
Alma Mater Studiorum · Università di Bologna

Dottorato di Ricerca
in

Ingegneria Elettronica, Informatica e delle
Telecomunicazioni

Cycle XXII
Disciplinary Sector:

ING-INF/05

Designing and Programming
Organizational Infrastructures for
Agents situated in Artifact-based

Environments

Candidate:
Dott. Ing. Michele Piunti

Coordinator: Supervisor:
Chiar.mo Prof. Ing. Paola Mello Chiar.mo Prof. Ing. Antonio Natali

Co-Supervisors:
Ill.mo Prof. Ing. Alessandro Ricci
Ill.mo Prof. Ing. Andrea Omicini

Academic Year 2008 · 2009

to Agostino and Paola
Who bred wolves

and to Semola
She comes in colors everywhere

I call it the law of the instrument, and it may be
formulated as follows: Give a small boy a hammer, and he

will find that everything he encounters needs pounding.

ABRAHAM KAPLAN.
THE CONDUCT OF INQUIRY: METHODOLOGY FOR BEHAVIORAL SCIENCE, 1964.

We live in exactly one world,
not two or three or seventeen.

JOHN R. SEARLE.
THE CONSTRUCTION OF SOCIAL REALITY, 1997.

I punti da A ad A sono costanti
nati dal contrasto e per questo convergenti.

MARCO CASTOLDI.
DA A AD A, 2007.

Abstract

Actual trends in software development are pushing the need to face a multiplicity
of diverse activities and interaction styles characterizing complex and distributed
application domains, in such a way that the resulting dynamics exhibits some
grade of order, i.e. in terms of evolution of the system and desired equilibrium.
Autonomous agents and Multiagent Systems are argued in literature as one of the
most immediate approaches for describing such a kind of challenges. Actually,
agent research seems to converge towards the definition of renewed abstraction
tools aimed at better capturing the new demands of open systems. Besides agents,
which are assumed as autonomous entities purposing a series of design objectives,
Multiagent Systems account new notions as first-class entities, aimed, above all,
at modeling institutional/organizational entities, placed for normative regulation,
interaction and teamwork management, as well as environmental entities, placed
as resources to further support and regulate agent work.

The starting point of this thesis is recognizing that both organizations and en-
vironments can be rooted in a unifying perspective. Whereas recent research in
agent systems seems to account a set of diverse approaches to specifically face
with at least one aspect within the above mentioned, this work aims at proposing
a unifying approach where both agents and their organizations can be straight-
forwardly situated in properly designed working environments. In this line, this
work pursues reconciliation of environments with sociality, social interaction with
environment based interaction, environmental resources with organizational func-
tionalities with the aim to smoothly integrate the various aspects of complex and
situated organizations in a coherent programming approach. Rooted in Agents
and Artifacts (A&A) meta-model, which has been recently introduced both in the
context of agent oriented software engineering and programming, the thesis pro-
motes the notion of Embodied Organizations, characterized by computational in-
frastructures attaining a seamless integration between agents, organizations and
environmental entities.

II

Preface

Engaging a PhD is a privilege to run across ideas, challenges, places, books,
manuscripts, science, beautiful minds. There are many people who deserve spe-
cial thanks for the support given along these years. I thank, first and foremost,
my supervisor Alessandro Ricci, because without him nothing of this work would
have been probably conceived. I thank him for his friendship, above all, and then
for his continuous tension towards challenges, science, research, and for having
shared so many ideas, drafts, white boards, pieces of paper, chinas, margaritas on
the rocks, coffee machines... I will miss our dadaist brainstormings, Ale. Then I
thank my supervisors, Antonio Natali and Andrea Omicini, for having instilled in
me (and in us all) the gospel of abstraction, for having set the basis of what we are
doing, and created an excellent school in computer science in the middle of Ro-
magna. I thank all the people at ApiCe-lab in Cesena, Mirko Viroli, Andrea Santi,
Matteo Casadei, Nazzareno Pompei, Marco Fabbri and finally a couple of won-
derful creatures, Sara Montagna and Sofia Ricci, who you can often find together
in the lab, after the nursery.

I am very thankful to Rino Falcone and Cristiano Castelfranchi at Istituto di
Scienze e Tecnologie della Cognizione - C.n.r., for having showed me the ropes
of cognitive modeling, depicting so many ideas during my work at Institute of
Cognitive Science and Technology. I thank them for having pushed further the
notion of agency in computer science—years and years before this would became
a recognized field. I thank all the other guys in Rome, Fabio Paglieri, Giovanni
Pezzulo, Luca Tummolini, Tarek El Sheity, Raffaella Pocobello, Maria Miceli,
Dimitri Ognibene and many others on the list, who always endure and resist, and
have taught me what research is.

My thanks go to the group at Ecoles des Mines in St.Etienne, where I met
awesome guys who have given me hospitality and showed me a new hope in
the Massif Central, Loire. An immense thank goes to Olivier Boissier and Jomi
Hübner, first of all, because they pushed so far a fruitful collaboration; I thank

IV

them for having shared with me their ideas and models, and for having spent so
much time in teaching me why I would need organizations, meeting again and
again in a pivotal phase of this work. I thank Rosine Kitio, for her fundamental
support and for her very important work, I thank France and I thank all the others
researcher at G2I: Laurent Vercouter, Gauthier Picard, Yann Krupa, and many
others who made me to feel at home in Cours Fauriel, 42100.

Finally, I want to thank all the people who has worked with me during the last
years, to whom I owe inspiration and from whom I have learned so much. I thank
my friend Emiliano Lorini and his emotional ideas, for having formalised so many
exciting topics. I thank the Jadex group at Hamburg University, Lars Braubach,
Alexander Pokahr and Winfried Lamersdorf, for their beautiful systems, and for
their ceaseless support. I thank Antônio Carlos da Rocha Costa and Rafael Heitor
Bordini, for having inspired important ideas at the basis of this work. I am very
thankful to Juan Antonio Aguilar and Mehdi Dastani for their helpful comments
and suggestions, and for having spent their time in reviewing a raw draft of this
manuscript.

Heartfelt thanks go to my family, Agostino, Paola, Marco, to my grande
dames, Teresa and Irma, and to my granddads, Guido and Salvatore. To Lou,
who has driven me intothewild, and to Silvia, who deserves all that is going to
happen henceforth.

Bologna, March 2010.

Contents

1 Introduction 1
1.1 Global view and Objectives . 3

1.1.1 An Integrated approach to Agents, Environment, Organi-
zations . 4

1.1.2 Objectives of this Thesis 5
1.2 Overview of the Thesis . 7

1.2.1 Part I · Setting the Stage 7
1.2.2 Part II ·Developing Environment Infrastructures based on

Artifacts . 8
1.2.3 Part III · Developing Organizational Infrastructures based

on Artifacts . 9
1.2.4 Part IV ·Agents, Organizations, Environment: a Unifying

Approach . 10
1.3 Relevant Issues we do not address 11

I Setting the Stage 13

2 Organizations in MAS: Theories, Scopes and Directions 15
2.1 Organizations in MAS . 15
2.2 Organization Oriented Programming 17

2.2.1 Agent, Groups, Roles . 18
2.2.2 Collective Intentions . 20
2.2.3 Social Laws . 20
2.2.4 Electronic Institutions 21
2.2.5 Normative Systems . 22

2.3 Moise: an organizational model based on structural, functional
and deontic dimensions . 26

VI CONTENTS

2.3.1 Organizational Entities 28
2.3.2 Recasting Organizational Entities as Normative Systems . 30
2.3.3 Managing Organizations with a Normative Programming

Language . 31
2.4 Final Remarks on Organizations in MAS 35

3 Organizations Situated in MAS Environments 37
3.1 Situating Organizations in Computational Environments 37
3.2 Environments and Organizations in MAS 39

3.2.1 Current Approaches . 39
3.2.2 Open Issues and Challenges 42

3.3 Environment as first class Abstraction in MAS 44
3.4 A Structured approach to Environments 47

3.4.1 Action Model . 47
3.4.2 Perception Model . 48
3.4.3 Computational Model 49
3.4.4 Internal Dynamics . 51
3.4.5 Data Model (and Openness) 52
3.4.6 Distribution Model (and Localities) 52

3.5 Agents & Artifacts . 53
3.5.1 Foundations . 53
3.5.2 Meta-Model for engineering MAS 54

3.6 Final Remarks on Situated Organizations 59

II Developing Environment Infrastructures based on Arti-
facts 61

4 Environment Programming in CArtAgO 63
4.1 Taking the Environment Programming Perspective 63
4.2 Artifact-Based Environments . 65

4.2.1 Artifact Computational Model 66
4.2.2 Actions to Work with Artifacts 68
4.2.3 Actions to Enter and Leave Workspaces 72

4.3 Environment Programming in CArtAgO 73
4.3.1 Artifact Programming Model 73
4.3.2 Integration with Agent Programming Platforms 78

4.4 Agents at work in CArtAgO Environments 79

CONTENTS VII

4.4.1 Agent Programming in Jason 79
4.4.2 Using simple Artifacts 80
4.4.3 Using Artifacts to Externalize Activities 82

4.5 Cognitive Use . 82
4.5.1 Mapping Goals and Beliefs on Artifact Functions 83
4.5.2 Externalisation and Internalisation 88

4.6 Final Remarks on programming Agents and Artifacts 91

5 Artifact Based Environments: a Formal Model of CArtAgO 95
5.1 Formalising Artifact-Based Environments 95
5.2 Structures . 96

5.2.1 Agent Configuration . 96
5.2.2 Artifact Configuration 97
5.2.3 Workspace Configuration 102
5.2.4 Workspace Initial Configuration 105
5.2.5 MAS Configuration . 106

5.3 Dynamics . 106
5.3.1 Agent Execution Cycle 107
5.3.2 Artifacts Dynamics . 107
5.3.3 Agent Perceptive Activities 114
5.3.4 Agents Joining and Leaving Workspaces 117
5.3.5 Environment Management and Inspection 119
5.3.6 Workspace Time Evolution 124

5.4 Final Remarks on the Formalisation 124

6 Extending CArtAgO with Intra-Workspace Dynamics 127
6.1 Specifying global dynamics inside workspaces 127
6.2 Shaping the problem . 128

6.2.1 Programming approaches 129
6.2.2 Workspace Rules . 131

6.3 Sintax . 134
6.4 Dynamics . 136
6.5 Workspace Programming Examples 142

6.5.1 A Counter Infrastructure 143
6.5.2 Producers Consumers . 144

6.6 Final Remarks on Intra-Workspace Dynamics 146

VIII CONTENTS

III Developing Organizational Infrastructures based on Ar-
tifacts 149

7 Programming Organizations in Practice 151
7.1 Taking the Organization Programming Perspective 151
7.2 Using Moise for modeling a concrete Organizational Entity 152

7.2.1 Structural Specification 153
7.2.2 Functional Specification 156
7.2.3 Deontic Specification . 160

7.3 From the Moise specification to a Normative Specification 163
7.3.1 Normative Organization Programming Language 164
7.3.2 NOPL in practice: the Hospital Scenario 169

7.4 Final remarks on Programming Organizations in Practice 171

8 Organizational Management Infrastructures based on Artifacts 173
8.1 Shaping Organizational Management Infrastructures with A&A . . 173
8.2 Organizational Artifacts . 176

8.2.1 Scheme Artifacts . 177
8.2.2 Group Artifacts . 178

8.3 OMI Execution model . 179
8.3.1 Agents using OMI . 180
8.3.2 Agents perceiving OMI 181

8.4 Final remarks on Organizational Infrastructures 182

IV Agents, Organizations, Environment: a Unifying Ap-
proach 185

9 Embodying Organizations in MAS Work Environments 187
9.1 Situating Agents and Organizations in Artifact Based Work Envi-

ronments . 188
9.2 Environment Management Infrastructures 189

9.2.1 Shaping Environment Management Infrastructures on Or-
ganizational Entities . 192

9.2.2 Environmental Artifacts 192
9.3 Relating Organizations and Environments 196

9.3.1 Establishing functional relations between organizations and
environments . 197

CONTENTS IX

9.3.2 Embodied Organization Rules 200
9.4 Final Remarks on Embodying Organizations in MAS 201

10 Programming Embodied Organizations 203
10.1 Embodied Organizations in Practice 203
10.2 Programming Embodied Organization Rules 204

10.2.1 Programming Count-as Rules 204
10.2.2 Programming Enact Rules 207

10.3 Programming Agents in Embodied Organizations 208
10.3.1 Agents at work with Organizational Infrastructure 209
10.3.2 Agents at work with Embodied Organization 212

10.4 From Situated to Embodied Organizations 213
10.4.1 Relevant aspects . 213
10.4.2 Limitations and drawbacks 220

10.5 Final Remarks on Programming Embodied Organizations 221

11 Conclusions 223
11.1 Contribution of this Thesis . 224
11.2 Future directions . 227

A Moise specification for the Hospital Scenario 229

B NOPL specification for the Hospital Scenario 233

Index 242

Bibliography 258

X CONTENTS

Chapter 1

Introduction

In the last decade, the research in Multi Agent Systems (MAS) has put effort in
finding programming models allowing to cope with open systems, characterized
by highly dynamic environments, where neither the number, nor the behavior nor
the way in which agents interact and access to shared/distributed resources are
possibly known at design time. Once the construction of such complex systems
is of concern, a multifaceted perspective is needed in order to take into account a
series of multiple aspects.

Actual trends seem to account the multiplicity of diverse activities and pro-
cesses residing in a complex MAS in such a way that the resulting dynamic ex-
hibits some grade of social order, i.e. in terms of evolution of the systems and
desired / required equilibrium. For doing this, design models are converging
on the notions at the basis of the following first-class elements: (i) a set of au-
tonomous entities, namely agents, which are assumed to actively purpose their
design objectives; (ii) a set of external resources to be exploited by agents to sup-
port and fulfill their tasks, namely environments and related facilities; (iii) a set
of institutional/organizational entities placed for normative regulation, interaction
and teamwork management, as those functionalities involving inter agent organi-
zational coordination. Such kind of evolution emphasizes that as MAS research
has evolved, the management of certain tasks has been abstracted and gradually
shifted from agents to system and infrastructures. As agents can refer to heteroge-
nous models and programming styles, running on different nodes and platforms,
they may differ for their architectures, exhibiting different purposes at runtime,
with peculiar capabilities to execute activities, interact each other, process and
obtain information etc. Besides, environments can be assumed to contain those
computational entities that are not autonomous (thus not suitably modellable as

2 INTRODUCTION

agents), allowing for instance mediated forms of communication or encapsulating
relevant functionalities/information to be exploited by individual agents to achieve
their desired objectives. Finally, organizational entities are introduced for fasten-
ing social dynamics as inter-agent coordination and normative control, and can be
involved following different approaches, spanning from electronic institutions, to
organizational middleware, coordination models, normative systems, etc.

Whereas recent research seems to account a set of diverse approaches to specif-
ically face with at least one single aspect within the above mentioned, this work
aims at proposing a unifying approach where both agents and their organizations
are situated in properly designed working environments. Rooted in Agents and
Artifacts (A&A) meta-model, which has been recently introduced both in the
context of agent oriented software engineering and programming, and fed by a
cross-disciplinary ground, spanning from cognitive science to organizational the-
ory and social science, the proposed approach promotes the adoption of artifact
based working environments to put in practice a seamless integration between
agents from the one side, and organizational and environmental entities on the
other side. In this view, working environments take into account both structural
and dynamical aspects of the system and are proposed as a programmable infras-
tructure for describing, specifying and controlling agents in their (social) interac-
tions. Work environments are thus conceived in terms of workspaces, representing
computational spaces allocated for both enabling and regulating agents activities.
Instrumented by artifact based infrastructures and programmable according to sit-
uated environmental rules, a workspace provides the computational frame aimed
at transparently interceding between the heterogeneous entities inside the system.
Besides, being based on laws defining interactions in a unambiguous way, work-
spaces regulate global dynamics inside the system, for instance in terms of agent
environment interactions, propagation of events, functional linking between orga-
nizational infrastructures and other resources, and so on.

In this view, artifacts represent the basic building blocks for building either ex-
ternal resources, either organizational functionalities to be exploited as the instru-
ments in the hands of agents to achieve their individual and collective objectives
in the context of a problem domain. Thereby, the notion of artifact based infras-
tructure accounts for considering those situated functionalities that can be dynam-
ically instantiated, shared and used in order to support individual and collective
activities. For instance artifacts can be introduced for wrapping resources upon
which agents can externalize their activities, but also for mediating and empower-
ing agent interaction and coordination, providing organizational functionalities as
situated normative regulation, role management, task allocation etc.

1.1 GLOBAL VIEW AND OBJECTIVES 3

The choice to adopt artifacts as basic element aimed at instrumenting work-
spaces is envisioned to affect the overall development cycle of the system, thus
embedding either a flexible design abstraction, either a suitable programming
model (and related technology) needed to smoothly integrate the various aspects
of organizations situated in MAS environments. In this view, complex interac-
tions may be shaped obeying either to rules defined locally (i.e. at the level of
artifact use/control or within communication between agents) but also to rules
which are definable globally (i.e., at workspace level) which are assumed to enact
policies and rules aimed, for instance, at regulating the access and possibly the
composition of artifact based resources, as well as the the exploitation of social
and organizational ones.

1.1 Global view and Objectives

The work described in this thesis draws mainly on research done in the Multi-
Agent Systems and in particular on the area concerning either environment and
organizational programming. That is, in this thesis we are concerned with the in-
vestigation of modeling and programming approaches dedicated to organizational
infrastructures situated in MAS work environment.

According to a definition provided by Virginia Dignum, organizations in Multi-
Agent Systems (MAS) can be understood as:

“complex entities where a multitude of agents interact, within a struc-
tured environment aiming at some global purpose.” 1

It can be argued that in this definition an organization can be seen as a specific
entity instrumenting the environment where agents interact. This put some em-
phasis in relating an organization as an entity inside the agent system which can
be inscribed in the context of an interaction space which can be summarized as
environment. The same insight has been recently argumented by Stratulat et al. in
[132], according to which both the research lines that in recent years have been
addressed at developing organization and environment in MAS can be rooted in
the more general approach promoting mediated forms of interactions. The notion
of mediated interaction is based on the idea of structuring the interaction space

1The definition is provided in the preface of Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, [41].

4 INTRODUCTION

by adding specific infrastructures responsible to manage complex interactions be-
tween many agents2.

1.1.1 An Integrated approach to Agents, Environment, Orga-
nizations

In spite of their common ground, we argue that few attention has been deserved
hereto at the challenge to integrate in an unifying view the approaches oriented to
environments and organizations. The approach addressed at environment based
interactions promotes the idea of environment as first class abstraction, thereby
an interaction medium to be modeled and designed as a specific dimension of the
system [144]. In this view, a series of aspects have been focused and specifically
related to environment design, as for instance how to represent non-agentive en-
tities, how to provide pragmatic actions to agent to work with external entities,
how to provide agents with perceptive capabilities, which kind of semantic refers
to agent environment interactions and so on. On the other hands, the approaches
promoting MAS based on organizations make great progresses by emphasizing
the interaction spaces as a social medium. In this view, the interaction space is
modeled in terms of social notions, typically detached from concrete computa-
tional infrastructures and inspired by human forms of sociality as organizations,
roles, groups, norms, etc.

As noticed among others in [146, 132, 34, 18, 91] a scarce attention has been
deserved so far in recognizing that many of the current issues in both the research
trends could be rooted to a common ground. Accordingly, research promoting
environment as abstraction did not grant much attention to organizational and in-
stitutional issues, while research on organization centered MAS did not take into
account the results coming from environment modeling.

Figure 1.1 provides a global picture of a MAS where agents, environments
and infrastructures are jointly present at the same time inside the same system.
Besides the representation of the main entities involved (agents, environment, or-
ganization) the figure emphasizes the presence links representing relationships
between the involved elements: (i) A-E (and conversely E-A) links refer to inter-
actions occurring in the (physical) interaction space, as envisaged in environment

2Mediated interaction approaches take a different perspective to the one tackled by agent cen-
tered interactions, where interactions are established by message exchange between agents with
no need of explicit mediating infrastructures (this line is supported by the standardizing works
done by the FIPA foundation [52]).

1.1 GLOBAL VIEW AND OBJECTIVES 5

AGENT(S)
A-E

O-EA-O

ENVIRONMENT

ORGANIZATION

Figure 1.1: Agents, Environments and Organizations, and their bidirectional rela-
tionships, inside a Multi-Agent System.

based approaches; (ii) A-O (and conversely O-A) links refer to the (social) inter-
action space as envisaged in organizational based approaches; finally, (iii) O-E
(and E-O) links refer to the interaction space relating organizational entities and
environmental ones.

Among the above mentioned links, we argue in the latter the one which has
deserved less attention in research. It figures out the fact that an organizational
entity can be fruitfully exploited by agents through a series of environment re-
sources, once these resources could be functionally related to the organization. At
the same time, establishing explicit links between an organization installed in a
MAS and the environment in which it is immersed, could effectively improve the
possibility to situate the whole organization in a concrete context, thus improv-
ing the possibilities for monitoring and controlling agent activities with respect to
desired state of equilibrium.

1.1.2 Objectives of this Thesis

The starting point of this work is in recognizing that either organizations and en-
vironments programming can be rooted in a unifying perspective. This results in

6 INTRODUCTION

a pivotal role to be played by the infrastructure deployed inside the system aside
agents. Accordingly, it rises a series of hypothesis which the next chapters will
try to attend. Among these hypothesis, the following ones can be listed as main
objectives of the thesis:

• To conceive environments as open systems instrumented by situated infras-
tructures providing dynamic resources to be exploited by agents to con-
cretely fulfill their pragmatic and epistemic activities.

• To provide a domain-independent programming model for environmental
infrastructures as shaped on agent repertoire of actions, thus promoting dif-
ferent interaction styles between agents and situated resources.

• To enable fine-grained management of infrastructures in terms of global
specifications, allowing developers to define the rules of interactions and
the evolution of the system.

• To realize organizations as situated infrastructures in terms of functionalities
to be exploited by agents, and can be shaped on the basis of organizational
specifications modifiable by agents as well as system administrators.

• To expand organizational infrastructures to the whole work environment,
thus including in a seamless fashion also those environmental supports needed
to agents to fulfill their collaborative activities.

• To allow heterogenous agents to seamlessly enter the system, exploit envi-
ronmental resources and join organizations, with no need to deal with the
specific awareness to reason in organizational terms and operate in institu-
tional realities, nor to have multiple capabilities in order to interact with the
overall infrastructure.

• To conceive a programming model for organizational entities as embodied
resources inside the system, providing a series of distributed functionalities
aimed either at enabling agents activities and at regulating their fulfillment—
in so doing promoting the achievement of global goals and preventing evo-
lution out of equilibrium.

In fulfilling those objectives in MAS, this work pursues reconciliation of environ-
ments with sociality, social interaction with practical interaction, environmental
entities with organizational ones, normative regulation with infrastructural sup-
port. In order to smoothly integrate the various aspects of complex and situated

1.2 OVERVIEW OF THE THESIS 7

organizations a unified approach is proposed, referred as Embodied Organiza-
tions: It includes either design and programming model, and related technologies,
aimed at the definition of distributes infrastructures instrumenting the MAS with
either environmental and organizational functionalities.

1.2 Overview of the Thesis
To establish at a theoretical level the challenges to provide an unifying view on
agents, environment and organizations, the first part of the thesis relates mainly
in surveying existing approaches to organizations and environments, focusing in
particular on the functional links promoting the view of organizations situated
in agent environments. The following two parts separately deal with aspects re-
lated to environment programming and organizational programming respectively,
including the aspects enabling interaction links with agents. In the last part, a
unifying approach will be detailed, as addressed at proposing an integrated pro-
gramming model enabling work environment to be instrumented with situated
organizational infrastructures.

1.2.1 Part I · Setting the Stage
Aiming at better situating this thesis in the context of the related work, the first
part of the work discusses relevant topics and main research directions on those
aspects of MAS research addressed to the area of organizations and environments
programming.

In Chapter 2, in particular, the notion of Organization Oriented Programming
is described, and a series of existing approaches are analyzed, emphasizing the
basic notions and constructs adopted for the specification of an organizational en-
tity. In this view, the Moise approach is introduced in particular as a valuable ap-
proach to organization programming integrating several conceptual dimensions in
a unique framework. Based on the Moise specification, a derivative programming
language based on declarative norms is then described as addressed at govern-
ing the overall organizational structure. The resulting programming model will
constitute the basis for the approach to organization infrastructures that will be
devised in the next part of this work.

Chapter 3 envisages a structured approach to environment programming as a
concrete opportunity to overcome some of the actual weakness in situating orga-
nization in MAS. Environments – to be considered as the set of external entities

8 INTRODUCTION

not modellable as agents but aimed at supporting their activities – accounts for a
series of theoretical benefits, ranging from augmented interactions, situatedness,
monitoring of agents activities, strategies for regimentation/enforcement, and so
on. On the other hands, considering environments for these purposes places a
series of modeling issues, either on the computational model to be adopted and
on the programming approach to be followed to provide a seamless integration
with other organizational functionalities. In this view, a series of important as-
pects are considered to provide a structured approach to organizations situated
in computational environments, including data model, action perception models,
computational and distribution models, etc. Finally, the Agents & Artifact meta
model for MAS (A&A) is introduced as a valuable paradigm for the construction
of environments as first class entity of agents worlds.

1.2.2 Part II · Developing Environment Infrastructures based
on Artifacts

In the second part of the thesis an environment programming perspective is intro-
duced to define those abstractions, besides agents, which can be adopted to con-
ceive computational model for decentralised, distributed environment in MAS.

Chapter 4 describes a computational model and a related technology environ-
ment programming based on the A&A design approach. Both the described design
and the programming models envisage agents as the basic abstraction which has
in charge the autonomous part of the systems, artifacts as the abstraction which
has in charge the functional part of the system, and workspaces as the abstraction
providing a concrete locus for defining application domain, grouping together co-
herently agents and artifacts. Then, CArtAgO is described as the platform provid-
ing programming constructs, and run-time support, for building distributed and
decentralised work environments based on agents, artifacts and workspaces. In-
teraction involving agents and artifacts are analyzed taking different perspectives
and through the discussion of concrete examples. Basic interactions are enabled
since the definition of a basic set of actions extending agents’ repertoire with the
capabilities needed to operate within CArtAgO. As showed by the end of this
chapter, according to the reasoning capabilities owned by agents, the interactions
may be conceived also in a more complex fashion, thereby enabling the so called
“cognitive” level.

To rigorously define the semantics of agent-artifact interactions and artifact
computational behavior, Chapter 5 describes a formal model of artifact-based en-

1.2 OVERVIEW OF THE THESIS 9

vironments. The chapter defines the entities involved in a MAS based on agents,
artifacts and workspaces in terms of their configurations. Then it focuses in partic-
ular on the dynamics occurring inside a single workspace, involving in particular
interactions between agents and artifacts, and provides a formal description using
operational semantics. Event based mechanisms regulating the evolution of the
workspace deserve in this case a particular attention, being introduced in order to
consider further intra-worksace dynamics characterizing the system.

Indeed, after having discussed micro-level interactions occurring between agents
and artifacts, in Chapter 6 a complementary mechanism for specifying global dy-
namics inside the workspace is provided based on events. The mechanism in-
volves the definition of event driven rules governing primer mechanisms inside a
workspace and is aimed at providing a further, pervasive management for the work
environment. Thereof, environment dynamics can be programmed not only on the
basis of the behavior of the single agents interacting with artifacts and workspaces,
but also at a macro level, i.e., defining laws governing global workspace dynam-
ics. This is done by introducing general rules, triggered by environment events,
allowing to manipulate the space of events and affect workspace configuration,
i.e. triggering operation on artifacts, creating and disposing artifacts, enabling
and disabling operations, and so on.

1.2.3 Part III ·Developing Organizational Infrastructures based
on Artifacts

The third part of the thesis introduces an organization programming perspective
and draws the basis to define specific artifact based infrastructures inside the MAS
to be exploited by agents for organizational purposes. Organizational entities de-
vise their specification along multiple dimensions aimed at regulating the behavior
of complex societies of agents and at promoting the fulfillment of complex tasks
in which groups of agents cooperate in order to achieve shared goals. The or-
ganizational entities will be then reified inside the work environment in terms of
artifact based infrastructures, so as to be suitably exploited by agents in order to
support either individual and collective activities.

In particular, Chapter 7 envisages a programming model defining an organiza-
tional entity to be deployed inside the MAS as a concrete framework which agents
can interact to in order to exploit organizational functionalities. On the basis of
the well suited Moise organizational modeling language, a concrete example of
organization will be sketched, according to a specification given along different

10 INTRODUCTION

conceptual dimensions. According to the specification of a concrete use case the
programming model for a concrete organizational entity is provided, including
the normative programming language addressed at regulating the overall organi-
zational dynamics in concrete organizational infrastructures to be deployed inside
the work environment.

Once the general structures involved in a organizational entity have been an-
alyzed, Chapter 8 addresses the problem to build and deploy an organizational
infrastructure in practice. The approach adopted in this chapter is based on A&A
model and makes use of artifacts as the main abstraction tool to implement the
whole organizational infrastructure. Organizational artifacts are thus deployed in
the work environment with the aim to instrument workspaces with organizational
facilities, thus reifying and modularizing the functional part of the organizational
entity. The result is a decentralised – and configurable – layer of organizational
resources, that can be either perceived and used by agents as first-class entities of
their work environment. Thereby, the enabling and governing function inherited
by artifacts allows the infrastructure to effectively enact norms inside the system.
Through an internal normative model providing the infrastructures with a flexible
mechanism to dynamically manage institutional states, norms are first monitored
during their life cycle, and then applied according to regimentation or enforcement
policies.

1.2.4 Part IV · Agents, Organizations, Environment: a Unify-
ing Approach

The last part of the thesis is addressed at proposing a seamless integration between
organizations, agents and their work environment. This part starts by considering
that the sole adoption of artifacts based infrastructures to reify organizations inside
MAS constrains agents to be aware of complex structures and constructs proper
of organizational specification: agents must know and manipulate low level prim-
itives related to group, roles, mission and norms which may be not proper of an
application domain. Besides, as far as organizational infrastructures have been
modeled, a weak support is given for monitoring and controlling – at the organi-
zational level – other environment infrastructures deployed inside the same work
environment.

To bridge this gap, in Chapter 9 the notion of embodied organization is in-
troduced as a programming model aimed at unifying organizational and environ-
mental infrastructures. It includes a programmable layer for specifying functional

1.3 RELEVANT ISSUES WE DO NOT ADDRESS 11

links between organizational entities and environmental ones. In doing so, the
possibility to conceive environment infrastructures aimed at better situating the
organizational entities inside work environments is sketched. The envisaged com-
putational model marks a clear separation of concerns between the organizational
and the other environmental infrastructures. At the same time, by introducing the
possibility to explicitly specify constitutive rules based on events, the model en-
ables functional relations between the two systems. Finally the approach promotes
multiple interaction styles between organizations agents and their environment.

After having detailed an abstract model for Embodied Organizations, Chap-
ter 10 details a concrete description on how the approach to can be engineered in
practice. Adopting the scenario previously introduced as guideline, the chapter is
enriched by a series of concrete examples aimed at providing a practical method-
ology to developers in programming an embodied organization. A final section
analyzes strength and weakness of the proposed approach, discussing the main
features with respect to the devised challenges.

The thesis concludes in Chapter 11 by listing the contributions of this work
and by providing final discussions and future research directions.

1.3 Relevant Issues we do not address
A unifying approach in programming MAS would require to cope several aspects
characterizing a complex software system, typically inhabited by many heteroge-
nous entities and infrastructures which dynamics and evolution could be not un-
derstood completely at design time. This work mainly faces with proposing in-
tegrated organizational and environmental infrastructures in MAS, leaving aside,
actually, other issues that are not centered on these main aspects. In particular, we
do not address in this work aspects related to the agent computational models, re-
ferring when possible, to existing works already presenting a complete semantics
of agent reasoning (among others [14, 31, 148]). This choice could be argued with
the need to guarantee the whole system as much open as possible with respect to
agent architectures and models. In addition, as remarked by Ferber and Gutknecht
[49] in their seminal work on organization centered MAS, an organizational entity
should make no assumption on agent models. We also do not provide insights on
specific capabilities required by agents to reason in organizational terms, i.e. by
taking into account explicitly organizational notions within their reasoning phases.
On the other hands, one of the outcomes of the proposed approach is exactly in
enabling not aware agents to fruitful interact with organizational entities without

12 INTRODUCTION

taking into account complex organizational constructs.
By taking an approach oriented to a mediated kind of coordination (where the

mediation role is played by artifacts), another aspect that we leave aside is the
dialogical dimension of interactions, namely explicit message based communica-
tion between agents and, possibly, between agents and the infrastructures situated
inside the work environment. In this case we actually leave aside the integration
of message based interactions within the sphere of influence of the organizational
entities. Once needed, we will refer to already existing mechanisms as the ones
based on FIPA-ACL standards already implemented inside the adopted agent plat-
forms.

Part I

Setting the Stage

Chapter 2

Organizations in MAS: Theories,
Scopes and Directions

This part of the thesis provides relevant topics and main research directions on
those aspects of MAS research addressed at organizations and environments pro-
gramming.

In this chapter, in particular, the issues related to programming organization
are discussed aiming at better situating the following of the thesis in the context of
the related work. The notion of Organization Oriented Programming is described,
and, taking a programming perspective, a series of existing approaches are ana-
lyzed, emphasizing the basic notions and the programming constructs adopted for
the specification of an organizational entity. In particular, the Moise approach is
introduced as an applicable approach to organization programming integrating
several conceptual dimensions in a unique framework. Based on the Moise spec-
ification, a derivative programming language based on declarative norms is then
described as addressed at governing the overall organizational structure once de-
ployed inside the MAS. The resulting programming model will constitute the basis
for the approach to organization infrastructures that will be devised in the next
part of this work.

2.1 Organizations in MAS

The definition of a proper organization for a MAS is not an easy task. On the one
hand the organization can be too flexible, and then it does not help the achieve-
ment of the global purpose. On the other hand, it can be too rigid, thus affecting

16 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

agent autonomy and removing any perspective in terms of possible evolutionary
dynamics. In the last years, several approaches to build organizations have been
proposed in literature, each characterized by different perspectives on MAS, us-
ing different primitives and mechanisms addressed at providing organizational
functionalities, and adopting different strategies for monitoring and controlling
interactions and activities performed by agents inside the system. Such different
approaches originated heterogeneous organizational implementations, addressed
each at facing with particular challenges, requirements, application domains.

The first part of this chapter resumes background works on those aspects of
MAS research addressed at organizations programming, with the aim to better
situate the following of this thesis in the context of the related research. In Sec-
tion 2.2 the description is structured according to the main aspects and challenges
that, in recent years, characterized the evolution of organization programming in
MAS.

The second part of this chapter focuses on Moise, an approach to organiza-
tional programming based on specification of separate dimensions each dealing
with different aspects of a complex organization (Section 2.3). A Moise specifi-
cation is interpreted and executed by an organizational entity described in Sub-
section 2.3.1, that is deployed in order to instrument the MAS with organizational
services and functionalities exploitable by agents. As far as the organizational
entity will be conceived based on Moise, its functioning will concern processing
events like agents entering and/or leaving it, group creation, role adoption, goal
achievements, mission commitments, etc. Whereas agents concurrently operate in
the system, i.e. interacting each other and with the infrastructures already avail-
able in order to meet their design objectives, the organizational entity has in charge
the task to maintain a coherent state of the organization. The proposed model as-
sumes organizations storing institutional states and managing explicit norms, to
which agent are forced to obey by the mean of constraints imposed at runtime by
the system (Subsection 2.3.2). Norms, in particular, are introduced as a regulatory
mechanism, thus allowing the application of behavioral constraints to agents in
terms of conditional obligation and permissions. The basic concepts at the basis
of the normative specification to be handled inside the Moise based organization
are resumed in Subsection 2.3.3, including mechanisms for norms management
and application. Finally, the chapter concludes in Section 2.4 with final discus-
sion and remarks.

2.2 ORGANIZATION ORIENTED PROGRAMMING 17

2.2 Organization Oriented Programming
The complex requirements of wired and distributed software systems, as well as
the increasing computational power of hardware platforms are originating a grow-
ing interest towards organizational approaches in programming complex and dis-
tributed software systems (see, among others, [59]). The use of organizational and
normative concepts as inspired to human societies is widely adopted as a suitable
modeling approach in complex system development, while recent research lines
in Multi Agent Systems (MAS) area originated many proposals in this direction
(for comprehensive overview see [41]).

A first research line in MAS area investigates organizations from an agent
centered perspective, where the focus is on the particular capabilities needed
for agents in order to comply with an organization [25, 22]. The perspective is
straightforwardly rooted in typical agent oriented modeling and programming. A
main challenge in this view is in conceiving the required capabilities for organization-
aware agents, namely capabilities enabling agents to reason in organizational
terms, i.e. by taking the organizational specification into account during deci-
sion making [137]. In this view, the practical reasoning is amenable of changes
once agents are concerned with norms to fulfill besides goals to achieve [83], or
with deliberating whether enacting and deacting roles [43, 32]. A remarkable line
of research takes the agent centered perspective to emphasize the emergence of
cognitive phenomena as norm formation inside societies of intelligent agents. For
instance, Sen and Airiau investigate norms as a self-enforcing mechanism which
may evolve in a bottom-up manner [129]. Emergence of norms is also at the basis
of the model proposed by Rosaria Conte et al., given the extent that norms embed
and “immerge” in agents’ mental attitudes [4].

Other research lines devised the notion of organization centered MAS, where
a strong separation of concerns is typically marked between the organizational
specification and the agent models. In this perspective the adoption of explicit
organizational models allows the balance of global organizational requirements
with the autonomy of individual agents. In turns, the organization oriented ap-
proach provides the possibility to express and make explicit one or more patterns
of behavior which are imposed in a top-down fashion to the agents [50, 11, 150].
The organization has, in this case, the aim to constrain the evolution of the sys-
tem by ruling over agent activities and interactions towards the fulfillment some
desired state of equilibrium, or towards the achievement of some global objective.
Such an approaches have been adopted in different multi-agent methodologies to
create organizational patterns by design (among others [49, 150, 48, 72, 138, 67]).

18 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

Besides, they are also adopted at a programming level, to allow agents to interact
at an application level with the organization to which they take part as an explicit
entity deployed inside their system.

A recent trend in MAS has been addressed at Organization Oriented Program-
ming, aimed to provide languages that both the system developer and the agent
themselves (as in the case of self-organization) can use to specify a program that
defines the organizational / institutional dimensions. In this line, the defini-
tion of specific Organization Modeling Languages, as it has been provided by
Boissier [12], has been adopted to refer to those programming languages specif-
ically conceived to design and specify organizations. An OML specification is
thus a program, typically collecting and expressing specific constraints and coop-
eration patterns that the organization designer assume to be applied to the agents
participating the organization functioning. Typically, the reification of OML spec-
ifications originates Organizational Entities (referred as OE), assumed to conceive
those multifaceted constraints and rules expressed in OML so to provide a set of
services and functionalities needed by agents to exploit concrete organizations in-
side the MAS. The deployment of the organization is finally achieved by installing
concrete architectures and modules implementing the organizational entities in-
side the system: at this level the organization can be viewed as an Organizational
Management Infrastructure (OMI) and is assumed to embody the organizational
services in concrete computational components exploitable at an application level.

2.2.1 Agent, Groups, Roles
The way in which organizational entities are developed in MAS borrows concepts
typically referred to societies and organizations of human beings. The concept of
role, before than others, has deserved main attention being one of the cornerstones
in developing systems based on the social metaphor of organizations. Roles have
been applied either to design modeling and methodologies [79, 150, 90] either to
programming languages, frameworks [7] and technologies [126].

One of the first attempts to provide a systematic characterization of MAS or-
ganizations, including roles, is due to Jaques Ferber and Olivier Gutknecht [49],
according to which an Organization Centered MAS (OCMAS) is not conceived in
terms of agentive mental attitudes (as opposed to Agent Centered MAS), but only
on capabilities, constraints and organizational concepts like groups, roles, posi-
tions, communities, collective goals, functions, etc. The concepts which have been
placed at the basis of organizational characterization by Ferber and Gutknecht can
be still found in many of the current approaches: (i) an organization is consti-

2.2 ORGANIZATION ORIENTED PROGRAMMING 19

tuted by agents (individuals) that manifest an autonomous behavior; (ii) the over-
all organization may be partitioned into smaller set of agents (groups) that may
overlap; (iii) agents’ behaviors are functionally related to the overall organiza-
tion through the concept of role; (iv) agents are engaged in dynamic relationships
which may be typed using taxonomies of roles, tasks, protocols, thus describing a
kind of supra-individuality; (v) types of behavior are related through relationships
between roles, tasks and protocols.

Following these basic principles, Ferber et al. presented the Agent Group Role
(AGR) modeling approach, that, in the context of organizational programming,
explicitly introduced three basic primitives, that are structurally connected and
not further reducible to other primitives:

Agents Agents are the autonomous, (pro) active entities inside the system. Agents
are aimed at achieving their design objectives, and for doing this they may
play roles inside groups. An agent may hold multiple roles, being member
of different groups at the same time. In order to make the organization as
open as possible, no assumptions should be made on the particular model
and architecture employed by agents.

Group Groups define the structural aspect of an organization, and are conceived
as sets of agents sharing common characteristics. A group is viewed as
a context for a pattern of activities and is used for partitioning the global
organization into smaller organizations. In AGR, groups also define the
communication channels between agents, while agents may concurrently
belong to several groups.

Role A role is viewed as an abstract representation of a functional position which
an agent can play inside a group. A role describes the behavior of agents in
abstract terms, defining what the organization expects form agents playing
it, and, in AGR, also the responsibilities (requirements, obligations, skills)
deemed for agents to play that role. Roles belongs to groups, and to stay in
a group an agent has to play a role in it. The same role can be played by
different agents at the same time.

These basic notions are the basic building blocks of the AGR approach to OML,
and have been placed at the basis of the MadKit OMI, provided as a framework
for programming AGR-based organizations [50]. MadKit implements the organi-
zational entity inside the MAS as a core layer of basic functionalities to let agents
join groups, associate roles to agents and enable interactions only for member of
the same group [57].

20 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

2.2.2 Collective Intentions

Although the AGR model specifies what kind of behavior is expected by agents
in the context of an organization, it says nothing on how such behavior has to be
performed in practice. This aspects is covered by other OML approaches, as for
instance the one given by Shell in the TEAMwork model (STEAM, [134]). In
this case the behavioral aspect of agents is the pivotal one in the OML specifi-
cation: exploiting the notion of joint intentions and collective goals, the STEAM
approach enables team of heterogenous agents to coordinate their activities by
the mean of shared plans specifying how goals could be jointly achieved, i.e. in
terms of courses of actions and workflow to be performed by agents. In doing so,
the STEAM approach promotes synchronization and coordination among agent
teamworks, for instance using mechanisms establishing communication between
agents aimed at improving decision making, and allowing re-assignment of roles
once critical situations arise.

AGR and STEAM models focus on complementary aspects, the former be-
ing centered on social and structural aspects of an organization, the latter being
centered on behavioral and coordination aspects.

2.2.3 Social Laws

Besides roles, groups and shared plans, a well suited paradigm for regulating com-
plex systems has been rooted to the use of explicit social laws aimed at coordinat-
ing individual agents and rule the (emergent) behavior of the society as a whole
[131]. A further step has been proposed in enriching organizational specifications
provided by the OMLs with the introduction of explicit norms [23, 46, 9, 42].
In this view a norm states a series of obligations, permissions and prohibitions,
namely those behavioral constraints that agents should obey during their activi-
ties inside the organization. An important aspect is that norms compliance has to
not affect agent autonomy: agents should remain able to read, to represent, and
to bring about the organization so to autonomously decide whether to oblige the
norms prescribed by the organization or not. This aspect in particular requires that
the agents understand an organizational specification and are able to translate it in
concrete actions complying the ongoing norms. A typical scenario in this view is
about agents who need to balance the benefits of violating norms against possible
negative consequences resulting from this.

2.2 ORGANIZATION ORIENTED PROGRAMMING 21

2.2.4 Electronic Institutions

Among the organizational aspects introduced by existing approaches, a relevant
one is related to the dialogic dimension of interactions, namely the regulation of
the communicative acts performed by the agents. Massage based communication
and Agent Communication Languages (ACL) are an important approach (proba-
bly the main one) to agent interaction [52]. The dialogic dimension is otherwise
the pivotal one in the approaches based on Electronic Institutions [48]. Electronic
Institutions infrastructures are specified according to the AMELIE OML [47] and
can be modeled using the ISLANDER graphical tool [45].

In AMELIE, an institution is viewed as a dialogic system where the only ad-
mitted interactions are speech acts that agents exchange. Which speech acts the
agents can perform and which roles the agents can play inside the organization are
defined by the dialogic framework according to the OML specification. The inter-
actions amongst agents take place in so-called scenes, which are assumed to model
situated task environments as workplaces (localities) where agents can exchange
messages in order to fulfill their objectives. Communication protocols specify-
ing the allowed messages are associated to the scenes. Messages are formed in
terms of illocutions, and are based on shared ontologies to guarantee a common
understanding of their contents. In AMELIE, the protocols are also normative,
namely they specify which speech acts can be uttered by the agents interacting in
each scene. How agents can move from scene to scene respective the normative
dimension is specified by the performative structure, that is a network capturing
the transitions that agents can make from scene to scene. Finally, certain circum-
stances in one scene (e.g., winning an auction) might lead to obligations in other
scenes (e.g., an obligation to pay). In this case norms are outside the scope of
scenes, and are expressed as global norms which scope is the whole institution.
These norms specify which obligations hold when certain speech acts have (or
have not) been uttered in particular contexts. Just like the norms expressed by
the protocols and the performative structure, these obligations can only refer to
speech acts.

A particular functionality inside the Electronic Institutions is provided by the
so called governor entities, which are assumed as proxies mediating message ex-
change. Governors both rule and enable the dialogical interactions, in so doing
taking a role which resembles the one played by artifacts in A&A approach which
will be introduced in the next chapter. In addition, governors are the controllers
for the respect of specified protocols and norms. Besides intercepting messages
exchanged between agents, governors are, also responsible to mediate A-O inter-

22 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

actions as depicted in the reference Figure 1.1.
The protocol based interactions provided in EI are at the basis of a series of

application integrating the AMELIE with already existing open standards, as the
ones introduced by the web services stack and SOA [149]. Among others, [39]
proposed a composition of (web) services in a open MAS as regulated by EI.
The mediation between agents, EI and services is in this case performed by the
additional figure of Institution Middle Agent (IMA), which has been assumed as
provider of composed services. To serve the requests raised by agents, the IMA
exploit available services as yellow pages, directory facilitators, match-makers in
respect to the protocols defined inside the EI.

2.2.5 Normative Systems
In the case of open system, the transitions occurring in complex agent formations
can not be envisaged by the developer at design time. The requirements of open-
ness according to which few assumptions can be made about the behavior, the
purposes and the internal model of agents working inside the MAS, has raised the
need to deal with explicit normative specifications to be handled at a program-
ming level. Programming norms is thus aimed at regulating the evolution of the
system and at coordinating the whole system within desired states of equilibrium.
In this view, a series of additional charges are assigned to the organizational enti-
ties namely, to monitor agents to conform the constraints specified by the norms,
to ensure agents to comply with norms and their specified prescriptions, to support
at runtime the possibility for the norms to change dynamically their prescriptions.

Monitoring Norms Compliance

Two main approaches are followed in literature for monitoring norm compliance,
the former assuming the infrastructure to automatically relieve norm violations,
the latter adopting special organizational agents in the role of controllers. The
first approach is followed among others by Dastani et al. [34, 135], where the
normative system is equipped with a set of infrastructures allowing an automatic
detection of norms violation. The second approach, focuses instead on the special
role played by agents in detecting and judging norms violation. Among others,
in [2] sanctioning and repairing activities addressed to agents violating norms in
Electronic Institutions have been specified in terms of speech acts that should
be uttered by so-called enforcer agents; Similarly, in the context of Electronic
Institutions, staff agents have been proposed in Campos et al. [18], which aim is to

2.2 ORGANIZATION ORIENTED PROGRAMMING 23

improve the monitoring activities of the institutions in the context of applications
situated in real environments. Special institutional agents have been proposed to
promote autonomic control, based on detecting and preventing norms violations
[15]. Also in this approach, staff agents are assumed to play institutional roles
while external agents participating in the institution are assumed to apply to roles
as external users.

Ensuring Norms Compliance

After having established mechanisms aimed at verifying norms compliance, an
additional charge for OEs is to ensure agents to oblige norms and their specified
prescriptions. The application of the norms, and the management of norm vio-
lations, are typically achieved by enforcement and regimentation strategies, the
former being based on some sanctioning policy to be applied to agents violating
the norm, the latter being based on preventing violations by the mean of access
control to resources [71].

Regimentation is a mechanism that simply prevents the agents to perform ac-
tions that are specified as forbidden by a norm. That is the barrier effect to
which Castelfranchi refers in [23]: given a regimentation of a norm, agents
are physically unable to fulfill a given action because of practical environ-
ment constraints. For instance, in physical environments obstacles could
prevent the fulfillment of a given action, or, in computational systems, a
given action can be disabled by a security mechanism. Regimentation of
actions is aimed at preserving important features of the organization as in-
variant properties.

Enforcement While regimentation is a preventive mechanism, enforcement is a
reactive one. Enforcement is applied “a posteriori”, namely after a possible
norm violation occurs. Enforcement has the prerequisite that agents have
the choice to obey or not to the norm according to their local view of the
organization. On the other hands, the fulfillment / unfulfillment of the norms
should be detected and evaluated as a possible violation, and then judged as
worth of sanction / reward or not.

It is worth remarking that these two mechanisms allow to balance between con-
straining pivotal properties of the system without affecting agents’ autonomy.
This is of particular importance to let the system to self-organize and evolve as

24 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

in the case of open systems, where heterogeneous agents are supposed to enter
and leave with unknown architectures and purposes.

The norms can be supported either as regimentation or enforcement mecha-
nisms depending on which side the designer wants to give more emphasis with re-
spect to the application domain. Basically, regimentation can be assumed to fully
constrain the actions of the agents, while enforcement is adopted when some vio-
lation is allowed (or even desired). Enabling both regimentation and enforcement
is a feature introduced, among others, in ORA4MAS [63], and will be described in
the last part of this book as a pivotal characteristic of the proposed organizational
model.

Dealing with Norms Dynamics

An additional aspect in norms management is related to the possibility to adapt
the normative specification at runtime. In this view, a couple of works have been
recently proposed in order to extend the framework of Electronic Institutions with
an improved norm management system. Besides presenting both regimentation
and enforcement mechanisms for norms application, the works presented by Bou
et al. [15] and Campos et al. [18] are addressed at introducing additional au-
tonomic capabilities to allow a dynamical adaptation to changing circumstances
through runtime management of norms. In this view, organization aware agents
– called institutional agents – are introduced to regulate a given population of ex-
ternal agents by detecting and also preventing norm violations. The approaches
are based on the tuning of a transition function, which in turn is assumed to spec-
ify how norms may evolve based on a series of institutional objectives which are
matched with properties and facts observed inside the application domain. In
doing this, two different mechanisms are envisaged: while in Bou et al. the ap-
proach deals with using on-line learning mechanisms to adapt the transition func-
tion to fulfill the institutional objectives (i.e. with respect to desired equilibrium),
in Campos et al. the rules for adapting norms are defined off-line by the developer.

A different perspective is taken by approaches defining the multifaceted di-
mensions of an organizations on the basis of explicit languages based on norms.
In this view, an organization results specified in terms of norms, even if origi-
nally conceived at an higher level of abstraction within an OML facing multiple
dimensions. Such an approach is followed, for instance, by two recent works on
ISLANDER aimed at defining mechanisms allowing an automatic translation of
the complex normative aspects of Electronic Institutions into simplified constructs
interpreted by rule based engines [29, 53].

2.2 ORGANIZATION ORIENTED PROGRAMMING 25

The idea to manage norms through a rule based engine is followed also by
Aldewereld et al. [3], where the management of declarative norms takes into ac-
count an explicit relationship through three different dimensions of the system,
thereby distinguishing between the normative domain, the organizational domain
and the concrete (environmental) domain. The approach in particular implement
a mechanism – based on conditional constitutive rules – for regulating norm ap-
plication in those situations in which both organizational and normative context
can change over time, due to changed conditions in the concrete level. In this
view, making all three levels and the links between them explicit is beneficial for
dynamic domains and enhances the ability of agents to reason about context and
norm changes.

Instead of translating norms into rules, other approaches have introduced spe-
cific programming languages dealing with norms as an explicit construct. In this
line, the work by Dastani, Tinnemeier et al. [34, 135] proposed a programming
language using declarative norms in terms of conditional obligations and prohibi-
tions. Norms are specified through declarative rules, where the antecedent range
over concrete state of the system and the consequent specifies enforcement mech-
anisms to be handled once the norm is applied. Differently from other approaches,
this programming model explicitly accounts the possibility to refer norms to the
concrete states of the environment (as opposed to “procedural” norms only refer-
ring to actions to be performed by agents)1.

An approach to automatically shifting from an abstract OMLs to a simplified
language based only on declarative fluents has been recently proposed by Hübner
et al. [61, 62]. They introduced an automatic translation of a Moise OML spec-
ification into a Normative Programming Language (NPL) which can be used to
represent institutional facts, rules and norms actually regulating an organizational
infrastructure. This work, in particular, will be detailed in the next section, being
both the Moise and related NPL the reference programming languages adopted to
define the organizational specification proposed in this thesis (see also Chapter 7
for the discussion of the Moise approach applied to a concrete case study).

1The aspects related to the support of concrete states as opposed to normative states will be bet-
ter analyzed in the next chapter, where dealing with the environment dimension will be addressed
as a specific challenge of our organization programming approach.

26 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

2.3 Moise: an organizational model based on struc-
tural, functional and deontic dimensions

The Moise OML and the ORA4MAS OMI are at the basis of the approach to or-
ganizational programming proposed in this work. They will be better detailed
and extended in Chapter 7, Chapter 8 and Chapter 9 where a unified program-
ming model will be devised in order to concieve concrete organization as fully
embodied infrastructures situated in agents work environments.

Moise has been developed in order to provide a comprehensive approach to
OML, integrating roles, groups, norms and collective goals. It improves the origi-
nal Model of Organizations for multI-agent SystEms (referred as Moise+ [65, 64])
which identified three separate dimensions upon which an OML can be structured.

Functional dimension The functional dimension specifies how a set of collec-
tive goals should be achieved, and concerns the global functioning of the
organization, namely: the specification of global plans, the policies to al-
locate tasks to agents (missions), the coordination of plans execution, and
the quality (time consumption, resources usage etc.) of a plan. The de-
composition of global goals results in a set of goal-trees, called functional
schemes, where the leafs are sub goals that can be individually achieved by
the agents. This dimension has then been associated to a sort of memory for
the organization, where the best practices to achieve collective goals can be
stored (e.g., similarly to TAEMS [113], STEAM [134]).

Structural dimension The structural dimension addresses a more static aspect of
the organization: it refers to the structure, namely, the groups, the roles in-
side groups, the relations among roles, etc. In each group specified along the
structural dimension, the global purpose is accomplished while the agents
have to follow the obligations and permissions that their roles entitle them
(e.g., similarly to the AGR model [49]).

Deontic dimension Using an approach similar to ISLANDER [48], OPERA [40],
the deontic dimension focuses on the definition of high level norms that the
agents should obey. Specific norms are provided here in order to bind the
structural dimension with the functional one. This is achieved by indicating,
for each role, which are the permissions and obligations with respect of the
envisaged missions.

2.3 Moise: AN ORGANIZATIONAL MODEL BASED ON STRUCTURAL,
FUNCTIONAL AND DEONTIC DIMENSIONS 27

The idea at the basis of Moise+ was that an initial adequate organization is nor-
mally set up by the MAS designer, however this may become not suitable in com-
plex systems where nor the architectures of the participating agents, nor the multi-
faceted patterns of cooperation may be known at design time. Thus, from a devel-
oper perspective, defining an organization focusing from time to time on clearly
separate aspects is of course an advantage in terms of flexibility and maintenance
of the overall system. From an agent point of view, having three inspectable di-
mensions to work with means having more information to reason about the others
positions inside the organization. If the organization model specifies separate di-
mensions while maintaining suitable independence, then the participating agents
can be more effective in adapting their behavior to organizational schemes. Be-
sides, this allows to improve interaction inside the organization, thus better elicit-
ing cooperation among single agents.

Making explicit the functional dimension eases the computational load for
agents by providing suitable collective plans – to which agents may commit through
missions – every time they want to coordinate each other. Even with a small search
space in the problem domain, this may hold to an hard problem for agent decision
making, given the fact that the fan out of possible commitments for an agent grows
with respect to the amount of other agents in the group. An additional motivation
to explicitly introduce the functional dimension is the possibility to store plans in
the organizational memory, as a sort of social intelligence.

The Moise+ approach provides the chance for agents to adapt and change the
organization in a bottom-up process, for instance installing and or updating new
pattern/structures at runtime. Such a feature corresponds to the combination of
agent-centered MAS organizations and organization-centered approaches.

In order to improve the normative aspects inside the OML, MoiseINST [10]
has been recently proposed as an extension of Moise+. The MoiseINST OML in-
troduces an renewed deontic dimension aimed at better specify norms, including
timely deadlines for obligations and permissions. Besides, it adds to the OML
the so called contextual dimension, aimed at including the specification of the
possible states in which an organization may operate. This dimension explicitly
accounts for situated conditions, given for instance by changing contexts inside
the application domain. The MoiseINST OML also considers organizations in dy-
namic environments, providing a specific support to adjust organizational struc-
tures on the basis of the changing contexts.

28 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

2.3.1 Organizational Entities

Organizational entities provides the proper abstraction tools, a related technology
and a runtime support of the execution of large-scale, distributed and open MAS
where organizational entities are explicitly defined. In general, an OE can be
seen as a particular system inside the MAS, that is deployed to instrument the
interaction space in order to provide organizational support to agents. In this view,
an OE provides organizational facilities at an application level, making it available
one or more organizational functionalities exploitable by the participating agents.
An OE is thus responsible for interpreting an organizational program, possibly
based on notions specified by the system developer at an high level of abstraction.
Accordingly, it is responsible for the runtime management of the organization
with respect to the specifications expressed by the organizational program.

