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Abstract 

Bacterial capsular polysaccharides (PS) which naturally contain zwitterionic charge 

motifs (ZPS) possess specific immunostimulatory activity, leading to direct 

activation of antigen-presenting cells (APCs) through Toll-like receptor 2 (TLR2) 

and of T cells in co-culture systems. When administered intraperitoneally, ZPS and 

bacteria expressing them are involved in the induction or regulation of T-cell 

dependent inflammatory processes such as intra-abdominal abscess formation. 

Moreover it has been published that ZPSs are processed to low molecular weight 

carbohydrates and presented to T cells through a pathway similar to that used for 

protein antigens. These findings were in contrast with the paradigm according to 

which polysaccharides are T-independent antigens unable to be presented in 

association with MHC class II molecules and unable to induce a protective immune 

response. For this reason in glycoconjugate vaccines polysaccharides often need 

to be conjugated to a carrier protein to induce protection.  The aim of our work was 

to generate vaccine candidates with antigen and adjuvant properties in one 

molecule by the chemical introduction of a positive charge into naturally anionic PS 

from group B streptococcus (GBS). The resulting zwitterionic PS (ZPS) has the 

ability to activate human and mouse APCs, and in mixed co-cultures of monocytes 

and T cells, ZPS induce MHC II-dependent T-cell proliferation and up-regulation of 

activation markers. TLR2 transfectants show reporter gene transcription upon 

incubation with ZPS and these stimulatory qualities can be blocked by anti-TLR2 

mAbs or by the destruction of the zwitterionic motif. However, in vivo, ZPS used 

alone as vaccine antigen failed to induce protection against GBS challenge, a 
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result which does not confirm the above mentioned postulate that ZPS are T-cell 

dependent Ags by virtue of their charge motif. Thus to make ZPS visible to the 

immune system we have conjugated ZPS with a carrier protein. ZPS-

glycoconjugates induce higher T cell and Ab responses to carrier and PS, 

respectively, compared to control PS-glycoconjugates made with the native 

polysaccharide form. Moreover, protection of mothers or neonate offspring from 

lethal GBS challenge is better when mothers are immunized with ZPS-conjugates 

compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-

conjugates lose both their increased immunogenicity and protective effect after 

vaccination. When ZPS are co-administered as adjuvants with unconjugated 

tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. 

In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag 

to TLR2-expressing APCs and activate these APCs, leading to better T cell priming 

and ultimately to higher protective Ab titers. Thus, rational chemical design can 

generate potent novel PS-adjuvants with wide application, including 

glycoconjugates and co-administration with unrelated protein Ags. 
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1 Introduction 

 

1.1 Innate and adaptive immunity 

The mammalian immune system is comprised of two branches: innate and 

adaptive. The innate immune system is the first line of host defense against 

pathogens and is mediated, among others, by phagocytes including macrophages 

and dendritic cells (DCs). The adaptive immune system is involved in elimination of 

pathogens in the late phase of infection as well as the generation of immunological 

memory. The adaptive immune system detects non-self through recognition of 

antigens using antigen receptors expressed on the surface of B and T cells.  In 

order to respond to a wide range of potential antigens, B and T cells rearrange 

their immunoglobulin and T cell receptor genes to generate over 1011 different 

species of antigen receptors. Engagement of antigen receptors by the cognate 

antigen triggers clonal expansion of the T lymphocyte that produces cytokines and 

gives help to the B lymphocyte in the production of antigen-specific antibodies. The 

innate immune response is not completely nonspecific, as was originally thought, 

but rather is able to discriminate between self and a variety of pathogens. The 

innate immune system recognizes microorganisms via a limited number of 

germline-encoded pattern- recognition receptors (PRRs). This is in contrast to the 

large repertoire of rearranged receptors utilized by the adaptive system (1). A class 

of PRRs called Toll-like receptors (TLRs) has the ability to recognize pathogens or 

pathogen-derived products and initiate signaling events leading to activation of 

innate host defenses. The subfamily of TLR1, TLR2, and TLR6 recognizes 
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lipopeptides, whereas TLR3, TLR7, TLR8, and TLR9, a group of tightly related 

TLRs, recognize nucleic acids. However, TLRs are unusual in that some can 

recognize several structurally unrelated ligands. TLRs are expressed on various 

immune cells, including macrophages, dendritic cells (DCs), B cells, specific types 

of T cells, and even on nonimmune cells such as fibroblasts and epithelial cells. 

Expression of TLRs is not static but rather is modulated rapidly in response to 

pathogens, a variety of cytokines, and environmental stresses. Furthermore, TLRs 

may be expressed extra- or intracellularly. While certain TLRs (TLRs 1, 2, 4, 5, and 

6) are expressed on the cell surface, others (TLRs 3, 7, 8, and 9) are found almost 

exclusively in intracellular compartments such as endosomes, and their ligands, 

mainly nucleic acids, require internalization to the endosome before signaling is 

possible. The transmembrane and membrane-proximal regions (TIR-domain) are 

important for the cellular compartmentalization of these receptors. Stimulation with 

their ligands recruits TIR-domain-containing adaptors including MyD88 to the 

receptor, leading to the formation of a complex of IRAKs, TRAF6, and IRF-5. This 

process induces the activation of NF-kB, a transcriptional factor, that translocates 

into the nucleus and initiates the expression of proinflammatory cytokine genes. 

Thus signaling by TLRs initiates acute inflammatory responses by induction of 

antimicrobial genes and inflammatory cytokines and chemokines. Subsequent 

events, such as recruitment of neutrophils and activation of macrophages, lead to 

direct killing of the microbes (2). The notion of TLRs being primary sensors of 

pathogens and responsible for orchestrating the innate responses is now widely 

accepted. In addition, there is accumulating evidence that TLRs contribute 
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significantly to activation of adaptive immune responses. Although T and B cells of 

the adaptive immune system express receptors of enormous diversity, activation of 

these cells depends on induction of co-stimulatory molecules and secretion of 

cytokines and chemokines by the cells of the innate immune system. In fact 

efficient priming of adaptive immune responses requires not only the presentation 

of antigen in the context of major histocompatibility complex (MHC) but also the 

induction of accessory signals (costimulators and cytokines) on antigen-presenting 

cells (APCs). TLRs expressed on APCs may regulate these accessory signals 

through their recognition of PAMPs and consequently control activation of antigen-

specific adaptive immune responses (3, 4). Thus, we consider the innate and 

adaptive immune responses to be integrated in the vertebrate host as a single 

immune system, with the innate response preceding, and being necessary for, the 

adaptive immune response (Figure A) (5, 6). 

Because of their capacity to bridge innate and adaptive immunity, Toll-like 

receptors (TLRs) have offered new opportunities for the development of 

immunostimulatory adjuvants (7, 8).  
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 Figure A : TLRs link innate and adaptive immunity  
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Tsuneyasu Kaisho 2007 RIKEN researc
IGURE A. APCs like DCs recognize pathogens by Toll-like receptors and produce a wide variety 
f cytokines. Cytokines serve to eliminate pathogens on one hand, and activate adaptive immunity 
n the other. Even when the same type of Toll-like receptor is involved, different signals are 

ransmitted to cause different immune reactions depending on the type of dendritic cell in which the 
eceptor is expressed. 
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1.2 Adjuvant and TLR 

Adjuvants are molecules, compounds or macromolecular complexes that increase 

the potency and longevity of specific immune response to antigens, but cause 

minimal toxicity or long lasting immune effects on their own (9). The addition of 

adjuvants to vaccines enhances, sustains and directs the immunogenicity of 

antigens, effectively modulating appropriate immune responses, reducing the 

amount of antigen or number of immunizations required and improving the efficacy 

of vaccines in newborns, elderly or immuno compromised individuals (10). 

Traditional live vaccines based on attenuated pathogens typically do not require 

the addition of adjuvants. Likewise, vaccines based on inactivated viruses or 

bacteria are often sufficiently immunogenic without added adjuvants, although 

some of these can be formulated with adjuvants to further enhance the immune 

responses. By contrast, protein-based vaccines, although offering considerable 

advantages over traditional vaccines in terms of safety and cost of production, in 

most cases have limited immunogenicity and require the addition of adjuvants to 

induce a protective and long-lasting immune response. Adjuvants can be classified 

according to their component sources, physiochemical properties or mechanisms 

of action. Two classes of adjuvants commonly found in modern vaccines include: 

immunostimulants that directly act on the immune system to increase responses to 

antigens (Examples include: TLR ligands, cytokines, saponins and bacterial 

exotoxins that stimulate immune responses) and vehicles that present vaccine 

antigens to the immune system in an optimal manner, including controlled release 

and depot delivery systems, to increase the specific immune response to the 
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antigen. The vehicle can also serve to deliver the immunostimulants described in 

the previous point (Examples include: mineral salts, emulsions, liposomes, 

virosomes, biodegradable polymer, microspheres). 

With few exceptions, aluminum salts (alum) are currently the only vaccine adjuvant 

approved for human use worldwide. Alum is effective at generating a strong 

antibody response to an antigen with a bias towards a Th2 type of immune 

response, and, as such, has been widely and effectively used in many vaccines, 

such as tetanus, diphtheria, pertussis and poliomyelitis vaccines (11, 12). The 

mechanism of immunopotentiation by alum involves inflammation and recruitment 

of antigen-presenting cells, retention of antigen at the injection site, uptake of 

antigen, dendritic cell maturation, T-cell activation and T-cell differentiation (13). 

Although alum adjuvants have proved their efficiency in a large number of 

applications, some limitations of alum have been reported. Thus, alum failed to 

confer satisfactory increase of the immune response in certain vaccines, such as 

typhoid fever and influenza vaccines. Reports have also demonstrated that alum 

displays limited ability to raise high antibody titers against small-size peptides. This 

calls for rational design of novel vaccine adjuvants that can establish protective 

immunity against different diseases. Advances in the design of efficient adjuvants 

based on the use of TLR agonists have been promising (although it should be 

noted that some of these were in development before the role of TLRs was 

identified) and some of these have reached advanced human trials and even 

registration. Thus we studied the chemical structure of TLR agonists in literature to 
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understand if we could find a new adjuvant, TLR agonist among in house 

compounds. 

A very recent publication shows that the natural zwitterionic polysaccharide A 

(PSA) is a TLR2 agonist and able to activate a number of different APCs (14). 

