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FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Dottorato di Ricerca in Fisica: XX ciclo

Simulations and interpretation

of holographic TEM images

of biased and unbiased electronic devices

Tesi di Dottorato

Presentata da: Tutore:

Dott. Filippo Ubaldi Chiar.mo Prof. Giulio Pozzi

Coordinatore:

Chiar.mo Prof. Fabio Ortolani

Bologna, Marzo 2009





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Phase contrast techniques . . . . . . . . . . . . . . . . . . . . . . . 7

1.0.1 Out of focus . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.0.2 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.0.3 Overview of the experimental images. . . . . . . . . . . . . 13
1.0.4 Electron Holography . . . . . . . . . . . . . . . . . . . . . 17

1.1 Effects of spherical illumination . . . . . . . . . . . . . . . . . . . 20

2 Two-dimensional models for reverse biased p-n junctions . . . 25

2.0.1 Device used in experiments. . . . . . . . . . . . . . . . . . 26
2.1 Numerical simulations of the Electrostatic Potential . . . . . . . . 27

2.1.1 PDE’s discretization . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Validation of the 2D numerical computations . . . . . . . . 30
2.1.4 Mathematica and the ISE-tCad . . . . . . . . . . . . . . . 33

2.2 2D mixed numerical-analytical computations for the interpretation
of the TEM images far from the edge. . . . . . . . . . . . . . . . 33
2.2.1 Dopant implantation simulation . . . . . . . . . . . . . . . 34
2.2.2 Potential and phase computation. . . . . . . . . . . . . . . 34
2.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . 35
2.2.4 Interpretation of experimental images. . . . . . . . . . . . 39

3 Three-Dimensional Field Models for Reverse Biased p-n Junc-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Full three-dimensional model . . . . . . . . . . . . . . . . . . . . . 48
3.1.1 Validation of the 3D numerical computations . . . . . . . . 49

3.2 The CPAC Model for the semiconductor junction . . . . . . . . . 51
3.2.1 Further cosiderations on 3D simulations - CPAC versus full

3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Interpretation of the Experimental results in out-of-focus and in-

terferometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Out-of-focus . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . 55



4 Contents

3.3.3 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Electron Holography of a Metal-Oxide-Semiconductor specimen. 63

4.1 Specimen description and experimental results . . . . . . . . . . . 63
4.2 Geometry and boundary conditions of the numerical model . . . . 65
4.3 Interpretation of the experimental images . . . . . . . . . . . . . . 65

4.3.1 Image simulations . . . . . . . . . . . . . . . . . . . . . . . 67

5 3D field simulations of phase contrast images of field emitting

CNTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Specimen description and experimental results . . . . . . . . . . . 71
5.2 Linear charge analytical model . . . . . . . . . . . . . . . . . . . . 72
5.3 Numerical computation of the electrostatic potential . . . . . . . . 76
5.4 Charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Image simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.1 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.2 Out-of-focus . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A Beam-specimen interaction . . . . . . . . . . . . . . . . . . . . . . 85

A.1 Phase object approximation . . . . . . . . . . . . . . . . . . . . . 85
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Introduction

The aim of this thesis is to discuss the interpretation of the transmission electron
microscope (TEM) images of biased and unbiased electronic devices observed
by means of holography, interferometry and out of focus techniques. The images
used in the thesis have been mainly recorded at the IMM section of the CNR of
Bologna by P. F. Fazzini, and at the Old Cavendish Laboratory by the HREM

group of the University of Cambridge (R. E. Dunin-Borkowski, T. Kasama).

Our attention primarily focuses on electrostatic fields generated by charge
distribution of specimens, that are related to their properties as doping con-
centration (pn-junctions), induced beam charging of oxides (p-n junction and
metal-oxide-semiconductor MOS), and peculiar shapes (biased carbon-nanotube
CNT). The TEM observation of electrostatic fields by means of phase contrast
techniques allows us to retrieve information on the specimen by comparing ex-
perimental and simulated images.

Dopant profile investigation is an important issue for the semiconductor in-
dustry, as the spatial distribution and the concentration of the dopant atoms are
key factors in understanding device operation and validating device simulations.
The Semiconductor Industry Association SIA Roadmap and the International
Technology Roadmap of Semiconductors ITRS presuppose to achieve nanoscale
control of the distribution of dopants as device dimensions shrink beyond the
100 nm node. Consequently there is a pressing need for the development of a
reliable, high spatial resolution technique that can be used to obtain quanti-
tative information about dopant distributions in semiconductors, for both the
evaluation of process parameters and to provide input to simulations of dopant
diffusion. Off-axis electron holography and other phase contrast techniques in
the TEM offer the potential to provide such information. It must be noticed
that these techniques do not give information about the dopant concentration
directly, but about the electrostatic field projected orthogonally to the electron
beam direction. Thus the only way to obtain quantitative information about the
doped specimen is to simulate numerically its electrical behavior, by using the
equations of the semiconductors and reproducing its geometry. In this way it is
possible to compute the phase by starting from semiconductor physics equations,
so that the distribution of dopants can be deduced from the comparison between
experimental and simulated images.



6 Introduction

Electron Holography and other medium-low resolution phase contrast tech-
niques as interferometry and out of focus, are able to provide information not
only on pn-junctions, but on other kinds of specimens such as carbon nanotube
bundles used as field emission tips under a suitable bias and MOS oxides.

• In chapter 1 the techniques used to obtain the images interpreted in this
thesis will be discussed from the theoretical point of view. The derivation
of the basic equations used for images simuations in out-of-focus, interfer-
ometry and holography will be given.

• In chapter 2 the two-dimensional (2D) simulations used for the interpre-
tation of the TEM images of p-n junctions (power diodes) prepared and
observed at the IMM in Bologna, will be presented.

• In chapter 3 the reasons that have brought about the development of Three-
Dimensional models of electronic devices are explained, and the interpre-
tation of interferometry and holography images of biased p-n junction by
Three-Dimensional models is discussed. Particular attention will be paid
to the development of a mixed analytical-numerical model that uses 2D
numerical simulations to obtain 3D electrostatic potentials. Such a model
saves considerable machine time and increases the precision, but its limits
of validity require an assessment based on full 3D simulations.

• In chapter 4 electrostatic field 3D numerical computation, which is obtained
thanks to the experience acquired on the full 3D model for p-n junctions,
will be used to interpret holography images of a MOS. This is a very
interesting specimen because of the richness of its images that carry unmis-
takeable information about the amount of the charging of the oxide under
the action of the electron beam.

• In chapter 5 the full 3D model will be adapted to carbon nanotube geome-
tries. The computed electrostatic potential will be used for holography and
out-of-focus image simulations in order to study the free charge distribu-
tion and the electrostatic field topography, which is useful to understand
the field emission effect conditions.



1. Phase contrast techniques

At the mesoscopic scale, in the phase object approximation (POA) (Eq. A.12), in
focus images provide no information, as the transmission function of the specimen
is modeled by a pure imaginary quantity, whose square modulus gives a constant
intensity image. A conventional in-focus image shows no contrast, except for
extinction contours due to the Bragg diffraction, and other phenomena due to
impurities(Fig.1.6). Moreover, the intensity transmitted by the specimen is lower
than 1, i.e. the intensity transmitted in the vacuum, since electrons can either
be stopped by the thicker specimen regions or scattered at large angles and sub-
sequently intercepted by the microscope apertures. However, at the mesoscopic
scale, amplitude contrast does not carry useful information: phase recovery is
necessary to obtain electrical information, as the phase shift in the wave front
is produced by the electric field generated by the charge distribution. Such a
charge distribution depends on the structure and properties of the specimen we
are interested in. (see appendix A.1).

It is then necessary to produce in the image a contrast, which is dependent on
the phase. Such a contrast will be characterized by interference and diffraction
phenomena, which are due to the wave behavior of the electron beam. The first
phase contrast techniques, as holography, were originally developed in Light Op-
tics. Nowadays Electron Microscopy uses phase-contrast techniques that directly
stem from optical ones. Three of these techniques, out-of-focus, interferometry,
and holography will be widely modeled in this thesis to interpret the experimental
images.

1.0.1 Out of focus

The simplest technique to obtain phase information on electric fields of a spec-
imen at the mesoscopic scale, in the range of the POA approximation, is to
take an out of focus image. In fact, since the specimen is uniformly transparent,
in focus observations give uniform contrast, but if electrons are deflected by an
electric field of the specimen, that is not uniform, the intensity distribution will
not be uniform after the specimen. A contrasted image is obtained even if an
object plane before the specimen is chosen, due to the virtual prolongation of
the wave front. In this case the contrast will be opposite compared to the former
case (Fig 1.1).
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Fig. 1.1. Two images of the same junction recorded at the IMM of bologna by P. F. Fazzini with

opposite sign out-of-focus distance. The trend of the Fresnel fringes and the edge deformation

result inverted when passing from over to under focus and vice-versa. Out-of-focus observations

have been used by the microscopy group of the University of Bologna to distinguish two different

models for p-n junctions that give qualitatively different predictions over a range of defocuses

and reverse biases [1].

Let us consider the phase-object approximation (eq. A.11). If the Kirchhoff-
Fresnel (K-F) propagator [2] is applied to the outgoing wave, the wave function
for any (arbitrary) z (note: also for z < zo, i.e. in the case of over focus observa-
tions)

ψ(r, z) =
1

iλz

∫

R2

eiφ(r) · e
iπ
λz

(r−ro)2 dro (1.1)

Since Eq. 1.1 is a convolution product between a complex exponential function
and a Gaussian-Fresnel function, it can be conveniently treated in Fourier space:

F.T.[Ψ (r, z)](k) = F.T.

[

1

iλz

∫

R2

eiφ(r) · e
iπ
λz

(r−ro)2 dro

]

(k)

= F.T.
[

eiφ(r)
]

(k) · F.T.

[

1

iλz
e

iπ
λz

(r)2

]

(k)

= F.T.
[

eiφ(r)
]

(k) · e−iπλzk2

.

(1.2)

Returning to the real space, the following expression for the defocused wave is
obtained:

Ψ (r, z) =

∫

R2

F.T.
[

eiφ(r)
]

(k) · e−iπλzk2

e2πik·r dk (1.3)

where z is the distance from the object plane. When z = 0 the specimen is in
focus. Finally, it must be noticed that (Eq. 1.3) can be rewritten as

Ψ (r, z) = F.T.−1
[

F.T.
[

eiφ(r)
]

(k) · e−iπλzk2
]

. (1.4)
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Such a formulation may seem quite complicated, but it is useful from the numer-
ical computation point of view, as the discrete Fast Fourier Transform (FFT)
algorithm is more efficient than the real space computation of the Frênel integral
(1.1).

The defocus values z indicated by modern instruments, which are optimized for
high resolution set-up, are not reliable in the non-standard conditions useful for
out-of-focus observations. An indipendent calibration is necessary [3] to find the
effective value for z, in order to achieve the agreement between image simulations
and experimental findings.

1.0.2 Interferometry

Interference electron microscopy observations of one-dimensional phase-objects
like magnetic domain walls [4, 5, 6] and reverse biased pn junctions [7], [8] show
that electron interferometry can be used to gather reliable information from the
analysis of interferograms. In this particular and interesting case, the phase differ-
ence between interfering points is directly displayed in the profile of the fringes [9],
making their interpretation easier and more quantitative than that obtainable
from classical Lorentz microscopy observations, as for example from out-of-focus
techniques (sec.1.0.1). The subject of this section is mainly the wave-optical anal-
ysis of the image formation in the interference mode, which is applicable not only
to one-dimensional phase-objects, but also to any kind of phase-objects, in par-
ticular to p-n junctions when an edge is present (sec. 1.0.3). For the sake of
simplicity, the treatment is developed assuming plane wave illumination, which
is the hypothesis usually adopted in Electron Microscopy. However a treatment
which includes the spherical illumination is essential in order to obtain the correct
values for the experimental parameters. It will be developed in section 1.1.

In figure (1.2), the basic elements of a TEM set up for interferometry obser-
vations are outlined. The electronic wave transmitted by the specimen is focused
by the lens Ob, impinges on a Möllenstedt-Düker biprism, whose task is to split
the wavefront in two parts making them interfere through partial superimposi-
tion. The interferogram, which forms on the image plane IP , is magnified on the
coniugate recording plane RP by the projection system PS.

The wave function image perturbed by the biprism can be calculated, using
the paraxial theory developed by Glaser [10], in two steps: propagation from
the specimen to the biprism, multiplication by the transmission function of the
biprism and propagation from the biprism plane to the image plane.

zo → zb ; Tb ; zb → zi (1.5)

where zo → zb and zb → zi refer to the K-F propagation [2] of the wave function
from the object plane to the biprism plane, Tb indicates the multiplication by
the biprism transmission function (sec.A.1), and zb → zi the wave propagation
from the biprism to the image plane. However, according to the principle of
optical reversibility [11], it is perfectly equivalent to follow a different procedure
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Plane wave illumination

Ob

RP

O (z=z )

PS

IP (z=z )

B (z=z )B

I

O

+

Fig. 1.2. Geometric optical set-up of Interference electron microscopy: plane-wave illumination.

O, specimen; Ob, objective lens; B, wire of the Möllenstedt-Düker biprism; IP , image plane;

PS, projector system; RP , recording plane.
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[12] (which highlights the perturbation effect of the biprism in relation to the
unperturbed wave):

zo → zi ; zi → zb ; Tb ; zb → zi (1.6)

Where the first implication (zo → zi) can be omitted as it is the propagation
between conjugate planes without biprism, and its only effect is the scaling of the
image. Again, since the image and object plane are conjugate, for our simulations,
we can use for simulations, instead of the scheme (Eq. 1.6), the following

zo → zb ; Tb ; zb → zo (1.7)

where zi has been replaced with zo, meaning that we are referring our set-up to
the object space. This treatment, which leads to equation 1.7 starting from equa-
tion 1.5, presupposes an ideal behaviour of lenses, that allows conjugate planes to
be considered interchangeable. In fact, in interferometry as in out-of-focus, aber-
rations are usually neglected because of the low-magnification conditions (the
objective lens is usually switched off).