At an application level, the Moise+ OML is managed by the S-Moise+ system,
an OE combining the structural, functional and deontic dimension in an organiza-
tional middleware exploitable by heterogenous agents [66]. S-Moise+ is realized
as a series of middleware components, ensuring the coherence of the organization
as agents playing the right roles, and forcing global properties as well-formedness
of groups. Besides, the same system provides organizational functionalities to
agents, which are enabled to interact with the OE by the use of basic actions as
adopting roles, commit to missions, join/leave groups and so on. In this case,
the middleware is assumed to inform agents by signalling events once relevant
and applicable goals can be pursued and regiment the commitment to mission for
which agents have no permissions to act. The interfaces provided in S-Moise+ as
well as a properly conceived event based signalling, establish, at a programming
level, the interaction model between organizational entities and agents. In partic-
ular S-Moise+ enables A-O relationships (see the reference Figure 1.1) through a
mechanism based on a dedicated component called “Orgbox”, to which the agent
sends requests for actions that it would like to execute to the organizational entity,
which decides whether the specific action can be finalized or not.

To improve the programming support allowing agents to work with organi-
zational entities, J-Moise+ was proposed as an integration layer enabling Jason
agents to seamlessly work in a Moise+ middleware. In this case, the relation-
ships between agents and organization (A-O relationship in Figure 1.1) is entirely
based on an augmented action repertoire, by which Jason agents are enabled to
effortlessly use middleware services in a transparent fashion. Besides, the agent
perception model is entirely conceived in terms of events which are dispatched by
the middleware. This allows agents to fully exploit their reactive abilities, since

2.3 Moise: AN ORGANIZATIONAL MODEL BASED ON STRUCTURAL,
FUNCTIONAL AND DEONTIC DIMENSIONS 29

ORGANISATION
SPECIFICATION

NPL
PROGRAM

ORGANISATION
ENTITY

NPL
Interpreter

Figure 2.1: In order to simplify the internal functioning of an Organizational En-
tity inside the MAS, the specification given in Moise-OML is translated to a Nor-
mative Programming Language (NPL).

events are translated in percepts which are native events for agents and can be
handled accordingly.

An important aspect to remark here is that both S-Moise+ and J-Moise+ lack
monitoring mechanisms allowing the OE to be automatically notified about the
ongoing changes in the application domain. In other terms, each change occur-
ring inside the system has to be notified to the organization by the mean of agent
actions aimed at informing and updating the organizational configuration. For
instance, when an agent fulfills a goal belonging to its obliged missions, it is on
agent’s own responsibility to inform the middleware about the achieved goal. As it
has been noticed among others in [34, 137], this is a strong assumption on agents
responsibilities, as it assumes agents that strongly agreed on organizational spec-
ifications and are somewhat responsible to perform an additional set of activities
besides their purposive behavior, so as to inform the organization.

By taking into account an organizational specification shaped on multiple di-
mensions, we may envisage that the practical implementation of an OE requires
the continuous management of complex organizational entities, each based on
several heterogeneous concepts. This aspect is particularly complex for organi-
zational models that consider elements with heterogeneous nature like groups,
roles, common goals, norms, etc. Typically, each of these notions has its own life
cycle inside an organization, they are connected together and are constrained by
many properties (e.g. well-formedness, role compatibilities, links, cardinalities,
etc.) that need to be concurrently satisfied to keep the overall organizational in a
consistent state.

As described in the previous sections, many of the organizational concepts in
Moise+ have an high degree of coupling with the other ones. For instance, struc-
tural and the functional dimensions must be related from time to time with obli-

30 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

gations and permissions related to the deontic specification. Moise+ allows the
specification of explicit norms, that are always related to roles and goals through
obligations (or permissions) for agents to commit to missions. In so doing, the
designer can define norms such as, for instance:

Norm : An agent playing the role “doctor” is obliged to visit an-
other agent playing the role “patient” if another agent playing role
“visitor” (or the “patient” itself) has already booked the visit.

In this case, the OE is responsible for identifying the activation of the obliga-
tion to commit to the involved missions either for the doctor either for the patient
and the visitor. Accordingly, the system has also to ensure the compliance to the
norms for the agents playing the corresponding roles. In this perspective, as one
may argue, the more complex is an organizational specification, the more heavy
is the computational load in charge of the related OE. By taking into account the
above mentioned issues, in the next section a modeling approach addressed at sim-
plifying the computational model of organizational entities will be described. In
particular, the approach devises the model for an organizational entity built around
the notion of organizational states, rules and norms, where norms are assumed as
the basic constructs at the basis of a programming language aimed at specifying
the overall organizational dynamics.

2.3.2 Recasting Organizational Entities as Normative Systems
Based on the improved notion of norms already introduced in MoiseINST [10],
Hübner et al. recently proposed a unifying approach – simply referred Moise –
improving the Moise+ OML based on the notion of declarative norms [61, 62]. On
the basis of the resulting Moise specification, the proposed model is then assumed
to translate the OML specification to a simpler one, based on the sole use of norms.
In this approach, the organization turns to result as a normative system, namely
the internal functioning of the OE is mainly concerned with providing a coherent
mechanism capable to interpret and manage norms at runtime.

The approach assumes a normative programming language to be fed as the in-
put specification of the OE. This allows to re-cast the OE configuration by trans-
lating an abstract organizational model into a more simple normative model. Ac-
cordingly, it envisages the decomposition of the OE into smaller entities which
are (i) a translation component which fulfills the encoding from an organization
modeling language to a normative programming language and (ii) an interpreter
for the normative language to be run inside the OE. The OE is then in charge for

2.3 Moise: AN ORGANIZATIONAL MODEL BASED ON STRUCTURAL,
FUNCTIONAL AND DEONTIC DIMENSIONS 31

interpreting and managing the norms expressed by the normative programming
language with an internal engine. Normative constraints and rules are used by the
OE to establish its organization state and to govern the organization dynamics, i.e.
with respect to the agents activities (see Figure 2.1). In the next section, the basic
constructs at the basis of normative language are described.

2.3.3 Managing Organizations with a Normative Programming
Language

As said, the approach followed to model an OE assumes to recast the organiza-
tional specification, placed in abstract terms, into a lower level language, based on
normative constructs. The approach assumes, in particular, a starting specification
given in Moise Organization Modeling Language, and a target language based on
norms referred as Normative Programming Language (NPL). The basic construct
of NPL is the norm, that has been specified in [61] as a general rule of the type:

norm id: ϕ -> ψ.

where id is a unique identifier of the norm; ϕ is a formula that determines activa-
tion condition for the norm; and ψ is an expression declaring the consequences of
norm activation. Two types of consequences of norm activation are considered:

• f ail−fail(r): represents the case where the norm is regimented, namely
every tentative to reach the state expressed by the formula ϕ will fail. Ar-
gument r represents the reason for the failure;

• obl−obligation(a,r,g,d): represents the case where a new obligation is
created for some agent a as the consequence of the norm activation. Argu-
ment r is the reason for the obligation (which has to include the norm id);
g is the formula that represents the obligation (a state of the world that the
agent must try to bring about, i.e. a goal it has to achieve); and d is the
deadline to fulfill the obligation, expressed in terms of time.

It has to be remarked that the value expressed by the deadline d refers to the time
regulated by a mechanisms inside the OE. This implies a notion of time related to
the organization, which may be different with respect to the time used by agents
and also with the time managed by other entities playing inside the application
domain. As in other approaches, a norm is defined since a static / declarative as-
pect (when norms are declared in NPL) and a dynamic / operational aspect (when

32 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

active

inactive

fulfilled

unfulfilled

Figure 2.2: State transitions for NPL Obligations (taken from [61]).

an obligation is created, it is added to the organizational configuration). Thanks
to the explicit notion of time inside the organization, it is possible to model a
life-cycle of an instantiated obligation which can be monitored at runtime (Fig-
ure 2.2). In this view, the dynamic aspect of the OE results from the interpretation
of NPL programs and the consequent creation of obligations for agents actually
participating the organization2.

Figure 2.2 informally describes the transitions involving obligation states (the
interested reader can find a more detailed description of the dynamic aspects of
the resulting normative system, including operational semantics, in [61]). An
obligation is instantiated when the activation condition ϕ of some norm n holds.
The activation formula is then used to instantiate the variables a,r,g and d for the
obligation to be created. Once created, the initial state of an obligation is active.
The obligation state changes to fulfilled when agent a fulfills the norm obligation
g before the deadline d. The obligation state changes to unfulfilled when agent
a does not fulfill the norm obligation g before the deadline d. As soon as the
activation condition of the norm that creates the obligation ϕ ceases to hold, the
state changes to inactive.

Notice that a reference to the norm that led to the creation of the obligation
is kept as part of the obligation configuration itself (the r argument, that includes
the norm id). This reference is kept in order to refer the norm instance at runtime.
Besides, the activation condition of this norm must remain true for the obligation
to stay active On these basis, only an active obligation will become either fulfilled
or unfulfilled, when the deadline comes.

2The model will be detailed in Chapter 7, where a programming example will be discussed.

2.3 Moise: AN ORGANIZATIONAL MODEL BASED ON STRUCTURAL,
FUNCTIONAL AND DEONTIC DIMENSIONS 33

Norms management

As emphasized by many authors (among others, [56]), the mechanisms for appli-
cation of norms are an integral part of norms specification. In the context of the
OE described here, norms are implemented by means of mechanisms that instru-
ment them in the interaction space, thereby in the context where norms have to
be considered by agents participating the organization. The use of a norm based
OE envisages two main mechanisms promoting the application of norms [71]:
regimentation and enforcement.

As introduced in Subsection 2.2.5, regimentation is a mechanism that simply
prevents the agents to perform actions that are specified as forbidden by a norm.
When action regimentation is of concern, it seems a reasonable idea to make the
OE to manage such a regimentation. Therefore, actions which typically refer to
the OE – as “commit to mission” or “role adoption”, for instance – can suitably
regimented by the OE itself.

On the other hands, enforcement mechanisms assume the fulfillment / unful-
fillment of the norms to be detected, evaluated as a possible violation, and then
judged as worth of sanction / reward or not. In this case the possibility for the OE
to apply enforcement is limited by the need of activities which are further required
after the norm violation. Although the OE includes the mechanism allowing the
detection of a given violation, the organizational entity needs the execution of
additional activities (i.e. judgement, sanctioning) which are not in charge of an
infrastructure. It may be deemed as necessary, in this case, the support of addi-
tional agents inside the organization to fulfill enforcement.

Norms application

As illustrated in Figure 2.3, two kinds of mechanisms for applying norms can
be distinguished: management in terms of checking norms compliance before fi-
nalizing changes in the organizational states; management in terms of detection
of fulfilments, statement on possible violation and possible sanctioning (or re-
warding) activities. As in the former case the mechanism refers to regimentation
strategies3, in the latter case the mechanisms refers to enforcement.

An important aspect to remark in norms management is the role played by
organizational entities once enforcement is of concern. While detection can be
implemented as an automatic process, namely the application of a procedure that

3Different approaches implementing regimentation inside the OE are described in the next
chapters.

34 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

m
ec

ha
ni

sm
s

Staff
Agent

Organisation
Entity

used by

Regimentation

Enforcement
detection

evaluation

judgement

done by

done by

done by
done by

Figure 2.3: Norms management inside an organization is automatically ruled by
the OE in case of regimentation and by organizational agents in case of enforce-
ment and judgement about violations (modified from [63]).

does not require decisions, the evaluation and the judgement after some violation
could require deliberation and reasoning. As said, whereas the functionalities pro-
vided by the OE allows to detect and show the violation of a norm, evaluation and
judgement are tasks more suitably implemented by agents inside the organization.
In this view, the OE allows agents to be informed of current status of the norms in
order to evaluate the existence of possible violations and then decide regarding the
related measures to take. To stress the embedding of dedicated reasoning related to
the management of the organization these agents have been called organizational
agents [63]. In general, they can be assumed as agents aware about the organiza-
tional schemes – or as agents embedding specific organizational knowledge. Their
missions are essentially related to monitoring and controlling the norms inside the
organization. Such activities typically include observing OE states (institutional
states) and possibly intervening on the need, by changing and adapting the in-
frastructure or interacting directly with other agents to be sanctioned or rewarded
(see Figure 2.3). As noticed in Subsection 2.2.5, such an organizational role has
already been proposed in many OMIs [15, 2, 18]. By adopting the Moise model,
one or multiple schemes can be introduced for defining the activities of organiza-
tional agents in terms of missions, which are in turns responsible for monitoring
of violations. Once the norms regulating the various roles are violated by agents,
organizational agents detect the violation and then apply enforcement through re-
wards or sanctions in order to promote as much as possible the norm compliance.

2.4 FINAL REMARKS ON ORGANIZATIONS IN MAS 35

2.4 Final Remarks on Organizations in MAS
The perspective showed in this chapter emphasizes notions, concepts and the
mechanisms already adopted in conceiving organizational entities in MAS. As
seen, most of the approaches are established along notions which are forged on
the metaphor of human organizations. These notions includes, for instance, roles,
groups, norms, shared plans, collective intentions and so on. The concrete realiza-
tion of such a modeling approaches shift these abstract notions into programming
models, providing a series of language primitives and constructs allowing flexible
development and management of organizations inside a MAS.

In the second part of the chapter the Moise OML has been described. It allows
to express an organizational specification taking into account multiple dimensions,
thereby introducing a meta-level aimed at coordinating the activities of hetero-
geneous agents in complex organizational patterns. The concrete organizational
entities realizing Moise organization inside a MAS make use of an additional
component, by which the specification originally placed in multiple conceptual
dimension can be translated to a normative language. The aim of the translated
specification is to take all the organizational constraints into account in manag-
ing the organizational configuration at runtime. A further relevant characteristic
of Moise organizations is that it allows two kinds of agents to evolve inside the
system. We referred to them as participant agents, which are agents using the
organizational functionalities in order to coordinate each other and fulfill shared
goals, and the organizational agents, which are agents aware of organizational
structures and are typically aimed at detecting norms violations and possibly at
promoting a desired organizational evolution.

Besides the realization of coherent organizational entities, recent trends in
MAS are addressed at reconciling organizations with the concrete work envi-
ronment where agents are supposed to interact. These approaches accounts for
better situating organizations inside the whole system, thus considering an addi-
tional dimension to be integrated aside the organizational one. In this view, the
aim is to ground organizational entities within the specific conditions and con-
text relieved inside the work environment, for instance in order to apply norms
thanks to infrastructures supporting the organization and in order to promote au-
tomatic mechanisms controlling regimentation as well as enforcement strategies.
The challenges related to these approaches, along with a structured approach to
environment programming which is needed for their realization, will motivate the
rest of this work and are resumed in the next chapter.

36 ORGANIZATIONS IN MAS: THEORIES, SCOPES AND DIRECTIONS

Chapter 3

Organizations Situated in MAS
Environments

This chapter introduces environments as an explicit dimension among the ones
to be envisioned in an organizational model. As working hypotheses, environ-
ments, to be considered as the set of external entities not modellable as agents but
aimed at supporting their activities, accounts for a series of theoretical benefits,
ranging from interactions, situatedness, monitoring of agents activity, strategies
for regimentation/enforcement etc. On the other hands, considering environments
for these purposes places a series of modeling issues, either on the computational
approach to be adopted and on the programming approach to be followed to pro-
vide a seamless integration with other organizational functionalities. In this view,
a series of important challenges are considered to provide a structured approach
to organizations situated in computational environments. Finally, the Agents &
Artifact meta model for MAS (A&A) is introduced as a valuable paradigm for the
construction of environments as first class entity of agents worlds.

3.1 Situating Organizations in Computational Envi-
ronments

MAS organizations are potentially a powerful tool to build complex systems where
computational entities can autonomously pursue their activities exhibiting social
attitudes, and being designed according to heterogeneous models, technologies
and programming approaches. On the other hands, programming such complex
systems may require agents to be situated in a well established computational

38 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

environment populated by different computational entities, not characterized by
agentive properties as autonomy, pro-activity, social attitudes, etc. but already
providing agents with supporting functionalities which agents can exploit to serve
their purposes.

As seen in the previous chapter, the trend in building organizational systems
inside a MAS is mainly addressed towards programming organizations as mid-
dleware entities not shaped according to the agent abstraction, but realized by
software components (or objects) which agents can interact by using ad hoc prim-
itives. Once such middleware based entities are deployed inside the MAS, an
additional requirement is given by the need to “situate” the organizational entity
within the workplace where agents are immersed. In general terms, this places
the challenges to conceive the proper interaction patterns between the involved
entities, namely: (i) how the organization should interact with other external envi-
ronment entities (O-E relationship in Figure 1.1), (ii) how the organization, as an
infrastructure inside MAS, should interact with agents sharing the same work en-
vironment (O-A relationship in Figure 1.1). Considering environments for these
purposes places a series of modeling issues, either on the computational approach
to be adopted and on the programming approach to be followed to provide a seam-
less integration with other organizational functionalities.

A second issue about situating organizations is whether to consider environ-
ments as an additional aspect (i.e. dimension) to be provided within the organiza-
tional specification, or, on the other hands, whether to consider the organization
as a separate concern, to be integrated with an existing environment infrastruc-
ture. In the former option, the resulting organizational entity intrinsically includes
both the environment and the organizational aspects, thus it can be conceived in
as a coherent entity at design time. The latter options accounts environments as
constituted by heterogenous entities which may exist independently from the orga-
nizational specification. Of course, once the organizational dimension is installed
as an additional concern inside an environment, a series of functional relationship
have to be established to define which kind of interaction may occur between the
organizational entity and the environmental ones.

Independently from the concern attributed to the environment dimension in
the context of the whole system, a series of important aspects have to be further
considered in order to provide a structured approach to environments, including
the type of data, the action and perception models, computational and distribution
models, and so on. To these ends, the research lines that in recent years addressed
the notion of environments as first class abstraction in MAS can be investigated
to find a valuable contribution in building environments as places where an orga-

3.2 ENVIRONMENTS AND ORGANIZATIONS IN MAS 39

nization has to be straightforwardly situated.
The chapter is organized as follows: Section 3.2 surveys existing approaches

dealing with organizations situated in computational environments, emphasizing
strength and weakness of a series of research lines. Taking a programming per-
spective, Section 3.4 analyzes several aspects needed to provide a structured ap-
proach to environments. The final section of this chapter (Section 3.5) introduces
the Agents & Artifact meta model for MAS (A&A) as a valuable paradigm for the
construction of work environments structured by decentralised entities localized
in distributed nodes and collected in coherent work places.

3.2 Environments and Organizations in MAS
Although early approaches in organization programming have not been addressed
at identifying a specific role for computational environments, a recent trend in
research has been dedicated at the challenge to situate organizations in concrete
application domains. This section resumes works recently proposed in this di-
rection, analyzing their strenght and weakness and pointing out a series of open
issues and challenges.

3.2.1 Current Approaches
In order to reconcile physical reality with institutional dimensions, MASQ (Multi-
Agent System based on Quadrants) introduced a meta-model promoting an anal-
ysis and design of the global MAS along different dimensions [132]. MASQ
approach strongly relies on the AGR OML extended with an explicit support to
environment as envisaged by the AGRE and AGREEN models [6]. The organi-
zational approach takes into account both the environment and the institutional
part of MAS societies, integrating different dimensions (agents, environment, in-
teractions, organizations and institutions) into an integral view. In particular, four
dimensions are introduced, ranging from endogenous aspects (related to agent’s
mental attitudes) to exogenous aspects (related to environments, society and cul-
tures where agents are immersed). The same infrastructure used to introduce or-
ganizational entities is also regulated by precise rules for interactions between the
involved entities. Those entities can be agents or objects, and are assumed to dwell
the same work environment: the resulting interaction relies on Ferber’s model of
influences and reactions [51], which will be discussed later on this chapter as a
general approach to conceive interactions inside a MAS.

40 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

One of the proposals promoting specific entities addressed at modeling orga-
nizations through their environment extension is due to Okuyama et al. [91]. In
order to implement situated organizations instrumenting physical environments
where social interactions are of concern, they proposed to distribute “normative
objects” as reactive entities inspectable by agents working in “normative places”.
The notion of normative object is, in this case, related to the one of environment
objects, thus conceptually close to the notion of object envisaged for instance in
MASQ. As proposed by Okuyama et al., normative objects are computational
objects with an additional informative content, which can be exploited by the or-
ganizational infrastructure itself to make available information about norms that
regulates the behavior of agents within the place where such objects can be per-
ceived by agents. On the other hands, agents operating in normative places have
the chance to inspect normative objects so to learn the norms actually regulating
their application domain. The approach is assumed to improve emergent dynam-
ics governed by specific norms addressed at controlling agents behavior. In fact,
normative objects are supposed to indicate obligations, prohibitions, rights and
are indeed readable pieces of information that agents can get and bring about with
no previous knowledge. Put together, normative objects and normative places are
assumed to build a distributed normative infrastructure, allowing the definition
of certain kinds of situated multi-agent organizations, in particular organizations
that operate within concrete environments and in the context of simulative appli-
cations.

A remarkable aspect defined in the approach followed by Okuyama et al. is
that situated rules can be locally defined to allow agents to implicitly interact
with a normative institution, as for instance adopting roles in situated context.
The mechanism is based on the fact that the reification of a particular state in
a normative place may constitute the realization of a particular institutional fact
(e.g., “being on a car driver seat makes an agent to play the role driver”). This
basic idea is borrowed from John Searle’s theories on speech acts and institutions.
In his book “the construction of social reality” [128], Searle provides a theory
on how social constructs like marriage or money can exist in a world consisting
of brute facts regulated by natural laws as “physical particles in fields of force”.

Aiming at an explanation of social phenomena, Searle distinguishes between
brute facts, like the height of a mountain, and institutional facts, like the score of
a baseball game. He argues that society can be explained in terms of institutional
facts, and institutional facts arise out of collective agreements through special

3.2 ENVIRONMENTS AND ORGANIZATIONS IN MAS 41

kind of rules, that he refers as constitutive rules 1. Constitutive rules constitute
(and also regulate) an activity the existence of which is logically dependent on
the rules themselves, thus forming a kind of tautology for what a constitutive
rule also defines the notion that it regulates. Constitutive rules do not regulate
already existing (brute/concrete) reality but are addressed to the definition of a
new (social/institutional) reality. In the example of Okuyama, a sentence like
“being on a car driver seat makes an agent to play the role driver” strongly situate
the institutional dimension on the environmental one, it both regulates the concept
of role adoption and, at the same time, it defines it.

Constitutive rules in the form X counts as Y in C are also at the basis of the
work proposed by Dastani et al. to bridge the gap from environment states and
normative states [33, 34]. In their approach, a normative infrastructure (which is
referred as “normative artifact”) is conceived as a centralized environment that
is explicitly conceived as a container of institutional facts, namely facts related
to the normative or institutional states, and brute facts, namely states which are
related to the concrete, “physical” workplace where agents dwell. To shift facts
from the brute dimension to the normative one the normative system is assumed
to handle constitutive rules defined on the basis of “count-as” and “sanctioning”
statements, which are specified in terms of transitions regulating the effects of the
actions performed by the agents in their environment and allows the infrastructure
to recast brute facts to institutional ones. In particular, the antecedent of each rules
specifies the states needed for the rule to apply, while the consequent contains the
effects defining how the rule is applied (for instance, “being on a train without
the ticket count as violation” , “violations of being on a train without the ticket
are sanctioned with fees”). The mechanism regulating the application of “count-
as” and “sanctioning” rules is then based on a monitoring process established as
an infrastructural functionality installed inside the normative system. Thanks to
this mechanism, agents behavior can be automatically regulated through enforcing
mechanisms, i.e. without the intervention of organizational agents.

A similar approach is proposed in the work by Tinnemeier et al. [135], where
a formal model for a normative programming language based on conditional obli-
gations and prohibitions is proposed. Thanks to the inclusion of the environment
dimension in the normative system, this work explicitly grounds norms either on
institutional states either on specific environmental states. In this case indeed the
normative system is also in charge of monitoring the outcomes of agent activities

1The notion of constitutive rules, as opposed to regulative rules, has been introduced by Searle
in studies on socio linguistics and speech acts [127].

42 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

as performed in the work environment, in so doing providing a twofold support
either to the organizational dimension either to the environmental one.

The notion of observability of environment states is also at the basis of the ap-
proach to Situated Electronic Institutions (SEI), recently proposed as an extension
of AMELIE. Besides providing a runtime management of the normative specifi-
cation, SEIs are aimed at interceding between (real world) environments and the
institution itself [18]. In this case, special governors, namely modelers, allow
to bridge environmental structures to the EI by instrumenting environments with
embodied devices controlled by the institutional apparatus. Participating agents
can, in this case, perform individual actions and interactions (either non message
based) while operating upon concrete devices inside the environment. Besides,
SEI introduces the notion of staff agents, namely organization aware agents which
role is to monitor ongoing activities performed by agents which are not under the
direct control of the institution. Staff agents are then assumed react to norm viola-
tions, possibly ascribing sanctioning and enforcements to disobeying agents. In-
stitutional control is also introduced by the mean of feedback mechanisms aimed
at comparing observed properties with certain expected values. On the basis of
possible not standard properties detected, an autonomic mechanism specifies how
reconfigure the institution in order to re-establish equilibrium.

3.2.2 Open Issues and Challenges

Although some of the aspects enabling a conceptual integration between orga-
nizations and environments are already well established among the proposed ap-
proaches, as for instance the principle of constitutive rules, other aspects still seem
far from being addressed. A series of open issues could be listed:

• There is no agreement in which kind of computational model to be adopted
by environments. Instead, either a centralized approach (i.e. environment
constituted by a unique entity, as in [33, 34, 135]) and decentralised ap-
proach (i.e. environment constituted by several independent entities as in
[132, 18]) are adopted.

• Different approaches are provided for the interaction model between agents
and environment. Besides, there is not a clear vision on how an environment
should support agents in their native capabilities, as for instance the ones
related to action and perception.

3.2 ENVIRONMENTS AND ORGANIZATIONS IN MAS 43

• The computational treatments of goals clashes different acceptations once
they are referred to agents and their subjective goals, and when they are
related to organizations and their global goals. By considering environments
explicitly, either agents and organizations should be able to ground goals
to actual environment configurations, thus recognizing the fulfillment of
their objectives once the pursued goals have been reached in practice (this
approach is adopted, for instance, in [33]). Other approaches, as for instance
ORA4MAS [63], do not assume organizations able to automatically detect
the fulfillment of global goals in terms of environment configurations.

• Similarly, a weak support is provided for grounding norms in concrete en-
vironment states, and for managing their lifecycle with respect to changing
environments. No agreement is then established on which kind of monitor-
ing and sanctioning mechanisms must be adopted. Some approaches envis-
age the role of organizational/staff agents [18], other approaches propose
the sole automatic regulation provided by a programmable infrastructure
[33, 34, 135].

• Few approaches accounts openness, for instance with respect to heteroge-
nous agent architectures an towards protocols and type of data to be ex-
changed between the involved entities.

• A weak support is provided for distributing environments across multiple
nodes and machines, where a distributed approach further require a more
sophisticated management of invariants as time and global states.

• It is not clear which kind of capability, and which grade of awareness, is
required for agents to exploit the functionalities provided by a (situated)
organizational entity.

With the aim to make order among the above mentioned challenges, and in
order to bridge the gap between the existing approaches, we argue that some of
recent research on environment modeling and programming could be fruitfully
explored. To this end, the next sections survey research lines that recently pro-
posed the notion of environment as first class abstraction in MAS and suggest a
principled approach to environment modeling/programming.

44 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

3.3 Environment as first class Abstraction in MAS
The notion of environment is more and more recognized as a pivotal concept in
development of agent systems. Computational environments generally represent
the virtual or physical place where agents are situated and where all the activities
deemed for the agents to fulfill their design objectives take place. Fundamental
features of the agent as autonomous computational entities can be directly or un-
directly related to the environment: situatedness and reactiveness are, of course,
obvious examples, but also pro-activeness, being the notion of goal, which is ac-
tually the essential aspect of pro-active behaviors, typically defined in terms of
“desired” states of the world that an agent aims to bring about and realize in the
environment concretely.

Actually two distinct perspectives can be adopted when defining the concept
of environment in agent systems: a classical view, rooted in Artificial Intelligence
[125], and a more recent one, grown in the context of Agent-Oriented Software
Engineering (AOSE) [89]. In the classical AI view, the notion of environment is
used to identify that external world (being the perspective centered on a single
agent or on a set of agents considered as a whole) which is perceived and acted
upon by the agents so as to fulfill their goals. A classical AI-oriented formalization
of the notion of environment is provided by [148] where the notion of task envi-
ronment is introduced. Task environment is described as a triple Env = 〈E,e0,τ〉
where E is a set of environment states, e0 ∈ E is an initial state, and τ is a state
transformer function E × A→ E, computing the new state of the environment
given an agent action a ∈ A. This simple model is effective for studying agent
strategies in doing tasks inside the environment, but too abstract and simple for
the purpose of environment programming, since it does not directly capture as-
pects such as the concurrent work of multiple agents in the same environment,
environment observability, environment processes.

These aspects are taken into the account in the seminal work by Ferber and
Müller, who devised the notion of influences and reactions to model agent envi-
ronment interactions [51]. In Ferber and Müller model, the overall system dy-
namics in decomposed in two parts, the dynamics of the environment and the
dynamics of the agents situated in the environment. MAS evolution is described
as the transformation of a dynamical state, defined as a tuple consisting of the
state of the environment and the set of influences simultaneously produced in the
environment. Influences come from inside the agents and are attempts to modify
the course of events in the world. Reactions, which result in state changes, are
produced by the environment by combining influences of all agents, given the lo-

3.3 ENVIRONMENT AS FIRST CLASS ABSTRACTION IN MAS 45

ENVIRONMENT

Sphere of
visibility and
influence

MAS
organizational
relationship

interactions
agent

ENVIRONMENT

Sphere of
visibility and
influence

WORK ENVIRONMENT

MAS

Figure 3.1: (left) A canonical view of MAS, adapted from [70]. (right) A MAS
enriched with a work environment layer

.

cal state of the environment and the laws of the world. A Cycle function is used
to formally define this evolution. A canonical representation of a Multi-Agent
Systems (MAS) including the environment is shown in Figure 3.1 (left). The fig-
ure, as taken from [70], and it shows the environment as the context shared by
agents in a MAS. Each agent has a sphere of influence on the environment, which
is the portion of the environment that the agent is able to control—sphere of influ-
ences of different agents can overlap, meaning that parts of the environment can
be jointly controlled by more than one single agent.

Besides this perspective, recent works in the context of AOSE introduced the
idea of environment as a first-class abstraction for MAS engineering [144], a
suitable place where to encapsulate functionalities and services to support agents
activities (the interested reader can consult [145, 146] for a survey of the research
works developed in this area). In this latter view, the environment is no more just
the target of agent actions and the container and generator of agent percepts, but
it represents an integral part of the system, that can be suitably shaped – or bet-
ter, designed – so as to improve the overall effectiveness of the system. Thereby,
the environment can be an effective place where to encapsulate functionalities
and infrastructures that concern the management of agent interactions and their
coordination. Environment as a first class abstraction is the locus to encapsulate
external functionalities and services which are assumed to be exploited by agents
possibly enabling (complex) interaction patterns. Those functionalities and ser-
vices can be deployed to support agent individual and collective activities. This
turns out to be a central aspect for defining and enacting into the environment

46 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

infrastructures improving interactions coordination, security, and, above all, or-
ganizations. Taking a design perspective, in [142] Weyns and Holvoet detail a
complete formalization of a general abstract architecture for situated MAS. Their
work sketches agent environment interactions in terms of influences and reac-
tions – as introduced in [51] – and emphasizes the notion of locality, namely each
computational agent is situated in his local context where it is able to perceive
and in which it can act. The model includes the notion of regional synchroniza-
tion, which makes it possible to avoid the need of a global synchronizer as used
in Ferber and Müller (that results in a synchronous evolution of the MAS), and
the support for active perception [147], which enables an agent to direct its per-
ception at the most relevant aspects of the environment according to its current
task, thus promoting situation awareness. The perspective adopted is intentionally
addressed to the architectural aspects of the systems, leaving the programming
issues on the background. The main elements of the abstract model concern the
functional modules that are needed to provide the functionalities that are meant to
be encapsulated in the environment: interaction, communication, synchronization
and data-processing, observation and data-processing, translation [143].

It may be argued that both the approaches followed by Ferber / Müller and
Weyns / Holvoet in some sense bias the viewpoint of the developer: indeed, the
environment is seen as a single entity, whose design/programming means devising
a unique functional model for the overall set of actions and percepts. Accordingly
the definition of environment functioning is set by specializing its functional mod-
ules, according to the specific problem to solve (i.e., the system to build). The
“monolithic” perspective is evident in the former formalization [51] introducing
the global functions like React and Exec, and also in the latter model [142], which
is based on global functions like React, Apply, Compose, Collect.

This perspective is reflected in existing agent programming languages and
platforms, which typically provide a (weak) support to environments through con-
structs and API to define agent actions and perceptions and to enable the interac-
tion with external systems. Frequently, such an API includes also a support for
defining the structure and behavior for the environment – besides the interface
allowing agent to exploit resources at runtime – so as to set up design-time simu-
lations of the overall system prior to deployment. In this canonical view, which is
rooted mainly in the Artificial Intelligence [125], the environment is conceived as
a black-box, defining the set of allowed agent actions and the perceptions that can
be generated.

As opposed to the centralized view, other approaches take a different perspec-
tive, based on the notion of work environments as dynamically composable set

3.4 A STRUCTURED APPROACH TO ENVIRONMENTS 47

of computationally independent entities aimed at structuring the environment in
a decentralised and distributed fashion (Figure 3.1, right). This view of decen-
tralised work environment in particular is the one proposed by the Agents and
Artifacts (A&A) meta model, that is adopted as the reference model for environ-
ment programming in the context of this thesis. Before providing the details on
the envisaged approach, the next sections analyze and emphasize a set of relevant
aspects to be taken into account once programming environments, thus setting the
stage for a structured approach to environment programming.

3.4 A Structured approach to Environments

As argued in the previous sections, in order to conceive work environments as in-
teraction spaces which can be instrumented with opportune infrastructures aimed
at promoting agent organizations, a structured approach to environment program-
ming is required. As for structured approach, a series of important aspects have to
be addressed. In this view, the next sections identify and discuss the key aspects
that – we argue – characterize a structured approach to environment programming.

3.4.1 Action Model

Environment should support an action model, concerning aspects related to the
mechanisms enabling agents to affect or change the state of the environment and
accordingly receive feedback percepts. Action model accounts how agents reper-
toire of actions can be defined/programmed in order to enable fruitful Agent-
Environment interactions (A-E relationship in Figure 1.1). Besides, the action
model is also deemed to define which action execution model is adopted, thereby
if either actions are modeled as events, i.e. as a single transition changing atomi-
cally the state of the environment, or they are processes, involving a start (trigger-
ing) event and an end (completion) event. Current agent programming languages
typically model external actions as events, assumed to atomically read or change
the state of the environment—as it is for instance in Jason and 2APL [14, 31].
Other approaches are process-oriented, as in the case of the influences and re-
actions model introduced by Ferber and Müller in [51]—adopted in the MadKit
agent platform [57].

Actually, the semantics adopted for action execution has a strong impact also
on the synchronization functionalities that can be provided by the environment:

48 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

for instance, in order to define actions that allow for synchronizing agents with
external entities, a process-oriented semantics has to be necessarily adopted.

3.4.2 Perception Model

From an agent perspective, environments should be viewed either as the mean
enabling the execution of external actions, either as the source of multiple per-
ceptions, which filtering allows to control their ongoing activities. In this view,
environments have to support agent perceptive activities, thus define mechanisms
general enough for enabling perception to a wide range of signals to agents. This
aspects relates on how environment should be perceived by agents, including the
unambiguous definition of the stimuli generated by the environment and the cor-
responding agent percepts computed as result of the perception process.

Essentially, two basic semantics can be adopted in defining the perception
model, state-driven and event-driven. In the former, stimuli are information about
the actual state of the environment, and are generated when the agent is engag-
ing the perception stage of its execution cycle2. In the latter, stimuli are infor-
mation about changes occurring inside the environment, and are generated when
changes occur, independently from agents’ execution state. Typically, the percep-
tion process is executed internally by agents, so to compute the set of percepts
given the set of stimuli coming from the environment. This places the problem
to support, at an environment level, a wide spectrum of agent models, which can
be shaped on different mechanisms supporting external stimuli. For instance, the
model adopted to define agent abstract architecture [148], where a see function is
introduced to model the perception process mapping an environment state E into a
set of perception I, is state-driven. Referring to concrete agent programming lan-
guages and their formal operational semantics, 2APL [31] and Jadex [112] adopt
an event-driven semantic, while Jason a state-driven one [14]. Actually the cho-
sen semantics have a strong impact on the dynamics of MAS program execution.
For instance, the possibility for agents to control external actions during the whole
execution is almost neglected in current agent programming models. Otherwise,
in a state-driven approach, if the environment changes multiple times between two
subsequent occurrences of the perception stage of an agent execution cycle, such
changes are not perceived by the agent.

2Here we refer to agents processes as conceived in terms of execution cycles. In particular we
refer to the abstract agent architecture as defined in [148] and the related agent processes.

3.4 A STRUCTURED APPROACH TO ENVIRONMENTS 49

3.4.3 Computational Model

Environment programming accounts for conceiving a computational model defin-
ing a set of environment states and functionalities. In general terms, environment
may include two kinds of computations, namely those processes that are directly
elicited by agent actions, and those that represent inner (automatic) processes in-
side the environment.

A main issue in defining environments computationally is in preserving as
much as possible the abstraction level adopted by agents. This accounts that the
concepts used to define environments, as well as the constructs used to program
their structures and dynamics, should be consistent with agent concepts and their
semantics. Working at balanced level of abstraction means, for instance, conceiv-
ing interactions based on primitives which are native for agents models, following
similar approach to the ones already adopted as in the case of message based
communication and ACLs. On the other hands, working a not balanced level of
abstraction, means enabling agents to interact at a mechanism level, for instance
constraining the use of object oriented components, where the interaction is based
on method invocations and the agentive notions of action and perception simply
make no sense.

A second aspect concerns the concurrency model adopted, that is how many
threads or control flows are exploited to execute environment computational pro-
cesses, and, in the case of multiple threads, what is the mapping with respect to
the environment computations and how concurrency problems, such as race con-
ditions and interferences, can be avoided. Clearly, this aspect strongly impacts on
the performance of the whole system.

A main issue in environment computational model is related to the compo-
sition approach to the overall computational state/behaviour of the environment.
Two main view have been envisaged so far dealing with environment composition,
which we refer as centralized and decentralised approaches.

Centralized Approaches

The centralized approach, in which the computational structure and behavior of
the environment is represented by a single, monolithic, computational object, with
a single container of environmental states. The a centralized object approach en-
visage the environment as the entry point for defining the effect of actions and
the set of stimuli generated. As seen in the previous section, this perspective is
adopted by Weyns and Holvoet in [143], where a reference model for an abstract

50 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

– even centralized – environment architecture is proposed. It consists of a set of
modules that represent core functionalities of a centralized environment compo-
nent, and it provides the specification of the functional relationships between these
modules. The decomposition is primarily driven by the way agents interact with
the environment. An agent can sense the environment to obtain a percept, an agent
can perform an action in the environment (i.e., attempting to modify the state of
affairs in the environment), and it can exchange messages with other agents.

Agent programming languages as 2APL and Jason natively adopt the same
centralized approach, by providing a API to program an environment as an exter-
nal component typically realized according to the mechanism of a Java class.

Decentralized Approaches

A different approach accounts for explicitly defining first-class structures (and
finally abstractions) to decompose and decentralize the functionalities of the en-
vironment. A main example in this case is provided in the context of Distributed
Artificial Intelligence (DAI) by the Lifeworld model introduced by Agre and Hor-
swill in [1]. In contrast to traditional AI models of environment – such as task
environments – Agre and Horswill recognize the importance of properly model-
ing agent-environment interactions, including also the conventions and invariants
maintained in the environment by agents throughout their activity. In this view,
a lifeworld is a description of an environment in terms of the customary ways of
structuring the activities that take place within it – the conventional uses of tools
and materials, the “loop invariants” that are maintained by conventional activi-
ties, and so on. As a main aspect of Lifeworld computational model, the notion
of artifacts is introduced, as referred to the (non agentive) tools that evolved in-
side the system according to a “fitness” related to the support they can provide
to agents. Lifeworld artifacts are thus arranged in the environment in ways that
simplify works and reduce the cognitive burden on individuals for fulfilling their
tasks.

A similar notion of artifacts is devised by the A&A model [99], which proposes
a decentralized model of MAS environments based on the notion of artifacts and
workspaces. The A&A approach will be described in next section and is at the
basis of the approach proposed in this thesis. Other examples of decentralised
environment include a generic notion of object as abstraction to conceive environ-
mental entities. Once the notion of environmental object is of concern, the action
model may include the actions to create, dispose and replace environment ob-
jects at runtime. Environment objects are adopted, among others, in GOLEM [17]

3.4 A STRUCTURED APPROACH TO ENVIRONMENTS 51

and MadKit [57]. MadKit has been one of the first general-purpose Java-based
frameworks for developing agent systems, implementing either AGR organiza-
tions and the influence and reaction model devised by Ferber and Müller in [51].
Although not explicitly introducing a computational and programming model for
the environment, MadKit allows for programming environmental objects with an
associated computational behavior. Actually this programming support has been
exploited in particular for defining the behavior of the environment in multi agent
social simulations – including organizational patterns – implemented on top of
MadKit [132]. Recently proposed as logic-based framework for programming
MAS, GOLEM allows for representing an agent environment declaratively, as a
composite structure that evolves over time. As in AGR and A&A, GOLEM en-
visages two main main classes of entities dwelling environments, namely agents
and objects, which can be localized in containers. Besides being described in
a logic-based framework, the features of the objects and containers strongly re-
semble those of artifacts and workspaces as placed in A&A. Interactions between
these entities inside a container are specified in term of events whose occurrence is
governed by a set of physical laws specifying the possible evolutions of the agent
environment, including how these evolutions are perceived by agents and affect
objects and other agents in the environment.

3.4.4 Internal Dynamics
Unlike agents, entities dwelling environments are passive, thus neither proactive
nor autonomous. Their evolution is entirely determined by the environment speci-
fication and by the events that occur in it. Besides, environment entities can exhibit
an automatic functioning for instance to specify activities in a timely fashion as
clocks, temporal mechanisms, guards, etc. In this view an environment entity can
have internal processes, which can be expressed from time to time by a dynamic
state described by an environment program and a set of evolution laws like the
transformer function in [148].

It has to be considered that the various dynamics taking place inside the en-
vironment can interfere each other, thus exhibiting functional links between the
involved entities. Moreover, an environment dynamics can be governed by more
general laws determining the global rules of a given environment. For instance, in
the context of a pheromone infrastructure, such global laws can determine evapo-
ration, diffusion and aggregation phenomena [102], or in a simulation of a physics
environment such global laws can specify what happens once two objects collide
[58].

52 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

3.4.5 Data Model (and Openness)
An environment programming model should be as much orthogonal as possible
with respect to the models, architectures, languages adopted for agent program-
ming, so as to naturally support system openness. Emphasizing orthogonality
means separation of concerns: On the one side, agents are the basic abstraction
to design and program the autonomous parts of the software system, i.e. those
parts that are designed to fulfill some goal/task3 – either individual or collective
– encapsulating the logic and the control of their action. On the other side, the
environment can be used to design and program those parts of the system which
are functional to agents’ work, namely those parts that agents can dynamically
access and use to exploit some kind of functionality, and possibly adapt to better
suite to their actual needs.

An important aspect related to orthogonality concerns the types of the data
exchanged between agents and environment structures, which is used in partic-
ular to encode action parameters, action feedbacks, the informational content of
stimuli (percepts), and their representation. To deal with environment data model,
a mechanism for data-binding must be specified, defining how the informational
items defined in the environment can be translated into the specific data model
adopted by the agent (and vice-versa).

A further issue that must be faced in the case of open system is the definition
of data models that allows for describing proper ontologies so as to explicitly
define the semantics of the data involved in agent-environment interaction. To this
purpose existing work in the context of Semantic Web and the models/languages
adopted for describing ontologies (such as OWL) can be suitably exploited.

3.4.6 Distribution Model (and Localities)
The distribution model concerns how to program environments that need to be dis-
tributed (or can opportunistically be distributed) among multiple network nodes.

To this end, a distributed environment model may introduce an explicit notion
of workplace (i.e., locality) to define a non-distributed portion of the computa-
tional environment. Accordingly, it has to be defined if and how different work-
places – and related computational structures – are connected and may eventually
interact each other. On the agent side, the adopted distribution model affects the
repertoire of available actions, possibly including also actions to enter into a place
or move from place to place.

3Here the concept of task and goal are used as synonyms.

3.5 AGENTS & ARTIFACTS 53

Actually, the environment distribution model affects also the time model which
can adopted inside the MAS. It can be showed that for distributed MAS it is not
feasible – both from a theoretical and practical point of view – to have a sin-
gle notion of time inside the system. In other terms, is it not feasible to mark
with time-stamps multiple events across distributed workplaces and then define a
global notion of order among such events4. This is a main issue, since many for-
malizations of agent systems in different contexts – such as e-Institutions, norma-
tive systems, agent organizations – typically are based on a global notion of time.
As explained in the following of this work, the approach followed to deal with a
coherent notion of time is in subdividing an environment into not distributed sub-
environments defining a spatial-temporal localities, where it is possible to recover
an ordered notion of global time at the level of the single place.

3.5 Agents & Artifacts
The approach to MAS design and programming followed in this thesis is grounded
on the A&A (Agents and Artifacts) meta-model, which adopts artifacts and work-
spaces – along with agents – as the basic building blocks to program MAS and,
more generally, to engineer complex and distributed software systems [99]. Be-
fore providing in Chapter 4 a detailed description of CArtAgO as the computa-
tional platform allowing to build MAS in A&A terms, this section briefly resumes
some of the underpinnings of A&A as a (meta) modeling approach. After having
briefly resumed the theoretical foundations in Subsection 3.5.1, Subsection 3.5.2
introduces the concepts at the basis of A&A.

3.5.1 Foundations
The role of artifacts in the context of human activities – social activities in par-
ticular – has been deeply investigated and crossed the boundaries of several disci-
plines as Activity Theory (AT) [80] and Distributed Cognition [77], already hav-
ing a counterpart in heterogenous fields of computer science, like CSCW and HCI
[133, 85].

According to AT, any activity carried on by one or more collaborating indi-
viduals cannot be conceived neither understood without considering the tools (or
artifacts) that enable interactions and mediate the actions between the involved

4This may be due to network delay or concurrent processes which are concurrently in execution
on different nodes.

54 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

Norms Groups Division
of Labor

Target State Outcome
Transformation

Process

ARTIFACT(S)

AGENT

Figure 3.2: A schematic representation of human activities in relation with the
role played by artifacts, norms and communities, as placed by Activity Theory.

entities (Figure 3.2). Artifacts mediate the interaction between individuals and
their environment (including the other individuals); they reify the portion of the
environment that can be designed and controlled to enable and support either in-
dividual and collective activities. Moreover, as an observable part of the envi-
ronment, artifacts can be monitored and controlled to assess the overall system
performance. Using artifacts modifies their states, thus keeping track of artifacts
usages accounts for tracing the system history. In other words, mediating artifacts
become first-class entities for both the analysis and synthesis of individual as well
as cooperative working activities inside a complex system. Such a vision is also
promoted by Distributed Cognition [77], a branch of cognitive science claiming
that human cognition and knowledge representation, rather than being confined
within the boundaries of an individual, are distributed across individuals, tools
and artifacts in the environment.

The same degree of complexity envisaged within social systems accounted
by AT and Distributed Cognition can be found also in MAS. This is why we
can consider those inter-disciplinary studies as fundamental ones for the analysis
and synthesis of social organizational activities inside agent systems, in particular
once an explicit use of artifacts is assumed to mediate such activities [115].

3.5.2 Meta-Model for engineering MAS
By drawing inspiration from Activity Theory [85], the notion of artifact in MAS
has been introduced the first time in [100, 115] in the context of MAS coordina-

3.5 AGENTS & ARTIFACTS 55

tion, generalizing the notion of coordination media in particular to define the basic
properties enabling and managing agent interactions. The concept has been then
generalized besides the coordination domain, leading to the definition of the A&A
(Agents and Artifacts) meta-model [99, 121].

Using the terminology introduced by Daniel Dennett [35], A&A takes a de-
sign stance in modeling MAS environments and is actually a conceptual model—
a so-called meta-model in software engineering terms. On the basis of the A&A
model, the CArtAgO platform [122, 119] has been proposed as the development
framework supporting programming and execution of environments built upon the
notion of artifacts5. A&A perspective emphasizes the role of work environments.
Built in terms of artifacts and localized in terms of workspaces, a work environ-
ment can be perceived and used by agents as first-class entity of their world, and
is explicitly designed and programmed by MAS designers so as to ease agent ac-
tivities – in particular those involving interaction, coordination, and cooperation.
Hence, work environments can be represented as an extra computational layer in
the MAS, between agents and the external environment, mediating agent activities
but also agent interaction with the external environment (see Figure 3.1, right)6.

In the A&A meta-model, agents are the basic abstractions to represent active,
task-/goal-oriented entities, designed to pro-actively carry on one or more activ-
ities toward the achievement of some kind of objective. In order to fulfill their
goals, different levels of capabilities and reasoning models can be adopted by
agents.

On the other hand, artifacts are the basic constitutive structures of environ-
ments. Artifacts are modeled as abstractions to represent passive, function-oriented
entities, and are assumed by the MAS designer to be exploited by agents. Taking
the human society as a metaphor, agents play the role of humans, while artifacts
coincide with the objects and tools (called artifacts in the human society, too)
used by humans as either the means to support their work and achieve their goals,
or the target of their activities. Artifacts can be used by agents to attain particu-
lar outcomes, either individually or cooperatively, during their working activities.
Besides, artifacts can be exploited by agents to externalize part of their activi-
ties. Accordingly, artifacts can be observed by agents, i.e., with the aim to obtain

5A detailed description of CArtAgO and its computational model is given in Chapter 4.
6The notion of work environment has been recently refined in the one of endogenous environ-

ment to emphasize the pivotal role assumed for supporting agent activities in terms of artifacts and
workspaces [120]. The notion of endogenous environment is opposed to the one of exogenous
environment, which is assumed to collect those external entities which are not directly accessible
by agents.

56 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

some relevant data and, even more, artifacts can be created and modified by agents
according to the needs.

As a third abstraction introduced by A&A, workspaces represent a notion of
not distributed locality inside the work environment, grouping together coherent
set of agents and artifacts inside a specific application domain.

As a principle of modularization, A&A introduces artifacts as basic build-
ing blocks to shape decentralised work environments, representing resources and
tools that agents can exploit inside workspaces to support their individual and so-
cial activities [99, 121]. As detailed in the next chapters, the artifact programming
model defines the basic set of features and mechanisms that can be used on the
one side by MAS programmers to shape the environment of the MAS, and on the
other side by agents, to dynamically construct, use and adapt their environment.
So the environment is not conceived as a single block, but as a dynamic composi-
tion of artifacts organized in workspaces localities: the resulting system assumes
the appearance of a decentralized ecosystem, which evolution is characterized by
societies of agents at work with multiple artifacts.

Properties

Unlike agents, artifacts are not meant to be autonomous or exhibit a pro-active
behavior, neither to have social capabilities. Among the main properties that are
useful according to artifact purpose and nature [97], one could list:

Inspectability and controllability are related to the agent capability of observing
and controlling artifact structure, state and functioning at runtime, and of
supporting their on-line management, in terms of diagnosing, debugging,
testing;

Malleability (or forgeability) is the artifact property to be changed / adapted at
runtime (on-the-fly) according to new requirements or unpredictable events
occurring in the environment;

Linkability is the capability (owned by agents) of functionally link together dis-
tinct artifacts at runtime as a form of dynamic composition, as a means to
scale up with complexity of the function to provide, and also to support
dynamic reuse.

Situatedness is, the property of being immersed in the MAS work environment,
and to be reactive to environment events and changes.

3.5 AGENTS & ARTIFACTS 57

Most of these features are not agent features: typically, agents are not inspectable,
do not provide means for malleability, do not provide operations for their change,
and do not compose with each other through operational links. On the other hand,
agents are typically told to be situated: however, how this is realized, in particu-
larly how pro-activity and re-activity features could be reconciled, is not an easy
matter. It is worth to remark that, once artifacts are situated, agent situatedness
could be recasted in terms of their interaction with artifacts.

The global picture of A&A is given by agents distributed across the network
that inter-operate and coordinate both by communicating via some kind of ACL
(agent communication language, i.e. FIPA ACL [52]) and by sharing and (co-
)using infrastructures based on decentralised artifacts. Generally speaking, the
A&A meta-model recasts the space of interaction within MAS, such that the en-
tities of a system are envisaged to interact each other in three different ways: (i)
agents communicate with agents through ACL; (ii) agents use and/or observe arti-
facts; (iii) artifacts link with artifacts. Adopting environment as an explicit design
and programming dimensions makes it possible to rethink the strategies adopted to
solve problems and build agent systems, both from the viewpoint of the individual
agent and of societies of agents. A remarkable example concerns agent coordi-
nation: besides using strategies based solely on message passing and ACL-based
communication protocols, in some cases it can be useful and more effective to
introduce suitably programmed coordination artifacts [100], such as blackboards,
shared maps or synchronizers – straightforwardly implementing coordination so-
lutions based on mediated interaction. In this context, a main research investiga-
tion concerns the integration of CArtAgO with rational (intelligent) agents archi-
tectures and languages – the BDI model [114] being a main example – and the
cognitive use of artifacts, towards scenarios where agents autonomously decide at
runtime what to do based on which available artifacts to use/observe.

Coordination Media

The notion of mediated interaction and the introduction of proper coordination
media as first-class abstractions to design the agent interaction space is a corner-
stone of the research on coordination models and languages [28, 55]. The tuple
space model and the related LINDA coordination language [54] are main exam-
ples, exploited today by industrial technologies for the development of distributed
systems. These research works strongly influenced A&A and CArtAgO, besides
Activity Theory. Thereby, the artifact abstraction was inspired by programmable
coordination media, like tuple centers [93] adopted in the TuCSoN coordination

58 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

infrastructure [101]. Tuple centers have been used as concrete model to imple-
ment the concept of coordination artifact [98], which has been generalized then
into the notion of artifact by CArtAgO, with the introduction of specific compu-
tational and programming models uncoupled from tuple centers. In human soci-
eties, coordination artifacts are as common as traffic lights, street signs, post-its on
white-boards; in computational systems, things like blackboards, event-services,
shared message boxes, could be easily seen as coordination artifacts.

In the context of MAS and A&A, coordination artifacts are used to both en-
able and govern forms of mediated interaction (i.e., where agents do not com-
municate directly but through a medium). Mediated interactions is essential to
support forms of communication that are uncoupled along the time and space di-
mensions. Examples range from coordination abstractions such as tuple centers
[94], to pheromone infrastructures [102] in the context of stigmergy coordina-
tion, to the governor entities in electronic-institution approaches [48, 47], to cite
some. Compared to the basic notion of (programmable) coordination medium,
the artifact abstraction can be considered a generalization beyond the coordina-
tion purposes, introducing to this end new key concepts such as the usage inter-
face, a notion of observable state and inspectable meta descriptors as manuals;
on the other hand, an artifact can be considered a specialization of the concept
of coordination medium in the context of MAS and agent-oriented programming,
with specific features that are deemed to be exploited by a strong notion of agents
as defined in existing agent programming languages and architectures (i.e., not
simply by processes, or actors, of a distributed system).

A similar notion pushing agent oriented coordination has been recently pro-
posed by Campos et al., suggesting a layered infrastructure in order to promote
coordination at different conceptual levels [19]. This approach introduces the
notion of Coordination Support, according to which organizational entities can
be placed aside other coordination services, each abstracting a particular set of
functionalities aimed at easing agent development and management. In this view,
coordination layers are conceived as an integrated infrastructure including either
mechanisms enabling interactions, either functionalities aimed at promoting and
assisting cooperation and organizational patterns among agents. In the former lay-
ers, the infrastructures are assumed to provide transport and connectivity function-
alities, as well as infrastructures enabling communication between agents. The
latter layers are assumed to provide organizational services modeled on different
conceptual dimensions and assistance services, promoting improved of interac-
tions in terms of agent adaptiveness and learning.

3.6 FINAL REMARKS ON SITUATED ORGANIZATIONS 59

Decentralised Approach to Environments

Artifact-based environments introduce a decentralised modularization with re-
spect to the one promoted by the reference architecture introduced by Weyns and
Holvoet. In their reference architecture [142], modules represent basic blocks in-
stalled inside the software architecture of the environment. In this view, modules
encapsulate some functions that developers can reuse and specialize when devel-
oping concrete environments for specific applications. But at an application level,
and from the agent view point, the environment is still a monolithic entity, provid-
ing actions to act upon it and producing stimuli. In artifact-based environments,
artifacts are modules both from the MAS developer viewpoint and from the agent
viewpoint, while each single artifact is assumed to manage most of aspects dealt
with by all modules of the reference model.

In A&A artifacts encapsulate some kind of function, however not from the
MAS engineer point of view as in Weyns and Holvoet work, but from the agent
point of view. For this reason, the agent-environment interaction model in artifact-
based environment can be refined beyond actions and percepts as in the reference
model. As it will be clarified in the next chapter, this can be done by introducing a
basic set of actions by which agents can manage artifacts as an external resource.
The actions allow agents to dynamically use, observe, instantiate and dispose the
modules (the artifacts) In the model by Weyns and Holvoet and in related specific
models implementing it, typically modules are static, even if customized accord-
ing to the specific application needs.

3.6 Final Remarks on Situated Organizations

This chapter concludes the survey on MAS approaches to organizations by empha-
sizing the role that computational environments can play to improve the function-
alities of an organizational entity. Tackling the environment dimensions explicitly
promotes situated kinds of organization, at the same time augmenting the capa-
bilities for agents to interact with the organization, and the alternative strategies
that an organization has to monitor and control the activities performed by agents
inside the system. Whether the aim is to provide a seamless integration between
the programming models adopted by possibly heterogenous agents and organiza-
tions specified along multiple dimensions, the environments play a pivotal role.
To this aim, a structured approach to environments has been envisaged as a main
challenge, and it has to be taken into account in order to face with the multifaceted

60 ORGANIZATIONS SITUATED IN MAS ENVIRONMENTS

structures and dynamics that a complex systems concern.
As recent contributes to MAS research emphasized, considering decentralised

environments as a coherent entity concurs in establishing a series of theoretical
advantages, which can be found either by the developer either by the agent finally
exploiting the system. In this view, the A&A modeling approach has been en-
visaged as an applicable approach to design environments in MAS, based on the
notions of multiple artifacts and distributed workspaces.

