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Abstract

The aim of this work is to put forward a statistical mechanics theory of social inter-
action, generalizing econometric discrete choice models. After showing the formal equiv-
alence linking econometric multinomial logit models to equilibrium statical mechanics, a
multi-population generalization of the Curie-Weiss model for ferromagnets is considered
as a starting point in developing a model capable of describing sudden shifts in aggregate
human behaviour.

Existence of the thermodynamic limit for the model is shown by an asymptotic sub-
additivity method and factorization of correlation functions is proved almost everywhere.
The exact solution of the model is provided in the thermodynamical limit by finding con-
verging upper and lower bounds for the system’s pressure, and the solution is used to prove
an analytic result regarding the number of possible equilibrium states of a two-population
system.

The work stresses the importance of linking regimes predicted by the model to real
phenomena, and to this end it proposes two possible procedures to estimate the model’s
parameters starting from micro-level data. These are applied to three case studies based
on census type data: though these studies are found to be ultimately inconclusive on an
empirical level, considerations are drawn that encourage further refinements of the chosen
modelling approach.
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Chapter 1

Introduction

In recent years there has been an increasing awareness towards the problem of finding a

quantitative way to study the role played by human interactions in shaping the kind of

aggregate behaviour observed at a population level: reference [3] provides a comprehensive

account of how ramified this field of study already is. There the author reviews efforts

made by researchers from areas as diverse as psychology, economics and physics, to cite a

few, in the pursuit of regularities that may characterize different kinds of aggregate human

behaviour such as urban traffic, market behaviour and the internet.

The idea of characterizing society as a unitary entity, characterized by global features

not dissimilar from those exhibited by physical or living systems has accompanied the devel-

opment of philosophical thought since its very beginning, and one must look no further than

Plato’s Republic to find an early example of such a view. The proposal that mathematics

might play a crucial role in pursuing such an idea, on the other hand, dates back at least to

Thomas Hobbes’s Leviathan, where an attempt is made to draw analogies between the laws

describing mechanics, and features of society as a whole. Hobbes’s work gives an inspiring

outlook on the ways in which modern science might contribute to practical human affairs

from an organizational point of view, as well as technological.

In later centuries, nevertheless, quantitative science has grown aware of the fact that,

though a holistic view such as Hobbes’s plays an important motivational role in the develop-

ment of new scientific enterprises, it is only by reducing a problem to its simplest components

that success is attained by empirical studies. One of the interesting sub-problems singled

out by the modern approach is that of characterizing the behaviour of a large groups of

people, when each individual is faced with a choice among a finite set of alternatives, and

a set of motives driving the choice can be identified. Such motives might be given by the

person’s personal preferences, as well as by the way he interacts with other people. My
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thesis aims to contribute to the research effort which is currently analysing the role played

by social interaction in human decision making process just described.

As early as in the nineteen-seventies the dramatic consequences of including interaction

between peers into a mathematical model of choice comprising large groups of people have

been recognized independently by the physical [23], economical [62] and social science [34]

communities. The conclusion reached by all these studies is that mathematical models have

the potential to describe several features of social behaviour, among which the sudden and

dramatic shifts often observed in society trends [47], and that these are unavoidably linked

to the way individual people influence each other when deciding how to behave.

The possibility of using such models as a tool of empirical investigation, however, is

not found in the scientific literature until the beginning of the present decade [21]: the

reason is to be found in the intrinsic difficulty of establishing a methodology of systematic

measurement for social features. Confidence that such an aim might be an achievable one

has been boosted by the wide consensus gained by econometrics following the Nobel prize

awarded in 2000 to economist Daniel Mcfadden for his work on probabilistic models of

discrete choice, and by the increasing interest of policy makers for tools enabling them to

cope with the global dimension of today’s society [39, 27].

This has led very recently to a number of studies confronting directly the challenge of

quantitatively measuring social interaction for bottom-up models, that is, models deriving

macroscopic phenomena from assumptions about human behaviour at an individual level

[11, 61, 51, 65].

These works show an interesting interplay of methods coming from econometrics [25],

statistical physics [26] and game theory [43], which reveals a substantial overlap in the basic

assumptions driving these three disciplines. It must also be noted that all of these studies

rely on a simplifying assumption which considers interaction working on a global uniform

scale, that is on a mean field approach. This is due to the inability, stated in [69], of existing

methods to measure social network topological structure in any detail. It is expected that it

is only matter of time before technology allows to overcome this difficulty: in the meanwhile,

one of the roles of today’s empirical studies is to assess how much information can be derived

from the existing kind of data such as that coming from surveys, polls and censuses.

This thesis considers a mean field model that highlights the possibility of using the

methods of discrete choice econometrics to apply a statistical mechanical generalization of

the model introduced in [21]. The approach is mainly that of mathematical-physics: this

means that the main aim shall be to establish the mathematical properties of the proposed

model, such as the existence of the thermodynamical limit, its factorization properties, and

its solution, in a rigorous way: it is hoped that this might be used as a good building
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block for later more refined theories. Furthermore, since maybe the most problematic

point of a mathematical study of society lies in the feasibility of measuring the relevant

quantities starting from real data, two estimation procedures are put forward: one tries to

mimic the econometrics approach, while the other stems directly from equilibrium statistical

mechanics, by stressing the role played by fluctuations of main observable quantities. These

procedures are applied to some simple case studies.

The thesis is therefore organised as follows: the first chapter reviews the theory of Multi-

nomial Logit discrete choice models. These models are based on a probabilistic approach

to the psychology of choice [48], which is chosen here as the modeling approach to human

decision making. In this chapter we focus on the mathematical form of Multinomial Logit,

and in particular on its equivalence to the statistical mechanics of non-interacting particles.

In the second chapter we consider the Curie-Weiss model, of which we provide a treatment

recently developed in the wider study of mean field spin glasses [37], which allows to give

elegant rigorous proofs of the model’s properties. In chapter three we generalise results from

chapter two for a system partitioned into an arbitrary number of components. Since such

a model corresponds to the generalization of discrete choice first considered in [21], which

includes the effect of peer pressure into the process decision making, it provides a potential

tool for the study of social interaction: chapter four shows an application of this to three

simple case studies.
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Chapter 2

Discrete choice models

In this chapter we describe the general theory of discrete choice models. These are econo-

metric models that were first applied to the study of demand in transportation systems in

the nineteen-seventies [6]. When people travel they can choose the mode of transportation

between a set of distinct alternatives, such as train or automobile, and the basic tenet of

these models is that such a discrete choice can be described by a probability distribution,

and that proposals for the form of such distribution can be derived from principles estab-

lished at the level of individuals. As we shall see this modus operandi is one familiar to

statistical mechanics, and corresponds to what is commonly known as a bottom-up strategy

in finance.

After describing the general scope of discrete choice analysis, in section 2.3 we describe

precisely the mathematical structure of one of the most widely used discrete choice models,

the Multinomial Logit model. Here we shall see how the probability distribution describ-

ing people’s choices arises from the assumption that individual act trying to maximize the

benefit coming from that choice, which is the common setting of neoclassical economics.

Discrete choice models, in general, ignore the effect of social interaction, but we shall see in

subsection 2.3.3 that the Multinomial Logit can be rephrased precisely as a statistical me-

chanical model, which gives an ideal starting point for extending such a model of behaviour

to a context including interaction, to be considered in later chapters.

Due to his development of the theory of the Multinomial Logit model economist Daniel

McFadden was awarded the Nobel Prize in Economics in 2000 [50], for bringing economics

closer to quantitative scientific measurement. The purpose of discrete choice theory is to

describe people’s behaviour: it is an econometric technique to infer people’s preferences from

empirical data. In discrete choice theory the decision-maker is assumed to make choices

that maximise his/her own benefit. Their ‘benefit’ is described by a mathematical formula,
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Figure 2.1: Discrete choice predictions against actual use of travel modes in San Francisco, 1975
(source: McFadden 2001)

a utility function, which is derived from data collected in surveys. This utility function

includes rational preferences, but also accounts for elements that deviate from rational

behaviour.

Though discrete choice models do not account for ‘peer pressure’or ‘herding effects’, it

is nonetheless a fact that the standard performance of discrete choice models is close to

optimal for the analysis of many phenomena where peer influence is perhaps not a major

factor in an individual’s decision: Figure 2.1 shows an example of this. The table (taken

from [50]) compares predictions and actual data concerning use of travel modes, before and

after the introduction of new rail transport system called BART in San Francisco, 1975.

We see a remarkable agreement between the predicted share of people using BART (6.3%),

and the actual measured figure after the introduction of the service (6.2%).

2.1 General theory

In discrete choice each decision process is described mathematically by a utility function,

which each individual seeks to maximize. The principle of utility maximization is one which

lies at the heart of neoclassical economics: this has often been critised as too simplistic an

assumption for complex human behaviour, and this criticism has been supported by the

poor performance of quantitative models arising from such an assumption. It must be

noted however, that if we wish to attain a quantitative description of human behaviour at

all, we must do so by considering a description which is analytically treatable. There exist of

course alternatives approaches (e.g. agent-based modeling), but since this field of research
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is still in its youth, it pays to consider possible improvements of utility maximisation before

abandoning it altogether. This is indeed the view taken by discrete choice, which sees people

as rational utility maximizers, but also takes into account a certain degree of irrationality,

which is modeled through a random contribution to the utility function.

As an example, a binary choice could be to either cycle to work or to catch a bus. The

utility function for choosing the bus may be written as:

U = V + ε (2.1)

where V, the deterministic part of the utility, could be symbolically parametrised as follows

V =
∑
a

λaxa +
∑
a

αaya (2.2)

The variables xa are assumed to be attributes regarding the choice alternatives them-

selves. For example, the bus fare or the journey time. On the other hand, the ya may

socio-economic variables that define the decision-maker, for example their age, gender or

income. It is this latter set of parameters that allows us to zoom in on specific geographical

areas or socio-economic groups. The λa and αa are parameters that need to be estimated

empirically, through survey data, for instance. The key property of these parameters is

that they quantify the relative importance of any given attribute in a person’s decision: the

larger its value, the more this will affect a person’s choice. For example, we may find that

certain people are more affected by the journey time than the bus fare; therefore changing

the fare may not influence their behaviour significantly. The next section will explain how

the value of these parameters is estimated from empirical data. It is an observed fact [49, 2]

that choices are not always perfectly rational. For example, someone who usually goes to

work by bus may one day decide to cycle instead. This may be because it was a nice sunny

day, or for no evident reason. This unpredictable component of people’s choices is accounted

for by the random term ε. The distribution of ε may be assumed to be of different forms,

giving rise to different possible models: if, for instance, ε is assumed to be normal, the re-

sulting model is called a probit model, and it doesn’t admit a closed form solution. Discrete

choice analysis assumes ε to be extreme-value distributed, and the resulting model is called

a logit model [6]. In practice this is very convenient as it does not impose any significant

restrictions on the model but simplifies it considerably from a practical point of view. In

particular, it allows us to obtain a closed form solution for the probability of choosing a
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particular alternative, say catching a bus rather than cycling to work :

P =
eV

1 + eV
, (2.3)

(see section 2.3 for the derivation).

In words, this describes the rational preferences of the decision maker. As will be

explained later on, (2.3) is analogous to the equation describing the equilibrium state of

a perfect gas of heterogeneous magnetic particles (a Langevin paramagnet): just like gas

particles react to external forces differently depending, for instance, on their mass and

charge, discrete choice describes individuals as experiencing heterogeneous influences in

their decision-making, according to their own socio-economic attributes, such as gender and

wealth. A question arises spontaneously: do people and gases behave in the same way? The

answer to such a controversial question is that in some circumstances they might. Models

are idealisations of reality, and equation (2.3) is telling us that the same equation may

describe idealised aspects of both human and gas behaviour; in particular, how individual

behaviour relates to macroscopic or societal variables. These issues go beyond the scope of

this thesis, but it is important to note that (2.3) offers a mathematical and intuitive link

between econometrics and statistical mechanics. The importance of this ‘lucky coincidence’

cannot be overstated, and some of the implications will be discussed later on in more detail.

2.2 Empirical estimation

Discrete choice may be seen as a purely empirical model. In order to specify the actual

functional form associated with a specific group of people facing a specific choice, empirical

data is needed. The actual utility function is then specified by estimating the numerical

values of the parameters λa and αa which appear in our definition of V given by (2.2), thus

establish the choice probabilities (2.3). As mentioned earlier, these parameters quantify

the relative importance of the attribute variables xa and ya. For example, costs are always

associated with negative parameters: this means that the higher the price of an alternative,

the less likely people will be to choose it. This makes intuitive sense: what discrete choice

offers is a quantification of this effect. Once the data has been collected, the model parame-

ters may be estimated by standard statistical techniques: in practice, Maximum Likelihood

estimation methods are used most often (see, e.g., [6] chapter 4). We shall see in further

chapters how, though optimal for standard discrete choice models, Maximum likelihood es-

timation seems to be unsuitable for phenomena involving interaction due to discontinuities

in the probability structure. As we shall see, a valuable alternative is given by a method

7



put forward by Joseph Berkson [7].

Discrete choice has been used to study people’s preferences since the seventies [50].

Initial applications focused on transport [68, 53]. These models have been used to develop

national and regional transport models around the world, including the UK, the Netherlands

[24], as well as Copenhagen [54]. Since then discrete choice has also been applied to a range

of social problems, for example healthcare [30, 59], telecommunications [42] and social care

[60]

2.3 The Multinomial logit model

The binomial logit model which gives the probabilities (2.3) can be seen as a special case of

the Multinomial Logit model introduced by R. Duncan Luce in 1959 [48] when developing a

mathematical theory of choice in psychology, and was later given the utility maximization

form which we describe here by Daniel Mcfadden [50].

In the following three subsections we shall describe the mathematical structure of a

Multinomial Logit model. In the first subsection we shall first give information about the

Gumbel extreme-distribution, which is the distribution by which the model describes the

random contribution ε to a person’s utility, and is chosen essentially for reasons of analytical

convenience. The second subsection uses the properties of Gumbel distribution in order to

derive the probability structure of the model. These two sections are an ‘executive summary’

of all the main things, and they can be found on any standard book on econometrics [6, 25].

The third subsection gives the statistical mechanical reformulation of the Multinomial

Logit model, by showing that the same probability structure arises when we compute the

pressure of a suitably chosen Hamiltonian: this leads the way for the extensions of the

model that shall be considered in later chapters.

2.3.1 Properties of the Gumbel distribution

In order to implement the modelling assumption of utility maximization in a quantitative

way, we need a suitable probability distribution for the random term ε.

The Multinomial Logit Model models randomness in choice by a Gumbel distribution,

which has a cumulative distribution function

F (x) = exp{−e−µ(x−η)}, µ > 0,
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and probability density function

f(x) = µe−µ(x−η) exp{−µ(x− η)}.

We have that if ε d= Gumbel(η, µ) then

E(ε) = η +
γ

η
, Var(ε) =

π2

6µ2
,

where γ is the Euler-Mascheroni constant (∼= 0.577).

The Gumbel distribution is a type of extreme-value distribution, which means that under

suitable conditions it gives the limit distribution for the value of the extremum of a sequence

of i.i.d random variables, just like the Gaussian distribution does for their average under

the central limit theorem. In econometric the Gumbel distribution for mainly analytical

reasons, since it has a number of interesting properties, which make it suitable as a modeling

tool. As we shall see in subsection 2.3.3 the model that one obtains can be readily mapped

into a statistical mechanical model, thus establishing an interesting link between economics

and physics.

The following two properties regard Gumbel variables with equal variance, and hence

equal µ (see [6], pag. 104).

I. If ε′ d= Gumbel(η1, µ) and ε′′ d= Gumbel(η2, µ) are independent random variables, then

ε = ε′ − ε′′ is logistically distribute with cumulative distribution

Fε(x) =
1

1 + e−µ(η2−η1−x)
,

and probability density

fε(x) =
µe−µ(η2−η1−x)

(1 + e−µ(η2−η1−x))2
.