In house we had many polysaccharides extracted from the capsule of different 

bacteria used to make vaccine. It has been demonstrated that the induction of 

antibodies specific to the capsular PS confers protection against infection. This is 

the reason why a number of vaccines against bacterial infections aim exclusively at 

the induction of antibodies against capsular polysaccharides. 

 

1.3 T-dependent and T-independent Antigens 

Polysaccharide antigens are large molecules consisting of repeating epitopes 

which are not processed by antigen-presenting cells (APC) but interact directly with 

B cells, inducing antibody synthesis without the need of T cell help or in the 

absence of T cell help. In addition, pure PS do not contain structures that are 

assumed visible to T cells, since the antigen receptor of T cells (TCR) recognizes 

peptide fragments derived from protein antigens. This is why PS from bacteria are 

considered to be T-independent Ags (15) able to activate B cells without a 

contribution of help by CD4+ T cells. T-dependent antigens are proteins or 

peptides that require immune stimulation from helper T cells to elicit an immune 

response. Such antigens are presented to T cells in the context of MHC molecules 

on macrophages, B cells or dendritic cells following bacterial or viral infection. The 

subsequent activation of T cells induces cytokine production and a range of 
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immunologic effects. TD antigens are effective at inducing a lasting immune 

response, forming memory B and T cells, and producing high affinity antibodies of 

multiple isotypes. In contrast, T-independent responses are restricted in a number 

of ways. Most importantly, they fail to induce significant and sustained amounts of 

antibody in young children below the age of 18 months. While polysaccharides are 

immunogenic in older children and adults, the characteristics of the antibody 

responses are rather restricted. They are dominated by IgM and IgG2, are 

relatively short lived, and a booster response cannot be elicited on repeated 

exposure. This failure to induce immunological memory is also reflected in the 

absence of demonstrable affinity maturation. In contrast to polysaccharides, 

antibody responses to protein antigens have an absolute requirement for T cells. 

The consequence of this T cell help is that antibody responses to protein antigens 

can be elicited in the very young and immunity is long lived due the generation of 

immunological memory. Antibody responses to protein antigens are dominated by 

the IgG1 and IgG3 subclasses and affinity maturation can be demonstrated over 

time. 

The ability to enhance the immunogenicity of polysaccharide antigens was first 

noted by Avery & Goebel in 1929, who demonstrated that the poor immunogenicity 

of purified S. pneumoniae type 3 polysaccharide in rabbits could be enhanced by 

conjugation of the polysaccharide to a protein carrier (16). Their observations have 

formed the foundation for the modern development of conjugate vaccines. It is 

hypothesized that PS-specific B cells internalize the PS-carrier complex. 

Proteolysis of the carrier protein produces peptides that bind to class II MHC 
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molecules and activate helper T cells (17). As a result, PS-specific B cells can then 

mature to antibody producing plasma cells or into memory cells (18-20). 

The carrier protein provides T cell help and consequently immunological memory 

(21). The precise nature of the molecular events that permit polysaccharides 

conjugated to protein carriers to be processed as T-dependent antigens remains 

unclear and more research is required. In contrast to this paradigm, natural ZPS 

such as PSA may have the characteristics of a T-dependent antigen, despite the 

lack of a protein component. It has been published that ZPSs are processed to low 

molecular weight carbohydrates and presented to T cells through the MHCII 

endocytic pathway. Furthermore these carbohydrates bind to MHCII inside APCs 

for presentation to T cells (22). Therefore ZPS should not need the conjugation to a 

carrier protein to induce an immune response (Figure B).   
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Figure B: PSA mechanism of action as TLR2 agonist and 

 as ZPS T-dependent antigen. 

 Wang Q, et al. 2006, J.Exp.Med. 

FIGURE B: The innate response begins with TLR2 recognition of PSA and the subsequent 
stimulation of the MyD88-mediated pathway inside the APC. Meanwhile, NF-κB translocation also 
leads to up-regulation of MHCII and CD86, thus facilitating PSA processing and presentation by 
MHCII proteins. Presentation of PSA on the cell surface by MHCII leads to adaptive CD4+ T cell 
activation and T cell secretion of cytokines like IFN-γ.  
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1.4 ZPS 

PSA is a capsular polysaccharide (PS) from Bacteroides fragilis which naturally 

contains both positive and negative charges in its repeating structure, thus it is a 

zwitterionic polysaccharide (ZPS). A number of publications have shown in the 

past that PSA or the ZPS extracted from the capsule of Staphylococcus aureus 

and type 1 Streptococcus pneumoniae (Sp1) are able to activate T cells and APCs 

(23-25). The structures of the natural ZPS, PSA and Sp1, have been resolved (26, 

27) (Figure C). 

The initial findings demonstrated that abscess formation in a rat model was 

induced by PS containing zwitterionic charge motives (28) and that abscess 

formation was T cell dependent and transferable with ZPS-activated T cells (29, 

30).  

The integrity of the zwitterionic motif was essential for this biological activity, as 

removal of one of the two charges also removed the ability to induce abscesses 

(28). In vitro experiments with unfractionated splenocytes or with mixed 

populations showed that natural ZPS were able to induce T cell activation in these 

conditions, while the co-culture of fixed APCs with T cells was not sufficient to 

induce proliferation (31). The alternative, but not mutually exclusive hypotheses to 

explain these findings are that ZPS require processing to activate T cells directly 

through TCR recognition of MHC class II –ZPS complexes (32) or that ZPS 

activate APCs to up-regulate MHC class II, co-stimulatory molecules and cytokines 

and thus generate conditions that favor the activation of T cells (31). MHC class II 
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blocking antibodies inhibit T cell activation, and up-regulation on APCs of a number 

of molecules involved in T cell activation has been demonstrated (25).  

To summarize, ZPS seem to be not only TLR2 agonists but also a T-dependent 

antigens. Thus, ZPS could be a perfect vaccine with the antigen and the adjuvant 

in a single molecule. Thus we explored the structure of in-house better available 

pure bacterial capsular polysaccharides and found that the polysaccharide 

extracted from Group B Streptococcus (GBS) that is naturally anionic could 

become zwitterionic through a chemical modification. Based on  the results cited 

above, we hypothesized that ZPS obtained in this way should perform well as an 

efficient vaccine against GBS and may be used as alternative to the already 

existing glycoconjugate vaccine. 
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Figure C: PSA and Sp1 ZPS structure. 

 

 

 

 

 

 

 

 

 

FIGURE C. Sp1 and PSA consist of a trisaccharide and a tetrasaccharide with free amino and 
carboxyl groups that confer zwitterionic characteristics to these polymers. 
 

 

 

 

 

 

1.5 GBS Glycoconjugate vaccine 

GBS is the foremost cause of life-threatening bacterial infections in newborns (33). 

In about 80% of cases, neonatal GBS infection is acquired during delivery by direct 

mother-to-baby transmission of the pathogen, which colonizes the anogenital 
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mucosa of 25 to 40% of healthy women (34). Despite the introduction of 

intrapartum antibiotic prophylaxis, in the United States GBS still causes  2500 

cases of infection and 100 deaths annually among newborns in the first 3 months 

of life. About half of these cases occur in the first week after birth. Thus, it is 

commonly believed that effective vaccination will be the only way to reduce the 

incidence of GBS disease over the long term. GBS bacteria are encapsulated by 

complex branched polysaccharides, and variations in these sequences correspond 

to strain classifications. Each capsular polysaccharide (CPS) is derived generally 

from the same set of glycosyl residues; structural and immunological diversity 

arising from differences in linkage position and anomeric configuration (35). At 

present, nine serotypes of GBS (Ia, Ib, II–VIII) have been identified  containing 

various arrangements of galactose, glucose, GlcNAc, and the most prevalent sialic 

acid (Sia) of humans, Nacetylneuraminic acid (Neu5Ac) (8–14). Neu5Ac residues 

of the GBS CPS are situated on the branching terminus of each repeating unit. 

These CPS are naturally anionic, as the otherwise neutral sugar backbone carries 

anionic groups such as carboxyls which are present as carboxylate ions at 

physiological pH. 

The rationale for GBS vaccine development is supported by the observation that 

the risk of neonatal infection is inversely proportional to the maternal amounts of 

specific antibodies to the capsular polysaccharide (CPS) antigen that surrounds 

GBS (36, 37), implying that protective immunoglobulin G (IgG) antibodies are 

transferred from the mother to the baby through the placenta.   
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A glycoconjugate vaccine against GBS is currently being developed. This vaccine 

has been shown to confer serotype specific protection in mice and have been 

tested in clinical trials. In humans, addition of alum to the vaccine formulation did 

not further increase the immune response induced (38). In contrast, in animal 

models, adsorption to Al(OH)3 (Alum) enhances the immunogenicity of the 

glycoconjugate (39, 40), which may be explained by the possibility that animals are 

more naïve to GBS than humans. More generally, a number of commercially 

available glycoconjugate vaccines such as that against Meningococcus C, 

Haemophilus influenzae and the seven-valent Pneumococcus vaccine use Alum or 

aluminium phosphate as an adjuvant. Thus, it appears that the combination of 

glycoconjugates with adjuvants likely generates potent vaccines, able to activate 

APCs and induce strong Ag-specific T and B cell responses. 
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2 Aim of the study 

The overall purpose of this study is to add, through rational chemical modification, 

biological function to vaccine Ags. 

It has been described in the literature that bacterial capsular polysaccharides (PS) 

which naturally contain zwitterionic charge motifs (ZPS) possess specific 

immunostimulatory activity, leading to direct activation of antigen-presenting cells 

(APCs) through Toll-like receptor 2 (TLR2) and of T cells in co-culture systems. 

When administered intraperitoneally, ZPS and bacteria expressing them are 

involved in the induction or regulation of T-cell dependent inflammatory processes 

such as intra-abdominal abscess formation. Thus these natural polysaccharides 

have adjuvant properties, they are TLR-2 agonists, but they seem to be also T-

dependent antigens. The majority of polysaccharides are naturally anionic and do 

not have these biological activities. To generate vaccine candidates with antigen 

and adjuvant properties in one molecule we have chemically introduced 

zwitterionic motifs into naturally anionic PS. 

