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RECONSTRUCTION AND ANALYSIS OF THE 

NF-B PATHWAY INTERACTOME: 

A SYSTEMS BIOLOGY APPROACH 

 

Abstract 

_______________________________________________________________________ 

Background. One of the phenomena observed in human aging is the progressive 

increase of a systemic inflammatory state (Sansoni 2008), a condition referred to as 

“inflammaging” (Franceschi 2000), negatively correlated with longevity (Franceschi 

2007). A prominent mediator of inflammation is the transcription factor NF-B, that acts 

as key transcriptional regulator of many genes coding for pro-inflammatory cytokines. 

Many different signaling pathways activated by very diverse stimuli converge on NF-

B, resulting in a regulatory network characterized by high complexity (Perkins 2007). 

NF-B signaling has been proposed to be responsible of inflammaging (Salminen 2008). 

Scope of this analysis is to provide a wider, systemic picture of such intricate signaling 

and interaction network: the NF-B pathway interactome. 

Methods. The study has been carried out following a workflow for gathering 

information from literature as well as from several pathway and protein interactions 

databases, and for integrating and analyzing existing data and the relative reconstructed 

representations by using the available computational tools (Tieri 2010). Strong manual 

intervention has been necessarily used to integrate data from multiple sources into 

mathematically analyzable networks. The reconstruction of the NF-B interactome 
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pursued with this approach provides a starting point for a general view of the 

architecture and for a deeper analysis and understanding of this complex regulatory 

system (Cevenini 2009). 

Results. A “core” and a “wider” NF-B pathway interactome, consisting of 140 and 

3146 proteins respectively, were reconstructed and analyzed through a mathematical, 

graph-theoretical approach. Among other interesting features, the topological 

characterization of the interactomes shows that a relevant number of interacting proteins 

are in turn products of genes that are controlled and regulated in their expression exactly 

by NF-B transcription factors. These “feedback loops”, not always well-known, 

deserve deeper investigation since they may have a role in tuning the response and the 

output consequent to NF-B pathway initiation, in regulating the intensity of the 

response, or its homeostasis and balance in order to make the functioning of such critical 

system more robust and reliable. This integrated view allows to shed light on the 

functional structure and on some of the crucial nodes of thet NF-B transcription factors 

interactome. 

Conclusion. Framing structure and dynamics of the NF-B interactome into a wider, 

systemic picture would be a significant step toward a better understanding of how NF-

B globally regulates diverse gene programs and phenotypes. This study represents a 

step towards a more complete and integrated view of the NF-B signaling system. 



9 

 

 

1. Introduction 

_______________________________________________________________________ 

1.1. Aging as a complex trait 

The study on human aging and longevity has become a very hot topic in the last years 

because of the so-called revolution in demography, which led to the remarkable increase 

in the number of people over the age of 65 or 80 years living in Western countries but 

also in some emerging countries such as China and India (Franceschi 2008). The data 

collected during the last 20 years in different models suggest that the picture of the aging 

phenotype is fragmented and above all qualitative and that we are far from an exhaustive 

and quantitative scenario. This incomplete knowledge comes out from several bias: 1. 

few studies evaluate many parameters at the same time in the same individual; 2. the 

collected data are not of high-dimensionality; 3. longitudinal studies, which are the most 

informative, are scanty. Another factor contributing to the complexity of the problem is 

that human aging and longevity are complex and multi-factorial traits, generally 

considered as the result of the combination of environmental factors, genetics, 

epigenetics and stochasticity, each making variable contributions to the overall 

phenotype (Salvioli 2006a, De Benedictis 2006, Fraga 2005). It seems that the 

importance of each component changes with the passing of time: the age of 60 years 

appears as a discriminatory point after which the role of environmental factors, genetics, 

epigenetics and also stochasticity increases, contributing to reaching very old ages. The 

rate of the age-related modification of the importance of each component is difficult to 

be quantified at present. Moreover, these different components interact with each other, 

in particular genetics and environment. 
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The studies on human aging and longevity are further complicated by the fact that 

human populations are heterogeneous from the point of view of genetic pool, life style, 

cultural habits, education, economic status and social network. All these components are 

different from population to population, and each population is characterised by a 

unique combination of them. This fact renders the studies difficult to compare and the 

results very often discordant. Finally, all these considerations also apply to gender 

difference, since gender appears to be a crucial player in the cross-talk between genes, 

environment and health (Ordovas 2007). The development of effective and realistic 

strategies for aging intervention, prevention and therapies may be facilitated by this 

integrated and multi-faced view. Indeed, it has been proposed that the manipulation of 

both genes and environment at the same time can open up novel possibilities of aging 

intervention and prevention (Rattan 2007).  

 

1.2. Aging as a mosaic 

It is conceivable that longevity could be achieved by different strategies and by different 

combinations of genetics, epigenetics, environment and stochasticity and the result, i.e. 

the aging phenotype, is very heterogeneous. Moreover, it is emerging that the multi-

factorial process of aging does not occur only at organism level, but it also acts 

differently in each organ system, organ, tissue and even in each single cell of the body, 

determining a different aging rate for each of them. In mice it has been observed that 

different tissues age in a coordinated fashion (Zahn 2007), while in humans this is still to 

be ascertained. As a consequence of these different aging rates, the aged body could be 

considered as a mosaic of tissues and organs displaying a different level of senescence, a 

situation we proposed to indicate as “aging mosaic” (Cevenini 2008), as exemplified in 

Fig. 1.1. In this figure, we represented the human body as a mosaic of 12 organ systems 
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(indicated as rectangles) according to Hunter and Borg (Hunter 2003), each of them 

displaying a different level of senescence (represented by black dots). Thus, even in the 

same individual, the aging process appears to follow different trajectories in different 

organs, tissues and cells, which are variably affected and accumulate unrepaired 

damages at different rates. An example, among many others, is the brain where different 

regions, such as cortex, hippocampus and cerebellum, show different levels of 

neurodegeneration and inflammation in the same subject (Mishto 2006, Mishto 2009). In 

mice, a great heterogeneity in the amount of transcriptional changes with age in different 

tissues was found (Zahn 2007). 
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Fig. 1.1 The aging mosaic. The human body is represented as a mosaic of 12 organ 
systems (indicated as rectangles), each of them displaying a different level of 
senescence (represented by black dots). Even in the same individual, the aging 
process appears to follow different trajectories in different organs, tissues and cells, 
which are variably affected and accumulate unrepaired damages at different rates. 
Adapted by Cevenini 2009. 
 

Based on the pattern of age-related transcriptional changes, three aging patterns have 

been proposed: (a) a pattern common to neural tissues, (b) a pattern for vascular tissues, 

and (c) a pattern for steroid-responsive tissues (Zahn 2007). 
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Moreover, this mosaic is dynamic, meaning that it changes with time, owing to the 

complex non linear interactions among the different components, resulting in a final 

phenotype that is not easily predictable by the study of its single sub-components. 

Changes in this mosaic derive from different forms of stressors to which the body is 

exposed lifelong. The adaptive response to these perturbations can follow two 

trajectories: 1. in case of exposure to a repeated low grade stimulus, the mosaic is able to 

positively remodel the mechanisms of maintenance which are up-regulated and the 

systemic result is the resistance to stress (hormesis); 2. conversely, in case of exposure 

to a stronger stimulus (over a specific threshold) in terms of intensity and persistence, 

the remodelling process still occurs, but the mechanisms of maintenance are less 

efficient and the global result is negative and detrimental for health and survival (Gems 

2008). Therefore, a strategy to increase healthy aging and longevity could be to favour 

the hormetic response by transforming intense and persistent stressors into low-grade 

ones. In this perspective it is also interesting to note that low-grade stressors can be 

assimilated to what is referred to as functional or constructive noise. The role of noise in 

biological systems is under investigation, and, for example, it is now evident that the 

stochastic or inherently random nature of the biochemical reactions of gene expression 

may contribute to the phenotypic variability in individuals (Paulsson 2004, Raser 2005). 

Thus, noise, which was often considered “unimportant” by traditional statistical methods 

and models, should be taken into account during data analysis, since it may hide un-

analyzed information (Kaput 2007). For example, in gene expression analysis, only 

genes whose expression profile differs from an established threshold were evaluated and 

the others were classified as “noise” and erroneously excluded (Paulsson 2004). It is also 

important to note that noise-induced phenomena have been experimentally detected in 

many levels of biological functionality, i.e. in plankton detection by paddle fish (Russell 
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1999), in the retrieval processes of the human memory (Usher 2000), and in human 

brain waves (Mori 2002). How can noise potentially play a constructive role in the 

system dynamics of main components and compartments of a biological organism? As 

regards the immunoproteasome (Kloetzel 2001), it has been addressed whether the 

protein translocation inside the proteasome chamber can be driven by fluctuation, and a 

toy-model has been derived to show the probable mechanism of translocation (Zaikin 

2005). Even if at the moment there is no experimental verification of the proposed 

hypothesis, however, it can be expected that noise-induced behaviour could play a major 

role in the immunoproteasome functioning, making this aspect worth of deeper 

investigation. 

Currently, most of the studies focused on human aging still refer to a single district of 

the mosaic (generally the most easily available tissues, see for example the studies on 

human diploid fibroblasts, Franceschi 1999, Chondrogianni 2004, among many others). 

A more comprehensive approach to understand the complexity of this mosaic would be 

the simultaneous study of several organs at once; at present, this strategy has been 

applied only to animal models, as reported in mice by Schumacher and co-workers 

(Schumacher 2008). However it should be taken into account that extrapolation of 

results from experimental animals (mice) to humans is not always straightforward, 

mainly due to the quantitative differences in maintenance and reproduction (Demetrius 

2006). 

Within the complex scenario of such an interaction of different tissues and organs, each 

of them having intrinsic regulatory mechanisms as well as different aging rates, we 

proposed to go beyond the simplistic assumption of longevity genes playing the same 

role all along human life. The interpretation of antagonistic pleiotropy (Williams 1957, 

Leroi 2005) paved the way for a wider interpretation of genes (and their polymorphisms) 
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functioning: the reality is even more complex than antagonistic pleiotropy is capable to 

describe. Several experimental evidences suggest that the role of genes on physiology 

and pathology can change at different phases of human life. In genetics, these evidences 

are represented by complex trajectories in the frequencies of functional polymorphisms 

in population cohorts of different ages (De Benedictis 1998, Invidia 2009). The presence 

of such trajectories suggests that the same polymorphism can have different biological 

effects in young, middle-aged and extreme long-living individuals, in a phenomenon 

named Complex Allele Timing (De Benedictis 2006). It is noteworthy that this 

conceptualization is supported by the use of demographic information, that, together 

with data on genetic markers, allowed us to calculate hazard rates, relative risks, and 

survival functions for candidate genes or genotypes, providing a powerful tool for 

analyzing their influence on longevity and survival (Yashin 1999). This modelling 

approach allowed us to predict trajectories in genetic variation frequencies that have 

been subsequently confirmed by experimental data (Franceschi 2005). 

Moreover, the role of epigenetics (DNA methylation, histone post-transcriptional 

modifications, including methylation, acetylation, ubiquitination and phosphorylation) in 

the aging process should also be considered within this scenario because it includes 

regulatory mechanisms that could play a pivotal role in cellular homeostasis, age-related 

diseases, such as human cancer, as well as lifespan. To this regard, "aging epigenetics" 

became an emerging discipline (Fraga 2007, Lee 2008). However, no data are available 

on the epigenetic of human (extreme) longevity and the global DNA methylation and the 

methylation status of specific candidate loci for longevity is at present lacking, as well 

as epigenetics applied to population genetics studies. 

In this complex scenario, where a unique model for the study of human aging and 

longevity does not exist, a systems biology approach that combines and quantify 
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genetics, genomics, proteomics and other –omics fields is necessary to handle the ever 

increasing amount of experimental data made available by new high-throughput 

technologies. The final aim we are pursuing is to use a systems biology perspective to 

grasp the complexity of “aging” and “longevity”; in order to have a healthy old age, a 

systems perspective of medicine could promote the arrangement of advanced 

personalized therapies specifically aimed, for example, to target the individual patient's 

genetic defects (Kirkwood 2008, Cevenini 2008, Salvioli 2008b). 

 

1.3. Methodological approaches to aging as a complex mosaic 

1.3.1. Systems biology, aging and longevity 

Aging can be studied at several levels of increasing complexity: molecular, organelle, 

cellular, organ, organ systems and organism level. For a long time the cellular level was 

used as the most integrate level to study aging and longevity, generating a huge amount 

of data, directly transferred to tissues, organs, organ systems and the whole organism. 

Despite an enormous literature regarding physiological changes during aging in different 

organs, only few studies have been performed at organ system and organism level and it 

is emerging that many findings obtained from studies at cellular level often are not 

informative about the scenario of higher levels of complexity. Only now scientists are 

trying to integrate the findings obtained by studies performed at different levels into a 

coherent framework. In this new perspective, systems biology represents a modern 

science whose aim is to operate at a systemic level, by using the most integrated models 

(organ and organism). Thus, it moves biology from a traditional microscopic/qualitative 

perspective to a macroscopic/quantitative one, allowing researchers to integrate and 

quantify the huge amount but fragmented data that nowadays can be obtained by high-

throughput technologies (Doyle 2006). In addition, it also offers tools to develop 
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predictive mathematical models and networks (West 2009), able to evaluate and 

compare potential explanations for biological data (Cedersund 2009). Thus, systems 

biology represents a strategy to integrate and quantify the existing knowledge and data 

from different sources into models, to be later tested and then supported with 

experimental data for validation and refinement, in a recursive process of “wet and dry” 

experiments, that will be discussed in the last section of this review. The ultimate goal is 

to “compact” the new acquired knowledge into a single picture, ideally able to 

characterize the phenotype at systemic/organism level. 

High-throughput technologies generate complex and high dimensionality data that need 

appropriate statistical analysis, such as nonlinear methods (Kaput 2007), and above all a 

sophisticated interpretative approach in order to get insight on their biological meaning. 

Visualization techniques, interaction maps and pathway diagrams can be of great value 

in order to understand how all molecular and cellular components and modules are 

intertwined and work together to determine the basic structures and the functions of the 

organism's complex machinery. Among many interesting examples (Jeong 2000, Pieroni 

2008, Tieri 2005), this approach has been used by Raza and colleagues (Raza 2008) to 

reconstruct a logically represented pathway map, integrating four pathways central to 

macrophage activation (interferon signalling, NF-B, apoptosis, toll-like receptor 

pathways), and representing them as one integrated pathway due to their strongly 

overlapping interactions. These new methods represent a step further, but we are still far 

from having powerful tools able to capture the complexity of the problem and to reach 

the ultimate goal, that is combining and quantifying the bulk of available data in specific 

fields, including multifactorial diseases, such as neurodegenerative disorders 

(Noorbakhsh 2009, Villoslada 2009), aging and longevity (Salvioli 2008a), vaccinology, 

preventive medicine, proteolytic systems (proteasome). 
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In spite of this complex scenario, immunological studies and studies on centenarians 

revealed that common mechanisms occurred both in very different age-related diseases, 

such as diabetes and neurodegeneration, and in healthy long-living subjects. One is the 

persistent, low grade inflammatory process which develops with advancing age called 

“inflammaging” (Franceschi 2000). Therefore, anti-inflammatory therapies could 

efficiently contribute to slow down aging and age-associated pathologies, thus 

increasing the possibility to reach longevity. In a general perspective, the prevention or 

the postponement of the aging process could have much greater benefit than those 

targeted at individual disease (Butler 2008). In addition, combining the already known 

empirical methods of anti-aging medicine with unique genetic profile of each human 

(gene-pass) may render new awarding opportunities for the further advancements of 

human longevity programs (Baranov 2007).  

1.3.2. Inflammation, inflammaging and systems biology 

Inflammation is a systemic physiological process fundamental for survival, which 

involves a variety of cells, organs and organ systems. Despite the well-recognized 

systemic character of inflammation, our knowledge of this multi-factorial phenomenon 

is highly fragmented and its comprehensive understanding is still in its infancy (Salvioli 

2006b). 

In the aging field, this consideration is particularly important for “inflammaging”, 

(Franceschi 2000, Franceschi 2007b, Franceschi 2007a), which appears to be important 

in the pathogenesis of cardiovascular diseases (CVD), type 2 diabetes (T2D), metabolic 

syndrome (MS), neurodegeneration, sarcopenia and cancer, among others. 

An age-related increase in the production of inflammatory compounds occurs in the 

immune system (Vescovini 2007, Larbi 2008), brain (Licastro 2003), adipose tissue 

(Hotamisligil 2007) and muscle (Barbieri 2003), but the possible contribution to 
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inflammaging of other organs or districts, such as gut microbiota and liver, is largely 

unexplored. 

At present a major unsolved problem in biology and medicine is the source(s) of the 

inflammatory stimuli underpinning and sustaining inflammaging. Moreover, the 

signaling circuitry and the cross-talk among the various tissues and organs involved in 

inflammaging are far from being clear. Therefore, systems biology represents the most 

powerful and comprehensive approach to characterize the systemic nature of 

inflammaging, for example by developing predictive models of inflammaging, urgently 

needed to set up strategies for the modulation of inflammation, by acting on strategic 

targets with global, systemic effect on the whole process. 

A key point in such a complex framework is the dynamics of signaling pathways crucial 

to inflammation, such as those related to NF-B transcription factor activation. NF-B 

regulates genes that in turn control cell proliferation, cell survival, as well as innate and 

adaptive immune response. The sheer complexity of such crucial signalling system is 

intuitively evident from the intricate network of interactions among input and output 

signals, mediator proteins and regulated genes. Framing structure and dynamics of the 

NF-B interactome in a wider, systemic picture will be a significant step toward a better 

understanding of how it globally regulates diverse gene programs and phenotypes. This 

fact gives rise to the necessity of a systemic, multiscale approach able to take into 

consideration all the crucial levels of complexity into an unique framework, from 

protein-protein interactions to gene expression, from cellular to tissue response and 

finally to the dynamics of organs. 
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1.4. NF-B: a key player in inflammation 

NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells, discovered in 

1986 by Nobel laureate D. Baltimore) is a protein complex that both induces and 

represses gene expression by binding to discrete DNA sequences, known as κB 

elements, in promoters and enhancers. NF-κB is found in almost all animal cell types 

(Capri 2009) and is involved in cellular responses to stimuli such as stress, cytokines, 

free radicals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens, thus 

playing a key role in regulating the immune response to infection. Conversely, incorrect 

regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, 

septic shock, viral infection, and improper immune development. 

In mammalian cells, there are five NF-κB family members, RelA (p65), RelB, c-Rel, 

p50/p105 (NF-κB1) and p52/p100 (NF-κB2), and different NF-κB complexes are 

formed from their homo and heterodimers (fig. 1.2). All proteins of the NF-κB family 

share a Rel homology domain in their N-terminus. A subfamily of NF-κB proteins, 

including RelA, RelB, and c-Rel, have a transactivation domain in their C-termini. In 

contrast, the NF-κB1 and NF-κB2 proteins are synthesized as large precursors, p105, 

and p100, which undergo processing to generate the mature NF-κB subunits, p50 and 

p52, respectively. The processing of p105 and p100 is mediated by the 

ubiquitin/proteasome pathway and involves selective degradation of their C-terminal 

region containing ankyrin repeats. Whereas the generation of p52 from p100 is a tightly-

regulated process, p50 is produced from constitutive processing of p105. 
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Fig 1.2 The five nuclear factor (NF)-κB family members (a), the inhibitor of NF-κB (IκB) 
family consists of IκBα, IκBβ, IκBε and BCL-3 (b), and the three core subunits of the 
IκB kinase (IKK) (c). Adapted by Perkins 2007. 
 

In most cell types, NF-κB complexes are retained in the cytoplasm by a family of 

inhibitory proteins known as inhibitors of NF-κB (IκBs). Activation of NF-κB typically 

involves the phosphorylation of IκB by the IκB kinase (IKK) complex, which results in 

IκB degradation. This releases NF-κB and allows the free translocation in the nucleus. 



22 

 

There are several distinct NF-B activation pathways (see fig. 1.3). Here there will be 

briefly summarized. Readers should refer to (3) and cited references for an exhaustive 

treatise. 

The canonical pathway is induced by tumor necrosis factor-α (TNFα), interleukin-1 (IL-

1) and many other stimuli, and is dependent on activation of IKKβ. This activation 

results in the phosphorylation of IκBα, leading to its ubiquitylation (Ub) and subsequent 

degradation by the 26S proteasome. Release of the NF-κB complex allows it to relocate 

to the nucleus. 

IKK-dependent activation of NF-κB can occur following genotoxic stress. Here, NF-κB 

essential modifier (NEMO) localizes to the nucleus, where it is sumoylated and then 

ubiquitylated, in a process that is dependent on the ataxia telangiectasia mutated (ATM) 

checkpoint kinase. NEMO relocates back to the cytoplasm together with ATM, where 

activation of IKKβ occurs. 

IKK-independent atypical pathways of NF-κB activation have also been observed and 

described, which include casein kinase-II (CK2) and tyrosine-kinase-dependent 

pathways. 

The non-canonical pathway results in the activation of IKKα by the NF-κB-inducing 

kinase (NIK), followed by phosphorylation of the p100 NF-κB subunit by IKKα. This 

results in proteasome-dependent processing of p100 to p52, which can lead to the 

activation of p52–RelB heterodimers that target distinct κB elements. 

Phosphorylation of NF-κB subunits by nuclear kinases, and modification of these 

subunits by acetylases and phosphatases, can result in transcriptional activation and 

repression as well as promoter-specific effects. Moreover, cooperative interactions with 

heterologous transcription factors can target NF-κB complexes to specific promoters, 
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resulting in the selective activation of gene expression following cellular exposure to 

distinct stimuli. 

 
Fig 1.3 Distinct NF-B activation pathways: canonical, atypical IKK dependent and IKK 
independent, and non canonical pathways. See text for a description. Legend: Ac, 
acetylation; bZIP, leucinezipper-containing transcription factor; HMG-I, high-mobility-
group protein-I; IκB, inhibitor of κB; IKK, IκB kinase; LMP1, latent membrane protein-
1; LPS, lipopolysaccharide; NF-κB, nuclear factor-κB; RHD, Rel-homology domain; 
TAD, transcriptnal activation domain; TF, transcription factor; UV, ultraviolet; Zn-
finger TF, zinc-finger-containing transcription factor. Adapted by Perkins 2007. 
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In vertebrates, NF-κB is induced by over 150 different stimuli (Pahl 1999). In turn, there 

is evidence that active NF-κB participates in the control of transcription of a number of 

target genes (already 150 reported by Pahl 1999). These genes express cytokines, 

chemokines and their modulators, immunoreceptors, proteins involved in antigen 

presentation, cell adhesion molecules, acute phase proteins, stress response proteins, 

cell-surface receptors, regulators of apoptosis, growth factors, ligands and their 

modulators, early response proteins, transcription factors and regulators, and enzymes, 

among others. Updated information (Gilmore 2010) indicated that NF-B may regulated 

the expression of more than 400 genes. These data thus suggest that NF-κB functions 

more generally as a central regulator of stress responses. In addition, NF-κB activation 

blocks apoptosis in several cell types. Indicatively, coupling stress responsiveness and 

anti-apoptotic pathways through the use of a common transcription factor may result in 

increased cell survival following stress insults. 

This non exhaustive description (the reader should refer to the rich and day-by-day 

growing literature available online for a more complete depiction of the NF-κB system 

and functioning) briefly illustrates the sheer complexity of the NF-κB pathway system, 

which, despite the consistent efforts dedicated to its study, has only begun to be 

investigated. With these premises, NF-κB represents a perfect target for a systems 

biology study. Here following in this work, one among the first attempts to face its 

complexity providing a wider picture of the system is presented. 
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2. Materials and methods 

_______________________________________________________________________ 

2.1. Network biology: a functional approach to complex biological 

systems 

Graph theory, a branch of mathematics that from its birth, due to Leonhard Euler in the 

XVIII century, has been recently rejuvenated, is the study of “graphs”, mathematical 

structures used to model relations between objects. A “graph” in this context refers to a 

collection of “vertices” or “nodes”, and a collection of “edges”, or “links”, that connect 

pairs of nodes. Network theory concerns itself with the study of graphs as a 

representation of relations between any kind of discrete objects. 

Network abstractions and graph-theoretical approaches are today common in science. 

This approach has been applied for the representation of complex systems, and has 

achieved a certain success, from social studies (Travers 1969) to engineering (Alderson 

2005) and biology (Watts 1998, Albert 2000, Jeong 2000, Newman 2000, Jeong 2001, 

Barabasi 2004, Goh 2007, Pieroni 2008). 

Despite its intrinsically limited perspective, such conceptualization makes complex 

biological systems able to be considered as a whole and to undergo mathematical 

analysis, aiming to the discovery of salient systemic features and providing an accurate 

and analytic view at glance of entities, relations and functions that characterize them. 

This approach also allows to highlight how the qualities and behavior of single elements 

influence the network topology and dynamics, how network structure impinges upon 

processes spreading over the network, or the effect of perturbations on network 

performance (Boccaletti 2006, Tieri 2005). In this regard, the network abstraction of 
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biochemical signaling pathways can represent a useful functional view that can 

complement analyses and approaches from molecular biology and genomics. 