In any case, the procedure (1.7) (or equivalently the procedure (1.5)) allows
us to calculate the wave function on the image plane. It is necessary however to
have expressions for the transmission function of the biprism. For this purpose
the equation (A.16) is used. The electrostatic potential generated by the spec-
imen is provided by numerical simulations (chapter 2, 3), and its contribution
to the phase φ(ro) for equation 1.8 is given by Eq. A.12. Finally, the simulated
intensity for the image plane is given by the square modulus of the wave function,
calculated in order to compare it with the experimental results.

It is convenient, as in the case of the out-of-focus images, to make computations
in the Fourier’s space, where the formula used for numerical image simulations
is as follows:

Ψ (ro, zo) =

= F−1
[

F
[

F−1
[

F
[

eiφ(ro)
]

(kb)·eiπλ(zb−zo)k2
b

]

Tb(rb)
]

(ko)e
iπλ(zo−zb)k

2
o

]

(ro). (1.8)

where the subscripts o and b refer to the object plane and to the biprism plane
respectively. The K-F propagation from the object to the biprism plane is com-
puted by means of two Fourier transforms, according to the equation 1.4. Then,
the wave is multiplied by the transmission function of the biprism (Eq. A.16). Fi-
nally, the K-F back propagation to the object plane (equivalent to its conjugate,
the image plane) is performed by other two Fourier transforms.

It is here pointed out again that the Eq. 1.8 is derived by adopting the as-
sumption of plane-wave illumination. Such an assumption is usual in Electron
Microscopy, but a derivation that takes into account the spherical-wave illumi-
nation is necessary to obtain the correct values to insert in simulations. It turns
out that the spherical illuminating wave set-up can be reduced to the plane wave
case by suitable scaling (sec. 1.1), so that Eq. 1.8 can be kept provided that the
various parameters are substituted by their effective values.
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wire

object
variation

θ

 x  = x  = x  = x SO IB

 y  = y  = y  = y SO IB

 

Y   O

X   O

Fig. 1.3. Schematic set-up of the reference systems used in calculations. (xO, yO) and (XO, YO)

are the coordinates of the biprism and the phase object respectively. θ is the angle between the

two systems.

1.0.2.1 Geometric optical interpretation for one-dimensional electron-

optical phase objects

Electron interferometry of one-dimesional phase-objects is a particular and in-
teresting case, where the phase difference between interfering points is directly
displayed in the profile of the fringes. Figure 1.3 shows the set-up of the reference
system of the phase-object with respect to the biprism.

Provided the geometric optical equations are valid, the interpretation requires
only a one-dimensional best fit between experimental fringe profiles and calcu-
lated ones. The following equation, calculated by means of an asymptotic ap-
proximation [12, 13] gives the parametric equation of the interference fringe of
order n, n = 0, n = ±1, n = ±2... [9], which is expressed in the object coordinate
system (XO, YO):

YO(XO) =
nλ

2α sin θ
+XO cot θ +

λ

4πα sin θ
(1.9)

[Φ(XO + zα cos θ) − Φ(XO − zα cos θ)]
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This equation displays the phase difference between the points brought to inter-
fere by the electron biprism. α, the deflection angle of the electron beam due to
the biprism, must be corrected to the value αγ to take into account the effect of
spherical illumination (section 1.1). θ is the angle between the direction of the
phase-object variation and the direction of the biprism phase variation.

In addition, inasmuch as interferometric experiments are carried out with a
narrow interference field and relatively low number of fringes, it turns out that
also the shadow effects on the biprism edges, which is linked to the derivative of
the phase shift, are playing a relevant role. Again by means of the asimptotic ap-
proximation [12], the parametric equation for the left shadow edge [9] is obtained.
It results

YO(XO) = (XO + zα cos θ) cot θ +
R

sin θ
+
λz

2π
(1.10)

dΦ

dXO

(XO + zα cos θ) cot θ + zα sin θ

which clearly shows the direct dependence of the profile of the edge on the first
derivative of the phase. In equation 1.11, R is the radius of the biprism wire,
α is the deflection angle of the electron beam due to the biprism, and z is the
distance between the object and the biprism. (This values must be replaced by
their effective values to take into account the effect of spherical illumination (sec-
tion 1.1).)

Eq. 1.10 and eq. 1.11 can be used to compare the results of the geometrical
vs. the wave-optical analysis (sec.1.0.2), in order to assess the range of validity of
the geometric optical approximation. It turns out that such an approximation is
not always in agreement with the full two-dimensional wave optical model. The
reasons for this discrepancy have not been thoroughly investigated, although it
can be surmised that when the object dimensions are of the order of or below
the Fresnel diffraction length (roughly given by width of the first Fresnel diffrac-
tion fringe) the edge diffraction waves have a stronger influence on the image
(Fig. 1.4). The geometric optical equation is valid for a p-n junction with a de-
pletion layer width d = 0.1µm, but it is not valid for a depletion layer width
of d = 0.05µm (Fig. 1.4). The contribution to the phase of the depletion layer
(inner field) and of the fringing field can be ascertained by comparison between
simuation and experiment.

1.0.3 Overview of the experimental images.

In this section an overview of interferometric and out-of-focus experimental im-
ages of a straight p-n junction in the presence of an edge is considered. These
results, where the junction is nearly orthogonal to the edge and the biprism
crosses the junction with a tilt angle of 45◦, will be interpreted in the following
two chapters.
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(c)

Fig. 1.4. Image simulations using the Spivak model [14] for the electrostatic potential. (a,b)

Close ups of the junction regions of with superimposed geometrica-optical profiles. In (a) the

biprism deflection angle is aeff = 0 rad, while in (b) is aeff = −1 × 10−5 rad. The white lines

represent the biprism edges in geometric-optic approximation, while the thin lines in image (b)

are the interference fringes of order k = 0,±1. (c) Wave-optical simulation with superimposed

geometric-optical profiles of an interference image of a pn junction calculated for the same

conditions of (a) and (b), but with a depletion layer half-width d = 0.05µm. In this second

case the geometric-optical approximation is no more valid as across the junction the parametric

fringes do not follow the numerical ones.
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Fig. 1.5. Image of the Vb = 5V biased biprism. The contrast has been inverted for a better

visualization.

In the absence of specimen, the fringes produced by the biprism run parallel
to the biprism itself. It is possible to vary the fringe spacing and the extent of
the interference field by varying the potential applied to the wire. Figure (1.5)
shows such a fringe pattern for a 5V potential applied between the wire and
the conducting plates kept at ground potential, i.e. equipotential with the TEM

column.

When the specimen is superimposed on the fringe system, the image shown
in figure (1.6) is obtained: because of the superimposition between the object
semi-planes on the left and on the right of the wire caused by a translation,
perpendicular to the axis due to the potential applied to the wire, the edge which
was originally straight (see also following figure (1.7)) is broken at the interference
field (arrow (a)). The fringes that were originally straight are deformed both
entering and inside the specimen: in particular the change in direction(deflection)
reaches its maximum at the junction, indicated with the letter (b).

When the specimen is in-focus the junction is not identifiable. In order to
identify it, it is necessary to put it slightly out-of-focus allowing the creation of
a thin contrast line at the junction position itself as shown in figure (1.7) by the
arrows (g), where the shadow of the wire of the biprism B kept at potential zero
is visible. The other contrast phenomena are extinction contours and impurities
resulting from the thinning process.

The out-of-focus contrast effect identified in figure (1.7) and its association
with the junction can be amplified by the increase of the reverse bias and the
defocalization distance as shown in figure (1.8) where the thin black and white
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b a

Fig. 1.6. Large field image of the junction in interfermetry: Vb = 5V , Vibias = (3 ± 0.1)V

g g

B

Fig. 1.7. Large field image of the junction in interfermetry: Vb = 0V , Vibias = 0V
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line has changed its structure showing a system of fringes due to the diffraction
of electrons caused by the electrostatic field associated with it.

Fig. 1.8. Out-of-focus image of the junction at the edge: ∆z = (40 ± 2 )mm,

Vibias = (5.0 ± 0.1)V

Fig. 1.9. Out-of-focus image of the edge: ∆z = (40 ± 2 )mm, Vibias = (5.0 ± 0.1)V

Another interesting feature from the electro-optical point of view is the dis-
tortion of the edge of the specimen (shadow edge effect), which is more evident
in the following image (fig. 1.9) which is actually the previous image reproduced
with a different contrast. Image simulations concerning this feature are shown in
chapter 3, where the 3D model is discussed.

1.0.4 Electron Holography

Electron holography [15] was invented by Gabor during a research intended to
improve resolution by correcting the spherical aberration of the transmission



18 1. Phase contrast techniques

k

k

B

z

x

y

Fig. 1.10. “Off-axis” electron holography setup. The reference wave, that may be perturbed

by the fringing field of the object, is brought to interfere with the object wave. At the image

plane the hologram is recorded. The carrier frequency is the x projection of the momentum of

the electron beam deflected by the biprism.

electron microscope. This method is able to extract both amplitude and phase
of the object wave-function, thus recovering all the information from the elastic
interaction between the electron beam and the specimen. This task is performed
by superimposing the object wave-function, emerging from the sample, with a
reference wave, coherent with the former, usually assumed not to be perturbed
by the fringing field generated by the sample itself. The phase shift can finally
be recovered from the obtained image, called hologram, by optical or numerical
reconstruction.

In the original configuration proposed by Gabor, where the unscattered wave-
front is used as reference wave (“in line” holography), serious limitations in phase
recovery are represented by the generation of twin images [2].

Nowadays, the set-up most widely used in electron microscopy is off-axis elec-
tron holography, which takes advantage of a Möllenstedt-Düker electron biprism
(sec. A.1.1) to split the electron beam (Fig. 1.10). The part of the electron wave
chosen as the reference wave is not transmitted by the specimen, but travels in
the vacuum so that the twin image problem is not present. Since the biprism
produces a deflection of the form arccos(kB

k
) on the electron beam of momentum

k, the hologram intensity recorded in the image plane is:
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4 kO

Fig. 1.11. Spectrum of the hologram. If the carrier frequency kB is sufficiently larger than

the half frequency domain ko of the object wave, the Fourier Transform of the object wave is

separated from other contributions and the phase recovering is possible.

IH(x, y) = |Ψo(x, y) + eikBx|2 =

= 1 + e−ikBxΨo(x, y) + eikBxΨ ∗
o (x, y) + |Ψo(x, y)|

2. (1.11)

The Fourier Transform of the hologram (which is computed numerically by
software that works on line during image recording) is used to recover the phase
of the object wave. In fact, if the carrier frequency kB is sufficiently larger than
the spatial frequency range 2k0 of the object wave, the contribution of the object
wave (apart from a multiplicative plane wave eikBx) to the hologram Fourier
Transform is separated from the other contributions (Fig. 1.11).

Hence the next step of phase recovery is performed by operating the Inverse
Fourier Transform of such a contribution. The function ΨO(x, y)eikBx obtained,
must be further manipulated as shown in equation 1.12. When on-line software
manipulation of recorded images was not yet possible, this task was performed in
an optical bench by illuminating the part of the hologram containing the object
wave with a plane wave with a transverse frequency kopt. The obtained image
shows the intensity

IR(x, y) = |eikBxΨo(x, y) + eikoptx|2, (1.12)

that, if kopt = kB is chosen, i.e. in contour map condition, becomes
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IR(x, y) = |1 + Ψo(x, y)|
2. (1.13)

If the phase object approximation is adopted, Ψo(x, y) = eiφo(x,y), then we have

IR(x, y) = |1 + eiφo(x,y)|2 = 2 + 2 cos(φo(x, y)), (1.14)

and the object phase is thus recovered as a cosine argument.
If the perturbation Π(x, y) in the phase of the reference wave by the fringing

field is considered, the hologram intensity (Eq. 1.11) becomes

IH(x, y) = |Ψo(x, y) + ei(kBx+Π(x,y))|2 = |eiφo(x,y) + ei(kBx+Π(x,y))|2 =

= |ei(φo(x,y)−Π(x,y)) + eikBx|2 (1.15)

and the contour map reconstruction leads to the expression:

IR(x, y) = 2 + 2 cos [φo(x, y) −Π(x, y)] , (1.16)

so that the quantity useful for simulations is the difference between the object
phase and the phase perturbation of the reference wave, i.e. the contribution
Π(x, y) of the fringing field to the phase shift in the vacuum besides the specimen.

1.1 Effects of spherical illumination

It is essential to know the defocus distance for the out-of-focus method, as well
as the effective distance between the object and the biprism for the interferome-
try, in order to obtain reliable simulations of the image that can be compared to
the experimental findings. Unfortunately, in the non-standard conditions useful
for interferometry and out-of-focus, the defocus values indicated by modern in-
struments, optimized for the needs of high resolution, are not reliable. Thus an
indipendent calibration is necessary [3]. Several methods, for instance low-angle
electron diffraction [16], diffractogram [17] and edge diffraction fringe analysis
[18], can be used to accomplish this task.

Moreover, the effects of a spherical illumination are not negligible, resulting in
a substantial disagreement with theoretical predictions made in the illuminating
plane wave approximation.
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Spherical illumination
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Fig. 1.12. Interference electron microscopy set-up: spherical ilumination.

