
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN
Ingegneria Energetica, Nucleare e del Controllo Ambientale

Ciclo XXII
settore scientifico-disciplinare di afferenza: ING/IND-19 IMPIANTI NUCLEARI

A THREE-DIMENSIONAL FEM SOLVER OF
THE NAVIER-STOKES EQUATIONS WITH

APPLICATIONS TO TWO-PHASE FLOWS AND
INNOVATIVE NUCLEAR REACTOR CONCEPTS

Presentata da Antonio Cervone

Coordinatore Dottorato
Chiar.mo Prof. Ing. Antonio Barletta

Relatore
Chiar.mo Prof. Ing. Ruben Scardovelli

Esame finale anno 2010

Contents

. Introduction 1

I. Mathematical Model 5

1. Variational formulation of the Navier-Stokes problem 7
1.1. Function space notation . 7

1.1.1. Integrable spaces Lp(Ω) . 7
1.1.2. Sobolev spaces Hk(Ω) . 8

1.2. The Stokes problem . 9
1.2.1. Stokes variational equation . 9
1.2.2. Boundary conditions . 10

1.3. The Navier-Stokes problem . 12
1.3.1. The steady-state problem . 12
1.3.2. The time-dependent Navier-Stokes problem 12

2. Finite element approximation 15
2.1. The Galerkin method approximation . 15
2.2. The Finite Element Method . 17

2.2.1. One-dimensional case . 17
2.2.2. Two-dimensional case . 20
2.2.3. Three-dimensional case . 25

2.3. Error estimation . 27
2.3.1. Notation . 27
2.3.2. Energy (H1) norm error estimation 27
2.3.3. L2 norm error estimation . 29

3. Numerical solution 31
3.1. Discretization of the Navier-Stokes equations 31

3.1.1. Temporal derivative discretization 32
3.1.2. Algebraic formulation of the Navier-Stokes equations 33

3.2. Coupled solvers . 34
3.2.1. Domain Decomposition Methods 35
3.2.2. Krylov subspace methods . 36
3.2.3. Preconditioning . 38

3.3. Segregated (split) solvers . 39
3.3.1. The incremental pressure-correction scheme 40

i

Contents

3.3.2. The rotational incremental pressure-correction scheme 41
3.3.3. The penalty method . 42

3.4. Multigrid algorithm . 44
3.4.1. Multigrid cycles . 45
3.4.2. Prolongation and restriction . 46

II. Two-Phase Flow 51

4. Two-phase flow and interface capturing 53
4.1. Single fluid formulation of the Navier-Stokes equations for two-phase flow 53
4.2. Volume-of-Fluid (VOF) method for interface capturing 55

4.2.1. Interface reconstruction . 56
4.2.2. Interface advection . 59

4.3. Multilevel VOF method . 63
4.3.1. Numerical implementation of the multilevel VOF method 66
4.3.2. Velocity refinement with an optimal control approach 68

4.4. Surface tension modeling . 70
4.4.1. Numerical implementation of the capillary force 71

5. Numerical simulations 73
5.1. Linear dispersion equation for jets . 73

5.1.1. Analytical dispersion equation . 73
5.1.2. Numerical results . 76

5.2. Axisymmetric pulsating jets . 78

III. Nuclear Reactors Thermal-Hydraulics 91

6. Porous media approach for nuclear reactor cores 93
6.1. Energy equation . 93
6.2. Porous media approach . 94

6.2.1. Two-level finite element Navier-Stokes system 94
6.2.2. Transfer operator modeling . 95

6.3. Numerical simulations . 97
6.3.1. Boundary conditions . 97
6.3.2. Thermophysical properties of liquid metals 98
6.3.3. Working conditions . 98
6.3.4. Simulations of an open core reactor 99

. Conclusions 105

Bibliography 107

ii

List of Figures

2.1. Hat function for the interval Ki. 18
2.2. Linear shape functions on the EDGE2 canonical element. 19
2.3. Quadratic shape functions on the EDGE3 canonical element. 20
2.4. TRI3 (left) and TRI6 (right) canonical elements. 22
2.5. QUAD4 (left) and QUAD9 (right) canonical elements. 23
2.6. Shape functions on the QUAD9 canonical element: N01 (top left), N21

(top right), N22 (bottom). 24
2.7. TET4 (left) and TET10 (right) canonical elements. 25
2.8. HEX8 (left) and HEX27 (right) canonical elements. 26

3.1. Left: Vanka subdomain made of 3× 3 elements. Right: Vanka subdomain
made of 2× 2 elements. Unknowns are localized on the grid (©: velocity,
�: pressure). 36

3.2. V-cycle multigrid scheme. 46
3.3. W-cycle multigrid scheme. 47
3.4. Nested cycle multigrid scheme. 48

4.1. Computational domain. The liquid in Ωl is the reference phase and the
boundary between the two phases is denoted by Γs. Dirichlet boundary
conditions are applied on Γd and Neumann boundary conditions on Γn. . 53

4.2. Cell stencil used for the reconstruction. 56
4.3. The reference phase occupies the area of the pentagon ABFGD. 58
4.4. Eulerian implicit method: (a) SLIC reconstruction of the interface, (b)

implicit step fluxes. 60
4.5. Lagrangian explicit method: (a) SLIC reconstruction of the interface, (b)

final configuration. 60
4.6. geometrical unsplit method: (a) initial configuration; (b) implicit step; (c)

explicit step. 61
4.7. Pre-image of the grid lines (dashed lines) and streamline through the cell

vertices (dotted lines). The area of the polygon 1-2-B-D-A is equal to
Φ+
x , that of 1-3-C-E-A to Φ+

y and the continuous piecewise-linear line
B-D-A-E-C approximates the pre-image of the cell sides 1-2 and 1-3. . . 62

4.8. Three different shapes of the flux polygon through the right side of a cell:
(a) standard case with the flux polygon inside two consecutive vertical
cells; (b) flux polygon defined across two horizontal cells; (c) polygon
intersecting three different cells. 63

iii

List of Figures

4.9. The color function distribution on different meshes (top left) and on the
coarse mesh (top right). The compact data memorization with two (bottom
left) and four (bottom right) levels of grid refinement. 66

4.10. The C data distribution on a 5×5 Cartesian mesh (top) and the compressed
stored data (bottom): row number, number of cells nc, color function in
the mixed and consecutive full cells and column position. 67

4.11. The coarse element with four nodes (left) and the refined one with nine
nodes (right). 69

5.1. Initial axisymmetric geometry. 75
5.2. Time evolution of the growth rate αr for the m = 0 mode during the

initial transient (left) and after the restart of the computation (right). . . 75
5.3. Numerical growth rate α for µl/µg = 100 for different mesh resolutions on

the left (32 (A) , 64 (B), 128 (C)) and for a different number of refinement
levels on the right (f = c+ 2 (A), f = c+ 3 (B), f = c+ 4 (C)). In both
graphs it is also plotted the inviscid theoretical curve of (5.7) (D). 76

5.4. Numerical growth rate α for different viscosity ratios µl/µg (10 (A), 100
(B) and 1000 (C)). In the graph it is also plotted the inviscid theoretical
curve of (5.7) (D). 77

5.5. Numerical (+) and theoretical dispersion for the growth rate forOh = 0.205
(left) and Oh = 0.065 (right). 78

5.6. Evolution of the interface line for the three different grid resolutions:
32 × 192 (A), 64 × 384 (B) and 128 × 768 (C), at the non-dimensional
times t = 0.5, 1, 2, 3. 80

5.7. Interface evolution (left) and pressure, color function and velocity profiles
along the jet axis (right, lines A, B and C, respectively) at times 0.5, 1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 (top to bottom). 82

5.8. Jet evolution for the intermediate wave length λ2 at times 0.5, 1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5 (left to right and top to bottom). 83

5.9. Jet evolution for the shortest wave length λ1 at times 0.5, 1, 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5 (left to right and top to bottom). 84

5.10. Jet evolution for the longest wave length λ3 at times 0.5, 1, 2, 2.5, 3, 3.5,
4, 5, 6, 7.5 (left to right and top to bottom). 85

5.11. Jet evolution with inlet velocity U0 = 10m/s at times 1, 2, 3.5, 4, 4.5 (two
different views in each row). 87

5.12. Jet evolution with inlet velocity U0 = 100m/s at times 1.5, 2, 2.5, 3, 3.5
(two different views in each row). 88

6.1. Full reactor (left) and computational domain (right). 97
6.2. Power distribution. Each generating element is identified by its peak factor,

all others are non generating elements. 99
6.3. Velocity (left) and pressure (right) distribution on different planes: z = 2

(top), y = 0 (middle), x = 0 (bottom). 100

iv

List of Figures

6.4. Density (left) and temperature (right) distribution on different planes:
z = 2 (top), y = 0 (middle), x = 0 (bottom). 101

6.5. Comparison between variable (A) and constant (B) physical properties
with respect to temperature: velocity and pressure (top), density and
temperature (bottom) on the line x = y = 1.1. 102

6.6. Comparison between variable (A) and constant (B) physical properties
with respect to temperature: velocity and temperature profiles on the line
y = x, z = 2. 102

v

List of Tables

5.1. The maximum value of ‖Sfcc ‖∞/‖f s‖∞ for the coarse grid with 32× 192
cells, four different refinement levels, in the non-dimensional time interval
[0, 2]. 79

6.1. Geometrical and physical properties at T=673.15K in SI units. 98

vii

Introduction

Nowadays the development of computational codes and the use of numerical simulations
have become a common tool in research and innovation fields, given the possibility to
explore different solutions at a reasonable cost when compared to experimental facilities.
Project work-flows today involve numerical simulations to the point that computer
assisted design is a required step and not an auxiliary tool as in the past.

Thermal-fluid-dynamics is one of the fields in which the integration of different compu-
tational tools has the greatest diffusion, since many of the applications that fall in this
area of research and industrial design would require extensive and expensive experimen-
tal counterparts that can be afforded in a very limited number of cases. In this work
isothermal two-phase flows and the thermal-hydraulics of the nuclear reactor core are
explored.
The two-phase flow simulations that are considered in this thesis focus mainly on

jets. These phenomena appear widely in natural processes, from atomic scales to galaxy
proportions, and in particular in many engineering applications, such as heat removal or
fuel injection. The dynamics of a jet is a very complex process that can evolve in many
different ways, such as the formation of a cloud of small droplets, as in a combustion
chamber of a diesel/gasoline engine, a sheet-like structure, that can occur in agricultural
sewage and irrigation, or a column of fluid that evolves in a line of drops. The physical
modeling of this wide range of phenomena is complex and still not completely resolved,
especially for the detailed mechanism of breakup.
Nuclear reactor design has historically been one of the first field to massively employ

computational tools and computers, since the difficulty to create test facilities that
reproduce real operation conditions. The evolution of computers has not seen an equivalent
rate of advance in nuclear reactor codes, but the trend is changing. More powerful, reliable
and complex codes are required to design the new generation of nuclear power plants. The
thermal-hydraulics of the core involves many processes with complex modeling, but the
greatest challenge remains the impossibility to perform the simulation of the whole core
in a three-dimensional geometry with adequate resolution. The number of components
and physical processes that must be described overwhelms the present computational
power.

This thesis is devoted to the analysis of an innovative code that has been developed by
the research group under the supervision of professors S. Manservisi and R. Scardovelli
to deal with this kind of applications. The fundamental idea has been to create a general
and modular tool, where the solver of a coupled system of partial differential equations
for diffusion/advection problems was the backbone upon which all other components
rely. Generality means the possibility to cover a wide range of physical and engineering
applications, including the two already mentioned. Modularity means the ability to load

1

Introduction

dynamically different features suited for a particular application and not the whole system.
This has led to a computational tool that looks like a single-purpose application when
needed, but which is also able to easily manage the coupling among different phenomena,
implemented in different software modules, when the physics requires it.
The development of this general and modular software has required the complete

redesign of the very first finite element code written by E. Aulisa, now on tenure track
at Texas Tech, and S. Manservisi. The code development is always in progress and has
recently seen the introduction of a series of new modules, that will not be discussed
in this thesis, that are relevant to magneto-hydrodynamics, turbulence, neutronics and
fluid-structure interaction. The very first modules have been developed for the solution
of the incompressible Navier-Stokes equations and the energy equation. Direct numerical
simulations of two-phase flows are performed with the single fluid formulation of the
equations together with a few routines to capture the evolution of the interface and to
compute its geometrical properties.
The Finite Element Method (FEM) has been chosen for the solution of the system of

partial differential equations, given its mathematical properties and points of strength,
and it is described in the first part of the thesis. The first chapter describes with some
detail the weak formulation of the Navier-Stokes equations and the basic analytical results
that provide the mathematical framework of the successive work.
The second chapter describes the finite element method, with the introduction of

the discretization spaces and the discretized elements. The Lagrangian elements for
computational domains in one, two and three dimensions are depicted. Some theoretical
results on the error of the finite element approximations close the chapter.

The third chapter is devoted to the numerical solution of the discretized problem that
has been introduced in the first two chapters. A short introduction to the algorithms that
are used for the solution of sparse linear systems is given here, with particular emphasis
to the specific algorithms that are used in the numerical solution of the Navier-Stokes
equations.
The second part of the thesis deals with the two-phase flow simulations. The fourth

chapter describes the Volume-of-Fluid (VOF) method, that is one of the most popular
techniques for interface capturing. This method describes the interface through the
color function that represents the fraction of each cell that is occupied by the reference
phase. The geometrical properties of the interface, such as the normal and the curvature,
are derived from this color function usually with finite difference schemes. When the
velocity field is divergence-free, the mass can be accurately conserved by the VOF method,
differently from other approaches such as the Level Set method, for example. Another
feature of the VOF approach resides in the automatic handling of topology changes. This
aspect can be a serious limitation if not carefully handled, therefore we introduce the
multilevel VOF method, that artificially separates the grid on which the velocity and
pressure fields are computed from the grid where the interface is modeled. This technique
enables us to use higher resolutions in VOF reconstruction, giving us more control on
the scale at which the breakup events occur.

In the fifth chapter the results of the jet simulations are presented. In the first part of
the chapter the code is tested against the analytical results of the stability of a column

2

of fluid, while in the second part the results of the simulations are presented that are
relevant to liquid jets with different physical parameters, such as the wavelength of the
applied disturbance or the magnitude of the velocity at the injector nozzle.
The third part of the thesis includes only the sixth chapter and shows the approach

that has been adopted in innovative nuclear reactor design problems. The numerical
algorithm that has been developed follows the so-called porous approach, which widely
adopted in this field to overcome the impossibility to describe with enough resolution the
components inside a reactor core. This technique is similar to that one introduced in the
multilevel VOF, where the simulation is made on two different scales, a coarse scale that
covers the entire core, and a fine one where the components are reproduced correctly,
but with a spatial extension limited to a subchannel of the reactor core. Some results
obtained for a new generation of liquid metal cooled reactors are shown to illustrate the
main features of the model.
The last chapter is a short summary of the thesis, where the conclusions and future

perspectives are outlined.

3

Part I.

Mathematical Model

5

1. Variational formulation of the
Navier-Stokes problem

In this chapter we introduce the variational formulation of the Navier-Stokes equations
and recall some analytical results on existence and uniqueness of solutions [1, 2, 3, 4].

1.1. Function space notation
1.1.1. Integrable spaces Lp(Ω)
Let Ω be an open set in Rn with locally Lipschitz boundary Γ = ∂Ω and f : Ω 7→ R be
a real-valued or a component of a vector-valued function defined on Ω. We define the
space Lp(Ω), 1 ≤ p <∞ as the set of all functions that satisfy

‖f‖p :=
(∫

Ω
|f |p dV

)1/p
<∞ , (1.1)

where the integration is intended in Lebesgue measure. By extension, we also introduce
L∞(Ω) as the set of all functions such as

‖f‖∞ := sup
Ω
|f | <∞ . (1.2)

Both Lp(Ω) and L∞(Ω) are Banach spaces. The space L2(Ω) is a Hilbert space with
scalar product

(f, g) =
∫

Ω
fg dV , (1.3)

and corresponding norm
‖f‖2 :=

∫
Ω
|f |2 dV . (1.4)

We can now introduce the Sobolev space W p,k as the space of functions f in Lp(Ω)
with k − 1 derivatives Df,D2f, . . .Dkf in Lp(Ω), as

W p,k(Ω) :=

f ∈ Lp(Ω) :
k∑
j=0

(∫
Ω
|Djf |p dV

)1/p
<∞

 . (1.5)

This definition introduces on these spaces a natural norm in the form

‖f‖p,k :=
k∑
j=0

(∫
Ω
|Djf |p dV

)1/p
, (1.6)

7

1. Variational formulation of the Navier-Stokes problem

and semi-norms

|f |p,k,j :=
(∫

Ω
|Djf |p dV

)1/p
. (1.7)

1.1.2. Sobolev spaces Hk(Ω)

The Sobolev spaces with p = 2 are Hilbert spaces when equipped with the scalar product

(f, g)Hk :=
k∑
j=0

(∫
Ω
DjfDjg dV

)1/2
. (1.8)

They will be denoted by Hk(Ω) := W 2,k(Ω).
Let D(Ω) be the set of all infinite-derivable functions vanishing outside the compact

set Ω. The closure of D(Ω) in Hk(Ω) is an Hilbert space denoted usually by Hk
0 (Ω). If Ω

is bounded in some direction the Poincaré inequality holds

‖f‖L2 ≤ C(Ω)‖Df‖L2 , ∀f ∈ H1
0 (Ω) , (1.9)

where the derivative must be taken in the bounded direction.
Let γ0 be a linear continuous operator such that

γ0 : H1(Ω) 7→ L2(Γ) , γ0f = f |Γ . (1.10)

The operator γ0 is called trace operator of H1(Ω). The space H1
0 (Ω) is the kernel of

γ0, while the image is a dense subspace of L2 denoted by H1/2(Γ). This operator is
introduced to seek solutions in H1 when Dirichlet boundary conditions are applied. In
fact the boundary conditions can be thought as trace functions. Let Hdiv(Ω) be the
subset of L2(Ω) for which ∇ · f ∈ L2(Ω), then we can introduce the trace operator γn
that satisfies

γn : Hdiv(Ω) 7→ H−1/2(Γ) , γnf = f · n|Γ . (1.11)

It is possible to prove that H−1/2(Γ) is the dual space of H1/2(Γ).
Let V be the set of all divergence-free functions in D ,

V (Ω) := {f ∈ D : ∇ · f = 0} , (1.12)

and H(Ω), V (Ω) be the closures of V in L2(Ω), H1
0 (Ω) respectively. It is possible to

show that

H(Ω) =
{
f ∈ L2(Ω) : ∇ · f = 0, γnf = 0

}
,

H⊥(Ω) =
{
f ∈ L2(Ω) : f = ∇p, p ∈ H1(Ω)

}
,

V (Ω) =
{
f ∈ H1

0 (Ω) : ∇ · f = 0
}
,

8

1.2. The Stokes problem

where H⊥(Ω) is the orthogonal complement of H(Ω) in L2(Ω). Furthermore, it holds
that

L2(Ω) = H(Ω) +H1(Ω) +H2(Ω) ,

H1(Ω) =
{
f ∈ L2(Ω) : f = ∇p, p ∈ H1(Ω), ∇2p = 0

}
,

H2(Ω) =
{
f ∈ L2(Ω) : f = ∇p, p ∈ H1

0 (Ω)
}
.

1.2. The Stokes problem
1.2.1. Stokes variational equation
The Navier-Stokes problem is typically described as a set of partial differential equations
of convective-diffusive type. In order to simplify the notation we start to analyze the
variational form of the associated Stokes problem. This implies a brief analysis of the its
strong and weak form. For the Stokes problem the set of differential equation, in the
steady case, reduces to

−ν∇2u+∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 in Γ ,
(1.13)

where u is the velocity field, ν the cinematic viscosity, p the pressure field and f the
external force on a given domain Ω. The boundary condition applied here is a Dirichlet
homogeneous one but other type of conditions are addressed in section 1.2.2.

In this strong formulation of the problem, the velocity and the pressure fields u and p
require continuous second and first derivatives, respectively.
By using standard variational methods, i.e. weighted residual method, it is possible

to convert (1.13) into a variational form in order to get weaker requirements on the
smoothness of the solution. The method consists of multiplying by test functions and
integrating the equations over all the domain Ω. In other words, we take the scalar
product of (1.13) with test functions in H1

0(Ω) and L2(Ω) and seek solutions for the
projected equations. We get

−
∫

Ω
ν∇2u · v dV +

∫
Ω
∇p · v dV =

∫
Ω
f · v dV , ∀v ∈H1

0(Ω) ,∫
Ω
q∇ · u dV = 0 , ∀q ∈ L2(Ω) .

(1.14)

We can now integrate by parts and, using Green’s identity, we obtain∫
Ω

(ν∇u) · (∇v) dV −
∫

Γ
ν(∇u · n)v dS+

−
∫

Ω
p∇ · v dV +

∫
Γ
pv · n dS =

∫
Ω
f · v dV , ∀v ∈H1

0(Ω) ,∫
Ω
q∇ · u dV = 0 , ∀q ∈ L2(Ω) .

(1.15)

9

1. Variational formulation of the Navier-Stokes problem

The integration by parts leads to two new boundary terms, that can be combined into
one as ∫

Γ

(
pn− ν ∂u

∂n

)
· v dS . (1.16)

Because the velocity field is known on Γ from the boundary condition, the test function
v must be zero on the boundary and divergence-free on the domain then (1.15) becomes

(ν∇u,∇v) = (f ,v) , ∀v ∈ V . (1.17)

On the other hand, if u is in H1
0 and satisfies (1.17), then we can prove that u satisfies

the original problem (1.13). We can therefore write that

there exists p ∈ L2(Ω) such that
− ν∇2u+∇p = f ,

∇ · u = 0 ,
with γ0u = 0 .

(1.18)

We can introduce the continuous bilinear form a(·, ·) as

a : V × V 7→ R , a(u,v) = (ν∇u,∇v) (1.19)

and the linear form F as
F (v) = (f ,v) (1.20)

and write the problem in a more compact form

a(u,v) = F (v) ∀v ∈ V . (1.21)

The form a(·, ·) is bounded (or continuous), i.e. there exists β > 0 such that

a(v,v) < β‖v‖2V , ∀v ∈ V . (1.22)

Also the form a(·, ·) is coercive, namely there exists α > 0 such that

a(v,v) > α‖v‖2V , ∀v ∈ V . (1.23)

These are the two conditions needed for the applicability of the Lax-Milgram theorem,
which demonstrates that the solution of (1.21) exists and is unique for any bounded open
set Ω.