Biochemical pathways are usually referred to as intracellular processes which scale can 

in some way be placed between small events, such as protein complexes formation or 

enzyme catalysis, and cell-wide or larger events, such as cell death or inflammation. 

These processes can be divided into separate steps, which seldom follow a linear and 

unambiguous succession. It is not yet simple to define a pathway in terms of its 

components, steps, dynamics and function, given its manifold, hazy and intricate nature. 

Actually, pathways and signaling cascades are not isolated entities. A signaling pathway 

can be triggered by many different extra- or intra-cellular events, cover different parallel 

paths and branches, intersect, be competitive or cooperative or interdependent with other 

events, every step can have diverging functions, and so on. Pathways, in conclusion, are 

processes characterized by high complexity (Bhalla 1999, Bhalla 2003, Ivakhno 2007). 

Abstractions and models of biological networks and pathways discussed here are mainly 

protein interaction networks (PINs) and protein-signaling networks (PSNs). PINs 

represent protein-protein binding events on a proteome-wide scale. Nodes and 

undirected edges represent proteins and binding events among them. In PSNs, nodes and 

directed edges represent phosphoproteins and phosphorylation reactions. The two 

models can be combined and enriched with additional layers, such as transcriptional 

regulatory networks, among others. 

2.1.1 A workflow for integrative pathway and interactome reconstruction and 

analysis 

Omics data and computational approaches are today providing a key to disentangle the 

complexity of objects like signaling pathways, assisted by dedicated online databases 

and specific software tools. Through such methodology, it is possible to integrate data of 
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different nature to extract meaningful representations and useful information, finally 

leading to an increased understanding of the biochemical process under examination. 

Nevertheless, the workflow for the integrated reconstruction and analysis of signaling 

pathways, interactomes and biological networks is hampered by difficulties of diverse 

nature, such as lack of data, shortcomings, annotation differences or multiple 

interpretations, data integration problems and other difficulties (Adriaens 2008, Bauer-

Mehren 2009, Gardy 2009). Materials and workflow described here want to show a 

general approach for gathering information of interest from some of the existing 

pathway and protein interactions databases, for integrating and analyzing data and 

reconstructed representations by using the available tools, and to understand which kind 

of knowledge is possible to extract from the combination of existing information. The 

characteristics of some of the many pathway and protein interactions online resources 

and databases will be shortly described, together with the Cytoscape software platform 

and other online analysis tools able to greatly help in reconstructing and analyzing 

pathways and interactomes. 

 

2.2. Materials: online databases and tools 

2.2.1 Overview of databases and online data sources 

Signaling cascades and pathways information is more and more often systematically 

collected and organized into publicly available databases. Such kind of resources lay the 

foundations for the systems level approach, allowing a workflow consisting in the 

reconstructive process of the pathway/interactome networks, that generally consists in 

the manual or automated retrieval of pathway data, their integration, merging, 

comparison and enrichment with other forms of data, and then the analytical process 

(simulation, mathematical modeling, statistical analysis). Iterative cycles of such 
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procedures, modeling, and prediction, combined with experimental validation (the 

systems biology cycle, fig. 2.1, Kitano 2002), can result in the improvement of the 

knowledge of cell signaling and responses. 

 
Fig. 2.1 The systems biology cycle: iterative cycles of modeling and prediction, 
combined with experimental validation may result in the improvement of the 
knowledge of cell signaling and responses. Adapted by Kitano 2002. 
 

Online dedicated databases usually store cell signaling data in exchangeable formats 

(often BioPAX – Biological Pathway Exchange-, or SBML –Systems Biology Markup 

Language; see Notes section) accessible by diverse software platforms and tools, 

allowing for their retrieval, visualization and analysis. The following list should by no 

means considered as exhaustive; links and URLs can be found in the Notes section. 

The Pathguide (the Pathway Resource List, fig 2.2, Bader 2006) is a resource useful as a 

starting point for biological pathway analysis, since it is a content aggregator for 
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integrated biological information systems. It is a meta-database that provides an 

overview of current pathway and other systems biology-oriented databases. Pathguide 

currently enlists and provides details and links to more than 300 web-accessible 

biological pathway and network databases. These include databases on metabolic 

pathways, signaling pathways, transcription factor targets, gene regulatory networks, 

genetic interactions, protein-compound interactions, and protein-protein interactions. 

The listed databases are curated and maintained by diverse scientific groups in different 

worldwide locations and the information in them is derived either from the scientific 

literature or from systematic, high-throughput experiments. 

 
Fig 2.2 Screenshot of the Pathguide website (www.pathguide.org), a content 
aggregator for pathway analysis. 
 

Reactome (Matthews 2009, Note 2) is a pathway database covering a very wide set of 

biological processes, organized in a hierarchical manner: lower levels for smaller 

reactions, higher levels for pathways and larger processes. Data are extracted from 
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literature and biomedical experiments, are human-curated and are represented as chains 

of chemical reactions (including transcription, catalysis, binding). Data can be physical 

entities (DNA, RNA, protein complexes, phosphorylated and unphosphorylated proteins, 

small molecules…) or events (reaction-like event, for smaller reactions, or pathway-like 

event, clustering many reaction-like events). It is possible to search and browse data and 

representations in remote, or to download them in local in the most common formats or 

in graphical representation. The website also provides some useful statistical and 

graphical tools and can be accessed through a SOAP (Simple Object Access Protocol) 

web service for automated data queries. 

KEGG (the Kyoto Encyclopedia of Genes and Genomes, Kanehisa 2000, Kanehisa 

2010, fig 2.3) consists of a number of interlinked databases devoted to several domains 

in the cell, the organism and the biosphere (genes, genomes, proteins, chemical 

compounds, pathways, diseases, drugs, ontologies). The pathways section covers many 

organisms including human. Data are categorized into the different processes 

(metabolic, genetic information, signaling etc) and are coded in its own XML format 

(KGML), or also in BioPAX and SBML through the use of additional available coding 

tools. 
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Fig 2.3 Screenshot of a comprehensive metabolic map in KEGG 
(www.genome.jp/kegg/). 
 

The Nature Pathway Interaction Database (PID) (Schaefer 2009) is hierarchically 

organized in a way similar to Reactome and hosts pathway data (available in BioPAX or 

XML) obtained from peer reviewed literature or imported from other databases such as 

Reactome or BioCarta (a biotech commercial supplier reagents and assays for 

biopharmaceutical and academic research, see Notes). DNA and RNA are not part of the 

PID pathways but active/inactive, phospho/unphosphorylation states are annotated, the 

pathways can be browsed starting from UniProt, Entrez Gene (see Notes) or other types 

of identifiers, and statistical or query tools are provided. 

Pathway Commons is based on already existing databases such as Reactome, PID, and 

other protein interactions databases, and provides an integrated access point and a 

compilation of such databases, thus conserving their structure and data hierarchies. 
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However, this kind of integration is not a simple task and this can result in overlapping, 

discordant and/or redundant information. A useful feature is the complete accessibility 

through the dedicated Pathway Commons plugin from the Cytoscape platform (see later 

in the chapter). 

WikiPathways (Pico 2008) is an open source and collaborative platform for biological 

pathway information, storage and curation, in the wake of the Wikipedia style. Data are 

categorized by species and processes (f.i. metabolic process, molecular function, etc) 

and are coded in the GenMAPP (an application designed to visualize gene expression 

and other genomic data on maps representing biological pathways and groupings of 

genes) Pathway Markup Language (GPML) that can be compatible with applications 

such as PathVisio (a visualization tool, see Notes), Cytoscape and GenMAPP. 

APID (Agile Protein Interaction DataAnalyzer) (Prieto 2006, fig 2.4) is an interactive 

web-based platform devoted to the exploration and analysis of diverse information about 

protein interactions, integrated and unified in a common and comparative environment. 

APID provides an open access frame where all known experimentally-validated protein-

protein interactions (obtained by the most known protein interactions databases such as 

BIND, BioGRID, DIP, HPRD, IntAct and MINT, see Notes) are unified in a unique web 

application that allows the exploration and analysis of networks and interactomes. APID 

provides some embedded online tools to query and browse data and, most useful, a 

Cytoscape plugin (APID2NET, Hernandez-Toro 2007) that allows to extract, visualize 

and analyze unified interactome data by directly quering APID servers, including all the 

annotations and attributes associated to the retrieved PPIs. 
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Fig 2.4 Screenshot of the APID database showing interaction of a NF-B subunit 
(http://bioinfow.dep.usal.es/apid/index.htm). 
 

TRED (Transcriptional Regulatory Element Database) (Zhao 2005, Jiang 2007) is a 

manually curated database of regulatory elements (promoters, transcription factor 

binding sites, both cis- and trans-) with experimental evidence in mammalian genomes. 

Currently it enlists a total of 36 transcription factors families (most of which are 

involved in cancer), more than 7000 target genes and around 15000 target promoters, 

with the goal to assist detailed functional studies and to help in obtaining a panoramic 

view of gene regulatory networks in a cancer research perspective. 

TRANSPATH (Choi 2004), together with the more famous TRANSFAC (Matys 2003), 

that stores transcription factors and their DNA binding sites, is a wide and powerful 

knowledge base system about gene regulatory networks that comprises and integrates 

information on signal transduction and tools for visualization and analysis. It allows 
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obtaining complete signaling pathways from ligand to target genes and their products. 

Its access requires a license purchase, even if a version dating back to years ago can be 

accessed for free. 

NetPath (Keshava Prasad 2009) is a curated compendium of human signaling pathways 

which currently contains annotations for several cancer and immune signaling pathways. 

Pathway data are available for browsing and download in the most common formats 

(included Proteomics Standards Initiative-Molecular Interaction –PSI-MI- format), and 

listing of up- and down-regulated genes for each pathway is provided, based on 

experiments and literature. 

It is quite normal that users spend an amount of time in browsing many databases in 

search for the data and models that meet the requirements of the research project. 

Notwithstanding the quantity and quality of the publicly available resources, information 

automatically extracted from a single pathway database is usually not yet exhaustive. 

Given the often complementary nature of data in different databases, they should be 

retrieved, integrated and combined, and we feel the quality of the result still strongly 

relies upon a sharp manual curation effort (Adriaens 2008, Bauer-Mehren 2009, Gardy 

2009). The integration process itself, however, can present several problems, not least 

those of interchangeability of the different formats and data models, but also in terms of 

reaction annotation, or of significant differences in other key biological factors, such as 

cellular state and type (Adriaens 2008). Thus, the process of literature extraction of data 

(also possibly aided with text-mining techniques) together with combination of 

information from databases under expert supervision and curation probably remains a 

good choice in order to get an accurate pathway reconstruction. A complete and deep 

curation process can last months and employ many experts, and yet yield controversial 

results. Conversely, manual integration of data extracted from online pathway resources 
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–under expert review- can be decently performed in days, allowing to create a 

sufficiently accurate (also depending on the scope) representation of a given pathway, or 

part of it, able to undergo further functional enrichment and analysis. 

 

2.3. Materials: computational analysis software 

2.3.1. Main platforms and tools 

Since the purpose of the interactome or pathway reconstruction process is to have an 

“object” can be further elaborated, enriched and analyzed step by step, we will need to 

access and store data in local machines, and not only to browse them online. As 

described before, most of available database allow downloading the relevant data in 

diverse formats (BioPAX, SBML, PSI-MI, among others). At this point, the choice of 

one or more tools for network editing and analysis is up to the user. Some of them are 

directly embedded or available inside the different databases, such as Reactome, 

WikiPathways, BioCarta, GenMAPP. Others are commercial suites, such as Ingenuity or 

Pathway Studio, with special visualization features (see Notes). 

Among the open source applications, Cytoscape (Shannon 2003, fig. 2.5) is a very 

powerful software platform, available for all the major operating systems, designed for 

biological research, but versatile enough to be used in many other fields where network 

editing, visualization and analysis are key features. The core tool has been developed to 

visualize molecular interaction networks and biological pathways, and to integrate these 

networks with annotations, gene expression profiles and other state data. Many more 

additional features, such as advanced network and molecular profiling analyses, new 

layouts, additional file format support, scripting, and connection with databases, are 

available as plugins. It supports many different standard network and annotation file 
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formats, including SIF (Simple Interaction Format), BioPAX, PSI-MI, SBML, tab-

delimited text files and MS Excel. 

 
Fig. 2.5 Screenshot of a working window in the Cytoscape visualizing and analysis tool 
(www.cytoscape.org). 
 

BiologicalNetworks (Baitaluk 2006) is an integrated research environment for biological 

sciences that allows querying and integrating molecular interaction networks, metabolic 

and signaling pathways with a large number of biological features related to 

transcriptional regulation, microarray and proteomic experiments, 3D structures 

ontologies, taxonomies and other types of data. It is based on a database currently 

integrating over 100 curated and publicly contributed data sources for thousands of 

eukaryotic, prokaryotic and viral genomes. 

CellDesigner (Funahashi 2003) is a structured diagram editor for drawing gene-

regulatory and biochemical networks. Networks are drawn based on the process 
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diagram, with a particular graphical notation system, and are stored using the SBML 

format. Networks are able to link with simulation and other analysis packages through a 

wider software platform named Systems Biology Workbench (SBW). 

We will focus on a workflow mainly based on the Cytoscape platform given its free 

availability, diffusion in biology research, upgradeability and versatility. 

2.3.2 Other specific analysis tools and plugins 

Powerful standalone packages specific for network analysis are freely available. Pajek 

(Batagelj 2003) (“spider” in Slovene, the nationality of the developers), for instance, is 

able to visualize and analyze networks of millions of nodes. Specific add-on modules 

can be used inside the well-known R statistical package (www.r-project.org). 

Other packages have direct web-based functionality: GraphWeb (Reimand 2008) is a 

public web server for graph-based analysis that has been designed for extensive analyses 

of directed and undirected, weighted and unweighted heterogeneous networks of genes, 

proteins and microarray probesets for many eukaryotic genomes, and is able to integrate 

multiple diverse datasets into global networks. 

Among the many available Cytoscape plugins (for an exhaustive list and references see 

the Cytoscape.org website), NetworkAnalyzer (Assenov 2008) requires no expert 

knowledge in graph theory from the user. It is able to compute, display and shows charts 

for a quite complete set of topological parameters for undirected and directed networks, 

which includes the number of nodes, edges, and connected components, the network 

diameter, radius, density, centralization, heterogeneity, clustering coefficient, and the 

characteristic path length. 

ClusterMaker (Cytoscape plugin, see Notes) unifies different clustering techniques and 

displays into a single interface. It uses specific algorithms for clustering expression or 
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genetic data, and similarity networks to look for protein families and putative functional 

similarities. 

The Hub Objects Analyzer (Hubba) (Lin 2008) is both a web-based service and a 

Cytoscape plugin for exploring networks to discover hubs and important nodes in an 

interactome network generated from specific small- or large-scale experimental 

methods. 

 

2.4. Methods: general retrieval and reconstruction procedures 

2.4.1. Data retrieval 

The process of manual literature mining for data extraction is labor-intensive and time 

consuming but typically gives back high-quality data and models. It is evident that, 

given the broadness and importance of this topic, it cannot be exhaustively treated here 

and we refer to Jensen and colleagues (Jensen 2006) for a comprehensive review on the 

field of manual and machine-aided extraction of biomedical facts from scientific 

literature. 

In the first step of retrieving the pathway data of interest through Cytoscape, it is 

possible to use one of the many existing plugins, each one designed to query and retrieve 

data from many different databases. It is evidently advisable that the user has previously 

browsed the candidate databases to understand which type, model and format data have 

been stored in. 

Among the many Cytoscape plugins, BioNetBuilder (Avila-Campillo 2007) can be used 

to build networks for many different species, including most common model organisms 

and human, retrieving data from currently supported databases that include DIP, BIND, 

KEGG, HPRD, BioGrid, among others. The interface offers different options to specify 

a set of initial genes/gene products for which to find molecular interactions (including 
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loading a text file, finding genes with specified Gene Ontology annotations, and finding 

genes whose common name match a given string). Biological networks for whole 

organisms can also be created and displayed. 

Another very useful plugin is the aforementioned APID2NET, linked to the APID 

database. It is possible to specify a list of proteins and get the network of their 

interactions, at the desired connection level (level 0 considers only the interactions 

among the listed proteins, level 1 considers all their neighbors in APID, level 2 

considers also the neighbors of the neighbors, etc.) and validated by the chosen number 

of different experimental methods. The system also displays additional information on 

node, edge and network attributes. 

The user can also start a Cytoscape session with the embedded import network from web 

service function to connect directly to the Pathway Commons or WikiPathways servers 

and get the data. It is also possible to retrieve the data from each single database simply 

by downloading a formatted file and then upload and open it in the Cytoscape client that 

will visualize the relative network. 

It is not always possible to retrieve data following a plugin-automated or semi-

automated process as described above. For some databases, not specifically designed for 

systems biology but containing useful and well arranged information, as for instance the 

transcriptional regulatory element database TRED, it can be necessary to make the 

query, to extract the data with copy/paste operations in text format and make adaptation 

to import and incorporate them into a network in a very manual fashion. 

2.4.2. Data merging and combination 

As said, combination of data from different pathway databases is highly desirable. The 

user can for instance download the same pathway data as provided by two or more 

databases and try to confront and combine them in order to make it as complete as 
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possible. For this purpose, again, suitable Cytoscape plugins (f.i. 

AdvancedNetworkMerge) or embedded function in the tool may be used. This is 

typically a very critical point, since very often molecular and reaction data have been 

encoded and modeled in different manner according to the originating database, so that 

the network resulting from the merging of such two or more networks can 

disappointingly result as a simple sum of the originating objects, or anyway as an 

inconsistent network, without any -although expected- overlap, or any other shared 

information or link. There is no trivial solution to this kind of issues, since from 

database to database there are no uniquely defined identifiers for each of the entities that 

compose the pathways or the networks. Accurate filtering and expert curation performed 

before the merging process could purge the data from undesired or redundant 

information. This will also usually make it quite easy to build improved versions of the 

networks based on additional and different types of data. In figure 2.6 a schematic 

representation of the whole workflow is presented. 
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Fig. 2.6 Schematic representation of the workflow. From manual and automated data 
retrieval, through human curation and software platforms, data are integrated to 
reconstruct coherent objects able to undergo mathematical analysis. Results can feed 
back in the pipeline for further enrichment, analysis, simulations or improvement of 
existing models and representations. 
 

2.4.3. Functional enrichment 

Obtained networks can be functionally enriched, i.e. can be integrated and superimposed 

with data of different type, such as gene expression data or Gene Ontology (GO) 

categories to verify if statistically overrepresented features are linked to topological 

characteristics. Some plugins are available for Cytoscape and many others are accessible 

on the internet. Among many, we just mention BiNGO (Maere 2005) and ClueGO 

(Bindea 2009), plugins able to determine which Gene Ontology categories are 

overrepresented in sets of genes, (in the present context corresponding to subgraphs of a 

given biological network), to map the predominant functional themes of a given gene set 
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on the GO hierarchy as a graph, and to perform cluster analysis and comparison of 

clusters. GOrilla (Eden 2009) is a tool for identifying and visualizing enriched GO terms 

in ranked lists of Human genes. 

 

2.5. Methods: network analysis 

2.5.1. Topological measures 

Once that the user has performed the reconstruction steps and considers the “object” 

pathway or interactome in some way complete and stable (for the subjective purpose of 

the study to be carried out), it is time to proceed with the subsequent network analysis. 

All cited computational platforms are precisely designed to perform such analyses that 

can be easily implemented through embedded or add-on features. 

The goal of topological analysis of protein networks is to discern organizational „design‟ 

principles, relate those to dynamical properties, and establish connections to biological 

functions. The detection of interesting topological properties occurs by comparing the 

network under study with a “null model”; that is, a set of networks that reflect what is 

expected by random chance. If a network under study possesses certain characteristics 

different from what is expected by chance alone, then these might be related to the 

function of the network: they could have been selected by evolution for their 

advantageous properties. 

Topological measures have demonstrated their usefulness in uncovering the organizing 

principles that rule the development and the evolution of networks of different nature 

(Barabasi 2004). Several observations led to conclude that the classical degree 

distribution, and the well-investigated scale-free characteristic, of nodes in PINs, for 

instance, correlates with biological meaningful features, such as importance, lethality, 

robustness and dynamics of perturbations. Hierarchical topology, sub-graphs, modular 
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structures, clusters are, among others, strongly characterizing features of networks that a 

focused analysis can reveal (Pieroni 2008). In some fields, such as cancer research, 

extensive and deep meta-analyses have shown how some specific measures, such as 

betweenness and stress centrality, among others, are particularly relevant in 

characterizing pathological states and malignant tissues (Platzer 2007). 

Among the many interesting network analysis techniques, clustering can help in the 

identification of functional groups and in heuristic discovery of un-annotated functions 

of some proteins. Since proteins tend to function in groups, or complexes, an important 

goal is to reliably identify protein complexes from graphs and networks derived from 

genome scale data on protein interactions. This task is commonly executed using 

clustering procedures, which aim at detecting densely connected regions within the 

interaction graphs. One of the most successful clustering procedures in this context has 

been the Markov Cluster algorithm (MCL), often specifically applied for partitioning 

protein interactions graphs. considers the connectivity properties of the underlying 

network. MCL has been used to derive complexes from protein interaction data in 

comprehensive analyses of the yeast interactome, and was shown to be especially 

effective for clustering protein interactions in that it possesses a high degree of noise-

tolerance. 

The most common and important topological parameters are briefly described below 

(Bollobàs 2002; or, for further information and an useful browsable online help, see 

http://med.bioinf.mpi-inf.mpg.de/netanalyzer/help/2.6.1/index.html). 

Number of connected components 

In undirected networks, two nodes are connected if there is a path of edges between 

them. Within a network, all nodes that are pairwise connected form a connected 
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component. The number of connected components indicates the connectivity of a 

network – a lower number of connected components suggests a stronger connectivity. 

Parameters related to shortest paths 

The length of a path is the number of edges forming it. There may be multiple paths 

connecting two given nodes. The shortest path length, also called distance, between two 

nodes n and m is denoted by L(n,m). The network diameter is the largest distance 

between two nodes. If a network is disconnected (some nodes are isolated), its diameter 

is the maximum of all diameters of its connected components. The average shortest path 

length, also known as the characteristic path length, gives the expected distance between 

two connected nodes. 

Parameters related to neighborhood 

The neighborhood of a given node n is the set of its neighbors. The connectivity of n, 

denoted by kn, is the size of its neighborhood. The average number of neighbors 

indicates the average connectivity of a node in the network. A normalized version of this 

parameter is the network density. The density is a value between 0 and 1. It shows how 

densely the network is populated with edges (self-loops and duplicated edges are 

ignored). A network which contains no edges and solely isolated nodes has a density of 

0. 

The number of isolated nodes may provide insight how the network density is 

distributed. Another related parameter is the network centralization. Networks whose 

topologies resemble a star have a centralization close to 1, whereas decentralized 

networks are characterized by having a centralization close to 0. The network 

heterogeneity reflects the tendency of a network to contain hub nodes. 

Clustering coefficient 
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In undirected networks, the clustering coefficient Cn of a node n is defined as Cn = 

2en/(kn(kn-1)), where kn is the number of neighbors of n and en is the number of 

connected pairs between all neighbors of n. In directed networks, the definition is 

slightly different: Cn = en/(kn(kn-1)). 

In both cases, the clustering coefficient is a ratio N / M, where N is the number of edges 

between the neighbors of n, and M is the maximum number of edges that could possibly 

exist between the neighbors of n. The clustering coefficient of a node is always a 

number between 0 and 1. The network clustering coefficient is the average of the 

clustering coefficients for all nodes in the network. Here, nodes with less than two 

neighbors are assumed to have a clustering coefficient of 0. 

Degree distributions 

In undirected networks, the node degree of a node n is the number of edges linked to n. 

A self-loop of a node is counted like two edges for the node degree. The node degree 

distribution gives the number of nodes with degree k for k = 0,1,…. 

In directed networks, the in-degree of a node n is the number of incoming edges and the 

out-degree is the number of outgoing edges. Similar to undirected networks, there are an 

in-degree distribution and an out-degree distribution. 

The node degree distribution may be used to distinguish between random (as defined by 

Erdős and Rényi 1959) and scale-free network topologies. 

Neighborhood connectivity 

The connectivity of a node is the number of its neighbors. The neighborhood 

connectivity of a node n is defined as the average connectivity of all neighbors of n. The 

neighborhood connectivity distribution gives the average of the neighborhood 

connectivities of all nodes n with k neighbors for k = 0,1,…. Figure 2.6 shows a simple 

network and the relative neighborhood connectivity distribution. In analogy to the in- 
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and out-degree, every node n in a directed network has in- and out-connectivity. Thus, in 

directed networks, a node has the following types of neighborhood connectivity: 

 only in - the average out-connectivity of all in-neighbors of n; 

 only out - the average in-connectivity of all out-neighbors of n; 

 in and out - the average connectivity of all neighbors of n (edge direction is 

ignored). 