II. If εi
d= Gumbel(ηi, µ) for 1 6 i 6 k are independent then

max
i=1..k

εi
d= Gumbel

( 1
µ

ln
k∑
i=1

eµηi , µ
)

As we said, the logit is a model which is founded on the assumption that individuals choose

their behaviour trying to maximize a utility, or a “benefit” function. In the next section

we shall use Property II to handle the probabilistic maximum of the utilities coming from

many different choices, whereas Property I shall be used to compare probabilistically the
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benefits of two different choices.

2.3.2 Econometrics

We shall now derive the probability distribution for an individual l choosing between k

alternatives i = 1..k. We have that choice i yields l a utility:

U
(l)
i = V

(l)
i + ε

(l)
i

We assume that l chooses the alternative with the highest utility. However, since these

are random we can only compute the probability that a particular choice is made:

p l,i = P ( “ l chooses i ” )

This is in fact the probability that U (l)
i is bigger than all other utilities, and we can

write this as follows:

p l,i = P
(
U

(l)
i > max

j 6=i
U

(l)
j

)
= P

(
V

(l)
i + ε

(l)
i > max

j 6=i
(V (l)

j + ε
(l)
j )
)

Now define

U∗ = max
j 6=i

(V (l)
j + ε

(l)
j ).

By property II of the Gumbel distribution,

U∗
d= Gumbel

( 1
µ

ln
∑
j 6=i

eµV
(l)
j , µ

)
So, if

V ∗ =
1
µ

ln
∑
j 6=l

eµV
(l)
j ,

we have that U∗ = V ∗ + ε∗ with ε∗
d= Gumbel(0, µ).

This in turn gives us that

p l,i = P (V (l)
i + ε

/(l)
i > V ∗ + ε∗) = P (V (l)

i − V
∗ > ε∗ − ε/(l)i ) =

1

1 + eµ(V ∗−V (l)
i )

=

by property I of the Gumbel distribution, and this can be re-expressed as

p l,i =
eµV

(l)
i

eµV
(l)
i + eµV ∗

=
eµV

(l)
i∑k

j=1 e
µV

(l)
i

10



According to econometric knowledge µ is a parameter which cannot be identified from

statistical data. From a physical perspective, this corresponds to the lack of a well defined

temperature: intuitively this makes sense, since measuring temperature consists in compar-

ing a system of interest with another system whose state we assume to know perfectly well.

In physics this can be done to a high degree of precision: in social systems, however, such

a concept has yet no clear meaning, and finding one will most certainly require a change in

perspective about what we mean by measuring a quantity.

As a practical consequence, in this simple model we have that we can let the parameter

µ be incorporated into the degrees of freedom V
(l)
i of the various utilities, and get the choice

probabilities in the following form:

p l, i =
eV

(l)
i∑k

j=1 e
V

(l)
i

(2.4)

2.3.3 Statistical mechanics

As we have seen, the Multinomial logit model follows a utility-maximization approach,

in that it assumes that each person behaves as to optimize his/her own benefit. From

a statistical-mechanical perspective, this amounts to the community of people trying to

identify its ground state, where some definition of self-perceived well-being, the utility,

takes the role traditionally played by energy.

If there were an exact value of the utility corresponding to each behaviour, a system

characterized by such maximizing principle for the ground state would identify microcanon-

ical ensemble in a equilibrium statistical mechanics. This in amounts to stating that the

energy of the system has an exact value, as opposed to being a random variable.

However, since the Multinomial logit defines utility itself as a Gumbel random variable

in order to try and capture both the predictable and unpredictable components of human

decisions, its “ground state” turns out to be a “noisy” object. Statistical mechanics models

this situation by defining a so-called canonical ensemble, where all possible values of the

energy are considered, each with a probability given by a Gibbs distribution, which weights

energetically favourable states more than unfavourable ones. We will now see how the Gibbs

distribution leads to a model which is formally equivalent to the Multinomial logit arising

from the Gumbel distribution.

Assume that we have a population of N people, each of whom makes a choice

σ(l) = el
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where vectors ei form the k-dimensional canonical basis

e1 = (1, 0, .. , 0), e2 = (0, 1, .. , 0), etc.

We have then that a particular state of this system can be described by the following

set:

σ
∼

= {σ(1), ..., σ(N)}

Now define v(l) as a k-dimensional vector giving the utilities of the various choices for

individual l:

v(l) = (V (l)
1 , .. , V

(l)
k ).

We have that V (l)
i , which is the deterministic part of the utility considered in the last

section, changes from person to person, and that it can be parametrised by a person’s

social attributes, for instance. For the moment, however, we just consider them as different

numbers, since the exact parametrization doesn’t change the nature of the probability

structure.

If we now denote by v(l) · σ(l) the scalar product between the two vectors, we may express

the energy (also called Hamiltonian) for the Multinomial Logit Model as follows:

HN (σ
∼

) = −
N∑
l=1

v(l) · σ(l).

Intuitively, a Hamiltonian model is one where the defines a model where the favoured

states σ
∼

are the ones which make the quantity HN small, which due to the minus sign, cor-

respond to people choosing as to maximise their utility. Most of the information contained

in an equilibrium statistical mechanical model can be derived from its pressure, which is

defined as

PN = ln
∑
σ
∼

e
−HN ( σ

∼
)
,

which acts as a moment generating function for the Gibbs distribution

p(σ
∼

) =
e
−HN ( σ

∼
)∑

σ
∼
′ e
−HN ( σ

∼
′ )
,

and can recover many of the features of the model, among which the probabilities p l,i, as

derivatives of PN with respect to suitable parameters.

This distribution is chosen in physics since it is the one which maximises the system’s
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entropy at a given temperature, which in turn just means that it is the most likely distri-

bution to expect for a system which is at equilibrium. This is not to say that using such a

model corresponds to accepting that society is at equilibrium, but rather to believing that

some features of society might have small enough variations for a period of time long enough

to allow a quantitative study. As pointed out in a later chapter, this belief has at least some

quantitative backing if one considers the remarkable findings made by Émile Durkheim as

early as at the end of 19th century [20].

We will now show that this model is equivalent to the Multinomial Logit by computing

its pressure explicitly and finding its derivatives. Indeed, since the model doesn’t include

interaction this is a task that can be done easily for a finite N :

PN = ln
∑
σ
∼

e
−HN ( σ

∼
)

= ln
∑
σ
∼

exp
{ N∑
l=1

v(l) · σ(l)
}

=

= ln
∑
σ(1)

exp
{
v(1) · σ(1)

}
...
∑
σ(N)

exp
{
v(N) · σ(N)

}
=

= ln
N∏
l=1

k∑
i=1

exp{V (l)
i } =

N∑
l=1

ln
k∑
i=1

exp{V (l)
i }.

Once we have the pressure PN it’s easy to find the probability pi,l that person l chooses

alternative k, just by computing the derivative of PN with respect to utility V (l)
i :

pi,l = P (“l chooses i ”) =
∂PN

∂V
(l)
i

=
eV

(l)
l∑k

j=1 e
V

(l)
j

,

which is the same as (2.4).

This shows how the utility maximization principle is equivalent to a Hamiltonian model,

whenever the random part of the utility is Gumbel distributed. There is a simple inter-

pretation for this statistical mechanical model: it is a gas of N magnetic particles, each of

which has k states, and the energy of these states depend on the corresponding value of the

utility V (l)
k , which therefore bears a close analogy to a magnetic field acting on the particle.

This model may seem completely uninteresting, since it is in no essential way different

from a Langevin paramagnet. What is interesting, however, is how such a familiar, if trivial,

model has arisen independently in the field of economics, and there are a few simple points

to be made that can emphasize the change in perspective.

First, we see how for this model it makes sense to consider the pressure PN as an

extensive quantity. This is due to the fact that these models are applied to samples of data
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that yield information about each single individual, rather than be applied to extremely

large ensembles of particles that we regard as identical, and of which we measure average

quantities. Second, the availability of data about individuals (microeconomic data) allows

us to define the vector v(l) which assigns a benefit value to each of the alternative that

individual l has.

The main goal of an econometric model of this kind is then to find the parametrization for

v(l) in terms of observable socio-economic features which fits micro data in an optimal way.

The main goal of statistical mechanics is, on the other hand, to find a microscopic theory

capable of generating laws that are observed consistently over a large number of experiments

and measured with extreme precision at a macroscopic level. Since the numbers available

for microeconomic data are not as high as the number of particles in a physical systems,

but these that are more detailed at the level of individuals, the goal of a model of social

behaviour could be seen as an interesting mixture of the above.

2.4 The role of statistical mechanics

We have see how discrete choice can be given a statistical mechanical description: in this

section we consider why this is of interest to modeling social phenomena.

A key limitation of discrete choice theory is that it does not formally account for social

interactions and imitation. In discrete choice each individual’s decisions are based on purely

personal preferences, and are not affected by other people’s choices. However, there is a

great deal of theoretical and empirical evidence to suggest that an individual’s behaviour,

attitude, identity and social decisions are influenced by that of others through vicarious

experience or social influence, persuasions and sanctioning [1, 4]. These theories specifically

relate to the interpersonal social environment including social networks, social support, role

models and mentoring. The key insight of these theories is that individual behaviours and

decisions are affected by their relationships with those around them - e.g. their parents or

their peers.

Mathematical models that take into account social influence have been considered by

social psychology since the ’70s (see [63] for a short review). In particular, influential works

by Schelling [62] and Granovetter [34] have shown how models where individuals take into

account the mean behaviour of others are capable of reproducing, at least qualitatively,

the dramatic opinion shifts observed in real life (for example in financial bubbles or during

street riots). In other words, they observed that the interaction built into their models was

unavoidably linked to the appearance of structural changes on a phenomenological level in

the models themselves.
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Figure 2.2: The diagram illustrates how the inclusion of social interactions (right) leads to the
existence tipping points. By contrast models that do not account for social interactions cannot
account for the tipping points.

Figure 2.2 compares the typical dependence of average choice with respect to an at-

tribute parameter, such as cost, in discrete choice analysis (left), where the dependence is

always a continuous one, with the typical behaviour of an interaction model of Schelling or

Granovetter kind (right), where small changes in the attributes can lead to a drastic jump

in the average choice, reflecting structural changes such as the disappearing of equilibria in

the social context.

The research course initiated by Schelling was eventually linked to the parallel devel-

opment of the discrete choice analysis framework at the end of the ’90s, when Brock and

Durlauf [21] suggested a direct econometric implementation of the models considered by

social psychology. In order to accomplish this, Brock and Durlauf had to delve into the im-

plications of a model where an individual takes into account the behaviour of others when

making a discrete choice: this could only be done by considering a new utility function

which depended on the choices of all other people.

This new utility function was built by starting from the assumptions of discrete choice

analysis. The utility function reflects what an individual considers desirable: if we hold

(see, e.g., [10]) that people consider desirable to conform to people they interact with, we

have that, as a consequence, an individual’s utility increases when he agrees with other

people.

Symbolically, we can say that when an individual i makes a choice, his utility for that

choice increases by an amount Jij when another individual j agrees with him, thus defining

a set of interaction parameters Jij for all couples of individuals. The new utility function
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for individual i hence takes the following form:

Ui =
∑
j

Jijτj +
∑
a

λax
(i)
a +

∑
a

αay
(i)
a + ε, (2.5)

where the sum
∑

j ranges over all individuals, and the symbol τj is equal to 1 if j agrees

with i, and 0 otherwise.

Analysing the general case of such a model is a daunting task, since the choice of another

individual j is itself a random variable, which in turn correlates the choices of all individuals.

This problem, however, has been considered by statistical mechanics since the end of the

19th century, throughout the twentieth century, until the present day. Indeed, the first

success of statistical mechanics was to give a microscopic explanation of the laws governing

perfect gases, and this was achieved thanks to a formalism which is strictly equivalent to

the one obtained by discrete choice analysis in (5.4).

The interest of statistical mechanics eventually shifted to problems concerning interac-

tion between particles, and as daunting as the problem described by (2.5) may be, statistical

physics has been able to identify some restrictions on models of this kind to make them

tractable while retaining great descriptive power as shown, e.g., in the work of Pierre Weiss

[70] regarding the behaviour of magnets.

The simplest way devised by physics to deal with such a problem is called a mean

field assumption, where interactions are assumed to be of a uniform and global kind. This

leads to manageable closed form solution and a model that is consistent with the models of

Schelling and Granovetter. Moreover, this assumption is also shown by Brock and Durlauf

to be closely linked to the assumption of rational expectations from economic theory, which

assumes that the observed behaviour of an individual must be consistent with his belief

about the opinion of others.

By assuming mean field or rational expectations we can rewrite (2.5) in the tamer form

Ui = Jm+
∑
a

λax
(i)
a +

∑
a

αay
(i)
a + ε, (2.6)

where m is the average opinion of a given individual, and this average value is coupled to

the model parameters by a closed form formula.

If we now define Vi to be the deterministic part of the utility, similarly as before,

Vi = Jm+
∑
a

λax
(i)
a +

∑
a

αay
(i)
a ,
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we have that the functional form of the choice probability, given by 5.4,

Pi =
eVi

1 + eVi
, (2.7)

remains unchanged, allowing the empirical framework of discrete choice analysis to be used

to test the theory against real data. This sets the problem as one of heterogeneous inter-

acting particles, and we shall see in the next two chapters how such a mean-field model,

just like the standard Multinomial Logit, can be given a Hamiltonian statistical mechanical

form, and solved in a completely rigorous way using elementary mathematics, via methods

recently developed in the context of spin glasses [37].

Though the mean field assumption might be seen as a crude approximation, since it

considers a uniform and fixed kind of interaction, one should bear in mind that statistical

physics has built throughout the twentieth century the expertise needed to consider a wide

range of forms for the interaction parameters Jij , of both deterministic and random nature,

so that a partial success in the application of mean field theory might be enhanced by

browsing through a rich variety of well developed, though analytically more demanding,

theories.

Nevertheless, an empirical attempt to assess the actual descriptive and predictive power

of such models has not been carried out to date: the natural course for such a study would

be to start by empirically testing the mean field picture, as it was done for discrete choice

in the seventies (see Figure 1), and to proceed by enhancing it with the help available from

the econometrics, social science, and statistical physics communities. Two recent examples

of empirical studies of mean-field models can be found in [65] and [29].
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Chapter 3

The Curie-Weiss model

The Curie-Weiss model was first introduced in 1907 by Pierre Weiss [70] as a proposal for

a phenomenological model capable of explaining the experimental observations carried out

by Pierre Curie in 1895 [18], concerning the dependance on temperature of the magnetic

nature for metals such as iron, nickel, and magnetite.

Iron and nickel are materials capable of retaining a degree of magnetization, which

we call spontaneous magnetization, after having been exposed to a magnetic field: such

materials are said to be ferromagnetic, from the Latin name for iron. However, it had been

known since the day of Faraday ([18], pag. 1) that these materials tend to lose their ability

to retain magnetization as their temperature increases.

Pierre Curie’s experiments showed not only that the loss of the ferromagnetic property

indeed occurs, but also observed that it occurs in a very peculiar fashion. For each of the

materials he considered, he found a definite temperature at which spontaneous magnetiza-

tion vanishes abruptly, giving rise to an irregular point in the graph plotting spontaneous

magnetization versus temperature (see Figure 3.1): we now call this temperature the Curie

temperature for the given material.

Figure 3.1: Pierre Curie’s measurements in 1895
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Figure 3.2: Pierre Weiss’s measurements (crosses) fitted against his theoretical prediction (line) in
1907: the graph shows the dependance of spontaneous magnetization on temperature for magnetite

Weiss’s model arises from physical considerations about the nature of magnetic interac-

tions between atoms: he claims that single atoms must experience, as well as the external

field, a sum of all the fields produced by all the other particles inside the material. He calls

this field a “molecular field” (champ moleculaire), and by adding a term corresponding to

this field inside the balance equation derived by Paul Langevin to describe paramagnetic

materials (that is, magnetic materials that do not retain magnetition after exposure to a

field), he formulates a balance equation for ferromagnetic materials.

In his 1907 paper Weiss shows that the theoretical predictions of his model show re-

markable agreement with physical reality by fitting them against measurements, carried on

by himself, on a ellipsoid made of magnetite (Figure 3.2).