Let us consider the schematic set-up for interference electron microscopy
sketched in Figure 1.12. As before, the z axis of a Cartesian coordinate sys-
tem is directed along the optical axis of an electron microscope and in the same
direction as the electron beam, i.e. downwards. The position of the various planes
perpendicular to z are indicated by a pedix, which is also used to characterize
the two-dimensional coordinates r = (x, y) in the corresponding planes.

Let us start with the electron source, located in the origin of the source plane
S at z = zs, which is assumed to be an ideal point source illuminating the object
plane O, at z = zo, with a spherical wave centered on the axis. The specimen,
inserted at the object plane, is characterized by a complex transmission function
T (ro), so that the wave-function transmitted by the object A.10 becomes:
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ψo(ro, zo) = ψill(ro, zo)T (ro) = exp

[

i
π

λ

r2
o

(zo − zs)

]

T (ro) (1.17)

where λ is the de Broglie electron wavelength, and the pedix O indicates the
object plane.

The electron interferometer, a Möllenstedt-Düker electron biprism [19], is in-
serted at the selected area plane, which we will call the biprism plane zb. The
objective lens is switched off, the diffraction or intermediate lens, included in the
projector lens system PS, acts as imaging lens and is used to focus the specimen
plane in the recording plane RP .

The propagation between the object plane and the biprism plane can therefore
be considered to take place in the field free space and the wave-function impinging
at the biprism plane B at z = zb can be calculated in the paraxial approximation
by means of the Kirchhoff-Fresnel’s diffraction integral [11] between the planes
zo and zb:

ψb(rb, zb) =
1

iλ(zb − zo)

∫

ψo(ro, zo) e
i π

λ

(rb−ro)2

(zb−zo) dro (1.18)

By inserting equation (1.17), equation (1.18) can be rewritten as :

ψb(rb, zb) =
e

iπ
λ

r
2
b

(zb−zo)

iλ(zb − zo)

∫

T (ro) e
iπ
λ

»

r
2
o

zeff
−2

(rbro)

(zb−zo)

–

dro (1.19)

where zeff is given by
1

zeff

=
1

zb − zo

+
1

zo − zs

(1.20)

The wave-function after interaction with the biprism is given by:

Tb(rb)ψb(rb, zb) (1.21)

where Tb is given by Eq. A.16. The propagation from the biprism plane to the final
recording plane can be carried out by applying the Glaser-Schiske integral and
taking into account the microscope lenses [20]. However, referring all quantities to
the object space, where the image plane I is conjugate to the final recording plane
RP , it can be ascertained that the whole process is equivalent to the field-free
propagation from the biprism plane zb to the image plane I, having coordinate
zi.

Again using the Kirchhoff-Fresnel diffraction integral between the planes zb

and zi, and taking into account that when the specimen is in focus the object
plane O and the image plane I are the same, zi = zo, the equation is:

ψi(ri) =
e

iπ
λ

r
2
i

(zo−zb)

λ2(zb − zo)2

∫

Tb(rb) e
− 2iπ

λ

rb·ri
(zo−zb) ·

·

(

∫

T (ro)e
iπ
λ

»

r
2
o

zeff
−2

rb·ro
(zb−zo)

–

dro

)

drb

(1.22)
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By introducing the projection factor γ defined as

γ =
zb − zo

zeff

=
zb − zs

zo − zs

(1.23)

and the new “dummy” variable

r′b =
rb

γ
(1.24)

equation (1.22) can finally be written as:

ψi(ri) =
e
− iπ

λ

r
2
i

γzeff

λ2z2
eff

∫

Tb(γr
′
b) e

2iπ
λ

r
′

b
·ri

zeff ·

·

(

∫

T (ro)e
iπ

λzeff
(r2

o−2r′
b
·ro)

dro

)

dr′b

(1.25)

By rearranging the exponents, eq.(1.25) can be recast in the form:

ψi(ri) =
e

iπ
λ

r
2
i

zo−zs

λ2z2
eff

∫

Tb(γr
′
b) e

− iπ
λzeff

(ri−r′
b
)2

·

·

(

∫

T (ro)e
iπ

λzeff
(ro−r′

b
)2

dro

)

dr′b

(1.26)

in which the forward and backward propagators are explicitly shown.
The above equation clearly displays the scaling relation between spherical and

plane illumination which can be obtained from the former in the limit zs → ∞,
where γ → 1 , zeff → zb − zo and r′b → rb. Therefore the case of spherical
illumination is identical to that of a plane wave impinging on a specimen at a
distance zeff , having radius Reff = Rb/γ and a deflection αeff = αbγ.

Since the FFT algorithm is numerically more efficient than the Frênel integral,
it is convenient to treat the equation 1.26 in the Fourier space. It can be done by
following the procedure (section 1.0.1) for both the forward and the backward
Frênel propagator. If the considerations made in section 1.0.2 are also followed, so
that the propagation scheme delineated in equation 1.7 is adopted, an equation
identical to equation 1.8 is obtained, where zb − zo and rb are replaced by zeff =
(zb − zo)/γ and r′b = rb/γ.
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2. Two-dimensional models for reverse biased

p-n junctions

Dopant profile investigation is an important issue for the semiconductor industry,
as the spatial distribution and the concentration of the dopant atoms are key
factors in understanding device operation and validating device simulations. The
need for a constantly increasing spatial resolution and sensitivity caused by the
ever-diminishing feature sizes of modern semiconductor device structures has
been faced, in the field framework of transmission electron microscopy, using two
major approaches. The first, based on incoherent dark eld imaging in scanning
transmission electron microscopy with a high angle annular dark field detector,
has made it possible to distinguish the atomic columns on the basis of their
content of dopant atoms [21, 22]. The high resolution is counterbalanced by the
poor sensitivity, which is higher for the methods suitable to detect the electrical
effects of dopants, such as phase contrast electron microscopy, whose modeling
will be treated in this chapter and the next one.

The need to interpret TEM experiments and to extract useful information
about the junction has for decades stimulated the development of increasingly
sophisticated models [23, 24, 25, 26, 27], for the electric field around the junction.
These model, however, are based on the one-sided step model describing the
internal field. Unfortunately, when experiments were eventually carried out on
diodes [28], the disagreement between theoretical expectations and experimental
data was so striking, that it was necessary to reconsider the whole issue from the
beginning and take a completely different approach. As the analytical-numerical
models developed up to then were not able to take into account the real set-up
within the electron microscope, the choice was made to use and adapt to our needs
a professional software package developed for the semiconductor industry, the
ISE-tCadsuite. In this chapter its main features will be described, in addition
to how we built the model of our specimen in the TEM, and how we have
interfaced the output to our programs based on Mathematica for simulating the
TEM images.

Nowadays, many of the experimental data are carried out by different and
accurate techniques. In this chapter, it will be also shown how experimental
images in out-of-focus and interferometry of p-n junctions far from the edge
are interpreted by two-dimensional numerical simulations. In particular it will
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Fig. 2.1. Comparison between real (above) and simulation device (below).

be shown that the new method of electron interferometry substantially supports
our hypothesis that suggests the charging of the oxide layers.

2.0.1 Device used in experiments.

Figure 2.1 shows the geometry of the device used in experiments for this thesis;
i.e. diode made available by the IMM section (ex LAMEL) of CNR in Bologna.
The p-zone was obtained by pre-diffusion and subsequent annealing of the boron
ions in the silicon. The boron concentration is from about 1.5 · 1019cm−3 to
the surface, which eventually cancels itself out within the bulk. Similar to the
result of thinning through the ionic beam, the thickness (in z) is not uniform
and decreases to zero in the hole. The oxidation of the silicon surfaces, which
determines the formation of a native oxide layer whose thickness is of the order
of 1−2 nm [29], must be kept in consideration: the positive charging of the oxide
semiconductor interfaces, which results from the dynamical equilibrium between
the electron-hole e-h pairs created by the effect of the electronic beam on the
oxide layer and the transport of the generated charge, has a fundamental role in
the generation of the electric field.

To take into account the effects that are neglected in the ideal p-n junction
one-dimensional model, for the simulations that are described in this chapter the
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development of a two-dimensional model has been retained sufficient (fig. (1.1) at
the bottom): therefore the effect of the hole has not been taken into account [30],
thus limiting the study to the part of the image that is far from the edge.

As has been done in previous works [31], and in agreement with measurements
of thickness, we chose a uniform value of 150 nm. We proceeded similarly for the
doping concentration, where we considered an average value, which had been
calculated by the SupremeIV simulations of Dr. S. Solmis group of the IMM. To
avoid any perturbation of the regions of the junction that could be caused when
contacts neared one another, we used a device with a length of 8 µm. Lastly, the
native oxide layer with a hypothesized thickness of 2 nm was introduced.

In the next chapter it will be important to develop three-dimensional models.
Any possible effects caused by the variation of the thickness and the presence of
an edge can be studied only with a 3D simulation. The presence of an edge could
give rise to phenomena of electrostatic induction that are not negligible, as has
been briefly mentioned in the introduction. However, the studies that have thus
far been conducted do not seem to show any disturbances by the edge in images
that are far from it.

2.1 Numerical simulations of the Electrostatic Potential

Real p-n junctions observed in a TEM are inhomogeneous semiconductors
thinned by ion beam, which damages the surfaces. Even if the specimen is not
damaged, within a few minutes native oxides can grow and coat the whole device.
Considering that the geometry is also strongly modified compared to the bulk
case, it is not difficult to understand why there are not yet any analytic formulas
for the electrostatic potential. It is possible to compute the electrostatic potential
starting from first principles of electromagnetism by implementing the Poisson’s
equation and the continuity equation for electrons and holes:


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
















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
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







V
′′

(r) = −
q

ǫ
(N (r) + pv(r) − nc(r))

∂
∂t
p(r, t) −G

′

(r, t) + U(r, t) + 1
|e|
∇·Jp = 0

∂
∂t
n(r, t) −G

′

(r, t) + U(r, t) − 1
|e|
∇·Jn = 0

(2.1)

where V is the electrostatic potential, q the absolute value of the electron charge,
ǫ the permittivity of Silicon, p(r) and n(r) the hole and electron concentrations,
G

′

the density of hole-electron pairs generated per unit time, U the density of
hole-electron pairs recombination per unit time, Jp and Jn the current density
of electrons and holes, and N (r) the concentration of ionized dopants, given by
[32, 33]:
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N (r) = Nd(r)



1 −
1

1 + 1
2
exp
(

εd(r)−εfn(r)

kT

)



+

−
Na(r)

1 + 2 exp
(

εa(r)−εfp(r)

kT

) (2.2)

where Nd(r) e εd(r) are the concentration and the energy level of the implanted
donor impurities (i.e Phosphorus ions in Silicon), while Na(r) and εa(r) are the
concentration and the energy level of the implanted acceptor impurities (i.e Boron
ions in Silicon), k and T are the Boltzmann constant and the Temperature, εfn(r)
and εfp(r) are the quasi Fermi levels of electrons and holes respectively.

The ISE-TCAD software packages concerning the resolution of differential equa-
tions of physical origin work on discrete quantities. The discretization is per-
formed on a mesh generated by the tool Mesh, and the values of the physical
quantities are mapped on the nodes of the mesh.

It must be kept in mind that DESSIS is for discrete functions, therefore it is
obvious that the discretization pace should be commensurated to the gradient of
the computed functions, in our case the gradient of the electrostatic potential.
The parameter that roughly indicates the potential variation in semiconductors
is the extrinsic Debye length [34]. To obtain a sufficient precision the local dis-
cretization step should be smaller than the extrinsic Debye length. However, it
will be shown that such ideal conditions are not always achievable, and in some
cases regularizations must be introduced to avoid artifacts.

2.1.1 PDE’s discretization

The so-called “box discretization” [35], is applied to discretize the partial differ-
ential equations (PDE) of the form

∇ · F +R = 0 (2.3)

. This method integrates the PDEs over a test volume such as that shown in
figure (2.2), In general, “box discretization” discretizes each PDE of the form 2.3
into

∑

j 6=i

(di,j/li,j) · Fi,j + µ(Ωi) ·Ri = 0 (2.4)

by applying the divergence theorem [36] to each node (i, j index the nodes).
For instance, in the case of the Poisson equation (the first of the system 2.1),

Fi,j corresponds to ǫ·(Vi − Vj) and Ri corresponds to the charge density ρi. If the
continuity equation for holes is also implemented (the second of the system 2.1),
Ri indicates the term ∂

∂t
pi − G

′

i + Ui and Fi,j indicates the current density 1
|e|

·
Ji,j.

However, because of numerical stability issues, DESSIS always uses as inde-
pendent variables the electrostatic potential and the dopant concentrations. In
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fact, in the case of continuity equations (the second and the first equation of the
system 2.1), the density currents Jp e Jn are given as functions of the electrostatic
potential V and of the carrier density p ed n [35].

One special feature of DESSIS is that the actual assembly of the non-linear
equations is performed element-wise [37], that is:

∑

i∈Element(e)







∑

j∈V ertice(e),j 6=i

{(di,j/li,j) · Fi,j} + µ(Ωi) · Ri







= 0 (2.5)

This expression is equivalent to (Eq. 2.4) but has the advantage that some param-
eters (ǫ, µn, µp). can be handled element-wise. This is advantageous for numerical
stability and physical exactness [37].

2.1.2 Boundary conditions

Charge neutrality and equilibrium are assumed at the electrodes for ohmic con-
tacts:

n0 − p0 = ND −NA

n0p0 = n2
i,eff

(2.6)

where n0, p0 are the electron and hole equilibrium concentrations. Equations (2.6),
together with
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Ψ = Vappl +
kT

q
asinh

(

ND −NA

2ni,eff

)

(2.7)

give the Electrostatic Potential Ψ at the ohmic contacts.
If the electron or hole recombination velocity (Ue, Uh) is specified, it converts

the conditions stated above to the following current boundary conditions:

Jn · n = |e|Ue(n− n0)

Jp · n = −|e|Uh(p− p0)
(2.8)

where Ue, Uh are the electron or hole recombination velocities; e is the electron
charge.