Based on the three definitions given above, there are three neighborhood connectivity 

distributions - "only in", "only out" and "in and out". 

 

 
Fig. 2.6 Simple network formed by 12 nodes and 14 edges (left), and relative 
neighborhood connectivity distribution (right chart). 
 

If the neighborhood connectivity distribution is a decreasing function in k, edges 

between low connected and highly connected nodes prevail in the network. 
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Shortest paths 

The length of the shortest path between two nodes n and m is L(n,m). The shortest path 

length distribution gives the number of node pairs (n,m) with L(n,m) = k for k = 1,2,…. 

The network diameter is the maximum length of shortest paths between two nodes. If a 

network is disconnected, its diameter is the maximum of all diameters of its connected 

components. 

The network diameter and the shortest path length distribution may indicate small-world 

properties of the analyzed network. 

Clustering coefficients 

A clustering coefficient is a measure of degree to which nodes in a graph tend to cluster 

together. In undirected networks, the clustering coefficient Cn of a node n is defined as 

Cn = 2en/(kn(kn-1)), where kn is the number of neighbors of n and en is the number of 

connected pairs between all neighbors of n. In directed networks, the definition is 

slightly different: Cn = en/(kn(kn-1)). 

In both cases, the clustering coefficient is a ratio N / M, where N is the number of edges 

between the neighbors of n, and M is the maximum number of edges that could possibly 

exist between the neighbors of n. The clustering coefficient of a node is always a 

number between 0 and 1. 

The average clustering coefficient distribution gives the average of the clustering 

coefficients for all nodes n with k neighbors for k = 2,…. 

The clustering coefficient of a node is the number of triangles (3-loops) that pass 

through this node, relative to the maximum number of 3-loops that could pass through 

the node. 
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Figure 2.7 Example network with four nodes and four edges (see text). 

For example, in Figure 2.7, there is one triangle that passes through node b (the triangle 

bcd). The maximum number of triangles that could pass through b is three (in this case, 

the pairs (a, c) and (a, d) would be connected additionally). This yields a clustering 

coefficient of Cb = 1 / 3. 

The average clustering coefficient distribution may be used to identify a modular 

organization of metabolic networks (Ravasz 2002). 

Shared neighbors 

P(n,m) is the number of partners shared between the nodes n and m, that is, nodes that 

are neighbors of both n and m. The shared neighbors distribution gives the number of 

node pairs (n,m) with P(n,m) = k for k = 1,…. If a motif like the one presented in figure 

2.8 is over-represented in a network, this can be inferred from the shared neighbors 

distribution. 

 
Figure 2.8 Motif of two nodes sharing exactly four neighbors. 
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Topological coefficients 

The topological coefficient Tn of a node n with kn neighbors is computed as follows: 

Tn = avg ( J(n,m) ) / kn. 

Here, J(n,m) is defined for all nodes m that share at least one neighbor with n. The value 

J(n,m) is the number of neighbors shared between the nodes n and m, plus one if there is 

a direct link between n and m. For example, in figure 2.9, J(b,c) = J(b,d) = J(b,e) = 2. 

Therefore, Tb = 2 / 3. 

The topological coefficient is a relative measure for the extent to which a node shares 

neighbors with other nodes. Nodes that have one or no neighbors are assigned a 

topological coefficient of 0 (zero). 

 
Figure 2.9 Example network with five nodes and six edges: the topological coefficient 
here is Tb = 2 / 3. 
 

The chart of the topological coefficients can be used to estimate the tendency of the 

nodes in the network to have shared neighbors. 

Stress distribution 

The stress of a node n is the number of shortest paths passing through n . A node has a 

high stress if it is traversed by a high number of shortest paths. This parameter is defined 

only for networks without multiple edges. The stress distribution gives the number of 

nodes with stress s for different values of s. 
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Betweenness centrality 

The betweenness centrality Cb(n) of a node n is computed as follows: 

Cb(n) = ∑s≠n≠t (σst (n) / σst), 

where s and t are nodes in the network different from n, σst denotes the number of 

shortest paths from s to t, and σst (n) is the number of shortest paths from s to t that n lies 

on. 

Betweenness centrality is computed only for networks that do not contain multiple 

edges. The betweenness value for each node n is normalized by dividing by the number 

of node pairs excluding n: (N-1)(N-2)/2, where N is the total number of nodes in the 

connected component that n belongs to. Thus, the betweenness centrality of each node is 

a number between 0 and 1. 

For example, the betweenness centrality of node b in figure 2.10 is computed as follows: 

Cb(b) = ((σac(b) / σac) + (σad(b) / σad) + (σae(b) / σae) + (σcd(b) / σcd) + (σce(b) / σce) + 

(σde(b) / σde)) / 6 = ((1 / 1) + (1 / 1) + (2 / 2) + (1 / 2) + 0 + 0) / 6 = 3.5 / 6 ≈ 0.583 

 

Figure 2.10 Example network with five nodes and five edges (see text). 

The betweenness centrality of a node reflects the amount of control that this node exerts 

over the interactions of other nodes in the network. This measure favors nodes that join 

communities (dense subnetworks), rather than nodes that lie inside a community. 
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Closeness centrality 

The closeness centrality Cc(n) of a node n is defined as the reciprocal of the average 

shortest path length and is computed as follows: 

Cc(n) = 1 / avg( L(n,m) ), 

where L(n,m) is the length of the shortest path between two nodes n and m. The 

closeness centrality of each node is a number between 0 and 1. The closeness centrality 

of isolated nodes is equal to 0. Closeness centrality is a measure of how fast information 

spreads from a given node to other reachable nodes in the network. For example, the 

closeness centrality of node b in figure 2.10 is computed as follows: 

Cc(b) = 1/ ( (L(b, a) + L(b, c) + L(b, d) + L(b, e)) / 4) = 4/ (1 + 1 + 1 + 2) = 4/5 = 0.8 

2.5.2. Dynamical models 

Owing to the intricacy of signal transduction, computational analysis is necessary to 

obtain understanding of dynamical properties of PSNs. Even for very small, relatively 

simple PSNs, it has been shown that a wide variety of complex dynamical properties 

could be attained (Bhalla 1999, Bray 1995, Sauro 2004, Tyson 2003) and parallels were 

drawn between signaling circuits and man-made control systems to explaining important 

biological properties, such as amplification, robustness, homeostasis, and adaptation; 

particularly highlighting the importance of feedbacks in PSNs (Sauro 2004, Alon 1999, 

Ferrell 1996, Goldbeter 1981, Levin 1998, Yi 2000). Several larger mathematical 

models based on Ordinary Differential Equations have been formulated for signal PSNs, 

and their parameters were optimized in order to fit experimental observations (Chen 

2004, Chen 2000, Kholodenko 2006, Tyson 2001). Although studies with such models 

provide many detailed insights into the dynamics and function of signaling pathways, 

formulating such models is a difficult problem that requires a huge amount of specific 

quantitative experimental data, which are not expected to be available on proteome-wide 
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scale in the near future. Dynamical models of proteome-wide PSNs, although lacking 

precise quantitative information of the kinetic dependencies, can still be used to discover 

principles of global dynamical organization. For example, a qualitative approach to the 

dynamic modeling of PSNs is the use of Boolean logic, in which each protein is „off‟ or 

„on‟ at a given time-step depending on the states of its inputs. Recently, it was shown 

that a PSN formalized with Boolean logic can classify sets of inputs into distinct output 

patterns – an ability that arises through the complex wiring pattern among the proteins in 

the PSNs (Helikar 2008). This ability is an emergent dynamical property determined by 

the structure of the PSN, because the authors showed that randomizing the network 

results in loss of this ability. Interesting metaphors have been drawn between PSNs and 

computational networks (Bhalla 2003). Back in 1990, Dennis Bray highlighted the 

similarity between PSNs and „artificial neural networks‟ (Bray 1990). Rather than signal 

transduction as just a mechanism to transmit information from the cell surface to the 

nucleus and other functions, this analogy suggests a complex process of turning complex 

input signals (environments) into complex output signals (biological responses). Similar 

to artificial neural networks, where the parameters are adjusted through mathematical 

optimization to obtain required input-output relationships, evolution has tweaked the 

parameters in PSNs to obtain the ability to generate appropriate responses to the wide 

variety of complex environmental signals that organisms are subjected to (Bray 1990). 

It has become clear that the proteome forms a complex system with many emergent 

properties yet to be discovered and understood (Pieroni 2008, Bhalla 2003). Topological 

and dynamical studies of PSNs that take explicitly the INPUT → CENTRAL 

NETWORK → OUTPUT structure (Helikar 2008, Cui 2006, de la Fuente 2008, Liu 

2006, Ma‟yan 2005) into account most certainly will yield many insights into the 

functional organization these intricate protein networks. 
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2.6. Methods: NF-B interactome data retrieval and reconstruction 

2.6.1. Workflow 

The main steps of the workflow followed for the NF-B pathway interactome 

reconstruction and analysis are briefly summarized here. More information can be found 

in chapter 3, Results. 

1. The starting point consists in the manual literature mining and review: such approach 

took several months of expert work, and guarantees a quite complete list of proteins that 

take part with different roles and importance to the whole signaling cascade. This basic 

list has been increased, enriched and refined step by step confronting and 

complementing preliminary results with data browsed and downloaded manually or with 

Cytoscape from several pathway and PIN databases. The reference list is available in the 

Notes section. The result at the end of this manual process is a “core list” consisting of 

140 proteins. It should be noted that such list can continuously change due to new 

knowledge and updates in the relative data and biological information. In the Notes 

section the list of articles and reviews examined for the determination of the core 

proteins list is provided. 

2. Protein interactions data are added to build the first version of the “core interactome”. 

The main tool used in this step is the APID database, automatically accessed through the 

dedicated plugin in Cytoscape. Parameters are setup in order to consider interactions that 

have been tested with one experimental method. It should be considered that it is also 

possible to retrieve interaction tested with more than one experimental method, but in 

this way, due to shortage of data, the percentage of false negatives is too high to be 

considered reliable. Conversely, using the “one experimental method” search parameter, 

it is possible to include in the interactome a acceptably low number of false positives. 
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The result is a network consisting of 140 nodes and 829 non-directional interactions, 

including self-interactions. 

3. By using automated retrieval tool and databases (APID2NET, BioNetBuilder in 

Cytoscape, main PIN databases) a “wider interactome” is built, taking into account all 

the proteins with evidence of interaction with at least one protein present in the “core 

interactome”. Search parameters are set to include interactions validated with one 

experimental method, as above for the core interactome. At the end of the process, the 

whole “wider interactome” consists of 3146 proteins accounting for a total of more than 

42600 protein-protein interactions. 

4. Data elaborated from a manually curated list of NF-B-downstream genes (Gilmore 

2010), from the TRED database (manually extracted) and integrated with results from 

TRANSFAC allow to constitute a relatively comprehensive list of more than 400 genes 

that result to be up- or down-regulated from NF-B. Gene products and relative UniProt 

identifiers are obtained directly through the ID mapping functions available on the 

UniProt web interface, allowing to compile the list of proteins which expression can be 

regulated by NF-B. 

5. The whole interactome now consisting of core proteins (those that directly participate 

to signaling cascades that activate NF-B), wider interactome proteins (their direct 

interactors), regulated genes and relative expressed proteins now undergoes functional 

enrichment and analysis: topological characterization, GO enrichment, clustering are 

performed thanks to the several standalone analysis tools, Cytoscape and web-based 

services. Results from the analysis include, among others, a wider, integrated overlook 

of the NF-B signaling system and its main topological characteristics, the detection of 

specific hubs or central proteins, the discovery of feedback loops and cross controls 

among proteins and genes that can be candidates for further in-depth studies. 
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2.6.2. Pitfalls and issues encountered 

Some of the most common pitfalls in the procedure shown as well as some general 

considerations on the proposed workflow and relative problems encountered are briefly 

taken into account here. 

One of the major concerns in pathway and PSN reconstruction is the lack of clear and 

comprehensive data about reactions and subsequent directionality. Directional 

information is still a rare thing. As said, the user will unlikely find that the same 

pathway has been represented in similar ways on different databases. This poses the 

problem of the necessity to choose one among different data models and content, or to 

engage in the non trivial effort of integrating and complementing the various data and 

data types. The lack of undisputable data about a number of reactions and proteins in the 

NF-B interactome reconstruction and the obvious existence of time constraints forced -

at least provisionally- to omit the relative dynamical information in the obtained 

representation. Without directional information it is impossible to implement dynamical 

models and simulation, even a simple model based on Boolean dynamics, unless willing 

to make the assumptions are made that each edge A-B corresponds to influences in both 

directions, i.e. A  B and B  A, which is very unrealistic indeed. 

Automation of procedures able to integrate different pathways in a coherent and 

biological meaningful way is a critical point. Currently, there is no practical, coherent 

and effective way to integrate data from multiple sources into a single object other than 

manual intervention. Even if data from single pathways in the different databases are 

often very close to be precise, comprehensive and satisfying to serve as a starting base, it 

is the integrative process and subsequent elaboration to hopefully bring valuable 

information and new knowledge. Actually, in this regard, data models and 
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representations, and annotation are key points in the discussion about these hot topics 

(Ceol 2008, Leitner 2008, Gerstein 2007, Tieri 2008). 

It should be finally reminded that protein-protein interactions databases frequently store 

and provide PIN data without distinguish among cellular types, states and other 

biologically relevant conditions. Advanced filtering on such parameters thus remains a 

desirable but not often implemented query function. Commonly, pathologically relevant 

states of proteins, cells and tissues are reported, even if data query cannot always be 

adequately filtered and displayed. This could represents an additional hurdle for the 

biologically coherent reconstruction of interactomes. 
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3 Results and discussion 

_______________________________________________________________________ 

3.1. “Core” and “wider” NF-B pathway interactomes 

Following the workflow described in the Methods section for data retrieval, we started 

collecting relevant data from manual literature mining and review. This approach 

guaranteed a satisfactorily complete list of proteins that take part with different roles and 

importance to the whole NF-B signaling cascade, from cell receptors to regulated 

genes and expressed proteins. This basic list has been increased, enriched and refined 

step by step confronting and complementing preliminary, manually retrieved results 

with data browsed and downloaded from several pathway and PIN databases. The result 

at the end of this manual process, a “core” list consisting of 140 proteins participating in 

the NF-B signaling cascade, is the first step for further information integration and 

reconstruction. The list has been double checked, but –once again- it can be modified, 

augmented or enhanced on the basis of the new knowledge gained in time. Protein 

interactions data are added to build the first version of the “core interactome”.  While, as 

a second step, and by using an automated retrieval procedure instead of the manual one, 

a “wider interactome” is built, taking into account all the proteins which show evidence 

of interaction with at least one protein present in the “core interactome”. At the end of 

the process, the whole “wider interactome” (that includes the core interactome) consists 

of 3146 proteins accounting for a total of more than 42600 interactions. 

The third step allows to determine the NF-B-downstream genes, providing a relatively 

comprehensive list of more than 400 genes that result to be up- or down-regulated from 

NF-B complexes. Gene products and relative UniProt identifiers are obtained directly 
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through the ID mapping functions available on the UniProt web interface, allowing to 

compile the list of proteins which expression can be regulated by NF-B. 

The whole system, now consisting of core interactome proteins (those that directly 

participate to signaling cascades that activate NF-B), wider interactome proteins (their 

direct interactors), downstream genes and their expressed proteins, undergoes 

topological characterization, GO enrichment analysis and clustering. 

 

3.2. Analysis of the interactomes 

3.2.1. Core interactome, structure and network analysis 

The list of 140 manually retrieved proteins (see table 3.1) includes cell surface receptors, 

kinases, ubiquitination proteins, proteasome proteins, caspases, adaptor/mediator 

proteins and molecules, direct NF-B regulators and inhibitors, the NF-B family 

components and other transcription factors. Given the very small dimension of this 

network in terms of number of nodes and interactions, the topological analysis is very 

fast but poorly significant. 

As said, all these proteins have been manually chosen on the basis of literature evidence 

for their involvement and role in the NF-B pathway cascade (see Notes). 

The 140 proteins have been divided in functional groups as in the following table 3.1: 

(for further details of each protein see table 3.2): 

Table 3.1 Core interactome protein list divided in the main functional groups

Adaptor molecules 
BCL10 
ECSIT 
MYD88 
RRAS2 
TIRAP 
TRADD 
TRAF2 
TRAF3 
TRAF5 

TRAF6 
 
Caspases 
BIRC3 
BIRC2 
CASP3 
 
Cell surface receptors 
ERBB2 
ERBB3 

GP143 
GPR1 
IL1R1 
MET 
NTRK1 
P2RY2 
PGFRA 
PGFRB 
RET 
TIE1 

TLR1 
TLR2 
TLR3 
TLR4 
TNR16 
TNR1A 
TNR21 
TR10A 
TR10B 
TYRO3 
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G Proteins 
GBB1 
GBB2 
GBB3 
GBB4 
GBB5 
GBG1 
GNAI1 
GNAS1 
GNAS2 
 
Main kinases 
AKT1 
ATM 
BMX 
BTK 
CAR11 
CSK21 
E2AK2 
FAK2 
IRAK1 
IRAK4 
ITK 
KAPCA 
KPCT 
KSYK 
M3K1 
M3K3 
MALT1 
MAPK2 

MAPK5 
P85A 
PDE3B 
PDE4D 
PDK1 
PLCG1 
PLCG2 
PTEN 
RIPK1 
SIRT1 
SRC 
TAB1 
TAB2 
TAB3 
TAK1L 
TEC 
TXK 
 

NF-B family 
NFKB1 
NFKB2 
REL 
RELB 
TF65 
 

NF-B family 
inhibitors 
IKBA 
IKBB 
IKBE 
 

NF-B regulators 
BCL3 
IKKA 
IKKB 
IKKE 
M3K14 
NEMO 
PIDD 
SUMO1 
SUMO2 
SUMO3 
SUMO4 
TANK 
 
Proteasome 
PRS10 
PRS6A 
PRS6B 
PRS7 
PRS8 
PSA1 
PSA2 
PSA3 
PSA4 
PSA5 
PSA6 
PSA7 
PSB1 
PSB10 
PSB2 
PSB3 

PSB4 
PSB5 
PSB6 
PSB7 
PSB8 
PSB9 
PSD11 
PSD13 
PSDE 
PSMD2 
PSMD4 
PSMD6 
 
TCR-CD3 complex 
FYN 
LCK 
TCR-CD3 
ZAP70 
 
Transcriptional 
activity 
FOXO3 
IF2A 
NKRF 
P53 
 
Ubiquitination 
RBX1 
SKP1 
UBIQ 

In figure 3.1 the complete core interactome is depicted with its components, main 

functional roles and interactions. 

Some considerations about the presence of given proteins in the core interactome: due to 

the importance of the 26S proteasome complex (composed by one 20S core particle 

structure and two 19S regulatory caps) in the dynamics of the activation of NF-B, the 

complete set of proteins composing the complex appears in the list, each with its own 

interaction, as from evidenced by experimental data retrieved. 

All the surface receptors listed appear able to trigger one or more adaptor molecules 

downstream and thus initiate –at least preliminarily and/or often complementarily with 

other receptors and proteins- the first steps of NF-B activation cascade. 
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The TCR-CD3 complex appears as a small separate group given the very peculiar 

dynamics of this kind of receptor. 

G proteins, short for guanine nucleotide-binding proteins, are a family of proteins 

involved in second messenger cascades. G proteins function as “molecular switches”, 

alternating from 'inactive' guanosine diphosphate (GDP) to 'active' guanosine triphosphate 

(GTP), which is a binding state, and which proceeds to regulate downstream cell 

processes. G proteins are important signal transducing molecules in cells. There are 

evidences that diseases such as diabetes, blindness, allergies, depression, cardiovascular 

defects and certain forms of cancer, among other pathologies, arise due to derangement of 

G protein signaling. The human genomes encodes roughly 350 G protein-coupled 

receptors (GPCRs), which can detect photons (light), hormones, growth factors, drugs, 

and other endogenous ligands. Up to now, approximately 150 of the GPCRs found in the 

human genome have unknown functions. 

In conclusion, the presence of the proteins in the list is justified by the evidence of a 

relevant direct role in the integrative dynamics of NF-B activation, or otherwise by their 

evident capability of interaction with one or more proteins of the pathway, thus qualifying 

them as having a likely relevant role. 
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Fig. 3.1 Integral view of the NF-B pathway core interactome consisting of 140 
proteins. Proteins are grouped following 12 main functional roles (see Table 3.1 and 
3.2 for a detailed description of the proteins present). 
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Table 3.2 Complete alphabetical list (UniProt name) of the 140 proteins that compose the core interactome 

Accession UniProt name Protein name Gene name 

Q08828 ADCY1_HUMAN Adenylate cyclase type 1  ADCY1 

P31749 AKT1_HUMAN RAC-alpha serine/threonine-protein kinase AKT1  

Q13315 ATM_HUMAN Serine-protein kinase ATM  ATM 

O95999 BCL10_HUMAN B-cell lymphoma/leukemia 10  BCL10  

P20749 BCL3_HUMAN B-cell lymphoma 3-encoded protein  BCL3 

Q13490 BIRC2_HUMAN Baculoviral IAP repeat-containing protein 2  BIRC2  

Q13489 BIRC3_HUMAN Baculoviral IAP repeat-containing protein 3  BIRC3  

P51813 BMX_HUMAN Cytoplasmic tyrosine-protein kinase BMX  BMX 

Q06187 BTK_HUMAN Tyrosine-protein kinase BTK  BTK  

Q9BXL7 CAR11_HUMAN Caspase recruitment domain-containing protein 11  CARD11  

P42574 CASP3_HUMAN Caspase-3  CASP3  

P68400 CSK21_HUMAN Casein kinase II subunit alpha (CK II)  CSNK2A1  

P19525 E2AK2_HUMAN Interferon-induced, double-stranded RNA-activated protein kinase  EIF2AK2  

Q9BQ95 ECSIT_HUMAN Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial  ECSIT 

P04626 ERBB2_HUMAN Receptor tyrosine-protein kinase erbB-2  ERBB2 

P21860 ERBB3_HUMAN Receptor tyrosine-protein kinase erbB-3  ERBB3 

Q14289 FAK2_HUMAN Protein tyrosine kinase 2 beta  PTK2B 

O43524 FOXO3_HUMAN Forkhead box protein O3  FOXO3 

P62873 GBB1_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1  GNB1 

P62879 GBB2_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2  GNB2 

P16520 GBB3_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3  GNB3 

Q9HAV0 GBB4_HUMAN Guanine nucleotide-binding protein subunit beta-4  GNB4 

O14775 GBB5_HUMAN Guanine nucleotide-binding protein subunit beta-5  GNB5 

P63211 GBG1_HUMAN Guanine nucleotide-binding protein G(T) subunit gamma-T1  GNGT1 

P63096 GNAI1_HUMAN Guanine nucleotide-binding protein G(i), alpha-1 subunit  GNAI1 

Q5JWF2 GNAS1_HUMAN Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas  GNAS 
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P63092 GNAS2_HUMAN Guanine nucleotide-binding protein G(s) subunit alpha isoforms short  GNAS 

P51810 GP143_HUMAN G-protein coupled receptor 143  GPR143 

P46091 GPR1_HUMAN Probable G-protein coupled receptor 1 GPR1 

P05198 IF2A_HUMAN Eukaryotic translation initiation factor 2 subunit 1  EIF2S1 

P25963 IKBA_HUMAN NF-kappa-B inhibitor alpha (I-kappa-B-alpha)  NFKBIA 

Q15653 IKBB_HUMAN NF-kappa-B inhibitor beta  (I-kappa-B-beta)  NFKBIB 

O00221 IKBE_HUMAN NF-kappa-B inhibitor epsilon (I-kappa-B-epsilon)  NFKBIE  

O15111 IKKA_HUMAN Inhibitor of nuclear factor kappa-B kinase subunit alpha (I kappa-B kinase alpha)  CHUK  

Q14164 IKKE_HUMAN Inhibitor of nuclear factor kappa-B kinase subunit epsilon (I kappa-B kinase epsilon) IKBKE 

P14778 IL1R1_HUMAN Interleukin-1 receptor type I  IL1R1 

P15260 INGR1_HUMAN Interferon-gamma receptor alpha chain  IFNGR1 

P51617 IRAK1_HUMAN Interleukin-1 receptor-associated kinase 1  IRAK1 

Q9NWZ3 IRAK4_HUMAN Interleukin-1 receptor-associated kinase 4  IRAK4 

Q08881 ITK_HUMAN Tyrosine-protein kinase ITK/TSK  ITK  

P17612 KAPCA_HUMAN cAMP-dependent protein kinase catalytic subunit alpha  PRKACA  

Q04759 KPCT_HUMAN Protein kinase C theta type PRKCQ  

P43405 KSYK_HUMAN Tyrosine-protein kinase SYK SYK 

Q99558 M3K14_HUMAN Mitogen-activated protein kinase kinase kinase 14  MAP3K14  

Q13233 M3K1_HUMAN Mitogen-activated protein kinase kinase kinase 1  MAP3K1 

Q99759 M3K3_HUMAN Mitogen-activated protein kinase kinase kinase 3  MAP3K3  

Q9UDY8 MALT1_HUMAN Mucosa-associated lymphoid tissue lymphoma translocation protein 1  MALT1  

