Dottorato di Ricerca in Informatica

Universita di Bologna e Padova
INF/01 INFORMATICA
Ciclo XXII

Higher-Order Concurrency: Expressiveness and
Decidability Results

Jorge A. Pérez P.

January 2010

Coordinatore: Tutore:

Prof. Simone Martini Prof. Davide Sangiorgi

P

p=b

Higher-Order Concurrency: Expressiveness and Decidability Results

Higher-order process calculi are formalisms for concurrency in which processes can be passed
around in communications. Higher-order (or process-passing) concurrency is often presented
as an alternative paradigm to the first order (or name-passing) concurrency of the w-calculus
for the description of mobile systems. These calculi are inspired by, and formally close to, the

A-calculus, whose basic computational step —B-reduction— involves term instantiation.

The theory of higher-order process calculi is more complex than that of first-order process
calculi. This shows up in, for instance, the definition of behavioral equivalences. A long-
standing approach to overcome this burden is to define encodings of higher-order processes
into a first-order setting, so as to transfer the theory of the first-order paradigm to the higher-
order one. While satisfactory in the case of calculi with basic (higher-order) primitives, this
indirect approach falls short in the case of higher-order process calculi featuring constructs
for phenomena such as, e.qg., localities and dynamic system reconfiguration, which are frequent
in modern distributed systems. Indeed, for higher-order process calculi involving little more
than traditional process communication, encodings into some first-order language are difficult
to handle or do not exist. We then observe that foundational studies for higher-order process

calculi must be carried out directly on them and exploit their peculiarities.

This dissertation contributes to such foundational studies for higher-order process calculi.
We concentrate on two closely interwoven issues in process calculi: expressiveness and decid-
ability. Surprisingly, these issues have been little explored in the higher-order setting. Our
research is centered around a core calculus for higher-order concurrency in which only the
operators strictly necessary to obtain higher-order communication are retained. We develop
the basic theory of this core calculus and rely on it to study the expressive power of issues
universally accepted as basic in process calculi, namely synchrony, forwarding, and polyadic

communication.

Keywords: concurrency theory, process calculi, higher-order communication, expressiveness,

decidability.

Acknowledgments

My greatest debt is to Davide Sangiorgi. Having him as supervisor has been truly inspiring.
His careful supervision has influenced enormously my way of doing (and approaching) research.
His continuous support and patience during these three years were fundamental to me. | am
still amazed by the fact that Davide had always time for me, not only for scientific discussions
but also for sorting out everyday issues. | am most grateful to him for his honest and direct
advice, and for the liberty that he gave me during my studies.

| also owe much to Camilo Rueda and Frank D. Valencia. | do not forget that it was Camilo
who introduced me to research, thus giving me an opportunity that most people in his position
would have refused. Even if my PhD studies were not directly related to his research interests,
Camilo was always there, interested in my progresses, encouraging me with his support and
friendship. Frank not only introduced me to the concurrency theory; he also gave me constant
advise and support during my PhD studies and long before. Frank had a lot to do with me
coming to Bologna, and that | will never forget.

There is no way in which | could have completed this dissertation by myself. It has been a
pleasure to collaborate with extremely talented people, to whom | am deeply grateful: Cinzia
Di Giusto, Ivan Lanese, Alan Schmitt, Gianluigi Zavattaro. Thank you for your kindness,
generosity and, above all, for your patience.

Many thanks to Uwe Nestmann and Nobuko Yoshida for having accepted to review this
dissertation. Thanks also to the members of my internal committee (commissione), Cosimo
Laneve and Claudio Sacerdoti-Coen. | am indebted to Simone Martini, the coordinator of the
PhD program, for all his constant availability and kindness.

Many people proof-read parts of this dissertation, and provided me with constructive crit-
icisms. | am grateful to all of them for their time and availability: Jests Aranda, Alberto
Delgado, Cinzia Di Giusto, Daniele Gorla, Julidn Gutiérrez, Hugo A. Lopez, Claudio Mezzina,
Margarida Piriquito, Frank D. Valencia. A special thanks goes to Daniele Varacca, who suf-
fered an early draft of the whole document and provided me with insightful remarks. Along
these years | have benefited a lot from discussions with/comments from a lot of people. |
am most grateful for their positive attitude towards my work: Jests Aranda, Ahmed Bouaj-

jani, Gérard Boudol, Santiago Cortés, Rocco De Nicola, Daniele Gorla, Matthew Hennessy,

vi

Thomas Hildebrandt, Kohei Honda, Roland Meyer, Fabrizio Montesi, Camilo Rueda, Jean-
Bernard Stefani, Frank D. Valencia, Daniele Varacca, Nobuko Yoshida.

During 2009 | spent some months visiting Alan Schmitt in the SARDES team at INRIA
Grenoble - Rhéne-Alpes. The period in Grenoble was very enriching and productive; a sub-
stantial part of this dissertation was written there. | am grateful to Alan and to Jean-Bernard
Stefani for the opportunity of working with them and for treating me as another member of
the team. | would like to thank Diane Courtiol for her patient help with all the administrative
issues during my stay, and to Claudio Mezzina (or the “tiny little Italian with a pony tail",
as he requested to be acknowledged) for being such a friendly office mate. | also thank the

INRIA Equipe Associée BACON for partially supporting my visit.

I would like to express my appreciation to the University of Bologna - MIUR for supporting
my studies through a full scholarship. Thanks also to the administrative staff in the Department

of Computer Science, for their help and kindness in everyday issues.

| am most proud to be part of a small group of Colombians doing research abroad. We
all share many things: we started in the same research group, have similar backgrounds, and
came to Europe more or less at the same time. With most of them | even shared an office for
a long time. Many thanks to: Jests Aranda, for his inherent kindness; Alejandro Arbelaez, for
the good times while working in Colombia and his hospitality during trips to Paris; Andrés
Aristizabal, for the constant support in spite of our favorite football teams; Alberto Delgado,
with whom | started doing research back in 2002 and has always been there ever since;
Gustavo Gutiérrez, for the old, good times when he was my first boss, and for the sincere
support during all these years; Julian Gutiérrez, for all the discussions on life and research,
during our PhDs and even way before; Hugo A. Lépez, for sharing with me the experience
of living in Italy, several trips, and a plenty of discussions on concurrency theory and life
at large; Carlos Olarte, for all the good times in Paris and hospitality in the great city of
Bourg-la-Reine; Luis O. Quesada, for his exceptional kindness and hospitality during a visit
to Ireland (despite of the fact that my visit brought historical floodings to the Cork region).
Above all, | would like to thank all of them for being my friends.

Perhaps the most significant achievement of my PhD studies is all the people | have meet
along the way. A special thanks goes to: Cinzia Di Giusto, for her constant support and
friendship, and for being the most enthusiastic partner in research one could imagine; Antonio
Vitale, for the several trips and for sharing with me bits of PhD frustration and pizzas of varying
quality; Ivan Lanese, the loyal friend, the reasonable flat mate, and talented co-author. Thanks
also to: Stefano Arteconi, for insightful and enjoyable discussions on Italy, movies, and music;
Ferdinanda Camporesi, for the many chats and the movies we watched together; Marco Di
Felice, for being the most welcoming and friendly office mate in underground and being worse

than me in calcetto; Ebbe Elsborg (and family) —the most loyal reader of my blog— for the

vii

most splendid vacation in Copenhagen | could have imagined, and for plenty of discussions
on pretty much every aspect of life; Elena Giachino and Luis Pérez, for all the fun we had
together at summer schools and parties at Pisa; Zeynep Kiziltan, for the chats over lunch that
didn’t deal about work; Flavio S. Mendes, for the many trips we did together around Italy,
the constant support and friendship, and the many times | stayed at his place; Margarida
Piriquito, for the most unexpected friendship | can remember; Sylvain Pradalier, or the coolest
French quy | could have shared an office with; Alan Schmitt (and family), for the several great
dinners at his place (in Grenoble, but also in Casalecchio) and the clever games in which |
would suck no matter how hard | would try.

Last but not least, | would like to thank my family for their unconditional, constant support.
There are no words to thank my parents, my sisters, my brother, and my grandmother. Their
love gave me strength to overcome the difficult times. | would also like to thank Andrés F.
Monsalve, who is more like a brother than a friend to me. Thanks also to the rest of my family,

the many cousins, uncles, and aunts for their continued support towards me.

Contents

Acknowledgments

List of Figures

1

Introduction

1.1 Context and Motivation

1.2 First-Order and Higher-Order Concurrency

1.3 This Dissertation
131 Expressiveness and Decidability in Higher-Order Concurrency.
132 Approach
133 Contributions and Structure L L

Preliminaries

21 Technical Background
211 Bistmilarity . . . o oo
212 A Calculus of Communicating Systems
213 More on Behavioral Equivalences00
214 A Calculus of Mobile Processes

2.2 Higher-Order Process Calculi
221 The Higher-Order m-calculus
222 Sangiorgi’'s Representability Result.
223 Other Higher-Order Lanquages
224 Behavioral Theory L

2.3 Expressiveness of Concurrent Languages
231 Generalities
232 The Notion of Encoding
233 Main Approaches to Expressiveness oL
234 Expressiveness for Higher-Order Lanquages

xiit

Contents

3 A Core Calculus for Higher-Order Concurrency

31
3.2

33

The Calculus oo
Expressiveness of HOcore
321 Guarded Choice
322 Input-quarded Replication
323 Minsky machines L oL oL

Concluding Remarks L

4 Behavioral Theory of HOcore

4.1
42
43

4.4
45
46

Bisimilarity in HOcore
Barbed Congruence and Asynchronous Equivalences
Axiomatization and Complexity
431 Axiomatization o
432 Complexity of Bisimilarity Checking
Bisimilarity is Undecidable with Four Static Restrictions
Other Extensions

Concluding Remarkso

5 On the Expressiveness of Forwarding and Suspension

5.1
52
53

54

55

5.6

Introduction
The Calculus oo
Convergence is Undecidable in Ho™"
531 Encoding Minsky Machines into Ho™"

532 Correctness of the Encoding

f

Termination is Decidable in Ho™
541 Well-Structured Transition Systems
542 A Finitely Branching LTS for Ho™'
543 Termination is Decidable in Ho™"

On the Interplay of Fowarding and Passivation

55.1 A Faithful Encoding of Minsky Machines into HoP~

552 Correctness of the Encoding

Concluding Remarkso

Contents xi

6 On the Expressiveness of Synchronous and Polyadic Communication 127
6.1 Introduction 127
6.2 The Calculi 132

6.2.1 A Higher-Order Process Calculus with Restriction and Polyadic Com-
munication 132

6.2.2 A Higher-Order Process Calculus with Synchronous Communication . . 134

6.3 An Encodability Result for Synchronous Communication 135
6.4 Separation Results for Polyadic Communication 136
6.4.1 The Notion of Encoding 137

6.4.2 Distinguished Forms oL 138

6.4.3 A Hierarchy of Synchronous Higher-Order Process Calculi 145

6.5 The Expressive Power of Abstraction Passing 150
6.6 Concluding Remarks 152

7 Conclusions and Perspectives 155
71 Concluding Remarks 155
7.2 Ongoing and Future Work L oo 157

References 161

List of Figures

11

2.1
22
23
24
25
2.6

31

4.1

5.1
5.2
53
54

6.1

The higher-order process calculi studied in this dissertation. 14
An LTS for CCS 18
Reduction semantics for the s-calculus. o o o0 24
The (early) labeled transition system for the sm-calculus 25
The labeled transition system for HOxr 27
The compilation C from higher-order into first-order s-calculus 28
Reduction of Minsky machines o oL 49
Encoding of Minsky machines into HOcore 59
Encoding of PCP into HOCORE 86
An LTS for Ho™' Lo oo 95
Encoding of Minsky machines into Ho™" 96
A finitely branching LTS for Ho™" 107
Encoding of Minsky machines into HoP~". 119
The LTS of AHO . . . L o oL 133

Chapter 1

Introduction

This dissertation studies calculi for higher-order concurrency, and focuses on their expres-
sive power and decidable properties. Our thesis is that a direct and minimal approach to
the expressiveness and decidability of higher-order concurrency is both necessary and rele-
vant, given the emergence of higher-order process calculi with specialized constructs and the

inconvenience (or non-existence) of first-order representations for such constructs.

1.1 Context and Motivation

The challenging nature of concurrent systems is no longer a novelty for computer science. In
fact, by now there is a consolidated understanding on how concurrent behavior departs from
sequential computation. Based on pioneering developments by Hewitt, Milner, Hoare, and
others, the last three decades have witnessed a remarkable progress on the formulation of
foundational theories of concurrent processes; notions such as interaction and communication
are widely accepted to be intimately related to computing at large. Given the wealth of
abstract languages, theories, and application areas that have emerged from this progress, it

is fair to say that concurrency theory is no longer in its infancy.

This development of concurrency theory coincides with the transition towards global ubiq-
uitous computing we witness nowadays. Supported by a number of technological advances
—most notably, the availability of cheaper and more powerful processors, the increase in flexi-
bility and power of communication networks, and the widespread consolidation of the Internet—
global ubiquitous computing (GUC, in the sequel) is a broad term that refers to computing
over massively networked, dynamically reconfigurable infrastructures that interconnect het-
erogeneous collections of computing devices. As such, systems in GUC represent the natural
evolution of traditional distributed systems, and distinquish from these in aspects such as

mobility, network-awareness, and openness on which we comment next.

2 Chapter 1. Introduction

Nowadays we find mobility in devices that move in our physical world while performing
diverse kinds of computation (mobile phones, laptops, PDAs), as well as in objects travelling
across communication networks (SMSs, structured data as XML files, snippets of runnable
code, software agents). Sustained advances in bandwidth growth and network connectivity
have broaden the range of feasible communications; as a result, communication objects not
only exhibit now an increasingly complex structure but also an autonomous nature. This
evolution in the nature of communication objects can be seen in a number of applications

these days:

Distribution of digital content. It is becoming increasingly popular to buy the right to down-
load digital content (music, video, books) from online stores directly to personal comput-
ers or mobile devices. Here the communication objects are the (pieces of) multimedia
files that are transmitted from the online store to the customer; these are files in stan-

dardized media formats and hence self-contained to a large extent.

Plug-ins (or add-ons). Plug-ins are self-contained programs that integrate within applica-
tions (e.g. web browsers, email clients) with the purpose of inserting, removing, or
updating functionalities at runtime. For instance, plug-ins in web browsers have made
possible a transition from data mobility to code mobility: rather than submitting data
to a web service and getting results, the model is to download the required behavior
(e.g. a snippet of JavaScript code) and apply it to data which may be local or remote.
Similarly, most tools for software update are in fact small helper applications available
online, ready to be downloaded; once installed, they obtain information on the current
configuration of the system and use it to retrieve the most appropriate update from some

application server.

Service-oriented Computing. Services are software artifacts which can be accessed, manip-
ulated, structured into complex architectures, and distributed in wide area networks
such as the Internet. Services are the building blocks in service-oriented computing, an
approach to distributed applications that has received much attention in recent years.
Forms of service mobility are most natural to service-oriented architectures that define
workflows involving services which cannot be determined statically before execution. As
such, these services must be found and integrated at run time. The behavior of such

architectures thus depends on correct, reliable forms of service/code mobility.

In general, mobility cannot abstract from the locations of the moving entities (computing
devices, communication objects). For instance, in the service-oriented computing scenario just
sketched, it is crucial to be able to tell where a requested service is (e.g. in the service provider,
in the requester, in transit) as such information entails a different behavior for the system. A

location can be as concrete as the wireless network a PDA connects to, or as abstract as the

1.1. Context and Motivation 3

administrative domains in which wide area networks are usually partitioned. A commonality
here is the reciprocal relationship between locations and mobility, as (the behavior of) a mobile
entity and its surrounding environment (determined by its location) might have direct influence
on each other. This can be seen, for instance, in the relationship between network bandwidth
and the quality of service available to mobile devices; in the websites that change depending on
the country in which they are accessed; in the actions of network reconfiguration triggered by
high peaks of user activity. This phenomenon is sometimes referred to as network-awareness:
it can be seen to embody a notion of structure that not only underlies mobile behavior but

that often determines it.

The openness of modern computing environments results from the understanding that sys-
tems in GUC are built as very large collections of loosely coupled, heterogeneous components.
These components might not be known a priori; unknown or partially specified components
could enter and leave the system at will. In general, an open system should allow to add,
suspend, update, relocate, and remove entire components transparently. From a global point
of view, open systems are seldom meant to terminate; as such, their overall behavior must
abstract from changes on the local state of its components, and in particular from their mal-
function. Hence, forms of dynamic system reconfiguration, with varying levels of autonomy,
are most natural within models of open systems. It is worth pointing that openness is closely
related to mobility and network-awareness in that not only complete components might move
across the predefined structure of the system, but also it might occur that such a structure
is reconfigured as a result of the interactions of mobile components. This is the case of, for
instance, a running component which disconnects from one location and later on reconnects

to some other location.

Systems in GUC therefore represent a challenge for computer science in general, and
for concurrency theory in particular. As we have seen, such environments feature complex
forms of concurrent behavior that go way beyond the (already complex) interaction patterns
present in traditional distributed systems. The challenge therefore consists in the formulation

of foundational theories to cope with the features of modern computing environments.

We believe that in this context higher-order concurrency has much to offer. In fact, process-
passing communication as available in higher-order process calculi is closely related to the
aspects of mobility, network-awareness, and openness discussed for GUC. The communication
of objects with complex structure can be neatly represented in higher-order process calculi
by the communication of terms of the lanquage. As in the first-order case, extensions of
higher-order process calculi with constructs for network-awareness are natural; process com-
munication adds the possibility of describing richer and more realistic interaction patterns
between different computation loci. Furthermore, higher-order communication allows to con-

sider autonomous, self-contained software artifacts —such as components, services, or agents—

4 Chapter 1. Introduction

as first-class objects which can be moved, executed, manipulated. This allows for clean and
modular descriptions of open systems and their behavior.

At this point it might be clear that higher-order communication arises in abstract languages
for GUC in the form of specialized constructs that go beyond mere process communication.
Instances of such constructs include forms of localities that lead to involved process hierarchies
featuring complex communication patterns; operators for reflection that allow to observe and/or
modify process execution at runtime; sophisticated forms of pattern matching or cryptographic
operations used over terms representing messages or semi-structured data.

The wide range and inherent complexity of the higher-order interactions that underlie these
specialized operators cast serious doubts on the convenience of studying the theory of higher-
order concurrent languages featuring such operators by means of first-order representations.
Based on this insight, in this dissertation we shall argue that foundational studies for higher-
order process calculi must be undertaken directly on them and exploit their peculiarities. This
is particularly critical for those issues that have remained unexplored in the theory of higher-
order concurrency. We shall concentrate on two of such issues, namely expressiveness and

decidability, two closely interwoven concerns in process calculi at large.

1.2 First-Order and Higher-Order Concurrency

In this section we first comment on the relationship between first-order and higher-order
concurrency. Then, we give intuitions on Sangiorgi’s representability result of higher-order
into first-order concurrency, and argue that it does not carry over to higher-order languages
with specialized constructs. As compelling example, we illustrate the case of a higher-order

process calculus with a very basic form of localities.

Two Kinds of Mobility. Broadly speaking, mobility has arisen in calculi for concurrency in
essentially two kinds: link and process mobility. In the first kind it is links that move in
an abstract space of linked processes, whilst in the second kind it is processes that move
(Sangiorgi and Walker, 2001). By far, link mobility has attracted most of the attention of
the research community in process calculi. In the s-calculus (Milner et al,, 1992; Sangiorgi
and Walker, 2001) —arguably the most influential process calculus— link mobility is achieved
by means of name-passing. While the impact of the m-calculus can be appreciated in the
numerous efforts devoted to study its theory, variants, and applications, its significance is
strongly related to the unifying view it provides to explain otherwise unrelated models and
paradigms such as, e.g., the A-calculus (Milner, 1992; Sangiorgi, 1992), concurrent object-
oriented programming (Walker, 1995), and structured communication (Honda et al,, 1998). It
is therefore no surprise that first-order concurrency based on the communication of links is

the predominant paradigm in process calculi for mobility.

1.2. First-Order and Higher-Order Concurrency 5

In comparison, process calculi for higher-order concurrency have attained much less at-
tention. Higher-order process calculi emerged first as concurrent extensions of functional
languages (see, e.g., (Boudol, 1989; Nielson, 1989)). As a matter of fact, higher-order process
calculi are inspired by, and formally close to, the A-calculus, whose basic computational step
— B-reduction — involves term instantiation.! Later on, as a way of studying forms of code mo-
bility and mobile agents, a number of process calculi extended with process-passing features
were put forward; examples include CHOCS (Thomsen, 1989), Plain CHOCS (Thomsen, 1993),
and the Higher-Order mr-calculus (Sangiorgi, 1992), which were intensely studied in the early
1990s. Although that period witnessed remarkable progresses on the theory of higher-order
process calculi (most notably, on the development of their behavioral theory), a number of
fundamental issues were not addressed. Some of such issues still remain unexplored; this is

the case of expressiveness and decidability, central to this dissertation.

The contrast in the attention that each paradigm has received is certainly not a coin-
cidence. We believe it can be explained by the introduction of what is probably the most
prominent result for higher-order process calculi: in the context of the m-calculus, Sangiorgi
(1992) showed that the higher-order paradigm is representable into the first-order one by
means of a rather elegant translation, in which the communication of a process is modeled as
the communication of a pointer that can activate as many copies of such a process as needed.
Crucially, such a translation is fully-abstract with respect to barbed congruence, the form of
contextual equivalence used in concurrency theory. Hence, the behavioral theory from the
first-order setting can be readily transferred to the higher-order one. By demonstrating that
the higher-order paradigm only adds modeling convenience, this result greatly contributed
to consolidate the sm-calculus as a basic formalism for concurrency. It also appears to have
contributed to a decline of interest in formalisms for higher-order concurrency. In our view,
Sangiorgi's representability result was so conclusive at that time that it indirectly put for-
ward the idea that his translation could be adapted to represent every kind of higher-order
interaction. This misconception seems to persist nowadays, even if, as we shall see, it has
been shown that for higher-order process calculi with little more than process communication,
translations into some first-order language —as in Sangiorgi's representability result— are

unsatisfactory or do not exist.

"Probably as a consequence of this, the appellation higher-order is often used to refer to the exchange of values
that might contain terms of the language, i.e., processes. Also intrinsically related with the appellation higher-order
is the non-linear character of process mobility in higher-order process calculi: upon reception, received processes
can be freely copied, or even discarded. This is one of the points of contrast between higher-order process calculi
and calculi for mobility such as Ambients (Cardelli and Gordon, 2000) and its several variants, in which processes can
move around but cannot be copied or discarded, i.e., they feature linear process mobility. For this reason, in what

follows we do not consider calculi such as Ambients as higher-order process calculi.

6 Chapter 1. Introduction

Sangiorgi’'s Representability Result. Let us give an intuitive overview of Sangiorgi’s rep-
resentability result of higher-order m-calculus into the (first-order) m-calculus, as presented
in (Sangiorgi, 1992). The discussion here will be informal: our focus will be on rough intu-
itions rather than on technicalities. Formal details and extended explanations are deferred to
Chapter 2.

Sangiorgi’s translation of higher-order into first-order s-calculus can be presented as
follows. Letus use P, Q,R, M, N, ... to range over processes. Assume that @(P). Q represents
the output of process P on name (or channel) a, with continuation Q. The higher-order input
action a(x). P expects a process value on name a and, upon reception of a process R in the
bound variable x, it behaves as the process P in which all free occurrences of x have been

substituted with R. Constructs for parallel composition ||, non-deterministic choice +, name

restriction vr P, process replication !P, and inaction 0 are assumed as expected. The reaction

rule
(a(x). M+ M) | (@R).N+N)— M{Rx} | N.
defines the behavior of higher-order processes independently of its environment.
As an example, consider the higher-order process

P = G(B(R).0.0 || a(x).x || b(y).y (1.1)

for which it holds that

P — b(R).0| b(y).y
— R.

We consider now the translation of higher-order processes into the sr-calculus. As men-
tioned before, it represents process passing by means of reference passing. Let [-] be the

mapping from the higher-order sm-calculus into the m-calculus defined as

[a(P).Q] = (vm)a(m).([Q] | 'm.[P]) with m & fn(P, Q)
[ax).R] = a(x).[R]
X = X
and that is a homomorphism for the other constructs. Intuitively, the communication of a process
P is represented by the communication of a unique name m that is used by the recipient to

trigger as many copies of P as required. Now consider the translation of P in (1.1); it is given

as follows, with m, n fresh in R,

[Pl = (vm)a(m).(0 || 'm.[b(R).0]) || a(x)-X | b(y).T
= (vm)a(m).(0 || tm.(vn)b{n).(0 || In.[R]) | a(x).X || bly).7

1.2. First-Order and Higher-Order Concurrency 7

we then have

[Pl — (vm)('m.(vn)b(n).(O || !n.[R]) [| M) || b(y)-g
— (vm)(vn) (b{n). (O [| 'n.[R]) || tm.(vn) b(n).(O || 'n.[R])) || b(y).T
— (vm)(vn) (!n.[R] || !m.(vn) b{n). (O | 'n.[R]) || 7)

— (vm)(vn) ([R] [!n.[R] || tm. (vn) b{n).(O || !n.[R]))
~ [R]

where ~ stands for a relation that allows to disregard behaviorally irrelevant processes.

When First-Order Is Not Higher-Order. The above example should be sufficient to under-
stand how process mobility is realized by means of reference passing in Sangiorgi’s translation.
Indeed, the movement of processes is represented as the movement of names that refer to pro-
cesses. At this point it is useful to quote Cardelli and Gordon (2000) who, when introducing

the Ambient calculus, criticize a reference-based approach to mobility:

There is no clear indication that processes themselves move. For example, if a
channel crosses a firewall (that is, if it is communicated to a process meant to
represent a firewall), there is no clear sense in which the process has also crossed
the firewall. In fact, the channel may cross several independent firewalls, but a

process could not be in all those places at once.

As a matter of fact, what this remark reveals is the following: when process mobility is
to be considered in conjunction with notions of observable behavior that explicitly account
for the location in which behavior takes place, the reference-passing approach for mobility is
inadequate to capture process movement. Translations such as Sangiorgi's are therefore not
robust enough in the context of explicit notions of locality, such as the required by in the
modelling of network-aware systems.

Let us elaborate on this point by means of an example. Consider the higher-order process

def

P =a(T).Q | a(x).(x || x). (1.2)

It is easy to see that via a synchronization on a, P is able to produce two copies of T,

running in parallel with the continuation Q, i.e.
P—OQ|T|T.

Now suppose we extend our higher-order calculus with a basic form of localities. More
precisely, let us assume that processes are of the form {P}; which intuitively represents the

process P executing in the computation locus [. The reaction rule given before is extended

8 Chapter 1. Introduction

accordingly; it allows interactions between complementary actions in two —possibly different—
localities:

{a()-M+ MYy | {@(R).N + N}y — {M{Rix}}n || {N}a.

Let us consider P’, the located version of P in (1.2). Process P’ involves two different

localities s and r for sender and receiver processes, respectively:

, def
P = {a(T). O}s Il {a(x). (x [)}
The behavior of P’ is essentially the same of P, except for the fact that T is associated to
location r. Intuitively, this represents the movement of T in the space of locations both s and

r belong to:

P — {Q} I{T I T}

Indeed, we now have an observable behavior of the system that is finer in that we are now
able to tell not only that Q executes in parallel with two copies of T, but also that Q executes
in location s whereas that T | T executes in location r. Let us consider the first-order
representation of P’ given by the extension of Sangiorgi's translation to the located case.
(Without loss of generality we can assume that the translation [-] is homomorphic also with

respect to locations, i.e. [{P};] = {[P]}:.) This way, we have

PT = {lvm)a(m). Q] | 'm.[T]D}s Il {a(x). (x [¥}
— (vm) ({[O] || tm.[T1}s || {m || m})
— (vm) ({[OT [T tm [T1}s || {m})
—~ A{[ONITTT I [TT}s I {0}

which is certainly unsatisfactory under any reasonable notion of behavioral equivalence with
explicit locations since, unlike the source term, process [T || T] is executed in location s. It is
clear that what moved in the translation was a pointer to the copies, rather than the processes
themselves.

The morale of this example is that while translations such as Sangiorgi's are satisfactory
in the case of “basic” higher-order languages, this is not necessarily the case for higher-order
process calculi with specialized constructs, such as the ones required in global and ubiquitous
computing scenarios. It is in this sense that we claim that Sangiorgi's representability result
induced a generalized misconception, both on the nature of higher-order communication and
on the applicability of the translation. This is certainly not an original insight; as a matter
of fact, Sangiorgi and Walker (2001) comment on this issue, remarking on the potentially
dangerous effects some other operators could have in Sangiorgi's translation. Vivas and Dam
(1998) and Vivas and Yoshida (2002) have studied such effects in the case of higher-order lan-

guages involving dynamic binding. Also, the nature of the passivation operators introduced in

1.3. This Dissertation 9

(Hildebrandt et al., 2004; Schmitt and Stefani, 2004) to represent the suspension of executing
processes —as required in, e.g., forms of dynamic system reconfiguration— strongly suggests
that they are not representable into some first-order setting. All these works thus provide com-
pelling evidence of the need of developing the theory of higher-order process calculi directly

on them, without going through intermediate translations.

1.3 This Dissertation

This dissertation studies expressiveness and decidability issues in higher-order concurrency.
The research is centered around a core calculus for higher-order concurrency in which only
the operators strictly necessary to obtain higher-order communication are retained. Next, we
give an overview to expressiveness and decidability in concurrent languages in general, and
in higher-order concurrency in particular. Then, we elaborate on the approach we shall follow

in our research. Finally, we comment on the contributions and structure of the dissertation.

1.3.1 Expressiveness and Decidability in Higher-Order Concurrency

An important criterion for assessing the significance of a paradigm is its expressiveness. Ex-
pressiveness studies are concerned with formal assessments of the expressive power of a
language or family of languages. The precise meaning of “expressive power” depends on the
purpose, and several suitable definitions are possible. At the heart of all of them, however,
is the notion of encoding: a map from the terms of a source language into those of a target
language, subject to a set of correctness criteria.

The quest for a unified definition of encoding —in particular, a set of correctness criteria
that a good encoding should enforce— has been a matter of research for some time now, and
concrete proposals have been put forward. In spite of this, there is yet no general agreement
on such a definition. In our view, a single, all-embracing definition of encoding is unlikely to
exist, essentially because expressiveness studies may have many different purposes, and may
be carried out over concurrent lanquages of a very diverse nature. This way, the set of criteria
required in the definition of a taxonomy aimed at relating different process calculi should be
different from, for instance, the criteria required when the interest is on transferring reasoning
principles from one language to another. Indeed, whereas in the latter case the definition of
encoding should impose rather strict criteria on the relationship between equivalent terms in
both source and target languages, in the former case the adopted definition could well enforce
milder forms of correspondence between equivalent terms, and/or consider criteria oriented
at capturing precise aspects of the relationships of interest. Hence, differences between the
two sets of criteria do not mean one is better than the other; they just reflect the different

motivations underlying the respective expressiveness studies. Nevertheless, considering the

10 Chapter 1. Introduction

“quality” of an encoding is still interesting because, as we shall see, there is a direct relation-
ship between the precise definition of encoding and the significance of the results obtained

with it. We treat this issue in length in Chapter 2.

As hinted at above, expressiveness has been little studied for higher-order process calculi.
Most previous works address issues of relative expressiveness: higher-order calculi (both se-
quential and concurrent) have been compared with first-order calculi, but mainly as a way of
investigating the expressiveness of the s-calculus and similar formalisms. In addition to the
representability result in (Sangiorgi, 1992), the expressiveness of higher-order process calculi
was studied in (Sangiorgi, 1996b), where variants of the s-calculus with different degrees of
internal mobility are related to typed variants of the Higher-Order s-calculus. Interestingly,
this work presents encodings of (variants of) the s-calculus into strictly higher-order process
calculi, i.e., calculi in which only pure process passing is allowed and no name-passing is
present. The only other result on the expressiveness of pure process passing we are aware of
is (Bundgaard et al.,, 2006), where an encoding of the s-calculus into Homer —a higher-order
process calculi with locations (Hildebrandt et al., 2004)— is presented. Encodings of variants
of the m-calculus into the Higher-Order s-calculus were first given in (Sangiorgi, 1996b) and
later consolidated in (Sangiorgi and Walker, 2001), where the abstraction mechanism of the
higher-order sr-calculus is exploited. Thomsen (1990) and Xu (2007) have proposed encod-
ings of sr-calculus into Plain CHOCS. These encodings make essential use of the relabeling
operator of Plain CHOCS.

The expressiveness of concurrent lanqguages is closely related to decidability issues. Given
a concurrent language, it is legitimate to ask whether or not its expressive power is related to
the decidability of some property of interest. Examples include properties related with behav-
ioral equivalences (e.g. strong bisimilarity), termination of processes (e.g. convergence), and
graph-like structures (e.g. reachability and coverability). An appealing question here is “what
is the most expressive fragment of the lanquage in which the property is decidable?” There is
a trade-off between expressiveness and decidability: most interesting decision problems are
generally undecidable for very expressive lanquages. Hence, given a process calculus and
some property of interest, a common research direction is identifying the largest sub-calculus
for which the property is decidable. Studies dealing with the interplay of expressiveness and
decidability are relevant in that they provide support for verification: they might pave the way
for the implementation of tools, or provide insights on the aspects that might be sensible for

verification purposes.

Studies of decidable properties for higher-order process calculi are scarce. The only work
we are aware of is (Bundgaard et al., 2009), in which the interest is on the decidability of

barbed bisimilarity in the context of Homer.

1.3. This Dissertation 1

1.3.2 Approach

We shall follow a direct and minimal approach for investigating the expressive power and

decidability of higher-order process calculi.

Our approach is direct in that we abandon the idea of studying the foundations of higher-
order concurrency by means of translations into first-order languages. Based on the inade-
quacy of studying higher-order concurrency through first-order translations (as discussed in
the previous section), we advocate that foundational studies for higher-order process calculi
must be carried out directly on them and exploit their peculiarities. While we concentrate
on expressiveness and decidability issues, this direct approach is in concordance with that
advocated by recent works on other aspects of the theory of higher-order process calculi, such
as behavioral theory (see, e.g., (Lenglet et al., 2008; Sato and Sumii, 2009)) and type systems
(Demangeon et al., 2009).

On the other hand, our approach is minimal in that the research shall be centered around
a core calculus for higher-order concurrency in which only the operators strictly necessary to
obtain higher-order communication are retained. The calculus, called HOcoRE, aims to be the

simplest, non-trivial process calculus featuring higher-order concurrency. In particular:

e HOCORE has no name-passing, so processes are the only kind of values that can be
passed around in communications. This is in sharp contrast to most higher-order process

calculi in the literature, in which both name-passing and process-passing are present.

e HOCORE has no restriction operator, thus all channels are global, and dynamic creation
of new channels is impossible. As such, the behavior of a concurrent system described
in HOcoRE is completely exposed. Also, it is worth noticing that the syntax of higher-
order process calculi (including HOcoRE) usually omits primitive operators for infinite
behavior (as replication), as they can be encoded by mimicking the structure of fixed-
point combinators in the A-calculus. Known encodings of fixed-point combinators require
restriction; therefore, the lack of restriction in HOcoRE is directly related to its ability
of expressing infinite behavior. While in most of the dissertation we consider HOcoRre
(or variants of it) without restriction, we shall find it useful to consider an extension with

restriction useful when examining synchronous and polyadic communication.

e HOCORE has no output prefix so it is an asynchronous calculus. It is well-known that
asynchronous communication is easier to implement and maintain that synchronous com-
munication. As such, it appears as the most elemental communication discipline one
could adopt. Asynchrony represented as the absence of continuations after output ac-
tions is the main feature of the asynchronous m-calculus, which was proposed in seminal

papers by Boudol (1992) and Honda and Tokoro (1991), and thoroughly studied since

12 Chapter 1. Introduction

then. Within concurrency theory, the expressive power of asynchrony has been stud-
ted by Palamidessi (2003) (see also (Cacciagrano et al., 2007; Beauxis et al., 2008)),
who showed that in the m-calculus with choice synchronous communication is more ex-
pressive than asynchronous one. Even if the same phenomenon should not necessarily
carry over to a higher-order setting —we shall address this issue in this dissertation—
, Palamidessi's result ought be taken as an additional evidence of the simplicity that

asynchrony might embody in process calculi.

The minimality of HOcoRE is convenient in that it allows us to focus on higher-order
communication and its associated phenomena, without being shadowed by complex constructs
nor by first-order interactions; studies of expressiveness and decidability for HOcore will

therefore reflect the inherent to pure process passing and shed light on their intrinsic nature.

1.3.3 Contributions and Structure

The dissertation contributes to the theory of higher-order concurrency with several original
results on the expressiveness and decidability of HOcore and a number of selected variants
of it. Our results complement the few ones in the literature, and deepen and strengthen our
understanding of the theory core higher-order process calculi as a whole. More precisely, our

contributions are structured as follows.

Chapter 2: Preliminaries. This chapter provides the theoretical background for the thesis.
We introduce fundamental concepts on process calculi, higher-order process calculi, and

expressiveness of concurrent languages.

Chapter 3: HOcoRre and its Expressiveness. We introduce HOCORE, a core calculus for higher-
order concurrency. We study the expressive power by encoding basic forms of choice and
input-quarded replication. Such derived constructs are then used to define an encod-
ing of Minsky machines into HOcore, which demonstrates that the language is Turing
complete. The encoding is deterministic and termination preserving; as such, properties
such as termination (i.e. the absence of divergent computation) and convergence (i.e. the

existence of a non-diverging computation) are immediately shown to be undecidable.

Chapter 4: Behavioral Theory of HOcore. We show that in HOcoRE strong bisimilarity is
decidable. To the best of our knowledge, HOcoRE is the first concurrent formalism that is
Turing complete and for which bisimilarity is decidable. Furthermore, strong bisimilarity
is shown to be a congruence, and to coincide with other well-established behavioral
equivalences for higher-order calculi. A sound and complete axiomatization of strong
bisimilarity is given, and used to obtain complexity bounds for bisimilarity checking. The

limits of decidability are explored by considering an extension of HOcoRE with static

1.3. This Dissertation 13

(top-level) restrictions. For the extension with four of such restrictions, bisimilarity is
shown to be undecidable. This result is obtained through an encoding of the Post

correspondence problem (PCP).

Chapter 5: Expressiveness of Forwarding and Suspension. We study Ho™, the fragment of
HOcore that results from forbidding nested output actions in communication objects.
This represents a limitation of the forwarding capabilities of HOcore. The expressiveness
of Ho™" is analyzed using decidability of termination and convergence as a yardstick.
As in HOcorE, in Ho™" convergence is still undecidable, a result obtained by exhibiting
an unfaithful encoding of Minsky machines. In contrast, termination is shown to be
decidable. This result is obtained by appealing to the theory of well-structured transition
systems. To the best of our knowledge, this is the first time such a theory is used in the

higher-order setting.

Decidability of termination suggests a loss of expressive power when passing from
HOcoRre to Ho™f. Then, as a way of recovering such power, we consider HoP~, the
extension of Ho™" with a passivation construct that allows for process suspension at run
time. We show that in HoP ™, a faithful encoding of Minsky machines becomes possible.
This implies that in HoP~ both convergence and termination are undecidable. To the
best of our knowledge, ours is the first result on the expressiveness and decidability of

passivation operators in the higher-order setting.

Chapter 6: Expressiveness of Synchronous and Polyadic Communication. We study the ex-
pressive power of extensions of HOcoRe with restriction. We call such an extension
AHO. As a first encodability result, we show that AHO is expressive enough to encode
synchronous communication. We then move to study the expressiveness of SHO", the
extension of HOCORE with name restriction, synchronous communication, and polyadic
communication of arity n. We consider the family of higher-order process calculi given by
varying the polyadicity of such an extension. The main result is that polyadicity induces
a hierarchy of strictly increasing expressiveness: polyadic communication of arity n (as
in SHO") cannot be encoded into polyadic communication of arity n —1 (as in SHO" ™).
Furthermore, we show that SHO?—the extension of SHO with abstraction-passing—

cannot be encoded into SHO.

Chapter 7: Conclusions and Perspectives. We draw conclusions from the research and dis-

cuss perspectives of future work.

The calculi studied in the dissertation are depicted in Figure 1.1.

Origin of the Chapters. Most of the material in this dissertation has been previously pre-

sented in international conferences and appear in the respective proceedings. Even if many

14 Chapter 1. Introduction

SHO,
HOCORE + T
static restriction AHO"

Hova\ HOCORE

Figure 1.1: The higher-order process calculi studied in this dissertation. An arrow indicates

language inclusion.

improvements have been made with respect to the published material, we think that the basic

ideas behind the results remain the same.

e HOcoRE and its behavioral theory as presented in Chapters 3 and 4 has been published

as the paper (Lanese et al., 2008).

e The expressiveness of forwarding in HOCORE, as presented in Chapter 5, is based on

results first published in the paper (Dt Giusto et al., 2009a).

e The expressiveness of polyadic communication as discussed in Chapter 6 is based on

results published as the extended abstract (Lanese et al., 2009).

There are some results original to this dissertation; this unpublished material will be

explicitly mentioned in the corresponding chapter.

Chapter 2

Preliminaries

This chapter provides the theoretical background for the dissertation. It is in three sections. In
Section 2.1 we introduce the basic terminology and concepts used in the dissertation. In order
to do so, we present a description of CCS (Milner, 1989) and of the m-calculus (Milner et al.,
1992). In Section 2.2 we introduce higher-order process calculi: we review their origins and
behavioral theory. The higher-order -calculus, as well as Sangiorgi's representability result,
are detailed there. Section 2.3 introduces main issues in the analysis of the expressiveness
of concurrent languages. We give an overview to the most common kinds of expressiveness
studies and the techniques used to carry them out. Furthermore, previous efforts on studying

the expressiveness of higher-order languages are reviewed.

2.1 Technical Background

2.1.1 Bisimilarity

Broadly speaking, behavioral equivalences allow to determine when the behavior of two con-
current system can be considered as equal. There are many plausible motivations for aiming
at definitions of behavioral equivalences. For instance, one would like the behavior of the
implementation of system to be behaviorally equivalent to that of its specification; similarly,
in a component-based system it is generally desirable to replace a component with a new
one that features at least the same possibilities for behavior. Accordingly, many definitions of
behavioral equivalences for concurrent systems have been proposed; notable notions include
trace equivalence —which equates two processes if they can perform the same finite sequences
of transitions— and the testing framework (De Nicola and Hennessy, 1984), in which the be-
havior of two processes is deemed as equal if they pass the same tests provided by an external

observer. In this context, bisimilarity is widely accepted as the finest behavioral equivalence

16 Chapter 2. Preliminaries

one would like to impose on processes. Following (Sangiorgi, 2009), we now define bisimilarity

and state a few of its fundamental properties.

A fundamental notion is that of Labeled Transition System (LTS in the sequel).

Definition 2.1. A Labelled Transition System (LTS) is a triple (S, T, {—t>: t € T}) where S
is a set of states, T is a set of (transition) labels, and ég Sx S foreacht € T is the

transition relation.

It is customary to write P — Q to denote the fact that (P, Q) C—. In the context
of concurrency theory, it is natural to relate states and processes, and labels as the actions
processes can perform. This way, P —— Q is indeed a transition which represents that process
P can perform a and evolve into Q. The transition relation for a process language is generally
defined by means of a set of transition rules which realize the intended behavior of each
construct of the language. In what follows, we say that a process relation is a binary relation

on the states of an LTS.

Definition 2.2 (Bisimilarity). A process relation R is a bisimulation if, whenever PRQ, for all

a we have that:
1. for all P" with P =5 P, there is Q" such that Q — Q' and P"RQ’;

2. the converse, on the transitions emanating from Q: for all Q" with Q =5 O, there is P’

such that P - P’ and P'RQ'.

Bisimilarity, written ~, is the union of all bisimulations; thus P ~ Q if there is a bisimulation
R with PRQ.

Given this definition, the bisimulation proof method naturally follows: to determine that
two processes P and Q are bisimilar, it is sufficient to exhibit a bisimulation relation containing

(P, Q). It is useful to state a few fundamental properties of bisimilarity.
Theorem 2.1 (Basic Properties of Bisimilarity). Given ~, it holds that:
1. ~ is an equivalence relation, i.e, it is reflexive, symmetric, and transitive.
2. ~ is itself a bisimulation.

Item (2) is insightful in that it allows to grasp the circular flavor of bisimilarity: bisimilarity
itself is a bisimulation, and is part of the union on which it is defined. Hence, the following

theorem holds.

Theorem 2.2. Bisimilarity is the largest bisimulation.

2.1. Technical Background 17

2.1.2 A Calculus of Communicating Systems

We introduce a number of relevant concepts of CCS, following the presentation in Milner
(1989).

CCS departs from theories of sequential computation by focusing on the notion of inter-
action: a concurrent system interacts with its environment which realizes the behavior of the
system through observations. In CCS —like in other process calculi such as ACP and CSP—
the overall behavior of a system is entirely determined by the atomic actions it performs. The
distinguishing principle in CCS is that the notion of interaction is equated to that of obser-
vation: not only actions are observable, but we observe an action produced by the system by
interacting with it, that is, by performing its complementary action, or coaction. We then say
that the two participants, system and observer, have synchronized in the action by means of

this mutual observation.

Syntax. We shall assume a set of names N = {a,b,c,...}, as well as a disjoint set of
co-names defined as N' = {@ | a € N'}. There is a set of labels defined as £L = N UN;
we let [, ', ... range over L. Labels give an account of the observable behavior of the system.
We shall use K, L for subsets of £; L stands for the set of complements of the labels in L.
We consider the distinguished symbol 7 representing the internal or silent action that results
from synchronizations. We then define A = L U T to be the set of actions; a, B range over
A. In the spirit of the above discussion, actions a and @ are thought of as complementary;
this way, @ = @ and T = 7. The set of CCS processes expressing finite behavior is given as

follows:

Definition 2.3. The set of finite CCS processes is given by the following syntax:

P,Q,...:::Zoq.P,- | P\a | Pi || P>

iel

where | is an indexing set.

The summation) ., a;. P; represents the process that is able to perform one and only one
of its actions q;, and then behaves as its associated P;. It is customary to write 0 —nil, the
process that does nothing— in case | / |= 0, a.P if | | |= 1, and “+" for binary sum. The
restriction P\a behaves exactly as P but it cannot offer neither @ or @ to its surrounding
environment. Both a and @ are then said to be bound in P; we shall use fn(P) to denote the
set of free names, i.e., not bound, in P; the bound names of P, bn(P), are those with a bound
occurrence in P. The parallel composition P || Q allows P and Q to run concurrently: either

P or Q may perform an action, or they can synchronize by performing complementary actions.

18 Chapter 2. Preliminaries

: PP
Swm Y a.Pbpifjel Res ———— ifa¢{aa)
o P\a = P\a
P p PpLp olo

L —— TAu F— -
PlQ—=P|Q PlQ—=P|Q

Figure 2.1: An LTS for CCS. Rule PaRr2, the symmetric of PAR1, is omitted.

Semantics and Infinite Behavior. The operational semantics of CCS is given by an LTS in
which the set of processes is the set of states, and the set of labels is taken to be A, the set
of actions in CCS. The transition relation is given by the set of transition rules in Figure 2.1.

Let us move now to the different ways of expressing infinite behavior. We consider recursion
and replication. In order to represent recursion a denumerable set of constants, ranged over by
D, is assumed. It is also assumed that each constant D has associated a (possibly recursive)
defining equation of the form D &« P. The extension of (finite) CCS with recursion is then is
obtained by adding the production P ::= D to the grammar in Definition 2.3, and by extending
the operational semantics in Figure 2.1 with the following transition rule

a def
PSP DEP

DS P

As Busi et al. (2009) remark, recursive behavior defined by means of constants can be

Cons

intuitively assimilated to infinite behavior “in depth”, in that process copies can be nested
at an arbitrary depth by using constant application. This is in sharp contrast to the kind
of infinite behavior provided by replication: by means of the replication operator !P it is
possible to obtain an unbounded number of copies of P; such copies, however, are all at
the same level, thus defining infinite behavior “in width”. The extension of (finite) CCS with
replication is obtained by adding the production P ::= !P to the grammar in Definition 2.3,
and by extending the operational semantics in Figure 2.1 with the following transition rule
RepL il Kidndlid ”z = P/.

P = P

A word on proof techniques is most convenient at this point. Defining the semantics in
terms of a LTS provides us automatically with two basic proof techniques, both of which are
forms of induction: one on the structure of process terms (structural induction), and one on the
transition rules (transition induction). The finitary character of inductive proof techniques is
in contrast with the infinite behavior concurrent systems generally exhibit. As a result, when
addressing the issue of equality of concurrent systems, one needs to appeal to coinductive proof
techniques. Bisimilarity as introduced in Section 2.1.1, is probably the most representative

coinductive proof-technique.

2.1. Technical Background 19

2.1.3 More on Behavioral Equivalences

Having introduced the notion of bisimilarity, and some basic notions of CCS, we find it useful to
informally present some additional concepts on behavioral equivalences. The discussion here
is intended to introduce useful terminology; technical accounts of the concepts mentioned here
can be found elsewhere (see, e.g., (Sangiorgi, 2009; Milner, 1989)).