All other boundaries are treated with reflective [37] (also called ideal Neu-
mann) boundary conditions:

∇V · n = 0

Jn · n = 0

Jp · n = 0

(2.9)

where n is the normal to the boundaries, V ,Jn,Jp are the electrostatic potential
and the conduction currents (sec. 2.1).

2.1.3 Validation of the 2D numerical computations

Two criteria have been followed in order to obtain reliable simulations. The first
aims at a thinner discretization where the electrostatic potential slope is steeper.
The discretization step is defined by the user in the input file (filename.cmd) of
the ISE-tCad meshing tools, by means of the definition of rectangular regions,
called “refinement”, in which the value of the discretization step can approxi-
mately be preassigned in each coordinate direction. The criterion proceeds in the
following manner: first a rough model is drawn as a way to understand where the
potential is steeper. Then refinements that have a smaller discretization step are
added and extended until a stationary result is obtained within some preassigned
error (e.g. in order to have an error smaller than the experimental sensibility).
Figure 2.3 shows an example of the adopted procedure.

The second criterion aims to check the electrostatic potential at discontinu-
ities between materials and between regions at different doping concentration by
analytical models when possible. In some cases, as is the case for the dopant con-
centration, the only solution is to smooth the discontinuity. Figure 2.4 shows the
DESSIS solution for the electrostatic potential across an abruptly doped junction,
the spike corresponding to the doping concentration step is clearly an artifact pro-
duced by the numerical method. On the other hand real dopant concentrations
are never abrupt. The depletion layer width ranges from 5 nm to 100 nm and it is
necessary to introduce a smooth dopant profile. A complementary error function
has been implemented to perform this task.

We have also checked the band bending at the material discontinuity between
Silicon and Silicon-oxide surface layer when the interface is charged. An analytical
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2.2 2D mixed numerical-analytical computations for the interpretation of the TEM images far from the

approximated model [34], which allowed us to compute the surface band bending
far from the junction, has been implemented in order to assess the reliability of
DESSIS on this kind of discontinuity. We found that in this case the numerical
method shows no problems provided that the discretization is not wider than 1
nm around the charged interfaces.

In 3D simulations (sec.3.1.1) we also checked the software on the contact-
contact discontinuity by an analytical model for the abrupt junction at the
edge [26, 30].

2.1.4 Mathematica and the ISE-tCad

In this section the problem of the interface between the softwares used for simula-
tions will be discussed. The ISE-tCad (v8.0) suite provides tools for device sim-
ulations from device fabrication to electric computations. We used the software
Mathematica for the wave-optical numerical analysis of the image formation (and
also for analytical models), on the Electrostatic potential computed by DESSIS.
In Mathematica “Everything is a list” - as the manual states - and the intrinsic
function Interpolation works only on data in matricial form, i.e. on discrete func-
tions defined on “rectangular” meshes (for instance the output data of a finite
difference simulations). On the other hand, the ISE-tCad meshing tools Mesh

and Mdraw are not equipped with options that force the algorithm to generate
these kinds of meshes. For this reason, one of the most demanding issues of image
simulations is to make the meshing tools to generate “rectangular” meshes. This
can only be done by manually adjusting the refinements (sec.2.1.3) of the files
used as input for Mesh and Mdraw. Such a job must be done proceeding by trial
and error and how much experience the operator has plays an important role in
how quickly the desired adjustment is achieved.

The second, although not minor issue, is how to handle output data format [38]
and to convert them in order to have a Mathematica-readable input, i.e. a list of
4-tuples, as for example ((x1, y1, z1, V1),(x2, y2, z2, V2),....,(xN , yN , zN , VN)). This
task has been carried out for 2D simulations by a GUI application written in
Java by Dr. P. F. Fazzini, while 3D data extraction has been performed by a less
manageable FORTRAN software.

2.2 2D mixed numerical-analytical computations for the

interpretation of the TEM images far from the edge.

In this section the interpretation of out-of-focus (1.0.1) and interferometric
(sec.1.0.2) images of a thinned reverse biased straight p-n junction, obtained at
the IMM by the field emission microscope Tecnai F20, will be discussed. Although
the specimen is edge ended, the junction is straight, and the region under con-
sideration is far enough from the edge so that the one-dimensional phase object
approximation can be adopted (i.e. the phase shift introduced by the specimen
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only depends on the direction orthogonal to the straight junction and to the elec-
tron beam). In this case, a two-dimensional model for the electrostatic potential
is sufficient, while the interpretation of the whole field image, including also the
edge, requires three-dimensional modeling (Chapter 3).

At first, observations of reverse-biased p-n junctions in a transmission electron
microscope by means of the out-of-focus method have shown that an agreement
between experiment and theoretical interpretation can be reached assuming that
the native oxides are charged under the action of the electron beam [8]. It is
possible to distinguish between this assumption and the case of uncharged speci-
men, or the dead layer model [39], because qualitatively different predictions are
given over a range of defocuses and reverse biases, in spite of the fact that the
out-of-focus method is a rather poor imaging technique from a quantitative point
of view [40].

A more quantitative approach is represented by electron interferometry ob-
servations, carried out by inserting an electron biprism at the level of the in-
termediate aperture (sec. 1.0.2). Inasmuch as the observed p-n junctions can be
considered as a one-dimensional phase object, the image is a parametric repre-
sentation of the phase difference between interfering points [41]. These results are
therefore more directly and easily interpreted than the former out-of-focus obser-
vations [1] and more convincingly support our considerations about the existence
and the role of the charged layer.

A mixed numerical-analytical approach has been developed in order to take
into account the equation for inhomogeneous semiconductors (Poisson, Electron,
Hole), simultaneously and to keep the boundary conditions of numerical compu-
tations under control (sec.2.2.2).

2.2.1 Dopant implantation simulation

The observed device, a p-n junction obtained by Boron deposition and annealing
on a Phosphorous substrate has been simulated through the ISE technological
CAD [38] obtaining the profile of both internal and external fields. The doping
concentration in the substrate is known while the profile of the diffused species has
been fitted with an error function profile by comparison with an ATHENA [42]
process simulation.

2.2.2 Potential and phase computation.

Numerical simulations, performed with the tool DESSIS of the ISE-tCad suite,
were used to compute the electrostatic potential. The domain of the simulation
and the corresponding electrostatic potential, are shown in figure 2.5. Due to
the distortion of the equipotential lines at the boundaries, due to the reflective
conditions 2.9 imposed by DESSIS, we did not use the numerical fringing field to
obtain the electron optical phase shift. The phase shift due to the fringing field has
been directly obtained from the surface potential (in this case a line potential),
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by solving the Laplace’s equation by means of the Fourier method [27]. The
inner phase has been obviously calculated by numerical integration of the DESSIS

potential. Such a mixed analytical-numerical model also reduces the effect of the
reflective boundary conditions, which determine an array of parallel junctions
with periodicity equal to the domain simulation width. In fact, since the inner
and surface potential do not depend on the direction orthogonal to the junction,
the numerical solution can be prolonged in this direction in order to increase the
periodicity of the array and then reducing its effect. Therefore, the fringing field
results closer to the one of a single junction and images with a wider field of view
can be obtained. In our case phase functions over a domain of 16 and 32 µm have
been obtained from a 8 µm × 8 µm potential simulation, to keep under control
this degree of freedom.

In order to unravel the physical mechanism that reduces the external field
starting from first principles, we surmised a charging of the native oxide under the
action of the electron beam. Simulations have been performed with a fixed surface
charge, used as a parameter that must be fit by comparison between experimental
and theoretical images. Such a charge strongly influences the internal field: the
depletion layer width is shrunk by an order of magnitude and comparing it with
experiments confirms, at first just qualitatively in the out-of-focus case, and then
more quantitatively in the interference case, the hypothesis that surfaces are
charged during TEM observations.

2.2.3 Experimental results

Referring to figure (1.6), the part of the image where the biprism crosses the
junction, ≃ 3µm far from the edge, will be considered. Figure 2.6 shows how the
variation of the interference fringes across the junction depends on the applied
inverse bias, (0 ± 0.01)V (b) , 1.56 V ± 1% (c), 3.13 V ± 1% (d): figure (a)
shows the fringe system in the absence of the specimen. In particular, besides
the deformation of the fringe system whose spacing varies point by point , it can
be noticed that, mainly in (d), also the intensity varies and diminishes in the A
region, where the fringes are more spaced.

Finally, figure (2.7) shows out-of-focus images of the junction at the same bias
and for opposite values of the out-of-focus distance.
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Fig. 2.5. Left: geometry used for numerical computations of the electrostatic potential. In

yellow the vacuum, in pink and in blue the Silicon n- and p+-doped respectively, in brown the

Silicon oxide (0.002µm thick) and in red the contacts. The specimen thickness is out of scale,

so that the oxide is visible. Right: the Electrostatic Potential is distorted at the boundaries, so

that the vacuum must be taken large enough to avoid perturbations in the specimen potential.
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(a)

(b)

(c)

(d)

A

Fig. 2.6. (a); image without specimen. (b), (c), (d); local images of the junction in interferome-

try. The inverse bias takes the following values: (0 ± 0.01)V (b) , 1.56 V ±1% (c), 3.13 V ±1%

(d)
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.7. Local images of the junction in out-of-focus: in (a), (c), (e) the defocus is

∆z = (−13 ± 3)mm; in (b), (d), (f) it is ∆z = (40 ± 2)mm. The inverse bias takes the

following values: in (a) e in (b) Vibias = (0 ± 0.01)V , in (c) a in (d) Vibias = 1.56 V ± 1%,

and in (e) and (f) Vibias = 3.13 V ± 1%
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2.2.4 Interpretation of experimental images.

As stated in section (sec. 1.0.1) once the phase has been calculated from the elec-
trostatic potential (app. A.1), it is possible to calculate the out-of-focus images
by evaluating the Kirchoff-Fresnel (K-F) integral [2]. While, starting from the
object wave function, the interference image can be calculated with two Fresnel
propagations from the object plane to the biprism plane and vice versa, with the
biprism effect in between (sec. 1.0.2) the two propagations, that is described by
the transmission function (Eq.A.16). Obviously, spherical illumination was taken
into account (sec. 1.1).

It is clear that the contrast phenomena critically depend on the object wave
function and thus on the electrostatic potential associated with the junction. At
this point the simulation of the device becomes crucial.

Let us first consider our simulations with a charge of zero, which is equivalent
to a standard model of a one-dimensional junction, with the exception of a finite
thickness of 150 nm and the doping profile Erfc rather than abrupt.

Figure (2.8) shows the trend of the internal potential and the surface potential,
from which it is possible to calculate the external potential [27]: it should be
noted that regarding what has just been stated concerning the contour conditions,
the potential does not depend on z. Applying equation (A.12) it is possible to
obtain the respective contributions to the phase.

If we then apply the algorithms of the calculation of the images to this model,
we obtain results for the two series of images (interferometry and out-of-focus ,
where effects of partial coherence have not been introduced and thus are much
more contrasted and detailed) that concord at least qualitatively with individual
images but not with the entire series (figg. 2.9, 2.10).

This indicates that the standard junction model is not capable of interpreting
experimental data, and thus it is necessary to introduce new elements to the
model.
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Fig. 2.8. Simulations of electrostatic potential with an oxide charge of 0|e|/cm2: from left to

right the reverse polarization Vibias of the specimen is 0 V , 1.5 V e 3 V .

Fig. 2.9. Simulations of interferometric images with an oxide charge of 0 |e|/cm2: in (a), (b)

e (c) the values of the reverse polarization of the junctions are respectively: 0, 1.5 e 3 V . The

biprism has a potential of 5 V .



2.2 2D mixed numerical-analytical computations for the interpretation of the TEM images far from the

(a) (b)

(c) (d)

(e) (f)

1 µm

Fig. 2.10. Simulations of out-of-focus images with an oxide charge of 0|e|/cm2: on the right

∆z = 4cm, on the left ∆z = −13mm; from the top to the bottom Vibias = 0, 1.5 e 3 V

respectively.
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As we have explained in the introduction of this chapter, in recent years the
analysis of this problem has singled out the charging of the surface oxides as the
possible and plausible origin of the observed effects.

Figure (2.11) shows the potential trend within the sample and at the surface for
a density of a superficial charge on the two sides of 7.5 ·1012 |e|/cm2. It should be
noted that in addition to the variation of the field at the surface, which influences
the field and the external phase displacement, the internal field is also heavily
modified, particularly by the reduction of the width of the depletion layer.

The calculation of both the interferometric (Fig. 2.12) and out-of-focus im-
ages (fig. 2.12) show a much better agreement, thus indicating the validity of the
proposed model.
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Fig. 2.11. Simulations of electrostatic potential with an oxide charge of 7.5 · 1012|e|/cm2: from

the left to the right the values of the reverse polarization are 0, 1.5 e 3 V respectively.

Fig. 2.12. Simulations of interferometric simulations with an oxide charge of 7.5 · 1012|e|/cm2:

in (a), (b) and (c) ) the values of the reverse polarization of the junction are 0, 1.5 e 3 V

respectively. The biprism has a potential of 5 V .
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(a) (b)

(c) (d)

(e) (f)

1 µm
Fig. 2.13. Simulations of out-of-focus images with an oxide charge of 7.5 · 1012|e|/cm2: on the

right ∆z = 4cm, on the left ∆z = −13mm; from the top to the bottom Vibias = 0, 1.5 e 3 V

respectively.
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If the surface density charge is increased to the value of 2.5 · 1013 |e|/cm2

(fig. 2.14), the electrostatic field variation at the surface is further reduced,
becoming nearly zero, affecting the phase shift, as shown in the following fig-
ures (figg. (2.15), (2.16)). The comparison with the experimental data once again
shows a notable disagreement, as was the case with the standard model.

