tolerant  Populus  euphratica reacts  inducing  the  NOS-like  activity,  the 

plasma  membrane  NADPH  oxidase  (through  the  NO  signal),  and  the  plasma  membrane 

H+:ATPase (through H2O2) [251]. With a proteomic approach, H2O2 and NO pretreatments 

were shown to prevent many of the proteome changes induced by salt stress in  Citrus spp. 

(mostly regarding photosynthesis  and defence or redox balance);  moreover,  H2O2 and NO 

effects are largely coincident [218].

Nevertheless,  other  experiments  in maize  show NO to actually cause a reduction in 

H2O2 content,  together  with an  induction  in  antioxidant  enzyme  activities  (GR, SOD and 

APX) [204]. Such differences in the responses may be due to the species, to the treatments 

(NaCl and PEG), and to different sites of NO and ROS production.

Hypoxia

Seeds and roots are frequently subjected to hypoxic conditions. Nitrite accumulation in 

hypoxia  is  often  observed,  and  NO  production  is  reported,  inversely  related  to  O2 

concentrations in the soil, apparently depending on NO2
-. In turn, NO lowers O2 consumption 

(for example, by repressing COX) and shifts the metabolism toward fermentative reactions, as 

a mechanism for hypoxic stress avoidance [18]. A class of plant hemoglobins, named stress-

induced  non-symbiotic  hemoglobins,  respond  to  environmental  conditions  leading  to  the 

inhibition  of  ATP  synthesis  in  mitochondria  (occurring  when  the  electron  transport  is 

impaired), or a high sucrose concentration. Since hypoxia also promotes NO production from 

NR, several roles have been proposed for this hemoglobin class. They might contribute in 

NADH regeneration, associated to the oxidation of NO to NO3
- or the de-repression of COX; 

NO  scavenging  would  prevent  PCD  in  the  short  term,  allowing  the  development  of 

adventitious  root primordia  [63];  reacting with nitrosothiols,  as  occurring also in bacteria, 

hemoglobins would control NO effect on proteins [178].

1.2.5.5 Pathogenetic and symbiotic relations

Plants  adopt  several  strategies  aimed  to  block  pathogen  proliferation.  Non-host 

resistance  is  a  default  response,  which  can  be  avoided,  tolerated  or  suppressed  by  host-

specific  pathogens.  In  this  case,  the  plant  adopt  a  specific  recognition  mechanism  of 

avirulence traits, driving to the expression of  R genes; beyond specific recognition, generic 
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pathogen-associated molecular patterns (PAMPs) stimulate the basal resistance [72; 99]. NO 

was found to be required for the induction of phenylpropanoid metabolism genes, through the 

cGMP-cADPR pathway [65], and of hypersensitive response, together with H2O2 [55] after 

treatments with avirulent pathogens; furthermore, the production of peroxynitrite is suggested 

as a protective reaction, since plant cells can tolerate concentrations up to 1 mM with no or 

little  effects  on  cell  viability,  whereas  animal  cells  die  at  far  lower  concentrations  [56]. 

Lipopolysaccharide PAMPs from a wide array of bacteria induced a NO burst and a set of 

defence genes in arabidopsis wild type, whereas the NO production-impaired mutant AtNOA1 

did not [250]. GSNOR is thought to affect pathogen resistance, but divergent results have 

been obtained: arabidopsis mutants were compromised in their response to pathogens at all 

levels (non-host, R and basal resistance) and in SA-induced gene expression [72]; arabidopsis 

antisense or overexpressive transgenic lines gave, respectively, increased and reduced SAR, 

according to nitrosothiols contents [201]. Differences may be explained considering that in 

the first study, GSNOR activity was probably absent, and SA level decreased, whereas in the 

second one the antisense plants had about half GNSOR activity, and SA content was similar, 

compared to the wild type [99].

Plant class 1 hemoglobins exhibit  a high affinity to O2 and NO and are involved in 

several  NO-regulated  processes,  including  the  symbiosis  between plants  and host-specific 

symbiotic bacteria, such as legumes/rhizobia (leghemoglobins belong to class 2 hemoglobins) 

or Alnus firma/Frankia spp. During nodule formation, an early NO peak is rapidly quenched 

to allow the symbiosis to take place [178] and a class 1 hemoglobin is induced, whereas non-

host rhizobia give neither of the responses, and pathogens provoke a high and continuous NO 

production and no hemoglobin induction [167;  205]. Thus, a likely model for the infection 

process consists in the onset of a pathogen-directed response, started by the host plant with an 

increased NO production, but accompanied by the synthesis of a class 1 Hb (also responding 

to  NO), which acts  as  a NO scavenger  and allows the nodule formation.  The expression 

profile of NO-regulated genes, analyzed in Medicago truncatula after infection with pathogen 

or  symbiotic  bacteria,  offered  significant  data  about  the  key  regulation  points  which 

distinguish symbiosis from pathogenesis. 10 genes (some of them regarding lipid metabolism 

and signal transduction) were upregulated in both systems, whereas  47 showed an opposite 

regulation, controlling carbohydrate metabolism and redox balance [73].
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1.3 Role of iron in plant systems

A  great  number  of  plant  metabolic  processes,  such  as:  photosynthesis,  respiration, 

nitrogen fixation,  hormones  biosynthesis,  require  iron,  because of its  capability to assume 

several oxidation states (Fe0, Fe2+ or Fe3+) at a physiological pH, with a plastic redox potential 

depending  on  the  coordination  ligands,  thus  taking  part  in  reactions  implying  a  redox 

exchange. Fe2+ and Fe3+ are small ions, easily forming hexacoordinated complexes with: O, N, 

S [88]. Such a paramount role of iron is reflected by the relatively high iron requirement in 

plants  (2  μmol  g-1 dry weight),  and iron deficiency results  in  chlorosis  in  young actively 

growing  tissues,  severe  yield  losses  and  decreased  nutritional  quality  of  crops.  Iron 

bioavailability is considered a major agricultural issue, because of the limited solubility of 

Fe3+ in alkaline conditions, as occurs in about 30% of cultivated land worldwide consisting in 

calcareous soils [97].

1.3.1 Iron metabolism

Despite its abundance, iron bioavailability is very low in alkaline calcareous soils. In 

fact, iron is found as insoluble Fe(III) hydroxides, with a solubility up to 10-17 M at pH 7.0; 

usually plants require an iron concentration between 10-8 and 10-4 M for proper growth [97]. 

On the other hand, not only iron insolubility, but also the potential dangers associated to iron 

when present in an oxidizing atmosphere must be tackled. In fact, the Fenton reaction (H2O2 

→ O2 +  OH- +  OH∙)  is  catalyzed  by reduced transition  metal  ions,  such as  Fe2+ or  iron 

complexes  at  a  redox potential  between  -324 and +460 mV [181].  The  hydroxyl  radical 

(OH∙), a higly, unspecifically reactive oxygen species, can damage virtually any biological 

molecule, and cannot be detoxified. Thus, iron metabolism (fig. 1.5) must be tightly regulated, 

in order to achieve the balance between shortage and toxicity.
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Figure 1.5: Overview of iron metabolism. PS – phytosiderophore; NA – nicotianamine; Citr – 
citrate.
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1.3.1 Root uptake

The basic iron uptake model  in  plants  is  centered  on a root plasma membrane  Fe2+ 

transporter. Divalent iron is available in soils in reducing (for instance, anoxic) conditions; in 

oxidant  soils,  the  insoluble,  trivalent  form is  predominant,  which  can  be  solubilized  by 

rhizosphere acidification or by chelating agents.

The  remobilized  Fe3+ is  then  reduced  by  a  membrane-bound  NAD(P)H-depending 

Fe(III)-chelate  reductase  (FCR;  EC  1.16.1.7)  of  the  FRO  family.  The  main  Arabidopsis 

member of the family, FRO2, is a protein composed by about 700 aminoacids arranged in 6 

transmembrane helices, FAD and NAD(P)H binding sites, and a heme group. Its expression is 

maximal in peripheral tissues (epidermis, root hair) of iron-deficient roots, and is enhanced 

under iron deprivation [41]. Other members of the  FRO gene family show different tissue 

expression,  subcellular  targeting,  and  respondence  to  iron  or  copper,  addressing  to  the 

existence of stress-specific isoforms [161; 184].

Fe3+ reduction is the limiting step in the whole iron metabolism [41]. The available form 

for uptake, Fe2+, can be imported by means of transporters belonging to several families (ZIP, 

NRAMP),  generally  active  towards  several  divalent  metals  and  regulated  by  protein 

neosynthesis [51].

The ZIP family can be found in bacteria and eukaryotes, and is composed by wide-

range transporters, including the IRT subclass. IRT1 is the main transporter, and is induced by 

iron deficiency,  while  IRT2, similar  for sequence and structure,  cannot complement  IRT1 

deletion, and its inactivation has no evident phenotype. IRT1 is regulated at transcriptional 

and post-transcriptional levels;  in analogy with other members of the same family (ZRT in 

yeast),  a  regulation  mechanism  is  proposed  in  which  a  specific  Lys  residue  undergoes 

ubiquitinylation,  leading  to  protein  degradation  in  optimal  growth  conditions.  The  same 

transporter is permissive towards Zn and Cd, although with lower affinity [40].

NRAMP is  a  family of eukaryotic,  membrane-bound metal  transporters  with a high 

affinity  for  iron  [97].  Their  regulation  is  transcriptional  and  post-transcriptional,  and 

AtNRAMP1, 3 and 4 genes are shown to be induced under iron deficiency [51]. NRAMP1 and 

IRT2  are  found  in  the  vascular  parenchyma,  possibly  indicating  a  role  in  long  distance 

transport [15].

Iron  deprivation  induces  an  increased  root  uptake,  according  to  two strategies.  The 

widespread  strategy  I  consists  in  the  solubilization  of  Fe3+ by  rhizosphere  acidification, 
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mediated by plasma membrane P-type H+:ATPase (AHA family in  Arabidopsis), and in the 

induction of FCR and transporters. Besides that, root hair and transfer cell development and 

changes in the organic acid content occur [97; 112].

The  strategy  II  is  limited  to graminaceous  plants,  and  is  based  on  the  release  of 

phytosiderophores, non-proteinogenic aminoacids related to the mugineic acid (MA). These 

compounds are able to chelate Fe3+ even at high pH and in presence of bicarbonate, and their 

synthesis requires methionine and nicotianamine (NA) as precursors (3 methionine → 3  S-

adenosyl methionine → nicotianamine → MA). NA can be found in all upper plants, but is 

converted to mugineic acid and related compounds (MAs) only in grasses. Phytosiderophores 

efficiency depends on their affinity to the plant uptake system, their resistance to microbial 

degradation, and their iron(III)-chelating power, determined by the degree of hydroxylation 

[235]. The secretion of phytosiderophores is controlled by YS3 in maize [51], and follows a 

temperature-controlled circadian trend; it relies on H+-ATPase activity and K+ gradient, and is 

likely to occur by hexocytosis [142].

The  uptake  of  Fe(III)-MAs  involves  the  specific  carrier  YS1,  belonging  to  the 

oligopeptide transporter (OPT) family. The level of YS1 specificity can vary among species, 

with barley isoform inactive towards Fe(II)-MA or Fe(III)-NA, and maize isoform permissive 

towards several metal  complexes. The expression of YS1 is maximal in roots, and can be 

induced  by  iron  deficiency;  it  works  as  an  electrochemical  potential-driven  proton 

cotransporter, despite being insensitive to pH, and therefore efficient in calcareous soils as 

well [162; 206]. Since NA is a metabolic precursor of phytosiderophores with iron chelating 

ability,  and eight  Arabidopsis genes (YSL1-8) share high homology towards  YS1,  such an 

iron-chelate transport can be proposed in strategy I plants too [51]. Indeed, phytosyderophores 

and grass consociation were shown to improve iron nutrition in several dicotiledonous crops, 

including Citrus species and peach [32;  150]; interestingly, the ys3 maize mutant, unable to 

secrete  phytosiderophores,  had  no  such  effect  on  the  consociated  plant.  Bacterial 

siderophores, although not directly metabolized by plants, can contribute to plant nutrition by 

improving metal solubility [88].

In barley, maize, and presumably most of strategy II species, the Fe(II) transporter IRT 

is not induced by iron deprivation.  On the contrary,  rice is adapted to water-logged soils, 

where Fe(II) is more abundant than Fe(III); thus, this  species retains the ability to induce 

specific IRT and FRO isoforms. Despite a preference for Fe(III)-MAs, Fe(II)-MAs can be 
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uptaken as well by rice roots; yet, rice emits a relatively low amount of phytosiderophores, 

and Fe2+ could be the most nutritionally important iron form [104].