P49137 MAPK2_HUMAN MAP kinase-activated protein kinase 2  MAPKAPK2 

Q16644 MAPK3_HUMAN MAP kinase-activated protein kinase 3  MAPKAPK3 

Q8IW41 MAPK5_HUMAN MAP kinase-activated protein kinase 5  MAPKAPK5  

P08581 MET_HUMAN Hepatocyte growth factor receptor (HGF receptor)  MET 

Q99836 MYD88_HUMAN Myeloid differentiation primary response protein MyD88 MYD88 

Q9Y6K9 NEMO_HUMAN NF-kappa-B essential modulator (NEMO) IKBKG  

P19838 NFKB1_HUMAN Nuclear factor NF-kappa-B p105 subunit  NFKB1 
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Q00653 NFKB2_HUMAN Nuclear factor NF-kappa-B p100 subunit  NFKB2 

O15226 NKRF_HUMAN NF-kappa-B-repressing factor  NKRF  

P04629 NTRK1_HUMAN High affinity nerve growth factor receptor  NTRK1  

P47900 P2RY1_HUMAN P2Y purinoceptor 1  P2RY1 

P41231 P2RY2_HUMAN P2Y purinoceptor 2  P2RY2  

P04637 P53_HUMAN Cellular tumor antigen p53  TP53  

P27986 P85A_HUMAN Phosphatidylinositol 3-kinase regulatory subunit alpha (PI3K) PIK3R1 

Q13370 PDE3B_HUMAN cGMP-inhibited 3',5'-cyclic phosphodiesterase B  PDE3B 

Q08499 PDE4D_HUMAN cAMP-specific 3',5'-cyclic phosphodiesterase 4D  PDE4D  

Q15118 PDK1_HUMAN [Pyruvate dehydrogenase [lipoamide]] kinase isozyme 1, mitochondrial  PDK1 

P16234 PGFRA_HUMAN Alpha-type platelet-derived growth factor receptor  PDGFRA 

P09619 PGFRB_HUMAN Beta-type platelet-derived growth factor receptor  PDGFRB 

Q9HB75 PIDD_HUMAN Leucine-rich repeat and death domain-containing protein (p53-induced protein with a death domain) LRDD 

P19174 PLCG1_HUMAN 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1  PLCG1  

P16885 PLCG2_HUMAN 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-2  PLCG2 

P62333 PRS10_HUMAN 26S protease regulatory subunit S10B  PSMC6 

P17980 PRS6A_HUMAN 26S protease regulatory subunit 6A  PSMC3 

P43686 PRS6B_HUMAN 26S protease regulatory subunit 6B  PSMC4  

P35998 PRS7_HUMAN 26S protease regulatory subunit 7  PSMC2 

P62195 PRS8_HUMAN 26S protease regulatory subunit 8  PSMC5 

P25786 PSA1_HUMAN Proteasome subunit alpha type-1  PSMA1  

P25787 PSA2_HUMAN Proteasome subunit alpha type-2  PSMA2 

P25788 PSA3_HUMAN Proteasome subunit alpha type-3  PSMA3  

P25789 PSA4_HUMAN Proteasome subunit alpha type-4  PSMA4 

P28066 PSA5_HUMAN Proteasome subunit alpha type-5  PSMA5 

P60900 PSA6_HUMAN Proteasome subunit alpha type-6  PSMA6  

O14818 PSA7_HUMAN Proteasome subunit alpha type-7  PSMA7 

P40306 PSB10_HUMAN Proteasome subunit beta type-10  PSMB10 
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P20618 PSB1_HUMAN Proteasome subunit beta type-1  PSMB1  

P49721 PSB2_HUMAN Proteasome subunit beta type-2  PSMB2 

P49720 PSB3_HUMAN Proteasome subunit beta type-3  PSMB3 

P28070 PSB4_HUMAN Proteasome subunit beta type-4  PSMB4 

P28074 PSB5_HUMAN Proteasome subunit beta type-5  PSMB5 

P28072 PSB6_HUMAN Proteasome subunit beta type-6  PSMB6  

Q99436 PSB7_HUMAN Proteasome subunit beta type-7  PSMB7 

P28062 PSB8_HUMAN Proteasome subunit beta type-8  PSMB8  

P28065 PSB9_HUMAN Proteasome subunit beta type-9  PSMB9  

O00231 PSD11_HUMAN 26S proteasome non-ATPase regulatory subunit 11  PSMD11 

Q9UNM6 PSD13_HUMAN 26S proteasome non-ATPase regulatory subunit 13  PSMD13 

O00487 PSDE_HUMAN 26S proteasome non-ATPase regulatory subunit 14  PSMD14  

Q13200 PSMD2_HUMAN 26S proteasome non-ATPase regulatory subunit 2  PSMD2 

P55036 PSMD4_HUMAN 26S proteasome non-ATPase regulatory subunit 4  PSMD4  

Q15008 PSMD6_HUMAN 26S proteasome non-ATPase regulatory subunit 6  PSMD6 

P60484 PTEN_HUMAN Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN  PTEN 

P62877 RBX1_HUMAN RING-box protein 1  RBX1  

Q04864 REL_HUMAN C-Rel proto-oncogene protein  REL 

Q01201 RELB_HUMAN Transcription factor RelB  RELB 

P07949 RET_HUMAN Proto-oncogene tyrosine-protein kinase receptor ret  RET  

Q13546 RIPK1_HUMAN Receptor-interacting serine/threonine-protein kinase 1  RIPK1  

P62070 RRAS2_HUMAN Ras-related protein R-Ras2  RRAS2 

Q96EB6 SIRT1_HUMAN NAD-dependent deacetylase sirtuin-1  SIRT1  

P63208 SKP1_HUMAN S-phase kinase-associated protein 1  SKP1  

P12931 SRC_HUMAN Proto-oncogene tyrosine-protein kinase Src  SRC  

P63165 SUMO1_HUMAN Small ubiquitin-related modifier 1  SUMO1  

P61956 SUMO2_HUMAN Small ubiquitin-related modifier 2  SUMO2  

P55854 SUMO3_HUMAN Small ubiquitin-related modifier 3  SUMO3 
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Q6EEV6 SUMO4_HUMAN Small ubiquitin-related modifier 4  SUMO4  

Q15750 TAB1_HUMAN Mitogen-activated protein kinase kinase kinase 7-interacting protein 1  MAP3K7IP1  

Q9NYJ8 TAB2_HUMAN Mitogen-activated protein kinase kinase kinase 7-interacting protein 2  MAP3K7IP2  

Q8N5C8 TAB3_HUMAN Mitogen-activated protein kinase kinase kinase 7-interacting protein 3 MAP3K7IP3 

P57077 TAK1L_HUMAN TAK1-like protein TAK1L  

Q92844 TANK_HUMAN TRAF family member-associated NF-kappa-B activator  TANK 

P01848 TCA_HUMAN T-cell receptor alpha chain C region TRAC 

P01850 TCB_HUMAN T-cell receptor beta chain C region TRBC1 

P42680 TEC_HUMAN Tyrosine-protein kinase Tec  TEC 

Q04206 TF65_HUMAN Transcription factor p65  RELA  

P35590 TIE1_HUMAN Tyrosine-protein kinase receptor Tie-1  TIE1 

P58753 TIRAP_HUMAN Toll/interleukin-1 receptor domain-containing adapter protein  TIRAP  

Q15399 TLR1_HUMAN Toll-like receptor 1  TLR1 

O60603 TLR2_HUMAN Toll-like receptor 2  TLR2  

O15455 TLR3_HUMAN Toll-like receptor 3  TLR3 

O00206 TLR4_HUMAN Toll-like receptor 4  TLR4 

P08138 TNR16_HUMAN Tumor necrosis factor receptor superfamily member 16 (NGF receptor)  NGFR  

P19438 TNR1A_HUMAN Tumor necrosis factor receptor superfamily member 1A  TNFRSF1A 

O75509 TNR21_HUMAN Tumor necrosis factor receptor superfamily member 21  TNFRSF21  

O00220 TR10A_HUMAN Tumor necrosis factor receptor superfamily member 10A TNFRSF10A 

O14763 TR10B_HUMAN Tumor necrosis factor receptor superfamily member 10B  TNFRSF10B  

Q96RJ3 TR13C_HUMAN Tumor necrosis factor receptor superfamily member 13C  TNFRSF13C  

Q15628 TRADD_HUMAN Tumor necrosis factor receptor type 1-associated DEATH domain protein  TRADD 

Q12933 TRAF2_HUMAN TNF receptor-associated factor 2  TRAF2  

Q13114 TRAF3_HUMAN TNF receptor-associated factor 3 TRAF3  

O00463 TRAF5_HUMAN TNF receptor-associated factor 5  TRAF5  

Q9Y4K3 TRAF6_HUMAN TNF receptor-associated factor 6  TRAF6  

P42681 TXK_HUMAN Tyrosine-protein kinase TXK  TXK 
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Q06418 TYRO3_HUMAN Tyrosine-protein kinase receptor TYRO3  TYRO3  

P62988 UBIQ_HUMAN Ubiquitin RPS27A  

Accession Entry name Protein name Gene name 
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Table 3.3 List of the 829 couples of interactions among the 140 proteins of the core 
interactome (legend: interacting protein UniProt name [number of literature 
sources/evidences stating the interaction] interacting protein UniProt name; proteins 
are listed in alphabetical order; data downloaded from the APID database). 
 

AKT1 [1] AKT1 
AKT1 [1] IRAK1 
AKT1 [1] MAPK2 
AKT1 [2] IKKA 
AKT1 [2] SRC 
AKT1 [2] UBIQ 
AKT1 [3] BCL10 
ATM [4] ATM 
ATM [8] P53 
BCL10 [1] BCL10 
BCL10 [1] TLR4 
BCL10 [1] TR10A 
BCL10 [1] TRADD 
BCL10 [5] CAR11 
BCL10 [6] MALT1 
BCL3 [1] REL 
BCL3 [2] BCL10 
BCL3 [2] RELB 
BIRC2 [1] M3K14 
BIRC2 [1] TRADD 
BIRC2 [2] CASP3 
BIRC2 [9] TRAF2 
BIRC3 [1] RIPK1 
BIRC3 [1] TNR1A 
BIRC3 [1] UBIQ 
BIRC3 [2] CASP3 
BIRC3 [2] NEMO 
BIRC3 [2] TRADD 
BIRC3 [9] TRAF2 
BMX [1] BTK 
BMX [1] ERBB2 
BMX [1] ITK 
BMX [1] SRC 
BMX [1] TEC 
BTK [1] GBB1 
BTK [1] IRAK1 
BTK [1] PLCG1 
BTK [1] TF65 
BTK [2] ITK 
BTK [2] KPCT 
BTK [2] KSYK 
BTK [2] TEC 
BTK [3] BTK 
BTK [3] PLCG2 
CAR11 [2] MALT1 
CAR11 [2] NEMO 
CASP3 [1] BMX 
CASP3 [2] CASP3 
CASP3 [2] MET 
CASP3 [2] TRAF3 
CASP3 [3] AKT1 
CSK21 [1] CSK21 
CSK21 [1] PSA4 
CSK21 [2] PTEN 
CSK21 [2] TF65 
E2AK2 [1] IKKA 
E2AK2 [1] PGFRB 
E2AK2 [1] TIRAP 
E2AK2 [2] CASP3 
E2AK2 [3] E2AK2 
ERBB2 [1] UBIQ 
ERBB2 [3] P85A 

ERBB2 [4] ERBB2 
ERBB2 [5] ERBB3 
ERBB3 [1] ERBB3 
ERBB3 [1] FAK2 
ERBB3 [1] ITK 
ERBB3 [1] KSYK 
ERBB3 [1] PLCG1 
ERBB3 [1] SRC 
ERBB3 [1] TXK 
ERBB3 [4] P85A 
FAK2 [1] ERBB2 
FAK2 [3] FAK2 
FAK2 [3] SRC 
FOXO3 [1] SIRT1 
FOXO3 [2] AKT1 
GBB1 [1] GBB2 
GBB1 [1] GNAS2 
GBB1 [4] GBG1 
GBB2 [1] GBG1 
GBB3 [1] GBB1 
GBB3 [1] GBB2 
GBB4 [1] GBB1 
GBB4 [1] GBB2 
GBB4 [1] GBB3 
GBB4 [1] GBG1 
GBG1 [1] GBB5 
GBG1 [1] GNAS1 
GBG1 [3] GBB3 
GNAI1 [1] GNAI1 
GNAI1 [1] GPR1 
GNAS1 [1] GNAI1 
GNAS1 [1] GNAS1 
GNAS2 [1] GNAS2 
GP143 [2] GNAI1 
IF2A [1] CASP3 
IF2A [4] E2AK2 
IKBA [1] IKBB 
IKBA [1] IKKE 
IKBA [1] SUMO1 
IKBA [2] CSK21 
IKBA [2] E2AK2 
IKBA [2] IKBA 
IKBA [2] NEMO 
IKBA [2] SKP1 
IKBA [2] SRC 
IKBA [5] UBIQ 
IKBA [8] IKKA 
IKBB [1] IKBB 
IKBB [1] NEMO 
IKBB [1] NFKB2 
IKBB [1] SKP1 
IKBB [2] NFKB1 
IKBB [2] TNR16 
IKBE [1] IKBA 
IKBE [1] IKBB 
IKBE [1] IKBE 
IKBE [1] IKKA 
IKBE [1] NEMO 
IKBE [1] PSA5 
IKBE [1] SKP1 
IKBE [4] NFKB1 
IKBE [4] NFKB2 

IKBE [4] TF65 
IKKA [1] BCL10 
IKKA [1] FOXO3 
IKKA [1] IKKE 
IKKA [1] M3K1 
IKKA [1] M3K3 
IKKA [1] REL 
IKKA [10] M3K14 
IKKA [16] NEMO 
IKKA [2] IKBB 
IKKA [3] IKKA 
IKKA [4] TF65 
IKKA [5] NFKB1 
IKKE [1] GBB2 
IKKE [1] IKKE 
IKKE [1] PRS10 
IKKE [1] PRS6B 
IKKE [1] PRS7 
IKKE [1] PSA1 
IKKE [1] PSA2 
IKKE [1] PSA6 
IKKE [1] PSA7 
IKKE [1] PSB1 
IKKE [1] PSB3 
IKKE [1] PSB4 
IKKE [1] PSB6 
IKKE [1] PSDE 
IKKE [1] PSMD2 
IKKE [1] PSMD6 
IKKE [1] TRAF2 
IKKE [3] TANK 
IL1R1 [1] M3K14 
IL1R1 [1] TRAF6 
IL1R1 [2] P85A 
INGR1 [1] INGR1 
IRAK1 [1] IKKA 
IRAK1 [1] IRAK1 
IRAK1 [1] TAB2 
IRAK1 [2] IL1R1 
IRAK1 [5] TRAF6 
IRAK4 [3] IRAK1 
IRAK4 [3] MYD88 
ITK [1] ERBB2 
ITK [1] SRC 
ITK [2] ITK 
ITK [3] PLCG1 
KPCT [1] BCL10 
KPCT [1] CAR11 
KPCT [1] CASP3 
KPCT [1] IKKA 
KPCT [1] MALT1 
KPCT [1] NEMO 
KPCT [2] AKT1 
KPCT [2] KPCT 
KSYK [1] ERBB2 
KSYK [1] FAK2 
KSYK [1] TRAF6 
KSYK [3] P85A 
KSYK [3] PLCG1 
KSYK [4] KSYK 
M3K1 [1] M3K1 
M3K1 [2] TRAF2 

M3K1 [2] UBIQ 
M3K14 [1] M3K14 
M3K14 [1] REL 
M3K14 [1] RIPK1 
M3K14 [1] TRAF5 
M3K14 [2] NEMO 
M3K14 [2] TRAF3 
M3K14 [4] TRAF2 
M3K3 [1] GBB1 
M3K3 [1] GBB2 
M3K3 [1] NEMO 
M3K3 [1] RIPK1 
M3K3 [1] TRAF6 
M3K3 [1] UBIQ 
M3K3 [2] IKBA 
M3K3 [2] KAPCA 
M3K3 [2] M3K3 
MALT1 [1] MALT1 
MALT1 [1] TAB2 
MALT1 [3] TRAF6 
MALT1 [3] UBIQ 
MAPK2 [3] MAPK2 
MAPK5 [1] P53 
MET [3] MET 
MYD88 [1] BTK 
MYD88 [2] IL1R1 
MYD88 [2] MYD88 
MYD88 [3] IRAK1 
MYD88 [4] TIRAP 
MYD88 [4] TLR2 
MYD88 [5] TLR4 
NEMO [1] NFKB1 
NEMO [1] PSD13 
NEMO [1] REL 
NEMO [1] TANK 
NEMO [2] MALT1 
NEMO [2] SRC 
NEMO [5] UBIQ 
NEMO [6] BCL10 
NEMO [8] NEMO 
NFKB1 [1] KAPCA 
NFKB1 [11] NFKB1 
NFKB1 [12] BCL3 
NFKB1 [5] NFKB2 
NFKB1 [6] IKBA 
NFKB2 [1] IKBA 
NFKB2 [1] IKKA 
NFKB2 [1] IKKE 
NFKB2 [1] NEMO 
NFKB2 [1] PRS8 
NFKB2 [1] PSA3 
NFKB2 [1] PSA6 
NFKB2 [1] PSB5 
NFKB2 [1] PSD13 
NFKB2 [1] PSMD2 
NFKB2 [1] SKP1 
NFKB2 [1] TRAF3 
NFKB2 [1] UBIQ 
NFKB2 [2] M3K14 
NFKB2 [2] NFKB2 
NFKB2 [3] PSD11 
NFKB2 [4] TF65 

NFKB2 [5] BCL3 
NKRF [1] NFKB1 
NKRF [1] NFKB2 
NKRF [1] REL 
NKRF [1] TF65 
NTRK1 [1] UBIQ 
NTRK1 [2] NTRK1 
NTRK1 [3] PLCG1 
P53 [1] BMX 
P53 [1] IKKA 
P53 [13] P53 
P53 [2] CSK21 
P53 [2] IKBA 
P53 [3] E2AK2 
P53 [4] SUMO1 
P85A [1] AKT1 
P85A [1] FAK2 
P85A [1] IKBA 
P85A [1] MET 
P85A [1] RRAS2 
P85A [2] NTRK1 
P85A [2] P85A 
P85A [2] TIE1 
PDE3B [2] AKT1 
PDE3B [2] KAPCA 
PDE4D [1] KAPCA 
PDE4D [1] SRC 
PDE4D [3] PDE4D 
PDK1 [1] AKT1 
PDK1 [1] PDK1 
PGFRA [1] P85A 
PGFRA [2] PGFRB 
PGFRA [2] PLCG1 
PGFRA [5] PGFRA 
PGFRB [1] SRC 
PGFRB [6] P85A 
PGFRB [6] PGFRB 
PGFRB [8] PLCG1 
PIDD [1] PIDD 
PIDD [1] RIPK1 
PLCG1 [1] MET 
PLCG1 [1] P85A 
PLCG1 [1] PLCG2 
PLCG1 [1] SRC 
PLCG1 [2] RET 
PLCG1 [3] ERBB2 
PLCG2 [1] ERBB2 
PLCG2 [1] ITK 
PLCG2 [1] NTRK1 
PLCG2 [1] P85A 
PLCG2 [1] PLCG2 
PLCG2 [3] KSYK 
PRS10 [1] NFKB2 
PRS10 [1] PRS10 
PRS10 [1] PRS6A 
PRS10 [1] PRS7 
PRS10 [1] PSA1 
PRS10 [1] PSA2 
PRS10 [1] PSA3 
PRS10 [1] PSA5 
PRS10 [1] PSA6 
PRS10 [1] PSB1 
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PRS10 [1] PSB2 
PRS10 [1] PSB3 
PRS10 [1] PSB4 
PRS10 [1] PSB5 
PRS10 [1] PSB7 
PRS10 [1] PSD11 
PRS10 [1] PSMD2 
PRS10 [2] PRS8 
PRS10 [2] PSD13 
PRS10 [2] PSMD4 
PRS6A [1] PSA2 
PRS6A [1] PSA3 
PRS6A [1] PSA5 
PRS6A [1] PSB2 
PRS6A [1] PSB4 
PRS6A [1] PSB7 
PRS6A [1] PSMD2 
PRS6A [2] PRS6A 
PRS6A [2] PRS7 
PRS6A [2] PSB5 
PRS6A [2] PSMD4 
PRS6A [3] PSD13 
PRS6B [1] PRS10 
PRS6B [1] PSA1 
PRS6B [1] PSA2 
PRS6B [1] PSA3 
PRS6B [1] PSA4 
PRS6B [1] PSA5 
PRS6B [1] PSA6 
PRS6B [1] PSA7 
PRS6B [1] PSB1 
PRS6B [1] PSB2 
PRS6B [1] PSB3 
PRS6B [1] PSB4 
PRS6B [1] PSB5 
PRS6B [1] PSB7 
PRS6B [2] PSD11 
PRS6B [2] PSD13 
PRS6B [2] PSMD2 
PRS6B [2] PSMD4 
PRS6B [3] PRS7 
PRS6B [4] PRS6A 
PRS6B [4] PRS8 
PRS7 [1] PSA2 
PRS7 [1] PSA3 
PRS7 [1] PSB2 
PRS7 [1] PSB4 
PRS7 [1] PSB7 
PRS7 [1] SUMO4 
PRS7 [2] PSB5 
PRS7 [3] PSD13 
PRS8 [1] PSA1 
PRS8 [1] PSA2 
PRS8 [1] PSA3 
PRS8 [1] PSA5 
PRS8 [1] PSA6 
PRS8 [1] PSB1 
PRS8 [1] PSB2 
PRS8 [1] PSB3 
PRS8 [1] PSB4 
PRS8 [1] PSB5 
PRS8 [1] PSB7 
PRS8 [1] PSD11 
PRS8 [1] PSMD2 
PRS8 [2] PRS7 
PRS8 [2] PSD13 
PRS8 [2] PSMD4 
PRS8 [3] PRS6A 
PSA1 [1] PRS6A 

PSA1 [1] PRS7 
PSA1 [1] PSB8 
PSA1 [1] PSB9 
PSA1 [1] PSMD2 
PSA1 [1] PSMD4 
PSA1 [2] PSD13 
PSA1 [4] PSB1 
PSA1 [4] PSB4 
PSA1 [5] PSB2 
PSA1 [6] PSA4 
PSA1 [6] PSA6 
PSA1 [9] PSA7 
PSA2 [10] PSA1 
PSA2 [10] PSA4 
PSA2 [10] PSA6 
PSA2 [10] PSA7 
PSA2 [3] PSB10 
PSA2 [4] PSB8 
PSA2 [4] PSB9 
PSA2 [6] PSA5 
PSA2 [7] PSA3 
PSA2 [7] PSB1 
PSA2 [7] PSB2 
PSA2 [7] PSB3 
PSA2 [7] PSB4 
PSA2 [7] PSB5 
PSA2 [7] PSB6 
PSA2 [7] PSB7 
PSA3 [2] CSK21 
PSA3 [2] PSD13 
PSA3 [4] PSB1 
PSA3 [4] PSB2 
PSA3 [4] PSB4 
PSA3 [5] PSB5 
PSA3 [6] PSA1 
PSA3 [7] PSA4 
PSA3 [7] PSA7 
PSA3 [8] PSA6 
PSA4 [1] PRS10 
PSA4 [1] PRS6A 
PSA4 [1] PRS7 
PSA4 [1] PRS8 
PSA4 [1] PSA4 
PSA4 [1] PSB8 
PSA4 [1] PSB9 
PSA4 [1] PSD11 
PSA4 [1] PSD13 
PSA4 [1] PSMD2 
PSA4 [1] PSMD4 
PSA4 [1] PSMD6 
PSA4 [10] PSA7 
PSA4 [4] PSB1 
PSA4 [4] PSB2 
PSA4 [4] PSB4 
PSA4 [6] PSA6 
PSA5 [1] PRS7 
PSA5 [1] PSD13 
PSA5 [1] PSMD2 
PSA5 [2] PSMD4 
PSA5 [4] PSB1 
PSA5 [4] PSB2 
PSA5 [4] PSB3 
PSA5 [4] PSB4 
PSA5 [4] PSB5 
PSA5 [4] PSB7 
PSA5 [5] PSA1 
PSA5 [5] PSA3 
PSA5 [5] PSA6 
PSA5 [6] PSA4 