The next two parts of this thesis focus on specific aspects of environments and
organizations respectively, and provide a concrete programming approach aimed
at conceiving dedicated infrastructures to be instrumented inside the system, both
on the environmental and the organizational perspectives. Together with Moise,
A&A is the approach that will be used as reference model, while the route to
a unifying approach reconciling organizations, agents and environment, will be
faced from a programming perspective.

Part II

Developing Environment
Infrastructures based on Artifacts

Chapter 4

Environment Programming in
CArtAgO

This part of the thesis describes a computational model and a related technology
for MAS environment programming based on the A&A design approach. Both
the design and the programming models envisage agents as the basic abstraction
which has in charge the autonomous part of the systems, artifacts as the abstrac-
tion which has in charge the functional part of the system, and workspaces as the
abstraction providing a concrete locus for defining application domain, grouping
together coherent set of agents and artifacts.

In this chapter, CArtAgO is described as a concrete framework providing
programming constructs, and run time support, for building distributed work envi-
ronments based on agents, artifacts and workspaces. Interaction involving agents
and artifacts are analyzed taking different perspectives and through the discussion
of concrete examples. Basic interaction are enabled since the definition of a basic
set of actions extending agents’ repertoire with the capabilities needed to operate
within CArtAgO. According to the reasoning capabilities owned by agents, the
interactions may be conceived also in a more complex fashion, thereby enabling
the so called “cognitive” level.

4.1 Taking the Environment Programming Perspec-
tive

The approach followed in this work emphasize the notion of environment as a
first-class abstraction in agents and multi-agent systems. Environment is viewed

64 ENVIRONMENT PROGRAMMING IN CArtAgO

as the computational or physical places where agents are situated, providing the
basic ground for defining the notions of agent perception and action, also reifying
the global interaction space of any application domain.

As resumed in Section 3.4, recent approaches to MAS engineering pointed
out the notion of environment as an effective place where it is possible to combine
effective infrastructures concerning either services and functionalities exploitable
by agents and aimed at easing their tasks, either those components aimed at sup-
porting the management of agent interactions and at promoting agent coordina-
tion. This chapter shift the perspective from MAS design to MAS programming,
emphasizing the notion of environment programming. The followed approach
deems environment as a first-class abstraction not only at design time, but also in
programming multi-agent systems. In this view, the environment becomes a piv-
otal element of the whole system either either at a design and at an implementation
phase of development. The “Agents and Artifacts” (A&A) conceptual model puts
forward the notion of work environment, seen as a computational environment that
is part of the MAS, and which is designed so as to be a proper and effective place
for agents to live and work [99, 121]. A&A is actually a so-called meta-model –
representing design orientations and methodologies – to be mainly exploited for
MAS design. CArtAgO is its accompanying technology, providing both a con-
crete computational model and programming platforms aimed to fully exploit the
benefits of the A&A approach up to MAS programming and development. To this
end, in this chapter we describe CArtAgO, including the most recent features, as a
platform/infrastructure that introduces: (i) a concrete computational model to de-
fine artifact structure, computational behavior, and agent-artifact interaction, (ii) a
programming model to concretely code artifact-based environments and to allow
agents to work in them, and (iii) a runtime environment to support artifact-based
environment execution.

Accordingly, a series of research challenges are envisaged: (i) the definition of
general-purpose computational and programming models and related technologies
(languages, frameworks) to program the environments and their entities, and (ii)
their integration with existing agent programming models and frameworks. The
approach allows for specifying an environment in terms of a dynamic set of first-
class computational entities called artifacts, collected in localities called work-
spaces. Artifacts represent resources and tools that agents can dynamically instan-
tiate, share and use to support their individual and collective activities [99, 121].
Artifacts are first-class abstractions for both designers and programmers of MAS,
which define the types of artifacts that can be instantiated in a specific workspace,
defining their structure and computational behavior. On the other hand, artifacts

4.2 ARTIFACT-BASED ENVIRONMENTS 65

are first-class entities of agents world, which agents may perceive, use, compose,
and manipulate on the need to serve their purposes.

The chapter is mainly based on recent works, as they are cited across the var-
ious sections (among others [122, 121, 117, 109, 119, 118]). Those contributes
have been revised and extended so as to include the most recent improvements, in
the environment programming perspectives and challenges.

In the first part of this chapter, an abstract overview of the basic concepts
underlying the artifact abstraction and the basic actions required for agents to in-
teract with artifacts is provided in Section 4.2, along with the a description of
the capabilities needed by agents to work in artifact based workspaces. Then, the
CArtAgO technology that makes available a concrete programming framework
to build artifact based work environment is introduced in Section 4.3. The sec-
ond part of this chapter shows examples of programming MAS in CArtAgO, in
particular using Jason ([14]) as the reference model and language for specifying
agents (Section 4.4). The notion of cognitive interaction is introduced in the last
part of the chapter, by describing advanced aspects in programming agent artifact
interactions (Section 4.5). For instance, agents may decide to exploit artifacts in
order to improve their epistemic states, or to use artifact to externalize part of their
goal oriented activities. Besides, the functionalities provided by artifacts can be
internalized, this enabling agents to exploit artifacts which are unknown at design
time. Finally, Section 4.6 provide final remarks, situating the contribute of this
chapter in the context of the overall work.

4.2 Artifact-Based Environments

Placed in A&A terms, a MAS environment is conceived as a dynamic set of
computational entities called artifacts, representing special purpose resources and
tools that agents can share and exploit to serve both their individual and collective
purposes. The overall set of artifacts can be organized in one or multiple work-
spaces, possibly distributed in different network nodes. A workspace represents a
work place inside the MAS, namely the locus of one or multiple activities involv-
ing a set of agents and artifacts which may be addressed at reifying an application
domain. Figure 4.1 resumes an overview of the main concepts characterizing
artifact-based environments.

66 ENVIRONMENT PROGRAMMING IN CArtAgO

Artifact Usage
Interface

Usage Interface
Control

name
params

Operation

trigger
control

Observable
Event

generate

Agent11 use

perceive

Observable
Property

name
value

perceive
observe

update

Manual
functions
operating
instructions

1 consult

Workspace
join
quit

Work
Environment

Figure 4.1: Entities involved in the A&A meta-model of MAS, here expressed in
UML-like notation.

4.2.1 Artifact Computational Model
From the MAS designer and programmer viewpoint, the notion of artifact is a
first-class abstraction, the basic module to structure and organize the environment,
providing a general-purpose programming and computational model to shape the
kind of functionalities available to agents. Actually, MAS programmers define
types of artifacts (analogously to templates, or classes in OOP) which define the
program and behavior of the concrete instances of those types. Each workspace is
meant to have a (dynamic) set of artifact types that can be used to create artifact
entities as instances. From the agent viewpoint, artifacts are the first-class entities
structuring, from a functional point of view, the computational world where they
are situated and that they can create, share, use, perceive at runtime.

To make its functionalities available and exploitable by agents, an artifact pro-
vides a set of operations and a set of observable properties (see Figure 4.2). Oper-
ations represent computational processes – possibly long-term – executed inside
artifacts, that can be triggered by agents or other artifacts. The term usage inter-
face is used to indicate the set of operations actually provided by an artifact at a
specific time (the usage interface can change dynamically). Observable properties
represent state variables whose value can be perceived by agents1; the value of

1Actually by those agents that are observing the artifact, as will be clarified later on.

4.2 ARTIFACT-BASED ENVIRONMENTS 67

Operation_X(Params)

...

Value

...

SIGNALS

USAGE INTERFACE
Ui

OBSERVABLE
PROPERTIES

Link_Op_H(Params)

...LINK INTERFACE
Li

OPERATIONS

LINK
OPERATIONS

ObsPropName

...

usageprot fun_x
{..}
usageprot fun_y
{..} MANUAL

Figure 4.2: The abstract representation of an artifact in A&A model. In evidence
the usage interface, the observable properties and the link interface.

an observable property can change dynamically, as result of operations execution.
The execution of an operation can generate also signals, to be perceived by agents
as well: differently from observable properties, signals are useful to represent
non-persistent observable events occurred inside the artifact, carrying some kind
of information. Besides the observable state, artifacts can have also an hidden
state, which can be necessary to implement artifact functionalities.

From an agent viewpoint, artifact operations represent actions provided by the
environment: so in artifact-based environments the repertoire of external actions
available to an agent – besides those related to direct communication – is defined
by the overall set of artifacts that (dynamically) populate the environment. Ob-
servable properties and events constitute instead agent percepts. To scale up with
the environment complexity, in artifact-based environments an agent perceives the
observable properties and events of only those artifacts that the agent intentionally
(and dynamically) decided to observe.

As a principle of composition, artifacts can be linked together so as to enable
one artifact to trigger the execution of operations over another linked artifact. To
this purpose, an artifact can expose a link interface which, analogously to the us-
age interface for agents, includes the set of operations that can be triggered by

68 ENVIRONMENT PROGRAMMING IN CArtAgO

other artifacts—once that the artifacts have been linked together by agents, as
clarified in next sub-sections. Linkability makes it possible to realize distributed
environments, linking together artifacts belonging to different workspaces, possi-
bly residing on different network nodes.

Finally, an artifact can be equipped with a manual, a machine-readable doc-
ument to be consulted by agents, containing a description of the functionalities
provided by the artifact developer and how to exploit such functionalities (that is,
artifact operating instructions [140]). The information provided by the manual is
meant to be dynamically read, interpreted and internalized by the agent, which is
assumed to embed such a knowledge in terms of proper plans about how to use
the artifacts of that type and when [118]. Such a feature has been conceived in
particular for open systems composed by intelligent agents that dynamically de-
cide which artifacts to use according to their goals and dynamically discover how
to use them. An example of manual use will be described in Subsection 4.5.2.

4.2.2 Actions to Work with Artifacts
The set of actions available to agents to work with CArtAgO artifacts can be cat-
egorized in three main groups: (a) actions to create/lookup/dispose artifacts; (b)
actions to use artifacts, executing operations and observing properties and sig-
nals; (c) actions to link/unlink artifacts. In the following, we informally describe
these actions, while a formal description is provided in Chapter 5. The syntax
Name(Params) : Feedback⊥ is used to define action signature, which includes the
action name, parameters and optionally the action feedback. The action feedback
represents some kind of data – that depends on the specific action – which can
result from the action execution, carrying information related to the success or
failure of the action.

Creating and Discovering Artifacts

Artifacts are dynamic computational entities, which are meant to be created, dis-
covered and possibly disposed by agents at runtime. This is a basic way in which
the model supports dynamic extensibility (besides modularity) of the environ-
ment.

Three basic kinds of action are provided to this purpose: makeArtifact, dis-
poseArtifact and lookupArtifact. makeArtifact(ArName,ArTypeName,InitParams):ArId
instantiates a new artifact called ArName of type ArTypeName inside a workspace.
The logic name identifies the artifact inside a workspace: artifacts belonging to

4.2 ARTIFACT-BASED ENVIRONMENTS 69

myOp(X)

ValuePropName

ValuePropName
...

...

AGENT

use

OPERATION EXECUTION

(A) (B)

myOp(X)

ValuePropName

Value
...

...

AGENT

use

SIGNALS OBS PROPERTIES
CHANGE

Figure 4.3: (left) An agent doing a use action to execute an operation listed in the
usage interface of an artifact. (right) By executing the operation the observable
property of the artifact can be changed and signals generated as observable events
(for those agents observing the artifact).

different workspaces can have the same logic name, so besides the logic name
each artifact has also a unique identifier generated by the system – returned as ac-
tion feedback. Dually to makeArtifact, disposeArtifact(ArId) allows for removing
an artifact from a workspace.

Artifact discovery concerns the possibility of retrieving the identifier of an ar-
tifact located in a workspace given either its logic name or its type description. A
couple of actions are provided to this end: lookupArtifact(ArName):ArId which
retrieves an artifact unique identifier given its logic name, and lookupArtifactBy-
Type(ArTypeName):{ArId} which retrieves the (possibly empty) set of artifacts
that are instances of the specified type.

Using and Observing Artifacts

Interactions with artifacts, by an agent perspective, involve two main aspects: (1)
being able to execute operations actually listed in the artifact usage interface and
(2) being able to perceive artifact observable information, in terms of observable
property and events.

For the first aspect, a single action use(ArId,Op):OpRes is provided (see Fig-
ure 4.3), specifying the identifier of the target artifact and the details about the
operation to be executed (operation name and required parameters). The action
succeeds if the triggered operation completes with success; conversely, the action
fails if either the specified operation is not currently included in artifact usage
interface or if some error occurred during operation execution and the process
failed. By successfully completing its execution, an operation may generate some

70 ENVIRONMENT PROGRAMMING IN CArtAgO

result that are returned to the agent as action feedback.
This semantics makes it possible to consider artifact operations as agent ac-

tions, or rather the set of operations provided by artifacts as an extension of agents’
action repertoire. Accordingly, since the operations executed by artifacts can be
(long-term) processes, use actions triggering the execution of the operations can
be long-term as well, not completing (with success or failure) immediately. As
will be clarified in the formal model discussed in Chapter 5, the action-model
adopted for agents to interact with artifacts is process-oriented. in Section 4.4 we
will see how such a semantics could be exploited to create effective mechanisms
for agents’ action synchronization.

In the use action, further parameters can be optionally specified to refine the
semantics and functionalities of the action: (a) a timeout, (b) an alignment pred-
icate function, and (c) a tag. A timeout allows for specifying the time interval
within the action (operation) must succeeds, otherwise it is considered failed—in
spite of the result of the operation. The alignment function allows for specifying a
condition over the observable state of the artifact which must be verified when the
operation actually starts its execution, otherwise the action fails. This parameter is
necessary when there is the need to enforce consistency between the environment
state expected by the agent and artifact actual state when such action take place—
expected state and actual state can be different because of the concurrency inside
the MAS. Finally, by specifying a tag all the events generated by the artifact – and
then the percepts on the agent side – will be annotated accordingly, by including
the tag in the events. This can be useful on the observation side to select only
those percepts that have been generated by a specific artifact, in the context of a
specific operation execution.

For the second aspect, i.e. observation, an agent can start perceiving observ-
able properties and signals of an artifact by doing a focus(ArId,{Filter}) action,
specifying the identifier of the artifact to observe and optionally a filter to further
select the subset of events the agent is interested in. An agent can focus multiple
artifacts at the same time. Dually to focus, stopFocus(ArId) action is provided
to stop observing an artifact. The perception model adopted is event-driven. In
particular, by initiating a focusing activities, two types of percepts are received by
agents:

1. percepts related to the updates of observable properties;

2. percepts related to signals sent by the artifact during an operation execution.

Thereby, every time an observable property is updated or a signal is generated

4.2 ARTIFACT-BASED ENVIRONMENTS 71

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

AGENT
OBSERVER

Belief base
(or alike)

PropName(Value).
PropName(Value).
... ValuePropName

ValuePropName
...

(A) (B)

focus
use

AGENT
OBSERVER

Figure 4.4: By doing a focus action on an artifact, an agent will eventually per-
ceive the updated value of observable properties as percepts – mapped into agent
beliefs or knowledge about the environment – and all the signals generated by the
artifacts.

during an artifact operation execution, a related event is notified to all the agents
which are focusing the artifact. Dispatching events is completely in charge of the
CArtAgO platform, and the artifacts upon which the events are originated. From
an agent perspective this allows to keep track of all environment changes, and,
most important, ensures that no events will be lost even if the environment changes
at a frequency which is greater than the one exhibited by the agent execution cycle.

It’s worth noting that an agent can use an artifact also without focusing it.
This may happen if the agent is not interested to the properties of the artifact or
to the events that it generates. Conversely, if an agent executes an operation on an
artifact that is actually focused, then the agent will receive all the percepts coming
from operation execution (and while the use action has not completed yet). This
allows agents to monitor the operation during their execution, possibly reacting
once particular events occur.

We conclude the basic set of actions to use artifacts with the observeProp-
erty(PropName):PropValue action, which synchronously reads the actual value
of a specific observable property. In this case no percepts are involved and the
value of the property is straightforwardly retrieved as action feedback. Differ-
ently from the focus case, this action is useful to actively inspect the environment,
getting the value of an observable property when the agent needs it.

Inspecting Artifact Manuals

Inspecting artifacts manuals allow agents to internalize the usage protocols re-
quired to fulfill artifact functionalities. In order to fulfill this activity, the action

72 ENVIRONMENT PROGRAMMING IN CArtAgO

consultManual(ArtifactType) is provided. It allows agents to dynamically add
to their programming model the instrumental knowledge (i.e., plans) required to
exploit a given functionality. The parameter ArtifactType does not refer to the
name of a specific artifact instance, but to the name of an artifact type, which class
must be available in the current workspace.

Since a series of operative instruction, which are specified inside the man-
ual, this action dynamically adds the module required to exploit the artifact func-
tions (an example will be showed in Subsection 4.5.2). The added modules re-
sult as capabilities which can be mounted on the fly to improve the agent pro-
gram [118]. Those capabilities are expressed by programming constructs typ-
ically given in the same language used to specify the agent. The dual action
forgetManual(ArtifactType) allows agents to dynamically remove the mod-
ule.

Linking and Unlinking Artifacts

Linking artifacts accounts for connecting two artifacts together so as to allow one
artifact (the linking one) to execute operations over another artifact (the linked
one). More precisely, by linking two artifacts the execution of an operation on the
linking artifact may trigger the execution of operations on the linked artifact(s).
To this end two basic actions are provided, linkArtifacts(LinkingArId,LinkedArId)
and unlinkArtifacts(LinkingArId,LinkedArId), respectively to link and unlink two
artifacts together. This allows either to an artifact to be linked by multiple arti-
facts, and to the same artifact to link multiple artifacts. This makes it possible for
agents to dynamically compose complex artifacts by linking together simple ones,
changing the links according to the current needs, creating networks of artifacts –
which can distributed in different workspaces.

4.2.3 Actions to Enter and Leave Workspaces

In CArtAgO, agents can work simultaneously in multiple workspaces, eventually
distributed among different network nodes. To work inside a workspace an agent
must join it (and eventually quit as soon as it completed its work); The action
joinWorkspace(WSId) allows agent to enter a workspace specified by an identifier,
while the dual action quitWorkspace(WSId) allows agents to leave the specified
workspace.

4.3 ENVIRONMENT PROGRAMMING IN CArtAgO 73

4.3 Environment Programming in CArtAgO

CArtAgO (Common ARtifact infrastructure for AGent Open environment) is a
framework and infrastructure for programming and executing artifact-based envi-
ronments implementing the model described informally above. As a framework,
it provides Java-based APIs to program artifacts and the runtime environment to
execute artifact-based environments, along with a library with a set of pre-defined
general-purpose artifact types. As an infrastructure, it provides the underlying
mechanisms to extend agent programming languages / architectures as specified
in Table 4.1.

To give a taste of artifact programming, in the following we provide an infor-
mal description of some main aspects concerning the API: further details can be
found in the documentation available in CArtAgO open-source distribution [20].

4.3.1 Artifact Programming Model
The Java-based API allows for programming artifacts in term of Java classes and
basic data types, without the need of using a new special-purpose language to this
end. In the following we give an overview of the basic features of the program-
ming model using some simple examples.

An artifact (type) is programmed directly by defining a Java class extending
the library class alice.cartago.Artifact, and using a basic set of Java an-
notations and inherited methods to define the elements of artifact structure and
behavior2. The type defines the structure and behavior of the concrete instances
that will be instantiated and used by agents at runtime. Figure 4.5 shows a sim-
ple example of artifact type definition implementing a simple counter (a Counter
artifact). The counter artifact provides a single observable property called count

keeping track of a count value, and an operation inc exploitable by agents to in-
crement the value of the count. The init method is used by convention to specify
how the artifact must be initialized at creation time—if the method generates an
error, the artifact is not created and the agent action fails. Observable properties
are defined by means of the defineObsProperty primitive specifying the name
of the property and the initial value (which can be any tuple of data objects).

2 The annotation framework is a feature introduced with Java 5.0 that makes it possible to mark
some elements of a class description on the source code – including methods, fields, and the class
definition itself – with some descriptors that can be accessed at runtime by the program itself,
through the reflection API. Annotations are represented by symbols of the kind @ANNOT NAME,
possibly containing also attributes @ANNOT NAME(attrib=value,...).

74 ENVIRONMENT PROGRAMMING IN CArtAgO

class Counter extends Artifact
{

void init(){
defineObsProp("count",0);

}

@OPERATION void inc(){
int c = getObsProperty("count").intValue();
int newc = c + 1;
updateObsProperty("count", newc);

}
}

inc

count 5

Figure 4.5: (left) Definition of a simple Counter artifact type. It exposes a usage
interface with a single operation inc and an observable property count. (right)
An abstract representation of the Counter artifact, with in evidence the usage
interface and the observable property.

Other two primitives are available to retrieve the current value of the property
(getObsProperty) and to change its current value (updateObsProperty). In-
stance fields of the class are used to implement artifact internal non-observable
state (no internal variables are defined in Counter).

Operations are defined by methods annotated with the @OPERATION tag and
void return value, using method parameters as operation request parameters. A
single method is sufficient to implement simple operations, i.e. operation com-
posed by a single atomic computational step. It is the case of the inc operation in
the Counter artifact, which simply increments the value of the observable prop-
erty count.

In a more complex case, necessary for instance to implement long-term oper-
ations whose execution can be controlled by agents through percepts, operations
can be structured, namely composed by multiple (atomic) steps. In multi-step op-
erations, @OPERATION method represents the first atomic step to be triggered by
a user agent. Further atomic steps are launched by the operation itself, and are
implemented by methods annotated with @OPSTEP. For triggering new operation
steps inside an operation the setNextOpStep primitive is used, and it indicates as
a parameter which is the next step to be executed. The execution of a multi-step
operation completes when no further steps have to be executed. Each step is ex-
ecuted atomically in a chined sequence of operation steps. It is worth remarking
that only a single operation step can be in execution inside an artifact at a time,

4.3 ENVIRONMENT PROGRAMMING IN CArtAgO 75

class ArtifactWithSteps extends Artifact

{

int value;

boolean isAvail;

@OPERATION void getNewValue(){

isAvail = false;

setNextOpStep("processValue");

}

@OPSTEP(guard="isValueAvail")

void processValue(){

setOpResult(value);

}

boolean isValueAvail(){

return isAvail;

}

@OPERATION void setValue(int v){

value = v;

isAvail = true;

}

}

class Counter2 extends Artifact

{

boolean counting;

void init(){

counting = false;

}

@OPERATION(avail_when="isIdle")

void start(){

counting = true;

triggerOp("counting");

}

boolean isIdle(){ return !counting; }

@OPERATION(avail_when="isCounting")

void stop(){

idle = true;

}

boolean isCounting(){ return counting; }

@INTERNAL_OPERATION

void counting(){

setNextOpStep("stepCount");

}

@OPSTEP void stepCount(){

if (counting){

signal("tick");

setNextOpStep("stepCount");

}

}

}

Figure 4.6: (left) An artifact providing a multi-step operation getNewValue:
the second step is executed as soon as a value has been inserted (by means of
setValue operation). (right) An example of an artifact with an internal (multi-
step) operation (counting), whose execution is triggered and controlled by oper-
ations which are part of the usage interface (start and stop).

76 ENVIRONMENT PROGRAMMING IN CArtAgO

in order to avoid the concurrent modification of artifact internal state. But, while
each single-step is always executed in a mutually exclusive way, multi-step oper-
ations can be executed concurrently, by interleaving each step. Given this, if an
agent tries to execute an operation included in the usage interface in which a step
is in execution, then a new instance of the operation is triggered but its execution
suspended until the step has completed.

For each step, including the first one annotated with @OPERATION, a guard
can be specified to define the condition that must hold to execute the step, once
it has been triggered. Guards are defined by means of the guard attribute in
@OPSTEP and @OPERATION annotations, specifying the name of a boolean method
implementing the guard. An example of artifact with multi-step operations with
guards is shown in Figure 4.6 (left). In this case, the operation getNewValue

in ArtifactWithSteps has two steps, the second one (processValue) with a
guard (isValueAvail) so that the step is executed (after being triggered) only
when a value has been inserted (by means of the setValue operation). As showed
in [119], Multi-step operations and guards are useful in particular to program
coordination artifacts, which are assumed to synchronize the concurrent execution
of multiple operations inside the same artifacts.

By completing an operation – either single or multi-step – a result can be
specified by means of the setOpResult primitive; the result is retrieved by the
agent as action feedback. If no result is specified, the feedback is not defined. An
example of operations producing a result is the multi-step getNewValue operation
of Counter2, as shown in Figure 4.6 (right). Analogously, in the case of operation
error – and then use action failure – the setOpError can be used to specify the
kind of error.

Operations can themselves trigger the execution of internal operations, that are
operations which are not included in the artifact interface, thus not visible from ex-
ternal agents neither artifacts. The definition of internal operations is the same of
normal operations but the annotation to be used, which is @INTERNAL OPERATION.
To trigger the execution of internal operations the triggerOp primitive is pro-
vided, requiring the name of the operation and the parameters. The Counter2

artifact in Figure 4.6 has an internal multi-step operation counting which is trig-
gered by the start operation. The operation counting repeatedly executes a step
until the stop operation is executed. It’s worth remarking that triggerOp does
not execute directly the specified operation (as a method call): it just triggers its
execution, which actually starts as soon as the overall artifact configuration allows
that, namely no more than one operation step in execution at the same time inside
the same artifact. This example also shows the implementation of artifacts with

4.3 ENVIRONMENT PROGRAMMING IN CArtAgO 77

class LinkedArtifact extends Artifact

{

...

@LINK void linkedOp(int param){

...

}

}

class LinkingArtifact extends Artifact

{

...

@OPERATION void myOp(int x){

...

triggerLinkedOp("linkedOp",x);

...

}

}

Figure 4.7: (left) An artifact exposing an operation (linkedOp) which can be trig-
gered by other linked artifacts; (right) An example of an artifact with an operation
triggering the link operation by means of the triggerLinkedOp

a dynamic usage interface, where the set of available operations in the usage in-
terface depends on the state of the artifact. To this end, a avail when attribute in
@OPERATION can be specified, using a boolean function to represent the condition
that must hold on the artifact state so as to include the operation in the usage in-
terface. In the example the stop operation is part of the usage interface only if a
counting process is active inside the artifact.

By executing an operation the artifact can generate signals that will eventually
be perceived as observable events by agents focussing the artifact. Signals can be
generated by the signal primitive, specifying the type of the signal and optionally
an information content (which can be a tuple of values). In Counter2 artifact
shown in Figure 4.6, a tick signal is generated each time a stepCount operation
step is executed and the counting process has not been stopped.

Being based on the Java platform, the environment data model adopted in
CArtAgO is based on the Java object model: so the data types used in operation
parameters, observable properties and signals are either Java primitive data types
or objects instances.

Finally, linkability is supported by properly annotating with @LINK marks
those operations of an artifact that can be linked by other artifacts. The operations
annotated with @LINK are included only in the link interface of the artifact. Link
operations of an artifact are not visible by agents but only by other artifacts which
have been linked to the artifact itself. In so doing, linking artifacts can trigger the
execution of a link operation listed in the link interface of a linked artifact. The
primitive to be used inside an operation step in order to trigger operations in exter-
nal linked artifacts is triggerLinkedOp. It requires the name and the parameters
of the operation to be triggered. In the example shown in Figure 4.7, the artifact
LinkedArtifact provides a linkedOp link operation, which can be triggered as
shown in the myOp operation of LinkingArtifact artifact. It’s worth remarking

78 ENVIRONMENT PROGRAMMING IN CArtAgO

(1) use(ArId,Op):OpRes

(2) focus(ArId,{Filter})
(3) stopFocus(ArId)

(4) observeProperty(PropName):PropValue

(5) makeArtifact(ArName,ArTypeName,InitParams):ArId

(6) disposeArtifact(ArId)

(7) lookupArtifact(ArName):ArId

(8) lookupArtifactByType(ArTypeName):{ArId}
(9) linkArtifacts(LinkingArId,LinkedArId)

(10) unlinkArtifacts(LinkingArId,LinkedArId)

(11) joinWorkspace(WSId)

(12) quitWorkspace(WSId)

Table 4.1: Basic repertoire of actions to work in CArtAgO environments.

that an artifact can trigger the execution of a link operation over another artifact
if and only if such artifacts have been previously linked by an agent, by means of
the linkArtifacts action.

4.3.2 Integration with Agent Programming Platforms
CArtAgO programming model is orthogonal to the specific technology adopted
for programming the agents playing within artifact-based environments. The
CArtAgO technology has been conceived so as to be integrated with any agent
programming language and platform, so as to create heterogeneous systems where
agents – possibly implemented using different agent programming languages and
technologies, and running on different platforms – could work together in the
same MAS, sharing common artifact-based environments [117].

Technically, by integrating an agent programming language/framework with
CArtAgO, the repertoire of agent actions has to be extended with the new set of
actions, as they have been discussed in previous section and resumed in Table 4.1.
On the perception side, the set of possible agent percepts are extended with ob-
servable properties and signals generated by artifacts. Thanks to integration tech-
nologies observable properties are mapped into agent beliefs (or knowledge, if
the notion of belief is not supported) about the state of the environment (artifacts),
instead signals as beliefs about the occurrence of observable events.

The concrete realization of the integration technologies can vary, depending
on the specific agent programming platform to be integrated. Actually, along with

4.4 AGENTS AT WORK IN CArtAgO ENVIRONMENTS 79

CArtAgO a set of bridge technologies are available for integrating Jason, Jadex,
simpAagent models [117, 109].

4.4 Agents at work in CArtAgO Environments
To give a concrete taste of programming model, here we briefly describe a simple
examples of programming agents and artifacts in CArtAgO environments. In what
follows we first briefly resume some fundamental notions of agent programming
language in Jason ([14, 69]). Besides Jason, that will be used as the reference
language in the following of the work, other agent languages have been integrated
in CArtAgO. In [109] the interested readers can find examples of Jadex integra-
tion [112, 68], while in [123] CArtAgO is integrated with a Java-based activity-
oriented agent framework called simpA.

4.4.1 Agent Programming in Jason
To ease the understanding of the agent source code that will be used in the fol-
lowing of this work, we here report a brief description of Jason syntax. An agent
program in Jason is defined by an initial set of beliefs, representing agent’s initial
knowledge about the world, a set of goals, and a set of plans that the agent can
dynamically instantiate and execute to achieve such goals. The syntax of AgentS-
peak is based on the notion of plans. A plan is triggered by some event and is
guarded by some context, the syntax is:

<event> : <context> <- <body>.

In the case where the event happens and the context holds, the plan body is exe-
cuted. In particular:

• <event> represents the specific event triggering the plan – examples are the
addition of a new belief (+b), a goal (+!g), the perception of an observable
event generated by an artifact (+ev [source(?Art)]), the perception of
an update of an artifact observable property, (+p [artifact(?Art)]).

• <context> is a logic formula on the belief base – a belief formula – assert-
ing the conditions under which the plan can be executed.

• <body> includes a list of basic actions exploitable, for instance, to query the
belief base (?g), create subgoals to be achieved (!g), to update agent inner

80 ENVIRONMENT PROGRAMMING IN CArtAgO

state – such as adding a new belief +b – to send messages and ACL to other
agents, to verify constraints, etc.

For instance, the plan:

+count(V) [artifact("c1")]

: bel(X) & X > V

<- action1; action2; ...

is triggered when the agent perceives from a counter artifact called c1 a given
count value V (+ means that something was added to the belief base, as a percep-
tion in the above example).

If the agent can prove from its beliefs that bel(X) & X > V holds, then the
plan is selected for execution and becomes an intention. Finally, the intention is
executed by performing the specified actions of the body.

The set of available actions in Jason can be easily extended by means of inter-
nal actions. We thus create a library of internal actions improving agent repertoire
and implementing all the actions needed to interact in CArtAgO environments.
CArtAgO actions – which are prefixed by “cartago.” – include, among others,
use, to execute an operation on an artifact, focus, to start observing a specific
artifact, makeArtifact to create a new artifact, and lookupArtifact to get arti-
fact unique identifier given its name. Further and more detailed examples of Jason
agents working in CArtAgO environments are showed in the next sections.

4.4.2 Using simple Artifacts
As a simple example, Figure 4.8 shows two agents programmed in Jason, working
in the same workspace and using CArtAgO API to use and observe artifacts: the
first one (on the left) creates and uses two artifacts of type Counter and Counter2,
defined in Subsection 4.3.1, and the second one (on the right) locates and observes
the artifacts, reacting to related percepts. A more detailed description of the source
code follows. The first agent has a single initial goal create and use. A plan
to achieve the goal is specified, which is triggered by the +!create and use

goal addition event. The plan creates an instance of Counter and Counter2 ar-
tifacts called c1 and c2 and uses them. First it starts the counting process on
c2 by executing the start operation; then it executes the inc operation on c1,
and finally it reads the value of the observable property count by means of the
observeProperty action and prints it on standard output be using the console

4.4 AGENTS AT WORK IN CArtAgO ENVIRONMENTS 81

// user agent

// initial goal

!create_and_use.

// plans

+!create_and_use : true <-

cartago.makeArtifact("c1","Counter",C1);

cartago.makeArtifact("c2","Counter2",C2);

// start the counting on c2 counter

cartago.use(C2,start);

// use c1 counter

cartago.use(C1,inc);

cartago.observeProperty(C1,count(V));

cartago.use(console,

println("Count value: ", V)).

// observer agent

// initial goals

!discover_and_observe("c1").

!discover_and_observe("c2").

// plans

+!discover_and_observe(ArName): true

<- cartago.lookupArtifact(ArName,C);

cartago.focus(C).

+count(V) [artifact("c1")] : V < 10

<- cartago.use(console,println("count: ",V)).

+count(V) [artifact("c1"), artifact_id(C)] :

V >= 10

<- cartago.use(console,println("count: ",V));

cartago.stopFocus(C).

+tick [source("c2")] : true

<- cartago.use(console,println("tick. ")).

Figure 4.8: Jason (AgentSpeak) agents at work with artifacts: on the left an agent
creating and using two artifacts of type Counter and Counter2, on the right an
agent observing the two artifacts.

artifact3. The second agent has two initial goals discover and observe, one
for each artifact instance. The plan to discover and observe the specified artifact
simply accounts for using lookupArtifact to locate the artifact and then focus

to start observing it. In Jason by focussing an artifact, observable properties are
mapped into beliefs, annotated with source(percept) annotation, which are au-
tomatically updated as soon as the value of observable properties changes. Also
signals are mapped onto beliefs, annotated with source(ArtName). Three plans
are specified to react to percepts related to the two artifacts. As soon as the agent
perceives a new value for the count observable property (in c1 artifact), it prints
a message about the new value on standard output by exploiting the console arti-
fact. If the perceived value is greater or equal to ten, then the agent stops observing
the artifact. Then, as soon as the agent perceive a tick signal (generated by c2),
it prints a message on the console too.

3An instance of console artifact is available in each workspace and it is useful to print mes-
sages to standard output

82 ENVIRONMENT PROGRAMMING IN CArtAgO

public class Agenda extends Artifact

{

...

@OPERATION

void schedule(String todo, long when){

setNextOpStepTimed(when, "alarm", todo);

}

@OPSTEP void alarm(String todo){

signal(todo);

}

}

/* Jason agent exploiting the agenda */

...

+!setupAgenda :

task1_date(T1)

& task2_date(T2)

<- cartago.makeArtifact("ag","Agenda",A);

cartago.focus(A);

cartago.use(A, schedule("task1", T1));

cartago.use(A, schedule("task2", T2)).

/* my scheduled activities*/

+task1[artifact("ag")]: true

<- // activities related to task1

+task2[artifact("ag")] : true

<- // activities related to task2

Figure 4.9: A sketch of a personal agenda artifact and a usage example by a Jason
agent.

4.4.3 Using Artifacts to Externalize Activities
Externalization is a typical outcome once agents are capable to coordinate their
activities with external resources. Figure 4.9 shows a typical example of external-
ization of agent activities on artifacts. The example assumes a simple personal
agenda artifact that can be used by an agent to annotate (schedule) tasks to do in
the future. The artifact will eventually generate a signal (alarm) at the specified
time, so as to allow the agent to react accordingly and fulfill the programmed task.

In general, agents externalizing activities on artifacts succeed at: (i) extend-
ing action repertoire without the need to extend architectures/languages; (ii) re-
ducing the computational burden—agents do not waste time and computational
resources for the execution of the operation and processes related to the exter-
nalized functionalities, which are instead executed inside artifacts; (iii) enhanc-
ing reusability—tools (artifacts) can be flexibly re-used among heterogeneous
agents, even developed with different agent programming languages. (iv) dynamic
extensibility—tools can be created/disposed at runtime by need.

4.5 Cognitive Use
An important aspect of agent-artifact interaction can be envisaged when artifact
functionalities are employed in the context of societies of cognitive agents, namely
agents capable to reason about their epistemic and motivational states. This sec-

4.5 COGNITIVE USE 83

tion resumes remarkable aspects by describing examples.

4.5.1 Mapping Goals and Beliefs on Artifact Functions

A twofold kind of interaction has been described in terms of cognitive use of
artifacts [105]. On the one hand, artifact representational functions4 has been
assumed to improve agents epistemic states, i.e., by representing and providing
strategic knowledge in the overall system (artifact epistemic function). On the
other hand, artifacts operational functions allows agents to improve the repertoire
of their actions, i.e., by providing additional means which can be purposively used
to achieve goals (artifact operational function).

A producers-consumers scenario is here resumed to introduce the twofold
approach. The producers-consumers problem is typical in concurrent systems,
where agents are supposed to adopt effective strategies with respect of the shared
resource and taking into account further bounded resources like time and space
(memory). This requires some kind of coordination strategy between agents, i.e.,
in order to coordinate the cyclic production of items by producer and the activities
performed by consumer agents. The example makes use of a Bounded-inventory
artifact, that, besides main aspects of the artifact programming model as observ-
able properties and a usage interface, introduces synchronization functionalities.
The bounded-inventory is a kind of coordination artifact designed to function as
a shared inventory mediating the exchange of some kind of item between a possi-
bly dynamic number of producer agents and consumer agents [82]. In particular
the action of a consumer retrieving an item from the buffer is suspended until at
least one item is available. Viceversa, the action of a producer inserting an item is
suspended whether the buffer capacity is full. Finally, bounded-inventory artifacts
can be programmed as regulatory mechanisms, i.e., by balancing the capacity of
the inventory, and further adopted for tuning the global performance of the system.

Looking at the CArtAgO implementation of the bounded-inventory artifact
(Figure 4.10), it provides a usage interface with two operation controls to re-
spectively insert (put) e consume (get) items, and two observable properties,
max nitems, showing the maximum capacity of the inventory, and n items, show-
ing the current number of items stored in the inventory. Internally, a simple linked
list is used to store items. The synchronization functionality provided by the ar-
tifact is realized here by exploiting a basic feature of the artifact programming

4The term “function” here must be interpreted as “functionality”, so not related to functional
programming languages or mathematical functions.

84 ENVIRONMENT PROGRAMMING IN CArtAgO

public class BoundedInventory extends Artifact

{

private LinkedList<Item> items;

private int nmax;

void init(int nmax){

items = new LinkedList<Item>();

defineObsProperty("n_items", 0);

this.nmax = nmax;

}

@OPERATION(guard="bufferNotFull")

void put(Item obj){

items.add(obj);

int ni = items.size() + 1

updateObsProperty("n_items", ni);

}

boolean bufferNotFull(Item obj){

return items.size() < nmax;

}

@OPERATION(guard="itemAvailable")

void get(){

Item item = items.removeFirst();

int ni = items.size()-1;

updateObsProperty("n_items",ni);

setOpResult(item);

}

boolean itemAvailable(){

return items.size() > 0;

}

}

Figure 4.10: Implementation of an artifact functioning as a bounded inventory in
producers-consumers scenario.

model, which accounts for the possibility of defining guards that specify when
an operation is either enabled or disabled. In the example the put operation is
allowed only when the inventory is not full (bufferNotFull guard is true), and
get is allowed when the inventory is not empty (itemAvailable guard is true).
Thanks to the specified guards, if an agent triggers the put operation when the
inventory is full, the action is suspended. Analogously, the action is suspended
when the inventory is empty and a get operation is triggered.

Purposive function

As far as the bounded-inventory artifact has been conceived, the provided oper-
ations, that may be controlled by artifact usage interface, encapsulate artifact’s
intended purposes5. Indeed, from an agent viewpoint, operations can be suitably
used to achieve goals, namely provide and retrieve items. In this case in partic-
ular, operations can be dynamically triggered by agents so as to externalize and
distribute (part of) their goal-oriented activities. For doing this, operation out-
comes have to be taken into account by agents in their practical reasoning. In fact,
by changing the actions required for achieving a given goal, artifact operations

5Notice that before being in the intention of an agent who wants to use the artifact, the intended
purpose is in the mind of artifact designer, who conceive it in order to serve an operation or a
function.

4.5 COGNITIVE USE 85

change agent means-end reasoning6 stages.
This aspect can be tackled at different conceptual levels. The first, most ob-

vious, solution is to integrate artifacts functionalities during agent’s developing
phases. In this view, artifacts purposive use can be defined at the language level,
by defining the operation to use in an “off-line” fashion, namely at design time.
Such an approach envisages agents goal in the operation outcomes, e.g, allows
agents to achieve goals by the mean of operations which have been defined – by
the artifact developer – within artifact control interface. Referring to the bounded-
inventory example, an agent having the goal to produce a new item and put it in
the buffer may use the following intention (agent’s specification is provided with
Jason language):

+!produceItems : nextItemToProduce(Item)

<- cartago.lookupArtifact("my-inventory"

, InvID)

cartago.use(InvID, put(Item)).

-!produceItems: true

<- cartago.use(console,

println("Insertion failed")).

The agent in this case selects the intention to store an item on the inventory once an
Item has been prepared and is available in the belief base. Then the adopted plan
first lookups the my-inventory artifact to retrieve its system identifier InvID and
then stores the item by selecting the put operation provided by the artifact usage
interface. Notice here the presence of a fail handling plan (-!produceItems)
which is triggered whether the insertion fails in order to write a message on the
console.

Besides, a consumer agent can cyclically adopt the following plans to attain
an item on the inventory:

+!consume

: myInventory(InvID)

<- cartago.use(InvID, get, Item);

!consumeItem(Item);

!!consume.

-!consume

<- // handle failure ...

+!consumeItem(Item)

: true

<- // process Item ...

Notice in this case that the consumer agent simply maps the execution of its ex-
ternal action on the get operation provided by the buffer artifact. In so doing, the
item is retrieved as an action feedback as the get operation completion state.

6We here refer to the notion of cognitive agents able to find a suitable sequence of actions,
between the ones he has in repertoire, so to attain an adopted goal. Several agent architectures
founded on this reasoning principle have been presented in the last years, many of which can be
related to the conceptual model provided by [16].

86 ENVIRONMENT PROGRAMMING IN CArtAgO

Generalising the artifact purposive function, once included in agents repertoire
of actions, artifact operations are assumed to improve agent repertoire of actions,
thus providing additional means for agents to achieve their goals.

a final remark is worth to be taken into account on the purposive function of ar-
tifacts. A first pivotal aspect in treating artifact operational functionalities relates
on the specific motivational attitudes adopted by agents. Actually, the abilities
to handle goals are variously characterized by mainstream agent platforms [136].
The procedural goal approach can be related to agents functioning according to
transitions within their action selection mechanisms, while typically the goals are
not not explicitly represented in agents specification and where a behavioral strat-
egy is rather specified by the programmer, through the composition of procedures
taking into account the intended goal states. In the case of agents adopting proce-
dural goals, namely without the possibility to map goal representations on opera-
tion outcomes, to a goal-oriented use of artifacts. On the other hands, declarative
goal approaches refer to agents able to process goals which are explicitly repre-
sented as internal states. In this case declarativeness stands for explicit represen-
tation of goals described either in terms of end-states, either in terms of execution
states within the reasoning process. As discussed in [109] describing integration
between the Jadex agent platform and CArtAgO, we refer in this case to a stronger
notion of goal, thereby at the basis of goal-directed use of artifacts.

Epistemic function

A second function, dual to purposive one, is about informational, observable and
readable knowledge provided by artifacts and represented by observable proper-
ties. In this case, from an agent point of view, artifacts can be viewed as informa-
tional units functioning to maintain, make it observable and, possibly, pre-process
information which is relevant for agents knowledge base. In other terms, by em-
bedding machine-readable representations, an artifact can be a target for agents
epistemic actions7. This entails for agents the opportunity to read and observe
artifacts to attain new information and possibly update beliefs, solely with the aim
to improve the knowledge base with information which is strategic for the ful-
fillment of their tasks. In this view, artifacts are supposed to provide observable
cues in order to highlight relevant information (thus improving agent’s situated
cognition). This turns to be important for shaping goal-supporting beliefs, i.e.

7The notion of epistemic action adopted here refers to the one introduced by D. Kirsh and P.
Maglio to indicate those action aimed at improving agents knowledge [78]

4.5 COGNITIVE USE 87

those beliefs required to agents for ruling over deliberation and practical reason-
ing [26]. Accordingly, information available with observable properties can ease
agent reasoning, for instance simplifying and improving agent’s decision making
and remarkably easing belief update processes.

As a simple example of epistemic use, we consider here an extension of the
producer-consumer scenario where two bounded inventories are deployed instead
of one. By introducing an additional inventory it is possible to avoid centralization
and bottlenecks during agent activities. In this view, we assume that, by contin-
uously observing the number of items of both the inventories, consumer agents
can dynamically decide which artifact to use according to some utility value. By
considering that the probability to get stuck is minimized for consumers when the
inventory is not empty, we assume consumers choosing the inventory with more
items. To this end the continuous observation of the n items observable proper-
ties on both the inventories is performed through a focus action:

+!consumeActivity : true

<- +min_items(-1);

cartago.lookupArtifact("my-inventory-1",

InvID1);

cartago.focus(InvID1);

cartago.lookupArtifact("my-inventory-2",

InvID2);

cartago.focus(InvID2);

+selectedInv(InvID1,0);

!!consumeAction.

+n_items(N)[artifact_id(InventoryID)]

: selectedInv(_, N1) & N > N1

<- -+selectedInv(InventoryID, N).

+!consumeAction : selectedInv(InvID, _)

<- cartago.use(InvID, get, Item);

cartago.use(console,

println(" Consumed Item: ", Item));

!consumeAction.

The agent here uses a unique goal-supporting belief selectedInv(InventoryID,NItems)
to store the identifier of the inventory, among the observed ones, with the greatest
number of items. Such a belief is initially set specifying the my-inventory-1

artifact in the consumeActivity plan. As soon as a new value of the observable
property n items is perceived, the belief is updated, storing from time to time
the artifact which has the greatest amount of items to consume. The plan anno-
tation [artifact id(InventoryID)] makes it possible to retrieve the identifier
of the artifact from which the percept raised. In this case agents are aware of the
current state of the artifacts which are perceived since observable properties up-
dates. Focusing the inventory allows the agents to translate on the fly the events
coming from the artifact. Once a percept indicating the property update is re-
ceived, the agent straightforwardly react to the event by resuming the suspended
consumeAction intention and update his goal-supporting beliefs. A similar strat-
egy can be implemented for the producer agents (the code is here omitted for
brevity) that can use a twofold strategy for choosing the inventory where to put a

88 ENVIRONMENT PROGRAMMING IN CArtAgO

new item.
An important aspect to take into account in cognitive interactions is the ca-

pability for agents of controlling activities in order to monitor the externalized
processes. This is what Norman refers, in the human case, as “gulf of execution
and evaluations” of activities upon artifacts, by which an individual may manage
the interaction, i.e. evaluating signals between his expectations and the actual
course of observable events [87]. Working on the perception model based on per-
ceiving signals coming from ongoing operation, external events coming from an
artifact have been integrated at an architectural level by automatically promoting
such events as internal signals to be filtered to update beliefs. Otherwise, once en-
coded, the events controlling a given interaction can bypass the deliberation phase
(or intention selection) and can be addressed by routinized activities realizing re-
active behaviors, as seen in [109]. Even more, by introducing mismatch-based
filtering rules, particular events can be used for signalling critical situations re-
quiring servicing and for triggering the adequate responses.

Besides 1 to 1 interactions, the contribute of artifacts in easing agent epistemic
activities is remarkable also in the context of Multi Agent scenario. Once soci-
eties of agents are of concern, the pivotal aspect is the availability of information
in the overall society of agents. As seen in [106], information can be spread over
several orthogonal dimensions: (i) across agents: by organising and making avail-
able relevant information as permanent side-effect of artifact use (modification of
artifact state); (ii) across platforms: once interactions between agents are medi-
ated by artifacts, heterogeneous platforms can be integrated at the same domain
level. Moreover agents acquire an additional option to communicate, being arti-
facts a suitable alternative to protocols based on message exchange; (iii) across
time: artifacts are designed to hold strategic information which can persist also
over interleaved presence of individual agents; (iv) across space: the topological
notion of work environments makes it possible for agents to distribute their activ-
ities between many nodes and workspaces. This entails no need for agents mutual
presence within a given location/place.

4.5.2 Externalisation and Internalisation
Besides “off-line” interactions which are specified at a programming level by
agent developers, an alternative approach can be envisaged to exploit artifacts
through an “on-line” integration of their functionalities. In this approach agents
are capable to dynamically discover and afford artifact which are not known at
design time, in so doing externalising part of their activities into the services

4.5 COGNITIVE USE 89

usageprot compute_sin {

:function sin(X,Y)

:body {

locateMyTool(ToolId);

freshSensor(S);

use(ToolId,computeSin(X),S);

sense(S,sin(X,Y)).

}

}

package tools;

public class Calculator extends Artifact

{

...

@OPERATION void computeSin(double x){

signal("sin",x,Math.sin(x));

}

@OPERATION void computeCos(double x){

signal("cos",x,Math.cos(x));

}

...

}

// Jason Agent Internalising Calculator functions

!doComputations

<- !setup;

!doTheJob.

+!doTheJob

<- cartago.consultManual("tools.Calculator");

cartago.consultManual("tools.Console").

+!doTheJob

<- !sin(1.57,Y);

!print("The sin value of 1.57 is ",Y).

Figure 4.11: (Left) A usage protocol defined in the Calculator manual and the
CArtAgO implementation of the Calculator artifact type. (Right) Jason agent
exploiting the manual to use the Calculator

provided by the computational environment where agents are situated. In order
to enable agents (and agent programmers) to exploit artifact functions, the dual
notion of internalising artifact functions has been introduced, which consists in
dynamically consulting and automatically embedding high-level usage protocols
described in artifact manuals. This approach requires the additional capability for
agents to scrutinize artifacts and map their functions on their internal goal base and
has been presented in [118]. Two actions are provided respectively for internalis-
ing and forgetting the content of a manual: consultManual(ArtifactType) and
forgetManual(ArtifactType). By consulting the manual, the practical knowl-
edge contained inside is fetched and translated into agent local plans. Those plans
augment the repertoire of agent actions, and, in the case of goal oriented / directed
agents, can be triggered by achievement goals which have the same signature of
the artifact function retrieved on the manual.

A simple first-order logic-based language is used to define the manual pro-
tocols: the complete syntax and semantics of the language is not reported here
due to lack of space, we informally describe the language by means of a con-
crete example. Figure 4.11 shows a usage protocol defined in the manual for the a

90 ENVIRONMENT PROGRAMMING IN CArtAgO

Calculator artifact. The Calculator artifact provides mathematical functions
(i.e. sin, cos, sqrt, etc.) which an agent may exploit in a purposive fashion.

In the artifact manual, the function is specified by means of :function tag
and is represented by a logic term, possibly containing parameters detailing input
and output (in terms of unbounded variables) and information characterizing the
function. In the calculator example, sin(X,Y) is the function of the usage pro-
tocol to compute the sine function. The function of a usage protocol is directly
mapped to agent goals: in particular, a usage protocol with a function f unc is
mapped into agent plan(s) that are triggered to achieve goals matching f unc, ac-
cording to some kind of matching function that depends on the agent architecture
adopted. In the case of Jason agents, for instance, the usage protocol is triggered
to achieve goals of the type sin(X,Y): in the example (Figure 4.11, on the right)
this happens by means of the !sin(1.57,Y) action.

The condition under which the functionality can be exploited can be specified
by the :precond tag and is represented by a logic expression specifying the con-
text conditions that must hold concerning either the function parameters or agent
beliefs8 (which typically can include the state of the observable properties of the
artifact). If missing, the default value of the precondition expression is true.

The body – specified by means of the :body tag – contains a sequence of
actions, including basic CArtAgO actions (use, observeProperty, focus, etc.),
auxiliary actions to locate artifacts and internal actions for inspecting and updating
the belief and goal base of the agent. From a syntactical point of view, ; is used
as sequence operator, +Bel and -Bel are used to add and remove beliefs and .

to indicate the end of the plan.

The key point here is that the agent programmer has not to be aware and explic-
itly code the usage protocol, which is specified – instead – by artifact developers:
s/he must simply know the interface of the usage protocol, in terms of the func-
tion and beliefs involved. Finally, the approach promotes a strong separation of
concerns and finally more compact and readable agent programs.

8The notion of “belief” can be replaced here with “knowledge” for agent programming lan-
guages not having that concept

4.6 FINAL REMARKS ON PROGRAMMING AGENTS AND ARTIFACTS 91

4.6 Final Remarks on programming Agents and Ar-
tifacts

This chapter described the basic features of CArtAgO, a platform for building
working environments based on the A&A model. The choice of an A&A ap-
proach to MAS envisages agents as the basic abstraction to design and program
the autonomous part of the systems, i.e. those parts that are responsible of the
autonomous execution of some kind of task. On the other hand, artifact is con-
ceived as the abstraction to design and program the functional part of the system,
namely that part that can be exploited and controlled at run time for easing agents’
activities. The notion of workspace is introduced to group together coherent set
of agents and artifacts, typically devising the bounds of an application domain.

CArtAgO provides a programming platform and a run time support for build-
ing distributed work environments, which can be structured in several workspaces
spread across different nodes. The independence between artifacts and agents
computational models allows the reification of open systems, where heterogenous
agents may join and leave without particular requisite on their architectures. The
only requirements are those related on the capabilities needed for agents to inter-
act inside artifact based work environments. The interaction is thus enabled since
the definition of a basic set of actions extending agents’ repertoire with the actions
needed to operate within artifacts and workspaces.

By integrating CArtAgO with existing agent computational models platforms,
a new degree of “separation of concerns” is introduced with environment pro-
gramming: programming agents on the one side, so as to encapsulate autonomous
and pro-active activities, and programming artifacts on the other side, represent-
ing those resources and tools that will be instantiated, shared and used by agents at
runtime. The A&A approach is thus meant to support the development of hetero-
geneous MAS, composed by agents with different computational models – from
reactive up to cognitive ones – cooperating in the same work environment.

The last part of the chapter introduced agent artifact interaction once a stronger
notion of agency is of concern. In particular, the cognitive use of artifacts has
been introduced by describing some meaningful examples. First, the twofold role
played by artifacts once they are used by a cognitive agent is described. On the
one side artifacts are supposed to provide operations, which agents can exploit to
perform activities and attain their goals (purposive function). On the other side ar-
tifacts embeds information which is readable by agents to improve their epistemic
states and can be considered as repositories of relevant information in working

92 ENVIRONMENT PROGRAMMING IN CArtAgO

environments (epistemic function). On these basis, a series of possible interaction
styles are envisaged, either in providing relevant, strategic Information and eas-
ing decision making, either in changing means ends reasoning and in augmenting,
through artifact operations, the capabilities to attain goals.

Second, the capability to “learn” and internalize artifact functionalities has
been described. Artifacts, in this perspective, are supposed to realize external
modules that agents can dynamically exploit as external services to enhance their
action repertoire and – more generally – their capability to execute tasks. To this
end, a particular component of artifacts, namely the manual, can be inspected by
agents as an artifact meta-descriptor. Manuals provide, in a agent readable format,
a set of operative instructions on how to exploit their functions. Once the functions
of a consulted artifact have been internalized, agents can dynamically compose
their plans since the new actions added to their repertoire. This would require,
for agents, some additional abilities to bring about a dynamic action repertoire,
i.e. by mean of an additional planner component allowing to build sequences of
interleaved actions to achieve goals.

Many research lines have been followed in recent works at investigating spe-
cific aspects of cognitive interactions between agents and artifacts. Among others,
[96] investigated the problem from an AI perspective, devising the particular in-
telligence skills needed by agents to cognitively interact with artifacts. Besides,
the particular epistemic and pragmatic functions that artifacts may play for agents
engaged in complex tasks requiring coordination and externalization of activities
have been further investigated using Jason as agent architecture in [106, 105].
A fully goal directed approach to artifact functions has been introduced in [109]
adopting and integrating Jadex BDI agents and using declarative goals that are
mapped into artifact operations. The specialization of agent perceptive activities
in artifact based environments has been investigated in [116], while a perception
filtering mechanism, allowing agents to finalize belief updates on the basis of
a subjective esteem of pragmatic relevance of percepts, has been introduced in
[81]. Other works have been addressed at investigating goal oriented approach to
Web Services through artifacts: in particular, an extension of CArtAgO, namely
CArtAgO-WS, has been proposed as programming model for artifact based infras-
tructures to be exploited for the management of complex service oriented archi-
tectures [110, 111].

Although a BDI-like model will be still adopted for agents across the exam-
ples, using in particular Jason as the reference language, the rest of this work
assumes a very basic notion of agency. Indeed, weak assumptions will be made
on the particular architecture, model and language adopted by agents. It has to be

4.6 FINAL REMARKS ON PROGRAMMING AGENTS AND ARTIFACTS 93

remarked that either A&A and then CArtAgO natively support different degree of
openness. Workspaces are open for agents, namely heterogenous agents can join
and quit dynamically to the system. On the other hand, workspaces are open for
artifacts, that can be dynamically replaced, instantiated and disposed on the ba-
sis of the available types. Making weak or no assumptions on the computational
model characterizing agents allows to emphasize and preserve the characteristic
of openness for the whole environment—to which artifact based infrastructures
are, finally, addressed.

This aspect will be clarified in the next Chapter 5, that – in order to pro-
vide unambiguous specification of MAS conceived in terms of agents, artifact
and workspaces – provides a formal description of the A&A - CArtAgO model,
abstracting away from implementation details. A different perspective, that will
allow the functional specification of global dynamics inside the workspace, is then
described in Chapter 6.