It is desirable to require bisimilarity to be preserved by all process contexts. This allows
to replace, in any process expression, a subterm with a bisimilar one. An equivalence relation
with this property is said to be a congruence. Proofs of congruence combine inductive and
coinductive arguments: the former are necessary as the syntax of the processes is defined
inductively, whereas the latter are required in that bisimilarity is a coinductive definition. In

the case of CCS we have the following.
Theorem 2.3. In CCS, ~ is a congruence relation.

When bisimilarity is decidable, it may be possible to give an algebraic characterization of it,
or axiomatization. The axiomatization of an equivalence on a set of terms consists essentially
of some equational axioms that suffice for proving all and only the equations among the
terms that are valid for the given equivalence. These axioms are used together with rules of
equational reasoning, which include reflexivity, symmetry, transitivity, and congruence rules
that allow to replace any subterm of a process with an equivalent one. A bit more formally,
given a set of axioms S, it is usual to write S F P = Q if one can derive P = Q using the
axioms in § and the laws of equational reasoning. The objective is then to show that the
axiomatization is a full characterization of bisimilarity, i.e., that it is both sound and complete

with respect to bisimilarity:
P~Qitandonlyft SFP=0. (2.1)

While establishing soundness (i.e., the backward direction in (2.1)) is in general easy,
establishing completeness (i.e., the forward direction in (2.1)) often involves defining some
standard syntactic form for processes and requires more effort. This the case of, e.g., finite-
state CCS processes as studied by Milner (1989).

We have seen that CCS considers the special action T as a form of internal activity. Often
it is useful to describe concurrent behavior by abstracting from such internal actions. This
gives rise to weak transition relations, denoted = and ==. While P = Q is used to mean
that P can evolve to Q by performing any number of internal actions (even zero), P == Q
means that P can evolve to Q as a result of an evolution that includes an action «a, but may
involve any number of internal actions before and after a. As such, == is different from =
as the former guarantees that at least one internal action has been performed. More formally,

we have the following.

20 Chapter 2. Preliminaries

Definition 2.4 (Weak transitions). .

e Relation = is the reflexive and transitive closure of —s. That is, P = P’ holds if there
if there is n > 0 and processes Py, ..., P, with P, = P’ such that P =P 5P,
(Notice that P = P holds for all processes.)

e Forall a € T, relation == is the composition of the relations =, —, and =. That

is, P == P’ holds if there are P;, P5 such that P = P; = P, = P".

With the aid of weak transitions, it is possible to define weak bisimulation and weak

bisimilarity, as in the following definition.

Definition 2.5. A process relation R is a weak bisimulation if, whenever PRQ, for all a we

have:
1. for all P" with P == P’ there is a Q' such that Q == Q' and P'RQ’;
2. for all P’ with P == P’ there is a Q' such that Q = Q' and P'RQ’;
3. the converse of (1) and (2), on the actions from Q.
P and Q are weakly bisimilar, written P =~ Q, if PRQ for some weak bisimulation R.

We now discuss the ideas behind barbed bisimilarity (Milner and Sangiorgi, 1992). A
transition P = P’ of an LTS intuitively describes a pure synchronization between P and its
external environment along a port @ mentioned in a. This is but one particular of concurrent
interaction; a natural question that arises is how to adapt the idea of bisimulation to other
kinds of interaction. The idea is to set a bisimulation in which the observer has a minimal
ability to observe actions and/or process states. This yields a bisimilarity, namely indistin-
guishability under such observations, which in turns yields a congruence over terms, namely
bisimilarity in all contexts. The bisimilarity is called barbed bisimilarity; the congruence is
called barbed congruence.

The main assumption in the barbed setting is the existence of a reduction relation in the
language. Such a relation is intended to express an evolution step of a term in which no
intervention from the environment is required. In CCS, such a relation is —~. The reduction
relation represents the most fundamental notion in the operational semantics of a language.
The reduction semantics of a language is then an approach to operational semantics in which
the meaning is only attached to reductions; it explains how a system can evolve independently
of its environment. This approach is then in clear contrast to that underlying a labeled
transition system.

In barbed bisimilarity the clauses involve challenges only on reductions. In addition, equal

processes should exhibit the same barbs—i.e., predicates representing basic observables of

2.1. Technical Background 21

the states. Barbs are of the essence to obtain an adequate discriminating power. Barbed
congruence is a contextual equivalence: it is the closure of barbed bisimilarity over contexts.

The definition of barbs we shall be interested in is as follows.

Definition 2.6. Given a visible action a, the observability predicate |, holds for a process P
if for some P, P <> P’

We now define strong barbed bisimulation.

Definition 2.7 (Barbed bisimilarity). A process relation R is said to be a barbed bisimulation

if whenever P ~ Q it implies:
1. whenever P — P’ then Q — Q' and P'RQ’;
2. for each visible action a, if P |, then P |4.
Barbed bisimilarity, written ~, is the union of all barbed bisimulations.

The weak version of Definition 2.7 is obtained in the standard way. Let = be the reflexive
and transitive closure of — and |}, be defined as =|,. Then, weak barbed bisimulation,
written =, is defined by replacing the reduction Q = Q' with Q = Q’ and the predicate Q |,

with Q || p. As mentioned before, by quantifying over contexts, we obtain barbed congruence:

Definition 2.8. Two processes P and Q are said to be strongly barbed congruent, written
P ~ Q, if for every context C[-], it holds that C[P] ~ C[Q].

We obtain weak barbed congruence, written =°, by replacing <~ with = in the definition
above.

A main drawback of the notion of barbed congruence is that the universal quantification on
contexts, which can make it impractical to use in proofs. The challenge is then to find tractable
characterizations of barbed congruence. A well-established approach here is to use (labeled)
bisimilarities: the objective is to find a bisimilarity that is both sound and complete with
respect to barbed congruence. That is, a notion of bisimilarity that both includes and contains
barbed congruence. While for the case of CCS and the sw-calculus effective characterizations
of barbed congruence have been thoroughly studied (see, e.g., (Sangiorgi and Walker, 2001)),
we shall see that this is not quite the case for higher-order process calculi, in which the

situation is much less clear.

2.1.4 A Calculus of Mobile Processes

We introduce the (polyadic) m-calculus following the presentation given in (Sangiorgi, 1992,

1993); this will make the introduction of the higher-order s-calculus easier. The reader is

22 Chapter 2. Preliminaries

referred to (Milner et al,, 1992; Sangiorgi and Walker, 2001) for complete references on the
sr-calculus.

The m-calculus departs from CCS with the capability of sending (first-order) values along
communication channels. lIts significance derives from the fact that such values include the
set of communication channels; new communication channels can be created dynamically, and
shared among processes, possibly in a restricted way. This is most useful to represent dynamic

communication topologies.

Syntax. We use a,b,c,...,x,y,z, ... to range over names (or channels) and P, Q,R, T, ...
to range over processes. We use a tilde to represent tuples of elements; this way, given a name
y, § stands for a tuple of names. The set of s-calculus processes is given by the following

definition.
Definition 2.9. The set of m-calculus processes is given by the following syntax:

P.Q...:=Y a.P | PP | w)P | x=ylP | DR

iel

where | is any finite indexing set. The set of prefixes is given by
a:=x(§) | X(@).

As in CCS, we assume that each constant D has a defining equation of the form D & (x)P,
where the parameters X collect all names which may occur free in P. Some constraints to
tuples in input and output prefixes are in order. In an input prefix x(3), tuple y is required to
be made of pairwise distinct elements. We omit brackets () and () when the tuple is empty.
Also, tuple § is required to be finite in both input and output prefixes. This is not the case for
the tuple X in constant definitions and applications; hence, it can be infinite.

The intuitive semantics of processes is as expected. An input-prefixed process x(y). P waits
for a tuple Z to be transmitted along name x; once this occurs, the process P in which y has
been instantiated by Z executes. An output-prefixed process x(y). P sends tuple § along x
and then behaves like P. The matching operator [x = y]P is used to test for equality of the
names x and y. The intuition behind the restriction operator is somewhat similar to that in
CCS: (vx) P makes name x local to P; thus x becomes a new, unique name, distinct from all
those external to P. We often write (vX) P to stand for the process (vxq)(vx2)...(vx,) P. The
semantics and notation for (quarded) summation follow those in CCS. In particular, we shall
use + to represent binary sum.

We have already commented on the use of constants to represent infinite behavior. Notice
that it is possible to encode replication using constants. It is worth noticing that, given

D = (X)P, in an application D(y) tuple § must be of the same length as x. This kind of

2.1. Technical Background 23

potential disagreements on the arities of tuples, as well as some other aspects of the name-
passing discipline, are enforced by the use of appropriate type systems on names." For the
sake of conciseness, we do not elaborate on the definitions and properties of sorts. As such,
along the chapter we always assume well-sorted processes; we use notation x : y to mean
that names x and y have the same sort. If D “ (X)P and X is not empty then D and (X)P are
called abstractions. Abstractions and processes are agents. We use F, E, ... and A to range
over abstractions and agents, respectively.

Notions of free and bound names are as expected: in a(E). P, (VE) P, and (E)P all free
occurrences of names b in P are bound. The sets of free and bound names of an agent A are
denoted fn(A) and bn(A), respectively. Notice that if A = D(X) then fn(A) = X and bn(A) = §.
Name substitution is a function from names to names. Given a vector of distinct names X, we
write {U/x} for the substitution that maps the x;-th name in X to the y;-th name in g, and
maps all names not in x to themselves. We assume standard definitions of substitution and
a-conversion on processes, with possible renamings so as to avoid capture of free names. In
what follows we shall be working modulo a-conversion, and hence we decree two processes

as equal if one is a-convertible into the other.

Operational Semantics. We present now a reduction semantics and an LTS for the m-
calculus. As argued before, the reduction semantics is intended to capture the behavior that
is intrinsic to a process, that is, the behavior that does not include the potential interactions
between the process and its environment. Central to the reduction semantics is the notion
of structural congruence that allows flexibility in the syntactic structure of the process, thus
promoting interactions to occur.

Structural congruence, denoted =, is the smallest congruence over the set of m-calculus

processes that satisfies the following rules:

1. P = Q if P is a-convertible to Q;

2. abelian monoid laws for +: P+0=P, P+ Q=0+ P, (P+ Q)+ R=P+(Q+R);
3. abelian monoid laws for |: P |O=P, P|Q=Q | P, (P|Q)|R=P| (O] R);

4. laws for restriction: vx0 =0, vxvyP = vyvxP, (vxP)| Q= vx(P | Q) if x & fn(Q);
5. law for match: [x = x]P = P;

ef ~
6. law for constants: if D = (X)P and X : y then D(g) = P{Y/x}. (In case of replication is
used: 1P =P | !P)

"In early proposals of the m-calculus (see, e.g., (Milner, 1991)) discipline on names was enforced by the notion
of sorting. The presentation of the first- and higher-order s-calculus in (Sangiorgi, 1992) relies on sorts. In (Pierce

and Sangiorgi, 1996) the notion of sort was refined into the notion of typing for processes.

24 Chapter 2. Preliminaries

Com (- +x(§)-P) | (- +%(Z).0) — P{AG} | Q

Par PP R PP
PlQ—-P || Q ES UxP S wxP

P

Q 0-0 Q=P
P—P

STRUCT

Figure 2.2: Reduction semantics for the s-calculus.

The notion of interaction is formalized by the reduction rules given in Figure 2.2.

We now present the semantics in terms of a labelled transition system. It is actually the
early semantics for the s-calculus: the bound names of an input are instantiated as soon as
possible, namely in the rule for input. (This is contrast to the late semantics, in which such an
instantiation takes place later, in the rule for communication.) Actions can take three possible

forms. In addition to the silent action 7 that represents interaction, we have the following:

P N P’" which stands for an input action: x is the name at which it occurs, while 7 is the

tuple of names which are received.

p X9, prhich stands for an output action, namely the output of names gy at x. It
always holds that []/ C 7y —x. Tuple J’ represents those private names that are emitted

from P, carried out of their current scope. This is commonly known as scope extrusion.

In both cases, x is the subject and y is the object part of the action. There is a difference
in the brackets of input prefixes and input actions: they are round in the former and angled
in the latter. This is meant to emphasize the fact that in the input prefix x(y) names in § are
binders (i.e. placeholders waiting to be instantiated), whereas in the input action x(y) they
represent values (i.e. binders already instantiated).

We use p to represent the label of a generic action. Given an action p, the bound and free

names of p, denoted bn(u) and fn(y), respectively, is as follows:

u fn(y) bn(y)
x(y) Xy g
vy)X@) x G-y
T g g

The set of names of y is defined as n(y) = fn(u) U bn(u). The labeled transition system
is given in Figure 2.3. To conclude this introduction to the s-calculus, it is worth mentioning

that, up to structural congruence, the reduction semantics — is exactly the relation -5 of the

2.2. Higher-Order Process Calculi 25

P50 P and P’ are a-convertible
ALp
P50
INe x(@). P 22 P{EGY, if |7 |=| T | our x(@).P % p
H ’ H /
Sum % PAR P7>—P bn([l) N fn(Q) — g
P+Q0—=F PlOSP|Q

P1 (vg')Y@) Pr Q ﬂ) QI J/ N fn(Q) — g

Com —
Pl O—=vy(P| Q)

PL P rénl)

P{ux} 5 P’ —

REs m ConsT — f D=XP
vrP = vrP’ D{y) — P’
(VJ,)?<6> ’ H ’
OPEN P — ~P x#z, xefn(y)—y MATCH #
e p 2D, b, [x=x]P = P

Figure 2.3: The (early) labeled transition system for the s-calculus. Rules Act2 and Tauz,

the symmetric counterparts of rules Act1 and TAu1, are omitted.

labeled transition semantics. This result is sometimes referred to as the harmony lemma (see,
e.g., Sangiorgi and Walker (2001)).

2.2 Higher-Order Process Calculi

Higher-order process calculi are calculi in which processes (more generally, values containing
processes) can be communicated. Thus a computation step involves the instantiation of a
variable with a term, which is then copied as many times as there are occurrences of the
variable. If there are multiple occurrences, the size of a system may grow. Higher-order
process calculi have been put forward in the early 90s, with CHOCS (Thomsen, 1989) and
Plain CHOCS (its variant with static binding) (Thomsen, 1990), and with the Higher-Order
st-calculus (Sangiorgi, 1992). The basic operators are those of CCS (Milner, 1989).

The appearance of processes inside values usually has strong consequences on the se-
mantics: namely on labeled transition systems (notions of alpha conversion, higher-order sub-
stitutions, scope extrusions) and, especially, on behavioral equivalences (e.g. bisimulation).
Higher-order, or process-passing, concurrency is often presented as an alternative paradigm
to the first order, or name-passing, concurrency of the s-calculus for the description of mo-
bile systems, i.e. concurrent systems whose communication topology may change dynamically.
Higher-order calculi are formally closer to the A-calculus, whose basic computational step
— PB-reduction — involves term instantiation. As in the A-calculus, a computational step in

higher-order calculi results in the instantiation of a variable with a term, which is then copied

26 Chapter 2. Preliminaries

as many times as there are occurrences of the variable, resulting in potentially larger terms.

The remainder of this section is structured as follows. In Section 2.2.1 we present the
higher-order sw-calculus; this is necessary to introduce Sangiorgi’s representability result in
Section 2.2.2. Then, in Section 2.2.3 we review several proposals of higher-order languages in
the literature. Finally, in Section 2.2.4, we report on previous works on the behavioral theory

for languages in the higher-order setting.

2.2.1 The Higher-Order s-calculus

Here we present the higher-order m-calculus, abbreviated HOsxr. We introduce the language

by building on the notations presented for the s-calculus in Section 2.1.4.

Let Var be a set of agent-variables, ranged over X, Y. In order to obtain HO, the syntax
of the m-calculus (cf. Section 2.1.4) is modified in two ways. First, variable application is
allowed, so that an abstraction received as input can be provided with appropriate arguments.
Second, tuples in inputs, outputs, applications, and abstraction may also contain agent or
agent-variables. To simplify the notation in the grammar below we use K to stand for an

agent or a name and U to stand for a variable or a name.

PO == Y aPi | PlO | wP|x=ylP | DK) | X(K)
iel
a == x(K) | x(U)

Recall that K may be an agent: hence, it may be a process, but also an abstraction of

arbitrary high order. The grammar of agents is the following:

A== (0P | (OX(K) | ([O)D(K)
(Notice also that a variable X and a constant D are agents, corresponding to the cases in
which U and K are empty. We make the assumptions regarding finiteness of tuples as in the
mr-calculus. A variable X which is not underneath some input prefix X(U) or an abstraction
(l~J) with X € U is said to be free. An agent containing free variables is said to be open. We

use fv(A) to denote the set of free variables of agent A.

In HOsr the notions of types and type systems are more involved than in the sw-calculus.
For the sake of conciseness, we do not present such details here, and assume well-sorted
expressions. The reader is referred to (Sangiorgi, 1992, 1996b) for details.

Now we present reduction and labeled transition semantics for HOx. Let us introduce the
reduction semantics first. The structural congruence rules and the reduction rules for HOx

are the same as for the s-calculus. We only have to generalize the structural congruence rule

2.2. Higher-Order Process Calculi 27

P50 P and P’ are a-convertible
ALp
P50
y MK DR s)~ = (K)
INe x(U).P —= P{KjU}, it |Z|=| 7 | Out x(K).P —> P
H ’ H /
Sum i Par PT)—P bn(y) N fn(Q) = @
P+Q0—=F PlO=P|Q

P 00 gnmQ =1

Com

PllO—=vg(P | Q)

PP rén) P{KIT} 2 P -

REs u ConsT p D = (U)P
vrP = vr P D(K) — P’
(vg)z(K)
pP—=5F ~ P’
OpeN — x#z, xef(K)-7y MaTcH ;‘J
vx P o giK), P’ [x =x]P = P’

Figure 2.4: The labeled transition system for HOmw. Rules Act2 and TAu2, the symmetric

counterparts of rules Act1 and Tau1, are omitted.

(6) and the rule Com, so that the tuples involved may contain agents. This way, these rules

become, respectively:
6. 1t D= (U)P and U : K, then D(K) = P{KIT}

and

Com (- +x(0).P) | (--- +x(K)) — P{KIT} | 0.

The labeled transition semantics for HOx is given in Figure 2.4. It arises as a general-
ization of that for the m-calculus given in Figure 2.3. While input actions take the form X<R>
output actions are of the form (v'g])?(l?); for the latter it holds that § C fn(K) — x. The corre-
spondence between reduction and labeled transition semantics mentioned for the s-calculus

holds for HOs as well.

2.2.2 Sangiorgi's Representability Result

We now introduce C, the compilation of HOm into the sr-calculus, following the presentation
in (Sangiorgi, 1993). Hence, for readability purposes, only the monadic calculus is considered.
Also, it is assumed that agent definitions use a finite number of constants; this allows the use
of replication in place of constants. Alternative presentations of the representability result
—focused on asynchronous calculi— can be found in (Sangiorgi, 2001; Sangiorgi and Walker,
2001).

28 Chapter 2. Preliminaries

def Cl[(Y)X(Y)] if X is a higher-order abstraction

= Cl[(a)X{a)] otherwise.
df (@(m).C[P)){m :=C[F]} " a=1a(F)
Cla.P] = { aw).C[P] if @ = a(X)

a.C[P] otherwise

CX(FY] £ (x(m).0){m:=C[F]} CX(b)] & x(b).0

def def

cplol = cpPliicelr cpP+0Ql = CP]+ (0]
el £ oipl cvaP] £ vaclP] Cla=bP] = [a = b]C[P]
APl = (Pl Cl@P] £ (a)IP)

Figure 2.5: The compilation C from higher-order into first-order sr-calculus

The translation uses notation P{m := F} to stand for vm(P || !m(U). F{U)), where U
is a name or a variable. The intuition is that C replaces the communication of an agent

def
with the communication of the access to that agent. This way, P; = a(F).Q is replaced by

def
P, = (@{m).Q){m := F}. While an agent interacting with P; may use F directly with, e.g.,
argument b, an agent interacting with P, uses m to activate F and provide it with b. The

name m is called name-trigger or simply trigger.

The definition of C is presented in Figure 2.5. Notice that a variable X is translated into
a name x. The correctness of C is studied in depth in Sangiorgi (1992). There, C is derived
in two steps. The first is a mapping 7 which transforms an agent into a triggered agent.
These are HOsr agents in which every agent emitted in an output or expected in an input
has the same structure of a trigger. This gives homogeneity to higher-order communications
and simplifies the reasoning over agents. The agent 7[A] has the same structure as C[A]
and maintains agents in the higher-order setting. A complementary mapping, denoted F,
transforms triggered agents into first-order processes. The compilation C is fully-abstract

with respect to (weak) barbed congruence, i.e., for each pair of agents Ay and A,
A1 ;c A2 if and onlg if C[A1] ;c C[Az]

This result is then complemented by a statement of operational correspondence between P

and C[P] which reveals the way the latter simulates the behavior of the former.

2.2. Higher-Order Process Calculi 29

2.2.3 Other Higher-Order Languages

We review a number higher-order languages with concurrency, following the way they ap-

peared in theoretical computer science:

e As a way of studying the foundations of programming languages integrating functional
and concurrent paradigms. This is represented by variants of the A-calculus enriched

with forms of parallelism (see, e.g., (Boudol, 1989; Nielson, 1989)).

e As a way of studying forms of code mobility and mobile agents. This is represented by
process calculi with process-passing (see, e.g., (Thomsen, 1990; Sangiorgi, 1992; Schmitt
and Stefani, 2004; Hildebrandt et al., 2004)).

In what follows we give an overview of both research strands, with an emphasis on the

efforts concerning process calculi.

2.2.3.1 Functional Languages with Concurrency

A number of works advocated that a formal model for concurrent, communicating processes
should contain the A-calculus as a simple sub-calculus.

Boudol (1989) proposes the y-calculus, a strict extension of lambda calculus with CCS-
like communication. The y-calculus is a direct generalization of the A-calculus, in that a
B-reduction is formally defined to be a particular instance of the communication rule (and not
something that is representable by a series of communications, for instance). The calculus
is parametrized on a set of ports, and the parallel composition operator of CCS is splitted
in two constructs: interleaving and cooperation, which represent concurrency and communi-
cation, respectively. The cooperation operator is not associative, so A-calculus application is
represented by cooperation and output constructs. This way the desired (tight) relationship
between communication and application is achieved. Interestingly, in the y-calculus the co-
operation operator is “dynamic” in that reduction behind prefixes are allowed; much like as
active outputs in certain modern process calculi.

In a similar spirit, Nielson (1989) proposes an extension of the typed A-calculus with
process communication. Here the réle of types is indeed prominent, as they are meant to
record the communication possibilities of processes, while retaining the usual information
about functions and tuples that is provided by the typed A-calculus. Here “communication
possibilities” refers essentially to the channels over which communication can occur and the
types of the entities that can be communicated over these. The type system then results from
generalizing the notion of sort as defined in CCS; it quarantees that, given some expression
e with type t, everything e evaluates to will also have type ¢, provided that e reads values of

permissible types.

30 Chapter 2. Preliminaries

The FACILE language framework (Giacalone et al,, 1989; Prasad et al., 1990) is an inte-
gration of functional and concurrent programming. Unlike other proposals, which enrich one
of the programming styles with features of the other, FACILE intends to be symmetric in that
a full functional language is integrated with a full concurrent language. In FACILE concurrent
processes communicate through synchronous message passing; processes manipulate data in
functional style. While the operational definition of FACILE first given in (Giacalone et al.,
1989) consisted of a translation into a concurrent functional abstract machine, in (Prasad et al,,
1990) the semantic foundations of the framework are given in terms of a notion of program
behavior that combines the observable behavior of processes and the evaluation of expres-
sions. Program equivalence is based on a form of contexts called windows, which are meant
to index families of bisimulation relations. Roughly speaking, two expressions are equivalent
if they reduce to equivalent values while producing equivalent behavior. The higher-order
nature of the lanquage is reflected in the observational equivalence by developing the notion
of equivalent actions to be based on the idea of equivalent values. This is like higher-order
bisimilarity defined in CHOCS.

Finally, CML is a concurrent extension of Standard ML (Reppy, 1991, 1992) in which syn-
chronous operations are treated as first-class values. Synchronous operations are represented
in the set of values by events; the language provides combinators to construct complex events
from event values. This way a wide range of synchronization abstractions can be constructed,

which in turn allows to support different concurrency idioms.

2.2.3.2 Process Calculi with Higher-Order Features

Here we review a number of concurrent languages which rely on a process calculi basis in

order to implement higher-order features.

CHOCS and Plain CHOCS. Thomsen (1995, 1990) introduces and develops the basic theory
of CHOCS, an extension of CCS with process passing. Probably the most distinctive feature
of CHOCS is the treatment of the restriction operator as a dynamic binder. This simplifies
significantly several aspects of the theory, such as the definition of an algebraic theory and
denotational semantics. Similarly as in (Boudol, 1989), the behavioral equivalence defined
for CHOCS (higher-order bisimilarity) considers the bisimilarity of the values of the actions,
rather than their equality. Higher-order bisimilarity is shown to be a congruence, and an
algebraic theory for it is also developed. Main ideas of the type system developed by Nielson
(1989) are adapted to CHOCS so as to define a notion of sorts. As for the observational
equivalence, internal actions are abstracted in the delayed style: an arbitrary number of
internal actions are only allowed before a visible one. Using this definition, and similarly as

in CCS, the observational equivalence is proven to be a congruence for sum-free processes.

2.2. Higher-Order Process Calculi 31

Finally, an extension of the Hennessy-Milner logic is proposed for characterizing higher-order
bisimilarity. The higher-order nature of the calculus is captured by enriching modalities with
(1) formulas representing the processes sent or received, and (ii) the state after the transition.
The expressiveness of the calculus is demonstrated by exhibiting encodings of the lambda
calculus (with several evaluation strategies) into CHOCS, as well as an interpretation of a

simple imperative programming language into CHOCS.

Inspired in the m-calculus, Plain CHOCS (Thomsen, 1993, 1990) results from considering
the restriction operator in CHOCS as a static binder. The transition system for Plain CHOCS
and the bisimilarity developed upon it follow closely those defined for the lazy A-calculus
(Abramsky, 1989). The relationship between Plain CHOCS and the m-calculus is explored
by means of encodings in the two directions. The encoding of Plain CHOCS into the n-
calculus follows the strategy in Milner et al. (1992): the communication of a process in Plain
CHOCS is represented in the s-calculus as the communication of a link to a trigger construct
that provides copies of the communicated process. This encoding is defined for the fragment
of Plain CHOCS without renaming. An alternative encoding that considers renaming by
admitting a set of names as parameter is also proposed. The encoding of the s-calculus into
Plain CHOCS is more involved: the communication of a name in the s-calculus is represented
by the communication of a Plain CHOCS process that contains the (input, output) capabilities
of a name. This process, so-called wire, is meant to be “plugged” into the context of a
given receiver by renaming operations that allow to “localize” the capabilities of the name.
The encoding is then formalized as a two-level translation. In the first step, all free names
and input-bound names are translated into process variables. Names bound by restriction are
simply translated as names in Plain CHOCS. In the second step of the translation, the process
variables corresponding to free names in the sr-calculus process are translated into names in

Plain CHOCS.

Bloom (1994) proposes a meta-theory for higher-order process calculi that generalizes
CHOCS by considering constructs for broadcasting communication and interruption of process
execution. Computation is of two kinds: process algebraic and functional so the meta-theory
subsumes the name passing capabilities of the m-calculus and reduction as in the A-calculus.
The metatheory is typed; types of channels recognize input and output capabilities. The be-
havioral equivalence investigated is a generalization of higher-order bisimulation as proposed

by Boudol (1989) and Thomsen (1990), and is shown to be a congruence.

The Blue Calculus. The Blue calculus (Boudol, 1998) provides an integration of the A-
calculus with the s-calculus with the objective of obtaining a direct model for higher-order
concurrency with the same expressive power of the ;r-calculus while offering a more convenient

programming notation. The Blue calculus is endowed with a type system that encompasses

32 Chapter 2. Preliminaries

both Curry’s type inference for the A-calculus and Milner’s sorting type system for the m-
calculus. In a nutshell, the computational model of Blue is built around of a name-passing
A-calculus in which asynchronous messages might call for resources (or services) available in
the form of linear and “inexhaustible” declarations. Because of the unified rationale of Blue,
programs in the A-calculus and processes in the sw-calculus have both a Blue interpretation;
this way, the Blue calculus is useful to formalize a number of intuitions on the relationship
between the A-calculus and the sm-calculus as well as encodings of evaluation strategies of

the former into the latter.

The M-calculus. Schmitt and Stefani (2003, 2002) propose the M-calculus, a higher-order
distributed calculus that provides the notion of hierarchical, programmable locality as a way
of representing those distributed systems in which localities can be of different kinds and
exhibit different kinds of behaviors (e.g. with respect to access control or to failures). This is
in sharp contrast with other calculi for distributed programming (such as the Ambient Calculus
(Cardelli and Gordon, 2000)) in which localities are homogeneous, i.e. they are all of the same
kind and have the same pre-defined behavior. This kind of distributed localities with explicit,
programmable behavior are called cells; in combination with higher-order communication and
dynamic binding features they allow to give a unified view of process migration and communi-
cation. The design of the M-calculus retains features from the Blue Calculus (Boudol, 1998)
and the Join calculus (Fournet et al,, 1996); the M-calculus features a functional character in
messages (as in Blue), message patterns within definitions, and named cells so as to form a
tree-like hierarchy (as in Join). As a novelty, the M-calculus introduces a passivation operator,
which can “freeze” running processes, and a type system for guaranteeing the unicity of names

of active cells are also introduced.

The Kell calculus. The Kell calculus (Schmitt and Stefani, 2004) arises as a generalization
of the M-calculus, defined as a family of calculi intended to serve as a basis for component-
based distributed programming. Built around a sr-calculus core, the main features of the Kell
calculus are hierarchical, programmable localities and local actions. While the former are
inherited from the M-calculus and allow to express different semantics for containment and
movement, the latter embody a principle under which atomic actions should occur within a
locality, or at the boundary between a locality and its enclosing environment. Also as in the
M-calculus, in Kell the execution of a process within a locality can be controlled through its
passivation. The Kell calculus can be instantiated by means of input pattern languages, i.e. the
language allowed in input constructs; this is most useful in defining a generic behavioral theory
for the calculus. As a matter of fact, under sufficient conditions on substitution properties of
such pattern languages, a co-inductive characterization of contextual equivalence is provided

in terms of a form of higher-order bisimulation termed strong context bisimulation.

2.2. Higher-Order Process Calculi 33

Homer. Homer (Hildebrandt et al.,, 2004) is a higher-order calculus for mobile embedded
resources. Its main features are active code mobility, explicit nested locations, and local
names. Given a resource (i.e. a process) inside a location, active process mobility refers
to the fact that the resource might be taken (or pulled) by a suitable complementary prefix.
This kind of movement —sometimes referred to as objective mobility— is a feature Homer
shares with the M-calculus and Kell. Crucially, and similarly as Boudol's y-calculus reviewed
above, the resource has the capability of performing internal computations inside locations,
that is, the resource can evolve on its own before being moved. This is in sharp contrast
to usual process passing and substitution. Location addresses are defined by nested names;
interactions between resources at arbitrarily nested resources are allowed. These nested
locations come with an involved treatment of local names, scope extension and extrusion. In
Homer, barbed congruence is shown to be characterized by a labeled transition bisimulation

congruence.

HOPLA. HOPLA (Nygaard and Winskel, 2002) is a higher-order language for non-deterministic
processes that arises from a proposal for domain theory for concurrency; that is, from a denota-
tional/categorical approach for giving meaning to concurrent computation. Roughly speaking,
HOPLA is an extension of the typed A-calculus in which a process is typed with a collection
of its possible computation paths. The notion of prefix-sum type is introduced for this purpose.
The denotation of a process then relies on set-based operations on paths and their extensions.
HOPLA has a developed operational semantics and behavioral theory; sensible equivalences
have been defined for it, including ordinary bisimilarity, applicative bisimilarity, and higher-
order bisimilarity. An advantage of the domain-theoretical approach for concurrency is that it
is general by definition, and naturally leads to metalanguages for process description. This is
evidenced in HOPLA, which can encode directly languages such as CCS, CCS with process
passing, and mobile ambients. An extension of HOPLA that incorporates name generation has
been introduced in (Winskel and Zappa Nardelli, 2004).

KLAIM. KLAIM (De Nicola et al., 1998) is a process description language: as such, it
falls between a programming lanquage and a process calculi (see (De Nicola, 2006) for a
short survey on this distinction). In its process calculus dimension, processes and data can be
moved from one computing environment to another. KLAIM builds on the Linda tuple space
model, and can be seen as an asynchronous higher-order process calculus whose basic actions
are the original Linda primitives enriched with explicit information about the location of the
nodes where processes and tuples are allocated. The behavioral theory for sub-lanquages of
KLAIM focuses on barbed congruence and may testing; it has been studied by Boreale et al.
(1999).

34 Chapter 2. Preliminaries

Other proposals. In addition to the above mentioned calculi, other proposals of calculi for
higher-order concurrency can be found in the literature. For the sake of conciseness, we only
mention them without expanding in their details. Radestock and Eisenbach (1996) put forward
a higher-order process calculus for coordination in environments with distributed components.
Ostrovsky et al. (2002) propose a higher-order process calculus with broadcasting communi-
cation, and study its semantic theory in depth. Meredith and Radestock (2005b,a) propose
a reflective higher-order process calculus in which names as in the m-calculus are obtaining
by quoting processes. Hennessy et al. (2005) have proposed sophisticated type systems with
dependent and existential types for a distributed version of the m-calculus with higher-order
communication of parametrized code. Mostrous and Yoshida (2007, 2009) have studied cal-
culi for structured communication with higher-order communication and type disciplines for
them. Higher-order process calculi oriented towards security issues have been put forward
by Maffeis et al. (2008), who propose a higher-order spi-calculus (Abadi and Gordon, 1999)
for code-carrying authorization, and by Sato and Sumii (2009), who define a higher-order
calculus with cryptographic-like operations over terms such as decomposition. They rely in
environmental bisimilarities —to be reviewed later on— for developing the behavioral theory

of their calculus.

2.2.4 Behavioral Theory

Here we review some works that have addressed the behavioral theory for higher-order lan-
guages. We concentrate on works for higher-order process calculi.

Sangiorgi (1994) studies equivalences for versions of the A-calculus possibly involving par-
allelism. The objective is to find the finest behavioral equivalence on terms (i.e. the one that
discriminates the most). The starting point is Abramsky’s applicative bisimilarity for the lazy
A-calculus (Abramsky, 1989). Two approaches are followed. In the first one, the equivalence
induced by the encoding of the lazy A-calculus into the sr-calculus (so-called lambda obser-
vational equivalence) is studied. Such an equivalence is shown to be a congruence (using a
direct proof, i.e. without using the encoding into pi), and fully-abstract with respect to Levy-
Longo trees, the tree-like model for lazy A-calculus terms. The second approach considers
extensions of the pure A-calculus. A rule format for well-formed operators is proposed for that
purpose; intuitively, the rule format generates operators whose behavior only depends on their
semantics, and not on their syntax. The most discriminating congruence is obtained when all
well-formed operators are admitted; such a congruence (so called rich applicative congruence)
is shown to coincide with lambda observational equivalence. Non determinism is shown to be
the essential component for obtaining maximal discrimination.

The definition of a satisfactory notion of bisimilarity is a hard problem for a higher-order

process language. In ordinary bisimilarity, as e.g. in CCS, two processes are bisimilar if any

2.2. Higher-Order Process Calculi 35

action by one of them can be matched by an equal action from the other in such a way that
the resulting derivatives are again bisimilar. The two matching actions must be syntactically
identical. This condition is unacceptable in higher-order concurrency; for instance it breaks
vital algebraic laws such as the commutativity of parallel composition. The approach taken
by Thomsen (1990), following earlier ideas by Astesiano et al. (1988) and Boudol (1989), is
to require bisimilarity rather than identity of the processes emitted in a higher-order output
action. This weakening is natural for higher-order calculi and the bisimulation checks involved
are simple. Sangiorgi (1992) then argued that this form of bisimulation, called higher-order
bisimilarity, is in general troublesome or over-discriminating as a behavioral equivalence,
and basic properties, such as congruence, may be very hard to establish. He then proposed
context bisimilarity (1996a), a form of bisimilarity that avoids the separation between object
part and continuation of an output action by explicitly taking into account the context in which
the emitted agent is supposed to go. Context bisimilarity yields more satisfactory process
equalities, and coincides with contextual equivalence (i.e., barbed congruence). However, it
has the drawback of a universal quantifications over contexts, which can make it hard, in

practice, to check equivalences.

Normal bisimilarity (Sangiorgi, 1992; Jeffrey and Rathke, 2005; Cao, 2006) is a simplifica-
tion of context bisimilarity without universal quantifications in the output clause. The input
clause is simpler too: normal bisimilarity can indeed be viewed as a form of open bisimilarity
(Sangiorgi, 1996c), where the formal parameter of an input is not substituted in the input
clause, and free variables of terms are observable during the bisimulation game. However,
the definition of the bisimilarity may depend on the operators in the calculus, and the cor-
respondence with context bisimilarity may be hard to prove. The characterization of context
bisimilarity using normal bisimilarity in (Sangiorgi, 1996a) exploits triggered bisimilarity, an
intermediate characterization of bisimilarity defined over triggered processes, i.e. a set of
processes in which every communication takes place by the exchange of a trigger. Sangiorgi
(1996a) obtains this characterization for the weak case; however, the proof technique based on
going through triggered agents does not carry over to the strong case, as it adds extra internal
actions. Recently, Cao (2006) showed that strong/weak context bisimulation and strong/weak
normal bisimulation coincide in higher-order s-calculus. To do so, he goes through indexed
bisimilarity, an equivalence defined over a variant of the calculus in which every prefix is
indexed. Cao then uses indices to distinguish “internal” tau actions (those originating inside
a component) from those “external” ones (those taking place among different components).
The first —which are essentially the kind of actions added by the encoding into triggered
processes— are neglected in the indexed versions of the bisimulation games. Apart from set-
tling the issue of the coincidence between normal and context bisimilarities in the strong case,

the work in (Cao, 2006) provides a uniform setting for proving the coincidence of bisimilarities:

36 Chapter 2. Preliminaries

in the index-based proof technique the coincidence for the weak case results as a particular

instance.

A drawback of the characterization of context bisimilarity with normal bisimilarity in (San-
giorgi, 1996a) is that it is restricted to languages with finite types. Jeffrey and Rathke (2005)
extends such a characterization to a language with recursive types. Their approach is based
on an enriched labeled transition system in which special operators representing references
to triggers are included in the labels. As a result, a direct proof of soundness is possible,
i.e., bisimilarity based on this enriched labeled transition system implies context bisimilarity.

Completeness also holds; for the proof the original approach based on triggers is necessary.

In addition to the definition of a suitable notion of bisimilarity, a related hard problem is
the proof that the bisimilarity is a congruence. In fact, for higher-order languages the “term-
copying” feature inherited from the A-calculus can make it hard to prove that bisimilarity is a
congruence. A classical method for proving congruence of higher-order bisimulations is that of
Howe (1996). Originally introduced for (lazy) functional programming languages, this method
was first adapted to higher-order process calculi by Baldamus (1998) and Thomsen (1989,
1993) who used it for (variants of) CHOCS and Plain CHOCS. More recently, it has been
used by Ferreira et al. (1998) —for a concurrent version of ML- and by Hildebrandt et al.
(2004; 2005), to show that late and input early bisimilarities are congruences in untyped and

typed versions of Homer.

Recently, as a means of alleviating some of the problems Howe's method entails when used
for concurrent languages (most notably, its lack of flexibility), Sangiorgi et al. (2007) proposed
environmental bisimulations, a method for higher-order languages that aims at make proofs
of congruence easier and compatible with the so-called up-to techniques (Sangiorgi, 1998).
Roughly, an environmental bisimulation makes a clear distinction between the terms tested
in the bisimulation clauses and the environment, that is, an observer’s current knowledge. As
such, for instance, in the output clause of the environmental bisimulation for HOm, the emitted
processes become part of the environment; the extruded names also receive special treatment
inside the clause. This is a more robust technique than previous approaches; it has been
applied to both functional languages (pure A-calculus and A-calculus with information hiding)

and to concurrent ones (Higher-Order sr-calculus).

Two very recent works develop further the theory of environmental bisimulations. Sato and
Sumii (2009) adapt and extend it in the setting of a higher-order, applied w-calculus featuring
cryptographic operations such as encryption and decryption. Koutavas and Hennessy (2009)
propose a first-order behavioral theory for higher-order processes based on the combination
of the principles of environmental bisimulations and the improvements to normal bisimilarity
proposed by Jeffrey and Rathke (2005). At the heart of the proposed theory is a novel treatment

of name extrusions, which is formalized as an LTS in which configurations not only contain

2.3. Expressiveness of Concurrent Languages 37

the current knowledge of the environment and a process, but also information on the names
extruded by the process. As a consequence, the labels of such an LTS have a very simple
structure. The weak bisimilarity derived from this LTS is shown to be a congruence, fully
abstract with respect to contextual equivalence, and to have a logic characterization using a

very simple Hennessy-Milner logic.

Lenglet et al. (2009b, 2008, 2009a) have studied the behavioral theory of variants of higher-
order sr-calculi with restriction and/or passivation constructs. In (Lenglet et al., 2009b, 2008)
they show that in a higher-order calculus with a passivation operator (such as Kell and Homer),
the presence of a restriction operator disallows the characterization of barbed congruence by
means of strong and normal bisimilarities. They use Howe's method to prove congruence
of a weak higher-order bisimilarity for a calculus with passivation but without restriction.
This result is improved in (Lenglet et al., 2009a) where barbed congruence is characterized
for a higher-order process calculus with both passivation and restriction. To that end, they
exploit Howe's method with the aid of so-called complementary semantics, which coincide
with contextual semantics and allow the use of Howe's method to prove soundness of weak
bisimilarities.

The congruence of bisimilarity can also be approached by means of (syntactic) rule formats
(see, e.g., (Mousavi et al., 2007), for a survey on formats and metatheory of structural opera-
tional semantics). These are formats that induce congruence for any given notion of bisimilarity
once the rules of the operational semantics adhere to the formats. Bernstein (1998) proposes
a rule format (promoted tyft/tyxy) for languages with higher-order features. The paper shows
that for any language defined in the format, strong bisimulation is a congruence. The ap-
proach is applied to the lazy A-calculus, the s-calculus, and CHOCS. In all cases, the studied
equivalence is bisimilarity; other behavioral equivalences, such as applicative bisimulation or
higher-order bisimulation, are not considered. Also, the format imposes a number of restric-
tions on labels. In (Mousavi et al.,, 2005) both these shortcomings are studied. They build
on Bernstein's work and propose a more general and relaxed rule format which induces con-
gruence of (strong) higher-order bisimilarity. They use CHOCS to illustrate their rule format.
The definition of suitable rule formats for other, more sensible, notions of bisimilarity (say,

normal and context bisimilarity) is left in (Mousavi et al., 2005) as an open question.

2.3 Expressiveness of Concurrent Languages

In this section we give a broad overview of the main approaches to the expressiveness of
concurrent languages. We focus on the issues and techniques we shall use in this dissertation;

the reader is referred to, e.g., (Parrow, 2008), for a recent survey on the area.

We discuss on general issues in expressiveness in Section 2.3.1. Then, in Section 2.3.2,

38 Chapter 2. Preliminaries

we briefly review some of the notions of encoding that have been proposed in the literature.
A classification of the main kinds of expressiveness results and the approaches to obtain them
is presented in Section 2.3.3. Finally, we report on previous efforts on the expressiveness of
higher-order concurrent languages (Section 2.3.4).

Along the section, we shall follow a few notational conventions. We use L1,L;,... to
range over languages; we use = (possibly decorated) to denote a suitable behavioral equiva-
lence. Also, — and = denote some (reduction) semantics and its reflexive, transitive closure,

respectively.

2.3.1 Generalities

An important criterion for assessing the significance of a paradigm is its expressiveness. While
in other areas of computer science (most notably, automata theory), the notion of expressiveness
is well-understood and settled, in concurrency theory there is yet no agreement on a formal
characterization of the expressive power of a language, possibly with respect to that of some
other language or model. While such a unified theory would be certainly desirable, the wide
variety of existing models for concurrency (and consequently, of the expressiveness issues
inherent to them) strongly suggests that a single theory for language comparison embracing
them all does not exist.

The crux of expressiveness studies is the notion of encoding, i.e., a function (or map)
[[] from the terms of a source language into the terms of a target language that satisfies
certain correctness criteria. These criteria enforce both syntactic and semantic conditions
on the nature of [-]. It is not difficult to see that the main source of difficulty in defining a
unified theory for language comparison lies precisely in the exact definition of these criteria:
depending on the purpose and on the given language(s), the set of applicable criteria might
vary and/or there might be criteria more adequate than others.

From the point of view of their purpose, expressiveness studies can be broadly seen to be
aimed at two kinds of results: encodability and non-encodability (or impossibility) results. As
their name suggests, the former are concerned with the existence of an encoding, whereas the
latter address the opposite issue. These two kinds of questions are intimately related as, given
two languages £4 and L, in order to assert that £1 is more expressive than L, one needs to
provide instances of both kinds of results: one should exhibit an encoding [-] : £, — L4 and, at
the same time, one should provide a formal argument ensuring that an encoding [-]: £1 — L,
does not exist. That is, it should be made clear that while £; is able to express all the
behaviors of £;, there are some behaviors in £ that £, is unable to represent. It might then
appear clear that the correctness criteria for an encodability result should be different from
those for an impossibility result. Indeed, for encodability results one would like to exhibit the

best encoding possible, i.e., one satisfying the most demanding correctness criteria possible; in

2.3. Expressiveness of Concurrent Languages 39

contrast, for impossibility results one would like to rely on the most general formal argument,
i.e. one satisfying the least demanding correctness criteria possible. Not surprisingly, the
proof techniques involved and the ingenuity required to obtain either result can be quite

different.

Another broad classification of expressiveness studies takes into account whether or not
the expressive power of a given lanquage is analyzed with respect to another language. In

other words, whether one is interested in absolute or in relative expressiveness.

In studies of absolute expressiveness the interest is therefore in assessing the expressive
power that is intrinsic to the lanquage and its associated semantics: as Parrow (2008) explains,
this question entails determining exactly the transition systems —as well as the operators on
them— that are expressible in a given language. That is, the focus is on the expressiveness
of the terms of the language, and on the kind of operators that are expressible in it. These
questions depend on suitable denotations of labeled transition systems, which explains the fact
that expressiveness results of this kind have been reported only for basic process calculi, with
relatively simple labels (Parrow, 2008). A pioneering work in this direction is De Simone's
study of the expressive power of the MEIJE process algebra (de Simone, 1985). A seemingly
widespread approach to absolute expressiveness relies on some standard model of computation
—rather than on the semantic machinery of the language— to assess the expressive power of
a language. A common yardstick here is Turing completeness, which is generally shown by
exhibiting an encoding of some Turing-equivalent model into the given lanquage. While this
approach to absolute expressiveness —sometimes referred to as computational expressiveness
(see, e.g., Aranda (2009); Busi and Zandron (2009))— takes some external model as reference
(and as such, it is not entirely “absolute”), the fact that such reference models are widely
known and/or understood often constitutes a satisfactory measure of the intrinsic expressive

power of a language.

In relative expressiveness one measures the expressive power of a given lanquage L4
by taking some other lanquage L, as a reference. This is particularly appealing when, for
instance, one wants to show that £1 and £, have the same expressive power. In this case,
the objective is to obtain two encodability results, one in each direction. Another common
situation is when one wishes to determine the influence a particular operator or construct has
on the expressiveness of a language L4. In this case, the reference language £, is the fragment
of £4 without the operator(s) of interest. In this case, one aims at showing that £4 cannot be
encoded into £,. If this can be done then the difference in the expressive power between the
two lanqguages has been singled out: it is in the operators that £4 has but that £, lacks. This
is sometimes referred to as a separation result, as the analyzed construct separates the world

with it from the world without it (Yoshida, 2002).

40 Chapter 2. Preliminaries

2.3.2 The Notion of Encoding

We present a historical account of the evolution of definition of encoding, starting from propos-
als within programming languages at large and concluding with the most relevant proposals

for concurrent languages.

2.3.21 Early Attempts to Expressiveness

It is instructive to examine the origin of the notions of expressiveness and expressive power
in the realm of programming languages at large. The earliest attempts towards a formal
notion of “expressive power” can be traced back to the late 1960s, when a proliferation of
programming lanquages was first noticed. Perhaps the most influential work of that period
is due to Landin (1966), who proposed a unified framework aimed at describing families of
programming lanquages from which particular languages can be derived by an appropriate
choice of primitives. Main concerns in Landin’s formal framework are conventions about user-

defined names and functional relationships.

Later on, in the early 1970s, the question of the expressive power was studied by repre-
senting families of programs by means of program schemas, i.e., abstract representations of
programming features with uninterpreted constant and function symbols (see, e.g., (Chandra
and Manna, 1976)). This line of research —sometimes referred to as comparative schematol-

ogy— is mainly concerned about the expressiveness of single constructs.