PSA5 [6] PSA7 
PSA6 [1] PRS6A 
PSA6 [1] PRS7 
PSA6 [1] PSB8 
PSA6 [1] PSB9 
PSA6 [1] PSD11 
PSA6 [1] PSMD2 
PSA6 [2] PSD13 
PSA6 [2] PSMD4 
PSA6 [4] PSB2 
PSA6 [4] PSB4 
PSA6 [9] PSA7 
PSA7 [1] PRS10 
PSA7 [1] PRS6A 
PSA7 [1] PRS7 
PSA7 [1] PRS8 
PSA7 [1] PSB8 
PSA7 [1] PSB9 
PSA7 [1] PSD11 
PSA7 [1] PSMD2 
PSA7 [1] PSMD6 
PSA7 [2] PSD13 
PSA7 [2] PSMD4 
PSA7 [3] PSA7 
PSA7 [4] PSB2 
PSA7 [4] PSB4 
PSB1 [1] PRS6A 
PSB1 [1] PRS7 
PSB1 [1] PSB8 
PSB1 [1] PSB9 
PSB1 [1] PSD13 
PSB1 [1] PSMD2 
PSB1 [2] PSMD4 
PSB1 [4] PSA6 
PSB1 [4] PSA7 
PSB1 [4] PSB4 
PSB1 [5] PSB2 
PSB10 [1] PSA1 
PSB10 [1] PSB3 
PSB10 [1] PSB9 
PSB2 [1] PSB8 
PSB2 [1] PSB9 
PSB2 [1] PSD13 
PSB3 [1] PRS6A 
PSB3 [1] PRS7 
PSB3 [1] PSB8 
PSB3 [1] PSB9 
PSB3 [1] PSD11 
PSB3 [1] PSD13 
PSB3 [1] PSMD2 
PSB3 [1] PSMD4 
PSB3 [4] PSA1 
PSB3 [4] PSA3 
PSB3 [4] PSA4 
PSB3 [4] PSA6 
PSB3 [4] PSB4 
PSB3 [5] PSA7 
PSB3 [5] PSB7 
PSB3 [6] PSB1 
PSB3 [6] PSB2 
PSB3 [6] PSB5 
PSB4 [1] PSB8 
PSB4 [1] PSB9 
PSB4 [4] PSB2 
PSB5 [1] PSB8 
PSB5 [1] PSB9 
PSB5 [2] PSD13 
PSB5 [4] PSA1 
PSB5 [4] PSA4 

PSB5 [4] PSA6 
PSB5 [4] PSA7 
PSB5 [5] PSB2 
PSB5 [5] PSB4 
PSB5 [6] PSB1 
PSB6 [1] PRS10 
PSB6 [1] PRS6A 
PSB6 [1] PRS6B 
PSB6 [1] PRS7 
PSB6 [1] PRS8 
PSB6 [1] PSB8 
PSB6 [1] PSB9 
PSB6 [1] PSD11 
PSB6 [1] PSD13 
PSB6 [1] PSMD2 
PSB6 [1] PSMD4 
PSB6 [1] PSMD6 
PSB6 [4] PSA1 
PSB6 [4] PSA3 
PSB6 [4] PSA4 
PSB6 [4] PSA5 
PSB6 [4] PSA6 
PSB6 [4] PSA7 
PSB6 [4] PSB1 
PSB6 [4] PSB2 
PSB6 [4] PSB3 
PSB6 [4] PSB4 
PSB6 [4] PSB5 
PSB6 [6] PSB7 
PSB7 [1] PSB8 
PSB7 [1] PSD13 
PSB7 [2] PSB7 
PSB7 [4] PSA1 
PSB7 [4] PSA3 
PSB7 [4] PSA4 
PSB7 [4] PSA6 
PSB7 [4] PSB2 
PSB7 [5] PSA7 
PSB7 [5] PSB4 
PSB7 [6] PSB1 
PSB7 [6] PSB5 
PSB8 [1] PSA3 
PSB8 [1] PSA5 
PSB8 [1] PSB9 
PSB8 [2] PSB8 
PSB9 [1] PSA3 
PSB9 [1] PSA5 
PSB9 [2] PSB7 
PSD11 [1] P53 
PSD11 [1] PRS6A 
PSD11 [1] PRS7 
PSD11 [1] PSA1 
PSD11 [1] PSA2 
PSD11 [1] PSA3 
PSD11 [1] PSA5 
PSD11 [1] PSB1 
PSD11 [1] PSB2 
PSD11 [1] PSB4 
PSD11 [1] PSB5 
PSD11 [1] PSB7 
PSD11 [1] PSMD2 
PSD11 [1] SUMO2 
PSD11 [2] PSD13 
PSD11 [2] PSMD4 
PSD13 [1] PSA2 
PSD13 [1] PSB4 
PSD13 [1] PSDE 
PSMD2 [1] PSA2 
PSMD2 [1] PSA3 

PSMD2 [1] PSB2 
PSMD2 [1] PSB4 
PSMD2 [1] PSB5 
PSMD2 [1] PSB7 
PSMD2 [1] PSMD2 
PSMD2 [2] PRS7 
PSMD2 [2] PSD13 
PSMD4 [1] PSB2 
PSMD4 [1] PSB4 
PSMD4 [1] PSB5 
PSMD4 [1] PSMD4 
PSMD4 [2] PRS7 
PSMD4 [2] PSA2 
PSMD4 [2] PSA3 
PSMD4 [2] PSB7 
PSMD4 [2] PSMD2 
PSMD4 [3] PSD13 
PSMD4 [4] UBIQ 
PSMD6 [1] PSA5 
PSMD6 [1] PSB1 
PSMD6 [1] PSB2 
PSMD6 [1] PSB4 
PSMD6 [1] PSDE 
PSMD6 [2] PRS10 
PSMD6 [2] PRS6B 
PSMD6 [2] PRS8 
PSMD6 [2] PSA1 
PSMD6 [2] PSA2 
PSMD6 [2] PSA3 
PSMD6 [2] PSA6 
PSMD6 [2] PSB3 
PSMD6 [2] PSB7 
PSMD6 [2] PSD11 
PSMD6 [2] PSMD2 
PSMD6 [3] PRS6A 
PSMD6 [3] PRS7 
PSMD6 [3] PSB5 
PSMD6 [3] PSD13 
PSMD6 [3] PSMD4 
PTEN [1] P53 
PTEN [1] PGFRB 
PTEN [2] AKT1 
REL [1] IKKE 
REL [2] IKBA 
REL [2] IKBB 
REL [2] RELB 
REL [3] REL 
REL [4] NFKB2 
REL [5] IKBE 
REL [5] NFKB1 
REL [9] TF65 
RELB [1] IKBA 
RELB [1] IKBB 
RELB [1] IKBE 
RELB [1] IKKA 
RELB [1] NEMO 
RELB [1] RELB 
RELB [1] UBIQ 
RELB [2] NFKB1 
RELB [2] TF65 
RELB [4] NFKB2 
RET [2] P85A 
RET [2] RET 
RIPK1 [1] TR10A 
RIPK1 [1] TRAF5 
RIPK1 [2] RIPK1 
RIPK1 [4] NEMO 
RIPK1 [5] TRAF2 
RRAS2 [2] TRAF3 
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SIRT1 [3] P53 
SKP1 [1] IKKA 
SKP1 [1] IKKE 
SKP1 [1] NEMO 
SKP1 [1] NFKB1 
SKP1 [1] REL 
SKP1 [1] TF65 
SKP1 [12] RBX1 
SKP1 [3] SKP1 
SRC [1] KSYK 
SRC [1] MET 
SRC [1] RET 
SRC [2] ERBB2 
SRC [2] KAPCA 
SRC [2] P2RY2 
SRC [2] P85A 
SRC [3] IKKA 
SRC [4] SRC 
SUMO1 [1] IRAK1 
SUMO1 [2] SUMO1 
SUMO2 [1] SUMO3 
SUMO2 [2] SUMO2 
SUMO3 [1] SUMO3 
SUMO4 [2] IKBA 
TAB1 [1] IRAK1 
TAB1 [1] TAB1 
TAB1 [1] TRAF2 
TAB1 [1] UBIQ 
TAB1 [2] TAB3 
TAB2 [1] E2AK2 
TAB2 [1] TLR3 
TAB2 [1] TRAF2 
TAB2 [1] UBIQ 
TAB2 [2] NFKB1 
TAB2 [2] TAB2 

TAB2 [3] TAB1 
TAB3 [1] NEMO 
TAB3 [1] TAB3 
TAB3 [1] TRAF2 
TAB3 [2] TAB2 
TAK1L [1] TAB3 
TANK [1] IKKA 
TANK [1] TANK 
TANK [5] TRAF2 
TCB [3] TCA 
TEC [1] ERBB2 
TEC [1] P85A 
TEC [1] PLCG1 
TEC [1] PLCG2 
TEC [1] TEC 
TF65 [1] BCL3 
TF65 [1] IKKE 
TF65 [1] M3K14 
TF65 [1] NEMO 
TF65 [1] SIRT1 
TF65 [12] NFKB1 
TF65 [15] IKBA 
TF65 [4] TF65 
TF65 [4] UBIQ 
TF65 [5] KAPCA 
TF65 [8] IKBB 
TIE1 [1] TIE1 
TIRAP [1] TIRAP 
TIRAP [1] TRAF6 
TIRAP [2] BTK 
TLR1 [1] TLR2 
TLR2 [1] IRAK1 
TLR2 [1] P85A 
TLR2 [1] TLR2 
TLR3 [1] E2AK2 

TLR3 [1] MYD88 
TLR3 [1] TRAF6 
TLR3 [2] P85A 
TLR3 [2] SRC 
TLR3 [3] TLR3 
TLR4 [1] BTK 
TLR4 [1] IRAK1 
TLR4 [1] KSYK 
TLR4 [1] TLR1 
TLR4 [3] TIRAP 
TNR16 [1] TRADD 
TNR16 [1] TRAF2 
TNR16 [1] TRAF3 
TNR16 [1] TRAF5 
TNR16 [2] TRAF6 
TNR16 [5] NTRK1 
TNR1A [1] BCL10 
TNR1A [1] IKKA 
TNR1A [1] NEMO 
TNR1A [1] TR10B 
TNR1A [1] UBIQ 
TNR1A [3] BIRC2 
TNR1A [3] SUMO1 
TNR1A [4] PSMD2 
TNR1A [4] TRAF2 
TNR1A [6] RIPK1 
TNR1A [6] TNR1A 
TNR21 [1] TRADD 
TR10A [1] BTK 
TR10A [2] TR10A 
TR10B [1] RIPK1 
TR10B [1] TR10A 
TR10B [1] TRADD 
TR13C [2] TR13C 
TRADD [1] TRAF3 

TRADD [1] UBIQ 
TRADD [16] TNR1A 
TRADD [2] RIPK1 
TRADD [3] TR10A 
TRADD [4] TRADD 
TRADD [8] TRAF2 
TRAF2 [1] MALT1 
TRAF2 [1] UBIQ 
TRAF2 [2] BCL10 
TRAF2 [2] IKKA 
TRAF2 [3] TRAF6 
TRAF2 [6] TRAF2 
TRAF3 [1] SRC 
TRAF3 [1] TRAF3 
TRAF3 [2] BIRC3 
TRAF3 [2] RIPK1 
TRAF3 [3] TANK 
TRAF3 [3] TRAF2 
TRAF5 [2] TRAF2 
TRAF5 [2] TRAF3 
TRAF5 [2] TRAF5 
TRAF5 [2] TRAF6 
TRAF6 [1] BCL10 
TRAF6 [1] E2AK2 
TRAF6 [1] GBB2 
TRAF6 [1] IF2A 
TRAF6 [1] PRS10 
TRAF6 [1] PRS6A 
TRAF6 [1] PRS6B 
TRAF6 [1] PRS7 
TRAF6 [1] PSA2 
TRAF6 [1] PSA3 
TRAF6 [1] PSA4 
TRAF6 [1] PSA6 
TRAF6 [1] PSB2 

TRAF6 [1] PSB3 
TRAF6 [1] PSB4 
TRAF6 [1] PSB6 
TRAF6 [1] PSD11 
TRAF6 [1] PSDE 
TRAF6 [1] PSMD4 
TRAF6 [1] SRC 
TRAF6 [2] IRAK4 
TRAF6 [2] PRS8 
TRAF6 [2] PSA1 
TRAF6 [2] PSB5 
TRAF6 [2] PSD13 
TRAF6 [2] PSMD2 
TRAF6 [2] PSMD6 
TRAF6 [2] TRAF6 
TRAF6 [3] ECSIT 
TRAF6 [3] M3K14 
TRAF6 [3] TAB1 
TRAF6 [3] TAB3 
TRAF6 [4] TAB2 
TRAF6 [4] UBIQ 
TXK [1] ERBB2 
TXK [2] SRC 
TXK [2] TXK 
TYRO3 [1] SRC 
TYRO3 [2] P85A 
UBIQ [1] IKBB 
UBIQ [1] IRAK1 
UBIQ [1] KSYK 
UBIQ [1] SRC 
UBIQ [1] SUMO3 
UBIQ [19] P53 
UBIQ [4] BCL10 
UBIQ [4] UBIQ
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From a purely topological point of view, the analysis of the core interactome does not 

unveil big surprises, being so small (140 nodes and 829 interactions). Some interesting 

topological parameters show that there are few proteins that are central in the network, 

while the NF-B family performs on average as for what concern node degree and 

betweenness centrality.

 

Figure 3.2 Core interactome, betweenness centrality chart: among the most central 
proteins, there are the signaling protein TRAF6, the kinase SRC, Ubiquitin, the 
phosphoinositide 3-kinase regulatory subunit P85A, the G proteins GBB2 and GBG1, 
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and the NF-B inhibitors IKKE and IKKA (bigger and darker: more central; normalized 
values [0-1] for betweenness centrality are shown in the figure). 
 

 
Fig 3.3 Core interactome, betweenness centrality vs number of neighbors 

 

 
Fig 3.4 Core interactome, node degree distribution 
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Table 3.4 Core interactome, list of the 20 best ranking out of 140 core proteins for 
betweenness centrality. 

Protein ID Betweenness 
Centrality 

Node 
Degree 

Gene Uniprot name 

TRAF6 0.27481073 45 TRAF6 TRAF6_HUMAN 

SRC 0.12720539 26 SRC SRC_HUMAN 

UBIQ 0.09787445 28 RPS27A UBIQ_HUMAN 

GBB2 0.088465 7 GNB2 GBB2_HUMAN 

GBG1 0.07390701 6 GNGT1 GBG1_HUMAN 

IKKE 0.06033168 25 IKBKE IKKE_HUMAN 

IKKA 0.05834001 27 CHUK IKKA_HUMAN 

P85A 0.05695809 23 PIK3R1 P85A_HUMAN 

AKT1 0.05432327 15 AKT1 AKT1_HUMAN 

BTK 0.052642 16 BTK BTK_HUMAN 

IKBA 0.05076037 22 NFKBIA IKBA_HUMAN 

P53 0.04655629 14 TP53 P53_HUMAN 

GBB1 0.04639713 7 GNB1 GBB1_HUMAN 

NEMO 0.04621614 26 IKBKG NEMO_HUMAN 

GNAS1 0.04476058 4 GNAS GNAS1_HUMAN 

NFKB2 0.04055352 26 NFKB2 NFKB2_HUMAN 

M3K3 0.03858709 11 MAP3K3 M3K3_HUMAN 

TF65 0.03384585 21 RELA TF65_HUMAN 

IRAK1 0.03297771 15 IRAK1 IRAK1_HUMAN 

GNAI1 0.03018737 5 GNAI1 GNAI1_HUMAN 

 

 

Table 3.5 Betweenness centrality value and ranking, and node degree of the members 

of the NF-B family in the core interactome. 
Protein Betweenness 

Centrality 
Rank Degree 

NFKB2 0.04055352 16° 26 
TF65 0.03384585 18° 21 

NFKB1 0.00587078 50° 16 
REL 0.0040526 61° 16 

RELB 0.00108828 86° 13 

 



74 

 

Among the core proteins, some of them show a prominent topological position in the 

network, position that may indicate a particular role in ruling the signaling cascade. 

Betweennees centrality has be chosen as a key parameter because there is evidence of its 

particularly relevant significancy in biological systems (Platzer 2007). A couple of 

significant cases are briefly discussed. 

As shown from above data, the most central protein is the mediator molecule TRAF6. It 

is a member of the TNF receptor associated factor (TRAF) protein family. Its 

extraordinary betweenness centrality can be explained by the fact that TRAF proteins are 

associated with, and mediate signal transduction from members of the TNF receptor 

superfamily, but also from the members of the Toll/IL-1 family. There is evidence that 

TRAF6 also interacts with various protein kinases including IRAK1/IRAK, SRC and 

PKC-zeta, which provides a link between distinct signaling pathways. An more 

important, prominent role in inflammation processes for of this mediator protein has been 

very recently proposed: in mice, deficient TRAF6 signaling -but not TRAF2/3/5- in 

leukocytes prevents atherosclerosis by skewing the immune response toward an anti-

inflammatory profile (Lutgens 2010). These data seem unveil a role for the TNF receptor 

superfamily costimulating protein CD40 and TRAF6 interactions in atherosclerosis and 

establish that targeting specific components of the CD40-CD40 Ligand pathway harbors 

the potential to achieve therapeutic effects in atherosclerosis. 

Quite below the TRAF6 very high score, high rankings as well are achieved by the Proto-

oncogene tyrosine-protein kinase Src (SRC), one of the most important non-receptor 

protein tyrosine kinases that plays a multitude of roles in cell signaling. The clinical 

importance in tumor signaling of this kinase is highlighted by the fact that several Src 

family kinase inhibitors have recently entered clinical trials based on their direct effects 

against tumor cells. Recent findings indeed indicate that Src kinase inhibitors (such as 
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dasatinib) possess a previously unrecognized anticancer mechanism of action by targeting 

key cell compartments of the tumor microenvironment (Liang 2010). 

In the same manner, a help in getting clues about a particular protein role in signaling 

cascades may be derived by its topological scores. 

 

 

3.2.2. Wider interactome, structure and network analysis 

Following the reconstruction process detailed in the Methods section, the wider 

interactome results composed by a total of 3146 interacting proteins that include the 140 

already present in the core interactome plus 3006 further proteins that show evidence of 

interaction with at least one belonging to the core interactome. The APID2NET system 

retrieves a total of 42638 protein-protein interactions. The complete list of proteins and 

interactions won‟t be reported here for lack of space. Data are available upon request. 

The general structure of the wider interactome appears to be far from random, as from the 

comparison with simulated networks (Erdos-Renyi and Barabasi-Albert models; Barabasi 

2002; see table 3.6). in particular, clustering coefficient of the real interactome greatly 

differs from those relative to two model networks of the same size. These data indicate 

that the interactome possesses its own peculiar structure, and not a random one, sign of a 

highly organized architecture. 

Table 3.6 Basic network parameters of the wider interactome, compared with two 
different simulated randomized model networks (average values for 20 simulations). 

 Wider interactome, 
3146 nodes, real data 

Simulated Erdos-Renyi 
model, 3146 nodes 

Simulated Barabasi-
Albert model, 3146 

nodes 

Number of edges 42638 42638 6289 
Clustering coefficient 0.258 0.009 0.008 

Network centralization 0.126 0.005 0.043 
Characteristic path length 2.957 2.781 4.589 

Network density 0.008 0.009 0.001 
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Fig. 3.5 Whole view of the wider interactome, accounting for a total of 3146 proteins. 

In yellow, the proteins of the core interactome, in green the five NF-B family 
members. According to data shown, the general structure of the wider interactome 
appears to be far from random, as from the comparison with simulated networks. 
Data indicate that the interactome possesses its own peculiar structure, sign of a 
highly organized architecture Data elaborated and visualized with Cytoscape. 
 

Existing clustering techniques allow the partitioning of protein interactions graphs to 

consider the connectivity properties of the underlying network. As said, Markov 
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Fig 3.6 Comparison of (from above) node degree distribution, betweenness centrality 
and average path lengths in the wider interactome (left, large charts) vs simulated 
Erdos-Renyi model networks (right, small charts, not in scale). The red area in the 
betweenness centrality chart (second from above) is for comparison with the area 
taken by the betweenness centrality distribution of the Erdos-Renyi random network 
(small chart on the right). Wider interactome parameters significantly differ from 
those of random networks, thus confirming its inherently organized nature. 
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Clustering (MCL), for example, is a technique that may help in individuating clusters of 

protein interactions that possess a high degree of noise-tolerance. 

MCL run on the dataset evidenced five main modules, highlighting the modular nature of 

the wider interactome. GO enrichment analysis identified main functions, biological 

processes, compartments and other relevant annotations of each of the clusters, as in table 

3.7. 

Table 3.7 Wider interactome, first five main modules isolated by Markov Clustering 
and GO enrichment analysis 

Module #Nodes #Edges Density Profiler annotations 
   significance   annotation reference            process/function/compartment 

# 1 962 19002 4.1 % 

6.15e-13 GO:BP 
cellular macromolecule metabolic 

processes 

5.70e-36 GO:CC intracellular part 

4.17e-48 GO:MF protein binding 

2.08e-07 KEGG Proteasome 

1.43e-08 REACTOME Activated TLR4 signalling pathway 

# 2 623 3796 2.0 % 

4.63e-82 GO:BP 
regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic 

process 

1.32e-95 GO:CC nucleus 

1.37e-72 GO:MF transcription regulator activity 

4.57e-20 KEGG Cell cycle 

3.77e-13 REACTOME DNA Repair 

# 3 606 4052 2.2 % 

5.69e-77 GO:BP cell communication 

5.43e-40 GO:CC plasma membrane 

2.16e-82 GO:MF protein binding 

2.42e-23 KEGG ErbB signaling pathway 

1.97e-15 REACTOME Down-stream signal transduction 

# 4 192 514 2.8 % 

3.93e-14 GO:BP regulation of apoptosis 

8.08e-09 GO:CC cytoplasm 

2.07e-08 GO:MF protein binding 

1.01e-06 KEGG Small cell lung cancer 

2.17e-07 REACTOME 
TRADD:TRAF2:RIP1 complex 

formation and binding 

# 5 140 321 3.3 % 

4.12e-06 GO:BP 
regulation of multicellular organismal 

process 

2.90e-06 GO:CC sarcoplasmic reticulum 

5.30e-11 GO:MF ligand-gated channel activity 

8.68e-05 KEGG Calcium signaling pathway 

6.30e-05 REACTOME 
Release of calcium from intracellular 

stores 
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As expected -and interestingly-, the first module results highly enriched in proteins 

related to key protein binding processes and belonging to functions that involve the 

proteasome. It comprises all cytoplasmic mediator proteins and kinases participating in 

the various steps of signaling cascades, as well as those that participate to proteasomal 

degradation. Moreover, proteins belonging to the Toll-Like Receptors (TLRs) signaling 

pathways -and TLR4 in particular- are overrepresented, fact that indicates a deeper 

intertwining of NF-B and TLRs signaling pathways. 

The module n. 2 incorporates proteins able to translocate in the nucleus and with 

remarkable transcriptional activity, while module n. 3 seems to be markedly linked to 

surface receptors and relative activity as well as in downstream signal transduction. 

 
Fig 3.7 Wider interactome, MCL and GO enrichment, pictorial view showing the five 
main modules (bigger red cicles) and overrepresented GO categories. 
 

The universe of proteins immediately around NF-B (i.e. interacting with components of 

its pathway) thus appears to influence and to be influenced by processes related to 
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metabolism, calcium release, uptake and storage, protein binding and proteasomal 

activity, and to the function of several important cell compartments such as the nucleus, 

the membranes and the sarcoplasmic reticulum. As a proof, on the contrary, the NF-B 

interactome does not seem particularly involved in energy and scavenging activities, such 

as mithocondrion and lysosome functioning. 

 

 
Fig 3.8 Wider interactome, MCL and GO enrichment analysis, NF-B functioning 
appears to influence and to be influenced by processes related to metabolism and to 
the function of several important cell compartments such as cytoplasm, nucleus, 
membranes and reticulum, but not particularly involved in mithocondrion and 
lysosome functioning. 
 

Since the wider interactome is reconstructed starting from the core interactome (as 

detailed in the Methods section) it is normal that the proteins belonging to the core have 

higher possibility to be more central (see table 3.8). Nevertheless, several proteins that do 

not appear in the core seem to have a relevant role in the wider interactome structure 

ranking high for betweenness centrality, as in the case of Protein kinase C inhibitor 
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protein 1 (1433Z) (see table 3.9 for description); RAC-alpha serine/threonine-protein 

kinase (AKT1), a general protein kinase capable of phosphorylating several known 

proteins, and of having complex effects on glucose metabolism and antiapoptotic signals; 

the multifunctional Myc proto-oncogene protein (MYC) that participates in the regulation 

of gene transcription binding DNA both in a non-specific manner and also specifically; 

and the Caspase-3 (CASP3), involved in the activation cascade of caspases responsible 

for apoptosis execution, among others. 

Table 3.8 Wider interactome, most central proteins. First 15 proteins ranking for 
betweenness centrality. 