1.3.1.2 Long-distance transport

Xylem transports micro-nutrients from the root to mature transpirating organs, whereas 

forming organs rely essentially on phloematic transport.

The phloematic pH (between 7 and 8) induces iron precipitation. Nicotianamine (NA) 

shows a peculiar  stability when complexed with Fe(II) in this pH range, and prevents the 

Fenton reaction; its actual presence in the phloem leads to propose a role as a Fe(II) chelator, 

and to postulate a membrane Fe(II)-NA transporter [51; 234]. In absence of NA, iron remains 

in the xylem, as it cannot be uptaken in the symplast,  particularly in growing tissues [22]. 

Eight genes, in Arabidopsis thaliana, show high homology towards YS1, which encodes for a 

root iron-phytosiderophore transporter in maize. Such genes, named YS1-like (YSL1-8), in a 

strategy  I  plant  could  encode  for  Fe(II)-NA  carriers,  involved  in  apoplast-symplast 

transloading [22]. Indeed, the expression of YSL1 is verified under iron excess in shoot xylem, 

seeds and siliquae, allowing to store iron in ferritins and vacuoles [130]. The role of each YSL 

member is probably specified by its intracellular location. Thus,  AtYSL1-3 are expressed in 

the xylem parenchyma, whereas AtYSL4 and 6 were found in the vacuolar proteome, possibly 

taking part in the remobilization of stored iron [22].

The ITP protein was identified as a LEA homologue with a high affinity for Fe(III). Its 

presumed role consists  in  trasporting iron in  the phloem, receiving it  from NA in source 

tissues  and delivering  it  back  to  NA in  sink cells  [122].  NA would  therefore  maintain  a 

steady-state Fe2+ level in the symplast.

Iron loading in the xylem takes place as Fe(III)-chelate, complexed to citrate or other 

organic acids; the flow is driven by transpiration, and the complex is the substrate of plasma 

FCR  in  target  cells  [51].  The  Arabidopsis thaliana FRD3  protein  is  a  specific  citrate 

transporter  of  the  multidrug  and  toxin  efflux  (MATE)  family,  located  in  root  pericycle 

membrane; frd3 mutants constitutively express iron deficiency responses, since iron cannot be 

carried to leaves, which in turn signal their starved status to roots. In soybean, the FRD3 

homologues expression and citrate contents in the xylem are shown to correlate with iron 

efficiency [66; 85; 193].
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1.3.1.3 Subcellular localization, storage and detoxification

The subcellular iron buffering system is based on nicotianamine (NA). NA synthesis is 

stimulated  by  low  iron  concentrations;  the  tomato  mutant  chloronerva (chln),  unable  to 

produce NA, is constantly affected by iron deficiency symptoms even at  high iron levels, 

because iron precipitates into insoluble salts.  Thus, NA works as a chelator,  keeping iron 

soluble  and  available,  and  possibly  signalling  its  nutritional  status.  Interestingly,  in  chln 

mutants no ferritin induction takes place, suggesting that in the absence of NA, not even iron 

excess can be perceived [11].

Vacuoles, plastids and mitochondria are the main iron storage compartments in plants 

[12; 22]. Iron phosphates or metal-phosphate phytate complexes are found in the apoplast, and 

could also have a physiological role [11]. In spite of the early observation of vacuolar iron 

inclusions under iron excess [110; 180], vacuoles could be demonstrated to be the main iron 

storage site after the characterization of several iron transporters. The double nramp3 nramp4 

arabidopsis mutant is severely impaired in seed germination under low iron supply, and the 

seed iron stores remain associated to the forming vacuole; both NRAMP3 and NRAMP4 are 

vacuolar metal transporters, with a presumably redundant function, and promoted under iron 

deficiency [125]. VIT1, as its yeast orthologue, is required for vacuole loading [113].

Ferritin  is  a  hollow  protein  complex,  consisting  in  24  identical,  nuclear  genome-

encoded subunits, able to store up to 4500 Fe3+ ions. Ferritins can be found in plants, animals 

and bacteria; in animals, two different subunits, H and L, can be distinguished, specialized 

respectively in rapid uptake and in long-term stabilization; the main role of iron detoxification 

or storage is determined by the relative abundance of the two isoforms. Plant ferritins have 

some  distinctive  features:  they  are  related  to  animal  H  subunit,  but  no  specialization  is 

detected in function, since both H and L characteristics (ferroxidase centre and nucleation-

promoting  aminoacid  residues)  are  found  on  the  same  protein.  They  are  synthesized  as 

precursors containing a transit peptide, and are found in plastidia and possibly mitochondria. 

Because  of  this  prokaryote-like  environment,  with  a  high  P/Fe  ratio,  the  iron  core  is 

amorphous,  unlike crystalline structures in animal  ferritins.  A N-terminal  extension in the 

mature protein regulates its stability [23]. The loading/unloading phase involves a ferroxidase 

activity, expressed by each protein subunit, according to the reaction:

2 Fe2+ + O2 + 4 H2O → 2 FeO(OH) + H2O2 + 4 H+
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The release of iron causes the oxidation of the N-terminal extension peptide, leading to 

the degradation of the subunit. Ascorbate, which is reported to reduce ferric iron to ferrous, 

both provides the substrate for ferroxidase reaction, and promotes iron extraction from ferritin 

[21]. The main role of plant ferritins is probably in detoxification of excess iron rather than 

storage [23; 166; 189].

Frataxin is also a protein linked to iron metabolism. It is found both in prokaryotes and 

eukaryotes, where it is located in mitochondria. Among the proposed roles, it takes part in 

iron homeostasis, iron-sulphur cluster assembly,  oxidative stress prevention. While frataxin 

knock-out mutants are lethal, a reduced frataxin expression is associated to lower activity of 

iron-sulphur enzymes, oxidative stress [27], increased iron accumulation, and NO production 

in roots, either as a Fe/ROS scavenger, or as a ferritin inducer [148].

1.3.1.4 Homeostasis

Iron  metabolism  homeostasis  is  maintained  in  plants  mainly  by  transcriptional 

regulation of uptake and storage apparatuses.  While it  is  possible  to identify essential  cis 

elements  in  the  promoters  of  some  [Fe]-responding  genes  (the  IDRS  element  in  AtFer1 

promoter  [179],  or  the FRE element  in  soybean [241]),  tissue-specific  gene expression is 

supposedly determined by a trans element activation pattern. Among the transcription factors, 

the  basic  helix-loop-helix  (bHLH)  family  includes  about  160  proteins  in  Arabidopsis, 

characterized by a short N-term basic domain, and a HLH domain formed by 2 amphipatic α-

helices, connected by a variable loop. The basic domain recognizes the target DNA E-box 

sequence (CANNTG), when dimerization  takes  place by protein-protein interaction  at  the 

HLH domain.

AtbHLH38 and AtbHLH39 genes are the likely outcome of a recent duplication event. 

Their expression, mediated by SA and JA, drives to riboflavin accumulation and excretion 

under  iron  deficiency  in  several  unrelated  species  (tobacco  and  sunflower,  but  not 

arabidopsis).  Since  tobacco  and  sunflower  are  considered  iron-efficient  plants,  riboflavin 

could  take  part  in  iron  metabolism,  either  as  an  electron  donor  for  iron  reduction,  an 

enzymatic cofactor, or a modulator of rhizospheric microflora [236].

The tomato FER protein is also a bHLH transcription factor, essential for iron starvation 

responses, like the induction of FRO iron-chelate reductases and Fe(II) carrier (IRT) isoforms, 

and the morphological adaptation by means of lateral roots and root hairs. Despite the iron 

45



deficiency response  involves  all  tissues,  the  FER  gene is  specifically  expressed  in  roots, 

addressing to a systemic messenger acting on FER protein [135]. Its expression is constant at 

low or sufficient iron levels, while it is reduced under iron excess [26]. The FER orthologue 

in arabidopsis, named  FIT1, (synonyms:  AtbHLH29,  FRU [39;  105]), is found in both root 

and leaves, is promoted under iron starvation, and possibly post-translationally removed by 

ubiquitin-dependent  degradation.  FER/FIT1 controls  a large subset,  but  not the totality  of 

iron-responding genes; its constitutive overexpression does not grant an increased inductions 

of  FRO and  IRT genes; IRT1 product stability (but not gene expression) is supposed to be 

only indirectly regulated by  FIT1 [39;  105].  Taken together,  these data suggest additional 

regulatory mechanisms, including post-translational ones. Nicotianamine is also required to 

trigger the induction of IRT1 and NRAMP1, possibly acting as a Fe sensor [15]. YSL2 has the 

closest homology to maize YS1; its circadian expression parallels with FRO and IRT, and its 

product is located in the root pericycle and endoderm, addressing to a role in xylem loading 

under iron and zinc deficiency [207]. The genome of Arabidopsis thaliana includes 8 putative 

metal-chelate  reductase  (fro)  genes.  Their  expression  was  studied  according  to  tissue 

specificity and iron- or copper-deficiency respondence [161];  fro2 appears to be the main 

FCR responding to iron shortage.

In graminaceous plants,  many of the genes induced under iron deficiency affect  the 

synthesis  and  modification  of  phytosiderophores.  A  specific  gene  family  encoding  for 

putative bHLH proteins was found. The rice iro2 gene is induced under iron shortage, mostly 
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Putative 
target

Metal shortage Tissue specificity
Gene: Fe Cu Root Shoot Silique
fro1 PM - - +
fro2 PM ↑R + + -
fro3 PM, mit ↑R↑S ↑R↑S + + +
fro4 PM, mit - - +
fro5 PM ↑R ↑R + - -
fro6 PM, chlp ↓S ↓S - + +
fro7 chlp ↑S ↓S - + +
fro8 PM, mit ↓S ↓S - + +

Table 1.1: Expression analysis of fro genes in arabidopsis. PM – 
plasma membrane; mit – mitochondria; chlp – chloroplasts; R – 
root; S – shoot [161]



in roots; its gene product specifically binds the CACGTGG sequence (G-box + G), which is 

found in promoters  controlling the synthesis  of phytosiderophores,  energetic  metabolisms, 

and other transcription factors [173]. Moreover, two synergistic sequences, named IDE1-2, 

were identified in iron deficiency-responding promoters in rice,  and possibly in strategy I 

plants as well [116].

Split-root experiments allowed to show how the iron-starved part  of the root induce 

deficiency  responses  also  in  the  iron-sufficient  part,  thus  suggesting  a  shoot-to-root 

phloematic signalling. This view is supported by evidences in the pea mutants  brz and  dgl, 

where the signal appears to be constitutive and the iron deficiency response cannot be turned 

off [87], and in the tomato mutant chln, where the synthesis of NA is impaired [180]. Thus, 

NA  is  proposed  as  a  possible  iron  sensor  and  deficiency  signal;  it  was  found  that  NA 

biosynthesis is more active when iron availability is low [12;  51]. Iron deficiency responses 

require a low, but significant iron content in the soil or growth medium, and are switched off 

at higher contents. Thus, a cross-regulation could be present, in which the root checks locally 

whether iron is available, while the shoot systemically transmits its nutritional status. A model 

involving  two  counteracting  trends  (external  Fe-induced  activation,  internal  Fe-induced 

suppression) would grant a fine-tune regulation of iron uptake [232].

Hormones are also thought to be involved in long distance signalling of iron status. 

Ethylene and auxins determine a morphologic adaptation, consisting in the development and 

growth of cluster roots, root hairs, or alternatively transfer cells [240]. However, it is not clear 

whether the same signal cascades triggered by hormones bring to physiological responses, 

besides  morphological  ones.  The  pea  mutants  dgl and  brz can  induce  transfer  cell 

differentiation according to the iron content, whereas the FCR is constitutively active [208], 

addressing  to  a  different  regulation  of  local  and  systemic  responses.  Ethylene  is  not 

autonomously able to induce FRO, IRT, FER, H+-ATPase expression or activities in healthy 

plants, but inhibitors of its synthesis suppress such responses to iron deficiency; therefore, 

ethylene could be a secondary messenger depending on other, shoot-derived factors, such as 

auxins, and be repressed by phloematic iron content [141;  209]. Shoot-derived auxins also 

activate the root H+-ATPase, inducing the rhizosphere acidification and supporting the iron 

uptake strategy I. ABA, along with other signals linked to the redox status and iron excess, 

promotes ferritin transcription [20].
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1.3.2 Responses to iron deficiency

More than 90% of total iron in leaves is found in chloroplasts, where it takes part in the 

construction of cytochromes,  ferredoxin,  thylakoydal  electron transfer chain intermediates, 

chlorophyll precursors, and other enzymes containing single Fe atoms, heme moieties (such 

as catalase and peroxidases) or iron-sulphur clusters [22; 112; 187]. Iron deficiency causes a 

reduction  in  photosynthetic  pigments,  mainly  affecting  chlorophyll  b and  the  antenna 

complexes, while xantophylls tend to be conserved, since their protecting action is required 

against  the  onset  of  photoinhibition  and  downregulation  of  photosystem  II,  due  to  the 

reduction of photosynthetic efficiency [159;  211]. As a result, forming leaves turn chlorotic. 