Felleisen (1991) developed a framework for expressiveness studies in the context of func-
tional lanqguages. His framework is suited for comparing a language and some extension of it;
hence, it is suited for studies of relative expressiveness as introduced before. The framework
departs from the idea of eliminable syntactic symbols as proposed in logic by Kleene and
others. More concretely, given two languages £4 and £; such that £ C L,, if the additional
symbols/constructs of £, are eliminable (with respect to £1) then L, is said to be a definitional
extension of L4. Several notions and concepts that we shall encounter in “modern” studies of
expressiveness of concurrent languages can be found already in Felleisen’s work. For instance,
the crucial observation that the key to (programming) language comparison is a restriction on
the set of admissible translations between (programming) lanquages. This observation is rep-
resented by structural (syntactic) and semantic conditions; while the former include notions
such as compositionality of translations and homomorphism of a translation with respect to
some operator, the latter is represented by the preservation of terminating behavior, a natural
requirement in a functional setting. In Felleisen’s view, the expressiveness of a programming
language is closely related to the programming discipline since, intuitively, programs written
in the extension of some core language can be more readable than the programs written in

the core language.

2.3. Expressiveness of Concurrent Languages M

Mitchell (1993) compares (functional) languages according to the ability of making sections
of a program “abstract” by hiding some details of the internal functioning of the code. He
defines so-called abstraction-preserving reductions, which are compositional translations that
preserve observational equivalence. Perhaps the simplest reduction of this kind is the one
translating program blocks into function declaration and calls. Proofs showing that more
involved reductions are abstraction-preserving might involve appealing to the operational and
denotational semantics of the languages in question. Riecke (1993) uses and extends the
notion of abstraction-preserving reductions in the study of the expressive power of different
evaluation strategies in the functional language PCF. He shows that call-by-value and lazy

PCF are equally expressive, and that both are more expressive than call-by-name PCF.

2.3.2.2 Encodings Among Concurrent Lanquages: The Early Days

Shapiro (1989) was the first to study expressiveness issues for concurrent languages. He pro-
posed the notion of embedding as a way of comparing concurrent logic programming languages;
considered languages are thus relatively similar and it is easy to focus on their differences. An
embedding is composed of a compiler and a viewer (or decoder). Given two languages L1 and
L, the compiler is a function ¢ from programs of L1 into programs of £,, whereas the viewer
is a function v from observables of £, into observables of £1. Both ¢ and v form an embedding
of L1 into L, if the observables of every program P in £4 correspond to the observables of
the program obtained by compiling P using ¢ and viewing (or decoding) its behavior using
v. In order to define a hierarchy of concurrent logic programming languages, this notion of
embedding is tailored to the logic programming setting by requiring natural embeddings, i.e.,
embeddings in which (a) the unification mechanism of one language is implemented in the
unification mechanism of the other, and (b) logical variables of one language are mapped into
logical variables of the other. This proposal for language comparison was refined by Shapiro

(1991) and by de Boer and Palamidessi (1990, 1994). We comment on both refinements next.

Shapiro (1991) claims that no method similar to program schemas exists for comparison of
concurrent languages. He then proposes a general framework for language comparison, which
relies on the (non) existence of mappings that preserve the syntactic and semantic structure
of the languages. Those mappings adhering to such preservation conditions are called em-
beddings. The framework is expressed in categorical terms, and is general enough so as
to work for any family of languages with syntactic operations and a semantic equivalence.
Shapiro identifies three categories of embeddings that provide an incremental notion on the
preservation of the semantic structure of languages: sound embeddings, i.e. mappings that
preserve observable distinctions; faithful embeddings, i.e. sound embeddings that preserve
the semantic equivalence; fully-abstract embeddings, i.e. embeddings that are faithful with

respect to the congruence induced by the semantic equivalence. The work concentrates in

42 Chapter 2. Preliminaries

the formalization of separation results; a so-called separation schema arises from considering
parallel composition as the sole composition operation and by considering three properties:
compositionality, i.e. the coincidence of the semantic equivalence with its induced congru-
ence; interference-freedom, which disallows the parallel composition of a program with itself;
hiding, i.e. the existence of programs that are semantically different from the trivial program,
but whose composition is semantically equivalent to the trivial program. The framework for
language comparison is used to provide a number of separation results among several con-
current languages and models, including Input/Output Automata, Actors, concurrent Prolog,
and (variants of) CCS and CSP. In (Shapiro, 1992), the general framework is also shown to be

useful for formalizing positive (i.e. encodability) results.

After observing that the notion of embedding introduced by Shapiro fell short for formalizing
certain separation results among concurrent constraint languages, de Boer and Palamidessi
(1994) introduced the refined notion of modular embedding. A modular embedding is an
embedding that satisfies the following three restrictions. First, since in the presence of non-
determinism the domain of the observables of a language is a powerset, the decoder of the
embedding is required to be defined elementwise on the elements on the set of observables.
Second, the compiler is required to be compositional with respect to the parallel composi-
tion and the non-deterministic choice operators. Third, the embedding must be termination
invariant: a success (resp. deadlock or failure) in the target language must correspond to a
success (resp. deadlock or failure) in the source language. The notion of modular encoding is
then used to derive separation results in the context of concurrent constraint languages with
different communication primitives in guarded-choice operators. The key idea to achieve sep-
aration relies on a semantic argument: two variants are separated by showing that a certain
closure property is satisfied by the semantics of one variant but not by the semantics of the
other. The notion of modular embedding was also used in (de Boer and Palamidessi, 1991)
to show separation results for variants of CSP with different communication primitives in the
guards. Indeed, it is shown that asynchronous CSP is strictly less expressive than CSP, thus
confirming results obtained by Bougé (1988), who exploited the capability each variant have

of expressing symmetric solutions to the leader election problem.

2.3.2.3 Encodings Among Concurrent Languages: Towards “Modern” Criteria

The introduction of the s-calculus in the early 1990s gave a significant momentum to the
study of expressiveness issues in process calculi. Indeed, the simplicity and flexibility of name-
passing as embodied in the s-calculus triggered many works proposing variants or extensions
of it. Such works addressed a wide variety of concerns, including, e.qg., polyadic communication
(Milner, 1991), asynchronous communication (Boudol, 1992; Honda and Tokoro, 1991), higher-
order communication (Thomsen, 1990; Sangiorgi, 1992), stochastic behavior (Priami, 1995),

2.3. Expressiveness of Concurrent Languages 43

structured communication (Honda et al., 1998), security protocols (Abadi and Gordon, 1999;
Abadi and Fournet, 2001). While some of these variants were mainly only of theoretical
interest, some others (e.g., (Priami, 1995; Abadi and Gordon, 1999)) were aimed at exploiting
working analogies between the behavior of mobile systems as in the m-calculus and that of
systems in areas such as systems biology and security.

In this context, expressiveness studies for the sr-calculus were then indispensable to under-
stand its fundamental properties, to identify the intrinsic sources of its expressive power, and
to discern about the relationships between its many variants. As representative examples of
works in these directions, we find studies on the properties of the translation of polyadic into
monadic m-calculus (Yoshida, 1996; Quaglia and Walker, 2005), on the relationship between
point-to-point and broadcasting communication (Ene and Muntean, 1999), on the different
kinds of choice operators (Nestmann, 2000; Nestmann and Pierce, 2000) and, closely related,
on mechanisms for synchronous and asynchronous communication (Palamidessi, 2003; Caccia-
grano et al, 2007). Probably as a consequence of the different motivations for approaching
expressiveness, each of these works advocated its own definition of encoding, one in which
the set of correctness criteria is defined in accordance to some specific working intuition or
necessity. In what follows we review some of those proposals and comment on their main
features. For the sake of conciseness, we focus on a few, representative proposals —namely
those by Sangiorgi (1992), Nestmann (1996), Palamidessi (2003), and Gorla (2008)— in order
to give a broad overview to the area and to contrast certain aspects that we judge relevant.

As part of his study on the relationship between first-order and higher-order sr-calculus,
Sangiorgi (1992) identifies three phases in determining that a given source language can be

representable into some target language:
1. Formal definition of the semantics of the two languages;
2. Definition of the encoding from the source to the target language;
3. Proof of correctness of the encoding with respect to the semantics given.

Concerning the properties of (2), the only requirement is compositionality, that is, that the
definition of the encoding of a term should only depend on the definition of its immediate
constituents. Given source and target languages £, and L, an encoding [] : £L; — L, and

an n-adic construct op of L, compositionality can be expressed as follows:
[op(P1, ..., Py)] = C®[[P1],-...[P:]l (2.2)

where C is a valid process context in L;. As for correctness criteria, the main criteria adopted
is full-abstraction, i.e., two terms in the source language should be equivalent if and only if

their translations are equivalent:

S1 ®s Sy if and only [S1] =¢ [S2]. (2.3)

44 Chapter 2. Preliminaries

That is, full-abstraction enforces both preservation and reflection of the equivalence of source
terms. Sangiorgi admits that full-abstraction represents a strong approach to representability.
As we shall elaborate later, the purpose of Sangiorgi is to transfer reasoning techniques
from the first-order setting to the higher-order one. In this sense, requiring full abstraction
turns out to be necessary, given that target terms should be usable in any context, and the
indistinguishability of two source terms should imply that of their translations in order to
switch from one lanquage to another. He also acknowledges that full-abstraction alone is not
informative enough with respect to the relationship between source and target terms. To that
end, he argues that full-abstraction should be complemented with some form of operational
correspondence relating a term and its translation.

Based on his works on the encodability of choice operators into the (choice-free) ;r-calculus,
Nestmann (1996) collects a number of desirable correctness criteria for encodings. As for full-
abstraction, Nestmann comments that it might not applicable in those cases in which the source
language is not equipped with a notion of equivalence. Then, a suitable notion of operational
correspondence gains relevance. Operational correspondence is usually expressed as two
complementary criteria. The first one, completeness, ensures the preservation of execution

steps, i.e., that the translation is able to simulate all the computations of the source term:
51 — 52 implles [51] = [52] (2.4)

The second criteria, soundness, ensures the reflection of execution steps, i.e., that the behavior
of a term in the target language can be related to the behavior of its corresponding term in
the source language:

[S1] =+ [S2] implies S1 =< S,. (2.5)

However, soundness as in (2.5) is not satisfactory as it disregards the intermediate processes
the translation of a source term might need to go through in order to simulate its behavior. A

refinement that considers such intermediate steps is the following:
if [S] =¢[T] then there is S —; S such that [T] = [S']. (2.6)

A further refinement to soundness is the one that takes into account the administrative steps

that an encoding might have to perform before simulating a step of the source term:
if [S] =¢[T] then there is S = S such that [T] =, [5']. (2.7)

In addition to full-abstraction and operational correspondence, Nestmann (1996) considers
two further correctness criteria effectiveness/efficiency and preservation/reflection of deadlocks
and divergence. Let us elaborate only the latter criterion. Nestmann regards as interesting
to consider both the reflection and preservation of deadlocks. The former is quite natural:

the translation of a term should not deadlock if the given source term does not deadlock.

2.3. Expressiveness of Concurrent Languages 45

Preservation of deadlocks is also reasonable as long as potential administrative steps in the
target side that might precede deadlock are taken into account. As for divergence, Nestmann
distinguishes between the kind of translation performed by compilers and that performed by
encodings. Indeed, while a compiler is not expect to add divergent behavior, Nestmann finds
an encoding that adds divergence perfectly acceptable. To put this position into context,
it is worth noticing that the issue of divergence is central to the work in (Nestmann and
Pierce, 2000) where a trade-off between atomicity of committing a choice and divergence is
discovered. In fact, Nestmann and Pierce (2000) propose two encodings of the sm-calculus
with input-guarded choice into the choice-free fragment: one encoding is atomic with respect
to choice but introduces divergence; the other encoding is divergence-free but replaces the
atomic commitment of choice with gradual commitment. Therefore, there could be scenarios in
which correct encodings that add divergence might still be worth having.

A well-known definition of encoding is the one proposed by Palamidessi (2003) as part of
a comparison of the expressive power of synchronous and asynchronous communication in the
sr-calculus. In short, she showed that there is no encoding of the synchronous sr-calculus with
mixed-choice into the asynchronous sr-calculus without choice. This separation result holds
under a notion of encoding in which syntactic criteria are captured by the notion of uniformity,

which is given by the following two conditions:

1. homomorphism with respect to parallel composition, i.e., [P | Q] =[P] || [Q];

2. preservation of renaming, i.e. for any permutation of names o in the domain of the target
language, there exists a permutation 6 in the domain of the target language such that,
for all name i, a(i) = (i) and [a(P)] = 6([P)).

Palamidessi argues that uniformity is tailored for the representations of distributed sys-
tems, in which issues such as connectivity and coordination should be taken into account by
any notion of encoding. This is particularly evident in requiring homomorphism with respect
to parallel composition rather than generic compositionality as in (2.2) above. This can be
considered as a strong syntactic criterion. However, as Palamidessi claims, in the context of
distributed systems homomorphism with respect to parallel composition finds justification as
it is essential to ensure that the encoding preserves the degree of distribution of the system,
i.e. the encoding of a distributed system does not add coordinating processes (or sites).

Furthermore, in Palamidessi's expressiveness results, encodings are required to be seman-

tically reasonable. Quoting Palamidessi (2003), encodings are required to preserve

a semantics which distinguishes two processes P and Q whenever there exists a
(finite or infinite) computation of P in which the intended observables (some visible

actions) are different from the observables in any (maximal) computation of Q.

46 Chapter 2. Preliminaries

It is worth noticing that this is quite a liberal way of capturing requirements such as oper-
ational correspondence and the reflection/preservation of deadlocks and divergence, discussed
above. Nestmann (2000) has studied the results in (Palamidessi, 2003) by taking correct-
ness criteria more precise than “preservation of a reasonable semantics”. Indeed, he shows
that while the s-calculus with mixed-choice can be translated into into the asynchronous -
calculus, a trade-off between divergence and the exact notion of compositionality arises: there
are encodings that are uniform but that introduce divergence, whereas encodings that do not

introduce divergence only respect generic compositionality.

Recent works have questioned the rdle of full-abstraction as a correctness criteria in en-
codings of concurrent languages (see Beauxis et al. (2008) for an insightful discussion). Their
motivation is that when one is interested in relative expressiveness —rather than in, for in-
stance, the transference of reasoning tools from one language to another— full-abstraction
is of little significance, as it is too focused on the actual equivalences considered. This is
precisely the motivation for a unified approach to correctness criteria in encodings recently
proposed by Gorla (2008).

Gorla’s proposal defines a kind of meta-theory for relative expressiveness, based on a set
of encodability criteria formulated in abstract terms. As in (Felleisen, 1991), the criteria are
divided into structural (i.e., syntactic) and semantic. The former include a form of composition-
ality as in (2.2) but where the context is parametrized by the set of free names of the source
terms, and a condition on the independence from the actual names used in source terms that
generalizes condition (2) in the definition of uniform encoding given by Palamidessi. Semantic
criteria include a form of operational correspondence that is defined up to the “garbage terms”
that an encoding might produce; divergence reflection, that is, that the encoding does not add
divergence; and success sensitiveness, i.e., a criteria that requires that based on some notion of
“success computation” ensures that a successful source term is mapped into a successful target
term. Sensible notions of success include observables such as barbs (Milner and Sangiorgi,
1992) or the outcomes from tests as in behavioral equivalences/preorders based on testing (De
Nicola and Hennessy, 1984). A significant advantage of the proposal in (Gorla, 2008) is that it
can be exploited by diverse concurrent languages (with different behavioral equivalences) and,
to a certain extent, it can be used to reason abstractly about encodings and their properties.
In order to illustrate its relevance, the proposal has been instantiated so as to obtain results
previously proposed in the literature (Gorla, 2006), and to offer more straightforward proofs

for other results.

To conclude, these different proposals for the definition of encoding and its associated
correctness criteria only reinforce the idea that a unified notion of encoding is unlikely to
exist. In fact, we have seen how the definitions vary depending on the final purpose of the

expressiveness study. Hence, a particular definition of encoding should not be judged solely

2.3. Expressiveness of Concurrent Languages 47

on the basis of its differences with respect to other notions of encoding, which will most likely
be aimed at different purposes. A current debate concerns the réle of full-abstraction as
advocated by, e.g.,, Sangiorgi (1992). In our view, the crucial insight here is to understand that
(i) the transference of reasoning techniques from one language to another and (ii) the study of
issues of relative expressiveness are essentially two different goals that expressiveness results
can aim at. As such, one cannot expect correctness criteria aimed at (i) to make sense in

settings in which the interest is in (ii), and viceversa.

2.3.3 Main Approaches to Expressiveness

Having reviewed some representative definitions of encoding, here we propose a very broad
classification of approaches for obtaining expressiveness results. Our classification does not
intend to be exhaustive or conclusive; it provides us with a way of presenting certain used

techniques and to emphasize on their differences.

2.3.3.1 Encodability of Computational Models

This is a rather widespread approach to studies of absolute expressiveness. The objective is
to to demonstrate the (full) computational expressiveness of a language or model by means of
the encodability of a Turing complete model. Notice that, under certain conditions, such an
encoding is enough to demonstrate that most relevant decision problems are undecidable.

Examples of Turing complete models used in expressiveness studies are Random Access
Machines (RAMs) (Shepherdson and Sturgis, 1963), Minsky machines (Minsky, 1967), and
Turing machines. Roughly speaking, both RAMs and Minsky machines are models composed
of registers (or counters) that hold natural numbers, a set of labeled instructions, and a program
counter indicating the instruction currently in execution. The main difference between the two
is that while a RAM considers a finite set of registers, a Minsky machine requires only two
of them to ensure Turing completeness.

One of the first works that have used this approach is (Busi et al,, 2000) in which RAMs
are encoded into variants of the coordination language Linda. In turn, such work has served
as inspiration for a number of works addressing similar concerns (see, e.g., (Busi and Zavat-
taro, 2000, 2004; Busi et al,, 2009; Maffeis and Phillips, 2005)). The use of complete Turing
machines (i.e. with a ribbon or tape, a transition relation, initial and accepting states) has
been reported by Hirschkoff et al. (2002) in their study of the expressiveness of the Ambient
logic. Similarly, Cardelli and Gordon (2000) have reported an encoding of Turing machines
in the Ambient calculus. In addition to Turing complete formalisms, models of computability
strictly less expressive than Turing machines have been considered for expressiveness pur-
poses. Christensen (1993) shows that the class of languages generated by Basic Parallel

Processes (BPP, a fragment of CCS without communication nor restriction) is contained in the

48 Chapter 2. Preliminaries

class of context-sensitive languages. In the realm of (process) rewrite systems, efforts towards
a general Chomsky-like hierarchy of process languages have been made by Moller (1996) and
by Mayr (2000). More recently, Aranda et al. (2007) study fragments of CCS with replication
are studied with respect to context-sensitive, context-free, and reqular languages.

The fact that several works have appealed to encodings of Turing complete models has
raised the question as to what criteria such encodings should satisfy. That is, the issue of
the notion of encoding that is crucial to studies of relative expressiveness arises in issues of
absolute expressiveness as well. In this case, the criteria are oriented towards determining how
faithful such encodings are with respect to the behavior of a Turing machine. In fact, notions
of Turing completeness that are “weaker” than the classical one have been put forward for
explaining the computational expressiveness of certain process calculi. Maffeis and Phillips
(2005) and Bravetti and Zavattaro (2009) have analyzed and defined precisely these weaker

notions. Let us recall such criteria, as identified by Bravetti and Zavattaro (2009).

Definition 2.10 (Turing completeness for process calculi, (Bravetti and Zavattaro, 2009)). A
language L is said to be Turing complete, if given a partial recursive function with a given

input, there is a process (i.e., a term of the language) in L such that

1. If the function is defined for the given input, then every computation of the process

terminates and make the corresponding output available;

2. If the function is not defined for the given input, then every computation of the process

does not terminate.

There are process calculi in which Turing complete models can be encoded in such a way
that at least the terminating computations respect the computations of the considered model.

Such calculi satisfy the following weaker criterion.

Definition 2.11 (Weak Turing completeness for process calculi, (Bravetti and Zavattaro, 2009)).
A language L is said to be weakly Turing complete, if given a partial recursive function with

a given input, there is a process (i.e., a term of the language) in L such that

1. If the function is defined for the given input, then there exists at least one computation

of the process that terminates and make the corresponding output available;

2. If the function is not defined for the given input, then every computation of the process

does not terminate.

Notice that the difference between the two notions is then in the first item. Indeed, if the
function is defined according to the first notion every computation of the corresponding process
terminates; in the second notion, the corresponding process may have computations that do

not terminate. While encodings used to show Turing completeness for process calculi as in

2.3. Expressiveness of Concurrent Languages 49

i+ INC(r)) mi=mj+1 my_; = mi_;
M-INnc

(i, mg, my) —m (i + 1, mgy, my)

i: DECJ(r;, k m;#+0 m,=m; —1 my_ .= mq_;
M-DEc (/) /# j J 1—j 1—j

(i, mo, my) —m (i + 1, mgy, m})

i: DECl(rj, k) m; =0
M-Jmp

(i, mg, m1) —m (k, mg, mq)

Figure 2.6: Reduction of Minsky machines

Definition 2.10 are sometimes called deterministic or faithful (see, e.g., (Busi et al., 2009)). In
contrast, encodings used to show weak Turing completeness for process calculi as in Definition
211 are called non-deterministic or not faithful (see, e.g., (Aranda, 2009)).

In this dissertation we will consider calculi that satisfy the criteria given by Definition
210, as well as calculi that satisfy the criterion given by Definition 2.11. In all cases, we
shall exploit encodings of such calculi into Minsky machines. We therefore find it convenient

to introduce such a model here.

Minsky machines A Minsky machine (Minsky, 1967) is a Turing complete model composed of
a set of sequential, labeled instructions, and two registers. Registers r; (j € {0,1}) can hold
arbitrarily large natural numbers. Instructions (1: /),...,(n : /;) can be of two kinds: INC(r;)
adds 1 to register r; and proceeds to the next instruction; DECJ(r;, k) jumps to instruction k if
r is zero, otherwise it decreases register r; by 1 and proceeds to the next instruction.

A Minsky machine includes a program counter p indicating the label of the instruction
being executed. In its initial state, the machine has both registers set to 0 and the program
counter p set to the first instruction. The Minsky machine stops whenever the program counter
is set to a non-existent instruction, t.e. p > n.

A configuration of a Minsky machine is a tuple (i, mp, m1); it consists of the current program
counter and the values of the registers. Formally, the reduction relation over configurations

of a Minsky machine, denoted —, is defined in Figure 2.6.

2.3.3.2 Decision/Representative Problems

This is an approach to separation results. As arqued by Zavattaro (2009), the idea is to dis-

criminate the expressiveness of two variants of the same computational model by investigating

50 Chapter 2. Preliminaries

the decidability of some decision problem in the two different settings. This allows one to
prove that a different interpretation for a given concurrent computational model, or a simple

extension of one concurrent computational model, strictly increases the expressive power.

An example of this line of research is (Dufourd et al,, 1998) in which separation results for
Petri nets with Reset arcs are obtained from the (un)decidability of decision problems such as
reachability, termination, coverability, and boundness. In process calculi, this approach has
been pioneered by the already cited work on the expressiveness of variants of Linda (Busi
et al,, 2000) where the decidability of termination is used to prove a separation result be-
tween two semantics of the language. Such a decidability result is obtained by endowing the
language with a net semantics (in terms of contextual Place/Transition nets) and by defining
a deadlock-preserving mapping into finite Place/Transition nets. Another significant applica-
tion of such approach is (Busi et al,, 2009), in which separation results for variants of CCS
with different constructs for infinite behavior are reported. In (Busi et al,, 2009) the focus is
on the (un)decidability of termination and convergence of processes. It is shown that while
both properties are undecidable for the variant of CCS with recursion, termination is decid-
able for the variant for replication. While undecidability results are obtained by exhibiting
(termination-preserving) encodings of RAMs (as described above), decidability results are ob-
tained by appealing to the theory of well-structured transition systems (Abdulla et al., 2000;
Finkel, 1990; Finkel and Schnoebelen, 2001). In Chapter 5 we shall apply the approach to

separation in (Busi et al,, 2009) in the context of a higher-order process calculus.

A somewhat related approach to separation results is the one that distinguishes two models
based on their capability of solving some well-established problem. That is, a language L4
is considered to be more expressive than £, if the problem can be solved in £ but not in
L. This is a natural approach to follow when the languages at hand are both known to be
Turing complete and hence a separation result based on the decidability of some property (as

discussed before) is not an option.

Inspired in results by Bougé (1988) in the context of CSP, this approach was used by
Palamidessi (2003) for showing the separation between the s calculus with mixed-choice and
the asynchronous m-calculus with separate choice. The separation is demonstrated by the
fact that, under certain conditions, the leader election problem —a problem of distributed
consensus in the realm of distributed computing— can be solved in the former but not in the
latter. This approach has been rather successful for it has been applied to a number of very
diverse calculi (see, e.g., Bougé (1988); Ene and Muntean (1999); Palamidessi (2003); Vigliotti
et al. (2007)). More recently, the approach based on leader election has been intensively
studied by Vigliotti (2004) in the context of the Ambient calculus. An excellent reference to
this approach (and to separation results in general) is (Vigliotti et al., 2007).

Furthermore, while the use of widely known problems is a sensible option for separation

2.3. Expressiveness of Concurrent Languages 51

results, new problems have been also proposed. This way, for instance, Carbone and Maffeis
(2003) have introduced matching systems so as to define an expressiveness hierarchy of variants
of the m-calculus with polyadic synchronization. Also, Versari et al. (2009) have proposed the
last man standing problem in order to assess the expressive power of variants of CCS with

global and local prorities.

2.3.3.3 By Combinators

This is a less studied approach to the expressiveness of concurrent languages. It aims at the
assessing the expressive power of a language by identifying its set of combinators, i.e., the
elements of the lanquage that are indispensable to represent the whole behavior realizable in
the lanquage. This is similar to the notion of combinators in the A-calculus (Barendregt, 1984).
Hence, each the combinators of a language is said to be essential for in the absence of one of
them it is not possible to express the whole language (possibly up to semantic equivalences).
Studying the expressiveness of a language based on combinators then appears as a useful
method to analyze and categorize its behavior.

The earliest attempt in this direction is by Parrow (1990), where the focus is on the
expressiveness of two forms of parallel composition (called disjoint parallelism and linking)
in the context of a small process calculus with synchronization primitives. Parrow identifies
three “units” which are responsible for generating all the finite-state behavior that can be
expressed in the language. He also establishes conditions under which operators for parallel
composition in other algebras can be defined. Parrow (2000) himself took this idea further
to the context of mobile processes. In fact, he showed that every process in the synchronous
sr-calculus without sum and without matching can be mapped (up to weak bisimilarity) as a
the parallel composition of a number of trios, i.e., prefixes with length at most three, possibly
replicated. It is also shown that duos, i.e., prefixes of length at most two, are not sufficient to
produce the same result. A similar result is shown by Laneve and Victor (2003) for the Fusion
calculus.

Based on the results in (Honda and Yoshida, 1994a,b), Yoshida (2002) shows the minimality
of five concurrent combinators that characterize the expressive power of the asynchronous -
calculus without sum. Such combinators correspond to small processes implementing output
of messages, duplication of messages, and generation of links. Each of the five combinators
is shown to be indispensable to represent the whole behavior of the calculus. Similar ideas

were explored by Raja and Shyamasundar (1995a,b).

2.3.3.4 Other approaches

In a slightly different approach to expressiveness issues, a number of works has appealed to

the generality of structural operational semantics, their associated rule formats and properties,

52 Chapter 2. Preliminaries

as a way of gaining insights on the expressive power of languages that fit certain rule formats.
For the sake of conciseness, we do not expand on these, and refer the interested reader to,

e.g., (de Simone, 1985; Vaandrager, 1992; Dsouza and Bloom, 1995).

2.3.4 Expressiveness for Higher-Order Languages

We conclude this section by reviewing a number of proposals that address the expressiveness
of higher-order lanquages.

Significant studies of the expressiveness of the higher-order communication paradigm are
reported in Sangiorgi’s PhD dissertation (Sangiorgi, 1992). In Section 2.2.2 we have given the
main ideas underlying the compilation C from higher-order into first-order processes, which
is central to his representability result. In (Sangiorgi, 1992) the compilation C is used to
study encodings of (variants of) the A-calculus into the sr-calculus. An encoding of the lazy
A-calculus into HOu, denoted H, is proposed. The encoding H enjoys a tight operational
correspondence; in fact, it allows to determine that the lazy A-calculus is a sub-calculus of
HOm. Furthermore, it is shown that the composition of C with H corresponds with the encoding
of the lazy A-calculus into the m-calculus proposed by Milner (1992). Hence, the usefulness
of C is shown by providing an alternative way of deriving results and transferring reasoning
techniques between the lazy A-calculus and the s-calculus. A similar approach is followed
for the call-by-value A-calculus.

Amadio (1993) obtains a finitely-branching bisimilarity for CHOCS by means of a reduc-
tion into bisimulation for a variant of the m-calculus. In such a variant, processes are only
allowed to exchange names of activation channels (i.e. the channels that trigger a copy of a
process in the representation of higher-order communication with first-order one). The desired
finitely-branching bisimilarity is obtained by relying on a labeled transition system in which
synchronizations on activation channels are distinquished.

Amadio (1994) investigates Core Facile, a A-calculus with synchronization primitives, par-
allel composition, and dynamic creation of names. It is intended to serve as an intermediate
language between theoretical formalisms (such as CHOCS and the m-calculus) and actual
programming languages such as Facile and CML. A control operator is introduced to ma-
nipulate evaluation contexts and to define a translation of synchronous communication into
asynchronous one. This translation is shown to be adequate, i.e. equivalence of the translated
terms implies equivalence of the original terms. By means of a Continuation-Passing Style
translation into Core Facile, the control operator is shown to be redundant. A translation of
the asynchronous Core Facile into the m-calculus is also presented; this translation is further
studied in (Amadio et al., 1995).

The expressiveness of the s-calculus wrt higher-order 7 was first studied by Sangiorgi

(1996b), who isolated hierarchies of fragments of first-order and higher-order calculi with

2.3. Expressiveness of Concurrent Languages 53

increasingly expressive power. For the former, he identifies a fragment of the s-calculus in
which mobility is internal, i.e.,, where outputs are only on private names —no free outputs
are allowed. This hierarchy is denoted as 1", where the n denotes the degree of mobility
allowed; e.g., 7l does not allow mobility and corresponds to the core of CCS. The hierarchy in
the higher-order case follows a similar rationale, and is based on the strictly higher-order m-
calculus, i.e, a higher-order calculus without name-passing features. Also in this hierarchy, the
less expressive language (denoted HOx') corresponds to the core of CCS. Sangiorgi shows
that 71" and HOx” have the same expressiveness, by exhibiting fully-abstract encodings.
Sangiorgi and Walker’s encoding of a variant of sm-calculus into Higher-Order s-calculus
2001 relies on the abstraction mechanism of the Higher-Order m-calculus (it needs w-order

abstractions).

Vivas et al (Vivas and Dam, 1998; Vivas and Yoshida, 2002; Vivas, 2001) study extensions
of the higher-order m-calculus for which the usual encoding of higher-order into first-order
(Sangiorgi, 1992) does not work. This is the case of higher-order calculi involving locations,
in which certain operations cannot be reduced to reference passing, such as e.g., retrieving
some piece of code in a certain location and executing it elsewhere. This issue is first studied
by Vivas and Dam (1998) who show that Sangiorgi's encoding schema breaks if blocking —a
form of restriction based on dynamic scoping— is added to the language. Their motivation for
such a construct is the modeling of cryptographic protocols; they claim that usual restriction
(based on static scoping) as found in the first- and higher-order m-calculus is not adequate
for certain security scenarios. They consider first- and higher-order calculi with mismatching,
and show that in the first-order case blocking has the same expressive power as matching
and mismatching. A rather involved schema for compiling higher-order calcult with blocking
into first-order calculi is proposed; it consists in the communication the syntax tree of a
process. Vivas and Yoshida (2002) propose an extension of a higher-order process lanquage
with a screening operator called filtering. The objective is to represent scenarios of code
mobility in which resource access control involves both static and dynamic checkings. The
filtering operator is intended to dynamically restrict the visibility of channels of a process:
a filtered process can only perform actions present in its associated set of polarized channel
names (i.e. channel names with either output or input capabilities). Similarly as blocking in
(Vivas and Dam, 1998), the filtering operator exploits dynamic binding to implement a form of
encapsulation that blocks external communication in the filtered channels. In this case, the
usual restriction operator is claimed to be inadequate as it might allow for scope extrusion of
the filtered channels. The higher-order language with filtering is studied with respect to the
higher-order language proposed by Yoshida and Hennessy (1999) (which is, essentially, a call-
by-value A-calculus augmented with m-calculus operators). This language is endowed with a

type system that assigns interface types to processes, i.e. a type that limits the resources a

54 Chapter 2. Preliminaries

process might have access. An encoding of the latter into the former is proposed as a way of
understanding how dynamic checkings enforced by the filtering operator can mimic the static
checking enforced by the interface types. The paper shows that the encoding behaves correctly
only in the cases in which name extrusion is not involved.

Bundgaard et al. (2006) investigate the expressive power of Homer by encoding the syn-
chronous s-calculus. They succeed in showing that that higher-order process-passing together
with mobile resources in, possibly local, named locations are enough to represent sr-calculus
name-passing. In the Homer case, because of the mobile computing resources and the nested
locations, name-passing is a derived notion instead of a primitive. Similarly as the encoding
by Thomsen (1990), the encoding of the sm-calculus into Homer is not fully-compositional:
names are translated at the top-level, separately from the transition of processes.

Bundgaard et al. (2009) study two approaches for obtaining finite-control fragments of
Homer in which barbed bisimilarity is decidable. The first approach is based on a type
system that bounds the size of processes in terms of their syntactic components (e.g. number
of parallel components, location nesting). The second approach exploits results for the -
calculus and uses an encoding of the s-calculus into Homer to transport them in the form of

a suitable subcalculus.

Chapter 3

A Core Calculus for Higher-Order Concurrency

In this chapter we introduce HOCORE, the core of calculi for higher-order concurrency such
as CHOCS (Thomsen, 1989), Plain CHOCS (Thomsen, 1993), and Higher-Order m-calculus
(Sangiorgi, 1992, 19964a,b).

The syntax and the semantics of the calculus are given in Section 3.1. Then, Section
3.2 discusses the expressiveness of the lanquage. The main result is an encoding of Minsky
machines into HOcorg, which allows to infer that the lanquage is Turing complete. Section

3.3 provides some concluding remarks.

3.1 The Calculus

Syntax. We use a, b, ¢ to range over names (also called channels), and x, y, z to range over

variables; the sets of names and variables are disjoint.
Definition 3.1. The set of HOCORE processes is given by the following syntax:

P,Q == a(P) output
| a(x). P input prefix
| X process variable
| P | Q parallel composition
| o nil

An input a(x). P binds the free occurrences of x in P. We write fv(P) for the set of free
variables in P, and bv(P) for the bound variables. We identify processes up to a renaming of
bound variables. A process is closed if it does not have free variables. In a statement, a name
is fresh if it is not among the names of the objects (processes, actions, etc.) of the statement.
We abbreviate a(x). P, with x & fv(P), as a.P, @(0) as @, and Py || ... | Pk as |_|f;1 P:.

Similarly, we write []{ P as an abbreviation for the parallel composition of n copies of P.

56 Chapter 3. A Core Calculus for Higher-Order Concurrency

Further, P{Q/Y} denotes the componentwise and simultaneous substitution of variables x with
processes QOinP (we assume members of X are distinct).

The size of a process is defined as follows.
Definition 3.2. The size of a process P, written #(P), is inductively defined as:

#0)=0 #P Q) =#P)+#0) #x) =1
#(@(P) =1+#(P) #(a(x).P)=1+#(P)

Semantics. Now we describe the LTS, which is defined on open processes. There are three
forms of transitions: T transitions P — P’ input transitions P ﬂ) P’, meaning that P
can receive at a a process that will replace x in the continuation P’; and output transitions
p 22, pr meaning that P emits P’ at @, and in doing so it evolves to P”. We use «a to
indicate a generic label of a transition. The notions of free and bound variables extend to

labels as expected.

e a(x).P 2 p our a(P) 20
Acr Py = P; b\;(a) Niv(Py) =0
Pil Py = P P,
aP) o 0, o
Tau1 P i P P

Pill Py = Py || Po{Pix}
(We have omitted Act2 and TAuz, the symmetric counterparts of the last two rules.)
Definition 3.3. The structural congruence relation is the smallest congruence generated by

the following laws:
Pllo=Pr, P P=Py| P, P (Pl Ps)=(Pi| P2) Il Ps

Reductions P — P’ are defined as P == P’. We now state a few results which will

be important later.
Lemma 3.1. If P = P’ and P = Q then there exists Q" such that Q = Q' and P’ = Q'.

Proof. By induction on the derivation of P = Q, then by case analysis on P % Q. O

Definition 3.4. A variable x is guarded in P € HOcoRE (or simply qguarded, when P is clear
from the context) if x only occurs free in an output or in subexpressions of P of the form 7. P/,
where 7 is any prefix. A process P € HOcoRE is quarded (or has quarded variables) if all its

free variables are guarded.

In particular, notice that if x is guarded in P then it does not appear in evaluation contexts
(i.e. contexts which allow transitions in the hole position), and if x is not free in P then it is
guarded in P. In the lemma below, we recall that an output action from an open process may
contain free variables, thus a{r?/?} is the action obtained from a by applying the substitution

(R},

3.2. Expressiveness of HOcore 57

Lemma 3.2. Suppose that P € HOcoRe and variables x are guarded in P. Then, for all
R € HOCORE we have:
- = R
1. If P 2 P', with variables in R disjoint from those in P, a and X, then P{R/x} e,
P/{R/;};
2. If P{F?/}} s M', with variables in R disjoint from those in P, o' and X, then there is
P’ such that P % P" and M’ = P'{Rx}, o’ = a{RIx}.

Proof. By induction on the transitions. O

Lemma 3.3. For all P € HOcore and x there is P’ € HOcoRre with x guarded in P’, and
n > 0 such that

1. P=P | [T
2. P{Rix} = P'{Rix} | T1{ R, for all R € HOCoORE.

Proof. By induction on the structure of processes. O

3.2 Expressiveness of HOcoRrE

We first present encodings of a simple form of guarded choice and of quarded replication.

Then we use such encodings to encode Minsky machines.

3.2.1 Guarded Choice

We extend the HOcCoRE syntax with a simple form of quarded choice to choose between different
behaviors. Assume, for instance, that a; should trigger P;, for i € {1,2}. We write this as
aq.P1 + a. P>, and we write the choice of the behavior P; as a;. We then have, for each i,

the reduction (ay. Py + az2. P2) || @i — P;. We encode these new operators as follows.

[a1. Py + a2. Po]y = @x([P1]4) || @2([P2)+)
[a1]s = a2(x2). a1(x1). xq
[a2]+ = a1(x1)- a2(x2). x2

The translation is an homomorphism on the other operators. This way, [a;]; for i € {1,2} is
a process that consumes both P;'s and spawns the one chosen. This encoding is correct as
long as all guards used in the choices are different and there is at most one message at a
guard, @y or @3 in the previous example, enabled at any given time. The encoding introduces
an extra communication for every guarded choice.

With a slight abuse of notation, in what follows we shall use disjoint sums inside HOcore

processes without explicitely referring to the encoding [];.

58 Chapter 3. A Core Calculus for Higher-Order Concurrency

3.2.2 Input-quarded Replication

We follow the standard encoding of replication in higher-order process calculi, adapting it to
input-guarded replication so as to make sure that diverging behaviors are not introduced. As
there is no restriction in HOCORE, the encoding is not compositional and replications cannot

be nested.

Definition 3.5. Assume a fresh name c. The encoding of input-guarded replication is as

follows:
[la(2). Pl = a(2). (c(x). (x [| €{x) [| P)) [€(a(2)- (c(x). (x | (x) || P)))

where P contains no replications (nested replications are forbidden), and -]y is an homomor-

phism on the other process constructs in HOCORE.

It is worth noticing that after the input on a, a copy of P is only released after a synchro-
nization on c¢. More precisely, we have the following correctness statement. We use Q - to

denote that there is no Q" such that Q — @', both in HOcore and for Minsky Machines.

Lemma 3.1 (Correctness of [-]a). Let P be a HOcoRE process with non-nested input-guarded

replications.
e [f[Ply — Q then 3P’ such that P — P’ and either [P']ly = Q or Q — [P']u.
e If P — P’ then either [P}y — [P’y or [P}y —— [P']u-
o [Py = iff P .

Proof. By induction on the transitions. O

With a slight abuse of notation, in what follows we shall use input-quarded replications

inside HOcoRE processes without explicitely referring to the encoding []u.

3.2.3 Minsky machines

We present an encoding of Minsky machines (see Section 2.3.3) into HOcore. The encoding
shows that HOcoRrEe is Turing complete and, as the encoding preserves termination, it also
shows that termination in HOcoRE is undecidable. The only form of non-determinism in the
encoding is due to possible unfoldings of (the encoding of) recursive definitions after they have

been used; otherwise, at any step, in the encoding any process has at most one reduction.

We first show how to count and test for zero in HOcoRE; then, we present the encoding of

a Minsky machine into HOcoREg, denoted as [-Ju (see Table 3.1).

3.2. Expressiveness of HOcore 59

INSTRUCTIONS (i : /;)
[(i: INC(r;)m = !pi(inc; | ack.-pim7)
[(i : DECI(rj, k)l = !pi-(dec; || ack.(z;. px + nj.pis1)

REGISTERS r;

[;=0M = (inc.r3{(0);) + dec;.(r? || 2)) || REG;
[rp=m = (inc.rp{(m);) + dec;.(m—1]);) | REG;
where:
REG, = 1% (ack || inc. (0);) + dec,. (7] 2)) |
1r2(Y). (ack || ingi. 7 (V) ||) + dec;.)
o | 7 ifk=0
(k)=< L7

SUk=10) A k>0,

Figure 3.1: Encoding of Minsky machines into HOcore

Counting in HOcore. The cornerstone of our encoding is the definition of counters that may
be tested for zero. Numbers are represented as nested higher-order processes: the encoding

of a number k+1 in register j, denoted (k+1);, is the parallel composition of two processes:
é((] k);) (the successorﬁof (k),) and a flag ;. The encoding of zero comprises such a flag,
as well as the message rjo. As an example, (2); is rf((r] 9 | A;) || Aj) | ;.

Registers. Registers are counters that may be incremented and decremented. They consist
of two parts: their current state and two mutually recursive processes used to generate a
new state after an increment or decrement of the register. The state depends on whether the
current value of the register is zero or not, but in both cases it consists of a choice between an
increment and a decrement. In case of an increment, a message on er is sent containing the
current register value, for instance m. This message is then received by the recursive definition
of er that creates a new state with value m + 1, ready for further increment or decrement. In
case of a decrement, the behavior depends on the current value, as specified in the reduction
relation in Table 2.6. If the current value is zero, then it stays at zero, recreating the state

corresponding to zero for further operations using the message on r?

, and it spawns a flag
Zj indicating that a decrement on a zero-valued register has occurred. If the current value m
is strictly greater than zero, then the process (m —1); is spawned. If m was equal to 1,
this puts the state of the register to zero (using a message on r/o). Otherwise, it keeps the
message in a non-zero state, with value m — 1, using a message on r . In both cases a flag
n; is spawned to indicate that the register was not equal to zero before the decrement. When
an increment or decrement has been processed, that is when the new current state has been

created, an acknowledgment is sent to proceed with the execution of the next instruction.

60 Chapter 3. A Core Calculus for Higher-Order Concurrency

Instructions. The encoding of instructions goes hand in hand with the encoding of registers.
Each instruction (i : /;) is a replicated process guarded by p;, which represents the program
counter when p = i. Once p; is consumed, the instruction is active and an interaction with
a register occurs. In case of an increment instruction, the corresponding choice is sent to the
relevant register and, upon reception of the acknowledgment, the next instruction is spawned.
In case of a decrement, the corresponding choice is sent to the register, then an acknowledg-
ment is received followed by a choice depending on whether the register was zero, resulting
in a jump to the specified instruction, or the spawning of the next instruction otherwise.

The encoding of a configuration of a Minsky machine thus requires a finite number of fresh

names (linear on n, the number of instructions).

Definition 3.6. Let N be a Minsky machine with registers ro = mo, r1 = mq and instructions
(1:h),....(n:1,). Suppose fresh, pairwise different names er, rj-S, p1.-..,Pa, incj, decj, ack
(for j € {0,1}). Given the encodings in Table 3.1, a configuration (i, mg, m1) of N is encoded
as

pi |l lro = molw Il [ro = maw | [06 1)
i=1

Correctness of the Encoding. In HOcore, we write —* for the reflexive and transitive
closure of —, and P 1) if P has an infinite sequence of reductions. Similarly, in Minsky
machines —y, is the reflexive and transitive closure of —\, and N fim means that N has

an infinite sequence of reductions.
Lemma 3.2. Let N be a Minsky machine. We have:
1. N —)KA N’ iff[N]M —* [N/]M,'

2. if [Nlm —* Py and [N]u —* P, then there exists N’ such that Py —* [N']u and
I:)2 ¥ [NI]M,'

3 N iff [N]w 1.

The proof of Lemma 3.2 relies on two properties. The first one, given by Lemma 3.3, ensures
that for every computation of the Minsky machine the encoding can perform a finite, non-empty
sequence of reductions that correspond to the one made by the machine. Using Lemma 3.1,
the second property (Lemma 3.4) ensures that if the process encoding a Minsky machine has a
reduction then (i) the machine also has a reduction, and (ii) the encoding has a finite sequence
of reductions that correspond to the result of the reduction of the Minsky machine.

We now proceed with the proofs. In what follows we assume a Minsky machine N with
instructions (1 : h),...,(n : I;) and with registers ro = mg and r; = mq. The encoding of a
configuration (i, mo, m1) of N is denoted [(i, mg, m1)n]m. We use —/ to stand for a sequence

of j reductions.

3.2. Expressiveness of HOcore 61

Lemma 3.3. Let (i, mg, mq) be a configuration of a Minsky machine N.
If (i, mo, m1) —m (', mgy, m}) then there exist a finite j and a process P such that[(i, mo, m1)nJu —/

P and P = [(i', mg, m’)n]m.

Proof. We proceed by case analysis on the instruction performed by the Minsky machine.
Hence, we distinguish three cases corresponding to the behaviors associated to rules M-Jmp,
M-DEec, and M-INc.

Case M-JMp We have a Minsky configuration (i, mg, m1) with mg = 0 and (i : DECJ(ry, k)).

By Definition 3.6, its encoding in HOCORE is as follows:

[((, mo,mi)nIm = Pi [l [ro=0lm [l [r1 = mi]m |
[(i : DECI(ro, KD | [] (L= 1)l
=1.n,1#i

We begin by noting that the program counter p; is consumed by the encoding of the instruction

i. The content of the instruction is thus exposed, and we then have
[([, mo, m1)N]M — [I”() = O]M || decy ” ack. (Z().ﬁ-i- n().p,'+1) || S=P

where S =[r1 = my]m || [124[(L : 1)]m stands for the rest of the system. The only transition

possible at this point is the behavior selection on decp, which yields the following:
Py — r§ || Z || REGo || ack. (zo. Pk + no-piz1) | S = P

Now there is a synchronization between % and REGy for reconstructing the register

Py — 7| ack | (inco.rg((0 Jo) + deco.(rg || 20) | REGo |

ack.(zo.px + no.pir1) || S = Ps

Once the register has been re-created, register and instruction can now synchronize on ack:

Py — 2| (inco.r5{(0 Do) + deco.(rd || %)) || REGo |

0. Pk + No. Pis || S=P,

At this point, the only possible transition is the behavior selection on zp, which indicates that

the content of ry was indeed zero:

Py — (inco.r5((0)o) + deco.(r§ || 20)) | REGo || P& | S = Ps

Using the definitions of [-Ju and S, and some reordering, we note that P5 can be equivalently

written as y
Ps=px || [ro = Ol [[r1 = malw | [UL 1w
(=1

which, in turn, corresponds to the encoding of [(k, 0, m1)n]u, as desired.

62 Chapter 3. A Core Calculus for Higher-Order Concurrency

Case M-Dec We have a Minsky configuration (i, mg, my) with mg = ¢ (for some ¢ > 0) and

(i : DECI(ro, k)). By Definition 3.6, its encoding in HOCoRE is as follows:

[((, mo,mi)nIm = Pill[ro=clm [l [r1 =mi]m |
[(i : DEC)(ro, kDM I [] [+ 1w
[=1.n,1i

We begin by noting that the program counter p; is consumed by the encoding of the instruction

i. The content of the instruction is thus exposed, and we then have
[(£, mo, my)NIm — [ro = c]m || deco || ack.(zo. Pk + no-pir1) || S = P

where S = [r1 = mi]w || [124[(L: 1)]m stands for the rest of the system. The only transition

possible at this point is the behavior selection on decy, which yields the following:
Py — (c—1)o || REGo || ack.(zo.px + no-pita) | S = P>

It is worth recalling that (¢ —1 |)o = %((] ¢ —2)o) || Mo. Considering this, now there is a
synchronization between § and REGy for decrementing the value of the register

Py — o |l ack || (inco.(rg((¢ =1 Do) Il Ao) + deco.(¢ —2 o) || RECo |

ack.(zo.px + no-Pit1) || S=P;

Once the register has been re-created, register and instruction can now synchronize on ack:

Py — g | (inco. (r(?(q c—1)o) || M0) + deco.(¢ —2)o) | REGo ||
Z20. Pk + No. Pis1 ” S=P,

At this point, the only possible transition is the behavior selection on ng, which indicates that

the content of rp was greater than zero:
Py — (inco-(r5{(¢ =1 o) || o) + deco.(=2 o) | REGo || pisi | S = Ps

Using the definitions of [y and S, and some reordering, we note that Ps can be equivalently

written as

Ps=piri || [ro=c =T [l [ro = maw | [0= 10w
(=1

which, in turn, corresponds to the encoding of [(i + 1, ¢ — 1, m1)n]m, as desired.