8 µm 15
0 n

m

1.5V 3.5V 5V

Fig. 2.14. Simulations of electrostatic potential with an oxide charge of 2.5 · 1013|e|/cm2: from

the left to the right the values of the reverse polarization are 0, 1.5 e 3 V respectively.

Fig. 2.15. Simulations of interferometric simulations with an oxide charge of 2.5·1013|e|/cm2: in

(a), (b) and (c) the values of the reverse polarization of the junction are 0, 1.5 e 3 V respectively.

The biprism has a potential of 5 V .

More accurate simulations around the value of 7.5 × 1012 e.c./cm2, show that
the accuracy is of ±1 × 1012 e.c./cm2.
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(a) (b)

(c) (d)

(e) (f)

1 µm

Fig. 2.16. Simulations of out-of-focus images with an oxide charge of 2.5 · 1013|e|/cm2: on the

right ∆z = 4cm, on the left ∆z = −13mm; from the top to the bottom Vibias = 0, 1.5 e 3 V

respectively.



3. Three-Dimensional Field Models for Reverse

Biased p-n Junctions.

In the previous chapter experiments on p-n junctions interpreted with two dimen-
sional models for electrostatic potential, i.e. for one-dimensional phase-object,
were discussed. Here the general observations made in the presence of an edge
in the specimen will be considered. The problem becomes three-dimensional as
the thin (∼ 100 up to 500 nm) foil specimen is now bounded by an edge, so that
the electrostatic potential is no longer constant along the direction of the junc-
tion, which is orthogonal to the edge. It will be possible to interpret the shadow
and edge interferometry images shown in the first chapter (sec. 1.0.3), provided
that the hypothesis of the charging of the surface oxides under the action of the
electron beam is still undertaken.

Moreover, the presence of an edge is also typical of the geometry of the off-
axis holography set-up (sec.1.0.4), where the electron wave transmitted by the
specimen, and around its edge, is brought to interfere with the reference wave
transmitted by the vacuum, that in most cases is perturbed by the fringing field
generated by the specimen itself. If such a perturbation is significant, the reference
wave can not be considered a plane wave, so that the reconstructed hologram is
no longer truly representative of the object phase. Therefore, three-dimensional
models are important in computing the whole field surrounding the specimen,
allowing us to take into account all the perturbations and thus to perform image
simulations that enable us to accurately recover the phase shift, and correctly
interpret the experimental results.

The increase in dimension from a 2D to a 3D computation, along with the need
to keep the simulation domain wide enough in order to avoid the perturbation
produced by boundary conditions, leads to an effective limitation in the precision
of simulations (if the machine used is equipped with an ordinary CPU) and to
an exponential increase of time machine (section 3.1). In order to deal with
these problems, a mixed numerical-analytical approach 3.2 has been followed, in
addition to full 3D numerical computations.

This approach is similar to the one used for two dimensional simulations 2.2,
since it uses the specimen potential to recover the external phase shift. The
development of the mixed approach and its use can be synthesized as follows.
First, the Three-Dimensional numerical computation was assessed in the case of
an abrupt junction of zero thickness, constituted by two laminar contacts kept
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at opposite potential (e.g. −1 V +1 V ), which can be modeled exactly with an
analytical formula. Second, a finite thickness was added to the abrupt junction:
there is no exact analytical solution in this case, so that the exact solution at
z = 0 plane (the specimen plane) has been prolonged in order to obtain an
approximated solution for the finite thickness case. The difference between such
an approximated solution and the full 3D computation is less than 2%, reaching
its maximum value in the vacuum region close to the edge. Then, the method of
using the analytical formula for thick specimens was adapted to the real junction:
a two-dimensional numerical computation is prolonged and patched to recover
the inner electrostatic field, while the outer field is computed analytically from
the numerical potential at the edge. Since the external field is diminished by
the surface charging, the maximum error (2%) of the abrupt case in the vacuum
region close to the edge has been considered as an upper limit at first. However,
because of the more complex dynamics of semiconductors, the 2% error limit is
overcome for some values of surface charging and doping concentration. Finally,
experimental images in out-of-focus, interferometry and holography have been
interpreted using the mixed model, as the full three-dimensional model, which is
quite heavy from the computational point of view, has only been used in a few
cases in order to assess the limit of validity of the mixed model. Limitations of
the mixed model are discussed in section 3.2.1.

3.1 Full three-dimensional model

The full three-dimensional model used for the interpretation of the edge images
of p-n junctions, is based on numerical simulations of the electrostatic poten-
tial, performed by means of the tool DESSIS of the ISE-tCad suite. From this
point of view, its features, shown in figure 3.1, are clearly the same of the two-
dimensional model (chapter 2). But contrary to the 2D case, here no exact ana-
lytical formula for the external field is available. Therefore the external potential
computed numerically has to be used for phase recovery. Hence the dimensions
of the simulation domain become critical, as not only the specimen must not be
perturbed by boundary conditions, but neither must the vacuum, which is useful
for observations. For this reason, using a normal personal computer equipped
with a RAM card of about 1 GB, computations with a sufficient precision are
time consuming (∼ 2days) in the case of the interferometry, and quite impossible
for out of focus simulations, which are more sensitive to the imperfections due to
a poor sampling of the grid. The increase in dimension (2D→3D) strongly con-
tributes to the increase in the necessary points to achieve a sufficient precision.
For the sake of simplicity, if the same number of nodes is set for each dimension,
the law N = Nd

xi
can be used to compute the number of nodes (section 2.1.1)

of a d-dimensional simulation with Nxi
nodes per dimension. For instance, with

Nxi
= 50, it can be easily verified that a 2D simulation of 2500 nodes is equiv-

alent, in precision, to a 3D simulation of 125000 nodes. But, in the case of the
machine used for this thesis, the 2D simulation takes 10 minutes compared to
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Fig. 3.1. The full three-dimensional model. (a). (b). (c). (d). (e).

the 2-3 days of the 3D simulation. Since a good 2D simulation has got at least
10000 nodes, it is clear that a super-computer or a parallel processing system with
ordinary CPU would be necessary to easily perform a reliable 3D simulations.
The CPAC model developed in section 3.2 is of some help in this case.

3.1.1 Validation of the 3D numerical computations

The only way to assess the reliability of a finite-element numerical sofware pack-
age is to vary the parameters until a stationary result is obtained within some
preassigned error (sec.2.1.3). In our case, the availability of an analytical model
allows us to reduce the arbitrariness and to evaluate better the accuracy of the
numerical approach. Therefore, we first applied the ISE-tCad suite to simulate
the case of an abrupt p-n junction in a very thin specimen and compared the
results to the analytical calculations for the field and the integrated potential
(proportional to the electron optical phase shift, which is the important quantity
for the simulations of TEM observations). To this end, the simulation domain
was extended independently in z and y, the sampling density across the junction
has been increased until the electrostatic and the integrated potential showed
negligible modifications in the region of interest (Fig. 3.2). The variation along
the x direction is not considered because it is directly related to the periodicity of
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Fig. 3.2. Equipotential surfaces of a step junction (±1V ) with negligible thickness; ∆x = 4µm,

∆y = 8µm. a) ∆z = 2µm; the simulation domain is too small along z, and artifacts introduced

by the boundary condition ∇V · n̂ = 0 are evident when the potential topography is compared

to b, where the simulation domain was extended to ∆z = 8µm: in this case, the electrostatic

potential is well contained in the simulation domain, vanishing before z reaches the domain

edge. Note also that the choice of ∆z affects the equipotential surfaces also along y, as visible

by comparing the stray field potentials in the vacuum region (y < 0). In b ∆zi denotes the

range of the integration of the potential used to evaluate the phase shift associated with the

junction.

the array (see section 2.1.2 for the boundary condition implemented in numerical
simulations).

The comparison of numerical results with those obtained by calculating the
analytical expressions through Mathematica [43] shows that we determined the
appropriate domain size and sampling resulting in a maximum relative error of
0.001 in the potential and of 0.02 in the integrated potential calculated over the
whole vertical length (Fig. 3.3), where the phase shifts are calculated for 200 keV
electrons.

It is interesting to note that this error decreases to 0.01% if the potential
is integrated only up to half the simulation domain ∆z. This effect is due to
the distortion of the electrostatic potential near the simulation edges induced by
the boundary conditions used in the numerical computation. These results show
that the numerical evaluation of the phase shift is more strongly affected by
the choice of the boundaries than by the potential, and in order to have reliable
results we have to “waste” numerical resources to include the empty space around
the specimen. These resources may be better utilized in the device simulation if
the external field and phase shift are calculated whenever possible using the
analytical results. Since, however, real specimens are most likely thick objects,
we have to account for their finite thickness. To this end, we employ a mixed
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Fig. 3.3. a) Phase shift obtained by numerical integration along z of the ISE-tCad potential

of a −1V (p)+1V (n) step junction. b) its difference with the analytical phase shift of the same

junction. The absolute difference decreases down to 0.8rad by adjusting the range of integration

∆zi to half ∆z (see Fig. 3.2)

Fig. 3.4. a) Vertical section of the potential at 0.5µm from a 200nm thick junction obtained

by prolonging the z = 0 plane potential along the specimen thickness. This procedure results

in straight equipotential lines over the thickness t. b) the fully 3D simulation over the same

region, showing small differences with respect to a. c) phase difference contours between the

models a and b; the largest error is of 2.5%, and becomes 4% at 300nm thick. However, the

error lies mainly outside the region of interest, across the junction.

numerical-analytical approach that consists of taking the analytical model for the
zero-thickness step junction (Fig. 3.4a) and prolonging its z = 0 plane potential
along z over the thickness t. This approximate potential is then compared to
the fully three-dimensional model (Fig. 3.4b): the equipotential lines look very
similar for both cases and the comparison between the phase shifts confirms that
the “prolonged” model is affected by a maximal relative error of about 0.04%.
The error, however, lies mainly outside the region of interest across the junction.

3.2 The CPAC Model for the semiconductor junction

To improve our 3D model, we extended the former considerations to a realistic
semiconductor junction, and introduced the CPAC model (Cut, Paste, Analytical
Computation). This approach consists of building a 3D potential by cutting,
pasting and prolonging with analytical computations parts of a 2D simulation.
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Fig. 3.5. The CPAC model of a Sb-B junction at 3V reverse bias: a) f(x, z) is the 2D

potential. b) the CPAC 3D model; region 1: the potential is V (x, y, z) = f(x, z); region 2:

V (x, y, z) = f(x, y); region 3: analytical computation from the 2D surface line; region 4: con-

stant prolongation from region 3. c) numerical 3D model to be compared with the CPAC. d)

phase shift associated to the numerical 3D model. e) phase difference between the two models

over the specimen: the relative error is less than 3%

The way of cutting, pasting and prolonging the potential is suggested by the
similarity between the prolonged potential, as discussed above, and the fully 3D
simulated potential. First, a 2D simulation is taken (Fig. 3.5a), and its surface
potential is utilized to compute the potential in the region 3 of Fig. 4b by using
the analytical formula [26, 30], while the inner potential is cut and pasted with
a 45 degrees pattern to recover the 3D specimen potential. The choice of this
particular patching angle (45o) is somewhat arbitrary, and most likely depends
on the thickness. In fact, while it is certainly reasonable that in the limiting
case when the specimen thickness is very large, the symmetry dictates the same
potential topography as a function of y and z, for thin specimens it is conceivable
that other patching angles may be more appropriate. Also, it is not clear whether
patching should occur along a straight line rather than along a more general
curve. However, for very thin specimens, the smaller relative contribution of
the internal field topography to the total potential may minimize the effects
of choosing a different patching procedure.

Finally, the analytical potential of region 3 is extended over the thickness in
front of the specimen with a constant z prolongation to recover the potential of
the region 4. Such a model is a good approximation for a real device if the full
3D surface potential doesn’t vary appreciably in the directions orthogonal to the
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Fig. 3.6. Vertical section of the electrostatic equipotential contour lines of a Full 3D simulation

of a 300 nm thick Sb-B doped Si p-n junction. In “a” is visible the perturbation on the potential

by the tip effect due to the sharp edge

junction, i.e. y and z. Fig. 3.5c shows the equipotential lines of a 3D numerical
simulations: the condition of constant surface potential along the y and z di-
rections is satisfied. The comparison with the corresponding CPAC simulations
(Fig. 3.5d) shows that the two models look very similar: the relative differences
between phase shifts do not exceed 0.03 over the specimen (Fig. 3.5f).

3.2.1 Further cosiderations on 3D simulations - CPAC versus full 3D

As discussed in previous sections (3.2,3.1), the CPAC model differs from the
Full 3D computation in that it assumes that the Electrostatic Potential inside
the specimen and at its surface is constant in every plane parallel to the junction.
However, the full three-dimensional computation is performed assuming a fixed
uniform charging of the oxide under the electron beam. A vertical section of the
edge potential is shown in Fig. 3.6. The full 3D model discussed here should be
more accurate in predicting the behaviour of the junction at the edge, and the
CPAC should be considered an approximation. But the situation is more complex
than expected. Indeed, since our 3D simulations have always been performed on a
square grid in order to avoid the problems concerning data transfer from the ISE-

tCad format to a format readable by Mathematica, the 3D junction is modeled
by a parallelepiped with a very sharp edge. This can be considered a rather rough
approximation, as such a feature is not perfectly traced in the geometry of real
specimens, and tip effects on the external field are usually strongly dependent
on the radius of curvature (it is zero in our 3D simulations). This is mainly
true for perfect conductors, and high doped semiconductors of junctions modeled
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in this thesis can be considered good conductors. Real edges are more or less
rounded so that the CPAC is probably more suitable for the interpretation of
some experiments. In the future, the next step in simulations will be to control
this further parameter. The discrepancy between the models depends on the
presence of the surface charge, as shown in figure 3.7.