Hydrogen  peroxide  content  is  reported  to  rise  significantly,  both  because  of  the  lack  of 

catalase  and  peroxidase  activity,  and  the  expression  of  superoxide  dismutase  isoforms, 

possibly  linked  to  superoxide  formation  after  photosystem  I  disgregation.  Ascorbate-

glutathione  cycle  enzymes  (monodehydroascorbate  reductase,  glutathione  reductase)  are 

promoted,  but  their  competition  for  reducing  equivalents,  added  to  a  limited  NADPH 

regeneration with low photosynthetic  activity,  causes a drastic  fall  in carbon organication 

[187; 188].

As a general response, nutrient deficiency promotes the stimulation and differentiation 

of biochemical and morphological adaptations, such as cluster roots, root hairs and transfer 

cells, along with an increased FCR activity in strategy I plants [208;  240]. Iron deficiency 

symptoms appear more severe when the root energetic status is depressed, for example in 

hypoxia.

Microarray  analyses  in  different  species  [39;  97;  168;  220]  evidenced  significant 

variations  in  transcription  in  iron-deficient  conditions.  Among the upregulated  genes,  H+-

ATPases, enzymes required for methionine biosynthesis and Yang cycle (catalyzing 3 Met → 

NA  →  MA),  14-3-3  proteins,  putative  transcription  factors,  homologues  of  eIF  and  EF 

(initiation and elongation of mRNA translation; the regulation of iron metabolism is in many 

cases  post-transcriptional),  metal  ion  transporters  (YS1  and  ABC).  Downregulated  genes 

include ferritin and ferredoxin, while antioxidant enzymes such as catalase and lipoxygenase 

show no significant variations. Interestingly,  an effect of pH was found on  FER in tomato 

(fig.  1.6), with alkaline medium reducing its  expression,  but promoting  FRO,  IRT1-2 and 

NRAMP, and confirming the uncomplete dependence of these genes from FER [254].
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1.3.2.1 Iron deficiency in field systems

In perennial plants, chlorosis is complicated by the two-year fruit bearing cycle [216]. A 

high fruit load in one season will worsen the symptoms of chlorosis in the following year, 

since fruits are strong charbohydrate sinks, and resources left for the next season may be not 

sufficient to support root growth and function. Fruit trees are usually grafted, which allows a 

better  management  of iron nutrition by the use of resistant rootstocks; on the other hand, 

incompatibility, by limiting root-to-shoot translocation, and specific scion susceptibility, may 

lead to iron nutritional deficit.

Iron availability in soils is usually higher than expected from the theoretical equilibrium 

between soluble and adsorbed iron, because of rhizosphere conditioning by organic chelating 

agents,  such  as  phytosiderophores,  and  pH  control  [187].  Despite  this,  the  presence  of 

bicarbonate in soils determines a buffering in a pH range from 6.5 (bicarbonate/carbonic acid) 

to 8.5 (carbonate/bicarbonate)  [140].  In these conditions,  since pH cannot be significantly 

lowered, the iron uptake strategy I is not efficient; thus, the amount of iron solubilized by 

chelants (such as bacterial  or plant siderophores) or organic matter is crucial.  The kind of 
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Figure 1.6: Expression of iron uptake-related genes under low (l, 5.0) or high (h, 7.5) pH in  
wild type (T3238) tomato, and in the corresponding FER-deficient mutant [254].



nitrogen  source  also  affects  the  soil  pH,  since  nitrate  intake  is  coupled  to  H+,  whereas 

ammonium must lose one H+ [108; 254].

The linkage between soil bicarbonate and chlorosis is not completely established. While 

some authors believe chlorosis to be essentially caused by a reduced uptake [171; 172; 198], 

others find an increased apoplastic pH, supporting the inactivation (that is, precipitation) of 

the internal iron pool, mainly in the root apoplast [121;  138;  194]. In some cases, chlorotic 

leaves  are  reported  to  contain  iron  amounts  comparable  to  green  leaves,  a  phenomenon 

referred to as the 'chlorosis paradox'. In the first view, the high concentration is explained 

with a reduced leaf expansion (yielding an equivalent concentration), whereas in the second 

hypothesis iron results mostly unavailable.

Iron efficiency does not  appear  to  be necessarily associated  to an increased  uptake, 

although root apoplast iron precipitates can be mobilized by acidification. Nevertheless, the 

transient induction of iron-chelate reductase activity has been proved to correlate to tolerance 

towards  chlorosis,  in  Fe-deprived  peach  rootstocks  after  iron  resupply  [80;  81].  Carbon 

fixation  by means  of  the  phosphoenolpyruvate carboxylase  (PEPC)  activity,  on the  other 

hand,  helps  contrasting  chlorosis,  by  subtracting  bicarbonate,  controlling  the  internal  pH, 

stimulate the Krebs cycle to feed the FCR activity with NAD(P)H, or producing chelants to 

support  xylematic  iron translocation  [137;  139;  216],  since stomata stay open and carbon 

compounds can follow the transpiratory stream [195]. A higher PEPC activity was actually 

found in roots of tolerant, but not sensitive kiwifruit cultivars [194]. A direct interaction of 

bicarbonate or CO2-derived radicals (for example, by reaction with peroxynitrite [101]) with 

Fe(III) reduction or tissue growth cannot be excluded [198]. Iron deprivation increased FCR 

activity,  whereas  bicarbonate  depressed  it  in  roots  of  sensitive,  but  not  resistant  peach 

rootstocks;  proton  pumps,  strongly  active  in  the  resistant  genotype  under  nutritional 

starvation,  failed  to  be  induced  with  bicarbonate  [158].  These  data  suggest  that  the  two 

growth conditions represent distinct stress instances.

Chlorosis can be reverted by iron chelate treatments either in the soil, or on leaves. The 

first case is poorly effective, since iron precipitation, and possibly leaching, may occur; the 

foliar sprays are more effective, but only allow a nutritional integration in limited,  critical 

phases;  in  both  cases,  the  high  cost  of  iron  chelates  must  be  considered.  Several  soil 

management  practices  allow to  reduce  the  incidence  of  chlorosis,  such  as  the  control  of 

organic matter, localized acidification, or the consociation with grasses. Acidic treatments on 
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leaves  were  also  shown  to  induce  the  regreening  of  chlorotic  leaves,  suggesting  the 

remobilization of apoplastic inactivated iron [120;  194], but the efficiency was not up to the 

field practice [216].

 

1.3.3 Responses to iron excess

Iron  excess  seems  to  affect  photosynthetic  capacity,  lowering  the  saturating  CO2 

concentration  and reducing potential.  As a consequence,  glycolysis  and oxidative  pentose 

phosphate pathway are stimulated, to provide respectively ATP and NADPH (also required 

for ROS scavenging). Vacuolar iron inclusions can be found, addressing to a detoxification 

mechanism relying on sequestration and precipitation, as found in yeast [110]. Induction of 

peroxidase is reported, to prevent H2O2 reaction with free transition metals [70].

Abscisic acid is  generally involved in stress responses;  one of its main effects  is in 

stomata closure, and consequently the lowering of the [CO2]/[O2] ratio. To balance the risks 

connected to increased O2 levels, ABA can induce at least some ferritin isoforms, preventing 

ROS to react with iron. Pea mutants brz and dgl, accumulating excess iron in leaves, show a 

sensibly increased concentration of ferritin compared to the wild type [12]. Ferritin regulation 

in animals is post-transcriptional and depends on NO, since the ferritin mRNA possess a IRE 

sequence  in  5'  (blocking  translation  when  iron  is  not  available).  Plant  ferritins  are 

transcriptionally and post-transcriptionally regulated, but no IRE sequences have ever been 

found; nevertheless, NO (specifically nitrosonium, NO+) is required, along with other factors 

such as ABA [163; 164; 165]. Under standard iron nutrition, ferritin genes are kept repressed 

by uncharacterized factors interacting with promoter elements, such as IDRS in Arabidopsis  

[179] and FRE in soybean [241]. Under iron excess conditions, a signal cascade involving NO 

and protein phosphorilation leads to IDRS de-repression. AtFer3 follows the same expression 

pattern of AtFer1, whereas the other ferritin genes, AtFer2 and 4, do not, despite all of them 

including the IDRS element in the promoter, and other regulating elements could be active 

[219].  The  analysis  of  the  expression  of  ferritins  under  photoinhibition  [163]  or  other 

conditions associated with an increased ROS production allowed to demonstrate an induction 

of  AtFer1; on the other hand, knock-out mutants display early senescence symptoms [166] 

and increased sensitivity  to  iron excess,  but  no seed germination  or  plant  growth defects 

[189]. Taken together, these results suggest a role for ferritins in iron detoxification rather 
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than storage [23]. It must be noticed that in the chloroplast, both oxygen and reductants are 

produced, and Haber-Weiss and Fenton reactions must therefore be strictly avoided.

1.3.4 Roles of NO in iron metabolism 

NO has been shown to affect iron metabolism in several ways. Considering the impact 

of  NO on  the  antioxidant  defences  at  different  suboptimal  iron  concentrations  in  maize, 

hydrogen peroxide, superoxide and lipid peroxidation were kept as low as the control (optimal 

Fe supply) by NO, while APX, GPX and catalase were increased and SOD and GR decreased. 

In all cases, the effect of NO contrasted with the decreased iron concentration [215]. A NO 

donor improved the symptoms in iron-deficient maize plants, along with chlorophyll content 

and carbon fixation.  Iron concentration  in  treated  and untreated,  iron-deficient  plants  was 

similar, despite the fresh weight was double in the first case; thus, NO acts supposedly by 

improving iron availability rather than iron uptake. Both tomato (a strategy I plant) and maize 

(strategy II) iron-inefficient mutants reverted after a NO treatment [83].

Some  evidences  exist  for  a  role  of  NO  in 

controlling the onset of the iron uptake strategy I. In iron 

deficient tomato plants, NO content and  FER,  LeFRO1 

and LeIRT1 transcription in roots are increased. A good 

correlation emerges between the concentration of GSNO, 

used  as  a  NO donor,  and  the  expression  of  the  same 

genes  under  iron  starvation.  None  of  these  effects 

resulted in the fer mutant, suggesting NO and FER to act 

together  in  mediating  the  iron  deficiency  signal. 

Nevertheless,  not  even  in  this  case,  variations  in  iron 

content  could  be  found  between  iron-starved  plants, 

submitted  or  not  submitted  to  GSNO  treatment  [84]. 

Supporting the view of an increased iron availability, the NO donor SNP was shown to cause 

both  a  rise  in  nitration,  and  a  decrease  in  oxidative  stress  (protein  carbonylation  and 

membrane disruption), along with a sensible increase in the labile (that is, redox-active) iron 

pool. Labile iron is reported to be a minor fraction (3-5%) of total iron content; thus, NO 
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donor,  GSNO, on iron-starved or  
iron-sufficient tomato roots [84].



could extract  iron from biological  storage or immobilization forms, and in the same time 

subtract it to the Fenton chemistry [107].

In case of iron excess, NO improves the stability of ferritin mRNA, and its action spans 

several  hours  after  the  stress  is  imposed.  These  observations  address  to  NO as  a  signal 

downstream to iron concentration, and exclude a role in oxidative stress protection [58]. The 

same  kind  of  regulation  is  achieved  in  mammals  through  the  Iron  Regulating  Element 

(IRE)/Iron Regulating Protein (IRP) interaction: specific elements in mRNAs are recognized 

by an aconitase isoform, after the NO-mediated release of its iron-sulfur cluster, either in the 

3'-UTR to prevent translation, or in the 5'-UTR to prevent degradation. No such a mechanism 

is documented in plants, although aconitase-mediated regulation cannot be excluded [157].