Case M-INc We have a Minsky configuration (i, mg, m1) with (i : INC(rp)). Its encoding in

HOcoRE is as follows:

[(i, mo, mi)nIm = Pi |l [ro = molm || [r1 = mi]wm ||

[(i: INCro)m | [] s)T

(=1.n,l#i

3.2. Expressiveness of HOcore 63

We begin by noting that the program counter p; is consumed by the encoding of the instruction
i

[(&s mo, mi)nIw — [ro = mo]w || énco || ack.pizi | S = Py
where S =[r1 = mi]m || [1241[(L : 1)]m stands for the rest of the system. The only transition
possible at this point is the behavior selection on incy. After such a selection we have

Py —> ro((mo o) || REGo || ack. izt || S = P,

Now there is a synchronization between % and REGq for incrementing the value of the

register
P2 — ack | (inco.(r5 (r3{(mo bo) || M0)) + deco.((mo o)) || REGo |
ack.pia | S=P;3
Once the register has been re-created, a synchronization on ack is possible
Py — (inco.(r5{r5{(mo Do) || fi0)) + deco. ((mo o)) || REGo |

Piri | S =Py

Using the definition of (-); we note that P4 actually corresponds to

P4 = (inco. (rg{(mo +1 o) + deco.((mo Jo)) || REGo || Pt | S

which in turn can be written as

Py =Pt | [ro = mo+ 1l || [r1 = maw |]I : f)lw
=1

which corresponds to the encoding of [(i + 1, mo + 1, m1)n]m, as desired. O

Lemma 3.4. Let (i, mg, m1) be a configuration of a Minsky machine N.
If [(i, mo, mi)n]m — P then for every computation of Py there exists a P; such that P; =

[(i", mG, my)nIm and (i, mg, my) —m (&, mg, m?).

Proof. Consider the reduction [(i, mg, m1)nJu — P1. An analysis of the structure of process
[(£, mo, m1)n]m reveals that, in all cases, the only possibility for the first step corresponds
to the consumption of the program counter p;. This implies that there exists an instruction
labeled with i, that can be executed from the configuration (i, mg, m1). We proceed by a case
analysis on the possible instruction, considering also the fact that the register on which the
instruction acts can hold a value equal or greater than zero. In all cases, it can be shown that
computation evolves deterministically, until reaching a process in which a new program counter
(that is, some py) appears. The program counter py is inside a process that corresponds to
[(, my, my)n]m, where (i, mg, mq) —wm (', mg, my). The analysis follows the same lines as the

one reported for the proof of Lemma 3.3, and we omit it. O

64 Chapter 3. A Core Calculus for Higher-Order Concurrency

Lemma 3.5. Let N be a Minsky machine. We have that N -, if and only if [N]u —.
Proof. Straightforward from Lemmas 3.3 and 3.4. O

The results above guarantee that HOcore is Turing complete, and since the encoding

preserves termination, it entails the following corollary.

Corollary 3.1. Termination in HOCORE is undecidable.

3.3 Concluding Remarks

The encoding of Turing complete models (such as Minsky and Random Access Machines,
RAMs) is a common proof technique for carrying out expressiveness studies. Our encoding
of Minsky machines into HOcoRE resembles in structure those in (Busi et al., 2003, 2009)
where RAMs are used to investigate the expressive power of restriction and replication in
name-passing calculi, and those in (Busi and Zavattaro, 2004), where the impact of restriction
and movement on the expressiveness of Ambient calculi is studied. The similarities can be
explained by the fact that all the encodings share the same guiding principle: representing
counting as the nesting of suitable components. Those components are restricted names
in CCS (Busi et al., 2009), recursive definitions in sw-calculus (Busi et al, 2003), ambients
themselves in Ambient calculus (Busi and Zavattaro, 2004), and higher-order messages in our
case. Note that by combining our encoding with the one of higher-order s into ;r-calculus in
(Sangiorgi and Walker, 2001), we obtain an encoding very similar to the one in (Busi et al,,
2003). However, we do not know of other works using Turing complete models for proving

expressiveness results in the context of higher-order process calculi.

Chapter 4

Behavioral Theory of HOcoRre

This chapter develops the behavioral theory of HOcore. In Section 4.1 a notion of strong
bisimilarity for HOcoRrE is studied; such a notion it is unique in that it coincides with other
sensible behavioral equivalences in the higher-order setting. The most remarkable property
of strong bisimilarity in HOcoRE is that it is decidable. Section 4.2 analyzes the relationship
between strong bisimilarity and (asynchronous) barbed congruence. Section 4.3 introduces a
sound and complete axiomatization of strong bisimilarity. This axiomatization is then used to
obtain an upper bound to the complexity of the bisimilarity problem. In Section 4.4 it is shown
that strong bisimilarity becoms undecidable if at least four static restriction are added to the
calculus. Section 4.5 briefly analyzes the impact of some extensions to the language on the

decidability results. Section 4.6 concludes.

4.1 Bisimilarity in HOcore

In this section we prove that the main forms of strong bisimilarity for higher-order process
calculi coincide in HOcoRE, and that such a relation is decidable. As a key ingredient for
our results, we introduce open Input/Output (I0) bisimulations in which the variable of input
prefixes is never instantiated and t-transitions are not observed. To the best of our knowledge,
HOCcoRrE is the first calculus where 10 bisimulation is discriminating enough to provide a useful

characterization of process behavior.

We define different kinds of bisimulations by appropriate combinations of the clauses below.

Definition 4.1 (HOcore bisimulation clauses, open processes). A symmetric relation R on

HOCoRE processes is

1. a t-bisimulation if P R Q and P = P’ imply that there is Q" such that Q =5 Q' and
PR Q'

66 Chapter 4. Behavioral Theory of HOcoRre

2. a higher-order output bisimulation if P R Q and P 2, pr imply that there are Q', Q"

such that Q ICON Q' with PR Q and P" R Q”;

3. an output normal bisimulation if P R Q and P 2P, pr imply that there are Q', Q"

such that Q e, Q withm.P" | PR m.Q" | Q, where m is fresh.
4. an open bisimulation if whenever PR Q:

o P _abd, P’ implies that there is Q' such that Q ok, Q and PR Q,
e P =x| P implies that there is Q" such that Q = x | Q' and P’ R Q'

Definition 4.2 (HOcore bisimulation clauses, closed processes). A symmetric relation R on

closed HOCORE processes is

1. an output context bisimulation if P R Q and P P, P’ imply that there are Q', Q" such
that © =% O’ and for all S with (S) C x, it holds that S{P"Ix} || P’ R S{Q'x} || O';

2. an input normal bisimulation if P R Q and P W, pr imply that there is Q' such that

alx)

Q —= Q' and P'{m(0)x} R Q'{m(0)/x}, where m is fresh;

3. closed if PR Q and P ok, P’ imply that there is Q" such that Q _abd, Q' and for all
closed R, it holds that P'{Rix} R Q'{R/x}.

A combination of the bisimulation clauses in Definitions 4.1 and 4.2 is complete if it
includes exactly one clause for input and output transitions (in contrast, it need not include

a clause for T-transitions).’

We will show that all complete combinations coincide. We only
give a name to those combinations that represent known forms of bisimulation for higher-order
processes or that are needed in our proofs. In each case, as usual, a bisimilarity is the union
of all bisimulations, and is itself a bisimulation (the functions from relations to relations that

represent the bisimulation clauses in Definitions 4.1 and 4.2 are all monotonic).

Definition 4.3. Higher-order bisimilarity, written ~yq, is the largest relation on closed HOcore
processes that is a t-bisimulation, a higher-order output bisimulation, and is closed.

Context bisimilarity, written ~con, is the largest relation on closed HOCoRE processes that
is a t-bisimulation, an output context bisimulation, and is closed.

Normal bisimilarity, written ~nog, is the largest relation on closed HOCORE processes that
is a t-bisimulation, an output normal bisimulation, and an input normal bisimulation.

10 bisimilarity, written ~},, is the largest relation on HOCORE processes that is a higher-
order output bisimulation and is open.

Open normal bisimilarity, written ~ g, is the largest relation on HOCORE processes that

is a t-bisimulation, an output normal bisimulation, and is open.

"The clauses of Definition 4.2 are however tailored to closed processes, therefore combining them with clause 4

in Definition 4.1 has little interest.

4.1. Bisimilarity in HOcore 67

Environmental bisimilarity (Sangiorgi et al,, 2007), a recent proposal of bisimilarity for
higher-order calculi, in HOcorE roughly corresponds to (and indeed coincides with) the com-

plete combination that is a T-bisimulation, an output normal bisimulation, and is closed.

Remark 4.1. The input clause of Definition 4.2(3) is in the late style. It is known (Sangiorygi,

1992) that in calculi of pure higher-order concurrency early and late clauses are equivalent.

Remark 4.2. In contrast with ordinary normal bisimulation (Sangiorgi, 1992; Jeffrey and
Rathke, 2005), our clause for output normal bisimulation does not use a replication in front of
the introduced fresh name. Such a replication would be needed in extensions of the calculus

(e.g., with recursion or restriction).
A bisimilarity on closed processes is extended to open processes as follows.

Definition 4.4 (Extension of bisimilarities). Let R be a bisimilarity on closed HOcore pro-

cesses. The extension of R to open HOCORE processes is defined by
R ={(P,Q): a(xq).--- .a(x,).- PR a(x1).--- .a(x,). O}
where fv(P) Utv(Q) = {x1,...,x,}, and a is fresh in P, Q.

The simplest complete form of bisimilarity is ~f,. Not only ~}, is the less demanding

for proofs; it also has a straightforward proof of congruence. This is significant because
congruence is a notoriously hard problem in bisimilarities for higher-order calculi. Before
describing the proof of congruence for ~f;, we first define an auxiliary up-to technique that

will be useful later.

Definition 4.5. A symmetric relation R on HOcorE is an open 10 bisimulation up-to = if
PR Q implies:
1. it P2 P then Q 2 @ and P =R= Q;
N E<P”> / E<QH) / H / — J— / /! — [/7.
2. if P——> P’ then Q ——= Q" with P’ =R= Q" and P" =R= Q”,;
3 ifP=x||P thenQ=x| Q and P =R= Q'
Lemma 4.1. /[f R is an open IO bisimulation up-to = and (P, Q) € R then P ~}5 Q.

Proof. The proof proceeds by a standard diagram-chasing argument (as in, e.g., (Milner, 1989)):

using Lemma 5.1 one shows that =R = is a ~},-bisimulation. O
We now give the congruence result for ~,.
Lemma 4.2 (Congruence of ~},). Let Py, P, be open HOCORE processes. Py ~}y P, implies:

1. a(x). P1 ~fy a(x). P

68 Chapter 4. Behavioral Theory of HOcoRre

2. Pi|| R~ P2 || R for every R
3 a(P1) ~f a(P2)

Proof. Items (1) and (3) are straightforward by showing the appropriate ~},-bisimulations.

We consider only (2). We show that, for every R, Py, and P,
S={Pi IR P2IIR) : P1~jp P2}

is a ~fy-bisimulation. We first suppose P; || R < P’; we need to find a matching action
from P, | R. We proceed by case analysis on the rule used to infer a. There are two cases.
In the first one P; = P} and P’ = P} | R is inferred using rule Act1 (by a-conversion we
can ensure that R respects the side condition of the rule). By definition of ~f,-bisimulation,
P, % P} with P} ~% P5. Using rule Act1 we infer that also P, || R % P} || R. We conclude
that (P; | R, P5 | R) € S. The second case follows by an analogous argument and occurs
when R % R’ so that P’ = P; || R’ by rule Act2.

The last thing to consider is when Py || R = x || P’; we need to show that P, | R=x || O’
and that (P’, Q') € S. We distinguish two cases, depending on the shape of P’. First, assume
that P’ = P} | R, that is, x is a subprocess of Py. Since P; ~f, P, then it must be that
P, = x || P, for some Pj, with P; ~f, P}. Taking Q' = P} | R we thus have (P’, Q) € S.
Second, assume x is a subprocess of R, and we have P' = Py || R’, we then take Q"' = P, | R'.
Since S is defined over every R, then (P’, Q') € S. O

Lemma 4.3 (~}, is preserved by substitutions). If P ~}, Q then for all x and R, also

P{Rix} ~& O{RIx}.

Proof. We show that, for processes P, Q in which x is guarded,
R ={(P{RIx} I L, O{RIx} 1 L) = P ~jo Q}

is a ~fy-bisimulation up-to = (Definition 4.5). (This suffices, because of Lemma 4.1.) Consider
a pair (P{Rix} || L, Q{RIx} || L) € R. We shall concentrate on the possible moves from P{R/x},
say P{Rix} % P’; transitions from L, if any, can be handled analogously. We proceed by
case analysis on the rule used to infer a.

We only detail the case in which a is an input action a(x) inferred using rule INP; the
case in which a is an output is similar (there may be a substitution on the label). Since x
is guarded in P, using Lemma 3.2(2), there is P; such that P o, Py and P’ = P{Rix}.
By definition of ~{y-bisimulation, also Q & Q1 with Py ~}y Q1. Hence, by Lemma 3.2(1),

alx)

Q{RIx} —= Q1{RIx}. It remains to show that P;{R/x} and Q1{Rix} can be rewritten into the

form required in the bisimulation. Using Lemma 3.3(1), we have

Py = P; |||—|x and O =0 |||_|x

4.1. Bisimilarity in HOcore 69

for P{, Q7 in which x is quarded. As Py ~%, Q4, it must be n = m and P; ~{; Q}. Finally,

using Lemmas 3.3(2) and 4.2 we have

PR} = PRI} I []R and 0{Rix} = iR} I [|R
which closes up the bisimulation up-to =. O

The most striking property of ~}, is its decidability. In contrast with the other bisimilarities,
in ~Jy the size of processes always decreases during the bisimulation game. This is because
~o ls an open relation and does not have a clause for 7 transitions, hence process copying

never occurs.
Lemma 4.4. Relation ~{, is decidable.

Next we show that ~}, is also a T bisimulation. This will allow us to prove that ~}, coin-
cides with other bisimilarities, and to transfer to them its properties, in particular congruence

and decidability.
Lemma 4.5. Relation ~}, is a T-bisimulation.

Proof. Suppose (P, Q) € ~% and P = P’; we have to find a matching transition Q — Q.
Action T was inferred using either rule TAu1 or TAU2, so we have two cases. We consider only
the first one as the second is analogous. If rule Tau1 was used, then we can decompose P’s
transition into an output P ﬂ P followed by an input P; _abd, P,, with P' = Pz{R/x} (that
is, the structure of P is P = a(R) | a(x). P2). By definition of ~},, O is capable of matching
these two transitions, and the final derivative is a process Q, with Q; ~Jy P>. Further, as
HOcoRrE has no output prefixes (i.e., it is an asynchronous calculus) the two transitions from Q
can be combined into a t-transition. Finally, since ~, is preserved by substitutions (Lemma

4.3), we can use rule TAu1 to derive a process Q' = Qz{R/X} that matches the t-transition

from P, with (P’, Q') € ~{,. O]
Corollary 4.1. ~yo and ~}, coincide.

Proof. The hard implication is the one right to left (~}, implies ~pg). One shows that for
closed P, Q, ~{y is a ~Ho-bisimulation. Suppose (P1, P2) € ~}y and P4 <5 0Q4; we need to find
a matching transition P, < Q,. We consider three cases, one for each form that a can take.
Case a = @(R) is immediate as both ~yg and ~{, are higher-order output bisimulations. As
for cases a = a(x) and a = T, the desired transition can be easily obtained using Lemmas 4.3

(~lo is preserved by substitutions) and 4.5 (~}, is a t-bisimulation), respectively. O

We thus infer that ~po is a congruence relation. A direct proof of this result (by exhibiting

an appropriate bisimulation), in particular congruence for parallel composition, would have

70 Chapter 4. Behavioral Theory of HOcoRre

been harder. Congruence of higher-order bisimilarity is usually proved by appealing to, and
adapting, Howe’s method for the A-calculus (Howe, 1996).
We now move to the relationship between ~yg, ~}or, @and ~con. We begin by establishing

a few properties of normal bisimulation.

Lemma 4.6. If m.Py || P ~or m. Q1 || Q, for some fresh m, then we have Py ~{,qog O1 and
P ~Ror O-

Proof. We show that, for any fresh names mq, ...,

S={J{(P.Q) : Pl [] mcPi~or @Il [] meQx}

j=1 kel.j kel.j

Si=J{(P1. Q) = P[] mi-Pe~Ror QI [] me Ok}

j=1 kel.j kel.j
are ~or-bisimulations.

We start with S. Suppose (P, Q) €S and that P <5 P’; we need to show a matching
action from Q. We have different cases depending on the shape of a. We consider only the

case a = a(P"), the others being simpler. By AcT1 we have

a(P” ’
PH |_| mk.PkMP || |_| mk.Pk.

kel..j kel.j

Since P || [eer.; mk- Pk ~Ror @Q |l [ker.j mk- Ok, there should exist a Q* such that

a(Q” %
ol [me 0 22 o,

kel

with P" || [yerjme- Pe | m”.P" ~Ror Q|| m”.Q". As mq,...,mj are fresh, they do not
occur in P, thus @(P”) does not mention them. For the same reason, there cannot be any

communication between [,c; ; mk. Ok and Q; so, we infer that the only possible transition is

a(Q” * ’
N[me0 2% 0 =@ | [] mi O
kel kel
applying rule Act1 to Q RICHN Q" Since P || [xer; mi- Pic [| m". P” ~Ror Q" || [lker.; mk- Ok
m”.Q", we have (P’, Q') € S as needed.

Before considering &1, we find it useful to detail a procedure for consuming ~or-bisimilar

processes.

Given a process P, let o(P) denote the number of output actions in P. Let m(P) =
#(P) + o(P) be the measure that considers both the (lexical) size of P and the number of
output actions in it. Consider now two ~Rgg-bisimilar processes P and Q. The procedure
consists in consuming one of them by performing its actions completely; the other process can

match these actions (as it is ~}gg-bisimilar) and will be consumed as well. We will show that

4.1. Bisimilarity in HOcore 71

m(P) decreases at each step of the bisimulation game; at the end, we will obtain processes
P, and Q, with m(P,) = m(Q,) = 0.

To illustrate the procedure, suppose, w.l.o.g., process P has the following shape:

P=[1xl []aitx)Pill []Di(P)

he.t i€l.k jer.d

where we have t top-level variables, k input actions, and [output actions. We use a; and b;
for channels in input and output actions, respectively. The first step is to remove top-level
variables; this relies on the fact ~R4g is an open bisimilarity. One thus obtains processes P;
and Q; with only input and output actions, and both m(P;) < m(P) and m(Q4) < m(Q) hold.
As a second step, the procedure exercises every output action in P;. By definition of ~{ g,
Qy should be able to match those actions. Call the resulting processes P, and Q,. Recall
that when an output @(P;) is consumed in the bisimulation game, process m;. P; is added in
parallel. Thus since #(E(P)j) = #(m;. P;) and the number of outputs decreases, measure m

decreases as well. More precisely, one has that

Pz = |_| Gi(X,‘).P,' || |_| m/P,

iel.k jet.l

where m; stands for a fresh name. Then, one has to consider the k + [input actions in each
process; their consumption proceeds as expected. One obtains processes P; and Q3 that are
bisimilar, with strictly decreasing measures for both processes. The procedure concludes by
iterating the above steps on P; and Q5. In fact, we have shown that at each step measure m
strictly decreases; this guarantees that eventually one will reach processes P, and Q,, with
m(P,) = m(Q,) = 0 as desired.

With the above procedure showing S is a bisimulation is straightforward. Take the ~ -
bisimilar processes P || [,cq;mk-Px and Q || [ieqjmk- Qk. Using the procedure above
over P and Q we obtain |_|k€1”j mi. P ~Ror r]ke” myg. Qk. This is because fresh names
my, ..., m;do notoccur in P and Q, and hence they do not intervene in P and Q’s consumption.

Similarly, we can consume [y, ; mi. Py (i.e. all the components excepting m1. Py) and the

€2.j
corresponding [|y, j me- Qu. We thus end up with my. Py ~Rog m1. Q1, and we observe that
the only possible action on each side is the input on m4, which can be trivially matched by

the other. We then infer that (P, Q1) €8y, as desired. O]
Lemma 4.7. ~yo implies ~con.

Proof. We suppose (P, Q) € ~po and P % P’; we need to show a matching action from Q.
We proceed by case analysis on the form a can take. The only interesting case is when «
is a higher-order output; the remaining clauses are the same in both relations. By definition
of ~po, if P P, P’ then Q _aen, Q’, with both P” ~yo Q" and P’ ~yo Q. We need to

show that, for every S such that fv(S) = {x}, S{P"/x} | P’ ~no S{Q"x} || Q’; this follows

72 Chapter 4. Behavioral Theory of HOcoRre

from P” ~po Q" and P’ ~pp Q' and the fact that ~po is both a congruence and preserved

by substitutions. O
Lemma 4.8. ~CON implies ~NOR-

Proof. Straightforward by showing an appropriate bisimulation. The result is immediate by
noticing that (i) both relations are t-bisimulations, and that (ii) the input and output clauses
of ~NoRr are instances of those of ~con. In the output case, by selecting a process S = m.x
(with m fresh) one obtains the desired form for the clause. The input clause is similar, and
follows from the definition of closed bisimulation, which holds for every closed process R; in

particular, it also holds for R = m(0) (with m fresh) as required by the clause of ~Nor. [

Lemma 4.9. ~nNor implies ~R,gr-

Proof. We consider open processes, and as such, in what follows we consider the extension of
~NoOR to open processes as in Definition 4.3, which we denote ~{r. Notice that since ~Nor

is an input normal bisimulation (Definition 4.2(2)), ~{or can be equivalently defined as
P ~tor Q iff P{mi{O0)x;, ..., Ma{0)/x,} ~nor Q{M1(O0)x,, ..., Ma(0)/x,}

where {x1,...,x,} = fv(P)Ufv(Q) and my, ..., m, are fresh names. We will show that ~{ 5
is an open normal bisimulation.

We first suppose P ~{ oz Q and P < P’; we need to find a matching transition Q 5 0.
We perform a case analysis on the shape o can take. In all cases, one uses the defini-
tion of ~{or to show that the desired transition actually takes place. Next we only de-
tail the case in which a = a(x), so we suppose P W, pr Now, if P —> P’ then also

{m1 /x1 . ”Tn<0>/xn} must be capable of performing such an action, so that
P{m(O)x,, ..., Tn(O)x,} 2 pr{m(0)x,, ... Ma(O)x, }

exists. In turn, by definition of ~noRr, such an action guarantees that there exists a Q" that

matches that input action, i.e.

Q{m1 Ux1, . n<0>/xn} _abd, Q/{W<O>/x1, . ,m7n<0>/x,7};

with
P {mi(0)x,, ..., mMa(0)x, 1 {m(O)x} ~nor Q' {M1(O)x,, ..., Ma(0)x, }{m(O)x}.
Again, by using the definition the ~{,z on the above facts, it is easy to see that there is a
Q' such that Q _abd, Q" and P’ ~{or @', and we are done.
The last thing to consider are those variables in evaluation context in the open processes.
This is straightforward by noting that by definition of ~{yg, all such variables have been

closed with a trigger. So, suppose P ~} oz O and

P{mi(0)x,, ..., mu(0)x} = m(0) || P {m(O)x,, ..., Ma(0)x,}

4.1. Bisimilarity in HOcore 73

where m is fresh. We need to show that Q has a similar structure, i.e. that Q = x || Q’, with
P’ ~Yor @' P can perform an output action on m1, thus evolving to P’{”T(o)/xh . ,Wn<0>/xn}.
By definition of ~{yr, Q can match this action, and evolves to some process Q*, with m’.0 ||
P {mi(0)x,, ..., Ma(0)x,} ~%or m.0 | QF where m’ is a fresh name (obtained from the
definition of ~{ g for output actions). The input on m’ can be trivially consumed on both
sides, and one has P’{”T(O)/)ﬁ m7n<0>/xn} ~Xor OF. At this point, since my is a fresh
name, we know that Q involves a variable in evaluation context. Furthermore, since there is a
correspondence between P’ and Q, they should involve substitutions in the very same fresh

names. More precisely, we have that there should be a Q" such that
Q =mi(0) || Q' {m{0)x,, ..., Ma{0))x,} = m1(0) || O*
as desired. O
Lemma 4.10. ~} g implies ~},.
Proof. The only difference between the bisimilarities is their output clause: they are both

open bisimulations. We analyze directly the case for output action. Suppose P ~R,z Q and
a(P") s

P ——= P’; we need to show a matching action from Q. By definition of ~R g, f P —— P’
then also Q RACHN Q', with m.P" | P" ~por m- Q" | Q. Using this and Lemma 4.6 we
conclude that P” ~ 5z Q" and P’ ~Ror Q. O

Lemma 4.11. /n HOCoRE, relations ~Ho, ~{or and ~con coincide.

Proof. This is an immediate consequence of previous results. In fact, we have proved (on open

processes) the following implications:
1. ~Jp implies ~yo (Corollary 4.1).
2. ~po implies ~con (Lemma 4.7);
3. ~con implies ~nor (Lemma 4.8);
4. ~Nor implies ~}or (Lemma 4.9);
5. ~Ror implies ~}, (Lemma 4.10).

O

We then extend the result to all complete combinations of the HOcoRe bisimulation clauses
(Definitions 4.1 and 4.2).

Theorem 4.1. All complete combinations of the HOcore bisimulation clauses coincide, and

are decidable.

74 Chapter 4. Behavioral Theory of HOcoRre

Proof. In Lemma 4.11 we have proved that the least demanding combination (~f,) coincides

with the most demanding ones (~o and ~con). Decidability then follows from Lemma 4.4. O

We find this “collapsing” of bisimilarities in HOcoRE significant; the only similar result we
are aware of is by Cao (2006), who showed that strong context bisimulation and strong normal

bisimulation coincide in higher-order s-calculus.

4.2 Barbed Congruence and Asynchronous Equivalences

We now show that the labeled bisimilarities of Section 4.1 coincide with barbed congruence,
the form of contextual equivalence used in concurrency to justify bisimulation-like relations.
Below we use reduction-closed barbed congruence (Honda and Yoshida, 1995; Sangiorgi and
Walker, 2001), as this makes some technical details simpler; however the results also hold for
ordinary barbed congruence (Milner and Sangiorgi, 1992). It is worth recalling that the main
difference between reduction-closed and ordinary barbed congruence is quantification over
contexts (see (2) in Definition 4.6 below). More importantly, we consider the asynchronous
version of barbed congruence, where barbs are only produced by output messages; in syn-
chronous barbed congruence inputs may also contribute. We use the asynchronous version for
two reasons. First, asynchronous barbed congruence is a weaker relation, which makes the
results stronger (they imply the corresponding results for the synchronous relation). Second,
asynchronous barbed congruence is more natural in HOCoRE because it is an asynchronous
calculus — it has no output prefix.

Note also that the labeled bisimilarities of Section 4.1 have been defined in the syn-
chronous style. In an asynchronous labeled bisimilarity (see, e.g., (Amadio et al., 1998)) the
input clause is weakened so as to allow, in certain conditions, an input action to be matched

also by a t-action. For instance, input normal bisimulation (Definition 4.2(2)) would become:

o if P & P’ then, for some fresh name m,

1. either Q 2% O and P/{M(O)x} R Q' {M(O)x};

2. 0or Q5 Q and P{m(0)x} R Q' | a(m(0)).

We now define asynchronous barbed congruence. We write P |z (resp. P |4) if P can

perform an output (resp. input) transition at a.

Definition 4.6. Asynchronous barbed congruence, =, is the largest symmetric relation on

closed processes that is
1. a t-bisimulation (Definition 4.1(1));

2. context-closed (i.e, P ~ Q implies C[P] ~ C[Q), for all closed contexts Cl-));

4.2. Barbed Congruence and Asynchronous Equivalences 75

3. barb preserving (i.e., if P ~ Q and P |g, then also Q |3).
In synchronous barbed congruence, input barbs P |, are also observable.
Lemma 4.12. Asynchronous barbed congruence coincides with normal bisimilarity.

Proof. We first show that ~Nor implies ~, and then its converse, which is harder. The
relation ~nor satisfies the conditions in Definition 4.6 as follows. First, both relations are
T-bisimulations so condition (1) above trivially holds. Second, the context-closure condition
follows from the fact that ~nor is a congruence. Finally, the barb-preserving condition is seen
to hold by definition of ~NoRr: having P ~Nor QO implies that an output action of P on a has
to be matched by an output action of Q on a; hence, we have that if P |, then also Q |z
Now the converse. We show that relation ~ satisfies the three conditions for ~Nor in
Definition 4.3. Suppose P ~ Q and P 2, P’; we have to show a matching transition Q 5 0.

We proceed by a case analysis on the form a can take.

Case o = 7 Since by definition ~ is a t-bisimulation, then there is a Q" such that Q S50
and P’ ~ Q' and we are done.

-, P//
Case a = a(P”) We have P P, pr. it can be shown that = is an output normal bisimu-

lation by showing a suitable context. Let C[] be the context
ClI=[TIal)-(m.x |7] n.0)

where m,n are fresh names. We then have CIP] = P; with P; |5 Indeed, we have
Py =P | m.P”| 7| n0. By definition of ~, we have also C?[Q] = Q; and necessarily,
Qq |7 Since n is a fresh name, we infer that Q also has an output on a, such that Q M 04
and hence QO = Q' | m.Q" | n | n.0. Note that (Py, Q) is in ~. They can consume the
actions on n; since it is a fresh name, only the corresponding T action of Q; can match it. As
a result, both processes evolve to processes P’ || m.P” and Q" || m. Q" that are still in ~. We

then conclude that ~ is an output normal bisimulation.

Case a = a(x) We have P W, pr Again, to show that ~ is an input normal bisimulation, we
define a suitable context. Here, the asynchronous nature of HOcorEe (more precisely, the lack
of output prefixes, which prevents the control of output actions by modifying their continuation)
and the input clause for ~Nor it induces (reported above) result in a more involved definition
of these contexts. Notice that simply defining a context with an output action on a so as to
force synchronization with the input action does not work here: process P itself could contain
other output actions on a that could synchronize with the input we are interested in, and as

output actions have no continuation, it is not possible to put a fresh barb indicating it has

76 Chapter 4. Behavioral Theory of HOcoRre

been consumed. We overcome this difficulty by (i) renaming every output in P, so as to avoid
the possibility of T actions (including those coming from synchronizations on channels different
from a), (i) consuming the input action on a (by placing the renamed process in a suitable

context) and then (iii) restoring the initial outputs.

We define a context for (i) above, i.e., to rename every output in a process so as to prevent
T actions. We start by denoting by out(P) the multiset of names in output subject position in
a process P. Further, let o denote an injective relation between each occurrence of name in

out(P) and a fresh name. Let CJ-] be the context

Al=[11 [] bilx)elx)
(bi,ci)eo
which uniquely renames every output b;(S;) as ¢;(S;). (We shall use ¢; (i € 1..n) to denote
the fresh names for the renamed outputs.) Consider now processes C[P] and C[Q]: since the
renaming is on fresh channels, it can be ensured that the T action due to the renaming of one
output on one process is matched by the other process with a T action that corresponds to the
renaming of the same output. At the end, after a series of n 7 actions, C[P] and C[Q] become
processes Py and Q; that have no T actions arising from their subprocesses and that are in
~. At this point it is then possible to use a context for (ii), to capture the input action on a

in Py. Let C°[] be the context
Gl =[]II'a(m(0))

where m is a fresh name. We then have
CIP S (S |-+ [a(Sn) | Pa{™O)x} | P" = Py

which, by definition of ~, implies that also it must be the case that, for some process Q»,
ColO1] 5 Q.. In fact, since there is a synchronization at a, it implies that Q; must have at

least one input action on a. More precisely, we have

Q=T (Si) |- 1 a(Sn) | Qu{™(O)x} || Q"

We notice that P, and Q, are still in ~; it remains however to perform (iii), i.e. to revert the

renaming made by C[-]. To do so, we proceed analogously as before and define the context

CU=M1 [T eb-bix).
(Cub[)egi1
We have that each of C'[P;] and C'[Q,] produces n T steps that exactly revert the renaming
done by context C[-] above and lead to P; and Qs, respectively. This renaming occur in
lockstep (and no other T action may be performed by Q,), as each one removes a barb on

a fresh name, thus the other process has to remove the same barb by doing the renaming.

4.3. Axiomatization and Complexity 77

Hence, P; and Qs have the same output actions as the initial P and Q. To conclude, it is

worth remarking that C?[P] = P5 in one step. Indeed, we have

CPI=T || a(x). Py || P” || @(m(0)) = P3 = P/{m(0)x}

L

where T stands for all the output actions in P (on which the renaming took place). By doing
and undoing the renaming on every output, we were able to infer that Q has an analogous

structure
ClOI=T' | a(x). Qo || Q" || a(m(0)) — Q3

where T’ stands for all the output actions in Q. From the definition of ~ we know it is a 7-

bisimulation, and then we have P3; ~ Q3. Let Q' =T’ || Q, || Q”, we then have Q LLIN Q' and

Qs = Q'{M(0)x}. To summarize, we have P 2% P', 0 2% o/, and P'{(0)x} ~ Q'{m(O)x}
with m fresh. Hence we conclude that ~ is an input normal bisimulation. O

Remark 4.3. The proof relies on the fact that HOcoRre has no operators of recursion, choice,
and restriction. In fact, recursion would break the proof as there could be an infinite number
of outputs to rename. Also, choice would prevent the renaming to be reversible, and restriction
would prevent the renaming using a context as some names may be hidden. The higher-order
aspect of HOcoRe does not really play a role. The proof could indeed be adapted to CCS-like,

or m-calculus-like, languages in which the same operators are missing.

Corollary 4.2. In HOcoRrE asynchronous and synchronous barbed congruence coincide, and
they also coincide with all complete combinations of the HOcore bisimulation clauses of

Theorem 4.1.

Further, Corollary 4.2 can be extended to include the asynchronous versions of the labeled
bisimilarities in Section 4.1 (precisely, the complete asynchronous combinations of the HOcore
bisimulation clauses; that is, complete combinations that make use of an asynchronous input
clause as outlined before Definition 4.6). This holds because: (i) all proofs of Section 4.1 can
be easily adapted to the corresponding asynchronous labeled bisimilarities; (ii) using stan-
dard reasoning for barbed congruences, one can show that asynchronous normal bisimilarity
coincides with asynchronous barbed congruence; (iit) via Corollary 4.2 one can then relate the

asynchronous labeled bisimilarities to the synchronous ones.

4.3 Axiomatization and Complexity

We have shown in the previous section that the main forms of bisimilarity for higher-order
process calculi coincide in HOcore. We therefore simply call bisimilarity such a relation, and
write it as ~. Here we present a sound and complete axiomatization of bisimilarity. We do so

by adapting to a higher-order setting results by Moller and Milner on unique decomposition

78 Chapter 4. Behavioral Theory of HOcoRre

of processes (Milner and Moller, 1993; Moller, 1989), and by Hirschkoff and Pous on an
axiomatization for a fragment of (finite) CCS (Hirschkoff and Pous, 2007). We then exploit this

axiomatization to derive complexity bounds for bisimilarity checking.

4.3.1 Axiomatization
Lemma 4.13. P ~ Q implies #(P) = #(0).

Proof. Suppose, for a contradiction, that there exist P, Q such that P ~ Q with #(P) < #(Q)
and choose a P with a minimal size. If Q has no transition enabled, then it must be 0, thus
#(Q) = 0, which is impossible as #(Q) > #(P) > 0.

We thus have Q -5 Q’, hence there is a P’ such that P = P’ with P’ ~ Q". We consider
two cases, depending on the shape of a (we do not consider T actions, as such an action
implies both an input and an output).

If @ is an input action, we have Q LN Q’, and since P ~ Q, then also P _abd, P’. We
then have that #(P’) = #(P) — 1 and #(Q’) = #(Q) — 1, so it follows that #(P’) < #(Q’).
Further, one has #(P’) < #(P), which contradicts the minimality hypothesis.

Now suppose «a is an output action: we have Q e, Q’, and by definition of ~, also
that P KN P’ with both P’ ~ Q" and P” ~ Q". By the definition of size, we have that
#(P') = #(P) — (1 + #(P")) and #(Q’') = #(0) — (1 + #(Q")). Notice that P”, Q" are strict
subterms of P and Q, respectively. If their size is not the same, we have a contradiction.
Otherwise, we have #(P’) < #(0Q’) and also #(P’) < #(P), which is also a contradiction. [

Following (Milner and Moller, 1993; Moller, 1989) we prove a result of unique prime

decomposition of processes.

Definition 4.7 (Prime decomposition). A process P is prime if P o4 0 and P ~ Py || P, imply
Py ~ 0 or P, ~ 0. When P ~ []._, P; where each P; is prime, we call [_, P; a prime

decomposition of P.
Proposition 4.1 (Cancellation). For all P, Q, and R, if P | R ~ Q || R then also P ~ Q.

Proof. The proof, which proceeds by induction on #(P) 4+ #(Q) + #(R), is a simple adaptation
of the one in (Milner and Moller, 1993). O

Proposition 4.2 (Unique decomposition). Any process P admits a prime decomposition []]_; P;
which is unique up to bisimilarity and permutation of indices (i.e., given two prime decompo-
sitions [iy P: and [|iL, P}, then n = m and there is a permutation o of {1,...,n} such that

P ~ Py for each i € {1,...,n}).

Proof. The proof, also similar to the one in (Milner and Moller, 1993) with just variables to

be considered in addition, uses Proposition 4.1. O

4.3. Axiomatization and Complexity 79

Both the key law for the axiomatization and the following results are inspired by similar
ones by Hirschkoff and Pous (2007) for pure CCS. Using their terminology, we call distribution
law, briefly (DIS), the axiom schema below (recall that |—|f Q denotes the parallel composition

of k copies of Q).
a(x)-(P | i " ax).P) = [} a(x).P (DIS)

We then call extended structural congruence, written =g, the extension of the structural
congruence relation (=, Definition 6.2) with the axiom schema (DIS). We write P ~> Q when
there are processes P’ and Q' such that P = P/, Q' = Q and Q' is obtained from P’ by
rewriting a subterm of P’ using law (DIS) from left to right. Below we prove that =g provides
an algebraic characterization of ~ in HOcore. Establishing the soundness of =g is easy;

below we discuss completeness.

Definition 4.8. A process P is in normal form if it cannot be further simplified in the system

=g by using ~.

Any process P has a normal form that is unique up to =, and which will be denoted by
n(P). Below A and B range over normal forms, and a process is said to be non-trivial if its

size is not 0.
Lemma 4.14. If P ~ Q, then P ~ Q. Also, for any P, P ~ n(P).

Proof. The proof proceeds by showing that (~ U(~)""U =) is a bisimulation (as ~, for

instance). O

Lemma 4.15. If a(x).P ~ Q || Q' with Q, Q 4 0, then a(x).P ~ [} a(x).A, where k > 1 and

a(x).A is in normal form.

Proof. By Lemma 4.14, a(x). P ~ n(Q || Q'). Furthermore, by Proposition 4.2, we have that

n(Q || @) = [Jaix) A |l []5(B)).
i<k j<l
where the processes a;(x;).A; and b;(B;) are in normal form and prime. Since the prefix
a(x) must be triggered to answer any challenge from the right-hand side, we have a; = q,
and x; = x (this can be obtained via a-conversion, but we can suppose that a;(x;). A; was
already a-converted to the correct form), and we have [= 0 (there is no output in the prime
decomposition). As there are at least two processes that are not 0, we have k > 1. To

summarize:

a(x). P ~[]alx). A

i<k

80 Chapter 4. Behavioral Theory of HOcoRre

After an input action on the right-hand side, we derive

P~ A o)A
I#i

for every i < k. In particular, when i # j, we have
PoAila) Al [] a)A PrAax)All [] ax).A
le{ij} le{ij}

and, by Proposition 4.1, A; || a(x).A; ~ A; | a(x).Ai. Since a(x).A; is prime and it has larger
size than A; (and any of its components), it should correspond in the prime decomposition to
a(x).A;, te. a(x).A; ~ a(x).A;. As this was shown for every i # j, we thus have a(x). P ~
Hfa(x).A1 with kK > 1 and a(x). Ay in normal form. O

Lemma 4.16. For A, B in normal form, if A~ B then A = B.

Proof. We show, simultaneously, the following two properties:
1. if A'is a prefixed process in normal form, then A is prime;
2. for any B in normal form, A ~ B implies A = B.

We proceed by induction on n, for all A with #(A) = n. The case n = 0 is immediate as the
only process of this size is 0. Suppose that the property holds for all i < n, with n > 1. In

the reasoning below, we exploit the characterization of ~ as ~{q.

1. Process A is of the form a(x). A". Suppose, as a contradiction, that A is not prime. Then
we have A ~ Py || P, with Py and P, non-trivial. By Lemma 4.15, then A ~ % a(x). B
with k > 1 and a(x). B in normal form. By consuming the prefix on the left-hand
side, we have A’ ~ B || M¥~" a(x). B. It follows by induction (using property (2)) that
A = B || M a(x). B, and hence also A = a(x).(B || M%~" a(x). B). This is impossible,

as A is in normal form.
2. Suppose A ~ B. We proceed by case analysis on the structure of A.

e Case A = x. We have that B should be the same variable, so A = B trivially.

e Case A =a(P). We have that B = a(P’) with P ~ P’ by definition of ~f,. By the
induction hypothesis, P = P’, thus @(P) = a(P’).

e Case A = a(x).A’. We show by contradiction that B = a(x). B'. Assume B=Q | Q’,
then by Lemma 4.15, A is a parallel composition of at least two processes. But

according to the first property, as A is prefixed, it is prime, a contradiction. We thus
have B = a(x). B’ with A" ~{y B'. By induction this entails A’ = B’ and A = B.

4.3. Axiomatization and Complexity 81

e Case A =[], P; with k > 1 where no P; has a parallel composition at top-level.
We reason on the possible shape of the P;.
If there exists j such that P; = x then also B = x || B'. The thesis then follows by
induction hypothesis on [], ..; P;i and B'.
If P; is an output, B must contain an output on the same channel. The thesis then
follows by applying the induction hypothesis twice, to the arguments and to the
other parallel components.
The last case is when A = [, ai(x;).A; with k > 1. We know by the induction
hypothesis (property (1)) that each component a;(x;). A; is prime. Similarly, it must
be B =[], bi(xi). Bi with b;(x;). B; prime for all i < [. By Proposition 4.2 (unique
decomposition), we infer k = [and a;(x;). A; ~ bi(x;). B; (up to a permutation of
indices). Thus a; = b; and A; ~ B;; then by induction A; = B; for all i, which
finally implies A = B.

The theorem below follows from Lemmas 4.14 and 4.16.
Theorem 4.1. For any processes P and Q, we have P ~ Q iff n(P) = n(Q).

Corollary 4.3. =g is a sound and complete axiomatization of bisimilarity in HOCORE.

4.3.2 Complexity of Bisimilarity Checking

To analyze the complexity of deciding whether two processes are bisimilar, one could apply
the technique from (Dovier et al., 2004), and derive that bisimilarity is decidable in time which
is linear in the size of the LTS for ~{; (which avoids t transitions). This LTS is however
exponential in the size of the process. A more efficient solution exploits the axiomatization
above: one can normalize processes and reduce bisimilarity to syntactic equivalence of normal
forms.

For simplicity, we assume a process P is represented as an ordered tree (but we will
transform it into a DAG during normalization). In the following, let us denote with t[m, ..., my]
the ordered tree with root labeled t and with (ordered) descendants my, ..., my. We write t[]

for a tree labeled t and without descendants (i.e., a leaf).

Definition 4.9 (Tree representation). Let P be a HOCORE process. Its associated ordered tree

representation is labeled and defined inductively by
e Tree(0) = 0[]

e Tree(x) = db(x)[]

82 Chapter 4. Behavioral Theory of HOcoRre

o Tree(a(Q)) = a[Tree(Q)]
e Tree(a(x). Q) = a[Tree(Q)]

o Tree([1, Pi) =[1i4[Tree(Ps), ..., Tree(P,)]
where db is a function assigning De Bruijn indices De Bruijn (1972) to variables.

We now describe the normalization steps. The first deals with parallel composition nodes:
it removes all unnecessary 0 nodes, and relabels the nodes when the parallel composition has

only one or no descendants.

Normalization step 1. Let ~»N1 be a transformation rule over trees associated to HOCoRe

processes, defined by:

1. [1i_[Tree(Py), ..., Tree(P,)] ~n1 [1ieq[Tree(Poq)). - - -, Tree(Po(m))),
where m < n is the number of processes in Py, ..., P, that are different from 0, and o

is a bijective function from {1,...,m} to {i | i€ {1,...,n} AP; £ 0}.
2 [Tl 1 0

3. [i_i[Tree(P1)] ~ni1 Tree(Py)

After this first step, the tree is traversed bottom-up, applying the following normalization

steps.

Normalization step 2. Let ~»\z be a transformation rule over trees associated to HOCORE
processes, defined as follows. If the node is a parallel composition, sort all the children

lexicographically. If n children are equal, leave just one and make n references to it.
The last step applies DIS from left to right if possible.

Normalization step 3. Let ~»\3 be a transformation rule over trees associated to HOCoRE
processes, defined by:
k+1
a |_|[Tree(P), Tree(a(x). P), ..., Tree(a(x). P)]| ~N3
i=1
k+1

|_|[Tree(a(x). P), ..., Tree(a(x). P)]

j=1

where Tree(a(x). P) appears k times in the left-hand side, and k + 1 times in the right-hand

side.

4.3. Axiomatization and Complexity 83

Notice that applying DIS changes De Bruijn indices, but the first instance of P already
has the correct indices, thus making n references to it produces the correct DAG. Note also
that in the comparison between the different instances of P, care should be taken because of
the De Bruijn indices. In fact, De Bruijn indices of all the instances of P but the first one are

increased by one, since there is one more binding occurrence of x.

Lemma 4.17. Let Tp, Tp be two tree representations of processes P and Q (as in Definition

4.9), normalized according to normalization steps 1 and 2. Then P = Q iff Tp = Tp.

Proof. Immediate from Definitions 6.2 and 4.9, and from normalization steps 1 and 2. In
particular, ~»N1 corresponds to the elimination of all occurrences of 0 in parallel, and ~»n;

corresponds to the choice of a representative process, up to associativity and commutativity. O

Lemma 4.18. Let P, Q be processes and Tp, T their tree representations normalized according
to steps 1, 2and 3. Then P ~ Q iff Tp = Ty,.

Proof. Immediate using Lemmas 4.17 and 4.14 (P ~> Q implies P ~ Q). O

We now give a lemma on the cost of sorting the tree representation of a process. Given a
process P, we define the size of its tree representation Tp to be the number of nodes of the

tree, and denote it as size(P).

Lemma 4.19. Consider n HOcoRE processes Py, ..., P, and their tree representations Tp,, ..., Tp
size(P;).

n*

Their sorting has complexity O(t log n), where t =) _

i€l.n

Proof. Let us assume MERGESORT as sorting algorithm. MERGESORT sorts a list of elements
by (i) splitting the list to be sorted in two; (ii) recursing on both sublists; and (iii) merg-
ing the sorted sublists. A merge function starts by comparing the first element of each list
and then copies the smallest one to the new list. Comparing two elements P;, P; costs
min (size(P;), size(P;)). As each Tp, is considered once (when it is copied to the new list)
the cost of merging two lists is the sum of the size of their elements (the actual copying of an
element has constant cost since it is just a pointer operation). Let us call a slice of MERGESORT
the juxtaposition of every recursive call at the same depth. In this way, e.g., the first slice
considers the lists when recursion depth is equal to 1: the first two recursive calls, each one
having half of the original list. In general, at every slice one finds a partition of the list in 2¢
sublists, where d is the recursion depth. Each recursive call in every slice is going to merge
two sublists, with a complexity of the sum of the sizes of these sublists. Summing everything,

we get a cost of t =) size(P;) at each recursion depth. Therefore, as there are logn

i€l.n

different depths, the total complexity is O(t log n). O

84 Chapter 4. Behavioral Theory of HOcoRre

Theorem 4.2. Consider two HOCORE processes P and Q. P ~ Q can be decided in time
O(n? logm) where n = max (size(P), size(Q)) (i.e., the maximum number of nodes in the tree
representations of P and Q) and m is the maximum branching factor in them (i.e., the maximum

number of components in a parallel composition).

Proof. Bisimilarity check proceeds as follows: first normalize the tree representations of the
two processes, then check them for syntactic equality.

Normalization step 1 can be performed in time O(n). In fact, a visit (O(n)) is enough to
apply the first rule where needed, and a second visit is enough to apply the other two rules.
Normalization step 2 should be applied if the node is a parallel composition. By Lemma 4.19
this can be done in O(n log m) for each parallel composition node. Normalization step 3 should
be applied if the node is a prefix node. The check for applicability requires one comparison
(O(n)) and the check that all the other components coincide (simply check that the subtrees
have been merged by Normalization step 2: O(n)). Applying ~»n3 simply entails collapsing
the trees (O(n)). Other nodes require no operations.

Thus the normalization for a single node can be done in O(nlogm), and the whole nor-

malization can be done in O(n?log m). O

4.4 Bisimilarity is Undecidable with Four Static Restrictions

If the restriction operator is added to HOcCoRE, as in Plain CHOCS or Higher-Order sr-calculus,
then recursion can be encoded (Thomsen, 1990; Sangiorgi and Walker, 2001) and most of the
results in Sections 4.1-4.3 would break. In particular, higher-order and context bisimilarities
are different and both undecidable (Sangiorgi, 1992, 1996a).

