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Abstract

In this thesis, the field of study related to the stability analysis of fluid satu-

rated porous media is investigated. In particular the contribution of the vis-

cous heating to the onset of convective instability in the flow through ducts

is analysed. In order to evaluate the contribution of the viscous dissipa-

tion, different geometries, different models describing the balance equations

and different boundary conditions are used. Moreover, the local thermal

non-equilibrium model is used to study the evolution of the temperature

differences between the fluid and the solid matrix in a thermal boundary

layer problem.

On studying the onset of instability, different techniques for eigenvalue prob-

lems has been used. Analytical solutions, asymptotic analyses and numeri-

cal solutions by means of original and commercial codes are carried out.
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ūI intrinsic velocity, [m/s]

U∞ dimensional undisturbed velocity, [m/s]
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1

Introduction

The study of heat transfer and fluid dynamic in saturated porous media involves several

different fields of interest, from engineering to geophysics and medicine. The modeling

of cooling/heating devices, fluid intrusions in volcano magma chambers, CO2 seques-

tration, transfer of gases to blood within the lung and drugs delivery to the brain are

few examples of the widespread fields involved. This first chapter is focused on present-

ing an introduction to porous media and to the momentum balance modelling. The

chapter ends with a discussion on the hydrodynamic boundary conditions.

1.1 Porous Medium

A porous medium (or a porous material) is a solid medium which is characterised by

the presence of void spaces within its own volume. The medium can thus be modeled as

a solid matrix permeated by a network of channel, or pores, where a fluid (liquid or gas)

can move. Usually both the solid matrix and the fluid are assumed to be continuous.

A good example of a porous medium can be a sponge, see Figure 1.1. Many natural

substances such as rocks, soils, biological tissues (e.g. bones), and man made materials

such as cements, foams and ceramics can be considered as porous media. A porous

medium is defined by its porosity, permeability as well as by the properties of its

constituents (solid matrix and fluid). The solid matrix is usually considered as a rigid

non-deformable medium. Moreover the porous medium is assumed to be isotropic, non

soluble in the fluid and chemically inert. In the following, a single phase fluid saturating

the porous material is analysed.

1
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Figure 1.1: An example of porous medium.

1.2 Porosity

The governing macroscopic equations for the fluid flow and heat transfer in a porous

medium are obtained by averaging the local variables over a ”sufficiently large” repre-

sentative elementary volume (R.E.V.). ”Sufficiently large” means that the length scale

of the REV is much larger than the pore scale, but much smaller than the length scale

of the flow domain under consideration.

A basic characteristic of the porous medium is its porosity ϕ defined as the fraction of

the volume of the system that is occupied by the void space, i.e. the volume occupied

by the saturating fluid,

ϕ =
Vf

V
. (1.1)

Natural media have porosity usually less than 0.6: the sandstone lies in the range

0.08− 0.38, the soil between 0.43− 0.54 and the leather between 0.56− 0.59. Artificial

materials like fiberglass, mineral wool may have a porosity slightly less than the value

1 that corresponds to the limit of a clear fluid.

Let us define ū = (ū, v̄, w̄) as the average velocity of the fluid with respect to a volume
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element of the medium incorporating both the solid phase and the fluid phase, namely

ū =
1
V

∫
V

ūL dV, (1.2)

where ūL is the local dimensional velocity vector. On the other hand, let us define

ūI = (ūI , v̄I , w̄I) the intrinsic average velocity of the fluid taken with respect to the

volume element consisting of the space occupied by the fluid only as

ūI =
1
Vf

∫
Vf

ūL dV. (1.3)

The average velocity ū and the intrinsic velocity ūI are related by means of the Dupuit-

Forchheimer relationship

ū = ϕ ūI. (1.4)

The velocity ū is called in many ways: seepage velocity, filtration velocity, Darcy’s

velocity. According to Nield and Bejan (48) here ū is called Darcy’s velocity.

By the definition of Darcy’s velocity ū and porosity ϕ the mass balance equation or

continuity equation can be written as

ϕ
∂ρ̄

∂t̄
+ ∇̄· (ρ̄ ū) = 0, (1.5)

where ρ is the fluid density and the porosity ϕ is considered as independent of the time.

If the density is considered as a constant, the fluid is taken to be incompressible and

Eq.(1.5) reduces to

∇̄· ū = 0. (1.6)

Eq.(1.6) is the form of the continuity equation used in this thesis.

1.3 The momentum balance equation

In clear fluids, the momentum balance equation commonly used is the well known

Navier-Stokes equation. On modelling flows in porous media the Navier-Stokes equation

does not provide a satisfactory description of the system. In fact, different approaches to

the formulation of the momentum balance equation for fluid flowing in saturated porous
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media have been proposed. First, the Darcy model is presented. This is the oldest and

the most widely employed model. The Darcy model is very simple and, nonetheless,

it allows one to investigate a wide range of flow cases. However, in order to enlarge

the domain of investigation, other models have been proposed. In the following, after

the Darcy model, the Forchherimer model and the Brinkman model will be discussed.

These two models, adding new terms to the Darcy model, yield a more complex analysis

of fluids flowing in saturated porous media. Finally, an extension of Darcy’s model is

discussed such that a time-dependent term is included.

1.3.1 Darcy’s law

Henry P. G. Darcy was a French scientist and engineer. He worked for the design of the

water distribution of the city of Dijon, France. Based on this work he published The

Public Fountains of the City of Dijon (24). Inside this publication, there is an appendix

entitled Determination of the Laws of Water Flow Through Sand. In this pioneering

work Darcy formulated what is today the well known Darcy’s law. He based his law

on the results of experiments on the flow of water through layers of sand. Darcy’s

law refers to the case of laminar flow in the porous medium and, moreover, it refers

to a tight packed solid with a fluid flowing in very small pores. The latter condition

describes a flow regime very far from the clear fluid flow. This low porosity regime

allows one to obtain a momentum balance equation that is dramatically simpler than

the Navier-Stokes equation. This momentum balance equation is called Darcy’s law

and it is an heuristic relationship. This law describes a proportionality relationship

between Darcy’s velocity and the pressure gradient, namely

ū = −K
µ
∇̄p̄, (1.7)

where µ the dynamic viscosity of the fluid, p̄ is the pressure and K is the permeability

of the porous medium. The permeability K is a measure of the ability of a porous

material to let fluids flowing through itself and it depends only on the geometry of the

medium and not on the properties of the fluid. The size of the pores and their shape

are characteristics that influence the permeability value. The limiting case K → 0

refers to a compact solid without void or pores. On the other hand the limiting case

K → ∞ refers to a clear fluid. In Eq.(1.7), due to the fact that the porous medium
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is assumed to be isotropic, the permeability can be considered as a constant. The

permeability range of values is from 10−7 for clean gravel to 10−20 for unweathered

clay. Carman and Kozeny, (21; 38), found a relationship that relates permeability and

porosity: the Carman-Kozeny equation. This relationship holds for a packed layer of

uniform particles of diameter Dp and it states that

K =
D2
p ϕ

3

180 (1− ϕ)2
, (1.8)

where the constant 180 was obtained by seeking the best fit of experimental results.

The validity of this equation decreases either in those cases in which the solid particles

that build the porous matrix strongly deviate from the spherical shape or in those cases

where there is a broad particle-size distribution. Nevertheless this relationship is widely

used since it seems to be the best simple expression available.

In order to take into account the gravity field influence on the system the term ρg is

usually added to the momentum balance equations. From Eq.(1.8) and Darcy’s law,

Eq.(1.7), one obtains

ū =
K

µ
(−∇̄p̄+ ρ0 ḡ), (1.9)

where g is the gravitational acceleration.

Darcy’s law has been verified by the results of many experiments. Many authors have

used statistical concepts to find a theoretical support for Darcy’s law. Whitaker, (94),

has theoretically derived Darcy’s law, for the case of an incompressible fluid. This

theoretical development is not restricted to either homogeneous or spatially periodic

porous media, but it assumes that there are no abrupt changes in the structure of the

medium.

1.3.2 Forchheimer’s model

Darcy’s equation, Eq.(1.9), is linear in the Darcy velocity ū. It is valid when ū is

sufficiently small. Increasing the velocity ū of the fluid a flow transition to an hydraulic

regime begins at the pores scale. In this regime the fluid head loss is proportional to the
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square of the mass flow rate in the pores. If one defines a permeability-based Reynolds

number as

ReK =
ū ρ0

√
K

µ
, (1.10)

on increasing ReK from 0 to 100 a smooth transition to a nonlinear drag occurs. Ac-

cording to Joseph et al. (36) the appropriate modification to Darcy’s equation is to

replace Eq.(1.9) with a balance equation that has been associated with the names of

Dupuit (27) and Forchheimer (30) and is usually called Forchheimer equation, namely

ū +
ρ0Cf

√
K

µ
|ū| ū = −K

µ
(∇̄p̄+ ρ0 ḡ), (1.11)

where Cf is a nondimensional quantity called form drag coefficient. In the early papers

on this model, it was sustained that Cf is a universal constant and Ward, (91), found

an approximate value equal to 0.55. More recently, it has been pointed out that the

Forchheimer coefficient is sensitive to the geometry of the duct and to the solid material

the porous medium is made of. Forchheimer’s model also include Darcy’s law as a

special case and, like Darcy’s law, it refers to a tight packed solid with a fluid flowing

in very small pores. Taking the limit ReK → 0, Eq.(1.11) reduces to Darcy’s equation,

Eq.(1.9). When the value of ReK approaches 100 Darcy’s law is no longer reliable.

1.3.3 Brinkman’s model

Darcy’s law and Forchheimer’s model are suitable for a relatively low porosity. Moreover

they cannot allow the assignment of no-slip conditions on a boundary surface. The

latter is a severe difference between the porous media models and the free flowing fluid

momentum balance equation, the Navier-Stokes equation. On increasing the porosity of

the medium, a continuous transition from a clear fluid momentum balance equation to

a porous medium momentum balance equation is likely to occur. Brinkman in (19; 20)

proposed a momentum balance equation adding, with respect to the Darcy equation,

a Laplacian term analogous to the Laplacian term that appears in the Navier-Stokes

equation, namely

µ

K
ū = −∇̄p̄+ µ̃ ∇̄2ū, (1.12)
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where µ̃ is defined as the effective viscosity. Originally Brinkman assumed µ̃ equal to

µ but subsequently it has been shown that µ̃ is a function of the dynamic viscosity

and porosity of the particular porous medium. A frequently used correlation between

the dynamic viscosity µ and the effective viscosity µ̃ is the Einstein formula for dilute

suspensions, namely

µ̃ = µ[1 + 2.5 (1− ϕ)]. (1.13)

When the porosity approaches the unit value the effective viscosity tends to the dynamic

viscosity, µ̃→ µ and the permeability tends to infinity, K →∞. In this limiting case the

Brinkman equation Eq.(1.12) reduces to the Navier-Stokes equation without the inertial

contribution. The Laplacian term in the right hand side of Brinkman’s equation allows

one to apply the no slip conditions at the rigid boundaries, while the Darcy equation or

the Forchheimer equation do not. Lundgren (45) showed that the validity of Eq.(1.12)

is restricted to those systems with a sufficiently high porosity, greater than 0.6. The

range of values of porosity allowed by Lundgren is a severe limitation because most

of the porous media have porosity less than 0.6. Another discussion on the domain of

validity of the Brinkman model has been performed by Auriault (5). He defined the

quantity ι as

ι =
l

L
, (1.14)

where l is the characteristic length of the REV and L the characteristic length scale

of the macroscopic flow. For ι � 1, a condition of low permeability, Auriault showed

that the Brinkman term is negligible up to the third-order in ι. In case of a moderate

separation of the two scales l and L, ι < 1, the permeability is higher with respect

to the last case and the Brinkman term is still a second order corrector in ι. From

the latter considerations he concludes that the Brinkman model has a quite restricted

range of validity.

Many authors have recently proposed a Brinkman-Forchheimer formulation of the mo-

mentum balance equation. The two models have, as said in the previous Sections, differ-

ent ranges of validity for what concern the value of porosity. Therefore the validity of a

Brinkman-Forchheimer equation is not completely clear. Lage, in a scale analysis (40),

showed the different regimes in which the various terms in the Brinkman-Forchheimer
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equation were important or not. Hsu and Cheng (33) proposed a formulation of the

Brinkman-Forchheimer model, based on earlier works of Vafai and Tien (89; 90), that

can be expressed as

∂ū
∂t̄

+ ∇̄
(

ū · ū
ϕ

)
= − ϕ

ρ0
∇̄p̄− ϕν

K
ū +

µ̃

ρ0
∇̄2ū−

ϕCf√
K
|ū| ū. (1.15)

1.4 Hydrodynamic boundary conditions

A detailed account of the boundary conditions is a matter of primary importance.

These can be distinguished in hydrodynamic conditions and thermal conditions. In the

following the hydrodynamic conditions are described. A discussion about the thermal

boundary conditions can be found at the end of the next chapter.

A boundary condition can be distinguished in first type, or Dirichlet condition, sec-

ond type, or Neumann condition and third type, or Robin condition. To simplify the

discussion let us consider a horizontal two dimensional, (x̄, ȳ), duct infinitely wide in

the x̄ direction and with boundary walls at ȳ = 0 and ȳ = L, with streamwise velocity

component ū and vertical component v̄. In a general form, the Dirichlet condition can

be expressed, for instance in the case of a given velocity (ū, v̄) at a given boundary, as

ū = D1(x̄) v̄ = D2(x̄), (1.16)

where D1(x̄) and D2(x̄) are functions defined on the boundary. On the other hand, at

a given boundary, the Neumann conditions is expressed by

∂ū

∂ȳ
= N1(x̄)

∂v̄

∂ȳ
= N2(x̄), (1.17)

where N1(x̄) and N2(x̄) are functions defined on the boundary. For the third type

conditions, the Robin conditions, on a given boundary the velocity (ū, v̄) is such that

C1 ū+ C2
∂ū

∂ȳ
= R1(x̄) C3 v̄ + C4

∂v̄

∂ȳ
= R2(x̄), (1.18)

where R1(x̄) and R1(x̄) are functions defined on the boundary and C1, C2, C3, C4 are

constants.

On modelling the hydrodynamical behaviour of the fluid at the boundaries, different

configurations can be used: permeable or impermeable walls, slipping or no-slipping
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walls, moving walls, free boundaries and interface conditions between a clear fluid and

a porous medium are taken into account. The impermeability condition is a Dirichlet

condition that, on the two boundaries of the two dimensional duct, can be expressed

as

ȳ = 0 7−→ v̄ = 0 and ȳ = L 7−→ v̄ = 0. (1.19)

If the impermeability condition is applied together with the Darcy model one has that,

since the Darcy equation is of the first order, it is the only one condition that can

be applied for a given boundary. In this case one assumed that the fluid slips on the

boundaries with velocity ū.

If the Brinkman model is used, the momentum balance equation becomes of second

order and the no-slip conditions, again Dirichlet conditions, at the two boundaries can

be applied, namely

ȳ = 0 7−→ ū = 0 and ȳ = L 7−→ ū = 0. (1.20)

If, instead of being impermeable, a boundary is free (as in the case of a liquid saturated

porous medium exposed to the atmosphere), then the appropriate condition is that the

pressure is constant along the boundary

ȳ = free boundary 7−→ p̄ = cost. (1.21)

From Eq.(1.21) ∂p̄/∂x̄ = 0, hence, from Darcy’s law, ū = 0 on the free boundary. From

the latter conclusion one obtains that also the derivative of the horizontal velocity van-

ishes, thus, from the continuity equation Eq.(1.6), the free surface boundary condition

can be expressed as

ȳ = free boundary 7−→ ∂v̄

∂ȳ
= 0, (1.22)

that it is a Neumann condition on the velocity. Assuming that, for instance, the top

wall is moving in the x̄ direction with a velocity ūB, Couette like boundary conditions

are taken into account by imposing the following relationship

ȳ = L 7−→ ū = ūB, (1.23)
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that is again a Dirichlet condition and it can be applied only in the case that the no-

slip condition is allowed on the moving wall. This implies that Couette like boundary

conditions make sense only when the Brinkman model is used.

In that case of an interface between a clear fluid and a porous medium, one needs

special boundary conditions. Beaver and Joseph (13) state that, if there is a flow in the

horizontal direction, x̄ for example, the appropriate boundary condition is the empirical

relationship

∂ūI
∂ȳ

=
αBJ
K1/2

(ūI − ū) (1.24)

where αBJ is a nondimensional quantity and is independent of the viscosity of the

fluid, but it depends on the material characteristics of the porous medium. Sahraoui

and Kaviany (78) have shown that the value of αBJ depends on the flow direction at the

interface, the clear fluid Reynolds number and nonuniformities in the porous medium

interface.

Finally let us consider the case of a boundary layer. When a boundary layer is investi-

gated it is usually imposed a undisturbed basic flow outside the layer itself. The value

of the basic flow velocity is here taken to be U∞ and the value of temperature is taken

to be T∞.

All the boundary walls considered in this thesis are assumed to be impermeable. More-

over only the Darcy model and Forchheimer model are used, thus the no-slip conditions

and the Couette boundary conditions will not be taken into account.



2

Instability

This chapter is focused on the analysis of the convection in porous media and the

related stability analysis modelling. First an historical introduction on buoyancy effects

is presented, then the thermal energy balance equation modelling is discussed and

finally the concept of stability and the basic methods for analysing convective instability

are introduced. Particular attention is given to the role of the viscous dissipation

contribution to the onset of convection. The chapter ends with a discussion of the

thermal boundary conditions.

2.1 Buoyancy effects

Spontaneous or natural convection belongs to those physical phenomena that have fas-

cinated people since the time of Archimedes (213 B.C.). Convection usually arises when

some strong inhomogeneity exists in a medium and/or some interplay occurs between

the density or concentration distributions and external forces, gravitational, electric, or

magnetic. Convective phenomena are very common in Nature and they hold a key role

in many scientific fields, from physics to engineering, from astrophysics to meteorology.

The term convection (from the Latin word convectio, convectionis, transport) seems

to have been coined by Prout (66) to denote a mode of propagation of heat (by fluid

motion). This kind of propagation of heat by fluid motion is described by Rumford

(77) forty years earlier to account for the heat transport in a hot apple pie. This con-

cept nowadays covers a broader spectrum of interest and involves all those physical

properties other than heat that may be involved in a transport process. The term

11
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convection is now associated with the terms natural, forced and mixed to identify three

different regimes. Natural convection is a term that refers to heat transport by fluid

flow generated by a thermal or solute concentration gradient. On the other hand, the

term forced convection refers to convection phenomena generated by imposed pressure

gradients. If both natural and forced convection occurs the term mixed convection is

used.

Natural convection in atmospheric sciences has been first investigated by Hadley with

his well known study on the generation of trade winds. He considered a model of at-

mosphere with uniform temperature rotating with the Earth. He assumed a heating of

the lower atmosphere in the equatorial areas that forces the air present in those areas

to rise, creating a high pressure zone. This high pressure area located at equatorial lat-

itudes, due to the low pressure zone close to the poles, generates a north-south pressure

gradient. This pressure gradient forces the high levels air masses to move toward the

poles, to sink over these areas and, eventually, to return to the equator at low levels. In

Earth sciences the natural convection is used to explain the plate tectonics theory. This

theory describes the large scale motion of the lithosphere and it is based on a previous

theory called continental drift and developed by Wegener (93). The lithosphere is the

upper part of the the solid earth including the crust and the upper mantle. By the

plate tectonics theory, the lithosphere is broken in a number of plates that move drive

by the convective displacements of the mantle under the crust.

From a smaller scale point of view the convection can involve many kinds of phenomena:

Faraday (28), for instance, studied the convective motion in liquids under the action of

electric currents. Weber (92) observed a tesselated structure and motions in a layer of

alcohol and water on the slide of a microscope, but attributed the circulation observed

to electric forces and thus gave a wrong interpretation of his observation. Lehmann

(44) pointed out the purely thermal origin of the phenomenon and gave the correct

interpretation. One remarkable subsequent study was performed by J. Thomson (the

older brother of W. Thomson, better known as Lord Kelvin) (84; 85) who gave a the-

oretical explanation of the phenomena happening in a glass of wine: he studied the

cellular convection due to evaporative phenomena driven by unbalanced surface ten-

sion stresses.

The first controlled experiments on cellular convection were carried out by Bénard. He

carefully reported (15; 16) experiments of convective motions in thin horizontal liquid
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layers heated from below. In his experiments he managed to work in the approxima-

tion of the infinitely wide horizontal plate reducing as much as possible the influence

of the lateral walls. Moreover, he tried to provide a uniform temperature at the bot-

tom boundary of the system in order to work in the simplest and most uniform case

possible. Bénard observed a phenomenon in which instability due to the temperature

dependence of the surface tension coefficient played an important role. In fact he ob-

served the production of a cellular pattern in the instability. These cells are, in surface

tension driven convection, usually of polygonal shape and he found them to be mostly

hexagonal. Although in his experiments the driving mechanism is the surface tension

traction and Bénard attributed the convective motion to the buoyancy effects, a number

of important observations were made by Bénard. For instance he correctly attributed

the surface deflection to the surface tension tractions: ”...La tension superficielle à elle

seule, provoqu déjà une depression au centre des cellules et un excès de pression sur

les lignes de faite qui séparent les cuvettes concaves les unes des autres...” (16). Also

Lord Rayleigh (J. W. Strutt) disregarded the role of surface tension and Block, (17),

published a pioneering experimental study that identified the surface tension as the

cause of the Bénard cells. On the other hand, the first that proposed a theoretical

description of surface tension driven convection phenomena was Pearson, (62).