Today we know that the Curie-Weiss is not completely accurate: indeed, it is well

known that some physically measurable quantities for ferromagnetic materials, called critical

exponents, are not predicted correctly by it (see [41], pag. 425). The subsequent study of

more detailed models, such as the Ising model, has brought to light the reason for such a

mismatch: when rewritten in the language of modern statistical mechanics, the model of

Curie-Weiss readily shows to be equivalent to one where all particles are interacting with

each other. This turns out to be too strong an assumption for a system where all particles

sit next to each other geometrically and which interact, according to quantum mechanics,

up to a very short range. On the other hand though, the Ising model, which still makes use

of all of Weiss’s other simplifying assumptions about interaction between particles, manages
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to predict critical exponents correctly, just by assuming that particles only interact with

their nearest neighbours on a regular lattice, though, from a mathematical point of view,

this modification implies a drastic reduction of the symmetry of the problem, which has so

far proved to be analitically untreatable in more than two dimensions (see [41] pag. 341).

All objections standing, it is nevertheless worth remembering that the degree of agree-

ment between theory and reality for the Curie-Weiss model is truly remarkable given the

simplicity of the model. Today, Weiss’s “molecular field” assumption is dimmed a mean field

assumption, and scientific wisdom tells that this assumption is of great value in exploring

the phase structure of a system so that, when faced with a new situation, one would try

mean field first ([41], pag. 423).

3.1 The model

As a modern statistical mechanics model, the Curie-Weiss model is defined by its Hamilto-

nian:

H(σ) = −
N∑

i,j=1

Jijσiσj −
N∑
i=1

hiσi . (3.1)

We consider Ising spins, σi = ±1, subject to a uniform magnetic field hi = h and to

isotropic interactions Ji,j = J/2N , so that we have.

H(σ) = − J

2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi . (3.2)

If we now introduce the magnetization of a configuration σ as

m(σ) =
1
N

N∑
i=1

σi

we can rewrite the Hamiltonian per particle as:

H(σ)
N

= −J
2
m(σ)2− hm(σ) (3.3)

The established statistical mechanics framework defines the equilibrium value of an

observable f(σ) as the average with respect to the Gibbs distribution defined by the Hamil-

tonian. We call this average the Gibbs state for f(σ), and write it explicitly as:

〈 f 〉 =
∑

σ f(σ) e−H(σ)∑
σ e
−H(σ)

.
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The main observable for our model is the average value of a spin configuration, i.e. the

magnetization, m(σ), which explicitly reads:

m(σ) =
1
N

N∑
i=1

σi.

Our quantity of interest is therefore 〈m〉: to find it, as well as the moments of many

other observables, statistical mechanics leads us to consider the pressure function:

pN =
1
N

log
∑
σ

e−H(σ) .

It is easy to verify that, once it’s been derived exactly, the pressure is capable of gener-

ating the Gibbs state for the magnetization as

〈m〉 =
∂pN
∂h

.

3.2 Existence of the thermodynamic limit

We show two ways of computing the existence of the thermodynamic limit in the Curie-Weiss

model. The first method follows [5] in exploiting directly the convexity of the Hamiltonian

in order to prove subadditivity in N for the systems’s pressure.

The second method consists in a refinement of the first, and covers models for which

the Hamiltonian is not necessarily convex, such as the two-population model considered in

the next chapter. It is important to point out that a careful application of this method to

the Sherrington-Kirkpatrick spin glass model allowed Guerra [36] to prove the twenty-years

standing question concerning existence of thermodynamic limit.

3.2.1 Existence by convexity of the Hamiltonian

We consider a system of N spins defined as above. Following [5] we split the system in two

subsystem of N1 and N2 spins, respectively, with N1 +N2 = N . For each of these systems

we define partial magnetizations

m1(σ) =
1
N1

N1∑
i=1

σi and m2(σ) =
1
N2

N∑
i=N1+1

σi,
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which allow us to define partial Hamiltonians

HN1 = −N1(
J

2
m2

1 + hm1) and HN2 = −N2(
J

2
m2

2 + hm2).

We have by definition that

m =
N1

N
m1 +

N2

N
m2 (3.4)

and since f(x) = x2 is a convex function we also have that

m 6
N1

N
m2

1 +
N2

N
m2

2. (3.5)

We are now ready to prove the following

Proposition 1. There exists a function p(J, h) such that

lim
N→∞

pN = p .

Proof. Relations (3.4) and (3.5) imply that

HN 6 HN1 +HN2

and this in turn gives

ZN =
∑
σ

e−HN (σ) 6
∑
σ

e−HN1
(σ:1..N1)−HN1

(σ:N1+1..N2) = ZN1ZN2

where σ : 1..N1 = {σ1, .., σN1} and σ : N1 + 1..N = {σN1+1, .., σN}. Hence we have the

following inequality

NpN 6 N1pN1 +N2pN2 , for N1 +N2 = N

This identifies the sequence {NpN} as a subadditive sequence, for which the following

holds

lim
N→∞

NpN
N

= lim
N→∞

pN = inf
N
pN .

Hence in order to verify the existence of a finite limit we need to verify that the sequence

{pN} is bounded below, which follows from the boundedness of the intensive quantity

H(σ)
N

= −J
2
m2 − hm,
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for −1 6 m 6 1. Indeed, if H(σ)
N 6 K,

pN =
1
N

ln
∑
σ

e−H(σ) >
1
N

ln 2NeNK = ln 2 +K

so the result follows.

3.2.2 Existence by interpolation

We shall now prove that our model admits a thermodynamic limit by exploiting an existence

theorem provided for mean field models in [8]: the result states that the existence of the

pressure per particle for large volumes is guaranteed by a monotonicity condition on the

equilibrium state of the Hamiltonian. We therefore prove the existence of the thermody-

namic limit independently of an exact solution. Such a line of enquiry is pursued in view of

the study of models, that shall possibly involve random interactions of spin glass or random

graph type, and that might or might not come with an exact expression for the pressure.

Proposition 2. There exists a function p(J, h) such that

lim
N→∞

pN = p .

Proof. Theorem 1 in [8] states that given a Hamiltonian HN such that HN
N is bounded in N ,

and its associated equilibrium state ωN , the model admits a thermodynamic limit whenever

the physical condition

ωN (HN ) > ωN (HN1) + ωN (HN2), N1 +N2 = N, (3.6)

is verified.

For the Curie-Weiss model the condition is easy to verify once we define partial magne-

tizations

m1(σ) =
1
N1

N∑
i=1

σi and m2(σ) =
1
N2

N∑
i=1

σi.

This gives that

m =
N1

N
m1 +

N2

N
m2
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so that

HN −HN1 −HN2 = −N(
J

2
m2 + hm) +N1(

J

2
m2

1 + hm1) +N2(
J

2
m2

2 + hm2) =

= −N J

2
(m2 − N1

N
m2

1 −
N2

N
m2

2)−Nh(m− N1

N
m1 −

N2

N
m2)

= −N J

2
(m2 − N1

N
m2

1 −
N2

N
m2

2) > 0

The last inequality follows from convexity of the function f(x) = x2, and since it holds

for every configuration σ, it also implies (3.6), proving the result.

3.3 Factorization properties

In this section we shall prove that the correlation functions of our model factorize completely

in the thermodynamic limit, for almost every choice of parameters. This implies that all the

thermodynamic properties of the system can be described by the magnetization. Indeed,

the exact solution of the model to be derived in the next section comes as an equation of

state which, as expected, turns out to be the same as the balance equation derived by Weiss.

Proposition 3.

lim
N→∞

(
ωN (m2)− ωN (m)2

)
= 0

for almost every choice of h.

Proof. We recall the definition of the Hamiltonian per particle

HN (σ)
N

= −J
2
m2− hm,

and of the pressure per particle

pN =
1
N

ln
∑
σ

e−HN (σ).

By taking first and second partial derivatives of pN with respect to h we get

∂pN
∂h

=
1
N

∑
σ

Nm(σ)
e−H(σ)

ZN
= ωN (m),

∂2pN
∂ h2

= ωN (m2)− ωN (m)2.

By using these relations we can bound above the integral with respect to h of the
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fluctuations of m in the Gibbs state:∣∣∣∣∣
∫ h(2)

h(1)

(ωN (m2)− ωN (m)2) dh

∣∣∣∣∣ =
1
N

∣∣∣∣∣
∫ h(2)

h(1)

∂2pN
∂h2

dh

∣∣∣∣∣ =
1
N

∣∣∣∣∣∂pN∂ h
∣∣∣∣h(2)

h(1)

∣∣∣∣∣ 6
6

1
N

(∣∣ωN (m)|h(2)

∣∣+
∣∣ωN (m)|h(1)

∣∣) = O
( 1
N

)
.

(3.7)

On the other hand we have that

ωN (m) =
∂pN
∂h

,

and

ωN (m) =
∂pN
∂J

,

so, by convexity of the thermodynamic pressure p = lim
N→∞

pN , both quantities
∂pN
∂h

and

∂pN
∂J

have well defined thermodynamic limits almost everywhere. This together with (3.7)

implies that

lim
N→∞

(ωN (m2)− ωN (m)2) = 0 a.e. in h. (3.8)

The last proposition proves that m(σ) is a self-averaging quantity, that is, a random

quantity whose fluctuations vanish in the thermodynamic limit. This is indeed a powerful

result, which can be exploited thanks to the following

Proposition 4. (Cauchy-Schwartz inequality) Let X and Y be two random variables defined

on a finite probability space such that P (Xi) = P (Yi) = pi. Then the following holds

E(XY )− E(X)E(Y ) 6
√

Var(X)Var(Y )

Proof. Let us define the following quantities:

E(X) =
∑
i

Xipi = µX , Var(X) = σ2
X

E(Y ) =
∑
i

Yipi = µY , Var(Y ) = σ2
Y
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If we now define rescaled versions of X and Y :

X̄ =
X − µX
σX

, and Ȳ =
Y − µY
σY

,

we get that {Xip
1/2
i } and {Yip1/2

i } are vectors of Euclidean length equal to 1. This implies

|E(X̄Ȳ )| = |
∑
i

X̄iȲipi| = |
∑
i

X̄ip
1/2
i Ȳip

1/2
i | 6 1

where the inequality only points out that E(X̄Ȳ ) is the projection of a unit vector against

another, and therefore that its modulus is less than one.

If we now substitute back X and Y we get our result.

By putting together the self-avering property and the Cauchy-Schwartz inequality we

get the following

Proposition 5. Given any integer k we have that

lim
N→∞

(
ωN (mk)− ωN (m)k

)
= 0

for almost every choice of h.

Proof. Applying the Cauchy-Schartz inequality to X = mk−1 and Y = m we get that

|ωN (mk−1m)− ωN (mk−1m)| 6
√

VarN (mk−1)VarN (m). (3.9)

Now self-averaging tells us that VarN (m) tends to zero in the limit, and since mk−1 is

a bounded quantity, (3.9) implies:

lim
N→∞

(
ωN (mk)− ωN (m)k−1ωN (m)

)
= 0

and the rest of the proposition follows by induction on the same argument.

The last proposition is very important for this model, because the mean-field nature of

the system allows to use the factorization of the magnetization in order to prove factorization

of spin correlation functions, thus characterizing all the thermodynamics of the system.

In the following proposition we shall only prove the factorization of 2-spins: the factor-

ization of k-spins is done in the same way.
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Proposition 6.

lim
N→∞

(
ωN (σiσj)− ωN (σi)ωN (σj)

)
= 0

for almost every choice of h, whenever σi, σj are distinct spins.

Proof. Now we can use the self-averaging of m(σ) the factorization of correlation functions.

This is done by exploiting the translation invariance of the Gibbs measure on spins, which

in turn follows from the mean-field nature of the model:

ωN (m) = ωN (
1
N

N∑
i=1

σi) = ωN (σ1),

ωN (m2) = ωN (
1
N2

N∑
i,j=1

σiσj) = ωN (
1
N2

N1∑
i 6=j=1

σiσj) + ωN (
1
N2

N∑
i=j=1

σiσj) =

=
N − 1
N

ωN (σ1σ2) +
1
N
.

(3.10)

We have that (3.10) and (3.8) imply

lim
N→∞

ωN (σiσj)− ωN (σi)ωN (σj) = 0, for a.e. h (3.11)

which verifies our statement for all couples of spins i 6= j.

The self-averaging of the magnetization has been proved directly here: this, however,

can be seen as a consequence of the convexity of the pressure. Indeed, the second derivative

of any convex function exists almost everywhere: this is a consequence of the first derivative

existing almost everywhere and being monotonically increasing (se, e.g., [57]).

Therefore existence almost everywhere of ∂2p
∂h2 together with the intensivity property

of the magnetization implies trivially that its fluctuations vanish in the thermodynamic

limit. This also implies that, since energy per particle is another intensive quantity which is

obtained by differentiating the pressure with respect J , energy per particle is a self-averaging

quantity too.

As we can see from Proposition 5 factorization of spins only holds a.e. for h, and indeed

it can be proved that factorization doesn’t hold at h = 0, J > 1. However, by using

the self-averaging of energy-per-particle proved above, we can similarly obtain a weaker

factorization rule which covers this regime:
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Proposition 7.

lim
N→∞

ωN (σiσjσkσl)− ωN (σiσj)ωN (σkσl) = 0, for a.e. J

for almost every choice of J , whenever σi, σj, σk, σl are distinct spins.

Proof. The proof follows the same argument of Proposition 5, and uses the self-averaging

of the energy per particle instead of the self-averaging of the magnetization.

3.4 Solution of the model

We shall derive upper and lower bounds for the thermodynamic limit of the pressure. The

lower bound is obtained through the standard entropic variational principle, while the upper

bound is derived by a decoupling strategy.

3.4.1 Upper bound

In order to find an upper bound for the pressure we shall divide the configuration space into

a partition of microstates of equal magnetization, following [19, 37, 38]. Since the system

consists of N spins, its magnetization can take exactly N +1 values, which are the elements

of the set

RN =
{
− 1,−1 +

1
2N

, . . . , 1− 1
2N

, 1
}
.

Clearly for every m(σ) we have that

∑
m̄∈RN

δm,m̄ = 1,

where δx,y is a Kronecker delta. Therefore we have that

ZN =
∑
σ

exp
{
N(

J

2
m2 + hm)

}
= =

∑
σ

∑
m̄∈RN

δm,m̄ exp
{
N(

J

2
m2 + hm)

}
. (3.12)

Thanks to the Kronecker delta symbols, we can substitute m (the average of the spins

within a configuration) with the parameter m̄ (which is not coupled to the spin configura-

tions) in any convenient fashion. Therefore we can use the following relation in order to

linearize the quadratic term appearing in the Hamiltonian

(m− m̄)2 = 0,
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and once we’ve carried out this substitution into (3.12) we are left with a function which

depends only linearly on m:

ZN =
∑
σ

∑
m̄∈RN

δm,m̄ exp
{
N(

J

2
(2mm̄− m̄2) + hm)

}
.

and bounding above the Kronecker deltas by 1 we get

ZN 6
∑
σ

∑
m̄∈RN

exp
{
N(

J

2
(2mm̄− m̄2) + hm)

}
.

Since both sums are taken over finitely many terms, it is possible to exchange the order

of the two summation symbols, in order to carry out the sum over the spin configurations,

which now factorizes, thanks to the linearity of the interaction with respect to the ms. This

way we get:

ZN 6
∑
m̄∈RN

G(m̄).

where

G(m̄) = exp
{
−N 1

2
Jm̄2

}
· 2N

(
cosh

(
Jm̄+ h

))N
(3.13)

Since the summation is taken over the range RN of cardinality N + 1 we get that the

total number of summands is N + 1. Therefore

ZN 6 (N + 1) sup
m̄
G, (3.14)

which leads to the following upper bound for pN :

pN =
1
N

lnZN 6
1
N

ln(N + 1) sup
m̄
G =

=
1
N

ln(N + 1) +
1
N

sup
m̄

lnG . (3.15)

where the last equality follows from monotonicity of the logarithm.

Now defining the N independent function

pup(m̄1, m̄2) =
1
N

lnG = ln 2− J

2
m̄2 + ln cosh

(
Jm̄+ h

)
,
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and keeping in mind that limN→∞
1
N ln(N + 1) = 0, in the thermodynamic limit we get:

lim sup
N→∞

pN 6 sup
m̄
pUP (m̄). (3.16)

We can summarize the previous computation into the following:

Lemma 1. Given a Hamiltonian as defined in (3.3), and defining the pressure per particle

as pN = 1
N lnZ, given parameters J and h, the following inequality holds:

lim sup
N→∞

pN 6 sup
m̄
pup

where

pup(m̄) = ln 2− J

2
m̄2 + ln cosh

(
Jm̄+ h

)
,

and m̄ ∈ [−1, 1].