We discuss here the addition of a limited form of restriction, which we call static restriction.
These restrictions may not appear inside output messages: in any output @({P), P is restriction-
free. This limitation is important: it prevents for instance the above-mentioned encoding of
recursion from being written. Static restrictions could also be defined as top-level restrictions
since, by means of standard structural congruence laws, any static restriction can be pulled
out at the top-level. Thus the processes would take the form vay ...va, P, where va;
indicates the restriction on the name a;, and where restriction cannot appear inside P itself.
The operational semantics—LTS and bisimilarities—are extended as expected. For instance,

one would have bounded outputs as actions, as well as rules

PP z & fn(a)

STRES =
vzP — vzP’
aR) o,
STOPEN P—5P z € fn(R)

vzP LN P’

4.4. Bisimilarity is Undecidable with Four Static Restrictions 85

defining static restriction and extrusion of restricted names, respectively. Note that there is
no need to define how a bounded output interacts with input as every t transition takes place
under the restrictions. Also, structural congruence (Definition 6.2) would be extended with the
axioms for restriction vzvwP = vwvzP and vz0 = 0. (In contrast, notice that we do not

require the axiom: vz(P | Q) = P || (vzQ), where z does not occur in P.) We sometimes write

We show that four static restrictions are enough to make undecidable any bisimilarity
that has little more than a clause for t-actions. For this, we reduce the Post correspondence
problem (PCP) (Post, 1946; Sipser, 2005) to the bisimilarity of some processes. We call
complete t-bisimilarity any complete combination of the HOcorE bisimulation clauses (as
defined in Section 4.1) that includes the clause for T actions (Definition 4.1(1)); the bisimilarity

can even be asynchronous (Section 4.2).

Definition 4.10 (PCP). An instance of PCP consists of an alphabet A containing at least
two symbols, and a finite list Ty,..., T, of tiles, where each tile is a pair of words over A.
We use T; = (u;, l;) to denote a tile T; with upper word u; and lower word ;. A solution
to this instance is a non-empty sequence of indices iy, ..., i, 1 < i; < n (j €1---k), such
that u;, - --uy, =i, -- - ;.. The decision problem is then to determine whether such a solution

exists or not.

Having (static) restrictions, we refine the encoding of non-nested replications (Defini-

tion 3.5) and define it in the unguarded case:

[!Pl = ve (Oc [€(0Qc))

where Q. = c(x).(x || €(x) || P) and P is a HOcorE process (ie., it is restriction-free). In
what follows we thus also consider extended HOCcoORE processes, that include replication and

for which structural congruence (Definition 6.2) is extended with the axiom !|P = P | !P.
Lemma 4.1 (Correctness of [-];). For each extended HOCoRE process P:

e if[P] = Q then 3P’ such that either P > P’ and [P'i = Q or a = 1, P = P’ and
[Pl = 0.
e P % P implies either [P], = [P']; or [P], ——— [P"]..
Proof. By transition induction. O
Now, [!0] is a purely divergent process, as it can only make t-transitions, indefinitely;
it is written using only one static restriction. Given an instance of PCP we build a set of
processes Py, ..., P,, one for each tile Ty, ..., T,, and show that, for each i, P; is bisimilar to

['0]; iff the instance of PCP has no solution ending with T;. Thus PCP is solvable iff there

exists j such that P; is not bisimilar to [!0];.

86 Chapter 4. Behavioral Theory of HOcoRre

LETTERS [a1, Py = [a2. P) = a(P)

[az, Py =[a1, Pli = a(x).(x || P)
STRINGS [a: s, Plw =[ai[s, Plwlw

e, Plw =P (€ is the empty word)
CreaTors i = up(x). low(y). (@p{[uk, x]u) | low([lk. y1))
STARTERS Sy = up{[uk, b].) || low([lx, b.Success))
Executor E = up(x). low(y). (x || y)
SYSTEM P; = vup viowvavb (S; || '], G || E)

Figure 4.1: Encoding of PCP into HOcoRre

The processes Py, ..., P, execute in two distinct phases: first they build a possible solution
of PCP, then they non-deterministically stop building the solution and execute it. If the chosen
composition is a solution then a signal on a free channel success is sent, thus performing a
visible action, which breaks bisimilarity with [!0];.

The precise encoding of PCP into HOcoRrEe is shown in Figure 4.1, and described below.
We consider an alphabet of two letters, a1 and a,. The upper and lower words of a tile
are treated as separate strings, which are encoded letter by letter. The encoding of a letter
is then a process whose continuation encodes the rest of the string, and varies depending
on whether the letter occurs in the upper or in the lower word. We use a single channel
to encode both letters: for the upper word, a; is encoded as a@(P) and a; as a(x).(x || P),
where P is the continuation and x does not occur in P; for the lower word the encodings are
switched. In Figure 4.1, [a;, P]w denotes the encoding of the letter a; with continuation P,
with w = u if the encoding is on the upper word, w = [otherwise. Hence, given a string
s = a;-s', its encoding [s, Ply is [a;,[s", Plw]w, i.e., the first letter with the encoding of the
rest as continuation. Notice that the encoding of an a; in the upper word can synchronize

only with the encoding of a; for the lower word.

The whole system P; is composed by a (replicated) creator Cy for each tile Ty, a starter
S; that launches the building of a tile composition ending with (u;,(;), and an executor E.
The starter makes the computation begin; creators non-deterministically add their tile to the
beginning of the composition. Also non-deterministically, the executor blocks the building of
the composition and starts its execution. This proceeds if no difference is found: if both strings
end at the same character, then synchronization on channel b can be performed, which in turn,
makes action success visible. Notice that without synchronizing on b, action Success could
be visible even in the case in which one of the strings is a prefix of the other one.

The encoding of replication requires another restriction, thus P; has five restrictions. How-
ever, names low and a are used in different phases; thus choosing low = a does not create

interferences, and four restrictions are enough.

4.4. Bisimilarity is Undecidable with Four Static Restrictions 87

Theorem 4.3. Given an instance of PCP and one of its tiles T;, there is a solution of the
instance of PCP ending with T; iff P; is not bisimilar to [!0], according to any complete

T-bisimilarity.

Proof. We start by proving the left to right implication. Note that [!0], has a unique possible

.., T; be a solution of

m

computation, that is infinite and includes only t actions. Let T;,.
the instance of the PCP problem such that T;, = T;. Then P; can perform the computation
described below, which contains the action Stccess, thus it is not bisimilar to [!0]. The

computation is as follows:

1. P =7 vup,a,b. S || [1pzimet G ITTC I '] 14 Gk || E = P, by replication unfolding
(the [] C is the parallel composition of the creators that have been replicated and will

not be used);

*

2. Py % wvup,a,b.up{u,bl,) || a(l, b.5uccess|;) | [1C | '[1, Ck || E = P, where
(u,l) is the solution of the instance of the PCP problem, by making the starter S;
interact with the creators G; G;

m=1°"

3. P, 55 vup,a,b. [1C || 'k Gk || [u. by || [L, b.Success] = P4, by making the starter
interact with the executor (note that as every creator starts by an input on up, none of

them my be triggered by messages on @);

4. P 57 vup,a,b. [1C | '[1, C | b || b.success = P}, by executing the encodings of
the two strings, exploiting the fact that they are equal;

5. Py = vup,a,b. [1C | '], Cx || Success = PL, by synchronizing on b;
6. P. = vup,a,b.[1C | ' Ck.

For the other implication, first notice that all the computations of P; are infinite since one
can always unfold recursion, and action Success is the only possible visible action. Thus
the only possibility for having P; not bisimilar to [!0]; is that P; has a computation executing
success. The only computations that may produce Success are structured as follows: they
build two strings by concatenating the tiles, and then they execute them. One can prove by
induction on the minimum length of the strings that if the two strings are different then either
their execution gets stuck, or synchronization at b is not possible (this last case occurs if one
of the strings is a prefix of the other). Thus, the two strings must be equal and they are the

solution of the instance of the PCP problem. O

Corollary 4.1. Barbed congruence and any complete t-bisimilarity are undecidable in HOcore

with four static restrictions.

88 Chapter 4. Behavioral Theory of HOcoRre

Theorem 4.3 actually shows that even asynchronous barbed bisimilarity (defined as the
largest t-bisimilarity that is output-barb preserving, and used in the definition of ordinary—as
opposed to reduction-closed—barbed congruence) is undecidable. The corollary above then
follows from the fact that all the relations there mentioned are at least as demanding as

asynchronous barbed bisimilarity.

4.5 Other Extensions

We now examine the impact on decidability of bisimilarity of some extensions of HOcore. We

omit the details, including precise statements of the results.

Abstractions. An abstraction is an expression of the form (x)P; it is a parametrized process.
An abstraction has a functional type. Applying an abstraction (x)P of type T — ¢ (where ¢
is the type of all processes) to an argument W of type T yields the process P{W/x}. The
argument W can itself be an abstraction; therefore the order of an abstraction, that is, the
level of arrow nesting in its type, can be arbitrarily high. The order can also be w, if there are
recursive types. By setting bounds on the order of the types of abstractions, one can define
a hierarchy of subcalculi of the Higher-Order s-calculus (Sangiorgi and Walker, 2001); and
when this bound is w, one obtains a calculus capable of representing the w-calculus (for this

all operators of the Higher-Order m-calculus are needed, including full restriction).

Allowing the communication of abstractions, as in the Higher-Order sm-calculus, one then
also needs to add in the grammar for processes an application construct of the form Py(P5),
as a destructor for abstractions. Extensions in the LTS would be as follows. Suppose, as in
(Sangiorgi, 1996b), that beta-conversion > is the least precongruence on HOCORE processes

generated by the rule
(x)P1(P2) > P1{P2Ix}.

The LTS could be then extended with a rule

P~P, P5Q

BETA =
P— 0

Notice that with these additions, the characterization of bisimilarity as 10 bisimilarity still
holds. For a HOcoRE extended with abstractions and applications, ~}, is still a congruence
and is preserved by substitutions (by straighforward extensions of the proofs of Lemmas 4.2
and 4.3). Note that, however, abstraction application may increase the size of processes. If
abstractions are of finite type (i.e., their order is smaller than w) then only a finite number of
such applications is possible, and decidability of bisimilarity is preserved. Decidability fails

if the order is w, intuitively because in this case it is possible to simulate the A-calculus.

4.6. Concluding Remarks 89

Output prefix If we add an output prefix construct @{P). Q to HOcorE, then the proof of the
characterization as 10 bisimilarity breaks and, with it, the proof of decidability. Decidability
proofs can however be adjusted by appealing to results on unique decomposition of processes

and axiomatization (along the lines of Section 4.3).

Choice. Decidability remains with the addition of a choice operator to HOcore. The proofs
require little modifications. The addition of both choice and output prefix is harder. It might be
possible to extend the decidability proof for output prefix mentioned above so to accommodate

also choice, but the details become much more complex.

Recursion. We do not know whether decidability is maintained by the addition of recursion

(or similar operators such as replication).

4.6 Concluding Remarks

Process calculi are usually Turing complete and have an undecidable bisimilarity (and barbed
congruence). Subcalculi have been studied where bisimilarity becomes decidable but then one
loses Turing completeness. Examples are BPA and BPP (see, e.g., (Kucera and Jancar, 2006))
and CCS without restriction and relabeling (Christensen et al,, 1994). In this chapter we have
shown that HOcoRE is a Turing complete formalism for which bisimilarity is decidable. We
do not know other concurrency formalisms where the same happens. Other peculiarities of

HOCORE are:

1. itis higher-order, and contextual bisimilarities (barbed congruence) coincide with higher-

order bisimilarity (as well as with others, such as context and normal bisimilarities); and

2. it is asynchronous (in that there is no continuation underneath an output), yet asyn-

chronous and synchronous bisimilarities coincide.

We do not know other non-trivial formalisms in which properties (1) or (2) hold (of course (1)
makes sense only on higher-order models).

We have also given an axiomatization for bisimilarity. From this we have derived polynomial
upper bounds to the decidability of bisimilarity. The axiomatization also intuitively explains
why results such as decidability, and the collapse of many forms of bisimilarity, are possible
even though HOcoRE is Turing complete: the bisimilarity relation is very discriminating.

While in Chapter 3 we have used encodings of Minsky machines, here we have used encod-
ings of the Post correspondence problem (PCP) for our undecidability results. The encodings
are tailored to analyze different problems: undecidability of termination, and undecidability

of bisimilarity with static restrictions. The PCP encoding is always divergent, and therefore

90 Chapter 4. Behavioral Theory of HOcoRre

cannot be used to reason about termination. On the other hand, the encoding of Minsky ma-
chines would require at least one restriction for each instruction of the machine, and therefore
would have given us a (much) worse result for static restrictions. We find both encodings
interesting: they show different ways to exploit higher-order communications for modeling.
We have shown that bisimilarity becomes undecidable with the addition of four static
restrictions. We do not know what happens with one, two, or three static restrictions. We also
do not know whether the results presented would hold when one abstracts from T-actions and
moves to weak equivalences. The problem seems much harder; it reminds us of the situation for
BPA and BPP, where strong bisimilarity is decidable but the decidability of weak bisimilarity

is a long-standing open problem (see, e.g., (Kucera and Jancar, 2006)).

Chapter 5

On the Expressiveness of Forwarding and

Suspension

In higher-order communication there are only two capabilities for received processes: execution
and forwarding. In this chapter we aim at identifying the intrinsic souce of expressive power in
HOcorE by studying a limited form of forwarding. Such a form is obtained from the following
syntactic restriction: output actions can only communicate the parallel composition of known
closed processes and processes received through previously executed input actions. We study
the expressiveness of Ho™!, the fragment of HOcoRe featuring this style of communication,
using decidability of termination and convergence of processes as a yardstick. Our main result
shows that in Ho™" termination is decidable while convergence is undecidable. Then, as a
way of recovering the expressiveness loss due to limited forwarding, we extend the calculus
with a form of process suspension called passivation. The resulting calculus is called HoP ™.
Somewhat surprisingly, in HoP~" both termination and convergence are undecidable. This

reveals a great deal of expressive power inherent to forms of suspension such as passivation.

The chapter is structured as follows. The syntax and semantics of Ho™ are introduced in
Section 5.2. The encoding of Minsky machines into Ho™", and the undecidability of conver-
gence are discussed in Section 5.3. The decidability of termination for Ho™" is addressed in
Section 5.4. The expressiveness results for HoP~" are presented in Section 5.5. Some final

remarks, as well as a review of related work, are included in Section 5.6.

While the decidability results for Ho™" have been previously presented as (Di Giusto
et al,, 2009a), the extension of Ho™" with passivation and its associated decidability results

are original to this dissertation.

92 Chapter 5. On the Expressiveness of Forwarding and Suspension

5.1 Introduction

Despite its minimality, in Chapter 3 HOcore was shown to be Turing complete by exhibiting

an encoding of Minsky machines." Therefore, properties such as
e termination, i.e., non existence of divergent computations
e convergence, i.e., existence of a terminating computation

are both undecidable in HOCcoRre?. In contrast, somewhat surprisingly, strong bisimilarity is

decidable, and several sensible bisimilarities coincide with it.

In this chapter, we shall aim at identifying the intrinsic source of expressive power in
HOcoRre. A substantial part of the expressive power of a concurrent language comes from the
ability of accounting for infinite behavior. In higher-order process calculi there is no explicit
operator for such a behavior, as both recursion and replication can be encoded. We then find
that infinite behavior resides in the interplay of higher-order communication, in particular, in
the ability of forwarding a received process within an arbitrary context. For instance, consider
the process R = a(x).b(P,), where P, stands for a process P with free occurrences of a
variable x. Intuitively, R receives a process on name a and forwards it on name b. It is easy
to see that since there are no limitations on the structure of objects in output actions, the
actual structure of Py, can be fairly complex. One could even “wrap” the process to be received
in x using an arbitrary number of k “output layers”, i.e,, by letting P, = by(ba{... bi{x))...).
This nesting capability embodies a great deal of the expressiveness of HOCoRE: as a matter
of fact, the encoding of Minsky machines in HOcore depends critically on nesting-based
counters. Therefore, investigating suitable limitations to the kind of processes that can be
communicated in an output action appears as a legitimate approach to assess the expressive

power of higher-order concurrency.

With the above consideration in mind, in this chapter we propose Ho™', a sublanguage of
HOcoRrE in which output actions are limited so as to rule out the nesting capability (Section

5.2). In Ho™", output actions can communicate the parallel composition of two kinds of objects:

1. closed processes (i.e., processes that do not contain free variables), and

2. processes received through previously executed input actions.

Hence, the context in which the output action resides can only contribute to communication

by “appending” pieces of code that admit no inspection, available in the form of a black-box.

' Along the paper we use the appellations “Turing complete” and “weak Turing complete” as in the criteria defined

by Bravetti and Zavattaro (2009) and discussed in Section 2.3.3.
2Termination and convergence are sometimes also referred to as universal and existential termination, respectively.

5.1. Introduction 93

More precisely, the grammar of Ho™' processes is the same as that of HOCORE, except for the

production for output actions, which is replaced by the following one:

alxa |- llx [l P)

where k > 0 and P is a closed process. This modification directly restricts forwarding ca-
pabilities for output processes, which in turn, leads to a more limited structure of processes
along reductions.

The limited style of higher-order communication enforced in Ho™' is relevant from a prag-
matic perspective. In fact, communication in Ho™' is inspired by those cases in which a process
P is communicated in a translated format [P], and the translation is not compositional. That
is, the cases in which, for any process context C, the translation of C[P] cannot be seen as a
function of the translation of P, i.e., there exists no context D such that [C[P]] = D[P].

More concretely, communication as in Ho™' can be related to several existing programming
scenarios. The simplest example is perhaps mobility of already compiled code, on which it
is not possible to apply inverse translations (such as reverse engineering). Other examples
include proof-carrying code (Necula and Lee, 1998) and communication of obfuscated code
(Collberg et al.,, 1998). The former features communication of executable code that comes with
a certificate: a recipient can only check the certificate and decide whether to execute the
code or not. The latter consists of the communication of source code that is made difficult to
understand for, e.g., security/copyright reasons, while preserving its functionality.

In this chapter we study the expressiveness of Ho™" using decidability of termination and

convergence of processes as a yardstick. Our main results are:

Undecidability of Convergence in Ho™". Similarly as in HOcoRre, in Ho™" it is possible to
encode Minsky machines. The calculus thus retains a significant expressive power de-
spite of the limited forwarding capability. Unlike HOcore, however, Ho™" is only weakly
Turing complete. In fact, the encoding of Minsky machines in Ho™' is not faithful for
it may introduce computations which do not correspond to the expected behavior of the
modeled machine. Such computations are forced to be infinite and thus regarded as
non-halting computations which are therefore ignored. This allows us to prove that a
Minsky machine terminates if and only if its encoding in Ho™" converges. Consequently,

convergence in Ho™" is undecidable.

~'. In sharp contrast with HOCORE, termination in Ho™" is

Decidability of Termination in Ho
decidable. This result is obtained by appealing to the theory of well-structured transition
systems (Finkel, 1990; Abdulla et al,, 2000; Finkel and Schnoebelen, 2001), following
the approach used by Busi et al. (2009). To the best of our knowledge, this is the
first time the theory of well-structured transition systems is applied in a higher-order

concurrency setting. This is significant because the adaptation to the Ho™' case is

94 Chapter 5. On the Expressiveness of Forwarding and Suspension

far from trivial. Indeed, as we shall discuss, this approach relies on defining an upper
bound on the depth of the (set of) derivatives of a process. By depth of a process we
mean its maximal nesting of input/output actions. Notice that, even with the limitation
on forwarding enforced by Ho™', because of the “term copying” feature of higher-order
calculi, variable instantiation might lead to a potentially larger process. Hence, finding
suitable ways of bounding the set of derivatives of a process is rather challenging and

needs care.

Undecidability of Termination and Convergence in Ho " with Passivation. The decidability
of termination in Ho™ provides compelling evidence on the fact that the limited forward-
ing entails a loss of expressive power for HOcoRre. It is therefore legitimate to investigate
whether such an expressive power can be recovered while preserving the essence of the

limited forwarding in Ho™' a

. For this purpose, we extend Ho™ with a passivation con-
struct that allows to suspend the execution of a running process. Forms of process
suspension (such as passivation) are of both practical and theoretical interest as they
are at the heart of mechanisms for dynamic system reconfiguration. The extension of
Ho~" with passivation, called HoP~', is shown to be Turing complete by exhibiting a
faithful encoding of Minsky machines. Therefore, in HoP~' both convergence and ter-
mination are undecidable. To the best of our knowledge, ours is the first result on the
expressiveness and decidability of constructs for process suspension in the context of

higher-order process calculi.

5.2 The Calculus

We now introduce the syntax and semantics of Ho~". We use a, b, c to range over names, and

X, Y,z to range over variables; the sets of names and variables are disjoint.

P,Q == alql| | x|P) (withk>0, fv(P)=0) output
| alx).P input prefix
| PJO parallel composition
| x process variable
| O nil

An input a(x). P binds the free occurrences of x in P. This is the only binder in the language.
We write fv(P) and bv(P) for the set of free and bound variables in P, respectively. A process
is closed if it does not have free variables. When x ¢ fv(P), we abbreviate a(x). P as a. P. We
also abbreviate @(0) as @, Py | ... | Px as [1-_,P;, and omit trailing occurrences of 0. Hence,

an output action can be written as @([],k xk || P). We write []{ P as an abbreviation for the

5.3. Convergence is Undecidable in Ho™' 95

e al(x). P 2% p our a(P) 2% 0
PSP by(a) N fv(Py) = 0 p, 22 pr py Y,
Act1 Fa— Tau1 .
Pi|l P2 — Py P2 Py || Py = Py || P5{PIx}

Figure 5.1: An LTS for Ho™". Rules Act2 and TAuz, the symmetric counterparts of AcT1 and

Tau1, have been omitted.

parallel composition of n copies of P. Further, P{U/x} denotes the substitution of the free
occurrences of x with process Q in P.

The LTS of Ho™" is defined in Figure 5.1. It decrees there are three forms of transitions:
T transitions P - P’; input transitions P o, P’, meaning that P can receive at a a process
that will replace x in the continuation P’; and output transitions P P, P” meaning that
P emits P’ at a, and in doing so it evolves to P”. We use «a to indicate a generic label of a
transition. The notions of free and bound variables extend to labels as expected.

The internal runs of a process are given by sequences of reductions. Given a process P, its
reductions P — P’ are defined as P - P’. We denote with —* the reflexive and transitive
closure of —; notation —/ is to stand for a sequence of j reductions. We use P - to
denote that there is no P’ such that P — P’. Following Busi et al. (2009) we now define

process convergence and process termination. Observe that termination implies convergence

while the opposite does not hold.
Definition 5.1. Let P be a Ho™" process.
1. We say that P converges iff there exists P’ such that P —* P’ and P’ —».

2. We say that P terminates iff there exist no {P;}ien such that Py =P and P; — P}

for any j.

5.3 Convergence is Undecidable in Ho™'

In this section we show that Ho™" is powerful enough to model Minsky machines (see Section
2.3.3). We present an encoding that is not faithful: unlike the encoding of Minsky machines in
HOCoRE, it may introduce computations which do not correspond to the expected behavior of
the modeled machine. Such computations are forced to be infinite and thus regarded as non-
halting computations which are therefore ignored. More precisely, given a Minsky machine
N, its encoding [N] has a terminating computation if and only if N terminates. This allows to
prove that convergence is undecidable.

The following notion of structural congruence will be useful later on.

96 Chapter 5. On the Expressiveness of Forwarding and Suspension

Recister r; [ri=mlw=[177;

INSTRUCTIONS (i : /;)

[+ INC(ry)) 1pr. (@ | seti(x). (5e5(x || INc) || B757)

[(i : DECI(rj, s))lm = Ipi. (loop || uj.loop. set;(x). (seti{x || Dec) || pix1))
I '1pi- setj(x). (x || seti(x) || ps)

where
INc = loop Dec = loop

Figure 5.2: Encoding of Minsky machines into Ho ™'

Definition 5.2. The structural congruence relation is the smallest congruence generated by

the following laws:
PIO=P, Pl Pa=Py|| Pr, Pr|[(P2 Ps)= (P | Pa) |l Ps.
Lemma 5.1. If P55 P’ and P = Q then there exists Q' such that 05 Q' and P’ = Q'.

Proof. By induction on the derivation of P = Q, then by case analysis on P = Q. O

5.3.1 Encoding Minsky Machines into Ho™'

The encoding of Minsky machines into Ho™" is denoted by [[]m and presented in Figure 5.2.
The encoding is assumed to execute in parallel with a process loop.Div, which represents
divergent behavior that is spawned in certain cases with an output on name loop. This will be
made more precise later, when defining the encoding of a configuration of a Minsky machine.
Before that, we begin by discussing the encodings of registers and instructions.

A register r; that stores the number m is encoded as the parallel composition of m copies
of the unit process ;. To implement the test for zero it is necessary to record how many
increments and decrements have been performed on the register r;. This is done by using a
special process Log;, which is communicated back and forth on name set;. More precisely,
every time an increment instruction occurs, a new copy of the process u; is created, and the
process Log; is updated by adding the process INc in parallel. Similarly for decrements: a
copy of u; is consumed and the process DEc is added to LoG;. As a result, after k increments
and [decrements on register r;, we have that Log; = [, INc || ['], DEc, which we abbreviate
as Logjlk, [].

Each instruction (i : /;) is a replicated process quarded by p;, which represents the program
counter when p = i. Once p; is consumed, the instruction is active and, in the case of
increments and decrements, an interaction with a register occurs. We already described the

behavior of increments. Let us now focus on decrements, the instructions that can introduce

5.3. Convergence is Undecidable in Ho™' 97

divergent —unfaithful— computations. In this case, the process can internally choose either to
actually perform a decrement and proceed with the next instruction, or to jump. This internal
choice takes place on p;; it can be seen as a guess the process makes on the actual number

stored by the register r;. Therefore, two situations can occur:

1. The process chooses to decrement r;. In this case a process loop as well as an input on u;
become immediately available. The purpose of the latter is to produce a synchronization

with a complementary output on u; (that represents a unit of r;).

If this operation succeeds (i.e., the guess is right as the content of r; is greater than 0)
then a synchronization between the output loop —available at the beginning— and the
input on loop that guards the update of Log; takes place. After this synchronization,
the log of the register is updated (this is represented by two synchronizations on name

set;) and instruction p;4 is enabled.

Otherwise, if the synchronization on u; fails then it is because the content of r; is zero

and the process made a wrong guess. The process loop available at the beginning then

synchronizes with the external process loop. Div, thus spawning a divergent computation.

2. The process chooses to jump to instruction ps. In this case, the encoding checks if the
actual value stored by r; is zero. To do so, the process receives the process Loc; on name
set; and launches it. The log contains a number of INc and DEec processes; depending

on the actual number of increments and decrements, two situations can occur.

In the first situation, the number of increments is equal to the number of decrements
(say k); hence, the value of the r; is indeed zero and the process made a right guess. In

this case, k synchronizations on name loop take place and instruction ps is enabled.

In the second situation, the number of increments is greater than the number of decre-
ments; hence, the value of r; is greater than zero and the process made a wrong guess. As
a result, at least one of the loop signals remains active; by means of a synchronization

the process loop. Div this is enough to to spawn a divergent computation.

Before executing the instructions, we require both registers in the Minsky machine to be
set to zero. This is to guarantee correctness: starting with values different from zero in the
registers (without proper initialization of the logs) can lead to inconsistencies. For instance,
the test for zero would succeed (i.e., without spawning a divergent computation) even for a
register whose value is different from zero.

The following notation will be useful.

Notation 5.1. Let N be a Minsky machine. The configuration (i, mg, m1) of N is annotated

as (i,mg"’[”,mf“l1), where, for j € {0,1}, k; and [; stand for the number of increments and

decrements performed on r;.

98 Chapter 5. On the Expressiveness of Forwarding and Suspension

Because we assume the value of both registers to be initialized with zero before executing

the instructions, the following is immediate.

Fact 5.1. Let (i, mgo’lo, mf“l’) be an annotated Minsky configuration. We then have, for n €

{0,1}: (i) k, = L, if and only if r, = 0; and (ii) k, > L, if and only if r, > 0.

We are now ready to define the encoding of a configuration of the Minsky machine. As
mentioned before, the encodings of instructions and registers are put in parallel with a process

that spawns divergent behavior in case of a wrong guess.

Definition 5.3 (Encoding of Configurations). Let N be a Minsky machine with registers ry, rq
and instructions (1 : h),...,(n : 1,). For j € {0,1}, suppose fresh, pairwise different names
rj, P1,---.Pn, setj, loop, check;. Also, let Div be a divergent process (e.g. W || 'w.w). Given

the encodings in Figure 5.2, we have:

1. The initial configuration (1,00'0,00'0) of N is encoded as:

[(1,0°%, 0%y z:= p7 || [][t)] || Loop. Div || 5e75(0) || 5€7(0) .
i=1

, e kodo ki .
2. A configuration (i, my’™°, m;""") of Nis encoded as:

(i, me®, m3" ") = P7 |l [ro = molm || [r1 = malw | [06 <)] |
i=1

loop.Div || seto(Locolko, lo]) || seti{Loci[k, l1]) .

5.3.2 Correctness of the Encoding

We formalize the correctness of our encoding by means of two lemmas ensuring completeness
(Lemma 5.2) and soundness (Lemma 5.3). Both these lemmas give us Theorem 5.1. We begin
by formalizing the following intuition: removing the program counter from the encoding of

configurations leads to a stuck process.
Proposition 5.1. Let N be a Minsky machine with registers ro, r1 and instructions (1 :

l),....(n:1,). Given the encodings in Figure 5.2, let P be defined as:

P =[ro=molm | [ri = milm || [(i :)] || Loop. Div || seto(Loco[ko, Lo} || Setr(Loca[ki, (1]).

i=1

Then P —.
Proof. Straightforward by the following facts:

1. Processes [ro = mo]m, [= mi]m, seto({LoGolko, lo]), and seti(Loci[kq, 1]} are output

actions that cannot evolve on their own.

5.3. Convergence is Undecidable in Ho™' 99

2. Foreveryi € 1..n, each [(i : [;)]w is an input-guarded process, waiting for an activation

signal on p;.

3. loop.Div is an input-guarded process, and every output on loop appears quarded inside

a decrement instruction.
O

Remark 5.1. Before entering into the proofs two remarks are in order. First, with a little
abuse of notation, we use notation Q - also for configurations of Minsky machines. Second,
the encoding of input-quarded replication we have introduced here takes two reductions to
release a new copy of the guarded process (see Definition 3.5 and Lemma 3.1). However, for
the sake of simplicity, in proofs we shall denote only one of such reductions. In any case, it

must be taken into account that two reductions are required.

We now state that the encoding is correct.

Lemma 5.2 (Completeness). Let (i, mg‘)’lo, mf““) be an (annotated) configuration of a Minsky

machine N. Then, it holds:

1 (G mg?® i) then [(i, g™, mi)y

2 1 (i, mg", mi"y —s (i, my folo, m) then, for some P, [(i, m", mi") —* P =

. k7 1 kil
(&m0, my ™)]m

Proof. For (1) we have that if (i,mgo’lo,mf““) — then, by definition of Minsky machine, the

program counter p is set to a non-existent instruction; i.e., for some i ¢ [1..n], p = i. Therefore,
in process [(i,mé“’l",mf““)]M no instruction is guarded by p;. The thesis then follows as an
easy consequence of Proposition 5.1.

For (2) we proceed by a case analysis on the instruction performed by N. Hence, we
distinguish three cases corresponding to the behaviors associated to rules M-JmpP, M-DEc,

and M-Inc. Without loss of generality we assume instructions on register ry.

Case M-INc We have a Minsky machine configuration (i,mg"’lo,mf'“) with (i : INC(rg)). By

definition, its encoding into Ho™' is as follows:

(6 mg mi" " = Billlro=molw [[n=mil [[h:i)m]
h=1.n,i#h

Ipi. (75 | seto(x). (5eta(x | Inc) || o) |

[00p. Div ” ﬂ“_OGo[ko, lo]> || E<LOG1[I(1 , l1]>

We begin by noting that the program counter p; is consumed by the encoding of the in-
struction i. As a result, process Uy is left unquarded; this represents the actual increment.

We then have:

100 Chapter 5. On the Expressiveness of Forwarding and Suspension

ko.loy mfmh)]M

[(i, mg —= [ro=mo+ 1]u | seto(x). (seto(x || INc) || pix1) ||

setp(Locolko, lo]) || S =T

where S stands for the rest of the system, i.e.,

S=[rr=mlull[Jl(h:)lu Il toop.Dw || seti(Locy[ks, l1]).
h=1
Now there is a synchronization on sety for updating the log of register ry. This leaves

Pi+1 unguarded, so the next instruction is enabled.

T — Pt llro=mo+ 1 I Ire = madw | []0H = 1) |
h=1

loop. D || sefo(Locolke + 1, lo]) || 5efs(Loci[k, (1]) = T

We notice that T/ = [(i + 1, mg + 1%+, my"!1)]y, as desired.

Case M-Dec We have a Minsky machine configuration (i,mg"'lo,mf"[‘) with rp > 0 and (i :

DEC](ro, s)). By definition, its encoding into Ho™' is as follows:

(i, mg® m D = il lro=mol [[=miull [[th: /)|
h=1.n,i#h

Ip.. (f00p || uo. loop. seto(x). (sefo(x || Dec) || p) |
Ipi-seto(x). (x || seto(x) [| 5) |
[00p. Div ” EU_OG()[/((), [0]> ” ﬁ(LOGﬂ/ﬁ, l1]>

" k
In (i, moo’lo, m11’[1)]m there is an internal choice on the program counter p;. This repre-

sents a guess on the value of ro: p; can either synchronize with the first input-quarded
process (so as to perform the actual decrement of the register) or with the second one
(so as to perform a jump). Let us suppose that [(i, mg"'[", mf”“)]m makes the right guess

in this case, i.e., p; synchronizes with the first input-quarded process. We then have:

(6 mg” i) — [0 = molw |
loop || ug.loop. sety(x). (seto(x || DeC) || Pix1) |l

seto(Loco[ko, lo]) || S = T4

where S stands for the rest of the system, i.e.,

S = [r1 = m1]M || |_|[(h : Ih)]M || loop. Div || ﬁ(LO(ﬂ[/ﬂ, [1]) ||
h=1

Ipi. setolx). (x || 5eTo(x) || P5).

5.3. Convergence is Undecidable in Ho™' 101

Case

Since we have assumed that rp > 0, we are sure that a synchronization on ug can take
place, and thus the value of ro decreases. Immediately after, there is also a synchro-

nization on loop. More precisely, we have

Ty —? [ro=mo—1]u | seto(x). (seto(x || DEco) | pi1) | S = T>.

Now the update of the log associated to ry can take place, and a synchronization on set
is performed. As a result, the process p;;1 becomes unguarded and the next instruction

is enabled:

n
T, —= P [lro=mo—"1 [[rr = midw I [Jth: 1) |
h=1
loop. Div || FT()(LOG()[I((), lo + 1]) ” S€t1<LOG1[k1, l1]> =1T3.

Clearly, T3 = [(i + 1, mg — 1k°"°+1,m1k1’[‘)]M, as desired.

M-Jmp This case is similar to the previous one. We have a Minsky machine configuration

- koo kil
(i, mg">, mj

) with (i : DECJ(ro,s)). In this case, mg = 0. Hence, using Fact 5.1 we
have that kg = (.

Again, we start from [(i, mg"’lo, mf“h)]M. There is an internal choice on the name p;. Let
us suppose that [(i, mg‘]’[(’, m1k1’[1)]M makes the right guess, which in this case corresponds

to the synchronization of p; and the second input-quarded process. We then have

ko,lo mqq e)]M

(i, m — [ro = molw || seto(x). (x || 5eta(x) || B5) |

ﬂﬂ_OGo[ko, lo]> ” 5’ = T1 .

where S’ stands for the rest of the system, ie,,

S = [I‘1 = m1]M ” |_|[(h : Ih)]M ” [00p. Div ” E<LOG1[/(1, [1]> ”
h=1

Ipi. (loop || ug.loop.sety(x). (seto(x || DEC) || Pisa)) -

Now there is a synchronization on sety. As a result, the content of the log is left at the
top-level and hence executed. It is not lost, however, as it is still preserved inside an

output on sefy:

T —= pslllro=molw [[rr = milw | [JUh < 1) |
h=1
ko lo

loop.Dv || |_| Inc || |_| Dec || seto{Locg[ko, lo]) ||
ﬂ(LOGﬂIﬂ, [1]) = Tz.

102 Chapter 5. On the Expressiveness of Forwarding and Suspension

Recall that ky = ly. Starting in T, we have that ky synchronizations on loop take place;
each of these corresponds to the interaction between a process INc and a corresponding
process Dec. All of these processes are consumed. We then have that there exists a T3
such that (i) T, —* T3 and (i) T3 = [(s, mg*®, m{""")]w, as wanted.
O
Proposition 5.2. Let Py = [(i, rgo'[(’, rf“[1)]m be the encoding of a Minsky machine configuration
as in Definition 5.3, with (i : DEC(r;, s)) and k; > ; (for j € {0,1}).
Suppose Py —* P such that

k/ [/
P = [ro=molu |l [|Inc || |Dec || seto(Locolko, Lo]) || P |l
loop.Div || S
and where S is defined as
S = [n=mlull] Jith:)l setri(Locilk, 4]} |
h=1

Ipi.(loop || ug.loop.sety(x). (seto{x || DeC) || piz1)) -
Then P does not converge.

Proof (Sketch). Without loss of generality, we focus on the case in which j = 0 —the proof is
analogous for j = 1— and assume that kg = [y + 1. The thesis follows by noticing that the
only possibilities for behavior are given by sub-processes |_|k° INC, |_|[° Dec, and loop. Div of
P. In fact, using Definition 5.3 it is possible to infer all the other processes cannot reduce on
their own. The same definition decrees that INc = loop and Dec = loop. It is easy to see
that divergent behavior can be spawned by any of the ko occurrences of INc. Notice that there
is always at least one occurrence of INC ready to spawn divergency: even in the case some

of such occurrences would reduce with corresponding input actions on loop, since ko = [y + 1

in every computation there is at least an output loop ready to reduce with [oop.Div. Since
no other process can reduce with the free loop, this means there is always a computation
in which it reduces with the process loop.Div. Hence, divergent behavior is spawned in all

cases, and we are done. O
Lemma 5.3 (Soundness). Let (i, mgo'lo, mf“h) be a configuration of a Minsky machine N. Given

ko.lo f

[(i, my ,mf”“)]M, for some n > 0 and process P € Ho™', we have that:

1. I [(i, mg™, my"""Yjy —" P then either:

/k(l):l(/) ko,lo k1,[1 /ké,l{] /k1/,[%
1

o P=[(i,m, ,m;k*'l*)]M and (i, my"°, my"") —sm (', my®°, my""), or

e P is a divergent process.

5.3. Convergence is Undecidable in Ho™' 103

2

3.

Forall 0 < m < n, if[(i, mg"'[", mfm)]w —™ P then, for some P, P — P’

I, ’",60'[0' mfm)Im == then (i, mg("lo, mf*"*) 5.

Proof. For (1), since n > 0, in all cases there is at least one reduction from [({, mg, m1)]wm.

An analysis of the structure of process [(i, mg, m1)]u reveals that, in all cases, the first step

corresponds to the consumption of the program counter p;. This implies that there exists an

instruction labeled with i, that can be executed from the configuration (i, mg, m1). We proceed

by a case analysis on the possible instruction, considering also the fact that the register on

which the instruction acts can hold a value equal or greater than zero.

Case

Case

i : INC(rg): Then the process evolves deterministically (up-to structural congruence) to
P=[(i+1,my+1,m)]m in n = 2 reductions. This is illustrated in the analogous case

in the proof of Lemma 5.2(2).

i : DEC(rp, s) with ro > 0: We then have three main reduction sequences; one of them
is finite, the other two are infinite. The finite reduction sequence is illustrated in the
analogous case in the proof of Lemma 5.2(2), where it is shown how [(i,rg°’[°,r1k”[1)]M
may perform a sequence of n = 4 reductions that leads to [(i + 1, mg — 1, m1)]m.

The remaining (infinite) reduction sequences arise from the internal choice in p; that
takes place in [(i,rg°’[°,r1k”[1)]M. The first such sequences arises when p; synchronizes
with the first input-quarded replication on p; (the one implementing decrement); this is
as in the analogous case in the proof of Lemma 5.2(2). This synchronization leads to

process Tq in which the diverging computation arises from the synchronization between

the process loop and the process loop. Div that spawns divergent behavior and is always

in parallel.
The second infinite sequence arises when p; synchronizes with the second input-quarded

replication on p; (the one implementing jump). Notice that since rp > 0, using Fact 5.1,

we know that kg > [y. It is sufficient to assume that kg = [y + 1. We have

koo ki,ly)]M

[(i mg™®, m; — [ro = molm [seto(x). (x || seto(x) [| ps) |l

loop. Div ” Set()<|_OGo[ko, [0]> || S=T

where S stands for the rest of the system, i.e.,

S = [n=mull [ith: i) |l seti(Locilki, ti]) |
h=1

Ipi-(loop || up. loop. sety(x). (seto(x || DEC) || pix1))-

In Ty there is a synchronization on sety. Using the definition of Log, we have:

104

Chapter 5. On the Expressiveness of Forwarding and Suspension

Case

lo+1 lo

Ti — [ro=molu |l []inc | []Dec | seto(Locolko, to]) || 75 |
loop.Div | S=T,.

The above puts us in the scenario of Proposition 5.2 which ensures that whenever a
configuration in which the number of increments is greater or equal than the number
of decrements is reached (as in T, above), the corresponding Ho™" process does not

converge. This concludes the analysis for the case of decrement.

i : DEC(rp, s) with ro = 0: Also in this case we have three main reduction sequences,
one of them is finite, while the other two are infinite. The finite reduction sequence
is illustrated in the analogous case in the proof of Lemma 5.2(2), where it is shown
how [(i,rgo’lo,rf““)]M may perform a sequence of n = 2 + [y reductions that leads to
[(s, mo, m1)]m.

The two infinite reduction sequences arise similarly as in the previous case. The first
one arises after the two reduction steps that lead to process T3 in the analogous case in
the proof of Lemma 5.2(2). Indeed, only a single occurrence of process INC is sufficient

to synchronize with process loop. Div and to produce divergent behavior.

The second infinite reduction sequence arises when the process makes a wrong guess
on the content of the register. Again, we carry our analysis starting from process
(&, mg‘]’[(’,mfm)]M, given in the analogous case of the proof of Lemma 5.2(2). After the

synchronization on p; we have

S kolo kil
(i, mg™™ my")]m

— [ro = molm |
loop || uo. loop. sety(x). (seto(x || DeC) || pit7) |

seto{Locolko, lo]) || loop.Div || S" =T,
where S’ is the rest of the system, Le.

S = tmy(seto(x). (x || 5erolx) ||) Il Iri = milu |

[10 = 1) || Seti(Localk, tr]).

h=1

It is easy to observe that since ro = 0 there is no output on u; that can synchronize with
the input in T;. In fact, the only possible synchronization is on loop, which leaves the
divergent process unguarded. So we have that in two reduction steps [(i, mg‘]’[", mﬁ“’“)]M

evolves into a diverging process, and the thesis holds.

5.4. Termination is Decidable in Ho™' 105

Notice that statement (2) follows easily from the above analysis.
As for (3), using Proposition 5.1 we know that if [(i, mg, m1)]u — then it is because p; is
not enabling any instruction. Hence, [(i, mg, m1)]m corresponds to the encoding of a halting

instruction and we have that (i, mg, mq1) -, as desired. O

Summarizing Lemmas 5.2 and 5.3 we have the following:

Theorem 5.1. Let N be a Minsky machine with registers ro = mg, ri = my, instructions
(1:h),....(n : Iy), and configuration (i, mg, m1). Then (i, mg, m1) terminates if and only if

process [(i, mg, mq)]m converges.
As a consequence of the results above we have that convergence is undecidable.

Corollary 5.1. Convergence is undecidable in Ho™".

. —f

5.4 Termination is Decidable in Ho

In this section we prove that termination is decidable for Ho™" processes. As hinted at in
the introduction, this is in sharp contrast with the analogous result for HOcore. The proof
appeals to the theory of well-structured transition systems, whose main definitions and results

we summarize next.

5.41 Well-Structured Transition Systems

The following results and definitions are from (Finkel and Schnoebelen, 2001), unless dif-
ferently specified. Recall that a quasi-order (or, equivalently, preorder) is a reflexive and

transitive relation.

Definition 5.4 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order < over a set

X such that, for any infinite sequence xo, x1,X2... € X, there exist indexes i < j such that

Xi S Xj.
Note that if < is a wqo then any infinite sequence xg, X1, x2, ... contains an infinite in-
creasing subsequence Xx;,, Xi,, Xi,, - - . (with ig < i1 < i < ...). Thus well-quasi-orders exclude

the possibility of having infinite strictly decreasing sequences.
We also need a definition for (finitely branching) transition systems. This can be given
as follows. Here and in the following —* denotes the reflexive and transitive closure of the

relation —.

Definition 5.5 (Transition system). A transition system is a structure TS = (S, —), where
S is a set of states and -C S x S is a set of transitions. We define Succ(s) as the set
{s" € S| s — s’} of immediate successors of S. We say that TS is finitely branching if, for

each s € S, Succ(s) is finite.

106 Chapter 5. On the Expressiveness of Forwarding and Suspension

The function Succ will also be used on sets by assuming the point-wise extension of the
above definitions. The key tool to decide several properties of computations is the notion of
well-structured transition system. This is a transition system equipped with a well-quasi-
order on states which is (upward) compatible with the transition relation. Here we will use a

strong version of compatibility; hence the following definition.

Definition 5.6 (Well-structured transition system). A well-structured transition system with
strong compatibility is a transition system TS = (S, —), equipped with a quasi-order < on

S, such that the two following conditions hold:

1. < is a well-quasi-order;

N
IN

is strongly (upward) compatible with —, that is, for all sy < t; and all transitions

S1 — Sy, there exists a state t, such that t; — t, and sy < t, holds.

The following theorem is a special case of Theorem 4.6 in (Finkel and Schnoebelen, 2001)

and will be used to obtain our decidability result.

Theorem 5.2. Let TS = (S, —, <) be a finitely branching, well-structured transition system
with strong compatibility, decidable <, and computable Succ. Then the existence of an infinite

computation starting from a state s € S is decidable.

We will also need a result due to Higman (1952) which allows to extend a well-quasi-order
from a set S to the set of the finite sequences on S. More precisely, given a set S let us denote
by S* the set of finite sequences built by using elements in S. We can define a quasi-order

on S* as follows.

Definition 5.7. Let S be a set and < a quasi-order over S. The relation <, over S* is defined
as follows. Let t,u € S*, witht = t1t,...t, and u = uquy...u,. We have that t <, u if
and only if there exists an injection f from {1,2,...m} to {1,2,...n} such that t; < us; and
i< f(i) fori=1,...,m.

The relation <, is clearly a quasi-order over S*. It is also a wqo, since we have the

following result.
Lemma 5.4 (Higman (1952)). Let S be a set and < a wqo over S. Then <, is a wqo over S*.
Finally we will use also the following proposition, whose proof is immediate.

Proposition 5.3. Let S be a finite set. Then the equality is a wqo over S.

5.4. Termination is Decidable in Ho™' 107

a(P
e a(x). P p our a(P) 2% 0
o a(P a(x
Py % P Pl e p Yy
AcT1 = Tau1 p
Py Prr— Py || P, Pi || P Py || Py{FIx}

Figure 5.3: A finitely branching LTS for Ho™". Rules Act2 and Tauz, the symmetric counter-

parts of Act1 and TAu1, have been omitted.

5.4.2 A Finitely Branching LTS for Ho™'

In order to exploit the theory of well-structured transition systems, a finitely branching LTS for
Ho ™" is necessary. This is not a significant requirement in our case; the sensible issue here
is the treatment of alpha-conversion. To that end, we introduce an alternative LTS without
alpha-conversion. As we shall see, since we restrict ourselves to closed processes and proofs
focus on internal synchronizations, the finitely branching LTS is equivalent to that introduced
in Section 5.2. The alternative LTS is given in Figure 5.3; its most noticeable feature is the

absence of a side condition on rule AcT4.

Lemma 5.5. Let P be a closed Ho™" process. For every P’ € Ho™ if P — P’ then P’ is a

closed process.

Proof. By induction on the height of the inference tree for P — P’ considering the possible
cases of the last step of the inference. There are four cases, corresponding to those related
to rules Tau1, Tauz, AcT1, and Act2. Let us focus only in the case in which Tau1 is the last
rule applied; the other cases are similar or simpler. Then P = Py || P, with P, R, P} and
P, LR P5. Hence Py = a(R) || P; and P, = a(x). Py As such, P" = P; | P,{Rix}. We
know that P is a closed process; hence, both P and R are closed processes, and P} is an
open process such that fn(P}) = {x}. Then the process P’ is closed since it is equivalent to

the process P where all the free occurrences of the name x has been replaced with the closed

process R. O

Remark 5.1. Notice that since in Ho™" there is no restriction the only binder in the language
is the input prefix. Therefore, within a closed process P, the only non closed processes in P
are those occurring behind an input prefix, where they cannot evolve. By considering closed

processes and restricting ourselves to reductions then a-conversion is not necessary.