2.1.1 Oberbeck-Boussinesq approximation

Oberbeck and Boussinesq published, between the end of the nineteenth century and the

beginning of the twentieth century, the pioneering works (18; 59) where they introduced

an extremely useful hypothesis that allows a dramatic simplification in the approach to

the convection studies. Although recognizing that the dependence of the fluid physical

properties on the temperature is a key point in the study of fluid dynamics and heat

transfer, Oberbeck and Boussinesq assumed that all the physical properties of the fluid

are temperature independent, except for the density in the gravitational body force

term of the momentum balance equation. Here the density is considered as a linear

function of the temperature, basically a Taylor series expansion around the reference

value ρ̄0 truncated to the first order, namely

ρ̄ = ρ̄0 [1− β (T̄ − T̄0)], (2.1)
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where β is the isobaric thermal expansion coefficient defined as

β = −1
ρ̄

(
∂ρ̄

∂T̄

)
p

, (2.2)

and T̄0 is the reference temperature. The choice of this reference temperature is a

nontrivial task because of the sensitivity of the results to the value of T̄0. For clear

fluids a reference study has been done by Barletta and Zanchini (12).

Now one can rewrite Darcy’s law Eq.(1.9) with the approximation just introduced in

Eq.(2.1)

ū = −K
µ

[∇̄p̄+ ρ̄0 β ḡ (T̄ − T̄0)], (2.3)

where p̄ = p̄ − ρ̄0 g · x̄ is the piezometric head. The buoyancy term in Eq.(2.3) cou-

ples the momentum balance equation to the thermal energy equation (described in the

following subsection) giving rise to a feedback effect of the temperature field on the

velocity field. Given the definition of density in Eq.(2.1) the continuity equation sim-

plifies to Eq.(1.6).

From the assumption that the only term in which the density is variable is the buoy-

ancy term, the Oberbeck-Boussinesq approximation leads to a fluid that is mechanically

incompressible. On the other hand, the linear dependence of the density on the temper-

ature in the buoyancy term, returns a weakly thermally compressible fluid. Throughout

all this thesis the Oberbeck-Boussinesq approximation is assumed to be valid.

2.1.2 Thermal energy balance

In the analysis of convective flows, a thermal energy balance is necessary to define the

temperature field and the heat transport. In the Oberbeck-Boussinesq approximation

the energy equation has been written in different ways. Chandrasekhar and White,

(23; 95), propose, for the clear fluids, the formulation

ρ̄0 cv
DT̄

Dt̄
= k ∇̄2T̄ + 2µDij Dij , (2.4)

where 2µDij Dij is the heat generated by the viscous dissipation and the summation

over repeated indexes is assumed. The term Dij is the dimensional strain tensor defined
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by

Dij =
1
2

(
∂ūj
∂x̄i

+
∂ūi
∂x̄j

)
. (2.5)

On the other hand, Martynenko (46) and Turcotte (86), propose an enthalpy formula-

tion, again for the clear fluids, expressed by

ρ̄0 cp
DT̄

Dt̄
= k ∇̄2T̄ + 2µDij Dij + β T̄

Dp̄

DT̄
, (2.6)

where the last term refers to the contribution of the pressure work. Another formulation

of the thermal energy equation for clear fluids can be found in Landau-Lifshitz (14; 41)

and Kundu-Cohen (39), namely

ρ̄0 cp
DT̄

Dt̄
= k∇2T̄ + 2µDij Dij . (2.7)

Barletta, in (7), proposed a formulation for a clear fluid given by

ρ̄0 c
DT̄

Dt̄
= k∇2T̄ + 2µDij Dij . (2.8)

Barletta, in (7), also proposed a formulation for porous media. The latter is the thermal

energy balance equation used in this thesis. In this formulation, valid for a (isotropic)

solid matrix in thermal equilibrium with the saturating fluid, the local volume-averaged

energy balance can be written as

ρ̄0 c

(
σ
∂T̄

∂t̄
+ ū · ∇̄T̄

)
= k̃∇2T̄ + Φ, (2.9)

where Φ is the viscous dissipation contribution. A more precise discussion on this term

can be found in section 2.2. Barletta (7) proved that, in a duct filled with a porous

medium displaying an impressed basic flow, no pressure work term of the type β T̄ ∂p̄/∂t̄

must be introduced. The letter σ refers to the heat capacity ratio defined as

σ =
ϕ ρ̄0 c+ (1− ϕ) ρ̄s cs

ρ̄0 c
, (2.10)

and k̃ is the effective thermal conductivity of the system fluid plus porous medium and

it is defined as

k̃ = ϕk + (1− ϕ) ks, (2.11)
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while c is the heat capacity per unit mass defined as

c = cp −
p̄ β

ρ̄0
. (2.12)

The thermal diffusivity is then defined as α = k/(ρ̄ c) and the effective thermal diffusiv-

ity as α̃ = k̃/[ϕ ρ̄0 c+ (1−ϕ) ρ̄s cs]. In Eqs.(2.10) and (2.11) the properties ρ̄0, c and k

refer to the fluid phase, while ρ̄s, cs and ks refer to the solid matrix. From Barletta (7)

the thermodynamic coefficient c coincides with the specific heat at constant volume,

cv, for a perfect gas while, for a liquid, c is definitely well approximated by the specific

heat at constant pressure, cp.

Equation (2.9) is the well known thermal energy balance equation for saturated porous

media, except for the choice of the specific heat.

2.1.3 Rayleigh-Bénard problem

Lord Rayleigh (67; 68) studied the dynamic origins of convective cells and, also thanks

to the Bénard studies, proposed his theory on the buoyancy driven convection. He

approached the analysis as a stability problem, searching for unstable modes and their

growth rates. He used Euler’s equation, the thermal energy balance and he worked

within the Oberbeck-Boussinesq approximation. Moreover, he performed a linear sta-

bility analysis, neglecting all the non linear terms, a hypothesis that allowed him to

solve analytically the problem. He considered the same setup as in the Bénard experi-

ments except for the top and bottom boundary conditions: he assumed the boundaries

to be stress-free. This choice led him away from the original Bénard setup because he

disregarded the surface tension effects. His analysis thus led to the basic result that a

top-heavy fluid layer was stable under the joint influence of viscosity and heat diffusion

until the vertical temperature drop was large enough to overcome these two dissipative

and stabilising mechanisms. More precisely the kinematic viscosity ν inhibits the onset

of convection from the mechanical point of view damping the motion, whereas heat

diffusivity α̃ inhibits the onset of convection from the thermal point of view reducing

the strength of the temperature gradient. Lord Rayleigh found that the only param-

eter governing the stability was the temperature difference, made nondimensional by
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a combination of parameters that corresponds to what is now known as the Rayleigh

number

Ra =
β g∆T L3

αν
, (2.13)

where ∆T is the temperature difference between the two boundaries and L is the

natural length scale of the system. The Rayleigh number is a nondimensional number

that arises from the buoyancy term on the momentum balance equation the Oberbeck-

Boussinesq approximation. This nondimendional Rayleigh number describes the ratio

of energy released by the buoyancy forces compared to the energy dissipated by heat

conduction and viscous drag.

In the following an heuristic approach to the Rayleigh convection is presented. The aim

of this approach is to better understand, from the physical point of view, the nature

of the mechanisms that prevent the onset of convection. Let us consider an horizontal

fluid layer heated from below in the presence of gravity. According to Lord Rayleigh,

above a critical vertical temperature difference the system may become unstable. A

small perturbation of this potentially unstable condition can easily produce a bubble

of relatively hot fluid (relative to the surrounding fluid) that moves upward due to the

Archimedean buoyancy force. Thus let us consider a system composed by a bubble

of a given radius R̄ moving upward with a constant velocity V̄ in a constant vertical

temperature gradient ∂T̄ /∂z̄. To let the bubble move, the stabilising viscous drag

must be necessarily overcome by the buoyancy forces. The µ ∇̄2V̄ term of the Navier-

Stokes momentum equation can give an approximation of the viscous force acting on

the bubble: for a volume of order R3 it gives an order of magnitude of −µ R̄ V̄ . On the

other hand, the buoyancy forces arise from the instantaneous difference between the

fluid density and temperature in the bubble and their local environment. Now, due to

the heat diffusivity, the relaxation time required by the bubble to adapt itself to the

external temperature is of the order of τ ≈ R̄2/k. Recalling that the bubble is moving

vertically with velocity V̄ , at a given instant time t̄ the temperature inside the bubble

is approximately the external temperature of the layer where the bubble was at the

time t̄− τ . Thus at the time t̄ the temperature difference between the bubble and the

surrounding fluid is

∆T̄ = τ V̄
∂T̄

∂z̄
≈ R̄2V̄

k

∂T̄

∂z̄
. (2.14)
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This temperature difference yields an Archimedean buoyancy force acting on a bubble

of radius R̄

F̄b = ρ0 g β∆T̄ R̄3 ≈ ρ0 g β R̄
5V̄

k

∂T̄

∂z̄
. (2.15)

Thus the rest state reaches an unstable state when the buoyancy forces overcome the

viscous drag, namely

F̄b ≥ µ R̄ V̄ −→ g β R̄4

ν k

∂T̄

∂z̄
≥ O(1), (2.16)

in the latter inequality the Rayleigh number can be recognised. Eq.(2.16) leads to a

rough estimate for the Rayleigh number of the unstable state, Ra ≥ O(1).

2.1.4 Buoyancy effects in porous media: Horton, Rogers and Lap-

wood problem

Beside the studies on the onset of convection in clear fluids, the stability analysis of a

basic rest state has been also applied to fluid saturated porous media in order to assess

the threshold conditions for the onset of buoyant flows. In particular Horton Rogers

and Lapwood (HRL) (32; 42) contribute with two cornerstone works on the convection

in porous media. They investigated the onset of convection in porous layers heated

from below, the well known Darcy-Bénard problem. The latter problem consists in a

uniform-thickness infinitely wide horizontal porous layer with uniform temperature and

impermeable lower and upper boundaries. This configuration is basically a Rayleigh-

Bénard problem in a layer filled by a porous medium. The presence of a porous medium

naturally modifies the definition of the Rayleigh number. To take into account this

contribution in the further analyses, the so called Darcy-Rayleigh number defined as

Ra =
β g∆T K L

αν
, (2.17)

will be used. Horton, Rogers and Lapwood found the critical Rayleigh number to be

4π2 for the onset of convection. This configuration has been studied in great detail

both with the weakly non linear studies of Palm et al. (61) and with the detailed

numerical stability analysis of Straus (81). The main reason of the subsequent studies

on this subject is the possibility of many extensions to the governing Darcy-Boussinesq

equations. For instance, boundary effects, inertial effects, local thermal non equilibrium
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effects have been investigated. Nield (49) was the first to consider the variety of possi-

ble boundary conditions for the top and bottom of an infinitely wide horizontal porous

layer of uniform thickness. He determined the criteria for the onset of convection for

all different combinations of open, closed, conducting and insulating boundaries, see

also Nield and Bejan (48), but no such investigation exists of the possible combinations

of lateral boundary conditions for finite porous boxes. A number of papers have been

written which take into account heat conduction in the lateral walls of a porous box.

Nilsen and Storesletten (58) found an exact analytical solution for a two-dimensional

box with conducting lateral walls.

An important problem closely related to the HRL problem is the Prats problem (65).

This problem is the linear stability analysis, according to Darcy’s model, of the HRL

configuration in the presence of a uniform horizontal flow. By using a comoving refer-

ence frame, Prats proved that this uniform basic flow does not alter the condition for

the onset of instability. In Prats’ treatment, the critical value of the Rayleigh number

is the same as in the DB problem, 4π2. Moreover the full non linear equations, when

written in the comoving frame, reduce to those which apply when there is no basic flow.

Therefore the full nonlinear behaviour of the DB problem is recovered in an infinitely

wide layer. Another consequence is that there is no preferred direction for the roll

orientation at the onset of instability, a feature not shared with the Bénard-Poiseuille

convection.

2.2 The effect of viscous dissipation

In Eq.(2.9) the term Φ is defined as the viscous dissipation contribution. In many the-

oretical studies on convection the contributions of viscous dissipation to the thermal

energy equation have been neglected. Viscous dissipation is an ubiquitous phenomenon

and it is encountered in both the viscous flow of clear fluids and the fluid flow within

porous media. However, in recent years it has been noted that in some circumstances

these contributions are important for buoyant flows in porous media; see, for example,

Nield (53; 55) and Nield and Barletta (56; 57). In fact, classical studies of the viscous

heating effect in the instability of shear flows in clear fluids exist (35; 82). These studies

show that the viscous heating leads to a destabilisation of the flow. In this respect, the

modelling of the buoyant flow with viscous dissipation plays an important role.
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When compared with other thermal influences on the fluid motion (i.e., by means of

buoyancy forces induced by heated or cooled walls, and by localized heat sources or

sinks) the effect of the heat released by viscous dissipation covers a wide range of mag-

nitudes from being negligible to being significant. Gebhart (31) discussed this range

and stated that ”...a significant viscous dissipation may occur in natural convection in

various devices which are subject to large decelerations or which operate at high rota-

tional speeds. In addition, important viscous dissipation effects may also be present in

stronger gravitational fields and in processes where the scale of the process is very large,

e.g., on larger planets, in large masses of gas in space, and in geological processes in

fluids internal to various bodies... ”.

In contrast to such situations, many free convection processes are not sufficiently vigor-

ous to result in a significant quantitative effect, although viscous dissipation sometimes

acts to alter the qualitative nature of the flow. Although viscous dissipation is generally

regarded as a weak effect, a property it shares with relativistic and quantum mechanical

effects in everyday life, it too has played a seminal role in the history of physics. It was

precisely this weak physical effect that allowed Joule (37) to determine the mechani-

cal equivalent of heat using his paddlewheel experiments, and thereby to place one of

the milestones toward the formulation of the first principle of thermodynamics. From a

mathematical point of view the effect of viscous dissipation arises as an additional term

in the energy equation. It expresses the rate of the conversion of mechanical energy

into thermal energy by internal friction in the presence of a fluid flow. The dissipation

function Φ depends on the momentum balance equation adopted. For incompressible

clear fluids Φ is uniquely defined by the Navier-Stokes equations, namely

ΦNS = 2µDij Dij , (2.18)

For fluid saturated porous media the volumetric heat generation Φ depends on the

model taken into account. Nield (52) stated that the form of Φ can easily be obtained

by using the relationship

Φ = F̄d · ū, (2.19)

where F̄d is the drag force expression that depends on the model. The drag force

expression in the Darcy model for an isotropic porous medium is defined as in Eq.(1.7),
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namely

F̄d =
µ

K
ū, (2.20)

so that the viscous dissipation function can be written as

ΦDa = F̄d · ū =
µ

K
ū · ū. (2.21)

For the Forchheimer extension to the Darcy model, the drag force is defined as in

Eq.(1.11), namely

F̄d =
µ

K
ū

(
1 +

Cf
√
K

µ
|ū|

)
, (2.22)

so that the viscous dissipation function is

ΦFo = F̄d · ū =
µ

K
ū · ū

(
1 +

Cf
√
K

µ
|ū|

)
, (2.23)

Equation (2.23) shows that the additional dissipation contribution provided by the

Forchheimer drag force is independent of the viscosity. The paradox of the lack of

dependence on viscosity of the Forchheimer dissipation term was resolved by Nield

(51). The explanation is based on the recognition that the quadratic term models

essentially a form drag effect. Nield stated that the pore scale convective inertial

effects contributing to the quadratic drag term lead to a substantial modification of the

velocity field, and in particular, to an enlargement of the macroscopic region in which

the pore scale velocity gradients are large. This leads to an increase in the total viscous

dissipation. Hence, due to the fundamental equality between the viscous dissipation

and the power of the drag force, this feedback process shows the (implicit) dependence

of the additional Forchheimer dissipation term on the viscosity of the fluid.

In the case of Brinkman’s model the drag force expression is defined by Eq.(1.12),

namely

F̄d =
µ

K
ū− µ̃∇2ū, (2.24)

thus, according to the Nield rule in Eq.(2.19), the viscous dissipation function is

ΦBr = F̄d · ū =
µ

K
ū · ū− µ̃ ū · ∇2ū. (2.25)
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The Nield relationship Eq.(2.19) is a subject of debate about the viscous dissipation

and Brinkman’s model. In fact, for K → ∞, one expects to find ΦBr → ΦNS but, in

the limit of clear fluids, according to Einstein’s relationship Eq.(1.13), one has

ΦBr → −µ ū · ∇2ū. (2.26)

The differences between ΦBr and ΦNS in the clear fluid limit are evident: there is a

different order of derivatives, first order for clear fluids and second order for Brinkman’s

model. Moreover ΦNS ≥ 0 while ΦBr may be negative.

Recently, Al-Hadharami et al. (1) proposed a different expression of ΦBr, namely

ΦBr =
µ

K
ū · ū + 2 µ̃Dij Dij . (2.27)

The expression in Eq.(2.27) cannot be negative and satisfies the two limits for K:

K → 0, the Darcy’s law limit, and K → ∞, the clear fluids limit, are both correctly

modelled. It has been noted, Nield (54), that the model proposed by Al-Hadharami

et al. is built as a sum of two dissipation terms that are valid in two different ranges

of permeability: one is valid for small values of permeability, the Darcy term, and the

other is valid for large values of permeability, the Navier-Stokes term. Thus the debate

on this topic is still open, (54).

Eventually one can also estimate the magnitude of the viscous dissipation term with

reference to the other contributions in the thermal energy equation. The viscous dis-

sipation term is of the order of magnitude µ ū2/K. On the other hand, the thermal

conduction term that appears in the same equation is of the order of magnitude of

k∆T/L2. Let us define the ratio between the two terms as

N =
µ ū2 L2

K k∆T
=
Br

Da
, (2.28)

where Da is the Darcy number and Br is the Brinkman number. They are given by

Da =
K

L2
Br =

µ ū2

k∆T
. (2.29)

The Darcy number measures the width of the pores with respect to the overall width

of the system. On the other hand, the Brinkman number measures the ratio, hence the

relative magnitude, between the viscous heat input in the fluid and the heat transported

by conduction. The viscous dissipation term turns out to be not negligible in the case
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N � 1: when there is a high basic flow velocity, when the typical length scale of the

system is significantly larger than the square root of the permeability, when the thermal

conductivity is small and the viscosity of the fluid is large.

2.3 Local thermal non-equilibrium model

In most cases studied in the literature it has been assumed that the porous matrix and

the fluid flowing through it are in local thermal equilibrium, LTE. At the microscopic

level, the temperature and the rate of heat flux at the interface between solid and fluid

phases must be identical, but the average value over a REV should not yield locally

equal temperatures for the two phases. In this case the two phases are in local thermal

non-equilibrium (LTNE). Rees and Pop (76) showed that LTNE is not necessarily an

unsteady phenomenon, but it can also arise in steady flows. A recent review by Rees

and Pop (76) summarises much of the present knowledge, including the various models

used for LTNE and their application to free, mixed and forced convective flows and

to stability analyses. Following Nield and Bejan (48) and Barletta (7) the simplest

way to model the LTNE in an isotropic porous medium is to use two thermal balance

equations, one for the fluid phase and one for the solid matrix, namely

ρ0 c

(
ϕ
∂T̄f
∂t̄

+ ū · ∇̄T̄f
)

= ϕk ∇̄2T̄f + µΦ + h (T̄s − T̄f ), (2.30)

(1− ϕ) (ρ cv)s
∂T̄s
∂t̄

= (1− ϕ) ks ∇̄2T̄s + h (T̄f − T̄s), (2.31)

where T̄f refers to the fluid temperature, T̄s refers to the solid temperature and h is

the interphase heat transfer coefficient. Most papers which deals with convective flows

in porous media assume that LTE holds. However, important cases where LTE cannot

be invoked may exist. First introduced by Anzelius (4) and Schumann (79), Eqs.(2.30)

and (2.31) use simple linear source/sink terms to model the local (i.e. microscopic) heat

transfer between the phases at the pore level.

Nield (50), using Eqs.(2.30) and (2.31), considered the steady conduction case in a

porous medium subject to a prescribed temperature on the boundary of the domain.

Under the hypothesis of uniform phase conductivities, he showed that T̄f = T̄s in this

case by deriving a Helmoltz equation for T̄f − T̄s which is subject to T̄f − T̄s = 0 on the

boundary. Thus LTE always occurs in steady conduction problems where the boundary
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temperature is imposed. Then one may infer that any departure from this special state

will give rise to LTNE in general, although cases where LTE holds may always be

derived as special cases. The study of Minkowycz et al. (47) confirms that, in various

situations, the commonly used assumption of LTE is satisfactory. However, studies like

Vafai and Sozen (87; 88), Amiri and Vafai (2; 3), and Lee and Vafai (43), show that the

assumption of LTE fails in a substantial number of applications. Minkowycz et al. (47)

establish one such area of failure corresponding to the presence of a rapidly changing

surface heat flux.

2.4 Linear stability

A phenomenon that may satisfy all conservation laws of nature exactly, may still be

unobservable. For the phenomenon, such as a smooth laminar flow, to occur in Nature,

it has to satisfy one more condition, namely, it must be stable to small disturbances.