Besides the Fe signal, oxidative stress can also promote the  Arabidopsis ferritin gene 

(AtFer1) transcription, by means of a separate and additive pathway. A NO burst (probably 

NOS-like-dependent) takes place in the Fe pathway, leading to the de-repression of the iron-

dependent regulatory sequence (IDRS), in the AtFer1 promoter. IDRS-containing promoters, 

under  standard  conditions,  are  probably  inactivated  by  an  unknown  repressor,  which 

undergoes  ubiquitinylation  and proteasome-dependent  degradation  in  presence  of  iron  [5; 

164].
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2 AIM OF THE THESIS

The present work aims to clarify the role of 

reactive nitrogen species and antioxidant systems in 

plant iron metabolism, and to suggest the possible 

implications  in  field  practice  and  agricultural 

sciences.  Two main  reasons  led  to  the  choice  of 

peach  rootstocks  as  the  experimental  model. 

Firstly, peach is an important crop in northern Italy. 

On the world scale, Italy ranked second among the 

top  peach  producer  countries  in  2007  [71],  and 

about  30%  of  the  production  in  Italy  (50% 

considering only nectarines) takes place in Emilia-

Romagna region,  where the production is  protected by geographical  indication.  Secondly, 

peach is considered a species easily undergoing chlorosis when grown in calcareous soils, 

which are a large share of global agricultural soils, and frequently occur in northern Italy as 

well  [216].  Moreover,  this  species  can be assumed as a model  for other stone fruit  trees, 

because of its relatively simple and well-studied genetic and biochemic features [69].

Three  commercial  hybrid  genotypes,  normally  used  as  peach  rootstocks  and 

characterized by different degrees of tolerance to chlorosis [216], and a peach cultivar, were 

chosen in this work to test their responses to bicarbonate. GF677 (P. persica × P. amygdalus) 

is the most widespread peach rootstock in calcareous soils, being considered highly resistant 

to bicarbonate. MrS 2/5 (P. cerasifera × P. spinosa?) is a hybrid selection, which has proven 

fairly tolerant to lime in fertile soils. Ishtara ((P. cerasifera × P. salicina) × (P.cerasifera × P. 

persica)) is generally considered a susceptible genotype. The cultivar Big Top (P. persica var. 

nectarina)  was  also  included  to  test  the  performance  of  a  non-hybrid  peach  genotype, 

although no information about its tolerance to lime was available [210; 216].

The  plants  were  micropropagated  and  subcultured  in  vitro;  this  allowed  a  constant 

supply of sample plants and a reliable control of growth conditions. The stress was imposed 

with 6 mM potassium bicarbonate and pH 7.6 in the medium, while control plants grew on 

optimal medium at pH 5.6; in order to recreate more realistic conditions, we found a better 

choice to include bicarbonate and alkaline pH rather than subtract iron from the medium.
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Previously the in vitro selection for resistant plants has been successfully carried out in 

different  species  and for several  abiotic  stresses,  including iron limitation [62;  147;  176]. 

Thus,  a  correlation  between  in  vitro and  in vivo performances  could be presumed with a 

reasonable confidence. Moreover, despite the reports of a promoted root uptake under iron 

shortage,  the frequent  observation  [84]  of  an  unvarying  total  iron content  in  healthy and 

stressed plants, even in controlled growth conditions, suggested to consider root uptake as a 

possible important response, but not as a stand-alone requisite for the tolerance to bicarbonate. 

Thus, other responses, occurring in the shoots, were investigated.

In  particular,  the  antioxidant  capacity  is  considered  a  main  component  of  stress 

tolerance.  In  addition,  recent  works  pointed  to  the  role  of  RNS in  preventing  stress,  or 

mediating the adaptive responses to it.

Our working hypothesis assumed that the combined effect of bicarbonate and pH in the 

medium would induce changes in ROS and RNS contents, and those factors would interplay 

leading to stress damages or stress tolerance. Thus, the redox status of the plant, the H2O2 

content, and several antioxidant enzymes were tested; the content of RNS was also estimated, 

and their likely source identified. These data were referred to some stress markers, as well as 

to the known behaviour of each genotype in presence of bicarbonate. Moreover, analogies in 

the response strategies of the different genotypes were analyzed.

Data obtained from this work could hopefully lead to the development of efficient and 

cheap tools for the treatment of iron-deficient orchards, and to the identification of suitable 

markers for an early selection of the resistance trait.

55



3 MATERIALS AND METHODS

3.1 Plant material

Three rootstock genotypes for peach and one peach cultivar, cultivated  in vitro, were 

purchased from a commercial nursery (Vitroplant, Cesena, Italy). The genotypes were GF 677 

(P.  persica  ×  P.  amygdalus),  MrS  2/5  (P.  cerasifera  ×  P.  spinosa?)  and  Ishtara  ((P. 

cerasifera × P. salicina) × (P. cerasifera × P. persica)), and the cultivar was the nectarine 

Big Top (P. persica).

All the genotypes were multiplicated in MS medium containing: sucrose (30 g/l), myo-

inositol (100 mg/l), thiamine-HCl (1 mg/l), nicotinic acid (0.5 mg/l), pyridoxine (0.5 mg/l), 

glycine (2 mg/l),  N6-benzylaminopurine (1 mg/l),  indolebutyric acid (0.05 mg/l),  GA3 (0.1 

mg/l),  and agar (6.5 g/l). The pH was adjusted to 5.6 by adding KOH before autoclaving. 

Standard growth conditions were: 22 ± 2 °C and a 16-h photoperiod with 30 μmol m-2 s-1 

photosynthetic active radiation.

Plants grown on multiplication medium were used as control. Bicarbonate stress was 

imposed by growing plants on an identical medium, added with 6 mM KHCO3 (0.601 g/l) and 

adjusted to pH 7.6. To discriminate among the source of NO, to the same medium containing 

KHCO3,  either  5  mM sodium molybdate,  sodium tungstate,  L-arginine  or  L-nitroarginine 

were added.

Both control (C) and stressed (K) plants were grown about 25 days before being used 

for the assays.

3.2 Standard extraction

The  plant  samples,  consisting  of  whole  regenerated  plantlets  devoid  of  callus  and 

senescent tissues, were weighted and ground in liquid nitrogen, and the frozen powder was 

transferred to tubes containing cold extraction buffer. After a 20-min incubation in ice bath, 

the samples were centrifuged at 13,000×g, 4 °C, and the supernatant was collected. Sephadex 

G-25 gel column (NAP-25, Amersham Biosciences) were used, when specified, to desalt raw 

extracts and resuspend the soluble proteins in the assay buffer subsequently used.

56



Some methods allowed the sample to be frozen and stored at -80 °C until use for a few 

days.

3.3 Metabolite analysis

3.3.1 H2O2

The  H2O2 content  was  determined  as  described  by  Wolff  [243]  with  minor 

modifications, measuring the colorimetric reaction of xylenol orange with Fe(III), generated 

after  the oxidation of Fe(II)  by H2O2 and other peroxides.  The Fe-xylenol  orange reagent 

(FOX) contained 1 mM xylenol orange, 500 μM (NH4)2Fe(SO4)2, 100 mM sorbitol, and 50 

mM H2SO4.

The plant material was extracted in 4 ml 0.2 M HCl + 1% PVPP. All the following 

operations  were  carried  out  with  plastic  labware.  Since  ascorbate  interferes  with  the 

colorimetric  reaction,  50 μl  of the extract  were incubated  5 min  with 0.2 U of ascorbate 

oxidase in 950 μl 200 mM potassium phosphate buffer, pH 5.8. Subsequently, 200 μl of FOX 

reagent were added and the reaction proceeded at least 30 min.

The absorbance of the samples was read spectrophotometrically at λ=560 nm, and the 

concentration of hydroperoxides was obtained from a standard curve.

3.3.2 Ascorbate

Reduced and total ascorbate contents were measured according to Queval and Noctor 

[185],  by  following  the  spectrophotometrical  disappearence  of  ascorbate  in  presence  of 

ascorbate oxidase. Ascorbate oxidase was dissolved in 200 mM potassium phosphate buffer, 

pH 5.8, to a concentration of about 100 U/ml; the solution was subdivided into aliquotes.

The plant material was extracted in 4 ml 0.2 M HCl + 1% PVPP, and the extract was 

conserved a few days at -80° C. The frozen extracts were thawed on ice, and an aliquot was 

incubated (1:1) with 4 mM dithiotreitol; the mixture was kept at 0-4° C at least 30 min.

100 μl of raw (for reduced ascorbate) or dithiotreitol-treated (for total ascorbate) extract 

were suspended in 900 μl 200 mM potassium phosphate buffer, pH 5.8, and the absorbance 
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was read at λ=265 nm. The sample was then added with about 2 U ascorbate oxidase, and the 

decrease in absorbance was followed until a stable value was reached.

The difference between the initial and the final absorbance was referred to an ascorbate 

standard,  and  the  concentration  was  calculated  accounting  for  dilution  factors.  The  ratio 

between reduced and total ascorbate was assumed as the redox status index.

3.3.3 Total thiols

The  thiol  concentration  was  assayed  as  described  by  Queval  and  Noctor  [185],  by 

means  of  the  colorimetric  reaction  of  sulfhydryls with  5,5'-dithiobis(2-nitrobenzoic  acid) 

(DTNB, Ellman's reagent).

The plant material was extracted in 4 ml 150 mM potassium phosphate buffer, pH 7.5 

containing 6 mM EDTA and 1% PVPP.

200 μl of extract were added to 700 μl of extraction buffer and 100 μl of 10 mM DTNB, 

and the absorbance was read at λ=412 nm after 5 min. The concentrations were calculated by 

means of a standard curve.

3.3.4 MDA

The  concentration  of  lipidic  peroxides  was  measured  as  malondialdehyde  (MDA) 

equivalents, following the method by Heat and Packer [96] with minor modifications. The 

reagent solution was 0.5% 2-thiobarbituric acid in 100 mM potassium phosphate buffer, pH 

2.0.

Plant samples were extracted in  100 mM sodium-potassium phosphate, pH 7.0, + 1% 

PVPP, frozen and stored at -80° C.

150 μl of raw extract were added to 850 μl of reagent solution. The reaction proceeded 

30 min at 100 °C, then the samples were cooled down and centrifuged (5 min, max rpm). 

For each sample, the absorbance was taken at λ=532 and λ=600 nm. The concentration 

of MDA equivalents was calculated from the difference between the two wavelengths, basing 

on a standard curve.
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3.3.5 NO

The NO content was estimated by the fluorescence of the probe 4,5-diaminofluorescein 

(DAF-2).

Fresh plantlets (about 0.2 g) were extracted in 750 μl 200 mM sodium phosphate buffer, 

pH 8, + 1% PVPP.

100 μl supernatant were transferred to a tube containing 900 μl 50 mM HEPES buffer, 

pH 7.5, and 2 μl DAF-2 solution (5 mM in DMSO) were added to each tube. A blank was 

included, containing 1 ml HEPES buffer and 2 μl DAF-2 solution. The samples were kept 2 

hours in dark at 37 °C.

The samples were excited with a λ=495 nm and the emission at λ=512 nm was taken. 

Each measure was calculated as the difference between the sample and the blank, referred to 

the fresh weight of the sample, and expressed in arbitrary units (AU).

3.4 Enzymatic assays

3.4.1 Catalase 

Catalase was assayed as described by Havir and McHale [94].

Plant  tissue was ground and transferred in cold extraction buffer  (100 mM sodium-

potassium phosphate, pH 7.0, + 1% PVPP); the extract was desalted and resuspended in 50 

mM sodium-potassium phosphate buffer, pH 7.0.

10 μl of the sample were added to 0.95 ml 10 mM H2O2 in 50 mM sodium-potassium 

phosphate buffer, pH 7.0, following the kinetics at λ=240 nm during 2 min. The slope was 

recorded, and each measure was the mean of 3 reactions.

One catalase unit is defined as the activity catalyzing the degradation of 1 μmol of H2O2 

per minute, as calculated assuming ε240=0.036 mM-1 cm-1.

3.4.2 Superoxide dismutase

Superoxide  dismutase  was  assayed  as  described  by  Masia  [149],  by  measuring  the 

competition for superoxide radicals produced by the illumination of riboflavin, between nitro 

59



blue tetrazolium (NBT, producing formazan blue,  which absorbs at  λ=560 nm)  and SOD 

(evolving H2O2).

For each sample, extraction was carried out in 100 mM sodium-potassium phosphate, 

pH 7.0, + 1% PVPP, and resuspension in 50 mM sodium-potassium phosphate buffer, pH 7.0.