As before, the internal runs of a process are given by sequences of reductions. Given a
process P, its reductions in the alternative LTS P —— P’ are defined as P — P’. We denote
with —* the reflexive and transitive closure of —. We use P +— to denote that there is
no P’ such that P — P’

108 Chapter 5. On the Expressiveness of Forwarding and Suspension

Given a process P, we shall use P, to denote the result of applying the standard alpha-
conversion without name captures over P.

Lemma 5.6. Let P be a closed Ho™" process. Then, P — P’ iff P — P” and P" = P, for

some P’ in Ho™'.

Proof. The “it” direction follows easily from Remark 5.1. The “only if” direction is straightfor-
ward by observing that since P is a closed process, P” is one of the possible evolutions of P

in —. O

Corollary 5.2. Let P be a closed Ho™" process. If P — P’ then P’ is a closed process in
Ho™".

Proof. Straightforward from Lemma 5.5 and Lemma 5.6. O

Corollary 5.3. Let P be a closed Ho™" process. P — iff P H/—s.

Proof. Straightforward from Lemma 5.6. O

Remark 5.2. The encoding of a Minsky machine presented in Section 5.3 is a closed process.

Hence, all the results in that section hold for the LTS in Figure 5.3 as well.
The alphabet of an Ho™" process is defined as follows:

Definition 5.8 (Alphabet of a process). Let P be a Ho™' process. The alphabet of P, denoted
A(P), is inductively defined as:

A(0) =9 AP Q)= AP)UA(Q) Alx) = {x}
A(a(x). P) = {a,x} UA(P) A(@(P)) = {a} U A(P)

The following proposition can be shown for the alternative LTS because it does not consider
alpha-conversion. As a matter of fact, had we considered open processes, we would have
required a-conversion. In such a case, the inclusion A(P5{R/x}) C A(P}) U A(R) would no
longer hold. This is because by using a-conversion during substitution some new variables

could be added to the alphabet.
Proposition 5.4. Let P and P’ be closed Ho™" processes. If P — P’ then A(P’) C A(P).

Proof. We proceed by a case analysis on the rule used to infer —. We thus have four cases:

. a(R) , a(x) , _ , _
Case Tau1 Then P = Py || P, with Py — P} and P, — P5. Hence Py =a(R) || P}, P> =

a(x). Py, and P' = P} || P,{Rix}. By Definition 5.8 we have that A(P) = {a} UA(P;) U
A(R) and hence A(P]) C A(P1). Also by Definition 5.8 we have A(P>) = {a, x} UA(P%).
Now, the process R is closed: therefore, during substitution, no variable can be captured.
Hence, a-conversion is not needed, and we have A(P,{Rix}) C A(P5)UA(R). The result

then follows.

5.4. Termination is Decidable in Ho™' 109

Case Tauz Similarly as for Tau1.

Case Act1 Then P =Py | P, PP =P | P2, and P4 — P;. We then have A(P]) C A(P»)
by using one of the above cases. By noting that A(P]) U A(P2) C A(P1) U A(P,), the
thesis holds.

Case Act2 Similarly as for Acr1.

Fact 5.2. The LTS for Ho™' given in Figure 5.3 is finitely branching.

5.4.3 Termination is Decidable in Ho™'

Here we prove that termination is decidable in Ho™". The crux of the proof consists in finding
an upper bound for a process and its derivatives. This is possible in Ho™" because of the
limited structure allowed in output actions.

We proceed as follows. First we define a notion of normal form for Ho™'

processes. We
then characterize an upper bound for the derivatives of a given process, and define an ordering
over them. This ordering is then shown to be a wqo that is strongly compatible with respect to
the LTS of Ho™' given in Section 5.4.2. The decidability result is then obtained by resorting

to the theory of well-structured transition systems introduced in Section 5.4.1.

Definition 5.9 (Normal Form). Let P € Ho™". P is in normal form iff

P=[1x I Taitya- Pl []5,P)
i=1 j=1

k=1 =

where each P; and P/’- are in normal form.
Lemma 5.7. Every process P € Ho™" is structurally congruent to a normal form.

Proof. By induction on the structure of P. The base cases are when P =0 and when P = x,
and are immediate. Cases P = a(Q) and P = a(x).Q follow by applying the inductive
hypothesis on Q. For the case P = P; || P, we apply the inductive hypothesis twice and we
obtain that

l m n ! m A
Pr=[Tx [Taitya- Pl]Bi(P;) and Po=[T | [aityi)- P []63¢P))-
k=1 i=1 j=1 k=1 =1 =t

It is then easy to see that Py || P, is structurally congruent to a normal form, as desired. O

We now define an ordering over normal forms. Intuitively, a process is larger than another

if it has more parallel components.

110 Chapter 5. On the Expressiveness of Forwarding and Suspension

Definition 5.10 (Relation <). Let P,Q € Ho™'. We write P < Q iff there exist x1...x,
Pi...Pn Py... P, Q1...0n Q)...0Q,, and R such that

n’

P o= [Tewrxi Il T asly)- P |l TT7Z Bi(PY)
Q = TTeorxi Ty ailya)- O [TTZ Q) || R
with P; < Q; and ij <Q, forie[1..m]and j€[1..n]

The normal form of a process can be intuitively represented in a tree-like manner. More

precisely, given the process in normal form

l m n
P = |_|Xk | |_|0i(yi)-Pi l |_|F/<P;>
k=1 i=1 j=1

we shall decree its associated tree to have a root node labeled x4, ..., xx. This root node has
m+ n children, corresponding to the trees associated to processes P,..., Py, and P, ..., P,;
the outgoing edges connecting the root node and the children are labeled a1(y1), ..., am(ym)
and by, ..., b,.

Example 5.1. Process P = x || a(y).(b.y || ¢) | @{z || d.e) has the following tree representa-

tion:

b c
/\ ‘ d
| e
[}

This intuitive representation of processes in normal form as trees will be useful to reason
about the structure of Ho™' terms. We begin by defining the depth of a process. Notice that
such a depth corresponds to the maximum depth of its tree representation.

Definition 5.11 (Depth). Let P = [Ti_y xc | [Ty ai(ya). Pi || [17-1 bi(P}) be a Ho™" process
in normal form. The depth of P is given by

depth(P) = max{1 + depth(P;), 1 + depth(P}) | i € [1..m] A j € [1..n]}.

Given a natural number n and a process P, the set Pp, contains all those processes in
normal form that can be built using the alphabet of P and whose depth is at most n.
Definition 5.12. Let n be a natural number and P € Ho™'. We define the set Pp.n as follows:

Pen= {0 Q=Tliekx I T ailyi)- Qi | T, bi(O})

A A(Q) C A(P)
A Q;, Q]/ EPpra Viel jel}

where Ppy contains processes that are built out only of variables in A(P).

5.4. Termination is Decidable in Ho™' 111

As it will be shown later, the set of all derivatives of P is a subset of Pp 2.depth(P)-

When compared to processes in languages such as CCS, higher-order processes have a
more complex structure. This is because, by virtue of reductions, an arbitrary process can
take the place of possibly several occurrences of a single variable. As a consequence, the
depth of (the syntax tree of) a process cannot be determined (or even approximated) before its
execution: it can vary arbitrarily along reductions. Crucially, in Ho™" it is possible to bound
such a depth. Our approach is the following: rather than solely depending on the depth of a
process, we define measures on the relative position of variables within a process. Informally
speaking, such a position will be determined by the number of prefixes quarding a variable.
Since variables are allowed only at the top level of the output objects, their relative distance
will remain invariant during reductions. This allows to obtain a bound on the structure of Ho™'
processes. Finally, it is worth stressing that even if the same notions of normal form, depth,
and distance can be defined for HOcoRE, a finite upper bound for such a language does not

exist.

We first define the maximum distance between a variable and its binder.

Definition 5.13. Let P = [Tcx Xk || [Tics ailye)-Pi || [, bi(P;) be a Ho™" process in normal

form. We define the maximum distance of P as:

maxDistance(P) = max{maxDist,, (P;),

maxDistance(P;), maxDistance(P}) | i € I,j € J}

where
(1 if P =x,
1+ maxDist,(P;) ifP=a(z).P, N x # z,
maxDist,(P) =1 1 + maxDist,(P’) if P=a(P’),

max{maxDist,(R), maxDist,(Q)} ifP=R | O,

0 otherwise.

L

Lemma 5.8 (Properties of maxDistance). Let P be a closed Ho™" process. It holds that:
1. maxDistance(P) < depth(P)
2. For every Q such that P — Q, maxDistance(Q) < maxDistance(P).

Proof. Part (1) is immediate from Definitions 5.11 and 5.13. Part (2) follows by a case analysis

on the rule used to infer —. We focus in the case Tau1: the other cases are similar or simpler.
a(S a(x

We then have that P = Py | P2 with P, S T and P, Y R Hence Py =a(S) | T and

112 Chapter 5. On the Expressiveness of Forwarding and Suspension

P, = a(x).R. We then have that P = @(S) | T || a(x).R and Q = R{S/x} || T. Applying

Definition 5.13 in both processes, we obtain

maxDistance(P) = max{maxDistance(S), maxDist,(R),
maxDistance(R), maxDistance(T)}

maxDistance(Q) = max{maxDistance(R{5/x}), maxDistance(T)}.

We can disregard the contribution of maxDistance(T), since it does not participate in the
synchronization. We then focus on determining maxDistance(R{S/x}). Notice that the only
way in which the value of maxDistance(R{5/x}) could be greater than that of maxDistance(R)
is if S involves some free variables that get captured by an (input) binder in R by virtue of
the substitution. Since S is a closed process, it has no free variables, and this capture is not

possible. Consequently, we have
maxDistance(R{5/x}) < max{maxDistance(R), maxDistance(S)}
and the thesis holds. O

We now define the maximum depth of processes that can be communicated. Notice that the
continuations of inputs are considered as along reductions they could become communication

objects themselves:

Definition 5.14. Let P = [,k xk || [1ics aiy)- Pi | T, F,(P;) be a Ho™' process in normal
form. We define the maximum depth of a process that can be communicated (maxDepCom(P))
in P as:

maxDepCom(P) = max{maxDepCom(P;), depth(P}) | i € I,j € J} .
Lemma 5.9 (Properties of maxDepCom). Let P be a closed Ho™" process. It holds that:
1. maxDepCom(P) < depth(P)
2. For every Q such that P — Q, maxDepCom(Q) < maxDepCom(P).

Proof. Part (1) is immediate from Definitions 5.11 and 5.14. Part (2) follows by a case analysis
on the rule used to infer —. Again, we focus in the case Tau1: the other cases are similar or
simpler. We then have that P = P; || P, with P4 S T and P, Y R Hence Pi=a(S)| T
and P = a(x). R. We then have that P = a(S) || T || a(x).R and Q = R{S/x} | T. Applying

Definition 5.14 in both processes, we obtain

maxDepCom(P) = max{maxDepCom(T), maxDepCom(S),
maxDepCom(R), depth(S)}
maxDepCom(Q) = max{maxDepCom(T), maxDepCom(R{5/x})}.

5.4. Termination is Decidable in Ho™' 113

We now focus on analyzing the influence a substitution has on communicated objects. Since
variables can occur in output objects, the sensible case to check is if x appears inside some
communication object in R. It is worth noticing that x is a variable that becomes free only as

a result of the input on a, which consumes its binder. We thus have two cases:

1. There are no communication objects in R with occurrences of x. Then, S will only
occur at the top level in R{S/x}. Since depth(S) was already taken into account when
determining maxDepCom(P), we then have that maxDepCom(R{5/x}) < maxDepCom(P),
and the thesis holds.

2. Some communication objects in R have occurrences of x. Then, R contains as sub-
process an output message b{P,) where, for some k > 0 and a closed process S,
process P, = [1"x || S’. Process b(P{S/x}) then occurs in R{S/x}. Clearly, an
eventual increase of maxDepCom(Q) depends on the depth of P,{S/x}. We have that
depth(P,{5/x}) = max(depth(S), depth(S’)). Since both depth(S) and depth(S’) were
considered when determining maxDepCom(P), we conclude that maxDepCom(R{5/x})

can be at most equal to maxDepCom(P), and so the thesis holds.

Generalizing Lemmas 5.8 and 5.9 we obtain:

Corollary 5.4. Let P be a closed Ho™" process. For every Q such that P —* Q, it holds
that:

1. maxDistance(Q) < depth(P)
2. maxDepCom(Q) < depth(P).

We are interested in characterizing the derivatives of a given process P. We shall show
that they are over-approximated by means of the set Pp.gepinp). We will investigate the
properties of the relation < on such an approximation; such properties will also hold for the

set of derivatives.
Definition 5.15. Let P € Ho™'. Then we define Deriv(P) = {Q | P —* Q}

The following results hold because of the limitations we have imposed on the output actions

for Ho™" processes.

Lemma 5.10. Let P, Q be Ho™" processes such that A(Q) C A(P). Q € Pp,, if and only if
depth(Q) < n.

114 Chapter 5. On the Expressiveness of Forwarding and Suspension

Proof. The “if” direction is straightforward by definition of Pp, (Definition 5.12).

For the “only if” direction we proceed by induction on n. If n = 0 then Q = 0 or
Q=x1| - || xk- In both cases, since A(Q) C A(P), Q is easily seen to be in Ppy. If n >0
then

Q=[Tx] Jautyd- @ Il]B(@)
kek iel jel

where, for every i € [and j € J, both depth(Q;) < depth(Q) < n —1 and depth(Q;}) <
depth(P) < n — 1. By inductive hypothesis, each Q; and Q; is in Pp ,—1. Then, by Definition
512, Q € Pp,, and we are done. O

Proposition 5.5. Let P be a Ho™" process. Suppose, for some R and n, that P € Pg,. For
every Q such that P — Q, it holds that Q € Pg.p.

Proof. We proceed by case analysis on the rule used to infer —. We focus on the case such
a rule is Tau1; the remaining cases are similar or simpler. Recall that by Lemmas 5.8(1) and
5.9(1) the maximum distance between an occurrence of a variable and its binder is bounded by
depth(P). By Definition 5.12 any process that can be communicated in P is in Pr,_1 and its
maximum depth is also bounded by depth(P) —which, in turn, by Lemma 5.10, is bounded by
n. The deepest position for a variable is when it is a leaf in the tree associated to the normal
form of P. That is, when its depth is exactly depth(P). If in that position we place a process
in Prn—1 — whose depth is also depth(P) — then it is easy to see that (the associated tree
of) Q has a depth of 2 - depth(P), which is bounded by 2 - n. Hence, by Lemma 5.10, Q is in
Pr2n- O

The lemma below generalizes Proposition 5.5 to a sequence of reductions.

Lemma 5.11. Let P be a Ho™' process. Suppose, for some R and n, that P € Pg.,. For every
Q such that P —* Q, it holds that Q € Pr ...

Proof. The proof proceeds by induction on k, the length of —*, exploiting Proposition 5.5.
The base case is when k = 1, and it follows by Proposition 5.5. For the inductive step we
assume k > 1, so we have that, for some P’, P —* P’ —— Q where the sequence from
P to P’ has lenght k — 1. By induction hypothesis we know that P’ € Pgr,.,. We then
proceed by a case analysis on the rule used to infer P’ — Q. As usual, we content ourselves
with illustrating the case Tau1; the other ones are similar or simpler. We then have that
P = Py || Py with Py |E<—TZ S and P, »ﬂ V. Hence P, =a(T) || S and P, = a(x). V. We
then have that P =a(T) | S| a(x).V and Q = V{T/x} || S.

By Corollary 5.4 the maximum distance between x and its binder a(x) is depth(P), which
in turn is bounded by n (Lemma 5.10). Moreover, the maximum depth of T is bounded by
maxDepCom(P); by Corollary 5.4, depth(P) < n. Therefore, the overall depth of process Q is
2 - depth(P). Hence, and by using Lemma 5.10, Q € Rp.,, as wanted. O

5.4. Termination is Decidable in Ho™' 115

Corollary 5.5. Let P € Ho~'. Then Deriv(P) C Pp 2.depth(P)-

We are now ready to prove that relation < is a wqo. We begin by showing that it is a

quasi-order.
Proposition 5.6. The relation < is a quasi-order.

Proof. We need to show that < is both reflexive and transitive. From Definition 5.9, reflexivity
is immediate.

Transitivity implies proving that, given processes P, Q, and R such that P < Q and
Q X R, P X R holds. We proceed by induction on k = depth(P). If kK = 0 then we have
that P = xq || -+ || xk. Since P < Q, we have that Q = x; | -+ || x || S. and that
R=x1]| - | x| S for some S, S’ such that S < S’. By Definition 5.10, the thesis follows.
Now suppose k > 0. By Definition 5.9 and by hypothesis we have the following:

l m n
Po= []x I Jaya)- Pl]B5(P)
k=1 i=1 j=1
l m n
Q = []xl] ey Q[]bO) IS
k=1 i=1 j=1

l m n
R = |_|Xl< I |_|01(91)-Ri I |_|F/<R,/> ST
k=1 =1 j=1

with P; < OQ;, ij < Q) 0; < R;, and Q/(< R; (i el je€)). Since P, P/’», 0O;, O, R;, and R/f

have depth k —1, by inductive hypothesis P; < R; and P; < R;. By Definition 5.10, the thesis

follows and we are done. O
We are now in place to state that < is a wqo.

Theorem 5.3 (Well-quasi-order). Let P € Ho™" be a closed process and n > 0. The relation

< is a well-quasi-order over Pp,,.

Proof. The proof is by induction on n.

e Let n=0. Then Pp contains processes made up only of variables taken from A(P). The
equality on finite sets is a well-quasi-ordering; by Lemma 5.4 (Higman’s Lemma) also
=, is a well quasi-ordering: it corresponds to the ordering < on processes containing

only variables.

e let n>0. Take an infinite sequence of processes s=Pq, Py, ..., P, ... with PLePp,.
We shall show that the thesis holds by means of successive filterings of the normal forms
of the processes in s. By Lemma 5.7 there exist Ki, /; and J; such that

Po=] x I Jaitya-PEI] |B5¢P

kekK; il JEh

116

Chapter 5. On the Expressiveness of Forwarding and Suspension

with Pf and P]f’ € Ppn—1. Hence each P; can be seen as composed of 3 finite sequences:
(i) x1...x, (i) ar(yr)- Pl aily:). P!, and (iii) by(P}).. E(P;[) We note that the
first sequence is composed of variables from the finite set A(P) whereas the other two
sequences are composed by elements in A(P) and Pp,_1. Since we have an infinite
sequence of A(P)*, as A(P) is finite, by Proposition 5.3 and Lemma 5.4 we have that

=, is a wqo over A(P)*.

By inductive hypothesis, we have that < is a wqo on Pp ,_1, hence by Lemma 5.4 relation
=X is awqo on Py ;. We start filtering out s by making the finite sequences x; ... xi
increasing with respect to =,; let us call this subsequence t. Then we filter out ¢, by
making the finite sequence a(y1). Pi...a:(y;). P! increasing with respect to both =,
and =<,. This is done in two steps: first, by considering the relation =, on the subject
of the actions (recalling that a;, y; € A(P)), and second, by applying another filtering
to the continuation using the inductive hypothesis. It is worth remarking that in the first
step we do not consider symbols of the alphabet but pairs of symbols. Since the set of
pairs on a finite set is still finite, we know by Higman's Lemma that =, is a wqo on the

set of sequences of pairs (a;, y;).

For the sequence of outputs b1(P}).. E(Pj’) this is also done in two steps: the subject
of the outputs are ordered with respect to =, and the objects of the output action are

ordered with respect to <, using the inductive hypothesis.

At the end of the process we obtain an infinite subsequence of s that is ordered with

respect to <.

O

The last thing to show is that the well-quasi-ordering < is strongly compatible with respect

to the LTS in Figure 5.3. We need some auxiliary results first.

Lemma 5.12. Let P,P’,Q and Q' be Ho™' processes in normal form such that P < P" and
Q X Q. Then it holds that P || Q X P"| Q'.

Proof. Immediate from the definitions of normal form and < (Definitions 5.9 and 5.10). O

Lemma 5.13. Let P, P, Q, and Q' be Ho™' processes in normal form such that P < P' and
Q < Q'. Then it holds that P{Q/x} < P'{Q/x}.

Proof. By induction on the structure of P.

1.

Cases P =0 and P =y, for some y # x: Immediate.

2. Case P = x. Then P’ = x || N, for some process N. We have that P{Q/x} = Q and that

P {Q)x} = Q' || N{@Q]x}. Since Q < Q' the thesis follows.

5.4. Termination is Decidable in Ho™' 117

3. Case P = a(y).R. Then P’ = a(y).R’ | N, for some process N. Since by hypothesis
P < P’, then R < R'. We then have that P{Q/x} = a(y). R{¥/x} and that P"{Q)x} =
a(y). R{9'}x | N{Q/x}. By inductive hypothesis we obtain that R{Qx} < R'{Q)x},

and the thesis follows.
4. Case P =a(R): Similar to (3).

5 Case P=R | S. Then PP =R | S"| N, for some process N, with R < R"and S <X S'.
We then have that P{Qx} = R{Qx} | S{Qx} and P'{Q)x} = R'{Q/x} | S'{Q/x} |
N{@/x}. The thesis then follows by inductive hypothesis and Lemma 5.12.

Theorem 5.4 (Strong Compatibility). Let P, Q, P’ € Ho™". If P < Q and P —> P’ then there
exists Q" such that Q+— Q' and P’ < Q.

Proof. By case analysis on the rule used to infer reduction P — P’. We content ourselves
with illustrating the case derived from the use of rule Tau1; the other ones are similar or
simpler. We then have that P = P’ || P” with P’ TN and P 2% P>. Hence, P =a(P1) |
a(y). P> | N. Since by hypothesis P < Q, we obtain a similar structure for Q. Indeed,

0= E<Q1> || G(y) O || N with P <X 04, P, X Q,, and N X N,

Now, if P —— P’ = P,{Pi/y} | N then also Q — Q" = Q2{@Q/y} | N'. By Lemma 5.13
we have P,{Pi/y} < Q,{@/y}; using this and the hypothesis the thesis follows. O

Theorem 5.5. Let P € Ho™' be a closed process. The transition system (Deriv(P),—, X) is
a finitely branching well-structured transition system with strong compatibility, decidable <,

and computable Succ.
Proof. The transition system of Ho™' is finitely branching (Fact 5.2). The fact that < is a

well-quasi-order on Deriv(P) follows from Corollary 5.5 and Theorem 5.3. Strong compatibility

follows from Theorem 5.4. O

We can now state the main technical result of the section.
Corollary 5.6. Let P € Ho™" be a closed process. Then, termination of P is decidable.

Proof. This follows from Theorem 5.2, Theorem 5.5, and Corollary 5.3. O

118 Chapter 5. On the Expressiveness of Forwarding and Suspension

5.5 On the Interplay of Fowarding and Passivation

The decidability of termination in Ho™' presented in Section 5.4 provides compelling evidence
on the fact that the limited forwarding entails a loss of expressive power for HOCoRE. [t
is therefore worth investigating alternatives for recovering such an expressive power while
preserving the essence of limited forwarding.

In this section we examine one such alternatives. We analyze the consequences of extend-
ing Ho™" with a passivation construct, an operator that allows to suspend the execution of a
process at run time. As such, it comes in handy to represent scenarios of (dynamic) system
reconfiguration, which are often indispensable in the specification of open, extensible systems
such as component-based ones. Passivation has been considered by higher-order calculi such
as the Kell calculus (Schmitt and Stefani, 2004) and Homer (Hildebrandt et al., 2004), and
finds several applications (see, e.g., (Bundgaard et al., 2008)). Here we shall consider a passi-
vation construct of the form a{P}, which represents a passivation unit named a that contains
a process P. The passivation unit is a transparent locality, in that there are no restrictions
on the interactions between P and processes surrounding a. The execution of P can be pas-
sivated at an arbitrary time; this is represented by the evolution of a{P} into the nil process
by means of an output action @({P). Hence, the passivation of a{P} process might lead to a
synchronization with any interacting input action on a.

We consider HOP_f, the extension of Ho " with a passivation construct as described above.
The syntax extends as expected; for the sake of consistency, we notice that the process P in
a{P} respects the limitation on the shape of output objects introduced for Ho™'. The LTS

for HoP~" is the same as that for Ho™'

in Section 5.2, extended with the two following
rules which formalize the intuitions given before with respect to transparent localities and

passivation, respectively:

P P . a
% Loc a{P}&O Pas.
a{P} — a{P'}

5.5.1 A Faithful Encoding of Minsky Machines into HoP~

Here we investigate the expressiveness of HoP~" by exhibiting an encoding of Minsky machines
into HoP~. Interestingly, unlike the encoding presented in Section 5.3, the encoding into
HoP~" is faithful. As such, in HoP~" both termination and convergence are undecidable
problems. Hence, it is fair to say that the passivation construct —even with the limitation
on the shape of (output) processes— allows to recover the expressive power lost in restricting
HOcoRre as Ho™".

The encoding is given in Figure 5.4; we now give some intuitions on it. A register k

with value m is represented by a passivation unit ry that contains the encoding of number

5.5. On the Interplay of Fowarding and Passivation 119

REGISTER ry [re = nlw = re{(n)i}
where
7., ifn=0

(n)=

uk.(ﬁ||az.0n—1bk) if n>0.

INSTRUCTIONS (i : [;)
[(i : INC(r))m
[(i : DEC(rk, 5))]m

i (ric(x)- (@) || Fe{exly)- @ || v (@7 || 2. y)} || 0. i)
Ipi. (m(x). x
| d{Tx || ar.m(s(x). d(x). (@ || prn)}
| 3(z || 0 m(d(x). s(x). re(t). (Fe{ze- @} || 2))

Figure 5.4: Encoding of Minsky machines into HoP~,

m, denoted (m k. In turn, (m)¢ consists of a chain of m nested input prefixes on name
ug; it also contains other prefixes on a1 and a; which are used for synchronization purposes
during the execution of instructions. The encoding of zero is given by an input action on z
that prefixes a trigger @.

As expected, the encoding of an increment operation on the value of register k consists
in the enlargement of the chain of nested input prefixes it contains. For that purpose, the
content of passivation unit ry is obtained with an input on ry. We therefore need to recreate
the passivation unit ry with the encoding of the incremented value. Notice that we require
an additional synchronization on ¢, in order to “inject” such a previous content in a new
passivation unit called ry. This way, the chain of nested inputs in ry can be enlarged while
respecting the limitation on the shape of processes inside passivation units. As a result, the
chain is enlarged by putting it behind some prefixes, and the next instruction can be invoked.
This is done by a synchronization on name a,.

The encoding of a decrement of the value of register k consists of an internal, exclusive
choice implemented as two passivation units that execute in parallel: the first one, named d,
implements the behavior for decrementing the value of a register, while the second one, named
s, implements the behavior for performing the jump to some given instruction. Unlike the
encoding of Minsky machines in Ho™" presented in Section 5.3, this internal choice behaves
faithfully with respect to the encoding instruction, i.e., the behavior inside d will only execute
if the value in ry is greater than zero, whereas the behavior inside s will only execute if
that value is equal to zero. It is indeed a deterministic choice in that it is not the case that
both an input prefix on uy (which triggers the “decrement branch” defined by d) and one on
7 (which triggers the “jump branch” defined by s) are available at the same time; this is

because of the way in which we encode numbers, i.e., as a chain of input prefixes. In addition

120 Chapter 5. On the Expressiveness of Forwarding and Suspension

to the passivation units, the encoding of decrement features a “manager” (implemented as a
synchronization on m) that enables the behavior of the chosen passivation unit by placing it at
the top-level, and consumes both s and d afterwards, thus leaving no residual processes after
performing the instruction. In case the value of the register is equal to some n > 0, then a
decrement is implemented by consuming the input prefixes on vy and a, and the output prefix
on a4 through suitable synchronizations. It is worth noticing that these synchronizatons are
only possible because the passivation units containing the encoding of n behave as transparent
localities, and hence able to interact with its surrounding context. As a result, the encoding
of n —1 remains inside ry and the next instruction is invoked. In case the value of the register
is equal to zero, the passivation unit ry is consumed and recreated with the encoding of zero
inside. The jump is then performed by invoking the respective instruction.

We are now ready to define the encoding of a configuration of a Minsky machine into
HoP~.

Definition 5.16 (Encoding of Configurations). Let N be a Minsky machine with registers
ro = mo, r1 = mq and instructions (1 : h),...,(n : 1,). The encoding of a configuration

(i, mg, my) of N into HoP~" is defined by the encodings in Figure 5.4 as

[(i, mo, m1)lw = P [l [ro = molw || [rr = maJ || 06 = £)Im
i=1

assuming fresh, pairwise different names rj, uy, zy, p1,...,pa, (for j € {0,1}).

5.5.2 Correctness of the Encoding

We divide the proof of correctness into two properties: completeness (Lemma 5.14) and sound-

ness (Lemma 5.15).

Lemma 5.14 (Completeness). Let (i, mg, m1) be a configuration of a Minsky machine N.
Then, if (i, mo, m1) —m (', my, my) then, for some finite j and a process P, it holds that

[(i, mo, m1)]m —1 P = [(i’, m, m})]w.

Proof. We proceed by a case analysis on the instruction performed by the Minsky machine.
Hence, we distinguish three cases corresponding to the behaviors associated to rules M-INc,
M-Dec, and M-Jmp. Without loss of generality, we restrict our analysis to operations on

register ro.

Case M-INc: We have a Minsky configuration (i, mg, m1) with (i : INC(rg)). By Definition

5.16, its encoding into Ho™" with passivation is as follows:

[(i, mo,m1)m = pi |l [ro=molm || [= mi]m |

[(i s INCoro)Im I [] L= 1)l

[=1.n,Ii

5.5. On the Interplay of Fowarding and Passivation 121
After consuming the program counter p; we have the following
[(i,mo, mi)m —> 7o{(mo Do} | ro(x). (co(x) || ro{co(y)- (@, || vo- (@ I a2.y))}) ||
ap-Pivi | S =P
where S = [r1 = my]u || [1:24[(i : /:)]m stands for the rest of the system. The only
reduction possible at this point is the synchronization on rg, which allows the content
of the passivation unit ro to be communicated:
Py — Gl mo Jo) | o{coly). @5 |l wo. (@ | az- 9D} | ap. 57 | S = P
Now there is a synchronization on cg, which allows to “inject” the encoding of value mq
inside the passivation unit ry respecting the limitation of the lanquage:
Py — ro{(@p || wo- (@7 || a2-(mo Do)} | @p-Pixt || S = Ps.
The only possible synchronization from P3 is the one on a,, which works as an ac-
knowledgment signal, and allows to release the program counter for instruction i + 1.
By performing such a synchronization, and by the encoding of numbers, we obtain the
following
Py — ro{(mo +1 Do} || Pt | S = Pa
It is then easy to see that P4 =[(i + 1, mo + 1, m1)]u, as desired.
Case M-DEec: We have a Minsky configuration (i, ¢, mq) with ¢ > 0 and (i : DEC(rg, s)). By

—f

Definition 5.16, its encoding into Ho™ with passivation is as follows:

[(i,c.m)w = pilllro=clm | [=miw |
[(i: DEC(ro s I [] [0+ 1)Im
(=1.n,l#i

We begin by consuming the program counter p;, which leaves the content of [(i :

DEC(rp, s))]Jm exposed. Using the encoding of numbers we have the following:

[(i.c;m)m — rofuo- (@1 [a2- (¢ =1 o)} | m(x)-x ||
d{g || a1 m(s(x).d(x). (a2 || pea))} |
s{zo || az.m(d(x). s(x). ro(t). (ro{z0. a2} | PN} | S = Py
where S = [ry = mi]u || [1724[(i = /)]m stands for the rest of the system. Notice that
only reduction possible at this point is the synchronization on ug, which signals the fact

we are performing a decrement instruction. Such a synchronization enables one on aj.

After these two synchronizations we have

P —? fofax(c—1 Do} | m(x).x || d{m(s(x).d(x).(@z | pa))} |
${Z0 || az.m{d(x). s(x). ro(t). (Fo{zo- Tz} |)} || S = Pa.

122

Chapter 5. On the Expressiveness of Forwarding and Suspension

Starting in P, the only reduction possible is due to the synchronization on m, which

gives us the following:

P, — fofaz(c—1)o} | six).d(x).(az || per) || d{0} |
${z0 || a,.m(d(x). s(x). ro(t). (Fo{zo- a2} | P3))} || S = Ps.

In P; we have that passivation units s and d are consumed, thus we have:
Py — rofaa. (¢ =1 Do} [@z [pii | S = Pa.
At this point it is easy to see that, after a synchronization on a;, we obtain
Py —=[(i+1,c—1,m)m

as desired.

Case M-Jmp: We have a Minsky configuration (i,0, m1) and (i : DEC(rp, s)). By Definition

5.16, its encoding into Ho™" with passivation is as follows:

[(,0,mi)m = Pilllro=0lm | [r1 =mim |
[(i: DEC(ro,sHm I [] [+ 1)m-
[=1.n,l#i

We begin by consuming the program counter p;, which leaves the content of [(i :

DEC(ro, s))]Jm exposed. Using the encoding of numbers we have the following:

[((.0,mi)lm — rofz0-a} | m(x).x ||
d{ws || a1 m(s(x). d(x). (@2 || prv1))} |
s{zo || az. m(d(x). s(x). ro(t)- (fo{z0. a2} || Ps))} || S = Py
where S = [y = my]m || TT724[(i = /)]m stands for the rest of the system. In P;, the

only reduction possible is through a synchronization on z, which signals the fact we are

performing a jump. Such a synchronization, in turn, enables one on a,. We then have:
P —? R{0} | m(x).x |
d{uo || a1.m(s(x). d(x). (@2 || pa))} |

s{m(d(x).s(x). ro(t)- (fo{z0. a2} [Ps)} | S = P2

The only possible reduction from P, is by means of a synchronization on m. This gives

us:

P, — {0} || d(x).s(x). ro(t). (Fo{z0. a2} || 5) |
d{@g || ar.m(s(x). d(x). (@ | Ber))} || 5{0} | S = P5.

5.6. Concluding Remarks 123

In P3 the two passivation units on d and s are consumed, which gives us:
P3 — 10{0} || ro(1). (fo{zo. a2} | Ps) || S = Pa.
At this point, it is easy to see that after a synchronization on ry we obtain:
Py —=1(s,0, m)]m

as desired.

Lemma 5.15 (Soundness). Let (i, mo, m1) be a configuration of a Minsky machine N.
If [(i, mg, m1)lu — P41 then for every computation of Py there exists a P; such that P; =

[(, my, my)Im and (i, mg, mq) —m (', mg, mY).

Proof. Consider the reduction [(i, mg, m1)]y — P1. An analysis of the structure of process
[(, mo, m1)]m reveals that, in all cases, the only possibility for the first step corresponds to the
consumption of the program counter p;. This implies that there exists an instruction labeled
with i, that can be executed from the configuration (i, mg, m1). We proceed by a case analysis
on the possible instruction, considering also the fact that the register on which the instruction
acts can hold a value equal or greater than zero.

In all cases, it can be shown that computation evolves deterministically until reaching a
process in which a new program counter (that is, some p) appears. The program counter p; is
always inside a process that corresponds to [(i', mgy, m})w, where (i, mg, m1) —m (i, mg, m}).
The detailed analysis follows the same lines as the one reported for the proof of Lemma 5.14,

and we omit it. O
Corollary 5.7. Let N be a Minsky machine. We have that N - if and only if [N]u —.
Proof. Straightforward from Lemmas 5.14 and 5.15. O
Lemma 5.16. Termination and convergence are undecidable in HoP ™.

Proof. This is an immediate consequence of previous results (Lemmas 5.14 and 5.15, Corollary
5.7). O

5.6 Concluding Remarks

In this chapter we have studied the expressiveness and decidability of higher-order process
calculi featuring limited forwarding. Our study has been centered around Ho™, the fragment of
HOcoRrE in which output actions can only include previously received processes in composition

with closed ones. This communication style is reminiscent of programming scenarios with forms

124 Chapter 5. On the Expressiveness of Forwarding and Suspension

of code mobility in which the recipient is not authorized or capable of accessing/modifying
the structure of the received code. We have shown that such a weakening of the forward
capabilities of higher-order processes has consequences both on the expressiveness of the
language and on the decidability of termination. Furthermore, we analyzed the extension of
Ho~" with a passivation operator as a way of recovering the expressive power lost when moving

from HOCcore to Ho ™.

By exhibiting an encoding of Minsky machines into Ho™', we have shown that convergence
is undecidable. Unlike the encoding of Minsky machines in HOcoRre presented in Chapter 3,
the encoding in Ho™" is not faithful. Hence, in the terminology of Bravetti and Zavattaro (2009),
while HOCcoRE is Turing complete, Ho™" is only weakly Turing complete. This discrepancy
on the criteria satisfied by each encoding reveals an expressiveness gap between Ho™' and
HOcoRE; nevertheless, it seems clear that the loss of expressiveness resulting from limiting the

forwarding capabilities in HOcoRE is much less dramatic than what one would have expected.

We have shown that the communication style of Ho™' causes a separation result with re-
spect to HOcoRre. In fact, because of the limitation on output actions, it was possible to prove
that termination in Ho™" is decidable. This is in sharp contrast with the situation in HOCORE,
for which termination is undecidable. In Ho™, it is possible to provide an upper bound on the
depth (i.e., the level of nesting of actions) of the (set of) derivatives of a process. In HOcore
such an upper bound does not exist. This was shown to be essential for obtaining the decid-
ability result; for this, we appealed to the approach developed in (Busi et al., 2009), which
relies on the theory of well-structured transition systems (Finkel, 1990; Abdulla et al., 2000;
Finkel and Schnoebelen, 2001). As far as we are aware, this approach to studying expres-
siveness issues has not previously been used in the higher-order setting. The decidability of
termination is significant, as it might shed light on the development of verification techniques
for higher-order processes.

We have also studied the expressiveness and decidability of HOP_f, the extension of Ho™

with a passivation operator. To the best of our knowledge, this is the first expressiveness study
involving passivation operators in the context of higher-order process calculi. In HoP~' it is
possible to encode Minsky machines in a faithful manner. Hence, similarly as in HOCORE, in
HoP~" both termination and convergence are undecidable. This certainly does not imply that
both languages have the same expressive power; in fact, an interesting direction for future work
consists in assessing the exact expressive power that passivation brings into the picture. This
would include not only a comparison between HoP~" and HOCoRE, but also a comparison
between HOcore and HOcoRE extended with passivation. All the languages involved are
Turing complete, hence such comparisons should employ techniques different from the ones
used here. It is also worth remarking that we have considered a very simple form of passivation,

one in which process suspension takes place with a considerable degree of non-determinism.

5.6. Concluding Remarks 125

Studying other forms of passivation, possibly with more explicit control mechanisms, could be
interesting from several points of view, including expressiveness.

The Ho™" calculus is a sublanguage of HOcoRre. As such, Ho™' inherits the many results
and properties of HOCoRE; most notably, a notion of (strong) bisimilarity which is decidable and
coincides with a number of sensible equivalences in the higher-order context. Our results thus
complement those in previous chapters and deepen our understanding of the expressiveness of
core higher-order calculi as a whole. Furthermore, by recalling that CCS without restriction is
not Turing complete and has decidable convergence, the present results shape an interesting
expressiveness hierarchy, namely one in which HOCORE is strictly more expressive than Ho ™'
(because of the discussion above), and in which Ho™ is strictly more expressive than CCS
without restriction.

Remarkably, our undecidability result can be used to prove that (weak) barbed bisimilarity
is undecidable in the calculus obtained by extending Ho™' with restriction. Consider the
encoding of Minsky machines used in Section 5.3 to prove the undecidability of convergence

in Ho™".

Consider now the restriction operator (vx) used as a binder for the names in the
tuple x. Take a Minsky machine N (it is not restrictive to assume that it executes at least one
increment instruction) and its encoding P, as given by Definition 5.3. Let x be the tuple of
the names used by P, excluding the name w. We have that N terminates if and only if (vx)P

is (weakly) barbed equivalent to the process (vd)(d | d | d. (W | lw.W)).

Related Work. We do not know of other works that study the expressiveness of higher-order
calculi by restricting higher-order outputs. The recent work (Bundgaard et al., 2009) studies
finite-control fragments of Homer (Hildebrandt et al., 2004), a higher-order process calculus
with locations. While we have focused on decidability of termination and convergence, in
(Bundgaard et al.,, 2009) the interest is in decidability of barbed bisimilarity. One of the
approaches explored in (Bundgaard et al,, 2009) is based on a type system that bounds the
size of processes in terms of their syntactic components (e.g. number of parallel components,
location nesting). Although the restrictions such a type system imposes might be considered as
similar in spirit to the limitation on outputs in Ho™" (in particular, location nesting resembles
the output nesting Ho™' forbids), the fact that the synchronization discipline in Homer depends
heavily on the structure of locations makes it difficult to establish a more detailed comparison
with Ho™".

Also similar in spirit to our work, but in a slightly different context, are some studies
on the expressiveness (of fragments) of the Ambient calculus (Cardelli and Gordon, 2000).
Ambient and higher-order calculi are related in that both allow the communication of objects
with complex structure. Some works on the expressiveness of fragments of Ambient calculi are
similar to ours. In particular, (Busi and Zavattaro, 2004) shows that termination is decidable

f

for the fragment without both restriction (as Ho™ and HOcoRe) and movement capabilities,

126 Chapter 5. On the Expressiveness of Forwarding and Suspension

and featuring replication; in contrast, the same property turns out to be undecidable for the
fragment with recursion. Hence, the separation between fragments comes from the source of
infinite behavior, and not from the structures allowed in output action, as in our case. However,
we find that the connections between Ambient-like and higher-order calculi are rather loose,

so a proper comparison is difficult also in this case.

Chapter 6

On the Expressiveness of Synchronous and

Polyadic Communication

In this chapter we study the expressiveness of synchronous and polyadic communication in
higher-order process calculi. We thus consider extensions of HOcore with restriction and
polyadic communication. We present both encodabilty and impossibility results: first we
show that asynchronous process-passing is expressive enough so as to encode synchronous
communication. Then, we show that a similar result for polyadic communication does not hold.
In fact, we show that a hierarchy of synchronous higher-order process calculi based on the
arity of polyadic communications is induced. Finally, we examine the influence abstraction
passing has in the expressiveness of the considered calculi. Central to our results is the fact
that the establishment of private links —as available in first-order concurrency— is not possible
in the absence of name-passing.

Section 6.2 introduces the families of higher-order process calculi we shall be working with.
Section 6.3 presents and discusses the encodability result of synchronous into asynchronous
communication. Section 6.4 presents separation results for encodings involving polyadic com-
munication, whereas Section 6.5 discusses the power of abstraction passing. Section 6.6
concludes.

The separation results for the expressiveness of polyadic communication have been pub-
lished as an extended abstract in (Lanese et al,, 2009); all the other results and discussions

are original to this dissertation.

6.1 Introduction

In this chapter we continue our study of the fundamental properties of higher-order process
calculi. We concentrate on asynchrony (and its relationship with synchrony) and polyadic com-

munication. These are two well-understood mechanisms in first-order calculi. Asynchronous

12€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

communication is of practical relevance since, e.g., it is easier to establish and maintain than
synchronous communication. It is also of theoretical interest: numerous works have studied
the asynchronous st-calculus and the rather surprising effects that the absence of output pre-
fix has over the behavioral theory and expressiveness of the calculus. In a well-known result,
Palamidessi showed that the asynchronous w-calculus with separate choice is strictly less ex-
pressive than the synchronous sr-calculus (Palamidessi, 2003). As for polyadic communication
—that is, the passing of tuples of values in communications— it is among the most natural and
convenient features for modeling purposes; indeed, it is a stepping stone for the representation
of data structures —such as lists and records— as processes.

In the m-calculus without choice, both synchronous and polyadic communication are sup-
ported by encodings into more basic settings, namely synchronous into asynchronous commu-
nication (Boudol, 1992; Honda and Tokoro, 1991), and polyadic into monadic communication
(Milner, 1991), respectively. A salient commonality in both encodings is the fundamental réle
played by the communication of restricted names. More precisely, both encodings exploit
the ability that first-order processes have of establishing private links between two or more
processes by generating and communicating restricted names. Let us elaborate further on this

point by recalling the encoding of the polyadic ;r-calculus into the monadic one in (Milner,
1991):

[x(z1, ..., 2z,). P] x(w).w(z1). - . w(z,).[P]

[X{(a1,...,a,).P] = vwxw.wa;.- - .wa,.[P]

(where [] ts an homomorphism for the other operators). A single n-adic synchronization is
encoded as n + 1 monadic synchronizations. The first synchronization establishes a private
link w: the encoding of output creates a private name w and sends it to the encoding of input.
As a result of the synchronization on x, the scope of w is extruded, and each of a4, ..., a, can
then be communicated through monadic synchronizations on w. This encoding is very intuitive,
and satisfies a tight operational correspondence property: a term of the polyadic calculus with
one single public synchronization (i.e., a synchronization on an unrestricted name such as x)
is encoded into a term of the monadic calculus with exactly one public synchronization on
the same name, followed by a number of internal synchronizations (i.e., synchronizations on a
private name such as w). That is, not only the observable behavior is preserved, but a source
term and its encoding in the target lanquage perform the exact same number of visible actions.
The crucial advantage of establishing a private link on w is that the encoding is robust with
respect to interferences: once the private link has been established between two parties, no
surrounding —possibly malicious— context can get access to the monadic communications on
w.

The establishment of private links is then seen to arise naturally from the interplay of

restriction and name-passing as available in the sr-calculus. In this chapter we aim at under-

6.1. Introduction 129

standing whether the settled situation in the first-order setting carries over to the higher-order
one. More precisely, we study the extent to which private links can be established in the con-
text of HOcoRE, a higher-order process calculus without name passing. This appears as a
particularly intriguing problem: in spite of its minimality, HOCORE is very expressive: not only
it is Turing complete but also several modelling idioms (disjoint choice, input-guarded repli-
cation, lists) are expressible in it as derived constructs. Hence, the answer to this question is

far from obvious.

Here we shall consider two extensions of HOcoRre. The first one—denoted AHO—extends
HOcoRre with restriction and polyadic communication; the second extension—denoted SHO—
extends AHO with output prefixes, so as to represent synchronous process passing. Since
both calculi consider polyadic communication, AHO and SHO actually represent two families
of higher-order process calculi: given n > 0, we use SHO" (resp. AHO") to denote the

synchronous (resp. asynchronous) higher-order process calculus with n-adic communication.

It is useful to comment on the consequences of considering restricted names in higher-
order process calcult without name-passing. The most notable one is the partial effect that
scope extrusions have. Let us explain what we mean by this. In a process-passing setting,
received processes can only be executed, forwarded, or discarded. Hence, an input context
cannot gain access to the (private) names of those processes it receives; to the context received
processes are much like a “black box". Although higher-order communications might lead to
scope extrusion of the private names contained in the transmitted processes, such extrusions
are vacuous: without name-passing, a receiving context can only use the names contained in
a process in a restricted way, namely the way decreed by the sender of the process." The
sharing of (private) names one obtains from using process-passing only is then incomplete:

names can be sent as part of processes but they cannot be freely used by a recipient.

With the above discussion in mind, we begin by investigating the relationship between
synchrony and asynchrony in process-passing calculi. Our first main result is an encoding of
SHO into AHO. Intuitively, a synchronous output is encoded by an asynchronous output that
communicates both the communication object and the continuation. This encodability result
is significant: it reveals that the absence of name passing does not necessarily imply that
encodings that rely on name-passing and private links are not expressible with process-passing
only. In fact, the encoding bears witness to the expressive power intrinsic to (asynchronous)
process-passing.

Based on this positive result, we move to examine the situation for polyadic communication
in process-passing calculi. We consider variants of SHO with different arity in communications,

and study their relative expressive power. Interestingly, we determine that it is indeed the case

"In this discussion we understand process-passing that does not consider abstraction-passing, i.e. the communica-

tion of functions from processes to processes. As we shall see, the situation is rather different with abstraction-passing.

13Chapter 6. On the Expressiveness of Synchronous and Polyadic Communication

that the absence of name-passing causes an expressiveness loss when considering polyadic
communication. Our second main contribution is a non-encodability result: for every n > 1,
SHO" cannot be encoded into SHO"~". This way we obtain a hierarchy of higher-order process
calculi of strictly increasing expressiveness. Hence, polyadic communication is a striking point

of contrast between first-order and higher-order process calculi without name-passing.

The crux for obtaining the above hierarchy is a characterization of the stability conditions of
higher-order processes with respect to their sets of private names. Intuitively, such conditions
are meant to capture the following insight: without name-passing, the set of names that are
private to a given process remains invariant along computations. As such, two processes that
interact respecting the stability conditions and do not share a private name will never be able
to establish a private link on it. Focusing on the set of names private to a process is crucial
to characterize the private links it can establish. Central to the definability of the stability
conditions is a refined account of internal actions that is enforced by the LTS associated to
SHO. In fact, the LTS distinquishes the internal actions that result from synchronizations
on restricted names from those that result from synchronizations on public names. While the

former are the only kind of internal actions, the latter are considered as visible actions.