94 ENVIRONMENT PROGRAMMING IN CArtAgO

Chapter 5

Artifact Based Environments: a
Formal Model of CArtAgO

To rigorously define the semantics of agent-artifact interactions and artifact com-
putational behavior, this chapter describes a formal model of artifact-based en-
vironments. The chapter defines the entities involved in a MAS based on agents
artifacts and workspaces in terms of their configurations. Then it focuses in par-
ticular on the dynamics occurring inside a single workspace, involving in partic-
ular interactions between agents and artifacts, and provides a description using
operational semantics.

5.1 Formalising Artifact-Based Environments

The purpose of the formal model is twofold: first to provide a clear and rigor-
ous semantics of artifacts computational behavior and of agent-artifact interaction
model; then, to make the integration of CArtAgO with existing agent program-
ming languages (and platforms) more suitable.

The formalisation abstracts from many details as found in the concrete im-
plementation (CArtAgO technology in this case and related bridges to agent plat-
forms): however, it includes all the essential aspects that we deem as important for
environment programming in practice, in this case using an artifact-based model.

96 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

5.2 Structures
We first describe the structure of the states of the transition systems, which cor-
respond to workspace configurations. In the following, we use symbols starting
with an upper-case letter to denote sets.

5.2.1 Agent Configuration

Definition 1 (Agent configuration) An agent configuration ag∈ Ag is represented
by a tuple:

〈agid,ags,agEv,agpr〉
where agid is the agent unique identifier, ags is the agent internal state – here
we abstract from its specific structure – agEv is ordered set of events collected in
current agent execution cycle (described in the next Section 5.3), and finally agpr
defines the agent computational behavior—we refer to it as “agent program” even
if it includes aspects that concern both the program and the architecture of the
agent.

Events perceivable by agents (ev ∈ agEv) are represented by tuples 〈evt ,evv〉
with information about the type and the value of the event. When agent-artifact
interactions are of concern, different kind of events ev may occur. The possi-
ble types of the events are reported in Table 5.1, and include action events – i.e.
events about the completion or failure of an action – and events generated by arti-
facts – related to events signalled by artifact operation execution, or originated by
changes and updates of observable properties.

Finally, the agent program is modeled as a function:

agpr(ags,agEv) : (ag′s,ac⊥)

which, given the current state of the agent ags and current event set agEv, computes
the new state of the agent ag′st and the action to execute ac1.

Remarks: For simplicity we here limit the set of events processable by agents to
those events involving agent artifact interactions. A more complete agent model
should include a wider set of events, as for instance events originating from agent
internal processing (i.e. internal events related to practical reasoning and belief
update in BDI-like agents) and events generated by message exchange (i.e. new
message arrived). Examples of this approaches can be found in [13, 31]

1The value ac can be not defined (⊥), representing those situations in which no action is chosen.

5.2 STRUCTURES 97

Event type evt Event val-
ues evv

Description

signal 〈arid,st ,sv〉 Signal generated by an artifact – st is an iden-
tifier of the type of the signal and sv is the
value

action completed 〈ac,ac f b〉 Action completed with success. ac is the ac-
tion completed, ac f b is the action feedback

action failed 〈ac,ac f b〉 Action failure. ac is the action failed, ac f b is
a description of the failure

prop updated 〈arid, pn, pv〉 Observable property updated – pn is the
name of the property and pv is new value

prop new 〈arid, pn, pv〉 A new artifact observable property is ob-
served – pn is the name of the property and
pv is the initial value

prop nomore obs 〈arid, pn〉 An artifact observable property is no more
observed – pn is the name of the property

Table 5.1: Events perceivable by an agent in CArtAgO environments

5.2.2 Artifact Configuration

Definition 2 (Artifact configuration) An artifact configuration ar ∈ Ar is defined
according to the following tuple:

〈arid,art , I,O,P,V 〉

The configuration includes the main elements that characterize artifacts as envi-
ronment abstraction:

• Artifact identifier: an unique artifact identifier represented by arid .

• Artifact type: Each artifact is defined on the basis of its type as it is specified
in art ∈ Art. art contains artifact specifications, name of the type, artifact
program and an initialization function. In particular, the type is represented
by a tuple:

〈artn,artinit ,artpr,man〉
where artn is the type name, man represents the artifact manual, here mod-
eled as a simple literal, artinit and artpr define the computational behavior
of the artifacts that are instances of this type.

98 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

• Interfaces: The set I includes the artifact interfaces, listing the global set
of operations that can be currently triggered by external entities upon the
artifact. In particular, I is the general interface of triggerable operations,
and it includes includes two distinct interfaces:

I = 〈Ui,Li〉

where Ui is the usage interface, including operations that can be used by
agents and Li is the link interface, i.e. a set of operations that can be
triggered by other artifacts (linking artifacts). Elements op ∈ I include
both the name of the operation and actual value of the parameters, namely
op = 〈opname,Params〉.

• Ongoing operations: The set O includes, from time to time, those op-
eration steps to be still executed inside the artifact, namely all the refer-
ences to the next atomic steps of operations which are not completed yet.
Each entry in O is represented by a tuple opreq = 〈opid,op, tag⊥〉 ∈ O
including an identifier of the operation, the operation name and params
(op = 〈omname,Params〉), and a tag⊥ (possibly not defined, i.e. ⊥) spec-
ified by the agent that executed the operation to mark the events generated
by the operation execution (this aspect will be clarified later on).

• Observable state: P is the set of the observable properties, represented by
tuples 〈pn, pv〉 keeping track of the name and current value of the property.

• Inner (non-observable) state: V is the set of inner variables of the artifact,
represented by tuples 〈vn,vv〉 including the name and current value of a state
variable.

Artifact Type and Program

As said, an artifact type is represented by art = 〈artn,artinit ,artpr,man〉, where the
former element artn identifies the type name. This section provides more insights
on the latter elements of an artifact type. The initialisation function artinit is given
by:

artinit(Params) : (Ui0,P0,V0,Li0,OR0)

which defines how the artifact is initialised when it is created. A list of parameters
Params are needed to initialise an artifact: namely, Ui0,P0,V0,Li0,OR0 represent

5.2 STRUCTURES 99

op_ongoing

op_failed op_completed

start

end

op_failed op_completed

start

end

Figure 5.1: Operation State Transitions. An Operation can be in ongoing state if
it is composed by a sequence of atomic operation steps.

respectively the initial value of the usage interface, observable property set, in-
ternal variable set, link interface, ongoing operation requests. artpr is the artifact
program, defining its functional specification. The program is represented by a
partial function specifying the processes executed by the artifact during the exe-
cution of operation steps:

artpr(opreq, I,P,V, t) : (Ui′,P′,V ′,Li′,S,OR,LR,opcs)∪⊥

The parameters of an artifact program are operation request opreq = 〈opid,op, tag⊥〉
(each identified by an operation identifier opid , operation name, parameters and
tag) current interface I = 〈Ui,Li〉, current observable state P, current non-observable
state V , and finally current workspace logic time t2. Given the input parameters,
the function artpr defines the value of the new usage interface Ui′, observable state
P′, non-observable state V ′, the new link interface Li′, the set of signals S possibly
generated by the step execution. Observable properties in O are represented by
tuples 〈pn, pv〉, including information about the type of the property and its value.
Signals in S are represented by tuples 〈st ,sv〉, including information about the type
of the signal and its value.

2The time is included among the parameters of the function in order to allow the definition
of operation steps which are triggered at a specified time (an example is provided in the personal
agenda artifact shown in Subsection 4.4.3, Figure 4.9).

100 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

Event type
evt

Event value evv Description

op req 〈agid,arid,reqv, t〉 An operation request is done by agent agid on arti-
fact arid at time t – reqv identifies the value of the
requested operation, namely op, that is operation
name and params

stepop req 〈arid,reqv, t〉 A step operation request is added by the artifact arid

to its queue of ongoing operations O at time t – reqv

identifies the value of the requested operation step,
namely op, that is operation step name and params

Table 5.2: Basic set of events related to operation requests collected by CArtAgO
workspaces.

The function defines also the set of new operation requests OR specifying
further operations to execute inside the artifact as a result of step execution and
the set of link operation requests LR to trigger the execution of other operations in
other artifacts. Elements in OR and LR are of the type 〈reqt ,reqv〉, where reqt ∈
{op req, linkop req} and reqv includes both the name of the requested operation
and actual value of the parameters.

The value opcs indicates the actual state of the operation (completion state). It
is represented by a tuple 〈ops,opres〉, where:

• ops is the operation state, which values ops ∈{op completed,op ongoing,op failed}

• opres is a value that can be specified to set the operation result (if any).

In turns, opcs shows the possible state transitions for an operation (see also Fig-
ure 5.1). After a opreq (triggering event) the operation starts its execution and as
soon as the operation completes, the state becomes op completed. The state may
become op failed if any error occurs in the operation execution. An additional
state is involved when the operation involves multiple steps. In this case the state
becomes, after the execution of the first step, op ongoing.

Event type
evt

Event value evv Description

focus req 〈agid,reqv, t〉 A focus request is done by Agent agid at time t –
reqv identifies the focus action including the pa-
rameter arid as artifact to focus

5.2 STRUCTURES 101

stopFocus req 〈agid,reqv, t〉 A stopFocus request is done by Agent agid at time
t – reqv identifies the stopFocus action including
the parameter arid as artifact to stop focusing

obs req 〈agid,arid,reqv, t〉 An operation request is done by Agent agid on Ar-
tifact arid at time t – reqv identifies the the ob-

serveProp action including the parameter pn as
property name to observe

link req 〈agid,reqv, t〉 A request to link artifacts is done by Agent agid

at time t – reqv identifies the linkArtifacts action,
including the parameters (arid ,ar′id) as artifacts to
be linked

unlink req 〈agid,arid,reqv, t〉 A request to unlink artifacts is done by Agent agid

at time t – reqv identifies the unlinkArtifact action,
including the parameters (arid ,ar′id) as artifacts to
be unlinked

make req 〈agid,reqv, t〉 A request to make a new artifact is done by Agent
agid at time t – reqv identifies the makeArti-

fact action, including the initialisation parameters
artn,Params for the artifact to be created

dispose req 〈agid,reqv, t〉 A request to dispose an existing artifact is done
by Agent agid at time t – reqv identifies the dis-

poseArtifact action, including the identifier arid

for the artifact to be disposed
lookup req 〈agid,reqv, t〉 A request to look for existing artifacts is done by

Agent agid at time t – reqv identifies the looku-

pArtifact action, including the artifact type artn
for the artifacts to searched

consult req 〈agid,reqv, t〉 A request to consult the manual for an existing ar-
tifact type is done by Agent agid at time t – reqv

identifies the consultMan action, including the ar-
tifact type artn for the artifact to be consulted

join req 〈agid, t〉 A request to join the workspace is done by Agent
agid at time t

leave req 〈agid, t〉 A request to leave the workspace is done by Agent
agid at time t

Table 5.3: Additional events related to requests of agent ac-
tivities collected by CArtAgO workspaces.

102 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

Event type evt Event value evv Description
op signal 〈arid,st ,sv, t〉 Signal generated by an artifact arid at time t –

st is an identifier of the type of the signal and sv

is the value
op ongoing 〈arid,agid,opreq, t〉 Operation triggered by agid , described by

opreq = 〈opid ,op, tag⊥〉 finished a step in ar-
tifact arid at time t, but more steps are required
to complete

op completed 〈arid,agid,opreq, t〉 Operation triggered by agid , described by
opreq = 〈opid ,op, tag⊥〉 completed with suc-
cess in artifact arid at time t

op failed 〈arid,agid,opreq, t〉 Operation triggered by agid , described by
opreq = 〈opid ,op, tag⊥〉 failed in artifact arid

at time t
prop observed 〈arid,agid, pn, pv, t〉 Observable property pn has been observed in

artifact arid by agent agid at time t – pv is the
actual property value

prop updated 〈arid, pn, pv, t〉 Observable property updated in artifact arid at
time t – pn is the name of the property and pv

is new value
prop new 〈arid, pn, pv, t〉 A new observable property is added in artifact

arid at time t – pn is the name of the property
and pv is the initial value

prop removed 〈arid, pn, t〉 An observable property is removed in artifact
arid at time t – pn is the name of the property

Table 5.4: Basic set of events related to artifact changes collected by CArtAgO
workspaces.

5.2.3 Workspace Configuration

Definition 3 (Workspace configuration) A workspace configuration is represented
by the following tuple:

〈Ag,Ar,Art,Ev,M,R, t〉

where:

5.2 STRUCTURES 103

Event type
evt

Event value evv Description

ar created 〈agid,arid,art , t〉 An artifact arid is created by agent agid at time t, with
art indicating the type

ar disposed 〈agid,arid,art , t〉 An artifact arid is disposed by agent agid at time t,
with art indicating the type

ar looked 〈agid,artn, t〉 A look up action has been performed by agent agid

for artn at time t
ar consulted 〈agid,art , t〉 A manual consult action has been performed by

agent agid for art – at time t
ar focused 〈agid,arid, t〉 Agent agid starts focusing Artifact arid at time t
ar unfocused 〈agid,arid, t〉 Agent agid stops focusing Artifact arid at time t
ar linked 〈arid,ar′id, t〉 Artifact arid ,ar′id are linked at time t
ar unlinked 〈arid,ar′id, t〉 Artifact arid ,ar′id are not linked at time t
ws joined 〈agid, t〉 An agent joined the workspace at time t, agid indi-

cating agent identifier
ws leaved 〈agid, t〉 An agent leaved the workspace at time t, agid indi-

cating agent identifier

Table 5.5: Basic set of events related to other agent activities collected by
CArtAgO workspaces.

• Ag is a set of agents populating the workspace

• Ar is a set of artifacts actually created in the workspace

• Art is the set of artifact types actually available in the workspace

• Ev is a set collecting meaningful events launched inside the workspace.
Generally speaking, each ev ∈ Ev is represented by a tuple 〈evt ,evv〉 with
information about the type and the value of the event.

• M is a workspace map storing different kind of data which are need to gov-
ern global workspace dynamics. In particular the workspace map contains
three elements M = 〈Om,Lm,Um〉, where each subset is intended at ruling
over a particular aspect of agent-artifact interactions. In particular:

– Om is an observability map, which elements ∈ (Ag×Ar) track who
(agent) is observing what (artifact). Elements of the observability map

104 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

are tuples 〈agid,arid, f ilter f 〉, including the identifier of the observer
agent, the identifier of the observed artifact, and a filtering function
f ilter f (described in detail later on) that specifies the possible kinds
of events that the observer agent is interested in.

– Lm is the link map with elements ∈ (Ar×Ar), tracking links between
artifacts. Elements of the link map Lm are tuples 〈arid,ar′id〉 contain-
ing the identifiers of the artifacts that are currently linked, being arid
the source and ar′id the target (that is, arid may trigger the execution of
operations listed in the link interface of ar′id).

– Um is the usability map indicating privileges of agents over artifact
usage interfaces, i.e., if a specified agent has the rights to use spec-
ified artifact operations or not. By default every operation is usable
by every agent, e.g. agents can use any declared operation included
in any artifact Ui. Um bounds the usability privileges: its elements
are represented by tuples like 〈arid,agid,{opname}〉. Each Um entry
tracks – for a given artifact arid – which are the forbidden operations
({opname}) for a given agent agid .

The functioning and the mechanisms behind the two former map sets (Om,Lm)
will be clarified later on this chapter, while the description of the policies
operating upon the latter set (Um) will be described in Chapter 6.

• R is the set of workspace rules containing programmable rules aimed at
correlating workspace events and at governing intra-workspace dynamics.
Roughly speaking, workspace rules can be seen as environment programs,
which execution is triggered once some specified events occur. A detailed
description of workspace rules programming is outside the scope of this
chapter, which is indeed intended at clarifying workspace dynamics and
agent artifact interaction. A more complete description of workspace rules
functioning and programming is provided in Chapter 6.

• t is a monotonically increasing time-stamp representing a logic notion time
inside the workspace.

Given the above definition, different kind of events are possible inside the work-
space as they are represented by general elements ev ∈ Ev, where each event is
specified by its name and value: ev = {〈evt ,evv〉}.

5.2 STRUCTURES 105

• First, Ev includes events indicating the request pursued to trigger artifact
operation, as the events triggering operation execution (a detailed descrip-
tion for this class of events is given in Table 5.2 and Table 5.3).

• Second, Ev includes events generated by artifacts and related to ongoing
functioning of artifacts, as events signalled during operation execution or
events originated by changes in observable properties (a detailed description
for this class of events is given in Table 5.4).

• Third, Ev includes events related to activities performed by agents within
the workspace, as agents entering and leaving the workspace, or creat-
ing/disposing, linking/unlinking artifacts etc. (a detailed description for this
class of events is given in Table 5.5)

Remarks (a) We explicitly model the type of an artifact, which is what actually
defines its computational behavior; so Ar can contain many instances on the same
type art ∈ Art, each identified by a proper arid . (b) Being a single workspace
not distributed, it is feasible to assume a unique notion of time shared among the
agents and artifacts located in the same workspace. (c) In concrete implementa-
tions, agents can join a workspace even if they run on distributed platforms located
in different nodes of the network. In order to situate agents in a given workspace,
thus in order to provide to an agent the means to act and perceive, CArtAgO makes
use of agent bodies [117]. More than a element of the programming model, an
agent body has to be intended as part of the integration technology enabling agents
to concretely operate in a workspace.

5.2.4 Workspace Initial Configuration

Definition 4 (workspace initial configuration) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the
configuration of the workspace, where Ag is the set of agents, Ar is the set of
artifacts, Art the set of artifacts types, Ev the set of events, M the set of workspace
maps, R the set of workspace rule. Then, the initial configuration of a workspace
is: 〈 /0, /0,Art, /0, /0, /0,0〉, namely no agents nor artifacts are present in the workspace
at time 0, while the event set is empty as well as the workspace maps and the set
of workspace rules.

106 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

5.2.5 MAS Configuration

Definition 5 (MAS configuration) Being 〈Ag,Ar,Art,Ev,M,R, t〉 the configura-
tion of a generic workspace, where the set of agents Ag is represented by elements
like 〈agid,ags,agEv,agpr〉, and the set of artifacts Ar is represented by elements
like 〈arid,art , I,O,P,V 〉, then the configuration of the global multi agent system is
given by elements in 〈Ws〉 represented by:

〈wsn, 〈Ag,Ar,Art,Ev,M,R, t〉〉

and where wsn represent an identifier for the specified workspace.

Remark In concrete implementation, being workspaces distributed across differ-
ent nodes of the network, the workspace identifier also includes an address space.

5.3 Dynamics
Once the general structures of the entities populating a workspace have been pro-
vided, the main transition rules defining how the various configurations evolves
will be described.

We model a workspace as a transition system (W,−→) , where W is the set
of states representing all the possible configurations that a workspace can assume,
and −→⊆ W ×W is a binary relation over W , describing how the workspace
evolves from configuration to configuration, given the computational behavior of
the agents and of the environment. We use the infix notation w −→ w′ to denote
that (w,w′) ∈−→.

Some conventions are used in the formal description. Sets are denoted by
capital characters. Being S a set composed by elements 〈X ,Y,Z〉, we denote SX ,SY
and SZ , to refer respectively to the X ,Y and Z components of S. For instance,
being the interface set of an artifact I = 〈Ui,Li〉, IUi and ILi are used to indicate
the usage interface Ui and the link interface Li in I, and being the workspace map
M = 〈Om,Lm,Um〉, then MOm,MLm and MUm are used to indicate elements in
Om,Lm and Um respectively.

To make the description more understandable, in the definition of the transition
rules we include only those structures that are actually changed by the transition,
sometimes splitting the description of the overall effect of a transition in multiple
rules, in particular when the transition affects multiple structures of the workspace
configuration. Notice that, for sake of simplicity, we omit the description of those
transitions that are related to failures.

5.3 DYNAMICS 107

5.3.1 Agent Execution Cycle

Definition 6 (agent execution cycle) Being 〈agid,ags,agEv,agpr〉 the configura-
tion of an agent ag ∈ Ag, then:

agpr(ags,agEv) = (ag′s,ac⊥)
〈agid,ags,agEv,agpr〉 −→ 〈agid,ag′s,ag′Ev,agpr〉

that is, the configuration of an agent evolves as specified by the agent program,
given the current state of the agent ags and and the set of events agEv collected by
the agent perceptive activities in current execution cycle. The transition leads to a
new set of events ag′Ev, whose value depends on the result of the execution of the
action ac⊥—this is detailed in next subsections. If no action chosen, or the skip
the action is chosen, ac is ⊥. In this case ag′Ev is /0.

Remarks: As noticed in Subsection 5.2.1, we here narrow the set of events pro-
cessable by agents to those involving agent artifact interactions, thus not consid-
ering other type of events as the ones related to practical reasoning, belief update
and message exchange.

5.3.2 Artifacts Dynamics
The computational dynamics of the environment are given by the processes ex-
ecuted inside artifacts. The execution of processes inside an artifact is due to
operation execution. Artifact operations can be triggered in four different ways:
(a) by the use action of agents; (b) by other operations in execution inside the
same artifact; (c) by linking artifacts; (d) by workspace rules. In the following an
operational semantic for the first three functioning is provided, while the model
for workspace rules is described in Chapter 6

Agents using Artifacts

To act upon an artifact operation the action:

use(arid,op, tag⊥,align f ∪⊥)

is provided to agents. The action triggers the execution of an operation op =
〈opname,Params〉 on the target artifact arid , possibly specifying a symbolic tag to
mark the events generated by the operation execution and an alignment condition
function align f . The tag can be exploited on the observation side to select only

108 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

those percepts that have been generated by a specific artifact, in the context of
a specific operation execution. The alignment condition function align f : P→
{true, f alse} can be specified by the agent programmer in order to define the con-
dition on the observable state of the artifact that the agent expects to be true when
the operation is actually triggered. Specifying ⊥ in this case means an alignment
function which is true for each value of the observable properties. The alignment
condition function is necessary when there is the need to enforce consistency be-
tween the environment state expected by the agent acting upon the artifact and the
actual state of the artifact when such an action takes place.

The execution of a use action elicits a sequence of transitions governed by
specific events, each involving specific parts of the system. First, a op req event
indicating the request to use an artifact operation performed by an agent is regis-
tered by the workspace and it is added to the event set Ev. Formally:

Definition 7 (use action) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration of the
workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the agent doing a
use action and 〈arid,art , I,P,V,O〉 ∈ Ar the configuration of the target artifact.
Being ac = use(arid,op,align f , tag⊥) the action selected by the agent, where
op = 〈opname,Params〉, then:

ev = 〈op req,〈agid,arid,op, t〉〉
〈Ag,Ar,Art,Ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev∪ ev,M,R, t ′〉

where the workspace event set Ev is updated with the op req event.

After having received the request to serve an an artifact operation, the work-
space addresses the request to the target artifact. Indeed, the presence of a op req
in the workspace set of events elicits the synchronous execution of an operation
(or the first step of the operation, if it is a multi step operation). During the opera-
tion execution new events can be launched by the artifacts, that in short are further
added in the workspace event set Ev. If the operation has a single step, then the
artifact operation and the agent use action complete in a single transition and the
set of workspace events Ev is updated to include the event about action comple-
tion. Otherwise, the operation (and the action) will be eventually completed by
the execution of further operation steps. Formally:

Definition 8 (use action execution) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configura-
tion of the workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the agent
doing a use action and 〈arid,art , I,P,V,O〉 ∈ Ar the configuration of the target ar-
tifact. Being 〈artn,artinit ,artpr,man〉 ∈ Art the type of the artifact, and opid is a

5.3 DYNAMICS 109

fresh operation identifier in opreq, then:

ev = 〈op req,〈agid,arid,op, t〉〉 ev ∈ Ev triggering(ev,R) =⊥
op ∈ IUi 〈agid,arid,op〉 /∈MUm align f (P) = true

artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S,OR,LR,opcs)
〈arid,art , I,P,V,O〉 −→ 〈arid,art , I′,P′,V ′,O∪O′〉

The transition is triggered when an event ev is collected in the workspace set Ev,
and only if this event is not triggering the execution of a workspace rule in R, as
specified by the function triggering(ev,R)3. Moreover, the transition is triggered
only if the requested operation is part of the artifact usage interface IUi, if the
agent has the rights to use the operation op according to the usability map Um,
and if the align function is satisfied given the actual artifact observable state P.
Notice that if the operation is multi-step, it does not complete in one transition,
thus the set of ongoing operations O is updated to O′. In this case a new element
opreq = 〈opid,op, tag⊥〉 is added to the artifact, representing the operation itself
to be completed A new element op′req = 〈op′id,op′,⊥〉 is further added to O for
each op′req ∈OR, that is for each new operation step triggered by the artifact itself.
Finally, the transition may also affect the artifact interface I and the artifact inter-
nal variables V according to the particular specification provided by the artifact
program artpr.

As an artifact has executed an operation step, the workspace configuration
changes accordingly:

ev = 〈op req,〈agid,arid,op, t〉〉 triggering(ev,R) =⊥
op ∈ IUi 〈agid,arid,op〉 /∈MUm align f (P) = true

artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S,OR,LR,opcs)
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev∪ ev′,M,R, t ′〉

where the new set of events is updated with the overall set of events originated by
the operation execution. In this case, the added events are denoted by ev′. They
can be new events related to linking requests (as detailed in Table 5.2) or to artifact
changes (as detailed in Table 5.4). In particular:

• A new event ev′ = (linkop req,〈arid,ar′id,reqv, t〉) is added for each linking
request reqv ∈ LR addressed to another artifact ar′id . The event is added only

3The function triggering(ev,R) will be specified in Chapter 6. For the moment it is enough to
consider that this function returns ⊥ when the set R is not containing a rule entry indicating ev as
its triggering condition.

110 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

if the two artifacts are linked according to the linkability map, namely only
if 〈arid,ar′id〉 ∈ Lm.

• A new event ev′ = (op signal,〈arid,st ,sv, t〉) is added for each signal gen-
erated by the operation execution as detailed by S, being st the identifier of
the type of the signal and sv its value.

• A new event ev′ = (op completed,〈arid,agid,opreq, t〉) is generated if the
operation completed with success, as detailed in opcs.

• A new event ev′ = (op ongoing,〈arid,agid,opreq, t〉) is generated if the op-
eration finished a step but more steps are required to complete, as detailed
in opcs.

• A new event ev′ = (op failed,〈arid,agid,opreq, t〉) is generated if the opera-
tion failed, as detailed in opcs.

• A new event ev′ = (prop updated,〈arid, pn, pv, t〉) is added for each observ-
able property updated – as detailed in P′, being pn the name of the property
and pv its updated value.

• A new event ev′ = (prop new,〈arid, pn, pv, t〉) is added for each observable
property created – as detailed in P′, being pn the name of the property and
pv its new value.

• A new event ev′ = (prop removed,〈arid, pn, pv, t〉) is added for each observ-
able property removed – as detailed in P′, being pn the name of the property
and pv its value.

Finally, all the agents that are perceiving the artifact receive the events related
to operation execution. For agents, the semantics of action execution is that the
action completes (fails) when the requested operation completes (fails). We refer
to action feedback as the result of the operation execution. Besides action feed-
back/result, independently from the completion or failure of the operation, during
an action execution the artifact may generate observable events that the agent can
perceive. Those events can be elicited since a change in artifact observable prop-
erties, or since a signal generated by the artifact during its operation execution.
This kind of events, in particular, can be marked by a specified tag, by which the
agent can filter their values. In this case the model differs between agents which
are focusing the artifact executing the operation step and the agent that triggered

5.3 DYNAMICS 111

the execution of the operation. In the first case, a set of transitions updates the
event set agEv for all the agents actually focusing the artifact according to the ob-
servability map Om. In the second case, the agent is further acknowledged with
a percept indicating the action feedback in terms of operation completion state.
Formally:

Definition 9 (use action on agents) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configu-
ration of the workspace, 〈arid,art , I,P,V,O〉 ∈ Ar the configuration of the artifact
that executes the operation step and 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration
of one agent focusing it. Then, for each event ev produced during the operation
execution, the agent focusing the artifact is affected by the following transition:

ev ∈ Ev 〈agid,arid, tag〉 ∈ Om
artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S,OR,LR,opcs)
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,agEv∪ ev,agpr〉

where the added event ev updating the agent configuration can include both events
generated by changes in the observable properties of the artifact (as specified in
P′) or signals generated by the artifact in its operation step (as included inS). In
particular:

• In the first case, according to the new artifact configuration P′, ev may be a
prop updated event (if some observable property has been updated during
artifact operation), but also prop new and prop nomore obs (if properties
have been added or removed).

• In the second case ev can be related to a signal events, specified by type/name
pairs (〈st ,sv〉).

The complete description of these events is given in Table 5.1. Notice that to be
added to the observability map and to specify filters, an agent has to execute a
focus action, which is described later on in this section. Otherwise, if the agent
is not observing the artifact according to the observability map Om, then ev′ is
null. Moreover, all the events are filtered by the filter function f ilter f possibly
specified in the observability map. Given this, the set contains only those events
ev′ such that f ilter f (ev′) is true.

Besides the previous updates, (only) the agent that triggered the artifact oper-
ation is affected by the following transition:

ev ∈ Ev evt ∈ {op completed,op failed,op ongoing} agid ∈ evv
artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S,OR,LR,opcs)
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,agEv∪ ev′,agpr〉

112 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

where ev′ can be related to the operation completion state opcs, namely action completed,
action failed if the operation completed with success/failure. In this case a trans-
lation is done from the event ev as it is produced by arid to the event ev′, as it is
received by agid . In particular:

• If ev = 〈op completed,〈arid,agid,opreq, t〉〉, then ev′= 〈action completed,〈ac,ac f b〉〉.

• If ev = 〈op failed,〈arid,agid,opreq, t〉〉 then ev′ = 〈action failed,〈ac,ac f b〉〉.

• If ev = 〈op ongoing,〈arid,agid,opreq, t〉〉 then ev′ = /0.

where the value of the action feedback (ac f b) is set on the basis of the operation
completion state opcs, as it is given by the artifact program (artpr).

Remarks: (a) The time t is automatically changed by the underlying execution
system, using a discrete, linear notion of time. Henceforth , for the purpose of
the operational semantics, it is assumed that all rules that apply at a given time are
actually applied before the system changes the state to the next time. (b) The func-
tion triggering(ev,R) is defined locally to the workspace, and it provides ⊥ if the
event ev is not matching with some rule defined in the set R, otherwise it returns
the rule which head has unified with ev. The matching mechanisms also involves
some further conditions to be checked in the overall workspace states. The mech-
anisms for the application of the rules in R, as well as the involved transitions
related to R, will be provided in Chapter 6 together with a formal description of
the function triggering. (c) In concrete implementation the translation from the
event ev as it is produced by arid to the event ev′, as it is received by agid is done
by the particular integration technology, that is the bridge mechanism integrating
the particular agent architecture to CArtAgO.

Multi step Operations

Multi step operations can be triggered by agent’s use actions. A multi step op-
eration elicits the execution of a sequence of atomic operation steps inside the
artifact. Whereas the first step of the sequence is executed according to the rules
described above, the following steps are executed as soon as the artifact set O –
which includes ongoing operation requests to be served – is not empty and when
the artifact program artpr for that request – given the current state of the artifact –
yields to a new valid configuration 6=⊥. Formally:

Definition 10 (operation step) Being 〈Ag,Ar,Art,Ev,M,R, t〉 the workspace con-
figuration, 〈arid,art , I,P,V,O〉 ∈ Ar an artifact configuration and being the artifact

5.3 DYNAMICS 113

type 〈artn,artinit ,artpr,man〉 ∈ Art, then:

〈opreq, tag⊥〉 ∈ O
artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S,OR,LR,opcs) 6=⊥
〈arid,art , I,P,V,O∪〈opreq, tag⊥〉〉 −→ 〈arid,art , I′,P′,V ′,O′〉

where O′ includes the originating operation 〈opreq, tag⊥〉 only if the operation,
by executing the current step, has not completed (according to the value of opcs).
O′ includes also a new element 〈op′req,⊥〉, for each op′req ∈ OR, i.e. for each
new operation triggered by the execution of the step (where op′id ∈ op′req is a
fresh operation identifier). As in the case of single step operations, the execution
of each step of a multi step operation may affect the artifact interface I and the
artifact internal variables V according to the particular program specified by artpr.

Accordingly, the workspace configuration changes as it follows:

〈opreq, tag⊥〉 ∈ O
artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S,OR,LR,opcs) 6=⊥
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M,R, t〉

where the new set of events Ev′ is updated with the overall set of events originated
by the step execution. As in the use action, Ev′ = Ev∪Evnew, where Evnew can
be new events related to linking requests (as detailed in Table 5.2) or to artifact
changes (as detailed in Table 5.4).

On the agent side, the transition given by the step execution causes the update
of the event set agEv for each agent agid ∈ Ag observing the artifact according
to the observability map Om. In this case the new set ag′Ev includes the events
generated by the step execution. For simplicity, being these transitions analogous
to the ones defined in the use action, a detailed description is omitted.

Remarks: (a) The same mechanism and the same rules for executing operation
steps are applied both to multi-step operations and to artifact internal operations.
(b) No operation feedback is received in terms of opcs by the agent who has ini-
tiated the sequence of a multi step operation. Nevertheless the agent can still
monitor ongoing operation by focusing the artifact, as described in the following
sections.

Artifact linked Operations

Link operations are executed inside artifacts in order to serve operations triggered
by other artifacts. The event initiating the execution of a link operation is regis-
tered in the workspace set Ev. In particular, once the workspace event set contains

114 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

an event of the type linkop req, and if the linking artifact is registered in the link-
ability map Lm, the request is addressed to the linked artifact in order to serve the
ink request. Formally:

Definition 11 (linkop execution) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the workspace
configuration , 〈arid,art , I,P,V,O〉 ∈ Ar the configuration of a linked artifact and
〈ar′id,ar′t , I

′,P′,V ′,O′〉 ∈ Ar the configuration of a linking artifact. Let be artpr is
the linked artifact program, as defined by its type 〈artn,artinit ,artpr,man〉 ∈ Art.
Being ev = 〈linkop req,〈ar′id,arid,reqv, t〉〉 a link operation request from ar′id to
arid and being ev ∈ Ev, then the transition affecting the workspace is the follow-
ing:

ev ∈ Ev triggering(ev,R) =⊥ 〈ar′id,arid〉 ∈MLm op ∈ ILi
artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S′,OR,LR′,opcs) 6=⊥
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M,R, t ′〉

where the new set of events Ev′ is updated with the overall set of events originated
by operation execution. as in the use action, Ev′= Ev∪Evnew, where Evnew can be
new events related to new linking requests (as detailed in Table 5.2) or to artifact
changes (as detailed in Table 5.4).

Accordingly, the transition involving the linked artifact is the following:

ev ∈ Ev triggering(ev,R) =⊥ 〈ar′id,arid〉 ∈ Lm op ∈ ILi
artpr(opreq, I,P,V, t) = (Ui′,P′,V ′,Li′,S′,OR,LR′,opcs) 6=⊥

〈arid,art , I,P,V,O〉 −→ 〈arid,art , I′,P′,V ′,O′〉

where I′,P′,V ′,O′ undergo the changes elicited by the link operation step execu-
tion and are computed as shown in previous transition rules.

Finally, the transition agEv −→ ag′Ev affects agents agid observing the artifact
according to the observability map Om. Also this transition follows the rules
defined above (and is not further detailed here).

Remark: For simplicity we assumed that is not feasible to specify a link operation
as a multi step operation. Given this, triggering steps inside a link operation is
forbidden. Otherwise, a link operation can trigger further link requests according
to the local set LR, as it can be modified by the artifact program.

5.3.3 Agent Perceptive Activities
Agent perceptive activities concerns mechanisms enabling agents to update their
knowledge by inspecting the environment. Once artifact based environments are

5.3 DYNAMICS 115

of concern, the basic building block inspectable by agent is the artifact. As said, an
artifact has two basic ways to be inspected, namely its set of observable properties
P and all the events generated since an operation execution. Hence, agents have
two approaches to inspect artifacts, namely to observe their properties in P, or to
process (and possibly filter) noticeable events elicited by operation execution. On
these basis, agent perceptive activities are conceived on the basis of two different
actions:

Focusing agent ability to select which parts of the environment to perceive, namely
focusing only on specific subset of artifacts;

Observation agent ability to synchronously read the value of an observable prop-
erty of an artifact.

Focusing Artifacts

The first capability is provided by the focus action:

focus(arid, f ilter f)

where arid is the identifier of the artifact to observe and f ilter f is a boolean func-
tion f ilter f : Ev −→ {true, f alse} representing a filtering condition for events
specifying that an event is collected only if the filter on the event is true. For-
mally:

Definition 12 (focus action) Let be 〈Ag,Ar,Art,Ev,M,R, t〉 the configuration of
the workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag, the agent configuration and let be
〈arid,art , I,P,V,O〉 ∈ Ar the artifact configuration. Being the action to be per-
formed by agent ac = focus(arid, f ilter f), and being ev = 〈focus req,〈agid,reqv, t〉〉
then the action succeeds and:

ev ∈ Ev triggering(ev,R) =⊥
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M′,R, t ′〉

where:

• MOm is updated in M′, in particular Om′ = Om∪{〈agid,arid, f ilter f 〉}, the
observability map is updated by adding the information about which agent
is observing which artifact, with the function f ilter f

• Ev′= Ev∪〈ar focused,〈agid,arid, t〉〉, indicating that agent agid has focused
artifact arid at time t

116 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

On the agent side ag′Ev = {〈action completed,〈focus(arid, f ilter f),⊥〉〉}∪Evprop,
where Evprop is a set of events of type prop new, one for each observable property
〈pn, pv〉 ∈ P.

Dually to focus, an action is provided to agents to stop getting events related
to a specific artifact:

stopFocus(arid)

This is modeled by a transition rule removing the element from the observability
map and adding the related events to the workspace set Ev. Formally:

Definition 13 (stop-focus action) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configura-
tion of the workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag, the agent configuration and
〈arid,art , I,P,V,O〉 ∈Ar the artifact configuration. Being the ac = stopFocus(arid)
the action to be performed by the agent, and being ev = 〈stopFocus req,〈agid,reqv, t〉〉
then the action succeeds and:

ev ∈ Ev triggering(ev,R) =⊥
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M′,R, t ′

where:

• MOm is updated in M′, in particular Om′= Om\{〈agid,arid, f ilter f 〉}, namely
the observability map is updated by removing the entry about the couple
agid,arid .

• Ev′ = Ev∪〈ar unfocused,〈agid,arid, t〉〉, indicating that agent agid has fin-
ished to focus artifact arid at time t.

On the agent side the set of events is updated with the action feedback, related to
the action completion, and with the events related to the properties which are no
more observable. In more detail, ag′Ev = {〈action completed,〈stopFocus(arid),⊥〉〉}∪
Evprop, where Evprop is a set of events ev of type prop nomore obs, one for each
observable property 〈pn, pv〉 ∈ P.

Observing Artifact Properties

The capability to synchronously read the value of an observable property is pro-
vided by the observeProp action:

observeProp(arid, pn)

5.3 DYNAMICS 117

The action acts on the artifact arid and retrieves the value of the observable prop-
erty pn as action feedback. Formally:

Definition 14 (observe property action) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the con-
figuration of the workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag the agent configuration
and 〈arid,art , I,P,V,O〉 ∈Ar the artifact configuration. Being observeProp(arid, pn)
the action to do such that 〈pn, pv〉 ∈P, and being ev = 〈obs req,〈agid,arid,reqv, t〉〉
then the action completes in the same transition:

ev ∈ Ev triggering(ev,R) =⊥
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M,R, t ′

where Ev is updated with the event ev = 〈prop observed,〈arid,agid, pn, pv, t〉〉 in-
dicating that artifact arid’s observable property pn has been observed by agent
agid at time t – pv is the observed property value.
On the agent side, the transition is given by:

ev ∈ Ev triggering(ev,R) =⊥
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,ag′Ev,agpr〉

where agEv is updated with the action feedback given by the value of the observ-
able property pv: ag′Ev = {〈action completed,〈observeProp(arid,arn), pv〉〉}.
Remark: Actions related to environment observation do not affect artifact con-
figurations. observeProp action in particular does not change any structure of the
artifact configuration.

5.3.4 Agents Joining and Leaving Workspaces
Once multi-agent system including multiple workspaces are of concern, agents are
allowed to dynamically join and quit a workspace, possibly working in multiple
workspaces at a time. Two actions are provided to agents in order to enter and
leave workspaces. To enter in a workspace identified by wsn (workspace name)
agents can execute the action:

joinWorkspace(wsn)

that is, by executing the action the agent receives, in case of success, a unique
agent identifier agid assigned by the workspace.

Definition 15 (join workspace) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration
of the workspace identified by wsn and 〈 ,ags,agEv,agpr〉 the configuration of an

118 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

agent /∈ Ag, thus with an undefined identifier. Being ac = joinWorkspace(wsn) the
action executed by the agent to enter in a workspace and being ev = 〈join req,〈agid, t〉〉
the event indicating the request done by the agent to join the workspace at time t,
then, in case of success the workspace configuration changes as it follows:

ev ∈ Ev triggering(ev,R) =⊥ agid /∈ Ag
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag′,Ar,Art,Ev′,M,R, t ′〉

where:

• The updated set Ag is updated including the joining agent: Ag′ = Ag∪agid

• The updated set Ev includes the event related to the joined agent: Ev′ =
{ws joined,〈agid, t ′〉}, where agid is a fresh identifier.

On the agent side the following transition can be defined:

ev ∈ Ev triggering(ev,R) =⊥
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,ag′Ev,agpr〉

where: ag′Ev = {action completed,〈joinWorkspace,agid〉}. In this case the action
feedback is the fresh identifier agid assigned to the agent.

Dually to joinWorkspace, the quitWorkspace(wsn) is provided to leave a work-
space. This is modeled by a transition rule removing the agent from the workspace
Ag set.

Definition 16 (quit workspace) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration
of the workspace identified by wsn, 〈agid,ags,agEv,agpr〉 the configuration of the
agent. Being ac = quitWorkspace(wsn) the action to leave a workspace and being
ev = 〈leave req,〈agid, t〉〉 an event indicating the request done by Agent agid to
leave the workspace at time t then, in case of success the workspace configuration
changes as follows:

ev ∈ Ev triggering(ev,R) =⊥ agid ∈ Ag
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag′,Ar,Art,Ev′,M,R, t ′

where:

• The updated set Ag is updated including the joining agent: Ag′ = Ag\agid

• The updated set Ev includes the event related to the joined agent: Ev′ =
{ws leaved,〈agid, t ′〉}

5.3 DYNAMICS 119

On the agent side, the following transition can be defined:

ev ∈ Ev triggering(ev,R) =⊥ agid ∈ Ag
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,ag′Ev,agpr〉

where: ag′Ev = {action completed,〈quitWorkspace,⊥〉} and no symbolic action
feedback is provided.

5.3.5 Environment Management and Inspection
A set of actions are provided to agents for changing and exploring the structure of
the environment, for instance by dynamically creating new instances of artifacts,
disposing existing ones, linking and unlinking artifacts, looking up the presence
of some type of artifacts and inspecting the manual of a specific artifact type. A
formal description for these actions is provided in the following sections.

Creating and Removing Artifacts

In order to dynamically create a new artifact the action

makeArtifact(arid,art ,Params)

is provided. It is assumed to create and initialise a new artifact arid since an
artifact type art and given the list of initializing parameters Params. Formally:

Definition 17 (artifact creation) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration
of the workspace and 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the agent.
Being ac = makeArtifact(arid,art ,Params) the action to do, being arid a fresh
identifier for the artifact to be created – which must be unique in the workspace –
art the type, and Params a list of parameters, and being ev = 〈make req,〈agid,reqv, t〉〉,
then:

ev ∈ Ev triggering(ev,R) =⊥
〈artn,artinit ,artpr,man〉 ∈ Art artinit(Params) = (Ui0,P0,V0,Li0,OR0)

〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar′,Art,Ev′,M,R, t ′〉

where:

• Ar′ = Ar∪{〈arid,art ,Ui0,P0,V0,Li0,OR0, /0〉} indicating the new set of ar-
tifacts actually dwelling the workspace.

120 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

• Ev′ = Ev∪ (ar created,〈agid,arid,art, t〉) where the added event indicates
that a new artifact arid has been created by agid at time t, with type art.

On the agent side: ag′Ev = {〈action completed,〈makeArtifact(arid,art ,Params),⊥〉〉}.
In this case the action feedback is ⊥ being the fresh identifier arid a logic name
chosen by the agent and used as an input parameter for the action.

Remarks: (a): The makeArtifact in CArtAgO implementation provides as
an output parameter the (system) identifier of a created artifact given its logic
name. This is not included in the abstract model since we assume arid is a unique
identifier, used for both the logic name and the system identifier.

(b): Agents can create only instances of artifacts whose type is available
in the workspace, and different workspaces can have different set of types, even
different types with the same name.

Artifact disposal is realized by means of a the action:

disposeArtifact(arid)

that is assumed to remove an existing artifact identified by arid in the workspace.
Formally:

Definition 18 (artifact disposal) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration
of the workspace and 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the agent.
Being ac = disposeArtifact(arid) the action to do, where arid the identifier of the
artifact to be removed and being ev = 〈dispose req,〈agid,reqv, t〉〉 then:

ev ∈ Ev triggering(ev,R) =⊥ arid ∈ Ar
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar′,Art,Ev′,M,R, t ′〉

where:

• Ar′ = Ar \{〈arid,art , I,P,V,O〉} indicating the new set of artifacts actually
dwelling the workspace.

• Ev′ = Ev∪〈ar disposed,〈agid,arid,art, t〉〉 where the added event indicates
that an existing artifact arid with type art has been disposed by agid at time
t.

On the agent side: ag′Ev = {〈action completed,〈disposeArtifact(arid),⊥〉〉}. In
this case the action feedback is empty.

5.3 DYNAMICS 121

Linking and Unlinking Artifacts

Two actions are provided to link and unlinking artifacts. To link two artifacts the
action

linkArtifacts(arid,ar′id)

is provided, where arid ∈ Ar is the identifier of the linking artifact (the source) and
ar′id ∈ Ar is the identifier of the linked artifact (the target). If the action succeeds,
the linking artifact can trigger the execution of operations on the linked artifact.
Formally:

Definition 19 (link artifacts action) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the config-
uration of the workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the
agent, and arid,ar′id two artifact identifiers in Ar, with arid 6= ar′id . Being ac =
linkArtifacts(arid,ar′id) the action to do such that arid and ar′id identify two not-
linked artifacts of the workspace, and being ev = 〈link req,〈agid,reqv, t〉〉 then:

ev ∈ Ev triggering(ev,R) =⊥〈arid,ar′id〉 /∈ Lm
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M′,R, t ′〉

where:

• Ev′ = Ev∪〈ar linked,〈arid,ar′id, t〉〉

• M′ contains an updated linkability map, Lm′ = Lm∪{〈arid,ar′id〉}

On the agent side Ev′ = {〈action completed,〈linkArtifacts(arid,ar′id),⊥〉〉}.

Dually to linkArtifacts, the unlinkArtifacts(arid,ar′id) action unlinks two arti-
facts previously linked. This is modeled by a transition rule removing the element
from the link map:

Definition 20 (unlink artifact action) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the config-
uration of the workspace, 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the
agent, and arid,ar′id two artifact identifiers in Ar, with arid 6= ar′id . Being ac =
unlinkArtifacts(arid,ar′id) the action to do in order to remove the link between
arid and ar′id , and being ev = 〈unlink req,〈agid,reqv, t〉〉 then the action succeeds
and:

ev ∈ Ev triggering(ev,R) =⊥ 〈arid,ar′id〉 ∈ Lm
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M′,R, t ′〉

where:

122 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

• Ev′ = Ev∪〈ar unlinked,〈arid,ar′id, t〉〉

• M′ contains an updated linkability map, Lm′ = Lm\{〈arid,ar′id〉}

On the agent side ag′Ev = {〈action completed,〈unlinkArtifacts(arid,ar′id),⊥〉〉}.

Exploring Environment

An action is provided to agents in order to retrieve in the workspace existing
artifacts of a specified type:

lookupArtifact(artn)

The action accounts for retrieving the set of identifiers of all artifacts of type artn
actually existing in the workspace. Formally:

Definition 21 (artifact lookup) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration
of the workspace and 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the agent.
Being ac = lookupArtifact(artn) the action selected by the agent, and being ev =
〈lookup req,〈agid,reqv, t〉〉, then the action completes in the same transition:

ev ∈ Ev triggering(ev,R) =⊥ 〈artn,artinit ,artpr,man〉 ∈ Art
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M,R, t ′〉

where Ev′ = Ev∪ 〈ar looked,〈agid,artn, t〉〉 and the added event indicates that a
look up action has been performed by agent agid for artn – at time t.

On the agent side, the set of events is updated according to:

ev ∈ Ev triggering(ev,R) =⊥ 〈artn,artinit ,artpr,man〉 ∈ Art Arid ⊂ Ar
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,ag′Ev,agpr〉

where ag′Ev = {〈action completed,〈lookupArtifact(artn),Arid〉〉} and the action
feedback is the set Arid of all the artifact identifiers arid such that 〈arid,art , I,P,V,O〉 ∈
Ar.

Remark: The lookupArtifact in CArtAgO implementation retrieves the (system)
identifier of an artifact given its logic name. This is not included in the abstract
model since a unique identifier arid is used for both the logic name and the system
identifier.

5.3 DYNAMICS 123

Inspecting Artifacts

An action is provided to consult the manual of a specific type of artifacts:

consultMan(art)

that is assumed to improve the agent knowledge about the artifact type art , and in
turn improve the agent repertoire with the actions needed to exploit instances of
the specified artifact type. Formally:

Definition 22 (artifact manual consult) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the config-
uration of the workspace and 〈agid,ags,agEv,agpr〉 ∈ Ag the configuration of the
agent. Being ac = consultMan(art) the action to do such that 〈artn,artinit ,artpr,man〉 ∈
Art, and being ev = 〈consult req,〈agid,reqv, t〉〉 the event indicating the request to
consult the manual for an existing artifact type done by agent agid at time t – reqv
identifies the consultMan action, including the artifact type art for the artifact to
be consulted, then the action completes in the same transition:

ev ∈ Ev triggering(ev,R) =⊥ 〈artn,artinit ,artpr,man〉 ∈ Art
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev′,M,R, t ′〉

where the added event indicates that a manual consult action ha been performed
by agent agid for art – at time t: namely, Ev′ = Ev∪〈ar consulted,〈agid,art , t〉〉.

On the agent side:

ev ∈ Ev triggering(ev,R) =⊥ 〈artn,artinit ,artpr,man〉 ∈ Art
〈agid,ags,agEv,agpr〉 −→ 〈agid,ags,ag′Ev,ag′pr〉

where the action feedback is the value of the manual man, and the agpr is improved
with the new knowledge represented in man. In particular:

• ag′Ev = {〈action completed,〈consultMan(art),man〉〉}. In this case the ac-
tion feedback is the man value.

• ag′pr = agpr∪ translate(man),.

Remark: In CArtAgO implementations, the translate function is realized within
the integration technology allowing heterogenous agents to play in the work envi-
ronment. Here the function translate\1 is assumed to translate the informational
content brought by the manual in knowledge processable in terms of the specific
agent model that has been integrated.

124 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

5.3.6 Workspace Time Evolution
Finally, a transition is used to represent the discrete evolution of the logic time
inside the workspace:

〈Ag,Ar,Art,Ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev,M,R, t +1〉

Remark: In concrete implementation, the transition is triggered by the internal
clock of the processor which is executing the workspace.

5.4 Final Remarks on the Formalisation
This chapter presented a formalisation of a general-purpose model for program-
ming environments in MAS based on the notion of agents, artifact and workspaces
as proposed by the A&A approach implemented by the CArtAgO framework.

The abstract model is useful to understand and analyze the features that artifact-
based environments have for environment programming and – more generally –
for programming MAS. A first remarkable feature of the model is that it allows for
the concurrent evolution of agent and artifact configurations which are not related
by some dependency. This promotes the parallel execution of operations affecting
distinct artifacts inside the workspace.

A second property is related to the synchronization between an agent and an
artifact. it happens when an agent executes a use action, which completes only
when (if) the triggered operation completes. However this does not necessar-
ily block the evolution of the agent configuration: this happens only if the pro-
gram specifies that every further agent action – including reactions to environment
events – must be done after the completion of the executed operation. No synchro-
nization occurs instead when an artifact triggers the execution of a link operation
over another artifact.

An important result of the proposed model refers to time management: ex-
ploiting the fact that a single workspace is not distributed, we could define a sin-
gle (logical) notion of time at the workspace level. As showed in this chapter,
for each workspace it is feasible to assume that (i) a local logical notion of time
can be defined, and (ii) observable events occurring the in the workspace can be
totally ordered using logical timestamps, even if they are generated by different
artifacts running concurrent processes. Given this assumption, agents perceive
chains of events, which are totally ordered if the source is a single workspace,
partially ordered if more sub-environments are involved.

5.4 FINAL REMARKS ON THE FORMALISATION 125

Distribution is handled by considering multiple workspaces, each with its own
logical time and possibly running on a different network node. Although not
captured by the model – which is about a single workspace – artifacts belonging
to different workspaces can be linked together, so that an operation executed on
an artifact located in a workspace can have an effect on an artifact located in a
distinct workspace, eventually running on a different network node.

The set of artifact types available in a workspace is defined by the initial con-
figuration, as well as the set of agents working inside the workspace. Actually, the
model could be easily extended by improving the repertoire of agents with new
actions aimed to manage the set of artifact types available in a workspace, thus
enabling agents to add, remove or update a type dynamically.

It is worth to remark that the model has been conceived so to be easily inte-
grated with existing agent formalizations such as in [31, 14, 139]. This enables
future investigation including aspects actually missed in the formal description,
as for instance the ones related to dialogic interactions among agents (as provided
in [36, 130]). The adopted approach also accounts for the formal verification of
global properties of the system built in terms of agents and artifacts, i.e. based on
existing research work as [37].

The presented model revises and extends an already presented formalisation
[124] and includes a new event based execution model which has been already im-
plemented in the last version of CArtAgO. The meanings of the envisaged changes
will be clarified in the next chapter, where a new construct will be introduced to
regulate intra-workspace dynamics. On the basis of the event based mechanism
detailed here, the new construct accounts the possibility to replace the default
transitions with programmable ones.

126 ARTIFACT BASED ENVIRONMENTS: A FORMAL MODEL OF CArtAgO

Chapter 6

Extending CArtAgO with
Intra-Workspace Dynamics

As in Chapter 5 a formal description for an A&A based system has been pro-
vided, focusing in particular on the dynamics at the basis of interactions between
agents and artifacts, in this chapter a complementary mechanism for specifying
global dynamics inside the workspace is introduced. The mechanism involves the
definition of event driven rules governing primer mechanisms inside a workspace
and is aimed at providing a further, pervasive management for the work environ-
ment. Thereby, environment dynamics can be programmed not only on the basis
of the behavior of the single agents interacting with artifacts and workspaces, but
also at a macro level, i.e., defining global workspace laws. This is done by in-
troducing general rules, triggered by environment events, capable to manipulate
the space of events and affect workspace configurations, i.e. triggering operation
on artifacts, creating and disposing artifacts, enabling and disabling operations,
etc.

6.1 Specifying global dynamics inside workspaces

Table 6.1 resumes the configuration of a Multi-Agent System based on the first
class abstraction defined in the in the previous chapters, namely agents, artifacts
and workspaces. In this configuration a MAS can be composed by a series of
workspaces, each containing a set of heterogeneous agents (denoted by Ag, which
structure has been placed in Subsection 5.2.1) and a set of artifacts (denoted by
Ar, as described in Subsection 5.2.2). Along with the unambiguous specification

128 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

MAS = 〈Ws〉
Ws = {〈wsn,〈Ag,Ar,Art,Ev,M,R, t〉〉}
Ag = {〈agid,ags,agEv,agpr〉}
Ar = {〈arid,art , I,O,P,V 〉}

Table 6.1: Structures of a Multi-Agent Systems based on A&A, as it follows from
Subsection 5.2.5.

of basic interactions taking place inside the workspace between agents and arti-
facts, and between agents and workspaces, a new mechanism is introduced in this
chapter in order to control global dynamics inside the environment. The proposed
approach involves the definition of event driven rules, which execution is aimed
at governing primer mechanisms inside a workspace and at providing the environ-
ment developer with a further, pervasive mechanism of management and control.
Such rules, referred as workspace rules, are specified applying sequences of op-
erators to the entities actually dwelling the workspace. Their execution is then
aimed at eliciting additional outcomes once specific events occurs, thus altering
the normal dynamics inside the environment.

After having introduced the general principles underlying intra-workspace dy-
namics in the next sections, Section 6.3 and Section 6.4 formally describe respec-
tively a programming language allowing to specify workspace rules and the ef-
fects of applying them to the environment dynamics. The proposed approach is
enriched by the description of concrete programming examples Section 6.5 and
general remarks rooted in the context of related work Section 6.6.

6.2 Shaping the problem
The definition of global environment dynamics is deemed as an important aspect
of environment programming in the context of this work. It is motivated by the
need to offer the developer with a different level of programming computational
entities used as facilities instrumenting the work environment. Imagine for in-
stance an A&A context requiring to face with the following scenery:

• The developer has the need to specify the access control to artifacts at a fine
granularity, namely by specifying different rights to use artifacts for each
operation defined in their usage interfaces.

• The developer has the need to redirect particular interactions, namely to

6.2 SHAPING THE PROBLEM 129

replace operation requests once an artifact is overloaded, or to create new
instances of a given artifacts once the one actually in place is is blocked.

• The developer has the need to enable or disable the use of specified arti-
fact operations for a specified agent, once its behavior is supposed to be
suspicious.

In cases like the abovementioned, an environment framework should provide
mechanisms to adapt global dynamics of the environments based on the actual
needs, thus allowing the developer to use some grade of freedom in specifying,
at design time, alternative functioning inside the workspace once particular situ-
ations occurs. In such a case, in order to avoid undesired outcomes and maintain
the global coherence of the system, the developer may want the use of certain arti-
facts to be prevented, or he/she may want to redirect the related operation requests
to an alternative resources, and so on.

To this end, we argue that the framework should provide some effective mech-
anism to control environment dynamics at a macro level, namely besides the spec-
ification of the interactions which may occur at the micro level between the single
decentralised structures (artifacts) and the single individuals (agents). This kind of
management requires the capability for a direct and powerful intervention on the
overall set of environment entities. This capability should allow to control the in-
volved entities at a global level, while its deployment and the management should
be as much automated as possible, i.e., without requiring a human intervention,
nor to stop the system and change its programs.