We chose the PS from type Ia, Ib and III of GBS, group B streptococcus. Positive 

charges were chemically introduced, and first of all the ability of these chemically 

derived ZPS to activate APCs and T cells were tested on a variety of human and 

mouse cell types. In a second step we asked if the in vitro activities of ZPS 

translate also into increased immunogenicity in vivo. Therefore, we tested the 

biological activities of ZPS in an animal model. The ZPS alone used as antigen to 

protect mice from GBS challenge showed little effect. This means that as T-

dependent antigen the chemically modified ZPS was not efficient. Therefore, we 
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further esplored whether the ability to activate APCs shown in vitro translate into 

adjuvant activity in vivo. Thus, to render the ZPS visible to the immune system, we 

generated a glycoconjugate vaccine with ZPS in order to compare its 

immunogenicity with the glycoconjugate vaccine made with the native PS. The 

different glycoconjugates were injected into mice, and Ab titers, T cell responses, 

opsonophagocytosis and protection was measure. To test TLR dependence, 

immunogenicity and protection was compared in wt and TLR2 deficient mice. 

This strategy may be applied to other polysaccharides and represents a new path 

for rational chemical design of novel adjuvants and glycoconjugate vaccines. 
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3 Materials and Methods 

 

3.1 In vitro  

3.1.1 Purification of GBS capsular PS 

Capsular PS were prepared from Streptococcus agalactie bacteria using a 

modified version of the procedure previously published (41). Isolated PS were 

found to contain low concentrations of nucleic acids (<10 µg/mg), proteins (<10 

µg/mg), Group B saccharides (<10 µg/mg), and LPS (< 0.001 UI/µg). 

 

3.1.2 Chemical modifications of GBS PS and conjugation to the carrier 

protein 

Cationic protonated forms of amines can be introduced into PS at (a) free N-acetyl 

groups, which are part of N-acetylneuraminic acid (NeuNAc) and 

Nacetylglucosamine residues, and at (b) the terminal aliphatic chain of NeuNAc 

(see Fig.1A). De-N-acetylation was achieved by basic hydrolysis (1 M NaOH for 60 

min at 80°C) to make free amino groups available for further reaction (a in Fig.1A). 

Alternatively, chemical oxidation of the aliphatic chain from the terminal NeuNAc 

residue (b in Fig.1A) with sodium metaperiodate (Aldrich, 0.01 M NaIO4 for 90 min 

at room temperature) leaves an aldehyde group (42). Here, using NaIO4 as limiting 

(30%) or stoechiometric (100%) reagent of the reaction, the periodate oxidation 

selectively cleaves the C8-C9 bond between vicinal hydroxyl groups (-

CHOHCH2OH) of NeuNAc residues, leaving an aldehyde group (-CHO) at C8. 

This group was converted to a cationic –NH3+ group by reductive amination using 
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300 mg/mL ammonium acetate (NH4Ac, Sigma) and 49 mg/mL sodium 

cyanoborohydride (NaBH3CN, Sigma) at pH 6.5 and T=37°C for 5 days (43). PS 

obtained by the reaction schemes a and b were treated with 37% formaldehyde 

(H2CO, Carlo Erba) in the presence of sodium cyanoborohydride in order to 

convert the generated free amino group to a tertiary dimethylamine such that it 

retained a positive charge (44). In order to remove the anionic charge on ZPS2 

(Fig.1A, scheme c), the carboxyl group was reduced to alcoholic group by 

treatment with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC – Sigma) and 

sodium borohydride (NaBH4, Aldrich). Where indicated, a phenol extraction of 

GBS PS was conducted as described by Sen et al. (45). As for the native PS, 

contamination with proteins, nucleic acids, and group B saccharide was also 

determined in all ZPS preparations and found to be below 10µg/mg. Since 

reagents used for the modifications contain undetectable level of these 

contaminants, the purity of ZPS products should be higher than the native PS due 

to additional purification steps performed after the chemical treatments. 

The covalent attachment of the carrier protein CRM197 or HSA to the zwitterionic 

PS was performed according to the protocol used for the conjugation of the native 

CPS (41). The crucial step in the zwitterionization, first, and in the conjugation, in a 

second time, is the initial oxidation that has to occur only for a 10-30% of NeuNAc 

residues. Therefore, the final glycoconjugate has a 10-30% of NeuNAc residues 

modified with a positive charge, a 10-30% of NeuNAc residues implicated in the 

covalent binding with the carrier protein and the rest of NeuNAc residues 

unaltered. ZPS-conjugates were generated using ZPS from serotype Ib and V. 
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ZPS-conjugates were purified by gel filtration chromatography on the Sephacryl S-

300 HR column. Polysaccharide content of ZPS and ZPS-conjugate preparations 

was estimated by the colorimetric detection of sialic acid residues with the 

Svennerholm method (46). The microBCA kit assay (Pierce) was used to estimate 

the protein content of ZPS-conjugate sample. The polysaccharide/protein ratio for 

all glycoconjugates used here was measured to be 1:1 (w:w). 

Nuclear Magnetic Resonance (NMR) was used to assess first of all the structural 

identity of the purified PS and the chemically derived ZPS molecules then the 

structural identity of the native PS-conjugate and the chemically derived ZPS-

conjugate. NMR spectra were recorded at 25°C on a Bruker DRX 600 MHz 

spectrometer using a 5-mm triple-resonance NMR probe (Bruker). For data 

acquisition and processing, XWINNMR 2.6 software package (Bruker) was used. 

NMR samples were prepared by dissolving lyophilized product in 0.75 ml of 

deuterium oxide (D2O, Aldrich) to a uniform concentration and transferred to 5-mm 

NMR tubes (Wilmad). 1-D proton NMR spectra were collected using a standard 

one-pulse experiment and collecting 32 k data points over a spectral window of 

6000 Hz. The complete relaxation of all nuclei was assured. The spectrum was 

Fourier-transformed after applying a 0.2 Hz line broadening function and 

referenced relative to mono-deuterated water (HDO) at 4.79 ppm.    
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3.1.3 Cell preparation and culture 

PBMCs were collected by Ficoll Hypaque (Amersham Biosciences, Uppsala, 

Sweden) density gradient centrifugation.from buffy coats of healthy donors who 

had given written informed consent Highly purified (>98%) monocytes were 

obtained from PBMCs by positive selection of CD14+ cells using anti-CD14 coated 

magnetic microbeads and MACS technology (Miltenyi Biotec, Bergisch Gladbach, 

Germany). 

Monocytes (2x105 per well) were cultured for 24h in RPMI 1640 (GIBCO 

Invitrogen) supplemented with Penicillin (100U/ml), Streptomycin (100 µg/ml), 

Glutamine (2mM) solution (Invitrogen Life Technologies) (RPMI-PSG) and 5% 

Human Serum (Sigma) using U-bottom 96-well plates. T cells (>98%) were 

prepared from PBMCs by MACS by negative selection using the Pan T Cell 

Isolation kit (Miltenyi Biotec). T cells (2x105 per well) were co-cultured with 

monocytes (1x105 per well) for 6 or 8 days in the same conditions as described 

above for monocytes. 

Immature Mo-DCs were obtained culturing monocytes for 6 days in RPMI-PSG 

supplemented with 10% Fetal Calf Serum (Hyclone, Logan. Utah) (complete 

medium) with IL-4 (10% of supernatant from IL-4 secreting cell line, provided by A. 

Lanzavecchia, Institute for Research in Biomedicine, Bellinzona, Switzerland) and 

50 ng/ml of GM-CSF (Gentaur, Brussels, Belgium). Immature dendritic cells were 

washed and cultured for the experiments in complete medium, using 96 well 

flatbottom cell culture plates. Human cells were stained with FITC-conjugated anti-

CD14 or anti-CD83, PE-conjugated anti-CD80, allophycocyanin-conjugated anti-
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CD86, PerCP-conjugated anti-HLA-DR (all Becton Dickinson). Rabbit serum was 

used as a blocking agent. After incubation for 20 min. on ice, cells were washed 

and analyzed on a FACSCalibur flow cytometer using CellQuest software (Becton 

Dickinson). 

Mouse BM-DCs were generated culturing femoral bone marrow with recombinant 

murine GM-CSF (PeproTech) as described (47). At day 6, BM-DC were washed 

and cultured in complete medium with β-mercaptoethanol 50 µM (Sigma) and 100 

U/ml mGM-CSF, using pro-bind U-bottom 96-well plates (Becton Dickinson). 

Where indicated, cells were treated with LPS, macrophage-activating lipopeptide-2 

(MALP-2) or N-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl-[S]-

seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysyl (Pam3CSK4) obtained from Alexis 

Biochemicals. The following purified mAbs were used in blocking experiments: 

anti-HLA-DR, DP, DQ (10 µg/ml) (BD Pharmingen) and anti-TLR2 clone T2.5 (50 

µg/ml) (eBioscience). BM-DCs were stained with PE-conjugated anti-CD86, FITC-

conjugated anti-MHC class II and allophycocyanin-conjugated anti-CD11c. Rabbit 

serum was used as a blocking agent. The acquisition was made on a LSR-II and 

data analyzed using DIVA software (BD). 

 

3.1.4 Determination of cytokine and chemokine production 

TNF-a production in culture supernatants was quantified by specific standard 

sandwich ELISA, using capture B154.9 and biotinylated B154.7 mouse monoclonal 

antibodies kindly provided by Dr. G. Trinchieri. Cytokine and chemokine secretion 

in supernatants was assessed by Bio-Plex analysis (Bio-Rad), according to the 
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manufacturer’s instructions using the mouse 23-Plex panel. The following soluble 

proteins are assayed: IL-1α, IL1-β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-

12(p40), IL-12(p70), IL-13, IL-17, Eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1, 

Macrophage Inflammatory Protein (MIP)-1α, MIP-1β, RANTES, TNF-α.   

 

3.1.5 Plasmid production 

A DNA fragment coding for human TLR2 with no signal peptide was obtained by 

RT-PCR from human PBMC cDNA using TLR2 specific primers and then cloned in 

the pFLAG-CMV-1 vector (Sigma) to attach an N-terminal FLAG epitope to TLR2; 

the FLAG-TLR2 sequence was then subcloned in pcDNA3 .1 (Invitrogen). The NF-

κB-regulated promoter of the Igκ-luc plasmid (a gift of Dr. Antonio Leonardi, 

University of Naples, Italy) was subcloned in pd2EGFP-1 vector (Clontech) 

upstream to the EGFP coding sequence to obtain pNFkB-d2EGFP plasmid; the 

hygro gene with an upstream SV40 promoter, excised from the pTK-Hygro vector 

(Invitrogen), was then inserted in an un-influential region to obtain pNFkB-

d2EGFP-Hygro. 