The separation result for polyadic communication depends on a notion of encoding that is
defined in accordance to the stability conditions and requires one visible action in the source
language to be matched by at most one visible action in the target lanquage. When compared
to proposals for “good” encodings in the literature, this requirement might appear as rather
demanding. However, we claim a demanding notion of encoding is indispensable in our case for
at least two reasons. First, such a notion allows us to concentrate in compositional encodings
that are robust with respect to interferences. As we have discussed, these two properties follow
naturally from the ability of establishing of private links in the first-order setting. Arbitrary,
potentially malicious interferences are thus a central issue. The requirement on visible actions
is intended to ensure that a term and its encoding are exposed to the same interference
points. We argue that such a requirement is a reasonable way of including arbitrary sources
of interferences into the notion of encoding. Second, in the higher-order setting the encoding
of synchronous communication into asynchronous one can be seen as a particular case of
the encoding of polyadic communication into monadic one. This way, for instance, monadic
synchronous communication corresponds to the class of biadic asynchronous communication
in which the second parameter (i.e., the continuation of output) is executed only once. This
observation and the encodability result for synchronous communication into asynchronous one
suggest that the gap between what can be encoded with process-passing and what cannot is
rather narrow. Therefore, a notion of encoding more discriminating than usual is necessary in

our case to be able to formalize separation results among calculi with different polyadicity.

In the final part of the chapter we consider the extension of SHO with abstractions. An

6.1. Introduction 131

abstraction is an expression of the form (x)P—it is a parameterized process. An abstraction
has a functional type. Applying an abstraction (x)P of type T — ¢ (where ¢ is the type of
all processes) to an argument W of type T yields the process P{W/x}. The argument W
can itself be an abstraction; therefore the order of an abstraction, that is, the level of arrow
nesting in its type, can be arbitrarily high. The order can also be w, if there are recursive
types. We consider SHO), the extension of SHO" with abstractions of order one (i.e., functions
from processes to processes). Our last main result shows that abstraction passing provides
SHO with the ability of establishing of private links. Indeed, we show that SHO" can be
encoded into SHO?™": this can be used to demonstrate that there is no encoding of SHO”
into SHO". This result thus provides further evidence on the relationship between the ability

of establishing private links and absolute expressiveness.

Related Work. While a number of works address the relationship between synchronous and
asynchronous communication in first-order calculi (see, e.g., (Palamidessi, 2003; Cacciagrano
et al,, 2007; Beauxis et al., 2008)), we are not aware of analogous studies for higher-order
process calculi. A similar situation occurs for the study of polyadic communication; in the first-
order setting the interest has been in characterizing fully-abstract translations of polyadic
communication into monadic one (see, e.g., (Quaglia and Walker, 2005; Yoshida, 1996)), but
the case of polyadicity in higher-order communication has not been addressed.

The most related work is by Sangiorgi (1996b). There, the expressiveness of the w-calculus
with respect to higher-order 7 is studied by identifying hierarchies of fragments of first-order
and higher-order calculi with increasingly expressive power. The first-order hierarchy is based
on fragment of the sm-calculus in which mobility is internal, i.e., where outputs are only on
private names —no free outputs are allowed. This hierarchy is denoted as nl", where the n
denotes the degree of mobility allowed; this is formalized by means of dependency chains
in name creation. In this hierarchy, e.g., xI' does not allow mobility and corresponds to the
core of CCS, and n1” will allow dependency chains of length at most n. The hierarchy in
the higher-order case follows a similar rationale, and is based on the strictly higher-order
mr-calculus, i.e., a higher-order calculus without name-passing features. Also in this hierarchy,
the less expressive language (denoted HOx') corresponds to the core of CCS. Sangiorgi shows
that ;11" and HOxr" have the same expressiveness, by exhibiting fully-abstract encodings. In
contrast to (Sangiorgi, 1996b), the hierarchy of higher-order process calculi we consider here
is not given by the degree of mobility allowed, but by the size of the tuples that can be passed
around in polyadic communications.

The distinction between internal and public synchronizations here proposed for our notion
of encoding has been used and/or proposed in other contexts. In (Lanese, 2007) labels of
internal actions are annotated with the name on which synchronization occurs so as to define

located semantics which are then used to study concurrent semantics for the sr-calculus using

13Chapter 6. On the Expressiveness of Synchronous and Polyadic Communication

standard labeled transition systems. In the higher-order setting (Amadio, 1993) obtains a
finitely-branching bisimilarity for CHOCS by means of a reduction into bisimulation for a
variant of the m-calculus. In such a variant, processes are only allowed to exchange names of
activation channels (i.e. the channels that trigger a copy of a process in the representation of
higher-order communication with first-order one). The desired finitely-branching bisimilarity
is obtained by relying on a labeled transition system in which synchronizations on activation

channels are distinguished.

6.2 The Calculi

6.2.1 A Higher-Order Process Calculus with Restriction and Polyadic Com-

munication

Here we define AHO, the extension of HOcoRE with a restriction operator and polyadic com-

munication. As such, it is asynchronous and does not feature name-passing.
Definition 6.1. The language of AHO processes is given by the following syntax:

P.O,... == a®.P | a@) | PP |viP|x]|o0
where x,y range over process variables, and a, b, r,s denote names.

Assuming standard notation and properties for tuples of syntactic elements, polyadicity
in process passing is interpreted as expected: an output message 6(@) sends the tuple of
processes O on name g; an input prefixed process a(x). P can receive a tuple O on name (or
channel) a and continue as P{é/}}. In both cases, a is said to be the subject of the action.
We sometimes write | x | for the length of tuple x; the length of the tuples that are passed
around determines the actual arity in polyadic communication. In interactions, we assume
inputs and outputs agree on their arity; we shall rely on notions of types and well-typed
processes as in (Sangiorgi, 1996b). Parallel composition allows processes to interact, and
vr P makes r private (or restricted) to the process P. Notions of bound and free names and
variables (bn(:), fn(-), bv(:), and fv(-), resp.) are defined in the usual way: an input a(x). P
binds the free occurrences of variables in X in P; similarly, vr P binds the free occurrences of
name r in P. We abbreviate a(x). P as a. P when none of the variables in x is in fv(P), and
5(6) as a. We use notation |_|k P to represent k copies of process P in parallel.

Definition 6.2. The structural congruence relation for AHO processes is the smallest congru-
ence generated by the following laws: P |0 =P, Py || P, =Py | Pi, Pi| (P2 P3) =
(P1]| P2) || Ps, vavbP =vbvaP, va0=0, va(Pi| P2)=vaP;| P, —ifa & fn(Ps).

6.2. The Calculi 133

e a®).P % p our a(0) 2% 0
Act Py = P; b\;(a) Niv(P) =0
Py || P, — Pi || P2
(vj)a((P)) a(®)

P ——— P} P, — P; gynin(P) =9
Pi Il Po == v (P} || P3{FIx})

TAu4

P p r & n(a)

REs 2
virP — vrP’

P (vg)a((P")) P’ % 7& a, x € fn(ﬁ//) _ ‘g’
e p TP, o,

OPEN

Figure 6.1: The LTS of AHO. We have omitted rules Act2 and Tauz, the symmetric counter-

parts of rules Act1 and Tau1.

The semantics for AHO is given in terms of the LTS given in Figure 6.1. There are three
kinds of transitions: internal transitions P —— P’, input transitions P 26, P’, and output

transitions P —)wy)ﬁ«o»

P’ (with extrusion of the tuple of names g), which have the expected
meaning. We use a to range over actions. The subject of action a, denoted as sub(a), is
defined as sub(a(x)) = a, sub(ﬁ((é))) = a, and is undefined otherwise. Notions of bound
and free names and variables extend to actions as expected. We sometimes use & to denote a
sequence of actions &y, ..., @,. Weak transitions are defined in the usual way. We write =
for the reflexive, transitive closure of —. Given an action a, notation = stands for =%=.

. . a a Q,
Given a sequence & = ay, ..., q,, we define = as = - =.

Convention 6.1. In what follows we shall say that, for some n > 0, AHO" corresponds to
the higher-order process calculus obtained from the syntax given in Definition 6.1 in which
polyadic communication has arity n.

The following definition is standard.

Definition 6.3 (Strong and Weak Barbs). Given a process P and a name a, we write

e P |, —a strong input barb— if P can perform an input action with subject a;

e P |z —a strong output barb— if P can perform an output action with subject a.

Given py € {a,a}, we define a weak barb P |, if, for some P, P = P" |,,.

13€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

6.2.2 A Higher-Order Process Calculus with Synchronous Communication

We now introduce SHO, the extension of AHO with synchronous communication. As such,
processes of SHO are defined in the same way as the processes of AHO (Definition 6.1),

except that output is a prefix:

Definition 6.4. The language of SHO processes is given by the syntax in Definition 6.1,

excepting that output message @(Q) is replaced with @(Q). P.

The intended meaning of the output prefix is as expected: @{Q). P can send the tuple of
processes a via name a and then continue as P. All notions on bound variables and names
are defined as in AHO.

The LTS for SHO is obtained from that for AHO in Figure 6.1 with two modifications. The

first one concerns the shape of output actions: rule OuT is replaced with
a(0)
—_—

Sour a(Q).P P

which formalizes synchronous output. The second modification enforces the distinction between
internal and public synchronizations hinted at in the introduction. This distinction is obtained
in two steps. First, by replacing rule Tau1 with the following one:

g)a(P 6 ~
py Y0, o p, OGPy =0

PusTAu1 — =
Py || P, = vy (P || P3{FIx})

(And similarly for Tauz, which is replaced by PusTau2, the analogous of PusTau1.) The
second step consists in extending the LTS with the following rule:
P p

INTRES ———F——
vaP — va P

This way we are able to distinguish between internal and public synchronizations. The
former are given by synchronizations on restricted names; they are the only source of internal
behavior and are denoted as —. The latter are given by synchronization on public names: a
synchronization on the public name a leads to the visible action <%. The distinction between
internal and public synchronizations does not have behavioral consequences; it only represents
a more refined standpoint of internal behavior that we shall find useful for obtaining results in
Section 6.4. As a result, we have four kinds of transitions: in addition to internal and public
synchronizations, we have input and output transitions as defined for AHO. Accordingly, we
extend the definition of subject of an action for the case of public synchronizations, and decree
that sub(at) = a.

By varying the arity in polyadic communication, Definition 6.4 actually gives a family of

higher-order process calculi. We have the following notational convention:

6.3. An Encodability Result for Synchronous Communication 135

Convention 6.2. In what follows we shall say that, for some n > 0, SHO" corresponds to
the higher-order process calculus obtained from the syntax given in Definition 6.4 in which

polyadic communication has arity n.

6.3 An Encodability Result for Synchronous Communication

We begin by studying the relationship between synchronous and asynchronous communication.
The main result of this section is an encoding of SHO" into AHO".

A naive encoding would simply consist in sending both the communication object and
the continuation of the output action in a single synchronization. The continuation is sent
explicitly as a parameter, and so a synchronous calculus with polyadicity n would have to be
encoded into an asynchronous calculus with polyadicity n + 1. To illustrate this, consider the
naive encoding of SHO' into AHO?:

[a(P).S]
[a(x)-R]

a([P].[S])
a(x,y)-(y [[R]

where [-] is an homomorphism for the other operators in SHO'. This encoding allows to
appreciate how in the higher-order setting the synchronous/asynchronous distinction can be
considered as a particular case of the polyadic/monadic distinction. Notice that the fact that
the continuation is supposed to be executed only once is crucial for the simplicity of the
encoding.

Interestingly, we notice that asynchronous process-passing is expressive enough so as to
encode synchronous communication of the same arity. Intuitively, the idea is to send a single
process consisting of a guarded choice between a communication object and the continuation

of the synchronous output. For the monadic case the encoding is as follows:

[@(P). 5]
[a(x).R]

vk, L@k ((P] Il k) + L(ST T R) 1 D)
a(x). (x [[R)

where “+" stands for the encoding of disjoint choice in HOcCoORE, presented in Section 3.2;
k, [are two names not in fn(P, S); and [-] is an homomorphism for the other operators in SHO'.

The synchronous output action is thus encoded by sending a quarded, disjoint choice
between the encoding of the communication object and the encoding of the continuation of
the output. The encoding exploits the fact that the continuation should be executed exactly
once, while the communication object can be executed zero or more times. Notice that there is
only one copy of the trigger that executes the encoding of the continuation (denoted [in the

encoding above), which guarantees that it is executed exactly once. This can only occur after

13€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

that the synchronization has taken place, thus ensuring a correct encoding of synchronous
communication. Notice that [releases both the encoding of the continuation and a trigger for
executing the encoding of the communication object (denoted k); such an execution will only
occur when the choice sent by the encoding of output appears at the top level. This way, it
is easy to see that a trigger k is always available. This idea can be generalized to encode

synchronous calculi of arbitrary polyadicity as follows:

Definition 6.5 (Synchronous into Asynchronous). For some n > 0, the encoding of SHO" into
AHOQO" is defined as follows:

[G(Py,...,P,).S] vk, L@([P1], - - -, [Poa], Teal[P)[S1D) 11 1)
[a(x1,....xa)- Rl = alx1,....x:) (X2 || [R])

with
T My, Mo] = k. (My || k) + L (M || k)

where {k,l} Nfn(Py,...,P,,S) = @, and [] is an homomorphism for the other operators in
SHO".

We now give informal arguments for the correctness of the encoding; we leave a formal
proof for future work. Key to a correctness argument is a characterization of the “garbage” that
the process leaves along reductions. Such garbage is essentially determined by occurrences
of the trigger that activates a copy to (the encoding of) the last parameter of the polyadic
communication (denoted k in Definition 6.5). Such occurrences remain while the summation
that the encoding sends is not at the top-level; some triggers might remain even if all sum-
mations have been consumed. Crucially, since such triggers are on restricted names, they are
harmless for the rest of the process, and so the encoding is correct up to these extra triggers.

The encoding is significant as it provides compelling evidence on the expressive power that
(asynchronous) process-passing has for representing protocols that rely on establishment of
private links in the first-order setting. Not only the encoding bears witness of the fact that
such protocols can indeed be encoded into calculi with process-passing only; the observation
that the encoding of synchronous into asynchronous communication is a particular case of that
of polyadic into monadic communication leaves open the possibility that, following a similar
structure, an encoding of polyadic communication (as the proposed by Milner) might exist for

the case of process-passing. In the next section we prove that this is not the case.

6.4 Separation Results for Polyadic Communication

In this section we present the separability results for SHO. First, in Section 6.4.1, we introduce

the notion of encoding on which the results rely and we present its main properties. Then,

6.4. Separation Results for Polyadic Communication 137

in Section 6.4.2, we introduce the notion of distinguished forms, which allow us to capture a
number of stability conditions of processes with respect to their sets of private names. Finally,

in Section 6.4.3 we present the hierarchy of SHO calculi based on polyadic communication.

6.4.1 The Notion of Encoding

The following definition of encoding is inspired on that of Gorla (2008), who proposed five

criteria a “good encoding” should satisfy.
Definition 6.6. A language L is defined as:
e a set of processes P;

e a labeled transition relation — on P, i.e. a structure (P, A,—) for some set A of

actions or labels.

e a weak behavioral equivalence =~ (i.e. a behavioral equivalence that abstracts from

internal actions in A).
A translation considers two languages, a source and a target:

Definition 6.7 (Translation). Given a source language Ls = (Ps,—s, Xs) and a target lan-

guage L = (P, —>, %), a translation of Ls into Ly is a function [] : Ps — Pt

We shall be interested in a class of translations that respect both syntactic and semantic

conditions.

Definition 6.8 (Syntactic Conditions on Translations). Let [-]: Ps — Py be a translation of L
into Ly. We say that [-] is

1. Compositional: if for every k-ary operator op of Ls and for all Sy, . .., Sk withfn(Sy, ..., S¢) =

N, then there exists a k-ary context ng € P; such that
[op(S1,..., S = CHISL - - [Sk)

2. Name invariant: if [o(P)] = o([P)), for any injective permutation of names g.

Definition 6.9 (Semantic Conditions on Translations). Let[-]: Ps — P; be a translation of L

into L. We say that [] is operational corresponding if the following properties hold:

1. Completeness/Preservation: For every S, S’ € Ps and a € A, such that S 5.9, it
holds that [S] L~ [S] where B € A and sub(a) = sub(B).

2. Soundness/Reflection: For every S € Ps, T € Py, B € A; such that [S] :B>t T there
exists an S’ € Ps and an action a € As such that S =, S, T == [S'] and
sub(a) = sub(B).

138€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

Furthermore, we shall require adequacy: if P =5 Q then [P] =~ [Q]

Notice that adequacy is necessary because we make no assumptions on the nature of =

and =4.

Definition 6.10. We call encoding any translation that satisfies both the syntactic conditions

in Definition 6.8 and the semantic conditions in Definition 6.9.

Remark 6.1. Notice that our definition of encoding intends to capture the fact that an action

in the source language might be not matched by the exact same action in the target language.

Some Properties of Encodings.
Proposition 6.1. Let a be a name. If a € fn(P) then also a € in([P)).

Proof. By contradiction. Take two distinct names a and b. Suppose a is free in P. Clearly,
we have that

P{bla} # P (x)
Suppose, for the sake of contradiction, that a is not free in [P]. Under that assumption, one
has that [P]{f/a} = [P] as substituting a non-free name with another name is a vacuous

operation. Notice that by name invariance one has [P]{0/a} = [P{b/a}]. Now, considering (*)
above, one has the [P]{b/a} # [P{bla}], a contradiction. O

Proposition 6.2. Let [-] be an encoding of Ls into L. Then [-] satisfies:

1. Barb preservation: for every S € Ps it holds that S 7 (resp. S |4) if and only if [S] U7
(resp. [S] Ua).

Proof. 1t follows from operational correspondence in the definition of encoding (Definition

6.10) O

Proposition 6.3 (Composability of Encodings). /fC[:] is an encoding of L4 into L;, and D[] is

an encoding of L, into L3 then their composition (D -C)[-] is an encoding of L4 into L.

Proof. From the definition of encoding (Definition 6.10). The syntactic conditions (compo-
sitionality, name invariance) are easily seen to hold for (D - C)[-]; the semantic conditions
(operational correspondence, adequacy) rely on the fact that =1, =, and =3 are equivalences
and hence transitive. Note that adequacy is crucial to show the composability for operational

correspondence. O

6.4.2 Distinguished Forms

Here we define a number of distinguished forms for SHO processes. They are intended to
capture the structure of processes along communications, focusing on the private names shared

among the participants.

6.4. Separation Results for Polyadic Communication 139

6.4.2.1 Definition

The definition of distinguished forms exploits contexts, that is, processes with a hole. We
shall consider multi-hole contexts, that is, contexts with more than one hole. More precisely,
a multi-hole context is n-ary if at most n different holes [];,...,[-]», occur in it. (A process
is a 0-ary multi-hole context.) We will assume that any hole []; can occur more than once
in the context expression. Notions of free and bound names for contexts are as expected and

denoted bn(-) and fn(-), respectively.
Definition 6.11. Syntax of (quarded, multihole) contexts:

C.C,... == ak).D | a(D).D
D,D,... | Plc|D)D]| vbD

Remark 6.2. We are always working with non-binding contexts, i.e., contexts that do not

capture the free variables of the processes that fill their holes.

Below we define disjoint forms, the main distinguished form we shall use in the chapter.
Definition 6.12 (Disjoint Form). Let T = va(P || C[ﬁ’]) be a SHO" process where

1. 7 is a set of names such that i C fn(P, R) and 7 N fn(C) = §;

2. Cis a k-ary (gquarded, multihole) context;

3. R contains k closed processes.

We then say that T is in k-adic disjoint form with respect to 7, R, and P.

The above definition decrees an arbitrary arity for the context. We shall sometimes say
that processes in such a form are in n-adic disjoint form, or NDF. By restricting the arity of

the context, this general definition can be instantiated:

Definition 6.13 (Monadic Disjoint Form, MDF). Suppose a process T that is in disjoint form
with respect to some 7i, R, and P. If | R |=1 then T is said to be in monadic disjoint form (or

MDF) with respect to n, R, and P.

Recall that even if MDFs have monadic contexts, the content of the hole (i.e. the single
process R) can appear more than once in the process. It could even be the case the content

does not appear at all. This is a special case of MDF, as we define below:

Definition 6.14 (Zero-adic Disjoint Form, ZDF). Let T = vn (P | C[R]) be in MDF with
respect to n, R, and P. If CIR] # @ and R = 0 then T is said to be in zero-adic disjoint
form (ZDF) with respect to n and P. Moreover, T can be rewritten as T = vniP || vin,Q, for
some Q = C[0] and for some disjoint sets of names ny and n, such that both n = n1 U n, and
m Ny =@ hold.

14Chapter 6. On the Expressiveness of Synchronous and Polyadic Communication

The following property will be useful in proofs.

Proposition 6.4 (Encodings preserve ZDFs). Let[:] be an encoding as in Definition 6.10. If T
is in ZDF with respect to some nn and P then [T] is in ZDF with respect to n and [P].

Proof. We know that, for some Q and m, T = vin P || vin Q is in ZDF with respect to i and
P, and that n N m = @. By compositionality (Definition 6.8(1)) we have that, for some context
C,[T]= C]Jvn P],[vim Q]]. The sensible issue here is to ensure that [vin P] and [vin Q] do not
share private names because of the enclosing context C. There are two cases: the first one
is that a name that is free in vin P but private to vin Q becomes private in both [vi P] and
[vin Q] (and the symmetric case); the second case is that a name that is free in both vin P
and vin Q becomes private in both [vin P] and [vin Q]. Proposition 6.1 ensures that none of
these cases is possible; for every name a and process R, such a proposition guarantees that
if @ € fn(R) then also a € fn([R]). As a consequence, even if the context C could involve
restrictions enclosing both [vn P] and [vm Q], such restriction will not bind names in them.
Notice that C[[vn P],[vin Q]] can be rewritten as [T] = va([vh P] || [vin Q] | S). for some
process S. Because of the discussion before, names in @ do not bind names in [P] nor in [Q].

Hence, [T] is in ZDF with respect to [P] and 7, as desired.
O

6.4.2.2 Properties of Disjoint Forms |: Stability Conditions

We are interested in characterizing the transitions that preserve disjoint forms. We focus on
internal and output actions. In what follows we discuss properties that apply to arbitrary
NDFs; for the sake of readability, however, in proofs we sometimes restrict ourselves to the
case of MDFs, since cases for other disjoint forms are analogous and only differ in notational
burden.

The following proposition formalizes that, up-to structural congruence, derivatives of NDFs
that have unguarded occurrences of some R; can be brought back into an NDF by “pushing”

such occurrences into the side of P of the NDF.
Proposition 6.5. Suppose a process T = vi (P || C[I~?]) such that
1. T complies with conditions (1) and (2) in Definition 6.12;

2. R contains k closed processes and C[-] is a context with one or more holes in evaluation

context.

Then, there exists T' = T such that: (i) T' = vi (P || C'[R)); (ii) fn(P", R) = in(P, R) and
fn(C’) = In(C); (iii) T’ is in DF with respect to n, R, and P

6.4. Separation Results for Polyadic Communication 1M

Proof. We prove the particular case in which T is in MDF (i.e,, we have a single R); the
proof is analogous for the other disjoint forms. We then need to show that a MDF T’ indeed
exists. Since T adheres to condition (1) in Definition 6.12, P and R share conditions on
names. Without loss of generality, we can assume that C[R] = v ([1°R || C'[R]) where,
fora k >0, |_|k R represents the occurrences of R that are in evaluation context, no C 1 is
the set of private names of C, and C’[R] represents the part of C in which each occurrence
of R is behind a prefix with names in fn(C). That is, C'[] is the subcontext of C in which
top-level holes have been removed. Since R and C do not share private names we know that
C[R]=[1"R || vii2 C'[R]. Consider the process T’ = vii (P’ || C'[R)), structurally congruent to
T’ and where P’ = P | [T* R. We verify conditions on names for MDFs hold for 7’: by the
above considerations on (7, it holds that fn(C’) = fn(C); also, since P and R share conditions
on names it holds that fn(P’,R) = fn(P || R, R) = fn(P, R). Finally, observe that in C” all
occurrences of R remain guarded. We conclude that T’ is indeed in MDF with respect to 7,

,‘~?, and P’, as desired. O

Disjoint forms are stable with respect to internal synchronizations.

Lemma 6.1. Let T = vii (P | C[R)) be a process in NDF with respect to i, R, and P. If
T 5 T then: T' = v (P || C[R)); n(P’,R) C in(P,R) and in(C') C fn(C); T’ is in NDF
with respect to n, f~? and P’.

Proof. We proceed by a case analysis on the communicating partners in the transition.

Transition internal to P. We have a transition P 5 P’, and hence T/ = vi (P’ || C[R)). The
transition is private to P, and as such, fn(P’) C fn(P). Names in C remain unchanged;

we then have that T’ is in MDF with respect to 7, R, and P’, as desired.

Transition internal to C[R]. We have a transition C[R] 5 D[R]. Since C and R do not share
private names, the transition can only correspond to an internal synchronization on the
names private to C. Process D[:‘~?] can have two possible forms, depending on whether
or not the prefixes involved in (and consumed by) the transition are guarding some

occurrence of R;. We thus have two cases.

1. In the case D[f~?] has no unguarded occurrences of R (i.e. there are no holes at the
top level of the context), we have D = C’[R], for a context C’ that is exactly as C
except from two prefixes. The transition concerns only names private to C; hence,
fn(C’) C fn(C) and the other conditions on names are not affected. We then have
that 7/ = vii (P | C'[R)) is in NDF with respect to 7, R, and P, as desired.

2. In the case occurrences of some R; end up unquarded after the transition, with the
aid of Proposition 6.5 we infer that T’ is structurally congruent to a MDF with

respect to 7, Fﬂé and P, and we are done.

14Chapter 6. On the Expressiveness of Synchronous and Polyadic Communication

Transition internal to some R;. This is not possible as by definition of disjoint form, every

occurrence of R in C[R] is underneath a prefix.

Communication between P and C[f~?] This is not possible since by definition of disjoint form,
P and C do not share private names. No R; can evolve, thus there cannot be a commu-

nication between P and any R;.
O

Corollary 6.1. Let T be a process in ZDF with respect to some i and P. If T = T, then T’
is in ZDF with respect to n and P too.

The lemma below asserts that disjoint forms are stable also under output actions that do
not involve extrusion of names. To see this, consider a MDF T: the only risk for it after an
output action is that the R in C[R] could be communicated, therefore “downgrading” the MDF
into a ZDF. Since, as we have seen, ZDFs are a special case of MDFs, this is not a problem
and MDFs are preserved. Below we say a process P is contained in a process Q if and only

if there exists a context C such that Q = C[P].

Lemma 6.2. Let T = vii (P | C[R)) be a process in NDF with respect to i, R, and P. If
T 29 1 then: there exist P’ and C' so that T' = vt (P || C'[R)); both in(P’,R) C fn(P, R)

and fn(C’) C in(C) hold; T is in MDF with respect to 71, R, and P’

Proof. By a case analysis on the source of the action. We prove the particular case in which

T is in MDF; the proof is analogous for the other disjoint forms.

o 11 P2 P then T/ = v (P || C[R]). Since P’ is contained in P, we have fn(P’,R) C
fn(P, R). Conditions on names in fn(C) are unchanged, and we have that T’ is in MDF

with respect to 11, R, and P’, as desired.

o 1 C[R] 29,

The thesis is immediate for k > 0; if kK = 0 then D[R] is actually in ZDF with respect to

D[R] then we reason on k, the number of guarded occurrences of R in D[R).

n and P; by recalling that a ZDF is a special case of MDF we are done.

O

The following property formalizes the consequences public synchronizations have on ZDFs.

Lemma 6.3. Let T be a SHO" process in ZDF with respect to n and P. Suppose T =5 T’
where <5 is a public n-adic synchronization. Then T’ is in n-adic disjoint form with respect

to 71, some R, and P.

6.4. Separation Results for Polyadic Communication 143

Proof. The proof proceeds by a case analysis on the rule used to infer £5. We concentrate
on the case in which <5 is a monadic public synchronization, and arises from interaction of
two processes that do not share private names; the other cases are similar or simpler. There
are two cases, corresponding to rules Tau1 and Tauz. We analyze the first one. Without loss
of generality, we can assume T = vn P || vin,0, which is in ZDF with respect to ny U n;, and
P. In T, we have that P =a(R).P’' || P”, Q = a(x). Q' | Q”, and 714, N> are two disjoint sets
of names. We then have vii P 7R, 5 pr (with 7, € 71) and vit, @ 25 vii, Q. That
is, we are assuming the case in which the output on @ extrudes some private names 1. Using
rule TAu1 we obtain vy P | v, Q Vi P 12 Q'{RIx} = T'. By noticing that n, Ch

we have that T’ = vy (P’ || v, Q' {RIx}), so T’ can be brought into a MDF with respect to

| v
ny, R, and some P’. First, consider the context that is obtained by replacing each occurrence
of x in Q with a single hole. Call that context CJ[-]; since we have monadic communication, C is
monadic. We can then see that vii, Q'{R/x} corresponds to C[R]. The resulting process can be
written as vy (P’ || C[R]); in case there are unquarded occurrences of R in C[R] (because of
top-level occurrences of x in Q), with the aid of Proposition 6.5, the process can be rewritten

as a MDF with respect to iy, R, and some P” containing both P’ and a number of occurrences

of R.

The case for Tauz is completely analogous, and only differs in the fact that the process

after the public synchronization is in MDF with respect to 1, (rather than to 7). O

6.4.2.3 Properties of Disjoint Forms Il: Origin of Actions

We now give some properties regarding the order and origin of internal and output actions of

processes in DFs.

Definition 6.15. Let T = vn (A || C[i?]) be an NDF with respect to 7, R, and A. Suppose

o .
T = T’ for some action a.

e Let a be an output action. We say that a originates in A if A% A’ occurs as a premise
in the derivation of T % T’, and that a originates in C if C[R] < C'[R] occurs as a

premise in the derivation of T = T'.

e Let @ = 1. We say that a originates in A if for some a € 7, A <5 A’ occurs as a
premise in the derivation of T 2 T', and that « originates in C if C[R] = C'[R] occurs

. . . . a
as a premise in the derivation of T — T'.

Proposition 6.6. Let T = vii (A || C[R]) be an NDF with respect to 7, R, and A. Suppose
T 5 T', where a is either an output action or an internal synchronization. Then a originates

in either A or C.

14€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

Proof. The thesis is immediate for the case of output actions. For internal synchronizations
the thesis follows by noting that by definition internal synchronizations take place on private
names only. By definition of MDF, A and C do not share private names, and all occurrences
of R in context C are guarded, so they cannot interact with A. As a result, there is no way
A and C can interact through an internal synchronization; such an action must originate in

either A or C. O

Notice that both A and C can have the same action «a (for instance, an output action on a
public name that is shared among them). This, however, does not mean that a single instance
of a originates in both A and C.

The following proposition says that the only consequence an internal transition originated
in C might have on the structure of an NDF is to release new copies of the processes in R:

Proposition 6.7. Let T = v (A | C[/~?]) be a NDF with respect to 11, R, and A. Suppose

T 5 T, where T originates in C. Then, for some ki,...,k, > 0, T" = vi(A | C'[R] |

MR- 1 TT% R):

Proof. Immediate by recalling that by definition of MDF occurrences of R appear guarded in
C[I?] and by noticing that an internal synchronization consumes two (complementary) prefixes.
The number of copies of any R; (for i € 1..n) is greater than zero if the prefixes involved in

the synchronization guard an occurrence of R;. O

The following lemma states the conditions under which two actions of a disjoint form can

be safely swapped.

Lemma 6.4 (Swapping Lemma). Let T = via (A | C[f~?]) be an NDF with respect to 7, R,
and A. Consider two actions a and B that can be either an output action or an internal
synchronization. Suppose that a originates in A, B originates in C, and that there exists a
T’ such that T LALN T'. Then T B q, T’ also holds, i.e., action B can be performed before «

without affecting the final behavior.

Proof. We proceed by a case analysis on o and B, analyzing their possible combinations.
Since we have two kinds of actions (output actions and internal synchronizations), we have
four cases to check. All of them are easy, and follow by the semantics of parallel composition.
Consider, for instance, in the case in which a = 1 through a synchronization on private name
a, and B = 71 through a synchronization on private name a. Then, for some complementary
actions ag, @ on (private) name a, and complementary actions By, By on (private) name b, we

have that

T = vi(aA | @ A | A || Bo-GIR] || Bo-CGIR] || C[R]) and

T Vit (Ar || A2 | A || GIR] || GIR] || C'[R))

6.4. Separation Results for Polyadic Communication 145

By definition of internal synchronizations, a is a name private to A and b is a name private to
C. Since by definition of MDF A and C do not share private names, then there is no possibility
for interferences between the prefixes ag, @, Bo, and By. Hence, it is safe to perform T AL T,
and the thesis holds. O

Notice that the converse of the Swapping Lemma does not hold: since an action B origi-
nated in C can enable an action « originated in A (e.g., an action enabled by an extra copy
of R), these cannot be swapped. We now generalize the Swapping Lemma to a sequence of

internal synchronizations and output actions.

Lemma 6.5 (Commuting Lemma). Let T = vii (A | C[R]) be a NDF with respect to i, R, and
A. Suppose T 5 T', where @ is a sequence of output actions and internal synchronizations
only. Let dc (resp. da) be the sequence of actions that is exactly as @ but in which actions
originated in A (resp. C) or its derivatives are not included. Then, there exists a process T,

such that
LTS T, ST

2 T

viAITT™ R |-+ Il TT™ Ry || C'[R)), for some my, ..., m > 0.

Proof. We proceed by an induction on k, the number of actions originated in C that occur
after an action originated in A in the sequence d@. The base case is when k = 0; that is, when
all the actions after Ty are originated in A, and we are done. The inductive step requires a
second induction on j, the number of actions originated in A which precede a single action
originated in C. This induction follows easily exploiting the Swapping Lemma (Lemma 6.4).
The fact that, for each i € 1..n, T involves a number m; > 0 of copies of R; is an immediate

consequence of Proposition 6.7. O

6.4.3 A Hierarchy of Synchronous Higher-Order Process Calculi

We define an expressiveness hierarchy for the higher-order process calcull in the family given
by SHO. The hierarchy is defined in terms of the impossibility of encoding SHO" into SHO" ',
according to the definition given in Section 6.4.1. We begin by showing the impossibility
result that sets the basic case of the hierarchy, namely that biadic process passing cannot be
encoded into monadic process passing (Lemma 6.6). The proof exploits the notion of MDF and
its associated stability properties. We then state the general result, i.e. the impossibility of
encoding SHO"™" into SHO" (Lemma 6.7); this is done by generalizing the proof of Lemma
6.6.

Lemma 6.6. There is no encoding of SHO? into SHO".

14€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

Proof. Assume, towards a contradiction, that an encoding [-] : SHO? — SHO' does indeed
exist. In what follows, we use i, j to range over {1,2}, assuming that i # .

Assume processes S; = m; || m;.5; and S; = m; | m;.5;. Consider the SHO? process
P =E@ | F@, where E® and F are defined as follows:

E(Z) = vm1,m2(ﬁ(()51, Sz)O)
F@ = vb(a(x,xa). (b(()b1.x1).0 || b((}b2.x2).0 || b(y1)-b(y2).y1))

where both by, by ¢ fn(EP) (with by # by) and sq, s, ¢ fn(F?) (with s; # s5) hold. Let us

analyze the behavior of P. We first have a public synchronization on a:
P =5 vy, ma, b (b{()b1.51).0 || b{{)b2.52).0 || b(y1). b(y2). y1) = Po.

In Py we have two private synchronizations on name b that implement an internal choice: both
processes bq1. Sy and by. S; are consumed but only one of them will be executed. We then have
either Py —»—"5 b1.S; = Py or Py =" b,. S, = P;. Starting in P; and P} we have the

following sequences of actions:

o _
P, P, 52

P 2P 50,
In both cases, a private synchronization on m; precedes an output action on s;. All the above

can be summarized as follows:

P Py tp tp, T (6.1)
P 2Py Pyl py T 62)

These sequences of actions might help to appreciate the effects of the internal choice on b,
discussed above. Such a choice has direct influence on: (i) the output action on b;, (ii) the
internal synchronization on m;, and (iit) the output action on s;. Notice that each of these
actions enables the following one, and that an output on b; precludes the possibility of actions
on b;, mj, and s;.

Consider now the behavior of [P] —the encoding of P— with the aid of (6.1) and (6.2) above.
By definition of encoding (in particular, completeness) we have the following two, mutually

exclusive, possibilities for behavior:

[P] <5 [Po] =~ [P1] 25~ [P)] =5~ 0 and (6.3)
[P] <5 [Po] = [P)] 2~ [P 2~ 0. (6.4)

We notice that the first (weak) transition, namely

[P] == [Po],

6.4. Separation Results for Polyadic Communication 147

is the same in both possibilities. Let us analyze it, by relying on Definition 6.3. For SHO'
processes T, T, and Ty, it holds

Pl=T5 T = Ty =[P (6.5)

We examine the distinguished forms in the processes in (6.5). We notice that P is in ZDF
with respect to {my, my, b} and E@: mq, m> do not appear in F?, and b does not appear in
E®). From Proposition 6.4 we know that [P] is also in ZDF with respect to {m1, m>, b} and
[E@]. Since DFs are preserved by internal actions (Corollary 6.1), we know that T is also a
ZDF with respect to {my, my, b} and A, the derivative of [E?)]. In the general case, Lemma 6.3
ensures that a public synchronization causes a ZDF to become a MDF. In this case, we have
a communication from £ to F® which is mimicked by the encoding; we then have that T’
is in MDF with respect to {mq, m;}, some R # 0, and A’, the derivative of A after the public
synchronization. Finally, since T’ evolves into Ty by means of internal synchronizations only,
by Lemma 6.1, we know that Ty is also in MDF with respect to {mq, m2}, R, and Ay, the

derivative of A". Indeed, for some context Cy (with private name b), we have that
T() =vmq,my (AO || Co[R]) .

Notice that (6.5) ensures that process Ty = [Po]. Hence, by definition of =, Ty should
be able to match each action possible from [Py] by performing either the sequence of actions
given in (6.3) or the one in (6.4). We have just seen that Ty is in MDF with respect to
{my, m3}, R, and Ay. Crucially, both (6.3) and (6.4) involve only internal synchronizations and
output actions. Therefore, by Lemmas 6.1 and 6.2, every derivative of Ty intended to mimic the
behavior of [Po] (and its derivatives) is a process in MDF with respect to {m4, m;}, R, and
some A;.

We now use this information on the structure of the derivatives of Ty to analyze the
bisimulation game for Ty = [Po]. We use the observability predicates (barbs) as in Definition
6.3. We know from (6.3) and (6.4) that [Po] evolves into either [P1] or [P4] after a weak
transition. The encoding preserves the mutually exclusive, internal choice that was discussed
for the source term Py; in the encoding such a choice is governed by the encoding of F©).
Also, as in the source term, the output barb on b; (resp. b;) available in [P;] (resp. [P7]) is
enough to recognize the result of such a choice. Process Ty should be capable of mimicking
this internal choice, and there should exist derivatives Ty and T; of Ty such that both To = T;
with Ty =~ [P1] and To = T, with T = [P{] hold.

Consider now the behavior from [P;], one of the two possible derivatives of [Py] (given in
(6.3)). After a weak output transition on b4, the process evolves into one that is behaviorally
equivalent to [P]. This output barb gives evidence on the internal choice that took place in

[Po]. Recall that such a choice was a mutually exclusive choice: therefore, once an output

148€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

barb on by is performed, the possibility of an output barb on b, is precluded. By definition
of =, process T should be able to perform a weak output transition on b1, thus evolving into
a process T, behaviorally equivalent to [P2]. The behavior from [P4] (the other derivative of
[Po]. given in (6.4)) is similar: after a weak output transition on by, the process evolves into
a process behaviorally equivalent to [P]. The SHO' process T should mimic this behavior
as expected, and evolve into a T such that T = [P5]. Since MDFs are preserved by output
action (Lemma6.2) both T, and T are in MDF with respect to {my, m;}, R, and some A;.

To complete the bisimulation game, we have that T, and Tz’ should be able to match the
internal synchronizations and output actions that are performed by [P,] and [P}], respectively.

Summing up we have the following behavior from Ty:

To=> T 257 5~0 and (6.6)
To= T 25 73 S0 (67)

where, by definition of =, [Pi] = T for i € {0,1,2} and [P]] =~ T/ for j € {1,2}. Call C; and
G, to the derivatives of Cy in T, and T, respectively. It is worth noticing that by conditions
on names, output actions on s; and s, cannot originate in G and CJ.

The behavior of Ty described in (6.6) and (6.7) can be equivalently described as Ty = 0
and Ty =% 0, where a; contains outputs on by and sq, and a, contains outputs on by and s,
respectively. Using the Commuting Lemma (Lemma 6.5) on Tg, we know there exist processes

T7, and T3 such that

1. Tr=vin(A | T1"R || GiIR) and T = va (Ao || ™R | G[R)), for some m, m’ > 0.

Recall that these processes are obtained by performing every action originated in Gy

(which can only be output actions and internal synchronizations); as a result, we have
that C{[R] 4 and G3[R] +.

2. T} (resp. T3) can only perform an output action on s (resp. s2) and internal actions.

Considering this, we have that T |s, 77 §s5 and T3 {s5. 75 Y57 should hold.

From item (1) above it is easy to observe that the only difference between T and 75 is in m
and m’, the number of copies of R released as a result of executing first all actions originating
in Co. We then find that the number of copies of R has direct influence on performing an
output action on s1 or on s,; in turn, this has influence on the bisimulation game between [P;]
and T, and that between [P}] and T;. We consider three possible cases for the value of m

and m”:

Case 1: m = m’. This is not a possibility, since it would imply that both T and T have the
same possibilities of behavior, i.e., that outputs on both s4 and s, are possible from T

and T5. Clearly, this breaks the bisimilarity condition.

6.4. Separation Results for Polyadic Communication 149

Case 2: m > m’. Consider the process T;. We have already seen that in order to play cor-
rectly the bisimulation game, it must be the case that T s and T} Js5. Process T

has more copies of R than T;; we can thus rewrite it as

m—m’

Ti=vio [|RI[]RICGIR).

Considering that C{[R] / and Gi[R] 4+, we can formally state that the m — m’ copies

of R in T} are the only behavioral difference between T} and T3, i.e.

m—m’

T []R (6.8)

Let us analyze the consequences of this relationship between T and T;. As argued
before, it must be the case that T} |s; and 75 |s; should hold. Notice that because of
(6.8), if T Us; then T Us; holds. This would break the bisimilarity game between [P;]
and Ty, since [P,] . Even in the (contradictory) case that T; s would not hold, the
bisimilarity game between [P>] and T, would succeed, but the game between [P}] and
T; would fail, as [P5] could perform an output on s, that T, could not match. Hence, in

the case m > m’ the bisimilarity game would fail.

Case 3: m < m’. This case is completely symmetric to Case 2.

This analysis reveals that there is no way a MDF can faithfully mimic the observable
behavior of a SHO? process when such a behavior depends on internal choices implemented

with private names. We then conclude that there is no encoding [-]: SHO? — SHO'. O

The scheme used in the proof of Lemma 6.6 can be generalized for calculi with arbitrary

polyadicity. Therefore we have the following.
Lemma 6.7. For every n > 1, there is no encoding of SHO" into SHO"~".

Proof. The proof proceeds by contradiction, assuming an encoding [-] : SHO" — SHO"™"
indeed exists. Consider the SHO" process P = £ || F), where E(" and F" are defined

as follows:

EW = vmq,....m,(@(()Si,...,S,).0)

F = wb(alxa, ... x) ((()b1.x1).0 || - || B{()by-xs). O | b(y1).--- - b(yn). y1)
where, for each [€ 1..n, Sy =m; || m;.5;. Also, b, ..., b, are pairwise different names not in
fn(E™) and sq, ..., s, are pairwise different names not in fn(F(").

Using this P, the analysis follows the same principles and structure than the proof of
Lemma 6.6. After a public synchronization on a, P evolves into some Py. In Py there are

n internal synchronizations on the private name b, which implement an internal, mutually

15Chapter 6. On the Expressiveness of Synchronous and Polyadic Communication

exclusive choice and lead to the execution of one (and only one) of the b;. S;. In the encoding
side, using Proposition 6.4, the SHO" ™" process [P] can be shown to be in ZDF with respect to
{my,...,m,, b} and [E™]; using Corollary 6.1 and the generalization of Lemma 6.3 to the case
of a public (n — 1)-adic synchronization, [Py] can be shown to be behaviorally equivalent to a
process Tp that is in (n—1)-adic disjoint form with respect to {m4,...,m,}, some Ry, ..., R,_1,
and some Ap.

The analysis of the bisimulation game Ty = [Po] is similar as before; the only difference
is that now there are n alternatives for an output action on some b; which enables an output
action on s;. Process Tg should be able to match any such actions; this exploits the fact that
along the bisimulation game the (n — 1)-adic disjoint form is preserved (by Lemmas 6.1 and
6.2). The Commuting Lemma (Lemma 6.5, which holds for arbitrary NDFs) can be then applied
to show that the n — 1-adic disjoint form Ty might perform some observable behavior that [Po]
is not able to perform. In particular, if [Py] executes only some b..S;, To could exhibit also
barbs associated to some by. Sy, where k € 1..n and k # L. This leads to a contradiction, and
the thesis holds. O

Remark 6.3 (A hierarchy for asynchronous calculi). The expressiveness hierarchy characterized
by Lemma 6.7 for calculi in SHO holds for calculi in AHO as well. In fact, a detailed proof
would simply consist in adapting the definition of guarded contexts (Definition 6.11), the
stability lemmas (Lemmas 6.1 and 6.2), the conditions under which the Swapping Lemma
holds (Lemma 6.4), and the counterexample used in Lemma 6.6. Roughly speaking, there are
no substantial differences between the synchronous and the asynchronous case: having one
less prefix does change the main structure of the proof; the definition of disjoint form becomes
somewhat weaker, as copies of the process inside context would be only released after an

input action.

6.5 The Expressive Power of Abstraction Passing

In this section we show that abstraction passing, i.e., parameterizable processes, is strictly
more expressive than process passing. We consider SHOZ, the extension of SHO" with the
communication of abstractions of one level of arrow nesting, i.e., functions from processes into
processes. The language of SHO? processes is obtained by extending the syntax of SHO

processes (Definition (6.4) in the following way:

P.Q,...:=- | P | PiLP,]

That is, we consider abstractions of the form (x)P and applications of the form P;| P,], that

allows to assign an argument P, to an abstraction Py. As usual, (x1). .. (x,)P is abbreviated as

6.5. The Expressive Power of Abstraction Passing 151

(x1, ..., xn)P. The operational semantics of SHO? is that of SHO, extended with the following

rule:

(MPLOJ = P{Ox}
Moreover, for SHO? we rely in notions of types and as in (Sangiorgi, 1996b), and consider

only well-typed processes.

Example 6.1 (Private Link Establishment with Abstraction Passing). Let us introduce a very
simple example of the way in which abstraction passing is able to model private link estab-
lishment on a name. Consider the SHO! process P = S || R, where S and R are defined as

follows:

vs (@((y)s(y))-s(x).x)
a(x).x|Q].

We then have that a private link between S and R is created once they synchronize on a; the

private link is used to send Q from the derivative of R to that of S:

P vs (s(x)-x || (y)5(y)|Q])

I vs(s(x).x | $(0))

0.

We now show that abstraction passing increases the expressive power of pure process
passing in SHO. Our result is based on the remark below, which shows how SHO" can be
encoded into the extension of SHO"~! with abstraction passing. Recall that SHO" cannot be

encoded into SHO"~" with process passing only (Lemma 6.7).

Remark 6.4 (Abstraction-passing can encode polyadic communication). There are encodings

of SHO" into SHO"~". Consider, for instance, the case of n = 2:

[@(P1, P2).R]
[a(x1,x2). Q]

vr(a(z).z[[P1], 7] || r-z[[P2). 7] || r-[R])
vs(@((y1, y2)5(y1)- y2)- s(x1)- s(x2). [Q))

where [] is an homomorphism for the other operators in SHO?. The encoding of input sends
to the encoding of output an abstraction that will communicate Py, P, from the side of the
encoding output. The communication on the public name a is then inverted for this purpose.
Crucially, in the encoding of input, the abstraction and the continuation of the output action
share a private name (s above). The abstraction allows two parameters: the object to be com-

municated, and a synchronization signal so as to preserve the correct order in communication.

15Chapter 6. On the Expressiveness of Synchronous and Polyadic Communication

Remark 6.4 leads to the following separation result:
Proposition 6.8. There is no encoding of SHO, into SHO".

Proof. Suppose, for the sake of contradiction, there is an encoding
A[]: SHO, — SHO".

By Remark 6.4, we know there is an encoding
B[-]: SHO™! — SHO".

Since the composition of two encodings is an encoding (Proposition 6.3), this means that
(A - B)[] is an encoding of SHO"*! into SHO". However, by Lemma 6.7 we know such an

encoding does not exist, and we reach a contradiction. O

6.6 Concluding Remarks

Summary. In first-order process calculi such as the m-calculus both (a)synchronous and
polyadic communication are well-understood mechanisms; they rely on the ability of estab-
lishing private links for process communications that are robust with respect to external inter-
ferences. Such an ability is natural to first-order process calculi, as it arises from the interplay
of restriction and name passing. In this chapter we have studied synchronous and polyadic
communication and their representability in higher-order process calculi with restriction but
without name-passing. Central to our study is the invariance of the set of private names of
a process along certain computations. We have studied two families of higher-order process
calculi: the first one, called AHO, extends HOcoRrE with restriction and polyadic communica-
tion; the second, called SHO, replaces asynchronous communication in AHO with synchronous
communication. Each define calculi with different arity in communications, denoted AHO" and
SHO", respectively. Our first contribution was an encodability result of SHO" into AHO".
Such an encoding bears witness of the expressive power of the process passing communication
paradigm and gives insights on how to represent certain scenarios using process passing only.
With this positive result, we moved to analyze polyadic communication. We showed that in
the case of polyadicity the absence of name-passing does entail a loss in expressiveness;
this is represented by the non-existence of an encoding of SHO" into SHO"~'. This non-
encodability result is our second main contribution; it determines a hierarchy of higher-order
process calculi based on the arity allowed in process passing communications. Finally, we
showed that unlike process passing, abstraction passing provides a way of establishing pri-
vate links. As a matter of fact, we showed an encoding of SHO" into SHO"™" extended with
abstraction passing, and used such a result to prove our final contribution: the non-existence

of an encoding of abstraction passing into process passing of any arity.