6.2.1 Programming approaches
In order to meet these requirements in the context of an A&A based model, differ-
ent approaches can be adopted. A first approach may involve the introduction of
specific agents to which the task to govern environments could be delegated. This
option envisages the adoption of environmental agents, namely worker agents
which task is to regulate and adapt internal workspaces dynamics according to
defined policies. Those agents would have in charge the task to regulate the work
environment, thus having access to an additional set of operations aimed at modi-
fying the workspace structures—working inside the systems with the capabilities
deemed for a sort of super user. Although the adoption of an agent with these char-
acteristics is still possible according to the programming model provided in the
previous chapters, this choice conflicts with the dictates of A&A meta-model, ac-
cording to which an agent abstraction does not properly address the task to provide

130 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

environment functioning. In fact, managing environment dynamics does not need
traditional properties of agency like autonomy, goal orientation, encapsulation of
control, social ability, proactiveness, etc. In A&A terms, agents are assumed to
exploit environment facilities more than autonomously govern their global func-
tioning. More than being associable to agent “black boxes” hiding their inter-
nal specification and providing an autonomous behavior, environment dynamics
should be governed by fixed laws. The specification of such laws should be in-
spected, possibly learned and also changed by other participating agents. Namely,
specifying environment dynamics should be an agile task for system administra-
tors (either computational either human ones): global laws should be changed on
the fly, while introducing changes in environment dynamics should be allowed
either at design time and at run time.

A second approach may involve the adoption of embedded artifact function-
alities to govern the whole environment. This option envisages the sole use of
artifacts in order to automatically manage global environment dynamics. This
is possible according to the computational model of artifacts, adopting, for in-
stance a massive use of link operations, that, as said, enables functional relations
between different artifacts. In this case, the specific events or states occurring
inside artifacts may be propagated across links and then handled from artifact to
artifact, as described in previous chapters. On the other hand, artifacts in A&A
are viewed as decentralised entities, namely building blocks instrumenting work
environments with special purpose functionalities. Making a massive use of link-
ing between artifacts has the drawback to “pollute” artifact computational model:
namely, involved artifacts should be programmed not only to serve the purpose for
which they are conceived at design time, but also to manage operation links, that
is to relate and possibly react to several events occurring in other part of the en-
vironment. This, in practice, drastically augment the coupling between different
artifacts as the resources needed both to request and serve link operations have to
be embedded inside an artifact program. Accordingly this option implies the need
to provide additional logics to artifacts, making them tight coupled to the applica-
tion domain, thus resulting in highly compromising some wide adopted principles
of software engineering as reuse, separation of concerns, data hiding etc.

An alternative approach has been proposed in the context of coordination
models as Agent Coordination Context (ACC), a runtime tool to control agent-
environment interaction [92]. ACC has been inspired by the notion of “cockpit”,
or control panel, which has been be reified inside a MAS as a programmable inter-
face exploitable by agents to interact with environments. It works at further medi-
ating interactions, hence regulating, from time to time, what actions the agent can

6.2 SHAPING THE PROBLEM 131

do and what perceptions are received. This allows an high separation of coordi-
nation concerns: from an agent/subjective perspective an ACC can rule individual
agent (inter)actions; from a system/objective perspective, an ACC can be used
to enforce global laws of the systems, i.e. providing access control, redirecting
actions to a different target resource etc.

Whereas the approach is suitable to control micro level interactions involving
agents and environment resources, specifying global laws would be not an easy
task. A possible drawback is here the need to manage many decentralised ACCs at
runtime, namely one for each agent entering the system. This requires to program
a pool of ACCs, each responding at the same rules and concurrently operating on
the same environment resources. In practice, this approach shift the problem of
coordinating a set of environment entities to coordinating a set of ACCs.

In this work, in order to leave the management of global environment dynam-
ics outside agents and artifacts abstractions, a different approach is envisaged. The
idea is to provide the macro level dynamics inside the environment as an orthogo-
nal aspect with respect to the management of micro level interactions. As a conse-
quence, the approach is deemed to let global management of environment outside
the scope of agents and artifacts. Otherwise, we argue that specifying such mech-
anisms has to be explicitly defined as a separate task, rather than entangling it with
the programming model defining artifacts and agents. The approach envisages the
introduction of global laws which can be viewed as a sort of “connective tissue”
for the overall work environment. On these basis, the workspace machinery is
enriched with a separate mechanism, governed by a rule based engine. Such rules
define “physic” laws of the system and are introduced as a programmable part of
a workspace aimed at ruling over the overall interaction space.

6.2.2 Workspace Rules

An important assumption made in the previous chapter was the pivotal role played
by events in defining the workspace dynamics: as showed by the operational se-
mantics described in Chapter 5, in a workspace an event is always a signal of
change (i.e. the request made by some agent to use an operation, the execution of
an operation step, the change of some observable property, an agent joinin/leaving
the workspace, etc.). As far as the computational model has been conceived, work-
space events are used to trigger workspace transitions, while chains of events can
be sequenced to trace series of state transitions.

Workspace Rules are programming constructs allowing to specify alternative
relations between events, hence they are aimed at manipulating the workspace

132 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

in the domain of events. This can be done by replacing the default transitions
(as they have been envisaged in the previous chapter) with programmable tran-
sitions. Taking the physical metaphor, since the occurrence of a certain action
typically performed by an agent, a workspace rule provides a mean to trigger a
programmable reaction, which in turns is aimed at applying a set of “forces” ca-
pable to affect other structures inside the environment1.

In the characterization of rules described by John Searle [127, 128] workspace
rules – applied inside a MAS work environment – resemble the notion of reg-
ulative rules, namely rules aimed at regulating antecedently existing forms of
behavior. As in the case of regulative rules, workspace rules settle pre-existing
functionalities—when the existence of these functionalities is logically indepen-
dent from the existence of the rules themselves. As in the case of regulative rules,
the regulatory mechanism of a workspace rule is given in an imperative fashion.
As will be described in Section 6.3, workspace rules are specifiable as event-
condition-action (ECA) rules, having the form “if ev in the context c apply a”
or “when ev in the context c apply a”.

Figure 6.1 shows an example of workspace regulated by workspace rules. The
figure represents a workspace populated by agents using and observing artifacts.
Some of the events generated on the basis of such interactions are in this case
intercepted by workspace rules, which in turns trigger the execution of reactions
further addressed at acting upon environment structures

Different kind of operators can be specified along with workspace rules. Ta-
ble 6.2 shows a meaningful set of possible workspace rule operators. We here
consider, for simplicity, those operators which are worth to be taken into account
hereinafter in the context of this work, while the definition of additional operators
is demanded to future works. A first type of operators in Table 6.2 involves con-
structs allowing to trigger the execution of operations on specified artifact inside
the workspace (1-2 in Table 6.2). The second group includes operators to create
or remove artifacts in the actual workspace configuration (operators 3-4). The
third group considers operators aimed at preventing or enabling the use of partic-
ular operations in a specified artifact (operators 5-6). Finally, two operators are
specified to take out or include an agent from the actual workspace configuration
(operators 7-8) .

Some assumptions are needed to define the scope of applicability of the work-

1The adoption of the term “forces” stresses the analogy with classical physics: workspace rules
may resemble, in the computational context of an A&A system, what Newton’s laws of motion
represent in explaining mechanics [86], or Kepler’s laws of planetary motion are in explaining
laws of universal gravitation [74].

6.2 SHAPING THE PROBLEM 133

WORKSPACE
LAWS Om Lm Um

LINK OPERATION
OPERATION
OBSERVABLE PROPERTY

ARTIFACT

AGENT

ACTION
PERCEPTION

Legend

WS OPERATOR

LINK
Workspace Kernel

Workspace

Figure 6.1: Example of workspace dynamics regulated by workspace rules.

(1) applyOp(arid,opname [,Params])
(2) applyLop(arid,opname [,Params])
(3) make(arid,artn [,Params])
(4) dispose(arid)

(5) disable(arid [,agid] {,opname})
(6) enable(arid [,agid] {,opname})
(7) exclude(agid)

(8) include(agid)

Table 6.2: Basic operators specifiable as workspace rule reactions in CArtAgO.

space rules. In particular we need to make assumptions about time management,
rules execution and possible failures in order to prevent inconsistencies and guar-
antee the global coherence of the system.

Time By exploiting the fact that a single workspace is not distributed across dif-
ferent nodes, it was possible to define a single notion of (logical) time at
the workspace level. As explained in Chapter 5, this allowed events inside a
workspace to be marked according to the specification of a timestamp. The
time model adopted allows for events to occur at the same logical time.

Atomic Execution The reactions specified in the body of a workspace rule are
executed sequentially as they are specified in the body. The execution of the

134 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

whole set of reactions in the body is envisaged to be atomic, hence all the re-
actions specified within the body of the rule, as well as any of the multi step
operations triggered upon artifacts, have to complete before allowing fur-
ther activities inside the workspace. Accordingly, all the involved resources
inside the workspace are locked until the execution of the rule completes:
in order to prevent concurrency and inconsistencies with other ongoing ac-
tivities, all the involved artifacts are locked until the completion of the all
the reactions specified in the body.

Failures The execution of the body of a workspace rule can complete with success
or failure according to the execution of the involved reactions. In particular,
the triggered rule has to be considered failed as soon as the application of
one of the operators specified in the body of the rule fails. In order to prevent
inconsistencies, in case of failure the global state of the workspace has to
be reconfigured as it was before the partial execution of the rule, at the time
in which the rule was triggered.

Agent Autonomy Workspace Rules are conceived to specify and enact particular
dynamics inside the workspace. Those dynamics are applied to the entities
actually dwelling the workspace without affecting agent’s autonomy.

In what follows a language for specifying workspace rules is provided firstly
introducing a formal syntax and then providing a description of the execution
model in terms of operational semantics.

6.3 Sintax
Workspace Rules are programs collected at the level of the single workspace and
stored in what we placed as the set R in the workspace configuration (see Sub-
section 5.2.3 for the complete description of a workspace configuration). The
defined rules can intercept specified events collected at the workspace level (ac-
tually, events added in the workspace Ev set). The triggering events are specified
in the left-hand side of the workspace rule. Whether a specified context condition
holds, the right-hand side of the rule rule can be applied and the execution of the
related script is triggered. In so doing, workspace rules can be specified as reac-
tions to workspace events, each reaction specifying a list of operator constructs
aimed at modifying the workspace event set and, as a consequence, at practically
elicit changes in the global configuration of the workspace configuration.

6.3 SINTAX 135

〈R〉 = {〈w entry〉}
〈w entry〉 = 〈rid ,w rule〉
〈w rule〉 = 〈trigg ev〉[":"〈context〉] "->" 〈body〉
〈trigg ev〉 = "+"〈ev〉

〈ev〉 = 〈evt〉 "(" 〈evv〉 ")"
〈context〉 = "true" | 〈ctx exp〉 | "(" 〈ctx exp〉 ")"

| 〈ctx exp〉 "&" 〈ctx exp〉 | 〈ctx exp〉 "|" 〈ctx exp〉
〈body〉 = "true" | 〈wr operator〉 [";" 〈wr operator〉] "."
〈evt〉 = "op req" | "linkop req" | "focus req" | "obs req"

| "stopFocus req" | "link req" | "unlink req"
| "make req" | "dispose req" | "lookup req"
| "join req" | "leave req" | "consult req"
| "op signal" | "op ongoing" | "op completed"
| "op failed" | "ar created" | "ar disposed"
| "prop observed" | "prop updated" | "prop new"
| "prop removed" | "ar looked"| "ar consulted"
| "ar focused" | "ar unfocused" | "ar linked"
| "ar unlinked" | "ws joined" | "ws leaved"

〈evv〉 = 〈list o f terms〉
〈ctx exp〉 = 〈wr exp〉 | "not" 〈wr exp〉

| 〈wr exp〉 〈ar op〉 〈wr exp〉
〈wr exp〉 = 〈prop exp〉 | 〈term〉
〈prop exp〉 = 〈term〉 ":" 〈obs prop〉
〈obs prop〉 = 〈pn〉 "(" 〈pv〉 ")"

〈pn〉 = 〈term〉
〈pv〉 = 〈list o f terms〉

〈wr operator〉 = "skip" | 〈applyOp〉 | 〈applyLop〉 | 〈make〉
| 〈disable〉 | 〈enable〉 | 〈exclude〉 | 〈include〉

〈applyOp〉 = "applyOp(" 〈list o f terms〉 ")"
〈applyLop〉 = "applyLop(" 〈list o f terms〉 ")"
〈make〉 = "make(" 〈list o f terms〉 ")"

〈dispose〉 = "dispose(" 〈list o f terms〉 ")"
〈disable〉 = "disable(" 〈list o f terms〉 ")"
〈enable〉 = "enable(" 〈list o f terms〉 ")"
〈exclude〉 = "exclude(" 〈list o f terms〉 ")"
〈include〉 = "include(" 〈list o f terms〉 ")"
〈ar op〉 = ">" | ">=" | "<" | "<=" | "==" | "!=" | "mod" | "div"

〈list o f terms〉 = 〈term〉 {","〈term〉}
〈term〉 = 〈atomic f ormula〉 | VAR | NUMBER | ST RING

〈atomic f ormula〉 = ATOM ["("〈list o f terms〉")"]

Table 6.3: Syntax of workspace rules in CArtAgO

136 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

Table 6.3 shows the syntax description for the language used to specify work-
space rules. Non terminal symbols are enclosed by 〈〉. A Workspace Rules is
an entry in the set R specified in a workspace configuration. Each rule is com-
posed by a triggering event 〈trigg ev〉 possibly followed by a context condition
〈context〉 (forming together the activation condition, i.e. the antecedent of the
workspace rule) and by a 〈body〉 specifying the sequence of operators to be ap-
plied (representing the consequent of the workspace rule). Each triggering event
is preceded by a "+" symbol, and is composed by an event type and by an event
value. Elements 〈evt〉 belong to a finite set of event types and in Table 6.3 are
listed according to the events processed inside a workspace (as listed in the tables
of Section 5.2). Event values 〈evv〉 are list of terms including the informational
content related to the event. Context expressions are first order formulae including
expressions related to artifact observable properties (〈prop exp〉). Each property
expression can be specified since an artifact identifier, followed by the terminal
symbol ":" and by an observable property 〈obs prop〉. Observable properties are
then defined since a property name and value (〈pn〉 and 〈pv〉), which refer respec-
tively to terms and list of terms. The list of applicable operators 〈wr operator〉 can
include one of the operators envisaged in Table 6.2 ("skip" means no operator
applied). Finally, 〈list o f terms〉 can be sequences of atomic formulae, variables,
numbers as well as integers or floating point, and strings. Non-terminals symbols
as ATOM,VAR,NUMBER and ST RING are not included in the specification for
brevity: they refer to the corresponding data types as used in Prolog, namely pred-
icates, variables, numbers and literal compound terms.

After having discussed the semantic aspects related to workspace rules, Sec-
tion 6.5 shows programming examples of their application.

6.4 Dynamics
Before describing the transition involving workspace rules, some definition need to
be specified. In particular, the definition for the global workspace observable state
ArP and for the triggering function are provided. In what follows the operator |=
is used to model a first order entailment relation according to most general unifier
function — the concrete implementation of this relation makes use of a Prolog
like engine to provide unification of variables.

We define the global workspace observable sate in terms of artifacts observ-
able properties, namely indicating environment states through what agents may
observe in the overall workspace. Formally:

6.4 DYNAMICS 137

Definition 1 (workspace observable state) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the con-
figuration of the workspace. For each artifact ar ∈ Ar we define the overall work-
space observable sate as:

ArP =
⋃

ar∈Ar

Par

In other words, the workspace observable state is the summation ot the entire set of
the observable properties contained in that workspace, considered for each single
artifact in Ar.

For each event collected in the workspace in Ev, we also define a triggering
function in terms of the effects that the event has on the set R of workspace rules.
In particular, given the configuration of R and given an event in Ev, the trigger-
ing function returns the entry of the rule that matched the event, if any, and ⊥
otherwise. Formally:

Definition 2 (triggering function) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configura-
tion of the workspace, ArP the set of all observable properties for the artifacts in
Ar. Let trigg ev : context -> body be the specification of a w rule being
〈rid,w rule〉 an associated entry in R. Being ev be an event in Ev, being trigg ev
specified in R and being Uni f y(ev, trigg ev) a function that returns the most gen-
eral unifier of ev and trigg ev if they are unifiable, otherwise it returns ⊥, then the
function triggering(ev, R) is defined as follows:

triggering(ev,R)=


〈rid,w rule〉, if ∃ τ1,τ2 : Uni f y(ev, trigg ev) = τ1

& ArP |= contextτ1τ2
& 6 ∃ev′ : ev′ = ev, triggering(ev′,R) 6=⊥

⊥, otherwise

Namely, if exist substitutions τ1 and τ2, so that Uni f y(ev, trigg ev) = τ1 and
ArP |= contextτ1τ2, and if the same event has not been applied formerly for trigger-
ing a workspace rule, then triggering(ev,R) = 〈rid,w rule〉. Otherwise the function
is not defined and triggering(ev,R) =⊥.

Since the event ev triggering a workspace rule has to be reapplied to the sys-
tem to trigger further transition not involving workspace rules, we need to check
whether the event has not been applied previously to trigger the same rule. This
control is carried out by the triggering function: as far as this function has been
defined, the condition triggering(ev′,R) 6=⊥ prevents the application of the same
event for multiple execution of the same rule. The effect of this condition, in

138 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

particular, is twofold: first, it prevents multiple application of the same rule for
the same event; second, it prevents the application of multiple rules for the same
event.

Notice also that the substitution τ1 is applied to the context condition of the
rule before testing it against the workspace observable state ArP. This results in
a second substitution τ2 that, together with τ1, is then applied to the body of the
rule before executing it. The application of the substitutions to the context and the
body of the rules ensures that the unified value of the possible shared variables are
passed from the head of the rule (trigg ev) to the context condition (context), and
finally to the body reactions.

When an event ev in the workspaces triggers a workspace rule, the context
condition is evaluated against the workspace observable state and, if the condition
holds, the body of the rule is executed atomically. All the specified operators are
executed in a non interleaved way, and, in case of success, the overall systems
changes in a single transition after having applied the entire set of operators in the
order specified in the body.

In the following sections, the effects of the transitions elicited by workspace
rules are formally described. The provided operational semantic focuses on the
different entities of the system involved, respectively taking into account the tran-
sitions for the configuration of workspace, artifacts and agents.

Workspace Rules on Workspace

Definition 3 (workspace rules) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration
of the workspace. Let trigg ev : context -> body be the specification of a
〈w rule〉 where all the variables are fresh, and let be 〈rid,〈w rule〉〉 an associated
entry in R. Being ev an event in Ev, and being triggering(ev,R) a function return-
ing 〈rid,〈w rule〉〉 if exist in R an entry unifying the event ev, and ⊥ otherwise.
Then, the successful execution of w rule will elicit the following transition in the
workspace:

ev ∈ Ev triggering(ev,R) = 〈rid,〈w rule〉〉
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag′,Ar′,Art,Ev′∪ ev,M′,R, t ′〉

The new set of agents Ag′ is updated for each exclude reaction included in the
body of the triggered rule, in particular:

• Ag′= Ag\{〈agid,ags,agEv,agpr〉} for each exclude(agid) specified in body;

6.4 DYNAMICS 139

• Ag′= Ag∪{〈agid,ags,agEv,agpr〉} for each include(agid) specified in body.

Besides, the new set of artifacts Ar′ is updated for each make and for each dispose
reactions included in the body of the triggered rule, in particular:

• Ar′ = Ar∪{〈arid,art , I,P,V,O〉} for each make(arid,art ,Params) included
in body;

• Ar′ = Ar \{〈arid,art , I,P,V,O〉} for each dispose(arid) included in body.

The new set of workspace maps M′ is updated for each enable and for each disable
operators included in the body of the triggered rule. Those operators act by up-
dating the usability map, in particular by adding and removing entries in MUm
thus indicating whether some agents has (or has not) the rights to use a given arti-
fact operation op. By default, every agent has the rights to use any given artifact
operation. An entry In particular:

• M′Um = MUm∪{〈arid,agid,opname〉} for each operation specified by the op-
erator disable(arid,agid,{op}) included in body;

• M′Um = MUm \{〈arid,agid,opname〉} for each operation specified by the op-
erator enable(arid,agid,{op}) included in body.

Finally, the new set of events Ev′ ∪ ev includes both the updated set Ev′ and the
triggering event ev. ev has to be kept in order to be processed by possible other
transitions inside the workspace, given that the function triggering(ev,R) won’t
trigger the same workspace rule for two times. Ev′ is updated including all the
events related to the execution of the reactions included in the body of the trig-
gered rule. In particular, for each operation triggered by a reaction in the body the
following events are added:

• Ev′= Ev∪〈op signal,〈arid,st ,sv, t〉〉, indicating that a signal 〈st ,sv〉 is launched
by artifact arid at time t during the execution of the operation step;

• Ev′ = Ev∪〈op completed,〈arid,opreq, t〉〉, indicating that a triggered oper-
ation succeeded at time t.

Besides, for each change in observable properties elicited by some reaction in the
body of the triggered rule, Ev′ changes as it follows:

• Ev′ = Ev∪〈prop updated,〈arid, pn, pv, t〉〉 indicating that a property pn has
been updated in artifact arid , at time t;

140 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

• Ev′= Ev∪〈prop new,〈arid, pn, pv, t〉〉 indicating that a property pn has been
added in artifact arid , at time t;

• Ev′ = Ev∪〈prop removed,〈arid, pn, pv, t〉〉 indicating that a property pn has
been removed in artifact arid , at time t.

In addition, for each change in the set Ar of artifacts in the workspace elicited by
some reaction in the body of the triggered rule, a related event is added to Ev:

• Ev′ = Ev∪ 〈ar created,〈⊥,arid,att , t〉〉 indicating that an artifact arid has
been created, at time t;

• Ev′ = Ev \ 〈ar disposed,〈⊥,arid,att , t〉〉 indicating that an artifact arid has
been disposed, at time t.

Finally, for each change in the set Ag of agents in the workspace elicited by some
reaction in the body of the triggered rule, a related event is added to Ev, in par-
ticular Ev′ = Ev∪〈ws leaved,〈agid, t〉〉, indicating that the agent agid leaved the
workspace at time t.
Remarks: (a) As far as workspace rules have been defined, the reactions spec-
ified in a body of a workspace rule have priority above all the other transitions.
In addition, the body of a triggered workspace rule is executed atomically and all
the involved artifacts are locked until the completion of the body. As a conse-
quence, all the operations triggered by single reactions must complete before the
completion of the execution of the body and no pending operation steps are al-
lowed before unlocking the control of artifacts. Notice, in this case, the absence
of op ongoing events at the end of the transition elicited by a workspace rule. (b)
In reactions involving creation or disposal of existing artifacts in Ag, the first el-
ement of the event value (evv) is set to ⊥, indicating in this case that the artifacts
are created or disposed by the internal dynamics of the workspace, in spite of the
case where they are created or disposed by some agent acting in the workspace.

Handling failures

Once a failure is generated during the execution of a rule body, the system has to
ensure that the configurations are rolled back to the previous consistent state.

Definition 4 (workspace rules - failures) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the con-
figuration of the workspace. Let trigg ev : context -> body be the speci-
fication of a 〈w rule〉 where all the variables are fresh, and let be 〈rid,〈w rule〉〉

6.4 DYNAMICS 141

an associated entry in R. Being ev an event in Ev, and being triggering(ev,R) the
function returning 〈rid,〈w rule〉〉 if exist in R an entry unifying the event ev, and
⊥ otherwise, then, the unsuccessful execution of w rule will is described by the
following transition:

ev ∈ Ev triggering(ev,R) = 〈rid,〈w rule〉〉
〈Ag,Ar,Art,Ev∪ ev,M,R, t〉 −→ 〈Ag,Ar,Art,Ev,M,R, t ′〉

that is, the workspace structures are maintained unchanged as they were before
the application of the workspace rule.

Remarks: (a) In CArtAgO the failure management is realized by making a copy
of all the entities involved in the execution of a workspace rule. In order to restore
the system, as soon as a failure is registered, the system makes a roll back to the
previously consistent state: In other terms, once a failure occurs during the exe-
cution of a workspace rule the copy is restored in order to re-establish a consistent
configuration.

Workspace Rules on Artifacts

Artifacts are affected by the execution of workspace rules if they are involved in
one or more reactions specified in the body of the rule.

Definition 5 (workspace rules - artifact) Let 〈Ag,Ar,Art,Ev,M,R, t〉 be the con-
figuration of the workspace and 〈arid,art , I,P,V,O〉 ∈ Ar the configuration for an
artifact arid ∈ Ar. Let trigg ev : context -> body be the specification of
a 〈w rule〉 where all the variables are fresh, and let 〈rid,〈w rule〉〉 an associated
entry in R. Being ev be an event in Ev, and triggering(ev,R) a function return-
ing 〈rid,〈w rule〉〉 if exist in R an entry unifying the event ev, and ⊥ otherwise,
then the successful execution of w rule will elicit the following transition in the
artifact:

ev ∈ Ev triggering(ev,R) = 〈rid,〈w rule〉〉 dispose(arid) /∈ w rulebody

〈arid,art , I,P,V,O〉 −→ 〈arid,art , I,P′,V ′,O〉

The artifact observable properties P may change according to the execution of the
body of the triggered rules. In particular the transition may elicit the update to
from P to P′, where:

• P′ = P∪ 〈pn, pv〉 for each property pn added due to the execution of the
body operators.

142 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

• P′ = P \ 〈pn, pv〉 for each property pn removed due to the execution of the
body operators.

• P′= P\〈pn, pv〉∪〈pn, p′v〉 for each property pn updated due to the execution
of the body operators.

As in the execution of operation steps described in Section 5.3, the transition
may also affect the artifact interface I and the artifact internal variables V . These
changes are due to the particular specification provided by the artifact program
artpr.
Remarks: (a) As said, the body of a triggered workspace rule is executed atom-
ically, no pending operations are allowed at the end of the transition. As a con-
sequence, no op ongoing events can be present in Ev at the end of the transition
elicited by a workspace ruleand the artifact set O remains unchanged. (b) The exe-
cution of a dispose(arid) operator in the body of the triggered rule simply removes
the artifact arid from the workspace. In this case the transition is not defined for
the artifact arid .

Workspace Rules on Agents

Agents are affected by the execution of a workspace rule if they are focusing the
involved artifacts according to the actual state of the observability map Om ∈M.
The effects of the transition elicited by a triggered entry in R are in updating the
set of events collected by agents:

agEv −→ ag′Ev

The new event set ag′Ev can be described by the summation of the effects that
each operator pushes within the environment. Each operator applied by a work-
space rule elicits a series of events which are described on the same basis of the
transitions elicited by the operations described in Chapter 5.

6.5 Workspace Programming Examples
In order to give a concrete example of programming workspaces with workspace
rules, in this section some simple applications are presented. In what follows,
a simple composition of a counter infrastructure and a modified version of the
producers consumers scenario are described.

6.5 WORKSPACE PROGRAMMING EXAMPLES 143

class Counter1 extends Artifact

{

....

@OPERATION void inc(){

int c =

getObsProperty("count").intValue();

int newc = c + 1;

if((newc % 2) == 0)

triggerLinkedOp("C_e", "linkedInc");

else

triggerLinkedOp("C_o", "linkedInc");

updateObsProperty("count",

newc);

}

}

class Counter2 extends Artifact

{

....

@LINK void linkedInc(){

int c =

getObsProperty("count").intValue();

int newc = c + 1;

updateObsProperty("count", newc);

}

}

Figure 6.2: (left) Counter1 artifact type is used to maintain a global count used
by agents. The logic to link an external operation has to be included inside the
inc operation. (right) Counter2 artifact type has to include a link operation in
order to be linked by Counter1 and count even or odd numbers only.

6.5.1 A Counter Infrastructure
Imagine to instrument a workspace with a simple counter infrastructure aimed at
providing, besides a simple counter exploitable by agents, also a couple of observ-
able properties indicating how many even and odd numbers have been counted so
far. A first design choice would be to build a centralized artifact displaying three
different observable properties, namely general count, even count and odd count.
Whether we want a decentralised infrastructure, we may use the possibility to link
the artifacts together, so to have a first counter (C a) maintaining the global count
and feeding two additional counters (C e and C o) displaying respectively the even
and odd count properties. In this case, the adoption of the link operation may lead
the programmer to use two different artifact types, as Counter1 functioning as a
master, and Counter2 functioning as a slave. An excerpts of the CArtAgO im-
plementation for Counter1 and Counter2 is showed in Figure 6.2. In particular,
within the inc operation provided by Counter1, two link operations must be trig-
gered on C e or C o (whether the global count is respectively even or odd). Then,
a specific Counter2 type has to be programmed to serve link operations, so to be
triggered by the counter master.

The same problem can be suitably handled with the sole counter type defined
in Subsection 4.3.1 by using workspace rules. In doing so, a couple of simple
reactions can be specified to deviate events related to the master property update.
Those events elicit the application of an apply operator triggering the Inc opera-
tion – respectively on C e and C o – as it follows:

144 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

+prop_updated("C_a", count, N)
: N mod 2 == 0
-> apply("C_e", Inc).

+prop_updated("C_a", count, N)
: true
-> apply("C_o", Inc).

Besides the extreme simplicity of this solution, the improved separation of con-
cerns, and the possibility to straightforwardly change the functioning of the whole
infrastructure by simply changing the related workspace rules, the main conve-
nience is, in this case, the possibility to fully reuse basic artifacts already available,
without intervening on their programs.

6.5.2 Producers Consumers

As a second application showing the benefits of workspace rules we describe a re-
vised version of the producers consumers scenario, which assumes to coordinate
the activities of a set of producer agents providing some information item which
has to be processed by a set of consumer agents. As described in Subsection 4.5.1,
a Bounded Inventory artifact can be deployed in a workspace in order to mediate
the interaction between agents. Introducing a Bounded Inventory artifact results
in promoting coordination and synchronization of agents activities. In this case
we aim at augmenting the environment support by providing an adaptive infras-
tructure to agents, namely an artifact based infrastructure which can be adapted
according to special rules triggered by events occurring in the workspace. To this
aim, an additional counter artifact is deployed, with the aim to count the total num-
ber of agents actually present in the workspace. As seen in Subsection 4.4.2, the
counter artifact has a usage interface operation inc. We here introduce a second
operation in the counter Ui, that is a dec operation to be used to decrement the
count value. Given the described functioning, a couple of workspace rule entries
can be specified at the workspace level in order to reckon the actual amount of
agents actually present in the workspace and react accordingly. These rules are
triggered every time agents join or leave the workspace:

+ws_joined(AG_id)
: true
-> applyOp("Counter", inc).

+ws_leaved(AG_id)
: true
-> applyOp("Counter", dec).

The body of the former rule contains an operator that simply triggers the execu-
tion of a inc operation on the counter. Besides, the reaction applied by the second
rule elicits the execution of a dec operation on the counter. This makes it possi-

6.5 WORKSPACE PROGRAMMING EXAMPLES 145

inc

count 3

put

n_intems 7

get

PRODUCER
AGENTS

CONSUMER
AGENTS

inc

count 8

PRODUCER
AGENTS

CONSUMER
AGENTS

put

n_intems 15

get

BoundedBuffer

put

n_intems 0

get

BoundedBuffer

BoundedBufferCounter Counter

WORKSPACE
LAWS Om Lm Um

Workspace Kernel
WORKSPACE

LAWS Om Lm Um

Workspace Kernel

Figure 6.3: (Left) Producers Consumers modeled in artifact based workspace pro-
grammed with workspace rules. (Right) Once the number of agents reach a given
threshold a workspace rule is triggered, and a new buffer artifact is automatically
created in order to balance the computational load required for item exchanges.

ble to maintain an updated value of the amount of agents actually present in the
workspace, while this value is also displayed by the count observable property.

A second workspace rule provides reactions every time the count reaches a
multiple of N, where N is a fixed threshold (8 in this case). This control is entailed
by the context condition specified by the rule, that in turns checks wether the
actual amount of agents is multiple of N or not. The reaction in this case is applied
for creating a new instance of Bounded Inventory and adopts a make operator:

+prop_updated("Counter", count, N)
: N mod 8 == 0
-> make(BB_id, BoundedBuffer).

Such a simple program helps in balancing the computational load needed for item
exchange: creating a new Bounded Inventory every time the overall group of
agents augment of a given amount allows the system to maintain a fixed ratio
between the number of agents and the resources (artifacts in this case) exploitable
to fulfill the task.

146 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

6.6 Final Remarks on Intra-Workspace Dynamics

Programming intra-workspace dynamics involves multiple entities of the system,
in so doing providing a mechanism of “crosscutting concerns” that may resemble,
at an agentive level of abstraction, the one proposed in object oriented approaches
by Aspect Oriented Programming (AOP) [75]. As aspects in AOP are assumed
to alter the behavior of the base code (the non-aspect part of a program) by ap-
plying advices (additional behavior) at various join points, workspace rules are
assumed to alter and transform the basic dynamics inside artifact based work envi-
ronments. As AOP allows to modularise particular aspects of a complex program,
where crosscutting functions are spread over a number of unrelated computational
objects and components, workspace rules make possible to relate particular se-
quences of events scattered inside the workspace and originating since multiple
agent activities. As AOP allows to prevent mixing several auxiliary aspects tan-
gled with the basic functionality for which a component has been built for (i.e.,
its business logic concern), workspace rules allows to glue together events and
changes occurring in different artifacts which initially have not been conceived
to work together. For what concerns the scope of this work we here only remark
that both AOP and workspace rules seems to fit the same family of programming
issues. A most detailed comparison between the two approaches is behind our
target challenges, and is let to future research.

As far as artifacts were introduced in MAS research, their main concern was
about providing coordinating functionalities for easing agent activities [100]. In-
deed, being entities shared and concurrently used by agents, artifacts are sup-
posed to promote coordination between agents. Thereby, they can be straight-
forwardly deployed to instrument work environments as part of a coordination
media, namely functioning as coordination artifacts. The use of coordination
media is particularly relevant in all such contexts or problems where it is useful
to adopt an objective approach to coordination as opposed to subjective approach
to coordination [95, 115]. Whereas in subjective coordination approaches the
coordination aspects are in charge of agents, typically objective coordination is
reached by encapsulating the states and the rules defining the coordination poli-
cies in some proper controllable medium, that is placed as part of the system, out
of the “minds” of agents. Objective coordination is particularly useful when: (i)
the coordination laws are stable and the objective is to automate the coordination
process as much as possible, thus minimizing the costs for coordination; (ii) There
is no need of negotiation among the participants, which are even not required to
know or understand the overall coordination strategy; (iii) the coordination rules

6.6 FINAL REMARKS ON INTRA-WORKSPACE DYNAMICS 147

must be enforced besides the individual behavior of the participants (prescriptive
coordination), but without violating their autonomy (i.e. control of their behavior).
In our case, this is achieved by designing proper coordination tools as artifacts that
agents create, share and use at runtime.

Workspace Rules can be seen as a further step in this direction as their adop-
tion can be justified by the need to explicitly manage global coordination laws
at the workspace level. In this view, programming workspaces with workspace
rules provides a new degree of freedom for developers, defining a “locus” where
to encapsulate global coordination mechanisms, which effects span from the sin-
gle artifact functioning and reaches the boundaries of a workspace, viewed as the
logical container of an application based on agents and artifacts. The coordination
media approach can also be adopted to face those evolutionary and unpredictable
aspects of open and complex systems (among others, this approach is followed
in Casadei [21]). In these contexts, the overall coordination policies need to be
changed at runtime, possibly without requiring to re-program from scratch the
entities actually dwelling the work environment. Besides agents’ capability to
replace artifacts at runtime, or to inspect and possibly change/adapt artifact func-
tioning, workspace rules provide an additional degree of control, exploitable either
by agents and by developers to adapt on the need the rules governing the work-
space.

This chapter concludes the part of the thesis addressed at programming en-
vironments in agent systems. The same aprroach who has lead at the definition
of environmental infrastructures is pushed in the next part of the thesis, where an
explicit organizational perspective will be taken in order to to realize objective
patterns of coordination among agents.

148 EXTENDING CArtAgO WITH INTRA-WORKSPACE DYNAMICS

Part III

Developing Organizational
Infrastructures based on Artifacts

Chapter 7

Programming Organizations in
Practice

This part of the thesis adopt an organization programming perspective to define
those infrastructures inside the MAS to be exploited by agents for organizational
purposes.

This chapter in particular envisages a programming model defining an or-
ganizational entity to be deployed as a concrete framework which agents can
interact to in order to exploit organizational services. On the basis of the well
suited Moise organizational modeling language, a concrete example of organiza-
tion will be sketched, according to a specification given along different conceptual
dimensions. According to the specification of a concrete use case the program-
ming model for a concrete organizational entity is provided, including the nor-
mative programming language addressed at specifying the overall organizational
dynamics.

7.1 Taking the Organization Programming Perspec-
tive

On the basis of an organizational specification given along different conceptual
dimensions, this chapter envisages a design model aimed at building concrete or-
ganizational entities to be deployed inside the MAS. The proposed model aims
at introducing the basis for a concrete infrastructure which agents can interact in
order to exploit organizational services. The approach taken in this chapter to
specify an organizational entity adopts a methodology and a related technology

152 PROGRAMMING ORGANIZATIONS IN PRACTICE

based on the Moise model. It follows and extends a research line that, in recent
works by Hübner et al., leads to de definition of Organization Management Infras-
tructures [67, 63, 61, 62].

As introduced in Subsection 2.3.1, the specification of an organizational en-
tity according the Moise approach is conceived in two phases. In a first phase
the organization is designed by using an OML representation specifying in ab-
stract terms the different dimensions and the relationships between the involved
entities. In a second phase, such an abstract specification is translated to a norm
based language (NPL) which in short can be fed to a the components capable to
interpret and manage norms at runtime. Following the same approach, in the first
part of this chapter the Moise Organization Modeling Language (OML) - already
described in abstract terms in Chapter 2 - is adopted to define an abstract organiza-
tional specification in the context of a concrete case study. Moise is envisaged to
collect and express specific constraints and cooperation patterns that the system
developer (or the agents themselves) have in mind, thus resulting in an explicit
program that can be referred as the organization specification (OS). The realiza-
tion of a Moise OML specification is discussed in Section 7.2, taking the reference
scenario as guideline.

The second part of the chapter (Section 7.3) describes the mechanisms origi-
nating an equivalent organizational specification, translated from the Moise OML
and based on norms and institutional facts. Such a normative specification will be
adopted to directly manage organizational entities, once they are deployed inside
the system.

Finally, Section 7.4 concludes the chapter by discussing its contributes in the
context of the rest of work.

7.2 Using Moise for modeling a concrete Organiza-
tional Entity

The Moise is a suitable programming model aimed at unifying different aspects
underlying an organizational entity into an unified Organizational Modeling Lan-
guage (OML) [65, 64]. As introduced in Section 2.3, the model provides a sepa-
rate scope for each dimension, providing a unifying approach supporting the spec-
ification of the whole organization. In particular, Moise is characterized by the
complete independence between the first two dimensions (functional and struc-
tural ones), which are related to the third one (the deontic dimension) by mean of

7.2 USING Moise FOR MODELING A CONCRETE ORGANIZATIONAL ENTITY153

norms.
Throughout this section the example of an hospital surgery scenario will be

used to illustrate and clarify the Moise-OML. The scenario resembles an ambula-
tory room as an open system, where heterogenous agents can enter and leave in
order to fulfill their purposes. In particular, two types of agents are modeled as
organization participants. Staff agents (namely physicians and medical nurses) are
assumed to cooperate each other in order to provide medical assistance to visitors.
Accordingly, visitor agents (namely patients and escorts) are assumed to interact
themselves in order to book and exploit the medical examinations provided by the
medical staff.

Taking hospital surgery scenario as a test case, the next sections give a brief
description on how the three dimensions can be specified using Moise. In particu-
lar, the Moise graphical notation will be described, while Appendix A includes an
equivalent specification in XML format. A complete description of programming
organizations in Moise is outside the scope of this work, the interested reader can
find more examples and application cases in [65, 64, 60] or in the project web
page [84].

7.2.1 Structural Specification
The Moise Structural Specification (SS) provides the structure for the organiza-
tion in terms of groups of agents, roles that can be played by agents participating
in that group, and links defining functional relations between roles. The struc-
tural specification applied to the hospital scenario is showed in Figure 7.1 using
the Moise graphical notation. It is built in three levels: (i) the behaviors that an
agent is responsible for when it adopts a role (individual level), (ii) the acquain-
tance, communication, and authority links between roles (social level), and (iii)
the aggregation of roles in groups (collective level).

The individual level defines roles that can be played by agents participating the
organization. A role defines the scope for the behavior of agents actually playing
it, thus providing a standardized pattern of behavior for the single individuals.
An inheritance relation among roles can be specified, namely indicating roles that
extends and inherits properties from parent roles. Figure 7.1 presents the Moise
graphical notation for the SS in the context of the hospital scenario. As showed,
a taxonomy of roles is provided. Visitor agents can adopt two roles, patient and
escort, both inheriting from a visitor abstract role. Besides, two roles are defined
since the figure of staff agents. The doctor is the role played by the physician
inside the organization. It extends the properties of a more generic staff role,

154 PROGRAMMING ORGANIZATIONS IN PRACTICE

Staff
Group

Doctor

Staff

1..1

0..1

Visit
Group

Escort Patient

0..1 1..1

inheritance
composition

ROLE
GROUP

acquaintance

communication

authority

compatibility

LINKS INTRA-GROUP EXTRA-GROUP
LEGEND

min..max

Surgery Room
Group

1..10..NVMAX

Visitor

ABS
ROLE

Figure 7.1: Structural Specification for an hospital surgery room using Moise.

which is assigned in support and administration activities inside the team. From an
agent perspective, the adoption of a role is constrained by a compatibility relation
between roles. Hence, an agent can play two or more roles only if the roles to
play are compatible. In the hospital scenario, the patient role is compatible with
the escort role, while the doctor role is compatible with the staff role.

In the social level, a link relation is defined between roles, where each link
relates a source to a target role. An authority link specifies that the source role
has authority on the target role, as for instance the agent playing the doctor role
has authority on an agent playing the staff role. Notice that in Moise graphical
representation the direction of the arrows unambiguously defines which are the
target and the source of a link relation (see Figure 7.1). Besides, communication
and acquaintance links are defined. Communication links allows two agents to
communicate if they play roles with a communication link (as for instance be-
tween patient and escort, and between staff and doctor). The acquaintance link is
similar. In order to simplify the specification, it can be assumed that for every au-

7.2 USING Moise FOR MODELING A CONCRETE ORGANIZATIONAL ENTITY155

thority link there is an implicit communication link and for every communication
link there is an implicit acquaintance link.

In the collective level, the participant agents are divided into groups, which
specification consists in a set of roles and related properties and links. It is possible
to have taxonomies of groups, namely it is possible to specify a set of inner-groups
inside a group. The SS for the hospital scenario groups together escorts and pa-
tients (to form visit groups) and staff and doctor (to from the staff group). The
specification allows intra-group links stating that an agent playing the source role
is linked to all agents playing the target role, in spite of which groups these agents
belong to. In the hospital SS a bidirectional intra-group link is specified, namely
an agent playing the visitor role in the visit group is linked to all agents playing
the staff role in the staff group, and viceversa. The composition of both the groups
types forms the surgery room group, including the overall set of agents participat-
ing the organization. Notice that the cardinalities for agents playing a specific role
inside a group are further specified. In so doing, zero or one single staff posi-
tion can be present at the same time inside a staff group (cardinality range [0..1])
and exactly one position must be covered for the doctor role (cardinality range
[1..1]). Besides, zero or one single escort position can be present at the same time
inside a visitor group (cardinality range [0...1]) and exactly one position must be
covered for the patient role (cardinality range [1..1]). In addition, the cardinal-
ity of groups inside composite groups can be specified. In the hospital scenario,
the global surgery room group may include zero or more visit groups (cardinality
range [0..NV MAX]) and exactly one staff group (cardinality range [1..1]).

A well formed property can be ascribed to a given group once all the con-
straints imposed by the specification are respected. For instance, a well formed
group is a group that i respect the compatibility of roles as it has been defined by
compatibility links; ii respect the range of admissible agents actually playing each
role, as it has been defined by role cardinality; iii respect the amount of inner-
groups, as it as been defined by group; iv respect the number of participant agents
as it has been constrained by a range indicating the minimum and the maximum
number of participant; etc.
To resume, a group specified according to the SS can be defined formally as fol-
lows.

Definition 1 (group) According to the Structural Specification (SS), a group in-
side a Moise Organizational Entity is defined by the elements of the following
tuple:

〈id,R,@,compat,maxrp,minrp,L〉

156 PROGRAMMING ORGANIZATIONS IN PRACTICE

where:

• id is an unique identifier for the group;

• R is a set of identifiers for roles that can be played in the group;

• @ is a inheritance relation among roles ∈ R;

• compat : R→ 2R is a function that maps each role to the set of its compati-
ble roles;

• maxrp : R→ Z: is a function that maps each role to the maximum number
of players of that role in the group (upper bound of role cardinality);

• minrp : R→ Z: is a function that maps each role to the minimum number
of players of that role necessary for the group to be considered well-formed
(lower bound of role cardinality);

• L is a set of links between roles in the scope of the group being defined;

The previous definition includes the basic elements defining a group inside the
OML, namely the structures involved in its representation.

7.2.2 Functional Specification
The Functional Specification (FS) is composed by a set of functional schemes
which describe how, in accord with the SS, various groups of agents are expected
to achieve their global (organizational) goals [22]. In particular, FS specifies how
organizational goals are decomposed by plans and how these plans are allocated
to the individual agents. The related schemes1 can be seen as goal decomposition
trees, where the root is a goal to be achieved by the overall group and the leafs are
goals that can be achieved by individuals, i.e. the single agents, through missions
to be committed.

A goal decomposition can be set either by the MAS designers who specify
their expertise in the scheme, but also by agents themselves, that could store their
best practices2.

1In the following, we use the term scheme for brevity in order to refer to the functional scheme.
2The capability to modify the structures of the organization – as uploading or replacing a

scheme in the functional specification – requires agents that are aware of the organizational rep-
resentations and functioning. In addition, they must have the capability needed to build a well
formed scheme. In Section 2.3 we refer to these agents as organizational agents.

7.2 USING Moise FOR MODELING A CONCRETE ORGANIZATIONAL ENTITY157

enter
the room

book
the visit

visit

visit

observe

send
fee

monitor

mSanpay
visit

enforcement

send
bill

mRew

[1 day] [1 day]
[30 minutes]

do the
visit

mVisit mVisit

mPaymPatient

exit
mVisit

[5 minutes]

LEGEND

goal
missions

[TTF] sequence choice parallel

visitorSch monitorSch

mStaff

docSch

visit
patient

mDoc

[30 minutes]

[30 minutes]

Figure 7.2: Moise functional schemes for agents working inside hospital surgery
room.

In a scheme related to the functional specification, each non-leaf goal g j ∈ G
(where G is the set of global goals) can be decomposed in sub-goals through plans.
The following three operators are used to specify the decompositions:

sequence “,”: the plan “g1 = g2,g3” means that the goal g1 will be achieved if
and only if the goal g2 and subsequently goal g3 are achieved;

choice “|”: the plan “g1 = g2|g3” means that the goal g1 will be achieved if one,
and only one of, the goals g2 or g3 is achieved;

parallelism “‖”: the plan “g1 = g2 ‖ g3” means that the goal g1 will be achieved
if both g2 and g3 are achieved, but they can be achieved in parallel.

Each goal specified in the decomposition is related to a mission. A mission defines
all the goals an agent commits to when participating in the execution of a scheme
and, accordingly, groups together coherent goals which are assigned to a role in
a group. According to the FS, an agent playing a given role can commit to the
related mission, and thus bring about the included goals. More precisely, if an
agent commits to the mission mi, it commits to all goals of mi (∀g j ∈ mi), while
the organization expects it will achieve them. Goals without an assigned mission
are considered as fulfilled by the achievement of their sub-goals.

158 PROGRAMMING ORGANIZATIONS IN PRACTICE

The analogy of an hospital surgery scenario is kept to clarify the model in
Figure 7.2, where the functional model is specified using the Moise graphical no-
tation. In this case, the organization provides agents with three rehearsed schemes,
through which the missions to be committed by agents are specified. The visitor
scheme (visitorSch) describes the goal tree related to the visitor group. It spec-
ifies three missions, namely mVisit as the mission to which each agent joining the
visit group has to commit, mPatient as the mission to be committed by the patient
who has to undergo the medical visit, and mPay as the mission to be committed
by at least one agent in the visit group. According to the goal decomposition tree
set by the FS, the goals “do the visit” (which is related to the mission mPatient)
and “pay visit” (which is related to the mission mPay) can be fulfilled in paral-
lel, namely nothing forbids two different agents to pursue these goals at the same
time. Besides, the monitorSch describes the activities performed by a staff agent.
These plans are aimed at verifying if the activities performed by the visitors fol-
lows an expected outcome, namely if the visitors fulfill the payment committing
the mPay mission (which includes the “pay visit” goal). The role staff is thus
played by agents acting on behalf of the organization, namely agents which are
assumed to detect norm violations and react accordingly3. Along its committed
missions, a staff agents is thus concurrently observing the visitor activities (“ob-
serve” goal). In this case, the sub goals related to the “enforcement” goal are
mutually exclusive, namely only one has to be fulfilled and, of course, they can-
not be pursued in parallel. Enforcing goals are aimed at promoting a conforming
behavior to the visitor agents, which in turns can be sanctioned (“send fee” goal)
or rewarded (“send bill” goal, the reward being a discount). Finally, the docSch
specifies the activities to which a doctor has to commit, namely to perform the
visit to every patient. Notice that each mission has a further property specified
between square brackets in the FS: it refers to the maximum amount of time the
organization expects for the agent to commit to the mission (“time to fulfill”, or
tt f value). For instance, according to the docSch given in the hospital scenario,
a doctor has 30 minutes to commit the mission mDoc. Notice also that, along
with the goal decomposition, a scheme also specifies the pre-condition for a given
goal g j, namely goals that must be fulfilled in order to achieve the following goal
g j of the scheme. In so doing, an agent who committed to the mission mi which
includes the goal g j, is expected to fulfill the g j only when g j preconditions are
satisfied. For instance, a visitor can achieve the goal “book the visit” only when

3The particular role in the context of the organizational entity can be associated to the notion
of organizational agent, as it has been described in Section 2.3.

7.2 USING Moise FOR MODELING A CONCRETE ORGANIZATIONAL ENTITY159

mission cardinality
mVisit 1..2

mPatient 1..1
mPay 1..1

mSta f f 1..1
mSan 1..1
mRew 1..1
mDoc 1..1

Table 7.1: Mission cardinalities for the hospital scenario specified for the schemes
defined in Moise FS (Figure 7.2).

the goal “enter the room” is already satisfied; a patient may “do the visit” only if
someone has already achieved the goal to “book the visit”, and so on.

The FS also defines the expected cardinality for every mission in the scheme,
namely the number of agents inside the group who may commit a given mission
without violating the scheme constraints. Table 7.1 shows the mission cardinali-
ties in the context of the hospital scenario, where the range is specified through the
upper and the lower bounds for admissible commitments. In this case every pro-
vided mission has to be committed by exactly one agent except the mVisit mission,
that has to be committed by all the agent in the visit group.
To resume, a functional scheme can be defined formally as follows.

Definition 2 (scheme) According to the Functional Specification (FS), a scheme
is represented inside the Moise Organizational Entity by the following tuple:

〈id,M,maxmp,minmp,G,gm,gpc, tt f ,rg〉

where:

• id is a unique identifier for the scheme;

• M is a set of identifiers of missions that agents can commit to in the context
of the scheme;

• maxmp : M → Z is a function that maps each mission to the maximum
number of commitments of that mission in the scheme (upper bound for
mission cardinality);

160 PROGRAMMING ORGANIZATIONS IN PRACTICE

• minmp : M → Z: maps each mission to the minimum number of com-
mitments of that mission necessary for the scheme to be considered well-
formed (lower bound of mission cardinality);

• G is a set of goals of the scheme;

• gm : G→M: maps goals to the related missions;

• gpc : G→ 2G: maps goals to their pre-condition goals;

• tt f : G→ Z maps goals to their “time to fulfill”;

• rg ∈ G is the root-goal of the scheme.

The previous definition includes the basic elements defining a scheme inside the
OML, namely the structures involved in its representation.

7.2.3 Deontic Specification
The deontic dimension describes explicitly what are the rights and the duties for
the agents in order to respect the rules and the constraints specified by the or-
ganization. In this view, the deontic model glues all the other dimensions in a
coherent organization. Indeed, the corresponding Normative Specification (NS)
relates roles (as they are specified in the SS) to missions (as they are specified in
the FS) by specifying a set of norms.

The Moise approach to norms assumes that each norm is placed in terms of
permissions or obligations to commit to a mission. This allows goals to be indi-
rectly related to roles, i.e. through the policies specified for mission commitment
(as described in Subsection 7.2.2, a mission for a single agent can be retrieved
since a goal decomposition tree)4. In abstract terms, a permission(ρ,m, tt f) states
that an agent playing the role ρ is allowed to commit to the mission m within the
deadline tt f . Similarly, obligation(ρ,m, tt f) states that an agent playing ρ is
obliged to commit to m within the deadline tt f . On the other hand, Moise as-
sumes prohibitions “by default” with respect to the specified missions: namely,

4An important feature of Moise is to avoid the direct link between roles and goals. One reason
is to define sets of coherent goals (the missions) which are not reducible to the concept of role. In
so doing, roles are indirectly linked to missions by means of norms, namely permissions and obli-
gations. Another reason is to improve the independence between the functional and the structural
dimensions.

7.2 USING Moise FOR MODELING A CONCRETE ORGANIZATIONAL ENTITY161

id condition role type mission T T F
n1 Escort obligation mVisit −
n2 Patient obligation mVisit −
n3 Patient obligation mPatient −
n4 Escort permission mPay 5 minutes
n5 unfulfilled(n4) Patient obligation mPay 5 minutes
n6 Sta f f obligation mSta f f −
n7 Doctor obligation mDoc −
n8 unfulfilled(n5)∧ Sta f f obligation mSan 1 day

unfulfilled(n4)
n9 fulfilled(n4)∨ Sta f f obligation mRew 1 day

fulfilled(n5)
n10 unfulfilled(n6) Doctor obligation mSta f f −

Table 7.2: Deontic description in Moise specifying norms regulating the hospital
surgery room scenario.

if the normative specification does not include a permission or an obligation for
a role-mission pair, it is assumed that the role does not grant the right to commit
to the mission. Deadlines, namely “time to fulfill” (tt f) values, refer to the maxi-
mum amount of time the organization expects for the agent to fulfill a norm. This
additional constraint has been included in MoiseINST [10] in order to bind agent
behavior in a timely fashion.

Each norm is specified in Moise by its identifier id, by its triggering condition
c, by its role ρ , by its type t (obligation / permission), by a related mission and a
time to fulfill (tt f) value5. Given the above specification, each norm provides the
constraints for the agent to commit to the missions specified for their adopted role.
Table 7.2 shows the normative specification for the hospital scenario, and refers
to the missions described in Figure 7.2. For instance, norms n1 and n2 define
an obligation for agents playing either patient and escort roles to commit to the
mVisit mission. A patient is further obliged to commit to mPatient mission (n3).
Similar norms are provided in n6 and n7, where agents playing staff and doctor
roles are obliged to commit to mDoc and mStaff respectively. The norm n10 is
activated only when the norm n6 is not fulfilled (the deadline for n6 is not set in
this case, thus its default value is 0, which means “now”). It specifies an obligation

5The values for the norm condition and the time to fulfill are optional in the normative specifi-
cation: once not provided their default value are respectively set to true and 0.

162 PROGRAMMING ORGANIZATIONS IN PRACTICE

for a doctor to commit the mStaff mission, if no other staff agent is committing
to it inside the group. n4 allows to agents playing as escorts the permission to
commit to the mission mPay. Wether this norm is not fulfilled before the deadline
tt f = 5 minutes, the norm n5 is instantiated, obliging the patient to commit the
same mission mPay. This allows a double control upon the payment goal, which
in turns has to be fulfilled by at least one agent inside the visit group.

The FS also allows to specify meta-norms, namely norms triggered by events
indicating the violation of other norms. This allows to tackle a possible norm vio-
lation by the mean of further norm activations. The organization assumes the pres-
ence of organizational agents, namely staff agents in this case, which are assumed
to detect norm violations and react accordingly. Along its committed missions,
a staff agents is concurrently observing the visitor activities (agents playing the
role staff are assumed to fulfill the monitor scheme, or monitorSch defined in Fig-
ure 7.2). These agents are assumed to detect norm violations and suddenly apply
sanctioning policies. For this purpose, norms n8 and n9 are specified. In norm n8,
whether both norms n4 and n5 are unfulfilled after the deadline (5 minutes), a staff
agent is obliged to commit to the mSan mission, which goal in short is assumed
to sanction the patient. Besides, in norm n9, whether either n4 or n5 are fulfilled
before the deadline (5 minutes), a staff agent is obliged to commit to the mRew
mission, which goal in short is assumed to reward the patient.
To resume, a norm in Moise can be defined formally as follows.

Definition 3 (norm) A norm in the Deontic Specification (NS) is represented in-
side the Organizational Entity by the following tuple:

〈id,c,ρ, t,m, tt f 〉

where:

• id is a unique identifier for the norm;

• c is the activation condition for the norm;

• ρ is the role;

• t is the type (obligation or permission);

• m is the mission;

• tt f indicates “time to fulfill”, namely the deadline within which the norm
has to be fulfilled.

7.3 FROM THE Moise SPECIFICATION TO A NORMATIVE SPECIFICATION 163

〈np〉 = "np" ATOM "{" {〈np f act〉|〈np rule〉|〈np norm〉} "}"
〈np f act〉 = ATOM"."
〈np rule〉 = ATOM ":-" 〈np exp〉"."
〈np norm〉 = "norm" ID":" 〈np exp〉 "->" (〈 f ail〉|〈obl〉)"."
〈 f ail〉 = "fail(" ATOM ")."
〈obl〉 = "obligation("(VAR|ID) "," ATOM "," 〈np exp〉

"," 〈time〉 ")."
〈np exp〉 = ATOM | "not" 〈np exp〉 | ATOM ("&"|"|") 〈np exp〉
〈time〉 = "‘"("now" | NUMBER ("second"|"minute"|...))"’"