 

3.1.6 HEK-293 stable transfectants 

HEK-293 cells were grown in DMEM supplemented with glucose (4500g/l) 

glutamine (2mM), 10% FCS, penicillin and streptomycin. Cells were transfected 

using lipofectamine 2000 (Invitrogen) with the pcDNA-FLAG-TLR2 construct and a 

stable clone was derived by Geneticin (Invitrogen) selection. FLAG-TLR2 

expression was verified by surface staining with FLAG-M2 monoclonal antibody 
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(Sigma) and FACS analysis. This clone was then transfected with pNFkB-d2EGFP-

Hygro and a stable clone was derived by selection with Hygromycin B (Invitrogen). 

For experiments, cells were cultured for 24 hours with PS and controls, washed 

and analyzed by flow cytometry. The HEK-293 triple transfectants TLR4/MD-

2/CD14 were obtained from Invivogen, and surface expression of CD14 was 

confirmed by FACS. In experiments comparing directly TLR2 and TLR4 agonist 

activity, the respective transfectant cell lines were incubated with PS for 20 hours, 

supernatant was obtained, and IL-8 content was determined using the FlexSet kit 

(Becton Dickinson) according to manufacturer’s instructions. IL-8 produced by the 

transfectants was normalized to the amount of IL-8 present in the supernatant of 

the respective unstimulated transfectant line. 

 

3.1.7 Proliferation assays 

T cell proliferation was assessed by [3H] thymidine incorporation using 2x105 T 

cells and 1x105 γ-irradiated monocytes (3000 rad) per well in round-bottom 96-well 

plates. After 6 days of culture, cells were pulsed with 0,5 µCi/well of [3H] thymidine, 

incubated for 18 hours, harvested onto filter plates (Packard Instruments), and 

counts were analyzed using a Top Count NXT β counter (Packard Instruments). 

 

3.1.8 Enzymatic treatments 

Treatments were adapted from (Mattern 1999). Prior to addition to cells, ZPS and 

controls were incubated in PBS with 200 µg/ml lipoprotein lipase (LPL) from bovine 

milk or from pseudomonas sp. (Sigma-Aldrich) at 37°C for 7 hours. Results shown 
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were obtained using bovine milk-derived LPL. Alternatively, immobilized trypsin 

(Pierce) or Proteinase K-acrylic beads (Sigma-Aldrich) were incubated with 

samples at a 1:20 ratio at 37°C for 1 hour. Proteases were removed from the 

reaction by centrifugation. The enzymatic treatments were performed on ZPS and 

controls which were concentrated 10x compared to their final concentration in the 

in vitro experiments. 

 

 

3.2 In vivo 

3.2.1 Mice and Immunizations 

Groups of 6-8 female 6-week-old Balb/C, C57BL/6, CD1 outbred mice (Charles 

River) or C57BL/6 TLR2-/- (48) (kindly provided by Giuseppe Teti, Messina, Italy) 

were used for experiments reviewed and approved by the institutional review 

committees. Animals were immunized intraperitoneally at days 0, 21 and 35 with 

1 µg of glycoconjugates made as indicated. Where indicated, Alum was used at 

0.4mg AlOH3/dose. Serum and spleen samples were collected at 2 weeks 

following the third immunization. In adult mice, the challenges were performed 

injecting intraperitoneally strain H36B (serotype Ib) at 1 x 108 CFU at 2 weeks after 

the third immunization. For the neonatal challenge experiments, we first 

determined the 80% lethal doses (LD80) by titration in both wt and ko mice. H36B 

was administered at 1 x LD80 to the pups subcutaneously between 24 and 48 h 

after birth. Mortality was recorded daily for the 2 days following challenge.  
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3.2.2 Ag-specific T-cell cytokine responses  

Three mice per treatment were sacrificed, spleens were collected, and single cell 

suspensions were obtained. Red blood cells were lysed and splenocytes cultured 

in RPMI (Gibco) containing 2.5% FCS (Hyclone), beta-mercaptoethanol and 

antibiotics. Splenocytes were stimulated in the presence of anti-CD28 (1 µg/ml) 

(Becton–Dickinson [BD]) and the carrier protein CRM197 (30 µg/ml), or with anti-

CD28 alone (unstimulated, <0.1% total cytokine-positive cells), or with anti-CD28 

plus anti-CD3 (0.1 µg/ml) (BD). After 4 h of stimulation, Brefeldin A 

(2.5 µg/ml)(Sigma Aldrich) was added for additional 12 h. Cells were washed and 

stained with LIVE/DEAD Fixable Aqua Dead Cell Stain Kit for 405 nm excitation 

(Invitrogen). Cells were fixed, permeabilized and stained with the following mAbs: 

allophycocyanin-Alexa750-conjugated anti-CD4 (Caltag), Pacific Blue-conjugated 

anti-CD3, Alexa700-conjugated anti-TNF-α, Peridinin chlorophyll protein 

cyanine5.5-conjugated anti-IFNγ, PE-conjugated anti-IL-5, Alexa488-conjugated 

anti-IL-2 (BD). Cells were acquired on a LSR-II (BD) and analyzed using FlowJo 

software (Tree Star). For each individual mouse, percentages of unstimulated 

samples were subtracted from the Ag-stimulated sample. 

 

3.2.3 Determination of Ag-specific antibody by ELISA 

For titration of IgG specific for the native polysaccharides, Maxisorp plates (Nunc, 

Roskilde, Denmark) were coated with 1 µg/ml (in PBS) of the glycoconjugate that 

 29



contains a different carrier protein to that used for the immunization, in order to 

detect only the antibodies specific for the polysaccharide. Antibody titers are those 

dilutions that gave an OD higher than the mean plus five times the SD of the 

average OD obtained in the pre-immune sera. The titers were normalized with 

respect to the reference serum assayed in parallel.  

 

 

3.2.4 Opsonophagocytosis assay 

Serum samples from mice immunized with serotype Ib glycoconjugates were 

tested for their in vitro ability to promote the opsonization of type Ib GBS strain 

H36B for phagocytosis and killing by differentiated HL60 cells in the presence of 

rabbit active complement. Results were expressed as the mean log10 reduction in 

GBS colony-forming units before and after 60 min of incubation at 37°C. 

 

 

 

 

3.2.5 Statistical analysis 

Statistical significance was determined using a two-tailed Student’s T-test analysis 

or by Fisher's exact test. Significance was reconfirmed using nonparametric 

statistical analysis. 
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4 Results 

 

4.1 ZPS immunogenicity in vitro 

4.1.1 Chemical modifications of the native GBS PS 

Figure 1A shows, as an example, the modifications introduced into the repeating 

unit of the capsular PS from GBS serotype III (GBS III). The same type of 

modifications was also introduced into GBS Ia and Ib. According to the annotations 

shown in Fig.1A, ZPS1 is the zwitterionic PS obtained from the chemical 

modification (a) that converts the N-acetyl groups to free amino groups. Chemical 

modification (b) generates the ZPS2 resulting from a periodate oxidation to 

generate an aldehyde group which is also converted to an amino group by a 

reductive amination reaction. Furthermore, all amino groups are converted to 

tertiary amines that retain their positive charges. Thus, in each repeating unit, 

ZPS1 molecules from all three serotypes contain two positive and one negative 

charge, while ZPS2 contain a balanced motif of one charge each. In order to 

remove the anionic charge from ZPS2, the carboxyl group of ZPS2 is reduced by a 

carbodiimide-mediated reaction with NaBH4 (modification c). All structural 

analyses of chemical modifications of the native PS were made using NMR 

spectroscopy (Fig.1B). In particular, the zwitterionic structure is confirmed by 

detecting the methyl group (CH3)2-N+H- which has been generated by the 

chemical modification scheme b (Fig.1A). All labeled signals have been assigned 

using bi-dimensional homo-nuclear (1H-1H) and hetero-nuclear 1(H-13C) NMR 

experiments (not shown). Additional saccharide contaminations (i.e. group B 
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polysaccharide) were also excluded by analyzing the NMR profiles. Only a little 

residual amount of ethanol used in the purification procedure has been detected. 

Figure 1 : Chemical modifications of native GBS serotype III capsular PS A. 
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FIGURE 1. De-N-acetylation by basic treatment leading to ZPS1 (a), and periodate oxidation and 
reductive amination leading to ZPS2 (b), of one repeating unit of GBS serotype III PS. The 
additional reaction with formaldehyde to obtain tertiary amines is also shown. (c) Reduction of the 
carboxyl group leading to ZPS2 reduced. B, NMR spectra at 600 MHz and 25°C of the native form 
(top line) and the ZPS2 modification (bottom line) of serotype Ib PS from GBS. The peaks 
generated by the newly formed methyl group (CH3)2-N+H- and by other groups are annotated. 

 32



4.1.2 Chemically derived ZPS are able to activate APCs 
 
In order to test the ability of ZPS to activate APCs, purified human monocytes and 

Mo-DCs were incubated with either the natural ZPS purified from Bacteroides 

fragilis, the capsular PS A (PSA), or with the ZPS derived from GBS PS by the 

chemical modification a as indicated in figure 1A, leading to ZPS1, or by the 

modification b (ZPS2). The dot plots in figure 2A show that both PSA and the 

chemically derived ZPS2 are able to induce up-regulation of MHC class II and 

CD80 on human monocytes, while the native anionic GBS PS (Fig. 2A) or the 

ZPS1 derived by chemical modification a (not shown) do not activate monocytes. 

The dose response relation of this activation is shown in fig. 2B. Similarly, ZPS2 of 

all three GBS serotypes induce TNF-a production by purified human monocytes, 

while the native forms are inactive (Fig.2C). The amount of TNF-a induced in 

monocytes by PSA is comparable to that induced by serotype Ib ZPS2 (not 

shown). The production of TNFa is induced in human Mo-DC by the ZPS2 form but 

not the native or ZPS1 form of the GBS capsular PS, again indicating that the 

zwitterionic motif introduced is essential for the biological activities observed (Fig. 