A set of 7 glass tubes was prepared, containing 0, 10, 20, 40, 60, 80 and 500 μl of 

desalted  extract  in  3  ml  reaction  mixture  (2  μM  riboflavin  10  mM  methionine,  50  μM 

nitroblue tetrazolium, 20 μM KCN, 6.6 mM Na2EDTA, 65 mM sodium phosphate buffer, pH 

7.8). The reaction was started by illumination under 4 fluorescent lamps in an aluminium-

coated box, to provide uniform lighting. After 30 min illumination, absorbance was measured 

at λ=560 nm.

One superoxide dismutase unit is defined as the activity causing a 50% inhibition of the 

reaction producing formazan blue.

3.4.3 Ascorbate peroxidase

Ascorbate peroxidase activity was determined following the method by Chen and Asada 

[37], based on the spectrophotometrical measurement of ascorbate decrease at λ=290 nm.

Sample were extracted in 100 mM sodium-potassium phosphate, pH 7.0, + 1% PVPP, 

and resuspended in 50 mM sodium-potassium phosphate buffer.

The reaction mixture (1 ml) contained 100 μl desalted extract, 1 mM ascorbic acid, 0.5 

mM hydrogen peroxide in 50 mM sodium phosphate buffer, pH 7.0.

One unit of ascorbate peroxidase is defined as the activity catalyzing the oxidation of 1 

μmol of ascorbic acid per minute under the present conditions. An absorbance coefficient of 

2.8 mM-1 cm-1 was assumed for ascorbic acid at the given wavelength.

3.4.4 Guaiacol peroxidase

Guaiacol  peroxidase  was  assayed  as  described  by  Ushimaru  et  al. [228],  using 

pyrogallol as the electron donor for the reaction.

The plant material  was extracted in cold buffer (200 mM sodium phosphate,  5 mM 

sodium EDTA, 1% PVPP, pH 7.0) and incubated on ice for 30 min. After centrifugation, the 

supernatant was used for the assay.
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The reaction mixture (2.5 ml) included 50 mM phosphate buffer, pH 7.0, 0.1 mM H2O2, 

50 mM pyrogallol, and 100 μl extract; H2O2 and pyrogallol were prepared fresh just before 

use.  Absorbance (λ=430 nm)  was taken after  5 min  incubation  at  room temperature,  and 

referred to a blank with no extract added.

One unit of guaiacol peroxidase is defined as the amount of enzyme that catalyzes the 

oxidation of 1 μmol of pyrogallol min-1 under the described conditions [36]. An absorbance 

coefficient of 2.47 mM-1 cm-1 was assumed for calculations.

3.4.5 Nitrosoglutathione reductase

Nitrosoglutathione reductase was assayed according to Corpas et al. [45] and Barroso et  

al. [9], by following the oxidation of NADH at λ=340 nm. Fresh solutions of GSNO and 

NADH were prepared before use and kept refrigerated and protected from light.

100 mM sodium-potassium phosphate, pH 7.0, + 1% PVPP was used for extraction and 

50 mM sodium-potassium phosphate buffer for desalting.

The reaction mixture (0.5 ml) contained 150 μl desalted extract, 0.4 mM GSNO and 0.2 

mM NADH in 50 mM sodium phosphate buffer, pH 7.8. The reaction is started by adding 

GSNO.

The activity is expressed as nmol NADH consumed per min, with ε340=6.22 mM-1 cm-1.

3.4.6 Nitrate reductase

Nitrate reductase was determined with the in vivo procedure described by Hageman and 

Reed [91] and Toselli et al. [224].

Fresh plant samples (approximately 150 mg) were weighted and transferred into test 

tubes containing 6 ml of infiltration buffer (50 mM potassium nitrate, 1 mM EDTA, 1% n-

propanol  in  100 mM potassium phosphate  buffer,  pH 7.5).  Samples  were kept  under  the 

buffer surface by a plastic screen. The tube was incubated at 32 °C and was made anoxic 

either by bubbling gaseous N2 in it, or creating void with a pump; it was then wrapped with 

dark plastic in order to prevent any photosynthetic activity in the sample. After about 10 min, 

a 1-ml aliquot (t0) was transferred to a glass tube. 30 min later, another aliquot (t30) was taken.
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In  both  t0 and  t30 aliquots,  nitrite  concentration  was  revealed  by  adding  0.5  ml 

sulfanilamide (1% in 3 M H3PO4) and 0.5 ml N-(1-naphthyl)ethylenediamine dihydrochloride 

(NEDD, 0.02% in distilled water). After 30 min for full color development, absorbance was 

read at λ=540 nm, and referred to a nitrite standard curve. The difference between t0 and t30 

was taken as the amount of nitrite produced during the assay time.

Nitrate reductase activity was espressed in μmol NO2
- produced g-1 fresh weight min-1.

3.4.7 Glutathione reductase

The glutathione reductase assay was modified from Foyer et al. [74].

The plant material was extracted at 0-4° C in 4 ml 150 mM potassium phosphate buffer, 

pH 7.5 containing  6 mM EDTA and 1% PVPP,  and incubated  on ice  for  30 min.  After 

centrifugation, the soluble proteins were desalted and resuspended in assay buffer (50 mM 

potassium phosphate, pH 7.5; 5 mM EDTA).

The assay consisted in following the decrease of NADPH at  λ=340 nm, in a reaction 

mixture containing 500 μl assay buffer, 300 μl desalted extract, 100 μl 1mM NADPH and 100 

μl 1mM oxidized glutathione (GSSG). The blank contained buffer instead of the extract.

One  unit  of  glutathione  reductase  oxidizes  1  μmol  min-1 of  NADPH  at  room 

temperature, with ε340=6.22 mM-1 cm-1.

3.5 Soluble proteins content

The soluble proteins concentration was measured with the Pierce® BCA Protein Assay 

kit (Thermo Scientific, Rockford, IL), according to the manufacturer's instructions.

3.6 Native polyacrylamide gel electrophoresis and SOD in-gel assay

Native 10% polyacrylamide gels were prepared by dissolving acrylamide in 250 mM 

TRIS  buffer,  pH  8.9,  and  adding  300  mM  ammonium  persulfate  (1:20),  and 

tetramethylethylenediamine (TEMED) (1:250).
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Samples were prepared as for SOD activity assay and stored at -20° C. For each sample, 

the same amount of protein was treated with 2 μl 50% glycerol and 1 μl 0.25% bromophenol 

blue before loading.

To reveal SOD activity, the gel was incubated 20 min in NBT solution (2.45 mM in 50 

mM potassium phosphate  buffer,  pH 7.8),  then 15 min in a  28 mM riboflavin + 28 mM 

TEMED mixture. The bands are revealed after exposure to fluorescent light.

To distinguish among SOD isoforms, gels were pretreated 30 min with 5 mM KCN or 5 

mM H2O2 in potassium phosphate buffer (50 mM, pH 7.8) before the incubation with NBT. 

KCN is able to inhibit the Cu-Zn isoform, while H2O2 inhibits both Cu-Zn and Fe containing 

isoforms.

3.7 SDS-PAGE and Western blotting

For immunoblot  analyses,  SDS-PAGE was carried out in 12% acrylamide slab gels, 

containing: 250 mM TRIS-HCl, pH 8.9, 0.1% (w/v) SDS, 5% (v/v) glycerol, 0.02% (w/v) 

ammonium persulfate, and TEMED (1:2000).

The samples were prepared by suspending the raw extract in 2% (w/v) SDS, 10% (v/v) 

glycerol and 10 mM DTT, + 1 μl 0.25% bromophenol blue in 62.5 mM TRIS-HCl, pH 6.8 

(final concentrations), and heating the mixture at 95 °C for 5 min. For each sample, 40 μg of 

total proteins were loaded.

Polypeptides  were  separated  using  a  Bio-Rad  Mini-Protean  II  slab  cell,  and  were 

transferred on to PVDF membranes (Immobilon P, Millipore Corp., Bedford, MA) using a 

semi-dry transfer apparatus  (Novablot  electrophoretic  transfer  unit,  LKB) with 10 mM 3-

(cyclohexylamino)-1-propanesulphonic (CAPS) buffer, 10% methanol, pH 11.0, at 1.5 mA 

cm-2 for 2 h.

The membranes were washed in methanol and distilled water, incubated 1 h in blocking 

buffer  (20  mM  Tris-HCl,  pH  7.8;  0.18  M  NaCl)  containing  1.5% powdered  skim  milk, 

washed again with water, dried and incubated overnight in the anti-nitrotyrosine polyclonal 

antibody  mix  diluted  1:3000.  After  a  new  wash  in  blocking  buffer,  the  membrane  was 

incubated 1 h with the secondary antibody,  and revealed with the ECL-PLUS Amersham 

Western Blotting Detection kit by chemiluminescence.
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3.8 Confocal laser-scanning microscopy

NO was detected in leaf sections of approximately 25 mm2, including the central vein. 

Tissue samples were incubated (darkness, room temperature, 1 hour) with 10 mM Tris/HCl, 

pH  7.4,  containing  10  μM  DAF-FM  (Calbiochem-Novabiochem).  Control  samples  were 

preincubated with 5 mM L-NAME (a NOS inhibitor) and 10 mM cPTIO (a NO scavenger) to 

determine the signal specificity. All the following steps were carried out in shaded light.

Subsequently, the samples were rinsed twice for 15 min in Tris buffer, and incubated 

(darkness, 4 °C, overnight) in 1 ml infiltration solution consisting in phosphate buffer saline 

(PBS, 10 mM potassium phosphate,  pH 7.4,  15 mM NaCl,  3 mM KCl) added with 15% 

acrylamide-bisacrylamide and 0.3% (v/v) TEMED.

The  solidification  of  the  polyacrylamide  bed  was  achieved  by  adding  300  mM 

ammonium persulfate (1:20). Leaf sections (about 0.1 mm) were obtained with a vibratome 

under PBS, and soaked in glycerol:PBS (1:1) on a microscopy glass.

For the specimen examination, a confocal laser scanning microscope system (Leica TCS 

SL; Leica Microsystems, Wetzlar, Germany) was used, with standard filters and collection 

modalities  for  DAF-2  green  fluorescence  (excitation  495  nm;  emission  515  nm)  and 

chlorophyll autofluorescence (chlorophyll  a and b, excitation 429 and 450 nm, respectively; 

emission 650 nm and 670 nm, respectively) as orange [42].

Peroxynitrite  was  detected  following  the  same  procedure,  with  10  μM  3'-(p-

aminophenyl)  fluorescein  (APF,  Invitrogen)  as  the  fluorophore.  Control  samples  were 

preincubated with 10 μM Ebselen. Laser scanning microscope detection used standard filters 

and collection modalities for APF green fluorescence (excitation 495 nm; emission 515 nm) 

[33].

3.9 Molecular analysis

3.9.1 GSNOR and actin primer design

Basing  on  known  actin-  and  GSNOR-coding  sequences,  including  arabidopsis 

(GenBank  accession  NM123761,  GSNOR),  pepper  (GQ339766,  actin, and AY572427, 

GSNOR)  and  pea  (BV164876,  actin,  and  DQ084382,  GSNOR)  sequences,  a  query  was 
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submitted  in  the ESTree database for peach [69].  Among the top scores,  sequences  were 

spotted with high homology to known GSNOR genes (cluster_1_contig_479) and actin genes 

(cluster_16_contig_5).  The  following  primers  were  designed  with  the  software  Primer3 

[http://frodo.wi.mit.edu/primer3/]:

5'-TTGCATTCTTGGTCACGAG (FPrunus-GSNOR)

5'-TCTACTTTTGCCGTGTTCCA (RPrunus-GSNOR)

5'-CGTCTTCGATTGTCTTCGTC (FPrunus-Act)

5'-TGACCCATACCAACCATAACAC (RPrunus-Act)

The  primers  were  purchased  from  Sigma  Genosys.  The  hypothetical  length  of  the 

amplified fragments was 389 bp (for GSNOR) and 189 bp (for actin).

3.9.2 RNA extraction

Total RNA extraction was carried out starting from at least 0.1 g fresh weight tissue, 

and  using  the  commercial  reactive  TRIzol®  (GIBCO  BRL,  Life  Technologies).  All  the 

apparatus was sterilized in an oven at 140 °C for 3 hours. The sample was ground in liquid 

nitrogen, and 1 ml TRIzol reagent was added. After vortexing, the sample was incubated for 5 

min  on ice.  Subsequently,  0.2  ml  chloroform were added;  the  sample  was gently  mixed, 

incubated on ice 3 more minutes, and centrifuged  (13,000×g, 4 °C, 15 min). The upper phase 

was transferred to a new 1.5 ml Eppendorf tube containing 0.5 ml isopropanol, and let stand 

10 minutes at room temperature. The sample was centrifuged (13,000×g, 4 °C, 15 min), and 

the supernatant was discarded. The RNA pellet was washed by resuspension in 1 ml ethanol 

75% and precipitated by centrifugation (7,500×g, 4 °C, 5 min), then ethanol was completely 

removed  and  the  RNA  was  suspended  in  20  μl DEPC  water  (containing  0.1% 

diethylpyrocarbamate).  Concentration  and  stability  of  total  RNA  were  estimated  on 

electrophoretic agarose gel and by means of readings at λ=230, 260 and 280 nm.