[("+"|"-")〈time〉]

Table 7.3: Syntax of Normative Organization Programming Language - NOPL
(adapted from [61]).

We can read that norm as “when c holds, the agents playing the role ρ are t to
commit to mission m before tt f ”. It includes the basic elements defining a norm
inside the OML, namely the structures involved in its representation.

7.3 From the Moise specification to a Normative Spec-
ification

As introduced in Subsection 2.3.3, NPL can be obtained by a translation of a
OML specification into a language based on symbolic norms, rules and institu-
tional facts. Normative Organization Programming Language (NOPL) is a par-
ticular class of NPL obtained once the OML (the source language) is provided
on the basis of the Moise model. As presented by Hübner et al. in [61, 62], the
translation mechanism from the Moise language to the target NOPL is based on
a set of translation rules which are procedurally applied to the starting specifica-
tion. It is worth to remark that, although the approach followed here is addressed
to a Moise specification, other source OML could be translated to obtain differ-
ent NPL, as different transformation procedures could be introduced for instance
starting form AGR or AMELIE sources6. In this case, the NOPL language obtained
after the application of the translation rules is the code used by the internal inter-
preter implemented inside the organizational entities deployed inside the MAS.
Figure 7.3 shows the components involved it the management of a NOPL speci-

6Of course, starting from different OML would cause a different configuration for the adopted
organizational entities.

164 PROGRAMMING ORGANIZATIONS IN PRACTICE

INSTITUTIONAL
STATES

NPL
Engine

OBLIGATIONS
STATES

NPL
PROGRAM

NPL
Interpreter

Figure 7.3: A NOPL (Normative Organizational Programming Language) speci-
fication can be automatically obtained by translating a Moise OML specification.
NOPL stores normative rules, inference rules and organizational/institutional facts
which are interpreted by an engine embedded inside the organizational entity, so
to update at runtime its configuration.

fication inside an organizational entity in this case the NOPL program translates
the normative specification of the organization.

The NOPL syntax is provided in Table 7.3 (given in [61]). It consists in a
normative program where, besides norms (np norms according to the syntax),
it is possible to express constructs to store predicates as organizational states
(np f acts) and also rules to operate over internal data structures (np rules).

7.3.1 Normative Organization Programming Language

We here provide an example of Moise-OML to NOPL translation, based on the
mechanism described in [62]. An excerpt of the resulting NOPL in the context
of the hospital scenario is then discussed. As showed in Figure 7.3, the organi-
zational entity is regulated by an internal NOPL engine referring to the organi-
zational/institutional states given by the functional dimension of the organization,
namely schemes and obligations7. To obtain a NOPL specification a set of transla-

7In this context, and in the following of this work, we refer to organizational facts and in-
stitutional facts as synonyms, indicating those structures and statements that represent the actual
organizational state. We are aware that reducing to a common ground these notions would require
a deep analysis on what related researches have defined for computational institutions as opposed

7.3 FROM THE Moise SPECIFICATION TO A NORMATIVE SPECIFICATION 165

tion rules are applied to the Moise specification. We first deal with the translation
of the functional dimension as expressed in Moise. As seen in Subsection 7.2.2, a
scheme is represented by the following tuple:

〈id,M,maxmp,minmp,G,gm,gpc, tt f ,rg〉 ∈ FS

The difference between the notion of time adopted here with respect to the one
given within the workspace configuration has to be remarked. Although both
adopt, of course, a linear and discrete notion of time, they in fact depend on two
different underlying execution systems. The former time refers to the time pro-
vided by the organization, hence used at an application level, i.e. to regulate
obligations lifecycle and eliciting potential transitions in the norm states. On the
other hand, the latter time is used by the system running the work environment (i.e.
CArtAgO), thus providing synchronization of interactions and sorting of general
events inside the workspace.

NOPL Facts

The translation applied to the FS instance produces at runtime the following facts
in NOPL:

• scheme mission(m,min,max): is a fact that defines the cardinality of a
mission m ∈M;

• goal(m,g, pre−cond, ‘tt f ‘): is a fact that defines the arguments for a goal
g ∈ G: its mission m, the pre-conditions, and time to fulfill (deadline);

• mission role(m,r): the role r is permitted or obliged to commit to mis-
sion m, according to the normative specification given by 〈id,c,ρ, t,m, tt f 〉 ∈
NS;

The following dynamic facts will be provided at runtime by the artifact that man-
ages the scheme instance:

• plays(a,ρ,gr): agent a plays the role ρ in the group instance identified by
gr.

to computational organizations. But, as in [132], we assume that the both the concepts behind
institutions and organization oriented approaches reflect the same basic modeling principles. Both
the approaces are in fact addressed at reifying organizational entities in MAS through a set of
shared social concepts (norms, roles, etc.).

166 PROGRAMMING ORGANIZATIONS IN PRACTICE

// number of players of a mission M in

// scheme S

// .count(X) is a function that counts

// how many instances of X are known

mplayers(M, S, V) :-

V = .count(committed(_, M, S)).

// well-formed scheme S

well_formed(S) :-

mplayers(m, S, Vm)

& Vm >= minmp(m)
& Vm <= maxmp(m).

// goal G of scheme S is ready:

// all its pre-conditions have been achieved

ready(S,G) :-

goal(_, G, PCG, _) & all_achieved(S, PCG).

all_achieved(_, []).

all_achieved(S, [G|T]) :-

achieved(S, G, _) & all_achieved(S, T).

Table 7.4: NOPL rules: (left) rules to infer a well formed scheme; (right) rules for
establishing ready goals.

• responsible(gr,s): the group instance gr is responsible for the missions
identified by the scheme instance s.

• committed(a,m,s): agent a is committed to mission m in scheme s.

• achieved(s,g,a): goal g in scheme s has been achieved by agent a.

NOPL Rules

Besides facts, a set of np rules are created to infer the number of agents which
are actually committed to a mission, the state of the scheme (e.g. whether it is
well-formed or not) and the state of the goals (e.g. whether they are ready to be
achieved or not). The related NOPL cutout is showed in Table 7.4. Notice that
the ready and well-formed rules express the semantic of ready goals and well-
formed schemes in terms of the Moise model (Table 7.5, left). The well-formed
rule, in particular, is specific for the scheme being translated and controls whether
the number of players actually committed to a given mission m respect the car-
dinalities specified in the scheme. Notice that, once applied, the translation rules
automatically generate the NOPL code by unifying the variables (represented in
italic fonts in Table 7.5) with the related values actually stored in the NOPL facts.

7.3 FROM THE Moise SPECIFICATION TO A NORMATIVE SPECIFICATION 167

// agents are obliged to fulfill

// their ready goals

norm ngoa:

committed(A, M, S)

& goal(M, G, _, D)

& well_formed(S)

& ready(S, G)

-> obligation(A, ngoa,

achieved(S, G, A), ’now’ + D).

// goal fulfillment is regimented

norm goal_non_compliance:

obligation(Ag, ngoa(S,M,G), Obj, TTF)

& not Obj

& ’’now’’ > TTF

-> fail(goal_non_compliance(

obligation(Ag, ngoa(S,M,G), Obj, TTF))).

Table 7.5: NOPL norms for goals. (Left) The norm ngoa, regulates goals fulfill-
ment and provides the semantic for their commitment. (Right) Based on the norm
ngoa, the norm goal non compliace regulates compliances to obliged goals.

norm mission_cardinality:

scheme_mission(M, _, MMax) &

mplayers(M, S, MP)

& MP > MMax

-> fail(mission_cardinality).

norm mission_cardinality:

scheme_mission(M, _, MMax)

& mplayers(M, S, MP) & MP > MMax

& responsible(Gr, S) & plays(A, ρ, Gr)

-> obligation(A, mission_cardinality,

committed(A, m, _), ’now’ + tt f).

Table 7.6: NOPL program related to property norms: (left) the norm is regi-
mented; (right) the norm is enforced through an obligation.

norm id:

plays(A, ρ, Gr)

& responsible(Gr, S)

& mplayers(m, S, V)

& V < maxmp(m)
-> obligation(A, id,

committed(A, m, S),

’now’+tt f).

norm mission_permission1:

committed(Ag, M, S)

& plays(Ag, R, _)

& not mission_role(M, R)

-> fail(mission_permission(Ag, M, S)).

norm mission_permission2:

committed(Ag, M, S)

& plays(Ag, R, Gr)

& mission_role(M, R)

& responsible(Gr, S)

-> fail(mission_permission(Ag, M, S)).

Table 7.7: NOPL program related to domain norms: (left) norms regulating mis-
sion commitment; (right) norms for prohibitions are expressed by regimentation.

NOPL Norms

The np norms which are of concern for the scheme management can be of three
types: norms for goals, norms for properties and domain norms.

168 PROGRAMMING ORGANIZATIONS IN PRACTICE

NORMS FOR GOALS. The first class of norms refers to norms for regulating
the fulfillment of organizational goals, and includes norms expressing the Moise
semantics for commitments. According to the norm ngoa (Table 7.5 left), an
obligation is entailed for an agent A to achieve the goal G in the scheme S before the
deadline ’now’ + D. This obligation is created when the agent A: (i) is committed
to a mission M that (ii) includes a goal G, (iii) the mission scheme S is well-formed,
and (iv) the goal is ready.

An important norm is related to the previous one in order to regulate obliga-
tions to achieve goals. Thereby, according to the goal non compliance norm, a
fail event is generated when: (i) an agent Ag is committed to the mission M in the
scheme S related to the group G, (ii) the agent is committed to fulfill Obj, and (iii)
the deadline TTF set to fulfill Obj is passed.

NORMS FOR PROPERTIES. The second class of norms refers to properties
guaranteeing the global coherence of the organization, as they can be specified in
the Moise model. An example of this type of norms can be related to the Moise
property specifying mission cardinality. As described in Subsection 7.2.3, a norm
expressed in Moise is represented by 〈id,c,ρ, t,m, tt f 〉 ∈NS In this case, the norm
has to define the consequences for a circumstance where there are more agents
committed to a mission than permitted by the scheme specification. The condi-
tion triggering the norm is c = #mc, where #mc denotes the maximum cardinality
allowed for that mission.

As seen in Subsection 2.3.3, to manage the norm violation two kinds of conse-
quences are possible, namely obligation and regimentation. Regimentation is the
default consequence in NOPL and it is used when there is no norm with condition
c = #mc in the normative specification. Otherwise, the consequence will be an
obligation. The organization developer may choose one or the other when specify
the organization. The two options are translated in two different NOPL programs,
as showed in Table 7.6. On the left, the norm regulating mission commitment is
regimented, namely each tentative to commit a mission that has reached its max-
imum cardinality will fail. On the right, the norm creates an obligation for the
agent to commit to the mission m before the deadline specified by tt f .

DOMAIN NORMS. The third class of norms translates the domain norms,
namely the those obligations that have been specified also by the normative struc-
tures inside the organization specification. In this case norm is produced in NOPL
since each norm expressed in Moise. Whereas Moise obligations refer to roles
and missions, NOPL requires that obligations are for agents and towards a goal.
A NOPL norm in this case identifies the agents playing the role in groups re-

7.3 FROM THE Moise SPECIFICATION TO A NORMATIVE SPECIFICATION 169

scheme_mission(mVisit, 1, 2).

scheme_mission(mPatient, 1, 1).

scheme_mission(mPay, 1, 1).

...

goal(mPatient, do_the_visit,

[book_the_visit], ’now’ + 30 minutes).

goal(mPay, pay_visit,

[book_the_visit], ’now’ + 30 minutes).

goal(mVisit, exit,

[do_the_visit], ’now’ + 5 minutes).

...

mission_role(mVisit, patient).

mission_role(mVisit, escort).

mission_role(mPatient, patient).

mplayers(M, S, V) :-

V = .count(committed(_, M, S)).

well_formed(S) :-

mplayers(mVisit, S, VmVisit)

& VmVisit >= 1 & VmVisit <= 2

& mplayers(mPatient, S, VmPatient)

& VmPatient >= 1 & VmPatient <= 1

& mplayers(mPay, S, VmPay)

& VmPay >= 1 & VmPay <= 1.

Table 7.8: Example of NOPL facts and rules for the hospital surgery scenario.

norm mission_cardinality:

scheme_mission(M, _, MMax)

& mplayers(M, S, MP)

& MP > MMax

-> fail(mission_cardinality(M)).

norm role_cardinality:

group_id(Gr) &

group_role(R, _ ,RMax)

& rplayers(R, Gr, V)

& V > RMax

-> fail(role_cardinality(R)).

Table 7.9: Example of NOPL program regulating mission and role cardinality.

sponsible for the scheme and, if the number of players still does not reach the
maximum, the agent is obliged to achieve a state where it is committed to the
mission (Table 7.7, left).

The NS also specifies permissions and (by default) prohibitions. Since every-
thing is permitted by default in NOPL, NS permissions do not need to be trans-
lated. Besides, each NS prohibition is handled in NOPL by the generic norms
expressed in Table 7.7 (right). The first norm handles the case where the agent is
committed to a mission that is not related to its roles (see the mission role fact
above). In the second case, even if the role and the mission are related, the agent
does not play the corresponding role in groups responsible for the scheme.

7.3.2 NOPL in practice: the Hospital Scenario
In order to provide a concrete taste of the approach, in this section the NOPL
program presented above is described in the context of the hospital surgery sce-

170 PROGRAMMING ORGANIZATIONS IN PRACTICE

norm n1:

plays(A, escort, Gr)

& responsible(Gr, S)

& mplayers(mVisit, S, V)

& V < 2

-> obligation(A, n1,

committed(A, mVisit, S), ’now’).

norm n2:

plays(A, patient, Gr)

& responsible(Gr, S)

& mplayers(mVisit, S, V)

& V < 2

-> obligation(A, n2 ,

committed(A, mVisit, S), ’now’).

norm n6:

plays(A, staff, Gr)

& responsible(Gr, S)

& mplayers(mStaff, S, V)

& V < 1

-> obligation(A, n6 ,

committed(A, mStaff, S), ’now’).

norm n7:

plays(A, doctor, Gr)

& responsible(Gr, S)

& mplayers(mDoc, S, V)

& V < 1

-> obligation(A, n6 ,

committed(A, mDoc, S), ’now’).

Table 7.10: NOPL example regulating mission commitment.

nario introduced in Chapter 7. The NOPL code is automatically generated since
the translation rules described in the previous section, where, in particular, the
variables are replaced by the values actually dwelling the organizational states.
Table 7.8 (left) shows an excerpts of NOPL program stating institutional facts
translated from the Moise specification8. Besides, Table 7.8 (right) shows the
NOPL rules denoting the well-formed property for the visitorScheme. The code
is produced on the basis of the the rule described in Table 7.5, where the variables
are replaced by the states stored in the FS representation, as it has been given in
Subsection 7.2.2.

Table 7.9 (left) shows an excerpts of NOPL program stating norms regulating
mission cardinality. Since no norms have been specified in the NS to regulate a
surplus of mission commitments (see Subsection 7.2.3), the default norm is ap-
plied, namely the commitment is regimented and no more agents will be able to
commit to a mission that has reached its maxmp. The code is produced since the
rule introduced in Table 7.6 (left). Similarly, Table 7.9 (right) shows the NOPL
program expressing norms regulating role cardinality9. Notice that the applica-
bility of these norms is checked against the context provided by an expression
np exp. Hence, in order to activate the norm, np exp has to entail the facts ac-
tually stored in the NOPL program. In the example, in order to regiment the

8The complete NOPL specification related to the hospital scenario described here can be found
in Appendix B.

9The rules to obtain NOPL facts since Moise SS are omitted for brevity. These rules al-
low to specify facts related to the groups and the roles played inside the group, as for instance
group role(R, , M) and rplayers(R, Gr, V).

7.4 FINAL REMARKS ON PROGRAMMING ORGANIZATIONS IN PRACTICE 171

adoption of role R due to the role cardinality norm, the number of players for
the role R must be equal to the maximum cardinality specified in the SS for R.

Table 7.10 shows NOPL norms issued from translation of norms n1,n2,n6
and n7, as they have been specified in Moise FS described in Table 7.2. In this
case, the specified norms relates functional schemes to roles, and indicate agent
obligations for mission commitment.

7.4 Final remarks on Programming Organizations
in Practice

Defining a use case in a specific application domain, this chapter proposed prac-
tical approach to design concrete organizational entities in MAS. As based on
Moise OML [65], a series of different modeling dimensions are envisaged in order
to cover the multifaceted requirements of complex organizations. They concern
in particular structural, functional and deontic aspects, which are mobilized to de-
fine rich organizational patterns in order to control and promote coordination and
cooperation in MAS. These levels are assumed to shape the overall organization
in groups of agents, also defining roles that agents will play in the context of each
group, as well as the missions related to agents ability to fulfill the expected tasks.
An explicit treatment of norms allows to bind all the organizational dimensions
together and, besides, to fix behavioral constraints to agents. Norms impose to
agents obligations and permissions that can be either regimented or enforced by
the organization at an application level. Finally, a mechanism for translating the
Moise specification to a Normative Programming Language has been introduced,
based on the mechanisms defined in [61, 62]. The normative language, based on
the concrete specification of the use case, has been adopted as the program reg-
ulating the functioning of a concrete organizational entity to be deployed inside
MAS.

On these basis, in the next chapter the presented modeling approach will be
applied at a programming level, thus reifying the whole organizational entity as a
set of organizational functionalities and services exploitable by agents at an appli-
cation level. In shifting from the organizational specification to the organizational
deployment, a main concern will be to not lose the level of abstraction adopted to
model organizational entities. The practical aspects of implementing an organiza-
tion inside the system will be addressed by shaping a so called Organization Man-
agement Infrastructure (OMI), in particular based on the A&A approach. Thereby,

172 PROGRAMMING ORGANIZATIONS IN PRACTICE

the organization will be conceived as a distributed, decentralised infrastructure in-
strumenting the MAS work environment with a set of specialized artifacts. The
adoption of artifacts will be a pivotal feature in the following of this work: finally,
it will allow a seamless integration of Organizational Entities with other hetero-
geneous services instrumenting the MAS, thus providing a complete support for
societies of agents engaged in their complex purposive activities.

Chapter 8

Organizational Management
Infrastructures based on Artifacts

Once the general structures involved in a organizational entity have been ana-
lyzed, the problem is how to build an organizational entity in practice, and how
to effectively deploy the organizational entity so as to be suitably exploited by
agents in order to support either individual and collective activities. The approach
adopted in this chapter is based on A&A model and makes use of artifacts as the
unique abstraction tool to implement the organizational entity. Organizational ar-
tifacts are thus deployed in the work environment to instrument workspaces with
organizational facilities, thus reifying and modularizing the functional-part of the
organizational entity. The result is a decentralised and configurable layer of orga-
nizational resources, an organizational infrastructure, that can be perceived and
used by agents as first-class entities of their work environment. Besides, the en-
abling and governing function inherited by artifacts allows the infrastructure to
effectively enact norms inside the system. Through an internal normative model
providing the infrastructures with a flexible mechanism to dynamically manage
institutional states, norms are first monitored during their life cycle, and then ap-
plied according to regimentation or enforcement policies.

8.1 Shaping Organizational Management Infrastruc-
tures with A&A

The design model of an organization centered MAS typically follows a common
trend, by introducing mechanisms responsible for providing agents with organiza-

174
ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES BASED ON

ARTIFACTS

tional services aimed at enabling and ruling their activities with normative control.
As noticed in [63], a recurrent design model in organizational systems is the pres-
ence of middleware components (i.e., organizational proxies) that are assumed
to mediate interactions between agents participating the organization and the in-
frastructures providing organizational functionalities1. On these basis, a series of
modeling drawbacks rise when fine grained interactions between agents and orga-
nizations are of concern. A first major issue is the mismatch at the abstraction level
between the entities playing the system. Whereas the organization is conceived
as a series of services at a slightly “abstract” level, i.e. defined in terms of norms,
roles, global goals, etc., agents are built upon mental attitudes as beliefs, desires,
intentions (assuming BDI-like agents as the reference model). As a consequence,
organization and agents are “detached” elements of the system. Organizational
infrastructures should be viewed by agents either as bridge enabling the execution
of external actions, either as the source of multiple perceptions, which filtering
allows to control of their ongoing activities. This places the problem to bridge the
conceptual gap between the elements and the resources available at the organiza-
tional level and the notions and the constructs adopted at the agent level. Finally,
middleware based organizations bias an overwhelming power over agents which
are typically simply participants, hence placing the issue to play an active role in
managing the system, i.e. by creating, modifying, adapting the organization on
the need.

A first attempt to overcome these issues has been proposed in ORA4MAS [63],
an organizational entity which provides organizational functionalities shaped as
an infrastructure based on a decentralised set of artifacts. In ORA4MAS artifacts
are viewed as passive computational entities embedding organizational functions,
which can be exploited by agent interacting with artifacts In order to improve the
separation of concerns – either at a design level, either at a programming one
– two kinds of agents are assumed to inhabit the organization: (i) participating
agents are assumed to join the organization in order to exploit its services as users
(i.e., adopting roles, committing missions etc.), while (ii) organizational agents
are considered as organization aware agents, hence assumed to manage the orga-
nization by making changes to its functional and structural aspects (i.e., creating
and updating functional schemes or groups) or to make decisions about the de-
ontic events (i.e. norm violations). In ORA4MAS the presence of organizational
agents is explicitly envisaged in order to manage the infrastructure (i.e. by cre-

1Such an approach is for instance followed by S-Moise+ [67], MadKit [57], AMELIE [47] and
almost all the models described in Chapter 2.

8.1 SHAPING ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES WITH

A&A 175

ating, deleting and replacing the involved artifacts). ORA4MAS infrastructure
adopts four artifact types they are assumed to realize the whole organizational en-
tity covering specific functions, being each artifact type specialized for a specific
organizational dimension: normative artifact, scheme artifact, group artifact, and
org artifacts. Using artifacts as basic building blocks of the OMI allows agents
to natively interact with the organizational entity at a proper abstraction level,
namely without being constrained to shape external actions as low level primi-
tives needed to work with middleware objects and components as, for instance,
in S-Moise+. The consequence is that every interaction with the organizational
entity can be shaped by an agent on native capabilities as actions and perceptions.
Besides, the infrastructure does not rely on a sort of hidden organizational layer,
but it is placed beside the agents as a suitable set of services and functionalities
to be exploited as an integral part of the work environment. Moreover, differently
form approaches based on middleware components, an OMI based on artifacts
can be dynamically adapted and possibly replaced (by agents themselves) during
the whole organization lifetime.

The roadmap to organizational infrastructures followed in this chapter relies
on the conceptual model proposed by ORA4MAS and makes use of artifacts and
workspaces as the main abstraction tools to implement the OMI as an infrastruc-
ture instrumenting the work environment. As in ORA4MAS, artifacts are used
to instrument workspaces and to reify and modularize the functional-part of the
organization machinery, as a distributed set of organizational resources and com-
putational tools that can be perceived and used by agents as first-class entities of
their work environment. Placed in terms of organizational artifacts (described in
Section 8.2), the OMI “inherits” artifact computational model as it has been de-
fined in Chapter 4, thus providing a suitable mean for agents who want to join and
work inside an organization. Differently from ORA4MAS, and similarly to the
recent proposal made by Hübner et al. in [61, 62], the organizational infrastruc-
ture proposed here includes the possibility to explicitly manage norms, as they are
represented inside the organizational entity through a NOPL programming model,
extract from the the Moise specification.

The computational model adopted for programming the artifact based OMI is
resumed in Section 8.3. In the Section 8.3 the dynamic behavior of the OMI is
described, since the functionalities that organizational artifacts provide. In this
view, the interaction for agents exploiting the OMI is discussed, relatively to the
case of artifact use and observation. Finally, Section 8.4 concludes the chapter by
discussing strengths and drawbacks of the proposed approach.

176
ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES BASED ON

ARTIFACTS

8.2 Organizational Artifacts
This section describes Organizational Artifacts (OAs) as those special artifacts
used to build the OMI inside the agent work environment. From a developer
point of view, OAs are those abstraction tools adopted to conceive the OMI at
design time and to reify it at runtime. From an agent point of view, OAs embed
those organizational functionalities to use (and observe) in order to participate in
organization activities and to access organization resources possibly exploiting,
creating and modifying OMI artifacts and related functionalities at runtime.

OAs are thus deployed inside the MAS in order to instrument its work en-
vironment with an artifact based OMI. This view promotes a decentralised and
distributed model for the OMI, that is implemented using different artifacts each
with specialized functionalities. Differently from other approaches, the organiza-
tional services provided by the OMI are not centralized in a unique component
but distributed within the workspace. Hence, different artifact types are in charge
for the management of a specific aspect of the organization.

Being the infrastructure based on artifact computational model (see Chapter 4
and Chapter 5), each OA provides a set suitable operations and observable proper-
ties promoting complex patterns of interaction with agents. Besides, they can be
used for enabling, mediating, and ruling over agent interactions through a deontic
specification, also tracing and regulating the access to resources, and so on. Most
important, each OA provides a concrete mechanism for managing obligations and
regimentations inside the system, based on the normative specification handled in-
side the artifacts. The Moise OML and the derivative norm based language NOPL
described in Chapter 7 are chosen here in order to identify a programming model
defining the artifact programs.

As proposed in [61], the possibility to define the overall normative specifica-
tion within a normative language suggested the use of a NOPL interpreter inside
every OA. In this view, each envisaged OA type encapsulates a subset of the or-
ganization specification as it has been identified by a scope specified within the
NOPL program. The global organizational specification defined in Moise is thus
decomposed in different NOPL programs, which in turns are fed to an interpreter
implemented inside each OAs. The adoption of different NOPL interpreters inside
each OA, along with an organizational specification originally placed on multiple
dimensions, allow to split the artifacts of the OMI according to the various scopes
as defined by the normative program. Each organizational artifact is then initial-
ized with (i) the NOPL program automatically generated from the Moise OML
and (ii) a set of dynamic predicates representing the institutional facts related to

8.2 ORGANIZATIONAL ARTIFACTS 177

committed_agents
goals_states
scheme_specification
obligations_state

commitMission

setGoalAchieved

player_agents
schemes
group_specification

SCHEME ARTIFACT GROUP ARTIFACT

leaveMission

adoptRole

addScheme

leaveRole

removeScheme

Figure 8.1: Structural diagram for Organizational Artifacts based on Moise OML
and NOPL interpreters.

(part of) the organization2. The interpreter is then used to compute: (i) whether
some operation will bring the organization into a inconsistent state (where in-
consistency is defined by means of fail states), and (ii) the current state of the
obligation in their lifecycle.

The current version of the proposed OMI uses two artifact types, related re-
spectively to the functional and structural aspects of the organization. These arti-
fact types are referred to as scheme and group artifacts, and respectively concern
the functional and structural dimensions as expressed in Moise and translated in
NOPL. A description of scheme and group artifact is provided in the following
sections, while their structural diagrams are showed in Figure 8.1.

8.2.1 Scheme Artifacts

Scheme artifacts are adopted inside the OMI in order to manage instances of the
functional schemes and to store the institutional facts related to the their current
configuration. Each scheme artifact, or scheme board, provides operations by
using which a participating agent can notify the organization about its autonomous
behavior. In particular, commitMission is an operation that can be used by agents
to notify their mission commitments, while setGoalAchieved can be used to

2The term institutional fact is here adopted as synonym of organizational fact in order to denote
those informational structures representing the actual state of the organization.

178
ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES BASED ON

ARTIFACTS

acknowledge the organization about the achievement of a a given goal inside the
scheme. Link operations are also provided for linking the scheme artifact with
other OAs. In particular, updateRolePlayers can be linked to update the list
agents playing a given role, while updateMonitoredScheme can be linked to
change the scheme specification to be managed.

A set of observable properties are set in order to show agents some relevant
institutional facts related to the functional specification. In particular, a scheme
artifact provides the following observable properties:

• committed agents is updated by commitMission operation, in order to
show the current list of agent commitments;

• groups is updated by updateRolePlayers, to show which group is re-
sponsible for a given scheme;

• goal states is updated inside the setGoalAchieved operation, and shows
the actual goal states;

• scheme specification showing the functional specification currently man-
aged by the artifact.

By observing or focusing these properties, agents can read the current state of the
organizational schemes i.e., in terms of agents committed to missions (committed
agents), goal and obligation states, scheme specification etc. Observable proper-
ties are automatically updated by the artifact itself, once the operations triggered
by the agent complete with success. Operation completion inside OAs is ruled
by norms and governed by the NOPL engine through a mechanism which will be
described in the next section.

In the context of the hospital scenario, three instances of scheme artifacts
are created based on the scopes specified in the NOPL. They refer to the visi-
torSch, monitorSch and docSch, as formerly determined by the Moise functional
specification. The related OA instances are identified by visitorSchBoard,

monitorSchBoard and docSchBoard.

8.2.2 Group Artifacts
Group artifacts are adopted to manage roles and related goals inside a group, ac-
cording to the specification provided within the Moise structural dimension. At
the same time, they are adopted in order to store the institutional facts related to

8.3 OMI EXECUTION MODEL 179

the current state of the group. Each group artifact, or group board, provides
operations like adoptRole and leaveRole by using which an agent can ask the
organization to adopt (or leave) a given role inside the group. In addition, it pro-
vides the operations addScheme / removeScheme, that can be used to add and
remove goals for the group, namely to notify the group that is responsible for a
new scheme.

The group artifact has a set of observable properties to show current facts
related to the actual institutional state of the group. By observing them, agents
can read the ongoing structural aspects of the group:

• palyer agents is updated by adoptRole operation, in order to show the
list of roles actually played by agents inside the group;

• schemes showing the schemes for which the group is currently responsible
for;

• group specification showing the specification currently handled by the
artifact.

Also in this case, observable properties are automatically updated by the artifact
itself, once some changes are elicited by operation execution.

In the context of the hospital scenario, two kind of group artifacts are created
since the NOPL specification translated by Moise. They refer to the visit group
and the staff group, as formerly determined by the structural specification. The re-
lated OA instances are identified by visitorGroupBoard and staffGroupBoard.

8.3 OMI Execution model

Being the OMI an artifact based infrastructure, its dynamics can be described
since the transitions affecting the OAs by which it has been built. In what follows,
some specific aspects of the functioning of the involved OAs are described. These
aspects are detailed on the basis of the activities that agents can perform on OAs,
namely: use and perception. The description of the programming model for an
agent at work in a workspace instrumented with the described artifact based OMI
is provided in Appendix A.

180
ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES BASED ON

ARTIFACTS

Algorithm 1 Artifact Integration with NOPL (modified from [61])
1: oe← current state of the organization managed by the OA
2: p← current NOPL program
3: npi← NOPL interpreter
4: if operation op is triggered by agent agid then
5: oecopy← oe /*creates a backup of current oe */
6: executes operation op to change oe
7: f ← a list of NOPL predicates representing oe
8: r← npi(p, f) /* runs the interpreter for the new state */
9: if r = f ail then

10: oe← oecopy /* the backup state is restored */
11: signal f ail
12: return opcs = 〈op failed,opres〉
13: else
14: for all updated obligations do
15: signal obligation transitions in r
16: update observable properties
17: end for
18: return opcs = 〈op completed,opres〉
19: end if
20: end if

8.3.1 Agents using OMI

Inside OAs, the execution of operations is managed in order to respect organiza-
tional specifications and maintain global organizational coherence. To this end, an
embedded mechanism is adopted inside the OAs to prevent the transition to states
that are inconsistent with respect to the actual normative specifications. As seen
in Subsection 2.3.3, the basic strategy to prevent undesirable states is exploited by
adopting regimentation, by which agents are not enabled to elicit changes in the
organizational configuration once these changes violate some regimented norm.
Since artifacts operations are the unique means that agents have to change the
organizational assets, and thus institutional states, a mechanism is used to wrap
operation execution. The mechanism ensures that an operation triggered on OA
can be finalized only if the operation outcomes are not eliciting failures according
to the NOPL.

To realize the control mechanism, the algorithm 1 is currently processed be-

8.3 OMI EXECUTION MODEL 181

sides the OA operation execution. It controls whether operation execution respect
NOPL organizational constraints, i.e. with respect to ongoing regimentations and
obligations. The algorithm is executed inside a single operation step for the in-
volved OA. Operation atomicity fastens that operations that would elicit inconsis-
tent transitions for the OMI does not affect the overall organizational state. When-
ever an operation is triggered by an agent, the algorithm firstly stores a consistent
copy of the current institutional facts (oecopy, line 5). Once the NOPL interpreter
gives a fail state the backup state is restored (line 10), while the artifact operation
leads to a op failed which is signalled by the artifact (line 11). This means that the
operation triggered by some agent participating the organization is not currently
finalized due to some active NOPL norm. In this case the operation completion
state is set to op failed (line 12). This may happen, for instance, whether an action
provided by the OA as adopt a role is not permitted due to maximum cardinality
for the requested role has been reached. On the other hands, a valid operation is an
operation that changes the state of the OMI to one where no fail states are entailed
by the NOPL interpreter. In case the operation outcome is valid (line 13-19) the
algorithm (i) signals the obligations transitions collected by running the engine
(line 15), (ii) updates the current state of the obligations (line 16), and (iii) sets the
operation completion state to op completed (line 18).

8.3.2 Agents perceiving OMI
The described process allows to dispatch a series of relevant events inside the
workspace—during the application of the algorithm 1. Besides indicating the
transitions of the organizational entities, these events have the additional feature to
be possibly perceived by agents which are actually observing the related artifacts.
In fact, agents engaged in focusing activities and registered to the observability
map are notified by all the events occurring on the scrutinized artifacts (agent
perception is formalized in terms of operational semantics in Section 5.3). In
so doing agents succeed to be acknowledged by the infrastructure, whether, for
instance, a norm is being violated. This accounts the property for the OMI to
be simultaneously used and perceived by agents. The effect is the possibility for
agents to be asynchronously notified by the infrastructure and accordingly react—
in order to handle the events of interest. Perceiving events signalled by the OMI
is in charge, for instance, of organizational agents, which may adopt the required
countermeasures when a norm has been violated. It could be the case of staff
agents in the hospital scenario, which are assumed to trigger their sanctioning and
rewarding activities since the unfulfillment of norms n4 and n5 specified in the

182
ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES BASED ON

ARTIFACTS

Moise deontic dimension (see Table 7.2 in Subsection 7.2.3). Notice in particular
that the Moise norms n4 and n5 are first translated into NOPL obligations for
goals, as the ones showed in Table 7.5. Norms for goals are then handled inside
the OMI by the described algorithm, which in turns allows the OMI to periodically
check whether the compliance to that norms is respected or not according to the
facts stored in the NOPL.

8.4 Final remarks on Organizational Infrastructures
The programming model introduced in this chapter allows to implement Orga-
nizational Management Infrastructures (OMI) as an artifact based facility inside
the MAS work environment. The approach is based on existing work on artifact
based organizations recently proposed by Hübner et al. [63, 61, 62]. With respect
to the work already presented, in this chapter the model has been modified taking
into account the computational model of CArtAgO described in the first part of
the thesis. In particular, organizational artifacts have been rooted to the semantic
of operation execution introduced in Chapter 4 and Chapter 5, including a revised
model based on events detailing agent - artifact interactions. By explicitly man-
aging norms and institutional states, this pattern of integration promotes the use
of a normative programming language (NOPL) to rule over agents’ behavior. In
particular, the approach realizes the regimentation of agent actions by regiment-
ing, in this case, operations on decentralised organizational artifacts. Each artifact
implementing the OMI is indeed in charge to handle a particular aspect of the or-
ganization, where each different scope can be related to a particular dimension as
they have been specified, at an higher level of abstraction, by a OML model (i.e.
Moise).

It has to be considered that, as far as it has been conceived in Chapter 7, the
organizational specification does not cover the overall aspects needed to regulate a
complex organization. The original organizational specification is – intentionally
– placed in abstract terms, in order to ease the task for the organization designer.
This allows to range over many different situations at an application level, and
requires little maintenance over time. But, as a consequence, the abstraction level
kept at design time is also maintained at application level, thus resulting in few
shortcomings in the services provided by the OMI.

A first missing dimension is the one addressed at regulating the dialogic as-
pect of agent interactions. This aspect is the pivotal one in Electronic Institutions
[48] (resumed in Subsection 2.2.4), where, in order to normatively regulate agents

8.4 FINAL REMARKS ON ORGANIZATIONAL INFRASTRUCTURES 183

interactions and establish commitments in open environments, the modeling ap-
proach envisages a dialogic framework characterized by communication protocols
(illocutions) and domain concepts (ontologies).

An important aspect missing in the specification provided in Moise is that it
says nothing about “how” the agents should fulfill their goals in practice. This
originates a series of important remarks. Consider for instance the mission mPay,
related to the norms n4 and n5. n5 refers to an obligation for an agent playing
the role patient to commit to the mission mPay within 5 minutes. Besides, n4 al-
lows agents playing the role escort to commit to the same mission. The functional
specification in the case of the mission mPay only relates to the goal “pay visit”.
Nothing is specified inside the organization about the choice for patients to dele-
gate the fulfillment of this goal to their escorts. The decision about how to divide
the work inside the visitor group is thus left to agents’ autonomy and, in this case,
is out of the scope of the organization.

Another missing aspects is about the declarative aspects of goals. In Moise a
goal is expressed by a simple label, thus the organization is rather vague in de-
scribing (i) how the obligation for the patient should be fulfilled in practice. (ii)
which brute state has to be reached in order to consider the goal as achieved. In
turn, the Moise model is not concerned with an explicit and declarative represen-
tation of goals, (i.e. “goals to be” [136]) which declaratively describes a state of
affairs that has to be realized in order to consider the goal as achieved. Similarly,
the normative model treated by NOPL inside the OMI is not fully capable to spec-
ify norms of the type “ought to be” [30, 38, 135], namely norms that explicitly
refer the state of the world that has to be realized in order to consider the norm as
fulfilled. Again, the organization here demands these aspects to the agents, which
are in charge to decide either which are the pragmatic actions to execute in order
to achieve a given goal gi, either whether the goal gi has been achieved or not. Ac-
cording to the model, the OMI has no way to automatically infer the fulfillment
of the goal since the realization of a given state in the working environment. An
achieved goal is in fact notified to the organization, through an operation provided
by the OMI which semantic is “set the goal gi as achieved”. A similar mechanism
is envisaged for agents to update their mission commitments, which are notified
to the organization by means of operation like “set the mission mi as committed”.

In order to reconcile the organization with the environment where agents work,
namely in order to compound institutional and brute states inside the system, the
environment aspect has to be introduced as an integral part of the infrastructure.
The environment dimension has in charge the aspects related to the interaction
space, thus providing, form the one side, concrete infrastructure for agents to

184
ORGANIZATIONAL MANAGEMENT INFRASTRUCTURES BASED ON

ARTIFACTS

fulfill their objectives, and, on the other side a concrete workplace (referred as
brute space) controllable by the organization in order to further apply institutional
measures as regimentations and obligations.

Taking aside the dialogical aspect, in the next part of this work a proposal for
integrating the environment dimension within the proposed OMI is provided. It
assumes to introduce an explicit management of environment as an integral part
of the global system, to be put aside the organizational entity as a complemen-
tary layer. To not lose the abstraction at which the organizational specification is
provided, the new environment dimension is left as independent as possible with
respect to the one provided within the organizational specification.

Part IV

Agents, Organizations,
Environment: a Unifying Approach

Chapter 9

Embodying Organizations in MAS
Work Environments

The adoption of an artifact based OMI constrains agents to be aware of complex
structures and constructs proper of organizational specifications: agents must
know and manipulate low level primitives related to groups, roles, missions and
norms which may be not proper of an application domain. Besides, as far as or-
ganizational infrastructures have been modeled, a weak support is given for mon-
itoring and controlling at the organizational level other environment resources
deployed inside the same work environment. To bridge this gap, in this chap-
ter the notion of Embodied Organization is introduced as a programming model
aimed at reconciling organizational and environmental dimensions. It includes a
programmable layer for specifying functional links between organizational enti-
ties and environmental ones. In doing so, the possibility to conceive environment
infrastructures aimed at better situating the organizational entities inside work
environments will be devised. The envisaged computational model marks a clear
separation of concerns between the OMI and the other environmental infrastruc-
tures. At the same time, the model enables functional relations between the two
systems and promotes multiple interaction styles between organizations, agents
and their environment.

188 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

9.1 Situating Agents and Organizations in Artifact
Based Work Environments

A suggestion for achieving a coherent model for organizations of agents situated
inside a work environment comes from the way in which humans exploit orga-
nized spaces. Typically, a human visitor entering in an organized environment
has no need to directly communicate with the organization which is operating
behind the scenes, nor he/she needs to explicitly know how such organization
is structured. Indeed complex environments where human beings live are often
conceived as complex ecosystems of services, being instrumented with media, re-
sources, and concrete objects aimed at assisting and easing individuals in their
purposive activities. This approach allows human users to be “unaware” of par-
ticipating to complex organizational patterns. Besides, it allows individuals to
abstract away from the complex patterns required to fulfill works once entering in
unknown environments1. This is why, for instance, visitors entering in an hospi-
tal don’t need to plan from scratch complex means-end strategies to fulfill their
purposes, or personnel staff doesn’t need to explicitly notify their work to the or-
ganization. Thanks to the infrastructure, there is no need to directly communicate
with the hospital as an organizational entity, nor the need of a complete knowl-
edge of the multiple organizational constructs that are in action behind it. Indeed,
hospitals, as any other human organized space, typically deploy several facilities
in order to promote the fulfillment of participant expected behaviors.

Following this idea, the contribution of this chapter aims at bridging the gap
between actual agents, environments and organizational models in MAS, and at
providing an unifying approach addressed to the programming level. Being in
an instrumented work environments means – for computational agents as well as
for human visitors in the hospital – to not be forced to explicitly interact with the
organization as a complex entity, nor to have an explicit representation of the orga-
nization in mind in order to exploit its services. To this end, the described model
considers environmental and organizational entities as different aspects of organi-
zational work design. Once agents, environments and organizational entities are
assumed as different aspects, the designers (and the agents) face a twofold inter-
action medium. On the one side there is the need to face with the organizational
entity, where agents adopt roles, commit missions, coordinate themselves for ful-
filling joint activities and workflows; on the other side, there is the need to model a

1A similar concept of “intelligent use of space” has been proposed in the context of Artificial
Intelligence by David Kirsh [76].

9.2 ENVIRONMENT MANAGEMENT INFRASTRUCTURES 189

physical, embodied environment2, where agents perform actions, perceive events,
communicate, move, access shared resources etc. Although their concerns are
similar, their reification usually leads to different approaches: dedicated (mid-
dleware) layer in the case of organizations, heterogeneous entities exploitable by
agents in the case of environments.

The proposed approach assumes agents’ worlds to be instrumented by con-
crete Environment Management Infrastructures supporting agents with a set of
environment resources and functionalities, and by Organizational Management
Infrastructures, providing organizational resources and functionalities. This ap-
proach leads to the notion of Embodied Organization, which major concern is
to conceive a programming model to embody organizational entities into envi-
ronment ones. In particular we here provide a programming model according
to which heterogeneous agents can concurrently operate in the same work envi-
ronment being supported, coordinated and controlled by a unified infrastructure,
aimed at promoting both individual and collective activities.

The chapter is organized as follows. In Section 9.2 the notion of Environment
Management Infrastructure is introduced as an environmental extension of the or-
ganizational infrastructure. It devises a structured approach to environment as
modeled in terms of decentralised environmental artifacts aimed at transparently
mediating organizational functionalities. Section 9.3 proposes a programming
model by which functional relationships can be established between environment
and organizational entities. The model makes use of the notion of constitutive
rules and implements it thorugh event based workspace rules discussed in Chap-
ter 6. Section 9.4 concludes the chapter by discussing related works and remarks.

9.2 Environment Management Infrastructures
As far as the OMI model has been conceived, in order to exploit the organization
agents need to know how to exploit organizational artifacts—which are the basic
building blocks of the OMI and provides its interfaces. Besides, agents require
not obvious capabilities to bring about organizational and institutional notions
(i.e. role, missions, schemes, norms, obligations etc.) which typically are not na-
tive constructs of their architectures. This result in a strict requirement for agents
programming models, which in turns must be aware of organizational artifacts
(OA) and their complex functioning in order to exploit them. Even more, in order

2Embodied has to be intended as reified entity of agents computational world, more than in its
cybernetic notion of having a physical body.

190 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

MAS WORK ENVIRONMENT

ENVIRONMENT
MANAGEMENT
INFRASTRUCTURE

ORGANISATIONAL
MANAGEMENT
INFRASTRUCTURE

INSTITUTIONAL
FACTS and
FUNCTIONS

BRUTE
FACTS

and
FUNCTIONS

EMI
(EA)

OMI
(OA)

MAS
WORK

ENVIRONMENT

Figure 9.1: Two different perspectives of Environment and Organizational Man-
agement Infrastructures in MAS. (Left) They are logically separated systems, in-
tegrated in the same work environment. (Right) The EMI provides either brute
facts and functions, the OMI provides either institutional facts and functions.

to exploit the organizational infrastructure, agents need to perform a set of addi-
tional activities which are not concerned with the fulfilment of their purposes. On
the contrary, as far as the OMI is designed, these additional activities are needed
to explicitly notify the organization about changes affecting the whole environ-
ment. For instance, an agent who wants to adopt a role needs to explicitly use an
adoptRole operation upon a particular OA, as well as an agent who achieves a
goal needs to explicitly notify it with a setGoalAchieved operation.

In order to bridge this gap, the proposed model explicitly introduces an en-
vironment support inside the system. We refer to Environment Management In-
frastructure (EMI) to indicate the whole set of environmental entities aimed at
supporting agent activities besides the organizational entities. In this view, En-
vironment Management Infrastructure and Organization Management Infrastruc-
tures are situated side by side inside the same MAS work environment, but, most
important, they are conceived as separated systems. They are assumed to face dis-
tinct problem domains, the former being related to concrete environment services
and tools and the latter dealing specifically to organizational services.

Figure 9.1 shows an abstract representation for the scopes supplied by the two
systems. In particular, the figure resumes an abstract architecture for a work en-
vironment once it is conceived in terms of both environmental and organizational
infrastructures (Figure 9.1, left). As emphasized many times along this work, arti-

9.2 ENVIRONMENT MANAGEMENT INFRASTRUCTURES 191

facts embed a twofold function in MAS. They can be used for epistemic objectives
(storing observable states) and for pragmatic objectives (providing a usage inter-
face to be used to trigger the execution of operations). This twofold functionality
is then exploited either by agents, which are assumed as exploiters, either by the
artifact developer, which may design artifacts in order to provide epistemic and
pragmatic services as well.

In conceptual terms, the twofold functionality supplied by one single artifact
can be recasted in terms of artifact infrastructure, once a composition of several
artifacts is set in order to provide a facility inside the work environment. Even in
the case of an artifact based infrastructure, the two functionalities remain indepen-
dent each other. As a single artifact, an infrastructure provides observable states,
namely machine readable data aimed at being perceived by agents for improv-
ing their knowledge base. Besides, as a single artifact, an infrastructure provides
operations, namely process oriented services aimed at being exploited by agents
for externalising activities in terms of external actions. Thereby, the epistemic
functionality of artifacts can be shifted to the informational dimension to which
the infrastructure is addressed. This relation between functions and brute phe-
nomena is also emphasized in the taxonomy of facts discussed by Searle ([128],
p. 121)—where functions has to be intended in their general, non mathemati-
cal, notion of functionalities. Once addressed to the brute reality, functions are
“performed solely in virtue of causal and other brute features of the phenomena”.
Artifacts implementing functions are thus providing means for agentive activities
(“this is a screwdriver” or “this is an automatic desk”). Searle emphasizes
also the relation between institutional facts and their (status) functions, which can
be intended as functions performed (by agents, typically) only by way of social
agreement and collective acceptance (“this is a twenty dollar bill” or “this is an
applicable role”).

Taking the perspective of Searle in the context of MAS work environments, the
EMI can be deemed as a container of brute facts, namely states which are related
to the concrete, “physical” workplace where agents live (Figure 9.1, right), while
the OMI can be assumed as a container of institutional facts, namely facts related
to the organizational states. On the other hand, the pragmatic functionalities of
artifacts can be related to the operational dimension to which the infrastructure is
addressed. In so doing, the EMI can be deemed as a provider of brute functions,
namely operations which can be used by agents to exploit causal functionalities,
i.e. in order to change the concrete workplace or fulfill goals (i.e., “using a
screwdriver” or “using an automatic desk”). Being the OMI an infrastructure
explicitly conceived with the aim to provide organizational functionalities which

192 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

agents exploit thanks to collective acceptances, it can be assumed as a provider
of institutional functions, namely operations which can be used to change / up-
date the institutional facts inside the organization (“paying twenty dollars” or
“adopting a role”).

Before providing a unifying approach and explaining how the two infrastruc-
tures can be functionally related, the following sections describe how an artifact
based EMI can be implemented in practice making use of the artifacts and their
computational model.

9.2.1 Shaping Environment Management Infrastructures on Or-
ganizational Entities

A specific infrastructure is assumed to realize inside the work environment an
environmental support for the organizational entity. Environment Management
Infrastructure (EMI) is aimed at bridging the gap between agents and organiza-
tion, in particular by mediating the interactions between agents layer and organi-
zational one. Whether the objective is to provide an environmental support to the
organization, the EMI can be shaped based on the dictates of an organizational
specification.

Using the same approach adopted in Chapter 8, we will use the artifact as main
abstraction tool to implement the EMI. In particular, artifacts are adopted to pro-
vide a concrete (brute) ground – at the environment level – to the organizational
infrastructure. Symmetrically to the case of the OMI, we refer to the artifacts used
to build an EMI as Environmental Artifacts (EA). Besides artifacts, an EMI can
further make use of workspaces, i.e., in order to model a notion of locality in terms
of an application domain.

9.2.2 Environmental Artifacts

Since a Moise functional specification it is quite straightforward to find a basic set
of artifacts and workspaces fitting the making of an EMI. Figure 9.2 shows how
they are identified in the case of the hospital scenario (introduced in Chapter 7).
In particular, taking an agent perspective, the developer here simply imagines
which kind of service may be required for the fulfillment of the various goals.
In doing so, designing an EMI is not dissimilar to instrument a real world in the
human case: (i) to model the room it will be used a specialized workspace, (ii)
to automate bookings it will be provided a electronic desk artifact, (iii) to finalize

9.2 ENVIRONMENT MANAGEMENT INFRASTRUCTURES 193

joinWorkspace
Hospital

use
Desk

bookVisit

use
BillingMachine

pay

quitWorkspace
Hospital

use
Terminal
sendBill

enter
the room

book
the visit

visit

visitor

observe

send
fee

monitor

mSanpay
visit

enforcement

send
bill

mRewdo the
visit

mVisit mVisit

mPaymPatient

exit
mVisit mStaff

use
Terminal
sendFee

use
SurgeryTablet

signPat

focus
Desk,

BillingMachine

visit
patient

mDoc

use
SurgeryTablet

signDoc BillingMachine Terminal

sendBill
pay

Desk

bookVisit

sendFee

SurgeryTablet

signDoc
signPat

reservations

payments

ENVIRONMENT
MANAGEMENT
INFRASTRUCTURE

visitsHospital
Workspace

visitorSch monitorSch

docSch

Figure 9.2: Artifacts building an Environment Management Infrastructure are
identified since a Moise functional specification (cfr. Subsection 7.2.2). Out of
the box, artifacts and their operations are mapped into the leaf goals of the func-
tional schemes (Time-to-fulfill values are omitted for simplicity). In the box, all
the entities involved in the EMI are showed through their structural representation.

visits it will be provided a (program running on an) electronic tablet artifact, (iv)
to automate payments it will be provided a billing machine artifact, and (v) to send
fees and bills it will be provided a terminal artifact.

Besides the abstract indication of the different artifacts exploitable at the en-
vironment level, the Figure 9.2 also shows the actions to be performed by agents
for the fulfillment of the various goals. Those actions are directly mapped into
artifact operations (i.e., functions), or addressed to the involved workspace: for

194 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

Terminal

sendBill
sendFee

SurgeryTablet

signDoc
signPat

visits

BillingMachine

pay

payments

Agent
Platforms

EMI
ENVIRONMENT
ARTIFACTS

Hospital
Workspace

STAFF

STAFF

VISITOR

VISITOR
Desk

bookVisit

reservations

Figure 9.3: Agents at work inside the work environment instrumented, in terms of
artifacts and workspaces, with an Environment Management Infrastructure shaped
on the organizational specification of the hospital scenario.

instance, to enter the room (which is related to the mVisit mission) the action
joinWorkspace("Hospital") has to be performed; to book the visit (again it is
related to the mVisit mission) the action use("Desk", bookvisit) has to be per-
formed on the desk artifact; to monitor and observe the patient activities (related
to the mStaff mission) a couple of focus activities can be initiated, respectively
on the desk and on the billing artifacts, etc. Notice, in this latter case, that focusing
EA is an alternative strategy exploitable by staff agents to recognize violations of
norms—beside the direct focusing of the OA signals which has has been described
in Subsection 8.3.1. Instead of perceiving OMI events signalling violations of goal
norms, staff agents can in this case directly focus the environment infrastructures
which have been deployed for fulfilling goals.

Figure 9.3 shows the interaction model between agents and artifacts inside
the EMI. Notice that some of the envisaged artifacts can be used for different
purposes by different positions (i.e., roles) inside the organization. For instance
the electronic tablet can be used either by the doctor either by the patient to finalize

9.2 ENVIRONMENT MANAGEMENT INFRASTRUCTURES 195

a visit, as well as the terminal can be used by the staff agent either for sending fees,
either for sending bills, and so on.

In what follows the entities involved in the EMI are better detailed in terms of
their computational model.

Hospital Workspace

An Hospital workspace is set as a logic container for both agents and infrastruc-
tures, thus providing a notion of locality to be adopted at an application level.
In computational terms, the workspace indeed resembles the notion of “room”,
as it has defined in the hospital scenario. Entering and leaving the room in this
case is assumed, in terms of software agents, as joining and quitting the hospital
workspace.

Electronic Desk

A Desk artifact is modeled as an application providing the services of an elec-
tronic desk, namely an automatic machinery allowing users to achieve their book
the visit goals. For this purpose an operation is available in the artifact inter-
face bookVisit(Params), completing in a single step and returning as operation
feedback the reference code for the visit. The Desk also provides an observable
property reservation(Value), containing the set of reference codes already
booked3.

Surgery Tablet

A Tablet artifact is modeled as an application running on a smart laptop provid-
ing users with the possibility to finalize medical visits. The tablet is assumed in
this case as the tool supporting the fulfillment of both the goals related to a visit,
by assuming each visit being finalized by a couple of signatures to be provided ei-
ther by the doctor and by the patient4. To this end, two single step operations are
provided, signDoc(Params) being used by the doctor and signPat(Params)

being used by the patient. The Tablet also provides an observable property

3Parameters to be fed to artifact operations and values expressed by their observable properties
are here omitted for simplicity.

4In this case, do the visit is the goal to be fulfilled by patients, and visit patient the goal to
be fulfilled by doctors. Of course, the activities allowing the fulfillment of a medical visit may be
clearly more complex, in a real scenario, than the ones described here. A series of assumptions
and abuses are made just to exemplify the use case.

196 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

visits(Value), containing the set of reference codes for the visits already ful-
filled.

Billing Machine

A BillingMachine artifact is modeled as an application providing payment ser-
vices, namely an automatic machinery allowing users to fulfill their pay visit goals.
For this purpose an operation is available in the artifact interface pay(Params),
completing in a single step and returning as operation feedback a payment receipt.
The BillingMachine also provides an observable property payments(Value),
containing the set of reference codes for the visits already paid.

Terminal

A Terminal artifact is modeled as an application providing the functionalities
needed for achieving the goals of a staff agent, namely sending fees and bills to pa-
tients. The Terminal, in this case, provides no observable properties but two op-
erations are in its usage interface, namely sendBill(Params) and sendFee(Params).
They are implemented as single step operations, being used by the staff agent re-
spectively to achieve the goals related to rewarding and sanctioning missions.

Notice that all the artifacts involved in the described EMI are self-contained,
thus without the need to be linked each other. Different application domains may
require to link together the artifacts, or to control them by the mean of workspace
rules, as described in Subsection 4.3.1 and Section 6.5. On the other hands, each
of the above mentioned artifacts could be enriched with a manual document, con-
taining the operative instructions to be followed by agents in order to exploit them.
As explained in Subsection 4.5.2, manuals allow agents that do not know artifact
specifications at design time, to integrate usage protocols in order to learn how to
use their functionalities at runtime. Besides providing a suitable mechanism for
easing matchmaking, this turns to be a pivotal aspect for improving the openness
of the whole system.

9.3 Relating Organizations and Environments
As far as the approach has been presented in the previous section, the MAS work
environment is conceived as a workspace instrumented with a twofold decentral-
ized infrastructure: an OMI, specialized in organizational functionalities and in

9.3 RELATING ORGANIZATIONS AND ENVIRONMENTS 197

controlling agents behavior, and an EMI allowing agent activities and situating
the organizational control inside the work environment. By ruling agents behav-
ior OMI achieves coordination, promotes cooperation and prevent deviation from
equilibrium and undesirable states. By providing resources to be exploited by
agents in a seamless fashion, the EMI is conceived as a reliable set of artifacts
allowing agents in achieving their goals.

It is important to remark that the environment infrastructure is not supposed to
“hide” the organizational one. Agents having the required capabilities to directly
exploit OMI services (i.e., organizational agents in the description given in Sub-
section 2.3.3, staff agents in the hospital scenario) are not prevented to directly
use organizational artifacts, thus having a direct access their functionalities (see
Figure 9.4). On the other hands, the EMI is explicitly conceived so as to medi-
ate between the agents participating the organization and the organization itself.
The mediation is tackled by establishing functional (programmable) relationships
between the environmental entities and organizational ones, as the next sections
detail.

9.3.1 Establishing functional relations between organizations
and environments

For embodying organizations into environments the definition of concrete rela-
tionships between environmental and organizational infrastructures has to be pro-
vided. For doing this, the abstract principle at the basis of constitutive rules is
adopted. Introduced in social sciences by Searle [128], constitutive rules have
been originally adapted in a formal framework for (normative) MAS by Boella
and van der Torre [9]. According to Searle theory, constitutive rules are of con-
cern when:

Collective intentionality assigns a new status to some phenomenon,
where that status has an accompanying function that cannot be per-
formed solely in virtue of the intrinsic physical features of the phe-
nomenon in question. This assignment creates a new fact, an institu-
tional fact, a new fact created by human agreement ([128], p.46).