3.3 Interpretation of the Experimental results in

out-of-focus and interferometry.

In this section the image interpretation of the Argon milled specimens prepared
and observed at the IMM/LAMEL section of the CNR in Bologna will be dis-
cussed. The 3D model allows us to simulate the whole field of out-of-focus and
interferometry images obtained by P. F. Fazzini by the Philips CM 30 TEM.
The simulation of these images in their entirety becomes rather challenging from
the numerical point of view, if the machine used for computations is a normal
personal computer (see sec. 3.1). In fact, the large field of view (≃ 15 µm) and the
long range electrostatic field generated by the junction, mainly at higher values
of the reverse bias, impose a simulation domain of at least the same dimensions,
in order to include the main features of the image without perturbing them by
the boundary conditions. In addition, despite the low resoution of such images, if
compared to the holography images recorded by the HREM group of Cambridge
before 2007, the mesh used for simulations must have a discretization step not
larger than the order of the nanometer in regions where the electrostatic poten-
tial shows sharp variations (Silicon-oxide interface), in order to avoid systematic
errors that propagate and affect the whole solution.

3.3.1 Out-of-focus

3D models make the simulation of large field images in out-of-focus (Fig.3.8)
possible. Previous works about microscope calibration [3] are fundamental to
obtain the correct values for the magnification and particularly for the out-of-
focus distance used in simulations, from which the fringe trend related to the
edge and the junction depends. However, the agreement between experimental
and simulated images is not reached (compare Fig. 3.8 to Fig. 1.8), due to the
poor sampling of the Full 3D model. The fringe trend is roughly similar to that
obtained in the experiments, but the difference in some details is noticeable. As
discussed in section 3.2.1, the Full 3D model and the CPAC model are not
consistent and the CPAC was not used. In this case, to perform Full 3D a super-
computer or a parallel processing system with ordinary CPU is necessary. The
shadow images at the edge of the specimen require a simpler analysis, as the step
height mainly depends on the external eld and as it is a geometric optical effect,
it is a linear function of the defocus [30]. The amount of the edge deformation is
in agreement with experiments.
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Fig. 3.7. Comparison between the phases obtained by CPAC and Full 3D model (electron beam

energy 200 keV ), for an abrupt (the dopant concentration is modeled by an error function with

σ = 5 nm layer is ≃ 5 nm) Sb-B reverse biased (3 V) Si p-n junction (300 nm thick specimen).

Left: no surface charge (“bulk approximation”). Right: Surface charge of 1.5 × 1013e.c./cm2.

A1,B1) Phase contribution of the specimen “layer”. A2,B2) external phase. A3,B3) total phase.

A4,B4) Difference between the CPAC and the Full 3D phase. Contrary to our expectations, in

this case, the discrepancy between models does not shrink when surface charge is present: the

agreement gets better for the fringing field, but it gets worse in the specimen, introducing an

additional bias to the junction. This is due to the abruptness of the junction.

3.3.2 Interferometry

The large field interferometry images (see for example figure 1.6) have been sim-
ulated thanks to the 3D Electrostatic potential obtained by means of the 3D

models. The field of view is large (µm), and the Full 3D model is not sufficient
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Fig. 3.8. Image simulation of a reverse biased p-n jnction observed in out-of-focus: the defocus

distance is zeff =≃ 40mm. p-dopant concentration: 1× 1019e.c.cm−3. n-dopant concentration:

1×1015e.c.cm−3. Reverse bias: 5V. Surface charging concentration imposed: 7.5×1012e.c.cm−2.

The conditions are the same of the experimental image shown in figure 1.8. However, the

simulated image does not fit the experiment, because of the poor sampling of the full 3D model

(fringes appear in correspondance of the the mesh steps).

to simulate the whole image. Hence the CPAC model (sec.3.2) has been used,
in spite of its limitations. Let us consider the images with a reverse bias of 3V ,
that show the most peculiar features. The whole field of view of interferometry
experiments is recovered (Fig.3.9): the characteristic bending in the fringes of
the biprism when it crosses the junction is still present. It is consistent with the
approximation undertaken in 2D simulations, i.e. the region where the biprism
crosses the junction can be considered at a distance ≃ ∞ from the edge. When
the surface charge is brought to 2.51̇013e.c.ċm3 (Fig.3.10), the fringe trend is
perfectly straight, which means that no external field is present. Only a smaller
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2 µm

Fig. 3.9. Large field images of the junction in interferometry. Reverse bias: 3V. Surface charging

concentration imposed: 7.51̇012e.c.cm−2.

lateral displacement across the junction caused by the influence of the internal
field is present, contrary to the experimental images that are fit by simulations
performed at a value 7.51̇012e.c.ċm3. On the other hand, such a value of the
charge cannot be shrunk further, as the junction width increases producing a dif-
ferent slope across the biprism intersection (in figure 3.11 the case of zero surface
charge is shown).
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2 µm

Fig. 3.10. Large field images of the junction in interferometry. Reverse bias: 3V. Surface charg-

ing concentration imposed: 2.51̇013e.c.cm−2

3.3.3 Holography

A 3D model is necessary to compute the external field protruding in the vacuum
in front of the edge. These kinds of computations, in general, are of great im-
portance in the case of electron holography simulations, as the fringing field may
perturb the reference wave so that it can not be assumed as a plane wave. If this
is the case (see also chapter 4), the reconstructed hologram is no longer truly rep-
resentative of the object phase. In this section a holographic image of an abrupt
(Erfc dopant concentration: σ = 5 nm) Sb-B doped (4 × 1018/cm−3) symmetric
p-n junction is modeled by means of the CPAC model. The specimen, milled by
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2 µm

Fig. 3.11. Large field images of the junction in interferometry. Reverse bias: 3V. Surface charg-

ing concentration imposed: 0e.c.cm−2

a Gallium FIB, with a thickness of ∼ 500nm, has been prepared and observed by
the HREM group at the University of Cambridge. An intensity image shows the
oxide surface layer produced during the FIB milling (Fig. 3.12:2a). FIB milling
causes severe damage to the crystal lattice close to the specimen surfaces [44]

In addition to the oxide surface layer, another layer due to the FIB milling
is present between the former and the bulk. These layers contribute to the most
interesting feature of the contour map image (Fig 3.12B): the strong phase wrap-
ping that corresponds to these “electrically altered” layers. Another effect that
is linked to the phase wrapping is the cancellation of the fringing field, which
would be present if the standard bulk approximation were valid.
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Fig. 3.12. A), B): Experimental images of a Sb-B symmetric doped p-n junction. The doping

concentration is 4·1018e.c./cm3. The specimen thickness is ∼ 500nm plus ∼ 30nm of amorphous

surface layers. A) A reconstructed phase image of the junction. B) Cosine of the phase (Contour

map) revealing the presence of an “electrically altered” layer on the sample surface. It is very

interesting to notice the strong phase wrapping on this “electrically altered” layer, which is

modeled by a volume fixed charge due to the beam interaction (secondary electron emission)

with the insulating layer of the specimen. The bulk is a semiconductor so that the excess charge

can flow toward the contacts. C1), C2), D1), D2): Holography simulations of a Sb-B symmetric

doped p-n junction using the CPAC model. The doping concentration is 4 · 1018e.c./cm3. The

specimen thickness is 500nm plus 30nm of uniformly charged insulating layer. The uniform

charge is 3.3 ·1018 in C1) and C2) and 5 ·1018 in D1) and D2). In C2) and D2) the perturbation

on the reference wave is taken into account.

To take into account both the phase wrapping and the cancellation of the
fringing field, it is sufficient to make the hypothesis that the electron beam charges
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the surface layers. Indeed, the CPAC (sec. 3.2) simulations are made with a fixed
volume charge of the amorphous surface layer (30 nm) (Fig. 3.12A), implemented
in the numerical solver as an insulating material. It turns out that the phase
wrapping can be interpreted by adopting this hypothesis, and also, the intensity
of the fringing field is diminished by the increase of the oxide charge 3.12. The
experimental contour map image (Fig. 3.12A) shows that the phase wrapping is
extended under the amorphous layer towards the bulk, due to a layer of about
30 nm is present between the 30 nm amorphous layer and the bulk. It is possible
to model the effect of this layer by imposing a fixed charge, but studying the
specimen preparation mechanism and its effects is preferred in order to develop
a more accurate model.
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4. Electron Holography of a

Metal-Oxide-Semiconductor specimen.

In this chapter, the behavior of Metal-oxide-semiconductor MOS specimen [45]
observed by off-axis electron holography in a Philips CM200-ST FEG TEM is
considered. The experimental images are interpreted by comparing them to simu-
lated images obtained by elaboration of the 3D electrostatic potential computed
by the commercial software ISE-tCad tools Mesh and DESSIS. Such a software
allows us to take into account all the specimen features such as geometry, dopant
concentration, permittivity etc. and numerically solve the electrostatics problem
inside the specimen and the surrounding vacuum by implementation of Poisson’s
equation (that becomes Laplace’s equation in the vacuum) and continuity equa-
tions for electrons and holes (see also sec. 2.1.1). The transistor was prepared for
observation using conventional ’trench’ FIB milling in an FEI FIB 200 worksta-
tion [45]. Specimen preparation can avert the device from its ideal behavior and
affect its electrical properties. In particular, focused ion beam (FIB) milling can
modify the surfaces, resulting in physical damage and in ion implantation. It will
be shown that this issue seems not to be as effective as in the case of the p-n

junction (sec. 3.3.3). Indeed the hypothesis that the oxides are charged by the
electron beam, is sufficient to interpret the experimental results.

4.1 Specimen description and experimental results

A bright-field image of the transistor is shown in Figure 4.1a for a specimen of
nominal thickness of 400 nm. Off-axis electron holograms of this region were
recorded at 200 kV using a Philips CM200-ST FEG TEM equipped with a
Lorentz lens and an electron biprism. Figure 4.1b shows eight-times-amplified
phase contours obtained from region ’1’ in Figure 4.1a. Surprisingly, elliptical
contours are visible in each oxide region, and a fringing field is present outside
the specimen edge. Both the elliptical contours and the fringing field are asso-
ciated with the charging of the oxide as a result of secondary electron emission
from the specimen during electron irradiation. Figure 4.1c shows a similar image
obtained after coating the specimen on one side with 20 nm of carbon. The
effects of charging are now either absent or present only inside, there is no fring-
ing field outside the specimen edge, and the contours in the specimen follow the
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h)
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Fig. 4.1. Results obtained from the “trench” specimen of nominal thickness 400 nm (Left) and

150 nm (Right). (a,e) Bright-field TEM image of the PMOS transistors, indicating the locations

of the regions analyzed in more detail in the subsequent figures. (b,f) Eight times amplified

phase contours, calculated by combining phase images from several holograms obtained across

the region marked “1” in (a) and in (e) for the 400 nm thick and the 150 nm thick specimen

respectively. Specimen charging results in the presence of electrostatic fringing fields in the

vacuum region outside the specimen edge, as well as elliptical phase contours within the Si

oxide layers between the W contacts. (c) and (g) Show equivalent phase images obtained after

coating the specimen on one side with approximately 20 nm of carbon to remove the effects of

charging. The phase contours now follow the expected mean inner potential contribution to the

phase shift in the oxide layers, and there is no electrostatic fringing field outside the specimen

edge. (h) Shows the difference between phase images acquired before and after coating the

specimen with carbon for the 150nm thick specimen, again in the form of eight times amplified

phase contours: since there is no appreciable difference compared to (f), then the thickness can

be considered constant. (d) Shows one-dimensional profiles obtained from the phase images

in (b) and (c) along the line marked “2” in (a). Similarly, (i) Shows one-dimensional profiles

obtained from phase images along the line marked “2” in (e). The dashed and solid lines were

obtained before and after coating the specimen with carbon, respectively. The dotted line shows

the difference between the solid and dashed lines.
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change in specimen thickness in the oxide. Phase profiles were generated from
the images used to form Figures 4.1b and 4.1c along line ’2’, and are shown in
Figure 4.1d. The dashed and solid lines correspond to results obtained before and
after coating the specimen with carbon, respectively, while the dotted line shows
the difference between these lines. If the charge is assumed to be distributed
throughout the thickness of the specimen, then the electric field in the oxide is
2× 107 V/m [45], just below the breakdown electric field for thermal SiO2 of 108

V/m, while numerical 3D simulations, that take into account the fringing field,
give a slightly lower value of 1.5 × 107 V/m. The effect of specimen charging on
the dopant potential in the source and drain regions of the transistors is just as
significant. The phase gradient in Figure 1d continues into the Si substrate, and
the dopant potential is always undetectable before carbon coating, whether or
not a phase ramp is subtracted from the recorded images. Surprisingly, after FIB
milling the specimen from the substrate side of the wafer (’back-side milling’),
carbon coating is not required to prevent specimen charging, presumably because
of the sputtering and subsequent redeposition of Si onto the oxide layers during
milling.

4.2 Geometry and boundary conditions of the numerical

model

The geometry of the model is shown in Fig. 4.2 The boundary conditions of
DESSIS impose the Electric Field lying in the planes framing the simulation do-
main. Such planes are therefore reflection symmetry elements of the problem, and
the simulation turns out to be equivalent to an infinite array of Si oxide trape-
zoids (or parallelepipeds in the constant thickness case) that alternate W silicide
parallelepipeds, all on an infinite Si layer. The y and z dimensions are critical, and
must be kept large enough to avoid the perturbation of the Electrostatic Field
due to the mirror devices present on the score of the reflection symmetry. The z
dimension in particular must include almost the entire Field, that must become
negligible before the end of the domain. In fact the electron optical phase used
for image simulations is obtained by integration of the Electrostatic potential
along the z direction.