3.9.3 Synthesis of cDNA

The synthesis of cDNA required a first step, where 3.7 μl RNA were treated with 2 U 

DNase I in 1 μl buffer, for 30 min at 37 °C. Then, EDTA (final concentration 5 mM), oligo-

dT (final concentration 1 mM) and DEPC water (final volume 14  μl) were added, and the 
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sample was incubated for 10 min at 75 °C. Finally,  dNTPs (final concentration 0.75 μM), 

RNase inhibitors, AMV retrotranscriptase and retrotranscriptase buffer were added to a final 

volume of 20 μl. After 40 min at 42 °C and 15 min at 70 °C, the cDNA was displayed by gel 

electrophoresis.

3.9.4 Sequencing of cDNA

The cDNA was amplified by PCR. The reaction included: 2 μl DNA polymerase buffer 

(10×), 1 μl 20 μM FPrunus-GSNOR primer, 1 μl 20 μM RPrunus-GSNOR primer, 0.4 μl 10 

mM dNTP mix, 1 μl cDNA template, 0.2 μl Taq polymerase, 14.4 μl water. The amplification 

programme consisted in (1) 94 °C 3 min; (2) 35 cycles of 94 °C 40 sec, 57 °C 40 sec, 65 °C 

40 sec; (3) 65 °C 10 min. The PCR product was displayed by electrophoresis; subsequently, 

the amplified band was excised with a scalpel, purified with the GFX™ PCR DNA and Gel 

Band Purification Kit (Amersham Biosciences), according to the manifacturer's instructions, 

and eluted in 30 μl water.

The pGEM®-T Easy Vector System I kit (Promega) was used for the clonation of the 

amplified fragment.  The reaction mix included: 7.5  μl T4 DNA ligase buffer (2×), 1.5  μl 

pGEM-T vector, 5  μl purified cDNA, 1  μl T4 DNA ligase; the mix was incubated at 4 °C 

overnight.

Competent  Escherichia coli DH5α cells, stored at -80 °C, were thawed on ice. 0.5 ml 

cell  suspension were preincubated with the ligation product for 30 min on ice,  then heat-

shocked at 42 °C for 1 min. 1 ml LB medium (10 g l-1 tryptone, 5 g l-1 yeast extract, 10 g l-1 

NaCl) was added; the cells were let grow 1 hour at 37 °C before plating on S-Gal™ LB Agar 

Blend (Sigma) added with ampicyllin, and incubated overnight at 37 °C. Some colonies with 

a white phenotype were isolated, plated on S-Gal™ LB medium with ampicyllin, and grown 

overnight at 37 °C. To verify the inclusion of the ligation product in the cells, single colonies 

were used in a colony-PCR reaction as the template.

Single positive colonies were grown overnight in liquid LB medium (at 37 °C, under 

shaking);  the  bacterial  suspension  was  centrifuged  and  the  supernatant  was  completely 

discarded.  The  pellet  was  used  for  plasmid  extraction,  by  means  of  the  QIAprep® Spin 

Miniprep Kit (Qiagen), according to the manifacturer's instructions. The isolation of plasmids 
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was  checked  by  electrophoresis.  Purity  and  concentration  were  extimated  by 

spectrophotometrical reading.

6.4  pmol  purified  plasmid  DNA,  together  with  the  primers  FPrunus-GSNOR  and 

RPrunus-GSNOR, were sent to the Instituto de Parasitologia y Biomedicina “López-Neyra” 

(Armilla, Granada, Spain) for sequencing.

3.9.5 Semiquantitative PCR

A preliminar  PCR showed that  the amplification of the cDNA template  reached the 

saturation after 30 cycles. Therefore, the expression analysis of GSNOR genes in the different 

genotypes was carried out by comparing the amplification of GSNOR partial sequence to a 

housekeeping gene, namely actin.

To  make  the  PCR  conditions  as  uniform  as  possible,  a  master  mix  was  prepared 

including polymerase buffer, dNTPs, water and Taq polymerase; it was subsequently splitted, 

and one aliquot was added with FPrunus-GSNOR and RPrunus-GSNOR primers, whereas the 

other  aliquot  was  added with FPrunus-Act and RPrunus-Act primers;  final  concentrations 

were the same described in 3.9.4. Finally,  the two mixes were splitted into single reaction 

tubes, and the sample cDNA was amplified in presence of both GSNOR and Act primers. The 

PCR programme was constituted by the following steps (1) 94 °C 3 min; (2) 30 cycles of 94 

°C 40 sec, 57 °C 40 sec, 65 °C 40 sec.

The amplified products were run on electrophoretic agarose gel, which was rendered in 

an electronic format and analized with the Quantity One®  1-D Analysis software (BioRad), 

in order to evaluate the relative intensity of ~400 bp (GSNOR fragment) band compared to ~ 

200 bp (actin fragment) band.

3.10 Statistical analysis

All  measurements  were  taken  with  at  least  three  independent  replicates.  When  the 

replicates were five or more, the top and the lowest values were trimmed. Data are presented 

as mean ± standard error.

Significance  analysis,  between  control  and  stressed  samples  of  each  genotype,  was 

performed with the Student's unpaired  t test. Analysis of covariance was used to assess the 
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significance of differences in the reduced-to-total  ascorbate ratio. P scores lower than 0.1, 

0.05 and 0.01 are highlighted (*, ** and ***, respectively).
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4 RESULTS

4.1 Visual symptoms

About 25 days after transplantation, all the tested genotypes showed reduced growth in 

the medium containing KHCO3 (K) compared to control (C), and Ishtara was most severely 

stunted. Chlorosis mainly affected the genotypes MrS 2/5 and Ishtara. The nectarine cultivar 

Big Top appeared nearly as healthy as in the control (fig. 4.1).

69

Figure 4.1: Phenotype of control (left)  and bicarbonate-treated (right) plants:  GF 
677 (A-B), MrS 2/5 (C-D), Ishtara (E-F), Big Top (G-H).
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4.2 Stress markers

In  order  to  quantify  the  extent  of  the  stress,  malondialdehyde  (MDA) contents  and 

nitrated  proteins  were  analyzed,  reflecting  respectively  the  oxidative  stress  on  lipidic 

membranes, and the nitrosative stress on proteins.

In all the genotypes, the bicarbonate-enriched medium was associated to an increase in 

MDA contents, confirming the actual occurrence of oxidative stress; in MrS 2/5 and Ishtara 

significant rises could be detected.

MDA content

(nmol g-1 FWT)
GF 677 - C 41.6 ± 3.9
GF 677 - K 48.7 ± 5.7
MrS 2/5 - C 27.1 ± 2.8

***
MrS 2/5 - K 41.0 ± 2.3
Ishtara - C 33.8 ± 1.0

**
Ishtara - K 45.7 ± 3.5
Big Top - C 35.3 ± 3.9
Big Top - K 43.6 ± 4.0

Tyrosine nitration has been proposed as a marker of nitrosative stress, since it requires 

the contemporary production of NO and superoxide.  The Western  blot  profile  of nitrated 

proteins (fig. 4.2) did not evidence any visual increase in the nitration signal, suggesting no 

enhanced  peroxynitrite  production  in  the  considered  stress  conditions.  Nevertheless,  a 

qualitative difference is found in Big Top, where a ~34 kDa band appears in presence of 

bicarbonate.
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4.3 Hydrogen peroxide content

Assuming the oxidative stress to be due to the impaired removal of reactive oxygen 

species, H2O2 was measured.

No  significant  changes  were  found,  despite  a  trend  toward  an  increase  in  hydrgen 

peroxide may be proposed.

H2O2 content

(μmol g-1 FWT)
GF 677 - C 2.19 ± 0.23
GF 677 - K 2.26 ± 0.26
MrS 2/5 - C 2.00 ± 0.26
MrS 2/5 - K 2.06 ± 0.28
Ishtara - C 2.16 ± 0.26
Ishtara - K 2.68 ± 0.31
Big Top - C 2.13 ± 0.24
Big Top - K 2.45 ± 0.19
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4.4 Antioxidant enzymes

Differences in oxidative stress severity and reactive oxygen species concentration could 

be due to differential activities of antioxidant enzymes. Thus, superoxide dismutase (SOD), 

catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) were assayed.

SOD appeared not affected by the stressing medium. CAT, APX and GPX displayed a 

general trend towards a reduced activity in presence of bicarbonate, but the only significant 

variations were for catalase in MrS 2/5, and for guaiacol peroxidase in Ishtara.

SOD

(U g-1 FWT)

CAT

(U g-1 FWT)

APX

(U g-1 FWT)

GPX

(U g-1 FWT)
GF 677 - C 169 ± 23 208 ± 83 3.4 ± 0.9 2.4 ± 0.1
GF 677 - K 219 ± 33 225 ± 80 2.4 ± 0.2 2.5 ± 0.4
MrS 2/5 - C 161 ± 23 336 ± 40

**
7.1 ± 0.8 3.7 ± 0.2

MrS 2/5 - K 161 ± 17 210 ± 39 5.3 ± 0.5 3.6 ± 0.2
Ishtara - C 205 ± 35 79 ± 25 4.2 ± 0.5 2.9 ± 0.3

**
Ishtara - K 199 ± 12 56 ± 17 3.5 ± 0.5 1.9 ± 0.1
Big Top - C 188 ± 34 324 ± 68 3.4 ± 0.8 2.0 ± 0.4
Big Top - K 178 ± 19 310 ± 54 2.3 ± 0.7 1.7 ± 0.1

Since different isoforms of SOD may be induced in stress conditions, an in-gel assay 

was performed. No differential expression of SOD isoforms was detected, besides confirming 

the unvaried activity (fig. 4.3).
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4.5 RNS content

Nitric  oxide  (NO) and other  RNS have  been  described  either  as  prooxidants,  or  as 

protective  factors.  Thus,  NO  concentration  has  been  estimated  by  means  of  DAF-2 

fluorescence.

A high NO content was associated to GF 677 and Big Top. NO production was possibly 

promoted under stress, since a significant increase is found in GF 677, and the same trend is 

also found in Big Top.
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Figure 4.3: In-gel SOD assay.
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NO content

(AU g-1 FWT)
GF 677 - C 45.6 ± 21.8

*
GF 677 - K 100 ± 0.0
MrS 2/5 - C 25.6 ± 4.6
MrS 2/5 - K 26.8 ± 9.2
Ishtara - C 11.1 ± 6.4
Ishtara - K 13.7 ± 7.7
Big Top - C 100.5 ± 18.4
Big Top - K 124.0 ± 17.8

An attempt was made to discriminate  the sites of NO production in leaf tissues, by 

means of confocal laser-scanning microscopy (fig 4.4, A-H). Unambiguous conclusions could 

not  be drawn,  although a  slight  increase  in  fluorescence  signal  might  be proposed in  the 

vascular tissues of GF 677 and Big Top grown with bicarbonate in the medium.

With regard to peroxynitrite, confocal laser-scanning microscopy was carried out in GF 

677 and MrS 2/5 plants (fig. 4.4, I-L). No difference emerged between stressed and control 

sections.
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4.6 Sources of RNS

Given the different NO production among genotypes, and its possible induction under 

stress,  the  question  raised  about  its  source.  Several  biochemical  pathways  have  been 

established,  but the enzymatic  NO synthesis,  catalyzed by nitrate reductase (NR) or nitric 

oxide synthase (NOS)-like activities, is best studied and considered probably most relevant.

Nitrate  reductase  activity  was  assayed,  and  no  respondence  emerged  in  relation  to 

bicarbonate.
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Figure 4.4: (A-H) CLSM detection of NO in leaves, by means of DAF 2-DA fluorescence. Top  
– control samples; bottom – bicarbonate-treated samples: GF 677 (A, E); MrS 2/5 (B, F);  
Ishtara (C, G); Big Top (D, H). (I-L) CLSM detection of peroxynitrite in leaves, by means of  
APF fluorescence. Left – control samples; right – bicarbonate-treated samples: GF 677 (I,  
J); MrS 2/5 (K, L).