1.2.2. Boundary conditions
In the previous section we have introduced only homogeneous boundary conditions but
in general the physical situations that will be analyzed require more general conditions at
the boundary. In order to extend the analysis to non-homogeneous boundary conditions
we can split the whole boundary Γ in two regions ΓD and ΓN where

u = u0 , u ∈ ΓD ⊆ Γ ,
∂u

∂n
= 0 , u ∈ ΓN ⊆ Γ ,

(1.24)

10

1.2. The Stokes problem

with ΓD + ΓN = Γ. On ΓD Dirichlet conditions are applied.
If u0 is not zero, the solution u is not in H1

0 (Ω). We can, however, take the problem
back to the homogeneous one with the introduction of a lifting operator `Ω such that

`Ω : H1/2(Γ) 7→ H1(Ω) , γ0`Ω = I . (1.25)

We can now consider the new unknown ũ = u− `Ωu0 and rewrite (1.17) as

(ν∇ũ,∇v) = F (v) = (f ,v)− (ν∇`Ωu0,∇v) , ∀v ∈ V , (1.26)

where F (·) is a continuous and linear functional. It is easy to see that ũ now satisfies
homogeneous boundary conditions on ΓD. Existence and uniqueness of solutions can be
recovered with the same hypotheses used for the homogeneous equation (1.17).

With Neumann boundary conditions applied on ΓN , we must consider the two boundary
terms from (1.15) and rewrite

∫
Γ
τ · v dS =

∫
Γ

(T · n) · v dS =
∫

Γ
((pI − ν∇u) · n) · v dS , (1.27)

where τ is the boundary stress term and T is the stress tensor. When the condition
applied is of no-stress, such as symmetry conditions or out-flow regime, this term is again
equal to zero. In other conditions, such as turbulent flow near a wall, the term cannot be
neglected and appropriate values of the stress tensor must be applied to the equations.
If ΓD = Γ, so Dirichlet boundary conditions are specified on all the boundary Γ, we

can see that the pressure p is defined in (1.13) up to a constant. Therefore, if {u, p}
is a solution of (1.13) or (1.17), also {u, p + c} is a solution. In order to avoid the
non-uniqueness we must fix the pressure value on boundary points as

p(xb) = p0 , xb ∈ Γ ,

or we can set the mean pressure value to zero,∫
Ω
p dV = (p, 1) = 0 .

The first approach is theoretically more complex since the solution space is not a well
characterized subspace. The second approach is instead viable in the weak formulation
by defining a new subspace. We define L2

0(Ω) the space such that

L2
0(Ω) =

{
p ∈ L2(Ω) : (p, 1) = 0

}
. (1.28)

When ΓN is not empty, the pressure is defined by the boundary condition since no
derivatives appear in (1.27).

11

1. Variational formulation of the Navier-Stokes problem

1.3. The Navier-Stokes problem

1.3.1. The steady-state problem

In this section we simply introduce the Navier-Stokes system by adding the advection
term to (1.13) and get

−ν∇2u+ (u · ∇)u+∇p = f , in Ω ,

∇ · u = 0 , in Ω ,

u = 0 , in Γ .
(1.29)

We can now derive the weak form of this problem following the same procedure of the
previous section and obtain

(ν∇u,∇v) + c(u,u,v) = (f ,v) , ∀v ∈ V , (1.30)

where
c(u,v,w) =

∫
Ω

((u · ∇)v) ·w dV , (1.31)

is a trilinear continuous form on H1
0(Ω). This equation is equivalent to the first one, i.

e., if u satisfies (1.30) we can find p ∈ L2(Ω) that satisfies (1.29), and ∇ · u = 0.
Existence of solutions for this problem is proved in [2]. Uniqueness is now linked to

the value of the constant ν, that represents the inverse of the Reynolds number. When
ν2 > c‖f‖ the solution is unique, otherwise there may be multiple solution to (1.30)
corresponding to different configurations of the flow.
Also in this case non-homogeneous boundary conditions can be treated with the

introduction of a lifting operator and the definition of an appropriate functional of the
external force and boundary data. Uniqueness is also subject to the condition

|c(v, `Ωu0,v)| ≤ ν

2‖v‖
2 , ∀v ∈ V (1.32)

and the external force f is substituted by

f̂ = f + ν∇2`Ωu0 − (`Ωu0 · ∇)`Ωu0 . (1.33)

1.3.2. The time-dependent Navier-Stokes problem

The complete time-dependent Navier-Stokes equation can be written as

∂u

∂t
− ν∇2u+ (u · ∇)u+∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 in Γ ,
u(x, 0) = u0 in Ω ,

(1.34)

12

1.3. The Navier-Stokes problem

where u0 is the initial condition defined over all the domain Ω. The system must be
solved over the interval [0, T]. The conversion to the variational formulation follows the
line of the previous ones to give∫

Ω

∂u

∂t
· v dV +

∫
Ω

(u · ∇)u · v dV +
∫

Ω
(ν∇u) · (∇v) dV −

∫
Γ
v ν∇u · n dS+

−
∫

Ω
p∇ · v dV +

∫
Γ
pv · n dS =

∫
Ω
f · v dV ∀v ∈ V ,∫

Ω
q∇ · u dV = 0 ∀q ∈ L2

0 .

(1.35)

The boundary terms from the integration by parts can be treated in the same way of
Section 1.2.2. Introducing the scalar product notation and the properties of the spaces
that we already analyzed we can write

(∂u
∂t
,v) + (ν∇u,∇v) + c(u,u,v) = (f ,v) , ∀v ∈ V . (1.36)

We observe that
(∂u
∂t
,v) = d

dt(u,v) ,

so the weak problem can be rewritten as

find u ∈ L2(0, T ;V) satisfying
d
dt(u,v) + (ν∇u,∇v) + c(u,u,v) = (f ,v) , ∀v ∈ V ,

u(0) = u0 ,

(1.37)

where L2(0, T ;V) is the space of functions in V that are integrable in [0, T], i.e.,

L2(a, b;V) =
{
f ∈ V :

∫ b

a
‖f‖2V dt <∞

}
. (1.38)

Existence of solutions of (1.37) is proved in [2]. Again, uniqueness can be proved only
for small values of f and of the advection term, or when the energy inequality

|u(t)|2 + 2ν
∫ t

0
‖u(s)‖2 ds ≤ |u(0)|2 + 2

∫ t

0
(f ,u(s)) ds , ∀t ∈ [0, T] , (1.39)

is satisfied. Strong solutions, if there exist any, satisfy (1.39) with an equal sign.

13

2. Finite element approximation

2.1. The Galerkin method approximation
In order to solve the weak problems analyzed in the previous chapter, we introduce the
finite element method. We consider a generic differential equation expressed in its weak
formulation

a(u, v) = f(v) , ∀v ∈ V , (2.1)

where V is a suitable space, a(·, ·) is a bilinear form and f(·) a bounded linear operator.
The Galerkin method consists of finding an approximated solution uh in a finite-

dimensional subspace Vh ⊂ V . For this purpose we define a family of subspaces with a
sequence of grid discretizations characterized by the parameter h. We can now solve, over
the subspace of dimension nh, for the function uh ∈ Vh the finite dimensional problem

a(uh, vh) = f(vh) , ∀vh ∈ Vh . (2.2)

The problem in (2.2) is called Galerkin approximation of the continuous problem in (2.1).
Let us consider the difference eh = u − uh between the solution u of the continuous
problem and the solution uh of the discrete one. We can set v in (2.1) as vh and get

a(eh, vh) = a(u− uh, vh) = a(u, vh)− a(uh, vh) = f(vh)− f(vh) = 0 . (2.3)

The error eh is therefore a-orthogonal to vh, with the energy inner product a(u, v) on
V . This property is used to prove the Céa’s lemma. Assume that a(·, ·) in (2.1) is a
bounded, coercive bilinear form, i.e., there exist positive constants C and α such that

|a(u, v)| ≤ C‖u‖‖v‖ , ∀u, v ∈ V
a(u, u) ≥ α ‖u‖2 , ∀u ∈ V ,

and that f(·) in (2.1) is bounded. Then, if u and uh are the solutions of (2.1) and (2.2)
respectively, we have that

‖u− uh‖ ≤
C

α
inf

vh∈Vh

‖u− vh‖ . (2.4)

The proof is obtained observing that

α ‖u− uh‖2 ≤ a(u− uh, u− uh) ≤ a(u− uh, u− uh)+
+ a(u− uh, vh − uh) ≤ C‖u− uh‖‖u− vh‖ .

This implies that the solution uh is the best approximation of u in Vh.

15

2. Finite element approximation

If we consider a basis {ϕi, i = 1, 2, . . . , nh} of Vh we can rewrite (2.2) as

a(uh, ϕi) = f(ϕi) , i = 1, 2, . . . , nh . (2.5)

The solution uh can be written as a linear combination of the basis {ϕj}, uh =
∑nh
j=1 ujϕj .

If we use this expression in (2.5) we get

nh∑
j=1

uj a(ϕi, ϕj) = f(ϕi) , i = 1, 2, . . . , nh . (2.6)

We can define the stiffness matrix A as the matrix with components aij = a(ϕi, ϕj) and
f the vector with components fi = f(ϕi). If the unknowns uj are collected in a vector u
then we can rewrite (2.6) as the following linear system

Au = f . (2.7)

The properties of the stiffness matrix depend on the selected basis in Vh and the type
of the problem studied. Relevant characteristics for the numerical solution of the system,
such as the condition number and sparsity pattern of A, depend strongly on the form of
the basis functions. For this reason, basis with smaller support are preferred. In fact
when the support of two element ϕi, ϕj does not overlap, their energy scalar product is
zero. Another important basis feature for the numerical solution is the computational
effort needed to calculate the elements of A and f .

In the same way we can associate to each vector v in Rnh the function vh =
∑nh
i=1 viϕi

in Vh. We note that, under the same hypotheses of coercivity and boundlessness for a(·, ·)
we have

vᵀAv =
nh∑
i=1

nh∑
j=1

viaijvj =
nh∑
i=1

nh∑
j=1

via(ϕi, ϕj)vj =
nh∑
i=1

nh∑
j=1

a(viϕi, vjϕj) =

= a(
nh∑
i=1

viϕi,
nh∑
j=1

vjϕj) = a(vh, vh) ≥ α‖vh‖2 ≥ 0 . (2.8)

We can see also that vᵀAv = 0 if and only if v = 0, so the stiffness matrix is positive
definite.

Another critical property of the Galerkin approximation is that the solution uh tends
to the exact solution u when the dimension of Vh tends to infinity (h→ 0). From (2.4),
we must only prove that, as h tends to zero, Vh becomes the space V . This ensures that

lim
h→0
‖u− uh‖ = 0 . (2.9)

The different choices of Vh affect the convergence velocity and the error order.

16

2.2. The Finite Element Method

2.2. The Finite Element Method
The Finite Element Method (FEM) is based on the Galerkin method that decomposes
the domain in a set of elements on which the solution is discretized on the nodes of each
element [5]. A suitable choice for Vh is adopted on each element in order to satisfy (2.9)
and improve sparsity patterns of the resulting matrix. We start the description of a
one-dimensional problem and then analyze the two- and three-dimensional cases [6].

2.2.1. One-dimensional case
Let us consider the interval (a, b) ⊂ R and a partition Th of (a, b) in N + 1 intervals
Kj = (xj , xj+1) of length hj = xj−1 − xj , with

a = x0 < x1 < . . . < xN < xN+1 = b , (2.10)

and h = maxj(hj). A natural choice for the basis function {ϕi} of H1(a, b) is a polynomial
basis. For this purpose we can introduce the family of spaces

Xr
h =

{
vh ∈ C0[a, b] : vh|Kj ∈ Pr, ∀Kj ∈ Th

}
, r = 1, 2, . . . ,

where Pr is the space of polynomials of order r. We recall that all Xr
h are subspaces of

H1(a, b). In order to guarantee the maximum extension of the solution space, we can use
the lower order polynomials that satisfy the existence of the integrals involved. We also
select the polynomials with a small support to obtain a highly sparse and well-conditioned
system. We will analyze the widely used Lagrangian basis for X1

h and X2
h.

First degree polynomials - X1
h

The functions in the space X1
h are continuous and linear. It is easy to see that the degrees

of freedom on Th are N + 2. In the Lagrangian approach the points in analysis are the
points with coordinates {xi} equal to those in (2.10) and the basis {ϕi} satisfies the
property

ϕi(xj) = δij =
{

1 , i = j

0 , i 6= j
, (2.11)

where δij is the Kronecker delta. In this way, the weights of the solution uh with respect
to the basis {ϕi} are the value of the function on each point, i.e.,

uh(x) =
N+1∑
i=0

uiϕi(x) =
N+1∑
i=0

uh(xi)ϕi(x) . (2.12)

The complete form of an element of this basis, as shown in Fig. 2.1, is therefore

ϕi(x) =

x−xi−1
hi−1

, xi−1 ≤ x ≤ xi ,
xi+1−x
hi

, xi ≤ x ≤ xi+1 ,

0 otherwise,
(2.13)

17

2. Finite element approximation

a = x0 xi−1 xi xi+1 b = xN+1

1

Figure 2.1.: Hat function for the interval Ki.

that is often referred to as hat function. The support for each ϕi is limited to the interval
[xi−1, xi+1], with the exception of the first element ϕ0 and last one ϕN+1, for which
the support is limited to one interval, [a, x1] and [xN , b] respectively. This means that
each function support overlaps only with the support of the ϕi−1 and ϕi+1 functions.
Therefore the stiffness matrix formed with this basis will be tri-diagonal.

In order to build the matrix for the discretization adopted, we add the contributions
element by element. On each sub-interval Ki = [xi, xi+1], the only basis functions
different from zero are the ones that are centered at the two end-points, ϕi and ϕi+1.
The restrictions of these two bases to the interval Ki are called shape functions. They
are expressed by

Ni,l = xi+1 − x
hi

,

for the left one and
Ni,r = x− xi−1

hi−1
,

for the right one. The definition of shape function can be extended to the whole domain
[a, b], but any function will be zero out of Ki.
The shape of these functions are the same on every interval Ki but the length of the

interval hi may be different. For this reason it is clever to transform each element into a
canonical element, in order to calculate the integrals only once. The reference interval
used is typically [−1, 1], called EDGE2, and the linear transformation between [−1, 1]
and Ki is

x(ξ) = 1− ξ
2 xi + 1 + ξ

2 xi+1 , ξ ∈ [−1, 1] . (2.14)

We can now introduce the shape functions N0 and N1, plotted in Fig.2.2, associated to

18

2.2. The Finite Element Method

N1N0

0

0.2

0.4

0.6

0.8

1

ξ
-1 -0.5 0 0.5 1

Figure 2.2.: Linear shape functions on the EDGE2 canonical element.

the canonical element

N0(ξ) = 1− ξ
2 , N1(ξ) = 1 + ξ

2 , (2.15)

that can be used to calculate all the integrals involved in the building of the stiffness
matrix, once we know the Jacobian of the transformation between the original element
and the canonical one.

Second degree polynomials - X2
h

The degrees of freedom granted by a polynomial of second order are three for each element
Ki of the partition Th. In order to impose the continuity of the approximation among
elements we fix the end-points of each interval in the same way as we did for the first
order case. In addition we need to fix a further point, for example the midpoint. The
Lagrangian method sets the value of each function ϕi in the basis at each point following
(2.11) which recovers again (2.12). The generic element of this basis becomes

ϕi(x) =

1 + 3

(
x−xi
hi−1

)
+ 2

(
x−xi
hi−1

)2
xi−1 ≤ x ≤ xi

1− 3
(
x−xi
hi

)
+ 2

(
x−xi
hi

)2
xi ≤ x ≤ xi+1

0 otherwise,

(2.16)

with xi an end-point of an element, or

ϕi(x) =

1− 4
(
x−xi+1/2

hi

)
xi ≤ x ≤ xi+1

0 otherwise,
(2.17)

with xi+1/2 a mid-point of an element. This choice for the basis {ϕi} leads to a penta-
diagonal stiffness matrix.

19

2. Finite element approximation

N2

N1N0

-0.25

0

0.25

0.5

0.75

1

ξ
-1 -0.5 0 0.5 1

Figure 2.3.: Quadratic shape functions on the EDGE3 canonical element.

In a similar way also in this case the transformation into the canonical element simplifies
the amount of calculations needed to build the stiffness matrix. The canonical shape
functions are

N0(ξ) = ξ(ξ − 1)
2 , N1(ξ) = ξ(ξ + 1)

2 , N2(ξ) = 1− ξ2 . (2.18)

These are plotted in Fig. 2.3. The three nodes of the canonical element, called EDGE3,
are −1, 0 and 1.

The way to obtain the Lagrangian bases for higher degrees is straightforward. We can
generalize (2.18) to a generic order r with the Lagrange formula

Nk(ξ) =
r∏
l=0
l 6=k

ξ − ξl
ξk − ξl

. (2.19)

It is important to underline that using high order polynomials affects the sparsity ratio of
the stiffness matrix and therefore the computational costs. Moreover, linear interpolation
theory shows that using equidistant nodes with high degree polynomials can lead to
unstable approximations [7].

2.2.2. Two-dimensional case
We start considering a polygonal open domain Ω ∈ R2 partitioned with a Th that covers
completely Ω without overlapping. The discretized domain Ωh is

Ωh = Ω = int

 ⋃
K∈Th

K

 , (2.20)

where int does not include the boundary of the union. We can introduce the diameter of
an element K as

diam(K) = hK = max
x,y∈K

‖x− y‖ , (2.21)

20

2.2. The Finite Element Method

and define the spatial step h for the partition Th as

h = max
K∈Th

hK . (2.22)

The partitioning {Th, h} must satisfy also a regularity constraint. If ρK is the diameter
of the inscribed circle of K and δ a positive constant, we say that Th is regular if

hK
ρK
≤ δ ∀K ∈ Th . (2.23)

We define the finite element space Xr
h as

Xr
h =

{
vh ∈ C0(Ω) : vh|K ∈ Pr ∀K ∈ Th

}
, (2.24)

and
Xr
h,0 = {vh ∈ Xr

h : vh|∂Ω = 0} , (2.25)

which are our approximation spaces for H1(Ω) and H1
0 (Ω) respectively. We can also

introduce a rigorous definition of the finite element as the structure (K,Pr, {ϕi}) such
that

• K ⊆ Rn is a non-empty, closed and bounded set with a polygonal boundary,

• Pr is a finite-dimensional function space on K called shape functions space,

• {ϕi} is a basis of Pr,

• {σi : Pr → R} is a set of functional on Pr such that σi(ϕj) = δij .

Each functional σi identifies uniquely the coefficient αi = σi(p) for any polynomial p
in Pr, so the linear combination p(x) =

∑r
i=1 αiϕi(x) is correctly defined. {αi} are the

degree of freedom of the finite element. In the Lagrangian case, each degree fixes the
value of the function at a point of the element, called node, αi = p(ai). Therefore for
the Lagrangian basis the set of nodes {ai} is equivalent to the set of functionals {σi}.
These nodes must be chosen wisely in order to assure that the interpolation problem is
well-posed. This property is true if the set {ai} is unisolvent on Pr,

p(ai) = αi , i = 0, 1, . . . , r , (2.26)

were p ∈ Pr is unique and {αi} is an arbitrary set of r + 1 scalars.
We now analyze the two most used Lagrangian elements in two dimensions: the

triangular and the quadrangular finite elements.

21

2. Finite element approximation

η

ξ0 1

2

η

ξ0 1

2

3

4
5

Figure 2.4.: TRI3 (left) and TRI6 (right) canonical elements.

Triangular finite element

The linear case is an extension of the mono-dimensional one, with linear basis that are
similar to the hat functions. The shape functions {Ni} that come from this basis satisfy

Ni(xj) = δij , i, j = 0, 1, 2 , (2.27)

where xj are the vertices of the triangular element. The basis functions associated
with the shape functions satisfy (2.27) and have a support over four elements that are
connected to the node on which the function is 1. This choice implies continuity of
the solution on the whole boundary of the element, where the solution is the linear
interpolation between two nodal values. Also in this case it is appropriate to introduce a
canonical element, called TRI3, which is the triangle of vertices (0, 0), (1, 0), (0, 1) and
shown in Fig. 2.4. The shape functions on this element are

N0(ξ, η) = 1− ξ − η , N1(ξ, η) = ξ , N2(ξ, η) = η . (2.28)

The extension to bases of higher order is straightforward. We note that the number of
nodes nr that must be fixed for a polynomial basis of order r is

nr = (r + 1)(r + 2)
2 , (2.29)

for example the quadratic Lagrangian basis is unique if it involves six nodes: the three
vertices and the three midpoints of the edges. The shape functions associated to this

22

2.2. The Finite Element Method

basis on the canonical element are therefore

N0(ξ, η) = 1− 3(ξ + η) + 2(ξ + η)2 , N1(ξ, η) = ξ(2ξ − 1) ,
N2(ξ, η) = η(2η − 1) , N3(ξ, η) = 4ξ(1− ξ − η) , (2.30)
N4(ξ, η) = 4ξ(1− ξ − η) , N5(ξ, η) = 4ξη .

The canonical triangular element of second order is called TRI6 and shown in Fig. 2.4.

Quadrangular finite element

η

ξ

0 1

23

η

ξ

0 1

23

4

5

6

7 8

Figure 2.5.: QUAD4 (left) and QUAD9 (right) canonical elements.

The building of a quadrangular finite element is easier than that of a triangle because
for Lagrangian elements it is a direct extension of the mono-dimensional case. The shape
functions are a product of the mono-dimensional shapes associated with each direction.
We can identify each node and each shape with a pair of indices, one for each dimension,
and write the shape functions as

Nik(xjl) = δijδkl . (2.31)

If the polynomial approximation is linear in each direction, the nodes needed to identify
in a unique way the shape functions are four and lie on the vertices of the quadrangle.
The basis function has a support made by four quadrangular elements that share one
vertex. The associated canonical element is the square [−1, 1]× [−1, 1] shown in Fig. 2.5

23

2. Finite element approximation

and the shape functions are

N00(ξ, η) = N0(ξ)N0(η) = 1− ξ
2

1− η
2 ,

N10(ξ, η) = N1(ξ)N0(η) = 1 + ξ

2
1− η

2 ,

N11(ξ, η) = N1(ξ)N1(η) = 1 + ξ

2
1 + η

2 ,

N01(ξ, η) = N0(ξ)N1(η) = 1− ξ
2

1 + η

2 .

All {Nij} are bilinear on the canonical quadrangle, and, even if they contain terms of
second order in ξη, they cannot reproduce all polynomials of second order, but only
polynomials of first order are reproduced completely.

N3

-1
-0.5

 0
 0.5

 1-1

-0.5

 0

 0.5

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

N6

-1
-0.5

 0
 0.5

 1-1

-0.5

 0

 0.5

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

N8

-1
-0.5

 0
 0.5

 1-1

-0.5

 0

 0.5

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 2.6.: Shape functions on the QUAD9 canonical element: N01 (top left), N21 (top
right), N22 (bottom).