We shall give two ways of deriving a lower bound for the pressure: indeed, it is important

to keep in mind that having as many bounding tecniques as possible can be a good way of

approaching more refined models.

3.4.2 Lower bound by convexity of the Hamiltonian

Proposition 8. Given a Hamiltonian as defined in (3.3) and its associated pressure per

particle pN = 1
N lnZ, the following inequality holds for every J , h:

pN > sup
−16m̄61

plow

where

plow(m̄) = −J
2
m̄2 + ln 2 + ln cosh(Jm̄+ h)

Proof. We recall the Hamiltonian per particle written in terms of the configuration’s mag-

netization m(σ):
H(σ)
N

= −J
2
m2− hm.

Now, given any number m̄ ∈ [−1,+1], the following holds:

(m− m̄)2 > 0 ⇒ m2 > 2mm̄− m̄2
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so that

pN =
1
N

lnZN =
1
N

ln
∑
σ

exp{N(
J

2
m2 + hm)} >

>
1
N

ln
∑
σ

exp{N(Jmm̄− J

2
m̄2 + hm)} =

=
1
N

ln
(

exp{−NJ
2
m̄2}

∑
σ

exp{N(Jm̄m+ hm)}
)

=

= −J
2
m̄2 +

1
N

ln
(

2Ncosh(Jm̄+ h)N
)

= −J
2
m̄2 + ln 2 + ln cosh(Jm̄+ h)

This way we get new lower bound which can be expressed as

pN > sup
−16m̄61

plow

where

plow(m̄) = −J
2
m̄2 +

1
N

ln
(

2Ncosh(Jm̄+ h)N
)

= ln 2− J

2
m̄2 + ln cosh(Jm̄+ h)

which is the result.

3.4.3 Variational lower bound

The second lower bound is provided by exploiting the well-known Gibbs entropic variational

principle (see [58], pag. 188). In our case, instead of considering the whole space of ansatz

probability distributions considered in [58], we shall restrict to a much smaller one, and

use the upper bound derived in the last section in order to show that the lower bound

corresponding to the restricted space is sharp in the thermodynamic limit.

The mean-field nature of our Hamiltonian allows us to restrict the variational problem

to a product measure with only one degree of freedom, represented by the non-interacting

Hamiltonian:

H̃ = −r
N∑
i=1

σi,

and so, given a Hamiltonian H̃, we define the ansatz Gibbs state corresponding to it as

f(σ) as:

ω̃(f) =
∑

σ f(σ)e−H̃(σ)∑
σ e
−H̃(σ)
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In order to facilitate our task, we shall express the variational principle of [58] in the

following simple form:

Proposition 9. Let a Hamiltonian H, and its associated partition function Z =
∑
σ

e−H

be given. Consider an arbitrary trial Hamiltonian H̃ and its associated partition function

Z̃. The following inequality holds:

lnZ > ln Z̃ − ω̃(H) + ω̃(H̃) . (3.17)

Given a Hamiltonian as defined in (3.3) and its associated pressure per particle pN = 1
N lnZ,

the following inequality follows from (3.17):

lim inf
N→∞

pN > sup
m̄1,m̄2

p′low (3.18)

where

p′low(m̄) =
J

2
m̄2 + hm̄− 1 + m̄

2
ln(

1 + m̄

2
)− 1− m̄

2
ln(

1− m̄
2

). (3.19)

and m̄ ∈ [−1, 1].

Proof. The inequality (3.17) follows straightforwardly from Jensen’s inequality:

eω̃(−H+H̃) ≤ ω̃(e−H+H̃) . (3.20)

We recall the Hamiltonian:

H(σ) = − J

2N

∑
i,j

σiσj − h
∑
i

σi, (3.21)

so that its expectation on the trial state is

ω̃(H) = − J

2N

∑
i,j

ω̃(σiσj)− h
∑
i

ω̃(σi)

and a standard computation for the moments of a non-interacting system (i.e. for a perfect

gas) leads to

ω̃(H) = −N(1− 1/N)
J

2
(tanh r)2 −N J

2
−Nh tanh r.

(3.22)
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Analogously, the trial Gibbs state of H̃ is:

ω̃(H̃) = −Nr tanh r,

and the non interacting partition function is:

Z̃N =
∑
σ

e−H̃(σ) = 2N (coshr)N ,

which implies that the non-interacting pressure gives

p̃N =
1
N

ln Z̃N = ln 2 + ln coshr

So we can finally apply Proposition (3.17) in order to find a lower bound for the pressure

pN =
1
N

lnZN :

pN =
1
N

lnZN >
1
N

(
ln Z̃N − ω̃(H) + ω̃(H̃)

)
(3.23)

which explicitly reads:

pN =
1
N

lnZN > ln 2 + ln coshr +
J

2
(tanh r)2 + h tanh r − r tanh r

+J/2N − J(tanh r)2/N.

(3.24)

Taking the liminf over N and the supremum in r of the left hand side we get (4.21)

after performing the change of variables m̄ = tanh r, and obtaining the following form for

the right hand side:

plow(m̄) =
J

2
m̄2 + hm̄− 1 + m̄

2
ln(

1 + m̄

2
)− 1− m̄

2
ln(

1− m̄
2

).
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3.4.4 Exact solution of the model

We have derived two lower bounds and one upper bound to the thermodynamic pressure,

which are given by the suprema w.r.t. m̄ of the following functions:

pup(m̄) = plow(m̄) = ln 2− J

2
m̄2 + ln cosh(Jm̄+ h)

p′low(m̄) =
J

2
m̄2 + hm̄− 1 + m̄

2
ln(

1 + m̄

2
)− 1− m̄

2
ln(

1− m̄
2

) (3.25)

Since pup = plow, the supremum of this function gives the thermodynamic value of the

pressure, and thus provides the exact solution to the model. However, it is important to

verify that the bounds provided by all functions coincide, since for more general cases one

of the bounding arguments may fail, as indeed happens in the next chapter, where a bound

of type plow cannot be found due to lack of convexity in the Hamiltonian. Furthermore, p′low
has a direct thermodynamic interpretation, as shall be explained in the following section.

For the standard Curie-Weiss model that we are studying here the equivalence of the

two bounds can be proved by way of a peculiar property of the Legendre transformation,

and we will do this in this section.

Proposition 10. The function

f∗(y) =
1
J

(1 + y

2
ln

1 + y

2
+

1− y
2

ln
1− y

2
− y h

)
is the Legendre transform of

f(x) =
1
J

ln 2 cosh(Jx+ h)

Proof. The Legendre transformation is defined by

f∗(y) = sup
x

(
xy − f(x)

)
Since we are dealing with a convex function we can find the supremum by differentiation:

df

dx
= y − tanh(Jx+ h) = 0

which implies

Jx = arctanh y − h,
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so that by substituting we find that the Legendre transform of f is

f∗(y) = y
1
J

(arctanh y − h)− 1
J

ln 2 cosh( arctanh y − h+ h) =

= y
1
J

arctanh y − yh

J
− 1
J

ln 2 cosh arctanh y =

= y
1

2J
ln

1 + y

1− y
− yh

J
− 1
J

ln
(

exp{1
2

ln
1 + y

1− y
}+ exp{1

2
ln

1− y
1 + y

}
)

=

= y
1

2J
ln

1 + y

1− y
− yh

J
− 1
J

ln
(1 + y + 1− y√

1− y2

)
= y

1
2J

ln
1 + y

1− y
− yh

J
− 1
J

ln
( 2√

1− y2

)
=

=
1
J

(1 + y

2
ln(1 + y) +

1− y
2

ln(1− y)− y h− ln 2
)

=

=
1
J

(1 + y

2
ln

1 + y

2
+

1− y
2

ln
1− y

2
− yh

)
,

which is the required result.

We can similarly verify that the Legendre transform of g(x) = −1
2x

2 is given by the

function g∗(x) = 1
2x

2.

This way we see that we can write the bounding functions as:

pup(m̄) = plow(m̄) = J(f(m̄)− g(m̄)),

p′low(m̄) = J(g∗(m̄)− f∗(m̄)). (3.26)

and the following proposition tells us that all of the bounds that we have found coincide.

Proposition 11. Let f and g be two convex functions and f∗ and g∗ be their Legendre

transforms. Then the following is true:

sup
x

f(x)− g(x) = sup
y
g∗(y)− f∗(y)

Proof. For a nice proof see [22], or the appendix in [40].

The last proposition tells us that both the variational principles we have derived provide

the correct value for the thermodynamic pressure, and so the results of this section can be

summarised in the following

Theorem 1. Given a hamiltonian as defined in (3.3), and defining the pressure per particle
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as pN =
1
N

lnZ, given parameters J and h, the thermodynamic limit

lim
N→∞

pN = p

of the pressure exists, and can be expressed in one of the following equivalent forms:

a) p = sup
m̄

pup(m̄) = sup
m̄

plow(m̄)

b) p = sup
m̄

p′low(m̄)

3.5 Consistency equation

In the last section we have expressed the thermodynamic pressure of the Curie-Weiss model

as the supremum of two distinct functions. Indeed, more can be said about this variational

principle, since even the argument of the supremum has a very important meaning: we

shall see in this section that, in case there is a unique supremum for pup = plow or p′low, its

argument gives the thermodynamic value of the magnetization. If there exists more than

one supremum, we have a phase transition, and each argument gives a pure state for the

magnetization.

First, we point out the straight-forward fact that stationary points of both pup = plow

and p′low satisfy the condition:

m̄∗ = tanh(Jm̄∗ + h), (3.27)

which can be found in the literature as consistency equation, mean field equation, state

equation, secularity equation, and other names, depending on the context.

This equation is indeed important: since the bounding functions are smooth, and since it

can be easily seen by checking derivatives that none of the admit suprema at the boundary of

[−1, 1], we have as a consequence that any supremum of the function satisfies this equation.

It is also interesting to notice that the trivial fact that this equation has always a solution

inside [−1, 1] can be also seen as a consequence of the existence results of Section 3.2.

Proposition 12. Let J and h be given so that pup = plow has a unique supremum, which

is attained at m̄∗. Then m̄∗ = limN→∞ ωN (m) = limN→∞ ωN (σi).

Proof. The following holds at finite N, by definition of the pressure pN (J, h):

∂pN
∂h

= ωN (mN ).
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We have proved that {pN} is a convergent sequence of functions which are convex (for

a proof of the convexity of the pressure see [32], where convexity is proved for the free-

energy in the Ising model, which is essentially the same as the pressure multiplied by −1).

This implies that the limit function is also convex, and as such it is differentiable almost

everywhere. As a consequence we have the following:

lim
N→∞

ωN (m) = lim
N→∞

∂pN
∂h

=
∂ supm̄ plow

∂h

whenever the last derivative exists (for a proof that the limit of the derivatives coincides

with the derivative of the limit in this case see [22] pag. 114).

Therefore if we write limN→∞ pN = p(J, h, m̄∗(J, h)), we can write the following:

∂ supm̄ plow
∂h

=
∂p(J, h, m̄∗(J, h)

∂h
= −J ∂m̄

∗

∂h
m̄∗ + tanh(Jm̄∗ + h) + J

∂m̄∗

∂h
tanh(Jm̄∗ + h),

and by substituting (3.27) we get

∂ supm̄ plow
∂h

= m̄∗,

which is our result.

A similar proposition can be proved analogously for p′low. Let us now write

ω(m) = lim
N→∞

ωN (m) and ω(σi) = lim
N→∞

ωN (σi).

As a consequence of Proposition 12 we have that we can write

p′low(m̄∗) = S − U

where

S = −1 + ω(σi)
2

ln
(1 + ω(σi)

2

)
− 1− ω(σi)

2
ln
(1− ω(σi)

2

)
is the thermodynamic entropy and

U =
J

2
ω(m)2 + hω(m)

is the thermodynamic internal energy, as can be derived directly from the Gibbs distribution.
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3.6 A heuristic approach

We shall now describe a heuristic procedure to obtain the consistency equation 3.27. First

of all, we make the following observation about the Gibbs average ωN (σN ) of the magneti-

zation:

ωN (m) = ωN (σ1) =
1
ZN

∑
σ∈{−1,1}N

σ1e
−H(σ)

We now define the following Hamiltonian H̃N :

H̃N = − J

2(N + 1)

N∑
i,j=1

σiσj − h
N∑
i=1

σi,

and its associated partition function

Z̃N =
∑

σ∈{−1,1}

e−H̃N ,

which allows us to write:

ωN (σ1) =

∑
σ∈{−1,1}N σ1e

J
N

∑N
i=1 σiσN +hσN e−H̃N−1(σ)∑

σ∈{−1,1}N e
J
N

∑N
i=1 σiσN +hσN e−H̃N−1(σ)

=

=
Z̃N

∑
σ∈{−1,1}N σ1e

J
N

∑N
i=1 σiσN +hσN e−H̃N−1(σ)

Z̃N
∑

σ∈{−1,1}N e
J
N

∑N
i=1 σiσN +hσN e−H̃N−1(σ)

=

=
Z̃N

∑
σ∈{−1,1}N−1 σ1 sinh( JN

∑N−1
i=1 σi + h+ J

N )e−H̃N−1(σ)

Z̃N
∑

σ∈{−1,1}N−1 cosh( JN
∑N−1

i=1 σi + h+ J
N )e−H̃N−1(σ)

=

=
ω̃N (sinh( JN

∑N−1
i=1 σi + h+ J

N ))

ω̃N (cosh( JN
∑N−1

i=1 σi + h+ J
N ))

Now, if we assume that the last line implies

lim
N→∞

ωN (σi) = lim
N→∞

ωN (sinh(Jm+ h))
ωN (cosh(Jm+ h))

(3.28)

we can use the factorization properties of the model in order to derive the following.

Let us consider ωN (sinh(Jm + h)), and write it by making the power series at the
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argument explicit:

ωN (sinh(Jm+ h)) = ωN

( ∞∑
k=0

(Jm+ h)k

(2k + 1)!

)
Now, if we consider only a partial sum up to n at the argument of the Gibbs state, and

take the thermodynamic limit, the self-averaging property of the magnetization tells us that

the following holds a.e. in J and h:

lim
N→∞

ωN

( n∑
k=0

(Jm+ h)k

(2k + 1)!

)
= lim

N→∞
ωN

( n∑
k=0

1
(2k + 1)!

k∑
l=0

(
k

l

)
(Jm)lhk−l

)
=

= lim
N→∞

n∑
k=0

1
(2k + 1)!

k∑
l=0

(
k

l

)
J lωN (m)lhk−l

)
=

= lim
N→∞

n∑
k=0

(JωN (m) + h)k

(2k + 1)!

Now, disregarding convergence problems, the limit of (3.29) together with the assump-

tion (3.28) give the following equation:

m̄∗ = tanh(Jm̄∗ + h),

where m̄∗ is the thermodynamic magnetization. This way we have derived heuristically the

consistency equation describing the most important quantity for our model just by making

use of the model’s factorization properties.

It is important, however, to stress that the procedure we proposed in this section is not

mathematically rigorous: assumption (3.28), though sensible, hasn’t been derived rigorously,

and the possible convergent problems have not been considered. Nevertheless, since the

procedure has provided the right answer which we have derived rigorously throughout the

chapter, and since it consists simple considerations, it can be see as a way of approaching

models defined on random networks instead that on the complete graph, which are not as

well understood as the one treated in this chapter.
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Chapter 4

The Curie-Weiss model for many

populations

In this chapter we consider the problem of characterizing the equilibrium statistical me-

chanics of an mean field interacting system partitioned into p sets of spins. The relevance of

such a problem to social modelling is that such a partition can be made to correspond to the

partition into classes of people sharing the same socio-economics attributes, as described in

chapter 2.