NR

(NO2
- g-1 FWT min-1)

GF 677 - C 5.7 ± 1.4
GF 677 - K 6.6 ± 2.4
MrS 2/5 - C 11.3 ± 1.0
MrS 2/5 - K 11.2 ± 0.7
Ishtara - C 18.6 ± 2.5
Ishtara - K 16.5 ± 4.1
Big Top - C 14.1 ± 2.0
Big Top - K 19.1 ± 3.2

Since  the  genotype  GF  677  displayed  a  significant  increase  in  NO  content  when 

bicarbonate was included in the medium, NO fluorescence was also checked in presence of 

sodium tungstate (a NR inhibitor) and L-nitroarginine (a NOS inhibitor); sodium molybdate 

and  L-arginine  were  used,  respectively,  for  the  controls.  Although  variations  are  not 

statistically  significant,  the  tungstate  salt  led  to  an  increased  NO  fluorescence.  On  the 

contrary,  L-nitroarginine slightly reduced the NO signal,  consistently with an antagonistic 

action towards L-arginine.

NO content

(AU g-1 FWT)
Na-molybdate 85.9 ± 11.0
Na-tungstate 137.7 ± 22.1
L-arginine 90.8 ± 5.3
L-nitroarginine 72.2 ± 11.2

Nitrosoglutathione  has  been  connected  to  stress  resistance  in  several  experiments. 

Therefore,  nitrosoglutathione  reductase  (GSNOR)  could  affect  the  performance  of 

bicarbonate-treated plants by removing it. Indeed, GSNOR activity was halved in the most 

sensitive genotypes (MrS 2/5 and Ishtara) under stress, whereas no changes occurred in GF 

677 and Big Top.
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GSNOR

(U g-1 FWT)
GF 677 - C 95.8 ± 19.4
GF 677 - K 100.1 ± 17.7
MrS 2/5 - C 301.4 ± 59.8

**
MrS 2/5 - K 157.4 ± 15.8
Ishtara - C 191.4 ± 11.5

***
Ishtara - K 87.3 ± 10.6
Big Top - C 184.7 ± 24.0
Big Top - K 251.3 ± 26.6

4.7 Redox status

An estimate of the redox status of the plants was based on the reduced ascorbate/total 

ascorbate ratio. Total ascorbate, total reduced thiols and glutathione reductase activity were 

also considered as parameters for redox buffering power.

In  spite  of  a  trend  towards  ascorbate  oxidation  in  all  genotypes  under  stressing 

conditions,  changes could not be statistically validated.  On the other hand, total  ascorbate 

content was strongly reduced in Ishtara, whereas an increase was found in Big Top.

Ascrd/Asctot Asctot

(μmol g-1 FWT)
GF 677 - C 0.45 ± 0.05 1.05 ± 0.40

1.10 ± 0.04GF 677 - K 0.43 ± 0.00
MrS 2/5 - C 0.65 ± 0.11 1.59 ± 0.11
MrS 2/5 - K 0.56 ± 0.08 1.64 ± 0.16
Ishtara - C 0.65 ± 0.02 1.53 ± 0.09

***
Ishtara - K 0.51 ± 0.01 0.84 ± 0.09
Big Top - C 0.59 ± 0.01 1.34 ± 0.15

*
Big Top - K 0.59 ± 0.04 1.92 ± 0.19

Concerning soluble thiols, some increase was found in stressed MrS 2/5, despite the 

absolute content is lower than in the other genotypes. Glutathione reductase (GR) activity rose 

significantly in Big Top.
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Soluble thiols

(μmol g-1 FWT)

GR

(U g-1 FWT)
GF 677 - C 3.65 ± 0.33 518 ± 33

570 ± 82GF 677 - K 3.95 ± 0.50
MrS 2/5 - C 1.55 ± 0.08

**
426 ± 28

MrS 2/5 - K 1.87 ± 0.07 416 ± 21
Ishtara - C 2.89 ± 0.65 460 ± 12
Ishtara - K 2.58 ± 0.21 547 ± 54
Big Top - C 5.09 ± 0.44 510 ± 18

**
Big Top - K 5.73 ± 0.38 701 ± 42

4.8 GSNOR gene fragment expression and cloning

Good quality, total mRNA could be extracted only from control plants. PCR yielded the 

expected  ~400 bp and ~200 bp bands in GF 677, Ishtara and Big Top, but not MrS 2/5, 

possibly because of primers incompatibility (since MrS 2/5, unlike the other genotypes,  is 

neither P. persica, nor a peach hybrid).

The ~400 bp fragment from Ishtara plants was successfully cloned. Its sequence was 

determined and published in the GenBank database (accession number FJ360859).
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5 DISCUSSION

5.1 Choice of stress indexes

To measure the severity of stress, several parameters were taken in account. The ideal 

parameter  in  our  choice  would  be  a  stable  product,  slowly  recycled  by  other  metabolic 

processes, and not involved in any protective response, since ambiguity would emerge on the 

stress severity and the plant's capability to cope with it.

The decrease in chlorophyll content, determining the chlorotic symptoms in leaves, was 

not considered suitable, as it represents not only a nutritional disorder, but also an adaptive 

response, aimed to limit the electron flow in plastids, and consequently electron leakage to 

oxygen and ROS formation.  This view is substantiated by previous work [150] where the 

accessory  chlorophyll  b was  shown  to  be  more  affected  than  chlorophyll  a,  and  the 

chlorophyll  variation  not  to  correlate  with  other  stress  indexes.  By  analogy,  the  same 

considerations stand for any protective metabolites, such as osmolites, ROS scavengers or 

stress  proteins.  A further  reason for  caution  is  that  the  functional  role  of  many  of  these 

compounds is inferred from the conditions of their appearance, but they are seldom sufficient 

to  ameliorate  the  plant's  health  in  such  conditions.  Besides,  a  number  of  biochemical 

pathways,  such  as  proline  biosynthesis  or  Krebs  cycle,  have  been  associated  to  stress 

response, often suggesting a by-product (for instance, NAD(P)+ regeneration) to be the actual 

need for the stressed plant. Since the same by-products can be obtained through many routes, 

proline  and  other  metabolites  could  have  a  secondary  function  as  ROS  scavengers  or 

osmolites, resulting after their increased synthesis for different purposes; in any case, their 

reliability as stress markers would be questionable.

ROS content would be, in principle, a significant indicator of electron leakage; on the 

other side, H2O2 is a well-characterized stress response mediator,  promoting,  among other 

factors, its own scavenging by means of antioxidant enzymes.  As a further variable,  most 

antioxidant  enzymes,  requiring iron centres for their  function,  are directly affected by the 

stressor in our model.  Thus, neither H2O2 concentration,  nor antioxidant enzyme activities 

would be suitable parameters if independently taken, whereas their combination could be.

Thiobarbituric  acid-reacting  substances  (TBARS),  and  notably  malondialdehyde 

(MDA),  have  been  chosen as  markers  for  oxidative  stress.  Their  formation  is  due to  the 
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deregulated interaction of oxygen radicals with unsaturated fatty acids, which triggers a chain 

reaction with MDA as one of the end products. Thus, TBARS content is an accumulated 

function of oxygen radical formation during the cell development. Plant tissues recover poorly 

from membrane damage after the suspension of a stressing treatment [30]; it can be therefore 

supposed  that the  formation  of  new  tissues,  rather  than  the  restoration  of  membrane 

functionality in existing ones, is the main recovering strategy in plants. These considerations, 

in  our  opinion,  make  TBARS  content  a  reliable  stress  index  in  discrete  organs  mainly 

constituted by living tissue, such as leaves.

Protein  nitration  has  been  proposed  as  a  marker  of  stress.  In  fact,  peroxynitrite 

formation requires superoxide and NO to be produced at comparable rates, and its reaction 

with tyrosine as a preferential target could impair post-translational modification of proteins 

(such as phosphorilation)  and lead to their  degradation.  Some work has been carried out, 

showing increased tyrosine nitration, along with NO and nitrosothiols concentrations, in salt-

treated olive plants [229], which led to the definition of nitrosative stress, in analogy with 

deregulated ROS formation resulting in oxidative stress.

5.2 Bicarbonate stress occurrence

Plants  yellowing  and  stunted  growth,  although  not  quantified,  confirmed  that  the 

experimental conditions reproduced, at least partly, those leading to iron chlorosis in field.

TBARS  contents  were  different  among  the  genotypes,  even  in  unstressed  plants, 

probably reflecting their different growth modalities and basal levels. In fact, GF 677 and Big 

Top typically develop long leaves, with the largest near the base of the shoot, while MrS 2/5 

has smaller, round leaves and greater internodal distension, and Ishtara has very small leaves, 

approximately constant  in  their  size.  In  addition,  in  vitro-cultured  Big Top plants  usually 

become senescent earlier than the other genotypes. Thus, the amount of TBARS in control 

plants  may  depend  on  genetic  features,  on  the  age  of  the  tissues,  and  possibly  on  their 

photosynthetic activity. Nevertheless, in all bicarbonate-treated plants, an increase in TBARS 

is found, and its relative extent is roughly consistent with the severity of symptoms. Taken 

together, these data confirm the occurrence of oxidative stress, and TBARS as a good stress 

index.
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No obvious intensification of signal could be found by peroxynitrite fluorescence, nor 

by anti-nitrotyrosine immunoblotting. Therefore, nitrosative stress occurrence is not supported 

in the present experimental model. On the other side, one new band (~34kDa) appears in the 

stressed  Big  Top  sample.  Such  a  specificity  in  protein  nitration  would  rather  suggest  a 

functional role for the affected polypeptide. Little information is available about the identity 

of proteins undergoing nitration; nevertheless, their number has been found to be limited in 

sunflower hypocotyls (about 20), including glutathione reductase,  S-adenosyl homocysteine 

hydrolase  (SAHH),  and  other  proteins  involved  in  regulation,  redox  exchange  and 

carbohydrate metabolism [33]. SAHH was demonstrated to lose activity after nitration, which 

would  shunt  precursors  from  aminoacid  metabolism  towards  ethylene  or  polyamine 

biosynthesis.

5.3 ROS and ROS scavenging

To test whether the onset of oxidative stress was due to an increased ROS production or 

a reduced antioxidant activity, H2O2 contents and enzymatic scavengers were assayed.

Hydrogen peroxide was considered an important parameter for several reasons. Despite 

its  relatively poor  reactivity,  it  can turn  into a  dangerous  oxidizing  factor  in  presence  of 

transition metals; thus, its influence on oxidative stress can be reasonably supposed. Secondly, 

H2O2 is  the  most  stable  among  ROS,  is  the  product  of  superoxide  dismutation,  and  is 

massively  freed  in  stress  conditions  through  various  biochemical  routes;  so  it  can  be 

conveniently adopted to estimate the electron leakage to oxygen or the oxidative status in 

plant cells. Finally, it acts as a signal to induce stress responses.

Neither H2O2 levels, nor SOD activity appeared to increase significantly under stress, 

suggesting that an increased ROS formation, although possibly present, is not a major cause 

of the oxidative damage. On the other hand, H2O2-removing enzymes,  mainly catalase (in 

MrS 2/5) and guaiacol peroxidase (in Ishtara), suffered from significant reduction in activity. 

Since all of these enzymes require an heme cofactor, these data can be easily interpreted with 

a reduced iron availability in the cells.

Given  the  high  sensitivity  of  Ishtara  to  bicarbonate  in  the  present  system,  two 

considerations  arise,  the  first  regarding  its  low  catalase  activity,  even  in  control  plants, 

compared to the other genotypes. In our model, the CAT activity could act as a constitutive 
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shield against oxidative stress, rather than an induced response to stressors, since it is lowest 

or decreased in the sensitive genotypes, and no trend towards an increase can be detected in 

the resistant ones.

The second consideration concerns the relative importance of peroxidases. In fact, the 

mostly  aspecific  isoforms of  this  class,  assayed  as guaiacol  peroxidase activity,  are  often 

believed to act primarily in mechanical resistance and hypersensitive response, rather than in 

H2O2 detoxification  [7].  As  no  lignification  was  noticed  in  in  vitro grown plantlets,  it  is 

possible  that  GPX  is  preferentially  downregulated  compared  to  other  iron-containing 

antioxidant enzymes, when iron is not available. Overall, protein-bound iron could act as a 

buffer  source  of  biologically  active  iron,  and  variations  in  protein  expression  under  iron 

deprivation could be regarded in this direction.

APX, which is never significantly inactivated, is probably the major H2O2-scavenging 

activity in the tested conditions.