When the order of the approximating polynomial is grater than one, the number of
nodes needed to define the Lagrangian basis grows quadratically with respect to the
mono-dimensional case. For example, as shown in Fig. 2.5, the quadratic approximation
requires nine nodes, the four vertices, the four midpoints on each side and the central
point. The shape functions can again be obtained by multiplying the shape functions

24

2.2. The Finite Element Method

of the mono-dimensional case in (2.18), and three different cases of them are shown in
Fig. 2.6. These function contain also terms of higher order than the second, but they
can reproduce completely only polynomials of second order.

2.2.3. Three-dimensional case

A three-dimensional Lagrangian element respects the general definition given in Par.
2.2.2 and is therefore build in the same way of the two-dimensional case. The most widely
used elements are tetrahedra and hexahedra.

Tetrahedral finite element

ξ

η

ζ

0

1

2

3

ξ

η

ζ

0

1

2

3

4

5

6

7

8
9

Figure 2.7.: TET4 (left) and TET10 (right) canonical elements.

The linear Lagrangian tetrahedron has the nodes on the four vertices. The shape
functions satisfy again the relation

Ni(xj) = δij . (2.32)

We introduce also the canonical tetrahedron TET4 with vertices in (0, 0, 0), (1, 0, 0),
(0, 1, 0) and (0, 0, 1), shown in Fig. 2.7. The shape functions on this element are

N0(ξ, η, ζ) = 1− ξ − η − ζ , N1(ξ, η, ζ) = ξ ,

N2(ξ, η, ζ) = η , N3(ξ, η, ζ) = ζ .

These are linear on each face and are completely defined by its three vertices. In fact,
each face can be seen as a TRI3 finite element with respect to its own coordinates.

25

2. Finite element approximation

If the order of the interpolating polynomial is r, the number of nodes nr of the
tetrahedron is

nr = (r + 1)(r + 2)(r + 3)
6 . (2.33)

In the quadratic case, nr is equal to 10, with the addition of the midpoints of each
edge, numbered as in Fig. 2.7 where the TET10 canonical element is shown. The shape
functions are

N0(ξ, η, ζ) = 1− 3(ξ + η + ζ) + 3(ξ + η + ζ)2 , N1(ξ, η, ζ) = ξ(2ξ − 1) ,
N2(ξ, η, ζ) = η(2η − 1) , N3(ξ, η, ζ) = ζ(2ζ − 1) ,
N4(ξ, η, ζ) = 4ξ(1− ξ − η − ζ) , N5(ξ, η, ζ) = 4ξη ,
N6(ξ, η, ζ) = 4η(1− ξ − η − ζ) , N7(ξ, η, ζ) = 4ζ(1− ξ − η − ζ) ,
N8(ξ, η, ζ) = 4ξζ , N9(ξ, η, ζ) = 4ηζ ,

and each face is a TRI6 with respect to its own coordinates.

Hexahedral finite element

ξ

η

ζ

0

1

2

3

4

5

6

7

ξ

η

ζ

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

Figure 2.8.: HEX8 (left) and HEX27 (right) canonical elements.

Just like the two-dimensional case, the hexahedral Lagrangian finite element can be
seen as the combination of three mono-dimensional edge elements. In the linear case, the
nodes are eight and correspond to the vertices of the hexahedron. The canonical element
associated is the cube [−1, 1]× [−1, 1]× [−1, 1], called HEX8, shown in Fig. 2.8, with
the shape functions {N} denoted by three indices that identify the mono-dimensional
shape associated, that is

Nijk(ξ, η, ζ) = Ni(ξ)Nj(η)Nk(ζ) , i, j, k = 0, 1 . (2.34)

26

2.3. Error estimation

For the quadratic case, the number of nodes is 27, with the addition of edge middle
points, face centers and volume central point. The element is called HEX27 and shown
in Fig. 2.8. The shape function are a combination of the mono-dimensional EDGE3
element, and can be written as

Nijk(ξ, η, ζ) = Ni(ξ)Nj(η)Nk(ζ) , i, j, k = 0, 1, 2 . (2.35)

2.3. Error estimation

2.3.1. Notation

In order to give an estimate of the error in the finite element method, let us consider a
generic domain Ω. For every v ∈ C0(Ω) we introduce the interpolator Πr

hv in Xr
h as the

function for which

Πr
hv(xi) = v(xi) , ∀xi ∈ Th , i = 0, 1, . . . , Nh , (2.36)

where {xi} are the nodes of the triangulation Th. If {ϕi} is a Lagrangian base of Xr
h, we

can write

Πr
hv(x) =

Nh∑
i=1

v(xi)ϕi(x) , (2.37)

where this can be also seen as an operative way of calculating the interpolator. The
operator Πr

h maps a continuous function v with its interpolator Πr
hv and is called

interpolating operator. We can also introduce a local interpolating operator Πr
K associated

to a single element K of the partition Th as

Πr
Kv|K = (Πr

hv)|K . (2.38)

We also introduce the sphericity ρK and the diameter hK of the element K, and the
invertible affine transformation FK : K̂ → K between the canonical element K̂ and the
element K. This map can be expressed with

FK(x̂) = AK(x̂) + bK , (2.39)

with AK ∈ Rn×n and bK ∈ Rn.

2.3.2. Energy (H1) norm error estimation

In order to study the energy norm error we introduce the error on seminorms, which are
defined in (1.7) [8]. For every m ≥ 0 and v ∈ Hm(K), let v̂ : K̂ → R be the function
v̂ = v ◦ FK for each v̂ ∈ Hm(K̂) such that there exists C = C(m) > 0 and

‖v̂‖ ≤ C‖AK‖m|detAK |−1/2‖v‖ , (2.40)
‖v‖ ≤ C‖A−1

K ‖
m|detAK |1/2‖v̂‖ . (2.41)

27

2. Finite element approximation

The matrix norm ‖AK‖ is the norm associated with the Euclidean norm,

‖AK‖ = sup
ξ∈Rn,ξ 6=0

‖AKξ‖
‖ξ‖

, (2.42)

or, equivalently,
‖AK‖ = 1

ρ̂
sup

ξ∈Rn,‖ξ‖=ρ̂
‖AKξ‖ , (2.43)

where ρ̂ is the sphericity of the canonical element K̂. For every ξ with ‖ξ‖ = ρ̂, there exist
two points x̂ and ŷ in K̂ such that x̂− ŷ = ξ. We notice that AKξ = FK(x̂)−FK(ŷ), so

‖AK‖ ≤
hK
ρ̂
. (2.44)

Similarly we get

‖A−1
K ‖ ≤

ĥ

ρK
, (2.45)

where ĥ is the diameter of K̂.
We try now to estimate the value of the norm of (v −Πr

Kv) ◦ FK for every function
v ∈ Hm(K) with reference to the canonical element K̂. If xi = FK(x̂i) are the nodes on
K and {ϕi} = {ϕ̂i ◦ F−1

K } the basis of K we can write

Πr
Kv ◦ FK =

MK−1∑
i=0

v(xi)ϕi ◦ FK =
MK−1∑
i=0

v(FK(xi))ϕ̂i = Πr
K̂
v̂ , (2.46)

where MK is the number of nodes on K. We can infer therefore that

‖(v −Πr
Kv) ◦ FK‖ = ‖v̂ −Πr

K̂
v̂‖ . (2.47)

We are now ready to introduce some results on the local and the global estimate.

• Local estimate for the interpolating error. Let r ≥ 1 and 0 ≤ m ≤ r + 1. There
exists a constant C = C(r,m, K̂) such that

‖v −Πr
Kv‖Hm(K) ≤ C

hr+1
K

ρmK
‖v‖Hr+1(K) , ∀v ∈ Hr+1(K) . (2.48)

• Global estimate for the interpolating error. Let {Th} be a family of regular trian-
gulation on ω, m = 0, 1 and r ≥ 1. There exists a constant C = C(r,m, K̂) such
that

‖v −Πr
hv‖Hm(Ω) ≤ C

 ∑
K∈Th

h
2(r+1−m)
K ‖v‖2Hr+1(K)

1/2

, ∀v ∈ Hr+1(Ω) . (2.49)

In particular

‖v −Πr
hv‖Hm(Ω) ≤ Chr+1−m‖v‖Hr+1(K) , ∀v ∈ Hr+1(Ω) . (2.50)

28

2.3. Error estimation

With (2.50) we can get an estimate for the Galerkin approximation method using (2.4).
Let u ∈ V be the exact solution of a variational problem (2.1) and uh its approximation
obtained with the finite element method of order r. If u ∈ Hr+1(Ω) it holds

‖u− uh‖H1(Ω) ≤
M

α
C

 ∑
K∈Th

h2r
K ‖u‖2Hr+1(K)

1/2

, (2.51)

and
‖u− uh‖H1(Ω) ≤

M

α
Chr‖u‖Hr+1(K) , (2.52)

where C does not depend on h or u.
This result demonstrates that we can follow two ways to improve the accuracy of the

solution. We can refine the computational grid, reducing the value of h, or increase the
polynomial order r of the approximation. The second approach is viable only for enough
regular solution, namely if u ∈ V ∩Hp+1(Ω) the maximum order of the approximation
to use is r = p. Even if the solution has only the lower possible regularity (p = 0), the
Céa’s lemma guarantees the convergence, but the estimate (2.52) is no longer valid. We
can summarize the results saying that, if u ∈ Hp+1(Ω), the we have

‖u− uh‖H1(Ω) ≤ Chs‖u‖Hs+1(K) , s = min(r, p) . (2.53)

2.3.3. L2 norm error estimation
We can get an estimate for the error also in L2 norm. This norm is lesser strict than the
energy one and we expect a faster convergence with h. With the same hypotheses of (2.52),
let us consider the adjoint problem of (2.1), i.e. the problem of finding φ = φ(g) ∈ V
such that

a(v, φ) = (g, v) ∀v ∈ V . (2.54)

If we assume a result of elliptic regularity for (2.1), the adjoint problem (2.54) has the
same property, or there exists a C > 0 such that

‖φ(g)‖H2(Ω) ≤ C‖g‖L2(Ω) , ∀g ∈ L2(Ω) . (2.55)

This property holds for an elliptic problem on a polygonal and convex domain with
Dirichlet or Neumann (but not mixed) boundary conditions [9]. Let eh = u− uh be the
approximation error, if we choose g = eh and v = eh we get

‖eh‖2L2(Ω) = a(eh, φ(eh)) . (2.56)

For the adjoint problem we have φ ∈ H2 and, using the Galerkin orthogonality (2.3), we
can write

‖eh‖2L2(Ω) = a(eh, φ) = a(eh, φ−Π1
hφ) ≤ C1‖eh‖H1(Ω)‖φ−Π1

hφ‖H1(Ω) ≤

≤ C2‖eh‖H1(Ω)h‖φ‖H2(Ω) ≤ C3‖eh‖H1(Ω)h‖eh‖L2(Ω) . (2.57)

29

2. Finite element approximation

By using the continuity of the bilinear form a(·, ·) and (2.53) we obtain

‖eh‖L2(Ω) = C3h‖eh‖H1(Ω) , (2.58)

so the order of convergence is one order greater than that in H1,

‖u− uh‖L2(Ω) = Chs+1‖u‖Hs+1(Ω) , s = min(r, p) . (2.59)

with C independent from h and u.

30

3. Numerical solution

3.1. Discretization of the Navier-Stokes equations
We recall the strong form of the Navier-Stokes incompressible problem of (1.34) rewritten
in a slightly more general way

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ · (µ(∇u+ (∇uᵀ)) +∇p = f ,

∇ · u = 0 , x ∈ Ω, t ∈ [0, T] ,
(3.1)

with appropriate boundary and initial conditions. The domain considered is again Ω,
with Γ = ∂Ω and n the external normal to Γ. Here the density and the viscosity may not
be constant. We will suppose that f ∈ L2([0, T]; [L2(Ω)]). The variational formulation is
similar to (1.36). We can introduce a new trilinear form d(·, ·, ·) defined by

d(u,v,w) = ((u · ∇)v,w) + 1
2(∇ · u,v ·w) , (3.2)

that is equivalent to c(·, ·, ·) of (1.31) when u is incompressible. The introduction of this
additional term leads to a more stable solver (see [10]). We can then rewrite the system
as

(ρ∂u
∂t
,v) + a(u,v) + d(u,u,v) + b(v, p) = (f ,v) , ∀v ∈ V , (3.3)

where the density ρ and the viscosity µ are now embedded in d(·, ·, ·) and a(·, ·), respec-
tively. The bilinear operator b(·, ·) is here introduced because we do not require that all
the functions in V are divergence free, differently from (1.37). It is defined by

b(v, q) = −
∫

Ω
q∇ · vdV , ∀v ∈ V ,∀q ∈ Q . (3.4)

We can introduce an operational formulation of these equations that is suitable for
understanding the successive discretization that will convert each differential operator in
a matrix. We therefore introduce the operators

A : V → V ′ , < Au,v > = a(u,v) , ∀u,v ∈ V ,

B : V → Q′ , < Bv, p > = b(v, p) , ∀v ∈ V ,∀p ∈ Q , (3.5)
D : V 2 → V ′ , < D(u,u),v > = d(u,u,v) , ∀u,v ∈ V ,

where V ′ and Q′ are the dual spaces of V and Q respectively, and < ·, · > designates
the dual product. The operator B represents the divergence operator, and we can easily
see that its adjoint operator is the gradient, indeed

< B∗p,v >=< Bv, p >= b(v, p) ∀v ∈ V ,∀p ∈ Q . (3.6)

31

3. Numerical solution

Furthermore, the adjoint operator is the transpose of the original operator, B∗ = Bᵀ.
Using (3.5-3.6) we rewrite (1.34) as

∂u

∂t
+D(u,u) +Au+Bᵀp = f in V ′ ,

Bu = 0 in Q′ .
(3.7)

Let us now introduce a quasi-uniform regular triangulation Th of the domain Ω and
the two families of finite-dimensional subspaces V h ⊂ V and Qh ⊂ Q that depend from
the grid discretization parameter h. We need to assure some properties of these spaces
in order to guarantee convergence of the solution as h tends to zero. In particular, if
vh ∈ V h and qh ∈ Qh are approximations of v ∈ V and q ∈ Q respectively, then for
l ≥ 1 and for every 0 ≤ r ≤ l there must exist C > 0 such that

inf
vh∈V h

(‖v − vh‖0 + h‖v − vh‖1) ≤ Chr+1‖v‖r+1 , ∀v ∈Hr+1(Ω) ∩ V ,

inf
vh∈V h

‖v − vh‖1,p ≤ Chr‖v‖r+1,p , ∀v ∈W r+1,p(Ω) ∩ V , (3.8)

inf
qh∈Qh

‖q − qh‖0 ≤ Chr‖q‖r , ∀q ∈ Hr(Ω) ∩Q .

We also introduce the discretized version of (3.5) with

Ah : V h → V ′h , < Ahuh,vh > = a(uh,vh) , ∀uh,vh ∈ V h ,

Bh : V h → Q′h , < Bhvh, ph > = b(vh, ph) , ∀vh ∈ V h, ∀ph ∈ Qh , (3.9)
Dh : V 2

h → V ′h , < Dh(uh,uh),vh > = d(uh,uh,vh) , ∀uh,vh ∈ V h .

The last hypothesis that the discretization must fulfill, in order to guarantee the con-
vergence of the numerical solution to the variational one, is the so-called InfSup or
Ladyshenskaya-Babuska-Brezzi (LBB) condition [11], that states that for V h and Qh
there must exist a constant C > 0 such that

inf
qh∈Qh

sup
vh∈V h

(Bhvh, qh)
‖vh‖1‖qh‖0

≥ C . (3.10)

We can finally write down the space-discretized version of (3.7) as

∂uh
∂t

+Dh(uh,uh)−Ahuh +Bᵀhph = iᵀhf ,

Bhuh = 0 ,
(3.11)

where ih : V h → V is the continuous injection between V h and V used to get fh = iᵀhf .

3.1.1. Temporal derivative discretization

We discretize the temporal derivative with a straightforward first-order finite difference
scheme, where k denotes the time step and ∆t is the time difference between two

32

3.1. Discretization of the Navier-Stokes equations

consecutive time steps, and write down the discretized version of (3.7) as

uk+1
h − ukh

∆t +Dh(uk+1
h ,uk+1

h)−Ahuk+1
h +Bᵀhp

k+1
h = fk+1

h ,

Bhu
k+1
h = 0 .

(3.12)

Recalling the definition of d(·, ·, ·) in (3.2), we see that both its components are non-
linear. We must linearize these terms in order to include them in a matricial formulation
of the discretized equation. The term that corresponds to the c(·, ·, ·) trilinear form
must be linearize it in order to include it in a matricial formulation of the discretized
equation. The easiest way to linearize the term that corresponds to the c(·, ·, ·) trilinear
form is by taking the discretized advection term as ((ukh · ∇)uk+1

h ,vh) with a first order
approximation. We instead implement a second order approximation in the form

((ukh · ∇)uk+1
h ,vh) + ((uk+1

h · ∇)ukh,vh)− ((ukh · ∇)ukh,vh) , (3.13)

that is symmetric and guarantees faster convergence when the advection term plays a
strong role on the evolution of the system. We will denote D(uk+1/2

h ,u
k+1/2
h) this second

order approximation. The other term is linearized with

(∇ · uh,uh · vh) = (∇ · ukh,uk+1
h · vh) . (3.14)

3.1.2. Algebraic formulation of the Navier-Stokes equations
At this point we have all the instruments needed to introduce the linear algebraic system
associated with the original Navier-Stokes problem (3.1) that can be solved numerically.
Let {ϕj} and {φk} be some bases for Vh and Qh, respectively. Following the Galerkin
formulation we write the unknowns uh and ph as

uh(x) =
nV∑
j=1

ujϕj(x) , ph(x) =
nQ∑
k=1

pkφk(x) , (3.15)

where nV and nQ designates the dimension of the spaces Vh and Qh. We select as test
functions the basis functions and write the associated linear system as

Mu+Bᵀp = f ,

Bu = 0 ,
(3.16)

where the matrices are defined by

M = (mij) =
(
ϕiϕj
∆t + a(ϕi, ϕj) + d(uk, ϕi, ϕj)

)
, (3.17)

B = (bij) = (b(ϕi, φj)) , (3.18)
u = (uj) , (3.19)
p = (pj) , (3.20)

f = (fj) =
(
fj + ukϕj

∆t

)
. (3.21)

33

3. Numerical solution

We can also define

A =
(
M Bᵀ

B 0

)
, (3.22)

the global matrix of the system. A necessary and sufficient condition for the solution of
(3.16) to exist is that det(A) 6= 0. It can be demonstrated that this property is equivalent
to the LBB condition (3.10). It can also be proved that M is non-singular and positive-
definite, so that the determinant of A is different from zero when the kernel of Bᵀ is
zero-dimensional. When this is not true there exists a vector p̃ ∈ RnQ different from zero
such that Bᵀp̃ = 0, so to say b(ϕm, p̃) = 0. This is equivalent to b(vh, p̃) = 0 , ∀vh ∈ Vh,
that violates the LBB condition. On the other way, if the LBB condition is not valid,
we can find a q̃ in Qh such that b(vh, q̃) = 0 ,∀vh ∈ Vh. If (uh, ph) is a solution of (3.16),
also (uh, ph + q̃) is a solution. This means that the solution for the pressure is not unique,
and we can get the so-called spurious modes that lead to an unstable solver. For this
reason the finite element spaces must be carefully selected in order to guarantee that the
pressure solution is unique.

The minimal properties of p imposed by the variational formulation (3.3) do not include
continuity. This means that the lower space we can use for the pressure is P0. Since
the velocity appears with one order of derivation more than the pressure, we can use
P1 polynomials for its representation. This couple does not satisfy the LBB condition,
and can be used only with a proper method that assures the elimination of the spurious
pressure solutions. If we want to keep a discontinuous pressure, we must couple P0
with P2. If we instead want a continuous pressure solution, we can not use P1 as the
approximation space for both p and u. A suitable couple is P1 for p and P2 for u, and we
will use this one in the rest of this work.

Once obtained an algebraic version (3.16) with the solution granted, we can solve
the system as any linear system by inverting the matrix A. The sparsity of the matrix
suggests to use an iterative solver. We define the sparsity ratio as the ratio between the
number of elements different from zero in the matrix and the total number of elements.
We will now analyze some basic techniques to deal with this system. There are two main
families of solver used for the Navier-Stokes system (3.12). A feature that distinguishes
between the two is if the velocity and pressure fields are solved together, or if the two
fields are solved using the other variable as a known value. The former solvers are called
coupled, while the latter ones are often referred to as segregated or split solvers.

3.2. Coupled solvers

These algorithms solve the system (3.12) as a whole and are suitable for any system
of differential equations. We will analyze shortly the principal characteristics of these
techniques with respect to the application to the Navier-Stokes equations. From now on
we will drop the h subscript for clarity.

34

3.2. Coupled solvers

3.2.1. Domain Decomposition Methods
Domain decomposition methods try to reduce the complete boundary problem to a
set of sub-problems on smaller domains or group of variables. Then, the boundaries
between the sub-domains are updated with the value coming from the adjacent regions
and the global solution is obtained iteratively. This is different from what is done in
a segregated algorithm, where the splitting is made directly in the equations (see Sec.
3.3). The algorithms which are decribed in this section are also frequently adopted as
preconditioner and smoother for other methods, in this case they are used with a fixed
and small number of iterations.

Schur complement

Let us rewrite the discretized system (3.16) in the matricial form as(
M Bᵀ

B 0

)(
u
p

)
=
(
f
0

)
. (3.23)

Our goal is to make a block diagonalization, so we left multiply the system with a suitable
matrix to get (

I 0
−BM−1 I

)(
M Bᵀ

B 0

)(
u
p

)
=
(

I 0
−BM−1 I

)(
f
0

)
. (3.24)

This choice leads to (
M Bᵀ

0 −BM−1Bᵀ

)(
u
p

)
=
(

f
−BM−1f

)
. (3.25)

The Schur complement S is defined as the the matrix (−BM−1Bᵀ). We can see that in
this form the solution of the pressure field does not depend on the velocity field. This
means that, if we are able to build the S matrix, we can solve directly the pressure
field and then substitute it in the momentum equation, that remains unchanged in this
process. The difficulty in the calculation of the Schur complement resides in the fact
that the calculation of M−1 can be as complex as the solution of the complete system.
However, the Schur complement inherits the properties of M , that is, if M is symmetric
positive defined, so is S. The building of the Schur complement is often approximated
using an approximated inverse of M and used as a preconditioner.