Our results can be summarised as follows. After introducing the model we show in

section 3 that it is well posed by showing that its thermodynamic limit exists. The result

is non-trivial, since sub-additivity is not met at finite volume. In section 4 we show that

the system fulfills a factorization property for the correlation functions which reduces the

equilibrium state to only n degrees of freedom the equilibrium state. The method is con-

ceptually similar to the one developed by Guerra in [35] to derive identities for the overlap

distributions in the Sherrington and Kirkpatrick model.

We also derive the pressure of the model by rigorous methods developed in the recent

study of mean field spin glasses (see [37] for a review). It is interesting to notice that though

very simple, our model encompasses a range of regimes that do not admit solution by the

elegant interpolation method used in the celebrated existence result of the Sherrington and

Kirkpatrick model [36]. This is due to the lack of positivity of the quadratic form describing

the considered interaction. Nevertheless we are able to solve the model exactly in section

4.4, using the lower bound provided by the Gibbs variational principle, and thanks to a

further bound given by a partitioning of the configuration space, itself originally devised in

the study of spin glasses (see [37, 19, 38]).

As in the classical Curie-Weiss model, the exact solution is provided in an implicit form;
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for our system, however, we find a system of equations of state, which are coupled as well

as trascendental, and this makes the full characterization of all the possible regimes highly

non-trivial. A simple analytic result about the number of solutions for the two-population

case is proved in section 4.5.

4.1 The Model

We can generalize the Curie-Weiss model to p-populations, allowing r-body interactions

with r = 1..p. This gives rise to the following Hamiltonian:

HN = −N
p∑
r=1

p∑
i1,...,ir=1

Ji1,...,ir

r∏
k=1

mik , (4.1)

or, equivalently, to the following Utility function for individual i:

Ui =
p∑
r=1

p∑
i1,...,ir−1=1

Ji1,...,ir−1,i

r−1∏
k=1

mik .

Here Ji1,...,ir gives the interaction coefficients corresponding to the r-body interaction

among individuals coming from populations i1, ..., ir, respectively. We can also consider the

external fields to be already included in this form of the model, just by setting Ji = hi.

So we have defined interactions by using a tensor Ji1,...,ir of rank r for each of the r-body

interactions.

4.2 Existence of the thermodynamic limit for many popula-

tions

We shall prove that our model admits a thermodynamic limit by exploiting an existence

theorem provided for mean field models in [8]: the result states that the existence of the

pressure per particle for large volumes is guaranteed by a monotonicity condition on the

equilibrium state of the Hamiltonian. Such a result proves to be quite useful when the

condition of convexity introduced by the interpolation method [36, 37] doesn’t apply due

to lack of positivity of the quadratic form representing the interactions. We therefore prove

the existence of the thermodynamic limit independently of an exact solution. Such a line of

enquiry is pursued in view of further refinements of our model, that shall possibly involve

random interactions of spin glass or random graph type, and that might or might not come

with an exact expression for the pressure.
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Proposition 13. There exists a function p of all the parameters Ji1,...,ir such that

lim
N→∞

pN = p .

The previous proposition is proved with a series of lemmas. Theorem 1 in [8] states

that given a Hamiltonian HN and its associated equilibrium state ωN the model admits a

thermodynamic limit whenever the physical condition

ωN (HN ) > ωN (HN1) + ωN (HN2), N1 +N2 = N, (4.2)

is verified.

We proceed by first verifying this condition for an alternative Hamiltonian H̃N , and

then showing that its pressure p̃N tends to our original pressure pN as N increases. We

choose H̃N in such a way that the condition (4.2) is verified as an equality.

Now, define the alternative Hamiltonian H̃N as follows:

H̃N = −C N
p∏
l=1

(Nil − kl)!
Nil !

∑
jk=Nik−1+1,...,Nik

jk 6=jh for k 6=h

σj1 ...σjr

where C is a real number.

Though the notation is cumbersome at this point, the new Hamiltonian simply considers

products of r distinct spins, ki of which are taken from population i (i.e.
∑p

i=1 ki = r) and

so the combinatorial coefficient is just dividing the sum by the correct number of terms

contained in the sum itself.

Lemma 1. There exists a function p̃ such that

lim
N→∞

p̃N = p̃

Proof. By linearity we have that

ωN (H̃N ) = −C N
p∏
l=1

(Nil − kl)!
Nil !

∑
jk=Nik−1+1,...,Nik

jk 6=jh for k 6=h

ωN (σj1 ...σjr) = −C N ωN (σj1 ...σjr),

(4.3)

where, with a little abuse of notation, we let σj1 , .., σjr , after the last equality be distinct

spins taken from their own respective populations. The last equality hence follows from the

invariance of H̃N with respect to permutations of spins belonging to the same population.
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Equation (4.2) implies trivially

ωN (H̃N − H̃N1 − H̃N2) = 0

for N1 +N2 = N , which verifies (4.2) as an equality.

The following two Lemmas show that the difference between HN and H̃N is thermody-

namically negligible and as a consequence their pressures coincide in the thermodynamic

limit.

Though the notation is quite tedious, the proof is in no way different from the one

described in [8]. We chose to keep full generality during this existence proof in order to

show that the mean-field allows one to consider a whole range of possibilities for interaction,

which might turn out useful for the modelling effort.

Lemma 2.

HN = H̃N +O(1) (4.4)

i.e.

lim
N→∞

HN

N
= lim

N→∞

H̃N

N

Proof. We begin the proof by rephrasing the Hamiltonian in term of the spins, as follows:

HN = −N
p∑
r=1

p∑
i1,...,ir=1

{
Ji1,...,ir

r∏
k=1

Nik

Nik

mik

}
=

= −
p∑
r=1

{ p∑
i1,...,ir=1

N
N r

N r

r∏
k=1

1
Nik

Ji1,...,ir

r∏
k=1

Nikmik

}
=

= −
p∑
r=1

p∑
i1,...,ir=1

{ 1
N r−1

r∏
k=1

1
αik

Ji1,...,ir
∑

jk=Nik−1+1,...,Nik

σj1 ...σjr

}
=

where

N =
p∑
i=1

Ni, αi =
Ni

N
, N0 = 0.

We only need to give details of the proof in the case only one of the coefficients

Ji1,...,ir 6= 0. The general case follows by summing up all the terms corresponding to

non-zero interacting coefficients and noticing that, since this sum has only finitely many

terms, the result still holds.
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So we consider the following Hamiltonian

HN = −NJi1,...,ir
r∏

k=1

mik =
1

N r−1

r∏
k=1

1
αik

Ji1,...,ir
∑

jk=Nik−1+1,...,Nik

σj1 ...σjr ,

and we can lighten our notation by setting C = 1
αik

Ji1,...,ir ,

HN =
C

N r−1

∑
jk=Nik−1+1,...,Nik

σj1 ...σjr .

Now, following [8] we divide the sum in two parts, as follows:

HN =
C

N r−1

∑
jk=Nik−1+1,...,Nik

jk 6=jl for k 6=l

σj1 ...σjr +
C

N r−1

∗∑
σj1 ...σjr .

The first part is a sums only over products of distinct spins, whereas
∑∗ is a sum of all

products where at least two spins are equal. It is straightforward to show that

C

N r−1

∗∑
σj1 ...σjr = O(1),

so that we can rewrite HN as follows:

HN =
C

N r−1

∑
jk=Nik−1+1,...,Nik

jk 6=jl for k 6=l

σj1 ...σjr +O(1).

A straightforward calculation comparing HN and H̃N can now check that

HN = H̃N +O(1),

which is our result.

Lemma 3. Say pN =
1
N

lnZN , and say hN (σ) =
HN (σ)
N

. Define Z̃, p̃N and h̃N in an

analogous way.

Define

kN = ‖hN − h̃N‖ = sup
σ∈{−1,+1}N

{|hN (σ)− h̃N (σ)|} <∞. (4.5)
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Then

|pN − p̃N | 6 ‖hN − h̃N‖ .

Proof.

pN − p̃N =
1
N

lnZN −
1
N

ln Z̃N =
1
N

ln
ZN

Z̃N

=
1
N

ln
∑

σ e
−HN (σ)∑

σ e
−H̃N (σ)

6
1
N

ln
∑

σ e
−HN (σ)∑

σ e
−N(hN (σ)+kN )

=

=
1
N

ln
∑

σ e
−HN (σ)

e−NkN
∑

σ e
−NhN (σ)

=
1
N

ln eNkN = kN = ‖hN − h̃N‖

where the inequality follows from the definition of kN in (4.5) and from monotonicity of the

exponential and logarithmic functions. The inequality for p̃N − pN is obtained in a similar

fashion.

We are now ready to prove the main result for this section:

Proof of Proposition 13: The existence of the thermodynamic limit follows from our Lem-

mas. Indeed, since by Lemma 1 the limit for p̃N exists, Lemma 3 and Lemma 2 tell us

that

lim
N→∞

|pN − p̃N | 6 lim
N→∞

‖hN − h̃N‖ = 0,

implying our result.

�

4.3 Factorization properties

From now on we shall restrict the model to include pair interactions only. Therefore, we

have a Hamiltonian of the following kind:

HN = −N
p∑

i,j=1

Ji,j
2
mimj −N

p∑
i=1

himi, (4.6)

In this section we shall prove that the correlation functions of our model factorize com-

pletely in the thermodynamic limit, for almost every choice of parameters. This implies that

all the thermodynamic properties of the system can be described by the magnetizations mi

of the p populations defined in Section 4.1. Indeed, the exact solution of the model, to be

derived in the next section, comes as p coupled equations of state for the mi.
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Proposition 14.

lim
N→∞

(
ωN (σiσj)− ωN (σi)ωN (σj)

)
= 0

for almost every choice of parameters, where σi, σj are any two distinct spins in the system.

Proof. We recall the definition of the Hamiltonian

HN = −N
p∑

i,j=1

Ji,jmimj −N
p∑
i=1

himi,

and of the pressure per particle

pN =
1
N

ln
∑
σ

e−HN (σ).

By taking first and second partial derivatives of pN with respect to hi we get

∂pN
∂hi

=
1
N

∑
σ

Nmi(σ)
e−H(σ)

ZN
= ωN (mi),

∂2pN
∂ h2

i

= N(ωN (m2
i )− ωN (mi)2).

By using these relations we can bound above the integral with respect to hi of the

fluctuations of mi in the Gibbs state:∣∣∣∣∣
∫ h

(2)
i

h
(1)
i

(ωN (m2
i )− ωN (mi)2) dhi

∣∣∣∣∣ =
1
N

∣∣∣∣∣
∫ h

(2)
i

h
(1)
i

∂2pN
∂h2

i

dhi

∣∣∣∣∣ =
1
N

∣∣∣∣∣
∫ h

(2)
i

h
(1)
i

∂pN
∂ hi

∣∣∣∣h
(2)
i

h
(1)
i

∣∣∣∣∣ 6
6

1
N

(∣∣ωN (mi)|h(2)
i

∣∣+
∣∣ωN (mi)|h(1)

i

∣∣) = O
( 1
N

)
.

(4.7)

On the other hand we have that

ωN (mi) =
∂pN
∂hi

,

and

ωN (m2
i ) = 2

∂pN
∂Ji,i

,

so, by convexity of the thermodynamic pressure p = lim
N→∞

pN , both quantities
∂pN
∂hi

and

∂pN
∂Ji,i

have well defined thermodynamic limits almost everywhere. This together with (4.7)

implies that

lim
N→∞

(ωN (m2
i )− ωN (mi)2) = 0 a.e. in hi, Ji,i. (4.8)
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In order to prove our statement we shall write the magnetization mi in terms of spins

belonging to the ith population, and then use the permutation invariance of the Gibbs

measure:

ωN (mi) = ωN (
1

Ni −Ni−1

Ni∑
j=Ni−1

σi) = ωN (σ1),

ωN (m2
i ) = ωN (

1
(Ni −Ni−1)2

Ni∑
j, l=Ni−1

σjσl) =

= ωN (
1

(Ni −Ni−1)2

Ni∑
j 6=l=Ni−1

σjσl) + ωN (
1

(Ni −Ni−1)2

Nj∑
j=l=Nj−1

σjσl) =

=
Ni −Ni−1 − 1
Ni −Ni−1

ωN (σ1σ2) +
1

Ni −Ni−1
.

(4.9)

We have that (4.9) and (4.8) imply

lim
N→∞

ωN (σiσj)− ωN (σi)ωN (σj) = 0, (4.10)

which verifies our statement for all couples of spins i 6= j belonging to the same population.

Furthermore, by defining VarN (mi) =
(
ωN (m2

i ) − ωN (mi)2
)

for all populations i, we

exploit (4.8), and use the Cauchy-Schwartz inequality to get

|ωN (mimj)−ωN (mi)ωN (mj)| 6
√

Var(mi)Var(mj) −→
N→∞

0 a.e. in Ji,i, Jj,j , hi, hj (4.11)

By using (4.9) and (4.11) we can therefore verify statements which are analogous to

(4.10), but which concern ωN (σiσj) where σi and σj are spins belonging to different subsets.

We have thus proved our claim for any couple of spins in the global system.

4.4 Solution of the model

We shall derive upper and lower bounds for the thermodynamic limit of the pressure. The

lower bound is obtained through the standard entropic variational principle, while the upper

bound is derived by a decoupling strategy.
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4.4.1 Upper bound

In order to find an upper bound for the pressure we shall divide the configuration space

into a partition of microstates of equal magnetization, following [19, 37, 38]. Since each

population g consists of Ng spins, its magnetization can take exactly Ng + 1 values, which

are the elements of the set

RNg =
{
− 1,−1 +

1
2Ng

, . . . , 1− 1
2Ng

, 1
}
.

Clearly for every mg(σ) we have that

∑
m̄g∈RNg

δmg ,m̄g = 1,

where δx,y is a Kronecker delta. This allows us to rewrite the partition function as follows:

ZN =
∑
σ

exp
{N

2

p∑
i,j=1

Ji,jmimj +N

p∑
i=1

himi

}
=

=
∑
σ

∑
∀g m̄g∈RNg

p∏
g=1

δmg ,m̄g exp
{N

2

p∑
i,j=1

Ji,jmimj +N

p∑
i=1

himi

}
. (4.12)

Thanks to the Kronecker delta symbols, we can substitute mi (the average of the spins

within a configuration) with the parameter m̄i (which is not coupled to the spin configura-

tions) in any convenient fashion.

Therefore we can use the following relations in order to linearize all quadratic terms

appearing in the Hamiltonian

(mi − m̄i)2 = 0 ∀i,

(mi − m̄i)(mj − m̄j) = 0 ∀i 6= j, .

Once we’ve carried out these substitutions into (4.12) we are left with a function which
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depends only linearly on the mi:

ZN =
∑
σ

∑
∀g m̄g∈RNg

p∏
g=1

δmg ,m̄g exp
{N

2

p∑
i,j=1

Ji,jmimj +N

p∑
i=1

himi

}
=

=
∑
σ

∑
∀g m̄g∈RNg

p∏
g=1

δmg ,m̄g exp
{N

2

p∑
i,j=1

Ji,j(mim̄j + m̄imj − m̄im̄j) +N

p∑
i=1

himi

}
=

=
∑
σ

∑
∀g m̄g∈RNg

p∏
g=1

δmg ,m̄g exp
{
− N

2

p∑
i,j=1

Ji,jm̄im̄j +
N

2

p∑
i,j=1

Ji,j(mim̄j + m̄imj) +

+N
p∑
i=1

himi

}
=

and bounding above the Kronecker deltas by 1 we get

ZN 6
∑
σ

∑
∀g m̄g∈RNg

exp
{N

2

p∑
i,j=1

Ji,jm̄im̄j +
N

2

p∑
i,j=1

Ji,j(mim̄j + m̄imj) +N

p∑
i=1

himi

}
=

(4.13)

As observed many times by Guerra [37], since both sums are taken over finitely many

terms, it is possible to exchange the order of the two summation symbols, in order to carry

out the sum over the spin configurations, which now factorizes, thanks to the linearity of

the interaction with respect to the mg. This way we get:

ZN 6
∑

∀g m̄g∈RNg

G(m̄1, ..., m̄p).

where

G = exp
{
− N

2

p∑
i,j=1

Ji,jm̄im̄j} ·
p∏
j=1

2Nj
(
cosh

( p∑
i=1

Ji,j + Jj,i
2αj

m̄i +
hj
αj

))Nj

(4.14)

where

αj =
Nj

N

Since the summation is taken over the ranges RNg , of cardinality Ng + 1, we get that
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the total number of terms is (N1 + 1)(N2 + 1). Therefore

ZN 6
p∏
g=1

(Ng + 1) sup
m̄1,...,m̄p

G, (4.15)

which leads to the following upper bound for pN :

pN =
1
N

lnZN 6
p∑
g=1

1
N

ln(Ng + 1) +
1
N

ln sup
m̄1,...,m̄p

G . (4.16)

Now defining the N independent function

pUP =
1
N

lnG = ln 2− 1
2

p∑
i,j=1

Ji,jm̄im̄j +
p∑
j=1

αj ln cosh
( p∑
i=1

Ji,j + Jj,i
2αj

m̄i +
hj
αj

)
,

(4.17)

where

αj =
Nj

N

the thermodynamic limit gives:

lim sup
N→∞

pN 6 sup
m̄1,..., m̄p

pUP . (4.18)

We can summarize the previous computation into the following:

Lemma 4. Given a Hamiltonian as defined in (4.6), and defining the pressure per particle

as pN = 1
N lnZ, given parameters Ji,j and hi, the following inequality holds:

lim sup
N→∞

pN 6 sup
m̄1,..., m̄p

pUP

where

pUP = ln 2− 1
2

p∑
i,j=1

Ji,jm̄im̄j +
p∑
j=1

αj ln cosh
( p∑
i=1

Ji,j + Jj,i
2αj

m̄i +
hj
αj

)
, (4.19)

and m̄i ∈ [−1, 1].