2D). Similar results were found for up-regulation of the maturation marker CD83 on 

human Mo-DCs (Fig. 3A). Finally, also mouse BM-DCs from Balb/C mice are 

activated by ZPS2 but not the native PS or ZPS1 (Fig. 2E). The dot plots and gates 

used for the determination of marker upregulation are shown in Fig. 2F. As 

previously reported (49), Balb/C mice are more responsive to TLR2 agonists than 

C57Bl/6 mice, and this is reflected in the stronger response of Balb/C BM-DCs to 

the positive control Pam3CSK4. In conclusion, these results indicate that the 
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chemical introduction of a zwitterionic charge motif into anionic PS confers the 

ability to activate a variety of human and mouse APCs. 

                        Figure 2: ZPS activate human and mouse APCs.  
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FIGURE 2. Human CD14+ monocytes (A,B,C), Mo-DCs (D) or mouse BM-DCs (E,F) were 
incubated with the indicated compounds for 24 hours (A,B,D,E,F) or as indicated (C), and up-
regulation of the indicated surface markers was measured by flow cytometry (A,B,E,F) or     TNF-α 
concentration in the culture supernatants was determined by ELISA (C,D). LPS 1µg/ml, Pam3CSK4 
100 ng/ml; all PS in A,C-F 6µg/ml. Error bars indicate standard deviation of triplicate samples, 
results are representative of at least 3 experiments. *, p<0.05; **, p>0.05 compared to medium. 
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4.1.3 The stimulatory activity of ZPS depends on the integrity of the 

zwitterionic motif and is not extracted by phenol 

The above results indicate that the chemical generation of ZPS leads to molecules 

with new biological activity. To confirm that the integrity of the zwitterionic motif is 

essential for the observed stimulatory abilities, we removed the negative charge 

from ZPS2 by modification C (see figure 1A) and tested whether the resulting 

cationic molecule can stimulate APCs. As shown in figure 3A, the ability to 

stimulate Mo-DCs disappears when the positive charge is removed from the 

molecules and thus the zwitterionic motif is destroyed. This result demonstrates 

that the zwitterionic motif is required for the ability of PS to stimulate APCs. A 

recent publication shows that the ability of Pneumococcus PS to induce strong 

immune responses in mice depends on associated TLR2 agonists which can be 

separated from the PS by phenol extraction (45). In order to ensure that the APC 

stimulatory abilities are not due to a lipophilic contamination, we subjected ZPS2 to 

phenol extraction and tested the residual biological activity. Figure 3B shows that 

the ability of ZPS2 to activate monocytes is not affected by phenol extraction. 

Similar results were obtained for the ability to stimulate Mo-DCs (not shown). In 

addition, limulus amoebocyte lysate tests performed on the native PS and on ZPS2 

before and after phenol extraction resulted in extremely low endotoxin values, and 

no correlation was found between endotoxin content and the biological activity 

observed here (not shown). All subsequent experiments were done with ZPS2 that 

had undergone phenol extraction. As the native PS did not show any ability to 

activate APCs, it can be excluded that APC stimulation was due directly to 
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bacterial contaminants that remained after PS purification. In order to exclude also 

the possibility that contaminants were introduced during chemical modification, we 

subjected native PS to the whole chemical modification with the exception of the 

first step, thus not generating the ZPS molecule but allowing for all factors that may 

contribute to the introduction of contaminants (“no first step”). Fig. 3C shows that 

this preparation has no biological activity. 
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Figure 3: APC stimulatory capacity of ZPS depends on the zwitterionic motif and is 

not phenol extractable. 
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FIGURE 3. Human Mo-DCs (A) or purified monocytes (B,C) were incubated with the indicated 
compounds for 48 (A) or 24 (B,C) hours, and surface marker expression was measured by flow 
cytometry. (A) LPS 1µg/ml, Pam3CSK4 10 �g/ml; (B,C) LPS 1µg/ml, Pam3CSK4 100 ng/ml; All PS 
in A and C 6µg/ml. Error bars indicate standard deviation of triplicate culture, results are 
representative of at least 3 experiments.  *, p<0.05; **, p>0.05 compared to medium. 
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4.1.4 APC activation by ZPS is mediated by TLR2 
 
The results shown in figure 2E suggest an involvement of TLR2 in the APC 

activating properties of ZPS. In addition, it was recently reported that the natural 

ZPS, PSA, is able to activate APCs through TLR2 (14). To analyze in detail TLR2 

involvement, we tested whether anti TLR2 blocking antibody can inhibit the 

observed effects. Figure 4A shows that anti-TLR2 mAbs block the induction on 

human monocytes of MHC II and co-stimulatory molecules by both the natural and 

the chemically derived ZPS. The canonical TLR2 agonist Pam3CSK4 induces the 

same effects on monocytes which can also be blocked by the anti-TLR2 mAb. This 

mAb did not block APC activation induced by TLR4 (Fig. 4A) or TLR7/8 agonists 

(not shown), thus confirming the specificity of the reagent. ZPS2- and PSA-induced 

TNF-a production by monocytes was also blocked by this mAbs (not shown). An 

isotype-matched control antibody was not able to block the effects described here 

(not shown). To reconfirm the specific interaction with TLR2, we used stable TLR2 

transfectants and observed reporter gene transcription upon incubation with both 

natural and chemically derived ZPS but not with the native or the ZPS1 form of the 

GBS PS (Fig. 4B). GFP expression induced by Pam3CSK4 and the natural and 

chemically derived ZPS was blocked by the anti-TLR2 mAb, confirming the 

specificity of this induction. As a further reconfirmation of absence of LPS 

contamination or TLR4 agonist activity of the ZPS2, we performed in parallel 

experiments using TLR2 and TLR4/MD-2/CD14 transfectants and assayed for the 

same read out, namely IL-8 production (Fig. 4C, D). While all natural and 

chemically derived ZPS induce significant IL-8 production in TLR2 transfectants at 
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the two different doses tested, none of these molecules did so in the triple 

transfectants at any of the doses tested. Hence, this very sensitive assay confirms 

that TLR4-mediated activation does not play a significant role in the phenomena 

described here. TLR2 transfectants were also used to exclude a number of other 

contaminants (Fig. 4E, F). To exclude lipopeptide contaminants in the 

preparations, ZPS were treated with LPL. As shown in fig. 4F, pre-treatment with 

LPL does not reduce the TLR2 agonist activity of ZPS while Pam3CSK4 activity is 

greatly reduced. Similarly, pretreatment with proteases does not alter the biological 

activity of ZPS, while Pam3CSK4 activity is reduced to different degrees by these 

two proteases (Fig.4E). In conclusion, this set of experiments indicates that the 

biological activity of ZPS is mediated by TLR2 and that LPS, lipopeptide or protein 

contaminations do not play a role in this activity. 
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Figure 4: ZPS-induced APC activation is mediated by TLR2. 
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FIGURE 4. (A) Purified monocytes were incubated for 24 hours as indicated, and surface marker 
expression was measured on CD14+ gated cells by flow cytometry. (B,E,F) Stable transfectants for 
TLR2 and a GFP reporter gene under control of an NFkB-dependent promoter were incubated for 
24 hours with the indicated compounds, and induction of GFP was measured by flow cytometry. (C-
F) Stable transfectants for TLR2 (C,E,F) or TLR4/MD-2/CD14 (D) were incubated for 20 hours with 
the indicated compounds, and IL-8 concentration in the culture supernatants was measured. (A) 
LPS 1µg/ml, Pam3CSK4 100 ng/ml, PSA 20µg/ml, Ib native and ZPS2 6µg/ml, anti TLR2 50�g/ml. 
(B) LPS 1µg/ml, Pam3CSK4 10 ng/ml, anti TLR2 50�g/ml added to Pam3CSK4 10 ng/ml or to PSA 
or ZPS2 3�g/ml. (C,D) LPS 1µg/ml, Pam3CSK4 100 ng/ml, all ZPS in (D) 30 µg/ml. (E,F) LPS 1 
�g/ml, native PS 10 �g/ml, ZPS as indicated (�g/ml). Error bars indicate standard deviation of 
triplicate culture, all experiments were performed at least 3 times with similar outcome.  *, p<0.05; 
**, p>0.05 compared to medium/none. 
 

 

 

4.1.5 ZPS induce T cells activation in APC - T cell co-culture 

A series of previous publications show that natural ZPS can induce T cell 

proliferation in in vitro co-culture experiments (23, 24, 31, 44, 50). When co-
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cultures of purified T cells and purified, γamma-irradiated syngeneic monocytes 

were incubated with PSA or ZPS2, both proliferation and up-regulation of activation 

markers on T cells were observed, while single populations of purified cells did not 

proliferate in the presence of PSA or ZPS2 (Fig. 5A and data not shown). Figure 

5B shows that only ZPS2 but not ZPS1 are able to induce T cell proliferation. In 

order to test the relative contribution of MHC II and TLR2 to the T cell activation 

observed, blocking experiments with mAbs for both molecules were performed. 

Figure 5C shows that ZPS-induced T cell proliferation was consistently blocked by 

MHC II blocking mAbs, while anti TLR2 mAb significantly blocked proliferation 

induced by serotype Ib ZPS but not by serotype III ZPS or PSA. However, it is 

interesting to note that the all TLR agonists used as controls stimulate T cell 

proliferation that can be blocked by anti MHC II mAbs. As expected, LPS-induced 

T cell proliferation is not blocked by the TLR2 mAbs while TLR2 agonist-induced T 

cell proliferation is. In conclusion, these results confirm that the chemically derived 

ZPS show the same range of activities described for natural ZPS, and that APC 

activation is in some cases, but not always an essential component of the T cell 

stimulation induced by ZPS. It is also clear from these experiments that MHC II 

dependency of stimulation may not be sufficient to establish whether a molecule is 

an MHC II dependent T cell antigen or whether MHC II up regulation is part of the 

APC activation that eventually leads to T cell proliferation in this experimental set 

up. 
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Figure 5: T cells in co-culture with APCs are activated by ZPS. 
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FIGURE 5. Purified T cells or pure, gamma-irradiated monocytes or both were incubated for 6 days 
with the indicated compounds, and proliferation was measured by thymidine incorporation. Where 
indicated, anti MHC class II (10�g/ml) or anti TLR2 (50�g/ml) mAbs were added throughout the 
culture. (B,C) All PS 6�g/ml. Error bars indicate standard deviation of triplicate culture, experiments 
were performed 3 times (A,B) or 5 times (C) with similar outcome. (A,B) *, p<0.05; **, p>0.05 
compared to medium; (C) *, p<0.05; **, p>0.05 compared to the same treatment without blocking 
mAbs. 
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4.2 ZPS immunogenicity in vivo. 
 