Vanka-type smoother

A class of solvers that can show an excellent rate of convergence is named Vanka-type
smoother, because it is often implemented as a pre-smoothing algorithm for a generic
solver. The idea is to split the domain in several problems over small overlapping
domains. The algorithm can be seen as a block Gauss-Seidel algorithm where each
iteration is the solution of a block corresponding to one of the subdomain introduced.

35

3. Numerical solution

Figure 3.1.: Left: Vanka subdomain made of 3× 3 elements. Right: Vanka subdomain
made of 2× 2 elements. Unknowns are localized on the grid (©: velocity, �:
pressure).

Since the subdomain are solved independently, this algorithm is very suited for parallel
implementations. In the framework of finite elements the subdomain can be identified
directly with a small group of elements. We call Ωi the generic subdomain, and with Tv
the partition made of all the subdomains, Tv = {Ωi}, that can coincide with the finite
element partitioning Th. It must hold

m⋃
i=0

Ωi = Ω , (3.26)

where each Ωi has a smooth boundary Γi and the subdomains are overlapping in the
sense that H1

0(Ω) = H1
0(Ω1) +H1

0(Ω2) + . . .+H1
0(Ωm). On each subdomain consistent

boundary conditions must be applied. If the selected subdomain is made up of a 3× 3
stencil of elements in a two-dimensional domain, the unknowns updated are the ones
shown in the left of Fig. 3.1 for for QUAD9/QUAD4 elements, with the boundary of
the stencil fixed with Dirichlet boundary conditions. In order to update all the variables
we need to repeat the procedure on every finite element of the grid, thus the domains
overlap. If we select a subdomain made up of four cells, there is no necessity to extend
the computational domain, and the Dirichlet conditions are applied directly on the edges
of the subdomain, as shown in the right of Fig. 3.1. The three-dimensional extension is
straightforward. After the solution on each subdomain, the boundary values are updated
from the neighboring elements and the iteration is repeated until convergence. Since the
subdomain Ωi is small, the local solution of the Navier-Stokes equations can be executed
with a direct solver, for example a Schur complement approach. Convergence properties
and accuracy of the solution are analyzed in the literature [12].

3.2.2. Krylov subspace methods
The Krylov subspace method is a particular application of the projection method in
which we seek a solution for a n-dimensional linear system Ax = b in a subspace of Rn.

36

3.2. Coupled solvers

If the dimension of this subspace is m, we must impose m independent constraints to
get the solution. The general approach is to impose the orthogonality with m linearly
independent vectors. In Krylov subspace methods the subspace Km chosen is

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0} , (3.27)

where r0 = b − Ax0 is the initial residual obtained with an arbitrary initial guess x0.
This choice leads to an approximate solution xm in the form

A−1b ≈ xm = x0 + qm−1(A)r0 , (3.28)

where qm−1 is a polynomial of degree m− 1 (dependent on the specific implementation
of the Krylov subspace). If we choose x0 = 0 we can see that

A−1b ≈ qm−1(A)b , (3.29)

meaning that the approximation we take for A−1 is qm−1(A). Even if all Krylov subspace
methods share this approximation of the inverse of A, the selected constraints impact
greatly on the iterative properties of the method. If we call Lm the space defined by the
constraints, we can identify two great families of methods, the first with Lm = Km and
the minimum-residual variation Lm = AKm, the second with Lm = Km(Aᵀ, r0).
Arnoldi’s procedure is a commonly adopted algorithm for building an orthogonal basis

of the Krylov subspace. It can be described with the following pseudo-algorithm

- choose v1 such that ‖v1‖ = 1 ,

- for j = 1, 2, . . . ,m:
- compute hij = (Avj , vi) for i = 1, 2, . . . , j,

- compute wj = Avj −
∑j
i=1 hijvi,

- hj+1,j = ‖wj‖2,
- if hj+1,j = 0 stop,
- vj+1 = wj/hj+1,j,

- endfor.

It is an iterative method that uses the classic Gram-Schmidt orthogonalization method
to obtain a basis {vi} for

Km = span{v1, Av1, . . . , A
m−1v1} . (3.30)

We denote with Vm an n × m matrix with the i-th column set to vi and by H̄m an
(m+ 1)×m Hessemberg matrix where hij comes from the Arnoldi’s algorithm. Let also
Hm be the matrix obtained from H̄m by deleting the last row. The following relation
holds

AVm = VmHM + wmeM
ᵀ = Vm+1H̄m , (3.31)

V ᵀmAVm = Hm . (3.32)

37

3. Numerical solution

Generalized Minimum RESidual (GMRES) method

The GMRES method takes K = Km, L = AKm and v1 = r0/‖r0‖2. We note that any
vector in x0 +Km can be written as

x = x0 + Vmy , (3.33)

with y a vector of m components. We can also define J(y) as

J(y) = ‖b−Ax‖2 = ‖b− a(x0 + Vmy)‖2 . (3.34)

Using the relation (3.31), valid for any Krylov subspace method, we can get

b−Ax = b−A(x0 + Vmy) = r0 −AVmy =
= βv1 − Vm+1H̄my = Vm+1(βe1 − H̄my) , (3.35)

therefore
J(y) = ‖βe1 − H̄my‖2 , (3.36)

where β is a real number different from zero. The GMRES approximation is the vector
in x0 +Km which minimizes J . The algorithm gives an approximation xm = x0 + Vmym
calculated with the ym that minimizes (3.36). The minimizer ym comes from the least-
square solution of the inexpensive (m+ 1)×m system.

3.2.3. Preconditioning
Preconditioning is a technique frequently adopted in numerical resolution of linear systems.
The aim is to manipulate the system matrix in order to get an equivalent matrix that has
better properties in terms of convergence and easiness of inversion. The simplest form
of preconditioning we can think of is to multiply every row of the matrix A such that
the resulting matrix has all ones on the diagonal. This can lead to faster convergence
of the solver because all equations of the system are of the same order of magnitude
because the algorithm is less prone to numerical cancellations. Theoretical results in
preconditioning field are difficult to get and in real cases this simple technique can even
lead to slower converging algorithms.
In general we can define a preconditioning method as a matrix T that premultiplies

the system
TAx = Tb . (3.37)

The construction of T can involve complex elaborations of the elements of A, or be based
on physical considerations on the system we are studying. Either way, we should always
look for a trade-off between the quality of the preconditioner and the computational costs
of its building. Even if there exist special preconditioners oriented to the Navier-Stokes
system, in general they are of difficult application to sparse matrices, since they can
lead to less sparse matrix after their application. Other techniques, such as the ILU
factorization, are instead oriented to generic matrices, but they can also be used for
sparse matrices if they keep the sparsity ratio low.

38

3.3. Segregated (split) solvers

Incomplete LU (ILU) factorization

The ILU method is based on a partial Lower-Upper factorization [13]. Instead of
finding the two matrix L and U that are strictly lower and upper triangular, we get a
decomposition such that

A = LU −R , (3.38)

where R is the residual or error of the factorization. The level of factorization affects the
acceleration gained in the successive solver, but it is obviously more expensive to calculate
as the factorization improves. In general a very accurate factorization is favorable because
it leads to more stable and robust solvers afterwards.
If we apply the Gaussian elimination algorithm directly, we fill empty spaces on the

matrix structure, incrementing its sparsity ratio. Alternatively, we can perform the
Gaussian elimination by dropping some off-diagonal elements, i.e. we put them to zero
and the dropped values go into the residual matrix R. The pattern of the zeroed values
must not contain diagonal elements and can be specified statically at the beginning of
the algorithm as a partition P of {1, 2, . . . , n} × {1, 2, . . . , n}, that is

P ⊂ {(i, j) : i 6= j , 1 ≤ i, j ≤ n} . (3.39)

It can be demonstrated that the incomplete factorization obtained with any pattern P is
a regular splitting of A [13].
If P is chosen exactly as the zero pattern of the matrix A we get the so-called zero

fill-in ILU (ILU(0)) decomposition. This approach preserves exactly the sparsity pattern
of A. We can define an ILU(p) technique (p = 1, 2, . . .) as the algorithm that allows p-th
order fill-ins in the matrix. With p = 1 the first order fill-ins are the position different
from zero of the product of the L and U matrices obtained with the ILU(0) algorithm,
and by induction for other p. These approaches are suitable for matrices with a regular
sparsity pattern, such as discretized differential equations, for which the sparsity pattern
of the ILU(p) algorithm is predictable. There are also modified ILU approaches for
which the element in the zero pattern are not simply discarded, but are used in some
compensating algorithms.

3.3. Segregated (split) solvers

Segregated solvers are specifically designed for the Navier-Stokes equations and try to
simplify the solution of the system by splitting the solution for the velocity and pressure
fields. This division not only leads to smaller matrices to work with, but also converts a
complex saddle point problem in two simpler elliptic problems, with higher stability and
faster convergence. We have to remark, however, that, in order to get the split equations,
we operate an arbitrary decomposition that can lead to unphysical results if not analyzed
accurately. We will discuss these issues after showing the split equations.

39

3. Numerical solution

3.3.1. The incremental pressure-correction scheme
The projection of the equations is obtained by considering an intermediate velocity
q that satisfies an elliptic boundary value problem similar to the momentum balance
equation, but without requiring that q is divergence-free. Afterwords, the pressure field
is calculated through an inviscid equation with suitable boundary conditions, and the
final velocity u is computed from q and p. The split system of equations comes from
(3.12) where we formally add and subtract the term qk+1/∆t and split it in the following
way

qk+1 − uk

∆t +D(uk,uk+1)−Auk+1 = fk+1 ,

uk+1 − qk+1

∆t = −Bᵀpk+1 ,

Buk+1 = 0 ,

(3.40)

with appropriate boundary conditions. If we express uk+1 from the second of (3.40),
substitute it in the first and neglect the terms of higher order in ∆t, we get

qk+1 − uk

∆t +D(uk, qk+1)−Aqk+1 = fk+1 ,

uk+1 − qk+1

∆t = −Bᵀpk+1 ,

Buk+1 = 0 .

(3.41)

We can also write the system in the incremental form for the pressure by introducing the
increment δpk+1 = pk+1 − pk [14]. Following the same steps as before we get

qk+1 − uk

∆t +D(uk, qk+1)−Aqk+1 = fk+1 −Bᵀpk ,

uk+1 − qk+1

∆t = −Bᵀδpk+1 ,

Buk+1 = 0 .

(3.42)

Now we can use the second of (3.42), evaluated at the time step k, into the first to finally
get

qk+1 − qk

∆t +D(uk, qk+1)−Aqk+1 = fk+1 −Bᵀ(pk + δpk) =

= fk+1 −Bᵀ(2pk − pk−1) .
(3.43)

We can also replace the last u in the D(·, ·) operator neglecting higher order terms in
∆t to get an equation for the intermediate velocity q alone. Applying the divergence
operator B to the second of (3.42) we get an equation for δp that depends only on q

BBᵀδpk+1 = Bqk+1

∆t . (3.44)

40

3.3. Segregated (split) solvers

This equation requires the introduction of further boundary conditions on p, that are
arbitrary and taken as ∂p/∂n = 0. We can therefore calculate in sequence qk+1, δpk+1

and uk+1 from
uk+1 = qk+1 −∆tBᵀδpk+1 . (3.45)

This approach is based on the orthogonal decomposition theorem [1], for which every
vector field a has a unique decomposition

a = b+∇ϕ , (3.46)

with

∇ · b = 0 , ∂b

∂n

∣∣∣∣
Γ

= 0 .

This means that q can be decomposed in u and p in a unique way.
The velocity field uk+1 obtained with this technique is divergence-free, but does not

satisfy the original boundary conditions as a consequence of the auxiliary Neumann
conditions introduced to solve (3.44). If we calculate the normal component of (3.45) at
the boundary we get(

uk+1 − qk+1

∆t +Bᵀδpk+1
)
· n
∣∣∣∣∣
Γ

= ∂δpk+1

∂n

∣∣∣∣∣
Γ

= 0 , (3.47)

so the boundary conditions applied to p are actually

Bᵀδpk+1 · n
∣∣∣
Γ

= Bᵀδpk · n
∣∣∣
Γ

= . . . = Bᵀδp0 · n
∣∣∣
Γ
. (3.48)

For the non-incremental scheme we would have found Bᵀpk+1 · n|Γ = 0. Both conditions
are non-physical and can lead to a numerical boundary layer resulting in an inexact value
of the solution near the boundary.

3.3.2. The rotational incremental pressure-correction scheme
The rotational incremental pressure-correction scheme tries to decrease the error intro-
duced by the auxiliary Neumann boundary conditions described in the previous section
[15]. The equation for q is again the (3.42)

qk+1 − uk

∆t +D(uk, qk+1)−Aqk+1 = fk+1 −Bᵀpk , (3.49)

with qk+1|Γ = 0, but a modified projection step is considered in which

uk+1 − qk+1

∆t = −Bᵀφk+1 , (3.50)

Buk+1 = 0 , (3.51)

where φk+1 = pk+1 − pk + νBqk+1 and uk+1 · n|Γ = 0.

41

3. Numerical solution

By substituting the velocity from (3.50) in (3.49) as before we get

qk+1 − qk

∆t +D(uk, qk+1)−Aqk+1 = fk+1 −Bᵀ(pk + φk) , (3.52)

with qk+1|Γ = 0, while equation (3.44) is substituted by

BBᵀφk+1 = Bqk+1

∆t , (3.53)

with ∂φk+1/∂n|Γ = 0. This formulation mitigates some of the drawbacks highlighted in
the previous section. To show this, we sum (3.49) and (3.50) to get

uk+1 − uk

∆t +D(uk, qk+1)−Aqk+1 +BᵀνBqk+1 = fk+1 −Bᵀpk+1 . (3.54)

We consider for simplicity the case with ν constant. Using the vector identity ∇×∇×a =
∇(∇ · a)−∇2a and noting from (3.50) that ∇×∇× qk+1 = ∇×∇× uk+1 we get

uk+1 − uk

∆t +D(uk, qk+1) + ν∇×∇× uk+1 +Bᵀpk+1 = fk+1 . (3.55)

Looking at the Stokes problem associated with (3.55) or just introducing the further
approximation uk ≈ qk which is of higher order in ∆t, we can get for the normal
component of the pressure at the boundary

∂pk+1

∂n

∣∣∣∣∣
Γ

=
(
fk+1 − ν∇×∇× uk+1

)
· n
∣∣∣
Γ
, (3.56)

which is a boundary condition consistent with the original problem. Therefore this
technique solves the problem on the pressure field boundary condition, at least for the
normal component. On the contrary, the tangential boundary condition on the velocity
field is still wrong, and it requires further analysis.

3.3.3. The penalty method
The basic idea of the penalty method is to replace a constrained optimization problem
by a series of unconstrained problems whose solution ideally converges to the solution of
the original constrained problem. Let us consider the following constrained optimization
problem, that is to minimize the functional J(u) subject to the constraints

Gi(u) = 0 , i = 1, 2, . . . , n . (3.57)

We call γi, i = 1, 2, . . . , n the set of Lagrangian multipliers and define the augmented
Lagrangian functional P as

P (u, γi) = J(u) +
n∑
i=1

< γi, Gi(u) > , (3.58)

42

3.3. Segregated (split) solvers

where < ·, · > is again the dual product. In this analysis we will consider only regular
function for which the dual product can be substituted by the inner product, that is
necessary for a numerical implementation of this method. The functional P is clearly
minimized by the extremal points of the functional J(u). The solution u of the problem
satisfies the Euler equation associated to the new functional

J ′(u) +
n∑
i=1

(
γ′i, Gi(u)

)
+

n∑
i=1

(
γi, G

′
i(u)

)
= 0 , (3.59)

where the prime denotes the partial derivative with respect to u. The assumed regularity
lets us substitute the Gateuax derivative with the partial derivative.
We can approximate the original minimization problem by introducing a penalty

method, where we consider a single term S(u) such that

S(u) = 0 if Gi(u) = 0 , S(u) > 0 if Gi(u) 6= 0 , (3.60)

multiplied by a penalty parameter γ∗ > 0. The augmented Lagrangian becomes P =
J + γ∗S(u). For the penalty function we may assume the form

S(u) = 1
2

n∑
i=1

(Gi(u), Gi(u)) . (3.61)

With these conditions the penalty augmented Lagrangian functional becomes

P (u) = J(u) + γ∗

2

n∑
i=1

(Gi(u), Gi(u)) . (3.62)

The penalty solution ũ satisfies the Euler equation

J ′(ũ) + γ∗
n∑
i=1

(
Gi(ũ), G′i(ũ)

)
= 0 . (3.63)

Under some conditions, when γ∗ tends to infinity ũ tends to the solution u of (3.59) [16].
Now we apply the penalty method to (3.52) with the divergence-free constraint (3.51).

We try to minimize the functional J(s), with s = qk+1, defined as

J(s) = 1
2

(s− sk)2

∆t + 1
2D(uk, s2) + 1

2As
2 −

(
fk+1 −Bᵀ(pk + φk)

)
· s , (3.64)

subject to the single constraint

G1(s) = −Bs = 0 . (3.65)

The penalty function becomes
S(s) = 1

2 G
2
1(s) , (3.66)

43

3. Numerical solution

and the augmented Lagrangian functional P has the form

P (s) = J(s) + 1
2γ
∗G2(s) = 1

2
(s− sk)2

∆t + 1
2D(uk, s2) + 1

2As
2+

− (fk+1 −Bᵀ(pk + φk)) · s+ 1
2γ
∗(Bs)2 . (3.67)

We find an extremum of (3.67) by solving

P ′(s) = J ′(s) + γ∗G′(s) = 0 , (3.68)

or equivalently by setting equal to zero the first variation of P

δP =
(
s− sk

∆t +D(uk, s) +As−
(
fk+1 −Bᵀ(pk + φk)

)
− γ∗BᵀBs

)
· δs = 0 , (3.69)

together with the boundary condition δs|Γ = 0, which is consistent with u|Γ = q|Γ = 0.
The first variation of P should be zero for any choice of δs, thus we obtain

s− sk

∆t +As+D(uk, s)− fk+1 +Bᵀ
(
pk + φk − γ∗Bs

)
= 0 , (3.70)

where the pressure term is substituted by

p = pk + φk − γ∗Bs . (3.71)

Looking at (3.70) we note that when γ∗ →∞, s becomes a penalty approximation of the
solution of the original Navier-Stokes equations (3.11) and the projection step may not be
strictly necessary. However, very high values would lead to an ill-conditioned matrix and
the convergence of the method worsen and could not be assured. Therefore we implement
the penalty method on top of the rotational incremental pressure-correction scheme of
Sec. 3.3.2.

3.4. Multigrid algorithm
A multigrid algorithm works on top of a classical solver using a hierarchy of discretizations,
with the aim to reduce the computational effort which is required to obtain the solution
[17]. The use of different grids gives the possibility to accelerate the convergence reducing
the error of the approximate solution on the different wavelengths connected with the
grid spacing. The basic idea is that the improvement of the solution on each cell is seen
only by the adjacent cells. This requires a large number of timesteps for the solution to
propagate through the whole domain. If we use a coarser grid, with a smaller number
of elements, the solution can reach all the cells in a smaller number of time steps. The
strength of this approach resides also in the fact that it can be applied to any kind
of system, without any restriction. A well-implemented multigrid method often scales
linearly with the number of unknowns, putting it among the fastest algorithms available.

44

3.4. Multigrid algorithm

We consider the general problem of a linear algebraic system Ax = b and rewrite it as
a function of the residual r = Ax̃− b, where x̃ is an approximate solution of the system.
If x is the exact solution of the system, then

Ae = A(x̃− x) = r + b− b = r , (3.72)

with e the error between the approximation and the exact solution. We now introduce
two different levels, a coarse one and a fine one, denoted by the superscript c and f
respectively. The resolution on the coarse grid is performed for the residual r and then
projected back to the fine grid to correct the solution. We need two operators that
transport the vectors e and r between the two grids. We call them restriction R, that
goes from fine to coarse, and prolongation P , that goes from coarse to fine. We can write
for a generic vector x

xc = Rxf , xf = Pxc . (3.73)

We can introduce an algebraic system on the coarse grid as

Acec = rc , (3.74)

where Ac is the system matrix defined on the coarse mesh. Ac can be build in the same
way as we do on the fine grid by considering the coarse elements. Alternatively, the
coarse matrix can be derived in a purely algebraic fashion from the fine one

Afef = rf ,

AfPec = rf ,

RAfPec = Rrf = rc , (3.75)

so we can set Ac = RAfP . This approach is named Algebraic MultiGrid (AMG) and is
suitable for any generic matrix. The other approach, referred to as Full Approximation
System (FAS) can offer better performances, since it is based on the grid structure and
can take advantage of the physical properties of the system. Furthermore, since the AMG
deals only with the already linearized system, it may behave poorly with systems with
non-linearities, such as the Navier-Stokes system, while in the FAS discretization process
is executed entirely on the coarse grid.

3.4.1. Multigrid cycles
The number of coarse levels can be extended beyond one to reduce the error on all the
wavelengths available in the grid. The arrangement of the operations to be performed on
each level is called cycle and each of them can be described with a combinations of the
following elementary steps which depend on the set of parameters β1, β2 and β3.

Execute the solver on the fine grid for β1 times. This iterations are called pre-
relaxation iterations because are executed before going to the coarse level.

45

3. Numerical solution

0

Level

0

1

0

1

2

0

1

2

3

Figure 3.2.: V-cycle multigrid scheme.

Restrict the problem to the coarse grid.

Solve on the coarse grid for β2 iterations.

Prolong the solution on the fine grid.

Solve on the fine grid for β3 times. This iterations are the post-relaxation iterations.

The cycles that can be adopted are called V,W and Nested (also known as Full Multigrid).
They differ in the sequence of operations when the number of coarse levels is greater than
one, but they all reduce to the scheme described before when there is only one coarse
level. The different cycles are described in Figs. 3.2, 3.3 and 3.4. The choice for β1, β2
and β3 can vary from case to case. In general, as a pre- and post-smoothing operator
it can be adopted any preconditioner or solver which is available. On the coarser grid,
especially when the number of coarse levels is high, it is often implemented a direct solver,
such as the Gaussian elimination scheme or a Schur complement approach, that is not
expensive since the number of nodes is very limited.

3.4.2. Prolongation and restriction

In the framework of finite element methods, the prolongation and restriction operators
assume a particular form that is related to the shape functions defined on each element

46

3.4. Multigrid algorithm

0

Level

0

1

0

1

2

0

1

2

3

Figure 3.3.: W-cycle multigrid scheme.

[18]. Remembering the Galerkin discretized system of (3.16), these two operator are
converted in rectangular matrices that work between the two levels. In particular, the
restriction will have nc × nf elements, where nc and nf designate the number of nodes
on the coarse and fine grids.
The simplest idea for a restriction is to locate a coarse node on top of a fine node.