In other words, infinitesimal disturbances, which are invariably present in any real sys-

tem, must not amplify spontaneously. In fluid flows, smooth laminar flows are stable to

small disturbances only when certain conditions are satisfied. For example, in flows of

homogeneous viscous fluids in a channel, the Reynolds number must be less than some

critical value and in a channel heated from below, the Rayleigh number must be lower

than a critical value. When these conditions are not satisfied, infinitesimal disturbances

grow spontaneously. Sometimes the disturbances can grow to a finite amplitude and

reach equilibrium, resulting in a new steady state. The new state may then become

unstable to other types of disturbances, and may grow to another steady state, and so

on. Finally, the flow becomes a superposition of various large disturbances of random

phases, and reaches a chaotic condition that is commonly described as turbulent. One

shall introduce perturbations on a particular flow, and determine whether the equa-

tions of motion imply that the perturbations should grow or decay with time. In this

analysis the problem is linearised by neglecting terms quadratic in the perturbation

variables and their derivatives. This linear method of analysis, therefore, only exam-

ines the initial behaviour of the disturbances. The loss of stability does not in itself

constitute a transition to turbulence, and the linear theory can at best describe only

the very beginning of the process of transition to turbulence. Moreover, a real flow

may be stable to infinitesimal disturbances (linearly stable), but still can be unstable
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to sufficiently large disturbances (nonlinearly unstable). Nevertheless, the successes of

the linear stability theory have been considerable. For instance, there is almost an ex-

act agreement between experiments and theoretical prediction of the onset of thermal

convection in a layer of fluid, and of the onset of the Tollmien-Schlichting waves in a

viscous boundary layer. Taylor’s (83) experimental verification of his own theoretical

prediction of the onset of secondary flow in a rotating Couette flow is so striking that

it has led people to suggest that Taylor’s work is the first rigorous confirmation of the

Navier-Stokes equations, on which the calculations are based.

For what concerns the definition of stable systems, the Lyapunov’s stability concept

is taken into account. It is ascribed to Lyapunov though the original mathematical

development was made by Lagrange and Dirichlet. Lagrange stated a theorem proved

by Dirichlet that assures that an equilibrium position of a conservative system is stable

if the potential energy has a minimum there. Lyapunov proved under restrictions that

the same position is unstable if the potential energy has no minimum there, or if it is

a maximum. Now if the system has an initial deviation from its equilibrium position,

it starts moving. The equilibrium position is called stable if the system does not go

far from this position for arbitrary initial deviations. If due to this initial deviation

the system, in some macroscopic relaxation time, gets back to its original state this

configuration is called asymptotically stable. If this asymptotic stability holds only for a

small neighborhood around the initial equilibrium state and not for every kind of initial

deviation amplitude it is called local asymptotic stability. The equilibrium position is

called unstable if the system, for arbitrary initial deviations, moves from his original

position with no chances to come back to the equilibrium position. Figure 2.1 shows

clearly the possible stability states where one can find a basic mechanical system. The

last case of Figure 2.1 refers to those systems that are stable for linear disturbances

but in case of nonlinear effects the system could overtake the well walls.

In the following the attention will be focused on the stability analysis of fluid flows in

saturated porous media. A very common and useful method, widely employed also in

this thesis, for the investigation of the onset of convective motion is the linear stability

analysis by means of the normal modes. This analysis allows one to describe the fate of

a small perturbation of a given thermodynamic state. It attempts, moreover, to investi-

gate the conditions under which a system spontaneously undergoes transitions between
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Figure 2.1: Stable and unstable systems from the mechanical point of view.

different states that may not be stationary. Is is assumed that the field variables un-

dergo infinitesimal perturbations that consists in sinusoidal disturbances applied to a

nondimensional basic state (also called background or initial state), which is the flow

whose stability is being investigated, namely

u = uB + εU p = pB + ε P Tf = TfB + ε θ Ts = TsB + ε φ, (2.32)

where ε is an asymptotically small perturbation parameter. The hypothesis that the

disturbances are infinitesimal allows one to investigate the linear stability of the system.

It is called linear stability analysis because all the terms that are of O(ε2) or higher can

be neglected. In the following only two dimensional stability problems are treated. This

allows one to choose between a pressure-temperature and a streamfunction-temperature

formulation of the eigenvalue problem. The streamfunction ψ is defined such that,

U =
∂ψ

∂y
, V = −∂ψ

∂x
. (2.33)
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Figure 2.2: Stable and unstable regions in the plane (a,Ra).

The form of the disturbances superposed to the basic flow are chosen to be plane waves.

Considering both the possible formulations and considering an infinitely wide horizontal

porous layer with y as the vertical coordinate, the disturbances can be written in the

form

ψ(x, t) = <
{

Ψ(y) eλ t ei (ax x+az z)
}
, P (x, t) = <

{
P(y) eλ t ei (ax x+az z)

}
, (2.34)

θ(x, t) = <
{

Θ(y) eλ t ei (ax x+az z)
}
,

where < defines the real part of a given function and Ψ(y), P(y), Θ(y), Φ(y) are complex

amplitudes; it is understood that the real part of the right-hand side is taken in order

to obtain the physical quantities. The complex notation is motivated by an easier

formulation. The flow field is assumed to be unbounded in the x and z directions,

hence the wavenumber components ax and az can only be real so that the dependent

variables remain bounded as x, z →∞; λ = λ1 + i λ2 where λ1 is a real number and λ2

is a complex number. If λ1 is positive for any value of the wavenumber, the system is

unstable to disturbances of this wavenumber vector (ax, az), while if λ1 < 0 the system
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is stable. One can say that

λ1 < 0: stable,

λ1 > 0: unstable,

λ1 = 0: neutrally or marginally stable.

This scheme is shown in Figure 2.2 where a typical example of thermoconvective in-

stability governed by the Rayleigh number Ra is considered, and the plane (a,Ra) is

divided in two regions both identified by different values of λ1 and separated by the

neutral or marginal stability curve.

The normal modes method, as it is clear from Eq.(2.34), involves decomposition of an

arbitrary disturbance into a complete set of Fourier components. In this method the

stability of each of the modes is examined separately, as the linearity of the problem

implies that the various modes do not interact. The method leads to an eigenvalue

problem. When λ = λ1 + i λ2 is set to zero, the marginal stability condition defines

a region where a steady convective regime is to be expected. The minimum value of

Ra on the neutral or marginal stability curve defines the critical point. Below the

neutral stability curve all infinitesimal perturbations are damped. Here the principle

of exchange of stabilities is assumed to hold. This principle establishes that all non-

decaying disturbances are non oscillatory in time, Davis (25). In particular, it implies

that when λ1 ≥ 0 then λ2 = 0. Moreover, one can say that, if the principle of ex-

change of stabilities holds, travelling disturbances are forbidden. The term principle

of exchange of stabilities was introduced by Jeffreys (34) in analogy with the stability

theory of steady states of holonomic conservative systems. If λ2 6= 0 and λ1 ≥ 0 then

the instability sets in as travelling waves of steady or growing amplitude. This kind of

solutions is called over-stable.

2.4.1 Viscous dissipation and stability

Viscous dissipation can play an important role in the stability analysis of a basic

throughflow in porous media. In this kind of problems, as for instance the Prats prob-

lem, a sufficiently intense temperature gradient is needed for the onset of convective

instability. In the absence of a thermal forcing induced by the boundary conditions,

the viscous dissipation effect may be the only possible cause of instability. For instance,
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Figure 2.3: Sketch of transverse rolls, χ = 0.

in a horizontal porous layer with a top isothermal boundary and a bottom adiabatic

boundary, a possibly unstable stratification may be induced by the frictional heating

associated with a basic horizontal throughflow. In the classical Darcy-Bénard problem

the basic temperature gradient is forced by the boundary conditions and the viscous

dissipation provides a non linear contribution or, more precisely, a second order term in

the perturbations. The latter term, in a linear stability analysis, is neglected. On the

other hand, if a basic throughflow is imposed, the viscous dissipation provides also a

linear term in the perturbations and, thus, it may influence the onset conditions of the

instability. From a Darcy-Bénard problem we are thus moving to a Prats-like problem.

On studying the stability of a system with a given throughflow it is interesting to inves-

tigate the interaction between the orientation of the basic flow and the orientation of

the disturbances. In the pressure-temperature formulation of the eigenvalue problem,

for instance, one can assume disturbances of the form

P (x, t) = <
{

P(y) eλ teia(x cosχ+z sinχ)
}
, (2.35)

where χ is the angle between the basic flow direction and the perturbations direction.

Now the limits χ = 0, transverse rolls, and χ = π/2, longitudinal rolls, correspond to

the two cases shown in Figures 2.3 and 2.4

Each orientation of the disturbances is characterised by different values of the critical

parameters for the onset of instability.
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Figure 2.4: Sketch of longitudinal rolls, χ = π/2.

2.5 Thermal boundary conditions

After the introduction, in the previous chapter, of the hydrodynamic boundary condi-

tions and after the introduction of the thermal energy balance equations, the thermal

boundary conditions are here discussed.

To simplify the discussion let us consider a horizontal two dimensional plane (x̄, ȳ)

layer with boundary walls at ȳ = 0 and ȳ = L. The boundaries ȳ = 0 and ȳ = L

could be adiabatic, with a prescribed nonvanishing heat flux, isothermal or imperfectly

isothermal. If, for instance, the bottom wall is isothermal, the boundary condition is

of the Dirichlet type and a prescribed temperature can be imposed, namely

ȳ = 0 7−→ T̄ = T̄w(x̄). (2.36)

If, on the other hand, there is an impressed heat flux on the bottom wall, a Neumann

condition has to be used. Moreover, the prescribed heat flux condition a particular

limit that can be expressed as

ȳ = 0 7−→ ∂T̄

∂ȳ
= N(x̄). (2.37)

When the function N(x̄)→ 0 one obtains the adiabatic condition, or zero heat flux con-

dition. The imperfectly isothermal condition is a third type condition, Robin condition,

and it is defined by

ȳ = 0 7−→ −k ∂T̄
∂ȳ

= h [T̄ − T̄w(x̄)], (2.38)
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where h is the external heat transfer coefficient or the conductance of the boundary wall.

Equation (2.38) implies, in its nondimensional form, the introduction of a parameter

that describes the behaviour of the wall in the heat transfer to the external environment.

In nondimensional coordinates this parameter is called Biot number and it is defined

as

Bi =
hL

k̃
. (2.39)

In this thesis all these types of thermal boundary conditions are used.
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3

Viscous dissipation instabilities

and Darcy’s law

3.1 Introduction

The topic analysed in this chapter is the effect of viscous dissipation on a parallel Darcy

flow. The system is composed by an horizontal porous layer with an adiabatic lower

boundary and an isothermal upper boundary.

Many authors have developed variants of the HRL stability problem either by em-

ploying porous models that are more complicated than Darcy’s law, or by altering

the external conditions, such as imperfectly conducting boundaries or the presence of

internal heating, rotation or vertical throughflow. With regard to what we shall call

the Darcy-Bénard-Prats (DBP) problem, there exist some recent papers which have

extended the work of Prats (65). Rees (69) considered the effect of quadratic form

drag in the momentum equation. He showed that the critical Darcy-Rayleigh number

depends on both the form drag coefficient and on the basic flow velocity. Moreover, the

critical Darcy-Rayleigh number is also dependent on the roll orientation, with longitu-

dinal rolls forming the preferred pattern. The additional effects of lateral confinement

were considered by Delache, Ouarzazi and Néel (26); these authors found discontinuous

transitions between preferred roll states. Postelnicu (64) extended the work of Rees

(69) by combining it with the work of Banu and Rees (6), who employed the LTNE

model for the local energy balance. A comprehensive set of results is presented by

Postelnicu (64) showing the detailed effect on the critical Darcy-Rayleigh number and

33
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Figure 3.1: Sketch of the horizontal porous channel

wavenumber of the inertia parameter, the flow rate and the three parameters that are

associated with local thermal non-equilibrium.

The aim of this chapter is to consider a variant of the DBP problem. In the above-

cited works the thermoconvective instability was driven by an unstable temperature

gradient that is imposed externally. In the present paper we shall assume that there

is no imposed temperature gradient across the layer, but rather that heat is generated

internally by the action of viscous dissipation. In particular the upper surface will

be taken to be isothermal (infinite Biot number), while the lower surface is thermally

insulated. The former boundary condition is relaxed later in the paper by using a finite-

Biot-number condition to represent external heat transfer to the ambient temperature.

A linear stability analysis of oblique rolls which are orientated arbitrarily with re-

spect to the uniform basic flow direction is performed. The disturbance equations are

solved both analytically by a series method and numerically by a fourth order Runge

Kutta method. We present information on how the critical Darcy-Rayleigh number

and wavenumber vary with the Gebhart and Péclet numbers. Asymptotic expressions

for the critical quantities versus the Péclet number are obtained.

The contents of this chapter are based on the paper (10) by Barletta, Celli and Rees.

3.2 Mathematical model

We shall consider laminar buoyant flow in a horizontal parallel channel with height L.

A sketch of the channel is shown in Figure 3.1.
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Both the Darcy model and the Oberbeck-Boussinesq approximation are invoked. It

is assumed that local thermal equilibrium holds. Heat generation due to the viscous

dissipation contribution is taken into account. The components of the Darcy velocity

along the x̄-, ȳ- and z̄-directions are denoted by ū, v̄ and w̄, respectively. The lower

boundary wall ȳ = 0 is assumed to be adiabatic, while the upper boundary wall ȳ = L is

supposed to be isothermal with temperature T̄w. Both boundary walls are impermeable.

Later in the paper we relax the assumption of having a perfectly conducting upper

boundary.

In the Oberbeck-Boussinesq approximation the mass balance equation reduces to Eq.(1.6),

namely

∇̄· ū = 0. (3.1)

The momentum balance equations are composed by the Darcy equations Eq.(1.9) with

the buoyancy term simplified by the Oberbeck-Boussinesq approximation

ū =
K

µ

[
−∇̄p̄+ ρ0 ḡ β (T̄ − Tw)

]
, (3.2)

where T̄0 is here considered as equal to the boundary temperature T̄w. Equation (3.2)

shows a dependence on ū, p̄ and T̄ . In the following we will apply a procedure that

allows one to remove the explicit pressure contribution from our set of equations. In

fact, if one applies the curl operator to both sides of Eq.(3.2), the pressure field disap-

pears from the balance equation.

The thermal balance equation here used is Eq.(2.9), with the Darcy viscous dissipation

term defined in Eq.(2.21), namely

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = α̃ ∇̄2T̄ +

ν

K c
ū · ū, (3.3)

where σ is defined by Eq.(2.10). The governing mass, momentum and energy balance

equations can thus be expressed as

∂ū

∂x̄
+
∂v̄

∂ȳ
+
∂w̄

∂z̄
= 0, (3.4)

∂v̄

∂x̄
− ∂ū

∂ȳ
=
g β K

ν

∂T̄

∂x̄
, (3.5)
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∂v̄

∂z̄
− ∂w̄

∂ȳ
=
g β K

ν

∂T̄

∂z̄
, (3.6)

∂ū

∂z̄
− ∂w̄

∂x̄
= 0, (3.7)

σ
∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
+ w̄

∂T̄

∂z̄
= α̃

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2
+
∂2T̄

∂z̄2

)
+

ν

K c

(
ū2 + v̄2 + w̄2

)
. (3.8)

The velocity and temperature boundary conditions are expressed as

ȳ = 0 : v̄ = 0 =
∂T̄

∂ȳ
, ȳ = L : v̄ = 0, T̄ = T̄w. (3.9)

In this paper a horizontal pressure gradient is applied that produces a uniform flow

of magnitude ūB having an inclination angle χ with respect to the x-direction; this is

defined more precisely below.

3.2.1 Nondimensional formulation

Reducing the equations to a nondimensional form is a well established method that

allows one to simplify the formulation of the set of equations describing the system

studied. In particular, this procedure allows one to rewrite the equations in terms

of nondimensional group numbers. To nondimensionalise an equation means rescaling

each variable by its characteristic unit of measure. Here the characteristic length is

chosen to be the height of the channel L, the characteristic time is defined by the ratio

σ L2/α̃, the characteristic velocity is defined by α̃/L and the characteristic temperature

is taken to be ν α̃/K c. Let us introduce nondimensional variables such that

(x̄, ȳ, z̄) = (x, y, z)L, t̄ = t
σ L2

α̃
,

(ū, v̄, w̄) = (u, v, w)
α̃

L
, T̄ = T̄w + T

ν α̃

K c
. (3.10)

Then, Eqs. (3.4)–(3.8) can be rewritten as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.11)

∂v

∂x
− ∂u

∂y
= Ge

∂T

∂x
, (3.12)
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∂v

∂z
− ∂w

∂y
= Ge

∂T

∂z
, (3.13)

∂u

∂z
− ∂w

∂x
= 0, (3.14)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
+ u2 + v2 + w2, (3.15)

where the Gebhart number is given by,

Ge =
g β L

c
. (3.16)

The Gebhart number introduced in Eq.(2.2) and it is a nondimensional parameter asso-

ciated with the viscous dissipation. It measures the extent to which compression work

and viscous dissipation influence the energy balance in the fluid flow. The boundary

conditions (3.9) may be expressed in a nondimensional form as

y = 0 : v =
∂T

∂y
= 0, y = 1 : v = T = 0. (3.17)

3.2.2 Fully developed basic flow

A horizontal steady parallel flow in the direction of the unit vector s = (cosχ, 0, sinχ)

lying in the x − z–plane is here assumed. Moreover, a purely vertical heat flux exists

due to the effect of the viscous dissipation.

The basic state, which we will analyse for stability, is thus given by,

uB = Pe cosχ, vB = 0, wB = Pe sinχ, TB =
Pe2

2
(1− y2), (3.18)

where

Pe =
ūB · sL

α̃
, (3.19)

defines the Péclet number based on the uniform basic flow velocity ūB · s. This nondi-

mensional number measures the ratio between the strength of the basic fluid flow and

the strength of molecular diffusion. Obviously, it is not restrictive to assume that

ūB · s > 0, i.e. Pe > 0. We choose to incline the basic flow and not to incline the

disturbances in order to simplify the formulation of the eigenvalue problem algebra.
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3.2.3 Linear disturbances

A stability analysis is performed in the following sections and the approach used here to

investigate stability is the normal modes method described in Chapter 2. The normal

modes method requires the introduction of the disturbances. These disturbances are

meant to perturb the basic state defined by Eq. (3.18) and are taken to be of the form

of Eq. (2.32), namely

u = uB + εU, v = vB + ε V, w = wB + εW, T = TB + ε θ. (3.20)

where ε is an asymptotically small perturbation parameter. The stability analysis that

follows has been chosen to be linear, this implies that all those terms that are, after the

substitution of Eq. (3.20) in Eqs. (3.11)-(3.15), of order greater than ε are neglected.

Thus, on substituting Eq. (3.20) in Eqs. (3.11)-(3.15) and neglecting nonlinear terms

in the perturbations, i.e. terms of O(ε2), we obtain the linearized stability equations,

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0, (3.21)

∂V

∂x
− ∂U

∂y
= Ge

∂θ

∂x
, (3.22)

∂V

∂z
− ∂W

∂y
= Ge

∂θ

∂z
, (3.23)

∂U

∂z
− ∂W

∂x
= 0, (3.24)

∂θ

∂t
+ Pe cosχ

∂θ

∂x
+ Pe sinχ

∂θ

∂z
− Pe2V y

=
∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
+ 2Pe cosχU + 2Pe sinχW, (3.25)

where use has been made of Eq. (3.18). The linearity of Eqs. (3.21)–(3.25) implies

that, due to the superposition property, one may treat rolls of different orientations

separately with regard to instability. An advantage is that each of these cases can be

dealt with using a purely 2D analysis.
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3.3 Instability with respect to oblique rolls

We will introduce disturbances in the form of periodic roll solutions. Given that χ is an

arbitrary direction it is not restrictive to consider rolls with axis along the z-direction

by setting,

U = U(x, y, t), V = V (x, y, t), W = 0, θ = θ(x, y, t). (3.26)

Substituting Eqs. (3.26) in Eqs. (3.21)–(3.25) the system of equations thus becomes

∂U

∂x
+
∂V

∂y
= 0, (3.27)

∂V

∂x
− ∂U

∂y
= Ge

∂θ

∂x
, (3.28)

∂θ

∂t
+ Pe cosχ

∂θ

∂x
− Pe2V y =

∂2θ

∂x2
+
∂2θ

∂y2
+ 2Pe cosχU. (3.29)

One can introduce a streamfunction, ψ, such that

U = Pe−2 ∂ψ

∂y
, V = −Pe−2 ∂ψ

∂x
. (3.30)

Applying Eqs. (3.30) to the set of Eqs. (3.27)-(3.29) then one can note that Eq. (3.24)

is satisfied identically. We choose to divide both components by Pe2 to rearrange the

nondimensional numbers in a convenient form. Eqs. (3.27)-(3.29) may now be rewritten

in the form
∂2ψ

∂x2
+
∂2ψ

∂y2
+GePe2 ∂θ

∂x
= 0, (3.31)

∂θ

∂t
+ Pe cosχ

∂θ

∂x
+ y

∂ψ

∂x
=
∂2θ

∂x2
+
∂2θ

∂y2
+ 2Pe−1 cosχ

∂ψ

∂y
. (3.32)

The boundary conditions fulfilled by ψ and θ are easily inferred from Eqs. (3.17), (3.18),

(3.20) and (3.30), namely

y = 0 : ψ =
∂θ

∂y
= 0, y = 1 : ψ = θ = 0. (3.33)

Solutions of Eqs. (3.31)-(3.33) are sought in the form of plane waves. These waves can

be expressed as in Eq. (2.34), namely

ψ(x, y, t) = <
{

Ψ(y) eλ teiax
}
, θ(x, y, t) = <

{
Θ(y) eλ teiax

}
, (3.34)
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where the positive real constant a is the prescribed wavenumber, while λ = λ1 + iλ2 is

a complex exponential growth rate to be determined. We shall set λ1 = 0 in order to

investigate neutral stability. Moreover, for numerical convenience we shall also set,

γ = λ2 + aPe cosχ. (3.35)

By substituting Eq. (3.34) in Eqs. (3.31) and (3.32), we obtain

Ψ′′ − a2 Ψ + iaRΘ = 0, (3.36)

Θ′′ − (iγ + a2) Θ + 2P−1Ψ′ − ia yΨ = 0, (3.37)

where the primes denote differentiation with respect to y, and where we have introduced

the nondimensional parameters,

R = GePe2, P = Pe/ cosχ. (3.38)

In Eq. (3.38) R plays the role of a Darcy-Rayleigh number as it multiplies the buoyancy

term, while P is a modified Péclet number. Elimination of Θ between Eqs. (3.36) and

(3.37) yields a fourth order ordinary differential equation for Ψ(y), namely

Ψ′′′′ − (2a2 + iγ)Ψ′′ − 2iaRP−1Ψ′ + a2(a2 −Ry + iγ)Ψ = 0. (3.39)

The boundary conditions fulfilled by Ψ(y) are easily deduced from Eqs. (3.33)-(3.34),

y = 0 : Ψ = Ψ′′′ − a2 Ψ′ = 0, y = 1 : Ψ = Ψ′′ = 0. (3.40)

Equations (3.34) and (3.35) imply that the perturbation wave travels in the x-direction

with a nondimensional phase velocity

cwave = Pe cosχ− γ

a
. (3.41)

If cwave > 0, the wave travels in the same direction as the basic flow. On the other

hand, if cwave < 0, the wave travels in the direction opposite to the basic flow.
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3.3.1 The eigenvalue problem

The homogeneity of Eqs. (3.39) and (3.40) implies that Ψ(y) is defined only up to an

arbitrary overall scale factor, which means that we may set Ψ′(0) = 1 as a normalisation

condition.