Protein name Betweeness centrality Node degree Gene name 

TRAF6 0.06997543 381 TRAF6 

GRB2 0.05919005 426 GRB2 

IKKE 0.05579592 343 IKBKE 

P53 0.0541714 331 TP53 

SRC 0.04624446 313 SRC 

UBIQ 0.04574077 423 RPS27A 

TRAF2 0.03332032 195 TRAF2 

EGFR 0.02631206 225 EGFR 

KAPCA 0.02535598 159 PRKACA 

TF65 0.02298955 244 RELA 

1433Z 0.0219932 258 YWHAZ 

CSK21 0.02141286 181 CSNK2A1 

P85A 0.02076988 226 PIK3R1 

NEMO 0.02030402 202 IKBKG 

 

Table 3.9 Wider interactome, description of the 15 most central proteins according to 
betweenness centrality (alphabetically order by UniProt name). 

Protein name Description 

1433Z_HUMAN 
14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1): Adapter protein 
implicated in the regulation of a large spectrum of both general and specialized 
signaling pathway. Binds to a large number of partners, usually by recognition of 
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a phosphoserine or phosphothreonine motif. Binding generally results in the 
modulation of the activity of the binding partner. 

CSK21_HUMAN 

Casein kinase II subunit alpha: Casein kinases are operationally defined by their 
preferential utilization of acidic proteins such as caseins as substrates. The alpha 
and alpha' chains contain the catalytic site.Participates in Wnt signaling. CK2 
phosphorylates 'Ser-392' of p53/TP53 following UV irradiation. 

EGFR_HUMAN 

Epidermal growth factor receptor (Receptor tyrosine-protein kinase ErbB-1): The 
protein encoded by this gene is a transmembrane glycoprotein that is a member 
of the protein kinase superfamily. This protein is a receptor for members of the 
epidermal growth factor family. EGFR is a cell surface protein that binds to 
epidermal growth factor. Binding of the protein to a ligand induces receptor 
dimerization and tyrosine autophosphorylation and leads to cell proliferation. 
Mutations in this gene are associated with lung cancer. 

GRB2_HUMAN 

Growth factor receptor-bound protein 2 (Adapter protein GRB2): The protein 
encoded by this gene binds the epidermal growth factor receptor and contains 
one SH2 domain and two SH3 domains. Its two SH3 domains direct complex 
formation with proline-rich regions of other proteins, and its SH2 domain binds 
tyrosine phosphorylated sequences. This gene is similar to the Sem5 gene of C. 
elegans, which is involved in the signal transduction pathway. Two alternatively 
spliced transcript variants encoding different isoforms have been found for this 
gene. 

IKKE_HUMAN 

Inhibitor of nuclear factor kappa-B kinase subunit epsilon (I kappa-B kinase 
epsilon): Phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation 
of the inhibitor/NF-kappa-B complex and ultimately the degradation of the 
inhibitor. May play a special role in the immune response. 

KAPCA_HUMAN 

cAMP-dependent protein kinase catalytic subunit alpha (PKA C-alpha): cAMP is a 
signaling molecule important for a variety of cellular functions. cAMP exerts its 
effects by activating the cAMP-dependent protein kinase, which transduces the 
signal through phosphorylation of different target proteins. The inactive kinase 
holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. 
cAMP causes the dissociation of the inactive holoenzyme into a dimer of 
regulatory subunits bound to four cAMP and two free monomeric catalytic 
subunits. Four different regulatory subunits and three catalytic subunits have 
been identified in humans. The protein encoded by this gene is a member of the 
Ser/Thr protein kinase family and is a catalytic subunit of cAMP-dependent 
protein kinase. Alternatively spliced transcript variants encoding distinct isoforms 
have been observed. 

NEMO_HUMAN 

NF-kappa-B essential modulator (NEMO) (NF-kappa-B essential modifier): 
Regulatory subunit of the IKK core complex which phosphorylates inhibitors of 
NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex 
and ultimately the degradation of the inhibitor. Also considered to be a mediator 
for TAX activation of NF-kappa-B. Could be implicated in NF-kappa-B-mediated 
protection from cytokine toxicity. 

P53_HUMAN 

Cellular tumor antigen p53 (Tumor suppressor p53): Acts as a tumor suppressor in 
many tumor types; induces growth arrest or apoptosis depending on the 
physiological circumstances and cell type. Involved in cell cycle regulation as a 
trans-activator that acts to negatively regulate cell division by controlling a set of 
genes required for this process. One of the activated genes is an inhibitor of 
cyclin-dependent kinases. Apoptosis induction seems to be mediated either by 
stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 
expression. Implicated in Notch signaling cross-over. 

P85A_HUMAN 
Phosphatidylinositol 3-kinase regulatory subunit alpha (PI3-kinase p85 subunit 
alpha) (PI3K): Binds to activated (phosphorylated) protein-Tyr kinases, through its 
SH2 domain, and acts as an adapter, mediating the association of the p110 
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catalytic unit to the plasma membrane. Necessary for the insulin-stimulated 
increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. 

SRC_HUMAN 

Proto-oncogene tyrosine-protein kinase Src (pp60c-src) (p60-Src) (c-Src): The 
protein encoded by this gene is a tyrosine-protein kinase whose activity can be 
inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be 
involved in the malignant progression of colon cancer. Two transcript variants 
encoding the same protein have been found for this gene. 

TF65_HUMAN 
Transcription factor p65 (Nuclear factor NF-kappa-B p65 subunit): subunit of NF-
kappa-B transcription complex. 

TRAF2_HUMAN 

TNF receptor-associated factor 2 (Tumor necrosis factor type 2 receptor-
associated protein 3): Adapter protein and signal transducer that links members 
of the tumor necrosis factor receptor family to different signaling pathways by 
association with the receptor cytoplasmic domain and kinases. Association to the 
receptor is also mediated by the interaction with TRADD. Mediates activation of 
NF-kappa-B and JNK and is involved in apoptosis. The TRAF1/TRAF2 complex 
recruits the apoptotic suppressors BIRC2 and BIRC3 to TNFRSF1B/TNFR2. Seems 
to be involved in IL-15 signaling. 

TRAF6_HUMAN 

TNF receptor-associated factor 6 (Interleukin-1 signal transducer) (RING finger 
protein 85): Adapter protein and signal transducer that links members of the 
tumor necrosis factor receptor family to different signaling pathways by 
association with the receptor cytoplasmic domain and kinases. Also involved in 
the IL-1 signaling pathway via MYD88 and IRAK kinases. Seems to be involved in 
IL-17 signaling (By similarity). Mediates activation of NF-kappa-B and JNK. May 
function as an E3 ubiquitin ligase. 

UBIQ_HUMAN 

Ubiquitin: Highly conserved protein that has a major role in targeting cellular 
proteins for degradation by the 26S proteosome, is synthesized as a precursor 
protein consisting of either polyubiquitin chains or a single ubiquitin fused to an 
unrelated protein. It is a protein modifier which can be covalently attached to 
target lysines either as a monomer or as a lysine-linked polymer. Attachment to 
proteins as a Lys-48-linked polymer usually leads to their degradation by 
proteasome. Attachment to proteins as a monomer or as an alternatively linked 
polymer does not lead to proteasomal degradation and may be required for 
numerous functions, including maintenance of chromatin structure, regulation of 
gene expression, stress response, ribosome biogenesis and DNA repair. 

 

 

 

Table 3.10 NF-κB subunits ranking for betweenness centrality in the wider 
interactome 

Rank Protein Between centr Node degree Gene name 

11° TF65 0.02298955 244 RELA 

31° NFKB1 0.0107782 163 NFKB1 

46° NFKB2 0.00743673 177 NFKB2 

78° RELB 0.00464105 86 RELB 

258° REL 0.00141736 87 REL 
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Table 3.11 Wider interactome, proteins ranking from 16 to 100 for betweenness 
centrality 

Protein Between centr Node degree Gene name 

M3K3 0.01978339 174 MAP3K3 

SUMO1 0.01672142 109 SUMO1 

AKT1 0.01601919 142 AKT1 

ABL1 0.01433885 183 ABL1 

CASP3 0.01398608 141 CASP3 

MYC 0.01300149 198 MYC 

CRCM 0.01286892 191 MCC 

1433G 0.01269315 212 YWHAG 

FYN 0.01242612 227 FYN 

TNR1A 0.01196486 132 TNFRSF1A 

HS90A 0.01133857 187 HSP90AA1 

EF1A1 0.01101538 306 EEF1A1 

HSP7C 0.01086117 200 HSPA8 

PLCG1 0.0108359 167 PLCG1 

SKP1 0.01083512 92 SKP1 

NFKB1 0.0107782 163 NFKB1 

KPCA 0.01050862 133 PRKCA 

ESR1 0.01007701 142 ESR1 

1B42 0.00972535 200 HLA-B 

ARRB2 0.00945463 201 ARRB2 

IKBA 0.00942124 107 NFKBIA 

GNAI2 0.00923252 112 GNAI2 

ERBB2 0.00922718 113 ERBB2 

MK01 0.00920674 142 MAPK1 

SUMO3 0.00880842 122 SUMO3 

HS90B 0.00871235 283 HSP90AB1 

VIME 0.00844735 157 VIM 

EP300 0.00779088 153 EP300 

CTNB1 0.00768794 113 CTNNB1 

M3K14 0.0075835 139 MAP3K14 

NFKB2 0.00743673 177 NFKB2 

IKKA 0.00734046 128 CHUK 

VHL 0.00711999 161 VHL 

SUMO4 0.00698174 74 SUMO4 

CUL1 0.00674148 151 CUL1 

BRCA1 0.00670832 123 BRCA1 

LCK 0.00654623 167 LCK 

ACTB 0.00648923 164 ACTB 

GRP78 0.00636037 107 HSPA5 

NCK1 0.00634203 165 NCK1 

GNAI1 0.0063114 64 GNAI1 

CBP 0.00615844 147 CREBBP 

PAXI 0.00592148 132 PXN 

ANDR 0.00589548 128 AR 

ERBB3 0.00588372 69 ERBB3 

UBC9 0.00585242 92 UBE2I 

SMAD3 0.00580522 116 SMAD3 

1433F 0.00562166 161 YWHAH 

CALM 0.00553478 74 CALM1 

BTK 0.00538402 63 BTK 

ARRB1 0.00524068 122 ARRB1 
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Protein Between centr Node degree Gene name 

M3K1 0.00519011 120 MAP3K1 

STAT3 0.00508126 101 STAT3 

CRK 0.00505448 140 CRK 

RAF1 0.00501893 86 RAF1 

KSYK 0.00496613 85 SYK 

IKKB 0.00494709 114 IKBKB 

PRS8 0.00487421 76 PSMC5 

KU70 0.00483331 198 XRCC6 

CDC2 0.00482632 105 CDC2 

GBLP 0.00476892 125 GNB2L1 

NPM 0.00476585 233 NPM1 

RELB 0.00464105 86 RELB 

JUN 0.00454575 105 JUN 

CH60 0.00450869 170 HSPD1 

TBB5 0.00450428 152 TUBB 

RUVB2 0.00434977 161 RUVBL2 

CAV1 0.00433428 69 CAV1 

RB 0.00430932 102 RB1 

PRKDC 0.00427342 77 PRKDC 

CASP8 0.00416809 81 CASP8 

MK03 0.00405329 98 MAPK3 

LYN 0.00385829 104 LYN 

SP1 0.00383641 87 SP1 

CFTR 0.00376504 76 CFTR 

IKBB 0.00375868 85 NFKBIB 

KPCZ 0.00371273 73 PRKCZ 

PTEN 0.00367281 33 PTEN 

HDAC1 0.00363935 100 HDAC1 

NDKB 0.00362893 66 NME2 

SMAD2 0.00360967 96 SMAD2 

RET 0.00355832 38 RET 

CDC42 0.00355019 70 CDC42 

EIF1B 0.00352336 130 EIF1B 

MET 0.00351246 42 MET 

 

 

3.3. Downstream genes and feedback cycles 

NF-B-downstream genes data have been extracted and elaborated from a manually 

curated list (Gilmore 2010), from the TRED database and integrated with results from 

TRANSFAC database (see Materials and Methods). This procedure allowed to constitute 

a relatively comprehensive original list of 444 genes that result to be up- or down-

regulated from NF-B. Gene products and relative UniProt identifiers are obtained 
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directly through the ID mapping functions available on the UniProt web interface, 

allowing to compile the list of proteins which expression can be regulated by NF-B. 

A summary of data retrieved can be found in table 3.12: 

Table 3.12 Sequential steps, method and result for NF-B-downstream genes and 
protein list retrieval. 

Step 1 
Manual and automated retrieval from cited 
sources 

444 genes names and 
identifiers, original list 

Step 2 
Database mapping services (Genecards, 
Geneàlacarte) 

441 valid gene ENSEMBL 
identifiers retrieved 

Step 3 Database mapping services (Uniprot, Genecards) 
422 valid reviewed Uniprot 
protein identifiers 

Step 4 
Database mapping services (APID, APID2NET 
plugin) 

384 protein identifiers 
present in the APID protein 
interactions database 

 

 

The 444 gene names were mapped in a new list consisting of 441 valid ENSEMBL gene identifiers 

that, again, mapped into 422 gene products, identified as reviewed proteins by means of the Uniprot 

database mapping services. 384 out of these 422 protein identifiers have been successfully found in 

the APID database. 

Table 3.13 shows the list of the 422 gene identifiers and relative reviewed protein identifiers 

retrieved. 

 

Table 3.13 List of the 422 genes downstream NF-B and 
mapping with 422 reviewed proteins 

Gene names (aliases) Protein name 

SLC3A2 (MDU1) 4F2_HUMAN 

ORM1 (AGP1) A1AG1_HUMAN 

SERPINA1 (AAT) (PI) (PRO0684)  A1AT_HUMAN 

SERPINA2 (ARGS) (ATR) (PIL) A1ATR_HUMAN 

APP (A4) (AD1) A4_HUMAN 

ADORA1 AA1R_HUMAN 

ADORA2A (ADORA2) AA2AR_HUMAN 

ADORA2B AA2BR_HUMAN 

SERPINA3 (AACT) (GIG24) (GIG25) AACT_HUMAN 

ABCA1 (ABC1) (CERP) ABCA1_HUMAN 

ABCB9 (KIAA1520) ABCB9_HUMAN 

ABCG5 ABCG5_HUMAN 

ABCG8 ABCG8_HUMAN 

APOBEC2 ABEC2_HUMAN 

ADAM19 (MLTNB) (FKSG34) ADA19_HUMAN 

ADH1A (ADH1) ADH1A_HUMAN 

AHCTF1 (ELYS) (TMBS62) (MSTP108) AHTF1_HUMAN 

AICDA (AID) AICDA_HUMAN 

AKR1C1 (DDH) (DDH1) AK1C1_HUMAN 

AMACR AMACR_HUMAN 

AR (DHTR) (NR3C4) ANDR_HUMAN 

ANGPT1 (KIAA0003) ANGP1_HUMAN 

AGT (SERPINA8) ANGT_HUMAN 
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APOC3 APOC3_HUMAN 

APOD APOD_HUMAN 

APOE APOE_HUMAN 

AQP4 AQP4_HUMAN 

ARFRP1 (ARP1) ARFRP_HUMAN 

PYCARD (ASC) (CARD5) (TMS1) ASC_HUMAN 

ASPH ASPH_HUMAN 

ASS1 (ASS) ASSY_HUMAN 

ATP1A2 (KIAA0778) AT1A2_HUMAN 

BCL2L1 (BCL2L) (BCLX) B2CL1_HUMAN 

BCL2A1 (BCL2L5) (BFL1) (GRS) B2LA1_HUMAN 

B2M (CDABP0092) (HDCMA22P) B2MG_HUMAN 

BACE1 (BACE) (KIAA1149) BACE1_HUMAN 

BAX (BCL2L4) BAX_HUMAN 

PIK3AP1 (BCAP) BCAP_HUMAN 

BCL2 BCL2_HUMAN 

BCL3 (BCL4) (D19S37) BCL3_HUMAN 

BDNF BDNF_HUMAN 

BDKRB1 (BRADYB1) BKRB1_HUMAN 

BLNK (BASH) (SLP65) BLNK_HUMAN 

BMI1 (PCGF4) (RNF51) BMI1_HUMAN 

BMP2 (BMP2A) BMP2_HUMAN 

BMP4 (BMP2B) (DVR4) BMP4_HUMAN 

BNIP3 (NIP3) BNIP3_HUMAN 

BRCA2 (FACD) (FANCD1) BRCA2_HUMAN 

BTK (AGMX1) (ATK) (BPK) BTK_HUMAN 

C4BPA (C4BP) C4BPA_HUMAN 

CALCA (CALC1) CALC_HUMAN 

CALCA (CALC1) CALCA_HUMAN 

CALCB (CALC2) CALCB_HUMAN 

CASP4 (ICH2) CASP4_HUMAN 

CTSB (CPSB) CATB_HUMAN 

CTSL1 (CTSL) CATL1_HUMAN 

CAV1 (CAV) CAV1_HUMAN 

CCL11 (SCYA11) CCL11_HUMAN 

CCL15 (MIP5) (NCC3) (SCYA15) CCL15_HUMAN 

CCL17 (SCYA17) (TARC) CCL17_HUMAN 

CCL19 (ELC) (MIP3B) (SCYA19) CCL19_HUMAN 

CCL1 (SCYA1) CCL1_HUMAN 

CCL20 (LARC) (MIP3A) (SCYA20) CCL20_HUMAN 

CCL22 (MDC) (SCYA22) (A-152E5.1) CCL22_HUMAN 

CCL23 (MIP3) (MPIF1) (SCYA23) CCL23_HUMAN 

CCL28 (SCYA28) CCL28_HUMAN 

CCL2 (MCP1) (SCYA2) CCL2_HUMAN 

CCL3 (G0S19-1) (MIP1A) (SCYA3) CCL3_HUMAN 

CCL4 (LAG1) (MIP1B) (SCYA4) CCL4_HUMAN 

CCL5 (D17S136E) (SCYA5) CCL5_HUMAN 

CCND1 (BCL1) (PRAD1) CCND1_HUMAN 

CCND2 CCND2_HUMAN 

CCND3 CCND3_HUMAN 

CCR5 (CMKBR5) CCR5_HUMAN 

CCR7 (CMKBR7) (EBI1) (EVI1) CCR7_HUMAN 

CD209 (CLEC4L) CD209_HUMAN 

CD38 CD38_HUMAN 

CD3G (T3G) CD3G_HUMAN 

CD40LG (CD40L) (TNFSF5) (TRAP) CD40L_HUMAN 

CD44 (LHR) (MDU2) (MDU3) (MIC4) CD44_HUMAN 

CD48 (BCM1) (BLAST1) CD48_HUMAN 

CD69 CD69_HUMAN 

CD80 (CD28LG) (CD28LG1) (LAB7) CD80_HUMAN 

CD83 CD83_HUMAN 

CD86 (CD28LG2) CD86_HUMAN 

CDK6 CDK6_HUMAN 

CDKN1A (CAP20) (CDKN1) (CIP1)  CDN1A_HUMAN 

CDX1 CDX1_HUMAN 

CFB (BF) (BFD) CFAB_HUMAN 

CFLAR (CASH) (CASP8AP1) (CLARP) CFLAR_HUMAN 

CHI3L1 CH3L1_HUMAN 

CLDN2 (PSEC0059) (SP82)  CLD2_HUMAN 

COL1A2 CO1A2_HUMAN 

C3 (CPAMD1) CO3_HUMAN 

C4A (CO4) (CPAMD2) CO4A_HUMAN 

C4B (CO4) (CPAMD3) CO4B_HUMAN 

POMC COLI_HUMAN 

CYP19A1 (ARO1) (CYAR) (CYP19) CP19A_HUMAN 

CYP27B1 (CYP1ALPHA) (CYP27B) CP27B_HUMAN 

CYP2E1 (CYP2E) CP2E1_HUMAN 

CYP7B1 CP7B1_HUMAN 

CR2 (C3DR) CR2_HUMAN 

CREB3 (LZIP) CREB3_HUMAN 

CRP (PTX1) CRP_HUMAN 

CSF1 CSF1_HUMAN 

CSF2 (GMCSF) CSF2_HUMAN 

CSF3 (GCSF) CSF3_HUMAN 

GJB1 (CX32) CXB1_HUMAN 

CXCL2 (GRO2) (GROB) (MIP2A) (SCYB2) CXCL2_HUMAN 

CXCL3 (GRO3) (GROG) (SCYB3) CXCL3_HUMAN 

CXCL5 (ENA78) (SCYB5) CXCL5_HUMAN 

CXCL9 (CMK) (MIG) (SCYB9) CXCL9_HUMAN 

IL8RA (CMKAR1) (CXCR1) CXCR1_HUMAN 

IL8RB (CXCR2) CXCR2_HUMAN 

CXCR5 (BLR1) (MDR15) CXCR5_HUMAN 
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CXCL10 (INP10) (SCYB10) CXL10_HUMAN 

CXCL11 (ITAC) (SCYB11) (SCYB9B) CXL11_HUMAN 

GAD1 (GAD) (GAD67) DCE1_HUMAN 

DCTN4 DCTN4_HUMAN 

DEFB4 (DEFB102) (DEFB2) DEFB2_HUMAN 

HSD17B8 (FABGL) (HKE6) (RING2) DHB8_HUMAN 

HSD11B2 (HSD11K) DHI2_HUMAN 

DMP1 DMP1_HUMAN 

DNASE1L2 (DHP1) (DNAS1L2) DNSL2_HUMAN 

REV3L (POLZ) (REV3) DPOLZ_HUMAN 

DPYD DPYD_HUMAN 

DUSP1 (CL100) (MKP1) (PTPN10) (VH1) DUS1_HUMAN 

E2F3 (KIAA0075) E2F3_HUMAN 

EDN1 EDN1_HUMAN 

EGFR (ERBB1) EGFR_HUMAN 

ENG (END) EGLN_HUMAN 

EGR1 (ZNF225) EGR1_HUMAN 

PI3 (WAP3) (WFDC14) ELAF_HUMAN 

ELF3 (ERT) (ESX) (JEN) ELF3_HUMAN 

ENO2 ENOG_HUMAN 

ERVWE1 ENW1_HUMAN 

EPHA1 (EPH) (EPHT) (EPHT1) EPHA1_HUMAN 

EPO EPO_HUMAN 

ERBB2 (HER2) (NEU) (NGL) ERBB2_HUMAN 

F8 (F8C) FA8_HUMAN 

FABP6 (ILBP) (ILLBP) FABP6_HUMAN 

FCER2 (CD23A) (FCE2) (IGEBF) FCER2_HUMAN 

FCGRT (FCRN) FCGRN_HUMAN 

AFP (HPAFP) FETA_HUMAN 

FGF8 (AIGF) FGF8_HUMAN 

FN1 (FN) FINC_HUMAN 

FTH1 (FTH) (FTHL6) (OK/SW-cl.84)) FRIH_HUMAN 

FSTL3 (FLRG) (UNQ674/PRO1308) FSTL3_HUMAN 

G6PC (G6PT) G6PC_HUMAN 

G6PD G6PD_HUMAN 

GADD45B (MYD118) GA45B_HUMAN 

GATA3 GATA3_HUMAN 

GNB2L1 (HLC7) (PIG21) GBLP_HUMAN 

GBP1 GBP1_HUMAN 

GCNT1 (NACGT2) GCNT1_HUMAN 

NR3C1 (GRL) GCR_HUMAN 

GUCY1A2 (GUC1A2) (GUCSA2) GCYA2_HUMAN 

SERPINE2 (PI7) (PN1) GDN_HUMAN 

GNAI2 (GNAI2B) GNAI2_HUMAN 

GNRH2 GON2_HUMAN 

GZMB (CGL1) (CSPB) (CTLA1) (GRB) GRAB_HUMAN 

GRM2 (GPRC1B) (MGLUR2) GRM2_HUMAN 

CXCL1 (GRO) (GRO1) (GROA) (MGSA) GROA_HUMAN 

GCLM (GLCLR) GSH0_HUMAN 

GCLC (GLCL) (GLCLC) GSH1_HUMAN 

GSTP1 (FAEES3) (GST3) GSTP1_HUMAN 

SLC2A5 (GLUT5) GTR5_HUMAN 

HAS1 (HAS) HAS1_HUMAN 

HBZ (HBZ2) HBAZ_HUMAN 

HBE1 (HBE) HBE_HUMAN 

HAMP (HEPC) (LEAP1) 
(UNQ487/PRO1003) 