Therefore we can take the value of the fine node directly, so the i-th line of the restriction
matrix Ri will look like

Ri = {0, 0, . . . , 0, 1, 0, . . . , 0} , (3.76)

where the unique position different from zero is the corresponding i-node on the fine grid.
If the common nodes are numbered coherently on both grids, we can see that

(R) =
(
Inc

∅

)
, (3.77)

where Inc is the identity matrix of dimension nc, while the lower part of the matrix is
identically zero. Even if this approach is very simple, the results obtained are not very
accurate, because all the nodes outside the coarse grid are ignored. When the number of
levels grows, the number of nodes taken into account becomes smaller and smaller and
the performance worsens. For this reason in our code we have implemented a weighted
restriction operator, where the simple picking of the corresponding value on the fine grid

47

3. Numerical solution

0

Level

0

1

0

1

2

0

1

2

3

Figure 3.4.: Nested cycle multigrid scheme.

is substituted by a mean-value obtained by integration on a suitable support. In the
finite element framework this support is chosen to be the coarse element where the node
is placed. Remembering (3.15), we can easily get that each unknown uc(xi) = uci on the
coarse grid is

uci =
nsc∑
j=0

riju
f
j =

nsc∑
j=0

ϕci (x
f
j)ufj , (3.78)

where nsc is the number of shape functions of the coarse element chosen. Each element
rij of the restriction operator will be

rij = ϕci (x
f
j) . (3.79)

This value should be divided by the area of the element. In general, the shape func-
tions used in the restriction process can be different from the one used in the solution
approximation.
The projection operator must provide values of the solution on a number of points

greater than the number of nodes on the coarse grid. Using again (3.15), we can write
the value of the solution on any point of the computational domain, in particular each
node on the fine grid. The support for any node is limited to the fine element. In this

48

3.4. Multigrid algorithm

way the generic unknown uf (xi) = ufi on the fine grid is

ufi =
nsf∑
j=0

piju
c
j =

nsf∑
j=0

ϕfj (xci)ucj , (3.80)

where nsf is the number of shapes on the fine element. We can infer that the element pij
of the projection operator is

pij = ϕfj (xci) . (3.81)

We note that when an additional node is on the boundary of an element, then it can
belong to more than one element. The value obtained with the projection just seen is
the same, independently from the element in which it is calculated, because, as we have
already seen in the shape function definition, a value calculated on a boundary depends
only on the coarse node that are on that boundary when the approximation polynomial
guarantees the continuity of the solution across the elements.

49

Part II.

Two-Phase Flow

51

4. Two-phase flow and interface capturing

4.1. Single fluid formulation of the Navier-Stokes equations for
two-phase flow

The main application for which the finite element code has been developed is to perform
direct numerical simulations (DNS) of basic two-phase phenomena that occur in many
physical situations and industrial applications. Starting from the single phase equations
that we have analyzed in the previous chapters and its numerical implementation, we now
introduce a two-phase system and the mathematical model that governs its evolution. In
the rest of the chapter we will stick to two-dimensional analysis.

Γd

Γn

Ωg
Ωl

Ωl

Γs

Figure 4.1.: Computational domain. The liquid in Ωl is the reference phase and the
boundary between the two phases is denoted by Γs. Dirichlet boundary
conditions are applied on Γd and Neumann boundary conditions on Γn.

One of the formulations for the Navier-Stokes system is the single fluid formulation, in
which the two-phase mixture is seen as a whole, with discontinuous physical properties
at the interface of separation of the two phases, while they are supposed constant inside
each of the two phases. We consider a domain like that on Fig. 4.1, where Ω, as before,
designates the whole domain. Ωl is the portion of the domain occupied by the reference
phase, while Ωg ⊂ Ω is the subdomain with the secondary phase. The boundary between
the two immiscible fluids is denoted by Γs, and its topology can vary during the evolution
of the system since each subdomain evolves in time. The physical boundary is here
subdivided in two zones, on which different boundary conditions are applied. The zone
denoted by Γd has Dirichlet boundary conditions, while the zone named Γn has Neumann
boundary conditions. The Navier-Stokes system is formally written as in single phase

53

4. Two-phase flow and interface capturing

formulation

ρ
∂u

∂t
+ ρ(u · ∇)u−∇ · (µ(∇u+ (∇uᵀ)) +∇p = f ,

∇ · u = 0 , x ∈ Ω, t ∈ [0, T] ,
(4.1)

but the difference is hidden in the definition of the density ρ, the viscosity µ and the
force f .

If we denote with l the properties of the reference phase and with g the values associated
to the secondary phase, we define the physical properties ρ and µ as

ρ = ρlχ+ ρg(1− χ) , (4.2)
µ = µlχ+ µg(1− χ) , (4.3)

where χ is the characteristic function or indicator function. This function describes the
distribution of the two phases in the domain. It is equal to 1 in the reference phase and
0 in the secondary phase. We note that the function is discontinuous on the interface Γs.
We can define χ as

χ(x, t) =
∫

Ωl(t)
δ(x′ − x) dx′ ∀x ∈ Ω . (4.4)

The indicator function is therefore a multidimensional Heaviside function that changes
value on Γs. We can also write that

∇χ = −
∫

Γs

δ(x′ − x)n′ dS′ = −n
∫

Γs

δ(x′ − x) dS′ = −nδs(x) , (4.5)

where δs(x) is the Dirac delta function that is discontinuous on Γs. Under the hypotheses
of immiscible fluids with no phase change, the characteristic function behaves like a passive
scalar and is purely transported by the velocity field, following the simple advection
equation

∂χ

∂t
+ (u · ∇)χ = 0 , in Ω× [0, T] . (4.6)

The force term presents a sensible difference with respect to the single phase formulation,
where it indicates only body forces such as gravity or electro-magnetic fields. Here we
must take into account also the surface tension, that is modeled as a force applied only
on the interface

f s(x) =
∫

Γs

σκn δs(x) dS , (4.7)

where σ is a constant surface tension coefficient, as we do not consider temperature
gradients or varying concentration of surfactants, κ the sum of the principal curvatures
(in our convention κ < 0 for a liquid drop), n the unit external normal to Γs and xs a
point on Γs. The implementation of this term plays an important role in any two-phase
model and it will be extensively analyzed in Sec. 4.4, because we first need to introduce
a numerical modelization of the interface.

54

4.2. Volume-of-Fluid (VOF) method for interface capturing

4.2. Volume-of-Fluid (VOF) method for interface capturing
The Volume-of-Fluid method is one of the most popular techniques adopted to model
numerically an interface of separation between two phases. In this approach we define a
color function C on each of the cells that are part of the computational domain. The
value of C is taken as the integral of the characteristic function χ on the cell

Ci(t) = 1
meas(Ωi)

∫
Ωi

χ(x, t) dV , (4.8)

where Ωi is one of the cells of the partition Th of Ω, and meas(Ωi) =
∫

Ωi
dV . It is easy

to see that
Ci(t) = 1 if Ωi ⊂ Ωl ,

Ci(t) = 0 if Ωi ⊂ Ωg ,

0 < Ci(t) < 1 if Ωi ∩ Γs 6= ∅ .
The interface of separation is located on the mixed cells. Once introduced the color
function, we can define the physical properties at cell level

ρi = ρlCi + ρg(1− Ci) , (4.9)
µi = µlCi + µg(1− Ci) . (4.10)

In each mixed cell, the interface is represented by a single segment that is oriented
and positioned in order to approximate as well as possible the real interface. The overall
reconstruction of the interface is therefore piece-wise linear. In order to advance in time
the interface reconstruction, we integrate (4.6) on the cell Ωi to get

meas(Ωi)
∂Ci
∂t

+
∫

Γi

χu · ndS = 0 , (4.11)

where the integral is extended to the boundary Γi of Ωi. Since this equation is still
discontinuous, it can not be integrated with standard partial differential equation methods,
that tend to diffuse the interface, and a geometrical approach is usually preferred. In
summary, a VOF advection algorithm will require two steps

- Reconstruction. In every mixed cell a segment is placed to reproduce the interface.
This step is further subdivided in two procedures

Orientation. The normal to the segment is determined from the color function
distribution. A great number of schemes has been proposed, often based on finite
differences.

Positioning. The segment is placed inside the mixed cell imposing the con-
straint that the underlying volume is equal to the color function value in the
cell.

- Advection. Once we have a reconstruction segment in each cell, the interface is
advanced in time using (4.11) and the color function is updated in each cell.

Since the volume in each cell is constrained to be the integral of the indicator function in
that cell, the VOF method shows excellent mass conservation properties. We will now
analyze in detail each step.

55

4. Two-phase flow and interface capturing

4.2.1. Interface reconstruction

The historically first reconstruction techniques available for VOF method were called
Single Line Interface Calculation (SLIC) and only provided segments parallel to one
of the edges of the cell boundary. In two-dimensions, this leads to an equation for the
segment in the form

x = α1 , or y = α2 , (4.12)

where α1 and α2 are set by the volume fraction conservation.
Modern techniques allow the segment to be oriented freely inside the cell and are

therefore know as Piecewise Linear Interface Calculation (SLIC) methods. Sticking to
the two-dimensional case, the segment line can be represented by

mxx+myy = α , (4.13)

where m = (mx,my) is a vector normal to the reconstruction segment. The volume
conservation constraint sets the value of α. It is important to note that this imposition
leads to an interface reconstruction that is not continuous across cell boundaries. Some
of the most used techniques for the determination of m rely on a discretized derivation
of the color function distribution.

Parker-Youngs method

i− 1 i i+ 1

j − 1

j + 1

j

Figure 4.2.: Cell stencil used for the reconstruction.

We illustrate the method in two dimensions by considering a Cartesian grid where
each cell is identfied by the couple of indices (i, j) of integer values. Let us consider a
3× 3 stencil of cells around the cell (i, j), as shown in Fig. 4.2. The normal m is first

56

4.2. Volume-of-Fluid (VOF) method for interface capturing

computed on the four cell vertices. For example, in the upper right corner, identified by
the indices (i+ 1

2 , j + 1
2), we get

mx, i+ 1
2 , j+

1
2

= − 1
2hx

(Ci+1,j − Ci,j + Ci+1,j+1 − Ci,j+1) ,

my, i+ 1
2 , j+

1
2

= − 1
2hy

(Ci,j+1 − Ci,j + Ci+1,j+1 − Ci+1,j) ,
(4.14)

where hx and hy are the grid steps in the two coordinate directions. When hx = hy the
normal at the cell center is obtained by taking the average of the four vertex values

mij = 1
4(mi+ 1

2 , j−
1
2

+mi− 1
2 , j−

1
2

+mi+ 1
2 , j+

1
2

+mi− 1
2 , j+

1
2
) , (4.15)

while the averaging changes slightly when hx 6= hy. This method is quite simple and has
the great advantage of being easily extended to three-dimensional domains. Furthermore,
when the resolution is low it shows better performances then many other methods which
are more complex [19].

ELVIRA method

ELVIRA stands for Efficient Least-squares Volume-of-fluid Interface Reconstruction
Algorithm [20] and uses the same stencil of cells of the previous method. We can calculate
a discretized value of the height y on each of the columns of the stencil as the sum
of the volume fractions on that column, hxyi =

∑1
k=−1Ci, j+khxhy. If we consider the

approximation y = mx x+ α on the central cell (i, j), we can choose for mx between the
three values obtained with a backward (mxb), centered (mxc) or forward (mxf) finite
difference method given by

mxc = 1
2hx

(yi+1 − yi−1) = 1
2hx

1∑
k=−1

(Ci+1,j+k − Ci−1,j+k) , (4.16a)

mxf = 1
hx

(yi+1 − yi) = 1
hx

1∑
k=−1

(Ci+1,j+k − Ci,j+k) , (4.16b)

mxb = 1
hx

(yi − yi−1) = 1
hx

1∑
k=−1

(Ci,j+k − Ci−1,j+k) . (4.16c)

We can also repeat the argument for the horizontal direction and approximate the
interface with the line x = my y + α. In this case we get for my

myc = 1
2hy

(xj+1 − xj−1) = 1
2hy

1∑
k=−1

(Ci+k,j+1 − Ci+k,j−1) , (4.16d)

myf = 1
hy

(xj+1 − xj) = 1
hy

1∑
k=−1

(Ci+k,j+1 − Ci+k,j) , (4.16e)

myb = 1
hy

(xj − xj−1) = 1
hy

1∑
k=−1

(Ci+k,j − Ci+k,j−1) . (4.16f)

57

4. Two-phase flow and interface capturing

We consider each of the six cases (4.16) and use them to reconstruct the line on the whole
3× 3 stencil of cells defining in this way an approximated volume fraction distribution C̃.
We consider the discretized error E in L2 between the real data C and the approximated
values C̃

E(m̃) =

 1∑
k=−1

1∑
l=−1

(C̃i+k,j+l(m̃)− Ci+k,j+l)2

 1
2

, (4.17)

where m̃ is one of the coefficients defined in (4.16). The value of m̃ that minimizes E
is chosen as the normal of the segment. This technique reproduces exactly any linear
interface [20] and shows better convergence rates in basic VOF tests when the resolution
is not too small. The three-dimensional equivalent of this algorithm requires however a
stencil of cells that extends to 5 cells in each direction, in order to reproduce exactly any
planar interface.

Segment positioning

hy

B

CD

E

x

y

G

m

α/my

hx

α/mx

A

F

H

Figure 4.3.: The reference phase occupies the area of the pentagon ABFGD.

The correct positioning of the segment in the cell can be obtained by geometrical
considerations, that lead to a unique relation between α and the color function value Cij .
With reference to Fig. 4.3, we want to calculate the area of the pentagon ABFGD. We
can suppose that mx and my are both positive, even if this is not the case we can apply

58

4.2. Volume-of-Fluid (VOF) method for interface capturing

some mirror reflections to go back to the reference situation. The area of the triangle
AEH is α2/(2mxmy). If the points E and H are inside the cell, the reference phase
occupies exactly the area of this triangle. When the points move outside the cell, we
must subtract the areas of the triangles BEF and DGH. Therefore we get

A1(α) = α2

2mxmy

[
1−H(α−mxhx)

(
α−mxhx

α

)2

−H(α−myhy)
(
α−myhy

α

)2]
,

(4.18)

where H(x) is the Heaviside function and A1 = hx hy Cij . The second term is different
from zero when E is outside the cell, namely α > mxhx, while the third appears when H
is beyond D, α > myhy. The area of this two smaller triangles can be easily computed
noting that they are similar to AEH. We get

meas(BEF)
meas(AEH) =

(
α−mxhx

α

)2
,

meas(DGH)
meas(AEH) =

(
α−myhy

α

)2
.

We remark that (4.18) is a strictly monotonic function, and is a polynomial of first or
second order depending on the Heaviside functions into play. The properties of (4.18)
guarantee that the inverse function α = α(C) exists and can be determined easily [21].

4.2.2. Interface advection
The algorithms to propagate the interface can be divided in two broad categories. Split
algorithms decompose the motion along the coordinate directions and advance the color
data separately, by creating an intermediate field C̃ after each of the steps, while unsplit
algorithms define two-dimensional fluxes and advance the volume fraction distribution in
a single step. Three dimensional algorithm of this type are still too complex geometrically.
We will now describe some of mono-dimensional techniques implemented in the code,
and an innovative two-dimensional unsplit algorithm.

Eulerian implicit method

We recall (4.6) and rewrite it in the conservative form

∂χ

∂t
+∇ · (χu) = χ∇ · u = 0 . (4.19)

For a split algorithm we can consider the mono-dimensional case in the x direction and
write for the cell (i, j)

hx hy
∂Cij(t)
∂t

+
∮

Γij

χ(x, t)v · n d` = hx hy Cij
∂u

∂x
, (4.20)

that is the integration of (4.19) on the cell. The term ∂u/∂x can be assumed as a mean
value of the derivative and is different from zero even when the two-dimensional field is
incompressible.

59

4. Two-phase flow and interface capturing

If we consider two temporal steps tk e tk+1 = tk + ∆t, use nondimensional veriables
and approximate the spatial derivative with centered finite differences we get

Ck+1
ij = Ckij − Φ̃i+1/2, j + Φ̃i−1/2, j + C̃ij(ui+1/2, j − ui−1/2, j) , (4.21)

where Φ̃ is the normalized flux and it depends on the choice of C̃. We will assume hx = hy
to simplify the notation.

(a) (b)

Figure 4.4.: Eulerian implicit method: (a) SLIC reconstruction of the interface, (b)
implicit step fluxes.

The Eulerian implicit (EI) method sets C̃ij = Ck+1
ij , therefore (4.21) becomes

Ck+1
ij = a

(
Ckij − Φ̃i+1/2, j + Φ̃i−1/2, j

)
, (4.22)

where a = 1/(1 − ui+1/2, j + ui−1/2, j) is the expansion/contraction coefficient of the
Eulerian step. The geometrical procedure is shown in Fig. 4.4.

Lagrangian explicit method

(a) (b)

Figure 4.5.: Lagrangian explicit method: (a) SLIC reconstruction of the interface, (b)
final configuration.

The Lagrangian explicit (LE) method derives also from (4.21) setting C̃ij = Ckij to get

Ck+1
ij = bCkij − Φ̃i+1/2, j + Φ̃i−1/2, j , (4.23)

60

4.2. Volume-of-Fluid (VOF) method for interface capturing

where b = (1 + ui+1/2, j − ui−1/2, j) is the Lagrangian expansion/contraction coefficient.
The procedure is shown in Fig. 4.5. When the reconstruction is made with a SLIC
method as in the figures, the Eulerian method and the Lagrangian one produce the same
result, but this is clearly not true for PLIC reconstructions that lead to a different value
for Ck+1

ij .
If the fluxes are not computed using these two schemes the final volume fraction

distribution can be not consistent, with values of C that exceed one or are less then
zero. This events are called overshoots and undershoots and must be avoided as much as
possible.

Geometrical unsplit method

(a) (b) (c)

Figure 4.6.: geometrical unsplit method: (a) initial configuration; (b) implicit step; (c)
explicit step.

The two previous one-dimensional methods seen can be combined in an unsplit method
that does not require an intermediate volume fraction distribution C̃. From the geometri-
cal point of view this method corresponds to a linear mapping between two tessellations
of the computational domain and is shown in Fig. 4.6. The method is made up of an
Eulerian step in the x direction followed by a Lagrangian step in the y direction through
the linear transformation [22]

Πxy =
{
x′ = a(x+ uij)
y′ = by + vij

, (4.24)

where a = 1/(1 − ui+1, j + uij) and b = 1 + vi, j+1 − vij , coherently with the mono-
dimensional methods. If we recall the mass conservation equation and consider its
discretized version on the cell, ui+1, j−uij +vi, j+1−vij = 0, we can easily get that ab = 1.
This means that the transformation of the plane preserves the area, and guarantees
no generation of overshoots or undershoots. By alternating the implicit and explicit
direction or using the transformation Π = (Πxy + Πyx)/2 no axis is favored.

Modified Eulerian implicit method

When dealing with full three-dimensional simulations, the combinations of EI and LE
mono-dimensional steps does not lead to a volume-preserving algorithm. For this reason,

61

4. Two-phase flow and interface capturing

we introduce a modified Eulerian technique that satisfies the mass conservation constraint.
Let us consider the discretized three-dimensional version of the continuity equation

ui+1,j,k − uijk + vi,j+1,k − vijk + wi,j,k+1 − wijk = 0 . (4.25)

If we couple an EI step with a modified Eulerian step and a LE final step, we can impose
mass conservation using a coefficient c in the intermediate step such as acb = 1. From
(4.25) we get

c = 1
ab

= 1− ui+1,j,k + uijk
1 + vi,j+1,k − vijk

= 1 + wi,j,k+1 − wijk
1 + vi,j+1,k − vijk

. (4.26)

The imposition of this coefficient, however, can lead to overshoots and undershoots in
the second intermediate C data. The consequent reconstruction must cut away this
inconsistencies, leading to an overall non-conservative algorithm. These problems become
less and less important as the time step is decreased.

Geometrical predictor-corrector unsplit method

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

1

2

3

B

A

C

D

E

Figure 4.7.: Pre-image of the grid lines (dashed lines) and streamline through the cell
vertices (dotted lines). The area of the polygon 1-2-B-D-A is equal to Φ+

x ,
that of 1-3-C-E-A to Φ+

y and the continuous piecewise-linear line B-D-A-E-C
approximates the pre-image of the cell sides 1-2 and 1-3.

Differently from the geometrical unsplit method, that is a combination of mono
dimensional split methods, this algorithm is a true unsplit method, meaning that the
fluxes are calculated in a two-dimensional fashion. We can write the discretized advection
equation as

Cn+1
ij = Cnij − Φ+

x + Φ−x − Φ+
y + Φ−y , (4.27)

62

4.3. Multilevel VOF method

where Φ designates the incoming and outgoing fluxes.
We need to identify the area that corresponds to each of the fluxes. In order to do

so, the velocities at the node of the cell are first traced backwards for the time ∆t to
compute the pre-image with a predictor-corrector method. With reference to Fig. 4.7,
we identify the points A, B, C starting from 1, 2, 3 respectively. In general, the area
of the quadrilateral 1-A-B-2 is not equal to the flux Φ+

x . In order to guarantee the
equality, that leads to an area-preserving algorithm, the intersection between the line
A-B and the Cartesian grid, identified by D in the figure, is moved horizontally to get
that the polygon 1-2-B-D-A area is equal to the flux. The same procedure is followed
to get the flux in the y direction. The procedure is straightforward and can be applied
for any combination of vertex velocities, as shown in Fig. 4.8. The procedure has been
here simplified, but full details on the method have been published in [23].It can also
be applied to unstructured grids without modifications. A three-dimensional version,
however, is much more complex, given the greatly higher number of different topologies
that the volume representing the flux can assume.

(c)(b)(a)

Figure 4.8.: Three different shapes of the flux polygon through the right side of a cell:
(a) standard case with the flux polygon inside two consecutive vertical cells;
(b) flux polygon defined across two horizontal cells; (c) polygon intersecting
three different cells.

4.3. Multilevel VOF method

VOF methods show their weaknesses when dealing with structures with characteristic
length comparable to the grid spacing. In particular, thin filaments or drops that have
a characteristic length of three to four cells can still be reproduced accurately, but for
smaller dimensions the interface reconstruction method is not able to describe accurately
the shape of the interface. This feature may lead to artificial changes of topology that are
unphysical. The formation of a pinch and the subsequent detachment of a drop should
be driven by a physical model and not dictated by the computational grid. However, this
model can be very complex and the physical process is still not fully understood.