These equations form an ordinary differential eigenvalue problem for R and γ for any

chosen wavenumber, a, and modified Péclet number, P . Given the definition of R in

Eq. (3.38), this means that the critical Gebhart number may be found in terms of the

Péclet number. It is more satisfactory from a physical point of view to obtain a critical

Péclet number as a function of the Gebhart number, but although one may plot the

variation of the critical Gebhart number with the Péclet number, it turns out that R

remains of O(1) through the physically acceptable range of values of Ge.

3.3.2 Longitudinal rolls

Let us first analyse the longitudinal rolls. A basic flow inclined of χ = π/2 is considered.

With χ = π/2 the parameter P tends to∞. Applying the latter condition to Eq.(3.39)

one obtains

Ψ′′′′ − (2a2 + iγ)Ψ′′ + a2(a2 −Ry + iγ)Ψ = 0, (3.42)

Equation (3.42), together with its boundary conditions Eqs.(3.40), can be solved for a

real valued function Ψ(y) by setting γ = 0. This means that the eigenvalue problem is

self-adjoint in this case.

3.3.3 Transverse rolls

Transverse rolls refer to those basic flows parallel to the x–direction, i.e. χ = 0. With

χ = 0 the parameter P reduces to Pe. Applying the latter condition to Eq.(3.39) one

obtains

Ψ′′′′ − (2a2 + iγ)Ψ′′ − 2iaRPe−1Ψ′ + a2(a2 −Ry + iγ)Ψ = 0. (3.43)

The flow under exam has a source of possible instability that is connected to the

combined effects of viscous heating and buoyancy. The viscous heating inside the fluid is

both caused by the basic flow and by the small perturbation of this flow. In other words,
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the nonuniform temperature distribution in the channel responsible of the buoyancy

force is partly generated by the basic flow dissipation, u2
B, and partly by the linearized

perturbation flow dissipation, 2uB U . However, the former contribution is expected

to be far more intense than the latter. Hence, when analyzing the propagation of the

perturbation wave, one can neglect the last term on the right hand side of Eq.(3.32),

2Pe−1 ∂ψ/∂y. This simplification implies that Eq.(3.43) loses the term proportional

to Ψ′ and thus reads

Ψ′′′′ − (2a2 + iγ)Ψ′′ + a2(a2 −Ry + iγ)Ψ = 0. (3.44)

that is the same result as shown by the Eq.(3.42).

There is an alternative view of the approximation introduced. In Equation (3.39), the

linearized perturbation flow dissipation, Ψ′ results into a term proportional to R/Pe,

while the vertical convective term Ψ results into a term proportional to R. One can

easily verify that, for most convection problems involving liquids, Ge can hardly be

greater than 10−6, unless L ≈ 1m or higher. Therefore, R/Pe is expected to be

normally much smaller than 1. Moreover, flows such that viscous dissipation yields an

important viscous heating and possibly produces a buoyancy induced instability of the

uniform basic flow are expected to yield values of Pe significantly greater than one.

Thus, it is reasonable to assume that the term proportional to R/Pe is negligible with

respect to the other terms in Eq.(3.39) and, in particular, to that proportional to R. In

these circumstances, therefore, the onset criterion is independent of χ, as in the DBP

problem (65).

3.4 Series solution

Equations (3.39) subject to (3.40) may be solved by a power series method using

Ψ(y) =
∞∑
n=0

An
n!

yn. (3.45)

The three known initial conditions on the eigenfunction Ψ(y) allow one to obtain the

coefficients A0, A1 and A3, namely

A0 = 0, A1 = 1, A3 = a2, (3.46)
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while A2 will need to be obtained by prescribing the boundary conditions at y = 1,

Eq. (3.40). Higher order coefficients An may be determined by substituting Eq. (3.45)

into Eq. (3.39) and collecting like powers of y. One thus obtains

A4 =
(
2 a2 + i γ

)
A2 + 2 i aRP−1, (3.47)

and the recursion relationship

An+4 =
(
2 a2 + i γ

)
An+2 + 2 i aRP−1 An+1 − a2

(
a2 + i γ

)
An (3.48)

+ na2RAn−1 , ∀ n ≥ 1.

The series solution given by Eq. (3.45) has a very rapid convergence. The real values

of R and γ and the complex value of A2 are obtained by ensuring that the two complex

boundary conditions at y = 1 are satisfied. In all the following cases six digits of

accuracy may be achieved by truncating the sum to the first 40 terms. Neutral curves

may be traced out by varying the value of a. The value of a which minimises R is

termed the critical wavenumber, and denoted by acr.

We also used a 4th order Runge Kutta code together with the shooting method as an

alternative numerical procedure. In the following, all the numerical results are obtained

by both methods in order to ensure their cross-validation.

3.5 Stability analysis

When considering longitudinal rolls, Eq. (3.42), a complex 4th order system has to be

solved. The neutral stability curve for this case is given in Figure 3.2, which shows that

it has the classical shape for Bénard-like problems. In this case we find that

Rcr = 61.8666 and acr = 2.44827. (3.49)

Therefore we may state that

Pecr = 7.8655Ge−1/2, (3.50)

where all decimal places quoted are exact. Given the order of magnitude of the values

just obtained, the approximation introduced in Section 3.3.3 can be considered as valid.
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cr 61.8666R R

Figure 3.2: Stability diagram in the plane (a,R) in the case of perfectly isothermal upper

wall (Bi→∞) for longitudinal rolls, χ = π/2.

In Figs. 3.3 and 3.4 we show the respective variation of Rcr with P and G, where G is

defined as

G = Ge (cosχ)2. (3.51)

From Eq. (3.38), the latter parameter is such that R = GP 2. Also shown are the three-

term large-P asymptotic solutions given by Eq. (3.90). These figures show that there is

only a fairly weak variation in the critical values with both these parameters. In fact,

the three-term asymptotic expansion of Rcr yields extremely accurate solutions over a

range of G which is much bigger than is physically achievable for a porous medium. A

detailed comparison between the asymptotic and the numerical results shows that the

error in Rcr exceeds 1% once Ge > 0.45 or, equivalently, Pe < 0.64.

The physical meaning of the governing parameter R is the following. Let us consider

the basic temperature difference between the lower and upper wall; from Eqs. (3.10),

(3.18) and (3.19) it is

∆T = T̄B(0)− T̄B(L) =
ν α

K c

Pe2

2
=
ν L2 ū2

B

2K αc
. (3.52)
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Figure 3.3: Perfectly isothermal upper wall (Bi → ∞). Rcr vs P diagram: comparison

between the evaluated data and the asymptotic expansions.
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Figure 3.4: Perfectly isothermal upper wall (Bi → ∞). Rcr vs G diagram: comparison

between the evaluated data and the asymptotic expansions.
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Then, on account of Eqs. (3.16), (3.19), (3.38) and (3.52), R can be rewritten as

R = 2
g β∆T K L

ν α
= 2Ra. (3.53)

In fact, the ratio appearing in Eq. (3.53) is the Darcy-Rayleigh number, Ra, based on

the wall temperature difference ∆T given by Eq. (3.52). This observation allows us

to establish a possible comparison between the results of the present stability analysis

with that of the classical HRL problem or, more precisely, of the Prats problem. In

fact, Prats considered a horizontal porous layer subject to a uniform parallel flow and

such that the lower boundary plane is isothermal at a temperature higher than that

of the upper isothermal boundary plane. This author did not consider the effect of

viscous dissipation and proved that, as in the HRL problem, the critical value of Ra

for the onset of free convection rolls is

Racr = 4π2 ≈ 39.4784, (3.54)

where the Darcy-Rayleigh number is evaluated by taking ∆T as the prescribed temper-

ature difference between the lower and the upper boundary planes. Obviously, Prats

problem is substantially different from the problem examined in the present paper.

However, a comparison between the value of Racr predicted by Prats, Eq. (3.54), and

that obtainable from Eqs. (3.49) and (3.53),

Racr = 30.9333, (3.55)

can be interesting. A physical explanation of the reason why Racr for the present

problem is smaller than that of the Prats problem is possible. For a given value of ∆T ,

the basic flow of the Prats problem corresponds to a linear decrease of temperature

from the bottom boundary to the upper boundary. On the other hand, the basic flow

of the present problem corresponds to a parabolic decrease of temperature from the

bottom boundary to the upper boundary. More precisely, for a given temperature Tw

of the upper boundary and a given temperature difference ∆T , the basic flow of the

Prats problem corresponds to an average fluid temperature smaller than that of the

present problem. Then, for a given value of Ra, the effect of buoyancy is higher for the

present problem than for the Prats problem. This reasoning justifies why the onset of
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Figure 3.5: Perfectly isothermal upper wall (Bi → ∞). acr vs G diagram: comparison

between the evaluated data and the asymptotic expansions.

convective instability occurs for a smaller Racr in the problem examined in the present

paper.

The use of the parameter R in order to discuss the onset of instability in the present

problem suggests a further reflection. In most stability analyses, where the buoyancy

effect is driven by the prescribed thermal boundary conditions, the governing parameter

is the Darcy-Rayleigh Ra number based on a temperature difference ∆T depending on

the thermal boundary conditions. As a consequence, the existence of a critical value for

Ra suggests that a basic flow or state can be stable or not depending on the permeability

K of the porous layer. On the other hand, the analysis performed in present paper

predicts that the instability may take place when R > Rcr, where R is independent

of the permeability K as it is shown by Eqs. (3.16), (3.19) and (3.38). Therefore, one

may conclude that, as long as the assumptions made in the present analysis hold, the

permeability has no influence on the occurrence of the instability for the parallel viscous

heating flow in a horizontal porous layer. The reason why, in the problem examined

here, the use of R instead of Ra come forth naturally is that one does not impose

directly a temperature difference ∆T to the fluid. On the contrary, a non-uniform
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Figure 3.6: Perfectly isothermal upper wall (Bi → ∞). γcr vs P diagram: comparison

between the evaluated data and the asymptotic expansions.

temperature distribution naturally arises as a consequence of viscous dissipation, as it

is expressed in Eq. (3.18).

Figure 3.5 shows how the critical wavenumber varies with G. At large values of P (or,

equivalently, small values of G), the critical wavenumber is approximately constant,

reducing strongly as P and G tend toward O(1) magnitudes. Figure 3.6 shows the

reduced wavespeed, γ. The variation of γ is roughly linear with P−1, as shown in the

next Section. In both cases, the asymptotic expansions given in the next Section yield

extremely accurate representations of the numerical results. Finally, we note that, since

Ge� 1 implies that Pecr � 1, it is possible that inertia drag effects will be significant;

it will be reported on this aspect in the next chapter.

3.5.1 Asymptotic analysis of rolls for large P

Eqs. (3.36) and (3.37) are

Ψ′′ − a2 Ψ + iaRΘ = 0, (3.56)

Θ′′ − (iγ + a2) Θ + 2P−1Ψ′ − ia yΨ = 0, (3.57)
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The aim of this Appendix is to provide an asymptotic analysis of the solutions of the

above equations which are valid in the limit of small Ge, or, equivalently, large P . We

shall employ the following substitutions,

Ψ −→ iΨ, ε = P−1, (3.58)

to transform Eqs. (3.56) and (3.57) into a form which is more convenient for the asymp-

totic analysis. We obtain the system,

Ψ′′ − a2Ψ + aRΘ = 0, (3.59)

Θ′′ − (γ + a2) Θ + (2iΨ′)ε+ ayΨ = 0. (3.60)

According to the numerical results presented earlier, R remains of O(1) throughout

the whole physically admissible range of values of Ge. Moreover, the small parameter

ε, multiplies just one term. In what follows various streamfunction and temperature

terms will be defined as part of the asymptotic analysis, and they will all satisfy the

boundary conditions given in Eq. (3.33).

Guided by the numerical results and by the form of the Eqs. (3.59) and (3.60), we shall

introduce the small-ε expansions,

Ψ = Ψ0 + εΨ1 + ε2Ψ2 + ε3Ψ3 + ε4Ψ4 + · · · , (3.61)

Θ = Θ0 + εΘ1 + ε2Θ2 + ε3Θ3 + ε4Θ4 + · · · , (3.62)

R = R0 + ε2R2 + ε4R4 + · · · , (3.63)

γ = εγ1 + ε3γ3 + · · · , (3.64)

and

a = a0 + ε2a2 + ε4a4 + · · · . (3.65)

At each stage we equate coefficients of like powers of ε to obtain equations for the

various Ψn and Θn terms.
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At O(1) we obtain the system,

L1(Ψ0,Θ0) ≡ Ψ′′0 − a2
0Ψ0 + a0R0Θ0 = 0, (3.66)

L2(Ψ0,Θ0) ≡ Θ′′0 − a2
0Θ0 + a0yΨ0 = 0. (3.67)

Here we have introduced the notation Ln for later convenience. This homogeneous

system may be solved by setting a normalisation condition such as Θ0(0) = 1, and

then R0 is found as an eigenvalue. Further terms in (3.62) will be taken to satisfy the

boundary condition Θn(0) = 0.

Equations (3.66) and (3.67) are such that R0 is a function of the wavenumber, a, and

it is necessary to minimise R0 with respect to a. If we define Ψm and Θm to be the

respective a-derivatives of Ψ0 and Θ0, then the a-derivative of Eqs. (3.66) and (3.67)

yield the system,

L1(Ψm,Θm) = 2a0Ψ0 −R0Θ0, (3.68)

L2(Ψm,Θm) = 2a0Θ0 − yΨ0, (3.69)

where we have set dR0/da = 0. The solution of this additional system yields the value

of a0 which minimises R0.

At O(ε) we obtain,

L1(Ψ1,Θ1) = 0, (3.70)

L2(Ψ1,Θ1) = iγ1Θ0 − 2iΨ′0. (3.71)

This is an eigenvalue problem for γ1 and it may be solved using real arithmetic by

means of the substitutions, Ψ1 = iΨ1a, Θ1 = iΘ1a.

At O(ε2) the resulting system is,

L1(Ψ2,Θ2) = a2

[
2a0Ψ0 −R0Θ0

]
+
[
−a0R2Θ0

]
, (3.72)

L2(Ψ2,Θ2) = a2

[
2a0Θ0 − yΨ0

]
+ i
[
γ1Θ1 − 2Ψ′1

]
. (3.73)
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Given that the terms multiplying a2 on the right hand sides of (3.72) and (3.73) are

identical to those on the right hand sides of (3.68) and (3.69), it is possible to write the

solution in the form,

Ψ2 = a2Ψm + Ψ2a, Θ2 = a2Θm + Θ2a. (3.74)

The functions Ψ2a and Θ2a satisfy the system,

L1(Ψ2a,Θ2a) =
[
−a0R2Θ0

]
, (3.75)

L2(Ψ2a,Θ2a) = i
[
γ1Θ1 − 2Ψ′1

]
. (3.76)

We note that Eqs. (3.75) and (3.76) have real inhomogeneous terms, and that the

system is an eigenvalue problem for R2. On the other hand, the value of a2 is not

determined at this order, but (3.74) shows that one component of the overall second

order solution is proportional to a2, which will be determined at O(ε4).

At O(ε3) we have,

L1(Ψ3,Θ3) = a2

[
2a0Ψ1 −R0Θ1

]
− a0R2Θ1, (3.77)

L2(Ψ3,Θ3) = a2

[
2a0Θ1 − yΨ1

]
+ i
[
−2Ψ′2 + γ1Θ2 + γ3Θ0

]
. (3.78)

We note that the inhomogeneous terms are purely imaginary, and given that a2 appears

again as a coefficient, we may split the solution of (3.77) and (3.78) into two components:Ψ3

Θ3

γ3

 = ia2

Ψ3a

Θ3a

γ3a

+ i

Ψ3b

Θ3b

γ3b

 . (3.79)

Therefore we need to solve the two systems of equations,

L1(Ψ3a,Θ3a) = 2a0Ψ1a −R0Θ1a + γ3aΘ0, (3.80)

L2(Ψ3a,Θ3a) = 2a0Θ1a − yΨ1a − 2Ψ′m + γ1Θm, (3.81)

and

L1(Ψ3b,Θ3b) = −a0R2Θ1a, (3.82)
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L2(Ψ3b,Θ3b) = −2Ψ′2a + γ1Θ2a + γ3bΘ0. (3.83)

These are, respectively, eigenvalue problems for γ3a and γ3b. Finally, at O(ε4), the

equations are

L1(Ψ4,Θ4) = a4

[
2a0Ψ0 −R0Θ0

]
+ a2

[
−R2Θ0 −R0Θ2a + 2a0Ψ2a − a0R2Θm

]
+ a2

2

[
Ψ0 + 2a0Ψm −R0Θm

]
− a0R2Θ2a − a0R4Θ0, (3.84)

L2(Ψ4,Θ4) = a4

[
2a0 −Ψ0

]
+ a2

[
2a0Θ2a − yΨ2a − γ1Θ3a + 2Ψ′3a

]
+ a2

2

[
Θ0 + 2a0Θm − yΨ2m

]
+ 2Ψ′3b − γ1Θ3b + γ3Θ1a. (3.85)

This more complicated system may be split into four separate systems for ease of

computation: Ψ4

Θ4

R4

 = a4

Ψm

Θm

0

+ a2
2

Ψ4a

Θ4a

R4a

+ a2

Ψ4b

Θ4b

R4b

+

Ψ4c

Θ4c

R4c

 . (3.86)

We have already taken account of the fact that the solution corresponding to a4 is

already known. It is now routine to write out the remaining three systems, but these

are omitted for the sake of brevity. However, these three systems form eigenvalue

problems for R4a, R4b and R4c respectively.

This latest solution means that, while R0 and R2 are computed constants, the value of

R4 is not; we have

R4 = R4aa
2
2 +R4ba2 +R4c, (3.87)

which is a quadratic in a2. Not surprisingly we find that R4a is positive and therefore

a value of a2 may be found which will minimise R4. It is,

a2 = − R4b

2R4a
. (3.88)

In turn, this value for a2 means that the solution at O(ε3) is now known. Having solved

the full 45th order system (where all the eigenvalues are listed) we obtain the following

asymptotic expansions,

a ∼ 2.44826615− 4.38433187P−2, (3.89)
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R ∼ 61.86656690− 173.51040218P−2 + 851.18063938P−4, (3.90)

γ ∼ 14.50695111P−1 − 24.42147430P−3. (3.91)

All the coefficients are correct to the stated number of decimal places; this required a

uniform grid of 1600 equally spaced points using a 4th order Runge Kutta code.

3.5.2 The effect of an imperfectly isothermal top boundary

The practical possibility of having a perfectly isothermal boundary is limited by the

finite, although very high, efficiency of the thermal contact between the surface and the

external environment through a properly designed convection process. Thus, a more

realistic thermal condition at the upper boundary ȳ = L is given by a third kind or

Robin boundary condition. In this case the ȳ = L boundary condition in Eq. (3.9) is

replaced by

ȳ = L : v̄ = 0, − k ∂T̄
∂ȳ

= h
(
T̄ − T̄w

)
, (3.92)

where k is the thermal conductivity and h the external heat transfer coefficient.

Then, instead of Eq. (3.17b), one has

y = 1 : v = 0 =
∂T

∂y
+Bi T, (3.93)

where Bi is the Biot number, which is defined in Eq.(2.39). The temperature distribu-

tion for the basic flow is such that

TB =
Pe2

2

(
2
Bi

+ 1− y2

)
. (3.94)

Nothing changes in the formulation of the fourth order differential equation for Ψ,

which is still given by Eq. (3.39). On the other hand, as a consequence of Eqs. (3.36)

and (3.93), the y = 1 boundary condition Eq. (3.40) is replaced by

y = 1 : Ψ = Ψ′′′ +BiΨ′′ − a2 Ψ′ = 0. (3.95)

From a mathematical point of view, this means that the only practical change in the

series solution algorithm is in the definition of the constraint equations at y = 1 to

determine the coefficient A2, the overall procedure being the same. In the small-G
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Figure 3.7: Neutral stability curves in the (a,R)-plane for different values of Bi.

limit, or, equivalently for longitudinal rolls, the effect of different values of Bi on the

neutral curve is given in Figure 3.7. A perfectly conducting upper boundary corresponds

to the limit Bi→∞, and we see that the critical values of both R and a reduce as Bi

decreases. In the insulating limit, Bi→ 0, we obtain acr = 0, which is consistent with

the similar case for the Darcy-Bénard problem (see pp 193 and 194 of Nield and Bejan

(48)). Table 3.5.2 shows the behaviour of acr and Rcr as a function of the Bi number.