4.2.1 Chemical conjugation of the ZPS to carrier protein 

Given the ability of chemically derived ZPS to activate APCs in vitro, we attempted 

to test whether this newly introduced biological activity would also confer adjuvant 

function in vivo. Since we demonstrated that the only ZPS having biological activity 

were that derived from the second chemical modification, we used only these to 

test their activity in vivo and for simplicity we called them ZPS and no longer ZPS2.   

We immunized mice with ZPS alone in order to see if they were T-dependent 

antigen as a protein Ag. After three immunizations, sera were tested in ELISAs 

using the native PS to coat the plate. By this method, we assessed for IgG 

antibody titers specific for the native PS, which is the relevant form present in the 

GBS capsule. ZPS used alone were not able to induce antibody titer against the 

native PS (data not shown). Thus the chemical modification was not able to turn 

the native polysaccharide in a T-dependent antigen. Therefore, to render ZPS 

visible to T cells, we conjugated ZPS with a carrier protein and compared them to 

the glycoconjugates containing the native form of the corresponding PS. The 

zwitterionic PS were obtained as previously described by the introduction of a 

positive charge in the aliphatic chain of the terminal N-acetylneuraminic acid 

(NeuNAc) residue. The covalent attachment of the carrier protein CRM197 or HSA 

to the zwitterionic PS was performed according to the protocol used for the 

conjugation of the native CPS (41). We conjugated ZPS to the widely used and 

highly immunogenic carrier protein called Cross Reactive Material of diphtheria 

toxoid (CRM197) or to the protein human serum albumin (HSA). NMR spectra 
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confirmed the successful modification of the native serotype Ib polysaccharide 

which generated the zwitterionic motif (Fig. 6), and the integrity of Ib ZPS 

polysaccharide after conjugation to CRM197 (Fig. 6, Ib-ZPS-CRM) or HSA. The PS-

to-protein ratio of all glycoconjugates is 1:1 (w:w).  

 

Figure 6: Zwitterionic polysaccharide conjugation. 

 

 

FIGURE 6. NMR 600 MHz spectra (spectral window from 0 to 6 ppm) recorded at 25°C of the Ib-

CRM197 conjugate (bottom line), Ib-ZPS polysaccharide (central line) and the Ib-ZPS-CRM197 

conjugate (top line). The peak of the methyl group –NH+(CH3)2 which was chemically introduced in 

the ZPS before conjugation is present in the glycoconjugate as annotated. Other labels are 

indicated in order to facilitate the assignment of the peaks. 
 

4.2.2 ZPS-conjugates are more immunogenic than the corresponding PS-

conjugates  
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We immunized mice with ZPS-conjugates or those made with the native form of 

the PS and compared their immunogenicity. As positive control we used the PS-

conjugate formulated with Alum as adjuvant. ZPS from both serotype Ib and V 

were used to generate glycoconjugates, and the results obtained after 

immunization were similar for serotype Ib (shown throughout this study) and V. 

After three immunizations, sera were tested in ELISAs using the native PS 

conjugated to an unrelated carrier for detection (PS-HSA for CRM197-containing 

glycoconjugates and vice versa). By this method, we assessed for IgG antibody 

titers specific for the native PS, which is the relevant form present in the GBS 

capsule. As shown in Fig. 7A, the ZPS conjugated with CRM197 was considerably 

more efficient in inducing antibodies against the bacterial PS than the 

corresponding native PS-conjugate. The titers induced by ZPS-conjugate reached 

or exceeded those induced by the positive control, Alum-adjuvanted PS-conjugate. 

As expected, HSA turned out to be a less immunogenic carrier protein, since native 

PS conjugated to HSA did not induce antibodies significantly above background. In 

contrast, ZPS-HSA did induce a detectable titer which was comparable to that 

found after vaccination with the positive control containing Alum. We also tested if 

Ag-specific titers were induced more rapidly, as previously described for TLR2 

agonists (51), and if the Ig subclass distribution was altered by the ZPS. ZPS-

conjugates induced high titers already after two injections (Fig. 7B) and did not 

alter the relative contributions of different IgG subclasses (Fig. 7C). Thus we have 

generated glycoconjugates that show accelerated and increased immunogenicity in 

the absence of an additional adjuvant. 
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Figure 7: ZPS-conjugate immunogenicity. 
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FIGURE 7. (A) Balb/C mice were immunized thrice as indicated. Two weeks after the third 
immunization, sera were tested by ELISA for PS-specific IgG titer. Results shown are pooled from 
two experiments using Balb/C mice out of a total of five experiments using Balb/C, CD1 or C57BL/6 
strains with similar results. (B) Balb/C mice were immunized intraperitoneally with three doses of the 
PS-conjugates (1µg) with or without Alum (0.4mg), ZPS-conjugates or ZPS. PBS was used as 
negative control. Two weeks post first, second and third dose, sera were analyzed for PS-specific 
IgG. Results are mean of triplicates + SD. ZPS-CRM and alum-adjuvanted PS-CRM accelerate the 
induction of IgG compared to PS-CRM alone. Unconjugated ZPS do not induce any PS-specific 
IgG. (C) ZPS-conjugates and Alum increase the same PS-specific IgG subclasses that are above 
all IgG1. 
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To show that higher IgG production is due to a better anti-carrier T cell response, 

we evaluated the ex vivo T cell response in mice immunized with glycoconjugates. 

Splenocytes were cultured with CRM197, and after four hours of stimulation, 

Brefeldin A was added overnight to block secretion and retain cytokines in the T 

cells, which allows detection of cytokines produced by individual CD4 positive T 

cells through intracellular staining. The total height of bars in Fig. 8 shows the 

overall percentage of T cells responding to CRM197 by cytokine production, and the 

color-coding indicates which cytokines or combinations are produced by individual 

T cells. We find that ZPS-CRM induce a higher overall percentage of cytokine-

producing CRM197-specific CD4 T cells than the corresponding PS-CRM (P< 0.01). 

In all groups, vaccinated with or without adjuvant, the dominant cytokines induced 

are IL-5, IL-2 and TNF-α, a combination that is expected for effector and memory T 

cell populations in the Th2 prone Balb/C mice used here. We conclude that the 

ZPS conjugation to CRM197 leads to enhanced CRM197-specific T-cell responses 

compared to glycoconjugates containing native PS. In contrast, the cytokine profile 

is unaltered by ZPS-conjugates compared to that induced by PS-conjugates, 

suggesting that the adjuvant effect increases the magnitude but does not alter the 

quality of the specific T cell response. We also tested the T cell response to the 

whole glycoconjugate or single components of it and found that the response is 

directed against the protein, not the PS part of the glycoconjugate (Fig. 9). We 

conclude that ZPS act as adjuvants for increased Ab production through increased 

T cell responses to the protein part of the glycoconjugate. 

 

 49



Figure 8: ZPS induce a CD4+ CRM-specific T cell recall response. 
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FIGURE 8. Balb/C mice were immunized thrice as indicated  and spleen CD4+ T-cell cytokine 
responses to CRM197 at 2 weeks post third dose were evaluated. T cells producing one, two or 
three cytokines are represented as annotated and add up to the bars shown. Therefore, the bar 
height indicates the total of all cytokine positive CD4+ cells as percent of total CD4+ cells. Error 
bars indicate SD of total percentage of all cytokines of six mice. This experiment was performed at 
least three times with similar results. Statistical significance was analyzed using unpaired student’s t 
test.  *, P < 0,01; n.s., not significant. 
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Figure 9: The recall response after ZPS-CRM vaccination is directed against the 
CRM component, not the ZPS component 
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FIGURE 9. Balb/C mice were immunized intraperitoneally with three doses of the PS-conjugates 
(1µg), ZPS-conjugates (1µg) and PBS as negative control. Two weeks post third dose spleens were 
tested for CD4+ T-cell cytokine responses to CRM197(30µg/ml), to ZPS (30µg/ml), to PS (30µg/ml) 
and to ZPS-CRM (60µg/ml).  
ZPS enhance the T cell cytokine recall response to CRM197 (A), but they do not induce a 
significant T cell cytokine recall response to ZPS or PS (B, C). Thus the increase in CD4+ T cell 
response to ZPS-CRM (D) is exclusively to the CRM portion because ZPS do not induce a ZPS-
specific T cell response (B). Error bars indicate SD of total percentage of all cytokines of three mice. 
This experiment was performed two times with similar results. Statistical significance was analyzed 
using student’s t test.  *, P < 0,05; n.s., not significant compared with PBS and PS-CRM.  
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We next tested whether the adjuvant effect of ZPS enhances the Ab responses to 

conjugated or unconjugated proteins. After injection of ZPS-CRM or ZPS-HSA as 

described above, we found the ELISA titers to these proteins were strongly 

enhanced compared to native PS-CRM or PS-HSA injection (Fig. 10A). We also 

coadministered ZPS with the unconjugated protein Ag TT and found strongly 

increased antiTT titers (Fig. 10B). In conclusion, ZPS are able to act as adjuvant 

both for conjugated and unconjugated proteins. In contrast, ZPS used alone, 

without carrier, are not able to induce PS-specific IgG antibody titers (Fig. 7B), 

suggesting that a protein component is required and that the combination of B cell 

epitopes and TLR2 agonist activity is not sufficient to increase immunogenicity of 

the PS part. 
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Figure 10: ZPS enhance responses both to conjugated and unconjugated proteins. 
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FIGURE 10.  (A) Balb/C mice were immunized intraperitoneally with three doses of the PS-
conjugates (1µg) with or without Alum (0.4mg), ZPS-conjugates (1µg) or PBS as negative control. 
Two weeks post third dose, sera were collected and analyzed for protein (CRM or HSA)-specific 
IgG titer. (B) Balb/C mice were immunized subcutaneously with Tetanus Toxoid (0,1µg) alone or in 
combination with admixed ZPS serotype Ia, Ib, III and V or the native PS serotype Ib. Pam3CSK4 
was used as positive control and PBS as negative control. Mice received two doses at day 1 and 
21, and two weeks after the second dose, sera were assessed by ELISA for TT-specific IgG 
antibody titers. Results are geometric means of triplicates + SD. 
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4.2.3 ZPS-conjugates activate bone marrow derived DCs (BM-DCs) 

Since glycoconjugates containing ZPS are more efficient than the corresponding 

native ones at inducing Ab and T cell responses, we tested whether this correlates 

with their ability to activate APCs. The dot plots in Fig. 11A show that ZPS 

conjugated to HSA are able to induce the upregulation of MHC class II and the 

costimulatory molecule CD86, while HSA alone and PS-HSA do not activate BM-

DCs. Similar results were obtained also with CRM197 as carrier protein (Fig. 11B). 