63

4. Two-phase flow and interface capturing

To mitigate this effect, we have developed an innovative approach that tries to increase
the resolution achievable with the VOF method, while the overhead induced on the
Navier-Stokes solver is kept to a minimum. The basic idea is to separate the grid used
for the Navier-Stokes system from the one used for interface evolution, in particular we
use a finer grid obtained from the coarser one with repeated mid-point refinement. In
this way, the number of segments in each cell is increased without the necessity to solve
the velocity and pressure fields in a greater number of nodes.
We will now describe the equations on these grids with detail, suppressing the h

subscript that should appear on all the discretized variables. Starting from the coarse
level (c) we refine up to a fine level (f) with f = c+ l. We indicate with V c, Sc and V f ,
Sf the families of subspaces defined at the coarse and fine levels and with Ωc

i and Ωf
i the

corresponding generic cell. We can also introduce some transfer operators from the fine
to the coarse levels, that take into account the different resolution at which the equations
are solved. If some phase structure is present only at the fine level (f), the solution
(pc,uc) at the coarse level is different from (pf ,uf), which satisfies the Navier-Stokes
equations with different test functions.
We can start from the continuity equation, the second of (4.1), and assume that it is

satisfied by the velocity field at both levels,

b(qc,uc) = 0 , b(qf ,uf) = 0 , (4.28)

where qc now designates the test function on Sc. We substitute in the relation at the
fine level the coarse velocity field uc to get

b(qf ,uc) =
∫

Ω
qf Rfc(uc,uf) dV , (4.29)

where we introduce the fine-to-coarse mass transfer operator Rfc, defined by

Rfc(uf ,uc) = ∇ · (uf − uc) . (4.30)

The meaning of this operator is to quantify the residual error of the mass conservation
equation when we assume that the coarse level solution uc is valid at fine level. Even
if the discrete solutions are divergence-free functions over the finite element mesh, the
point-wise divergences ∇·uf and ∇·uc may be different from zero for all x ∈ Ω, because
the divergence-free constraints are imposed in an integral fashion, i.e.

∫
Ω qf ∇·uf dV = 0

and
∫

Ω qc∇ · uc dV = 0, but
∫

Ω qf ∇ · uc dV = 0 is not imposed.
Since the fine mesh is obtained by mid-point refinement, Sc(Ω) ⊂ Sf (Ω) and therefore

any test function qc can be written as a linear combination of the test functions qf at
the fine level,

qc(x) =
∑
i

aiq
f
i (x) . (4.31)

From this we get b(qc,uf) =
∑
i aib(q

f
i ,u

f) = 0 and therefore

0 = b(qc,uc) = b(qc,uc − uf) =
∫

Ω
qcRfc(uc,uf)dV . (4.32)

64

4.3. Multilevel VOF method

Under the above assumptions, there is no net mass transfer from the fine to the coarse
level. Therefore, if we implement a projection of the velocity that preserves the divergence-
free constraint, such as the one shown in Sec. 4.3.2, the transfer operator is identically
equal to zero.

We repeat the same argument for the momentum conservation equation shown in the
first of (4.1). Let (pf ,uf) be the solution of the Navier-Stokes equation at the fine level

(ρ ∂ u
f

∂t
,vf) + c(ρ,uf ,uf ,vf) + b(pf ,vf) + a(µ,uf ,vf) = (f ,vf) + (ffs ,vf) , (4.33)

with vf the test function in V f . Here the density ρ and the viscosity µ are explicitly
written since they are now discontinuous across the interface. Now we substitute the
solution (pc,uc) of the coarse grid in (4.33)

(ρ ∂ u
c

∂t
,vf) + c(ρ,uc,uc,vf) + b(pc,vf) + a(µ,uc,vf) =

= (f ,vf) + (ffs ,vf) + (P fc(pc, pf ,uc,uf),vf) + (T fc(uc,uf),vf) , (4.34)

and introduce the fine-to-coarse momentum transfer operator P fc defined by

(P fc(pc, pf ,uc,uf),vf) = (ρ ∂ u
c

∂t
,vf) + b(pc,vf) + a(µ,uc,vf)+

− c(ρ,uc − uf ,uc − uf ,vf)− (ρ ∂ u
f

∂t
,vf)− b(pf ,vf)− a(µ,uf ,vf) , (4.35)

and the fine-to-coarse turbulent transfer operator T fc defined by

(T fc(uc,uf),vf) = c(ρ,uc−uf ,uc−uf ,vf)+c(ρ,uc,uc,vf)−c(ρ,uf ,uf ,vf) . (4.36)

We split the contribution from the fine grid to the coarse one in two terms to get a
term that can be associated to the well-known turbulence contribution from the sub-grid
velocity field. The other term summarizes the difference of virtual work between the two
levels.

When the spaces are embedded, V c(Ω) ⊂ V f (Ω), (4.34) holds for any test function on
the coarse grid and

(ρ ∂ u
c

∂t
,vc) + c(ρ,uc,uc,vc) + b(pc,vc) + a(µ,uc,vc) =

= (f ,vc) + (ffs ,vc) + (Sfc(pc, pf ,uc,uf),vc) . (4.37)

The operator Sfc models the whole residual between the fine grid Navier-Stokes solution
and the coarse one and depends only on the variables of the coarse grid

(Sfc,vf) = (P fc(pc, pf ,uc,uf),vf) + (T fc(uc,uf),vf) =

= (ρ ∂ u
c

∂t
,vf) + c(ρ,uc,uc,vf) + b(pc,vf) + a(µ,uc,vf)− (ffs ,vf)− (f ,vf) . (4.38)

65

4. Two-phase flow and interface capturing

When Sfc is small it means that a further refinement of the VOF grid does not modify
the velocity and pressure fields, and the capillary force calculated on the fine grid is
well-resolved. When this is not true, Sfc can be directly calculated with (4.38) and
projected on the coarse grid, or can be modeled in some way at the coarse grid level.
The fine grid is used only to get a higher resolution on interface reconstruction, while
the relevant physics must be resolved completely at the coarse level. In the simulations
presented in the next chapter, the value of Sfc has been monitored and kept small at
any point of the simulations.

4.3.1. Numerical implementation of the multilevel VOF method

Figure 4.9.: The color function distribution on different meshes (top left) and on the
coarse mesh (top right). The compact data memorization with two (bottom
left) and four (bottom right) levels of grid refinement.

We consider a few features of the multilevel in order to describe the algorithms that
keep the induced overhead to a minimum. In particular, the fine grid is used to compute
the surface tension force ffs that is then inserted in the coarse grid equations. Since each

66

4.3. Multilevel VOF method

0 0.22 0.31 0.14 0

0.130.8710.99

1 1 1

0 0 0 0 0

0.25

0.140.04 0.63 0.77 0.71

0.39

0.33

row nc C column
1 3 0.22 0.31 0.14 2 3 4
2 5 0.33 0.99 1 0.87 0.13 1 2 3 4 5
3 3 0.39 3 0.25 1 2 5
4 5 0.04 0.63 0.77 0.71 0.14 1 2 3 4 5
5 0

Figure 4.10.: The C data distribution on a 5×5 Cartesian mesh (top) and the compressed
stored data (bottom): row number, number of cells nc, color function in
the mixed and consecutive full cells and column position.

level of refinement multiplies by a factor of four in two dimensions (or eight in three
dimensions) in the number of points and cells, the complete memorization of the VOF
data would increase the memory footprint quickly. For this reason we have developed a
storage scheme that compresses the VOF data and show an example of its implementation
in Fig. 4.9. The figure shows a coarse level with 24 × 16 cells, and the sparse color
function matrices at the two levels f = c+ 2 and f = c+ 4. At the intermediate level of
refinement each cell of the coarse grid is divided in 16 subcells with the interface clearly
marked on the grid. At the highest level of refinement each coarse cell is subdivided into
256 smaller cells, with matrix entries about 16 times those of the coarse grid. The VOF
interface at this level can be compared in resolution to a front tracking representation
with markers.

The format used for data storage can be compared to the Compressed Row Storage
(CRS) [24] and we show a two-dimensional example in Fig. 4.10. We consider a 5× 5
stencil of cells and the associated color function data. For each row we memoeize only
the number of entries nc, the C data and their column number. All empty cells are
discarded, while a sequence of n consecutive full cells is stored as a single one, with its

67

4. Two-phase flow and interface capturing

color function value equal to n in the first position, e.g. the third row of Fig. 4.10 where
we memorize in the second position the integer 3 to represent the sequence of full cells.
With this technique we can use a large number of refinement levels while keeping the
storage requirements proportional to the length of the interface divided by the fine grid
spacing. This representation requires an efficient numerical algorithm to extract and
compress the relevant data.
To further improve the performances when we consider high-resolution fine grids, we

do not perform the reconstruction cell by cell, extracting the block of cells needed for
every mixed cell. The implementation includes an algorithm that extracts a stripe of
3× n cells, where n is the length of one full line, and computes the new normals and the
fluxes simultaneously for the whole block. Afterwards, one line of cells is updated and
the procedure is repeated. The normal values are stored in the same compressed way of
the VOF data.

4.3.2. Velocity refinement with an optimal control approach

When dealing with a multilevel VOF method, we need to project the velocity field from
the coarse grid to the fine one, since the advection of the color function needs a velocity
value on each node of the fine grid. Since the divergence-free constraint is imposed on the
coarse grid, we want to preserve it on the fine grid. If we consider a simple approach in
which the velocity on the added points are calculated as a simple averaging of the value
on the coarse grid, we can easily see that the fine velocity field is not divergence-free. We
stress again that in this context the mass conservation constraint is satisfied only in an
integral fashion.

We introduce an optimal control problem to get a divergence-free preserving projection
operator for the velocity field. We rewrite the refined velocities as a combination of all the
velocities on the coarse grid, and impose the divergence-free constraint with a Lagrangian
multiplier approach. The set of fine velocity values that satisfies these hypotheses is not
unique, so we can also impose, as the target of the optimal approach, that the resulting
velocities are the closest to the averaged values.

Let us consider the coarse cell shown in Fig. 4.11, where we already know the velocities
in the points 0, 1, 2 and 3. The midpoint refinement puts in the five new nodes 4, 5, 6,
7 and 8. Therefore we need to compute 10 velocity components, number that clearly
outnumbers the constraints of mass conservation, given by

u4 + u8 − u7 − u0 + v8 + v7 − v4 − v0 = 0 , (4.39a)
u1 + u5 − u8 − u4 + v5 + v8 − v1 − v4 = 0 , (4.39b)
u8 + u6 − u3 − u7 + v6 + v3 − v8 − v7 = 0 , (4.39c)
u5 + u2 − u8 − u6 + v2 + v6 − v5 − v8 = 0 , (4.39d)

that represent the divergence values in each of the fine cells created from the given coarse

68

4.3. Multilevel VOF method

0 1

23

0 1

23

4

5

6

7 8

Figure 4.11.: The coarse element with four nodes (left) and the refined one with nine
nodes (right).

cell. therefore, we set some of them to the averaged value

v4 = (v0 + v1)/2 , u5 = (u1 + u2)/2 ,
v6 = (v2 + v3)/2 , u7 = (u3 + u0)/2 , (4.40)
u8 = (u0 + u1 + u2 + u3)/4 , v8 = (v0 + v1 + v2 + v3)/4 .

We are left with u4, v5, u6 and v7 as unknowns.
We can now introduce our functional J as

J = 1
2(u4 − ũ4)2 + 1

2(v5 − ṽ5)2 + 1
2(u6 − ũ6)2 + 1

2(v7 − ṽ7)2 , (4.41)

where the target values are indicated by a tilde. We choose them to be the averaged
values,

ũ4 = (u0 + u1)/2 , ṽ5 = (v1 + v2)/2 , (4.42a)
ũ6 = (u2 + u3)/2 , ṽ7 = (v3 + v0)/2 . (4.42b)

We now build the augmented Lagrangian functional P as

P = J +
3∑
i=0

γiDi , (4.43)

where γi are the Lagrangian multipliers associated with the four discrete divergence on
the l.h.s. of (4.39) and indicated here as Di.

69

4. Two-phase flow and interface capturing

We can now solve our problem by determining the minimum of P . We set to zero its
first variation δP

δP = (u4 − ũ4)δu4 + (v5 − ṽ5)δv5 + (u6 − ũ6)δu6 + (v7 − ṽ7)δv7 + γ0(δu4 + δv7)+

+ γ1(δu4 + δv5) + γ2(δu6 + δv7) + γ3(δu6 + δv5) +
3∑
i=0

δγiDi . (4.44)

All variations in (4.44) are independent from each other, so we can put to zero each of
them singularly to get a minimum of P . We obtain a linear system of eight equations
in the eight variables u4, v5, u6, v7 and the four Lagrangian multipliers. Since the four
relations (4.39) are not linearly independent, there are an infinite number of solutions. If
we take a 7 by 7 minor with full rank, we get the solution desired by leaving one of the
Lagrangian multipliers as undefined. In this way, however, we would get that 3 of the
(4.39) are satisfied, while the fourth is not. In general, the value of the divergence on the
coarse grid is not zero, since we integrate an iterative solver. If we proceed as described,
the whole error on divergence would be transferred to one fine cell, the one corresponding
to the divergence constraint that we have removed. Alternatively, we can try to split
beforehand the divergence error on all four subcells, in order to get a balanced solution
on the fine cells.
The previous derivation leads to

u4 = 2u0 + 2u1 + v0 − v1 + v2 − v3
4 , (4.45a)

v5 = u0 − u1 + u2 − u3 + 2v1 + 2v2
4 , (4.45b)

u6 = 2u2 + 2u3 + v0 − v1 + v2 − v3
4 , (4.45c)

v7 = u0 − u1 + u2 − u3 + 2v3 + 2v0
4 . (4.45d)

We remark that now the optimized velocities will depend on both u and v components
on the coarse grid. The extension to the three-dimensional case is straightforward
and does not present any difficulty. We note that, if in three dimensions we start
from a two-dimensional coarse grid velocity field, the resulting fine field will be fully
three-dimensional.

4.4. Surface tension modeling

As we have seen in the previous section, the capillary force is computed on the fine
grid from the sequence of segments approximating the interface line inside a coarse cell.
Recalling (4.7), we write it in its variational form

(ffs ,vc) =
∫

Ω
σ κ δs(x)n · vc dS , (4.46)

70

4.4. Surface tension modeling

that becomes
(ffs ,vc) =

∫
Γs

σ κn · vc dS . (4.47)

The vector κn can be written as the second derivative along the interface of the position
vector

κn = ∇2
sxs , (4.48)

where ∇s = (I − nn) · ∇ is the gradient operator over the surface Γs and is called
Laplace-Beltrami operator. Using (4.48) we rewrite (4.47) with an integration by parts as

(ffs ,vc) =
∫

Γs

σ∇2
sxs · vc dS = σ

∫
Γs

∇sxs : ∇svcdS . (4.49)

This formulation is useful since it involves only first derivatives of the interface.
Alternatively, the surface tension term can be rewritten in another form, called the

volumetric approach. Going back to (4.47), we can write∫
Γs

σ κvc · n dS =
∫

Ωl

σ∇ · (κ̂vc) dV =
∫

Ω
χσ∇ · (κ̂vc) dV =

=
∫

Ω
χσ κ̂∇ · vc dV +

∫
Ω
χσ vc · ∇ κ̂ dV , (4.50)

using the divergence theorem. Here κ̂ is an extension of the curvature κ to the whole
domain. Any extension is allowed provided κ̂|Γs = κ. This formulation can be particularly
useful when the curvature is known analytically and the extension κ̂ can be computed
easily. At equilibrium the first term of (4.50) balances the pressure jump at the interface,
while the second term is the source of spurious currents. We now discuss briefly the
numerical implementation of these two approaches.

4.4.1. Numerical implementation of the capillary force
In axisymmetric geometry it is useful to split the curvature in its two main components

κ = κ1 + κ2 , (4.51)

which are called principal curvatures. If we indicate with r, θ, and z the cylindrical
coordinates, we can easily compute the curvature of the interface Γs that is the revolution
around the z-axis of the interface line Ls of equation r = f(z). Each meridian plane
through the z-axis contains the line Ls and is also perpendicular to the local tangent
plane in each point of Γs. The local curvature κ1 on Ls is given by

κ1 = − f ′′(z)
(1 + f ′2(z))3/2 . (4.52)

The other curvature κ2 is computed on a plane that is perpendicular to both the tangent
and the meridian planes and contains the local normal vector to the line Ls. If we denote
with ϕ the angle between the outgoing normal vector and the z-axis, then

κ2 = −cosϕ
r

= − 1
f(z)(1 + f ′2(z)) . (4.53)

71

4. Two-phase flow and interface capturing

We can split (4.47) in the two contributions

(ffs ,vc) =
∫

Γs

σ κ1n · vc dS +
∫

Γs

σ κ2n · vc dS . (4.54)

Since κ2 = − cosϕ/r is known analytically we compute this term with the volumetric
approach. The term in κ1, instead, is computed with the Laplace-Beltrami approach.
We note that the VOF reconstruction computes a segment inside each cell, so the first
derivative of xs inside each fine cell is the tangent vector and is a constant. An extensive
mathematical analysis of the Laplace-Beltrami operator for curvature computations in
two-phase flow applied to finite element methods can be found in [25, 26]. For the second
term, if we know an approximated distribution χ̂h from the C data values, (4.50) becomes∫

Γs

σ κ2 v
c · n dS =

∫
Ω
χ̂h σ κ̂2∇ · vc dV +

∫
Ω
χ̂h σ v

c · ∇ κ̂2 dV . (4.55)

The distribution χ̂h can be calculated by interpolating the C values on the cell vertices,
for example. With an extension of κ2 constant in the radial direction we get a momentum
conservation in the form

d(u,u,v) + b(p,v) + a(u,v) = b(χ̂h σ κ̂2,v) + (χ̂h σ∇ κ̂2,v
c) , (4.56)

which gives exactly the equilibrium solution p = χh σ κ̂2 and u = 0 with no spurious
currents if the pressure and χh are defined over the same finite dimensional space Sh.
When the evaluation of the capillary force is not accurate, the lack of force balance

generates the so-called spurious currents can appear. They are particularly evident in
the static case, where the analytical solution is given by a zero velocity field and a sharp
jump at the interface for the pressure. Since in the discretization the capillary force
and the pressure gradient are not exactly parallel, the resulting force can generate small
currents. Is is important that, even if these currents are present at the initial time, they
should tend to zero as the time goes on rather then deforming the interface position.

72

5. Numerical simulations

The code has been tested with some two-phase applications of general interest. First of
all, some basic simulation of a column of liquid in a steady gas has been performed to
assure that the model is suitable for these applications. Afterwards, some simulations of
jets are performed, with the aim to investigate the breakup of the fluid column [27].

5.1. Linear dispersion equation for jets
As a first test we consider the evolution of small perturbations of an axisymmetric jet,
when nonlinear effects are still very small. Since the evolution of the interface is driven
by surface tension, it is important that the spurious currents are negligible.

5.1.1. Analytical dispersion equation
We follow here the analytical derivation of [28] for the dispersion equation. This for-
mulation shows clearly that asymmetric modes can be excited when the Weber number
is greater than a critical value Wec. This value is a function of the wavelength of the
disturbance and the density ratio between the gas and liquid phases. The simulations
described in the next sections are only axisymmetric, so we must enforce that We is
smaller than Wec in order to obtain physically meaningful simulations.

The derivation of the dispersion equation considers the stability of a wave of very small
amplitude on a cylindrical jet of infinite length. The liquid jet with density ρl and radius
R has a uniform relative velocity U with respect to the external gas with density ρg. The
two fluids are assumed to be incompressible and inviscid. We linearize the Navier-Stokes
equations and consider a small perturbation such that

uj = u0j + u′j , pj = p0j + p′j , (5.1)

where j = l, g designates the phase and the 0 subscript the stationary solution with
u0j = 0 and a constant pressure jump along the interface. The linear perturbed quantities
can be expressed

p′j(r, θ, z, t) = pj(r) exp (i(kz +mθ) + α t) , (5.2a)
u′j(r, θ, z, t) = uj(r) exp (i(kz +mθ) + α t) , (5.2b)

where α is the complex growth rate with respect to time. For the azimuthal mode m = 0,
also known as varicose or sausage mode, the cross section of the jet is circular and its
radius varies only with the z-coordinate. When m > 0 the modes are asymmetric. For
the m = 1 mode the cross section of the jet is still circular but the axis of the perturbed

73

5. Numerical simulations

jet describes a spiral around the z-axis. This is usually called snake or kink mode. For
m = 2, the cross section of the jet is elliptic, and an originally circular jet deforms
progressively into a flat curling sheet. For larger m values, the modes are characterized
by m oscillations along the unperturbed circumference.
The dispersion relation (5.2) shows that in presence of an external fluid phase the

surface tension has a stabilizing effect on asymmetric modes. We define the critical
Weber number (Wec)m as the Weber number for which the growth rate of the m-th
mode becomes greater than zero. in particular, for an inviscid jet

(Wec)m = (γm + q βm)(m2 + (kR)2 − 1)
kR q γm βm

, (5.3)

with

γm = k
Im(kR)
I ′m(kR) , βm = −kKm(kR)

K ′m(kR) , (5.4)

where Im and Km are the m-th order modified Bessel functions of the first and second
kind, I ′m and K ′m their first derivative and q = ρg/ρl. We can simplify this relation in
the approximation of short or long wavelengths.

Long wavelengths. In this case the disturbance has m = 1 is the first one to be
excited when We > (1 + q)/q.

Short wavelengths. Also in this case the first asymmetric mode to be excited is
with m = 1 when We > (1 + q)kR/q.

We note that the critical Weber number Wec is always proportional to the inverse of
the density ratio q. When q → 0, we recover the physical situation of a single fluid
surrounded by vacuum as in Rayleigh’s theory [29], Wec →∞ and the mode is always
axisymmetric. If we consider a mixture of water and air with q = 1.3× 10−3, the lowest
critical Weber number is Wec ≈ 769 for m = 1.
Below this critical value only the m = 0 mode is present and the growth rate α is

computed from the characteristic equation

(ρl γ0 + ρg β0)α2 + 2ikα(ρg β0ug + ρl γ0 ul)− k2(ρg β0u
2
g + ρl γ0 u

2
l)+

− k σ

R2 [1− (kR)2] = 0 . (5.5)

We split the complex growth rate α in its real and complex parts αr and αi respectively.
We get for the real part

αr = ±U
R

√
γ0 β0 q (kR)2

(γ0 + β0 q)2 + 1
We

(kR)[1− (kR)2]
(γ0 + β0 q)

, (5.6)

with We = (RU2 ρl)/σ.
Let us consider now three limiting cases of (5.6).

74

5.1. Linear dispersion equation for jets

liquid

gas

gas

Γs

D

Figure 5.1.: Initial axisymmetric geometry.