5.4 RNS and iron deficiency

High levels of NO fluorescence, and possibly induction under stress, were found in both 

the bicarbonate-tolerant genotypes (GF 677 and Big Top), whereas lower contents in MrS 2/5, 

and above all in Ishtara, correlated with lower tolerance. Moreover, the bicarbonate-sensitive 

plants, but not the resistant ones, displayed a fall in GSNOR activity.

Three  possible  explanations  can  be  postulated.  Both  NO  and  GSNO  act  as  iron 

chelators, keeping iron soluble and available for metabolic needs, and prevent the activation 

of the Fenton chemistry. Thus, plants could react to bicarbonate-induced iron precipitation by 

either synthesizing NO, or preventing the removal of GSNO. Secondly, NO is an effective 

oxygen- and lipid radicals scavenger, and can quench the lipid peroxidation chain reaction. 

This would justify a lower increase in TBARS in the strongest NO producers. Finally, iron 

uptake in the symplast could be promoted by NO action (in particular, transnitrosylation) on 

the proteic uptake machinery.

In this work, nitrate reductase could be excluded as a major source of NO, since no 

significant changes were found in NR activity between stressed and control plants; moreover, 

the  NR  inhibitor  sodium  tungstate  did  not  reduce,  but  rather  slightly  increased  NO 

fluorescence  in  stressed  GF  677  plants.  On  the  contrary,  L-nitroarginine  reduced  the 
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fluorescence signal, although not significantly,  suggesting L-arginine to be one, if  not the 

only, source of NO in the considered experimental model.

Since a NOS-like activity has been associated to peroxisomes [8; 52; 54], it is of special 

interest  to  verify  a  connection  between NO synthesis  and  ROS metabolism under  stress. 

Peroxisomes host several oxidative metabolic pathways; superoxide and H2O2 originate as by-

products, and are efficiently scavenged by an antioxidant apparatus including SOD, CAT and 

ascorbate-glutathione cycle  enzymes.  NO can react directly with superoxide,  but not with 

H2O2;  it  may otherwise  help  peroxisomal  metabolism,  for  instance  by  providing  iron  for 

catalase,  as  suggested  by  the  maintenance  of  CAT  activity  in  the  high  NO-producing 

genotypes. Stomatal closure, or excess O2 production compared to carbon fixation efficiency, 

could lead to increased photorespiration, hence the need for catalase activity. Actually, H2O2 

increases  could  not  be  statistically  validated,  so  the  whole  hypothesis  requires  more 

evidences.

Both NO and polyamines are known to counteract ethylene effects in senescence and 

fruit ripening [131;  177;  259]. Moreover, polyamines have been proposed [4;  225] as NO 

donors. Polyamines are found in virtually all cellular compartments, including mitochondria, 

plastids and peroxisomes, and are induced by several stressing conditions; they interplay with 
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Figure 5.1: Pathways depending on  S-adenosyl methionine (SAM). L-Met – L-methionine;  
ACC – 1-aminocyclopropane-1-carboxylic acid; L-Arg – L-arginine; Put – putrescine; Spm – 
spermine; Spd – spermidine; NA – nicotianamine; MAT – methionine adenosyltransferase;  
SAHase – S-adenosyl homocysteinase; SAHH – S-adenosyl homocysteine hydrolase.
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ethylene  metabolism  (fig.  5.1)  by  competing  for  the  same  precursor  (SAM),  and 

downregulating ethylene synthesis and perception [177; 259]; in addition, their oxidation is a 

H2O2-evolving pathway. It may be speculated that polyamines carry out their protective action 

by  freeing  NO.  Besides  direct  competition  for  biochemical  precursors,  polyamines  and 

ethylene also interplay by means of RNS, which have been shown to regulate several key 

enzymes  in  the  pathway,  such  as  S-adenosyl  homocysteine  hydrolase  (SAHH)  [33], 

methionine  adenosyltransferase,  S-adenosyl  homocysteinase  [133]  and  ACC synthase  [67; 

154].

Although  no  conclusive  evidence  could  be  drawn  from  laser-scanning  confocal 

microscopy, an increased signal was proposed in the vascular tissue of leaves from resistant 

plants.  This  would  be  in  agreement  with  other  experiments  [42;  43;  78],  and  would 

substantiate  the  involvement  of  NO  in 

systemic iron mobilization.

5.5 Redox balance

Assuming ascorbate  pool to be the 

main  electron  buffer  for  antioxidant 

responses,  a  decrease  in  the  reduced-to-

total  ascorbate  ratio  was  expected  in 

oxidizing  conditions.  This  was  not 

confirmed  by  the  present  data.  Yet,  a 

significantly  lower  amount  of  total 

ascorbate  was  found  in  the  highly 

sensitive Ishtara under stress, whereas its 

concentration  rose  in  Big  Top.  Similar 

observations  were reported [59;  145]  for 

the induction of PCD, proposing that not 

only the redox status, but also (or mainly) 

the  total  concentrations  of  ascorbate  or 

glutathione  would  carry  a  stress  signal, 

and that a lower ascorbate content would 
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Figure  5.2:  Ascorbate  metabolism.  Asc,  
ascorbate;  MDHA,  mono-dehydroascorbate;  
DHA,  dehydroascorbate;  Ru5P,  ribulose-5-
phosphate;  Xu5P,  xilulose-5-phosphate;  OPPP, 
oxidative pentose-phosphate pathway.
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result in a limited buffering power, thus lowering the threshold for the onset of oxidative 

damage.  Since ascorbate  peroxidase activity  is  not  significantly  decreased  in bicarbonate-

treated  Ishtara,  a  possible  explanation  for  the  observed  data  could  be  the  prevalence  of 

ascorbate degradation, with respect to neosynthesis (fig. 5.2). Ribulose-5-phosphate and other 

pentoses, the products of this process, participate in pentose-phosphate pathways, suggesting 

the need to tune up the NADP+/NADPH ratio. In fact, chlorotic leaves, where photosynthesis 

and carbon fixation are not efficient, could reduce the pentose phosphate pool through both 

the Calvin cycle  and photorespiration,  with NADPH consumption.  On the other  hand, an 

increase in ascorbate  concentration,  as found in Big Top, could compensate  a diminished 

ascorbate peroxidase expression or stability when iron cofactors are not available.

Glutathione is another important redox player in plants, since it can act (1) by reducing 

ascorbate, (2) by directly reducing ROS, or (3) by modulating protein activity, through a post-

translational modification (glutathionylation of sulfhydryls) [75]. Thus, glutathione reductase 

was supposed to react to oxidative stress. Only Big Top had a significant increase in GR 

activity, although the trend is present in GF 677 and Ishtara, but not in MrS 2/5.

5.6 Response strategies to bicarbonate stress

Among the four tested genotypes, two (GF 677 and Big Top) appeared to be resistant to 

KHCO3,  whereas  MrS  2/5  and  Ishtara  were  affected  by  chlorosis,  although  at  different 

severity.  Common aspects could be spotted among the different varieties, according to the 

performance in bicarbonate-enriched medium.

In the resistant genotypes, little lipid peroxidation increases were detected, and poor or 

no variations in antioxidant enzymes occurred. In addition, ascorbate content, redox status, 

and thiol metabolism did not vary in GF 677, while Big Top reacted to bicarbonate increasing 

ascorbate concentration and glutathione reduction. Overall, a severe iron shortage seemed not 

to take place. Both GF 677 and Big Top had high levels, and possibly promoted synthesis of 

NO under stress. Thus, the main role of NO, or some of its derivatives, may be keeping iron 

available, or even solubilizing internal iron precipitates, so that iron nutritional sufficiency 

was maintained in spite of the presence of bicarbonate in the growth medium. RNS may also 

stimulate the intake apparatus, or counteract its HCO3
--mediated inhibition: the appearance of 

a nitrated protein in Big Top could reflect this phenomenon. Besides, a scavenging function of 
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NO against oxygen or lipid radicals cannot be excluded; coping with the onset of oxidative 

stress, anyway, did not require the activation of any of the tested detoxification mechanisms, 

with the possible exception of a generalized reduction of the redox buffers.

In  the sensitive  genotypes,  even  though H2O2 did  not  increase  sensibly,  antioxidant 

enzymes  lost  part  of  their  activity,  probably as  a  consequence  of  iron  deprivation.  Thus, 

unscavenged H2O2, and possibly deregulated iron trafficking, may be sufficient causes for the 

observed, significant lipid peroxidation. Alternatively,  a main source of ROS not implying 

superoxide as an intermediate should be supposed, given the absence of response in SOD 

activity. Singlet oxygen formation at PSII might represent a likely candidate, also considering 

that carotenoids are reported to be spared from photosynthetic pigment loss possibly because 

of their 1O2
* quenching function.

Whatever the ROS source, their detoxification must be faced by MrS 2/5 and Ishtara 

genotypes, together with the restoration of iron availability. GSNO may accomplish the latter 

issue, forming stable iron-dinitrosyl complexes and holding iron in a bioavailable form. In 

addition,  GSNO may undertake  a  role  in  spreading  the  NO signal,  by trans-nitrosylating 

cysteine  residues  on specific  target  proteins,  thus  regulating  their  activity.  Several  stress-

related proteins have been found to undergo Cys-nitrosylation and Tyr-nitration; among them, 

a CuZn-SOD [132], a peroxiredoxin IIE [196; 197], a glutathione reductase and an alternative 

oxidase [33]. With regard to the protection from oxidative stress, given the impairment of the 

antioxidant enzymes, the main line of defence would be represented by the redox buffering 

system.  Bicarbonate  tolerance  is  found,  to  some  extent,  in  MrS 2/5  compared  to  Ishtara 

(where  chlorotic  symptoms  and  stunted  growth  are  more  severe),  maybe  because  of  the 

different ascorbate and glutathione contents. In fact, Ishtara shows a fall in total ascorbate 

content, whereas MrS 2/5 has a little increase in thiols in treated samples.

The identification of the subcellular compartments where ROS are evolved could help 

addressing to the mechanisms of NO- and redox-mediated protection on one side,  and of 

stress damage on the other side. To confirm NO involvement in peroxisomal activity would 

possibly mean increased photorespiration, or lead to the oxidation of secondary metabolites in 

the  response  to  bicarbonate,  whereas  singlet  oxygen  detoxification  would  take  place  in 

chloroplasts by means of membrane-diffusible factors such as tocopherols and carotenoids.
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5.7 Future perspectives

This  work  led  to  the  individuation  of  different  responses  involving  the  RNS 

metabolism, in presence of bicarbonate, within the Prunus genus. Such biochemical features 

might  be  the  starting  point  for  future  developments  in  the  study  and  treatment  of  iron 

deficiency stress tolerance, including applicative ones. 

Since an increased NO concentration was shown to correlate with higher bicarbonate 

tolerance, field subministration of NO might be adopted in order to prevent or cure chlorosis 

instances.  A deeper investigation of the RNS source and action could address to efficient 

formulations,  also  accounting  for  cross-interactions  with  other  components  of  the  plant 

metabolism.  In  this  sense,  the  comparison  among  polyamine  and  non-physiological  NO 

donors (such as sodium nitroprusside or S-nitroso-N-acetylpenicillamine) could be of interest. 

Although GSNO is very expensive and labile  in standard conditions,  its  synthesis  can be 

achieved from nitrite and glutathione; on the other hand, nitrite alone, as a substrate of nitrate 

reductase, could be excluded in this work as a significant NO source. It should be noted that 

different donors may result in diverging responses, according to the redox status of NO, as 

shown for ferritin induction [73; 165].

Besides  supplying  NO,  downstream  mechanisms  could  also  be  characterized.  This 

work, where unrooted plantlets were used as the experimental model, did not consider the 

specific action of roots. As the resistance to chlorosis emerged even in absence of specialized 

uptake responses, curative treatments may be designed, not relying on external iron supply, 

which is an expensive and environmentally impacting practice.

If the effectiveness of GSNO were to be confirmed, the question would arise about its 

action. In fact, beyond its iron chelating power, GSNO is also a carrier of nitrosyl groups, and 

transnitrosylation  of  specific  protein  targets  could  take  place.  Thus,  the  screening  of  the 

nitrosylated  proteome  could  evidence  protein  isoforms  contributing  to  iron  efficiency, 

providing biochemical markers for an early selection of bicarbonate-tolerant genotypes.

Tyrosine  nitrosation  did  not  succeed  as  a  stress  marker.  Conversely,  its  apparent 

specificity suggests a form of protein regulation. The identification of the target(s) of nitration 

could  therefore  help  tagging  some  of  the  metabolic  routes  implied  in  bicarbonate  stress 

tolerance.
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