4.4.2 Lower bound

The lower bound is provided by exploiting the well-known Gibbs entropic variational prin-

ciple (see [58], pag. 188). In our case, instead of considering the whole space of ansatz
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probability distributions considered in [58], we shall restrict to a much smaller one, and

use the upper bound derived in the last section in order to show that the lower bound

corresponding to the restricted space is sharp in the thermodynamic limit.

The mean-field nature of our Hamiltonian allows us to restrict the variational prob-

lem to a two-degrees of freedom product measures represented through the non-interacting

Hamiltonian:

H̃ = −r1

N1∑
i=1

σi − r2

N1+N2∑
i=N1+1

σi + ...− rp
N∑

i=
∑p−1

i=1 Ni+1

σi,

and so, given a Hamiltonian H̃, we define the ansatz Gibbs state corresponding to it as

f(σ) as:

ω̃(f) =
∑

σ f(σ)e−H̃(σ)∑
σ e
−H̃(σ)

In order to facilitate our task, we shall express the variational principle of [58] in the

following simple form:

Proposition 15. Let a Hamiltonian H, and its associated partition function Z =
∑
σ

e−H

be given. Consider an arbitrary trial Hamiltonian H̃ and its associated partition function

Z̃. The following inequality holds:

lnZ > ln Z̃ − ω̃(H) + ω̃(H̃) . (4.20)

Given a Hamiltonian as defined in (5.1) and its associated pressure per particle pN = 1
N lnZ,

the following inequality follows from (4.20):

lim inf
N→∞

pN > sup
m̄1,...,m̄p

pLOW (4.21)

where

pLOW =
1
2

p∑
g,k=1

Jg,km̄gm̄k +
p∑
g=1

hgm̄g +
p∑
g=1

αgS(m̄g), (4.22)

the function S(m̄g) being the entropy

S(m̄g) = −1 + m̄g

2
ln(

1 + m̄g

2
)− 1− m̄g

2
ln(

1− m̄g

2
)

and m̄g ∈ [−1, 1].
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Proof. The (4.20) follows straightforwardly from Jensen’s inequality:

eω̃(−H+H̃) ≤ ω̃(e−H+H̃) . (4.23)

The Hamiltonian (4.6) can be written in term of spins as:

H(σ) = − 1
2N

p∑
g,k=1

{ Jg,k
αgαk

∑
i∈Pg , j∈Pk

σiσj

}
−

p∑
g=1

{hg
αg

∑
i∈Pg

σi}, ; (4.24)

where Pg contains the labels for spins belonging to the gth subpopulation, that is

Pg = {
g−1∑
k=1

Nk + 1,
g−1∑
k=1

Nk + 2, ...,
g∑

k=1

Nk}

indeed its expectation on the trial state is

ω̃(H) = − 1
2N

p∑
g,k=1

{ Jg,k
αgαk

∑
i∈Pg , j∈Pk

ω̃(σiσj)
}
−

p∑
g=1

{hg
αg

∑
i∈Pg

ω̃(σi)} (4.25)

and a standard computation for the moments leads to

ω̃(H) = −N
2

p∑
g=1

(1− 1
Nαg

)Jg,g(tanh rg)2 − 1
2

p∑
g=1

1
αgJg,g

− N

2

p∑
g 6=k=1

Jg,k tanh rg tanh rk

−N
p∑
g=1

hg tanh rg.

(4.26)

Analogously, the Gibbs state of H̃ is:

ω̃(H̃) = −N
p∑
g=1

αg rg tanh rg,

and the non interacting partition function is:

Z̃N =
∑
σ

e−H̃(σ) =
p∑
g=1

2Ng(cosh rg)Ng
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which implies that the non-interacting pressure gives

p̃N =
1
N

ln Z̃N = ln 2 +
p∑
g=1

αg ln cosh rg

So we can finally apply Proposition (4.20) in order to find a lower bound for the pressure

pN =
1
N

lnZN :

pN =
1
N

lnZN >
1
N

(
ln Z̃N − ω̃(H) + ω̃(H̃)

)
(4.27)

which explicitly reads:

pN =
1
N

lnZN > ln 2 +
p∑
g=1

αg ln cosh rg + (4.28)

+
1
2

p∑
g,k=1

Jg,k tanh rg tanh rk +
p∑
g=1

hg tanh rg (4.29)

−
p∑
g=1

αg rg tanh rg +

+
1

2N

p∑
g=1

Jg,g
αg

(tanh rg)2 +
1

2N

p∑
g=1

1
αgJg,g

(4.30)

(4.31)

Taking the lim inf over N and the supremum in the variables rg the left hand side we

get the (4.21) after performing the change of variables m̄g = tanh rg .

4.4.3 Exact solution of the model

Though the functions pLOW and pUP are different, it is easily checked that they share the

same local suprema. Indeed, if we differentiate both functions with respect to parameters

m̄g, we see that the extremality conditions are given in both cases by the Mean Field

Equations:

m̄g = tanh
( p∑
k=1

Jg,k + Jk,g
2αg

m̄k +
hg
αg

)
g = 1..p (4.32)

If we now use these equations to express tanh−1mi as a function of mi and we substitute
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back into pUP and pLOW we get the same function:

p = −1
2

p∑
g,k=1

Jg,km̄gm̄k −
p∑
g=1

αg
1
2

ln
1− m̄2

g

4
. (4.33)

Since this function returns the value of the pressure when the vector (m̄1, .., m̄p) corre-

sponds to an extremum, and this is the same both for pLOW and pUP , we have proved the

following:

Theorem 1. Given a hamiltonian as defined in (4.6), and defining the pressure per particle

as pN =
1
N

lnZ, given parameters Ji,j and hi, the thermodynamic limit

lim
N→∞

pN = p

of the pressure exists, and can be expressed in one of the following equivalent forms:

a) p = sup
m̄1,..,m̄p

pLOW

b) p = sup
m̄1,..,m̄p

pUP

4.5 An analytic result for a two-population model

The form we derived for the pressure can be rightfully considered a solution of the statistical

mechanical model, since it expresses the thermodynamic properties of a large number of

particles in terms of a finite number of parameters.

Nevertheless, the equations of state cannot be solved explicitly in terms of the parame-

ters: indeed, even the phase diagram for the two-population case has only been characterised

fully in a subset of our parameter space, in which it has been found useful for a few physical

applications [13, 44, 46]. This gives us a feeling of how the mean field assumption, being

simplistic from one point of view, can given rise to models exhibiting non-trivial behaviour.

In this section we shall focus on the two-population case, which is the case considered in

the applications of the next chapter, and find an analytic result concerning the maximum

number of equilibrium states arising from our equations of state. In particular we shall

prove that, for any choice of the parameters, the total number of local maxima for the

function p(m̄1, m̄2) is less or equal to five.

By applying a convenient relabelling to the model’s parameters, we get the mean field
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equations for our two-population model in the following form:{
m̄1 = tanh(J11αm̄1 + J12(1− α)m̄2 + h1)

m̄2 = tanh(J12αm̄1 + J22(1− α)m̄2 + h2)
,

and correspond to the stationarity conditions of p(m̄1, m̄2). So, a subset of solutions to this

system of equations are local maxima, and some among them correspond to the thermody-

namic equilibrium.

These equations give a two-dimensional generalization of the Curie-Weiss mean field

equation. Solutions of the classic Curie-Weiss model can be analysed by elementary ge-

ometry: in our case, however, the geometry is that of 2 dimensional maps, and it pays to

recall that Henon’s map, a simingly harmless 2 dimensional diffeomorhism of R2, is known

to exhibit full-fledged chaos. Therefore, the parametric dependence of solutions, and in

particular the number of solutions corresponding to local maxima of p(m̄1, m̄2), is in no

way apparent from the equations themselves.

We can, nevertheless, recover some geometric features from the analogy with one-

dimensional picture. For the classic Curie-Weiss equation, continuity and the Intermediate

Value Theorem from elementary calculus assure the existence of at least one solution. In

higher dimensions we can resort to the analogous result, Brouwer’s Fixed Point Theorem,

which states that any continuous map on a topological closed ball has at least one fixed

point. This theorem, applied to the smooth map R on the square [−1, 1]2, given by{
R1(m̄1, m̄2) = tanh(J11αm̄1 + J12(1− α)m̄2 + h1)

R2(m̄1, m̄2) = tanh(J12αm̄1 + J22(1− α)m̄2 + h2)

establishes the existence of at least one point of thermodynamic equilibrium.

We can gain further information by considering the precise form of the equations: by

inverting the hyperbolic tangent in the first equation, we can m̄1 as a function of m̄2, and

vice-versa for the second equation. Therefore, when J12 6= 0 we can rewrite the equations

in the following fashion:
m̄2 =

1
J12(1− α)

(tanh−1 m̄1 − J11αm̄1 − h1)

m̄1 =
1

J12α
(tanh−1 m̄2 − J22(1− α)m̄2 − h2)

(4.34)

Consider, for example, the first equation: this defines a function m̄2(m̄1), and we shall
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call its graph curve γ1. Let’s consider the second derivative of this function:

∂2m̄2

∂m̄2
1

= − 1
J12(1− α)

· 2m̄1

(1− m̄2
1)2

.

We see immediately that this second derivative is strictly increasing, and that it changes

sign exactly at zero. This implies that γ1 can be divided into three monotonic pieces, each

having strictly positive third derivative as a function of m̄1. The same thing holds for

the second equation, which defines a function m̄1(m̄2), and a corresponding curve γ2. An

analytical argument easily establishes that there exist at most 9 crossing points of γ1 and γ2

(for convenience we shall label the three monotonic pieces of γ1 as I, II and III, from left

to right): since γ2, too, has a strictly positive third derivative, it follows that it intersects

each of the three monotonic pieces of γ1 at most three times, and this leaves the number of

intersections between γ1 and γ2 bounded above by 9 (see an example of this in Figure 4.1).

By definition of the mean field equations, the stationary points of the pressure corre-

spond to crossing points of γ1 and γ2. Furthermore, common sense tells us that not all of

these stationary points can be local maxima. This is indeed true, and it is proved by the

following:

Proposition 16. The function p(m̄1, m̄2) admits at most 5 maxima.

To prove 16 we shall need the following:

Lemma 5. Say P1 and P2 are two crossing points linked by a monotonic piece of one of

the two functions considered above. Then at most one of them is a local maximum of the

pressure p(m̄1, m̄2).

Proof of Lemma 5: The proof consists of a simple observation about the meaning of our

curves. The mean field equations as stationarity conditions for the pressure, so each of γ1

and γ2 are made of points where one of the two components of the gradient of p(m̄1, m̄2)

vanishes. Without loss of generality assume that P1 is a maximum, and that the component

that vanishes on the piece of curve that links P1 to P2 is
∂p

∂m̄1
.

Since P1 is a local maximum, p(m̄1, m̄2) locally increases on the piece of curve γ. On

the other hand, the directional derivative of p(m̄1, m̄2) along γ is given by

t̂ · ∇p

where t̂ is the unit tangent to γ. Now we just need to notice that by assumptions for any

point in γ t̂ lies in the same quadrant, while ∇p is vertical with a definite verse. This
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implies that the scalar product giving directional derivative is strictly non-negative over all

γ, which prevents P2 form being a maximum.

�

Proof of Proposition 16: The proof considers two separate cases:

a) All crossing points can be joined in a chain by using monotonic pieces of curve such

as the one defined in the lemma;

b) At least one crossing point is linked to the others only by non-monotonic pieces of

curve.

In case a), all stationary can be joined in chain in which no two local maxima can be

nearest neighbours, by the lemma. Since there are at most 9 stationary points, there can

be at most 5 local maxima.

For case b) assume that there is a point, call it P , which is not linked to any other point

by a monotonic piece of curve. Without loss of generality, say that P lies on I (which, we

recall, is defined as the leftmost monotonic piece of γ1). By assumption, I cannot contain

other crossing points apart from P , for otherwise P would be monotonically linked to at

least one of them, contradicting the assumption. On the other hand, each of II and III

contain at most 3 stationary points, and, by Lemma 5, at most 2 of these are maxima. So

we have at most 2 maxima on each of II and III, and and at most 1 maximum on I, which

leaves the total bounded above by 5. The cases in which P lies on II, or on III, are proved

analogously, giving the result.

�
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Figure 4.1: The crossing points correspond to solutions of the mean field equations
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Chapter 5

Case studies

In previous chapters we defined a model which, generalizing well known tools from econo-

metrics, provides a viable approach to study phenomena of human interaction. Its well-

posedness as an equilibrium statistical mechanical model, proved in the last chapter, though

supporting the idea that modelling social phenomena working from the bottom up1 may be

feasible, doesn’t imply the relevance of the proposed tool to any actual scenario: indeed,

for any model such relevance may only be established as a result of success in describing,

and most importantly predicting events from the real world.

There are many possible instances from the social sciences to which quantitative mod-

elling is an appealing prospective. Due to the increasingly global nature of human mobility,

one particularly timely social issue is immigration. The applicability of our model to immi-

gration matters was considered in References [16] and [17]. Reference [17] analyses how the

microscopic assumptions of the model reflect the tendency of individuals to act consistently

with their cultural legacy as well as with what they identify as their social group, which are

both tenets in the field of social psychology. The numerical analysis carried out in Refer-

ence [16] shows how such simple assumptions are enough for the model to identify regimes

in which a global change in a cultural trait is triggered by a small fraction of immigrants

interacting with a large population of residents.

The descriptive power shown by the model in the case of immigration further supports

the view that equilibrium statistical mechanics can play a role in a quantitative theory of

social phenomena. However, though qualitatively inspiring, the immigration scenario seems

ill-suited as a first quantitative case study, due to the intrinsic difficulty of finding a database

that characterizes such a social issue adequately. We therefore turn to the problem of giving
1that is, starting from individual interactions and trying to establish patterns that might be at work on

a larger scale
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our model a first implementation on some “simpler” matters.

The aim of this chapter is two-fold. On one hand we are interested in assessing the

simplest instance of the model considered in the last chapter, that is a mean field model

where the population has been partitioned into two groups, based on their geographical

residence, so that the model generalizes a discrete choice model with one binary attribute.

On the other hand, we’d like to propose two simple procedures of model estimation,

that we feel might be very appealing for models at an early stage of development. The first

procedure is statistical in nature, and it’s based on a method developed by Berkson [7],

whereas the second takes a statistical mechanical perspective by considering the role played

by the fluctuations of the main observable quantities for the model.