• Rayleigh’s equation. This is the limit for q → 0, representative of a liquid jet in
vacuum. In this situation we get

αr = ±U
R

√
1
We

(kR) [1− (kR)2]
γ0

. (5.7)

• Short wavelength limit. This case corresponds to kR → ∞ that means β0 =
γ0 = 1 and

αr = ±U
R

√
(kR)2 q

(1 + q)2 + 1
We

(kR) [1− (kR)2]
1 + q

. (5.8)

• Long wavelength limit. This case corresponds to k → 0, β0 → −kR ln(kR) and
γ0 → 2/(kR), so we get

αr = ±U
R

√
− 2(kR)3ln(kR)q

[2− q (kR)2ln(kR)]2 + 1
We

(kR)2 [1− (kR)2]
[2− q (kR)2 ln(kR)] . (5.9)

0 5 10 15 20 25 30 35
t

0

0.05

0.1

0.15

0.2

0.25

al
p
h
a

0 0.5 1
t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

al
p
h
a

Figure 5.2.: Time evolution of the growth rate αr for the m = 0 mode during the initial
transient (left) and after the restart of the computation (right).

75

5. Numerical simulations

A
B
C
D

α

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k R
0 0.2 0.4 0.6 0.8 1

A
B
C
D

α

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k R
0 0.2 0.4 0.6 0.8 1

Figure 5.3.: Numerical growth rate α for µl/µg = 100 for different mesh resolutions on
the left (32 (A) , 64 (B), 128 (C)) and for a different number of refinement
levels on the right (f = c + 2 (A), f = c + 3 (B), f = c + 4 (C)). In both
graphs it is also plotted the inviscid theoretical curve of (5.7) (D).

5.1.2. Numerical results

We now try to reproduce the evolution of (5.7) with our code. We consider the ax-
isymmetric domain shown in Fig. 5.1. A liquid of density ρl and viscosity µl is located
within a cylindrical region Ωl of radius R. Outside the liquid there is a gas of density ρg
and viscosity µg. In order to reproduce the infinite cylinder of (5.7) we apply periodic
boundary conditions on the two bases and assume free flow conditions on its lateral
surface. We impose an initial perturbation only in the position rI of the interface of the
form

rI = rI(z) = R+ δ0 cos(
2πz
λ

) , (5.10)

where δ0 is the initial amplitude and λ the wavelength of the perturbation.
Since we analyze the linear case, we need to use very small values of δ0 and of the

velocity field. If the capillary force (4.7) is not carefully discretized, for δ0 that goes to
zero and with a small initial velocity, the evolution could be dominated by the spurious
currents. With reference to Sec. 4.4.1, in this situation we get κ1 ' 0, so the spurious
currents at the initial time can be generated only by the surface tension term with κ2.
The steady state solution provides κ2 = 1/R, and with this value we can positively use
the volumetric approach to get negligible spurious currents and a correct pressure jump.
In order to reproduce the initially linear instability evolution we use the linearized

version of (4.1) to evolve in time the velocity and pressure fields. Since in the applied
initial conditions the velocity and pressure fields are not perturbed, we divide the
procedure in two steps, as shown in Fig. 5.2. We first start at time t = 0 with the velocity
and pressure profiles of the steady-state solution but with the perturbed interface (5.10)
and evolve the system with very small time steps. When the growth rate αr approaches
a stationary value, the velocity and pressure fields are then consistent with the perturbed
interface and we assume these profiles as the initial configuration for the second part
of the simulation. We then monitor the time evolution of the value of αr that should

76

5.1. Linear dispersion equation for jets

remain almost constant, as shown on the right of Fig. 5.2.

A
B
C
D

α

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k R
0 0.2 0.4 0.6 0.8 1

Figure 5.4.: Numerical growth rate α for different viscosity ratios µl/µg (10 (A), 100 (B)
and 1000 (C)). In the graph it is also plotted the inviscid theoretical curve
of (5.7) (D).

In Fig. 5.3 the dispersion relation of the growth rate αr is plotted as a function of
the non-dimensional wave number kR, for different resolutions of the coarse mesh and
different levels of refinement. The geometric setup of the simulation sets a radius of the
liquid cylinder R = 0.328125× 10−3m with a perturbation amplitude δ0 = 0.01R. The
physical properties of the fluid are density ρl = 1000 kg/m3, viscosity µl = 0.0316 kg/ms
and surface tension coefficient σ = 0.0725 J/m2. The density ratio is ρl/ρg = 1000,
and the viscosity ratio µl/µg = 100. The non-dimensional numbers we get for these
parameters are Re = 10.38, We = 4.53 and Oh = 0.205, where the reference velocity is
computed from the static pressure jump, U =

√
σκ2/ρl. The curves on the left of Fig.

5.3 are obtained with 32, 64, 128 cells in the radial direction and two refinement levels
for the color function, f = c+ 2. The curves on the right consider 64 cells in the radial
direction and 2, 3 and 4 refinement levels. The inviscid theoretical curve of (5.7) is also
plotted in each figure. We note that the numerical results differ only for the case with
the lowest resolution of 32 cells, while the number of levels of refinement do not change
the solution appreciably.
In Fig. 5.4 we focus on the dependence of the results on the viscosity ratio µl/µg for

the three values 10, 100 and 1000. Since the density ratio is rather high, the results are
already close to the asymptotic line already at viscosity ratios µl/µg of about 100.
We also consider the dependence of the dispersion equation on the viscosity µl of the

liquid phase and show the results in Fig. 5.5. The left image is obtained with the previous
physical parameters, while on the right the liquid viscosity is set equal to 0.01 kg/ms,
while the viscosity ratio is unchanged. In this case Oh = 0.065, and the whole curve
changes, with an increased maximum. In this case, the continuous lines in Fig. 5.5
represent the analytical dispersion relation derived by Weber [30], that is valid for a

77

5. Numerical simulations

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

a
lp

h
a

kR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

a
lp

h
a

kR

Figure 5.5.: Numerical (+) and theoretical dispersion for the growth rate for Oh = 0.205
(left) and Oh = 0.065 (right).

liquid surrounded by the vacuum.
In general the agreement between our numerical simulations and theoretical results is

rather good.

5.2. Axisymmetric pulsating jets
The next case we have analyzed is a liquid jet that enters in a volume occupied by a gas
from a circular nozzle. This phenomenon has a strong relation with the jet instability seen
in the previous section and has been studied extensively theoretically, numerically and
experimentally [31]. Real cases are however difficult to reproduce, since the instability is
generated by small perturbations that are always present at the nozzle, or even upstream.
These perturbations are mostly of stochastic nature, related to turbulence and it is not
easy to quantify them. For this reason we impose a known sinusoidal oscillation to the
constant inlet velocity that generates some elementary and well-defined effects of interest,
such as the breakup of the whole column and the formation of a single droplet and thread.
The inlet velocity is given by the expression

U = U0 (1 +Asin(ωt)) , (5.11)

with ω k = U0. We only deal with small diameter jets, where the gravity term can be
neglected. The parameters that govern the jet decay are: the driving amplitude A, the
non-dimensional or reduced wave-number kR, the Weber number We and the Ohnesorge
number Oh. We restrict our analysis to three different wavelengths, around the maximum
of Fig. 5.4, and three inlet velocities up to a Weber number greater than the critical
value.

Convergence test

As seen in Sec. 4.3 the magnitude of the transfer operator Sfc determines when the
approximations introduced with the multilevel VOF algorithm do not influence the

78

5.2. Axisymmetric pulsating jets

simulations. Therefore we first consider a test case to determine a consistent set of fine
and coarse meshes and verify that Sfc is always small during the simulation. We consider
a jet of water with density ρl = 1000 kg/m3, viscosity µl = 0.003 kg/ms and surface
tension coefficient σ = 0.0725 J/m2, injected with velocity U0 = 1m/s from a hole of
radius R = 0.3164× 10−3m. The non-dimensional numbers for this case are Re = 210.93,
We = 8.73 and Oh = 0.014. The gas is assumed to be air, then the density ratio between
the liquid and gas phases is 1000 and the viscosity ratio 100. The amplitude of the
sinusoidal oscillation of the inlet velocity is A = 0.5, its wavelength λ = 3.5 × 10−3m,
with a reduced wave-number kR = 0.57. For this set of physical parameters the critical
Weber number is Wec ≈ 1000, well above the Weber number of this simulation, and the
jet evolution is fully axisymmetric.
We first consider no mesh refinements. When the resolution is too low, several small

droplets do indeed appear, but they totally generated by numerics. The minimal number
of cells that produces a single stable drop is 128 in the radial direction and 768 in the
axial one.

To test the multilevel algorithm, we reduce the velocity and pressure grid to 32× 192
cells and consider different refinement levels (f = c+ l, l = 1, 2, 3, 4), all of them obtained
with mid-point refinement. The most refined mesh will have 512× 3072 cells. For l = 1
the interface breaks as in the single-level simulations, while for l = 2, 3, 4 the color
function is well resolved. However, the norm of the transfer operator Sfc is not always
negligible. The post-processing computation of the operator Sfcc in the coarse grid can
be performed with the projection P cf and the restriction Rfc operators that are already
used in the multigrid solver of the Navier-Stokes equations. We first compute (4.38) for
all basis functions vf at the fine level

(Sfcf ,v
f) = (Sfc(P cf (uc, pc)),vf) . (5.12)

We then use the restriction operator Rfc to compute the projection Sfcc over the coarse
grid

(Sfcc ,vc) = Rfc((Sfcf ,v
f)) , (5.13)

for all basis functions vf at the coarse level. In Tab. 5.1 we report the maximum value

level 1 2 3 4
cells 64× 384 128× 768 256× 1536 512× 3072
error 8.2× 10−2 1.2× 10−2 5.1× 10−4 7.1× 10−4

Table 5.1.: The maximum value of ‖Sfcc ‖∞/‖f s‖∞ for the coarse grid with 32× 192 cells,
four different refinement levels, in the non-dimensional time interval [0, 2].

during the time interval [0, 2] of the ratio between the transfer operator Sfc and the
capillary force term. The table shows clearly that we can neglect the transfer operator
when l = 3, 4, and in this case the computation of the local normals and curvatures can
be considered accurate.

79

5. Numerical simulations

We remark that this does not imply that the pressure and velocity fields at the coarse
resolution 32× 192 are fully resolved, but only that the interface representation at the
two highest refinement levels is accurate for that coarse grid. therefore, we need to test
that the solution obtained is mesh independent by refining the coarse grid and analyzing
the differences in the solutions. In Fig. 5.6 case A has 32× 192 cells on the coarse grid,
case B 64× 384 cells and case C 128× 768 cells. The non-dimensional time step ∆t is
fixed at 1 × 10−3. We evaluate the transfer operator with respect to the norm of the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

A

B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

A

B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

A

B

C

0 1 2 3 4 5 6

z

0

0.25

0.5

0.75

1

r

B

CA

Figure 5.6.: Evolution of the interface line for the three different grid resolutions: 32×192
(A), 64 × 384 (B) and 128 × 768 (C), at the non-dimensional times t =
0.5, 1, 2, 3.

capillary force and get a small value in all situations. In particular, we get 8.03× 10−4

for case A, 3.63× 10−5 for case B and 1.04× 10−5 for case C. The interface at the lowest
resolution is quite different from that obtained in the two other cases, so we infer that
the intermediate resolution with 64 × 384 cells on the coarse grid and three levels of
refinement can be used as the reference discretization in all the following simulations.

As a result of the optimized memorization and computation of the interface geometrical
properties, the use of different refinement levels does not affect the CPU times and
memory needs significantly. Without them, the costs of a simulation with the same

80

5.2. Axisymmetric pulsating jets

resolution in VOF grid would have required substantial increments in both of them.
Fig. 5.7 shows the details of the evolution of the physical quantities of this simulation.

Complete profiles for pressure, velocity and color function on the axis are plotted. The
modulated velocity at the inlet generates a bulge followed by a neck, that becomes thinner
and thinner as the simulation advances in time. Eventually the head separates forming
a droplet and the neck becomes a thread, that detaches again from the following new
bulge, evolving in a smaller droplet. While at the beginning the pressure and velocity
fields are set by the applied inlet conditions, when we approach the change in topology
the capillary force becomes the dominant term. After the detachment, the capillary
force acts strongly on the droplet, that oscillates and quickly settles down to a spherical
shape. This peocess is very fast given the small dimensions of the jet. The position of the
satellite droplet depends on the timing of the two pinches. If the first breakup occurs in
the front of the thread, the neck retracts backwards and it is absorbed by the incoming
bulge, giving no time for a second breakup event. When the timing between the anterior
and the posterior breakup is very short, the satellite can settle down in-between the big
droplet and the jet body. The velocity of the droplets after the separation approaches
the mean velocity at the inlet U0.

The transfer operator monitoring demonstrates that the results shown in Fig. 5.7 are
accurate up to the breakup. Since there is no physical model of the pinching event, the
instant in which the change in topology occurs is dependent on the fine grid resolution.
As we have seen, the small satellite existence and position are deeply influenced by
this timing. Further analysis, with refined coarse grid or an adaptive mesh refinement
technique, can be carried on to assure that the fine scale is suitable the reproduce the jet
evolution with accuracy [32].

Pulsating jets with different wavelengths

This section is devoted to the analysis of the jet evolution when we vary the wavelength
of the applied disturbance, since this parameter appears to be the driving parameter
of the evolution. With reference to Fig. 5.4, we see that the reduced wave number
kR = 2πR/λ that generates the maximum growth rate is between 0.6 and 0.7. For this
case, the distance where the first drop detaches is the minimal achievable and is usually
called breakup length. We consider three different wavelengths: λ2 = 3.5× 10−3m, near
the maximum growth rate, λ1 = 2.5× 10−3m, and λ3 = 7.5× 10−3m, at opposite sides
with respect to the maximum. All other physical parameters are kept constant. In Fig.
5.8 we follow the evolution of the jet with wavelength λ2, from its formation up to the
breakup of the main droplet and the satellite. This small droplet relaxes to a spherical
shape and is eventually absorbed by the incoming jet.
Fig. 5.9 shows the development of the jet with wavelength λ1. The first part of the

evolution is similar to the previous case, with the formation of a bulge of spherical shape
that detaches from the main body at a later time. There is a second breakup behind the
filament, also in this case, and the satellite quickly reaches a spherical shape under the
action of surface tension. In this case kR = 0.825, and Fig. 5.4 clearly indicates that the
growth rate is substantially smaller.

81

5. Numerical simulations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A

B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A

B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A

B

C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

0 1 2 3 4 5 6

z

0

0.25

0.5

0.75

1

r

0 1 2 3 4 5 6
z

0

0.5

1

1.5

2

v
,p
,c

A
B

C

Figure 5.7.: Interface evolution (left) and pressure, color function and velocity profiles
along the jet axis (right, lines A, B and C, respectively) at times 0.5, 1, 1.5,
2, 2.5, 3, 3.5, 4, 4.5, 5 (top to bottom).

82

5.2. Axisymmetric pulsating jets

Figure 5.8.: Jet evolution for the intermediate wave length λ2 at times 0.5, 1, 1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5 (left to right and top to bottom).

83

5. Numerical simulations

Figure 5.9.: Jet evolution for the shortest wave length λ1 at times 0.5, 1, 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5 (left to right and top to bottom).

84

5.2. Axisymmetric pulsating jets

Figure 5.10.: Jet evolution for the longest wave length λ3 at times 0.5, 1, 2, 2.5, 3, 3.5, 4,
5, 6, 7.5 (left to right and top to bottom).

85

5. Numerical simulations

Fig. 5.10 shows the evolution for the longest wavelength λ3. Since kR = 0.275,
the growth rate is very small and the bulge develops in a more remarkable way. The
connecting neck stretches and the first breakup occurs now at the end of the filament.
Surface tension pulls the filament towards the leading bulge.

We have to remark that the jet evolution is accurately reproduced up to the breakup,
that can still be dependent on the adopted resolution, especially in the longest wavelength
case, where the filament reaches the greater length. At the breakup the value of the
transfer operator Sfc is at the maximum value during its time evolution.

Pulsating jets with different inlet velocities

Another parameter that modifies significantly the jet behavior is the inlet velocity. As
it is increased, turbulence starts to appear and soon becomes the dominant mechanism
affecting the interface evolution and breakup. In order to be able to perform direct
numerical simulations we stay away from situations in which a subgrid modeling of the
turbulence becomes necessary. Turbulence can influence also the velocity profile at the
inlet and it can be generated upstream of the nozzle position. A profile can be extracted
by a single phase simulation of the region before the nozzle and used as input boundary
condition for the two-phase simulation. In this case we monitor again the value of the
transfer operator and check that it remains small.
The most important parameter to take into account however is the critical Weber

number Wec. The hypothesis of axisymmetry is no more valid when the characteristic
Weber number of the jet exceeds this critical value. We will show some simulation where
this condition is no longer satisfied to verify the theoretical results.
We consider two cases, one with We < Wec and another with We > Wec. The

wavelength in the first case is equal to 2.5× 10−3m and the mean inlet velocity U0 is
10m/s, with an amplitude A = 0.25. The liquid jet has density ρl = 1000kg/m3, viscosity
µl = 0.01kg/ms and surface tension coefficient σ = 0.0725J/m2. The geometrical
configuration has again D = 0.328125× 10−3m and the gas phase is defined by a density
ratio of 1000 and a viscosity ratio of 100, typical values of water/air systems. With
these parameters we find Re = 328, We = 452 and Oh = 0.065. The critical Weber
number depends only on the density ratio of the fluids, so it remains the same of the
previous cases, Wec ≈ 1000. This case is again completely axisymmetric. The coarse
grid has 64× 384 cells and we use four levels of grid refinement for the color function.
The increased velocity requires a smaller timestep then before and we use ∆t = 1× 10−4.
When t > 4 the transfer operator Sfc becomes appreciable in magnitude, when the
fluid structures near the jet head become thin, as shown in Fig. 5.11. The formation
of the bulge is now influenced by the relative velocity that the jet faces, leading to the
development of a cylindrical sheet that surrounds the main liquid core that is similar
to the Rayleigh-Taylor instability. The use of finer grids does not bring more accurate
results as no breaking event appears.
The case with U0 = 100m/s is shown in Fig. 5.12. The physical parameters of the

simulation do not change, except for the surface tension σ that now is 1 J/m2. The Weber
number is now 3281 and it is bigger then the critical value Wec ≈ 1000. Furthermore,

86

5.2. Axisymmetric pulsating jets

Figure 5.11.: Jet evolution with inlet velocity U0 = 10m/s at times 1, 2, 3.5, 4, 4.5 (two
different views in each row). 87

5. Numerical simulations

Figure 5.12.: Jet evolution with inlet velocity U0 = 100m/s at times 1.5, 2, 2.5, 3, 3.5
(two different views in each row).88

5.2. Axisymmetric pulsating jets

the higher Reynolds number requires the use of a turbulence model, and we choose a
simple Smagorinsky LES model together with an upwind scheme to cope with turbulence.
The longitudinal section of the jet shows rings of fluid that appear around the jet body.
As predicted by the theory, in this situation the axisymmetry hypothesis is no longer
valid and the jet evolution is characterized by unrealistic structures. In these conditions
real jets would produce fingers and break in several small droplets. The transfer operator
becomes very large when t > 4, giving another indication that the simulation is not
accurate. The transfer operator should be modeled as a macroscopic term because its
importance can not be neglected any more.

89

Part III.

Nuclear Reactors
Thermal-Hydraulics

91

6. Porous media approach for nuclear
reactor cores

6.1. Energy equation
In order to describe a model for a core of a nuclear reactor we need to introduce a heat
exchange model. The energy balance equation, written as a function of the temperature
T , can be introduced in the following form

∂

∂t
(ρCp T) +∇ · (ρuCp T) = Φ +∇ · (k∇T) + Q̇ , (6.1)

where ρ is the density, Cp is the pressure specific heat and k the heat conductivity.
All these physical properties are assumed to be slightly variable as a function of the
temperature. Q̇ is the volumetric heat source and Φ the dissipative heat term. The
domain in analysis is again denoted by Ω, with Γ = ∂Ω its boundary. Suitable initial
and boundary conditions must integrate (6.1).
The derivation of the weak form and its discretization follow the same steps already

analyzed for the Navier-Stokes equation. The energy equation is a pure diffusion/advection
problem for the scalar variable T . The ellipticity of the diffusive operator allows the
existence of a weak solution, while the uniqueness is linked to the advection operator
just like we have seen for the momentum equation. Let H(Ω) be the space of the weak
solutions of (6.1) and ϕ be its test function. After integrating by parts the diffusive term
on the whole domain we get∫

Ω

∂

∂t
(ρCp T)ϕdV +

∫
Ω
∇ · (ρuCp T)ϕdV =

∫
Ω

ΦϕdV −
∫

Ω
k∇T · ∇ϕdV+

+
∫

Ω
Q̇ϕ dV +

∫
Γ

(k∇T · n)ϕdS , ∀ϕ ∈ H(Ω) . (6.2)

The boundary conditions allows the computation of the last term in (6.2), as seen many
times in the previous sections. We introduce the bilinear form a(·, ·) and the trilinear
form c(·, ·, ·) defined by

a(v, v) =
∫

Ω
k∇v · ∇v dV , ∀v ∈ H(Ω) , (6.3)

c(u, v, v) =
∫

Ω
∇ · (ρuCp v) v dV , ∀u ∈ V (Ω) ,∀v ∈ H(Ω) . (6.4)

We also define an inner product in H(Ω) designed by (·, ·) and the inner product on the
boundary Γ designed by (·, ·)Γ. We can rewrite (6.2) as

(∂
∂t

(ρCp T), ϕ) + c(u, T, ϕ) = (Φ, ϕ)− a(T, ϕ) + (Q̇, ϕ) + (k∇T, ϕ)Γ . (6.5)

93

6. Porous media approach for nuclear reactor cores

The discretization of (6.2) projects the equation from the infinite dimensional H(Ω)
to the finite dimensional Hh(Ω), and the corresponding solution T to Th. If Hh(Ω) is a
polynomial space of order p the finite element version of (6.2) is written as

∫
Ω

∂

∂t
(ρCp Th)ϕh dV +

∫
Ω
∇· (ρuCp Th)ϕh dV =

∫
Ω

Φh ϕh dV −
∫

Ω
k∇Th ·∇ϕh dV+

+
∫

Ω
Q̇hϕh dV +

∫
Γ

(k∇Th · n)ϕh dS ∀ϕh ∈ Hh(Ω) . (6.6)

The parameter h > 0 identifies the typical dimension of the finite element. Q̇h and Φh

are the projection through iᵀh of Q̇ and Φ in the same way as in (3.11). The velocity field
u is considered a known field obtained by the solution of the Navier-Stokes equation. The
Galerkin approximation can be used to solve the energy equation with {ϕh}i as a basis
of Hh(Ω). With this setting we recover a linear system of equations that corresponds to
(6.1) and we can solve it with some of the methods analyzed in Chap. 3. We remark that,
since the velocity is taken as an external parameter, the solution of (6.6) is independent
from the resolution of the velocity and pressure fields. For the physical properties that
depend on the temperature, we will use the temperature value of the previous time
step in order to keep the system linear. If the velocity field is also computed as part of
the algorithm, the two variables are not strictly coupled, but the value at the previous
iteration is used in the coupling terms.