When G takes nonzero values the variation of Rcr, acr and γcr may be seen in Figs. 3.8 to

3.10, respectively. The variation of Rcr with G is given in Figure 3.8 where substantial

changes in the G � 1 values occur only as G → 1, an unphysically large value. We

see also that Rcr reduces as Bi decreases. The corresponding wavenumber variation is

shown in Figure 3.9. When G takes physically significant values the reduction in the

critical wavenumber is monotonic as Bi decreases. A similar behaviour arises for the

reduced wavespeed, γ, shown in Figure 3.10.

The last three Figs 3.11 to 3.13 show the behaviour of the disturbances at neutral

stability. Isotherms and streamlines are drawn for different values of Bi number. The

first refers to the almost adiabatic top boundary and the isotherms show clearly the

two constraints of insulation. The second and the third refer to cases in which the
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Bi acr Rcr

0 0.0000 24.0000

0.1 1.0223 28.7426

0.5 1.4944 34.6331

1 1.7278 38.6913

2 1.9538 43.6007

4 2.1436 48.8102

8 2.2778 53.4693

16 2.3588 56.9462

100 2.4336 60.9438

∞ 2.4483 61.8666

Table 3.1: Asymptotic values of acr and Rcr for different Biot numbers.
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Figure 3.8: Rcr vs G diagram: plots corresponding to different Bi, the dashed line

corresponds to Bi→∞.
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Figure 3.11: Plots of the streamlines (solid lines) of the velocity disturbances, U, and

the isotherms (dashed lines) of the temperature disturbances, Θ, under critical conditions,

a = acr and R = Rcr, for χ = 0 and for Bi = 0.1.

thermal insulation condition on the top boundary is relaxed and one can note the onset

of circular isotherms when the Biot number value increases. For what concerns the

velocity rolls, their behaviour is relatively the same on varying the value of Bi.

3.6 Conclusions

In this chapter we have considered horizontal flow in a porous layer where viscous

dissipation serves to create a vertical temperature gradient across the moving fluid. The

Darcy model, together with the Oberbeck-Boussinesq approximation, has been adopted.

The basic temperature profile is nonlinear due to the effect of viscous dissipation.
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Figure 3.12: Plots of the streamlines (solid lines) of the velocity disturbances, U, and

the isotherms (dashed lines) of the temperature disturbances, Θ, under critical conditions,

a = acr and R = Rcr, for χ = 0 and for Bi = 4.
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Figure 3.13: Plots of the streamlines (solid lines) of the velocity disturbances, U, and

the isotherms (dashed lines) of the temperature disturbances, Θ, under critical conditions,

a = acr and R = Rcr, for χ = 0 and for Bi =∞.
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Since the basic temperature decreases from the bottom adiabatic boundary to the top

isothermal boundary, the basic flow is possibly unstable to convective rolls. Our aim

has been to determine the criteria for the onset of convection.

We have found that:

� the parameter R, which plays the role of a Rayleigh number, remains of O(1)

over all physically realistic values of the Gebhart number;

� the critical Péclet number has been determined, as well as the associated wavenum-

ber and phase speed, as a function of the Gebhart number;

� for a given Gebhart number , the transverse rolls require a smaller Péclet number

before they are destabilised than any other roll orientation;

� other orientations may have physical significance when the layer is confined lat-

erally, and our results may also be applied to these cases;

� a large Péclet number asymptotic analysis has been obtained. This analysis gives

extremely accurate correlations for all physically realistic values of the Gebhart

number.



4

Viscous dissipation instabilities

and Forchheimer’s law

4.1 Introduction

In this chapter a parallel Forchheimer flow in a horizontal porous layer with an isother-

mal top boundary and a bottom boundary which is subject to a third kind boundary

condition is discussed. The effect of viscous dissipation is taken into account. The

onset of linear instability in a horizontal porous layer induced by the viscous heating

effect is investigated. This is a topic on which very few papers have been published; see

(11; 74; 80). The system studied in the following is characterised by a isothermal top

boundary surface and a bottom boundary subjected to a thermal boundary condition

of the third kind for which a Biot number, Bi is defined. A linear stability analysis

of oblique rolls, which are inclined arbitrarily with respect to the uniform basic flow

direction, is performed. The disturbance equations are solved numerically by a fourth

order Runge-Kutta method. The governing parameter for the onset of convective in-

stability is a combination of Gebhart number and Péclet number, R = GePe2, as in

Chapter 3.

The contents of this chapter are based on the paper (9) by Barletta, Celli and Rees.

61
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Figure 4.1: Sketch of the horizontal porous channel.

4.2 Mathematical model

A laminar buoyant flow in a horizontal parallel channel with height L is considered.

A sketch of the channel is shown in Figure 4.1. Both the Forchheimer model and

the Oberbeck-Boussinesq approximation are invoked. It is assumed that local thermal

equilibrium holds. Heat generation due to the viscous dissipation contribution is taken

into account. The horizontal boundary walls (ȳ = 0, L) exchange heat with an external

environment at temperature Tw: the top surface is taken to be perfectly isothermal

at temperature Tw (infinite Biot number), while the bottom surface is taken to be

imperfectly isothermal (finite Biot number).

The mass balance equation is thus the same used in Chapter 3, namely

∇̄· ū = 0. (4.1)

The momentum balance equation includes the form drag contribution. The buoyancy

term is simplified by the Oberbeck-Boussinesq approximation. The momentum balance

equation can thus be expressed as

ν

K

(
1 +

Cf
√
K

ν

√
ū · ū

)
ū = − 1

ρ0
∇̄p̄+ g β (T̄ − T̄w), (4.2)
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The thermal energy balance equation here used is the same as in Chapter 3 except for

the viscous dissipation term that takes into account the form drag contribution of the

Forchheimer model, Eq.(2.23), namely

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = α̃ ∇̄2T̄ +

ν

K c

(
1 +

Cf
√
K

ν

√
ū · ū

)
ū · ū, (4.3)

The set of governing balance equations may now be expressed as

∇̄ · ū = 0, (4.4)

ν

K

(
1 +

Cf
√
K

ν

√
ū · ū

)
ū = − 1

ρ0

∂p̄

∂x̄
, (4.5)

ν

K

(
1 +

Cf
√
K

ν

√
ū · ū

)
v̄ = − 1

ρ0

∂p̄

∂ȳ
+ β g (T̄ − T̄w), (4.6)

ν

K

(
1 +

Cf
√
K

ν

√
ū · ū

)
w̄ = − 1

ρ0

∂p̄

∂z̄
, (4.7)

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = α̃ ∇̄2T̄ +

ν

K c

(
1 +

Cf
√
K

ν

√
ū · ū

)
ū · ū, (4.8)

where σ is defined by Eq.(2.10). The velocity and thermal boundary conditions are

defined by

ȳ = 0 : v̄ = 0 =
∂T̄

∂ȳ
− h

k̃

(
T̄ − T̄w

)
,

ȳ = L : v̄ = 0 = T̄ − T̄w. (4.9)

4.2.1 Nondimensional formulation

The characteristic scales used here to nondimensionalise the set of equations are the

same as in Chapter 3, except for the contribution of the pressure p. Here the character-

istic pressure is taken to be µ α̃/K. Let us now introduce the nondimensional variables,

namely
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(x̄, ȳ, z̄) = (x, y, z)L, t̄ = t
σ L2

α̃
, (ū, v̄, w̄) = (u, v, w)

α̃

L
,

T̄ = T̄w + T
ν α̃

K c
, p̄ = p

µ α̃

K
. (4.10)

Then, Eqs. (4.4)–(4.8) may be rewritten in the form,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (4.11)

(
1 + ηf

√
u · u

)
u = −∂p

∂x
, (4.12)

(
1 + ηf

√
u · u

)
v = −∂p

∂y
+GeT, (4.13)

(
1 + ηf

√
u · u

)
w = −∂p

∂z
, (4.14)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
(4.15)

+
(
u2 + v2 + w2

) (
1 + ηf

√
u · u

)
.

In the latter equations Ge is the Gebhart number defined in Eq.(3.16) and ηf is a

nondimensional Forchheimer coefficient, namely

ηf =
Cf
√
Da

Pr
, Ge =

g β L

c
. (4.16)

The Gebhart number measures the extent to which the viscous dissipation influence

the energy balance in the fluid flow.

The boundary conditions (4.9) may now be expressed in a nondimensional form:

y = 0 : v = 0 =
∂T

∂y
−BiT,

y = 1 : v = 0 = T, (4.17)

where Bi is the Biot number, which is defined in Eq.(2.39).
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4.2.2 Fully developed basic flow

As for the previous Chapter, a fully developed basic flow is assumed in order to take into

account the contribute of the viscous dissipation term in the thermal energy balance

equation. We assume a horizontal steady parallel flow in the x-direction and a purely

vertical heat flux. Then, the basic state which has to be analysed for stability is given

by,

uB = Pe > 0, vB = 0, wB = 0,
∂pB
∂x

= −Pe(1 + ηf Pe),
∂pB
∂y

= GeTB,
∂pB
∂z

= 0,

TB = −Pe2 (Pe ηf + 1)
y2(Bi+ 1)−Bi y − 1

2 (Bi+ 1)
, (4.18)

4.2.3 Linear disturbances

In the following a normal mode stability analysis is performed. In order to analyse the

system with this method the basic flow has to be perturbed. Here, as in Chapter 3, we

introduce perturbations of the basic flow described by Eq. (4.18), namely

u = uB +εU, v = vB +ε V, w = wB +εW, T = TB +ε θ, p = pB +ε P. (4.19)

where ε is an asymptotically small perturbation parameter. The stability analysis that

follows has been chosen to be linear. Thus, on substituting Eq. (4.19) into Eqs. (4.11)-

(4.15) and neglecting nonlinear terms in the perturbations, i.e. terms of O(ε2), one

obtains the linearized stability equations, namely,

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= 0, (4.20)

U (1 + 2 ηf Pe) = −∂P
∂x

, (4.21)

V (1 + ηf Pe) = −∂P
∂y

+Ge θ, (4.22)

W (1 + ηf Pe) = −∂P
∂z

, (4.23)
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∂θ

∂t
+Pe

∂θ

∂x
−Pe2 (1 +Pe ηf )V B(y) =

∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
+PeU (2 + 3Pe ηf ). (4.24)

where B is a function of both Bi and y and is defined as,

B(y) = y − Bi

2 (Bi+ 1)
. (4.25)

4.3 Instability with respect to oblique rolls

Now, one may differentiate Eqs. (4.21)-(4.23) and substitute the results into Eq. (4.20).

Then one may also substitute the velocity components in Eqs. (4.21)-(4.22) into Eq. (4.24)

in order to obtain the following pressure/temperature formulation,

(
1 + Pe ηf

1 + 2Pe ηf

)
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= Ge

∂θ

∂y
, (4.26)

∂θ

∂t
+ Pe

∂θ

∂x
+ Pe2

(
∂P

∂y
−Ge θ

)
B(y) =

∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
(4.27)

− Pe
(

2 + 3Pe ηf
1 + 2Pe ηf

)
∂P

∂x
.

In the previous chapter, an inclined basic flow is assumed in order to obtain a stability

analysis that considers all the possible oblique rolls. Here, to achieve the same aim, the

direction of the perturbations is assumed to inclined of an angle χ with respect to the

x axis. Let us assume that the disturbances are given by

P (x, y, z, t) = <
{

P(y) eλ teia(x cosχ+z sinχ)
}
,

θ(x, y, z, t) = <
{

Θ(y) eλ teia(x cosχ+z sinχ)
}
, (4.28)

where λ = λ1 + iλ2 is a complex coefficient and χ is the angle between the basic flow

direction and the propagation direction of the disturbance. The system of equations

(4.26)-(4.27) now reduces to,

P′′ − a2

[(
1 + Pe ηf

1 + 2Pe ηf

)
cos2 χ+ sin2 χ

]
P−GeΘ′ = 0, (4.29)
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Θ′′ −
[
λ+ a2 + i a Pe cosχ−GePe2B(y)

]
Θ− Pe2B(y) P′

− i a Pe cosχ
(

2 + 3Pe ηf
1 + 2Pe ηf

)
P = 0. (4.30)

where the primes denote differentiation with respect to y. The boundary conditions

(4.17) may be expressed in terms of pressure and temperature as

y = 0 : P′ = GeΘ , Θ′ −BiΘ = 0 ; y = 1 : P′ = 0 = Θ. (4.31)

We will set <(λ) = λ1 = 0 in order to investigate the neutral stability. Moreover, for

numerical convenience, we shall also set

γ = λ2 + aPe cosχ , (4.32)

so that Eq. (4.30) may be rewritten as

Θ′′−[a2+iγ−GePe2B(y)] Θ−Pe2B(y) P′−i a Pe cosχ
(

2 + 3Pe ηf
1 + 2Pe ηf

)
P = 0. (4.33)

4.3.1 Longitudinal rolls

The condition χ = π/2 identifies the longitudinal rolls case. Eqs. (4.29), (4.31) and

(4.33) become

P′′ − a2 P−GeΘ′ = 0, (4.34)

Θ′′ − [a2 + i γ −GePe2B(y)] Θ− Pe2B(y) P′ = 0, (4.35)

y = 0 : P′ = GeΘ , Θ′ −BiΘ = 0 ; y = 1 : P′ = 0 = Θ. (4.36)

It is important to note the absence of the parameter ηf in Eqs. (4.34)-(4.36). Thus,

longitudinal rolls are not affected by the dependence on the Forchheimer term in the

momentum equation. Moreover, the problem becomes self-adjoint as one may now set

γ = 0 and determine the solution {P,Θ} in terms of real-valued functions.
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4.3.2 Transverse rolls

The condition χ = 0 identifies the transverse rolls case. Equations (4.29), (4.31) and

(4.33) become

P′′ − a2

(
1 + Pe ηf

1 + 2Pe ηf

)
P−GeΘ′ = 0, (4.37)

Θ′′ −
[
a2 + iγ −GePe2B(y)

]
Θ− Pe2B(y) P′ − i a Pe

(
2 + 3Pe ηf
1 + 2Pe ηf

)
P = 0, (4.38)

y = 0 : P′ = GeΘ , Θ′ −BiΘ = 0 ; y = 1 : P′ = 0 = Θ. (4.39)

4.4 Eigenvalue problem

Equations (4.29) and (4.33) are a pair of coupled homogeneous complex second-order

ODEs, and are subject to the four homogeneous boundary conditions Eq. (4.31). The

system always admits zero solutions, but it may also be interpreted as an eigenvalue

problem for λ where values for λ depend on Ge, Pe, ηf , χ and a. Alternatively, incipient

instability is given by λ1 = 0, therefore the system may now be regarded as a double

eigenvalue problem for Pe and γ, for example, as functions of the remaining parameters.

The computation of these eigenvalues requires further normalization conditions to force

the solutions for P and Θ to be nonzero; we choose the following,

BiΘ′(0) + Θ(0) = Bi+ 1. (4.40)

Equation (4.40) comes from the linear combination of two possible normalization choices:

Θ′(0)−1 = 0 and Θ(0)−1 = 0. The combination Eq. (4.40) is chosen because it remains

valid as the top boundary condition varies between the limits of isothermal boundary,

Bi → ∞, and adiabatic boundary, Bi → 0. It is also proved convenient to work with

the parameter,

R = GePe2, (4.41)

rather than Ge. The critical value of R, which is denoted by Rcr, is now determined by

seeking the minimum of R as a function of a in the neutral stability curve. In practice



4.4. EIGENVALUE PROBLEM 69

this is done by extending the system, Eqs. (4.29) and (4.33), by differentiating it with

respect to a, and by setting ∂R/∂a = 0.

4.4.1 Stability analysis

In order to solve Eqs. (4.29), (4.31), (4.33) and (4.40), a numerical solver based on

the classical fourth order Runge-Kutta method coupled with the shooting method has

been used. In all cases we used 100 intervals and this, coupled with the fourth order

accuracy of the method, yields highly accurate results.

The change of Rcr as a function of three parameters has been studied. These parameter

are the Biot parameter Bi, the angle χ and the parameter η+ that is defined as

η+ =
ηf√
Ge

, (4.42)

and allows one to remove the explicit dependence on Ge in the physically reasonable

range of very small Ge. Indeed, if one substitutes Eq. (4.42) and the relationship

P+(y) =
P(y)
Ge

, (4.43)

in Eqs. (4.29), (4.31), (4.33) and (4.40), one obtains

P′′+ − a2

[(
1 +
√
Rη+

1 + 2
√
Rη+

)
cos2 χ+ sin2 χ

]
P+ −Θ′ = 0, (4.44)

Θ′′ −
[
a2 + iγ −RB(y)

]
Θ−RB(y) P′+

− i a
√
GeR cosχ

(
2 + 3

√
Rη+

1 + 2
√
Rη+

)
P+ = 0, (4.45)

y = 0 : P′+ = Θ Θ′ −BiΘ = 0 BiΘ′ + Θ = Bi+ 1;

y = 1 : P′+ = 0 = Θ. (4.46)

It must be mentioned that, on account of Eq. (4.42), the limit η+ → 0 can be interpreted

as the limit of negligible form-drag effect, i.e. the limit of validity of Darcy’s law. On

the other hand, the limit η+ →∞ is the limit of a very small Gebhart number.

Under the physically realistic assumption of Ge � 1, if R is of O(1), then the last

term on the left hand side of Eq. (4.45) is of O(Ge1/2). As a consequence, this term is
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Figure 4.2: Rcr as a function of η+ for different values of χ for Bi = 0, 1.



4.4. EIGENVALUE PROBLEM 71

 

-4 -3 -2 -1 0 1 2 3

350

400

450

500

550

-4 -3 -2 -1 0 1 2 3

450

500

550

600

650

700

crR  

2χ π=  

4χ π=  

6χ π=  

0χ =  

3χ π=  

10Log η+  

crR  

2χ π=  

4χ π=  

6χ π=  

0χ =  

3χ π=  

Bi →∞  

Bi 10=  
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η+ → 0 η+ →∞; χ = 0

Bi acr Rcr acr Rcr

0 2.4483 61.867 3.0342 97.184

0.1 2.5078 69.411 3.1069 108.23

0.5 2.7258 99.728 3.3683 151.92

1 2.9697 135.71 3.6482 202.88

2 3.3637 195.12 4.0789 286.62

4 3.8150 270.68 4.5706 394.22

8 4.1709 342.66 4.9727 497.87

10 4.2573 362.32 5.0722 526.30

16 4.3989 396.65 5.2369 576.00

100 4.6270 457.59 5.5047 664.34

∞ 4.6752 471.38 5.5616 684.36

Table 4.1: Asymptotic values of acr and Rcr for different Biot numbers.

significantly smaller than the other terms. Thus, one can easily infer that neglecting

this term allows one to set γ = 0, so that the problem becomes self-adjoint and only

admits real solutions for (P,Θ). The Biot number Bi affects the bottom boundary

condition. On account of Eq. (25), in the limit of an adiabatic boundary, one has

Bi→ 0 ⇒ B(y) = y, (4.47)

while, in the limit of a perfectly isothermal boundary, one has

Bi→∞ ⇒ B(y) = y − 1
2
. (4.48)

From Figures 4.2-4.3 one can see that, for any chosen parameter set, the values of

Rcr are higher in the case of an isothermal bottom boundary than in the case of an

adiabatic bottom boundary. This feature could have been expected. In fact, when

examining the basic flow in the case of isothermal bottom boundary (Bi → ∞), one

can see from Eq. (4.48) that the midplane y = 1/2 is adiabatic, i.e. B(1/2) = 0. In

other words, in the analysis of the basic flow, the layer with adiabatic bottom boundary
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is coincident with the upper half of the layer with isothermal bottom boundary, except

for the thickness. One sees that R is proportional to L3. Therefore, one would expect

that the critical value of R in the case of a layer with isothermal bottom boundary

is 8 times that in the case of a layer with adiabatic bottom boundary. The factor 8

would be exact if, in the perturbed flow of the layer with isothermal bottom boundary,

the midplane y = 1/2 is both adiabatic and impermeable. In fact, these conditions

are perfectly fulfilled by the basic flow, but not by the disturbances. It should be

mentioned, however, that the lower half of the layer with isothermal bottom boundary

is expected to be affected only marginally by roll disturbances as the midplane y = 1/2

is, in the basic state, hotter than the bottom boundary y = 0.

In Figures 4.2-4.3 one may also notice that Rcr, for every Biot number Bi, is not

affected by the orientation angle χ in the limit of validity of Darcy law, η+ → 0. On

the contrary, in the limit of important form-drag effects with Ge � 1 (η+ → ∞),

one finds an important dependence of Rcr on the orientation of the oblique rolls. In

particular, longitudinal rolls (χ = π/2) appear to be the most unstable. For longitudinal

rolls, Rcr is independent of η+. This feature is evident from Eqs. (4.44)-(4.46) as the

parameter η+ disappears from the equations when χ = π/2. For η+ → 0 there appears

an asymptotic behaviour described in Table 1. For η+ → ∞, a different asymptotic

value of either Rcr or acr is reached for every χ. The highest asymptotic values of Rcr
or acr refer to transverse rolls (χ = 0). These values are reported in Table 1.
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Figure 4.6: Plots of Θcr as a function of y for Bi = 0 and η+ = 10−5, 0.03, 103. Solid

lines refer to χ = 0, while dashed lines refer to χ = π/4.