In Searle’s theory, this special assignment is a constitutive rule of the type:

X count−as Y in C

where the relation “count-as” is the operator for the assignment of the new sta-
tus function Y to X , when the context is C. In other terms, the application of a

198 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

constitutive rule introduces, with Y , a new status for the facts in X . This new sta-
tus gives to X some features that it does not already have by satisfying solely its
physical property. This new status, then is reachable only if the context is C, and,
most important, if there is a collective agreement or at least some acceptance for
the value assigned to Y . For instance, a piece of paper may count as money once
responding to certain physical characteristics and thanks to a certified authority;
saying yes in front of a priest during a religious ceremony may count as being
married, and so on.

“Count-as” can also be viewed as a special relation between the effects of an
action performed by an individual in a non institutional context and those addi-
tional effects – produced by that action – which can be addressed to the institu-
tional context. An action performed by an agent in its environment constitutes,
or “count-as”, a conventional or an institutional action once it is situated in a par-
ticular institutional context. A given action performed by an agent acquires an
additional effect (e.g., “count-as” empowerment), due to the fact that the insti-
tution may recognize the institutional meaning for an ongoing activity and thus
ascribe a normative outcome to it.

Adapting constitutive rules in MAS, in the context of our instrumented work
environment, allows to define a bidirectional relation. The “count-as” effect can
be assumed, in this case, as a vehicle to route both relevant facts (and events) to
institutional ones (see Figure 9.5). Thus, using – or attempting to use – an EA
operation may produce events being, from the point of view of the organizational
entity, a “count-as” for an additional institutional event5 . For instance, in the hos-
pital scenario, finalizing a pay operation on a billing machine may count-as having
achieved the goal pay visit; focusing a billing machine may count as adopting the
role staff; leaving the room without fulfilling the payment may count as violating
a norm, and so on.

Besides count-as, a second relation can be considered, that is an enactment
effect dealing with regimentation (or enforcement) aspects that the organization
may provide in order to control the system. Symmetrically to count as, the “en-
act” effect can be assumed, in this case, as a vehicle to route institutional facts
(and events) to environmental ones, thus establishing a control loop from the or-
ganization to the environment dimension of the system. Using enact relation, the
organization thus is aimed at producing a normative control by enacting changes

5I would to explicitly thank Antônio Carlos da Rocha Costa and Jomi Fred Hübner for hav-
ing discussed with me these aspects at Ecole Nationale Superieure des Mines in Et-Etienne, in
February 2009.

9.3 RELATING ORGANIZATIONS AND ENVIRONMENTS 199

Hospital
Workspace

Agent
Platforms

EMI
ENVIRONMENT

ARTIFACTS

OMI
ORGANISATIONAL
ARTIFACTS

Desk
BillingMachine

SurgeryTablet

Terminal

STAFF

STAFF

VISITOR

VISITOR

SchemeBoards

GroupBoards

Figure 9.4: Agents at work in environments instrumented with EMI and OMI.
Using artifact operations and perceiving their observable properties agents have
access to both institutional and brute dimensions of the system.

Environment
Management
Infrastructure

Organisation
Management
Infrastructure

count-as

enact

count-as

Agents

Figure 9.5: As functional programmable relation between EMI and OMI, consti-
tutive rules allows environmental entities to mediate between agents and organi-
zation.

upon the environment, in order to promote desirable states of equilibrium (see Fig-
ure 9.5). In the hospital scenario, for instance, an institutional event signalling that
a group is not well formed may enact the regimentation of a related environment
functionality. For instance, an event signalling the reached maximum cardinality
for the visitor groups (NV MAX) may enact disabling the book visit operation on the
desk. Violating the obligation imposed to the staff agent to fulfill sanctioning and

200 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

rewarding missions may enact the expulsion of that agent from the workspace.

9.3.2 Embodied Organization Rules

By assuming the relations between organizational and environmental entities as
governed by constitutive rules, it is now possible to specify a programmable rela-
tions between EMI and OMI:

Definition 1 (Embodied Organization Rules) The programmable relations be-
tween organizational and environmental infrastructures are defined in terms of
Embodied Organization Rules as specified in Table 9.1.

Structures defining Emb-Org-Rule refer to count-as and enact relations.

Count-as rules, state which are the consequences, at the organizational level, for
a specified event generated inside the overall infrastructure. In this case,
count-as rules indicate how, since the actions performed by the agents,
the system automatically detects relevant events, thus transforming them
to some additional event to be processed at the organizational level. In so
doing, either relevant events occurring inside the EMI (possibly triggered
by agents actions), either events occurring in the context of the organization
itself (OMI) can be vehicled to the institutional dimension (see Figure 9.5):
these events can be further translated in the opportune institutional changes
inside the OMI, that is assumed to update accordingly.

Enact rules, state, for each institutional event, which is the control feedback at
the environmental level. Hence, enact rules express how, since the speci-
fied Emb-Org-Rule, the organizational entities are assumed to control the
environmental ones. The use of enact rules allows to recast organizational
events (i.e. role adoption, mission commitment) in order to elicit changes
in the work environment.

The pivotal aspects to be considered is that both enact and count-as rules are
grounded to the events generated inside the workspace—which in this particu-
lar case consist in events originated inside the whole work environment (we-ev).
Those events are then specialized once based on organizational events (i.e., omi-
ev, describing those relevant changes occurring inside the institutional layer in
terms of OMI events) and on environmental events (i.e., omi-ev, describing those
changes occurring inside the environment layer in terms of EMI events).

9.4 FINAL REMARKS ON EMBODYING ORGANIZATIONS IN MAS 201

Emb−Org−Rule ::= 〈count−as〉 | 〈enact〉 Constitutive Rules
count−as ::= 〈we− ev〉 −→ 〈omi− ev〉 Count as Rules

enact ::= 〈omi− ev〉 −→ 〈emi− ev〉 Enact Rules
we− ev ::= 〈omi− ev〉 | 〈emi− ev〉 Work Environment Event

emi− ev ::= 〈ws− ev〉 EMI Event
omi− ev ::= 〈ws− ev〉 OMI Event

Table 9.1: Definition of Emb-Org-Rules in terms of constitutive rules and events.

By assuming the work environment as coincident with a single workspace,
both emi−ev and omi−ev can be rooted to workspace events ws−ev (as defined in
Table 9.1). Given this, the events of interest for the applicability of Emb-Org-Rule
are the events originated inside the workspace hosting the organizational and the
environmental infrastructures.

9.4 Final Remarks on Embodying Organizations in
MAS

The contribute of this chapter revise and extends on a couple of recent works pre-
senting the notion of embodied organization in MAS programming [108, 107].
In this view, the environment dimension is explicitly modeled and programmed
as a specific infrastructure instrumenting the work environment aside the orga-
nizational ones. A bidirectional functional relation is then estalished in order to
relate the twofold infrastructure in a coherent ensemble, based on the notion of
constitutive rules.

As discussed in Chapter 3, the application of constitutive rules is not new in
MAS area. Among others, the approach provided by Dastani et al. ([33, 34])
makes use of the same kind of bidirectional relations to define what they call
count-as and sanctioning rules. Our approach to enact rules is more general, al-
lowing different kind of feedback control at the level of the EMI beside sanction
and reward policies6. Typically such rules are well suited for regulating norms for
prohibitions, that in NOPL are expressed by regimentation. They conversely can

6Indeed, many proposals exist in literature providing constitutive rules as a tool for addressing
normative dimension inside MAS. A more detailed comparison on these themes can be found in
Section 3.2.

202 EMBODYING ORGANIZATIONS IN MAS WORK ENVIRONMENTS

be adopted for permissions, i.e. for enabling a certain functionality. It is worth
to remark that the normative control that the organization may want to apply over
the environment is still specified by NOPL specifications inside the OMI. For ex-
ample, a domain norm specifying that a certain door “can be used by medical
staff only” can be ensured by user’s personal badges or keys procedures that an
enactment may control. In this example, the opening procedure to open the door
is the instrument that implements that norm, while such instrument is controlled
by enactments. However, norms for visitors like “pay an additional fee” or “No
Smoking” do not need to (or cannot) be forced by any enact rule in the same way
enact can force agents to access authorized area only. In this case there is no
artifact based instrument capable to ensure the norm, and the role of an organiza-
tional agent becomes necessary to verify violations and possibly enforce a desired
behavior.

The presented approach makes no assumptions on agent architectures and
models. In the context of the hospital scenario agents could be even human be-
ings – actually they “should be” human beings, at least in the case of patients
– or computational agents embedding some kind of user human machine inter-
face. This accounts, for the interrelatedness of social and technical aspects, to
the notion of complex organizational work design as envisaged in the trend of so-
ciotechnical approaches to organizations (see, among others [44, 103]). In fact,
some of the aspects already present in the proposed scenario emphasize the rela-
tionships between socio and technical elements, once they may lead to the emer-
gence of effectiveness and well-being of individuals. Promoting the “fit” between
people and their work in order to optimize well-being and overall system perfor-
mance resembles the well-known principle of ergonomics design [5]. In general,
this accounts for workers’ capabilities and limitations in seeking to ensure and
ease their tasks, tying to fill the gap between objects to be exploited to achieve
goals and the human attitudes adopted to bring about them (see, among others,
[87, 88, 104]). Similarly to our approach, in ergonomics design a set of facilities
are specifically conceived to instrument environments. Accordingly, indications,
environment structures, equipments, information and a series of support mecha-
nisms should be straightforwardly afforded by users, and are explicitly designed
to instrument workplaces in order to fit the work of individuals. The overall en-
vironment is thus modeled as an “habitat” of supporting infrastructures, aimed to
suit each individuals and accordingly to promote specific patterns of cooperation,
to which users may effortlessly participate.

Chapter 10

Programming Embodied
Organizations

After having detailed an abstract model for Embodied Organizations, this chap-
ter details a concrete description on how the approach to can be engineered in
practice. Adopting the scenario previously introduced as guideline, the chapter is
enriched by a series of concrete examples aimed at providing a practical method-
ology to developers in programming an embodied organization. A final section
analyzes strength and weakness of the proposed approach, discussing the main
features with respect to the challenges devised in the first part of the thesis.

10.1 Embodied Organizations in Practice

After having clarified an abstract model for Embodied Organizations, this chap-
ter aims at detailing the approach by discussing the programming approach con-
cretely. To this end, the mechanism for implementing Embodied Organization
Rules is identified in terms of workspace events and workspace rules. Then, the
hospital scenario introduced in Chapter 7 is implemented, including both environ-
mental and organizational infrastructures which are then related each other using
“count as” and “enact” relationships. The description also analyzes agent models,
discussing the different kind of activities required for agents at work in environ-
ment instrumented with and without an Embodied Organization. The benefits and
drawbacks of the proposed approach are pointed out, also enlightening the main
differences with related approaches.

In Section 10.2, an example of programming count as and enact rules is pro-

204 PROGRAMMING EMBODIED ORGANIZATIONS

vided, describing an Embodied Organization applied to the hospital scenario. Sec-
tion 10.3 takes an agent perspective to show the different programming models for
agents operating in the hospital workspace. Two different agents are considered
playing the same role, either situated in organizational infrastructure (OMI) and
in a Embodied Organization (OMI+EMI). In Section 10.4 a series of relevant re-
marks and discussed along with the main limitations identified for the proposed
approach. Finally, Section 10.5 sum up the contribution with final discussions and
remarks.

10.2 Programming Embodied Organization Rules
Placing count as and enact rules in terms of events and assuming the whole work
environment as included in a single workspace allows to frame, at a program-
ming level, the the problem of the implementation of Emb-Org-Rule in terms of
workspace rules—as they have been described in Chapter 6.
Formally: let 〈Ag,Ar,Art,Ev,M,R, t〉 be the configuration of the workspace as
described in Chapter 5, where R represents the set of workspace rules and both
EMI and OMI artifacts are included in the set of artifacts Ar. Being:

+trigg ev : context -> body

the specification of a w rule, and being 〈rid,w rule〉 an associated entry in R, then
a Emb-Org-Rule can be expressed in terms of workspace rules.

The equivalence between workspace rules and Emb-Org-Rules follows by their
definitions: hence, once a workspace coincides with the work environment hosting
the overall infrastructures, Emb-Org-Rules coincide with workspace rules.

In order to perform a proof-of-concept of the system, a series of Emb-Org-Rule
are described in terms of workspace rules and applied in the context of the hospital
scenario.

10.2.1 Programming Count-as Rules
Let us consider that the organization expects that an agent joining the hospital
workspace is identified by va id and is assumed to play the role visitor, which
purpose is to ask for a medical visit and possibly achieve it—as specified in Moise-
OML functional specification. Given that assumption, an event join req,〈vaid, t〉,
dispatched once an agent identified with vaid tries to enter the workspace, from

10.2 PROGRAMMING EMBODIED ORGANIZATION RULES 205

+join_req(Ag)
: true
-> make("visitorGroupBoard",
"OMI.GroupBoard",
["moise/hospital.xml","visitGroup"]);

make("visitorSchBoard",
"OMI.SchemeBoard",
["moise/hospital.xml","visitorSch"]);

apply("visitorGroupBoard",
adoptRole(Ag, "patient"));

include(Ag).

+op_completed("visitorGroupBoard", _,
adoptRole(Ag, "patient"))

: true
-> apply("visitorSchBoard",
commitMission(Ag, "mPat")).

+ws_leaved(Ag)
: true
-> apply("visitorGroupBoard",

leaveRole(Ag, "patient")).

+op_completed("BillingMachine",
Ag, pay)

: true
-> apply("visitorSchBoard",

setGoalAchieved(Ag, pay_visit)).

+op_completed("Terminal",
Ag, sendFee)

: true
-> apply("monitorSchBoard",

setGoalAchieved(Ag, send_fee)).

Table 10.1: Example of count as rules in the hospital scenario.

the point of view of the organization “count-as” creating a new position related to
the visit group. In other terms, we are interested in making the event join req to
“count as” vaid adopting the role visitor. This relation is specified by the first rule
in Table 10.1 (left): such a rule states that since an event signalling that an agent
Ag is joining the workspace, an Emb-Org-Rule must be applied as an instance of
workspace rule. The body of the rule specifies that two new instances of organiza-
tional artifacts related to the visit group must be created using the make operator.
In this case the artifacts to be created are identified by visitorGroupBoard and
a visitorSchBoard. The following operator is specified in order to constitute
the new role inside the group: apply acts on the visitorGroupBoard artifact just
created by automatically making the agent Ag to adopt the role patient. Finally,
once the adopt role operator succeeds, the last operator includes the agent Ag in
the workspace. A similar count as rule can be specified to create organizational
artifacts in the context of the staff group and start agents to play a role accord-
ingly. For instance, entering in a hospital workspace for a staff agent may elicit
the creation of the related OAs, as staffGroupBoard, monitorSchBoard and
docSchBoard, while the role doctor can be adopted as an additional effect. In the
above described scenario, the effect of the application of whole rule provides an
institutional outcome to the joinWorkspace actions—which in normal conditions

206 PROGRAMMING EMBODIED ORGANIZATIONS

only allows an agent to enter the workspace. Joining the workspace is in this case
replaced by a sequence of Emb-Org-Rule, operators stating what this event means
in organizational terms.

When the effects of the role-adoption are committed, as previously described,
a new event is generated by the group board: 〈op completed, 〈"visitorGroupBoard",
vaid , adoptRole, patient 〉〉. For the organization, such an event may “count-
as” committing to mission mPat on the visitorSchBoard. This relation is speci-
fied in the second rule specified in Table 10.1, where a commitMission is applied
to the visitorSchBoard for the mission mPat.

Similarly, an event 〈ws leaved,〈vaid, t〉〉 signalling that the visitor agent has
left the workspace “count-as” leaving the role patient. This relation is speci-
fied in the first rule in Table 10.1 (right), where a leaveRole is applied to the
visitorGroupBoard for the role patient. . At the same time, an event like the one
described by 〈op completed,〈BillingMachine,vaid,pay, t〉〉 signals that a visi-
tor agent has successfully finalized the pay operation upon the billing machine.
From the organization perspective such an event “count-as” having achieved the
goal pay visit on the visitorSchBoard (second rule in Table 10.1, right). Simi-
larly, an event like the one indicated by 〈op completed, 〈Terminal,said,sendFee
, t〉〉, signalling that a staff agent has successfully used the terminal to send the
fee to a given patient, “count-as” having achieved the goal send fee (third rule in
Table 10.1, right).

This event based mechanism makes it possible to handle agent activities at a
fine granularity, allowing to model agent also in their attempts to do some activity.
Notice that, wether organizational functionalities are regimented, the execution of
an operation upon an organizational artifacts may fail. The completion state of
an organizational functionality provided by the OMI is indeed regulated by the
NOPL interpreter, which from time to time relies on the actual configuration of the
organization in terms on NOPL facts, rules and norms. A failure may happen in
the first rule specified in Table 10.1, for instance when the visitor group is not well
formed (each visitor group may contain at least one visitor and one patient). In
this case, according to the semantic of workspace rules, all the effects of the body
are canceled: the two organizational artifacts are removed, the second operator
include(Ag) is not applied and the event +join req(Ag) is wasted. The result
is that the join action initiated by Ag has no effect on the system, the role is not
adopted nor the agent is included the workspace. It is worth remarking, as defined
in Table 9.1, that events triggering count as rules can rise either from EAs (as in
the case of events occurring in the billing machines and in the terminal) either
from OAs (as in the case of role adoption, which is suddenly related to a mission

10.2 PROGRAMMING EMBODIED ORGANIZATION RULES 207

+signal("visitorGroupBoard",
role_cardinality, visitor)

: true
-> disable("Desk", bookVisit).

+signal("monitorSchBoard",
goal_non_compliance,
obligation(Ag,
ngoa(monitorSch,mRew,send_bill),
achieved(monitorSch,send_bill,Ag),
TTF)

: true
-> exclude(Ag).

Table 10.2: Example of enact rules in the hospital scenario.

commitment).

10.2.2 Programming Enact Rules

Besides count as, enact effects are defined to indicate how, from the events occur-
ring at the institutional level, some control feedback can be applied to the environ-
mental infrastructure. As far as the execution of the operation has been conceived
in Subsection 8.3.1 , the OMI automatically dispatches events signalling ongoing
violations. Violations are thus organizational events (omi-ev) which suddenly may
elicit the application of some enact rule. NOPL fail events are indeed a typical
application of enact rules that may be envisaged for regimenting the environment
once a violation occurs.

shows an example of such mechanism. In this case, a regimentation is in-
stalled by the organization thanks to the enact rule stating that an event 〈signal,
〈visitorGroupBoard, role cardinality, /0, t〉〉 signalled by the visitorGroupBoard
indicates the violation for the norm role cardinality (such a norm is given in
NOPL and described in Section 7.3, Table 7.9). The specification of the enact rule
is given in Table 10.2.2 (left), where the reaction to this event is specified in order
to enact disabling the book operation on the desk artifact, for all the agents inside
the workspace. Notice that the absence of any parameter related to agent identifier
in the disable("Desk", bookVisit) operator makes the disabling to affect the
overall set of agents Ag, and the workspace usability map is modified as well.

Similarly, violating the obligation imposed to the staff agent to fulfill sanction-
ing and rewarding missions elicits the scheme board assigned to the monitorSch to
signal the event 〈signal,〈monitorSchBoard, goal non compliance, obligation(Ag,

ngoa(monitorSch,mRew,send bill), achieved(monitorSch, send bill,

208 PROGRAMMING EMBODIED ORGANIZATIONS

Ag), TTF), t〉〉. This event is generated thanks to the NOPL norm goal non compliace

(explained in Table 7.5, Section 7.3), and, due to the enact rule specified in Ta-
ble 10.2.2 (right), causes the exclusion for the Ag agent from the hospital work-
space.

Notice that the violation of the norm goal non compliance is particularly
relevant for triggering control activities to be performed by organizational enti-
ties. The organizational entity has, in this case, two options to arrange a counter-
measure. In fact, besides the application of the enact rules automatically handled
at an infrastructural level, goal unfulfillment events could be used to coordinate
organizational agents signalling the need to intervene. In this second option, an
additional norm may be specified in order to oblige a staff agent to commit to a
further recovery mission. i.e. to judge and possibly sanction the ongoing viola-
tions.

It is worth to remark that whether workspace rules have been associated to
regulatory rules in Chapter 6, in this case the same programming construct resem-
bles the notion of constitutive rules, as it has been defined by Searle in [127, 128].
Thanks to the presence of an organizational entity, that assumes in this context
the boundaries of a “social reality”, workspace rules define (constitute) an activity
the existence of which is logically dependent on the rules themselves. In other
terms, thanks the possibility to exploit both a brute and an institutional dimen-
sion, as embedded inside the work environment, and due to a (possibly implicit)
agreement on their social functions, allows workspace rules do not merely regulate
but create and also define new forms of agent behavior. Thereby, the very basic
notion of “adopting a role”, or “setting a goal achieved”, “committing missions”
are recasted and redefined in terms of constituive/workspace rules.

An example of agents at work in a workspace instrumented with EMI, OMI
and Embodied Organizational Rules is provided in the next section. The exam-
ple shows in particular the differences between an agent at work in a workspace
instrumented with embodied organizational infrastructures only.

10.3 Programming Agents in Embodied Organiza-
tions

In this section we describe in practice the different programming models for
agents at work in organizations instrumented with and without the environment
infrastructure. Table 10.4 and Table 10.5 resume two excerpts of Jason code for

10.3 PROGRAMMING AGENTS IN EMBODIED ORGANIZATIONS 209

+join_req(Ag)

: true

-> make("visitorGroupBoard",

"OMI.GroupBoard",

["moise/hospital.xml","visitGroup"]);

make("visitorSchBoard",

"OMI.SchemeBoard",

["moise/hospital.xml","visitorSch"]);

apply("visitorGroupBoard",

adoptRole(Ag, "escort"));

apply("visitorSchBoard",

commitMission(Ag, "mVisit"));

include(Ag).

+focus_req(Ag, "BillingMachine")

: true

-> apply("visitorSchBoard",

commitMission(Ag, "mPay")).

+op_completed("Desk",

Ag, bookVisit)

: true

-> apply("visitorSchBoard",

setGoalAchieved(Ag, book_visit)).

+op_completed("BillingMachine",

Ag, pay)

: true

-> apply("visitorSchBoard",

setGoalAchieved(Ag, pay_visit)).

+ws_leaved(Ag)

: true

-> apply("visitorGroupBoard",

leaveRole(Ag, "patient")).

Table 10.3: Embodied Organization Rules instrumenting the hospital workspace
and supporting the activities of the escort agent.

agents playing the role escort inside the hospital scenario. In this case we assume
that both the agents join to a visitor group and commit to the same missions mVisit
and mPay. In so doing, both the agents are assumed to fulfill the same tasks inside
the group, in particular by achieving the goals book the visit and pay visit.

10.3.1 Agents at work with Organizational Infrastructure

In Table 10.4 the agent works in a workspace instrumented with an organizational
infrastructure and is assumed to interact with organizational artifacts as they have
been described in Chapter 8. In this case the agent has in charge the task to
create instances of organizational artifacts required for managing its group. Thus,
after having joined the hospital workspace, the agent creates a new instance of
visitorGroupBoard and visitorSchBoard. Once those artifacts are in place,
the agent starts its activities by interacting with the organizational infrastructure:
the visitorGroupBoard and visitorSchBoard are focused and the role escort
is adopted by using the adoptRole operation on the visitorGroupBoard already
created. Now on, the whole agent behavior is governed by the signals perceived
from the artifacts.

In particular, an event coming from the scheme board signalling that the role
adoption succeeded makes the agent to commit the mission mVisit. Besides, an

210 PROGRAMMING EMBODIED ORGANIZATIONS

// initial goal

!create_group.

+!create_group

<- cartago.joinWorkspace("Hospital");

cartago.makeArtifact("visitorGroupBoard",

"OMI.GroupBoard", ["moise/hospital.xml", "vgroup"], GrId);

+a_id(gruopBoard, GrId);

cartago.makeArtifact("visitorSchBoard",

"OMI.SchemeBoard", ["moise/hospital.xml", "vscheme"], SchId);

+a_id(schemeBoard, SchId);

cartago.focus(GrId);

cartago.focus(SchId);

cartago.use(GrId, adoptRole(escort)).

+role_adopted(GrId, escort, Ag)

[artifact("visitorSchBoard"), artifact_id(SchId)]

: a_id(schemeBoard, SchId) & .my_name(Ag)

<- cartago.use(SchId, commitMission(mVisit));

!execute_book.

+new_possible_goal(pay_visit)

[artifact("visitorSchBoard"), artifact_id(SchId)]

: a_id(schemeBoard, SchId)

<- cartago.use(SchId, commitMission(mPay));

!execute_pay.

/* Purposive Activities */

+!execute_book

<- // activities related to fulfill bookings

-!execute_book

<- // handle failures

+!execute_pay

<- // activities related to fulfill payments

-!execute_pay

<- // handle failures

// synchronization: a message is received from the patient agent

+fulfilled(visit)[source(patient)]

<- cartago.leaveWorkspace("Hospital").

Table 10.4: Jason excerpt for the escort agent working in the hospital workspace
instrumented with an Artifact Based OMI

event signalling that the goal pay visit is possible makes the agent to fulfill the
payment. Finally, an ACL message received by the patient agent playing inside
the same group indicates to the escort that the medical visit has been finalized,
thus the agent can leave the workspace.

Although the workflow of activities can be easily expressed in terms of plans
reacting to the events signalled by the OAs, the fulfillment of a series of purpo-

10.3 PROGRAMMING AGENTS IN EMBODIED ORGANIZATIONS 211

// initial goal

!enter_room.

+!enter_room

<- cartago.joinWorkspace("Hospital");

cartago.lookupArtifact("Desk", DeskId);

+a_id(desk, DeskId);

cartago.lookupArtifact("BillingMachine", BmId);

+a_id(billing_machine, BmId);

cartago.lookupArtifact("Tablet", TabId);

cartago.focus(TabId);

!!assist_patient.

+!assist_patient

<- !execute_book;

!execute_pay;

cartago.leaveWorkspace("Hospital").

/* Purposive Activities */

+!execute_book

: a_id(desk, DeskId) & booking(Params)

<- cartago.use(DeskId, bookVisit(Params), Ref_Code).

// wait and resume in case of failures

-!execute_book

<- .wait(1000);

!!execute_book.

+!execute_pay

: a_id(billing_machine, BmId) & payment(Params)

<- cartago.use(BmId, pay(Params), Receipt).

// wait and resume the activity in case of failures

-!execute_pay

<- .wait(1000);

!!execute_pay.

// synchronization: an event is perceived from the Tablet artifact

+signed(patient)[artifact("Tablet")]

<- cartago.leaveWorkspace("Hospital").

Table 10.5: Jason excerpt for the escort agent working in the hospital workspace
instrumented with an Embodied Organization.

sive activities in this case is in charge of agent’s tasks. Notice that the pragmatic
actions related to booking and payment are not specified in the provided excerpts.
In this case the sole organizational infrastructure does not provide functionalities
for these purposes, and the agent has to find the means to achieve these goals
autonomously.

212 PROGRAMMING EMBODIED ORGANIZATIONS

10.3.2 Agents at work with Embodied Organization

In Table 10.5, instead, the workspace is instrumented with both organizational
and environmental infrastructures (EMI and OMI) as described in Chapter 9. We
suppose that the hospital workspace has been programmed using Embodied Orga-
nization Rules (i.e., constitutive rules) between the two dimensions. In this case
the organization result an embodied infrastructure inside the work environment,
being supported by an EMI that can be exploited as an environmental extension
of the organizational entity.

Differently from the version specified in Table 10.4, here the agents can pre-
scind form the organizational infrastructures and succeed their activities working
directly with environmental artifacts. Hence, after having joined the workspace,
the escort agent simply locates the artifacts available in that workspace and sud-
denly start to interact with them. A set of Embodied Organization Rules works in
background to define global dynamics inside the instrumented workspace, and are
aimed at make it transparent the functionalities provided by the organizational in-
frastructure (see Section 9.4). Through the mechanism defined by workspace rules,
the Embodied Organization Rules are assumed to transform the events elicited by
the agent working with the EMI in the corresponding events affecting the OMI.

In this case a first Embodied Organization Rule is specified stating that joining
the workspace “count as” creating the organizational artifacts, adopting the role
escort and committing the mission mVisit ((Table 10.3, left)) A second rule is then
specified indicating that focusing the billing machine “count as” committing the
mission mPay. Further rules specify that using the desk and the billing machine
“count as” achieving the goals book the visit and pay the visit (Table 10.3, right).

Given this configuration, the escort agent does not need to interact with the
organization anymore – being the organization automatically acknowledged by
the Embodied Organization Rule instrumented inside the workspace. The agent
program is thus concretely simplified, while the activities are now related to the
achievement of agent’s pragmatic goals only (i.e., execute book, execute pay).
In other terms, agents have not more in charge the task to actively manage the or-
ganizational entity, which indeed is automatically reconfigured on the basis of the
events that actually characterize the workspace.

As an additional benefit, the environment infrastructure also provides agents
with the means to achieve goals in practice. Thereby, the goal book the visit can
be fulfilled by externalizing an action using the bookVisit operation on the desk
artifact. Similarly, the pay visit goal is fulfilled using the pay operation on the
billing machine artifact, and so on. Besides, the possibility to observe artifact

10.4 FROM SITUATED TO EMBODIED ORGANIZATIONS 213

events allows the agent to synchronize its activities with the ones of the patient
agent by focusing the tablet artifact, thus without the need to send and receive
messages, neither the charge to understand their content. In this case we assume
that a tablet signal, indicating that the visit has been finalized by the patient, allows
the escort to recognize that it is time to leave the workspace. Notice that to handle
possible failures, due to organizational regimentations, the agent here simply uses
a couple of plans to be triggered in case of fail events occurring within the artifact
use. The result is that the organizational functionalities are made transparent for
the agent, while it can be completely unaware of the organizational entity.

10.4 From Situated to Embodied Organizations
The model presented in this chapter proposes the notion of Embodied Organiza-
tion as a multifaceted artifact based infrastructure deployed in MAS work envi-
ronment. It mainly differs form other approaches related the notion of situated
organizations (a survey of related work is in Chapter 3) for presenting a struc-
tured approach applied to both organizational and environmental infrastructures.
A series of remarkable aspects and relevant properties are discussed below, with
respect to the identified objectives and related works.

10.4.1 Relevant aspects
CONSTITUTIVE REALITIES. As in the approach supported by Normative MAS
by Dastani et al. [33, 34], we explicitly model constitutive rules as a mechanism
to shift events from environmental to organizational reality, with the aim to main-
tain a coherent configuration of the global system. In our case, this promotes a
seamless integration between two infrastructures, enabling in particular a media-
tion role to be played by environmental artifacts. Embodied Organization Rules
are introduced as a programmable layer in order to to control the social behavior
and to bridge the gap between the abstract concepts expressed at organizational
level, and concrete functionalities characterizing the work environment. As a re-
sult, agents can implicitly interact with the organization, even being not aware of
its functioning nor of its presence. On the other hands, the organization can enact
a direct control upon the environment, thus implementing an effective mechanism
for ensuring and regimenting its norms.

The approach of constitutive rules is not followed in Okuyama et al. [91],
where the organizational entities and the situated normative objects are not sup-

214 PROGRAMMING EMBODIED ORGANIZATIONS

posed to work together in ensuring norms and monitoring and control of ongoing
activities. Besides, the use of objects has a weak effect to the institutional dimen-
sion (the inspection of a normative object can not be functionally related to the
rest of the organization).

The same approach is adopted in MASQ [132, 6] too, where the laws determin-
ing the interference among objects are restricted at defining physical constraints
(i.e., objects coming into collision) while the possibility to dynamically specify
specific interferences between the physical and the organizational dimensions is
not provided.

DECENTRALISED INFRASTRUCTURES. According to the proposed model,
an embodied organization realizes an organizational entity inside the global work
environment in terms of two decentralised infrastructures based on several type
of artifacts. As opposed to alternative views, as the normative model proposed
by Dastani et al., the notion of embodied organization envisages environments as
constituted by a series of decentralised artifacts, each specified to serve a particu-
lar purpose for supporting agents activities.

A similar notion of decentralised environment is followed by the MASQ ap-
proach, where agents are capable of sensing data from a series of physical envi-
ronmental objects. Besides, MASQ objects are assumed to react to the influences
performed by agents and possibly propagate these influences according to a set of
interference laws specified within the influences and reactions model [51].

The adoption of environmental objects inside the work environment is also
promoted by Okuyama et al. Besides providing a notion of locality similar to
the one given by A&A workspaces, environment objects assume in this approach
the boundaries of normative objects, and can be exploited at the application level
by agents themselves for normative regulation. Basically the functions of a nor-
mative object resume the ones provided by the observability of organizational
artifacts: indeed, normative objects are passive computational entities with an in-
spectable informative content, which makes available situated information about
norms within the place where such objects can be perceived by agents. Similarly
to the embodied organization approach, normative objects operate as a coordina-
tion media used to convey situated normative content to the agents. Differently
from our model, there is not a structured approach in modeling organizational
entities, being their organizational specification solely based on the definition of
norms in terms of readable rules.

It has to be remarked that both MASQ and Okuyama et al. are mainly ad-
dressed at developing a methodological tool and a framework for social simula-

10.4 FROM SITUATED TO EMBODIED ORGANIZATIONS 215

tions, while the aim of our approach is general enough to be addressed to a wider
area of software development. As inherited by the A&A model formally described
in Chapter 5, our approach deals with decentralised entities. It respects unques-
tionable principles of programming distributed systems, as synchronizing facts
and events (through linking), ensuring mutual exclusion on resources (synchro-
nized access), preventing concurrent executions (only one operation in execution
at a time inside the same artifact), etc.

INTERACTIONS. In an embodied organization, each artifact consists in a non
autonomous / reactive computational entity, developed with the aim to be suitably
exploited by agents at an application level. On these basis, interactions between
agents and organizations obey to unambiguous rules defined at a programming
level, and are modeled through agent native capabilities of action and percep-
tion. Whereas the overall work environment runs on a dedicated platform (i.e.
CArtAgO), heterogenous agents can share the same organizational functionalities
simply by integrating the repertoire of actions needed to join a workspace and
work with artifacts.

For many aspects, the interaction model adopted in A&A- CArtAgO resem-
bles the one proposed by the influences and reaction principles by [51] – re-
cently revised in the context of the MASQ model. The idea at the basis of in-
fluences/reactions is that an agent can not directly change the state of the world,
an agent decides the action to do and then the environment determines its conse-
quences. An important consequence stressed in that approach is that everything
that is not provided by the environment is simply not feasible for an agent.

The approach to interactions envisaged within embodied organizations based
on agents and artifacts promotes the notion of mediated interaction. This results
as a suitable option for communication between agents (see [106] for an exam-
ple of agents sharing relevant information mediated by artifacts). Although not
detailed in the context of this work, other kinds of interactions can be adopted as
well. Most important, agents are not prevented in adopting direct communication
based on message exchange and ACLs. There are at least two options to integrate
a message based interaction in the proposed model. The first simple option is to
use infrastructures already available in agents platforms. Indeed, most of the agent
based frameworks already offer embedded services supporting ACL and messag-
ing conforming to FIPA standards (an example is JADE, upon which most agent
platforms are based [8]). A less obvious option would be to integrate (and build
accordingly) an artifact based infrastructure supporting ACL. This last option,
not already pursued in this work, envisages the realization of the whole messag-

216 PROGRAMMING EMBODIED ORGANIZATIONS

ing infrastructure as an artifact based infrastructure. Such an infrastructure may
implement, for instance, message boxes as agents’ personal artifacts, and global
services like white and yellow pages by introducing shared artifacts distributed
for each workspace. Addressing the dialogical dimension inside the organization,
together with a possible technological support of existing approaches based on di-
alogical interactions (as the one provided by Electronic Institutions and AMELIE
[47]), are actually planned as future work.

FUNCTIONALITIES. Related approaches to situated organization typically re-
fer to a collection of institutional and brute facts, represented as organizational /
institutional states and environmental / brute states respectively. For instance, nor-
mative objects in Okuyama et al. only provide informational contents to agents,
while brute and institutional facts in Dastani et al. only provide a symbolic rep-
resentation of current stases inside the system. Thereof, these approaches refer
to information contents, thus not providing an explicit support to other kinds of
functionalities.

In our approach, each artifact provides two kind of functionalities, namely
observable properties and operations. These functionalities are then extended to
the overall infrastructures in order to be exploited by agents for their epistemic
(artifacts have an observable state) and pragmatic (artifacts have triggerable oper-
ations) purposes. This introduces the notion of infrastructural functionality, which
in the case of embodied organization can be extended either at the environment
level either at the institutional one. Functionalities are made available to agents to
interact with the infrastructures, and can be exploited either to modify the brute
reality (EMI) either the institutional reality (OMI).

OPENNESS. As emphasized in Chapter 4, openness in artifact based work envi-
ronments can be intended in a couple of meanings. On the one side, the system is
open for agents, thereby artifacts and infrastructures are designed ignoring agents
internal models, namely their architectures, their purposes, their effective capabil-
ities. On the other side, the system is open for artifacts, thereby agents entering
the work environment may ignore artifacts details at design time, namely which
kind of functionalities they provide, how they are located, which (usage) proto-
cols are needed to exploit them, etc. From the point of view of an agent, openness
can be faced by the mean of manuals, artifact meta descriptors or any other kind
of discovery capability (see Subsection 4.5.2 for an example of this use). From
the point of view of the organizational infrastructure, openness can be faced by
forcing norms, hence regimenting and enforcing a desired pattern of behavior (as
explained in Subsection 2.3.3).

10.4 FROM SITUATED TO EMBODIED ORGANIZATIONS 217

By mapping agent’s actions onto artifact operations we have a further impor-
tant outcome for what concerns openness and dynamism: the repertoire of actions
available to the agents is dynamic, it depends on the current shape of the environ-
ment (i.e., the set of artifacts actually available in the workspace). In this view,
agent’s capabilities can be then extended or specialized by agents themselves cre-
ating new artifacts or replacing existing ones. Besides, the infrastructures can
be updated, replaced, modified, thanks to the operations allowing to dynamically
change the functioning (i.e., the program) of existing artifacts at runtime. For
instance, by submitting a new instance of NOPL to an OMI, an organizational
agent may change the overall organizational specification on the fly. At the same
time, the programming model defining Embodied Organization Rules can be eas-
ily recasted to relate organizational and environmental infrastructures on situated
requirements, while the functional relationships established between the various
artifacts promote a comprehensive approach to the whole organization as a unified
embodied entity.

DIFFERENT CONCERNS. Emphasizing the separation of concerns between or-
ganizational specification and environment specification, artifacts can hold ei-
ther to the organizational infrastructure, resulting as organizational artifacts, or
to the environment infrastructure, resulting as environmental artifacts. The whole
work environment is thus unambiguously divided in two separated infrastructures
placed at two distinct conceptual levels: an organizational level containing or-
ganizational entities detailed with organizational specifications (including norms,
roles, collective goals, groups) and an environmental level, containing those en-
vironment artifacts to be exploited by agents and monitored / controlled by the
organization itself. This, for instance, accounts for maintaining an organizational
program focused on organizational constructs only, thus not introducing, at the
organizational level, low level details related to the specification of whole appara-
tus. A similar notion is introduced by the MASQ approach which explicitly deals
with four dimensions, ranging from endogenous aspects (related to agent’s men-
tal attitudes and cultures) to exogenous aspects (related to environments, society
and socio-sphere where agents are immersed). The aim of MASQ is to propose an
unique approach by which the various basic elements that compose the interaction
processes as agents, environments and organizations are modeled in an integrated
way. Similarly to our approach, in MASQ a clear conceptual separation exists be-
tween physical (and social) spaces and agents working in it. Differently from our
approach, in MASQ there is no explicit representation of an institutional reality
external to agent minds. In fact, agents are assumed to learn and internalize insti-

218 PROGRAMMING EMBODIED ORGANIZATIONS

tutional facts in terms of mental attitudes (that they refer to as cultures, that are
modeled in terms of special beliefs), while the representation of the social reality,
as well as the current normative dimension, are always subjectively appraised.

Handling different concerns places an important difference with existing ap-
proaches to situated organizations which include the environment as a specific
dimension to be programmed within the organization [33, 34]. In our approach
either organizational entities and environmental ones can be programmed accord-
ing to their specific needs and they accordingly may evolve as independent (sub)
systems. As opposed to the approaches mixing together organizational and en-
vironmental specifications, in our approach environment infrastructures can pre-
exist the organization, thus supporting and wrapping a series of external services
and legacy systems which existence is independent from the organization itself.

(UN)AWARENESS. By mediating between agents and organization, the environ-
ment infrastructure give rise to functional, unaware, collective phenomena which
can be fully controlled by the organization. As said, the environment infrastruc-
ture has a functional role inside the whole system, serving agents as external re-
sources to fulfill their pragmatic and epistemic purposes. This aspect has impor-
tant consequences at an organizational level.

A first consequence is that, besides organizational agents managing the orga-
nization and user agent participating the organization, a new kind of agent may
evolve in the system: unaware agent. The notion of unawareness refers to agents
having no explicit representations nor internal capabilities to reason in organiza-
tional/normative terms. They are not assumed to directly exploit an organizational
entity, because they have no access to it due to some organizational policy, or due
to a lack in their reasoning model, or because of a design choice. In the hos-
pital scenario, for instance, visitors could have no knowledge about the organiza-
tional specifications nor they need them to directly exploit the OMI services. They
can be, indeed, unaware, and likely not supposed to know the specific protocols
needed to participate the organization.

Unawareness is an aspect which other approaches to situated organizations
do not address. For instance either in Okuyama et al. either in MASQ, it is ex-
plicitly required for agents to retrieve in the interaction spaces those information
aimed at informing agents about the institutional rules. Such an information is
then internalized through perception, thus allowing agents to bring about it. It
has to be remarked that the possibility for agents to work inside an institutional
context without being aware of its effective structures facilitates the construction
of open systems, where either agents either organizations are assumed to ignore

10.4 FROM SITUATED TO EMBODIED ORGANIZATIONS 219

the counterparts at design time.

A second consequence refer to more complex patterns of interaction, involv-
ing agents able to cognitively (rationally) exploit organizational entity through its
environment extensions. In fact being able to bring about environmental function-
alities may produce implicit effects at an organizational level. Intelligent agents
could operate upon environmental infrastructures with the additional aim to alter
the organizational configuration, as well as organizational entities may directly
operate upon environments so as to signal relevant information to be cognitively
appraised by agents. The cognitive model behind such a kind of interaction can
be identified, among others, in Castelfranchi theory of Behavioral Implicit Com-
munication (BIC) [24], which assumes agents having mind reading abilities, able
to ascribe intentions and to interfere with other agents in terms of mental states.
A first step in this direction has been described in [106] and [116], while further
investigation is planned for future work.

EVENTS. In the proposed approach the interaction model is entirely conceived
in terms of events: events are dispatched by artifacts during their operation exe-
cution, events are perceived by agents and events are dispatched due to agent ac-
tivities (as joining/leaving workspaces, linking/unlinking and creating/diaposing
artifacts, etc.). Thereby, differently from related approaches – as for instance the
one proposed by Dastani et al. working in terms of physical and institutional facts
– the proposed approach allows to deal with relevant changes occurring in the en-
vironments in terms of workspace events, which can be suddenly interpreted in
terms of relevant changes in the application domain. A coherent set of mecha-
nisms is then available to trace a rich taxonomy of events and handle them ether
at the subjective level of agents, either at the infrastructural level by programming
intra-workspace dynamics. Indeed, events are then possibly perceived by agents
or intercepted by workspace rules. Basically this enables developers (and agents
themselves) to face environments dynamics at a finer granularity, effectively im-
proving situatedness of the whole system. As a consequence, the proposed ap-
proach allows to deal with the notion of “attempt” for agents who tries to execute
artifact operations. The outcome of a given operation can be indeterministic and
it may be established taking int account the actual configuration of the infrastruc-
ture (i.e. the institutional facts stored inside the organizational artifacts by NOPL
constructs).

220 PROGRAMMING EMBODIED ORGANIZATIONS

10.4.2 Limitations and drawbacks

Of course the proposed approach is not free from drawbacks. A first issue con-
cerns the processing model adopted to implement Embodied Organization Rules.
Using Embodied Organization Rules requires a rule engine to be managed inside
each workspace. Besides, the mechanism of workspace rules, on top of which
Embodied Organization Rules are provided, assumes a series of strict assump-
tions which may elicit a considerable computational load once complex rules are
run. As showed in Chapter 6, each rule requires atomic transitions with the exe-
cution of multiple operators. It also requires to resume a consistent configuration
of the whole workspace once some failure occurs. Indeed, a successful reaction
can atomically modify the configuration of the workspace, while a failed reaction
yelds no changes at all. These aspects introduce further computational load within
the rule engine, and may suggest the developer to minimize the use of workspace
rules in programming artifact based infrastructures. Notwithstanding, the need to
provide a comprehensive approach to Embodied Organizations goes in the oppo-
site direction: minimize the effort for agents in interacting with the organizational
entities, thus delegating as much as possible to Embodied Organization Rules.

An additional limitation concerns programming complex organizational pat-
terns: it may result hard to specify due to the functional level at which the Em-
bodied Organization Rules actually operate (i.e. single artifact functions).

The above mentioned aspects are partially soften by the distribution model
which accounts the possibility to distribute the system over multiple nodes and
workspaces—Embodied Organization must be deployed in a single workspace
to guarantee a cohesive unity of time and space. This origins a methodological
trade-off, by which the developer has to decide which part of the interaction could
be managed with Embodied Organization Rules, and which part has to be left in
charge of participating agents. At the moment, we argue that in order to overcome
these limitations a certain amount of experience in building concrete Embodied
Organization is needed. Although it may be a downside due to the novelty of
the approach, of course future work will be addressed in better understanding this
kind of issues.

10.5 FINAL REMARKS ON PROGRAMMING EMBODIED ORGANIZATIONS 221

10.5 Final Remarks on Programming Embodied Or-
ganizations

As highlighted by the concrete description of the programming model provided
in this chapter, the presence of an environmental infrastructure accompanying the
organizational one has a series of remarkable benefits, for instance in terms of
separation of concerns and decentralization, rich event based interactions, func-
tionalities, openness, agent awareness, etc. As a main outcome, agents can operate
in a goal oriented fashion directly upon environment artifacts, thereby exploiting
entities embodied in their work environment for their purposes, without explicitly
take into account the organizational entities, nor the additional activities needed
to inform the organization about their ongoing activities. As far as the model has
been conceived, the organization result as an “hidden” infrastructure, transpar-
ently deployed behind the environment artifacts. This results in the possibility for
the organizational entity to be automatically acknowledged about agent’s ongoing
activities, thanks to the presence of embodiment rules regulating the functional
links between environmental and organizational infrastructures. Furthermore, the
same embodiment rules allow the organization to operate a functional control over
environmental resources, thus implementing regimentation and enforcement over
agents.

Resuming the abstract picture of interactions discussed in the introduction of
this thesis (Figure 1.1), the proposed approach defines a series of mechanisms
placed at an “agentive” level of abstraction: they are aimed at better situating
agents, environment and organization in the context of an integrated framework.
In this perspective, interactions taking place between agents and environment re-
sources (A-E relationships) have been shaped on a semantic typical of agent capa-
bilities, as the one of action and (event) perception. Besides, interaction between
environments and organizations (E-O relationships) have been conceived in terms
of constitutive rules, and realized by the event based mechanism of workspace
rules allowing the specification of global laws inside the environment. Finally,
interactions between organizations and agents (O-A relationships) have been pro-
vided with the mediation role played both by agents and artifacts, thus exploiting
the notion of regimentation and organizational agents.

222 PROGRAMMING EMBODIED ORGANIZATIONS

Chapter 11

Conclusions

This thesis deals with programming organizations in agent systems. It devises in
particular a computational model for organizational entities situated in structured
agent work environments. To this end, three main perspectives related to agents,
environments and organizations are considered in order to provide an integrated
approach. The resulting programming model – and the related technology – are
aimed at put in relation all the different entities characterizing the system by pro-
viding a global, coherent view. In this perspective, the notion of Embodied Orga-
nization is introduced relating to the particular configuration of a Multiagent Sys-
tem instrumented with a twofold infrastructure, concerning both organizational
and environmental aspects.

As recognized for instance by [141] software development over the last decades
has been characterized by an evolution from a mathematics-centered model fo-
cused on data processing, to one based on interaction among distributed and het-
erogenous entities. This evolution continues today not only through the advances
in hardware platforms but mostly thanks to the continuous refinements of the ab-
straction tools adopted in the development of ever more complex programs. The
same kind of evolution could be encountered also in this work, where a main re-
search objective has been addressed at establishing a wide set of interaction styles,
which are assumed to take place between the abstraction tools placed by agents,
environments and organizational entities. Interactions have been conceived with-
out loosing the objectives of programming the system as a coherent ensemble. A
particular attention has been devised for the abstraction level at which the system
can be programmed, with the aim to maintain an “agentive” level of abstraction
and not constrain developers to draw systems thinking in terms of “mechanisms”.

224 CONCLUSIONS

This, we argue, results in a first step toward the challenge of reconciling – both
at design and at a programming level – emergence with cognition, intentional be-
havior with social functions, organization aware models of agency with unaware
styles of cooperation/coordination.

11.1 Contribution of this Thesis
In carrying out the objectives identified in the first chapters, this work has allowed
to finalize a number of research contributions in the field of agent systems. These
contributions can be analyzed under the different perspectives upon which the
thesis has been structured.

Environment Programming

In the first part of the thesis, a programming model, and a related technology,
for implementing infrastructures in Multiagent Systems has been introduced. The
approach relies on research on environment programming promoted within the
A&A (Agents & Artifacts) model, where artifacts and workspaces are assumed as
basic entities structuring decentralised work environments. MAS infrastructures
are indeed based on the notion of artifact and workspace, provided as the basic
computational units promoting a structured programming model of MAS envi-
ronments. In this view, agents are autonomous, proactive entities of the system,
and are assumed to dynamically use, replace, change artifacts (and thus, infras-
tructures) based on their actual needs. On the other hands, artifacts are considered
passive, non autonomous, distributed entities structuring the work environment in
terms of functionalities and services to be exploited by agents.

CArtAgO has been proposed as a concrete technology for implementing in-
frastructures in practice, based on the A&A model. Its concrete programming
model has been developed including a series of contributes by the author of this
thesis. In Chapter 4, the CArtAgO programming platform has been detailed, also
describing the insights of a series of concrete use cases where agents externalize
their tasks inside work environments instrumented with artifacts. The interac-
tion model has been defined either at a theoretical and at a programming level,
as based on agentive capabilities of actions and perceptions. In this view, het-
erogeneous agent models and architectures are assumed to work inside CArtAgO
environments by internalizing a basic set of actions in their repertoire. A main
contribution to the framework has been to shape artifacts computational model in

11.1 CONTRIBUTION OF THIS THESIS 225

order to match the main features typical of a strong notion of agency, as they can
be based on epistemic and motivational attitudes. This research line has allowed
agents to exploit artifacts in a coherent interaction style, according to a series of
epistemic and pragmatic functionalities which artifacts provide in terms of ob-
servable properties and usage interfaces. This resulted in a further contribution
on agents programming, related in particular to the definition of those goal ori-
ented capabilities allowing agents to externalize activities on artifact resources.
Interoperability and openness are enabled not only at a mechanism level, but also
promoting artifact mediation role, which is aimed at enabling, interceding, gov-
erning and improving agents interactions and cooperation inside the application
domain.

A main contribution to environment programming has been proposed in order
to deal with a wide series of interaction styles inside the system. This purpose has
suggested the introduction of an additional coordination mechanism, which is a
further contribution of this thesis. To this end, a renewed model of artifact based
environments has been formally described including its dynamics, and detailing in
particular the interactions between agents, artifacts and workspaces as centered on
the notion of events (Chapter 5). The pivotal role of events has led to the definition
of programming constructs aimed at specifying intra-workspace dynamics besides
agent artifact interactions, that is, through a programming language specifying
a series of event based rules applying sequences of operators affecting entities
actually dwelling the workspace. The execution of such rules is aimed at eliciting
additional outcomes once specific events occur inside the workspace, thus altering
the normal course of events and providing a suitable approach in specifying global
laws inside the system (Chapter 6).

Organization Programming

The programming model used to conceive organizations has been rooted on the
Moise model. The approach allows to realize organizations of agents as struc-
tured in multiple conceptual dimensions and promotes the definition of a norma-
tive specification to be handled in concrete organizational entities deployed inside
the MAS. Chapter 7 implements a concrete organizational specification according
to the Moise model, thus providing the basis for a concrete scenario (referred as
hospital scenario) used as a guideline in the rest of the thesis. By adopting the
same approach used for programming environments, organizational entities have
been straightforwardly realized as concrete infrastructures based on A&A princi-
ples and realized in CArtAgO (Chapter 8). This results in decentralized Organiza-

226 CONCLUSIONS

tional Management Infrastructures (OMI), based on artifacts and workspaces and
rooted in the computational model described in the first part of the thesis, with a
particular emphasis to the role played by events.

Following the approach recently proposed by Hübner et al., the resulting ar-
tifact based OMI is then instrumented by an internal mechanism aimed at entail-
ing both actual organizational configuration and the dynamic constraints specified
for ensuring its global coherence. Such a mechanism devises the constructs of
a normative programming language (NOPL) obtained from an automatic trans-
lation of the Moise specification. As emphasized, the functionalities provided
by the individual artifacts have been shifted to an infrastructural level, thus in-
troducing the notion of organizationa/institutional facts (i.e., in terms of artifact
observable properties), as well as the notion organizational/institutional functions
(i.e., in terms of artifact usage interfaces).

Unifying approach to Programming Organizations, Agents and Environments

In the last part of the thesis, the notion of Embodied Organization has been intro-
duced by considering an additional environment support to be provided aside the
one provided by the organizational infrastructure. A complementary infrastructure
(referred as Environment Management Infrastructure - EMI) has been described
as an environmental extension of the organizational entity, thus providing agents
with additional functionalities to be exploited at the application level.

In Chapter 9, Embodied organizations have been introduced as a unified ap-
proach to organizational and environmental infrastructures, promoting an inte-
grated approach to programming different dimensions as a coherent ensemble.
In order to establish functional relationships between the heterogenous entities
at the basis of organizations and environments, special programmable constructs
have been defined, inspired by the notion of constitutive rules introduced in social
sciences by John Searle. These principles have been rooted on the event based
mechanism regulating global dynamics inside workspaces, and realized in terms
of Embodied Organization Rules. The programming model at the basis of Embod-
ied Organization Rules has been implemented with the same mechanisms used for
regulative rules specifying intra-workspace dynamics.

Finally, based on the guideline scenario previously introduced, Chapter 10
provides a concrete description of how embodied organization can be engineered
in practice. The description is enriched by a series of concrete examples aimed at
providing a practical methodology and guidance to developers.

11.2 FUTURE DIRECTIONS 227

11.2 Future directions
Future work will account further investigation about the notion of embodied or-
ganizations and will be addressed at covering missing aspects, such as the dia-
logical (and normative) dimension of interactions. An important aspect actually
deserving our attention is the computational model for agents able to reason in
organizational terms, with particular emphasis on the cognitive mediators needed
for agents to be aware of organizational constructs. Besides, a challenging direc-
tion accounts the possibility to integrate human agents in the proposed approach,
thus exploring real life scenery and refining the notion of “embodiment” with the
realization of sociotechnical systems.

Among the ongoing activities, the main one is the distribution of a new re-
lease of CArtAgO integrating both artifact based environments and organizations
regulated by embodied mechanisms. In this line, a particular attention will be de-
vised for easing the work of developers, i.e., by enriching the release with support
material and development tools.

Finally, an important long term objective would be the definition of a gen-
eral purpose approach, towards the full integration of the proposed model in the
context of mainstream agent oriented programming.