6.2. Porous media approach
Since the reactor core is a very complex system, made up of thousands of fuel pins,
arranged in fuel elements, control bars and structural components, it is unlikely to
perform a simulation with a detailed representation of all these parts. The approach
followed in our situations is to introduce two scales, in a similar manner to what may
be done for turbulence subgrid or neutron flux analysis inside the same complex reactor
core. The fine scale represents all the geometrical entities, with fine spatial extension
and all the details. The coarse scale simulates instead the core as a whole, where the
details of the geometry are not taken into account and each coarse grid cell is made up
of a lot of sub-scale components. Just like the VOF multilevel approach, we try to use
the fine scale data to get some characteristic parameters for the coarse scale cell that
is here seen as an homogenization of its components. This approach is generally called
porous media approach, since it is also typical in the modeling of this kind of materials.

6.2.1. Two-level finite element Navier-Stokes system

In this section we will consider the porous media approximation for all the equations of
the Navier-Stokes system, since this modeling will influence the coarse scale formulation
of all of them. Let us consider a two level solution scheme where a fine level and a coarse
level solution can be defined. We will denote the fine grid quantities without any sign,
while the averaged values on the coarse grid will have a cap to identify them, so the

94

6.2. Porous media approach

set of solution on the coarse grid will be {p̂h, ûh, T̂h} with corresponding basis functions
{q̂h}i, {v̂h}i and {ϕ̂h}i in Q̂h(Ω), V̂ h(Ω) and Ĥh(Ω), respectively. We drop again the h
subscript from all equations after this point.
The continuity equation on the coarse grid is determined by the fine grid just like we

have seen in Sec. 4.3, so (4.32) holds.
For the momentum conservation equations, we recall (3.11) and follow the same

procedure seen in Sec. 4.3. We therefore get again the fine-to-coarse momentum transfer
operator P fc of (4.35) and the fine-to-coarse turbulent transfer operator T fc of (4.36).
When there is a stress applied on the boundary we must take into account the operator
Kfc(u) for which ∫

Ω
Kfc(u) · v̂dV =

∫
Γ
(τ̄ · n) · v̂dS , (6.7)

called fine-to-coarse friction dissipation operator.
We now apply the same procedure to the energy equation. The equation of the fine

level is (6.5) that we rewrite as

(E(T,u), ϕ) = 0 . (6.8)

We substitute into it the coarse level solutions û and T̂ to get(
∂

∂t
(ρCp T̂), ϕ

)
+ c(û, T̂ , ϕ)− (Φ, ϕ) + a(T̂ , ϕ)− (Q̇, ϕ) =

= (P fce (T̂ − T, û− u), ϕ) + (T fce (T̂ , T, û,u), ϕ) + (Sfce (T), ϕ) . (6.9)

The three new transfer operators are denoted by an e since they appear in the energy
equation. The first one is the fine-to-coarse energy transfer operator P fce defined by

P fce (T̂ − T, û− u) = E(T̂ − T, û− u) . (6.10)

T fce is the turbulent energy transfer operator defined by

T fce (T̂ , T, û,u) = ∇ · (ρCp û T̂)−∇ · (ρCp uT)−∇ · (ρCp (û− u) (T̂ − T)) . (6.11)

The last one, Sfce (T), is related to the boundary conditions and defined by∫
Ω
Sfce (T)ϕ̂dV =

∫
Γ
(k∇T · n) · ϕ̂dS . (6.12)

The operator above is called fine-to-coarse flux source operator.

6.2.2. Transfer operator modeling

Differently from the two-phase case, where we have used a coarse grid that can describe
accurately the evolution of the system, when dealing with nuclear reactor modeling we
adopt a coarse mesh that is not reproducing the actual geometry of the core. For this
reason some of the transfer operators must not be set to zero.

95

6. Porous media approach for nuclear reactor cores

We want to determine the averaged value of the unknowns p̂, û and T̂ that describe the
general behavior of the fluid inside the core. We can assume that the incompressibility
constraint is satisfied on both grids, so there is no additional terms to take into account
for the continuity equation.
The turbulent transfer operator T fc in the momentum equation is modeled following

the Reynolds’ hypothesis, namely

T fc(u, û) = ∇ · τ̂t , (6.13)

where the turbulent tensor τ̂t is

τ̂t = µt(∇û : ∇ûᵀ) , (6.14)

with µt the turbulent viscosity. In order to determine the value of µt we can use several
turbulence models. In this application the value of µt is determined with a simple
Smagorinsky model for Large Eddy Simulation (LES) [33].
The modeling of the momentum transfer operator P fc is similar and leads to

P fc(p̂−p, û−u) = ζ(x)
(

(∂ρû
∂t

, v̂) + a(û, v̂) + b(p̂, v̂)− (ρg, v̂)− (τ̂eff,∇v̂)
)
, (6.15)

where ζ(x) is the fraction of fuel and structural material in the total volume. The tensor
τ̂eff is defined as

τ̂eff = µeff(∇û : ∇ûᵀ) . (6.16)

The value of µeff must be calculated with a sub-channel simulation or determined by
experimental data.
We model the friction energy that is dissipated at the fine level with the operator

Kfc(u). We assume for this term a simple model that recalls the pressure drops in a
pipe and write

Kfc(u) = ζ(x)2ρû‖û‖
Deq

λ (6.17)

where Deq is the equivalent diameter of the channel and λ is a friction coefficient. The
determination of this parameter should also come from experimental or numerical data
of sub-channel simulations.
Regarding the additional terms in the energy equation (6.9), the turbulent energy

transfer operator is modeled following the Reynolds’ analogy for the turbulent Prandtl
number Prt so that

T fce (T̂ , T, û,u) = ∇ ·
(
µt
Prt
∇T̂

)
, (6.18)

where µt is the turbulent viscosity previously defined. The energy exchange operator P fce
is defined on the coarse grid as

P fce (T − T̂) = ζ(x)
(
∂

∂t
(ρCpT̂) +∇ · (ρCpûT̂)− Φ− Q̇−∇ · (keff∇T̂)

)
. (6.19)

96

6.3. Numerical simulations

Once again, the new parameter keff can be defined with direct simulations of the channel
or sub-channel configurations or by experiment. The operator Sfce (T) represents the heat
source that is generated through the fuel pin surfaces. For the heat production in the
core we may assume

Sfce (T) = W0 sin
(
π

z −Hin

Hout −Hin

)
, (6.20)

where Hin and Hout are the heights where the heat generation starts and ends. Outside
this interval there is no generation. The quantity W0 is assumed to be a known function
of space which is defined by the power distribution factor.

6.3. Numerical simulations
In this section we show some results obtained with the model previously described. These
simulations are meant to be an auxiliary tool in the reactor design process, so they must
provide fast results for an always evolving configuration. The extracted data do not need
to be accurate but must represent the general behavior and react coherently to system
modifications. The use of a fully three-dimensional code allows the possibility to analyze
asymmetric effects that a traditional mono-dimensional tool, such as the ones in use in
reactor design from long time, are not able to capture.

Figure 6.1.: Full reactor (left) and computational domain (right).

The simulation shown in this chapter are for a generic configuration of an open core
liquid metal reactor with square fuel elements arranged as shown in Fig. 6.1. Thanks
to symmetry we can consider only one quarter of the reactor. The holes correspond to
control rods that are not crossed by the coolant.

6.3.1. Boundary conditions

The boundary conditions used for the simulation consider known values for pin and Tin on
the inlet surface that corresponds to the bottom of the core. The tangential component

97

6. Porous media approach for nuclear reactor cores

of the velocity is set to zero. The planes at x = 0 and y = 0 are planes of symmetry. At
the external surface of the reactor free slip boundary conditions are set, since we are
calculating a mean value for velocity on a whole element, and no heat flux. On the top
we set outflow boundary conditions and a fixed profile of pressure p = p0(x, y).

6.3.2. Thermophysical properties of liquid metals
The simulations have been performed in the perspective of innovative nuclear reactor
design, so the coolant we consider is liquid lead, that is one of the possible choices
for IV generation nuclear reactors. In general, lead-bismuth eutectic (LBE) provides
better characteristics from many points of view, such as cross sections, radiation damage,
activation, and melting point. Bismuth is however expensive and therefore reactor design
that uses only lead are becoming popular. From the thermal-hydraulics point of view,
the thermophysical properties involved in the simulations, that are density and viscosity,
do not present significant differences between lead and LBE.
The lead density is assumed to be a function of temperature

ρ = (11367− 1.1944T) Kg
m3 , (6.21)

for lead in the range 600K < T < 1700K. The viscosity µ comes from the relation

µ = 4.55× 10−04 e(1069/T) Pa s , (6.22)

for lead in the range 600K < T < 1500K. the thermal conductivity κ is given by

κ = 15.8 + 108× 10−4 (T − 600.4) W

mK
, (6.23)

and the specific heat capacity at constant pressure Cp is fixed in the range of temperatures
considered and it is

Cp = 147.3 J

KgK
. (6.24)

6.3.3. Working conditions

Property Value
ρ 10562
µ 0.0022
κ 16.58
Cp 147.3
Deq 0.0129

Table 6.1.: Geometrical and physical properties at T=673.15K in SI units.

The working conditions for pressure are pin = 36KPa and for temperature Tin =
673.13K. We show the value of each of the thermophysical properties at this temperature
in Tab. 6.1, together with the geometrical properties from the subgrid modeling.

98

6.3. Numerical simulations

Figure 6.2.: Power distribution. Each generating element is identified by its peak factor,
all others are non generating elements.

The power distribution assumed in the simulations is shown in Fig. 6.2. On the axial
direction, the total length is set to 2m and the generation acts only between Hin = 0.9m
and Hout = 1.8m. We assume a sinusoidal shape in the axial direction for the power
source, as seen already in (6.20), that we rewrite slightly differently as

q̇′′′ = W0
π

2(Hout −Hin) sin
(
π

z −Hin

Hout −Hin

)
, (6.25)

with W0 constant over all the domain. We recall that no heat generation is present
outside the interval [Hin, Hout]. The choice for W0 can be determined from the total
power production per unit volume and in our simulations is set to 120.25MW/m3, that
corresponds roughly to a reactor power of 1500MWth.

6.3.4. Simulations of an open core reactor
In this section we show some results of the simulations performed. We have considered the
same configuration and compared the results when the physical properties of the coolant
are kept constant at the inlet temperature value and when they depend on temperature.
A constant value is set for the pressure at the outlet surface and it is assumed to be
the reference pressure pr = 0. The maps for velocity, pressure, density and temperature
in the latter case are shown in Figs. 6.3 and 6.4. We can see that the velocity field is
quite regular on the outlet surface, with an oscillation between the maximum and the
minimum below 3% around the mean value of 1.58m/s. The pressure drop is modeled

99

6. Porous media approach for nuclear reactor cores

Figure 6.3.: Velocity (left) and pressure (right) distribution on different planes: z = 2
(top), y = 0 (middle), x = 0 (bottom).

100

6.3. Numerical simulations

Figure 6.4.: Density (left) and temperature (right) distribution on different planes: z = 2
(top), y = 0 (middle), x = 0 (bottom).

101

6. Porous media approach for nuclear reactor cores

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
z(m)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

v(
m

/s
)

A

B

0 0.5 1 1.5 2
z(m)

0

0.2

0.4

p(
ba

r)

A
B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
z(m)

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

0.780

0.800

T
(k

K
)

A

B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
z(m)

8000

8500

9000

9500

10000

10500

11000

11500

12000

rh
o

(k
g/

m
3)

A

B

Figure 6.5.: Comparison between variable (A) and constant (B) physical properties with
respect to temperature: velocity and pressure (top), density and temperature
(bottom) on the line x = y = 1.1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
z(m)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

v(
m

/s
)

A

B

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
z(m)

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

0.780

0.800

T
(k

K
)

A

B

Figure 6.6.: Comparison between variable (A) and constant (B) physical properties
with respect to temperature: velocity and temperature profiles on the line
y = x, z = 2.

102

6.3. Numerical simulations

only with the term (6.17) and the friction coefficient is determined classically from the
Moody diagram, in absence of experimental or computational data from the fine grid.
The case illustrated does not report additional localized pressure drop generated by the
presence of spacing grids, so the drop is constant in each section and the pressure profile
is linear. The temperature profile follows almost exactly the imposed power distribution,
meaning that there is a very low heat exchange and mixing among fuel assemblies. The
temperature jump is around 80K and this value was the target assumed for the core. In
Fig. 6.5 we can analyze the behavior along the z-axis at a particular point. We have
reported both curves for the case with and without temperature dependence. The only
variable which is modified by temperature dependence is the density, that decreases
significantly in the upper part of the core. The temperature profile is not quite influenced
by this and the jump between the inlet and the exit remains around 80K. In Fig. 6.6
we can see the velocity and temperature variations along a line on the top of the core. A
small variation in velocity between these two cases can be seen even if the temperature
profile remains substantially the same.

103

Conclusions

The focus of this thesis has been the development of a new finite element code for
engineering application in the field of thermal fluid dynamics and the analysis of its
performances and capabilities. The first three chapters have illustrated the mathematical
foundations of the method and described the numerical approach for the resolution of
the system of equations. Afterwards, two very different fields of applications have been
considered to test the validity of the code. In the fourth chapter a VOF technique for
interface capturing has been described for direct numerical simulations of two-phase flows.
In the fifth chapter the simulation results are presented, starting with a comparison
with the analytical linear dispersion equation of a perturbed liquid column and then by
showing the evolution of the jet leading to the breakup of the whole column for different
physical parameters. The sixth chapter deals with the second topic, that is the simulation
of the thermal-hydraulics of a reactor core with a porous media approach. This model is
applied to a new generation of liquid metal-cooled nuclear reactors.
The code has been completely redesigned and rewritten, and most of the time of

this three-year project has been devoted to the development and testing of the main
components of the code, rather than the simulation of different applications of interest.
The code has been also coupled to several standard data format, such as HDF, and
graphical open-source software, such as Paraview. However, a few important features are
still missing, such as parallelism, either for shared and distributed memory systems, and
the support for different open-source math libraries. Nevertheless, the modular structure
is a key feature of this code, and it allows the introduction of new software blocks in a
relatively straighforward way. A few new libraries are actually being developed and they
will help to create a general purpose computational tool. The benefits of working with an
in-house code reside in the fact that each component, starting from the smallest one up
to the main framework, is completely under control of the developers and of experienced
users.
The two-phase simulations of liquid jets have shown a good agreement with the

experimental and numerical data available in the literature. The multilevel VOF technique
has proven to be a powerful tool for an optimal use of the computer resources, by
considering a very fine grid for the interface evolution and a coarser grid for the dynamics.
This has been particularly helpful for a smoother and better resolved representation of
the interface. The simulations discussed in this thesis are only two-dimensional, but the
code is now ready to perform fully three-dimensional cases.
The simulations have shown good results also in the field of thermal-hydraulics for

nuclear reactors. The porous approach has proved to be suitable and effective when the
real geometrical configuration can not be reproduced with the available computational
resources. A weak point remains the set of parameters that must come from subchannel

105

Conclusions

simulations. Here they have been calculated classically in mono-dimensional fashion, but
the code can now simulate the subchannel configuration and this will give a significant
improvement on the quantitative aspects of the results. Another great improvement that
will be introduced is the coupling with the in-development neutronics module, that will
give an evolving power source directly derived from the thermal flux.

106

Bibliography

[1] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM,
Philadelphia, 1995. 7, 41

[2] R. Adams. Sobolev Spaces. Academic Press, New York, 1975. 7, 12, 13

[3] V. Girault and P. Raviart. Finite Element Method for Navier-Stokes Equations.
Theory and Algorithms. Springer, New York, 1986. 7

[4] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods.
Springer Verlag, 2002. 7

[5] J.R. Whiteman. The mathematics of finite elements and applications. IMA Journal
of Applied Mathematics. 17

[6] A.M. Quarteroni and A. Valli. Numerical approximation of partial differential
equations. Springer, 2008. 17

[7] C. Runge. Über empirische funktionen und die interpolation zwischen äquidistanten
ordinaten. Zeitschrift für Mathematik und Physik, 46:224–243, 1901. 20

[8] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis.
Computer Methods in Applied Mechanics and Engineering, 142(1-2):1–88, 1997. 27

[9] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland, 1978.
29

[10] J.L. Guermond and L. Quartapelle. Calculation of incompressible viscous flows
by an unconditionally stable projection FEM. Journal of Computational Physics,
132(1):12–33, 1997. 31

[11] B.A. Szabó and I. Babuška. Finite element analysis. Wiley-Interscience, 1991. 32

[12] S. Manservisi. Numerical Analysis of Vanka-Type Solvers for Steady Stokes and
Navier–Stokes Flows. SIAM Journal on Numerical Analysis, 44:2025, 2006. 36

[13] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial Mathe-
matics, 2003. 39

[14] J.L. Guermond and L. Quartapelle. On stability and convergence of projection
methods based on pressure Poisson equation. International Journal for Numerical
Methods in Fluids, 26(9):1039–1053, 1998. 40

107

Bibliography

[15] J.L. Guermond and J. Shen. A new class of truly consistent splitting schemes for
incompressible flows. Journal of Computational Physics, 192(1):262–276, 2003. 41

[16] L. Quartapelle. Numerical solution of the incompressible Navier-Stokes equations.
Springer, 1993. 43

[17] P. Wesseling. Introduction to multigrid methods. Storming Media, 1995. 44

[18] V.V. Shaidurov and J. Xu. Multigrid methods for finite elements. Kluwer Academic
Publishers, 1995. 47

[19] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and
interfacial flow. Annual Review of Fluid Mechanics, 31(1):567–603, 1999. 57

[20] J.E. Pilliod and E.G. Puckett. Second-order accurate volume-of-fluid algorithms
for tracking material interfaces. Journal of Computational Physics, 199(2):465–502,
2004. 57, 58

[21] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume-of-fluid interface
tracking with smoothed surface stress methods for three-dimensional flows. Journal
of Computational Physics, 152(2):423–456, 1999. 59

[22] E. Aulisa, S. Manservisi, R. Scardovelli, and S. Zaleski. A geometrical area-preserving
volume-of-fluid advection method. J. Comput. Phys., 192:355–364, 2003. 61

[23] A. Cervone, S. Manservisi, R. Scardovelli, and S. Zaleski. A geometrical predictor–
corrector advection scheme and its application to the volume fraction function.
Journal of Computational Physics, 228(2):406–419, 2009. 63

[24] R. Barrett and C. Romine. Templates for the solution of linear systems: building
blocks for iterative methods. Society for Industrial Mathematics, 1994. 67

[25] E. Aulisa, S. Manservisi, and R. Scardovelli. A novel representation of the surface
tension force for two-phase flows with reduced spurious currents. Comput. Method.
Appl. M., 195:6239–6257, 2006. 72

[26] S. Gross and A. Reusken. Finite element discretization error analysis of a surface
tension force in two-phase incompressible flows. Siam J. Numer. Anal., 45(4):1679–
1700, 2007. 72

[27] D. Fuster, A. Bague, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray,
S. Scardovelli, and S. Zaleski. Simulation of primary atomization with an octree
adaptive mesh refinement and vof method. Int. J. Multiphas. Flow, 35(6):550–565,
2009. 73

[28] H.Q. Yang. Asymmetric instability of a liquid jet. Phys. Fluids, 4(4):681–689, 1992.
73

[29] Lord Rayleigh. On the instability of jets. Proc. London Math. Soc., 1878. 74

108

Bibliography

[30] C. Weber. Zum zerfall eines flussigkeitsstrahles. Z. Angew. Math. Mech., 11:136–154,
1931. 77

[31] H. Chaves, F. Obermeier, and T. Seidel. Fundamental investigations of the disin-
tegration of a sinusoidally forced liquid jet. In Eighth international conference on
liquid atomization and spray systems, pages 1018–1025, Pasadena, 2000. Carnegie
Mellon University. 78

[32] S. Popinet. An accurate adaptive solver for surface-tension-driven interfacial flows.
Journal of Computational Physics, 228(16):5838–5866, 2009. 81

[33] O.C. Zienkiewicz and R.L. Taylor. The finite element method for solid and structural
mechanics. Butterworth-Heinemann, 2005. 96

109

	Introduction
	Mathematical Model
	Variational formulation of the Navier-Stokes problem
	Function space notation
	Integrable spaces Lp()
	Sobolev spaces Hk()

	The Stokes problem
	Stokes variational equation
	Boundary conditions

	The Navier-Stokes problem
	The steady-state problem
	The time-dependent Navier-Stokes problem

	Finite element approximation
	The Galerkin method approximation
	The Finite Element Method
	One-dimensional case
	Two-dimensional case
	Three-dimensional case

	Error estimation
	Notation
	Energy (H1) norm error estimation
	L2 norm error estimation

	Numerical solution
	Discretization of the Navier-Stokes equations
	Temporal derivative discretization
	Algebraic formulation of the Navier-Stokes equations

	Coupled solvers
	Domain Decomposition Methods
	Krylov subspace methods
	Preconditioning

	Segregated (split) solvers
	The incremental pressure-correction scheme
	The rotational incremental pressure-correction scheme
	The penalty method

	Multigrid algorithm
	Multigrid cycles
	Prolongation and restriction

	Two-Phase Flow
	Two-phase flow and interface capturing
	Single fluid formulation of the Navier-Stokes equations for two-phase flow
	Volume-of-Fluid (VOF) method for interface capturing
	Interface reconstruction
	Interface advection

	Multilevel VOF method
	Numerical implementation of the multilevel VOF method
	Velocity refinement with an optimal control approach

	Surface tension modeling
	Numerical implementation of the capillary force

	Numerical simulations
	Linear dispersion equation for jets
	Analytical dispersion equation
	Numerical results

	Axisymmetric pulsating jets

	Nuclear Reactors Thermal-Hydraulics
	Porous media approach for nuclear reactor cores
	Energy equation
	Porous media approach
	Two-level finite element Navier-Stokes system
	Transfer operator modeling

	Numerical simulations
	Boundary conditions
	Thermophysical properties of liquid metals
	Working conditions
	Simulations of an open core reactor

	Conclusions
	Bibliography