Pam3CSK4, a TLR2 agonist, and LPS, a TLR4 agonist, are used as positive 

controls. ZPS-conjugates induced in BM-DCs the production of cytokines like IL-6 

and IL-12, chemokines like Regulated upon Activation, Normal T-cell Expressed 

and Secreted (RANTES) and the stimulating factor G-CSF (Fig. 11C). Taken 

together, these results strongly suggest that the ability of ZPS to activate DCs will 

improve the priming of carrier-specific T cells and as a consequence the T cell help 

given to PS-specific B cells, ultimately leading to higher antibody titers. Thus we 

most likely have generated a glycoconjugate that contains B-cell epitopes, T-cell 

epitopes and adjuvant properties, leading to an overall better immunogenicity. 
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Figure 11: BM-DCs are activated by ZPS-conjugates. 
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FIGURE 11. (A-B) Mouse BM-DCs were incubated for 20 hours with ZPS and PS conjugates 
(10µg/ml), CRM197 and HSA alone (10µg/ml), Pam3CSK4 or LPS (1µg/ml). The up-regulation of 
CD86 and MHC class II was evaluated by flow cytometry. Data represent mean + SD of triplicates 
and are representative of three experiments. (C) After 20h of incubation, cytokine and chemokine 
presence in the supernatants was tested through Bio-plex analysis. Data represent mean + SD of 
triplicates and are representative of two experiments with similar outcome. 
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4.2.4 ZPS-conjugates confer enhanced protection against GBS infection  

To verify if antibodies induced by ZPS-conjugates were also protective against 

bacterial infection, we immunized CD1 or Balb/C mice, and after three 

immunizations we performed a challenge with GBS strain H36B. The percentage of 

survival after two days post challenge was evaluated and the statistical significance 

was estimated by Fisher's exact test. As shown in Fig. 12A, protection conferred by 

ZPS-conjugates is significantly increased compared to that given by PS-conjugates 

and similar to that induced by Alum-adjuvanted PS-conjugates, the positive control. 

We also used a neonatal mouse model of group B streptococcal infection (52) to 

evaluate the protection after challenge in the offspring of immunized mothers. 

Neonates from mothers immunized with ZPS-conjugates are better protected from 

GBS infection than those born from mice immunized with PS-conjugates. This is 

particularly visible in the context of the less immunogenic carrier HSA, and ZPS-

HSA induce a level of protection in neonates that is similar to that of Alum-

adjuvanted PS-HSA, as determined by Fisher's exact test (Fig. 12B). Using an 

opsonophagocytosis assay, we confirmed that sera from mice immunized with 

ZPS-conjugates were more efficient to promote killing of GBS by differentiated 

HL60 cells than sera from mice immunized with PS-conjugates (Fig. 12C), 

consistent with the above protection data. The half-maximal titers were also 

calculated from the opsonophagocytosis data (Fig. 12C bottom), and ZPS-CRM 

induces clearly higher titers than PS-CRM, reaching levels comparable to those of 

the Alum-adjuvanted positive control.  
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Figure 12: ZPS-conjugates confer protection against GBS challenge. 
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FIGURE 12. (A) CD1 mice were immunized intraperitoneally with ZPS and PS conjugates (1µg). 
PS-conjugate plus Alum was used as a positive and PBS as negative control. Two weeks after the 
third immunization, adult mice received a lethal challenge of GBS, and the percentage of survival 
two days after the injection was evaluated. Pooled data from two experiments are shown. (B) A 
lethal dose of GBS was administered subcutaneously to the offspring of mothers immunized as in 
(A). The challenge was performed within 48 hours after birth, and the percentage of survival was 
estimated two days post injection. Each experiment was repeated at least three times using CD1 or 
Balb/C strains with similar outcome. Statistical significance was calculated with Fisher’s Exact Test. 
*, P < 0,01; n.s., not significant. (C) Opsonophagocytosis assays were performed to evaluate the 
capacity of sera from mice immunized as in (A) to induce GBS killing by differentiated HL60 cells in 
presence of rabbit complement. Triplicate results from sera diluted 1:100 were expressed as the 
mean log10 reduction in GBS colony-forming units before (T0) and after (T1) 60 min of incubation at 
37°C. From the whole titration curves of the same assay, we also calculated opsonophagocytosis 
titers which are indicated below the graph. 
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We were also interested to see if Alum could be used in combination with the ZPS-

conjugates and whether this combination would confer a further increase in 

immunogencity. Results in Fig. 13A and B show that the ZPS adjuvant activity 

synergizes with Alum to increase further the PS-specific IgG antibody titer and 

better CRM197-specific CD4+ T cell response induced by the synergistic effect of 

ZPS and Alum.  

 

 

Figure 13: ZPS-conjugates can be used in combination with Alum. 

 

 

FIGURE 13. (A) C57BL/6 mice were immunized intraperitoneally with three doses of the PS-
conjugates (1µg) plus Alum (0.4mg), ZPS-conjugates alone, or ZPS-conjugates (1µg) plus Alum 
(0.4mg). PBS was used as negative control. Two weeks post third dose, sera were analyzed for 
PS-specific IgG titers. Results are mean of triplicates + SD. (B) Spleens from the same mice were 
tested for CD4+ T-cell cytokine responses to CRM197. Histograms show the total percentage of all 
cytokine positive live singlet CD3 + CD4+ cells. Results are obtained from a pool of six mice for 
each group. This experiment was performed three times with similar results. 
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4.2.5 TLR2 is critical for ZPS-conjugate adjuvant activity in vivo 

We and others demonstrated previously that the ability of ZPS to activate APCs is 

TLR2 dependent (14). To test if this receptor is also required for the adjuvant 

activity of ZPS-conjugates in vivo, we immunized female TLR2-/- mice with 

glycoconjugates and paired them after three immunizations with wt males. The 

offspring received a challenge with a lethal dose of GBS and the percentage of 

survival was evaluated. Following this protocol, the offspring are genotypically 

heterozygous for TLR2 and therefore express this receptor, but they have acquired 

the antibody repertoire from mothers immunized in the absence of this receptor. In 

this experiment we compared the Alum-adjuvanted PS-conjugate, our positive 

control, to the ZPS-conjugate in wt versus ko mice. Fig. 14A shows that at 

challenge doses leading to 20-30% survival in the negative control groups, Alum-

adjuvanted native glycoconjugate induces full protection in litters born from 

vaccinated wt and TLR2-/- mothers. In contrast, ZPS-conjugate induced protection 

is significantly reduced in litters from TLR2-/- mothers, clearly indicating that TLR2 

is crucial for the protection induced by ZPS-conjugates. Similarly, the 

opsonophagocytosis titers induced by ZPS-conjugates were abolished in the 

absence of TLR2, while those induced by PS-conjugate plus Alum were not (Fig. 

14B). In order to see whether the observed differences between wt and TLR2-/- 

mice are also reflected in differential DC activation by ZPS-conjugates, we 

assessed cytokine production by BM-DCs from both genotypes in response to 

ZPS-conjugates. As shown in Fig. 14C, the production of IL-6, IL-12, G-CSF and 

RANTES induced by ZPS-conjugate or Pam3CSK4 is strongly reduced when BM-
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DCs were generated from TLR2-/- mice. No difference is observed when using the 

TLR4 agonist LPS. 

Thus TLR2 has a crucial role in the in vivo activity of ZPS-conjugates and is 

required for the induction of higher functional Ab titers and consequently for higher 

protection. Since we observed in vitro that activation of BM-DCs by ZPS-conjugate 

is TLR2 dependent, we conclude that TLR2-dependent DC activation is the most 

likely mechanism of in vivo adjuvanticity of ZPS. 
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Figure 14: ZPS-conjugate activity in vivo is TLR2 dependent. 
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FIGURE 14. (A) C57BL/6 wt and TLR2-/- mice on a C57BL/6 background were treated 
intraperitoneally as indicated. WT and TLR2-/- female mice received three doses at day 1, 21, 35 
and at day 38 all mice were coupled with wt males. The offspring from wt and TLR2-/- mice were 
injected subcutaneously with a lethal dose of GBS. The challenge doses were chosen in order to 
have the same percentage of survival for neonates born from wt or TLR2-/- mice treated with PBS. 
Significance was calculated using Fisher’s Exact Test. *, P < 0,05; n.s., non significative compared 
with the respective wt group. Data pooled from two independent experiments are shown. (B) 
Opsonophagocytosis assays were performed using sera from wt and TLR2-/- mothers of (A). 
Triplicate results from sera diluted 1:100 were expressed as the mean log10 reduction in GBS 
colony-forming units before (T0) and after (T1) 60 min of incubation at 37°C. (C) BM-DCs generated 
from the bone-morrow of wt or TLR2-/- mice were incubated for 20 hours with ZPS and PS 
conjugates (10µg/ml), CRM197 and HSA alone (10µg/ml), Pam3CSK4 or LPS (1µg/ml). After 20h of 
incubation the supernatants were assessed by Bio-plex analysis for cytokine and chemokine 
content. The production of IL-6, IL-12, G-CSF and RANTES induced by ZPS-conjugates or 
Pam3CSK4 was considerably reduced in supernatants of BM-DCs generated from TLR2-/- mice. LPS 
induce the same cytokine and chemokine production in both genotypes. Data represent mean + SD 
of triplicates and are representative of two experiments. 
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5 Discussion 

 