4.3 Interpretation of the experimental images

The experimental images are interpreted by comparing them to simulated images
obtained by elaboration of the electrostatic potential computed by means of 3D

numerical simulations. The integration of the electrostatic potential along z, the
electron beam direction, gives, in the POA approximation (appendix A.1), the
phase shift:
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Fig. 4.2. Simulation geometry and boundary conditions. a: The whole simulation domain.

On the left the geometry of the model is displayed, on the right the boundary conditions

for the Electrostatic Potential computation: the equipotential surfaces are orthogonal to the

boundaries (Eq.2.9). b: The trapezoidal shape of the Si oxide is modeled with a step shape. c:

The effect of the boundary conditions: the domain boundaries are reflection symmetry planes

so that an infinite array of MOS is modeled. d: An equipotential surface plot shows that

the problem is intrinsically three-dimensional and the fringing field contribution is important

especially under (and above) the specimen:
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φ(x, y) = CE

∫

V (x, y, z) dz (4.1)

where CE is 7.3 rad V −1 µm−1 for an electron beam of 200 keV , has been per-
formed, as well as the image simulations in holography, by means of the software
Mathematica5.2 [43]. The hypothesis that the oxides are charged by the electron
beam is useful for electric field simulations and image interpretation. It will be
shown that the agreement with the experimental images is reached by making
the assumption that the Silicon oxide is uniformly charged. This is implemented
in simulations by imposing a fixed charge to be used as a fitting parameter. Then,
according to the experimental procedure, the contour map (Eq. 1.16) images are
computed with an eight time amplified phase.

4.3.1 Image simulations

The oxide is modeled as an insulator with a fixed uniform charge that must be
fit by comparing simulations and experiments. Such a charge is positive as the
main contribution to the beam-specimen interaction is the secondary electron
emission. The mean inner potential, the specimen thickness and the distance of
the perturbed reference wave from the edge can also be considered somehow as
fitting parameters, even if we have an experimental estimate of them. Initially
only a constant thickness model was used. Early holography simulations for the
“trench” of nominal thickness 400 nm showed circular fringes as in experiments,
but the center of such circles was always too close to the edge for any choosen
values for the MIP, the distance of the reference wave and the oxide charge, (in
a physical sensible range). Such is the case for the constant thickness simulations
that models the thinner specimen (Fig. 4.3.1).

The variable thickness oxide of last simulations, acting as an electron prism,
make the circle move down and gives a fringe pattern that is in better agreement
to the experiments (Fig. 4.3.1).

Fig. 4.3.1 shows simulations of contour map images for the case of the “trench”
specimen of nominal thickness 400 nm, but without taking into account the MIP

or the perturbation of the reference wave, or both. These two parameters are
necessary to fit the experiments. In any case the circular fringe pattern on the
oxide is always present, generated by the uniform charge distribution induced by
the electron beam. Such a pattern is due to the the strong external field produced
by the charged oxide (Fig. 4.3.1)

The maximum value of the oxide electrostatic field obtained in DESSIS sim-
ulations is below the breakdown electric field for thermal SiO2 of 108 V/m. Its
value of 1.5×107 V/m is rather in agreement with the estimated value of 2×107

given in a previous work [45].
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Fig. 4.3. Simulations of eight times amplified phase contours. Left: the image models the

“trench” specimen of nominal thickness 400 nm. Right: the image models the specimen of

nominal thickness 200 nm. Both simulations have been made by imposing a uniform oxide

charge density of 5 × 1015e.c./cm3, a MIP of 10 V, and a distance of 2 µm from the reference

wave.
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Fig. 4.4. Simulations of the “trench” specimen of nominal thickness 400 nm. (a): neither ref-

erence wave perturbation nor MIP are not taken into account. (b): the reference wave pertur-

bation weakly changes the fringe pattern when the MIP is not considered. (c): MIP has been

included in computations, but the absence of reference wave perturbation makes the fringe

pattern different from (d), where both the MIP and the reference wave perturbation are taken

into account.
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SILICON

(p-channel)

Fig. 4.5. The external field produced by the oxide charged under the effect of the electron

beam, which is responsible for the circular fringes obtained in holography.
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5. 3D field simulations of phase contrast images

of field emitting CNTs.

In this chapter out-of-focus and contour map images of multi-walled carbon nan-
otubes (CNTs) will be presented and interpreted. CNTs are allotropes of car-
bon with a nanostructure that can have a length-to-diameter ratio as large as
28,000,000:1 [46], which is unequalled in any other material. These cylindrical
carbon molecules have novel properties that make them potentially useful in
nanotechnology, electronics, optics and other fields of material science, as well as
in architectural fields. Here we are interested in their electrical properties, due to
the peculiar geometry and to the good conductivity, that, for instance, make them
good candidates as Field Emission Guns (FEGs). Full 3D numerical simulations
are necessary in order to interpret the experiments, so that the computational
resources of the machine used for DESSIS simulations have been fully exploited.
However, the geometry of the problem together with the boundary conditions is
of some help in reducing the number of nodes (sec.2.1). Indeed, only a quarter
of the nanotube and of the surrounding vacuum is considered in computations
(sec.5.3). It will be shown that the numerical simulations give the typical wings
observed in out-of-focus experiments, and that such a fringe pattern is due to the
strong increase of the slope of the polarization charge at the tip (tip effect [36]).
These results can not be achieved by analytical approaches such as modeling the
nanotube by charged conducting prolate spheroids (sec.5.2). A further advantage
of the numerical approach is that it starts with the physical equations without
introducing arbitrary boundary conditions and ad hoc hypotheses on the electric
field and on the shape of the nanotubes. The interpretation of the experimental
results is then free from any additional hypotheses.

5.1 Specimen description and experimental results

The off-axis electron holograms that are presented below were all acquired at
an accelerating voltage of 300 kV using a Philips CM300ST field emission gun
TEM equipped with a “Lorentz” lens, an electron biprism, a GatanTM imaging
filter and a 2048 pixel charge-coupled-device (CCD) camera, at the Department
of Materials Science and Metallurgy by the HREM group of the University
of Cambridge. The holograms were acquired with the conventional microscope
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Fig. 5.1. a) Defocused bright-field image of a sample of bundles of single-walled carbon nan-

otubes, with a voltage applied between the tubes and a gold needle that was brought to within

1 ÷ 2µm of them. b) Higher magnification defocused bright-field image of the end of an indi-

vidual nanotube bundle.

objective lens switched off and the sample located in magnetic-field-free condi-
tions. Reference holograms were used to remove distortions associated with the
imaging and recording system of the microscope. A TEM specimen holder that
allows samples to be nanopositioned and examined under an applied bias has
been used as a way of applying a strong electric field in situ between the tubes
and a gold electrode placed in front of them [47] The nanopositioning specimen
holder is useful in measuring the electrostatic fields at the ends of nanowires
and nanotubes, with the aim of understanding the details of field emission on a
nanometer scale. Figures 5.1 and 5.2 show preliminary results obtained from a
sample containing bundles of single-walled carbon nanotubes. Defocused bright-
field images (Fig.5.1) show a diffraction pattern, similar to that formed by an
electron biprism with variable fringe spacing. However, a very interesting feature
of the out-of-focus images is the fringe pattern present at the top of the nanotube,
as it provides significant information about electric field.

5.2 Linear charge analytical model

The simplest description of the electric field around field emitting microtips re-
lies in modelling the tip and the anode by hyperboloid surfaces of revolution
and obtaining the exact, full 3D solution in the prolate spheroidal coordinate
system [48, 49, 50] However, it is worthwhile to note that we obtain the same
solution when a linear density charge distribution is assumed on a line segment
of length 2a [51].
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Fig. 5.2. a) Amplitude and b) contour phase images, respectively, obtained from an off-axis

electron hologram of a carbon nanotube bundle that has a voltage applied to it in situ in the

TEM.

In fact, if we integrate between 0 and a the following expression,

V (x, y) = C

∫ a

0

y0





1
√

x2 + (y − y0)
2
− nonumber

1
√

x2 + (y + y0)
2



 dy0

(5.1)
we obtain the potential of a linearly increasing charge density apart from a con-
stant C dependent on the unit system and on the amount of charge. Fig. 5.3
reports the trend of the potential distribution in the z = 0 plane.

V (x, y)/C =

√

x2 + (−a + y)2 −

√

x2 + (a+ y)2 − y log(−y +
√

x2 + y2) −

y log(y +
√

x2 + y2) + y log(a− y +

√

x2 + (−a + y)2) +

y log(a+ y +

√

x2 + (a+ y)2)(5.2)

If we add a linear term −Ey, corresponding to a constant electric field, the
potential distribution changes as shown in Fig. 5.4, where the potential at 0 V
is reported. It can be seen that the shape is that of a hyperboloid of revolution
mimicking the tip shape.

As for the case of the constant phase density [52], it is now also possible to
obtain the electron optical phase shift in closed analytical form. It is sufficient to
integrate the phase shift associated with the two opposite unit charges at ±y0

− log(x2 + (y − y0)
2) + log(x2 + (y + y0)

2) (5.3)

taking into account the linear trend of density charge. From

ϕ(x, y) = Cϕ

∫ a

0

[− log(x2 + (y − y0)
2) + log(x2 + (y + y0)

2)]y0dy0 (5.4)
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Fig. 5.3. Potential distribution around a linearly increasing charge density.

Fig. 5.4. Zero potential distribution around a linearly increasing charge density with a constant

field added.

it turns out, apart from a multiplicative constant Cϕ,

ϕ(x, y) = Cϕ(4 a y − 2 i x y log(
−i a + x− i y

x
) + 2 i x y log(

i a+ x− i y

x
) −

2 i x y log(
−i a + x+ i y

x
) + 2 i x y log(

i a+ x+ i y

x
) −

a2 log(a2 + x2 − 2 a y + y2) − x2 log(a2 + x2 − 2 a y + y2) +

y2 log(a2 + x2 − 2 a y + y2) + a2 log(a2 + x2 + 2 a y + y2) +

x2 log(a2 + x2 + 2 a y + y2) − y2 log(a2 + x2 + 2 a y + y2))(5.5)
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If values for the various parameters are chosen in such a way as to fit the ex-
perimental data, we obtain the following image for the phase distribution around
a nanotip (in black) that should be compared to the experimental one.

Fig. 5.5. Phase contour line around a nanotube (black).

Also the out-of-focus image can be calculated, and the result (Fig. 5.6)

Fig. 5.6. Out-of-focus image of the phase associated to the nanotube.

shows both the predicted fringe spacing variation along the nanotube dependent
on the linear increase of the charge density, and the lack of the wings at the top.
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Fig. 5.7. Geometry of the model used in numerical device simulations of nanotubes. Eqipo-

tential lines are shown at the boundaries. The Electric Field is orthogonal to boundaries with

contact (Von Neumann conditions) and parallel to boundaries in the other cases. These are

all reflective conditions, which make boundaries as reflection symmetry planes. In this case

the geometry of the nanotube allow us to exploit the boundary conditions in order to save

computational resources. Indeed it is sufficient to simulate only a quarter of nanotube.

5.3 Numerical computation of the electrostatic potential

The geometry of the model is shown in Fig. 5.7. It exploits the boundary con-
ditions of the ISE-tCad solver DESSIS to shrink the number of nodes by a factor
4. In fact the electrostatic potential is computed under the constraint that its
gradient, the electric eield, lies on the boundaries of the simulation domain (Re-
flective Von Neumann conditions, Eq. 2.9). Also in boundaries with contacts the
conditions are reflective: in this case the electric field is naturally orthogonal to
the boundaries. Therefore the simulation domain is bound by reflection planes.
This, together with the fact that the simulation domain is a parallelepiped, makes
it sufficient to simulate only a quarter of nanotube (Fig. 5.7). It must be noted
that, though the problem is static as in the MOS case, the Poisson equation is
not sufficient to model correctly the physics of the carriers at the interfaces be-
tween different materials. Therefore, if the cathalyst is included in simulations,
the problem must be implemented with fully coupled Poisson and continuity
equations.
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Fig. 5.8. Variables involved in the reduction from a surface to a line charge.

5.4 Charge density

The first step in setting up our model is to compare our computations with
those carried out in sec. 5.2. An ISE-tCad simulation in the case of a conducting
nanotube gives us a surface charge density, as the tube is of finite dimensions.
We reduced such a surface charge to the equivalent line charge density, which
allowed us to compare it to line charge distributions available in literature. The
reduction to a linear charge density is performed by the integral:

λ(l) = R ǫ0 ∂l

(

∫ w/2−η

−|w/2−η|

(
∫ l

l0

∂zV (x, y, z)|z=z0 dx

)

dy

)

, (5.6)

derivated from the Gauss’ theorem of the electrostatics [36], where, see Fig(5.8),
V is the Electrostatic potential, z0 the coordinate of the lower side face of the
nano tube, l0 the coordinate of the base contact, l the length abscissa of the
nanotube, w the width of the surface considered in this computation, η a small
lenght to avoid the wedge discontinuity, ǫ0 the vacuum permittivity and the factor
R = C/w is the ratio between the nanotube circumference C and w.

In numerical computations performed by DESSIS the charge is the result of
the calculation of the Poisson and continuity equations, not an ad hoc function
imposed as boundary condition.