Figures 4.4-4.5 show the plots of the critical wavenumber acr versus η+ for different

orientation angles χ and Biot numbers Bi. The qualitative behaviour of acr is similar to

that of Rcr. The curves display the asymptotic behaviour for η+ → 0 and for η+ →∞.

Both the lower and the upper asymptotic values are specified in Table 1.

The plots reported in Figs. 4.6-4.9 suggest a weak dependence of Θcr(y) on both η+

and χ. In particular, for η+ = 10−5, the solid and the dashed lines corresponding

respectively to χ = 0 and χ = π/4 are perfectly coincident. Indeed, the eigenvalue

problem (4.44)-(4.46) becomes independent of χ in the limit η+ → 0 (i.e. in the limit

of validity of Darcy’s law). The temperature profiles Θcr(y) represented in Figure 4.6

refer to an adiabatic bottom boundary, while those reported in Figs. 4.7-4.9 refer to an

imperfectly isothermal boundary (Bi = 1, 10) and to a perfectly isothermal boundary

(Bi → ∞). Due to Eq. (4.46), all the profiles reported in Figs. 4.6-4.9 display at

y = 0 a fixed temperature, Θ(0) = (Bi + 1)/(Bi2 + 1), and a fixed heat flux, Θ′(0) =

Bi (Bi+ 1)/(Bi2 + 1).

Figs. 4.10-4.11 refer to critical conditions and show the isotherms, θ = constant, and
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Figure 4.7: Plots of Θcr as a function of y for Bi = 1 and η+ = 10−5, 0.03, 103. Solid

lines refer to χ = 0, while dashed lines refer to χ = π/4.
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Figure 4.8: Plots of Θcr as a function of y for Bi = 10 and η+ = 10−5, 0.03, 103. Solid

lines refer to χ = 0, while dashed lines refer to χ = π/4.
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Figure 4.9: Plots of Θcr as a function of y for Bi → ∞ and η+ = 10−5, 0.03, 103. Solid

lines refer to χ = 0, while dashed lines refer to χ = π/4.
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the streamlines of the two-dimensional velocity disturbance field (U, V ), respectively,

for the orientation angle χ = 0 and η+ = 103. In fact, from Eq. (4.23), one has W = 0 as

Eq. (4.28) predicts for χ = 0 that P is independent of z. For the adiabatic case, Bi = 0

(Fig. 4.10), one may see that the velocity rolls are spread over the whole channel width

and are almost symmetric with respect to the horizontal midplane. When the bottom

boundary is isothermal, Bi→∞ (Fig. 4.11), the velocity rolls are placed predominantly

within the upper part of the channel. This upward displacement is justified since the

fluid is unstably stratified only in the upper part of the porous layer. In fact, in the

basic flow solution Eq. (4.18) for Bi → ∞, the horizontal midplane is hotter than the

boundary planes.

4.5 Conclusions

A stability analysis of the basic parallel uniform flow in a horizontal porous layer with

impermeable boundaries has been performed. The Forchheimer model, together with

the Oberbeck-Boussinesq approximation, has been adopted. The basic temperature

profile is nonlinear due to the effect of viscous dissipation. The top boundary plane has

been taken to be isothermal. The bottom boundary has been assumed to be subject

to a third kind boundary condition described in the nondimensional equations through

the Biot number, Bi. The conditions of vanishing heat flux and of uniform temperature

at the bottom boundary are mathematically expressed as two limiting cases Bi → 0

(adiabatic boundary) Bi → ∞ (isothermal boundary). Arbitrarily oriented roll dis-

turbances have been studied by adopting a pressure-temperature formulation. The

resulting eigenvalue ODE problem has been solved numerically by means of a fourth

order Runge-Kutta method coupled with the shooting method.

The main results obtained are the following:

� the governing parameter describing the onset of convective instability is R =

GePe2, where Ge is the Gebhart number and Pe is the Péclet number;

� under the physically reasonable assumption Ge� 1, the eigenvalue ODE problem

becomes self-adjoint, thus admitting real solutions;

� the most unstable rolls are the longitudinal;
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Figure 4.10: Plots of the streamlines (solid lines) of the velocity disturbances, U, and

the isotherms (dashed lines) of the temperature disturbances, Θ, under critical conditions,

a = acr and R = Rcr, for χ = 0, η+ = 103 and for Bi = 0.
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Figure 4.11: Plots of the streamlines (solid lines) of the velocity disturbances, U, and

the isotherms (dashed lines) of the temperature disturbances, Θ, under critical conditions,

a = acr and R = Rcr, for χ = 0, η+ = 103 and for Bi =∞.
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� in the limit of validity of Darcy’s law η+ → 0 the inclination of oblique rolls does

not influence the critical conditions for the onset of the instability;

� the critical wavenumber and the critical value of R for the onset of longitudinal

rolls are independent of the form-drag coefficient;

� the critical wavenumber and the critical value of R for the onset of transverse or

oblique rolls other than longitudinal depend on the form-drag coefficient;

� the layer with an isothermal bottom boundary is more stable than the layer with

an adiabatic bottom boundary.
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5

Darcy free convection with a

basic linear velocity profile

5.1 Introduction

In this chapter we study a free convection flow in a horizontal porous layer with an

adiabatic bottom boundary and a top boundary with a stationary and non-uniform

temperature distribution. The problem treated is, in several respects, analogous to

the HRL problem. The top boundary temperature distribution is assumed to have a

constant gradient and the effect of viscous dissipation is taken into account. A ba-

sic parallel buoyant flow develops in the horizontal direction where the top boundary

temperature changes. The governing parameters are the Gebhart number and the

horizontal Rayleigh number associated with the gradient of the prescribed boundary

temperature distribution. In fact, the system experiences a more and more intense

effect of the frictional heating as the Gebhart number increases. A linear stability

analysis of the basic buoyant flow is carried out. Oblique roll disturbances in any arbi-

trary horizontal direction are studied and the critical values of the horizontal Rayleigh

number are evaluated numerically. It is shown that, for realistic values of the Gebhart

number, the longitudinal rolls are the most unstable. Moreover, it is proved that the

viscous dissipation yields a destabilising effect.

The contents of this chapter are based on the paper (8) by Barletta, Celli and Nield.

85
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POROUS
MEDIUM

INSULATING LAYER

Figure 5.1: Drawing of the porous layer, of the boundary conditions and of the basic flow

profile.

5.2 Mathematical model

We consider a plane porous slab with thickness L bounded by two horizontal imper-

meable planes ȳ = 0 and ȳ = L, so that g = −g ey. The bottom boundary plane is

adiabatic, while the top boundary ȳ = L is subject to a linear change in the horizontal

x̄-direction. A sketch of the channel is shown in Figure 5.1.

Here both the Darcy model and the Oberbeck-Boussinesq approximation are invoked.

It is assumed that local thermal equilibrium holds. Heat generation due to the viscous

dissipation contribution is taken into account. Then, the governing equations can be

expressed as in Chapter 3, namely

∇̄ · ū = 0, (5.1)

µ

K
ū = −∇̄p̄+ ρ0 g β

(
T̄ − T̄0

)
ey, (5.2)

σ
∂T̄

∂t̄
+ ū · ∇̄T̄ = α̃ ∇̄2T̄ +

ν

K c
ū · ū, (5.3)

where σ is defined by Eq.(2.10). The boundary conditions applied on the system are

ȳ = 0 : v̄ = 0,
∂T̄

∂ȳ
= 0, (5.4)

ȳ = L : v̄ = 0, T̄ = T̄0 −
qh

k̃
x̄. (5.5)
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5.2.1 Nondimensional formulation

The characteristic unit measures of the variable used here are the same introduced in

the last two Chapters and they are defined as

(x̄, ȳ, z̄) = (x, y, z)L, t̄ = t
σ L2

α̃
, (ū, v̄, w̄) = (u, v, w)

α̃

L
, (5.6)

T̄ = T̄0 + T
ν α̃

g β LK
, p̄ = p

µ α̃

K
. (5.7)

Moreover it is necessary to introduce the new nondimensional number

Rah =
g β qhK L2

ν α̃ k
, (5.8)

where Rah is the horizontal Rayleigh number associated with the streamwise tempera-

ture change forced by the condition at the top boundary ȳ = L. Then, Eqs. (5.1)-(5.3)

can be rewritten as

∇ · u = 0, (5.9)

u = −∇p+ T ey, (5.10)

∂T

∂t
+ u · ∇T = ∇2T +Ge u · u. (5.11)

On the other hand, the boundary conditions expressed by Eqs. (5.4)-(5.5) can be rewrit-

ten in a nondimensional form as

y = 0 : v = 0,
∂T

∂y
= 0, (5.12)

y = 1 : v = 0, T = −Rah x, (5.13)

where Ge is the Gebhart number, defined by Eq. (3.16).

5.2.2 Fully developed basic flow

A solution of Eqs. (5.9)-(5.13) is sought under the assumptions of stationary regime

and fully developed horizontal flow along the x-direction. These assumptions are taken
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to let the viscous term contribute to the linear stability analysis. The fully developed

horizontal flow can be expressed as

uB = uB(y), vB = wB = 0. (5.14)

It is easily proved that

uB(y) = Rah y, (5.15)

TB(x, y) = −Rah x+
Ra2

h

12
[
Ge
(
1− y4

)
+ 2

(
1− y3

)]
, (5.16)

pB(x, y) = −Rah x y +
Ra2

h y

12

[
Ge

(
1− y4

5

)
+ 2

(
1− y3

4

)]
, (5.17)

where the arbitrary integration constant for the pressure distribution has been chosen

such that pB(0, 0) = 0. Plots of the reduced temperature,

T̂B(y) =
12
Ra2

h

[TB(x, y) +Rah x] = Ge
(
1− y4

)
+ 2

(
1− y3

)
, (5.18)

are given in Figure 5.2. From this figure, we see that the bottom boundary has a

temperature higher than the top boundary for every cross-section x = constant, the

distribution being monotonically decreasing. From Eq. (5.16), this nondimensional

temperature difference is

∆TB = TB(x, 0)− TB(x, 1) =
Ra2

h

12
(Ge+ 2) . (5.19)

5.2.3 Linear disturbances

The method used here to investigate the stability analysis is, again, the normal mode

method. This method needs the main flow to be split in two contributions: a mean

basic flow and an arbitrarily small disturbances. The main flow can thus be expresses

as

p = pB + ε P, u = uB + εU, v = ε V, w = εW, T = TB + ε θ, (5.20)
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Figure 5.2: Basic flow: reduced temperature distribution for different values of Ge.

where ε is the perturbation parameter. The latter is supposed to be so small that

terms of order higher than ε can be neglected. Then, by substituting Eq. (5.20) in

Eqs. (5.9)-(5.13) one obtains

∇ ·U = 0, (5.21)

U = −∇P + θ ey, (5.22)

∂θ

∂t
+ uB

∂θ

∂x
+ U

∂TB
∂x

+ V
∂TB
∂y

= ∇2θ + 2 Ge uB U, (5.23)

y = 0 : V = 0,
∂θ

∂y
= 0, (5.24)

y = 1 : V = 0, θ = 0. (5.25)

By rearranging Eqs. (5.21)-(5.25), one obtains a pressure-temperature formulation,

∇2P =
∂θ

∂y
, (5.26)
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∂θ

∂t
+ uB

∂θ

∂x
− ∂P

∂x

∂TB
∂x
−
(
∂P

∂y
− θ
)
∂TB
∂y

= ∇2θ − 2 Ge uB
∂P

∂x
, (5.27)

y = 0 :
∂P

∂y
= θ,

∂θ

∂y
= 0, (5.28)

y = 1 :
∂P

∂y
= 0, θ = 0. (5.29)

5.3 Instability with respect to oblique rolls

As in the last Chapter, to consider all the possible oblique rolls, the direction of the

disturbances is assumed to be variable with an inclination angle χ with respect to x

axis. Let us seek solutions of Eqs. (5.26)-(5.29) in the form of plane waves,

P (x, y, z, t) = <
{

P(y) eλ teia(x cosχ+z sinχ)
}
,

θ(x, y, z, t) = <
{

Θ(y) eλ teia(x cosχ+z sinχ)
}
, (5.30)

where λ = λ1 + i λ2 is a complex coefficient and χ is the inclination angle between

the basic flow direction and the propagation direction of the disturbance wave. By

setting <(λ) = λ1 = 0 in order to investigate neutral stability, Eqs. (5.26)-(5.29) can

be rewritten as

P′′ − a2 P−Θ′ = 0, (5.31)

Θ′′ −
[
a2 −

Ra2
h y

2

6
(2Gey + 3) + i (λ2 + a cosχRah y)

]
Θ +

−
Ra2

h y
2

6
(2Gey + 3) P′ − i a cosχRah (2Gey + 1) P = 0, (5.32)

y = 0 : P′ = Θ, Θ′ = 0,

y = 1 : P′ = 0, Θ = 0.
(5.33)
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5.3.1 Longitudinal rolls

The longitudinal rolls can be defined by substituting χ = π/2 into Eqs. (5.31) - (5.32),

namely

P′′ − a2 P−Θ′ = 0, (5.34)

Θ′′ −
[
a2 −

Ra2
h y

2

6
(2Gey + 3) + iλ2

]
Θ −

Ra2
h y

2

6
(2Gey + 3) P′ = 0, (5.35)

One can note that the eigenvalue problem Eqs. (5.34)-(5.35) becomes self-adjoint upon

setting λ2 = 0. This implies that, for χ = π/2, the eigenfunctions (P,Θ) are real-valued

and the disturbance waves, defined by Eq. (5.30), have a vanishing phase velocity in

the z-direction.

5.3.2 Transverse rolls

In the case of transverse rolls, by substituting χ = 0 into Eqs. (5.31) - (5.32) one obtains

a differential problem that, unlike the one for longitudinal rolls, is not self-adjoint,

P′′ − a2 P−Θ′ = 0, (5.36)

Θ′′ −
[
a2 −

Ra2
h y

2

6
(2Gey + 3) + i (λ2 + aRah y)

]
Θ +

−
Ra2

h y
2

6
(2Gey + 3) P′ − i aRah (2Gey + 1) P = 0. (5.37)

5.3.3 Numerical solution

The eigenvalue problem given by Eqs. (5.31)-(5.33) can be solved numerically by a

fourth order Runge-Kutta technique and by using the shooting method. In detail, the

Runge-Kutta technique is used to solve Eqs. (5.31)-(5.33) as an initial value problem.

The initial conditions at y = 0 specified in Eq. (5.33) are not sufficient to determine

a unique solution. In fact, the values of P(0) and Θ(0) must be assigned. Since
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Eqs. (5.31)-(5.33) are homogeneous, the additional condition Θ(0) = 1 can be pre-

scribed in order to normalise the scale of the disturbances. A parameter Ξ can be

defined such that P(0) = Ξ. Therefore, Eq. (5.33) becomes

y = 0 : P = Ξ, P′ = 1, Θ = 1, Θ′ = 0,

y = 1 : P′ = 0, Θ = 0.
(5.38)

For 0 ≤ χ < π/2, the eigenfunctions (P,Θ) are complex valued, so that also Ξ is

a complex parameter. Then, for an assigned pair of input parameters (a,Ge), the

constraints P′(1) = 0 and Θ(1) = 0 yield four real equations that allow one to obtain

Rah, λ2, as well as the real and the imaginary parts of Ξ. The latter task can be

accomplished by coupling a shooting method to the Runge-Kutta numerical solution. A

convenient environment for implementing this procedure is Mathematica 7 (©Wolfram

Research, Inc.). The function NDSolve is used for the numerical solution of the initial

value problem, while the constraints at y = 1 are dealt with the function FindRoot.

After obtaining the eigenvalue pairs (Rah, λ2) that correspond to given pairs of input

values (a,Ge), we can determine the critical values acr and Rah,cr by seeking the

minimum of function Rah(a) for every assigned Ge.

A convergence test of the numerical solution has been carried out by changing the

fixed step-size δy of the Runge-Kutta method. Function NDSolve allows one to use an

adaptive step-size control. A comparison of the results obtained by the adaptive and

the fixed step-size Runge-Kutta solutions is reported in Table 5.1. This table shows

that by decreasing the fixed step-size δy one obtains for δy = 0.001, within 9 significant

digits, a perfect agreement with the results found by the adaptive step-size control.

A crucial point in the development of the shooting method is the assignment of an

initial guess for the eigenvalue pairs (Rah, λ2) that correspond to given pairs of input

values (a,Ge). The nearer is this initial guess to the exact eigenvalue pair the more

rapidly converging and the more efficient is the shooting method. This task can be

accomplished for the case of longitudinal rolls (χ = π/2) by the approximate solution

obtained through Galerkin’s method of weighted residuals in the next section.

5.4 Weighted residuals solution for longitudinal rolls

In the case of longitudinal rolls, an approximate solution of Eqs. (5.21)-(5.25) can be

found by using Galerkin’s method of weighted residuals (29).
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On account of Eq. (5.30), for longitudinal rolls both P and θ are independent of x.

Then, Eq. (5.22) implies that U is zero, so that Eqs. (5.21)-(5.25) yield

∂V

∂y
+
∂W

∂z
= 0, (5.39)

V = −∂P
∂y

+ θ, W = −∂P
∂z

, (5.40)

∂θ

∂t
+ V

∂TB
∂y

=
∂2θ

∂y2
+
∂2θ

∂z2
, (5.41)

y = 0 : V = 0,
∂θ

∂y
= 0, (5.42)

y = 1 : V = 0, θ = 0. (5.43)

On introducing the streamfunction,

V =
∂ψ

∂z
, W = −∂ψ

∂y
, (5.44)

Eq. (5.39) is identically satisfied. Then, by rearranging Eqs. (5.40)-(5.43) we are led to

the streamfunction-temperature formulation,

∂2ψ

∂y2
+
∂2ψ

∂z2
− ∂θ

∂z
= 0, (5.45)

∂θ

∂t
+
∂ψ

∂z

∂TB
∂y

=
∂2θ

∂y2
+
∂2θ

∂z2
, (5.46)

y = 0 : ψ = 0,
∂θ

∂y
= 0, (5.47)

y = 1 : ψ = 0, θ = 0. (5.48)

In the streamfunction-temperature formulation, the plane wave solutions given by

Eq. (5.30) with λ2 = 0 can be expressed as

ψ(y, z, t) = Ψ(y) eλ1 t sin(a z), θ(y, z, t) = Θ(y) eλ1 t cos(a z). (5.49)
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By substituting Eq. (5.49) in Eqs. (5.45)-(5.48), one obtains for neutral stability (λ1 =

0)

Ψ′′ − a2 Ψ + aΘ = 0, (5.50)

Θ′′ − a2 Θ + a
Ra2

h y
2

6
(2Gey + 3) Ψ = 0, (5.51)

y = 0 : Ψ = 0, Θ′ = 0, (5.52)

y = 1 : Ψ = 0, Θ = 0. (5.53)

Approximate expressions of Ψ(y) and Θ(y) can be written through linear combinations

of trigonometric trial functions that satisfy the boundary conditions, Eqs. (5.52) and

(5.53),

Ψ(y) =
N∑
n=1

Ψn sin(nπ y), Θ(y) =
N∑
n=1

Θn cos
[(
n− 1

2

)
π y

]
. (5.54)

Let us consider the lowest order, N = 1. Then, on account of Eq. (5.54), Eqs. (5.50)

and (5.51) yield the residuals

EΨ(y) = −
(
π2 + a2

)
Ψ1 sin(π y) + aΘ1 cos

(π
2
y
)
, (5.55)

EΘ(y) = a
Ra2

h y
2

6
(2Gey + 3) Ψ1 sin(π y)−

(
π2

4
+ a2

)
Θ1 cos

(π
2
y
)
. (5.56)

We prescribe the orthogonality of EΨ(y) with respect to the trial function sin(π y), and

the orthogonality of EΘ(y) with respect to the trial function cos(π y/2), namely∫ 1

0
EΨ(y) sin(π y) dy = 0,

∫ 1

0
EΘ(y) cos

(π
2
y
)
dy = 0. (5.57)

Eq. (5.57) can be written as a linear system of algebraic equations,(
MΨΨ MΨΘ

MΘΨ MΘΘ

)(
Ψ1

Θ1

)
= 0, (5.58)

where

MΨΨ = −1
2
(
π2 + a2

)
, MΨΘ =

4a
3π
,

MΘΨ =
16a

[
9π2(Ge+ 1)− 80Ge− 21π

]
Rah

2

81π4
, MΘΘ = −1

2

(
π2

4
+ a2

)
.

(5.59)
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Ge δy = 0.2 δy = 0.1 δy = 0.01 δy = 0.001 Adaptive

0 15.0492448 15.0328344 15.0310861 15.0310859 15.0310859 Rah,cr

2.61980685 2.62211542 2.62246839 2.62246843 2.62246843 acr

0.2 14.4671485 14.4512942 14.4495614 14.4495612 14.4495612 Rah,cr

2.63232262 2.63473566 2.63511981 2.63511986 2.63511986 acr

0.4 13.9470592 13.9317089 13.9299926 13.9299924 13.9299924 Rah,cr

2.64344304 2.64594237 2.64635503 2.64635507 2.64635507 acr

0.6 13.4787926 13.4639021 13.4622030 13.4622028 13.4622028 Rah,cr

2.65338114 2.65595226 2.65639100 2.65639105 2.65639105 acr

0.8 13.0543446 13.0398759 13.0381943 13.0381941 13.0381941 Rah,cr

2.66231055 2.66494179 2.66540444 2.66540449 2.66540449 acr

1.0 12.6673294 12.6532495 12.6515858 12.6515856 12.6515856 Rah,cr

2.67037366 2.67305557 2.67354018 2.67354024 2.67354024 acr

Table 5.1: Values of Rah,cr and acr versus Ge for the longitudinal rolls, χ = π/2; com-

parison between the adaptive step-size Runge-Kutta method and the Runge-Kutta method

with fixed step-size δy.