Adjuvants represent an important component of many modern vaccines as they 

increase the immunogenicity of co-administered Ags such as purified, soluble 

recombinant proteins, which are per se less immunogenic than whole or split, 

killed or attenuated pathogens used in the past. While a number of 

glycoconjugate vaccines induce high antibody titers without adjuvants, in other 

cases adjuvants are employed to induce a protective immune response. Here, 

we show for the first time that rational chemical modification can be used to 

produce a glycoconjugate vaccine in which the PS Ag has acquired additional 

adjuvant properties. This work is based on previous findings showing that 

natural ZPS, such as PSA, activate T cells and APCs (23-25). Since this 

biological activity depends on the zwitterionic structure of this capsular PS (28, 

50, 53), we generated a similar charge motif in a vaccine candidate PS by the 

chemical introduction of positive charges into the naturally anionic capsular PS 

of GBS. The resulting ZPS activate APCs through a TLR2-dependent 

mechanism, and this effect depends on the integrity of the zwitterionic motif, 

similar to what was found for natural ZPS.  Therefore ZPS represent a new 

class of agonists for these receptors. From our study, a clear structure-activity 

relationship emerges: The same PS repetitive unit shows biological activity in 

the presence of a zwitterionic motif of alternating charges, but not in the 

presence of either negative or positive charges only. It remains to be clarified 

why one of the two chemical modifications leading to ZPS did not yield 

biologically active molecules. Two possible explanations can be envisaged: 

either a specific spatial relationship between the positive and negative charges 
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is required which was met with one but not the other modification, or the fact 

that ZPS1 contain two positive versus one negative charge per repetitive unit 

and thus represent cationic molecules prevents their biological activity. Among 

the natural ZPS, some have a negative net charge and some are neutral but 

none of them is cationic. 

It was shown previously that conversion of a primary amine to a tertiary amine 

on PSA was associated with a loss of T cell stimulatory activity (44). The 

chemically derived ZPS2 forms shown here all contain tertiary amines and are 

able both to activate APCs and to induce T cell proliferation. This indicates that 

the presence of primary amines is not mandatory for the ability to induce T cell 

proliferation.  TLR2 expression on T cells has been observed (54), and both 

direct and indirect T cell co-stimulatory properties have been ascribed to TLR2 

agonists (55, 56). In addition, it has been shown in vitro that TLR2 agonists 

alone are able to activate T cells (57). Similar observations were reported for 

the TLR4 agonist LPS. We confirm these findings in a co-culture system of 

human monocytes and T cells and show that in all cases, activation by TLR 

agonists is blocked by MHC II blocking mAbs, indicating that MHC II is essential 

for T cell activation in this set up, even when no T cell antigen is involved. This 

suggests that also ZPS-mediated T cell activation may be a consequence of 

APC activation leading to strongly enhanced T cell co-stimulation, possibly in 

combination with direct effects on TLR2-expressing T cells.  

The alternative hypothesis is that ZPS represent both TLR2 agonists and true 

MHC class II-dependent T cell antigens. This second hypothesis implies that a 

separable set of structural requirements may apply for each of the two different 

biological activities, and that the two functions can be introduced separately by 
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different chemical modifications. A hint in this direction is that another natural 

ZPS, namely Sp1, was reported to be a T cell antigen but not a TLR2 agonist 

(14). In line with these observations, we find that among all our chemically 

derived ZPS2 forms, those most effective at activating T cells were not those 

inducing the strongest TLR2 dependent APC activation. In this context it is of 

note that the best APC activator, namely the serotype Ib ZPS, is the one whose 

T cell activating ability is completely abolished by the TLR2 blocking mAb. 

Importantly, while T cell activation induced by Pam3CSK4, macrophage-

activating lipopeptide (MALP-2) and serotype Ib ZPS2 is abolished by TLR2 

block, the same is not true for PSA and serotype III ZPS2, indeed suggesting 

that these latter molecules have an activity beyond the TLR2 agonist activity 

shown here.                             

In vivo, ZPS enhance IgG titers specific for a co-administered protein Ag, clearly 

demonstrating the adjuvant activity of the ZPS. We injected ZPS alone into mice 

but were not able to detect increased Ab titers to the ZPS or the maternal PS. 

This means that the chemically derived ZPS that we have generated is not a T-

dependent antigen. Therefore, we conjugated ZPS prepared from GBS capsular 

PS with a carrier protein to provide a canonical T cell antigen. Adjuvanticity is 

maintained also when the ZPS is used in place of the native PS as Ag in a 

glycoconjugate vaccine against GBS. In fact, ZPS-conjugates are more 

immunogenic than the corresponding PS-conjugates, and mice immunized with 

ZPS-conjugates are better protected from GBS infection than mice immunized 

with the PS-conjugates. Increased induction of specific Ab titers is associated 

with increased T cell responses to the carrier protein. The fact that 

unconjugated ZPS are unable to induce Ab responses strongly suggests that T 
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cell help is required for ZPS adjuvanticity. The observation that the increased 

immunogenicity of ZPS-conjugates is TLR2 dependent further suggests that 

TLR2-expressing APCs may be involved. We find that ZPS-conjugates activate 

BM-DCs in vitro inducing surface molecules for T cell priming and production of 

cytokines, chemokines and growth factors. BM-DC activation induced by ZPS-

conjugates is TLR2 dependent since BM-DCs generated from TLR2-/- mice are 

largely unresponsive. Taking together these data we hypothesize that the 

increased immunogenicity of ZPS-glycoconjugates is based on the TLR2 

agonist properties of ZPS that allow these conjugates to target TLR2-

expressing DCs and activate them. This in turn leads to better T cell priming, 

increased T cell help and ultimately to higher specific Ab titers (Fig. 15). This 

model also explains why conjugation to a protein carrier is still required for the 

immunogenicity of ZPS: the TLR2-dependent adjuvant effect on DCs can be 

transmitted to B cells only via T cell help, and in fact we find increased T cell 

responses to the carrier protein when conjugated to ZPS. In contrast, we were 

not able to find ZPS- or PS-specific T cell responses. 

Compared to other Ag presenting cells, DCs are critical for the full activation of 

naïve T cells, and their maturation is essential for this (58, 59). DC maturation 

can be triggered by Toll-like receptor agonists which induce the increase in 

surface MHC class II and costimulatory molecules and thereby link innate to 

adaptive immune responses (60, 61). TLR2 has already been demonstrated to 

be the receptor implicated in the ability of PSA to link innate and adaptive 

immunity (14). Moreover the Haemophilus influenzae type b-outer membrane 

protein complex glycoconjugate has an optimal immunogenicity thanks to the 

TLR2 agonist properties of the carrier protein (51). Other examples of vaccines 
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owing their potency at least in part to the sometimes fortuitous presence of 

TLR2 agonists are the Yellow Fever vaccine (62) and PS vaccines against 

Streptococcus pneumoniae (45). Thus, TLR2 is a receptor implicated in the 

strong immunogenicity of natural ZPS but also of vaccines based on PS, 

attenuated virus or glycoconjugates.  

Efforts have also been made to generate synthetic vaccines in which a peptide 

Ag was covalently linked to a TLR2 agonist (63-65). Such linked peptides are 

better internalized by DCs than the peptide alone or mixed with the TLR2 

agonist, and this appears to depend on the TLR2 agonist internalization which 

carries along the linked peptide (66). Therefore we speculate that the ZPS as 

TLR2 agonist may increase T cell priming also through the internalization of 

ZPS-conjugates by DCs and targeting the carrier protein to endolysosomes. It 

has also been shown for vaccine formulations containing agonists to TLRs other 

than 2 that the physical coupling of Ag and agonist is far more effective than 

simple co-administration (67). We show here that ZPS are effective in both 

coupled and uncoupled form, and experiments are underway to compare 

directly the potency of these formulations. 

When TLR2 deficient BM-DCs were stimulated with ZPS-conjugates, cytokine 

production was strongly reduced but not entirely abolished, at difference to the 

complete DC unresponsiveness to Pam3CSK4. This may be due to a different 

usage of the TLR2/1 or TLR2/6 heterodimers as compared to Pam3CSK4, or to 

an additional receptor. A synergy between TLRs and C-type lectin receptors 

recognizing PS structures has been described (68-70), and we speculate that 

similar mechanisms may contribute to the strong DC activation by ZPS. 
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It has been proposed that optimal vaccine formulations are able to target the Ag 

to DCs in order to allow more efficient Ag processing and presentation, and 

moreover provide the stimuli to induce DC maturation to enhance the adaptive 

immune response (71, 72). The ZPS-conjugates have both properties: a PS Ag 

that targets itself to TLR2-expressing DCs and activates, through TLR2, DC 

maturation, thereby increasing processing and presentation of the conjugated 

protein to naive T cells. Here, we have used this strategy firstly to provide 

increased T cell help to B cells recognizing the B cell epitopes of the PS, and 

secondly to increase the immune response to an unrelated protein, either 

conjugated or co-administered.  

Over the years, chemical tools have proven essential to make progress in the 

generation of synthetic oligosaccharides and glycoconjugates (73). Chemical 

modifications in PS structure have been performed to enhance the PS-specific 

IgG antibodies or to eliminate epitopes that produce antibodies cross-reactive 

with host tissue (74, 75). More recently, as an example of rational design of the 

carbohydrate, the capsular PS serotype V GBS has been chemically 

desialylated to generate a glycoconjugate able to induce the IgM-to-IgG 

switching (8). In the present work, we have exploited existing structural 

knowledge of the charge motif in natural ZPS to generate chemically a similar 

structure in a vaccine PS and thereby to obtain the TLR2 agonist properties 

conferred by this peculiar charge motif. The modified PS acts as an adjuvant 

and has been used to generate a glycoconjugate vaccine that is more 

immunogenic and more protective. Our approach adds, through rational 

chemical modification, biological function to vaccine Ags. This strategy may be 
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applied to many other polysaccharides and represents a new path for rational 

chemical design of novel adjuvants and glycoconjugate vaccines. 
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Figure 15: Proposed mechanism of increased immunogenicity of ZPS-

conjugates. 

 

 

 
 
 
 
 
 
 
 
 
FIGURE 15. ZPS-conjugates are targeted to TLR2 positive DCs and activate them through 
receptor engagement. Increased DC activation leads to improved priming of naïve T cells 
specific for the conjugated protein. Enhanced T cell help to B cells will lead to higher Ab titers 
and thus improved protection against infection by GBS.  
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