In the simulations that we conducted there was always a linear increase of
the charge along the nanotube, and a steep increase of the charge at the end
of it (Fig. 5.9). Such a feature, qualitatively consistent with the well known
electrostatic tip effect, can be considered responsible for the “wing” pattern of
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Fig. 5.9. Line charge distribution computed by the Eq.5.6 from a DESSIS simulation. The slope

is linear over almost all the nanotube, except for the end of the tip where it increases strongly.

the Fresnel fringes, as analytical simulations performed on the hypothesis of a
simply linear charge do not yield to this peculiar pattern (see fig. 5.6).

5.5 Image simulations

5.5.1 Holography

Our model for CNTs shows that the fringing field, and its influence on the
reference wave, provides the most relevant contribution to the phase. This issue
is rather obvious, as the specimen is so thin that in practice only the fringing
field is present, but it is also very important as its intensity and its distribution
strongly depends on the shape and the extension of the contacts. In this sense
the 3D numerical computations are more valuable then the analytical ones, since
we can chose contact dimensions and the problem is not affected by ad hoc
hypotesys. Fig.5.10 shows the influence of the contact shape on the phase and
the contour map images. It is interesting to notice that the phase (A1,B1) is
completely different from the contour map (A2,B2), where the perturbation of
the nanotube is evident. In fact the nanotube is strongly biased (10− 20 V/µm)
and the linear ramp is the main contribution to the external field. However, the
contour map is given by the cosine of the phase difference between the electron
wave transmitted by the nanotube region, and the electron wave transmitted by
a region were the only field ramp is present (sec.1.16). Therefore, in this case, the
contour map has the property to cancel the linear ramp. This is an example where
the perturbation on the reference wave is not a “perturbation” strictly speaking,
but it helps in cancelling from the image the main contribution, which carry no
information and hides the useful component of the field. When the contacts are
wider (A) (8µm× 8µm), the linear ramp contribution is stronger than when the
contacts are narrower (B) (8µm(x)× 8nm(z)). This is reflected on the phase and
the contour map. In the case of wide contacts the phase contour-lines indicates
that the field is almost linear (A1), while the contribution of the nanotube is no
more negligible in the case of narrow contacts (B1). The linear ramp is canceled
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prendere gli eps per spostare i nanotubi a sinistra

Fig. 5.10. Effect of the contact extent on the contour map. In A) the contacts are 8µ×8µ wide,

while in B) the contacts are narrower in the z direction 8µ × 8nm): the bias is 10V/µm for

both cases, but when the contacts are wider, the contribution of the CNT on the field is lower.

In fact the nanotube contribution to the phase for the geometry A) is almost negligible (A1).

In B1) the phase contour-lines for the geometry B) are shown. In A2 and B2 the respective

contour map images, where for the narrow contact (B2) the fringe spacing is reduced.

in the contour map image simulations. Ovoidal fringes appear (A2) despite the
fact that the phase does not show any significative structure (A1). The fringe
spacing becomes smaller (B2) in the case of narrow contacts, indicating a more
marked structure of the field around the nanotube.

The choice of the position of the reference wave also strongly influences the
trend of the holographic fringes. Fig.5.11a) and b) shows contour map images
under the same conditions, but with the reference wave in different positions. In
a) the reference wave is taken in front of the nanotube, near the opposite biasing
contact. In b) the reference wave is taken beside the nanotube, close to the contact
connected to the nanotube. The shape of the fringes is noticeably different in the
two cases; in a) the contours follow the nanotube geometry, while in b) the
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Fig. 5.12. Effect of the bias on the contour map. In a) the field is 10V/µm, while in b) it is

20V/µm

contours are ovoidal and centered on the tip. The position of the reference wave
is yet another important fitting parameter, showing the importance of external
field modelling.

The bias at the contacts influences the fringe spacing. Figure 5.12 shows that
the fringes become denser when the potential difference at the contacts is in-
creased.
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Fig. 5.13. The out-of-focus distance is increased from 0.2mm (Left) to 0.4mm (Center). When

the contact area increases the parallel fringes become oblique (Right): the out-of-focus distance

is always 0.4mm.

5.5.2 Out-of-focus

The out-of-focus images are less sensitive to the contact shape (Fig.5.13). The
parallel fringes along the nanotube become oblique when the contact area in-
creases (or better the ratio contact area/nanotube length). The peculiar trend of
Fresnel fringes at the top of the nanotubes in the experimental images is obtained
in simulations by a field of 200V/µm in a 1µ long and 15nm wide nanotube.

The effect of the MIP has also been taken into consideration (Fig.5.14). The
only additional influence is that the out-of-focus distance must be increased, with
respect to simulations of thinner multi-walled nanotubes where the MIP is less
influent, in order to obtain again a fringe pattern similar to the experimental
ones (Fig.5.14).

We have also tried to model the change in the fringe spacing at 300nm from
the end of the nanotube (Fig.5.1), which we are still workin on as we have not
yet achieved a good fitting of the experimental images. We are investigating the
effect of the presence of two different materials, the effect of thickness variation,
and the perturbation of the contacts.
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Fig. 5.14. The MIP becomes more influent in the out-of-focus images when the nanotube is

thicker. Left: nanotube thickness is 15nm and out-of-focus distance is 0.2mm. Center: nanotube

thickness is 45nm and out-of-focus distance is 0.2mm. Center: nanotube thickness is 45nm and

out-of-focus distance is 0.4mm. However, the fringe pattern characterized by wings is recovered

by increasing the out-of-focus distance.



Conclusions

The ever increasing improvements of the latest instruments allow the experi-
menters to obtain ever more detailed information from the images. The analyt-
ical models are no longer able to provide the interpretation of the experiments.
Therefore, the developement of more accurate models that take into account
accuratelythe physics of the problem becomes necessary. In particular, it is fun-
damental to simulate the geometry of the specimen and its behaviour when it is
observed in a TEM. The physical equations of semiconductors must be imple-
mented together with hypotheses that take into account the effect of the electron
beam, which is not a neutral probe but plays a relevant role in perturbing the
ideal electrical behaviour of the sample. Indeed the electron beam has the effect
of positively charging the sample because of secondary electron emission.

In this thesis it was shown that TEM experiments can be interpreted by
means of suitable numerical methods that allow us to solve physical equations. It
has been pointed out that in the case of three-dimensional problems a “normal”
computer is not sufficient to provide precise and accurate computations. There-
fore, parallel to increasing of performances of new instruments, it is necessary to
increase the computing power for simulations.
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A. Beam-specimen interaction

A.1 Phase object approximation

After describing the general function of the electronic microscope and the features
of the specimens, it is necessary to observe how the investigation tool (probe)
(the microscope’s electron beam) interacts with the object investigated (electric
field associated to the junction) and the microscope’s optical components (lenses
and possibly biprisms). The TEM working conditions and the features of the
specimens allow us to establish three initial hypotheses for the theoretical analysis
of the interaction:

• The electrostatic potential V of the junction and/or biprism may be consid-
ered a slight disturbance to the kinetic energy Ek of the incident electrons;
thus, to a first approximation, the energy of the impinging beam is equal
to the beam transmitted.

• Since the specimen is thinned, the absorbing/stopping effect and the wide-
angle deflection of the electrons can be neglected. (As the absorption can be
considered uniform and the high angle scattered electrons are intercepted
by diaphrams, the specimen can be described as a phase object.)

• The magnetic specimens are not taken into consideration because the study
is mainly focused on the p-n junctions. The only magnetic fields present in
the experiments are the lenses which simply form the image.

Taking into account these approximations, interactions are described as elastic
scattering of electrons by the potential V . According to the wave treatment, each
electron of the impinging beam is drawn by a wave function which satisfies the
Schrödinger equation not perturbed by the potential V (electron propagating in
the empty space); the wave that propagates along the z axis is of the following
type:

Ψ 0(z) = exp(ikz) (A.1)

where k is the wave vector [53]:
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k =
2π

λ
=

2π

h

√

√

√

√2m0|e|U

(

1 +
|e|U

2m0c2

)

(A.2)

where λ is the electron wavelength, h is the Planck constant, m0 is the electron
rest mass, c is the speed of light, and U the electron accelerating potential. The
equation (A.2) is relativistically corrected. The problem can be solved by solving
the Schrödinger equation:





1

2m

(

~

i
∇r + eA(r, z)

)2

− |e|V(r, z)



Ψ = 0Ψ (A.3)

where A and V are the electromagnetic potentials, r = (x, y) the vector lying on
the plane orthogonal to the optical axis z and Ψ the wave function. The potential
is given by:

V = U + V (A.4)

where U and V are the accelerating potential and the specimen potential. The
arbitrary constant in the energy is chosen in order to have zero for the value of
the mechanical energy. Let us chose A = 0, and let focus our attention on the
electrostatic field. The electron wave outgoing from the specimen (or from the
biprism) can be determied by solving the Schrödinger equation, perturbed by the
potential V:

∇ 2
r Ψ = −

2m|e|

~2
V(r, z) Ψ (A.5)

where m = m0(1+eU/m0c
2) is the electron mass relativistically corrected [53].

On the ground of the hypothesis (Ek ≫ V ) it is possible to write the solution of
the equation A.5 in the form [54]:

Ψ (r, z) = exp(ikz)T (r, z) (A.6)

Since the kinetic energy of the electrons is Ek =
~

2k2

2m
, with k always computed by

means of the equation (A.2), the condition Ek ≫ V , which means that Ek ≃ −U ,
implies that V must slowly vary on a distance equal to the wavelength λ. Since
the function T (z) stands for the the perturbation on the impinging wave due
to V , it must have the same property. By replacing the equation (A.6) in the
equation (A.5), it turns out:

∇2T (r, z) + 2ik
∂

∂z
T (r, z) = −

2m|e|

~2
V (r, z)T (r, z) (A.7)

The equation (A.7) is solvable if the high energy approximation is adopted.

Since the T (r, z) variation is slow with respect to λ, the term
∂

∂z
T (r, z) is dom-

inant with respect to ∇2T (r, z), and so this last term can be neglected. In this
case the equation (A.7) becomes:
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∂

∂z
T (r, z) =

im

~2k
V (r, z)T (r, z) =

iπ

λEk
V (r, z)T (r, z). (A.8)

On the ground of the second hypothesis back-scattering effects can be neglected.
Therefore the boundary condition T (−∞) = 1 can be imposed. It turns out:

T (r, z) = exp

{

−
iπ

λE

∫ z

−∞

V (r, z) dz

}

(A.9)

and

Ψ (r, z) = exp

{

ikz −
iπ

λE

∫ z

−∞

V (r, z) dz

}

(A.10)

It can be noted (Eq. A.10) that the transmission function T (r, z) only act on
the phase of the impinging wave: the juction potential modifies the phase of the
electron wave. Therefore, in electron microscopy, V (r, z) is considered a phase
object, while T (r, z) is called object transmission function. The transmitted wave
propagates beyond the specimen and is perturbed by the fringing field. In general,
the total effect of T (r, z) is considered as due to the only specimen plane, and
the propagation after the specimen is considered as free propagation. In in this
case equation (A.9) simplifies in:

T (r, z) = A(r) exp

{

−
iπ

λE

∫ ∞

−∞

V (r, z) dz

}

, (A.11)

where the amplitude factor A(r) has been added to take into account the fact
that electrons can either be stopped by a thick specimen or scattered by the
specimen atoms at large angles and subsequently intercepted by the microscope
apertures. The term

φ(r) =
π

λE

∫ ∞

−∞

V (r, z) dz (A.12)

corresponds to the phase shift between the impinging and the transmitted wave.

A.1.1 The Möllenstedt-Düker biprism

A TEM equipped with a Möllenstedt-Düker biprism makes “off-axis” electron
holography and interferometry observations possible. The biprism consists of a
biased conducting wire, placed between two conducting plates at 0V , replacing
one of the selected-area apertures.

Let us consider the electrostatic potential generated from an infinite wire of
density charge σ, lying on the y direction, placed between two infinite conducting
plates of equation x = a − b, x = −b [51]:

VB(x, z) = −
σ

2πǫ0
ln







cosh
[πz

a

]

− cos
[

π(x−b)
a

]

cosh
[πz

a

]

− cos
[

π(x+b)
a

]







(A.13)
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where σ, the linear density charge of the wire, is given by

σ = −πε0VW
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, (A.14)

r0 and VW are the radius and the potential of the wire respectively. By introduc-
ing (A.13) in (A.12), the phase shift results linear in x, the distance from the
wire on the biprism plane, so that the biprism behavior as it is known in light
optics is confirmed:

φ(x) =























π

λU

σ

ǫ0
x(a− b)/a ; per 0 ≤ x ≤ b

π

λU

σ

ǫ0
(a− x) b/a ; per b ≤ x ≤ a

(A.15)

If the plates are symmetric with respect to the wire, the transmission function
becomes:

Tb(x, y) =











exp {ikα|x|} ; per |x | > rb

0 ; per |x | < rb

(A.16)

where k =
2π

λ
, and α =

σ

4Uǫ0
is the deflection angle between the incoming and

outgoing asymptotic trajectories.



Acronyms

2D 2 (two) Dimensional
3D 3 (three) Dimensional
CCD Charge Coupled Device
CPAC Cut Paste Analytical Computation
CNT Carbon Nano Tube
CPU Central Processing Unit
e-h electron hole (pair)
FEG Field Emission Gun
FFT Fast Fourier Transform
FIB Focused Ion Beam
GUI Graphic User Interface
ISE Integrated System Engineering
ITRS International Technology Roadmap of Semiconductors
K-F Kirchhoff Fresnel (integral)
HREM High Resolution Electron Microscopy
MIP Mean Inner Potential
MOS Metal Oxide Semiconductor (device)
p-n positive negative (junction)
POA Phase Object Approximation
SIA Semicoductor Industry Association
tCAD technological Computer Aided Design
TEM Trasmission Electron Microscope
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