5.1 The model

We consider a population of individuals facing with a “YES/NO” question, such as choosing

between marrying through a religious or a civil ritual, or voting in favor or against of death

penalty in a referendum. We index individuals by i, i = 1...N , and assign a numerical value

to each individual’s choice σi in the following way:

σi =

{
+1 if i says YES

−1 if i says NO
,

Consistently with the many population Curie-Weiss model analysed in the last chapter,

which as we saw generalises the multinomial logit model described in chapter 2, we assume

that the joint probability distribution of these choices is well approximated by a Boltzmann-

Gibbs distribution corresponding to the following Hamiltonian

HN (σ) = −
N∑

i,l=1

Jilσiσl −
N∑
i=1

hiσi.

Heuristically, this distribution favours the agreement of people’s choices σi with some

external influence hi which varies from person to person, and at the same time favours

agreement of a couple of people whenever their interaction coefficient Jil is positive, whereas

favors disagreement whenever Jil is negative.

Given the setting, the model consists of two basic steps:

1) A parametrization of quantities Jil and of hi,

2) A systematic procedure allowing us to “measure” the parameters characterizing the
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model, starting from statistical data (such as surveys, polls, etc).

The parametrization must be chosen to fit as well as possible the data format available,

in order to define a model which is able to make good use of the increasing wealth of data

available through information technologies.

5.2 Discrete choice

Let us first consider our model when it ignores interactions Jil ≡ 0 ∀ i, l ∈ (1, ..., N), that

is

HN (σ) = −
N∑
i=1

hiσi.

The model shall be applied to data coming from surveys, polls, and censuses, which

means that together with the answer to our binary question, we shall have access to infor-

mation characterizing individuals from a socio-economical point of view. We can formalize

such further information by assigning to each person a vector of socio-economic attributes

ai = {a(1)
i , a

(2)
i , ..., a

(k)
i }

where, for instance,

a
(1)
i =

{
1 for i Male

0 for i Female
,

and

a
(2)
i =

{
1 for i Employee

0 for i Self-employed
,

etc.

As we have seen in chapter 2, the general setting of the multinomial logit allows to

exploit the supplementary data by assuming that hi (which is the “field” influencing the

choice of i) is a function of the vector of attributes ai. Since for the sake of simplicity we

choose our attributes to be binary variables, so that the most general form for hi turns out

to be linear

hi =
k∑
j=1

αja
(j)
i + α0

and the model’s parameters are given by the components of the vector α = {α0, α1, ..., αk}.
It’s worth pointing out that the parameters αj , j = 0...k do not depend on the specific

individual i.
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We know that discrete choice theory holds that, when making a choice, each person

weights out various factors such as his own gender, age, income, etc, as to maximize in

probability the benefit arising from his/her decision. Parameters α tell us the relative

weight (i.e. their relative importance importance) that the various socio-economic factors

have when people are making a decision with respect to our binary question. The parameter

α0 does not multiply any specific attribute, and thus it is a homogeneous influence which is

felt by all people in the same way, regardless of their individual characteristics. A discrete

choice model is considered good when the parametrized attributes are very suitable for

the specific choice, so that the parameter α0 is found to be small in comparison to the

attribute-specific ones.

We have shown in chapter 2 that elementary statistical mechanics gives us the probability

of an individual i with attributes ai answering “YES” to our question as:

pi = P (σi = 1) =
ehi

ehi + e−hi
,

hi =
k∑
j=1

αja
(j)
i + α0,

which as we saw is equivalent to the result obtained by applying economics’ utility maxi-

mization principle to a random utility with Gumbel disturbances. Therefore collecting the

choices made by a relevant number of people, and keeping track of their socio-economic

attributes, allows us to use statistics in order to find the value of α for which our distri-

bution best fits the real data. This in turn allows to assess the implications on aggregate

behavior if we apply incentives to the population which affect specific attribute, as can be

commodity prices in a market situation.

5.3 Interaction

The kind of model described in the last section has been successfully used by econometrics

for the last thirty years [50], and has opened the way to the quantitative study of social

phenomena. Such models, however, only apply to situations where the functional relation

between the people’s attributes α and the population’s behavior is a smooth one: it is ever

more evident, on the other hand, that behavior at a societal level can be marked by sudden

jumps [51, 61, 47].

There exist many examples from linguistics, economics, and sociology where it has been

observed how the global behaviour of large groups of people can change in an abrupt manner

as a consequence of slight variations in the social structure (such as, for instance, a change
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in the pronunciation of a language due to a little immigration rate, or as a substantial

decrease in crime rates due to seemingly minor action taken by the authorities) [3, 31, 47].

From a statistical mechanical point of view, these abrupt transitions may be considered as

phase transitions caused by the interaction between individuals, and this is what led us to

consider in this thesis the interesting mapping between discrete choice econometrics and

the Curie-Weiss theory, first stated in [21].

We then go back to studying the general interacting model

HN (σ) = −
N∑

i,l=1

Jilσiσl −
N∑
i=1

hiσi, (5.1)

while keeping

hi =
k∑
j=1

αja
(j)
i + α0.

We now need to find a suitable parametrization for the interaction coefficients Jil. Since

each person is characterized by k binary socio-economic attributes, the population can be

naturally partitioned into 2k subgroups, so that using the mean-field assumptions allows

one to rewrite the model in terms of subgroup-specific magnetizations mg, as in the general

Hamiltonian (4.1). Equation (4.1) is general enough to consider populations with different

relative sizes (such as one in which residents make up a much larger share of population than

immigrants): nevertheless, it turns out that the mean-field assumption implies a relation of

direct proportionality between interaction coefficients and population sizes, that might be

considered innatural.

The approach taken in this thesis, therefore, is to consider sub-populations of comparable

size, and model them in the thermodynamic limit as having equal size. In specific, in all

cases we divide the data into two geographical regions which have a similar population. This

“equal size” assumption can be considered as part of the modelling process: by using it to

analyze data, as we do here, we can gain insights on how to relax it in future refinements of

the model. So, for the time being, let Jil depend explicitly on a partition of sub-populations

of equal sizes. By using the mean-field assumption we can express this as follows

Jil =
1

2kN
Jgg′ , if i ∈ g and l ∈ g′,

where g and g′ are two sub-population (not necessarily distinct). This in turn allows us to
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rewrite (5.1) as

HN (σ) = −N
2k

(
2k∑

g,g′=1

Jgg′mgmg′ +
2k∑
g=1

hgmg)

where mg is the average opinion of group g:

mg =
1

2kN

g N/2k∑
i=(g−1)N/2k+1

σi.

We readily see how this is the many-population model considered in the previous chap-

ter, and this gives us a solid microscopic foundation for the theory. Indeed, the results

we obtained through relatively elementary mathematics establish rigourously the existence

of the model’s thermodynamic limit, as well as its factorization properties, and just as

importantly provide us with a closed form for the thermodynamic state equations.

Therefore if we are willing to test how well the model’s assumptions compare with real

data, we can use these equations as the main tool for a procedure of statistical estimation.

Here we shall confront the simple case where k = 1. This is a bipartite model which, as we

know from the last chapter, can have at most five metastable equilibrium states, given by

the thermodynamically stable solutions to the following equations:

m̄1 = tanh(J11m̄1 + J12m̄2 + h1) (5.2)

m̄2 = tanh(J21m̄1 + J22m̄2 + h2) (5.3)

Equation (4.32) which was derived from the model’s exact solution shows that the

equilibrium state equations for a system consisting of two parts of equal size do not carry

two different parameters J12 and J21, but that, even if these two parameters were different

in the Hamiltonian, what characterizes each of the two subparts is rather their average

(J12 + J21)/2. We keep J12 and J21 as two distinct parameters throughout the statistical

application in order to use them as a consistency test: we shall be able to consider systems

to be in equilibrium only if J12 − J21 = 0.

The state equations (5.2) allow us, in particular, to write the probability of i choosing

YES in a closed form, similar to the non-interacting one:

pi = P (σi = 1) =
eUg

eUg + e−Ug
, (5.4)
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where

Ug =
2∑

g′=1

Jg,g′m̄g′ + hg.

This is the basic tool needed to estimate the model starting from real data. We describe

the estimation procedure in the next section.

5.4 Estimation

We have seen that according to the model an individual i belonging to group g has proba-

bility of choosing “YES” equal to

pi =
eUg

eUg + e−Ug

where

Ug =
∑
g′

Jg,g′m̄g′ + hg.

The standard approach of statistical estimation for discrete models is to maximize the

probability of observing a sample of data with respect to the parameters of the model (see

e.g. [6]). This is done by maximizing the likelihood function

L =
∏
i

pi

with respect to the model’s parameters, which in our case consist of the interaction matrix

J and the vector α.

Our model, however, is such that pi is a function of the equilibrium states mg, which in

turn are discontinuous functions of the model’s parameters. This problem takes away much

of the appeal of the maximum likelihood procedure, and calls for a more feasible alternative.

The natural alternative to maximum likelihood for problems of model regression is given

by the least squares method [25], which simply minimizes the squared norm of the difference

between observed quantities, and the model’s prediction. Since in our case the observed

quantities are the empirical average opinions m̃g, we need to find the parameter values

which minimize ∑
g

(m̃g − tanhUg)2, (5.5)

which in our case correspond to satisfying as closely as possible the state equations (5.2) in

squared norm. This, however, is still computationally cumbersome due to the non-linearity
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of the function tanh(Uj). This problem has already been encountered by Berkson back in

the nineteen-fifties, when developing a statistical methodology for bioassay [7]: this is an

interesting point, since this stimulus-response kind of experiment bears a close analogy to

the natural kind of applications for a model of social behavior, such as linking stimula given

by incentive through policy and media, to behavioral responses on part of a population.

The key observation in Berkson’s paper is that, since Ug is a linear function of the

model’s parameters, and the function tanh(x) is invertible, a viable modification to least

squares is given by minimizing the following quantity, instead:

∑
g

(arctanh m̃g − Ug)2. (5.6)

This reduces the problem to a linear least squares problem which can be handled with

standard statistical software, and Berkson finds an excellent numerical agreement between

this method and the standard least squares procedure.

There are nevertheless a number of issues with Berkson’s approach, which are analyzed

in [6], pag. 96. All the problems arising can be traced to the fact that to build (5.6), we

are collecting the individual observations into subgroups, each of average opinion mg. The

problem is well exemplified by the case in which a subgroup has average opinion mg ≡ ±1: in

this case arctanhmg = −∞, and the method breaks down. However the event mg ≡ ±1 has

a vanishing probability when the size of the groups increases, so that the method behaves

properly for large enough samples.

The proposed measurement technique is best elucidated by showing a few simple concrete

examples, which we do in the next section.

5.5 Case studies

We shall carry out the estimation program for real situations which correspond to a very

simple case of our model. The data was obtained from periodical censuses carried out by

Istat2: since census data concerns events which are recorded in official documents, for a

large number of people, we find it to be an ideal testing ground for our model.

For the sake of simplicity, individuals are described by a single binary attribute charac-

terizing their place of residence (either Northern or Southern Italy) and we chose, among the

several possible case studies, the ones for which choices are likely to involve peer interaction

in a major way.
2Italian National Institute of Statistics
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The first phenomenon we choose to study concerns the share of people who chose to

marry through a religious ritual, rather than through a civil one. The second case deals

with divorces: here individuals are faced with the choice of a consensual/ non-consensual

divorce. The last test we perform regards the study of suicidal tendencies, in particular the

mode of execution.

5.5.1 Civil vs religious marriage in Italy, 2000-2006

To address this first task we use data from the annual report on the institution of marriage

compiled by Istat in the seven years going from 2000 to 2006. The reason for choosing this

specific social question is both a methodological and a conceptual one.

Firstly, we are motivated by the exceptional quality of the data available in this case,

since it is a census which concerns a population of more than 250 thousand people per year,

for seven years. This allows us some leeway from the possible issues regarding the sample

size, such as the one highlighted in the last section. And just as importantly the availability

of a time series of data measured at even times also allows to check the consistency of the

data as well as the stability of the phenomenon.

Secondly, marriage is probably one of the few matters where a great number of individ-

uals make a genuine choice concerning their life that gets recorded in an official document,

as opposed to what happens, for example, in the case of opinion polls.

We choose to study the data with one of the simplest forms of the model: individuals

are divided according to only to a binary attribute a(1), which takes value 1 for people

from Northern Italy, and 0 for people form Southern Italy. In the formalism of Section 2,

therefore, the model is defined by the Hamiltonian

HN (σ) = −N
2

(J11m
2
1 + (J12 + J21)m1m2 + J22m

2
2 + h1m1 + h2m2),

hi = α1a
(1)
i + α0,

and the state equations to be used for Berkson’s statistical procedure are given by (5.4).

Table 5.1 shows the time evolution of the share of men choosing to marry through a

religious ritual: the population is divided in two geographical classes. The first thing worth

noticing is that these shares show a remarkable stability over the seven-year period: this

confirms how, though arising from choices made by distinct individuals, who bear extremely

different personal motivations, the aggregate behavior can be seen as an observable feature

characterizing society as a whole.
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% of religious marriages, by year

Region 2000 2001 2002 2003 2004 2005 2006

Northern Italy 68.35 64.98 61.97 60.90 57.91 55.95 54.64
Southern Italy 81.83 80.08 79.32 79.02 76.81 76.52 75.46

Table 5.1: Percentage of religious marriages, by year and geographical region

4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006

α0 -0.10 ± 0.42 -0.16 ± 0.15 -0.18 ± 0.10 -0.13 ± 0.01
α1 0.20 ± 0.59 0.20 ± 0.22 0.16 ± 0.14 0.14 ± 0.01
J1 1.16 ± 0.41 1.09 ± 0.16 1.01 ± 0.11 1.02 ± 0.01
J2 1.29 ± 0.89 1.40 ± 0.33 1.45 ± 0.21 1.36 ± 0.01
J12 -0.21 ± 0.89 -0.10 ± 0.33 0.03 ± 0.21 -0.01 ± 0.01
J21 0.09 ± 0.41 0.02 ± 0.16 -0.01 ± 0.11 0.01 ± 0.01

Table 5.2: Religious vs civil marriages: estimation of the interacting model

In order to apply Berkson’s method of estimation, we choose gather the data into periods

of four years, starting with 2000− 2003, then 2001− 2004, etc. Now, if we label the share

of men in group g choosing the religious ritual in a specific year (say in 2000) by m2000
g ,

we have that the quantity that ought to be minimized in order to estimate the model’s

parameters for the first period is the following, which we label X2:

X2 =
2003∑

year=2000

2∑
g=1

(arctanhmyear
g − Uyearg )2,

Uyearg =
2∑

g′=1

Jg,g′m
year
g′ + hg,

hg = α1a
(1)
g + α0.

The results of the estimation for the four periods are shown in Table 5.2, whereas Table

5.3 shows the corresponding estimation for a discrete choice model which doesn’t take into

account interaction.

5.5.2 Divorces in Italy, 2000-2005

The second case study uses data from the annual report compiled by Istat in the six years

going from 2000 to 2005. The data show how divorcing couples chose between a consensual
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4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006

α0 0.67 ± 0.15 0.63 ± 0.03 0.61 ± 0.06 0.58 ± 0.03
α1 -0.41 ± 0.1 -0.43 ± 0.04 -0.45 ± 0.08 -0.46 ± 0.04

Table 5.3: Religious vs civil marriages: estimation of the non-interacting model

% of consensual divorces, by year

Region 2000 2001 2002 2003 2004 2005

Northern Italy 75.06 80.75 81.32 81.62 81.55 81.58
Southern Italy 58.83 72.80 71.80 72.61 72.76 72.08

Table 5.4: Percentage of consensual divorces, by year and geographical region

and a non-consensual divorce in Northern and Southern Italy. As shown in Table 5.4 here

too, when looking at the ratio among consensual versus the total divorces, the data show a

remarkable stability.

Again we gather the data into periods of four years and Table 5.5 presents the estimation

of our model’s parameters for the whole available period, while in Table 5.6 we show the

corresponding fit by the non-interacting discrete choice model.

We notice that the estimated parameters have some analogies with the preceding case

study in that here too the cross interactions J12, J21 are statistically close to zero whereas

the diagonal values J11, J22 are both greater than one suggesting an interaction scenario

characterized by multiple equilibria [28]. Furthermore, in both cases the attribute-specific

parameter α1 is larger than the generic parameter α0 in the interacting model (Tables 2 and

5), as opposed to what we see in the non-interacting case (Tables 3 and 6): this suggests

that by accounting for interaction we might be able to better evaluate the role played by

socio-economic attributes.