228 CONCLUSIONS

Appendix A

Moise specification for the Hospital
Scenario

This appendix includes the complete Moise OML specification for the organiza-
tional entity referred in the context of the hospital scenario. This specification
is expressed in XML and can be straightforwardly desumed from the graphical
specification described in Chapter 7.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl" type="text/xsl" ?>

<organisational-specification id="hospitalspec"

os-version="0.7"

xsi:schemaLocation="http://moise.sourceforge.net/os

http://moise.sourceforge.net/xml/os.xsd"

xmlns="http://moise.sourceforge.net/os"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- STRUCTURAL SPECIFICATION-->

<structural-specification>

<role-definitions>

<role id="staff"/>

<role id="doctor">

<extends role="staff"/>

</role>

<role id="visitor"/>

<role id="escort">

<extends role="visitor"/>

</role>

<role id="patient">

<extends role="visitor"/>

</role>

</role-definitions>

<group-specification id="surgery_room_group">

<links>

<link from="staff" to="visitor" type="communication"

scope="inter-group" extends-sub-groups="true" bi-dir="true"/>

</links>

<sub-groups>

<group-specification id="visit_group" max="100" min="0" monitoring-scheme="monitoringSch">

<roles>

230 MOISE SPECIFICATION FOR THE HOSPITAL SCENARIO

<role id="escort" min="0" max="1"/>

<role id="patient" min="1" max="1"/>

</roles>

<links>

<link from="patient" to="escort" type="acquaintance" scope="intra-group"

extends-sub-groups="true" bi-dir="false"/>

<link from="patient" to="escort" type="communication" scope="intra-group"

extends-sub-groups="true" bi-dir="true"/>

</links>

<formation-constraints>

<compatibility from="patient" to="escort" type="compatibility" scope="intra-group"

extends-sub-groups="false" bi-dir="false"/>

</formation-constraints>

</group-specification>

<group-specification id="staff_group" max="1" min="1" monitoring-scheme="monitoringSch">

<roles>

<role id="doctor" min="1" max="1"/>

<role id="staff" min="0" max="1"/>

</roles>

<links>

<link from="doctor" to="staff" type="acquaintance" scope="intra-group"

extends-sub-groups="true" bi-dir="false"/>

<link from="doctor" to="staff" type="communication" scope="intra-group"

extends-sub-groups="true" bi-dir="false"/>

</links>

<formation-constraints>

<compatibility from="doctor" to="staff" type="compatibility" scope="intra-group"

extends-sub-groups="false" bi-dir="false"/>

</formation-constraints>

</group-specification>

</sub-groups>

<!--<formation-constraints>

<cardinality min="1" max="1" object="role" id="doctor"/>

</formation-constraints>-->

</group-specification>

</structural-specification>

<!-- FUNCTIONAL SPECIFICATION-->

<functional-specification>

<scheme id="visitorSch">

<goal id="visitor">

<plan operator="sequence">

<goal id="enter" ds="enter the room"/>

<goal id="book" ds="book the visit"/>

<goal id="visit" ds="visit">

<plan operator="parallel">

<goal id="do_visit" ttf="30 min" ds="do the visit"/>

<goal id="pay_visit" ttf="30 min" ds="pay the visit"/>

</plan>

</goal>

<goal id="exit" ds="exit the room"/>

</plan>

</goal>

<mission id="mPatient" min="1" max="1">

<goal id="do_visit"/>

</mission>

<mission id="mPay" min="1" max="1">

<goal id="pay_visit"/>

</mission>

<mission id="mVisit" min="1" max="2">

<goal id="enter"/>

<goal id="book"/>

<goal id="exit"/>

</mission>

</scheme>

<scheme id="monitorSch">

<goal id="monitor">

<plan operator="sequence">

<goal id="observe" ds="monitoring agents"/>

<goal id="enforcement" ds="Reward_Punish some agents">

<plan operator="choice">

<goal id="send_bill" ttf="1 day" ds="reward good visitors"/>

<goal id="send_fee" ttf="1 day" ds="punish bad visitors"/>

</plan>

231

</goal>

</plan>

</goal>

<mission id="mStaff" min="1" max="1">

<goal id="observe"/>

</mission>

<mission id="mRew" min="1" max="1">

<goal id="send_bill"/>

</mission>

<mission id="mSan" min="1" max="1">

<goal id="send_fee"/>

</mission>

</scheme>

<scheme id="docSch"><!--<goal id="doctor">-->

<goal id="visit_patient" ttf="30 min" ds="do the visit"/><!-- </goal> -->

<mission id="mDoc" min="1" max="1">

<goal id="visit_patient"/>

</mission>

</scheme>

</functional-specification>

<!-- DEONTIC SPECIFICATION-->

<normative-specification>

<norm id="n1"

type="obligation"

role="escort"

mission="mVisit"/>

<norm id="n2"

type="obligation"

role="patient"

mission="mVisit"/>

<norm id="n3"

type="obligation"

role="patient"

mission="mPatient"/>

<norm id="n4"

type="permission"

role="escort"

mission="mPay"

time-constraint="5 min"/>

<norm id="n5"

type="obligation"

condition="unfulfilled(n4)"

role="patient"

mission="mPay"

time-constraint="5 min"/>

<norm id="n6"

type="obligation"

role="staff"

mission="mStaff"/>

<norm id="n7"

type="obligation"

role="doctor"

mission="mDoc"/>

<norm id="n8"

type="obligation"

condition="unfulfilled(n4) | unfulfilled(n5)"

role="staff"

mission="mSan"

time-constraint="1 day"/>

<norm id="n9"

type="obligation"

condition="unfulfilled(n4) & unfulfilled(n5)"

role="staff"

mission="mSan"

time-constraint="1 day"/>

<norm id="n10"

type="obligation"

condition="unfulfilled(n6)"

role="doctor"

mission="mStaff"/>

</normative-specification>

</organisational-specification>

232 MOISE SPECIFICATION FOR THE HOSPITAL SCENARIO

Appendix B

NOPL specification for the Hospital
Scenario

This appendix contains the source code for the NOPL program specifying the
hospital scenario. The program is generated since the Moise specification showed
in the previous appendix. A tool actually provided in the Moise platform1 allows
to automatically create the NOPL specification on the basis of the translation rules
described in Chapter 7 and in [61, 62].

/*

This program was automatically generated from

the organisation specification ’hospitalspec’

on febbraio 24, 2010 - 00:55:10

This is a MOISE tool, see more at http://moise.sourceforge.net

*/

scope organisation(hospitalspec) {

// Role hirarchy

subrole(staff,soc).

subrole(doctor,staff).

subrole(visitor,soc).

subrole(patient,visitor).

subrole(escort,visitor).

fplays(A,R,G) :- plays(A,R,G).

fplays(A,R,G) :- subrole(R1,R) & fplays(A,R1,G).

scope group(surgery_room_group) {

// ** Facts from OS

// ** Rules

rplayers(R,G,V) :- .count(plays(_,R,G),V).

well_formed(G).

1Moise is an open source project at: http://moise.sourceforge.net/

http://moise.sourceforge.net/

234 NOPL SPECIFICATION FOR THE HOSPITAL SCENARIO

// ** Properties check

norm role_in_group:

plays(Agt,R,Gr) &

not role_cardinality(R,_,_)

-> fail(role_in_group(Agt,R,Gr)).

norm role_cardinality:

group_id(Gr) &

role_cardinality(R,_,RMax) &

rplayers(R,Gr,RP) &

RP > RMax

-> fail(role_cardinality(R,Gr,RP,RMax)).

norm role_compatibility:

plays(Agt,R1,Gr) &

plays(Agt,R2,Gr) &

R1 < R2 &

not compatible(R1,R2)

-> fail(role_compatibility(R1,R2,Gr)).

norm well_formed_responsible:

responsible(Gr,S) &

not monitor_scheme(S) &

not well_formed(Gr)

-> fail(well_formed_responsible(Gr)).

// ** Sub-Group staff_group

scope group(staff_group) {

// ** Facts from OS

role_cardinality(staff,0,1).

role_cardinality(doctor,1,1).

compatible(doctor,staff).

// ** Rules

rplayers(R,G,V) :- .count(plays(_,R,G),V).

well_formed(G) :-

rplayers(staff,G,Vstaff) & Vstaff >= 0 & Vstaff <= 1 &

rplayers(doctor,G,Vdoctor) & Vdoctor >= 1 & Vdoctor <= 1.

// ** Properties check

norm role_in_group:

plays(Agt,R,Gr) &

not role_cardinality(R,_,_)

-> fail(role_in_group(Agt,R,Gr)).

norm role_cardinality:

group_id(Gr) &

role_cardinality(R,_,RMax) &

rplayers(R,Gr,RP) &

RP > RMax

-> fail(role_cardinality(R,Gr,RP,RMax)).

norm role_compatibility:

plays(Agt,R1,Gr) &

plays(Agt,R2,Gr) &

R1 < R2 &

not compatible(R1,R2)

-> fail(role_compatibility(R1,R2,Gr)).

norm well_formed_responsible:

responsible(Gr,S) &

not monitor_scheme(S) &

not well_formed(Gr)

-> fail(well_formed_responsible(Gr)).

} // end of group staff_group

// ** Sub-Group visit_group

scope group(visit_group) {

// ** Facts from OS

role_cardinality(patient,1,1).

role_cardinality(escort,0,1).

compatible(patient,escort).

// ** Rules

rplayers(R,G,V) :- .count(plays(_,R,G),V).

235

well_formed(G) :-

rplayers(patient,G,Vpatient) & Vpatient >= 1 & Vpatient <= 1 &

rplayers(escort,G,Vescort) & Vescort >= 0 & Vescort <= 1.

// ** Properties check

norm role_in_group:

plays(Agt,R,Gr) &

not role_cardinality(R,_,_)

-> fail(role_in_group(Agt,R,Gr)).

norm role_cardinality:

group_id(Gr) &

role_cardinality(R,_,RMax) &

rplayers(R,Gr,RP) &

RP > RMax

-> fail(role_cardinality(R,Gr,RP,RMax)).

norm role_compatibility:

plays(Agt,R1,Gr) &

plays(Agt,R2,Gr) &

R1 < R2 &

not compatible(R1,R2)

-> fail(role_compatibility(R1,R2,Gr)).

norm well_formed_responsible:

responsible(Gr,S) &

not monitor_scheme(S) &

not well_formed(Gr)

-> fail(well_formed_responsible(Gr)).

} // end of group visit_group

} // end of group surgery_room_group

scope scheme(docSch) {

// ** Facts from OS

mission_cardinality(mDoc,1,1).

mission_role(mDoc,doctor).

goal(mDoc,visit_patient,[],achievement,all,‘30 min‘).

// ** Rules

mplayers(M,S,V) :- .count(committed(_,M,S),V).

well_formed(S) :-

mplayers(mDoc,S,VmDoc) & VmDoc >= 1 & VmDoc <= 1.

// conditions for satisfiability

satisfied(S,G) :- // no agents have to achieve -- automatically satisfied by its pre-conditions

goal(_,G,PCG,_,0,_) & all_satisfied(S,PCG).

satisfied(S,G) :- // all committed agents have to achieve

goal(M,G,_,_,all,_) & mplayers(M,S,V) & .count(achieved(S,G,A), V).

satisfied(S,G) :- // some agents have to achieve

goal(_,G,_,_,X,_) & X > 0 & .count(achieved(S,G,A), X).

// permitted goals (dependence between goals)

ready(S,G) :- goal(_, G, PCG, _, NP, _) & NP \== 0 & all_satisfied(S,PCG).

all_satisfied(_,[]).

all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

// ** Norms

norm n7:

scheme_id(S) & responsible(Gr,S) &

mplayers(mDoc,S,V) & V < 1 &

fplays(A,doctor,Gr)

-> obligation(A,n7,committed(A,mDoc,S), ‘now‘).

// --- Goals ---

// agents are obliged to fulfil their ready goals

norm ngoal:

committed(A,M,S) & goal(M,G,_,achievement,_,D) &

well_formed(S) & ready(S,G)

-> obligation(A,ngoal(S,M,G),achieved(S,G,A),‘now‘ + D).

// --- Properties check ---

norm goal_non_compliance:

obligation(Agt,ngoal(S,M,G),Obj,TTF) &

not Obj &

236 NOPL SPECIFICATION FOR THE HOSPITAL SCENARIO

‘now‘ > TTF

-> fail(goal_non_compliance(obligation(Agt,ngoal(S,M,G),Obj,TTF))).

norm mission_permission:

committed(Agt,M,S) &

not (mission_role(M,R) &

responsible(Gr,S) &

fplays(Agt,R,Gr))

-> fail(mission_permission(Agt,M,S)).

norm mission_cardinality:

scheme_id(S) &

mission_cardinality(M,_,MMax) &

mplayers(M,S,MP) &

MP > MMax

-> fail(mission_cardinality(M,S,MP,MMax)).

norm ach_not_ready_goal:

achieved(S,G,Agt) &

not ready(S,G)

-> fail(ach_not_ready_goal(S,G,Agt)).

norm ach_not_committed_goal:

achieved(S,G,Agt) &

goal(M,G,_,_,_,_) &

not committed(Agt,M,S)

-> fail(ach_not_committed_goal(S,G,A)).

} // end of scheme docSch

scope scheme(monitorSch) {

// ** Facts from OS

mission_cardinality(mSan,1,1).

mission_cardinality(mStaff,1,1).

mission_cardinality(mRew,1,1).

mission_role(mStaff,doctor).

mission_role(mSan,staff).

mission_role(mStaff,staff).

goal(mRew,send_bill,[observe],achievement,all,‘1 day‘).

goal(nomission,enforcement,[],achievement,0,‘0 seconds‘).

goal(nomission,monitor,[enforcement],achievement,0,‘0 seconds‘).

goal(mStaff,observe,[],achievement,all,‘0 seconds‘).

goal(mSan,send_fee,[observe],achievement,all,‘1 day‘).

// ** Rules

mplayers(M,S,V) :- .count(committed(_,M,S),V).

well_formed(S) :-

mplayers(mSan,S,VmSan) & VmSan >= 1 & VmSan <= 1 &

mplayers(mStaff,S,VmStaff) & VmStaff >= 1 & VmStaff <= 1 &

mplayers(mRew,S,VmRew) & VmRew >= 1 & VmRew <= 1.

// conditions for satisfiability

satisfied(S,G) :- // no agents have to achieve -- automatically satisfied by its pre-conditions

goal(_,G,PCG,_,0,_) & all_satisfied(S,PCG).

satisfied(S,G) :- // all committed agents have to achieve

goal(M,G,_,_,all,_) & mplayers(M,S,V) & .count(achieved(S,G,A), V).

satisfied(S,G) :- // some agents have to achieve

goal(_,G,_,_,X,_) & X > 0 & .count(achieved(S,G,A), X).

// permitted goals (dependence between goals)

ready(S,G) :- goal(_, G, PCG, _, NP, _) & NP \== 0 & all_satisfied(S,PCG).

all_satisfied(_,[]).

all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

// ** Norms

norm n10:

unfulfilled(n6) &

scheme_id(S) & responsible(Gr,S) &

mplayers(mStaff,S,V) & V < 1 &

fplays(A,doctor,Gr)

-> obligation(A,n10,committed(A,mStaff,S), ‘now‘).

norm n9:

unfulfilled(n4) & unfulfilled(n5) &

scheme_id(S) & responsible(Gr,S) &

mplayers(mSan,S,V) & V < 1 &

fplays(A,staff,Gr)

-> obligation(A,n9,committed(A,mSan,S), ‘now‘+‘1 day‘).

237

norm n8:

unfulfilled(n4) | unfulfilled(n5) &

scheme_id(S) & responsible(Gr,S) &

mplayers(mSan,S,V) & V < 1 &

fplays(A,staff,Gr)

-> obligation(A,n8,committed(A,mSan,S), ‘now‘+‘1 day‘).

norm n6:

scheme_id(S) & responsible(Gr,S) &

mplayers(mStaff,S,V) & V < 1 &

fplays(A,staff,Gr)

-> obligation(A,n6,committed(A,mStaff,S), ‘now‘).

// --- Goals ---

// agents are obliged to fulfil their ready goals

norm ngoal:

committed(A,M,S) & goal(M,G,_,achievement,_,D) &

well_formed(S) & ready(S,G)

-> obligation(A,ngoal(S,M,G),achieved(S,G,A),‘now‘ + D).

// --- Properties check ---

norm goal_non_compliance:

obligation(Agt,ngoal(S,M,G),Obj,TTF) &

not Obj &

‘now‘ > TTF

-> fail(goal_non_compliance(obligation(Agt,ngoal(S,M,G),Obj,TTF))).

norm mission_permission:

committed(Agt,M,S) &

not (mission_role(M,R) &

responsible(Gr,S) &

fplays(Agt,R,Gr))

-> fail(mission_permission(Agt,M,S)).

norm mission_cardinality:

scheme_id(S) &

mission_cardinality(M,_,MMax) &

mplayers(M,S,MP) &

MP > MMax

-> fail(mission_cardinality(M,S,MP,MMax)).

norm ach_not_ready_goal:

achieved(S,G,Agt) &

not ready(S,G)

-> fail(ach_not_ready_goal(S,G,Agt)).

norm ach_not_committed_goal:

achieved(S,G,Agt) &

goal(M,G,_,_,_,_) &

not committed(Agt,M,S)

-> fail(ach_not_committed_goal(S,G,A)).

} // end of scheme monitorSch

scope scheme(visitorSch) {

// ** Facts from OS

mission_cardinality(mVisit,1,2).

mission_cardinality(mPatient,1,1).

mission_cardinality(mPay,1,1).

mission_role(mVisit,escort).

mission_role(mPay,patient).

mission_role(mPay,escort).

mission_role(mPatient,patient).

mission_role(mVisit,patient).

goal(mPay,pay_visit,[book],achievement,all,‘30 min‘).

goal(mPatient,do_visit,[book],achievement,all,‘30 min‘).

goal(mVisit,book,[enter],achievement,all,‘0 seconds‘).

goal(nomission,visit,[do_visit, pay_visit],achievement,0,‘0 seconds‘).

goal(mVisit,enter,[],achievement,all,‘0 seconds‘).

goal(nomission,visitor,[exit],achievement,0,‘0 seconds‘).

goal(mVisit,exit,[visit],achievement,all,‘0 seconds‘).

// ** Rules

mplayers(M,S,V) :- .count(committed(_,M,S),V).

well_formed(S) :-

mplayers(mVisit,S,VmVisit) & VmVisit >= 1 & VmVisit <= 2 &

mplayers(mPatient,S,VmPatient) & VmPatient >= 1 & VmPatient <= 1 &

mplayers(mPay,S,VmPay) & VmPay >= 1 & VmPay <= 1.

// conditions for satisfiability

238 NOPL SPECIFICATION FOR THE HOSPITAL SCENARIO

satisfied(S,G) :- // no agents have to achieve -- automatically satisfied by its pre-conditions

goal(_,G,PCG,_,0,_) & all_satisfied(S,PCG).

satisfied(S,G) :- // all committed agents have to achieve

goal(M,G,_,_,all,_) & mplayers(M,S,V) & .count(achieved(S,G,A), V).

satisfied(S,G) :- // some agents have to achieve

goal(_,G,_,_,X,_) & X > 0 & .count(achieved(S,G,A), X).

// permitted goals (dependence between goals)

ready(S,G) :- goal(_, G, PCG, _, NP, _) & NP \== 0 & all_satisfied(S,PCG).

all_satisfied(_,[]).

all_satisfied(S,[G|T]) :- satisfied(S,G) & all_satisfied(S,T).

// ** Norms

norm n1:

scheme_id(S) & responsible(Gr,S) &

mplayers(mVisit,S,V) & V < 2 &

fplays(A,escort,Gr)

-> obligation(A,n1,committed(A,mVisit,S), ‘now‘).

norm n5:

unfulfilled(n4) &

scheme_id(S) & responsible(Gr,S) &

mplayers(mPay,S,V) & V < 1 &

fplays(A,patient,Gr)

-> obligation(A,n5,committed(A,mPay,S), ‘now‘+‘5 min‘).

norm n3:

scheme_id(S) & responsible(Gr,S) &

mplayers(mPatient,S,V) & V < 1 &

fplays(A,patient,Gr)

-> obligation(A,n3,committed(A,mPatient,S), ‘now‘).

norm n2:

scheme_id(S) & responsible(Gr,S) &

mplayers(mVisit,S,V) & V < 2 &

fplays(A,patient,Gr)

-> obligation(A,n2,committed(A,mVisit,S), ‘now‘).

// --- Goals ---

// agents are obliged to fulfil their ready goals

norm ngoal:

committed(A,M,S) & goal(M,G,_,achievement,_,D) &

well_formed(S) & ready(S,G)

-> obligation(A,ngoal(S,M,G),achieved(S,G,A),‘now‘ + D).

// --- Properties check ---

norm goal_non_compliance:

obligation(Agt,ngoal(S,M,G),Obj,TTF) &

not Obj &

‘now‘ > TTF

-> fail(goal_non_compliance(obligation(Agt,ngoal(S,M,G),Obj,TTF))).

norm mission_permission:

committed(Agt,M,S) &

not (mission_role(M,R) &

responsible(Gr,S) &

fplays(Agt,R,Gr))

-> fail(mission_permission(Agt,M,S)).

norm mission_cardinality:

scheme_id(S) &

mission_cardinality(M,_,MMax) &

mplayers(M,S,MP) &

MP > MMax

-> fail(mission_cardinality(M,S,MP,MMax)).

norm ach_not_ready_goal:

achieved(S,G,Agt) &

not ready(S,G)

-> fail(ach_not_ready_goal(S,G,Agt)).

norm ach_not_committed_goal:

achieved(S,G,Agt) &

goal(M,G,_,_,_,_) &

not committed(Agt,M,S)

-> fail(ach_not_committed_goal(S,G,A)).

} // end of scheme visitorSch

} // end of organisation hospitalspec

Index

Action
in CArtAgO, 68, 78

alignment, 70
tag, 70
timeout, 70

model, 47
Activity Theory, 53
Agent Centered MAS (ACMAS), 17
Agent Communication Languages (ACL),

21
Agent Coordination Context (ACC), 130
Agent Oriented Programming, 1
Agents, 55

Cognitive, 82
configuration, 96
Organizational, 22, 33, 181, 197, 208
Programming, 79
Staff, see Organizational
working with Embodied Organiza-

tion, 212
working with OMI, 209

Agents & Artifacts (A&A), 53–59, 96
AGR, 18
AMELIE, 21, 42
Artifacts, 55, 64

configuration, 97
Coordination, 146
Environmental, 192
Group, 178
Group board, 178

Linkability, 67, 72
Manual, 68, 71, 88, 196
Operations, 66
Organizational, 176
Properties, 56
Scheme, 177
Scheme board, 177
Signals, 67
Type, 66

Aspect Oriented Programming, 146

Behavioral Implicit Communication (BIC),
219

Beliefs, 86

CArtAgO, 65–79
Artifact type, 73
Operation, 74

feedback, 76
guard, 76
internal, 76
multi step, 74

Constitutive rules, 41, 197, 204–208
Coordination

Media, 57
Support, 58

Coordination Media, 146

Electronic Institutions, 21, 182
Emb-Org-Rule, 200–201, 204–208
Environment

240 INDEX

centralized approaches, 49
computational model, 49
data model, 52
decentralized approaches, 50
distribution model, 52
dynamics, 51
in AI, 44
in AOSE, 45
structured approach, 47–53
time model, 52

Environment Management Infrastructure
(EMI), 189–196

Ergonomics design, 202
Externalization, 82, 88

Fact
Brute, 40, 191
Institutional, 40, 164, 191

Function
Brute, 191
Epistemic, 86
Institutional, 191
Purposive, 84

Goals, 84
declarative, 183

GOLEM, 51

Hospital
scenario, 153

Influences and Reactions, 44
Internalization, 88
ISLANDER, 21

J-Moise+, 29
Jason, 79

Lifeworld, 50
Link Interface, see Artifacts, Linkability

Localities, 52

MadKit, 51
MASQ, 39
Moise, 26–34, 152–163

Deontic specification, 160
Functional specification, 156
Hospital scenario, 229
Organizational Entity, 28–30
Structural specification, 153

NOPL, 163–171
Facts, 165
Norms, 167
Rules, 166
translation rules, 164

Normative artifact, 41
Normative objects/places, 39
Normative Programming Language (NPL),

31
Norms

in Moise, 160
declarative, 183
in NOPL, 167
in NPL, 31
Normative systems, 22–25
violation, 33

Objective (vs Subjective) Coordination,
146

Obligations, see Norms
ORA4MAS, 174
Organization Centered MAS (OCMAS),

17
Organization Modeling Language (OML),

18, 152
Organizational Entity (OE), 18

Time, 31

INDEX 241

Organizational Management Infrastruc-
ture (OMI), 18

based on artifacts, 173–184

Perception
in CArtAgO, 70

Focusing, 70
Observation, 71

model, 48
Permissions, see Norms
Producers-Consumers

scenario, 83
Prohibitions, see Norms

S-Moise+, 28
Searle, John, 40, 191
Situated Electronic Institutions (SEI), 42
Sociotechnical systems, 202

Task environment, 44
Time, 52

Organizational Entity, 158
Workspace, 124, 133
Workspace vs. Organization, 165

Usage Interface, see Artifacts Operations

Work Environment, 55
Workspace, 56

configuration, 102
entering and leaving, 72
Time, 133

Workspace Rules, 131–142, 204–208
Dynamics, 136
Examples, 142
Syntax, 134

242 INDEX

Bibliography

[1] P. Agre and I. Horswill. Lifeworld analysis. Journal of Artificial Intelli-
gence Reserach, 6:111–145, 1997.

[2] H. Aldewereld. Autonomy vs. Conformity - an Institutional Perspective on
Norms and Protocols. PhD thesis, Utrecht University, SIKS dissertation
series, 2007.

[3] H. Aldewereld, S. lvarez Napagao, F. Dignum, and J. Vazquez-Salceda.
Making norms concrete. In Ninth International Conference on Agents and
Multiagent Systems (AAMAS-2010), 2010.

[4] G. Andrighetto, M. Campennı́, R. Conte, and M. Paolucci. On the immer-
gence of norms: a normative agent architecture. In Proceedings of AAAI
Symposium on Social and Organizational Aspects of Intelligence, 2007.

[5] I. E. Association. What is ergonomics. http://iea.cc/, 2009.

[6] J.-A. Báez-Barranco, T. Stratulat, and J. Ferber. A unified model for phys-
ical and social environments. In Environments for Multi-Agent Systems
III, Third International Workshop (E4MAS 2006), volume 4389 of Lecture
Notes in Computer Science, pages 41–50. Springer, 2006.

[7] M. Baldoni, V. Genovese, and L. van der Torre. Adding Organizations and
Roles as primitives to the JADE framework. In Proc. of the 3rd Interna-
tional Workshop on Normative MAS, 2008.

[8] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[9] G. Boella and L. van der Torre. Regulative and constitutive norms in nor-
mative multiagent systems. In International conference on Knowledge and
Representation (KR 2004), 2004.

http://iea.cc/

244 BIBLIOGRAPHY

[10] O. Boissier and B. Gâteau. Normative multi-agent organizations: Mod-
eling, support and control, draft version. In Schloss Dagstuhl - Leibniz-
Zentrum fr Informatik, Dagstuhl Seminar Proceedings. 07122 - Normative
Multi-agent Systems, 2007.

[11] O. Boissier, J. F. Hübner, and J. S. Sichman. Organization Oriented Pro-
gramming: From Closed to Open Organizations. In Engineering Societies
for Agent Worlds (ESAW-2006). Extended and Revised version in Lecture
Notes in Computer Science LNCS series, Springer, pages 86–105, 2006.

[12] O. Boissier, J. F. Hübner, and J. S. Sichman. Organization oriented pro-
gramming: from closed to open organizations. In G. O’Hare, O. Dikenelli,
and A. Ricci, editors, Engineering Societies in the Agents World VII (ESAW
06), volume 4457 of LNCS, pages 86–105. Springer-Verlag, 2007.

[13] R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece
of agent-oriented programming. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Multi-Agent Programming: Languages,
Platforms and Applications, pages 3–37. Springer-Verlag, 2005.

[14] R. H. Bordini, J. F. Hübner, and M. Wooldrige. Programming Multi-Agent
Systems in AgentSpeak using Jason. Wiley Series in Agent Technology.
John Wiley & Sons, 2007.

[15] E. Bou, M. López-Sánchez, and J. A. Rodrı́guez-Aguilar. Adaptation of
autonomic electronic institutions through norms and institutional agents.
In Engineering Societies for Agent Worlds (ESAW 2006), Lecture Notes in
Computer Science (LNCS), pages 300–319. Springer, 2006.

[16] M. Bratman. Intention, Plans, and Practical Reason. Harvard University
Press, 1987.

[17] S. Bromuri and K. Stathis. Situating Cognitive Agents in GOLEM.
In D. Weyns, S. Brueckner, and Y. Demazeau, editors, Engineer-
ing Environment-Mediated Multiagent Systems (EEMMAS’07). LNCS
Springer, Oct 2007.

[18] J. Campos, M. Lòopez-Sànchez, J. A. Rodrı̀guez-Aguilar, and M. Esteva.
Formalising Situatedness and Adaptation in Electronic Institutions. In
COIN-08, Proc., 2008.

BIBLIOGRAPHY 245

[19] J. Campos, M. López-Sánchez, and M. Esteva. Coordination support in
Multi-Agent systems. In Proceedings of the 8th International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS-09), pages
1301–1302, Richland, SC, 2009. IFAAMAS.

[20] CArtAgO. http://cartago.sourceforge.net. Project Home Page.

[21] M. Casadei. Self-Organising Coordination Systems. PhD thesis, Alma
Mater Studiorum - Università di Bologna, 2008.

[22] C. Castelfranchi. Modeling Social Action for AI Agents. Artificial Intelli-
gence, 103:157–182, 1998.

[23] C. Castelfranchi. Engineering Social Order. In Engineering Societies in
Agents World, volume 1972 of Lecture Notes Computer Science (LNCS),
pages 1–18. Springer, 2000.

[24] C. Castelfranchi. Theories and Practice in Interaction Design, chapter
From Conversation to Interaction via Behavioral Communication, pages
157–179. (S. Bagnara and G. C. Smith eds.) Erlbaum, 2006.

[25] C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur. Deliberative
normative agents: Principles and architecture. In N. R. Jennings and
Y. Lespérance, editors, 6th International Workshop Intelligent Agents VI,
Agent Theories, Architectures, and Languages (ATAL-99), volume 1757 of
Lecture Notes in Computer Science LNCS, pages 364–378. Springer, 2000.

[26] C. Castelfranchi and F. Paglieri. The role of Beliefs in Goal dynamics:
Prolegomena to a constructive theory of intentions. Synthese, 155:237–
263, 2007.

[27] M. Castoldi. Da A ad A (Teoria delle Catastrofi). Sony BMG, 2007.

[28] P. Ciancarini. Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302, 1996.

[29] V. T. da Silva. From the specication to the implementation of norms: an
automatic approach to generate rules from norm to govern the behaviour
of agents. Journal of Autonomous Agents and Multi-Agent Systems, pages
113–155, 2008.

http://cartago.sourceforge.net

246 BIBLIOGRAPHY

[30] P. D’Altan, J. Meyer, and R. Wieringa. An integrated framework for ought-
to-be and ought-to-do constraints. Artificial Intelligence and Law, 4:77–
111, 1996.

[31] M. Dastani. 2APL: a practical agent programming language. Autonomous
Agent and Multi-Agent Systems, 16:214–248, 2008.

[32] M. Dastani, V. Dignum, and F. Dignum. Role-assignment in open agent
societies. In International Joint Conference on Agents and Multi Agent
Systems (AAMAS 2003), pages 489–496, Melbourne, 2003.

[33] M. Dastani, D. Grossi, J.-J. C. Meyer, and N. A. M. Tinnemeier. Normative
Multi-Agent Programs and Their Logics. In Knowledge Representation for
Agents and Multi-Agent Systems, First International Workshop, KRAMAS
2008, Sydney, Australia, Revised Selected Papers, volume 5605 of Lecture
Notes in Computer Science. Springer, 2008.

[34] M. Dastani, N. Tinnemeier, and J.-J. C. Meyer. A programming language
for normative multi-agent systems. In V. Dignum, editor, Multi-Agent
Systems: Semantics and Dynamics of Organizational Models. IGI-Global,
2009.

[35] D. Dennett. The Intentional Stance. MIT Press, 1987.

[36] L. Dennis, B. Farwer, H. R. Bordini, M. Fisher, and M. Wooldridge. A
common semantic basis for BDI languages. In Programming Multi-Agent
Systems, Lecture Notes in Computer Science (LNCS). Springer Berlin /
Heidelberg, 2007.

[37] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A flexible frame-
work for verifying agent programs. In AAMAS ’08: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent sys-
tems, pages 1303–1306, Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems.

[38] F. Dignum. Abstract norms and electronic institutions. In Proceedings
of Agent-Based Social Systems: Theories and Applications (RASTA-02),
pages 93–104, 2002.

[39] F. Dignum, V. Dignum, J. Thangarajah, L. Padgham, and M. Winikoff.
Open agent systems ??? In Agent-Oriented Software Engineering VIII,

BIBLIOGRAPHY 247

volume 4951 of Lecture Notes Computer Science, pages 73–87. Springer,
2008.

[40] M. V. F. d. A. J. G. Dignum. A model for organizational interaction: based
on agents, founded in logic. PhD thesis, Utrecht University, SIKS disserta-
tion series 2004-1, 2003.

[41] V. Dignum, editor. Handbook of Research on Multi-Agent Systems: Se-
mantics and Dynamics of Organizational Models. IGI-Global, 2009.

[42] V. Dignum. The role of organization in agent systems. In V. Dignum,
editor, Multi-Agent Systems: Semantics and Dynamics of Organizational
Models. IGI-Global, 2009.

[43] V. Dignum and F. Dignum. What’s in it for me? agent deliberation on tak-
ing up social roles. In European Workshop on Multi-Agent Systems (EU-
MAS 2004), 2004.

[44] F. E. Emery and E. L. Trist. Socio-technical Systems. Management Sci-
ences Models and Techniques, 2, 1960.

[45] M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions
editor. In First international joint conference on Autonomous agents and
Multiagent Systems (AAMAS - 02), pages 1045–1052, 2002.

[46] M. Esteva, J. Padget, and C. Sierra. Formalizing a language for institutions
and norms. In Intelligent Agents VIII, volume 2333 of LNAI, pages 348–
366. Springer, 2002.

[47] M. Esteva, J. A. Rodrı́guez-Aguilar, B. Rosell, and J. L. AMELI: An agent-
based middleware for electronic institutions. In N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, editors, Proceedings of International confer-
ence on Autonomous Agents and Multi Agent Systems (AAMAS’04), pages
236–243, New York, 2004. ACM.

[48] M. Esteva, J. A. Rodrı́guez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos.
On the Formal Specifications of Electronic Institutions. In Agent Mediated
Electronic Commerce, The European AgentLink Perspective., pages 126–
147, London, UK, 2001. Springer-Verlag.

248 BIBLIOGRAPHY

[49] J. Ferber and O. Gutknecht. A meta-model for the analysis and design of
organizations in multi-agent systems. In Y. Demezeau, editor, Proceedings
of the 3rd International conference on Multi-Agent Systems (ICMAS’98),
pages 128–135. IEEE Press, 1998.

[50] J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: An
Organizational View of Multi-agent Systems. In Proceedings of (AOSE-
03), volume 2935 of Lecture Notes Computer Science (LNCS). Springer,
2003.

[51] J. Ferber and J.-P. Müller. Influences and Reaction: a Model of Situated
Multi-Agent Systems. In Proc. of the 2nd Int. Conf. on Multi-Agent Systems
(ICMAS’96). AAAI, 1996.

[52] FIPA. http://www.fipa.org. Foundation for Intelligent Physical
Agents.

[53] A. Garcı́a-Camino, J. A. Rodrı́guez-Aguilar, C. Sierra, and W. Vasconce-
los. Constraining rule-based programming norms for electronic institu-
tions. Journal of Autonomous Agents and Multi-Agent Systems, 18(1):186–
217, 2009.

[54] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, January 1985.

[55] D. Gelernter and N. Carriero. Coordination languages and their signifi-
cance. Commun. ACM, 35(2):96, 1992.

[56] D. Grossi, H. Aldewered, and F. Dignum. Ubi Lex, Ibi Poena: Designing
norm enforcement in e-institutions. In COIN-07, Proceedings, vol.4386,
LNAI. Springer, 2007.

[57] O. Gutknecht and J. Ferber. The MADKIT agent platform architecture. In
Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55,
2000.

[58] A. Helleboogh, G. Vizzari, A. Uhrmacher, and F. Michel. Modeling dy-
namic environments in multi-agent simulation. Autonomous Agents and
Multi-Agent Systems, 14(1):87–116, 2006.

http://www.fipa.org

BIBLIOGRAPHY 249

[59] C. Hewitt. Perfect Disruption: The Paradigm Shift from Mental Agents to
ORGs. IEEE Internet Computing, 13, 2009.

[60] J. F. Hübner, , J. S. Sichman, and O. Boissier. Developing organised multi-
agent systems using the MOISE+ model: Programming issues at the system
and agent levels. International Journal of Agent-Oriented Software Engi-
neering, 1(3/4):370–395, 2007.

[61] J. F. Hübner, O. Boissier, and R. H. Bordini. Normative programming
for organisation management infrastructures. In MALLOW Workshop on
Coordination, Organization, Institutions and Norms in Agent Systems in
Online Communities (COIN-MALLOW 2009), 2009.

[62] J. F. Hübner, O. Boissier, and R. H. Bordini. From Organisation Specifica-
tion to Normative Programming in Multi-Agent Organisation Management.
In (submitted to) International Conference on Agents and Multi Agent Sys-
tems (AAMAS-10), 2010.

[63] J. F. Hübner, O. Boissier, R. Kitio, and A. Ricci. Instrumenting Multi-
Agent Organisations with Organisational Artifacts and Agents. Journal of
Autonomous Agents and Multi-Agent Systems, April 2009.

[64] J. F. Hübner, J. S. Sichman, and O. Boissier. A Model for the Structural,
Functional, and Deontic Specification of Organizations in Multiagent Sys-
tems. In SBIA ’02: Proceedings of the 16th Brazilian Symposium on Arti-
ficial Intelligence, pages 118–128, London, UK, 2002. Springer-Verlag.

[65] J. F. Hübner, J. S. Sichman, and O. Boissier. Moise+: Towards a Structural,
Functional, and Deontic model for MAS organization. In C. Castelfranchi
and W. L. Johnson, editors, First International Conference on Agents and
Multi-Agent Systems (AAMAS’02), pages 501–502. ACM Press, 2002.

[66] J. F. Hübner, J. S. Sichman, and O. Boissier. S-moise+: A middleware
for developing organised multi-agent systems. In O. Boissier, J. A. Pad-
get, V. Dignum, G. Lindemann, E. T. Matson, S. Ossowski, J. S. Sichman,
and J. Vázquez-Salceda, editors, Coordination, Organizations, Institutions,
and Norms in Multi-Agent Systems, AAMAS 2005 International Workshops,
volume 3913 of Lecture Notes in Computer Science, pages 64–78. Springer,
2005.

250 BIBLIOGRAPHY

[67] J. F. Hübner, J. S. Sichman, and O. Boissier. Developing Organised Multi-
Agent Systems Using the Moise Model: Programming Issues at the System
and Agent Levels. Agent-Oriented Software Engineering, 1(3/4):370–395,
2007.

[68] Jadex. http://vsis-www.informatik.uni-hamburg.de/projects/

jadex/. Project Home Page.

[69] Jason. http://jason.sourceforge.net. Project Home Page.

[70] N. R. Jennings. An agent-based approach for building complex software
systems. Commun. ACM, 44(4):35–41, 2001.

[71] A. J. I. Jones and M. Sergot. On the characterization of law and com-
puter systems. In J.-J. Meyer and R. J. Wieringa, editors, Deontic logic in
computer science: Normative System Specification. John Wiley and Sons,
1993.

[72] T. Juan, A. R. Pearce, and L. Sterling. Roadmap: extending the gaia
methodology for complex open systems. In Proceedings of the first inter-
national joint conference on Agents and Multiagent Systems (AAMAS-02),
pages 3–10. ACM Press, 2002.

[73] A. Kaplan. The Conduct of Inquiry: Methodology for Behavioral Science.
Chandler Publishing Co., 1964.

[74] J. Kepler. Astronomia Nova. , 1609.

[75] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of
the European Conference on Object-Oriented Programming (ECOOP-97),
1997.

[76] D. Kirsh. The intelligent use of space. Artificial Intelligence, 73(1-2):31–
68, 1995.

[77] D. Kirsh. Distributed cognition, coordination and environment design. In
Proceedings of theEuropean Cognitive Science Society, 1999.

[78] D. Kirsh and P. Maglio. On distinguishing epistemic from pragmatic action.
Cognitive Science: A Multidisciplinary Journal, 18(4):513–549, 1994.

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://jason.sourceforge.net

BIBLIOGRAPHY 251

[79] B. Kristensen. Object-oriented modeling with Roles. In Proc. of the 2nd
Int. Conf. on Object Oriented Information System, 1995.

[80] A. N. Leontjev. Activity, Consciousness, and Personality. Prentice Hall,
1978.

[81] E. Lorini and M. Piunti. Introducing Relevance Awareness in BDI Agents.
In L. Braubach, J.-P. Briot, and J. Thangarajah, editors, Seventh interna-
tional Workshop on Programming Multi-Agent Systems (PROMAS-09) -
Revised and Extended version, volume 5919 of Lecture Notes in Artificial
Intelligence. Springer, 2009.

[82] T. Malone and K. Crowston. The interdisciplinary study of coordination.
ACM Computing Surveys, 26(1):87–119, 1994.

[83] F. R. Meneguzzi and M. Luck. Norm-based behaviour modification in bdi
agents. In C. Sierra, C. Castelfranchi, K. S. Decker, and J. S. Sichman,
editors, AAMAS (1), pages 177–184. IFAAMAS, 2009.

[84] Moise. http://moise.sourceforge.net. Project Home Page.

[85] B. A. Nardi. Context and Consciousness: Activity Theory and Human-
Computer Interaction. MIT Press, 1996.

[86] I. Newton. Philosophiae Naturalis Principia Mathematica: the Third edi-
tion. , 1726.

[87] D. Norman. Cognitive Artifacts. In Designing interaction: Psychology
at the human–computer interface. Cambridge University Press, New York,
1991.

[88] D. A. Norman. The Design of Everyday Things. The Mit Press, 1998.

[89] J. Odell, H. V. D. Parunak, M. Fleischer, and S. Brueckner. Modeling
agents and their environment. In Agent-Oriented Software Engineering III,
Third International Workshop, AOSE 2002, Bologna, Italy, July 15, 2002,
Revised Papers and Invited Contributions, volume 2585 of Lecture Notes
in Computer Science, pages 16–31. Springer, 2003.

http://moise.sourceforge.net

252 BIBLIOGRAPHY

[90] J. J. Odell, H. Van, H. V. D. Parunak, and M. Fleischer. The role of roles in
designing effective agent organizations. In Software Engineering for Large-
Scale Multi-Agent Systems, LNCS 2603, volume 2603 of LNCS, pages 27–
38. Springer, 2003.

[91] F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. A distributed
normative infrastructure for situated multi-agent organisations. In Declar-
ative Agent Languages and Technologies VI, volume 5397 of Lecture Notes
Computer Science (LNCS). Springer, 2009.

[92] A. Omicini. Towards a notion of agent coordination context. In D. C. Mari-
nescu and C. Lee, editors, Process Coordination and Ubiquitous Comput-
ing, chapter 12, pages 187–200. CRC Press, Boca Raton, FL, USA, Oct.
2002.

[93] A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of
Computer Programming, 41(3):277–294, Nov. 2001.

[94] A. Omicini and E. Denti. From tuple spaces to tuple centres. Science of
Computer Programming, 41(3):277294, 2001.

[95] A. Omicini and S. Ossowski. Objective versus subjective coordination in
the engineering of agent systems. In M. Klusch, S. Bergamaschi, P. Ed-
wards, and P. Petta, editors, Intelligent Information Agents: An AgentLink
Perspective, volume 2586 of LNAI: State-of-the-Art Survey, pages 179–
202. Springer-Verlag, Mar. 2003.

[96] A. Omicini, M. Piunti, A. Ricci, and M. Viroli. Agents, intelligence, and
tools. In M. Bramer, editor, Artificial Intelligence: An International Per-
spective, volume 5640 of LNAI: State-of-the-Art Survey, chapter 9, pages
157–173. Springer, 2009.

[97] A. Omicini, A. Ricci, and M. Viroli. Agens Faber: Toward a theory of
artefacts for MAS. Electronic Notes in Theoretical Computer Sciences,
150(3):21–36, 29 May 2006. 1st International Workshop “Coordination
and Organization” (CoOrg 2005), COORDINATION 2005, Namur, Bel-
gium, 22 Apr. 2005. Proceedings.

[98] A. Omicini, A. Ricci, and M. Viroli. Coordination artifacts as first-class ab-
stractions for MAS engineering: state of the research. Software Engineer-

BIBLIOGRAPHY 253

ing for Multi-Agent Systems IV: Research Issues and Practical Application,
Invited Paper, volume 3914 of LNAI:7190, 2006.

[99] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model for
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17 (3),
2008.

[100] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coor-
dination Artifacts: Environment-based Coordination for Intelligent Agents.
In Proceedings of Joint Conference Autonomous Agents and Multi Agent
Systems (AAMAS-04), volume 1, pages 286–293, New York, USA, 2004.

[101] A. Omicini and F. Zambonelli. Coordination for Internet application de-
velopment. Autonomous Agents and Multi-Agent Systems, 2(3):251–269,
Sept. 1999.

[102] H. V. D. Parunak, S. Brueckner, and J. A. Sauter. Digital pheromone
mechanisms for coordination of unmanned vehicles. In The First Inter-
national Joint Conference on Autonomous Agents & Multiagent Systems,
AAMAS 2002, July 15-19, 2002, Bologna, Italy, Proceedings, pages 449–
450. ACM, 2002.

[103] W. A. Pasmore. Designing Effective Organizations : the Sociotechni-
cal Systems perspective. Wiley series on organizational assessment and
change. Wiley, 1988.

[104] S. Pheasant and C. M. Haslegrave. Bodyspace: Anthropometry, Er-
gonomics and the Design of Work. Taylor & Francis, Inc., 2005.

[105] M. Piunti and A. Ricci. From Agents to Artifacts Back and Forth: Purpo-
sive and Doxastic use of Artifacts in MAS. In Proceedings of Sixth Euro-
pean Workshop on Multi-Agent Systems(EUMAS-08), Bath, UK., 2008.

[106] M. Piunti and A. Ricci. Cognitive Use of Artifacts: Exploiting Relevant In-
formation Residing in MAS Environments. In J.-J. Meyer and J. Broersen,
editors, Knowledge Representation for Agents and Multi-Agent Systems,
volume 5605 of LNAI, pages 114–129. Springer, 2009. 1st International
Workshop (KRAMAS 2008), Sydney, Australia, 17 Sept. 2008, Revised
Selected Papers.

254 BIBLIOGRAPHY

[107] M. Piunti, A. Ricci, O. Boissier, and J. F. Hübner. Embodied Organisations
in MAS Environments. In L. Braubach, W. van der Hoek, P. Petta, and
A. Pokahr, editors, MATES, volume 5774 of Lecture Notes in Computer
Science, pages 115–127. Springer, 2009.

[108] M. Piunti, A. Ricci, O. Boissier, and J. F. Hübner. Embodying Organi-
sations in Multi-agent Work Environments. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT 2009), pages 511–518, Milan, Italy,
2009. IEEE.

[109] M. Piunti, A. Ricci, L. Braubach, and A. Pokahr. Goal-directed Interac-
tions in Artifact-Based MAS: Jadex Agents playing in CArtAgO Environ-
ments. In IEEE/WIC/ACM International Joint Conference on Web Intel-
ligence and Intelligent Agent Technology (WI-IAT 2008), Sydney, NSW,
Australia., 2008.

[110] M. Piunti, A. Ricci, and A. Santi. Soa/ws applications using cognitive
agents working in cartago environments. In Proceedings of 10th Joint Con-
ference AI*IA TABOO From Objects to Agents (WOA 2009), 2009.

[111] M. Piunti, A. Santi, and A. Ricci. Programming SOA/WS Systems with
BDI Agents and Artifact-Based Environments. In In Proceedings of MAL-
LOW federated Workshops on Agents, Web Services and Ontologies, Inte-
grated Methodologies (AWESOME-09), Torino, September 2009.

[112] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning En-
gine. In R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni,
editors, Multi-Agent Programming, volume 15 of Multiagent Systems, Ar-
tificial Societies, and Simulated Organizations, pages 149–174. Springer,
2005.

[113] N. Prasad, K. Decker, and A. Garvey. Exploring organizational designs
with taems: A case study of distributed data processing. In 2nd Interna-
tional conference on Multi Agent Systems (ICMAS 96), 1996.

[114] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to Practice. In
First International Conference on Multi Agent Systems (ICMAS95), 1995.

[115] A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for
MAS coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors,

BIBLIOGRAPHY 255

Engineering Societies in the Agents World III, volume 2577 of LNCS, pages
96–110. Springer-Verlag, Apr. 2003. 3rd International Workshop (ESAW
2002), Madrid, Spain, 16–17 Sept. 2002. Revised Papers.

[116] A. Ricci and M. Piunti. Implementing over-sensing in heterogeneous multi-
agent systems on top of artifact-based environments. In L. Braubach,
W. van der Hoek, P. Petta, and A. Pokahr, editors, Proceedings of Sev-
enth German conference on Multi-Agent System Technologies (MATES
2009), volume 5774 of Lecture Notes in Computer Science, pages 232–
237. Springer, 2009.

[117] A. Ricci, M. Piunti, L. D. Acay, R. Bordini, J. Hubner, and M. Das-
tani. Integrating artifact-based environments with heterogeneous agent-
programming platforms. In Proceedings of 7th International Conference
on Agents and Multi Agents Systems (AAMAS08), 2008.

[118] A. Ricci, M. Piunti, and M. Viroli. Externalisation and Internalization: A
New Perspective on Agent Modularisation in Multi-Agent Systems Pro-
gramming. In M. Dastani, A. E. F. Seghrouchni, J. Leite, and P. Tor-
roni, editors, Proceedings of MALLOW 2009 federated workshops: LAn-
guages, methodologies and Development tools for multi-agent systemS
(LADS 2009), September 2009.

[119] A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment program-
ming in CArtAgO. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah-
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms
and Applications, Vol. 2, pages 259–288. Springer, 2009.

[120] A. Ricci, A. Santi, and M. Piunti. Action and Perception in Multi-Agent
Programming Languages: From Exogenous to Endogenous Environments.
In Proceedings of workshop Programming Multiagent Systems (PROMAS-
10), 2010.

[121] A. Ricci, M. Viroli, and A. Omicini. The A&A programming model &
technology for developing agent environments in MAS. In M. Dastani,
A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors, Program-
ming Multi-Agent Systems, volume 4908 of LNAI, pages 91–109. Springer,
2007.

256 BIBLIOGRAPHY

[122] A. Ricci, M. Viroli, and A. Omicini. CArtAgO: A framework for prototyp-
ing artifact-based environments in MAS. In D. Weyns, H. V. D. Parunak,
and F. Michel, editors, Environments for MultiAgent Systems III, volume
4389 of LNAI, pages 67–86. Springer, Feb. 2007.

[123] A. Ricci, M. Viroli, and G. Piancastelli. simpA: A simple agent-oriented
Java extension for developing concurrent applications. In M. Dastani,
A. E. F. Seghrouchni, J. Leite, and P. Torroni, editors, Languages, Method-
ologies and Development Tools for Multi-Agent Systems (LADS 2007), vol-
ume 5118 of LNAI, pages 176–191. Springer-Verlag: Heidelberg, Germany,
Durham, UK, 2007.

[124] A. Ricci, M. Viroli, and M. Piunti. Formalising the Environment in MAS
Programming: A Formal Model for Artifact-Based Environments. In
L. Braubach, J.-P. Briot, and J. Thangarajah, editors, Proceedings of AA-
MAS Workshop Programming Multi-Agent Systems (PROMAS-09), Lecture
Notes in Artificial Intelligence. Springer, 2009.

[125] S. Russell and P. Norvig. Artificial Intelligence, A Modern Approach (2nd
ed.). Prentice Hall, 2003.

[126] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role base access
control models. Computer, 29(2):38–47, 1996.

[127] J. R. Searle. Speech Acts, chapter What is a Speech Act? Cambridge
University Press, 1964.

[128] J. R. Searle. The Construction of Social Reality. Free Press, 1997.

[129] S. Sen and S. Airiau. Emergence of norms through social learning. In
Twentieth International Joint Conference on Artificial Intelligence (IJCAI
2007), 2007.

[130] J. M. Serrano and S. Saugar. Operational semantics of Multiagent Inter-
actions. In Proceedings of the 6th international joint conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-07), pages 1–8, New
York, NY, USA, 2007. ACM.

[131] Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies:
off-line design. Artificial Intelligence, 73(1-2):231–252, 1995.

BIBLIOGRAPHY 257

[132] T. Stratulat, J. Ferber, and J. Tranier. MASQ: Towards an Integral Approach
of Agent-Based Interaction. In Proc. of 8th Conf. on Agents and Multi
Agent Systems (AAMAS-09), 2009.

[133] T. Susi and T. Ziemke. Social cognition, artefacts, and stigmergy: A
comparative analysis of theoretical frameworks for the understanding
of artefact-mediated collaborative activity. Cognitive Systems Research,
2(4):273–290, Dec. 2001.

[134] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

[135] N. Tinnemeier, M. Dastani, J.-J. Meyer, and L. van der Torre. Program-
ming normative artifacts with declarative obligations and prohibitions. In
IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT 2009), 2009.

[136] M. B. van Riemsdijk, M. Dastani, and M. Winikoff. Goals in agent systems:
A unifying framework. In Proceedings of the seventh international joint
conference on Autonomous agents and multiagent systems (AAMAS 08),
2008.

[137] M. B. van Riemsdijk, K. Hindriks, and C. Jonker. Programming
organisation-aware agents: a research agenda. In In 10th Engineering So-
cieties for Agents Worlds (ESAW 09), 2009.

[138] J. Vázquez-Salceda, V. Dignum, and F. Dignum. Organizing multiagent
systems. Autonomous Agents and Multi-Agent Systems, 11(3):307–360,
2005.

[139] R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the formal se-
mantics of speech-act based communication in an agent-oriented program-
ming language. Journal of Artificial Intelligence Ressearch, 29(1):221–
267, 2007.

[140] M. Viroli, A. Ricci, and A. Omicini. Operating instructions for intelli-
gent agent coordination. The Knowledge Engineering Review, 21(1):49–69,
Mar. 2006.

[141] P. Wegner and D. Goldin. Computation beyond Turing machines. Commu-
nication of ACM, 46(4):100–102, 2003.

258 BIBLIOGRAPHY

[142] D. Weyns and T. Holvoet. Formal model for situated multiagent systems.
Fundamenta Informaticae, 63(2–3):125–158, 2004.

[143] D. Weyns and T. Holvoet. A reference architecture for situated multiagent
systems. In Environments for Multiagent Systems III, volume 4389 of Lec-
ture Notes in Computer Science, pages 1–40. Future University, Hakodate,
Japan, Springer, 2007.

[144] D. Weyns, A. Omicini, and J. J. Odell. Environment as a first-class abstrac-
tion in multi-agent systems. Autonomous Agents and Multi-Agent Systems,
14(1):5–30, Feb. 2007. Special Issue on Environments for Multi-agent Sys-
tems.

[145] D. Weyns and H. V. D. Parunak, editors. Journal of Autonomous Agents and
Multi-Agent Systems. Special Issue: Environment for Multi-Agent Systems,
volume 14 (1). Springer Netherlands, 2007.

[146] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber. Environ-
ments for multiagent systems: State-of-the-art and research challenges. In
D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and J. Ferber, editors,
Environment for Multi-Agent Systems, volume 3374, pages 1–47. Springer-
Verlag, Berlin-Heidelberg, 2005.

[147] D. Weyns, E. Steegmans, and T. Holvoet. Towards active perception in
situated multiagent systems. Applied Artificial Intelligence, 18(9–10):867–
883, 2004.

[148] M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley &
Sons, Ltd, 2002.

[149] WSIT. Web services interoperability technologies. http://wsit.dev.

java.net.

[150] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational abstrac-
tions for the analysis and design of multi-agent systems. In Agent-Oriented
Software Engineering: First International Workshop, AOSE 2000 Limerick,
Ireland, June 10, 2000 Revised Papers, pages 235–251, Berlin, Heidelberg,
2001. Springer-Verlag.

http://wsit.dev.java.net
http://wsit.dev.java.net

	Introduction
	Global view and Objectives
	An Integrated approach to Agents, Environment, Organizations
	Objectives of this Thesis

	Overview of the Thesis
	Part I Setting the Stage
	Part II Developing Environment Infrastructures based on Artifacts
	Part III Developing Organizational Infrastructures based on Artifacts
	Part IV Agents, Organizations, Environment: a Unifying Approach

	Relevant Issues we do not address

	I Setting the Stage
	Organizations in MAS: Theories, Scopes and Directions
	Organizations in MAS
	Organization Oriented Programming
	Agent, Groups, Roles
	Collective Intentions
	Social Laws
	Electronic Institutions
	Normative Systems

	Moise: an organizational model based on structural, functional and deontic dimensions
	Organizational Entities
	Recasting Organizational Entities as Normative Systems
	Managing Organizations with a Normative Programming Language

	Final Remarks on Organizations in MAS

	Organizations Situated in MAS Environments
	Situating Organizations in Computational Environments
	Environments and Organizations in MAS
	Current Approaches
	Open Issues and Challenges

	Environment as first class Abstraction in MAS
	A Structured approach to Environments
	Action Model
	Perception Model
	Computational Model
	Internal Dynamics
	Data Model (and Openness)
	Distribution Model (and Localities)

	Agents & Artifacts
	Foundations
	Meta-Model for engineering MAS

	Final Remarks on Situated Organizations

	II Developing Environment Infrastructures based on Artifacts
	Environment Programming in CArtAgO
	Taking the Environment Programming Perspective
	Artifact-Based Environments
	Artifact Computational Model
	Actions to Work with Artifacts
	Actions to Enter and Leave Workspaces

	Environment Programming in CArtAgO
	Artifact Programming Model
	Integration with Agent Programming Platforms

	Agents at work in CArtAgO Environments
	Agent Programming in Jason
	Using simple Artifacts
	Using Artifacts to Externalize Activities

	Cognitive Use
	Mapping Goals and Beliefs on Artifact Functions
	Externalisation and Internalisation

	Final Remarks on programming Agents and Artifacts

	Artifact Based Environments: a Formal Model of CArtAgO
	Formalising Artifact-Based Environments
	Structures
	Agent Configuration
	Artifact Configuration
	Workspace Configuration
	Workspace Initial Configuration
	MAS Configuration

	Dynamics
	Agent Execution Cycle
	Artifacts Dynamics
	Agent Perceptive Activities
	Agents Joining and Leaving Workspaces
	Environment Management and Inspection
	Workspace Time Evolution

	Final Remarks on the Formalisation

	Extending CArtAgO with Intra-Workspace Dynamics
	Specifying global dynamics inside workspaces
	Shaping the problem
	Programming approaches
	Workspace Rules

	Sintax
	Dynamics
	Workspace Programming Examples
	A Counter Infrastructure
	Producers Consumers

	Final Remarks on Intra-Workspace Dynamics

	III Developing Organizational Infrastructures based on Artifacts
	Programming Organizations in Practice
	Taking the Organization Programming Perspective
	Using Moise for modeling a concrete Organizational Entity
	Structural Specification
	Functional Specification
	Deontic Specification

	From the Moise specification to a Normative Specification
	Normative Organization Programming Language
	NOPL in practice: the Hospital Scenario

	Final remarks on Programming Organizations in Practice

	Organizational Management Infrastructures based on Artifacts
	Shaping Organizational Management Infrastructures with A&A
	Organizational Artifacts
	Scheme Artifacts
	Group Artifacts

	OMI Execution model
	Agents using OMI
	Agents perceiving OMI

	Final remarks on Organizational Infrastructures

	IV Agents, Organizations, Environment: a Unifying Approach
	Embodying Organizations in MAS Work Environments
	Situating Agents and Organizations in Artifact Based Work Environments
	Environment Management Infrastructures
	Shaping Environment Management Infrastructures on Organizational Entities
	Environmental Artifacts

	Relating Organizations and Environments
	Establishing functional relations between organizations and environments
	Embodied Organization Rules

	Final Remarks on Embodying Organizations in MAS

	Programming Embodied Organizations
	Embodied Organizations in Practice
	Programming Embodied Organization Rules
	Programming Count-as Rules
	Programming Enact Rules

	Programming Agents in Embodied Organizations
	Agents at work with Organizational Infrastructure
	Agents at work with Embodied Organization

	From Situated to Embodied Organizations
	Relevant aspects
	Limitations and drawbacks

	Final Remarks on Programming Embodied Organizations

	Conclusions
	Contribution of this Thesis
	Future directions

	Moise specification for the Hospital Scenario
	NOPL specification for the Hospital Scenario
	Index
	Bibliography