HEPC_HUMAN 

CD74 (DHLAG) HG2A_HUMAN 

HGF (HPTA) HGF_HUMAN 

HIF1A (MOP1) HIF1A_HUMAN 

HLA-G (HLA-6.0) (HLAG) HLAG_HUMAN 

HMGN1 (HMG14) HMGN1_HUMAN 

HMOX1 (HO) (HO1) HMOX1_HUMAN 

HPSE (HEP) (HPA) (HPA1) (HPR1) HPSE_HUMAN 

HSP90AA2 (HSPCAL3) HS902_HUMAN 

HSP90AA1 (HSP90A) (HSPC1) (HSPCA) HS90A_HUMAN 

HOXA9 (HOX1G) HXA9_HUMAN 

IL15RA I15RA_HUMAN 

IGFBP1 (IBP1) IBP1_HUMAN 

IGFBP2 (BP2) (IBP2) IBP2_HUMAN 

ICAM1 ICAM1_HUMAN 

ICOS (AILIM) ICOS_HUMAN 

IER2 (ETR101) IER2_HUMAN 

IER3 (DIF2) (IEX1) (PRG1) IEX1_HUMAN 

IFI44L (C1orf29) (GS3686) IF44L_HUMAN 

IFNB1 (IFB) (IFNB) IFNB_HUMAN 

IFNG IFNG_HUMAN 

IGHE IGHE_HUMAN 

IGHG1 IGHG1_HUMAN 

IGHG2 IGHG2_HUMAN 

IGHG3 IGHG3_HUMAN 

IGHG4 IGHG4_HUMAN 

IGKC IGKC_HUMAN 

NFKBIA (IKBA) (MAD3) (NFKBI) IKBA_HUMAN 

NFKBIE (IKBE) IKBE_HUMAN 

NFKBIZ (IKBZ) (INAP) (MAIL) IKBZ_HUMAN 

IL10 IL10_HUMAN 

IL11 IL11_HUMAN 

IL12A (NKSF1) IL12A_HUMAN 

IL12B (NKSF2) IL12B_HUMAN 

IL13 (NC30) IL13_HUMAN 

IL15 IL15_HUMAN 

IL17A (CTLA8) (IL17) IL17_HUMAN 
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IL1A (IL1F1) IL1A_HUMAN 

IL1B (IL1F2) IL1B_HUMAN 

IL1RN (IL1F3) (IL1RA) IL1RA_HUMAN 

IL23A (SGRF) (UNQ2498/PRO5798) IL23A_HUMAN 

IL27 (IL27A) IL27A_HUMAN 

EBI3 (IL27B) IL27B_HUMAN 

IL2 IL2_HUMAN 

IL2RA IL2RA_HUMAN 

IL32 (NK4) (TAIF) IL32_HUMAN 

IL6 (IFNB2) IL6_HUMAN 

IL8 (CXCL8) IL8_HUMAN 

IL9 IL9_HUMAN 

SERPINB1 (ELANH2) (MNEI) (PI2) ILEU_HUMAN 

INHBA INHBA_HUMAN 

DIO2 (ITDI2) (TXDI2) IOD2_HUMAN 

IRF1 IRF1_HUMAN 

IRF2 IRF2_HUMAN 

IRF4 (MUM1) IRF4_HUMAN 

IRF7 IRF7_HUMAN 

F11R (JAM1) (JCAM) 
(UNQ264/PRO301) 

JAM1_HUMAN 

JMJD3 (KDM6B) (KIAA0346) JMJD3_HUMAN 

JUNB JUNB_HUMAN 

KRT15 (KRTB) K1C15_HUMAN 

KRT3 K2C3_HUMAN 

KRT5 K2C5_HUMAN 

KRT6B (K6B) (KRTL1) K2C6B_HUMAN 

KCNK5 (TASK2) KCNK5_HUMAN 

KCNN2 KCNN2_HUMAN 

KISS1 (PP5098) KISS1_HUMAN 

KLF10 (TIEG) (TIEG1) KLF10_HUMAN 

KLK3 (APS) KLK3_HUMAN 

PRKCD KPCD_HUMAN 

LAMB2 (LAMS) LAMB2_HUMAN 

LBP LBP_HUMAN 

LEF1 LEF1_HUMAN 

LGALS3 (MAC2) LEG3_HUMAN 

LIPG (UNQ387/PRO719) LIPE_HUMAN 

ALOX12 (LOG12) LOX12_HUMAN 

ALOX5 (LOG5) LOX5_HUMAN 

SELE (ELAM1) LYAM2_HUMAN 

SELP (GMRP) (GRMP) LYAM3_HUMAN 

LYZ (LZM) LYSC_HUMAN 

MAP4K1 (HPK1) M4K1_HUMAN 

MADCAM1 MADCA_HUMAN 

MBP MBP_HUMAN 

ABCB1 (MDR1) (PGY1) MDR1_HUMAN 

ABCB4 (MDR3) (PGY3) MDR3_HUMAN 

AMH (MIF) MIS_HUMAN 

MDK (MK1) (NEGF2) MK_HUMAN 

MMP1 (CLG) MMP1_HUMAN 

MMP3 (STMY1) MMP3_HUMAN 

MMP9 (CLG4B) MMP9_HUMAN 

SLC16A1 (MCT1) MOT1_HUMAN 

ABCC6 (ARA) (MRP6) MRP6_HUMAN 

MT3 MT3_HUMAN 

MTHFR MTHR_HUMAN 

MUC2 (SMUC) MUC2_HUMAN 

MX1 MX1_HUMAN 

MYB MYB_HUMAN 

MYC MYC_HUMAN 

MYLK (MLCK) MYLK_HUMAN 

MYOZ1 (MYOZ) MYOZ1_HUMAN 

NLRP2 (NALP2) (NBS1) (PAN1) 
(PYPAF2) 

NALP2_HUMAN 

ART1 NAR1_HUMAN 

NCAM1 (NCAM) NCAM1_HUMAN 

NFKB1 NFKB1_HUMAN 

NFKB2 (LYT10) NFKB2_HUMAN 

LCN2 (HNL) (NGAL) NGAL_HUMAN 

NGF (NGFB) NGF_HUMAN 

TACR1 (NK1R) (TAC1R) NK1R_HUMAN 

FAM148A (NLF1) NLF1_HUMAN 

GRIN2A (NMDAR2A) NMDE1_HUMAN 

GRIN1 (NMDAR1) NMDZ1_HUMAN 

NOD2 (CARD15) (IBD1) NOD2_HUMAN 

NOS1 NOS1_HUMAN 

NOS2 (NOS2A) NOS2_HUMAN 

NPY1R (NPYR) (NPYY1) NPY1R_HUMAN 

NQO1 (DIA4) (NMOR1) NQO1_HUMAN 

NR4A2 (NOT) (NURR1) (TINUR) NR4A2_HUMAN 

SLC11A2 (NRAMP2) (OK/SW-cl.20) NRAM2_HUMAN 

NRG1 (GGF) (HGL) (HRGA) (NDF) NRG1_HUMAN 

NUAK2 (SNARK) NUAK2_HUMAN 

OLR1 (LOX1) OLR1_HUMAN 

OPRD1 (OPRD) OPRD_HUMAN 

OPRM1 (MOR1) OPRM_HUMAN 

OPN1SW (BCP) OPSB_HUMAN 

SPP1 (BNSP) (OPN) (PSEC0156) OSTP_HUMAN 

OXTR OXYR_HUMAN 

TP53 (P53) P53_HUMAN 

PLA2G4C PA24C_HUMAN 

PAFAH2 PAFA2_HUMAN 

SERPINE1 (PAI1) (PLANH1) PAI1_HUMAN 
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PAX8 PAX8_HUMAN 

CD274 (B7H1) (PDCD1L1) (PDCD1LG1) PD1L1_HUMAN 

PDE7A PDE7A_HUMAN 

PDGFB (PDGF2) (SIS) PDGFB_HUMAN 

PDYN PDYN_HUMAN 

PENK PENK_HUMAN 

PRF1 (PFP) PERF_HUMAN 

PTGS2 (COX2) PGH2_HUMAN 

PGK1 (PGKA) (MIG10) (OK/SW-cl.110) PGK1_HUMAN 

PGLYRP1 (PGLYRP) (PGRP) (TNFSF3L) PGRP_HUMAN 

BGN (SLRR1A) PGS1_HUMAN 

PIGF PIGF_HUMAN 

PIGR PIGR_HUMAN 

PIM1 PIM1_HUMAN 

PIK3CA PK3CA_HUMAN 

PLCD1 PLCD1_HUMAN 

PLK3 (CNK) (FNK) (PRK) PLK3_HUMAN 

PPP5C (PPP5) PPP5_HUMAN 

PRDM1 (BLIMP1) PRDM1_HUMAN 

PGR (NR3C3) PRGR_HUMAN 

PRL PRL_HUMAN 

PSMA2 (PSC3) PSA2_HUMAN 

PSMB9 (LMP2) (RING12) PSB9_HUMAN 

PSME1 (IFI5111) PSME1_HUMAN 

PSME2 PSME2_HUMAN 

PTAFR (PAFR) PTAFR_HUMAN 

PTEN (MMAC1) (TEP1) PTEN_HUMAN 

PTGDS (PDS) PTGDS_HUMAN 

PTGES (MGST1L1) (PGES) (PIG12) PTGES_HUMAN 

PTGIS (CYP8) (CYP8A1) PTGIS_HUMAN 

PTHLH (PTHRP) PTHR_HUMAN 

PTPN13 (PNP1) (PTP1E) (PTPL1) PTN13_HUMAN 

PTPN1 (PTP1B) PTN1_HUMAN 

PTS PTPS_HUMAN 

PTX3 (TNFAIP5) (TSG14) PTX3_HUMAN 

RAG1 (RNF74) RAG1_HUMAN 

RAG2 RAG2_HUMAN 

AGER (RAGE) RAGE_HUMAN 

RBBP4 (RBAP48) RBBP4_HUMAN 

RDH5 (RDH1) RDH1_HUMAN 

REL REL_HUMAN 

RELB RELB_HUMAN 

RIPK2 (CARDIAK) (RICK) (RIP2)  RIPK2_HUMAN 

S100A4 (CAPL) (MTS1) S10A4_HUMAN 

S100A6 (CACY) S10A6_HUMAN 

S100A10 (ANX2LG) (CAL1L) (CLP11) S10AA_HUMAN 

SAA3P (SAA3) SAA3_HUMAN 

SAA1; SAA2 SAA_HUMAN 

SAT1 (SAT) SAT1_HUMAN 

SLC6A6 SC6A6_HUMAN 

KITLG (MGF) (SCF) SCF_HUMAN 

SCNN1A (SCNN1) SCNNA_HUMAN 

SDC4 SDC4_HUMAN 

SELS (VIMP) (AD-015) (SBBI8) SELS_HUMAN 

SH3BGRL SH3L1_HUMAN 

ST8SIA1 (SIAT8) (SIAT8A) SIA8A_HUMAN 

ST6GAL1 (SIAT1) SIAT1_HUMAN 

SKP2 (FBXL1) SKP2_HUMAN 

NRG1 (GGF) (HGL) (HRGA) (NDF)  SMDF_HUMAN 

SNAI1 (SNAH) SNAI1_HUMAN 

SOD1 SODC_HUMAN 

SOD2 SODM_HUMAN 

SOX9 SOX9_HUMAN 

SP7 (OSX) SP7_HUMAN 

SPATA19 (SPERGEN1) SPT19_HUMAN 

STAT5A (STAT5) STA5A_HUMAN 

SUPV3L1 (SUV3) SUV3_HUMAN 

TAP1 (ABCB2) (PSF1) (RING4) (Y3) TAP1_HUMAN 

TICAM1 (PRVTIRB) (TRIF) TCAM1_HUMAN 

TNC (HXB) TENA_HUMAN 

TERT (EST2) (TCS1) (TRT) TERT_HUMAN 

F3 TF_HUMAN 

TFEC (TCFEC) (TFECL) TFEC_HUMAN 

TFF3 (ITF) (TFI) TFF3_HUMAN 

TFPI2 TFPI2_HUMAN 

TGM1 (KTG) TGM1_HUMAN 

TGM2 TGM2_HUMAN 

TIFA (T2BP) TIFA_HUMAN 

TLR2 (TIL4) TLR2_HUMAN 

TLR9 (UNQ5798/PRO19605) TLR9_HUMAN 

TNFSF13B (BAFF) (BLYS) (TALL1) TN13B_HUMAN 

TNFAIP2 TNAP2_HUMAN 

TNFAIP3 TNAP3_HUMAN 

TNFSF10 (APO2L) (TRAIL) TNF10_HUMAN 

TNFSF15 (TL1) (VEGI) TNF15_HUMAN 

TNF (TNFA) (TNFSF2) TNFA_HUMAN 

LTA (TNFB) (TNFSF1) TNFB_HUMAN 

LTB (TNFC) (TNFSF3) TNFC_HUMAN 

FASLG (APT1LG1) (FASL) (TNFSF6) TNFL6_HUMAN 

TNIP1 (KIAA0113) (NAF1) TNIP1_HUMAN 

TNIP3 (ABIN3) (LIND) TNIP3_HUMAN 

TNFRSF1B (TNFBR) (TNFR2) TNR1B_HUMAN 
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TNFRSF4 (TXGP1L) TNR4_HUMAN 

CD40 (TNFRSF5) TNR5_HUMAN 

FAS (APT1) (FAS1) (TNFRSF6) TNR6_HUMAN 

TNFRSF9 (CD137) (ILA) TNR9_HUMAN 

TPMT TPMT_HUMAN 

TRAF1 (EBI6) TRAF1_HUMAN 

TRAF2 (TRAP3) TRAF2_HUMAN 

TREM1 TREM1_HUMAN 

TF (PRO1400) TRFE_HUMAN 

LTF (LF) TRFL_HUMAN 

TRPC1 (TRP1) TRPC1_HUMAN 

THBS1 (TSP) (TSP1) TSP1_HUMAN 

THBS2 (TSP2) TSP2_HUMAN 

TWIST1 (TWIST) TWST1_HUMAN 

YY1 (INO80S) TYY1_HUMAN 

UBE2M (UBC12) UBC12_HUMAN 

UCP2 (SLC25A8) UCP2_HUMAN 

UGCGL1 (GT) (UGGT) (UGT1) (UGTR) UGGG1_HUMAN 

UPK1B (TSPAN20) UPK1B_HUMAN 

UPP1 (UP) UPP1_HUMAN 

PLAU UROK_HUMAN 

VCAM1 (L1CAM) VCAM1_HUMAN 

VEGFC VEGFC_HUMAN 

VIM VIME_HUMAN 

VPS53 (PP13624) VPS53_HUMAN 

WNT10B (WNT12) WN10B_HUMAN 

WT1 WT1_HUMAN 

CX3CL1 (FKN) (NTT) (SCYD1) X3CL1_HUMAN 

XDH (XDHA) XDH_HUMAN 

XIAP (API3) (BIRC4) (IAP3) XIAP_HUMAN 

ZNF366 ZN366_HUMAN 

 

 

At the end of this step, the NF-B system reconstructed consists in 3146 interacting 

proteins (wider interactome that includes the subset of the core interactome) and more 

than 400 NF-B-regulated genes, coding for 384 reviewed proteins (figure 3.9). It is 

worthy to be underlined once again that these data are referred to the situation of the 

various databases at the date of February-May 2009 (depending on the database) and that 

newly added/modified data can change shape or structure of the system. 
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Fig 3.9 Representation of the retrieved data and reconstructed system: the core and 

wider NF-B pathway interactomes are composed by a total of 3146 proteins, while 

the set of the NF-B-downstream genes is composed by more than 400 genes whose 
products consist of 384 reviewed proteins. At this stage, analysis should carry on 
determining which are the feedback loops among regulated genes and NF-kB 
interactome. 
 
3.3.1. Interactome feedback loops 

Once that the gene products have been identified, it is possible to check if there are and 

how many of the NF-B regulated proteins play a role in the interactome, thus 

establishing “feedback loops” that may deserve further consideration and analysis. 

Cross-checking the interactomes proteins with the regulated proteins through the use of 

Cytoscape, it has been possible to identify the set of proteins present both in the 

interactomes set as well as in the NF-B regulated set. 

The result of this analysis raises some points of interest. As much as 150 out of 384 NF-

B regulated proteins are also present in the wider interactome set. This means that 43% 

of the identified NF-B-regulated genes express proteins that play a direct role in the 

wider interactome. The implication of these data in the dynamics of the NF-B 

interactome and in its regulation may thus be remarkable. The ability of NF-B to „self-
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control‟ a non negligible part of its directly interacting proteins surely deserves a deeper 

attention. 

The proteins present in both the core interactome subset and in the regulated gene set are 

15. It is to be noted that several of these „feedback loops‟ are already well-known and 

studied in the literature, while many others have never been taken under consideration, at 

least for what concerns the possible implications in the regulation of the NF-B pathway 

dynamics. 

 

Table 3.14 Number of proteins present in the interactome sets and in the NF-B 
regulated genes set. 

 Number of 
proteins (nodes) 

Number of 
interactions (edges) 

Number of proteins in 
the interactome which 

gene is regulated by NF-

B (‘feedback’) 

Percentage of 
‘feedback’ 
proteins 

Core interactome 140 829 15 11% 
Wider 

interactome 
3146 42638 150 5% 

 

The expression of ~11% (15 out of 140) of the proteins present in the core interactome 

and of ~5% (150 out of 3146) of the proteins present in the wider interactome can be 

directly regulated by members of the NF-B family. Moreover, the expression of four out 

of five NF-B subunits (NFKB1, NFKB2, REL and RELB, plus several inhibitors and 

directly regulating proteins) can be regulated directly by themselves. Conversely, the 

expression of TF65 does not seem to be regulated by a member of the NF-B system 

itself. Since NF-B is a constitutively expressed protein complex, and since it has a 

crucial importance in the regulation of fundamental tasks such as the immune responses, 

its direct control of 11% of the its core interactome may be an indication of how much the 

system need to be tightly self-regulated to prevent malfunctions and subsequent 

potentially destructive damage. On the contrary, a deeper investigation and experimental 

proofs are needed to speculate on the „independence‟ of the expression of TF65, that may 
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be hypothetically related to the necessity to maintain an external control on the NF-B 

activation process and relative gene expression. 

 

 
Fig 3.10 Core interactome, proteins whose expression is regulated by NF-B are 
depicted in red. 
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Fig 3.11 Representation of the NF-B pathway system including interactomes and 
downstream gene set. The core interactome is composed by 140 proteins, 15 of which 

are expressed by genes controlled by NF-B. In the wider interactome, composed by 

3146 proteins, 150 are expressed by genes regulated by NF-B. Many of the 234 
proteins not in the interactome can interact with proteins belonging to the core and 
the wider interactomes (partial data shown). 
 

Table 3.15 shows the 150 genes regulated by NF-B that express proteins that are also 

present in the wider interactome and thus playing a relevant role (or, at least, deserving 

further attention) in the NF-B system. A systematic analysis of these feedback loops has 

not yet been run, but a deeper biological interpretation of many of these interactions may 

also give some hints in terms of the understanding the dynamics and the regulation of NF-

B-dependent responses. 
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Table 3.15 List of the 150 proteins expressed by genes regulated by NF-B and 
appearing in the wider interactome (lines in red: proteins appearing in the core 
interactome). 
Node 

degree 
Uniprot entry name Protein name Gene name (aliases) 

55 A4_HUMAN Amyloid beta A4 protein  APP (A4) (AD1) 

4 AA1R_HUMAN Adenosine receptor A1 ADORA1 

7 AACT_HUMAN Alpha-1-antichymotrypsin (ACT)  SERPINA3 (AACT) 
(GIG24)  

11 ABCA1_HUMAN ATP-binding cassette sub-family A member 1 ABCA1 (ABC1) (CERP) 

2 ABCG5_HUMAN ATP-binding cassette sub-family G member 5 (Sterolin-1) ABCG5 

4 ADA19_HUMAN Disintegrin and metalloproteinase domain-containing protein 19 (ADAM 
19) 

ADAM19 (MLTNB) 
(FKSG34) 

128 ANDR_HUMAN Androgen receptor (Dihydrotestosterone receptor)  AR (DHTR) (NR3C4) 

3 AQP4_HUMAN Aquaporin-4 (AQP-4)  AQP4 

21 B2CL1_HUMAN Bcl-2-like protein 1 (Bcl2-L-1)  BCL2L1 (BCL2L) (BCLX) 

58 BAX_HUMAN Apoptosis regulator BAX (Bcl-2-like protein 4)  BAX (BCL2L4) 

33 BCL2_HUMAN Apoptosis regulator Bcl-2 BCL2 

38 BCL3_HUMAN B-cell lymphoma 3 protein (BCL-3)  BCL3 (BCL4) (D19S37) 

25 BLNK_HUMAN B-cell linker protein (Cytoplasmic adapter protein)  BLNK (BASH) (SLP65) 

24 BMI1_HUMAN Polycomb complex protein BMI-1 (RING finger protein 51) BMI1 (PCGF4) (RNF51) 

12 BRCA2_HUMAN Breast cancer type 2 susceptibility protein (Fanconi anemia g D1 protein) BRCA2 (FACD) (FANCD1) 

23 BTK_HUMAN Tyrosine-protein kinase BTK  BTK (AGMX1) (ATK) 
(BPK) 

63 CASP4_HUMAN Caspase-4 (CASP-4)  CASP4 (ICH2) 

34 CAV1_HUMAN Caveolin-1 CAV1 (CAV) 

69 CCL20_HUMAN C-C motif chemokine 20 (Small-inducible cytokine A20) CCL20 (LARC) (MIP3A)  

2 CCND1_HUMAN G1/S-specific cyclin-D1 (PRAD1 oncogene)  CCND1 (BCL1) (PRAD1) 

37 CCND2_HUMAN G1/S-specific cyclin-D2 CCND2 

9 CCND3_HUMAN G1/S-specific cyclin-D3 CCND3 

19 CCR5_HUMAN C-C chemokine receptor type 5  CCR5 (CMKBR5) 

23 CD40L_HUMAN CD40 ligand (CD40-L)  CD40LG (CD40L) 
(TNFSF5)  

5 CD44_HUMAN CD44 antigen (Phagocytic glycoprotein I)  CD44 (LHR) (MDU2) 
(MDU3)  

25 CDN1A_HUMAN Cyclin-dependent kinase inhibitor 1 (p21)  CDKN1A (CAP20) 
(CDKN1)  

46 CFLAR_HUMAN CASP8 and FADD-like apoptosis regulator  CFLAR (CASH) 
(CASP8AP1) ( 

38 CR2_HUMAN Complement receptor type 2 (Cr2)  CR2 (C3DR) 

7 CXB1_HUMAN Gap junction beta-1 protein (Connexin-32) GJB1 (CX32) 

4 DCE1_HUMAN Glutamate decarboxylase 1  GAD1 (GAD) (GAD67) 

11 DEFB2_HUMAN Beta-defensin 2 (BD-2) DEFB4 (DEFB102) 
(DEFB2) 

3 DUS1_HUMAN Dual specificity protein phosphatase 1  DUSP1 (CL100) (MKP1)  

13 EGFR_HUMAN Epidermal growth factor receptor  EGFR (ERBB1) 

225 EGR1_HUMAN Early growth response protein 1 (EGR-1)  EGR1 (ZNF225) 

11 ELF3_HUMAN ETS-related transcription factor Elf-3 (E74-like factor 3)  ELF3 (ERT) (ESX) (JEN) 

26 ENOG_HUMAN Gamma-enolase ENO2 

6 ERBB2_HUMAN Receptor tyrosine-protein kinase erbB-2  ERBB2 (HER2) (NEU) 
(NGL) 

113 FRIH_HUMAN Ferritin heavy chain (Ferritin H subunit) FTH1 (FTH) (FTHL6)  

11 G6PD_HUMAN Glucose-6-phosphate 1-dehydrogenase (G6PD)  G6PD 
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3 GBLP_HUMAN Guanine nucleotide-binding protein subunit beta-2-like 1 (HLC-7) GNB2L1 (HLC7) (PIG21) 