5.5.3 Suicidal tendencies in Italy, 2000-2007

The last case study deals with suicidal tendencies in Italy, again following the annual report

compiled by Istat in the eight years from 2000 to 2007, and we use the same geographical

attribute used for the former two studies.

The data in Table 5.7 shows the percentage of deaths due to hanging as a mode of

execution. The topic of suicide is of particular relevance to sociology: indeed, the very first

systematic quantitative treatise in the social sciences was carried out by Émile Durkheim
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4-year period

Parameter 2000-2003 2001-2004 2002-2005

α0 0.02 ± 0.06 -0.08 ± 0.01 -0.07 ± 0.01
α1 -0.25 ± 0.08 -0.22 ± 0.01 -0.23 ± 0.01
J1 1.59 ± 0.14 1.64 ± 0.01 1.66 ± 0.01
J2 1.16 ± 0.06 1.25 ± 0.01 1.25 ± 0.01
J12 -0.05 ± 0.06 0.01 ± 0.01 0.00 ± 0.01
J21 -0.08 ± 0.14 0.00 ± 0.01 -0.01 ± 0.01

Table 5.5: Consensual vs non-consensual divorces: estimation of the interacting model

4-year period

Parameter 2000-2003 2001-2004 2002-2005

α0 0.41 ± 0.13 0.48 ± 0.01 0.480046 ± 0.01
α1 0.28 ± 0.18 0.25 ± 0.02 0.261956 ± 0.01

Table 5.6: Consensual vs non-consensual divorces: estimation of the non-interacting model

[20], a founding father of the subject, who was puzzled by how a phenomenon as unnatural

as suicide could arise with the astonishing regularity that he found. Such a regularity as

even been dimmed the “sociology’s one law” [56], and there is hope that the connection to

statistical mechanics might eventually shed light on the origin of such a law.

Mirroring the two previous case studies, we present the time series in Table 5.7, whereas

Table 5.8 shows the estimation results for the interacting model, and Table 5.9 are the

estimation results for the discrete choice model. Again, the data agrees with the analogies

found for the two previous case studies.

% suicides by hanging

Region 2000 2001 2002 2003 2004 2005 2006 2007

Northern Italy 34.17 37.02 35.83 34.58 35.21 36.23 33.57 38.08
Southern Italy 37.10 37.40 37.34 38.54 34.71 38.90 40.63 36.66

Table 5.7: Percentage of suicides with hanging as mode of execution, by year and geographical region
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4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006 2004-2007

α0 0.01 ± 0 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01
α1 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01
J1 1.09 ± 0.01 1.09 ± 0.01 1.09 ± 0.02 1.10 ± 0.03 1.09 ± 0.01
J2 1.06 ± 0.01 1.08 ± 0.01 1.08 ± 0.01 1.07 ± 0.01 1.07 ± 0.01
J12 0 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01
J21 0 ± 0.01 0.01 ± 0.01 0.00 ± 0.02 0.01 ± 0.03 0.01 ± 0.01

Table 5.8: Suicidal tendencies: estimation of the interacting model

4-year period

Param. 2000-2003 2001-2004 2002-2005 2003-2006 2004-2007

α0 -0.25 ± 0.02 -0.27 ± 0.03 -0.26 ± 0.03 -0.24 ± 0.04 -0.25 ± 0.05
α1 -0.05 ± 0.03 -0.03 ± 0.04 -0.04 ± 0.04 -0.07 ± 0.06 -0.04 ± 0.07

Table 5.9: Suicidal tendencies: estimation of the non-interacting model

5.6 A statistical mechanical approach to model estimation

We shall now estimate our model parameters using a different approach, which makes

explicit use of the time fluctuations of our main observable quantities m̃i. This approach is

not econometric, but typically statistical mechanical, in that it equates fluctuations observed

over time with fluctuations of a system which is in an equilibrium which is defined by

an ensemble of states rather than by a single state. The problem of retracing a model’s

parameters from observable quantities in this context has been referred to in the literature

as the “inverse Ising problem” (see e.g. [64]).

We start from the usual model

HN (σ) = −N
2

(J11m
2
1 + (J12 + J21)m1m2 + J22m

2
2 + h1m1 + h2m2), (5.7)

hi = α1a
(1)
i + α0,

and we shall analyze the data from our three case studies again using the model’s state

equations

m̄1 = tanh(J11m̄1 + J12m̄2 + h1),

m̄2 = tanh(J21m̄1 + J22m̄2 + h2), (5.8)
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which, as we shall see, will now also provide us with the system’s fluctuations as well as the

average quantities. Just as in the last section, we choose to use two distinct parameters J12

and J21 inside the state equations (5.8) instead of their average 1
2(J12 +J21) in order to test

for consistency.

5.6.1 Two views on susceptibility

The method presented here comes from an observation about quantity
m̄i

∂hj
, which is called

mi’s susceptibility with respect to external field hi in physics, or mi’s elasticity with respect

to incentive hi in econometrics.

The two relevant points of view that make
m̄i

∂hj
such an interesting quantity are those

of statistical mechanics and thermodynamics.

5.6.1.1 Statistical mechanics

For statistical mechanics
∂m̄i

∂hj
is a quantity defined internally to the system. The following

formula clarifies this point: From (5.7)

∂m̄i

∂hj
=

∂

∂hj

{∑
σ

mi(σ)
e−HN (σ)

Z

}
=
N

2
(
ωN (mimj)− ωN (mi)ωN (mj)

)
≡ c ij . (5.9)

The quantity
∂m̄i

∂hj
, which we shall refer to as c ij for notational convenience, is thus

simply the amount of fluctuations that we observe in quantities mi: if imagine the system

as a closed box, and we imagine being inside such closed box, we can in principle measure

c ij by studying the way mi vary.

5.6.1.2 Thermodynamics

The second point of view is intrinsically different: for thermodynamics
∂m̄i

∂hj
corresponds to

the response of the “closed box” mentioned in the last paragraph to an external influence

given by a small change in the field hj . Differently from statistical mechanics, thermo-

dynamics cannot provide us with this response’s value a priori from observations, since it

doesn’t know any details of what is going on inside the box. Thermodynamics does tell us,

however, that responses of the system to different influences , if the system is to obey to

the thermodynamic law identified by state equations (5.8).
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These interrelations can be made explicit by considering the partial derivatives of (5.8)

∂m̄1

∂h1
= (1− m̄2

1)
(
J1
∂m̄1

∂h1
+ J12

∂m̄2

∂h1
+ 1
)
,

∂m̄1

∂h2
= (1− m̄2

1)
(
J1
∂m̄1

∂h2
+ J12

∂m̄2

∂h2

)
,

∂m̄2

∂h2
= (1− m̄2

2)
(
J21

∂m̄1

∂h2
+ J2

∂m̄2

∂h2
+ 1
)
,

∂m̄2

∂h1
= (1− m̄2

2)
(
J21

∂m̄2

∂h1
+ J2

∂m̄2

∂h1

)
,

By relabeling di = (1 − m̄2
i ) and using definition (5.9) we can rewrite this system of

equations as

J1 c11 + J12 c12 =
c11

d1
− 1,

J1 c12 + J12 c22 =
c12

d1
,

J21 c12 + J2 c22 =
c22

d2
− 1,

J21 c11 + J2 c12 =
c12

d2
.

This is linear in the Jij , and the former two equations are independent from the latter

two, so that we can easily solve for the Jij using Cramer’s rule. This together with the

equations of state (5.8) allows us to express all the model parameters Ji,j and hi as functions

of the observable quantities m̄i and cij , as follows:

J12 =
c12

c11c22 − c2
12

= J21,

J11 =

(
c11
d1
− 1
)
c22 −

c212
d1

c11c22 − c2
12

,

J22 =

(
c22
d2
− 1
)
c11 −

c212
d2

c11c22 − c2
12

,

h1 = arctanh m̄1 − J1 m̄1 − J12 m̄2,

h2 = arctanh m̄2 − J12 m̄1 − J2 m̄2.
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In this case we see the consistency condition J12 = J21 fulfilled a priori. This tells us that,

given a set of sub-magnetizations, together with its covariance matrix, our parametrized

family contains one and only one model corresponding to it. As a consequence we can say

that such model makes use of exactly the amount of information provided into the time

series of standard statistics (i.e. means and covariances) of a poll-type database.

Estimators for m̄i and cij from the time series data are straightforward to obtain, and

we have gathered these statistics for our three case studies in Tables 5.10, 5.12 and 5.14.

Given a time period T , which in our case shall correspond to a range of four consecutive

years, we define estimators m̃i(T ) of m̄i and c̃ij(T ) of c̄ij corresponding to it

m̃i(T ) =
1
|T |

∑
year∈T

m̄year
i ,

c̃i,j(T ) = NT
1
|T |

∑
year∈T

(m̄year
i − m̃i(T ))(m̄year

j − m̃j(T )).

(5.10)

We must point out that in order to be well defined, such estimators should apply to a

time series of samples which are of equal size, since susceptibility ci,j has indeed an explicit

size dependence. Our systems, on the other hand, cannot be of equal size since they consist

of people who chose to participate into an activity, and the number of these people cannot be

established a priori. As stated before, however, the point of view in this thesis is that human

affairs can behave following the kind of quasi-static processes familiar to thermodynamics.

Consistently with this perspective, and with some justification coming from the considered

data, we shall consider the system’s population a slowly varying quantity, and use its average

of small periods of time as the quantity NT in order to define c̃i,j(T )

NT =
1
|T |

∑
year∈T

Nyear.

We can thus use relations (5.10) in order to obtain estimates for the model parameters. By

considering that

α0 = h2, (5.11)

α1 = h1 − h2, (5.12)

we can compare the new estimates, presented in Tables 5.11, 5.13 and 5.15, with those from

the preceding section.
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5.6.2 Comments on results from the two estimation approaches

We can now compare Tables 5.11, 5.13 and 5.15 with their counterparts from last section,

which estimated the same model for the same data coming from our three chosen case

studies, using our adaptation of Berkson’s method.

Such comparison can be summarised as follows: comparing Table 5.11, showing param-

eter estimations for the “religious vs civil marriage” case study, with Table 5.2, we find the

estimated values to be definitely different, but we also see that they bear some interesting

similarities, especially if we consider the confidence interval provided by the least squares

method in Table 5.2. Three shared features are particularly noteworthy:

- The estimated values for J1 and J2 are similar in one aspect: in both cases J2 is

estimated to be consistently greater than J1 over the years;

- J12 is estimated to be very close to zero in Table 5.11: J12 and J21 can be considered to

be statistically zero in Table 5.2 (which is also consistent with the condition J12−J21 =

0);

- α0 and α1 consistently estimated with equal signs by both methods: this is an essential

prerequisite that any model needs to satisfy.

The agreement is not good for the two remaining case studies, however. In the “con-

sensual vs non-consensual divorce” case study, despite estimations being consistent in the

first time range (that is 2000-2003), agreement gets worse and worse in the following two

periods. As for the third case study, the two estimation methods do not show any agreement

whatsoever.

An important point to be made is the dependence of method agreement against popu-

lation size. For the first case-study, where the population is made up of over 200 thousand

people the agreement between the two methods is good. In the second case-study we have

a population of roughly 40 thousand people, and we find agreement in one of the three

considered time spans. The third case-study doesn’t show any agreement: the population

size here, however, is of only around 2000 people.

Finally, though the last point certainly motivates further enquiry, one should not be

over-confident about population size being the only problem. An extremely important

objection comes from the fact that wherever agreement is found, estimators c̃ ij are found

to give very high values. We must remember that we are looking at the data through a

model that assumes equilibrium: such big c̃ ij values correspond to large fluctuations, and

these should cause an equilibrium model to be less precise and not more.
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The failure of the two estimation methods to give consistent results in regimes with small

fluctuations (that is whenever c̃ ij are small), reveal the presented study as inconclusive on

an empirical level. There are however several improvements that can be made by using

the same framework established here, the most important one concerning the handling of

the data. This thesis has as its goal to propose both a model, and a procedure allowing to

establish the empirical relevance of the model itself. It was hence of the foremost importance

to show a concrete example of such a procedure; since this was not a professional work in

statistics, however, it featured several drawbacks, some of which can be described as follows:

- Though showing a remarkable temporal coherence, the time series consists of a number

of measurements which is insufficient for any statistic to be reliable. In order to work

on consistent groups of data, the choice was made to gather data in four-year ranges:

the situation may be improved by considering a phenomenon having the same kind of

temporal coherence, but for which measurements are available on a monthly basis;

- The regional separation between “Northern Italy” and “Southern Italy” is an artificial

one, decided for technical reasons. The quality of the statistical study could be greatly

improved by considering a partition into groups which is directly relevant to the issue

under study;

- No use was made of the data regarding the relative sizes of the considered sub-

populations. This, as noted before, was due to a difficulty arising from the mean-

field assumption, which lead us to characterize the population as having equal size.

This drawback can be amended in two ways: 1) at a fundamental level, by further

considering the implications of having populations of different size for the model 2)

by keeping the same model, but considering estimators for cij that make use of the

information coming from the subpopulation sizes.

A final point to make concerns the model itself: very little is known about the structure

of the phase diagram of a mean-field model of a multi-part system: indeed, as noted in

earlier chapters, a subcase case of a two-part system considered here was studied in several

occasions since the nineteen-fifties [33, 9] until recently [46], and found to be highly non-

trivial. As a consequence, it is to be expected that the analysis of the features characterizing

the regime that empirical data identify will need to be treated locally and numerically before

any kind of global picture arises, and it is not a priori clear whether the presence of big

values for the cij might characterize and interesting regime rather than just a failure of the

model. It is mainly for this reason that much of the effort in this thesis has been directed
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towards the aim of establishing a way to link the model to data, rather than to pursue

further the analytic treatment of the model on its own.

4-year period

Statistic 2000-2003 2001-2004 2002-2005 2003-2006

m̃1 0.25 0.20 0.15 0.12
m̃2 0.58 0.56 0.54 0.52
c̃11 1636.09 953.63 466.42 106.59
c̃22 346.88 214.58 122.02 22.30
c̃12 562.15 336.03 176.09 34.09

Table 5.10: Religious vs civil marriages: statistics

4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006

α0 -0.21 -0.18 -0.15 -0.10
α1 0.20 0.17 0.14 0.08
J1 1.07 1.04 1.02 1.00
J2 1.51 1.44 1.39 1.29
J12 0.00 0.00 0.01 0.03

Table 5.11: Religious vs civil marriages: estimation of the interacting model

4-year period

Statistic 2000-2003 2001-2004 2002-2005

m̃1 0.59 0.63 0.63
m̃2 0.38 0.45 0.45
c̃11 74.21 1.27 0.15
c̃22 356.27 1.76 1.68
c̃12 120.56 -0.17 0.28

Table 5.12: Consensual vs non-consensual divorces: statistics
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4-year period

Parameter 2000-2003 2001-2004 2002-2005

α0 -0.05 0.23 -0.71
α1 -0.17 0.01 5.81
J1 1.51 0.85 -8.06
J2 1.16 0.68 0.39
J12 0.01 -0.07 1.61

Table 5.13: Consensual vs non-consensual divorces: estimation of the interacting model

4-year period

Statistic 2000-2003 2001-2004 2002-2005 2003-2006 2004-2007

m̃1 -0.29 -0.29 -0.29 -0.30 -0.28
m̃2 -0.25 -0.26 -0.25 -0.24 -0.25
c̃11 0.94 0.62 0.30 0.71 1.95
c̃22 0.23 1.50 2.05 3.57 3.66
c̃12 -0.08 0.00 0.11 -0.50 -0.91

Table 5.14: Suicidal tendencies: statistics

4-year period

Parameter 2000-2003 2001-2004 2002-2005 2003-2006 2004-2007

α0 -1.21 -0.16 -0.06 -0.13 -0.11
α1 0.81 -0.29 -0.87 -0.37 -0.08
J1 -0.01 -0.53 -2.33 -0.45 0.51
J2 -3.40 0.41 0.57 0.75 0.76
J12 -0.39 0.00 0.19 -0.22 -0.14

Table 5.15: Suicidal tendencies: estimation of the interacting model
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