Eq. (5.58) admits nontrivial solutions only if the matrix M has a vanishing determinant.

This condition can be expressed as

Rah
2 =

[(
64 a2

27π3
− 5120 a2

243π5

)
Ge+

64 a2

27π3
− 448 a2

81π4

]−1(
a4

4
+

5π2 a2

16
+
π4

16

)
. (5.60)

On seeking the minimum of the right hand side of Eq. (5.60), one determines the critical

values

acr =
π√
2
, Ra2

h,cr =
2187π7

1024 [9π2(Ge+ 1)− 80Ge− 21π]
. (5.61)

Then,

acr ∼= 2.22144147, Rah,cr ∼=
16.8007015√

1 + 0.386226840Ge
. (5.62)

Let us refer to the range 0 < Ge < 1. With respect to acr, Eq. (5.62) is an underestimate

of the accurate value obtained through the fourth order Runge-Kutta method with a

relative error between 15% (Ge = 0) and 17% (Ge = 1). On the other hand, with

respect to Rah,cr, Eq. (5.62) is an overestimate of the accurate value obtained through
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Figure 5.3: Plots of Rah,cr versus Ge for different values of χ.

the fourth order Runge-Kutta method with a relative error between 12% (Ge = 0) and

13% (Ge = 1).

5.5 Discussion of the results

A fairly accurate correlation of Rah,cr versus Ge for longitudinal rolls, determined by

interpolating the data obtained through the fourth order Runge-Kutta method in the

range 0 < Ge < 2, is

Rah,cr ∼=
15.0310859√

1 + 0.411825090Ge
, (5.63)

the relative error being smaller than 0.025%. The functional form Rah,cr(Ge) given by

Eq. (5.63) is formally the same as that predicted by Galerkin’s method and expressed

by Eq. (5.62). On account of Eq. (5.63), we note that Rah,cr is a decreasing function of

Ge. This behaviour implies that the effect of viscous dissipation, one which vanishes in

the limit Ge→ 0, is destabilising. The same conclusion can be drawn on examining the

data reported in Table 5.1. This table shows that acr is a weakly increasing function

of Ge.
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Figure 5.4: Plots of Rah,cr versus χ for different values of Ge.
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Figure 5.5: Plots of acr versus Ge for different values of χ.



98 5. DARCY CONVECTION WITH LINEAR VELOCITY PROFILE

Figure 5.3 displays the behaviour of Rah,cr versus Ge for three different inclinations of

the oblique rolls: χ = 0 (transverse rolls), χ = π/4 and χ = π/2 (longitudinal rolls).

This figure allows one to conclude that the longitudinal rolls are the most unstable at

least in a physically meaningful range of Ge. In fact, Ge is usually lower than 1 and

often much lower than 1. Then, the range Ge & 4 where transverse rolls are the most

unstable mode is definitely of minor interest. Whatever is the inclination angle of the

disturbance rolls, Figure 5.3 shows that Rah,cr is a monotonic decreasing function of

Ge. The conclusion that the most unstable mode is the longitudinal rolls disturbance

reinforces Eq. (5.63) as a significant correlation for obtaining the onset condition of

linear instability.

Figure 5.4 illustrates the dependence of Rah,cr on the inclination angle, χ, between

the disturbance wave vector and the x-axis, for different values of Ge. In the range

0 ≤ χ ≤ π/2, the critical Rayleigh number is a weakly decreasing function of χ. This

confirms the conclusion drawn from Figure 5.3 that longitudinal rolls (χ = π/2) are

the most unstable adding the information that Rah,cr decreases monotonically with the

inclination angle χ.

Figure 5.5 shows that the critical wavenumber acr depends weakly on the Gebhart

number, at least in the physically significant range 0 < Ge < 1. As the Gebhart

number increases above this range, the critical wavenumber tends to change with Ge

so that the dependence on the inclination angle χ is progressively reduced. One may

see in Figure 5.5 that a value Ge ≈ 9 exists where the dependence on χ disappears.

The convective roll patterns corresponding to the critical conditions for Ge = 0 are

represented in Figures 5.6- 5.9. The streamlines of the velocity disturbance U (solid

lines) and the isotherms θ = constant (dashed lines) are drawn for different oblique

rolls from χ = π/2 (longitudinal rolls) to χ = 0 (transverse rolls). Figures 5.6- 5.9

shows a more and more marked bending of the convection rolls as the inclination angle

decreases from π/2. This effect is a consequence of the drift of the disturbance rolls in

the streamwise x-direction. We mention that the qualitative shape of the convection

rolls is not apparently affected by the Gebhart number, i.e. by the effect of viscous

dissipation. Then, values of Ge in the range 0 < Ge ≤ 1 yield critical convection

patterns hardly distinguishable from those in Figures 5.6- 5.9.
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Figure 5.6: Plots of the streamlines (solid lines) of the velocity disturbance, U, and

the isotherms (dashed lines) of the temperature disturbance, θ, under critical conditions,

a = acr and Rah = Rah,cr, for Ge = 0 and χ = π/2.



100 5. DARCY CONVECTION WITH LINEAR VELOCITY PROFILE

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 

y  

cos cosx zχ χ+  

Figure 5.7: Plots of the streamlines (solid lines) of the velocity disturbance, U, and

the isotherms (dashed lines) of the temperature disturbance, θ, under critical conditions,

a = acr and Rah = Rah,cr, for Ge = 0 and χ = π/3.
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Figure 5.8: Plots of the streamlines (solid lines) of the velocity disturbance, U, and

the isotherms (dashed lines) of the temperature disturbance, θ, under critical conditions,

a = acr and Rah = Rah,cr, for Ge = 0 and χ = π/6.
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Figure 5.9: Plots of the streamlines (solid lines) of the velocity disturbance, U, and

the isotherms (dashed lines) of the temperature disturbance, θ, under critical conditions,

a = acr and Rah = Rah,cr, for Ge = 0 and χ = 0.
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5.6 Conclusions

A non-uniform parallel buoyant flow in a horizontal plane porous layer with imper-

meable boundaries has been analysed. This basic flow is induced by the horizontal

temperature gradient prescribed on the top boundary, as well as by the internal viscous

heating. The basic temperature profile displays a maximum at the bottom boundary

of the layer, where a condition of thermal insulation (vanishing heat flux) is assumed.

Hence, a possibly unstable thermal stratification is present in the basic flow. The basic

parallel velocity field has a linear profile, vanishing at the bottom boundary and being

at its maximum at the top boundary. It has been shown that the governing parameter

which drives the transition to instability is the horizontal Rayleigh number, Rah. An-

other governing parameter, the Gebhart number Ge, assesses the effect of the viscous

dissipation. A linear stability analysis has been carried out in order to determine the

critical conditions for the onset of oblique rolls with any inclination angle χ of the wave

vector with respect to the basic flow direction.

The most important results obtained by the linear stability analysis of the basic flow

are the following.

� In the physically significant range of values of Ge, the longitudinal rolls are the

most unstable. Any other oblique roll disturbance yields higher values of the

critical Rayleigh number, Rah,cr.

� In the absence of viscous dissipation, i.e. in the limit Ge → 0, the minimum of

the neutral stability curve Rah(a) for longitudinal rolls is achieved for a = acr =

2.6225 and Rah = Rah,cr = 15.031.

� The effect of viscous dissipation is destabilizing. The critical value of Rah for the

onset of convective rolls is in fact a decreasing function of Ge.

� The critical wavenumber, acr, is weakly dependent on the Gebhart number, unless

Ge & 1. The latter condition is hardly observed in physical systems.
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6

LTNE in a forced convection

boundary layer

6.1 Introduction

The chapter is focused on using the local thermal non-equilibrium model to analyse

a thermal porous boundary layer. LTNE modelling assumes that the solid matrix

may have a different temperature compared to the one of the saturating fluid, this

being meant in terms of averages over representative elementary volumes. Thus, hot

fluid may flow into a cold, relatively insulating, porous matrix and there will exist a

difference in the average local temperature of the two phases. This difference will take

some distance to reduce to values such that the phases share the practically the same

local temperature (LTE), see (73), although there are configurations for which LTNE

persists even in the steady state, e.g. (75) and (70).

In this chapter a steady forced convection thermal boundary layer flow in a porous

medium is studied. This configuration bears a great deal of similarity to the classical

Pohlhausen problem in that a thermal boundary layer is induced by a step change in

the temperature of a semi-infinite flat plate (63). The only difference is that here we

are dealing with saturated porous media and not with clear fluids.

Conditions are determined within which the boundary layer approximation may be

made and we undertake an analytical and numerical study of the resulting temperature

fields. After a suitable rescaling, the governing equations are found to depend on just

105
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one parameter, γ, which, in turn, is defined in terms of the porosity of the medium and

of the thermal conductivities of the two phases. The thermal boundary layer equations

are then solved in three different ways: (i) analytically by means of a small-x asymptotic

analysis, (ii) analytically using a large-x series solution, and (iii) numerically by means

of a Keller box code. The small-x analysis requires the use of two asymptotic regions,

one of which is narrow and is such that the temperature of the fluid phase drops to

the ambient value at leading order, and a second much thicker region within which the

temperature of the solid phase drops to the ambient. Asymptotic matching between

these two regions is performed and described briefly. This analysis is guided by the

earlier study of Rees and Pop (75) who considered the effect of LTNE on a vertical free

convective boundary layer flow. The two-layer structure is then modeled numerically

by using the results of the asymptotic analysis to devise a modified outer boundary

condition for the solid temperature. The numerical solution is further facilitated by

the use of properly rescaled variables.

Local thermal non-equilibrium between the phases is found to be at its strongest near

the leading edge, but the maximum difference between the temperatures of the phases

decreases with distance from the leading edge, and local thermal equilibrium is attained

at large distances.

The contents of this chapter are based on the paper (22), yet to be submitted for

publication, by Celli, Rees and Barletta.

6.2 Mathematical model

A two-dimensional forced convection flow over a horizontal flat plate is assumed. A

sketch of the plate and of the coordinate system is shown in Figure 6.1.

The Darcy model for the porous medium is assumed to apply, and therefore the

externally-generated fluid motion is both uniform in space and constant in time. The

Oberbeck-Boussinesq approximation is invoked. The impermeable bounding surface,

which is placed at ȳ = 0, is held at the temperature, Tw, in the range, x̄ > 0, but

is held at the temperature of the free stream, T∞, in the range, x̄ < 0. The point,

(x̄, ȳ) = (0, 0), at which the boundary condition for the temperature changes, will be

regarded as the leading edge of the surface.

Given that the solid and fluid phases are not in LTE, separate heat transport equations
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Figure 6.1: A geometrical sketch of the problem.

for the solid and fluid phases are employed. The formulation used to described these

two heat transport equations is the one introduced by Eqs.(2.30) and (2.31), namely

ρ0 c

(
ϕ
∂T̄f
∂t̄

+ ū · ∇̄T̄f
)

= ϕk ∇̄2T̄f + µΦ + h (T̄s − T̄f ), (6.1)

(1− ϕ) (ρ0 cv)s
∂T̄s
∂t̄

= (1− ϕ) ks ∇̄2T̄s + h (T̄f − T̄s), (6.2)

Thus, given the Darcy model and the continuity equation used in the previous chapters

and considering negligible the contribution of viscous dissipation, the local balance

equations in the steady state may be expressed in the form,

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (6.3)

ū = −K
µ

∂p̄

∂x̄
, v̄ = −K

µ

∂p̄

∂ȳ
, (6.4)

ϕα

(
∂2T̄f
∂x̄2

+
∂2T̄f
∂ȳ2

)
+
hsf
ρ0 c

(T̄s − T̄f ) = ū
∂T̄f
∂x̄

+ v̄
∂T̄f
∂ȳ

(6.5)

(1− ϕ)αs

(
∂2T̄s
∂x̄2

+
∂2T̄s
∂ȳ2

)
+

hsf
(ρ0 cv)s

(T̄f − T̄s) = 0, (6.6)

where hsf is the interphases heat transfer coefficient. The thermal boundary conditions

are given by
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ȳ = 0 (x̄ < 0) : T̄s = T̄f = T̄∞

ȳ = 0 (x̄ > 0) : T̄s = T̄f = T̄w,

ȳ →∞ : T̄s, T̄f → T̄∞. (6.7)

The quantity, hsf , which appears in Eqs. (6.5) and (6.6), is a function of the microscopic

geometry of the medium, the conductivities of the phases and the strength of the flow.

Some values of hsf for stagnant two- and three-dimensional media of various types are

given in Rees (71; 72).

6.2.1 Nondimensional formulation

Given that this is a forced convection problem, the velocity field is given by,

(ū, v̄) = (ū∞, 0), (6.8)

and this may be used immediately in Eq. (6.5). The fact that the domain is semi-

infinite means that there is no natural physical lengthscale on which to basic a Péclet

number and to use for nondimensionalization. However, the quantity α/ū∞, i.e. the

ratio between the thermal diffusivity of the fluid phase and the velocity of the forcing

flow, has the dimensions of a length, and may be used for this purpose. It turns out

to be a little more convenient to use ϕα/ū∞ as the lengthscale, and therefore let us

introduce nondimensional variables using the following scalings,

(x̄, ȳ) =
ϕα

ū∞
(x̃, ỹ), (T̄f , T̄s) = (T̄w − T̄∞)(Tf , Ts) + T̄∞. (6.9)

On using Eqs. (6.8) and (6.9) in Eqs. (6.5) and (6.6) the set of equations become,

∂2Tf
∂x̃2

+
∂2Tf
∂ỹ2

+H(Ts − Tf ) =
∂Tf
∂x̃

, (6.10)

∂2Ts
∂x̃2

+
∂2Ts
∂ỹ2

+Hγ(Tf − Ts) = 0, (6.11)

where

H =
ϕhsf α

ū2
∞ ρ0 c

, γ =
ϕk

(1− ϕ) ks
=

ϕα (ρ0cv)s
(1− ϕ)αs ρ0 c

. (6.12)
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The boundary condition described by Eq. (6.7) in nondimensional coordinates can be

written as

ỹ = 0 (x < 0) : Ts = Tf = 0

ỹ = 0 (x > 0) : Ts = Tf = 1,

ỹ →∞ : Ts, Tf → 0. (6.13)

6.2.2 Boundary layer approximation

The system formed by Eqs. (6.10) and (6.11) is elliptic, and therefore, for O(1) values

of H, a fully elliptic numerical simulation should be undertaken to obtain the resulting

temperature fields of the two phases. The forced convection regime assumed implies

that a high velocity basic flow is taken into account so that the limit ū∞ � 1 is

considered. From the definition of H in Eq. (6.12), ū∞ � 1 implies that H � 1.

Assuming now that H � 1, it is necessary to balance the magnitudes of the last

three terms in Eq. (6.10), and it may be shown easily that the appropriate orders of

magnitude are x̃ = O(H−1) and ỹ = O(H−1/2). Therefore the scalings,

x̃ = H−1x, ỹ = H−1/2y, (6.14)

are introduced into Eqs. (6.10) and (6.11) to obtain,

H
∂2Tf
∂x2

+
∂2Tf
∂y2

+ (Ts − Tf ) =
∂Tf
∂x

, (6.15)

H
∂2Ts
∂x2

+
∂2Ts
∂y2

+ γ(Tf − Ts) = 0. (6.16)

Formally allowing H → 0 yields the boundary layer approximation naturally, and the

governing equations are now,

∂Tf
∂x

=
∂2Tf
∂y2

+ (Ts − Tf ), (6.17)

∂2Ts
∂y2

+ γ (Tf − Ts) = 0. (6.18)

This rescaling allows one to compress the region close to edge of the plate. In fact, in

the limit H � 1, if the coordinates x and y are O(1) then x̃ � 1 and ỹ � 1, that
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identifies a region far from the leading edge.

The assumption of forced convection regime implies that for x = 0 and y 6= 0 the fluid

phase temperature will be Tf = 0. From Eqs. (6.18) one can thus deduce that, for

x = 0 and y 6= 0, the solid phase temperature will be Ts = e−
√
γ y.

6.2.3 Boundary layer transformation

It is well-known that the equation formed by the first two terms of Eq. (6.17) admits

the self-similar solution

Tf = Erfc [y/2
√
x]. (6.19)

The solution shown in Eq.(6.19) can be found, for instance, in Ozisik (60), and it

motivates the following coordinate transformations,

η =
y

2
√
x
, ξ =

√
x, Tf = Θ(ξ, η), Ts = Φ(ξ, η), (6.20)

where Θ and Φ will henceforth denote the respective temperatures of the fluid and

solid phases in this new coordinate system while Tf and Ts correspond to the solution

written in Cartesian coordinates. Eqs. (6.17) and (6.18) become

∂2Θ

∂η2
− 2 ξ

∂Θ

∂ξ
+ 2 η

∂Θ

∂η
+ 4 ξ2 (Φ−Θ) = 0, (6.21)

∂2Φ

∂η2
+ 4 ξ2 γ (Θ − Φ) = 0, (6.22)

which are to be solved subject to the boundary conditions,

η = 0 : Θ = Φ = 1,

η →∞ and ξ > 0 : Θ, Φ → 0. (6.23)

It is important to note that the coefficient, ξ2, of the source/sink terms in Eqs. (6.21)

and (6.22) plays the same role as H does in Eqs. (6.10) and (6.11). Therefore it is

possible to observe immediately that large values of ξ will correspond to local thermal

equilibrium, while local thermal non-equilibrium effects will be at their strongest near

the leading edge, ξ = 0. These equations have only one nondimensional parameter,

namely γ.
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6.3 Asymptotic analyses

The numerical solution of Eqs. (6.21) and (6.22) will be preceded by asymptotic anal-

yses close to and far from the leading edge at ξ = 0. The near-leading-edge analysis

must be performed before the numerical solution because the former provides boundary

conditions that are essential for performing the latter.

6.3.1 Close to the leading edge

The system formed by Eqs. (6.21) and (6.22) may be solved in the region relatively

close to the leading edge by searching for a solution in the form of a power series in the

variable ξ,

Θ(ξ, η) = Θ0(η) + ξΘ1(η) + ξ2Θ2(η) + · · · , (6.24)

Φ(ξ, η)) = Φ0(η) + ξΦ1(η) + ξ2Φ2(η) + · · · .

At leading order in the expansion, the equations for Θ0 and Φ0 are,

Θ′′0 + 2 η Θ′0 = 0, Φ′′0 = 0 (6.25)

and their solutions are

Θ0 = Erfc [η], Φ0 = 1. (6.26)

In writing down the above expression for Φ0, it is important to note that it is impossible

to solve Φ′′0 = 0 subject to both Φ0(0) = 1 and Φ0 → 0 as η → ∞, and ξ > 0. The

boundary condition at the heated surface was employed, the implication being that the

temperature of the solid phase near the leading edge must then vary over a lengthscale

which is much greater than that represented by O(1) values of η. This is consistent

with a previous analysis in (75). It is also clear that Eq. (6.18) provides a means of

satisfying the far field boundary condition; in this regime where y = O(1) the leading

order temperature of the fluid phase, Θ0, has already decayed to zero, leaving a system

which admits an exponentially decaying solution. Therefore it is natural to attempt a

corresponding solution in this ‘outer’ region where y = O(1) (noting that the ‘inner’

region where η = O(1) corresponds to y = O(x1/2) = O(ξ)). Thus an outer solution of

the form,

Tf (x, y) ∼ Tf,0(y) +
√
xTf,1(y) + xTf,2(y) + · · · , (6.27)

Ts(x, y) ∼ Ts,0(y) +
√
xTs,1(y) + xTs,2(y) + · · · ,
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is sought. On taking Tf,0 = 0 because of the superexponential decay of Θ0 in the inner

region, the leading order equations in the outer region are,

Tf,2 = Ts,0, T ′′s,0 − γ Ts,0 = 0. (6.28)

Given that Φ0 = 1, the appropriate matching condition for Ts,0 is that Ts,0(0) = 1.

Hence Ts,0 and Tf,2 are given by,

Tf,2 = Ts,0 = e−
√
γ y, (6.29)

which shows that the leading order terms of both temperature fields decay exponen-

tially; this has important implications later for the numerical solutions.

These solutions now provide us with the appropriate matching conditions for the inner

solutions at the next order in ξ. On expanding the solutions given in Eq. (6.29) about

y = 0 one obtains,

Tf ∼ (1−√γ y +
γ y2

2
+ · · · )x, (6.30)

Ts ∼ 1−√γ y +
γ y2

2
+ · · · , (6.31)

and if y is replaced by 2η ξ then the large-η matching conditions for small values of ξ

are found to be,

Θ ∼ ξ2 − 2
√
γ η ξ3 + · · · , Φ ∼ 1− 2

√
γ η ξ + 2 γ η2 ξ2 + · · · . (6.32)

Therefore the following conditions as η →∞ may be written,

Φ1 ∼ −2
√
γ η, Φ2 ∼ 2 γ η2, Θ2 ∼ 1. (6.33)

The next terms in the inner region arise at O(ξ). From the expansion at this order one

obtains the system

Θ′′1 + 2 η Θ′1 − 2Θ1 = 0, Φ′′1 = 0. (6.34)

which is to be solved subject to the conditions,

η = 0 : Θ1 = 0, Φ1 = 0, (6.35)

η →∞ and ξ > 0 : Θ1 → 0, Φ1 ∼ −2
√
γ η.