6.6. Concluding Remarks 153

More on the Notion of Encoding. It has become increasingly accepted that a unified, all-
embracing notion of encoding that serves all purposes is unlikely to exist, and that the exact
definition of encoding should depend on the particular purpose. This way, for instance, the kind
of criteria adopted in encodability results is usually different from those generally present in
separation results. In this chapter we have adopted a notion of encoding that is arguably more
demanding than those previously proposed in the literature for separation results. We argue
that such a definition is in line with our overall goal, that of assessing the expressiveness of
higher-order concurrency with respect to (a)synchrony and polyadicity and, most importantly,
in the absence of name passing.

Interferences are a major concern in our setting, essentially because the absence of name
passing leaves us without suitable mechanisms for establishing private links. Devising a
definition of encoding so as to incorporate a notion of potentially malicious context (including
techniques for reasoning over every possible context) appears very challenging. To this end, we
combine suitable elements from the operational semantics and from the definition of encoding.
It could be rightly argued that not all interferences are necessarily harmful, and in this sense
our approach to interference handling would appear too coarse. We would like to stress on
the difficulties inherent to only considering interferences; attempting to both considering and
handling them in a selective way seems much more challenging. Also, even if we do not
actually prove that encodings behave correctly under every possible context, we think that our
approach is an initial effort in that direction.

Notice that we do not claim our notion of encoding should be taken as a reference for other
separation results; it simply intends to capture the —rather strong— correctness requirements
(i.e. compositionality and robustness with respect to interferences) which we consider appro-
priate and relevant in the restricted setting we are working on. Similarly, we believe that a
strict comparison between our notion of encoding and recent proposals for “good” encodings
would not be fair: while it is clear that the “quality” of an encoding will always be an issue,
such proposals should be taken primarily as a reference. Our interest is not in introducing a
new notion of encoding but in deepening our understanding of the process-passing paradigm
and its expressive power. Consequently, we feel that our results should not be judged solely

on the basis of conformance to the requirements of some “good” notion of encoding.

Future Work. There are a number of directions worth investigating. An immediate issue is
to explore whether the hierarchy of expressiveness for polyadic communication presented in
Section 6.4 holds for a less contrained definition of encoding. Here we have focused on deriving
the impossibility result based on the invariance of private names along certain computations;
it remains to be explored if other approaches to the separation result, in particular those based
on experiments and divergence as in testing semantics (De Nicola and Hennessy, 1984), could

allow for a proof with a less constrained definition of encoding. We wish to insist that the

15€hapter 6. On the Expressiveness of Synchronous and Polyadic Communication

challenge is to find a notion that enforces the same correctness guarantees as the ones we
have aimed to enforce here. Clearly, more relaxed conditions in the definition of encoding
would give more significance to our results. Unfortunately, up to now we have been unable to
prove the separation results using a less constrained definition.

We have discussed two dimensions of expressiveness: a horizontal dimension given by the
hierarchy based on polyadic communication in Section 6.4, and a vertical dimension that is
given by the separation result based on abstraction passing in Section 6.5. The horizontal
hierarchy has been obtained by identifying a distinguised form over higher-order processes
with process-passing only, and by defining a number of stability conditions over such forms.
While the horizontal hierarchy has been defined for any arity greater than zero, the result
in Section 6.5 only provides one “level” in the vertical hierarchy, i.e. the separation between
calculi without abstraction passing and calculi with only passing of abstractions of order
one. (Recall that a very similar hierarchy based on abstraction passing has been obtained in
(Sangiorgi, 1996b).)

We believe that an approach based on distinguished forms and stability conditions can
be given so as to characterize the other levels of the vertical hierarchy. As a matter of fact,
we have preliminary results in such an extended approach: we have an alternative proof for
Proposition 6.8 which relies on an extension of the notion of Disjoint Form (see Definition 6.12)
that represents the more complex structure (i.e. an additional level of nesting of processes)
that processes with abstraction passing might exhibit. As in the case of the separation result
in Section 6.4, the alternative proof for Lemma 6.8 exploits both the dependencies induced by
nesting of processes in the distinguished form and the fact that private names “remain disjoint”
to a certain extent. The proof we have at present requires three communication partners that
feature two public synchronizations among them (one of which communicates an abstraction of
level one) in order to arrive to the distinguished form for the abstraction passing case. This is
in contrast to the proof of Lemma 6.7 which requires only two communication partners and a
single public synchronization. Consequently, the alternative proof involves many more details
and subtleties than the one of Lemma 6.6. Our current intuition is that in order to prove the
separation between calculi in higher levels of the vertical hierarchy we will require a varying
number of communication partners (and hence, of public synchronizations); the exact number
should be proportional to the order of the abstractions in the calculi involved. Hence, the

complexity of the separation is expected to increase as we “move up” in the hierarchy.

Chapter 7

Conclusions and Perspectives

7.1 Concluding Remarks

Expressiveness and decidability have been little studied in the context of calculi for higher-
order concurrency. In this dissertation we take a direct and minimal approach to the expressive-
ness and decidability of higher-order process calculi. This approach finds justification in the
fact that higher-order process calculi with specialized operators or modeling features often do
not admit a satisfactory interpretation into some first-order setting. The results in this disser-
tation concern issues which can be regarded as basic in process calculi, namely (a)synchrony,
polyadicity, forwarding. As such, our contributions might have a potential repercussion in the

definition of a large class of higher-order process calculi.

A first achievement of our research is the introduction of HOcoRE as a core calculus for
higher-order concurrency. In fact, HOcore provides a convenient framework to study funda-
mental issues of higher-order process calculi: it is minimal enough so as to be theoretically
tractable and, at the same time, it is expressive enough so as to represent interesting phe-
nomena in higher-order concurrency. In our opinion, HOCORE can be regarded as the simplest,

non-trivial process calculus featuring higher-order concurrency.

The most salient feature of HOcoRE is the absence of name passing in communications.
Given the prominent role of name passing within calculi for concurrency, and the fact that
most known higher-order process calculi feature both name and process passing, this could be
well considered as the main design decision in our research. The absence of name passing is
necessary to isolate the behavior associated to process passing; as such, it allows to obtain
more accurate assessments of the expressiveness of the process-passing paradigm. In this
sense, the results in this dissertation not only deepen our understanding of process-passing
communication but they can also be interpreted as indirect evidence of the expressiveness and

significance of the name-passing communication discipline.

156 Chapter 7. Conclusions and Perspectives

It is worth observing that even in the absence of name passing, process-passing is a very

expressive paradigm. This is demonstrated by the fact that HOcore, Ho™'

(the fragment of
HOcore with limited forwarding), and HoP~" (the extension of Ho™' with passivation) are
all shown to be Turing complete by exhibiting encodings of Minsky machines. Remarkably,
HOcore and its variants do not have operators for infinite behavior. All the encodings of
Minsky machines presented in this dissertation are compact and intuitive, and exploit con-
venient modelling idioms —such as input-quarded replication and disjoint sum— which can
be expressed succinctly with process-passing only (see Chapters 3 and 5). Another result
on the expressive power of process-passing presented in the dissertation is the encoding of

synchronous into asynchronous communication presented in Chapter 6 for AHO, the extension

of HOcoRre with restriction and polyadic communication.

Closely related to the absence of name passing is the treatment of restriction. Restriction is
a practically important construct, as it provides a way of enforcing modelling principles such as
encapsulation and abstraction into specifications. Along the dissertation, the absence/presence
of restriction has shown to have a notable influence on our developments. The absence of
restriction in HOcore makes it a public calculus in which behavior is completely exposed;
in Chapter 4 we use this to show that Input-Output bisimilarity characterizes T actions, a
necessary step in showing decidability of strong bisimilarity. Also, the absence of restriction
was useful when deriving an axiomatization of strong bisimilarity, as it allowed to adapt
previous results by Moller (1989), Milner and Moller (1993), and Hirschkoff and Pous (2007)
for (first-order) calculi without restriction. Also in Chapter 4 we analyzed top-level restrictions,
and showed that when HOcoRE is extended with four of such restrictions strong bisimilarity

is no longer decidable.

The results in Chapter 5 are also insightful with respect to restriction. There, we show that
in Ho™' termination is decidable whereas convergence is undecidable. While undecidablity
of convergence is shown by exhibiting a unfaithful encoding of Minsky machines, we are
able to prove decidability of termination by appealing the theory of well-structured transition
systems. To our knowledge, ours is the first application of such theory in the higher-order
setting. Ho™" is a calculus without restriction and yet it has the same decidability properties
of CCS/, the variant of CCS with restriction and replication as the only source of infinite
behavior. Indeed, also in CCS} termination is decidable and convergence is undecidable (Busi
et al,, 2009). We find this surprising because it is well-known that in fragments of CCS without
restriction decision problems such as termination and convergence of processes are decidable.

This observation on the presence of restriction also bears witness of the expressiveness of

"In fact, Goltz (1988) has shown that the fragment of CCS without restriction and relabeling can be translated
into a strongly bisimilar finite Petri net. Since termination and convergence are decidable for finite Petri nets (see,
e.g., (Esparza and Nielsen, 1994))—and strong bisimilarity preserves both properties—we can conclude that both

termination and convergence are decidable in such a fragment of CCS.

7.2. Ongoing and Future Work 157

process-passing. Furthermore, the expressiveness results for HOP~" given in Chapter 5 can
be alternatively interpreted from the point of view of restriction. In fact, passivation as we
define it here adds a subtle notion of structure to higher-order processes. This reminds us
of the réle of restriction in expressiveness studies for other process calculi. In that sense,
passivation can be considered as a very relaxed form of restriction. It is worth noticing that
the addition of passivation to Ho™ allows to describe a faithful encoding of Minsky machines,
thus showing that both convergence and termination are undecidable in HoP~". The notion of
structure on processes induced by passivation units is therefore crucial to both expressiveness
and decidability of HoP~,

Finally, in Chapter 6 we consider extensions of HOcore with full (i.e., ordinary) restriction.
There, we discussed how the scope extrusion one obtains with restriction but without name-
passing is incomplete in that (restricted) names can be passed around inside processes but
cannot be effectively used within of receiving context. As a result, with only process-passing
it is not possible to establish private links as those used in encodings of synchronous and
polyadic communication in first-order calculi. This insight is central to the separation results
for SHO (i.e., the synchronous variant of AHO). By combining selected features from a more
informative LTS and a rather demanding notion of encoding we were able to show that SHO"
(i.e. the instance of SHO with n-adic communication) cannot be encoded into SHO"™", thus
determining a hierarchy of higher-order process calculi based on polyadicity. This result
suggests that in the absence of the name-passing, the impact of adding restriction diminishes.
The last result in Chapter 6 shows that the ability of establishing private links in SHO (that
is, the ability of fully exploiting restriction and restricted names) is obtained when extending
SHO with abstraction-passing. This is an insightful result, in that abstraction is arguably one

of the most practically useful constructs in the higher-order sw-calculus.

Along the dissertation we describe the way in which basic modeling idioms such as lists,
counters, and constructs for choice and guarded infinite behavior can be expressed in core
higher-order process calculi. Nevertheless, this does not seem enough so as to consider core
higher-order process calculi as adequate as modelling languages in concrete application areas.
In our opinion, higher-order process calculi for specialized application areas should arise from

the careful combination of higher-order constructs and name-passing features.

7.2 Ongoing and Future Work

Along the dissertation we have already pointed out a number of strands for future work. We
conclude by commenting on those directions we find particularly promising; some of them are

object of current work.

158 Chapter 7. Conclusions and Perspectives

More on Expressiveness of Passivation. In Chapter 5 we have examined the expressiveness
associated to suspension operators by studying the influence a passivation operator has on the
absolute expressive power of a higher-order process calculus with restricted output actions.
In this respect, much remains to be done. In fact, we have considered a particular form of
passivation, one that allows to both suspend a process and then restart it later. Other forms
of passivation (more precisely, other semantics for passivation) are also possible and could
be relevant. A natural concern is that, as we pointed out before, passivation as defined here
has a very non-deterministic character. It is reasonable to assume that the kind of passivation
required for applications in dynamic system reconfiguration to be more controlled.

We have conducted preliminary studies on the expressiveness of passivation in the context
of aCCS;", the asynchronous fragment of CCS without restriction and with replication (Di
Giusto et al., 2009b). In the absence of process-passing a passivation action entails essentially
the destruction of the content of the passivation unit. That is, suspension represents a "kill”
action over a process. We think that this “destructive passivation” is perhaps the simplest kind
of passivation one could think of. In (Di Giusto et al., 2009b) we show that even destructive
passivation is enough to increase the expressive power of aCCS, . Using the same theoretical
machinery as in Chapter 5 (i.e. unfaithful encodings of Minsky machines and well-structured
transition systems) we show that in aCCS;" extended with passivation: (i) in contrast to the
situation in aCCS;", convergence is undecidable; and (ii) similarly as in aCCS;”", termination

is decidable.

Higher-Order and Ambient-like Calculi. Ambient-like and higher-order process calculi are
similar in that they involve complex objects in interactions. Also, in both cases the associated
behavioral theory can be hard to define, and employs similar techniques. However, some
other characteristics suggest deep differences. Communication in Ambients resembles a “move”
operation whereas in higher-order settings it is better assimilated to a “copy” operation. Most
notably, there is a subtle discrepancy when it comes to binding: most (higher-order) process
calculi adopt static binding only, whereas Ambient-like formalisms exhibit features of both
static and dynamic binding.

Based on the above, we find it interesting to formally compare Ambient-like and higher-
order calculi. From the point of view of expressiveness, this is relevant for at least two reasons.
First, in the light of the above differences, an encoding of Ambient calculi would represent
a significant test of expressiveness for the process-passing paradigm. Second, it would shed
light on the intrinsic nature of the Ambient primitives which have proven so successful.

In (Di Giusto and Pérez, 2009) we have reported on initial results of our investigation: an
encoding of Ambient calculus into a higher-order process calculi with localities (implemented
as passivation units) and a form of dynamic binding. The encoding is useful to understand

the nature of Ambient communication; it also allows us to conjecture that an encoding into

7.2. Ongoing and Future Work 159

a higher-order process calculus with static binding does not exist. It would be interesting
to see whether this encodability result can be exploited/strengthened so as to have a more
conclusive assessment of the expressiveness of the higher-order paradigm with respect to the
Ambient calculi. Also, it is not clear how to proceed in order to transform our conjecture into
a formal separation result. It could be that passivation and dynamic binding —crucial in the
encoding in (Di Giusto and Pérez, 2009)— could give hints in this case, but this remains to

be explored in detail.

Dimensions of Mobility. Together with Roland Meyer, we are studying the relationship be-
tween decidability results for the m-calculus and those presented in Chapter 5 for Ho™' In
his PhD Thesis, Meyer (2008) studied the notion of structural stationarity in the m-calculus.
Roughly speaking, structural stationarity means bounding processes so as to obtain decid-
ability results and hence perform automatic verification techniques on them. In the w-calculus,
structural stationarity arises by giving bounds on two dimensions of infinite behavior: depth
(i.e., the nesting of restrictions inside a process) and breadth (i.e., the degree of parallelism of
a process). It would be interesting to determine precisely what structural stationarity means
for higher-order processes, and its exact relationship with that in the first-order setting. In
principle, such a relationship should allow to transfer and generalize decidability results from

one setting to the other.

References

ABADI, M. AND FourNET, C. 2001. Mobile values, new names, and secure communication. In
POPL. 104-115. 43

ABADI, M. AND GorpoN, A. D. 1999. A calculus for cryptographic protocols: The spi calculus.
Inf. Comput. 148, 1, 1-70. 34, 43

AspuLLa, P. A, Cerans, K., JonssoN, B., anD Tsay, Y-K. 2000. Algorithmic analysis of
programs with well quasi-ordered domains. Inf. Comput. 160, 1-2, 109-127. 50, 93, 124

ABRAMSKY, S. 1989. The lazy lambda calculus. In Research Topics in Functional Program-
ming, D. Turner, Ed. Addison Wesley, Reading, MA., 65-116. 31, 34

Amabpio, R. M. 1993. On the reduction of chocs bisimulation to pi-calculus bisimulation.
In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 715. Springer, 112-126.

Extended version available in the author’s web site. 52, 132
Amapio, R. M. 1994. Translating core facile. Tech. Rep. ECRC-94-3, ECRC, Munich. 52

AmADIO, R. M., CASTELLAN], |., AND SANGIORGI, D. 1998. On bisimulations for the asynchronous
pi-calculus. Theor. Comput. Sci. 195, 2, 291-324. 74

Amapio, R. M., LETH, L., AND THoMsEN, B. 1995. From a concurrent lambda-calculus to
the pi-calculus. In Proc. of FCT. Lecture Notes in Computer Science, vol. 965. Springer,
106-115. 52

ARANDA, J., GiusTo, C. D., NIELSEN, M., AND VALENCIA, F. D. 2007. Ccs with replication in the
chomsky hierarchy: The expressive power of divergence. In Proc. of APLAS. Lecture Notes

in Computer Science, vol. 4807. Springer, 383-398. 48

ARANDA, J. A. 2009. On the expressivity of infinite and local behaviour in fragments of the
pi-calculus. Ph.D. thesis, Ecole Polytechnique de Paris and Universidad del Valle Colombia.
39, 49

162 References

AsTEsIANO, E., GioviNi, A., AND Recalo, G. 1988. Generalized bisimulation in relational
specifications. In Proc. of STACS. Lecture Notes in Computer Science, vol. 294. Springer,
207-226. 35

BaLbamus, M. 1998. Semantics and logic of higher-order processes: Characterizing late
context bisimulation. Ph.D. thesis, Computer science department, Berlin University of Tech-

nology. 36
BARENDREGT, H. 1984. The Lambda Calculus: Its Syntax and Semantics. North-Holland. 51

Beauxis, R., Patamipessi, C., AND VALENCIA, F. D. 2008. On the asynchronous nature of the
asynchronous pi-calculus. In Concurrency, Graphs and Models. Lecture Notes in Computer
Science, vol. 5065. Springer, 473-492. 12, 46, 131

BerNsTEIN, K. L. 1998. A congruence theorem for structured operational semantics of higher-
order languages. In LICS. 153-164. 37

Broom, B. 1994. Chocolate: Calculi of higher order communication and lambda terms. In
POPL. 339-347. 31

BoreaLe, M., De Nicota, R, AND PucLiesg, R. 1999. Basic observables for processes. Inf
Comput. 149, 1, 77-98. 33

Boupot, G. 1989. Towards a lambda-calculus for concurrent and communicating systems. In
Proc. of TAPSOFT, Vol.1. Lecture Notes in Computer Science, vol. 351. Springer, 149-161.
Also appeared as INRIA Research Report No. RR-0885, August 1988. 5, 29, 30, 31, 35

Boupot, G. 1992. Asynchrony and the sm-calculus (note). Tech. rep., Rapport de Recherche
1702, INRIA, Sophia-Antipolis. 11, 42, 128

BoupoL, G. 1998. The pi-calculus in direct style. Higher-Order and Symbolic Computa-
tion 11, 2, 177-208. A preliminary version appeared in Proc. of POPL'97. 31, 32

Bouct, L. 1988. On the existence of symmetric algorithms to find leaders in networks of

communicating sequential processes. Acta Inf 25, 2, 179-201. 42, 50

BRrRAVETTI, M. AND ZavATTARO, G. 2009. On the expressive power of process interruption and
compensation. Math. Struct. in Comp. Sci. 19, 3, 565-599. 48, 92, 124

Bunpcaarp, M., GLEnsTrup, A. J., HiLDEBrRANDT, T. T., Hdiscaarp, E., aND Niss, H. 2008.
Formalizing higher-order mobile embedded business processes with binding bigraphs. In
Proc. of COORDINATION. Lecture Notes in Computer Science, vol. 5052. Springer, 83-99.
118

References 163

BunbpcaArD, M., GoDsKESEN, J. C., HAAGENSEN, B., AND HUTTEL, H. 2009. Decidable fragments
of a higher order calculus with locations. Electr. Notes Theor. Comput. Sci. 242, 1, 113-138.
10, 54, 125

Bunbpcaarp, M., HiLbegrANDT, T. T., AND GoDskESEN, J. C. 2006. A cps encoding of name-
passing in higher-order mobile embedded resources. Theor. Comput. Sci. 356, 3, 422-439.
10, 54

Busi, N., GaBBRIELLI, M., AND ZAvATTARO, G. 2003. Replication vs. recursive definitions in
channel based calculi. In Proc. of ICALP. LNCS, vol. 2719. Springer, 133-144. 64

Busi, N., GaBBRIELLI, M., AND ZaVATTARO, G. 2009. On the expressive power of recursion,
replication and iteration in process calculi. Math. Struct. in Comp. Sci. 19, 6, 1191-1222.
18, 47, 49, 50, 64, 93, 95, 124, 156

Busi, N., GorrIerl, R., AND ZavaTTARO, G. 2000. On the expressiveness of linda coordination
primitives. Inf. Comput. 156, 1-2, 90-121. Full version of a paper in Proc. of EXPRESS'97.
47,50

Busi, N. aAND ZanDRoN, C. 2009. Computational expressiveness of genetic systems. Theor.
Comput. Sci. 410, 4-5, 286-293. 39

Busi, N. AND ZavaTTARO, G. 2000. On the expressiveness of event notification in data-driven
coordination languages. In Proc. of ESOP. Lecture Notes in Computer Science, vol. 1782.
Springer, 41-55. 47

Busi, N. AND ZavaTTARO, G. 2004. On the expressive power of movement and restriction in
pure mobile ambients. Theor. Comput. Sci. 322, 3, 477-515. 47, 64, 125

CacciaGgrano, D., CorraDINI, F., AND PaLamipessi, C. 2007. Separation of synchronous and

asynchronous communication via testing. Theor. Comput. Sci. 386, 3, 218-235. 12, 43, 131

Cao, Z. 2006. More on bisimulations for higher order pi-calculus. In Proc. of FoSSaCS’06.
LNCS, vol. 3921. Springer, 63-78. 35, 74

CarRBONE, M. AND MAFFEIS, S. 2003. On the expressive power of polyadic synchronisation in
pi-calculus. Nord. J. Comput. 10, 2, 70-98. 51

CarpELLI, L. AND GorpoN, A. D. 2000. Mobile ambients. Theor. Comput. Sci. 240, 1, 177-213.
A preliminary version appeared in Proc. of FOSSACS'98. 5, 7, 32, 47, 125

CHANDRA, A. K. AND MANNA, Z. 1976. On the power of programming features. Comput.
Lang. 1, 3, 219-232. 40

164 References

CHRISTENSEN, S. 1993. PhD thesis CST-105-93. Ph.D. thesis, Dept. of Computer Science,
University of Edinburgh. 47

CHRISTENSEN, S., HIRSHFELD, Y., AND MoLLER, F. 1994. Decidable subsets of CCS. Comput.
J. 37, 4, 233-242. 89

CoLLBERG, C. S., THomBORsON, C. D., AND Low, D. 1998. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proc. of POPL’98. ACM Press, 184-196. 93

DE BOER, F. S. AnND Patamipessi, C. 1990. Concurrent logic programming: Asynchronism and
language comparison. In Proc. of NACLP. The MIT Press, Series in Logic Programming,
175-194. 41

DE Boer, F. S. anD Paitamipessi, C. 1991. Embedding as a tool for language comparison:
On the csp hierarchy. In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 527.
Springer, 127-141. 42

DE Boer, F. S. aND Patamipessi, C. 1994. Embedding as a tool for language comparison.
Inf. Comput. 108, 1, 128-157. 41, 42

De Brunn, N. G. 1972. Lambda calculus notation with nameless dummies: A tool for
automatic formula manipulation, with application to the church-rosser theorem. Indagationes

Mathematicae 34, 381-392. 82

DEe Nicota, R. 2006. From process calculi to Klaim and back. Electr. Notes Theor. Comput.
Sci. 162, 159-162. 33

De Nicoa, R, FERRrARI, G. L., AND PucLiesg, R. 1998. Klaim: A kernel language for agents
interaction and mobility. /EEE Trans. Software Eng. 24, 5, 315-330. 33

De NicoLa, R. AND HENNESSY, M. 1984. Testing equivalences for processes. Theor. Comput.
Sci. 34, 83-133. 15, 46, 153

DE SiMONE, R. 1985. Higher-level synchronising devices in meije-sccs. Theor. Comput.
Sci. 37, 245-267. 39, 52

DemaNGEON, R., HirscHkoFF, D., AND SaNaioral, D. 2009. Termination in higher order

concurrent calculi. In Proc. of FSEN'09. To appear. 11

D1 GiusTto, C. AND PEREZ, J. A. 2009. Move vs copy: Towards a formal comparision of ambients
and higher-order process calculi. In Proc. of ICTCS'09: the Eleventh Italian Conference on
Theoretical Computer Science. 158, 159

References 165

D1 Giusto, C., PEREZ, J. A, AND ZavaTTARO, G. 2009a. On the expressiveness of forwarding

in higher-order communication. In Proc. of ICTAC. Lecture Notes in Computer Science, vol.

5684. Springer, 155-169. 14, 91

D1 Giusto, C., PERez, J. A, AND ZAVATTARO, G. 2009b. On the expressiveness of suspension

in higher-order process calculi. In preparation. 158

Dovier, A., Piazza, C., aND PoticriTi, A. 2004. An efficient algorithm for computing bisimu-
lation equivalence. Theor. Comput. Sci. 311, 1-3, 221-256. 81

Dsouza, A. AnD Broom, B. 1995. On the expressive power of ccs. In Proc. of FSTTCS.
Lecture Notes in Computer Science, vol. 1026. Springer, 309-323. 52

Durourp, C., FINKEL, A., AND SCHNOEBELEN, P. 1998. Reset nets between decidability and
undecidability. In Proc. of ICALP. Lecture Notes in Computer Science, vol. 1443. Springer,
103-115. 50

ENE, C. AND MuNTEAN, T. 1999. Expressiveness of point-to-point versus broadcast communi-
cations. In Proc. of FCT. Lecture Notes in Computer Science, vol. 1684. Springer, 258-268.
43, 50

Esparza, J. AND NIELSEN, M. 1994. Decidability issues for petri nets - a survey. Bulletin of
the EATCS 52, 244-262. 156

FeLLEISEN, M. 1991. On the expressive power of programming languages. Sci. Comput.
Program. 17, 1-3, 35-75. A preliminary version appeared in Proc. of ESOP’90. 40, 46

FERREIRA, W., HENNESSY, M., AND JEFFREY, A. 1998. A theory of weak bisimulation for core
cml. J. Funct. Program. 8, 5, 447-491. 36

FINKEL, A. 1990. Reduction and covering of infinite reachability trees. Inf Comput. 89, 2,
144-179. 50, 93, 124

FINKEL, A. AND ScHNOEBELEN, P. 2001. Well-structured transition systems everywhere!
Theor. Comput. Sci. 256, 1-2, 63-92. 50, 93, 105, 106, 124

FourNEeT, C., GONTHIER, G., LEvy, |.-)., MARANGET, L., AND REMY, D. 1996. A calculus of mobile
agents. In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 1119. Springer, 406—
421. 32

GIAcALONE, A., MisHRA, P, AND PRrasaD, S. 1989. Facile: A symmetric integration of concur-
rent and functional programming. In Proc. of TAPSOFT, Vol.2. Lecture Notes in Computer
Science, vol. 352. Springer, 184-209. 30

166 References

GobskEeSEN, J. C. AND HiLDEBRANDT, T. T. 2005. Extending howe's method to early bisimula-
tions for typed mobile embedded resources with local names. In Proc. of FSTTCS. Lecture

Notes in Computer Science, vol. 3821. Springer, 140-151. 36

Goutz, U. 1988. On representing ccs programs by finite petri nets. In Proc. of MFCS. Lecture
Notes in Computer Science, vol. 324. Springer, 339-350. 156

Gorta, D. 2006. Comparing calculi for mobility via their relative expressive power. Tech.

Rep. 09/2006, Dipartimento di Informatica, Universita di Roma - La Sapienza. 46

Gorta, D. 2008. Towards a unified approach to encodability and separation results for process
calculi. In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 5201. Springer, 492—
507. Extended version available as Tech. Rep. 10/2008, Dip. Informatica, Universita di Roma
- La Sapienza. 43, 46, 137

HENNESSY, M., RATHKE, J., AND YosHIDA, N. 2005. safedpi: a language for controlling mobile
code. Acta Inf. 42, 4-5, 227-290. 34

Hicman, G. 1952. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society (3) 2, 7, 326-336. 106

HiLbeBRANDT, T., GoDSKESEN, J. C., AND BuNDGAARD, M. 2004. Bisimulation congruences for
Homer — a calculus of higher order mobile embedded resources. Tech. Rep. TR-2004-52, IT
University of Copenhagen. 9, 10, 29, 33, 36, 118, 125

HirscHkoFF, D., Lozes, E., AND SaNGIORal, D. 2002. Separability, expressiveness, and de-
cidability in the ambient logic. In Proc. 17th LICS Conf |IEEE Computer Society Press,
423-432. 47

HirscHkoFF, D. AND Pous, D. 2007. A distribution law for CCS and a new congruence result
for the pi-calculus. In Proc. of FoSSaCS'07. LNCS, vol. 4423. Springer, 228-242. 78, 79,
156

Honpa, K. AND Tokoro, M. 1991. An object calculus for asynchronous communication. In
Proc. of ECOOP. Lecture Notes in Computer Science, vol. 512. Springer, 133-147. 11, 42,
128

HonbA, K., VAsconcELos, V. T., AND KuBo, M. 1998. Language primitives and type discipline
for structured communication-based programming. In Proc. of ESOP. Lecture Notes in
Computer Science, vol. 1381. Springer, 122-138. 4, 43

Honbpa, K. AND YosHIDA, N. 1994a. Combinatory representation of mobile processes. In
POPL. 348-360. 51

References 167

Honpa, K. AND YosHIDA, N. 1994b. Replication in concurrent combinators. In Proc. of TACS.

Lecture Notes in Computer Science, vol. 789. Springer, 786-805. 51

Honba, K. AND YosHIDA, N. 1995. On reduction-based process semantics. Theor. Comput.
Sci. 151, 2, 437-486. 74

Howe, D. J. 1996. Proving congruence of bisimulation in functional programming lanquages.

Inf. Comput. 124, 2, 103-112. 36, 70

JEFFREY, A. AND RATHKE, J. 2005. Contextual equivalence for higher-order pi-calculus revis-
ited. Logical Methods in Computer Science 1, 1, 1-22. 35, 36, 67

Koutavas, V. AND HENNESSY, M. 2009. First-order reasoning for higher-order concurrency.

Tech. rep., Trinity College Dublin. July. 36

Kucera, A. AND JANCAR, P. 2006. Equivalence-checking on infinite-state systems: Techniques
and results. TPLP 6, 3, 227-264. 89, 90

LANDIN, P. J. 1966. The Next 700 Programming Languages. Communications of the ACM 9, 3
(March), 157-166. 40

LANESE, I. 2007. Concurrent and located synchronizations in pi-calculus. In Proc. of SOF-
SEM. Lecture Notes in Computer Science, vol. 4362. Springer, 388-399. 131

LANESE, |, PEREz, J. A., SaNGIoRrGl, D., AND ScumITT, A. 2008. On the expressiveness and
decidability of higher-order process calculi. In Proc. of LICS’08. IEEE Computer Society,
145-155. 14

LANESE, |, PERez, J. A, Sancioral, D., AND ScumiTT, A. 2009. On the expressiveness and
decidability of polyadicity in higher-order process calculi (extended abstract). In Proc. of

ICTCS'09: the Eleventh Italian Conference on Theoretical Computer Science. 14, 127

LANEVE, C. AND VicToR, B. 2003. Solos in concert. Mathematical Structures in Computer
Science 13, 5, 657-683. 51

LENGLET, S., ScHMITT, A., AND STEFANI, J.-B. 2008. Bisimulations in calculi featuring passi-

vation and restriction. Technical Report, Sardes Project, INRIA Rhdne Alpes. 11, 37

LENGLET, S., ScHmITT, A, AND STEFANI, J.-B. 2009a. Howe's method for calculi with passiva-
tion. In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 5710. Springer, 448-462.
37

LENGLET, S., ScHMITT, A., AND STEFANI, J.-B. 2009b. Normal bisimulations in calculi with
passivation. In Proc. of FOSSACS. Lecture Notes in Computer Science, vol. 5504. Springer,
257-271. 37

168 References

MarFrEeis, S., ABapl, M., FOurNET, C., AND GorpoN, A. D. 2008. Code-carrying authorization.
In Proc. of ESORICS. Lecture Notes in Computer Science, vol. 5283. Springer, 563-579. 34

MaFFEIs, S. AND PHiLLips, I. 2005. On the computational strength of pure ambient calculi.
Theor. Comput. Sci. 330, 3, 501-551. 47, 48

MavRr, R. 2000. Process rewrite systems. Inf. Comput. 156, 1-2, 264-286. 48

MEeReDITH, L. G. AND RaDEsTOCK, M. 2005a. Namespace logic: A logic for a reflective higher-
order calculus. In Proc. of TGC. Lecture Notes in Computer Science, vol. 3705. Springer,
353-369. 34

MEREDITH, L. G. AND RaDEsTOCK, M. 2005b. A reflective higher-order calculus. Electr. Notes
Theor. Comput. Sci. 141, 5, 49-67. 34

MEYER, R. 2008. Structural stationarity in the pi-calculus. Ph.D. thesis, Department of
Computing Science, University of Oldenburg. 159

MILNER, R. 1989. Communication and Concurrency. International Series in Computer Science.
Prentice Hall. 15, 17, 19, 25, 67

MILNER, R. 1991. The Polyadic pi-Calculus: A Tutorial. Tech. Rep. ECS-LFCS-91-180,
University of Edinburgh. 23, 42, 128

MILNER, R. 1992. Functions as processes. Mathematical Structures in Computer Science 2, 2,
119-141. 4, 52

MILNER, R. AND MoLLER, F. 1993. Unique decomposition of processes. Theor. Comput.
Sci. 107, 2, 357-363. 78, 156

MILNER, R., PARROW, J., AND WALKER, D. 1992. A calculus of mobile processes, i. Inf. Com-
put. 100, 1, 1-40. A preliminary version appeared as Technical Report ECS-LFCS-89-85,
LFCS, University of Edinburgh, June 1989. 4, 15, 22, 31

MILNER, R. AND SANGIORGI, D. 1992. Barbed bisimulation. In Proc. 19th ICALP, W. Kuich,
Ed. Lecture Notes in Computer Science, vol. 623. Springer Verlag, 685-695. 20, 46, 74

Minsky, M. 1967. Computation: Finite and Infinite Machines. Prentice-Hall. 47, 49

MitcHELL, J. C. 1993. On abstraction and the expressive power of programming languages.
Sci. Comput. Program. 21, 2, 141-163. 40

MoLLER, F. 1989. Axioms for concurrency. Ph.D. thesis, University of Edinburgh, Dept. of
Comp. Sci. PhD thesis CST-59-89. 78, 156

References 169

MoLLER, F. 1996. Infinite results. In Proc. of CONCUR. Lecture Notes in Computer Science,
vol. 1119. Springer, 195-216. 48

MosTtrous, D. AND YosHipa, N. 2007. Two session typing systems for higher-order mobile
processes. In Proc. of TLCA. Lecture Notes in Computer Science, vol. 4583. Springer, 321-
335. 34

MosTrous, D. AND YosHIDA, N. 2009. Session-based communication optimisation for higher-
order mobile processes. In Proc. of TLCA. Lecture Notes in Computer Science, vol. 5608.

Springer, 203-218. 34

Mousavi, M. R., GaBsaY, M., AND ReENIERS, M. A. 2005. SOS for Higher Order Processes. In
Proc. of CONCUR. Lecture Notes in Computer Science, vol. 3653. Springer, 308-322. 37

Mousavi, M. R., RENIERS, M. A, AND GROOTE, J. F. 2007. SOS formats and meta-theory: 20
years after. Theor. Comput. Sci. 373, 3, 238-272. 37

NEecua, G. C. aND LEE, P. 1998. Safe, untrusted agents using proof-carrying code. In Mobile
Agents and Security. Lecture Notes in Computer Science, vol. 1419. Springer, 61-91. 93

NESTMANN, U. 1996. On determinacy and and nondeterminacy in concurrent programming.

Ph.D. thesis, Univ. Erlangen. 43, 44

NEesTMANN, U. 2000. What is a "good” encoding of quarded choice? Inf Comput. 156, 1-2,
287-319. A preliminary version appeared in EXPRESS'97. 43, 46

NesTmANN, U. AND PIErc, B. C. 2000. Decoding choice encodings. Inf. Comput. 163, 1, 1-59.
Extended abstract in Proc. of CONCUR’'96. 43, 45

NieLson, F. 1989. The typed lambda-calculus with first-class processes. In Proc. of PARLE
(2). Lecture Notes in Computer Science, vol. 366. Springer, 357-373. 5, 29, 30

NycaarD, M. aND WiNskeL, G. 2002. Hopla-a higher-order process lanquage. In Proc. of
CONCUR. Lecture Notes in Computer Science, vol. 2421. Springer, 434-448. 33

OsTtrovsky, K., Prasap, K. V. S, AND TaHA, W. 2002. Towards a primitive higher order
calculus of broadcasting systems. In Proc. of PPDP. ACM, 2-13. 34

PaLamipessi, C. 2003. Comparing the expressive power of the synchronous and asynchronous
pi-calculi. Mathematical Structures in Computer Science 13, 5, 685-719. Extended abstract
in Proc. of POPL'97. 12, 43, 45, 46, 50, 128, 131

Parrow, J. 1990. The expressive power of parallelism. Future Gener. Comput. Syst. 6, 3,
271-285. 51

170 References

Parrow, J. 2000. Trios in concert. In Proof, Language, and Interaction. The MIT Press,
623-638. 51

Parrow, J. 2008. Expressiveness of process algebras. Electr. Notes Theor. Comput. Sci. 209,
173-186. 37, 39

Pierce, B. AND SANcIoRal, D. 1996. Typing and subtyping for mobile processes. Journal of
Mathematical Structures in Computer Science 6, 5, 409-454. An extended abstract appeared
in Proc. LICS 93, IEEE Computer Society Press. 23

Post, E. L. 1946. A variant of a recursively unsolvable problem. Bull. of the Am. Math.
Soc 52, 264-268. 85

Prasap, S., GiacaLoNE, A, AND MisHRA, P. 1990. Operational and algebraic semantics for
facile: A symmetric integration of concurrent and functional programming. In Proc. of ICALP.

Lecture Notes in Computer Science, vol. 443. Springer, 765-778. 30
Priami, C. 1995. Stochastic pi-calculus. Comput. J. 38, 7, 578-589. 42, 43

QuacLIA, P. AND WALKER, D. 2005. Types and full abstraction for polyadic pi-calculus. Inf
Comput. 200, 2, 215-246. 43, 131

Rabpestock, M. AND EISENBACH, S. 1996. Semantics of a higher-order coordination language.
In Proc. of COORDINATION. Lecture Notes in Computer Science, vol. 1061. Springer, 339-
356. 34

Raja, N. AND SHYAMASUNDAR, R. K. 1995a. Combinatory formulations of concurrent languages.
In Proc. of ASIAN. Lecture Notes in Computer Science, vol. 1023. Springer, 156-170. 51

Raja, N. AND SHYAMASUNDAR, R. K. 1995b. The quine-bernays combinatory calculus. Int. J.
Found. Comput. Sci. 6, 4, 417-430. 51

Reppy, J. H. 1991. CML: A higher-order concurrent language. In PLDI/. 293-305. 30
Reppy, J. H. 1992. Higher-order concurrency. Ph.D. thesis, Cornell University. 30

Rieckg, J. G. 1993. Fully abstract translations between functional languages. Mathematical
Structures in Computer Science 3, 4, 387-415. A preliminary report appeared in Proc. of
POPL'91. 41

SaNGIoRGl, D. 1992. Expressing mobility in process algebras: First-order and higher-order
paradigms. Ph.D. thesis, University of Edinburgh. 4, 5, 6, 10, 21, 23, 25, 26, 28, 29, 35, 42,
43, 47, 52, 53, 55, 67, 84

References 171

SaNGIorGl, D. 1993, From m-calculus to Higher-Order m-calculus — and back. In Proc.
TAPSOFT'93, M.-C. Gaudel and J.-P. Jouannaud, Eds. Lecture Notes in Computer Science,
vol. 668. Springer Verlag, 151-166. 21, 27

Sancioral, D. 1994. The lazy lambda calculus in a concurrency scenario. Information and

Computation 111, 1, 120-153. 34

Sancioral, D. 1996a. Bisimulation for Higher-Order Process Calculi. Inf. Comput. 131, 2,
141-178. 35, 36, 55, 84

SANGIORGI, D. 1996b. mr-calculus, internal mobility and agent-passing calculi. Theor. Comput.
Sci. 167, 2, 235-274. 10, 26, 52, 55, 88, 131, 132, 151, 154

SANGIORGI, D. 1996¢. A theory of bisimulation for the sr-calculus. Acta Informatica 33, 69—
97. An extract appeared in Proc. CONCUR '93, Lecture Notes in Computer Science 715,
Springer Verlag. 35

SanGIoral, D. 1998. On the bisimulation proof method. Journal of Mathematical Structures
in Computer Science 8, 447-479. 36

SaNGIoRGI, D. 2001. Asynchronous process calculi: the first-order and higher-order
paradigms (tutorial). Theor. Comput. Sci. 253, 311-350. 27

SaNGioral, D. 2009. An introduction to bisimulation and coinduction. Draft. 16, 19

SanGIoral, D., KoBavasHi, N., aND Sumii, E. 2007. Environmental bisimulations for higher-
order languages. In Proc. of LICS’07. IEEE Computer Society, 293-302. 36, 67

SANGIORGI, D. AND WALKER, D. 2001. The m-calculus: a Theory of Mobile Processes. Cam-
bridge University Press. 4, 8, 10, 21, 22, 25, 27, 53, 64, 74, 84, 88

Sato, N. aAND Sumii, E. 2009. The higher-order, call-by-value applied pi-calculus. In Proc.
of APLAS09: the Seventh Asian Symposium on Programming Languages and Systems.
Lecture Notes in Computer Science. Springer. To Appear. 11, 34, 36

ScHMITT, A. AND STEFANI, J.-B. 2002. The m-calculus: a higher-order distributed process

calculus. Tech. Rep. 4361, INRIA. Jan. 32

ScHMITT, A. AND STEFANI, J-B. 2003. The m-calculus: a higher-order distributed process
calculus. In Proc. of POPL. ACM, 50-61. 32

ScHMITT, A. AND STEFANI, J.-B. 2004. The kell calculus: A family of higher-order distributed
process calculi. In Proc. of Global Computing. Lecture Notes in Computer Science, vol. 3267.
Springer, 146-178. 9, 29, 32, 118

172 References

SHaPIRo, E. Y. 1989. The family of concurrent logic programming languages. ACM Comput.
Surv. 21, 3, 413-510. 41

SHAPIRO, E. Y. 1991. Separating concurrent languages with categories of language embed-
dings (extended abstract). In Proc. of STOC'91. ACM, 198-208. 41

SHAPIRO, E. Y. 1992. Embeddings among concurrent programming languages (preliminary
version). In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 630. Springer,
486-503. 42

SHEPHERDSON, J. C. AND STurais, H. E. 1963. Computability of recursive functions. J.
ACM 10, 2, 217-255. 47

SipseRr, M. 2005. Introduction to the Theory of Computation. PWS Publishing Company. 85

THoMSEN, B. 1989. A calculus of higher order communicating systems. In Proc. of POPL’89.
ACM Press, 143-154. 5, 25, 36, 55, 172

THomseN, B. 1990. Calculi for higher order communicating systems. Ph.D. thesis, Dept. of
Comp. Sci., Imperial College. 10, 25, 29, 30, 31, 35, 42, 54, 84

THoMmsEN, B. 1993. Plain CHOCS: A second generation calculus for higher order processes.
Acta Inf. 30,1, 1-59. 5, 31, 36, 55

THomsEN, B. 1995. A theory of higher order communicating systems. Inf. Comput. 116, 1,
38-57. Extended version of Thomsen (1989). 30

VAANDRAGER, F. W. 1992. Expressive results for process algebras. In Proc. of REX Workshop
on ‘Semantics: Foundations and Application’. Lecture Notes in Computer Science, vol. 666.
Springer, 609-638. Also available as CWI Report CS-R9301, 1993. 52

VERSARI, C., Busi, N., AND GoRrrieRl, R. 2009. An expressiveness study of priority in process
calculi. Math. Struct. in Comp. Sci. 19, 6, 1161-1189. 51

VicLiotTi, M. G. 2004. Reduction semantics for ambient calculi. Ph.D. thesis, Imperial College
London. 50

VicLiott, M. G., PHiLuips, |, AND Patamipessi, C. 2007. Tutorial on separation results in

process calculi via leader election problems. Theor. Comput. Sci. 388, 1-3, 267-289. 50

Vivas, J.-L. 2001. Dynamic Binding of Names in Calculi for Mobile Processes. Ph.D. thesis,
KTH - Royal Instituye of Technology. 53

Vivas, J.-L. AND Dam, M. 1998. From higher-order pi-calculus to pi-calculus in the presence
of static operators. In Proc. of CONCUR. Lecture Notes in Computer Science, vol. 1466.
Springer, 115-130. 8, 53

References 173

Vivas, J-L. AND YosHiDA, N. 2002. Dynamic channel screening in the higher order pi-
calculus. Electr. Notes Theor. Comput. Sci. 66, 3. Extended version available as Technical

Report 2002-22, MCS, University of Leicester. 8, 53
WALKER, D. 1995. Objects in the pi-calculus. Inf. Comput. 116, 2, 253-271. 4

WinskeL, G. AND Zappa NARDELLI, F. 2004. New-hopla: A higher-order process language
with name generation. In Proc. of IFIP TCS. Kluwer, 521-534. 33

Xu, X. 2007. On the bisimulation theory and axiomatization of higher-order process calculi.

Ph.D. thesis, Shanghai Jiao Tong University. 10

YosHipa, N. 1996. Graph types for monadic mobile processes. In Proc. of FSTTCS. Lecture
Notes in Computer Science, vol. 1180. Springer, 371-386. 43, 131

YosHipa, N. 2002. Minimality and separation results on asynchronous mobile processes -
representability theorems by concurrent combinators. Theor. Comput. Sci. 274, 1-2, 231-276.
39, 51

YosHiDA, N. AND HENNESsY, M. 1999. Suptyping and locality in distributed higher order
processes (extended abstract). In Proc. of CONCUR. LNCS, vol. 1664. Springer, 557-572.
53

ZAVATTARO, G. 2009. Personal communication. 49

	Acknowledgments
	List of Figures
	Introduction
	Context and Motivation
	First-Order and Higher-Order Concurrency
	This Dissertation
	Expressiveness and Decidability in Higher-Order Concurrency
	Approach
	Contributions and Structure

	Preliminaries
	Technical Background
	Bisimilarity
	A Calculus of Communicating Systems
	More on Behavioral Equivalences
	A Calculus of Mobile Processes

	Higher-Order Process Calculi
	The Higher-Order -calculus
	Sangiorgi's Representability Result
	Other Higher-Order Languages
	Behavioral Theory

	Expressiveness of Concurrent Languages
	Generalities
	The Notion of Encoding
	Main Approaches to Expressiveness
	Expressiveness for Higher-Order Languages

	A Core Calculus for Higher-Order Concurrency
	The Calculus
	Expressiveness of HOcore
	Guarded Choice
	Input-guarded Replication
	Minsky machines

	Concluding Remarks

	Behavioral Theory of HOcore
	Bisimilarity in HOcore
	Barbed Congruence and Asynchronous Equivalences
	Axiomatization and Complexity
	Axiomatization
	Complexity of Bisimilarity Checking

	Bisimilarity is Undecidable with Four Static Restrictions
	Other Extensions
	Concluding Remarks

	On the Expressiveness of Forwarding and Suspension
	Introduction
	The Calculus
	Convergence is Undecidable in Ho-f
	Encoding Minsky Machines into Ho-f
	Correctness of the Encoding

	Termination is Decidable in Ho-f
	Well-Structured Transition Systems
	A Finitely Branching LTS for Ho-f
	Termination is Decidable in Ho-f

	On the Interplay of Fowarding and Passivation
	A Faithful Encoding of Minsky Machines into HoP-f
	Correctness of the Encoding

	Concluding Remarks

	On the Expressiveness of Synchronous and Polyadic Communication
	Introduction
	The Calculi
	A Higher-Order Process Calculus with Restriction and Polyadic Communication
	A Higher-Order Process Calculus with Synchronous Communication

	An Encodability Result for Synchronous Communication
	Separation Results for Polyadic Communication
	The Notion of Encoding
	Distinguished Forms
	A Hierarchy of Synchronous Higher-Order Process Calculi

	The Expressive Power of Abstraction Passing
	Concluding Remarks

	Conclusions and Perspectives
	Concluding Remarks
	Ongoing and Future Work

	References