125 GCR_HUMAN Glucocorticoid receptor (GR) NR3C1 (GRL) 

88 GNAI2_HUMAN Guanine nucleotide-binding protein G(i), alpha-2 subunit GNAI2 (GNAI2B) 

112 GRAB_HUMAN Granzyme B  GZMB (CGL1) (CSPB)  

15 GSTP1_HUMAN Glutathione S-transferase P  GSTP1 (FAEES3) (GST3) 

12 HGF_HUMAN Hepatocyte growth factor  HGF (HPTA) 

5 HIF1A_HUMAN Hypoxia-inducible factor 1 alpha HIF1A (MOP1) 

41 HMGN1_HUMAN Non-histone chromosomal protein HMG-14  HMGN1 (HMG14) 

9 HMOX1_HUMAN Heme oxygenase 1 (HO-1)  HMOX1 (HO) (HO1) 

4 HS902_HUMAN Putative heat shock protein HSP 90-alpha A2  HSP90AA2 (HSPCAL3) 

5 HS90A_HUMAN Heat shock protein HSP 90-alpha (HSP 86)  HSP90AA1 (HSP90A)  

187 HXA9_HUMAN Homeobox protein Hox-A9 (Hox-1G) HOXA9 (HOX1G) 

8 I15RA_HUMAN Interleukin-15 receptor subunit alpha (IL-15R-alpha) IL15RA 

4 ICAM1_HUMAN Intercellular adhesion molecule 1 (ICAM-1)  ICAM1 

9 IFNG_HUMAN Interferon gamma (IFN-gamma)  IFNG 

6 IGHG1_HUMAN Ig gamma-1 chain C region IGHG1 

17 IGHG3_HUMAN Ig gamma-3 chain C region (Heavy chain disease protein) (HDC) IGHG3 

1 IKBA_HUMAN NF-kappa-B inhibitor alpha (I-kappa-B-alpha)  NFKBIA (IKBA) (MAD3)  

107 IKBE_HUMAN NF-kappa-B inhibitor epsilon (I-kappa-B-epsilon)  NFKBIE (IKBE) 

56 IKBZ_HUMAN NF-kappa-B inhibitor zeta (I-kappa-B-zeta)  NFKBIZ (IKBZ) (INAP) 
(MAIL) 

1 IL13_HUMAN Interleukin-13 (IL-13) IL13 (NC30) 

1 IL1A_HUMAN Interleukin-1 alpha (IL-1 alpha) (Hematopoietin-1) IL1A (IL1F1) 

9 IL1B_HUMAN Interleukin-1 beta (IL-1 beta) (Catabolin) IL1B (IL1F2) 

8 IL1RA_HUMAN Interleukin-1 receptor antagonist protein (IL-1ra) IL1RN (IL1F3) (IL1RA) 

1 IL2_HUMAN Interleukin-2 (IL-2) (T-cell growth factor) (TCGF) (Aldesleukin) IL2 

7 IL2RA_HUMAN Interleukin-2 receptor alpha chain (IL-2 receptor alpha subunit)  IL2RA 

9 IRF1_HUMAN Interferon regulatory factor 1 (IRF-1) IRF1 

9 IRF2_HUMAN Interferon regulatory factor 2 (IRF-2) IRF2 

11 IRF4_HUMAN Interferon regulatory factor 4 (IRF-4)  IRF4 (MUM1) 

7 IRF7_HUMAN Interferon regulatory factor 7 (IRF-7) IRF7 

13 JAM1_HUMAN Junctional adhesion molecule A (JAM-A) F11R (JAM1) (JCAM)  

9 K1C15_HUMAN Keratin, type I cytoskeletal 15 (Cytokeratin-15)  KRT15 (KRTB) 

18 KLK3_HUMAN Prostate-specific antigen (PSA)  KLK3 (APS) 

10 KPCD_HUMAN Protein kinase C delta type (nPKC-delta) PRKCD 

80 LEF1_HUMAN Lymphoid enhancer-binding factor 1 (LEF-1)  LEF1 

19 LEG3_HUMAN Galectin-3 (Galactose-specific lectin 3)  LGALS3 (MAC2) 

10 LOX5_HUMAN Arachidonate 5-lipoxygenase (5-lipoxygenase) (5-LO) ALOX5 (LOG5) 

4 LYAM2_HUMAN E-selectin (Endothelial leukocyte adhesion molecule 1) (ELAM-1)  SELE (ELAM1) 

10 LYSC_HUMAN Lysozyme C  (1,4-beta-N-acetylmuramidase C) LYZ (LZM) 

7 M4K1_HUMAN Mitogen-activated protein kinase kinase kinase kinase 1  MAP4K1 (HPK1) 

25 MBP_HUMAN Myelin basic protein (MBP)  MBP 

30 MOT1_HUMAN Monocarboxylate transporter 1 (MCT 1)  SLC16A1 (MCT1) 

4 MYB_HUMAN Myb proto-oncogene protein (C-myb) MYB 

13 MYC_HUMAN Myc proto-oncogene protein (c-Myc) (Transcription factor p64) MYC 

198 MYLK_HUMAN Myosin light chain kinase, smooth muscle (MLCK)  MYLK (MLCK) 

12 NFKB1_HUMAN Nuclear factor NF-kappa-B p105 subunit  NFKB1 
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163 NFKB2_HUMAN Nuclear factor NF-kappa-B p100 subunit  NFKB2 (LYT10) 

177 NGF_HUMAN Beta-nerve growth factor (Beta-NGF) NGF (NGFB) 

9 NMDE1_HUMAN Glutamate [NMDA] receptor subunit epsilon-1  GRIN2A (NMDAR2A) 

16 NMDZ1_HUMAN Glutamate [NMDA] receptor subunit zeta-1  GRIN1 (NMDAR1) 

33 NOS1_HUMAN Nitric oxide synthase, brain  NOS1 

13 NOS2_HUMAN Nitric oxide synthase, inducible  NOS2 (NOS2A) 

8 NQO1_HUMAN NAD(P)H dehydrogenase [quinone] 1  NQO1 (DIA4) (NMOR1) 

7 NRG1_HUMAN Pro-neuregulin-1, membrane-bound isoform (Pro-NRG1)  NRG1 (GGF) (HGL)  

20 OPRD_HUMAN Delta-type opioid receptor (DOR-1) OPRD1 (OPRD) 

14 OPRM_HUMAN Mu-type opioid receptor (Mu opioid receptor) (MOP)  OPRM1 (MOR1) 

9 OSTP_HUMAN Osteopontin (Bone sialoprotein 1)  SPP1 (BNSP) (OPN)  

11 P53_HUMAN Cellular tumor antigen p53 (Tumor suppressor p53)  TP53 (P53) 

331 PDGFB_HUMAN Platelet-derived growth factor subunit B (PDGF subunit B)  PDGFB (PDGF2) (SIS) 

8 PGH2_HUMAN Prostaglandin G/H synthase 2  PTGS2 (COX2) 

6 PGK1_HUMAN Phosphoglycerate kinase 1  PGK1 (PGKA) (MIG10)  

7 PIM1_HUMAN Proto-oncogene serine/threonine-protein kinase Pim-1 PIM1 

10 PK3CA_HUMAN Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha 
isoform  

PIK3CA 

24 PLK3_HUMAN Serine/threonine-protein kinase PLK3  PLK3 (CNK) (FNK) (PRK) 

6 PRGR_HUMAN Progesterone receptor (PR)  PGR (NR3C3) 

28 PSA2_HUMAN Proteasome subunit alpha type-2  PSMA2 (HC3) (PSC3) 

61 PSB9_HUMAN Proteasome subunit beta type-9  PSMB9 (LMP2) (RING12) 

22 PSME2_HUMAN Proteasome activator complex subunit 2  PSME2 

4 PTEN_HUMAN Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase PTEN  PTEN (MMAC1) (TEP1) 

33 PTN13_HUMAN Tyrosine-protein phosphatase non-receptor type 13  PTPN13 (PNP1) (PTP1E) 
(PTPL1) 

45 PTN1_HUMAN Tyrosine-protein phosphatase non-receptor type 1  PTPN1 (PTP1B) 

14 PTPS_HUMAN 6-pyruvoyl tetrahydrobiopterin synthase (PTP synthase)  PTS 

5 RAG1_HUMAN V(D)J recombination-activating protein 1 (RAG-1) (RING finger protein 
74) 

RAG1 (RNF74) 

7 REL_HUMAN C-Rel proto-oncogene protein (C-Rel protein) REL 

87 RELB_HUMAN Transcription factor RelB (I-Rel) RELB 

86 RIPK2_HUMAN Receptor-interacting serine/threonine-protein kinase 2  RIPK2 (CARDIAK)  

60 S10A4_HUMAN Protein S100-A4 (S100 calcium-binding protein A4)  S100A4 (CAPL) (MTS1) 

11 SAT1_HUMAN Diamine acetyltransferase 1  SAT1 (SAT) 

34 SH3L1_HUMAN SH3 domain-binding glutamic acid-rich-like protein SH3BGRL 

2 SKP2_HUMAN S-phase kinase-associated protein 2 (F-box protein Skp2)  SKP2 (FBXL1) 

35 SOX9_HUMAN Transcription factor SOX-9 SOX9 

7 STA5A_HUMAN Signal transducer and activator of transcription 5A STAT5A (STAT5) 

50 TCAM1_HUMAN TIR domain-containing adapter molecule 1 (TICAM-1)  TICAM1 (PRVTIRB) (TRIF) 

7 TERT_HUMAN Telomerase reverse transcriptase  TERT (EST2) (TCS1) (TRT) 

21 TGM2_HUMAN Protein-glutamine gamma-glutamyltransferase 2  TGM2 

26 TIFA_HUMAN TRAF-interacting protein with FHA domain-containing protein A  TIFA (T2BP) 

10 TLR2_HUMAN Toll-like receptor 2  TLR2 (TIL4) 

21 TLR9_HUMAN Toll-like receptor 9  TLR9 
(UNQ5798/PRO19605) 

8 TN13B_HUMAN Tumor necrosis factor ligand superfamily member 13B  TNFSF13B (BAFF) (BLYS)  

6 TNAP3_HUMAN Tumor necrosis factor, alpha-induced protein 3  TNFAIP3 (OTUD7C) 

21 TNF10_HUMAN Tumor necrosis factor ligand superfamily member 10  TNFSF10 (APO2L) (TRAIL) 



99 

 

11 TNFA_HUMAN Tumor necrosis factor (TNF-alpha)  TNF (TNFA) (TNFSF2) 

14 TNFB_HUMAN Lymphotoxin-alpha (LT-alpha) (TNF-beta) LTA (TNFB) (TNFSF1) 

10 TNFC_HUMAN Lymphotoxin-beta (LT-beta) (Tumor necrosis factor C)  LTB (TNFC) (TNFSF3) 

6 TNFL6_HUMAN Tumor necrosis factor ligand superfamily member 6 (Fas antigen ligand)  FASLG (APT1LG1) (FASL 

26 TNIP1_HUMAN TNFAIP3-interacting protein 1 (Nef-associated factor 1)  TNIP1 (KIAA0113) 
(NAF1) 

16 TNIP3_HUMAN TNFAIP3-interacting protein 3 (Listeria-induced gene protein) TNIP3 (ABIN3) (LIND) 

1 TNR1B_HUMAN Tumor necrosis factor receptor superfamily member 1B  TNFRSF1B (TNFBR) 
(TNFR2) 

92 TNR4_HUMAN Tumor necrosis factor receptor superfamily member 4  TNFRSF4 (TXGP1L) 

7 TNR5_HUMAN Tumor necrosis factor receptor superfamily member 5 (CD40L receptor) CD40 (TNFRSF5) 

36 TNR6_HUMAN Tumor necrosis factor receptor superfamily member 6 (FASLG receptor) FAS (APT1) (FAS1) 
(TNFRSF6) 

48 TNR9_HUMAN Tumor necrosis factor receptor superfamily member 9 (4-1BB ligand 

recpt)  

TNFRSF9 (CD137) (ILA) 

7 TRAF1_HUMAN TNF receptor-associated factor 1  TRAF1 (EBI6) 

69 TRAF2_HUMAN TNF receptor-associated factor 2  TRAF2 (TRAP3) 

195 TWST1_HUMAN Twist-related protein 1 (H-twist) TWIST1 (TWIST) 

8 TYY1_HUMAN Transcriptional repressor protein YY1  YY1 (INO80S) 

20 UBC12_HUMAN NEDD8-conjugating enzyme Ubc12  UBE2M (UBC12) 

83 UGGG1_HUMAN UDP-glucose:glycoprotein glucosyltransferase 1  UGGT1 (GT) (UGCGL1)  

6 VIME_HUMAN Vimentin VIM 

157 WT1_HUMAN Wilms tumor protein (WT33) WT1 

11 XIAP_HUMAN Baculoviral IAP repeat-containing protein 4  XIAP (API3) (BIRC4) 
(IAP3) 

 

Similarly, the 234 proteins expressed by NF-B regulated genes not present in the 

interactomes show many interactions with the interactome proteins (data not shown and 

available upon request). Some of these interactions have been interestingly related to 

specific pathologies, while many others remain to be investigated. To name but a few, 

malfunctions of the androgen receptor ANDR have been related to prostate cancer, and 

together cross-modulation between androgen receptor and NF-B proteins have been 

reported. Interestingly, it has been also reported that collectively these data suggest that 

the crucial interactions between ANDR and NF-B complexes are partly due to another 

partner or to competition for a coactivator required for transcription (Péant 2007, Nelius 

2007, Cloke 2008, Palvimo 1996). 

Collective and complex dynamics of similar type has been reported between NF-B 

complexes and other key proteins such as glucocorticoid receptors GCR (Davies 2008), 



100 

 

or between Receptor-interacting serine/threonine-protein kinase 2 (RIPK2), Ubiquitin, 

NEMO and IKKs (Hasegawa 2008), among several other examples. It is worthy to be 

noted that all mentioned interactions have been duly evidenced in the network analysis 

performed on the NF-B pathway system here reconstructed. It may be thus surmised that 

the integrative work performed here can act as a heuristic basis for the discovery and the 

deeper understanding of collective dynamics of complex systems such as the NF-B 

pathway system. 
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4. Conclusion 

________________________________________________________________________ 

4.1. Overview of obtained results 

Considering the wide variety of extra- and intracellular events contributing to the 

activation and the dynamics of NF-B signaling, the complexity of its entangled signaling 

cascade, and the number and diversity of controlled genes, it has been a challenging task 

to reconstruct and get a global view of its interactome, and to finally point out critical 

proteins and feedback cycles that can potentially affect, impinge upon or determine 

alterations in the intricate regulatory mechanisms of the NF-B signaling system. 

Starting from literature and database-stored available data, a map of NF-B pathway-

related protein interactions has been reconstructed. This map is composed by a total of 

140 proteins accounting for 829 protein interactions, including self-interactions. The 

structure of this preliminary system is clearly depicted and includes many cell surface 

receptors (including the TCR-CD3 complex) and several adaptor molecules immediately 

downstream, many caspases, many G proteins, the main kinases, the NF-B family as 

well as the NF-B family inhibitors and their direct regulators, all the proteins composing 

the proteasome complex, some transcriptional activity proteins, and finally few proteins 

with ubiquitination activity. All these proteins have been included in the NF-B pathway 

interactome because they actively participate with different roles and at various stages to 

the signaling cascade that leads to the NF-B transcription factor activation and 

translocation. 

On the basis of this “core interactome”, and using computational tools for automated data 

retrieval, a “wider interactome” has been reconstructed, taking into account all the 

proteins that show evidence of interaction with at least one belonging to the “core 
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interactome”. Running this process, the NF-B pathway wider interactome has been 

reconstructed, resulting in a network of 3146 proteins accounting for more than 42000 

interactions. 

Accessing online available data, the list of the downstream NF-B regulated genes has 

been compiled. The search gave back 422 valid ENSEMBL gene identifiers that map onto 

a 384 reviewed proteins set. This set has been compared with the reconstructed NF-B 

interactomes for the discovery of “protein expression  signal cascade  transcriptional 

activation  protein expression” feedback loops. 

Network analysis and other omics analyses helped in determining and characterizing the 

salient features of the networks, their peculiar architecture and the key nodes in terms of 

the main topological parameters. Overrepresentations of particular Gene Ontology 

categories gave some interesting clues on the composition of the interactomes, in terms of 

belonging to given cellular compartment, or specific molecular functions and biological 

processes, or also to evidence the participation of many proteins to other signaling 

pathways than NF-B. 

The feedback loops discovery analysis helped in determining a number of “self-

regulated” proteins, that is to say proteins that participate to the NF-B activation 

signaling cascade and whose expression is in turn regulated by NF-B itself. While some 

of these feedbacks were already well-known and characterized, many others remain not 

yet studied and analyzed. It can be speculated that a number of these non exhaustively 

studied feedback signals may be key controls for the NF-B dynamics and downstream 

gene expression. Undoubtedly, in this sense, a simple and non exhaustive analysis of 

several feedback cycles has evidenced promising hints about their role in ruling NF-B 

signaling, and many others surely deserve more attention. 
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4.2. Feedback controls 

As said, a major relevant result of this study is the determination of the so-called feedback 

loops or controls. Their number and the nature of the proteins whose expression is 

controlled by NF-B seem to suggest a distinctive structure of the whole NF-B system. 

Conversely, a fundamental question should concern if number and “quality” of the 

feedback loops appear by chance or if it is a peculiar characteristic of the NF-B 

signaling system. Unfortunately, up to now, there is no further easily available data that 

can help to solve this thesis. As explained, and notwithstanding the quantity and quality 

of information at disposal on the internet, there is no plain solution for the integrated view 

of such data nor for the reconstruction of complex objects such as signaling pathways 

starting from omics data. As a consequence, the answer to the request for the comparison 

of structures and architectures of complex pathways remains a non trivial question. 

In the same manner, without the possibility to compare different pathways and without a 

deeper analysis of the feedback, it is still difficult to answer to the question if the nature 

of the feedback loops observed is in some way trivial or if they hide a specific cellular 

function and a meaningful biological interpretation. 

In this view, and speaking on a purely speculative plane, it is possible to consider the 

ability of NF-B to self-regulate the expression of its subunits NFKB1, NFKB2, REL and 

RELB as a form of self-control of such a complex system, while, at the same moment, to 

regard the independence of the TF65 expression (it is the only non-self-regulated subunit) 

from NF-B as a sort of counterbalanced need for external control. In this perspective, it 

is worthy to be noted that TF65 hold a prominent topological position being the most 

central subunit of the NF-B family in the wider interactome. Undoubtedly, further 

integrative and experimental studies are needed to exhaustively respond to the questions 

that arise from the study of the interactomes and the collective analysis of such data. 
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In the same way, from the deeper investigation of any single feedback loop, possibly 

integrated with wet-lab experimental setup, as in the virtuous systems biology cycle, 

many other similarly interesting results may be hopefully arise. 

 

4.3. Further perspectives 

As it can easily guessed, this kind of work is continuously in progress, since the available 

knowledge and data grow and are modified practically on a daily basis. Thus, information 

on proteins, interactions, network and pathways are highly dynamic and rapidly changing. 

Therefore, a necessary task for the updated reconstruction and correct interpretation of 

these complex objects is the continuous integration of newly created and modified data. 

Automation of these kinds of tasks by means of computational tools and databases should 

be made in the near future much easier, together with the much desirable improvement of 

the quality and quantity of the available information. In special way, the meaningful 

structure, arrangement and management of omics data is today a very topical problem, 

since they still need to be dramatically improved and made more accessible. 

From a technical point of view, another interesting perspective consists in the deeper 

integration and further investigation of interaction data among the remaining 234 NF-B 

regulated proteins and the interactomes, task that seems not to pose particular problems 

but the time needed. 

A (necessary) comparison of the such reconstructed NF-B interactomes with other 

pathway interactome is timely and absolutely interesting. As said, since the reconstruction 

and analysis procedures are still strewed with many hurdles, and thus structural and 

topological differences and general comparative analyses should be postponed after the 

completion of integrative work on other available pathway datasets. In this view, the 

progress of methodological and strictly scientific perspectives are tightly joined together. 
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Being this study of a highly integrative and systemic nature, the combination of its 

analytical steps and results with different approaches and methodologies is also desirable. 

A nice addition would be an integrative co-expressed gene network analysis by means of 

microarrays technology, that could be performed in a relatively easy way on the basis of 

already available data or specific and suitable experimental setup. 

Another fundamental type of information worthy to be integrated in such netowrks is that 

relative to protein post-translational modifications (PTMs). PTMs are an extremely 

important cellular control mechanism because it may alter proteins' physical and chemical 

properties, folding, conformation, spatial distribution, stability, activity and consequently, 

their biological functions. Biological effects of PTMs include phosphorylation for signal 

transduction, glycosylation for changing protein half-life, targeting substrates, and 

promoting cell-cell and cell-matrix interactions, among others. Biological 

knowledgebases containing PTM information are not yet very common, but they may 

play key roles in cell regulation and cellular signal elaboration research. More, this kind 

of information may result fundamental for the implementation of dynamical and 

predictive models of cellular information processing networks. 

As said, complex biochemical intracellular signal transduction networks are basically 

information processing network. The integrated characteristics of such networks confers 

nontrivial decision-making ability to the cellular systems and finally to the cell. Likely, 

decision-making functions are an emergent property of the entire system working in 

concert. Thus, starting from static connectivity maps and interactomes of signal 

transduction networks, a major step would consist in extending these initial and 

fundamental results to the study of actual dynamics of large-scale systems (Helikar 2008). 

In order to simulate and observe the dynamics of a system, the complete logic of each 

node in the system, i.e. the set of the outputs in function of the set of the inputs, must be 
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taken into account. Unfortunately, today this kind of valuable information remains very 

difficult to collect, store and make publicly available. On the other hand, the nature itself 

of this kind of information is often ambiguous and unclear. Think for example how many 

states (and function) could be taken by a single protein on the basis of its phosphorylation 

sites, cellular location, time, and other key biological parameters. The full output 

description of a single entity thus becomes a very hard task. As a consequence, the 

implementation of even a simple dynamical model as a Boolean model (with only two 

“on” or “off” output states) is hampered by non trivial difficulties. Again, enabling 

methodologies and computational technologies for high-throughput and automated 

information processing will facilitate and speed up this particularly interesting integrative 

effort, leading to more and more accurate and potentially predictive models. 
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5 Notes 

________________________________________________________________________ 

5.1 Notes on existing information representation stardards 

Standards for representation of information about pathways are necessary for integration 

and analysis of data from various sources. 

XML (Extensible Markup Language) is a set of rules for encoding any kind of document 

and information (and not only limited to the biological field) electronically. It is thus 

suitable for very general purposes. It is defined in the XML 1.0 Specification produced by 

the World Wide Web Consortium (W3C) and several other related specifications; all are 

fee-free open standards. XML‟s design goals emphasize simplicity, generality, and 

usability over the Internet. It is a textual data format, with strong support via Unicode for 

the languages of the world. Although XML‟s design focuses on documents, it is widely 

used for the representation of arbitrary data structures, for example in web services. 

BioPAX (Biological Pathway Exchange - http://www.biopax.org) is a biological pathway 

data exchange format. It enables the integration of diverse pathway resources by defining 

an open file format specification for the exchange of biological pathway data. Widespread 

adoption of BioPAX for data exchange will facilitate access to uniformity of pathway 

data from varied sources, thereby increasing the efficiency of computational pathway 

research. 

The Systems Biology Markup Language (SBML - http://www.sbml.org) is a computer-

readable format for representing models of biological processes. It is mostly used for 

dynamical models of metabolism, cell-signaling, and many other topics. 

PSI-MI (Proteomics Standards Initiative-Molecular Interactions format – 

http://www.psidev.info) is a standard proposed for improving the annotation and 
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representation of molecular interaction data wherever it is published, i.e. in journal 

articles, authors‟ web-sites or public domain databases, and for improving the 

accessibility of molecular interaction data to the user community. 

The Gene Ontology project (http://www.geneontology.org/) is a major bioinformatics 

initiative with the aim of standardizing the representation of gene and gene product 

attributes across species and databases. The project provides a controlled vocabulary of 

terms for describing gene product characteristics and gene product annotation data from 

GO Consortium members, as well as tools to access and process this data. 

 

5.2 List of cited online resources URLs 

The following is an alphabetical and non-exhaustive list of the resources cited and used in 

the described reconstruction and analysis process. 

 

 APID Agile Protein Interaction DataAnalyzer - 

http://bioinfow.dep.usal.es/apid/index.htm 

 Ariadne Genomics Pathway Studio - 

http://www.ariadnegenomics.com/products/pathway-studio/ 

 BIND Biomolecular Interaction Network Database - 

http://bond.unleashedinformatics.com/ 

 BioCarta Pathways - http://www.biocarta.com/genes/index.asp 

 BioGRID The Biological General Repository for Interaction Datasets - 

http://www.thebiogrid.org/ 

 BiologicalNetworks - http://biologicalnetworks.net/ 

 CellDesigner - http://www.celldesigner.org/ 

 ClusterMaker - http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.html 
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 Cytoscape - http://www.cytoscape.org/ 

 DIP Database of Interacting Proteins - http://dip.doe-mbi.ucla.edu/dip/Main.cgi 

 Entrez Gene - http://www.ncbi.nlm.nih.gov/gene/ 

 GenMAPP Gene Map Annotator and Pathway Profiler - http://www.genmapp.org/ 

 Gorilla - http://cbl-gorilla.cs.technion.ac.il/ 

 GraphWeb - http://biit.cs.ut.ee/graphweb/ 

 HPRD Human Protein Reference Database - http://www.hprd.org/ 

 HUBBA Hub objects analyzer - http://hub.iis.sinica.edu.tw/Hubba/ 

 Ingenuity Systems - http://www.ingenuity.com/ 

 IntAct - http://www.ebi.ac.uk/intact/ 

 KEGG Kyoto Encyclopedia of Genes and Genomes - http://www.genome.jp/kegg/ 

 MINT the Molecular INTeraction database - http://mint.bio.uniroma2.it/mint/ 

 NCI-Nature Pathway Interaction Database - http://pid.nci.nih.gov/ 

 NetPath - http://www.netpath.org/ 

 NetworkAnalyzer - http://med.bioinf.mpi-inf.mpg.de/netanalyzer/ 

 Pajek - http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 

 Pathguide: the pathway resource list - http://www.pathguide.org/ 

 PathVisio - http://www.pathvisio.org/ 

 Pathway Commons - http://www.pathwaycommons.org/ 

 R Project for Statistical Computing - http://www.r-project.org/ 

 Reactome - http://www.reactome.org/ 

 SBW Systems Biology Workbench - http://sbw.sourceforge.net/ 

 TRANSFAC & TRANSPATH - http://www.gene-regulation.com/ 

 TRED Transcriptional Regulatory Element Database - http://rulai.cshl.edu/cgi-

bin/TRED/ 
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 UniProt - http://www.uniprot.org/ 

 WikiPathways - http://www.wikipathways.org/index.php/WikiPathways 
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