The solutions are

Θ1 = 0, Φ1 = −2
√
γ η. (6.36)
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The solution for Ts,1 is clearly passive, and it is caused by the leading order exponential

properties of Ts,0.

At O(
√
x) in the outer region, the governing equations are

T ′′f,1 + Ts,1 − Tf,1 − 2Tf,3 = 0, T ′′s,1 + γ(Tf,1 − Ts,1) = 0, (6.37)

which are to be solved subject to

y = 0 : Tf,1 = Ts,1 = 0, y →∞ : Tf,1, Ts,1 → 0. (6.38)

Given that these equations are homogeneous, the solutions are

Tf,1 = 0, Tf,3 = 0, Ts,1 = 0. (6.39)

At O(ξ2) in the inner region, the governing equations are,

Θ′′2 − 4Θ2 + 2 η Θ′2 + 4 Erf [η] = 0, Φ′′2 − 4 γ Erf [η] = 0, (6.40)

η = 0 : Θ2 = 0, Φ2 = 0, (6.41)

η →∞ and ξ > 0 : Θ2 → 1, Φ2 ∼ 2 γ η2,

and the solutions are

Θ2 = Erf [η], Φ2 = η
2e−η

2
γ√

π
+ γ

(
1 + 2η2

)
Erf [η]. (6.42)

This is a reasonable point at which to stop the expansion for the inner region because

three terms have now been obtained for Φ. At O(x) for the outer region one has

T ′′f,2 + Ts,2 − Tf,2 − 2Tf,4 = 0, T ′′s,2 + γ(Tf,2 − Ts,2) = 0. (6.43)

which are to be solved using Eq. (6.29) and subject to

y = 0 : Ts,2 = 0, y →∞ : Ts,2 → 0, (6.44)

the solution for Eq. (6.43) is

Tf,4 =
e−y

√
γ

4
(2 γ − 2 + y

√
γ) , Ts,2 = e−y

√
γ

(
y
√
γ

2

)
. (6.45)
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To summarise, the solutions found by the power series expansion for both the inner

and the outer regions are:

Θ ∼ Erfc [η] + ξ2 Erf [η], (6.46)

Φ ∼ 1− 2
√
γξ η +

[
η

2γe−η
2

√
π

+ γ
(
1 + 2η2

)
Erf [η]

]
ξ2,

Tf ∼ x e−y
√
γ ,

Ts ∼ e−y
√
γ + x

(
y
√
γ

2

)
e−y

√
γ .

6.3.2 Far from the leading edge

The solutions of Eqs. (6.21)-(6.22) at large distances from the leading edge are consid-

ered now. When ξ � 1 there are two possible order-of-magnitude balances that may

be obtained from Eq. (6.22). The first suggests that there is an inner layer of width

η = O(ξ−1) within the main boundary layer, for which we assume that η = O(1).

The second, and more reasonable one on physical grounds, is that Tf − Ts = O(ξ−2),

and that there is only one asymptotic region. This second balance corresponds to the

approach to LTE. Therefore one may investigate the region far from the leading edge

by searching for a solution expressed as a power series expansion of the form

Θ(ξ, η) ∼ Θ0(η) + ξ−1Θ1(η) + ξ−2Θ2(η) + · · · , (6.47)

Φ(ξ, η) ∼ Θ0(η) + ξ−1Θ1(η) + ξ−2Θ2(η) + · · · . (6.48)

The leading order, i.e. O(1), equations are

Θ′′0 + 2 η Θ′0 + 4 (Φ2 −Θ2) = 0, (6.49)

Φ′′0 + 4 γ (Θ2 − Φ2) = 0, (6.50)

while the boundary conditions are

η = 0 : Θ = Φ = 1,

η →∞ : Θ,Φ → 0. (6.51)
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Given the above argument, one may reasonably assume that Φ0 = Θ0. On multiplying

Eq. (6.49) by γ and adding it to Eq. (6.50), one obtains

(1 + γ)Θ′′0 + 2 η γ Θ′0 = 0, (6.52)

the solution for which is,

Φ0 = Θ0 = Erfc
[
η

√
γ

1 + γ

]
. (6.53)

At O(ξ−1) of the expansion the governing equations are,

Θ′′1 + 2Θ1 + 2 η Θ′1 + 4 (Φ3 −Θ3) = 0, (6.54)

Φ′′1 + 4 γ (Θ3 − Φ3) = 0. (6.55)

The terms in Θ3 and Φ3 may be eliminated by means of the same process of combination

of the equations, and this results in the following equation,

(1 + γ)Θ′′1 + 2 η γ Θ′1 + 2 γ Θ1 = 0. (6.56)

Given the above scaling argument that Θ − Φ = O(ξ−2), it has been assumed that

Θ1 = Φ1. Equation (6.56) has the general solution,

Φ1 = Θ1 = C1 e
− η2γ

1+γ Erfi

[
η

√
γ

1 + γ

]
+ C2e

− η2γ
1+γ , (6.57)

where C1 and C2 are constants. This solution should satisfy zero boundary conditions

for Θ1 at both η = 0 and as η →∞. This implies that C2 = 0, but C1 remains indeter-

minate. Clearly, then, the function multiplying C1 in Eq. (6.57) is an eigensolution of

the equation. Although further terms in this expansion will only be expressed in terms

of C1 and any further eigensolutions which might arise, it is possible, nevertheless, to

determine precisely the leading order departure from LNTE. If Eq. (6.53) is substituted

into Eqs. (6.49) and (6.50), then it is straightforward to show that

Θ2 − Φ2 =
Φ′′0
4 γ

=
√

γ

π (1 + γ)3
η e
− η2γ

1+γ . (6.58)

Eq. (6.58) corresponds to an O(ξ−2) difference between the temperatures of the phases.

It is also worthy of note that the magnitude of this difference decreases as γ increases;

the mathematical reason lies in the fact that a large value of γ forces the difference

between the temperatures to be small, as seen in Eq. (6.22).
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Figure 6.2: Isotherms for both the solid and fluid phases for γ = 0.01 (upper), γ = 0.1

(middle), γ = 1 (lower). Dashed lines refer to the solid phase and solid lines refer to fluid

phase.
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6.4 Numerical solutions

The numerical scheme which was used to solve numerically the system of Eqs. (6.21)-

(6.22) is a standard Keller box method, which is a generic method for time or space

marching problems. Most often, the system is reduced to first order form in η, the

resulting equations discretised half way between the grid points in both the η and ξ

directions, and it is therefore of second order accuracy. An initial profile is not required,

because the system of parabolic partial differential equations reduces to an ordinary

differential system at ξ = 0, and a suitably written code will be able to solve this system

easily. Although the present system of equations is linear, the general methodology uses

a multidimensional Newton-Raphson iteration scheme to solve the discretised equations.

In our case the corresponding iteration matrix is computed numerically, and a standard

block-Thomas algorithm is used to solve the iteration equations. The x variable is

treated here as a time-like variable, and the solution is marched downstream.

In the present implementation we have adopted a backward difference method in x in

order to maximise numerical stability, and good accuracy is ensured by employing the

small steplength, δξ = 10−2. In the η-direction, the steplength, δη = 10−2, is taken

with ηmax = 20. However, in the above small-ξ analysis we determined that the leading

order temperature fields in the outer region decay as exp(−y√γ), i.e. as exp(2ηξ
√
γ)

from the point of view of the boundary layer. Therefore it is clear that this rate of

decay cannot be contained within a finite computational domain when ξ is sufficiently

small. However, it is possible to model this rate of decay by adopting a different set of

boundary conditions from those given earlier in Eqs. (6.23). We used the following,

Θ′ + 2ξ
√
γΘ = 0, Φ′ + 2ξ

√
γΦ = 0, at η = ηmax. (6.59)

These conditions were used from ξ = 0 until the first value of ξ at which both Θ and Φ

are less than 10−6, and thereafter the conditions given in Eqs. (6.23) were adopted. In

this way the full presence of the outer layer is modelled by means of a modified boundary

condition. Figures 6.2 - 6.4 show the temperature profiles obtained by the numerical

simulations, and are plotted in the (x, y)-coordinates, as defined in Eq. (6.14). The

three frames in Figure 6.2 are drawn using the same range of values of x and y, but for

different values of γ: the upper frame refers to γ = 0.01, the central frame to γ = 0.1

and the lower refers to γ = 1. Dashed lines refer to the solid phase and solid lines refer
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Figure 6.3: Isotherms for both the solid and fluid phases for γ = 0.01 (upper), γ = 0.1

(middle), γ = 1 (lower). Dashed lines refer to the solid phase and solid lines refer to fluid

phase. This Figure has a different vertical resolution to that shown in Figure 6.2.
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to fluid phase. In this figure it is clear that the thickness of the thermal boundary layer

at all values of x is strongly dependent on the magnitude of γ. This is consistent with

Eq. (6.53) which shows clearly that the large-x thickness of the boundary layer increases

as γ decreases. Likewise, near the leading edge, the thickness of the thermal boundary

layer corresponding to the solid phase increases as γ decreases; see Eq. (6.28). That this

should be so is understood by referring to the physical implications of different values

of γ. When γ is small, heat is conducted easily away from the heated surface, and only

a small amount is imparted to the fluid. On the other hand, when γ is large, heat is

transferred easily to the fluid and is therefore advected downstream, which decreases

the thickness of the boundary layers. The ease of heat transfer between the phases may

also be seen in Figure 6.7 local thermal equilibrium is attained at much smaller values

of x when γ = 1 than when γ = 0.01.

Figures 6.4 and 6.3 shows the same information as Figure 6.2, but for a progressively

smaller range of values of y and x. The variation with γ of the boundary layer thickness

of the solid phase near the leading edge may be seen clearly, but it is also possible to

see that the boundary layer thickness of the fluid phase is independent of γ there. This

independence is consistent with Eq. (6.26). At slightly increased distances from the

leading edge the boundary layer thickness of the fluid phase increases rapidly at a rate

which is dependent on γ.

Although γ is the sole parameter of the system being studied, Figures 6.2 - 6.4 already

indicate substantial variations of the resulting temperature fields as the parameter

varies. The rate of heat transfer is an important quantity, and the manner in which its

evolution with ξ varies with γ is shown in Figure 6.5. All of our previous observations

are seen clearly in this Figure, particularly the magnitude of the rate of heat transfer far

from the leading edge. Given that we have plotted the η-derivative of the temperatures,

the solid phase now has a zero rate of heat transfer at the leading edge, but this varies

rapidly as ξ increases, and does so at a γ-dependent rate. However, of most interest is

the distance at which one might say that local thermal equilibrium has been attained.

Such a criterion is necessarily arbitrary; we can define xLTE to be the distance beyond

which the relative difference of the surface rates of heat transfer, Λ, is less than 1%,

namely, that

Λ = 2
(∂Tf
∂η

∣∣∣
η=0
− ∂Ts

∂η

∣∣∣
η=0

)
/
(∂Tf
∂η

∣∣∣
η=0

+
∂Ts
∂η

∣∣∣
η=0

)
≤ 0.01. (6.60)
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Figure 6.4: Isotherms for both the solid and fluid phases for γ = 0.01 (upper), γ = 0.1

(middle), γ = 1 (lower). Dashed lines refer to the solid phase and solid lines refer to fluid

phase. This Figure has a different vertical resolution to that shown in Figure 6.2 and 6.3.
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Figure 6.5: Variation with ξ of the rates of heat transfer, ∂Θ/∂η and ∂Φ/∂η versus the

distance from the edge ξ, for different values of γ and for fixed η = 10. Dashed lines refer

to the solid phase and solid lines to the fluid phase.

The behaviour of the parameter Λ as a function of x is shown in Figure 6.6. This figure

confirms the results previously obtained in Figure 6.5 for which as γ increases the heat

transfer between the two phases decreases more quickly. Thus also the distance from

the leading edge xLTE defined by Eq.(6.60) decreases as γ increases. This behaviour is

displayed in Figure 6.7 and the relative Table 6.1. The value of xLTE , in fact, decreases

monotonically as γ increases.

6.5 Conclusions

A steady two−dimensional forced convection thermal boundary layer in a porous medium

has been studied both analytically and numerically. The main focus has been on the

effect of local thermal non−equilibrium between the solid and fluid phases. Separate

asymptotic analyses which are valid at small distances and at large distances from the

leading edge have been obtained. In particular, we have determined that the boundary

layer in the near-leading-edge region splits into two well-defined asymptotic regions,
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γ xLTE

0.01 51.4806

0.02 51.1225

0.05 49.7025

0.1 46.9225

0.2 42.9025

0.5 33.9306

1 25.0000

2 16.6056

5 8.2297

10 4.4627

50 2.3256

100 0.9604

500 0.4830

1000 0.0490

Table 6.1: Variation with γ of the distance, xLTE , at which local thermal equilibrium is

attained. Threshold for the achieving of LTE is chosen to be when the parameter Λ ≤ 0.01.
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one in which y is the natural variable, and the other in which η is the natural variable.

This analysis was used to obtain an effective outer boundary condition for the numer-

ical study which would take into account accurately the presence of the outer region.

The large-ξ asymptotic analysis shows that local thermal equilibrium is attained in this

limit, with local thermal non-equilibrium effects being of O(x−1) in magnitude. A full

numerical solution was also obtained and solutions presented.

We found that:

� the thickness of the boundary layers of each phase depends strongly on the value

of γ;

� the thickness of fluid boundary layer near the leading edge is independent of γ;

� the boundary layer corresponding to the solid phase is always thicker than that

of the fluid phase;

� local thermal equilibrium was attained at decreasing distances from the leading

edge as γ increases; this was related to the increasing ease of heat transfer between

the phases.
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Appendix

7.1 Some examples of Mathematica notebooks

In this thesis, on approaching the linear stability analysis of fluid saturated porous

media, we found a number of eigenvalue problems to solve. On achieving this aim, we

used original codes and also we made use of a commercial code, Mathematica 7 (©

Wolfram Research, Inc.). In the following, few examples of notebook used to solve our

eigenvalue problems are shown.

For instance, the series solution described in Section 3.4, has been implemented in

Mathematica in order to be solved. In the case of a self-adjoint problem, i.e. for lon-

gitudinal rolls, the recursion law on which one can deduce the power series coefficients

has been defined as in Notebook 1 that follows. In the latter, the resulting coefficients

of the power series, the power series expansion described in Eq.(3.45), the code used to

draw the neutral stability curves and the code used to find the minima of the neutral

stability curves are also shown.

On the other hand, an implicit method to solve an eigenvalue problem is now described.

In particular, the analysis of the longitudinal rolls described by Eqs.(5.36)-(5.37) is

shown. The study is performed again with the aid of the commercial code Mathematica.

In this case a solver based on the explicit Runge-Kutta method has been employed. The

notebook used is shown in the Notebook 2 that follows. The system of Eqs.(5.36)-(5.37)

and its derivative with respect to the wavenumber are taken into account in order to

ensure the closure of the problem. Two different Runge-Kutta methods are used: the
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first with an adaptive stepsize and the second with the fixed stepsize.



8

Discussion

In this thesis, the role of heat generation due to the viscous dissipation contribution in

fluid saturated porous media has been analysed. On studying this topic, different ap-

proaches to the momentum balance equation and the thermal energy balance equation

have been used. Also different thermal boundary conditions have been used to analyse

the topic: imperfect isothermal boundaries and also a linear change of temperature

in the streamwise direction for the top boundary are used. A linear stability analysis

of parallel steady basic flows has been performed. The basic steady flows have been

thus perturbed with disturbances of the form of plane waves. The stability analysis

is focused on the study of the onset of convective rolls. These rolls are chosen to be

inclined of an arbitrary angle with respect to the basic flow. In particular, this allowed

us to investigate the onset of both longitudinal and transverse rolls.

The viscous dissipation contribution introduced in the thermal energy balance equation

produced different effects. On considering a Prats problem with an imperfect isothermal

top boundary, one can note that, by adding the viscous dissipation term, the resulting

basic flow describes a parabolic thermal profile and not a linear one. This feature

yields a higher average temperature of the basic flow and thus, for the same kind of

problem, the effect of the buoyancy is more intense when the viscous dissipation is

taken into account. As a consequence, a lower Rayleigh number value is sufficient for

the onset of instability, with respect to the Prats case. Moreover, the transverse rolls

requires a lower basic flow velocity to became unstable than any other kind of oblique

rolls. One can also note that the nonlinearity characteristic of the viscous dissipation
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term, in the local energy balance, introduces a source of instability in addiction to the

convective term. In this case, in fact, the terms that couple the thermal energy balance

equation and the momentum balance equation are two and not only one as when just

the convective term is present.

On considering a Prats-like problem taking into account the Forchheimer model, the

relative viscous dissipation contribution and an imperfect isothermal bottom boundary

one finds that the basic temperature profile is still parabolic. It is found that, in Darcy’s

limit when the Forchheimer coefficient tends to zero, the critical value of the stability

parameter does not depend on the inclination of the wave disturbance with respect to

the basic flow. Analysing the onset of the longitudinal rolls one can note that, unlike the

case of the Darcy problem with an imperfect isothermal top boundary, this orientation

of the rolls is more unstable. Moreover, the longitudinal rolls are independent of the

Forchheimer parameter. On the other hand, the critical value of the stability parameter

for the case of the transverse rolls shows a maximum of variability with respect to the

Forchheimer parameter.

We also applied, to a parallel horizontal buoyant flow, a linear change of temperature in

the streamwise direction for the top boundary. The resulting basic flow displays a linear

velocity profile and a nonlinear temperature profile, namely a fourth degree polynomial.

The analysis of this particular system shows clearly that the viscous dissipation plays

a destabilising role. Given that the Gebhart number is the nondimensional parameter

scaling the viscous dissipation term, the critical parameter value being a decreasing

function of the Gebhart number implies that the viscous dissipation contribution is

destabilising. Again the most unstable stable rolls are the longitudinal ones.

In the cases discussed above an imperfect isothermal boundary produces a change in

the critical value of the stability parameter at which the system starts to be unsta-

ble. More precisely, the threshold values of the stability parameter for the onset of

instability increases monotonically with the Biot number: one can find a minimum for

the adiabatic condition, Bi = 0, and a maximum value for the isothermal condition,

Bi→∞.

The last analysis performed focused on using a local thermal non-equilibrium model to

analyse a thermal boundary layer in forced convection regime. The forced convection

hypothesis allowed us to assume a local thermal non equilibrium between the two

phases, fluid and solid. The temperature difference between the solid porous matrix
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and the fluid phase has thus a maximum close to the leading edge of the plate. This

temperature difference reduces his value as the thermal boundary layer develops until

a local thermal equilibrium between the solid and the fluid temperature is attained at

large distances from the leading edge. The boundary layer corresponding to the solid

phase is always thicker than that of the fluid phase. Moreover, the boundary layer

depends just on one parameter defined by a ratio of the thermal conductivities of the

two phases. This parameter drives the heat transfer between the phases: as it increases

the heat transfer is more efficient, the thickness of the thermal boundary layer decreases

and the local thermal equilibrium is achieved closer to the leading edge.

8.1 Opportunities for future work

The analysis of the convective instability activated by the effect of viscous dissipation is

a relatively novel subject. This thesis has provided a first account to this subject with

reference to the field of fluid saturated porous media. The engineering aspects of these

researches are manifold and, among the others, I quote the diffusion of chemical or nu-

clear contaminants in the soil. The latter, modelled as a groundwater saturated porous

medium, is a typical example of a system where the control of the possible convec-

tive instability may have a practical importance. The effect of the viscous dissipation

is, strictly speaking, an important phenomenon if highly viscous and lowly conduc-

tive fluids are involved. A magnification of this effect is expected when the external

conditions imply the presence of very low heat fluxes at the system boundaries. The

viscous dissipation may be coupled or not to effects of local thermal non-equilibrium.

The latter being a relatively novel aspect in the thermal modelling of fluid flow and

heat transfer in porous media. The non-equilibrium effects can be important when

fast transient processes or high-speed flows take place. Future developments of the re-

searches developed in this thesis may be oriented to the investigation of more realistic

models of the fluid saturated porous media encountered in the industrial or geother-

mal design. For instance, highly viscous fluids with potentially important effects of

viscous heating have generally a strongly temperature-dependent viscosity. An effect

that has been disregarded in this thesis, but certainly interesting as an opportunity for

future work. Models of the temperature change may be based on exponential models,
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such as the Nahme model or the Arrhenius model. In the framework of the Oberbeck-

Boussinesq approximation, one involving relatively small temperature differences, also

a linear model for the temperature change of the fluid viscosity is appropriate. The

latter case is an approach certainly simpler that may offer a possibility of analytical

or semi-analytical solutions for the basic flow. The thesis has its focus on the Darcy

model and on the Forchheimer model. A quite interesting subject for future work can

be the application of the Brinkman model, appropriate for porous media with a large

permeability. The Brinkman model is, theoretically speaking, an important arena for

testing the present models of the viscous dissipation source term in the local energy

balance equation. This thesis contains a note on this point in Section 2.2. The results

of the fluid stability analyses based on different models may provide useful information

to develop further the scientific debate on this theoretical aspect of the fluid dynamics

in porous media. The study, based on the LTNE theory, of the analogous of the Pol-

hausen problem, for the thermal boundary layer external to a semi-infinite plate, can

be expanded to systems with a finite vertical width, namely plane channels. In other

words, LTNE can be used for revisiting classical thermal entrance problems in channels

and ducts, such as the Graetz problem.
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